(1) The control system on control surface stops; or

(2) A limit pilot force of 300 pounds from V_{MC} to V_A and 200 pounds from $V_{C^{/}}$ M_C to V_D/M_D , with a linear variation between V_A and V_C/M_C .

(b) With the cockpit rudder control deflected so as always to maintain the maximum rudder deflection available within the limitations specified in paragraph (a) of this section, it is assumed that the airplane yaws to the overswing sideslip angle.

(c) With the airplane yawed to the static equilibrium sideslip angle, it is assumed that the cockpit rudder control is held so as to achieve the maximum rudder deflection available within the limitations specified in paragraph (a) of this section.

(d) With the airplane yawed to the static equilibrium sideslip angle of paragraph (c) of this section, it is assumed that the cockpit rudder control is suddenly returned to neutral.

[Amdt. 25-91, 62 FR 40704, July 29, 1997]

§ 25.353 Rudder control reversal conditions.

Airplanes with a powered rudder control surface or surfaces must be designed for loads, considered to be ultimate, resulting from the yaw maneuver conditions specified in paragraphs (a) through (e) of this section at speeds from V_{MC} to $V_C\!/M_C.$ Any permanent deformation resulting from these ultimate load conditions must not prevent continued safe flight and landing. The applicant must evaluate these conditions with the landing gear retracted and speed brakes (and spoilers when used as speed brakes) retracted. The applicant must evaluate the effects of flaps, flaperons, or any other aerodynamic devices when used as flaps, and slats-extended configurations, if they are used in en route conditions. Unbalanced aerodynamic moments about the center of gravity must be reacted in a rational or conservative manner considering the airplane inertia forces. In computing the loads on the airplane, the yawing velocity may be assumed to be zero. The applicant must assume a pilot force of 200 pounds when evaluating each of the following conditions:

14 CFR Ch. I (1-1-23 Edition)

(a) With the airplane in unaccelerated flight at zero yaw, the flightdeck rudder control is suddenly and fully displaced to achieve the resulting rudder deflection, as limited by the control system or the control surface stops.

(b) With the airplane yawed to the overswing sideslip angle, the flightdeck rudder control is suddenly and fully displaced in the opposite direction, as limited by the control system or control surface stops.

(c) With the airplane yawed to the opposite overswing sideslip angle, the flightdeck rudder control is suddenly and fully displaced in the opposite direction, as limited by the control system or control surface stops.

(d) With the airplane yawed to the subsequent overswing sideslip angle, the flightdeck rudder control is suddenly and fully displaced in the opposite direction, as limited by the control system or control surface stops.

(e) With the airplane yawed to the opposite overswing sideslip angle, the flightdeck rudder control is suddenly returned to neutral.

[Docket No. FAA-2018-0653, Amdt. No. 25-147, 87 FR 71210, Nov. 22, 2022]

EFFECTIVE DATE NOTE: At 87 FR 71210, Nov. 22, 2022, §25.353 was added, effective Jan. 23, 2023.

SUPPLEMENTARY CONDITIONS

§25.361 Engine and auxiliary power unit torque.

(a) For engine installations—

(1) Each engine mount, pylon, and adjacent supporting airframe structures must be designed for the effects of—

(i) A limit engine torque corresponding to takeoff power/thrust and, if applicable, corresponding propeller speed, acting simultaneously with 75% of the limit loads from flight condition A of §25.333(b);

(ii) A limit engine torque corresponding to the maximum continuous power/thrust and, if applicable, corresponding propeller speed, acting simultaneously with the limit loads from flight condition A of §25.333(b); and

(iii) For turbopropeller installations only, in addition to the conditions specified in paragraphs (a)(1)(i) and (ii)

Federal Aviation Administration, DOT

of this section, a limit engine torque corresponding to takeoff power and propeller speed, multiplied by a factor accounting for propeller control system malfunction, including quick feathering, acting simultaneously with 1g level flight loads. In the absence of a rational analysis, a factor of 1.6 must be used.

(2) The limit engine torque to be considered under paragraph (a)(1) of this section must be obtained by—

(i) For turbopropeller installations, multiplying mean engine torque for the specified power/thrust and speed by a factor of 1.25;

(ii) For other turbine engines, the limit engine torque must be equal to the maximum accelerating torque for the case considered.

(3) The engine mounts, pylons, and adjacent supporting airframe structure must be designed to withstand 1g level flight loads acting simultaneously with the limit engine torque loads imposed by each of the following conditions to be considered separately:

(i) Sudden maximum engine deceleration due to malfunction or abnormal condition; and

(ii) The maximum acceleration of engine.

(b) For auxiliary power unit installations, the power unit mounts and adjacent supporting airframe structure must be designed to withstand 1g level flight loads acting simultaneously with the limit torque loads imposed by each of the following conditions to be considered separately:

(1) Sudden maximum auxiliary power unit deceleration due to malfunction, abnormal condition, or structural failure; and

(2) The maximum acceleration of the auxiliary power unit.

[Amdt. 25–141, 79 FR 73468, Dec. 11, 2014]

§25.362 Engine failure loads.

(a) For engine mounts, pylons, and adjacent supporting airframe structure, an ultimate loading condition must be considered that combines 1g flight loads with the most critical transient dynamic loads and vibrations, as determined by dynamic analysis, resulting from failure of a blade, shaft, bearing or bearing support, or bird strike event. Any permanent deformation from these ultimate load conditions must not prevent continued safe flight and landing.

(b) The ultimate loads developed from the conditions specified in paragraph (a) of this section are to be—

(1) Multiplied by a factor of 1.0 when applied to engine mounts and pylons; and

(2) Multiplied by a factor of 1.25 when applied to adjacent supporting airframe structure.

[Amdt. 25-141, 79 FR 73468, Dec. 11, 2014]

§ 25.363 Side load on engine and auxiliary power unit mounts.

(a) Each engine and auxiliary power unit mount and its supporting structure must be designed for a limit load factor in lateral direction, for the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor obtained in the yawing conditions but not less than—

(1) 1.33; or

(2) One-third of the limit load factor for flight condition A as prescribed in §25.333(b).

(b) The side load prescribed in paragraph (a) of this section may be assumed to be independent of other flight conditions.

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–23, 35 FR 5672, Apr. 8, 1970; Amdt. 25–91, 62 FR 40704, July 29, 1997]

§ 25.365 Pressurized compartment loads.

For airplanes with one or more pressurized compartments the following apply:

(a) The airplane structure must be strong enough to withstand the flight loads combined with pressure differential loads from zero up to the maximum relief valve setting.

(b) The external pressure distribution in flight, and stress concentrations and fatigue effects must be accounted for.

(c) If landings may be made with the compartment pressurized, landing loads must be combined with pressure differential loads from zero up to the maximum allowed during landing.

(d) The airplane structure must be designed to be able to withstand the pressure differential loads corresponding to the maximum relief valve setting multiplied by a factor of