
Critical Code • •
Software Producibility for Defense

A Short Summary

The rapid growth in the role of software in defense systems is significant and
parallels the growing role of software in a broad range of application domains,
ranging from financial services and health care to telecommunications, logistics,

and transportation. This growth is reflected in recent macroeconomic studies, which
suggest that in the US and Europe 20 percent to 25 percent of overall economic growth
and nearly 40 percent of the increase in overall economic productivity since 1995
are attributed to information and communications technology. It is also reflected in
individual systems. For example, in modern automobiles, the portion of system functions
performed in software is now 40 percent and approaching 50 percent. In the DoD, the
growth has been even more profound-in military aircraft, for example, the percentage
of system functions performed by software has risen to more than 80 percent.

This growth of software in role and significance is a natural outcome of its special
engineering characteristics: software is uniquely unbounded and flexible, having relative
ly few intrinsic limits on the degree to which it can be scaled in complexity and capability.
This is because software is an abstract and purely synthetic medium that, for the most
part, lacks fundamental physical limits and natural constraints. For example, unlike
physical hardware, software can be delivered and upgraded electronically and remotely,
greatly facilitating rapid adaptation to changes in adversary threats, mission priorities,
technology, and other aspects of the operating environment. The principal constraint on
what can be accomplished is the human intellectual capacity to understand problems
and systems, to build tools to manage them, and to provide assurance-all at ever
greater levels of scale and complexity.

The extent of the DoD code in service has been increasing by more than an order
of magnitude every decade, and a similar growth pattern has been exhibited within
individual, long-lived military systems. In addition to this growth in size, there is a cor
responding growth in overall systems capability, complexity, interconnectedness, and
agility. This growth is enabled by the increasing power of software languages, tools,
and practices, as well as by a significant growth in the dependence of DoD systems on
increasingly complex, diverse, and geographically distributed supply chains. These supply
chains include not only custom components developed for specific mission purposes, but
also commercial and open-source ecosystems and components, such as the widely used
infrastructures for web services, mobile devices, and graphical user interaction.

Because of the rapid growth in significance of software capability to the DoD
overall, the Director of Defense Research and Engineering (now Assistant Secretary of
Defense for Research and Engineering) requested the National Research Council (NRG)
Committee for Advancing Software-Intensive Systems Producibility to undertake a study
to address the challenges of defense software producibility, identifying the principal
challenges and developing recommendations regarding both improvements to practice
and priorities for research. The NRG committee just released its final report, titled
Critical Code: Software Producibility for Defense. Full copies of the report (free PDF
download and book purchase), along with related prior reports, are available through
the National Academy Press at http://www.nap.edu/catalog.php?record_id=12979.
This article summarizes the principal findings and recommendations of that report.

44 Critical Code: So~ware Producibility for Defense

The Next Wave Vol 19 No 1 2011 45

FEATURE

The necessity of sustaining
software innovation

An initial question is whether
software is indeed a strategic building
material, worthy of special attention. This
question has been addressed periodically
by the Defense Science Board (DSB)
since 1985—a 2007 DSB report, for
example, stated that “in the Department
of Defense, the transformational effects

here broadly to include all forms of
computing and communications), joined
with a culture of information sharing,
called Net-Centricity, constitute a
powerful force multiplier. The DoD
has become increasingly dependent for
mission-critical functionality upon highly
interconnected, globally sourced IT of
dramatically varying quality, reliability,
and trustworthiness.”

Despite the strength of this statement,
every few years speculation surfaces
that perhaps software and information
technology may be approaching a plateau
of capability and performance and that
strategic attention to these technologies is
consequently not merited. The committee
emphasizes that this continues to be a
false and dangerous speculation—the
capability and the complexity of hardware
and software systems are both rising at an
accelerating rate, with no end in sight.

