In the Senate of the United States,

September 26 (legislative day, September 17), 2008.

Resolved, That the bill from the House of Representatives (H.R. 2631) entitled "An Act to strengthen efforts in the Department of Homeland Security to develop nuclear forensics capabilities to permit attribution of the source of nuclear material, and for other purposes.", do pass with the following

AMENDMENT:

Strike out all after the enacting clause and insert:

1 SECTION 1. FINDINGS.

- 2 Congress finds the following:
- 3 (1) The threat of a nuclear terrorist attack on
- 4 American interests, both domestic and abroad, is one
- 5 of the most serious threats to the national security of
- 6 the United States. In the wake of an attack, attribu-
- 7 tion of responsibility would be of utmost importance.
- 8 Because of the destructive power of the weapon, there

- 1 could be little forensic evidence except the radioactive 2 material in the bomb itself.
 - (2) Through advanced nuclear forensics, using both existing techniques and those under development, it may be possible to identify the source and pathway of a weapon or material after it is interdicted or detonated. Though identifying intercepted smuggled material is now possible in some cases, pre-detonation forensics is a relatively undeveloped field. The postdetonation nuclear forensics field is also immature, and the challenges are compounded by the pressures and time constraints of performing forensics after a nuclear or radiological attack.
 - (3) A robust and well-known capability to identify the source of nuclear or radiological material intended for or used in an act of terror could also deter prospective proliferators. Furthermore, the threat of effective attribution could compel improved security at material storage facilities, preventing the unwitting transfer of nuclear or radiological materials.
 - (4)(A) In order to identify special nuclear material and other radioactive materials confidently, it is necessary to have a robust capability to acquire samples in a timely manner, analyze and characterize

- samples, and compare samples against known signa tures of nuclear and radiological material.
 - (B) Many of the radioisotopes produced in the detonation of a nuclear device have short half-lives, so the timely acquisition of samples is of the utmost importance. Over the past several decades, the ability of the United States to gather atmospheric samples, often the preferred method of sample acquisition, has diminished. This ability must be restored and modern techniques that could complement or replace existing techniques should be pursued.
 - (C) The discipline of pre-detonation forensics is a relatively undeveloped field. The radiation associated with a nuclear or radiological device may affect traditional forensics techniques in unknown ways. In a post-detonation scenario, radiochemistry may provide the most useful tools for analysis and characterization of samples. The number of radiochemistry programs and radiochemists in United States National Laboratories and universities has dramatically declined over the past several decades. The narrowing pipeline of qualified people into this critical field is a serious impediment to maintaining a robust and credible nuclear forensics program.

- 1 (5) Once samples have been acquired and charac-2 terized, it is necessary to compare the results against samples of known material from reactors, weapons, 3 and enrichment facilities, and from medical, academic, commercial, and other facilities containing 5 6 such materials, throughout the world. Some of these 7 samples are available to the International Atomic 8 Energy Agency through safeguards agreements, and 9 some countries maintain internal sample databases. 10 Access to samples in many countries is limited by na-11 tional security concerns.
- 12 (6) In order to create a sufficient deterrent, it is 13 necessary to have the capability to positively identify 14 the source of nuclear or radiological material, and po-15 tential traffickers in nuclear or radiological material 16 must be aware of that capability. International co-17 operation may be essential to catalogue all existing 18 sources of nuclear or radiological material.

19 SEC. 2. SENSE OF CONGRESS ON INTERNATIONAL AGREE-

- 20 **MENTS FOR FORENSICS COOPERATION.**
- 21 It is the sense of the Congress that the President 22 should—
- 23 (1) pursue bilateral and multilateral inter-24 national agreements to establish, or seek to establish 25 under the auspices of existing bilateral or multilateral

1	agreements, an international framework for deter-						
2	mining—						
3	(A) the source of any confiscated nuclear or						
4	radiological material or weapon; and						
5	(B) the source of any detonated weapon and						
6	the nuclear or radiological material used in such						
7	a weapon;						
8	(2) develop protocols for the data exchange an						
9	dissemination of sensitive information relating to nu-						
10	clear or radiological materials and samples of con						
11	trolled nuclear or radiological materials, to the exter						
12	required by the agreements entered into under para						
13	graph (1); and						
14	(3) develop expedited protocols for the data ex-						
15	change and dissemination of sensitive information						
16	needed to publicly identify the source of a nuclear det-						
17	on at ion.						
18	SEC. 3. RESPONSIBILITIES OF DOMESTIC NUCLEAR DETEC-						
19	TION OFFICE.						
20	(a) Additional Responsibilities.—Section 1902 of						
21	the Homeland Security Act of 2002 (6 U.S.C. 592) is						
22	amended—						
23	(1) by striking "(a) Mission";						
24	(2) in paragraph (9), by striking "and" at the						
25	end:						

