using direct measurement as specified at paragraph (d)(1) of this section.

[55 FR 25507, June 21, 1990, as amended at 56
FR 19290, Apr. 26, 1991; 61 FR 59970, Nov. 25, 1996; 62 FR 32463, June 13, 1997; 70 FR 34586, June 14, 2005]

§ 265.1035 Recordkeeping requirements.

(a)(1) Each owner or operator subject to the provisions of this subpart shall comply with the recordkeeping requirements of this section.

(2) An owner or operator of more than one hazardous waste management unit subject to the provisions of this subpart may comply with the recordkeeping requirements for these hazardous waste management units in one recordkeeping system if the system identifies each record by each hazardous waste management unit.

(b) Owners and operators must record the following information in the facility operating record:

(1) For facilities that comply with the provisions of $\S265.1033(a)(2)$, an implementation schedule that includes dates by which the closed-vent system and control device will be installed and in operation. The schedule must also include a rationale of why the installation cannot be completed at an earlier date. The implementation schedule must be in the facility operating record by the effective date that the facility becomes subject to the provisions of this subpart.

(2) Up-to-date documentation of compliance with the process vent standards in §265.1032, including:

(i) Information and data identifying all affected process vents, annual throughput and operating hours of each affected unit, estimated emission rates for each affected vent and for the overall facility (i.e., the total emissions for all affected vents at the facility), and the approximate location within the facility of each affected unit (e.g., identify the hazardous waste management units on a facility plot plan); and

(ii) Information and data supporting determinations of vent emissions and emission reductions achieved by add-on control devices based on engineering calculations or source tests. For the purpose of determining compliance, de-

40 CFR Ch. I (7–1–23 Edition)

terminations of vent emissions and emission reductions must be made using operating parameter values (e.g., temperatures, flow rates or vent stream organic compounds and concentrations) that represent the conditions that result in maximum organic emissions, such as when the waste management unit is operating at the highest load or capacity level reasonably expected to occur. If the owner or operator takes any action (e.g., managing a waste of different composition or increasing operating hours of affected waste management units) that would result in an increase in total organic emissions from affected process vents at the facility, then a new determination is required.

(3) Where an owner or operator chooses to use test data to determine the organic removal efficiency or total organic compound concentration achieved by the control device, a performance test plan. The test plan must include:

(i) A description of how it is determined that the planned test is going to be conducted when the hazardous waste management unit is operating at the highest load or capacity level reasonably expected to occur. This shall include the estimated or design flow rate and organic content of each vent stream and define the acceptable operating ranges of key process and control device parameters during the test program.

(ii) A detailed engineering description of the closed-vent system and control device including:

(A) Manufacturer's name and model number of control device.

(B) Type of control device.

(C) Dimensions of the control device.(D) Capacity.

(E) Construction materials.

(iii) A detailed description of sampling and monitoring procedures, including sampling and monitoring locations in the system, the equipment to be used, sampling and monitoring frequency, and planned analytical procedures for sample analysis.

(4) Documentation of compliance with §265.1033 shall include the following information:

Environmental Protection Agency

(i) A list of all information references and sources used in preparing the documentation.

(ii) Records, including the dates, of each compliance test required by §265.1033(j).

(iii) If engineering calculations are used, a design analysis, specifications, drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of "APTI Course 415: Control of Gaseous Emissions" (incorporated by reference as specified in §260.11) or other engineering texts acceptable to the Regional Administrator that present basic control device design information. Documentation provided by the control device manufacturer or vendor that describes the control device design in accordance with paragraphs (b)(4)(iii)(A) through (b)(4)(iii)(G) of this section may be used to comply with this requirement. The design analysis shall address the vent stream characteristics and control device operation parameters as specified below.

(A) For a thermal vapor incinerator, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also establish the design minimum and average temperature in the combustion zone and the combustion zone residence time.

(B) For a catalytic vapor incinerator, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also establish the design minimum and average temperatures across the catalyst bed inlet and outlet.

