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A Short Summary 

The rapid growth in the role of software in defense systems is significant and 
parallels the growing role of software in a broad range of application domains, 
ranging from financial services and health care to telecommunications, logistics, 

and transportation. This growth is reflected in recent macroeconomic studies, which 
suggest that in the US and Europe 20 percent to 25 percent of overall economic growth 
and nearly 40 percent of the increase in overall economic productivity since 1995 
are attributed to information and communications technology. It is also reflected in 
individual systems. For example, in modern automobiles, the portion of system functions 
performed in software is now 40 percent and approaching 50 percent. In the DoD, the 
growth has been even more profound-in military aircraft, for example, the percentage 
of system functions performed by software has risen to more than 80 percent. 

This growth of software in role and significance is a natural outcome of its special 
engineering characteristics: software is uniquely unbounded and flexible, having relative
ly few intrinsic limits on the degree to which it can be scaled in complexity and capability. 
This is because software is an abstract and purely synthetic medium that, for the most 
part, lacks fundamental physical limits and natural constraints. For example, unlike 
physical hardware, software can be delivered and upgraded electronically and remotely, 
greatly facilitating rapid adaptation to changes in adversary threats, mission priorities, 
technology, and other aspects of the operating environment. The principal constraint on 
what can be accomplished is the human intellectual capacity to understand problems 
and systems, to build tools to manage them, and to provide assurance-all at ever
greater levels of scale and complexity. 

The extent of the DoD code in service has been increasing by more than an order 
of magnitude every decade, and a similar growth pattern has been exhibited within 
individual, long-lived military systems. In addition to this growth in size, there is a cor
responding growth in overall systems capability, complexity, interconnectedness, and 
agility. This growth is enabled by the increasing power of software languages, tools, 
and practices, as well as by a significant growth in the dependence of DoD systems on 
increasingly complex, diverse, and geographically distributed supply chains. These supply 
chains include not only custom components developed for specific mission purposes, but 
also commercial and open-source ecosystems and components, such as the widely used 
infrastructures for web services, mobile devices, and graphical user interaction. 

Because of the rapid growth in significance of software capability to the DoD 
overall, the Director of Defense Research and Engineering (now Assistant Secretary of 
Defense for Research and Engineering) requested the National Research Council (NRG) 
Committee for Advancing Software-Intensive Systems Producibility to undertake a study 
to address the challenges of defense software producibility, identifying the principal 
challenges and developing recommendations regarding both improvements to practice 
and priorities for research. The NRG committee just released its final report, titled 
Critical Code: Software Producibility for Defense. Full copies of the report (free PDF 
download and book purchase), along with related prior reports, are available through 
the National Academy Press at http://www.nap.edu/catalog.php?record_id=12979. 
This article summarizes the principal findings and recommendations of that report. 
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The necessity of sustaining 
software innovation 

An initial question is whether 
software is indeed a strategic building 
material, worthy of special attention. This 
question has been addressed periodically 
by the Defense Science Board (DSB) 
since 1985—a 2007 DSB report, for 
example, stated that “in the Department 
of Defense, the transformational effects 

here broadly to include all forms of 
computing and communications), joined 
with a culture of information sharing, 
called Net-Centricity, constitute a 
powerful force multiplier. The DoD 
has become increasingly dependent for 
mission-critical functionality upon highly 
interconnected, globally sourced IT of 
dramatically varying quality, reliability, 
and trustworthiness.” 

Despite the strength of this statement, 
every few years speculation surfaces 
that perhaps software and information 
technology may be approaching a plateau 
of capability and performance and that 
strategic attention to these technologies is 
consequently not merited. The committee 
emphasizes that this continues to be a 
false and dangerous speculation—the 
capability and the complexity of hardware 
and software systems are both rising at an 
accelerating rate, with no end in sight. 

It is instructive, in this regard, to 
consider the publication in 1958—more 
than a half century ago—of the landmark 

paper by John Backus describing the 

the words “automatic programming.” 
The point of this phrase, with respect 
to Backus’s great accomplishment, 
is that there was a much more direct 
correspondence between his high-level 
programming notation—the earliest 

thinking than had been the case with 
the early machine-level code. One can 

enabled mathematicians to express 
their thoughts directly to computers, 
seemingly without the intervention of 

indeed an extraordinary and historical 
breakthrough. But we know that, in the 
end, those mathematicians of 50 years 
ago soon evolved into programmers—as 
a direct consequence of their growing 
ambitions for computing applications. 

