CRITERIA FOR FREE DROP TEST (WEIGHT/
DISTANCE)
(8) Corner drop. A free drop onto each corner of the package in succession, or in the case of a cylindrical package onto each quarter of each rim, from a height of $0.3 \mathrm{~m}(1 \mathrm{ft})$ onto a flat, essentially unyielding, horizontal surface. This test applies only to fiberboard, wood, or fissile material rectangular packages not exceeding 50 kg (110 lbs) and fiberboard, wood, or fissile material cylindrical packages not exceeding $100 \mathrm{~kg}(220 \mathrm{lbs})$.
(9) Compression. For packages weighing up to 5000 kg ($11,000 \mathrm{lbs}$), the package must be subjected, for a period of 24 hours, to a compressive load applied uniformly to the top and bottom of the package in the position in which the package would normally be transported. The compressive load must be the greater of the following:
(i) The equivalent of 5 times the weight of the package; or
(ii) The equivalent of 13 kPa (2 lbf/ $i n^{2}$) multiplied by the vertically projected area of the package.
(10) Penetration. Impact of the hemispherical end of a vertical steel cylinder of 3.2 cm (1.25 in) diameter and 6 $\mathrm{kg}(13 \mathrm{lbs})$ mass, dropped from a height of 1 m (40 in) onto the exposed surface of the package that is expected to be most vulnerable to puncture. The long axis of the cylinder must be perpendicular to the package surface.
[60 FR 50264, Sept. 28, 1995, as amended at 81 FR 86910, Dec. 2, 2016]

§ 71.73 Hypothetical accident conditions.

(a) Test procedures. Evaluation for hypothetical accident conditions is to be based on sequential application of the tests specified in this section, in the order indicated, to determine their cumulative effect on a package or array of packages. An undamaged specimen may be used for the water immersion
tests specified in paragraph (c)(6) of this section.
(b) Test conditions. With respect to the initial conditions for the tests, except for the water immersion tests, to demonstrate compliance with the requirements of this part during testing, the ambient air temperature before and after the tests must remain constant at that value between $-29^{\circ} \mathrm{C}\left(-20{ }^{\circ} \mathrm{F}\right)$ and $+38^{\circ} \mathrm{C}\left(+100^{\circ} \mathrm{F}\right)$ which is most unfavorable for the feature under consideration. The initial internal pressure within the containment system must be the maximum normal operating pressure, unless a lower internal pressure, consistent with the ambient temperature assumed to precede and follow the tests, is more unfavorable.
(c) Tests. Tests for hypothetical accident conditions must be conducted as follows:
(1) Free drop. A free drop of the specimen through a distance of $9 \mathrm{~m}(30 \mathrm{ft})$ onto a flat, essentially unyielding, horizontal surface, striking the surface in a position for which maximum damage is expected.
(2) Crush. Subjection of the specimen to a dynamic crush test by positioning the specimen on a flat, essentially unyielding horizontal surface so as to suffer maximum damage by the drop of a $500-\mathrm{kg}(1100-\mathrm{lb})$ mass from 9 m (30 ft) onto the specimen. The mass must consist of a solid mild steel plate 1 m (40 in) by 1 m (40 in) and must fall in a horizontal attitude. The crush test is required only when the specimen has a mass not greater than 500 kg (1100 lb), an overall density not greater than 1000 $\mathrm{kg} / \mathrm{m}^{3}\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right)$ based on external dimension, and radioactive contents greater than $1000 \mathrm{~A}_{2}$ not as special form radioactive material. For packages containing fissile material, the radioactive contents greater than $1000 \mathrm{~A}_{2}$ criterion does not apply.
(3) Puncture. A free drop of the specimen through a distance of 1 m (40 in) in a position for which maximum damage is expected, onto the upper end of a solid, vertical, cylindrical, mild steel bar mounted on an essentially unyielding, horizontal surface. The bar must be 15 cm (6 in) in diameter, with the top horizontal and its edge rounded to a radius of not more than $6 \mathrm{~mm}(0.25$
in), and of a length as to cause maximum damage to the package, but not less than 20 cm (8 in) long. The long axis of the bar must be vertical.
(4) Thermal. Exposure of the specimen fully engulfed, except for a simple support system, in a hydrocarbon fuel/air fire of sufficient extent, and in sufficiently quiescent ambient conditions, to provide an average emissivity coefficient of at least 0.9 , with an average flame temperature of at least $800{ }^{\circ} \mathrm{C}$ ($1475{ }^{\circ} \mathrm{F}$) for a period of 30 minutes, or any other thermal test that provides the equivalent total heat input to the package and which provides a time averaged environmental temperature of $800{ }^{\circ} \mathrm{C}$. The fuel source must extend horizontally at least 1 m (40 in), but may not extend more than 3 m (10 ft), beyond any external surface of the specimen, and the specimen must be positioned 1 m (40 in) above the surface of the fuel source. For purposes of calculation, the surface absorptivity coefficient must be either that value which the package may be expected to possess if exposed to the fire specified or 0.8 , whichever is greater; and the convective coefficient must be that value which may be demonstrated to exist if the package were exposed to the fire specified. Artificial cooling may not be applied after cessation of external heat input, and any combustion of materials of construction, must be allowed to proceed until it terminates naturally.
(5) Immersion-fissile material. For fissile material subject to $\S 71.55$, in those cases where water inleakage has not been assumed for criticality analysis, immersion under a head of water of at least $0.9 \mathrm{~m}(3 \mathrm{ft})$ in the attitude for which maximum leakage is expected.
(6) Immersion-all packages. A separate, undamaged specimen must be subjected to water pressure equivalent to immersion under a head of water of at least 15 m (50 ft). For test purposes, an external pressure of water of 150 kPa ($21.7 \mathrm{lbf} / \mathrm{in}^{2}$) gauge is considered to meet these conditions.
[60 FR 50264, Sept. 28, 1995, as amended at 69 FR 3795, Jan. 26, 2004]

