Environmental Protection Agency

cases where the outlet concentration is less than 50 ppm NMOC as carbon (8 ppm NMOC as hexane), Method 25A should be used in place of Method 25. Method 18 may be used in conjunction with Method 25A on a limited basis (compound specific, *e.g.*, methane) or Method 3C may be used to determine methane. The methane as carbon should be subtracted from the Method 25A total hydrocarbon value as carbon to give NMOC concentration as carbon. The landowner or operator must divide the NMOC concentration as carbon by 6 to convert from the CNMOC as carbon to CNMOC as hexane. Equation 4 must be used to calculate efficiency:

Control Efficiency = (NMOC_{in}- NMOC_{out})/(NMOC_{in}) (Eq.4)

Where:

NMOC_{in} = Mass of NMOC entering control device.

NMOC_{out} = Mass of NMOC exiting control device.

(e) For the performance test required in $\S60.762(b)(2)(iii)(A)$, the net heating value of the combusted landfill gas as determined in $\S60.18(f)(3)$ is calculated from the concentration of methane in the landfill gas as measured by Method 3C. A minimum of three 30-minute Method 3C samples are determined. The measurement of other organic components, hydrogen, and carbon monoxide is not applicable. Method 3C may be used to determine the landfill gas molecular weight for calculating the flare gas exit velocity under $\S60.18(f)(4)$.

(1) Within 60 days after the date of completing each performance test (as defined in 60.8), the owner or operator must submit the results of the performance tests, including any associated fuel analyses, required by 60.764(b) or (d) according to 60.767(i)(1).

(2) [Reserved]

$Q_m = 2L_oR \quad (e^{-kc} - e^{-kt})$

Where:

LAPBH6H6L3 with DISTILLER

- Q_m = Maximum expected gas generation flow rate, cubic meters per year.
- $\label{eq:Lo} {\rm L}_{\rm o} \mbox{ = Methane generation potential, cubic} \\ {\rm meters per megagram solid waste.}$
- R = Average annual acceptance rate, megagrams per year.

§60.765 Compliance provisions.

(a) Except as provided in 60.767(c)(2), the specified methods in paragraphs (a)(1) through (6) of this section must be used to determine whether the gas collection system is in compliance with 60.762(b)(2)(i).

(1) For the purposes of calculating the maximum expected gas generation flow rate from the landfill to detercompliance mine with 60.762(b)(2)(ii)(C)(1), either Equation 5 or Equation 6 must be used. The methane generation rate constant (k) and methane generation potential (Lo) kinetic factors should be those published in the most recent Compilation of Air Pollutant Emission Factors (AP-42) or other site specific values demonstrated to be appropriate and approved by the Administrator. If k has been determined as specified in $\S60.764(a)(4)$, the value of k determined from the test must be used. A value of no more than 15 years must be used for the intended use period of the gas mover equipment. The active life of the landfill is the age of the landfill plus the estimated number of years until closure.

(i) For sites with unknown year-toyear solid waste acceptance rate:

- k = Methane generation rate constant, year⁻¹.
- t = Age of the landfill at equipment installation plus the time the owner or operator intends to use the gas mover equipment or active life of the landfill, whichever is less. If the equipment is installed after

§60.765

closure, t is the age of the landfill at installation, years.

c = Time since closure, years (for an active landfill c = 0 and $e^{-kc} = 1$).

$$Q_{M=}\sum_{i=1}^{n} 2kL_o M_i(e^{-kt_i})$$

Where:

 Q_M = Maximum expected gas generation flow rate, cubic meters per year.

- k = Methane generation rate constant, year⁻¹.
- $L_o =$ Methane generation potential, cubic meters per megagram solid waste.
- M_i = Mass of solid waste in the ith section, megagrams.
- $t_i = Age of the ith section, years.$

(iii) If a collection and control system has been installed, actual flow data may be used to project the maximum expected gas generation flow rate instead of, or in conjunction with, Equation 5 or Equation 6 in paragraphs (a)(1)(i) and (ii) of this section. If the landfill is still accepting waste, the actual measured flow data will not equal the maximum expected gas generation rate, so calculations using Equation 5 or Equation 6 in paragraphs (a)(1)(i) or (ii) of this section or other methods must be used to predict the maximum expected gas generation rate over the intended period of use of the gas control system equipment.

(2) For the purposes of determining sufficient density of gas collectors for compliance with $\S60.762(b)(2)(ii)(C)(2)$, the owner or operator must design a system of vertical wells, horizontal collectors, or other collection devices, satisfactory to the Administrator, capable of controlling and extracting gas from all portions of the landfill sufficient to meet all operational and performance standards.

