Federal Aviation Administration, DOT

§ 25.333

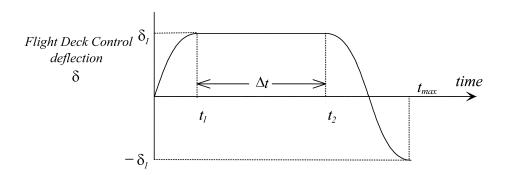
necessary to ensure that the normal acceleration at the center of gravity does not go below 0g.

(iii) In addition, for cases where the airplane response to the specified flight deck pitch control motion does not achieve the prescribed limit load factors, then the following flight deck pitch control motion must be used:

 $\delta(t) = \delta_1 \; sin(\omega t) \; for \; 0 \leq t \leq t_1$

 $\delta(t) = \delta_1 \text{ for } t_1 \le t \le t_2$

 $\begin{array}{l} \delta(t) \, = \, \delta_1 \, \sin(\omega[t \, + \, t_1 \, - \, t_2]) \, \text{ for } t_2 \leq t \leq \\ t_{max} \end{array}$

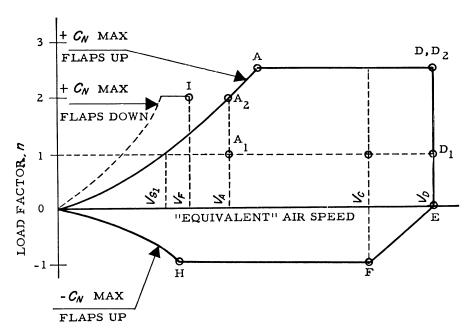

Where-

 $t_1 = \pi/2\omega$

 $t_2 = t_1 + \Delta t$

 $t_{max} = t_2 + \pi/\omega;$

Δt = the minimum period of time necessary to allow the prescribed limit load factor to be achieved in the initial direction, but it need not exceed five seconds (see figure below).


- (iv) In cases where the flight deck pitch control motion may be affected by inputs from systems (for example, by a stick pusher that can operate at high load factor as well as at 1g), then the effects of those systems shall be taken into account.
- (v) Airplane loads that occur beyond the following times need not be considered:
- (A) For the nose-up pitching maneuver, the time at which the normal acceleration at the center of gravity goes below 0g:
- (B) For the nose-down pitching maneuver, the time at which the normal acceleration at the center of gravity goes above the positive limit load factor prescribed in §25.337;

(C) $t_{\text{max.}}$

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–23, 35 FR 5672, Apr. 8, 1970; Amdt. 25–46, 43 FR 50594, Oct. 30, 1978; 43 FR 52495, Nov. 13, 1978; 43 FR 54082, Nov. 20, 1978; Amdt. 25–72, 55 FR 29775, July 20, 1990; 55 FR 37607, Sept. 12, 1990; Amdt. 25–86, 61 FR 5220, Feb. 9, 1996; Amdt. 25–91, 62 FR 40704, July 29, 1997; Amdt. 25–141, 79 FR 73466, Dec. 11, 2014]

§25.333 Flight maneuvering envelope.

- (a) General. The strength requirements must be met at each combination of airspeed and load factor on and within the boundaries of the representative maneuvering envelope (V-n diagram) of paragraph (b) of this section. This envelope must also be used in determining the airplane structural operating limitations as specified in §25.1501.
 - (b) Maneuvering envelope.

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-86, 61 FR 5220, Feb. 9, 1996]

$\S 25.335$ Design airspeeds.

The selected design airspeeds are equivalent airspeeds (EAS). Estimated values of V_{S0} and V_{S1} must be conservative

- (a) Design cruising speed, V_C . For V_C , the following apply:
- (1) The minimum value of V_C must be sufficiently greater than V_B to provide for inadvertent speed increases likely to occur as a result of severe atmospheric turbulence.
- (2) Except as provided in $\S25.335(d)(2)$, V_C may not be less than $V_B+1.32~U_{REF}$ (with U_{REF} as specified in $\S25.341(a)(5)(i)$). However V_C need not exceed the maximum speed in level flight at maximum continuous power for the corresponding altitude.
- (3) At altitudes where V_D is limited by Mach number, V_C may be limited to a selected Mach number.
- (b) Design dive speed, V_D . V_D must be selected so that V_C/M_C is not greater than 0.8 V_D/M_D , or so that the minimum speed margin between V_C/M_C and V_D/M_D is the greater of the following values:

- (1) From an initial condition of stabilized flight at V_C/M_C , the airplane is upset, flown for 20 seconds along a flight path 7.5° below the initial path, and then pulled up at a load factor of 1.5g (0.5g acceleration increment). The speed increase occurring in this maneuver may be calculated if reliable or conservative aerodynamic data is used. Power as specified in §25.175(b)(1)(iv) is assumed until the pullup is initiated, at which time power reduction and the use of pilot controlled drag devices may be assumed;
- (2) The minimum speed margin must be enough to provide for atmospheric variations (such as horizontal gusts, and penetration of jet streams and cold fronts) and for instrument errors and airframe production variations. These factors may be considered on a probability basis. The margin at altitude where $M_{\rm C}$ is limited by compressibility effects must not less than 0.07M unless a lower margin is determined using a rational analysis that includes the effects of any automatic systems. In any