## Federal Aviation Administration, DOT

§25.105

associated with the conditions prescribed in  $\S$  25.119 and 25.121(d) must be established.

(h) The procedures established under paragraphs (f) and (g) of this section must—

(1) Be able to be consistently executed in service by crews of average skill;

(2) Use methods or devices that are safe and reliable; and

(3) Include allowance for any time delays, in the execution of the procedures, that may reasonably be expected in service.

(i) The accelerate-stop and landing distances prescribed in §§25.109 and 25.125, respectively, must be determined with all the airplane wheel brake assemblies at the fully worn limit of their allowable wear range.

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–38, 41 FR 55466, Dec. 20, 1976; Amdt. 25–92, 63 FR 8318, Feb. 18, 1998]

### §25.103 Stall speed.

(a) The reference stall speed,  $V_{SR},$  is a calibrated airspeed defined by the applicant.  $V_{SR}$  may not be less than a 1-g stall speed.  $V_{SR}$  is expressed as:

$$V_{SR} \ge \frac{V_{CL_{MAX}}}{\sqrt{n_{ZW}}}$$

where:

 $V_{CL_{MAX}}$  = Calibrated airspeed obtained when the load factor-corrected lift coefficient

$$\left(\frac{\mathbf{n}_{ZW}\mathbf{W}}{\mathbf{q}\mathbf{S}}\right)$$

is first a maximum during the maneuver prescribed in paragraph (c) of this section. In addition, when the maneuver is limited by a device that abruptly pushes the nose down at a selected angle of attack (e.g., a stick pusher),  $V_{CL_{MAX}}$  may not be less than the speed existing at the instant the device operates;

 $n_{ZW}$  = Load factor normal to the flight path at  $V_{\mathrm{CL}_{MAX}}$ 

W = Airplane gross weight;

S = Aerodynamic reference wing area; and q = Dynamic pressure.

(b)  $V_{CLMAX}$  is determined with:

(1) Engines idling, or, if that resultant thrust causes an appreciable decrease in stall speed, not more than zero thrust at the stall speed;

(2) Propeller pitch controls (if applicable) in the takeoff position; (3) The airplane in other respects (such as flaps, landing gear, and ice accretions) in the condition existing in the test or performance standard in which  $V_{SR}$  is being used;

(4) The weight used when  $V_{SR}$  is being used as a factor to determine compliance with a required performance standard;

(5) The center of gravity position that results in the highest value of reference stall speed; and

(6) The airplane trimmed for straight flight at a speed selected by the applicant, but not less than  $1.13V_{SR}$  and not greater than  $1.3V_{SR}$ .

(c) Starting from the stabilized trim condition, apply the longitudinal control to decelerate the airplane so that the speed reduction does not exceed one knot per second.

(d) In addition to the requirements of paragraph (a) of this section, when a device that abruptly pushes the nose down at a selected angle of attack (e.g., a stick pusher) is installed, the reference stall speed,  $V_{SR}$ , may not be less than 2 knots or 2 percent, whichever is greater, above the speed at which the device operates.

[Doc. No. 28404, 67 FR 70825, Nov. 26, 2002, as amended by Amdt. 25–121, 72 FR 44665, Aug. 8, 2007]

#### §25.105 Takeoff.

(a) The takeoff speeds prescribed by §25.107, the accelerate-stop distance prescribed by §25.109, the takeoff path prescribed by §25.111, the takeoff distance and takeoff run prescribed by §25.113, and the net takeoff flight path prescribed by §25.115, must be determined in the selected configuration for takeoff at each weight, altitude, and ambient temperature within the operational limits selected by the applicant—

(1) In non-icing conditions; and

(2) In icing conditions, if in the configuration used to show compliance with §25.121(b), and with the most critical of the takeoff ice accretion(s) defined in appendices C and O of this part, as applicable, in accordance with §25.21(g):

(i) The stall speed at maximum takeoff weight exceeds that in non-icing conditions by more than the greater of 3 knots CAS or 3 percent of  $V_{SR}$ ; or

# § 25.107

14 CFR Ch. I (1–1–23 Edition)

(ii) The degradation of the gradient of climb determined in accordance with §25.121(b) is greater than one-half of the applicable actual-to-net takeoff flight path gradient reduction defined in §25.115(b).