(3) For the purpose of demonstrating whether the gas collection system flow rate is sufficient to determine compliance with 60.762(b)(2)(ii)(C)(3), the owner or operator must measure gauge pressure in the gas collection header applied to each individual well, month-ly. If a positive pressure exists, action must be initiated to correct the exceedance within 5 calendar days, except for the three conditions allowed under §60.763(b). Any attempted corrective

40 CFR Ch. I (7–1–23 Edition)

(ii) For sites with known year-toyear solid waste acceptance rate:

(Eq. 6)

measure must not cause exceedances of other operational or performance standards.

(i) If negative pressure cannot be achieved without excess air infiltration within 15 calendar days of the first measurement of positive pressure, the owner or operator must conduct a root cause analysis and correct the exceedance as soon as practicable, but no later than 60 days after positive pressure was first measured. The owner or operator must keep records according to $\S60.768(e)(3)$.

(ii) If corrective actions cannot be fully implemented within 60 days following the positive pressure measurement for which the root cause analysis was required, the owner or operator must also conduct a corrective action analysis and develop an implementation schedule to complete the corrective action(s) as soon as practicable, but no more than 120 days following the positive pressure measurement. The owner or operator must submit the items listed in $\S60.767(g)(7)$ as part of the next annual report. The owner or operator must keep records according to §60.768(e)(4).

(iii) If corrective action is expected to take longer than 120 days to complete after the initial exceedance, the owner or operator must submit the root cause analysis, corrective action analysis, and corresponding implementation timeline to the Administrator, according to $\S60.767(g)(7)$ and $\S60.767(j)$. The owner or operator must keep records according to $\S60.768(e)(5)$.

(4) [Reserved]

(5) For the purpose of identifying whether excess air infiltration into the landfill is occurring, the owner or operator must monitor each well monthly for temperature as provided in $\S60.763(c)$. If a well exceeds the operating parameter for temperature, action must be initiated to correct the

Environmental Protection Agency

exceedance within 5 calendar days. Any attempted corrective measure must not cause exceedances of other operational or performance standards.

(i) If a landfill gas temperature less than 55 degrees Celsius (131 degrees Fahrenheit) cannot be achieved within 15 calendar days of the first measurement of landfill gas temperature greater than 55 degrees Celsius (131 degrees Fahrenheit), the owner or operator must conduct a root cause analysis and correct the exceedance as soon as practicable, but no later than 60 days after a landfill gas temperature greater than 55 degrees Celsius (131 degrees Fahrenheit) was first measured. The owner or operator must keep records according to §60.768(e)(3).

(ii) If corrective actions cannot be fully implemented within 60 days following the positive pressure or elevated temperature measurement for which the root cause analysis was required, the owner or operator must also conduct a corrective action analysis and develop an implementation schedule to complete the corrective action(s) as soon as practicable, but no more than 120 days following the measurement of landfill gas temperature greater than 55 degrees Celsius (131 degrees Fahrenheit) or positive pressure. The owner or operator must submit the items listed in 60.767(g)(7) as part of the next annual report. The owner or operator must keep records according to §60.768(e)(4).

(iii) If corrective action is expected to take longer than 120 days to complete after the initial exceedance, the owner or operator must submit the root cause analysis, corrective action analysis, and corresponding implementation timeline to the Administrator, according to $\S60.767(g)(7)$ and $\S60.767(j)$. The owner or operator must keep records according to $\S60.768(e)(5)$.

(6) An owner or operator seeking to demonstrate compliance with 60.762(b)(2)(ii)(C)(4) through the use of a collection system not conforming to the specifications provided in 60.769 must provide information satisfactory to the Administrator as specified in 60.767(c)(3) demonstrating that off-site migration is being controlled.

(b) For purposes of compliance with (60.763(a)), each owner or operator of a

controlled landfill must place each well or design component as specified in the approved design plan as provided in §60.767(c). Each well must be installed no later than 60 days after the date on which the initial solid waste has been in place for a period of:

(1) Five (5) years or more if active; or

(2) Two (2) years or more if closed or at final grade.

(c) The following procedures must be used for compliance with the surface methane operational standard as provided in §60.763(d).

(1) After installation and startup of the gas collection system, the owner or operator must monitor surface concentrations of methane along the entire perimeter of the collection area and along a pattern that traverses the landfill at 30 meter intervals (or a sitespecific established spacing) for each collection area on a quarterly basis using an organic vapor analyzer, flame ionization detector, or other portable monitor meeting the specifications provided in paragraph (d) of this section.