Just a few years after the Backus 

processing applications, typesetting 
applications, compilers for other 
languages, and other applications whose 
abstractions required some considerable 
programming sophistication (and 
representational gerrymandering) to be 

data structures—arrays and numeric 
values. Any program that manipulated 
textual data, for example, needed to 
encode the text characters, textual strings, 
and any overarching paragraph and 

document structure very explicitly into 
numbers and arrays. A person reading 
program text would see only numerical 
and array operations because that was 
the limit of what could be explicitly 
expressed in the notation. This meant 
that programmers needed to keep track, 
in their heads or in documentation, of the 
nature of this representational encoding. 
It also meant that testers and evaluators 
needed to assess programs through this 
(hopefully) same layer of interpretation. 

As languages have evolved 

versions), these additional structures 
can be much more directly expressed—
characters and strings, most obviously, 
are intrinsic in nearly all modern 
languages. It is interesting, however, that 
the claim of “automatic programming” 
continues to reappear from time to time 
as major steps are made in improved 
abstractions, for example related to 
data manipulation (the so-called 4GLs). 
These developments move us forward, 
but ironically they do not actually get 
us closer to “eliminating programmers” 
or otherwise emerging at some plateau 
of capability and near-commodity 
status. Instead, new software-manifest 
capabilities are constantly emerging—
for example, techniques for machine-
learning algorithms and highly parallel 
data-intensive analytics—that continue 
to demand considerable intellectual effort 
on the part of programmers. 
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The profound fact is that software 
capability is bounded primarily by 
our intellectual abilities—our human 
capability both to create new abstractions 
appropriate for application domains 
and to manifest those abstractions in 
languages, models, tools, and practices. 
As our understanding advances, so can 
our software capability advance with us.

As a consequence of this seeming 

technological leadership in software is a 

key driver of overall capability leadership 

in systems—and that at the core of the 
ability to achieve integration and maintain 
mission agility is the ability of the DoD 
to produce and evolve software. The 
committee recommends that, to avoid 
loss of leadership, the DoD take active 

steps to become more fully engaged 
in the innovative processes related to 
software producibility. In particular, 

the extraordinary pace of innovation we 
are now witnessing, will not produce 
software innovations in areas of defense 

allow the DoD to fully meet its software-
related requirements and remain ahead of 
potential adversaries. 

A loss of leadership could threaten 
the ability of the DoD to manifest 
world-leading capability, and also to 
achieve adequate levels of assurance 
for the diversely sourced software it 
intends to deploy. This is an important 
part of the rationale for the committee 
recommendation that the DoD reengage 
directly in the innovation processes.

although the DoD relies fundamentally 

on mainstream commercial and open 
source components, supply chains, and 
software ecosystems, it nonetheless has 
special needs in its mission systems that 
are driven by the growing role of software 
in systems overall. The committee 
recommends that the DoD regularly 

of technological need where the DoD 
has “leading demand” and where 
accelerated progress is needed.

Three goals for software-
intensive development 

where improvements in practice would 

to develop, sustain, and assure software-
intensive systems of all kinds. Each of 
these areas is the subject of a chapter in 

the Critical Code report. (These three 
areas of practice correspond to Chapters 
2, 3, and 4. Chapter 1 of the report focuses 
on the necessary role of DoD in software 
innovation. Chapter 5 summarizes the 
research agenda related to software 
producibility.) The three areas of practice 
are summarized below:

Practice improvement 1: 

Process and measurement 

Advances related to process and 
measurement would facilitate broader 
and more effective use of incremental 
iterative development, particularly in 
the arms-length contracting situations 
common in DoD. 

Incremental development practices 

mitigation of engineering risks during 
a systems development process. 
Engineering risks pertain to the 
consequences of particular choices to be 

made within an engineering process—
the risks are high when the outcomes of 
immediate project commitments are both 

Engineering risks can relate to many 
different kinds of engineering decisions—

attributes, functional characteristics, and 
infrastructure choices. 

When well managed, incremental 
practices can enable innovative 
engineering to be accomplished without a 
necessarily consequent increase of overall 
programmatic risk. (Programmatic risk 
relates to the successful completion 
of engineering projects with respect 
to expectations and priorities for cost, 
schedule, capability, quality, and other 
attributes.) This is because incremental 

practices enable engineering 

and mitigated promptly. 
Incremental practices are 
enabled through the use 
of diverse techniques such 
as modeling, simulation, 

prototyping, and other means for early 
validation—coupled with extensions to 
earned-value models that measure and 
give credit for the accumulating body 
of evidence in support of feasibility. 
Incremental approaches include iterative 
approaches, staged acquisition, evidence-
based systems engineering, and other 
methods that explicitly acknowledge 
engineering risk and its mitigation. 

incremental and iterative methods are 

for innovative, software-intensive 
engineering in the DoD, and they can 
be managed more effectively through 
improvements in practices and supporting 
tools. The committee recommends a 
diverse set of improvements related 
to advanced incremental development 
practice, supporting tools, and earned-
value models.

