§ 192.929 segment and that become less stringent as the operator gains experience; and (iii) Provisions that analysis be carried out on the entire pipeline in which covered segments are present, except that application of the remediation criteria of §192.933 may be limited to covered segments. [68 FR 69817, Dec. 15, 2003, as amended by Amdt. 192–95, 69 FR 18232, Apr. 6, 2004] EFFECTIVE DATE NOTE: Amendments to §192.927 were published at 87 FR 52275, Aug. 24, 2022, effective May 24, 2023. ## § 192.929 What are the requirements for using Direct Assessment for Stress Corrosion Cracking (SCCDA)? - (a) Definition. Stress Corrosion Cracking Direct Assessment (SCCDA) is a process to assess a covered pipe segment for the presence of SCC primarily by systematically gathering and analyzing excavation data for pipe having similar operational characteristics and residing in a similar physical environment. - (b) General requirements. An operator using direct assessment as an integrity assessment method to address stress corrosion cracking in a covered pipeline segment must have a plan that provides, at minimum, for— - (1) Data gathering and integration. An operator's plan must provide for a systematic process to collect and evaluate data for all covered segments to identify whether the conditions for SCC are present and to prioritize the covered segments for assessment. This process must include gathering and evaluating data related to SCC at all sites an operator excavates during the conduct of its pipeline operations where the criteria in ASME/ANSI B31.8S (incorporated by reference, see §192.7), appendix A3.3 indicate the potential for SCC. This data includes at minimum, the data specified in ASME/ANSI B31.8S, appendix A3. - (2) Assessment method. The plan must provide that if conditions for SCC are identified in a covered segment, an operator must assess the covered segment using an integrity assessment method specified in ASME/ANSI B31.8S, appendix A3, and remediate the threat in ac- cordance with ASME/ANSI B31.8S, appendix A3, section A3.4. [68 FR 69817, Dec. 15, 2003, as amended by Amdt. 192–95, 69 FR 18233, Apr. 6, 2004] EFFECTIVE DATE NOTE: Amendments to §192.929 were published at 87 FR 52276, Aug. 24, 2022, effective May 24, 2023. ## §192.931 How may Confirmatory Direct Assessment (CDA) be used? An operator using the confirmatory direct assessment (CDA) method as allowed in §192.937 must have a plan that meets the requirements of this section and of §§192.925 (ECDA) and §192.927 (ICDA). - (a) *Threats*. An operator may only use CDA on a covered segment to identify damage resulting from external corrosion or internal corrosion. - (b) External corrosion plan. An operator's CDA plan for identifying external corrosion must comply with §192.925 with the following exceptions. - (1) The procedures for indirect examination may allow use of only one indirect examination tool suitable for the application. - (2) The procedures for direct examination and remediation must provide that— - (i) All immediate action indications must be excavated for each ECDA region; and - (ii) At least one high risk indication that meets the criteria of scheduled action must be excavated in each ECDA region. - (c) Internal corrosion plan. An operator's CDA plan for identifying internal corrosion must comply with §192.927 except that the plan's procedures for identifying locations for excavation may require excavation of only one high risk location in each ICDA region. - (d) Defects requiring near-term remediation. If an assessment carried out under paragraph (b) or (c) of this section reveals any defect requiring remediation prior to the next scheduled assessment, the operator must schedule the next assessment in accordance with NACE SP0502 (incorporated by reference, see §192.7), section 6.2 and 6.3. If the defect requires immediate remediation, then the operator must reduce pressure consistent with §192.933 until the operator has completed reassessment using one of the assessment techniques allowed in §192.937. [68 FR 69817, Dec. 15, 2003, as amended by Amdt. 192–114, 75 FR 48604, Aug. 11, 2010; Amdt. 192–119, 80 FR 178, Jan. 5, 2015] ## § 192.933 What actions must be taken to address integrity issues? (a) General requirements. An operator must take prompt action to address all anomalous conditions the operator discovers through the integrity assessment. In addressing all conditions, an operator must evaluate all anomalous conditions and remediate those that could reduce a pipeline's integrity. An operator must be able to demonstrate that the remediation of the condition will ensure the condition is unlikely to pose a threat to the integrity of the pipeline until the next reassessment of the covered segment. (1) Temporary pressure reduction. If an operator is unable to respond within the time limits for certain conditions specified in this section, the operator must temporarily reduce the operating pressure of the pipeline or take other action that ensures the safety of the covered segment. An operator must determine any temporary reduction in operating pressure required by this section using ASME/ANSI B31G (incorporated by reference, see §192.7); R-STRENG (incorporated by reference, see § 192.7); or by reducing the operating pressure to a level not exceeding 80 percent of the level at the time the condition was discovered. An operator must notify PHMSA in accordance with §192.18 if it cannot meet the schedule for evaluation and remediation required under paragraph (c) of this section and cannot provide safety through a temporary reduction in operating pressure or through another action. (2) Long-term pressure reduction. When a pressure reduction exceeds 365 days, an operator must notify PHMSA under § 192.18 and explain the reasons for the remediation delay. This notice must include a technical justification that the continued pressure reduction will not jeopardize the integrity of the pipeline. (b) Discovery of condition. Discovery of a condition occurs when an operator has adequate information about a con- dition to determine that the condition presents a potential threat to the integrity of the pipeline. A condition that presents a potential threat includes, but is not limited to, those conditions that require remediation or monitoring listed under paragraphs (d)(1) through (d)(3) of this section. An operator must promptly, but no later than 180 days after conducting an integrity assessment, obtain sufficient information about a condition to make that determination, unless the operator demonstrates that the 180-day period is impracticable. (c) Schedule for evaluation and remediation. An operator must complete remediation of a condition according to a schedule prioritizing the conditions for evaluation and remediation. Unless a special requirement for remediating certain conditions applies, as provided in paragraph (d) of this section, an operator must follow the schedule in ASME/ANSI B31.8S (incorporated by reference, see §192.7), section 7, Figure 4. If an operator cannot meet the schedule for any condition, the operator must explain the reasons why it cannot meet the schedule and how the changed schedule will not jeopardize public safety. (d) Special requirements for scheduling remediation—(1) Immediate repair conditions. An operator's evaluation and remediation schedule must follow ASME/ANSI B31.8S, section 7 in providing for immediate repair conditions. To maintain safety, an operator must temporarily reduce operating pressure in accordance with paragraph (a) of this section or shut down the pipeline until the operator completes the repair of these conditions. An operator must treat the following conditions as immediate repair conditions: (i) A calculation of the remaining strength of the pipe shows a predicted failure pressure less than or equal to 1.1 times the maximum allowable operating pressure at the location of the anomaly. Suitable remaining strength calculation methods include ASME/ANSI B31G (incorporated by reference, see §192.7) , PRCI PR-3-805 (R-STRENG) (incorporated by reference, see §192.7), or an alternative equivalent method of remaining strength calculation.