(2) The background concentration must be determined by moving the probe inlet upwind and downwind outside the boundary of the landfill at a distance of at least 30 meters from the perimeter wells.

(3) Surface emission monitoring must be performed in accordance with section 8.3.1 of Method 21 of appendix A of this part, except that the probe inlet must be placed within 5 to 10 centimeters of the ground. Monitoring must be performed during typical meteorological conditions.

(4) Any reading of 500 parts per million or more above background at any location must be recorded as a monitored exceedance and the actions specified in paragraphs (c)(4)(i) through (v)of this section must be taken. As long as the specified actions are taken, the exceedance is not a violation of the operational requirements of §60.763(d).

(i) The location of each monitored exceedance must be marked and the location and concentration recorded.

(ii) Cover maintenance or adjustments to the vacuum of the adjacent wells to increase the gas collection in the vicinity of each exceedance must be made and the location must be remonitored within 10 calendar days of detecting the exceedance.

(iii) If the re-monitoring of the location shows a second exceedance, additional corrective action must be taken and the location must be monitored again within 10 days of the second exceedance. If the re-monitoring shows a third exceedance for the same location, the action specified in paragraph (c)(4)(v) of this section must be taken, and no further monitoring of that location is required until the action specified in paragraph (c)(4)(v) of this section has been taken.

(iv) Any location that initially showed an exceedance but has a methane concentration less than 500 ppm methane above background at the 10day re-monitoring specified in paragraph (c)(4)(ii) or (iii) of this section must be re-monitored 1 month from the initial exceedance. If the 1-month remonitoring shows a concentration less than 500 parts per million above background, no further monitoring of that location is required until the next quarterly monitoring period. If the 1month re-monitoring shows an exceedance, the actions specified in paragraph (c)(4)(iii) or (v) of this section must be taken.

(v) For any location where monitored methane concentration equals or exceeds 500 parts per million above background three times within a quarterly period, a new well or other collection device must be installed within 120 calendar days of the initial exceedance. An alternative remedy to the exceedance, such as upgrading the blower, header pipes or control device, and a corresponding timeline for installation may be submitted to the Administrator for approval.

(5) The owner or operator must implement a program to monitor for cover integrity and implement cover repairs as necessary on a monthly basis.

(d) Each owner or operator seeking to comply with the provisions in paragraph (c) of this section or $\S60.764(a)(6)$ must comply with the following instrumentation specifications and procedures for surface emission monitoring devices:

(1) The portable analyzer must meet the instrument specifications provided 40 CFR Ch. I (7–1–23 Edition)

in section 6 of Method 21 of appendix A of this part, except that "methane" replaces all references to "VOC".

(2) The calibration gas must be methane, diluted to a nominal concentration of 500 parts per million in air.

(3) To meet the performance evaluation requirements in section 8.1 of Method 21 of appendix A of this part, the instrument evaluation procedures of section 8.1 of Method 21 of appendix A of this part must be used.

(4) The calibration procedures provided in sections 8 and 10 of Method 21 of appendix A of this part must be followed immediately before commencing a surface monitoring survey.

(e) The provisions of this subpart apply at all times, including periods of startup, shutdown or malfunction. During periods of startup, shutdown, and malfunction, you must comply with the work practice specified in 60.763(e) in lieu of the compliance provisions in 60.765.

[81 FR 59368, Aug. 29, 2016, as amended at 85 FR 17261, Mar. 26, 2020]

§60.766 Monitoring of operations.

Except as provided in 60.767(c)(2):

(a) Each owner or operator seeking to comply with 60.762(b)(2)(ii)(C) for an active gas collection system must install a sampling port and a thermometer, other temperature measuring device, or an access port for temperature measurements at each wellhead and:

(1) Measure the gauge pressure in the gas collection header on a monthly basis as provided in 60.765(a)(3); and

(2) Monitor nitrogen or oxygen concentration in the landfill gas on a monthly basis as follows:

(i) The nitrogen level must be determined using Method 3C, unless an alternative test method is established as allowed by 60.767(c)(2).

(ii) Unless an alternative test method is established as allowed by §60.767(c)(2), the oxygen level must be determined by an oxygen meter using Method 3A, 3C, or ASTM D6522-11 (incorporated by reference, see §60.17). Determine the oxygen level by an oxygen meter using Method 3A, 3C, or ASTM D6522-11 (if sample location is prior to combustion) except that:

(A) The span must be set between 10 and 12 percent oxygen;