(C) For a boiler or process heater, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also establish the design minimum and average flame zone temperatures, combustion zone residence time, and description of method and location where the vent stream is introduced into the combustion zone.

(D) For a flare, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also consider the requirements specified in §265.1033(d).

(E) For a condenser, the design analysis shall consider the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The design analysis shall also establish the design outlet organic compound concentration level, design average temperature of the condenser exhaust vent stream, and design average temperatures of the coolant fluid at the condenser inlet and outlet.

(F) For a carbon adsorption system such as a fixed-bed adsorber that regenerates the carbon bed directly onsite in the control device, the design analysis shall consider the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The design analysis shall also establish the design exhaust vent stream organic compound concentration level, number and capacity of carbon beds, type and working capacity of activated carbon used for carbon beds, design total steam flow over the period of each complete carbon bed regeneration cycle, duration of the carbon bed steaming and cooling/drying cycles, design carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life of carbon.

(G) For a carbon adsorption system such as a carbon canister that does not regenerate the carbon bed directly onsite in the control device, the design analysis shall consider the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The design analysis shall also establish the design outlet organic concentration level, capacity of carbon bed, type and working capacity of activated carbon used for carbon bed, and design carbon replacement interval based on the total carbon working capacity of the control device and source operating schedule.

(iv) A statement signed and dated by the owner or operator certifying that the operating parameters used in the design analysis reasonably represent the conditions that exist when the hazardous waste management unit is or would be operating at the highest load or capacity level reasonably expected to occur.

(v) A statement signed and dated by the owner or operator certifying that

the control device is designed to operate at an efficiency of 95 percent or greater unless the total organic concentration limit of §265.1032(a) is achieved at an efficiency less than 95 weight percent or the total organic emission limits of §265.1032(a) for affected process vents at the facility can be attained by a control device involving vapor recovery at an efficiency less than 95 weight percent. A statement provided by the control device manufacturer or vendor certifying that the control equipment meets the design specifications may be used to comply with this requirement.

(vi) If performance tests are used to demonstrate compliance, all test results.

(c) Design documentation and monitoring, operating, and inspection information for each closed-vent system and control device required to comply with the provisions of this part shall be recorded and kept up-to-date in the facility operating record. The information shall include:

(1) Description and date of each modification that is made to the closed-vent system or control device design.

(2) Identification of operating parameter, description of monitoring device, and diagram of monitoring sensor location or locations used to comply with \$265.1033(f)(1) and (f)(2).

(3) Monitoring, operating and inspection information required by paragraphs (f) through (k) of §265.1033 of this subpart.

(4) Date, time, and duration of each period that occurs while the control device is operating when any monitored parameter exceeds the value established in the control device design analysis as specified below:

(i) For a thermal vapor incinerator designed to operate with a minimum residence time of 0.50 seconds at a minimum temperature of 760 °C, period when the combustion temperature is below 760 °C.

(ii) For a thermal vapor incinerator designed to operate with an organic emission reduction efficiency of 95 percent or greater, period when the combustion zone temperature is more than $28 \,^{\circ}\text{C}$ below the design average combustion zone temperature established as a

40 CFR Ch. I (7–1–23 Edition)

requirement of paragraph (b)(4)(iii)(A) of this section.

(iii) For a catalytic vapor incinerator, period when:

(A) Temperature of the vent stream at the catalyst bed inlet is more than $28 \,^{\circ}C$ below the average temperature of the inlet vent stream established as a requirement of paragraph (b)(4)(iii)(B) of this section; or

(B) Temperature difference across the catalyst bed is less than 80 percent of the design average temperature difference established as a requirement of paragraph (b)(4)(iii)(B) of this section.

(iv) For a boiler or process heater, period when:

(A) Flame zone temperature is more than 28 °C below the design average flame zone temperature established as a requirement of paragraph (b)(4)(iii)(C) of this section; or

(B) Position changes where the vent stream is introduced to the combustion zone from the location established as a requirement of paragraph (b)(4)(iii)(C) of this section.