“...to avoid loss of leadership, 
the DoD [should] take active steps to become more fully engaged 
in the innovative processes related to software producibility.”
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Practice improvement 2: 

Architecture

Advances related to architecture 
practice would facilitate the early focus 
on systems architecture that is essential 
particularly for systems with demanding 
requirements related to quality attributes, 

Software architecture models the 
structures of a system that comprises 
software components, the externally 
visible properties of those components, 
and the relationships among the 
components. Good architecture entails 
a minimum of engineering commitment 
that yields a maximum value. In particular, 
architecture design is an engineering 
activity that is separate, for example, 

standards-related policy setting.

encapsulating areas where innovation 
and change are anticipated. Architecture 

diverse quality attributes, ranging from 
availability and performance to security 
and isolation. Additionally, architecture 
embodies planning for the interlinking of 
systems and for product line development, 
enabling encapsulation of individual 
innovative elements of a system. 

therefore, it may be more effective to 
consider architecture and quality attributes 

to functionality. Because architecture 
includes the earliest and, often, the 
most important design decisions—those 

to change later—early architectural 
commitment (and validation) can 
yield better project outcomes with less 
programmatic risk. 

complex systems with emphasis on 

quality attributes, architecture decisions 
may dominate functional capability 

committee also notes that architecture 
practice in many areas of industry is 

The committee recommends that DoD 
more aggressively assert architectural 
leadership, with an early focus on 
architecture being essential for systems 
with innovative functionality or 
demanding quality requirements. 

Practice improvement 3: 

Assurance and security 

Advances related to assurance and 
security would facilitate achievement of 
mission assurance for systems at greater 
degrees of scale and complexity, and 
in the presence of rich supply chains 
and architectural ecosystems that are 
increasingly commonplace in modern 
software engineering. 

Assurance is a human judgment 
regarding not just functionality, but 
also diverse quality attributes related 
to reliability, security, safety, and other 

system characteristics. The weights 
given the various attributes are typically 
determined on the basis of models of 
hazards associated with the operational 
context, including potential threats. The 
process of achieving software assurance, 
regardless of sector, is generally recognized 
to account for approximately half the total 
development cost for major projects. 

In addition to overall cost, DoD 
faces several particular challenges for 

length relationship between a contractor 
development team and government 

and share the information necessary to 
making assurance judgments. This can 
lead to approaches that overly focus on 
post hoc acceptance evaluation, rather 
than on the emerging practice of “building 
in” evidence in support of an overall 
assurance case. Second, modern systems 
draw on components from diverse 
sources. This implies that supply-chain 

be contemplated, with “attack surfaces” 
existing within an overall application, 
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and not just at its perimeter. This has 
the consequence that evaluative and 
preventive approaches ideally must be 
integrated throughout a complex supply 
chain. A particular challenge is managing 
opaque, or “black box,” components in a 
system—this issue is addressed in the full 
report. Third, the growing role of DoD 

national assets, and in the safeguarding 
of human lives creates a diminishing 
tolerance for faulty assurance judgments. 
Indeed, the Defense Science Board 
notes that there are profound risks 
associated with the increasing reliance 
on modern software-intensive systems: 
“this growing dependency is a source of 
weakness exacerbated by the mounting 
size, complexity, and interconnectedness 

losing the lead in the ability to evaluate 
software and to prevent attacks can confer 
advantage to adversaries with respect 
to both offense and defense. It can also 
force us to overly “dumb down” systems, 
restricting functionality or performance to 
a level such that assurance judgments can 
be more readily achieved.

The Defense Science Board found 
in 2007 that “it is an essential requirement 
that the United States maintain advanced 
capability for ‘test and evaluation’ of IT 
products. Reputation-based or trust-based 
credentialing of software (‘provenance’) 
needs to be augmented by direct, artifact-
focused means to support acceptance 

challenge, due to the rapid advance of 
software technology generally and also 
the increasing pace by which potential 
adversaries are advancing their capability. 
This, coupled with the observations 
above regarding software innovation, is 
an important part of the rationale for the 
committee recommendation that the DoD 
actively and directly address its software 
producibility needs.

In the full report, the committee 
addressed a broad range of issues related 
to software assurance, including evidence-
based approaches, evaluation practices, 
and security-motivated challenges related 

the presence of dynamism) and separation 
(including isolation and sandboxing). 

