develop and submit to the Director of the Office of Nuclear Reactor Regulation a written proposal for meeting the requirements of paragraph (b) (2) or (3) of this section. The licensee shall include in the proposal a certification that Federal Government funding for conversion is available through the Department of Energy (DOE) or other appropriate Federal Agency. The licensee shall also include in the proposal a schedule for conversion, based upon availability of replacement fuel acceptable to the Commisson for that reactor and upon consideration of other factors such as the availability of shipping casks, implementation of arrangements for the available financial support, and reactor usage.

(ii) If Federal Government funding for conversion cannot be certified, the proposal's contents may be limited to a statement of this fact. If a statement of non-availability of Federal Government funding for conversion is submitted by a licensee, then it shall be required to resubmit a proposal for meeting the requirements of paragraph (b) (2) or (3) of this section at 12-month intervals.

(iii) The proposal shall include, to the extent required to effect the conversion, all necessary changes in the license, facility, or procedures. Supporting safety analyses should be provided so as to meet the schedule established for conversion. As long as Federal Government funding for conversion is not available, the resubmittal may be a reiteration of the original proposal. The Director of the Office of Nuclear Reactor Regulation shall review the proposal and confirm the status of Federal Government funding for conversion and, if a schedule for conversion has been submitted by the licensee, will then determine a final schedule.

(3) After review of the safety analysis required by paragraph (c)(2), the Director of the Office of Nuclear Reactor Regulation will issue an appropriate enforcement order directing both the conversion and, to the extent consistent with protection of the public health and safety, any necessary changes to the license, facility, or procedures.

[51 FR 6519, Feb. 25, 1986]

§ 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

The requirements of this section are applicable during all conditions of plant operation, including normal shutdown operations.

(a)(1) Each holder of an operating license for a nuclear power plant under this part and each holder of a combined license under part 52 of this chapter after the Commission makes the finding under §52.103(g) of this chapter, shall monitor the performance or condition of structures, systems, or components, against licensee-established goals, in a manner sufficient to provide reasonable assurance that these structures, systems, and components, as defined in paragraph (b) of this section, are capable of fulfilling their intended functions. These goals shall be established commensurate with safety and, where practical, take into account industry-wide operating experience. When the performance or condition of a structure, system, or component does not meet established goals, appropriate corrective action shall be taken. For a nuclear power plant for which the licensee has submitted the certifications specified in §50.82(a)(1) or 52.110(a)(1) of this chapter, as applicable, this section shall only apply to the extent that the licensee shall monitor the performance or condition of all structures, systems, or components associated with the storage, control, and maintenance of spent fuel in a safe condition, in a manner sufficient to provide reasonable assurance that these structures, systems, and components are capable of fulfilling their intended functions.

(2) Monitoring as specified in paragraph (a)(1) of this section is not required where it has been demonstrated that the performance or condition of a structure, system, or component is being effectively controlled through the performance of appropriate preventive maintenance, such that the structure, system, or component remains capable of performing its intended

function

(3) Performance and condition monitoring activities and associated goals and preventive maintenance activities shall be evaluated at least every refueling cycle provided the interval between

§ 50.66

evaluations does not exceed 24 months. The evaluations shall take into account, where practical, industry-wide operating experience. Adjustments shall be made where necessary to ensure that the objective of preventing failures of structures, systems, and components through maintenance is appropriately balanced against the objective of minimizing unavailability of structures, systems, and components due to monitoring or preventive maintenance.

- (4) Before performing maintenance activities (including but not limited to surveillance, post-maintenance testing, and corrective and preventive maintenance), the licensee shall assess and manage the increase in risk that may result from the proposed maintenance activities. The scope of the assessment may be limited to structures, systems, and components that a risk-informed evaluation process has shown to be significant to public health and safety.
- (b) The scope of the monitoring program specified in paragraph (a)(1) of this section shall include safety related and nonsafety related structures, systems, and components, as follows:
- (1) Safety-related structures, systems and components that are relied upon to remain functional during and following design basis events to ensure the integrity of the reactor coolant pressure boundary, the capability to shut down the reactor and maintain it in a safe shutdown condition, or the capability to prevent or mitigate the consequences of accidents that could result in potential offsite exposure comparable to the guidelines in §50.34(a)(1), §50.67(b)(2), or §100.11 of this chapter, as applicable.
- (2) Nonsafety related structures, systems, or components:
- (i) That are relied upon to mitigate accidents or transients or are used in plant emergency operating procedures (EOPs); or
- (ii) Whose failure could prevent safety-related structures, systems, and components from fulfilling their safety-related function; or
- (iii) Whose failure could cause a reactor scram or actuation of a safety-related system.

(c) The requirements of this section shall be implemented by each licensee no later than July 10, 1996.

[56 FR 31324, July 10, 1991, as amended at 58 FR 33996, June 23, 1993; 61 FR 39301, July 29, 1996; 61 FR 65173, Dec. 11, 1996; 62 FR 47271, Sept. 8, 1997; 62 FR 59276, Nov. 3, 1997; 64 FR 38557, July 19, 1999; 64 FR 72001, Dec. 23, 1999; 72 FR 49501, Aug. 28, 2007]

EFFECTIVE DATE NOTE: See 64 FR 38551, July 19, 1999, for effectiveness of $\S50.65$ (a)(3) and (a)(4).

§ 50.66 Requirements for thermal annealing of the reactor pressure vessel.

- (a) For those light water nuclear power reactors where neutron radiation has reduced the fracture toughness of the reactor vessel materials, a thermal annealing may be applied to the reactor vessel to recover the fracture toughness of the material. The use of a thermal annealing treatment is subject to the requirements in this section. A report describing the licensee's plan for conducting the thermal annealing must be submitted in accordance with §50.4 at least three years prior to the date at which the limiting fracture toughness criteria in §50.61 or appendix G to part 50 would be exceeded. Within three years of the submittal of the Thermal Annealing Report and at least thirty days prior to the start of the thermal annealing, the NRC will review the Thermal Annealing Report and make available the results of its evaluation at the NRC Web site, http:// www.nrc.gov. The licensee may begin the thermal anneal after:
- (1) Submitting the Thermal Annealing Report required by paragraph (b) of this section;
- (2) The NRC makes available the results of its evaluation of the Thermal Annealing Report at the NRC Web site, http://www.nrc.gov; and
- (3) The requirements of paragraph (f)(1) of this section have been satisfied
- (b) Thermal Annealing Report. The Thermal Annealing Report must include: a Thermal Annealing Operating Plan; a Requalification Inspection and Test Program; a Fracture Toughness Recovery and Reembrittlement Trend