1	(3) by redesignating paragraph (10) as para-					
2	graph (14); and					
3	(4) by inserting after paragraph (9) the fol-					
4	lowing:					
5	"(10) develop and implement, with the approval					
6	of the Secretary, and in consultation with the Attor-					
7	ney General, the Secretary of Defense, the Secretary					
8	of Energy, the Secretary of State, the Director of Na-					
9	tional Intelligence, and the heads of appropriate de-					
10	partments and agencies, a 'National Strategy and					
11	Five-Year Implementation Plan for Improving the					
12	Nuclear Forensic and Attribution Capabilities of the					
13	United States Government' and the methods, capabili-					
14	ties, and capacity for nuclear materials forensics and					
15	attribution, including—					
16	"(A) an investment plan to support nuclear					
17	materials forensics and attribution;					
18	"(B) the allocation of roles and responsibil-					
19	ities for pre-detonation, detonation, and post-det-					
20	onation activities; and					
21	"(C) the attribution of nuclear or radio-					
22	logical material to its source when such material					
23	is intercepted by the United States, foreign gov-					
24	ernments, or international bodies or is dispersed					

1	in the course of a terrorist attack or other nu-					
2	clear or radiological explosion;					
3	"(11) establish, within the Domestic Nuclear De-					
4	tection Office, the National Technical Nuclear					
5	Forensics Center to provide centralized stewardship,					
6	planning, assessment, gap analysis, exercises, im-					
7	provement, and integration for all Federal nuclear					
8	forensics and attribution activities—					
9	"(A) to ensure an enduring national tech-					
10	nical nuclear forensics capability to strengthen					
11	the collective response of the United States to nu-					
12	clear terrorism or other nuclear attacks; and					
13	"(B) to coordinate and implement the na-					
14	tional strategic plan and 5-year plan to improve					
15	national forensics and attribution capabilities					
16	for all Federal nuclear and radiological forensics					
17	capabilities;					
18	"(12) establish a National Nuclear Forensics Ex-					
19	pertise Development Program, which—					
20	"(A) is devoted to developing and maintain-					
21	ing a vibrant and enduring academic pathway					
22	from undergraduate to post-doctorate study in					
23	nuclear and geochemical science specialties di-					
24	rectly relevant to technical nuclear forensics, in-					
25	cluding radiochemistry, geochemistry, nuclear					

physics, nuclear engineering, materials science	ce,						
and analytical chemistry; and							
"(B) shall—							
"(i) make available for undergradue	ite						
study student scholarships, with a duration	on						
of up to 4 years per student, which shall i	of up to 4 years per student, which shall in-						
clude, if possible, at least 1 summer inter	clude, if possible, at least 1 summer intern-						
ship at a national laboratory or appr	ro-						
priate Federal agency in the field of tec	priate Federal agency in the field of tech-						
nical nuclear forensics during the course	of						
the student's undergraduate career;							
"(ii) make available for graduate stud	dy						
student fellowships, with a duration of a	up						
to 5 years per student, which shall—							
"(I) include, if possible, at least	2						
summer internships at a national la	ıb-						
oratory or appropriate Federal agen	cy						
in the field of technical nucle	ar						
forensics during the course of the st	u-						
dent's graduate career; and							
``(II) require each recipient	to						
commit to serve for 2 years in a pos	st-						
doctoral position in a technical nucle	ar						
forensics-related specialty at a nation	nal						

1	laboratory or appropriate Federal
2	agency after graduation;
3	"(iii) make available to faculty
4	awards, with a duration of 3 to 5 years
5	each, to ensure faculty and their graduate
6	students have a sustained funding stream;
7	and
8	"(iv) place a particular emphasis on
9	reinvigorating technical nuclear forensics
10	programs; and".
11	(b) Joint Interagency Annual Reporting Re-
12	Quirement to Congress and the President.—
13	(1) In General.—Section $1907(a)(1)$ of the
14	Homeland Security Act of 2002 (6 U.S.C. 596(a)(1))
15	is amended—
16	(A) in subparagraph $(A)(ii)$, by striking
17	"and" at the end;
18	(B) in subparagraph (B)(iii), by striking
19	the period at the end and inserting "; and"; and
20	(C) by adding at the end the following:
21	"(C) the Director of the Domestic Nuclear
22	Detection Office and each of the relevant Depart-
23	ments that are partners in the National Tech-
24	nical Forensics Center—

1	"(i) includes, as part of the assess-
2	ments, evaluations, and reviews required
3	under this paragraph, each relevant agen-
4	cy's activities and investments in support of
5	nuclear forensics and attribution activities;
6	"(ii) attaches, as an appendix to the
7	Joint Interagency Annual Review, the most
8	current version of the plan required under
9	section $1902(a)(10)$; and
10	"(iii) after March 31 of each year,
11	funds allocated for activities authorized
12	under section 1902 are not spent until the
13	submission to Congress of the report re-
14	quired under subsection (b).".

Attest:

Secretary.

110TH CONGRESS H.R. 2631

AMENDMENT