The committee notes that traditional 
approaches based purely on testing and 
inspection, no matter how extensive, are 

software systems. It emphasizes that 
evaluation practices that focus primarily 
on post hoc acceptance evaluation are not 

to justify useful assurance judgments. 
That is, quality and security must be 
built in, and not “tested in”—with the 
consequence that evidence production in 
support of assurance must be integrated 
into software development.

is facilitated by advances in diverse aspects 
of software engineering practice and 
technology, including modeling, analysis, 
tools and environments, traceability 

programming languages, and process 

after many years of slow progress, 
recent advances have enabled more 
rapid improvement in assurance-related 
techniques and tools. This is already 
evident in the most advanced commercial 
development practice. The committee 

assurance-related evidence with ongoing 
development has high potential to 
improve the overall assurance of systems. 
The committee recommends enhancing 
incentives for preventive software 
assurance practices and production of 
assurance-related evidence throughout 
the software lifecycle and through 
the software supply chain. This 
includes both contractor and in-house 
development efforts. 

The challenge of DoD 
software expertise 

The committee also took up 
the issue of software expertise that is 

The committee found that DoD has a 
growing need for software expertise, 
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but that it is not able to meet this need 
through intrinsic resources. This need 
is essential for the DoD to be a smart 
software customer and program manager, 
particularly for larger-scale innovative 
software-intensive projects. In particular, 
access to DoD-aligned expertise is 
important for the DoD to be able to take 
effective action in the three areas of 

to DoD-aligned expertise has been an 
area of ongoing challenge to the DoD, 
with recommendations made by various 
panels and committees since the 1980s. 

The need to reinvigorate 
DoD software engineering 
research 

In addition to recommending 
improvements to the three areas of 
practice, as outlined above, the committee 

research for consideration by science 
and technology program managers 
(managing 6.1, 6.2, and 6.3a funds and 

the basis of four criteria: (1) Advances 

DoD software producibility. (2) A well-
managed research program would result 
in feasible progress. (3) The goals are not 

agencies. (4) The pace of development 
in industry or research labs would be 

In each of the seven areas, the 

research and technology development 
that, in its judgment, could feasibly meet 
the four criteria. The areas and, for each, 

below. (Details are in the full report.)

1. Architecture modeling and 
architectural analysis. Goals include: 
(1) Early validation for architecture 
decisions; (2) Architecture-aware systems 
management, including: Rich supply 
chains, ecosystems, and infrastructure; 

(3) Component-based development, 
including architectural designs for 
particular domains

of design and code. Goals include: 
(1) Effective evaluation for critical quality 
attributes; (2) Components in large 
heterogeneous systems; (3) Preventive 
methods to achieve assurance, including 
process improvement, architectural 
building blocks, programming languages, 
coding practice, etc.

3. Process support and economic 
models for assurance. Goals include: 
(1) Enhanced process support for assured 
software development, (2) Models for 
evidence production in software supply 
chains, (3) Application of economic 
principles to process decision-making

4. Requirements. Goals include: 
(1) Expressive models, supporting tools 
for functional and quality attributes; 
(2) Improved support for traceability and 
early validation

5. Language, modeling, coding, and 
tools. Goals include: (1) Expressive 
programming languages for emerging 
challenges, (2) Exploit modern 
concurrency: shared-memory and scalable 
distributed, (3) Developer productivity 
for new development and evolution

6. Cyber-physical systems. Goals 
include: (1) New conventional 
architectures for control systems, 
(2) Improved architectures for embedded 
applications

7. Human-system interaction. Goals 
include: (1) Engineering practices for 
systems in which humans play critical 
roles. (This area is elaborated in a 
separate NRC report.)

Science and Technology Policy (OSTP) 
and the National Science and Technology 
Council (NSTC), there is a National 

and Information Technology Research 

and Development (NITRD) program. The 
NITRD program provides a framework 
for diverse federal agencies to coordinate 
R&D in areas related to networking and 
information technology. The framework 
includes two areas that primarily relate to 
software producibility, which are Software 
Design and Productivity (SDP) and 

(HCSS). There is also a third area, Cyber 
Security and Information Assurance 
(CSIA) that encompasses some activities 
related to software producibility. 

The committee undertook a 
longitudinal study of sponsored R&D 

It found that while NITRD overall has 
grown over the past decade, there has 

overall and DoD-sponsored R&D in SDP 
and HCSS. The committee recommends 
that DoD take immediate action to 
reinvigorate its investment in software 
producibility research, with focus in 
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