§71.74 Accident conditions for air

 transport of plutonium.(a) Test conditions-Sequence of tests. A package must be physically tested to the following conditions in the order indicated to determine their cumulative effect.
(1) Impact at a velocity of not less than $129 \mathrm{~m} / \mathrm{sec}(422 \mathrm{ft} / \mathrm{sec})$ at a right angle onto a flat, essentially unyielding, horizontal surface, in the orientation (e.g., side, end, corner) expected to result in maximum damage at the conclusion of the test sequence.
(2) A static compressive load of 31,800 kg ($70,000 \mathrm{lbs}$) applied in the orientation expected to result in maximum damage at the conclusion of the test sequence. The force on the package must be developed between a flat steel surface and a 5 cm (2 in) wide, straight, solid, steel bar. The length of the bar must be at least as long as the diameter of the package, and the longitudinal axis of the bar must be parallel to the plane of the flat surface. The load must be applied to the bar in a manner that prevents any members or devices used to support the bar from contacting the package.
(3) Packages weighing less than 227 kg (500 lbs) must be placed on a flat, essentially unyielding, horizontal surface, and subjected to a weight of 227 kg (500 lbs) falling from a height of 3 m (10 ft) and striking in the position expected to result in maximum damage at the conclusion of the test sequence. The end of the weight contacting the package must be a solid probe made of mild steel. The probe must be the shape of the frustum of a right circular cone, 30 cm (12 in) long, 20 cm (8 in) in diameter at the base, and 2.5 cm (1 in) in diameter at the end. The longitudinal axis of the probe must be perpendicular to the horizontal surface. For packages weighing 227 kg (500 lbs) or more, the base of the probe must be placed on a flat, essentially unyielding horizontal surface, and the package dropped from a height of 3 m (10 ft) onto the probe, striking in the position expected to result in maximum damage at the conclusion of the test sequence.
(4) The package must be firmly restrained and supported such that its longitudinal axis is inclined approximately 45° to the horizontal. The area

