associated with the conditions prescribed in §§ 25.119 and 25.121(d) must be established.

- (h) The procedures established under paragraphs (f) and (g) of this section must—
- (1) Be able to be consistently executed in service by crews of average skill:
- (2) Use methods or devices that are safe and reliable; and
- (3) Include allowance for any time delays, in the execution of the procedures, that may reasonably be expected in service.
- (i) The accelerate-stop and landing distances prescribed in §\$25.109 and 25.125, respectively, must be determined with all the airplane wheel brake assemblies at the fully worn limit of their allowable wear range.

[Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–38, 41 FR 55466, Dec. 20, 1976; Amdt. 25–92, 63 FR 8318, Feb. 18, 1998]

§ 25.103 Stall speed.

(a) The reference stall speed, V_{SR} , is a calibrated airspeed defined by the applicant. V_{SR} may not be less than a 1-g stall speed. V_{SR} is expressed as:

$$V_{SR} \ge \frac{V_{CL_{MAX}}}{\sqrt{n_{ZW}}}$$

where

 $V_{\text{CL}_{\text{MAX}}}$ = Calibrated airspeed obtained when the load factor-corrected lift coefficient

$$\left(\frac{n_{ZW}W}{qS}\right)$$

is first a maximum during the maneuver prescribed in paragraph (c) of this section. In addition, when the maneuver is limited by a device that abruptly pushes the nose down at a selected angle of attack (e.g., a stick pusher), V_{CLMAX} may not be less than the speed existing at the instant the device operates;

 n_{ZW} = Load factor normal to the flight path

at V_{CL_{MAX}}

W = Airplane gross weight;

 \mathbf{S} = Aerodynamic reference wing area; and \mathbf{q} = Dynamic pressure.

- (b) V_{CLMAX} is determined with:
- (1) Engines idling, or, if that resultant thrust causes an appreciable decrease in stall speed, not more than zero thrust at the stall speed;
- (2) Propeller pitch controls (if applicable) in the takeoff position;

- (3) The airplane in other respects (such as flaps, landing gear, and ice accretions) in the condition existing in the test or performance standard in which V_{SR} is being used:
- (4) The weight used when V_{SR} is being used as a factor to determine compliance with a required performance standard:
- (5) The center of gravity position that results in the highest value of reference stall speed; and
- (6) The airplane trimmed for straight flight at a speed selected by the applicant, but not less than $1.13V_{SR}$ and not greater than $1.3V_{SR}$.
- (c) Starting from the stabilized trim condition, apply the longitudinal control to decelerate the airplane so that the speed reduction does not exceed one knot per second.
- (d) In addition to the requirements of paragraph (a) of this section, when a device that abruptly pushes the nose down at a selected angle of attack (e.g., a stick pusher) is installed, the reference stall speed, V_{SR} , may not be less than 2 knots or 2 percent, whichever is greater, above the speed at which the device operates.

[Doc. No. 28404, 67 FR 70825, Nov. 26, 2002, as amended by Amdt. 25–121, 72 FR 44665, Aug. 8, 2007]

§ 25.105 Takeoff.

- (a) The takeoff speeds prescribed by \$25.107, the accelerate-stop distance prescribed by \$25.109, the takeoff path prescribed by \$25.111, the takeoff distance and takeoff run prescribed by \$25.113, and the net takeoff flight path prescribed by \$25.115, must be determined in the selected configuration for takeoff at each weight, altitude, and ambient temperature within the operational limits selected by the applicant—
 - (1) In non-icing conditions; and
- (2) In icing conditions, if in the configuration used to show compliance with §25.121(b), and with the most critical of the takeoff ice accretion(s) defined in appendices C and O of this part, as applicable, in accordance with §25.21(g):
- (i) The stall speed at maximum takeoff weight exceeds that in non-icing conditions by more than the greater of 3 knots CAS or $3 \text{ percent of } V_{SR}$; or