(v) For a flare, period when the pilot flame is not ignited.

(vi) For a condenser that complies with $\S265.1033(f)(2)(vi)(A)$, period when the organic compound concentration level or readings of organic compounds in the exhaust vent stream from the condenser are more than 20 percent greater than the design outlet organic compound concentration level established as a requirement of paragraph (b)(4)(iii)(E) of this section.

(vii) For a condenser that complies with §265.1033(f)(2)(vi)(B), period when:

(A) Temperature of the exhaust vent stream from the condenser is more than 6 °C above the design average exhaust vent stream temperature established as a requirement of paragraph (b)(4)(iii)(E) of this section; or

(B) Temperature of the coolant fluid exiting the condenser is more than 6 °C above the design average coolant fluid temperature at the condenser outlet established as a requirement of paragraph (b)(4)(iii)(E) of this section.

(viii) For a carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed directly onsite in the control device and

Environmental Protection Agency

complies with §265.1033(f)(2)(vii)(A), period when the organic compound concentration level or readings of organic compounds in the exhaust vent stream from the carbon bed are more than 20 percent greater than the design exhaust vent stream organic compound concentration level established as a requirement of paragraph (b)(4)(iii)(F) of this section.

(ix) For a carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed directly onsite in the control device and complies with \$265.1033(f)(2)(vii)(B), period when the vent stream continues to flow through the control device beyond the predetermined carbon bed regeneration time established as a requirement of paragraph (b)(4)(iii)(F) of this section.

(5) Explanation for each period recorded under paragraph (c)(4) of this section of the cause for control device operating parameter exceeding the design value and the measures implemented to correct the control device operation.

(6) For carbon adsorption systems operated subject to requirements specified in 265.1033(g) or 265.1033(h)(2), date when existing carbon in the control device is replaced with fresh carbon.

(7) For carbon adsorption systems operated subject to requirements specified in §265.1033(h)(1), a log that records:

(i) Date and time when control device is monitored for carbon breakthrough and the monitoring device reading.

(ii) Date when existing carbon in the control device is replaced with fresh carbon.

(8) Date of each control device startup and shutdown.

(9) An owner or operator designating any components of a closed-vent system as unsafe to monitor pursuant to §265.1033(n) of this subpart shall record in a log that is kept in the facility operating record the identification of closed-vent system components that are designated as unsafe to monitor in accordance with the requirements of §265.1033(n) of this subpart, an explanation for each closed-vent system component stating why the closed-vent system component is unsafe to monitor, and the plan for monitoring each closed-vent system component.

(10) When each leak is detected as specified in §265.1033(k) of this subpart, the following information shall be recorded:

(i) The instrument identification number, the closed-vent system component identification number, and the operator name, initials, or identification number.

(ii) The date the leak was detected and the date of first attempt to repair the leak.

(iii) The date of successful repair of the leak.

(iv) Maximum instrument reading measured by Method 21 of 40 CFR part 60, appendix A after it is successfully repaired or determined to be nonrepairable.

(v) "Repair delayed" and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.

(A) The owner or operator may develop a written procedure that identifies the conditions that justify a delay of repair. In such cases, reasons for delay of repair may be documented by citing the relevant sections of the written procedure.

(B) If delay of repair was caused by depletion of stocked parts, there must be documentation that the spare parts were sufficiently stocked on-site before depletion and the reason for depletion.

(d) Records of the monitoring, operating, and inspection information required by paragraphs (c)(3) through (c)(10) of this section shall be maintained by the owner or operator for at least 3 years following the date of each occurrence, measurement, maintenance, corrective action, or record.

(e) For a control device other than a thermal vapor incinerator, catalytic vapor incinerator, flare, boiler, process heater, condenser, or carbon adsorption system, monitoring and inspection information indicating proper operation and maintenance of the control device must be recorded in the facility operating record.

