Federal Communications Commission

cable television channel may be determined with either a spectrum analyzer or with a frequency-selective voltmeter (field strength meter), which instruments have been calibrated for adequate accuracy. If calibration accuracy is in doubt, measurements may be referenced to a calibrated signal generator, or a calibrated variable attenuator, substituted at the point of measurement. If an amplifier is used between the subscriber terminal and the measuring instrument, appropriate corrections must be made to account for its gain.

(g) The terminal isolation between any two terminals in the cable television system may be measured by applying a signal of known amplitude to one terminal and measuring the amplitude of that signal at the other terminal. The frequency of the signal should be close to the midfrequency of the channel being tested. Measurements of terminal isolation are not required when either:

(1) The manufacturer's specifications for subscriber tap isolation based on a representative sample of no less than 500 subscribers taps or

(2) Laboratory tests performed by or for the operator of a cable television system on a representative sample of no less than 50 subscriber taps, indicates that the terminal isolation standard of ⁶76.605(a)(9) is met.

To demonstrate compliance with §76.605(a)(9), the operator of a cable television system shall attach either such manufacturer's specifications or laboratory measurements as an exhibit to each proof-of-performance record.

(h) Measurements to determine the field strength of the signal leakage emanated by the cable television system shall be made in accordance with standard engineering procedures. Measurements made on frequencies above 25 MHz shall include the following:

(1) A field strength meter of adequate accuracy using a horizontal dipole antenna shall be employed.

(2) Field strength shall be expressed in terms of the rms value of synchronizing peak for each cable television channel for which signal leakage can be measured.

(3) The resonant half wave dipole antenna shall be placed 3 meters from and positioned directly below the system components and at 3 meters above ground. Where such placement results in a separation of less than 3 meters between the center of the dipole antenna and the system components, or less than 3 meters between the dipole and ground level, the dipole shall be repositioned to provide a separation of 3 meters from the system components at a height of 3 meters or more above ground.

(4) The horizontal dipole antenna shall be rotated about a vertical axis and the maximum meter reading shall be used.

(5) Measurements shall be made where other conductors are 3 or more meters (10 or more feet) away from the measuring antenna.

(i) For systems using cable traps and filters to control the delivery of specific channels to the subscriber terminal, measurements made to determine compliance with §76.605(a) (5) and (6) may be performed at the location immediately prior to the trap or filter for the specific channel. The effects of these traps or filters, as certified by the system engineer or the equipment manufacturer, must be attached to each proof-of-performance record.

(j) Measurements made to determine the differential gain, differential phase and the chrominance-luminance delay inequality (chroma delay) shall be made in accordance with the NCTA Recommended Practices for Measurements on Cable Television Systems, 2nd edition, November 1989, on these parameters.

[37 FR 3278, Feb. 12, 1972, as amended at 37
FR 13867, July 14, 1972; 41 FR 10067, Mar. 9, 1976; 42 FR 21782, Apr. 29, 1977; 49 FR 45441, Nov. 16, 1984; 57 FR 11004, Apr. 1, 1992; 57 FR 61011, Dec. 23, 1992; 58 FR 44952, Aug. 25, 1993]

§76.610 Operation in the frequency bands 108–137 MHz and 225–400 MHz—scope of application.

The provisions of §§ 76.605(d), 76.611, 76.612, 76.613, 76.614, 76.616, 76.617, 76.1803 and 76.1804 are applicable to all MVPDs (cable and non-cable) transmitting analog carriers or other signal components carried at an average power level equal to or greater than 100 microwatts across a 25 kHz bandwidth in any 160 microsecond period or transmitting digital carriers or other signal components at an average power level of 75.85 microwatts across a 25 kHz bandwidth in any 160 microsecond period at any point in the cable distribution system in the frequency bands 108–137 and 225– 400 MHz for any purpose. Exception: Non-cable MVPDs serving less than 1000 subscribers and less than 1,000 units do not have to comply with §76.1803.

[83 FR 7629, Feb. 22, 2018]

§76.611 Cable television basic signal leakage performance criteria.

(a) No cable television system shall commence or provide service in the frequency bands 108–137 and 225–400 MHz

unless such systems is in compliance with one of the following cable television basic signal leakage performance criteria:

(1) Prior to carriage of signals in the aeronautical radio bands and at least once each calendar year, with no more than 12 months between successive tests thereafter, based on a sampling of at least 75% of the cable strand, and including any portion of the cable system which are known to have or can reasonably be expected to have less leakage integrity than the average of the system, the cable operator demonstrates compliance with a cumulative signal leakage index by showing that 10 log L. is equal to or less than 64 using the following formula:

$$\mathbf{I}_{\infty} = \frac{1}{\theta} \sum_{i=1}^{n} E_i^2,$$

 θ is the fraction of the system cable length actually examined for leakage sources and is equal to the strand kilometers (strand miles) of plant tested divided by the total strand kilometers (strand miles) in the plant;

 E_i is the electric field strength in microvolts per meter $(\mu V/m)$ measured 3 meters from the leak i; and

n is the number of leaks found of field strength equal to or greater than 50 $\mu V/m$ measured pursuant to §76.609(h).

The sum is carried over all leaks i detected in the cable examined; or

(2) Prior to carriage of signals in the aeronautical radio bands and at least once each calendar year, with no more than 12 months between successive tests thereafter, the cable operator demonstrates by measurement in the airspace that at no point does the field strength generated by the cable system exceed 10 microvolts per meter $(\mu V/m)$ RMS at an altitude of 450 meters above the average terrain of the cable system. The measurement system (including the receiving antenna) shall be calibrated against a known field of 10 µV/m RMS produced by a well characterized antenna consisting of orthogonal resonant dipoles, both parallel to

and one quarter wavelength above the ground plane of a diameter of two meters or more at ground level. The dipoles shall have centers collocated and be excited 90 degrees apart. The half-power bandwidth of the detector shall be 25 kHz. If an aeronautical receiver is used for this purpose it shall meet the standards of the Radio Technical Commission for Aeronautics (RCTA) for aeronautical communications receivers. The aircraft antenna shall be horizontally polarized. Calibration shall be made in the community unit or, if more than one, in any of the community units of the physical system within a reasonable time period to performing the measurements. If data is recorded digitally the 90th percentile level of points recorded over the cable system shall not exceed 10 µV/m RMS as indicated above; if analog recordings is used the peak values of the curves, when smoothed according to good engineering practices, shall not exceed 10 μ V/m RMS.

(b) In paragraphs (a)(1) and (2) of this section the unmodulated test signal used for analog leakage measurements on the cable plant shall—