(b) No takeoff made to determine the data required by this section may require exceptional piloting skill or alertness.

(c) The takeoff data must be based on—

(1) In the case of land planes and amphibians:

(i) Smooth, dry and wet, hard-surfaced runways; and

(ii) At the option of the applicant, grooved or porous friction course wet, hard-surfaced runways.

(2) Smooth water, in the case of seaplanes and amphibians; and

(3) Smooth, dry snow, in the case of skiplanes.

(d) The takeoff data must include, within the established operational limits of the airplane, the following operational correction factors:

(1) Not more than 50 percent of nominal wind components along the takeoff path opposite to the direction of takeoff, and not less than 150 percent of nominal wind components along the takeoff path in the direction of takeoff.

(2) Effective runway gradients.

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–92, 63 FR 8318, Feb. 18, 1998; Amdt. 25–121, 72 FR 44665, Aug. 8, 2007; Amdt. 25–140, 79 FR 65525, Nov. 4, 2014]

#### §25.107 Takeoff speeds.

(a)  $V_1$  must be established in relation to  $V_{EF}$  as follows:

(1)  $V_{EF}$  is the calibrated airspeed at which the critical engine is assumed to fail.  $V_{EF}$  must be selected by the applicant, but may not be less than  $V_{MCG}$  determined under §25.149(e).

(2)  $V_1$ , in terms of calibrated airspeed, is selected by the applicant; however,  $V_1$  may not be less than  $V_{EF}$ plus the speed gained with critical engine inoperative during the time interval between the instant at which the critical engine is failed, and the instant at which the pilot recognizes and reacts to the engine failure, as indicated by the pilot's initiation of the first action (e.g., applying brakes, reducing thrust, deploying speed brakes) to stop the airplane during acceleratestop tests.

(b)  $V_{2MIN}$ , in terms of calibrated airspeed, may not be less than—

(1) 1.13 V<sub>SR</sub> for—

(i) Two-engine and three-engine turbopropeller and reciprocating engine powered airplanes; and

(ii) Turbojet powered airplanes without provisions for obtaining a significant reduction in the one-engine-inoperative power-on stall speed;

(2) 1.08 V<sub>SR</sub> for—

(i) Turbopropeller and reciprocating engine powered airplanes with more than three engines; and

(ii) Turbojet powered airplanes with provisions for obtaining a significant reduction in the one-engine-inoperative power-on stall speed; and

(3) 1.10 times  $V_{MC}$  established under §25.149.

(c)  $V_2$ , in terms of calibrated airspeed, must be selected by the applicant to provide at least the gradient of climb required by §25.121(b) but may not be less than—

(1) V<sub>2MIN</sub>;

(2)  $V_R$  plus the speed increment attained (in accordance with §25.111(c)(2)) before reaching a height of 35 feet above the takeoff surface; and

(3) A speed that provides the maneuvering capability specified in §25.143(h).

(d)  $V_{MU}$  is the calibrated airspeed at and above which the airplane can safely lift off the ground, and con- tinue the takeoff.  $V_{MU}$  speeds must be selected by the applicant throughout the range of thrust-to-weight ratios to be certificated. These speeds may be established from free air data if these data are verified by ground takeoff tests.

(e)  $V_{R}$  in terms of calibrated airspeed, must be selected in accordance with the conditions of paragraphs (e)(1) through (4) of this section:

(1)  $V_R$  may not be less than—

(i)  $V_1$ ;

(ii) 105 percent of  $V_{MC}$ ;

(iii) The speed (determined in accordance with \$25.111(c)(2)) that allows reaching  $V_2$  before reaching a height of 35 feet above the takeoff surface; or

(iv) A speed that, if the airplane is rotated at its maximum practicable rate, will result in a  $V_{\rm LOF}$  of not less than —