(f) Up-to-date information and data used to determine whether or not a process vent is subject to the requirements in §265.1032 including supporting documentation as required by

§§ 265.1036–265.1049

§265.1034(d)(2) when application of the knowledge of the nature of the hazardous waste stream or the process by which it was produced is used, shall be recorded in a log that is kept in the facility operating record.

[55 FR 25507, June 21, 1990, as amended at 56
FR 19290, Apr. 26, 1991; 61 FR 59970, Nov. 25, 1996; 71 FR 40276, July 14, 2006]

§§ 265.1036-265.1049 [Reserved]

Subpart BB—Air Emission Standards for Equipment Leaks

SOURCE: 55 FR 25512, June 21, 1990, unless otherwise noted.

§265.1050 Applicability.

(a) The regulations in this subpart apply to owners and operators of facilities that treat, store, or dispose of hazardous wastes (except as provided in §265.1).

(b) Except as provided in §265.1064(k), this subpart applies to equipment that contains or contacts hazardous wastes with organic concentrations of at least 10 percent by weight that are managed in one of the following:

(1) A unit that is subject to the permitting requirements of 40 CFR part 270, or

(2) A unit (including a hazardous waste recycling unit) that is not exempt from permitting under the provisions of 40 CFR 262.17 (i.e., a hazardous waste recycling unit that is not a 90-day tank or container) and that is located at a hazardous waste management facility otherwise subject to the permitting requirements of 40 CFR part 270, or

(3) A unit that is exempt from permitting under the provisions of 40 CFR 262.17 (i.e., a "90-day" tank or container) and is not a recycling unit under the provisions of 40 CFR 261.6.

(c) Each piece of equipment to which this subpart applies shall be marked in such a manner that it can be distinguished readily from other pieces of equipment.

(d) Equipment that is in vacuum service is excluded from the requirements of 265.1052 to 265.1060 if it is identified as required in 265.1064(g)(5).

(e) Equipment that contains or contacts hazardous waste with an organic

40 CFR Ch. I (7–1–23 Edition)

concentration of at least 10 percent by weight for less than 300 hours per calendar year is excluded from the requirements of §§265.1052 through 265.1060 of this subpart if it is identified, as required in §265.1064(g)(6) of this subpart.

(f) The requirements of this subpart do not apply to the pharmaceutical manufacturing facility, commonly referred to as the Stonewall Plant, located at Route 340 South, Elkton, Virginia, provided that facility is operated in compliance with the requirements contained in a Clean Air Act permit issued pursuant to 40 CFR 52.2454. The requirements of this subpart shall apply to the facility upon termination of the Clean Air Act permit issued pursuant to 40 CFR 52.2454.

(g) Purged coatings and solvents from surface coating operations subject to the national emission standards for hazardous air pollutants (NESHAP) for the surface coating of automobiles and light-duty trucks at 40 CFR part 63, subpart IIII, are not subject to the requirements of this subpart.

NOTE: The requirements of \$ 265.1052 through 265.1064 apply to equipment associated with hazardous waste recycling units previously exempt under paragraph 261.6(c)(1). Other exemptions under \$ 261.4 and 265.1(c) are not affected by these requirements.

[55 FR 25512, June 21, 1990, as amended at 61
FR 59970, Nov. 25, 1996; 62 FR 52642, Oct. 8, 1997; 62 FR 64661, Dec. 8, 1997; 69 FR 22661, Apr. 26, 2004; 81 FR 85827, Nov. 28, 2016]

§265.1051 Definitions.

As used in this subpart, all terms shall have the meaning given them in §264.1031, the Act, and parts 260-266.

§265.1052 Standards: Pumps in light liquid service.

(a)(1) Each pump in light liquid service shall be monitored monthly to detect leaks by the methods specified in 265.1063(b), except as provided in paragraphs (d), (e), and (f) of this section.

(2) Each pump in light liquid service shall be checked by visual inspection each calendar week for indications of liquids dripping from the pump seal.

(b)(1) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.