It is instructive, in this regard, to
consider the publication in 1958—more
than a half century ago—of the landmark

paper by John Backus describing the

the words “automatic programming.”
The point of this phrase, with respect
to Backus’s great accomplishment,
is that there was a much more direct
correspondence between his high-level
programming notation—the earliest

thinking than had been the case with
the early machine-level code. One can

enabled mathematicians to express
their thoughts directly to computers,
seemingly without the intervention of

indeed an extraordinary and historical
breakthrough. But we know that, in the
end, those mathematicians of 50 years
ago soon evolved into programmers—as
a direct consequence of their growing
ambitions for computing applications.

Just a few years after the Backus

processing applications, typesetting
applications, compilers for other
languages, and other applications whose
abstractions required some considerable
programming sophistication (and
representational gerrymandering) to be

data structures—arrays and numeric
values. Any program that manipulated
textual data, for example, needed to
encode the text characters, textual strings,
and any overarching paragraph and

document structure very explicitly into
numbers and arrays. A person reading
program text would see only numerical
and array operations because that was
the limit of what could be explicitly
expressed in the notation. This meant
that programmers needed to keep track,
in their heads or in documentation, of the
nature of this representational encoding.
It also meant that testers and evaluators
needed to assess programs through this
(hopefully) same layer of interpretation.

As languages have evolved

versions), these additional structures
can be much more directly expressed—
characters and strings, most obviously,
are intrinsic in nearly all modern
languages. It is interesting, however, that
the claim of “automatic programming”
continues to reappear from time to time
as major steps are made in improved
abstractions, for example related to
data manipulation (the so-called 4GLs).
These developments move us forward,
but ironically they do not actually get
us closer to “eliminating programmers”
or otherwise emerging at some plateau
of capability and near-commodity
status. Instead, new software-manifest
capabilities are constantly emerging—
for example, techniques for machine-
learning algorithms and highly parallel
data-intensive analytics—that continue
to demand considerable intellectual effort
on the part of programmers.

46 Critical Code: Software Producibility for Defense

The profound fact is that software
capability is bounded primarily by
our intellectual abilities—our human
capability both to create new abstractions
appropriate for application domains
and to manifest those abstractions in
languages, models, tools, and practices.
As our understanding advances, so can
our software capability advance with us.

As a consequence of this seeming

technological leadership in software is a

key driver of overall capability leadership

in systems—and that at the core of the
ability to achieve integration and maintain
mission agility is the ability of the DoD
to produce and evolve software. The
committee recommends that, to avoid
loss of leadership, the DoD take active

steps to become more fully engaged
in the innovative processes related to
software producibility. In particular,

the extraordinary pace of innovation we
are now witnessing, will not produce
software innovations in areas of defense

allow the DoD to fully meet its software-
related requirements and remain ahead of
potential adversaries.

A loss of leadership could threaten
the ability of the DoD to manifest
world-leading capability, and also to
achieve adequate levels of assurance
for the diversely sourced software it
intends to deploy. This is an important
part of the rationale for the committee
recommendation that the DoD reengage
directly in the innovation processes.

although the DoD relies fundamentally

on mainstream commercial and open
source components, supply chains, and
software ecosystems, it nonetheless has
special needs in its mission systems that
are driven by the growing role of software
in systems overall. The committee
recommends that the DoD regularly

of technological need where the DoD
has “leading demand” and where
accelerated progress is needed.

Three goals for software-
intensive development

where improvements in practice would

to develop, sustain, and assure software-
intensive systems of all kinds. Each of
these areas is the subject of a chapter in

the Critical Code report. (These three
areas of practice correspond to Chapters
2, 3, and 4. Chapter 1 of the report focuses
on the necessary role of DoD in software
innovation. Chapter 5 summarizes the
research agenda related to software
producibility.) The three areas of practice
are summarized below:

Practice improvement 1:

Process and measurement

Advances related to process and
measurement would facilitate broader
and more effective use of incremental
iterative development, particularly in
the arms-length contracting situations
common in DoD.

Incremental development practices

mitigation of engineering risks during
a systems development process.
Engineering risks pertain to the
consequences of particular choices to be

made within an engineering process—
the risks are high when the outcomes of
immediate project commitments are both

Engineering risks can relate to many
different kinds of engineering decisions—

attributes, functional characteristics, and
infrastructure choices.

When well managed, incremental
practices can enable innovative
engineering to be accomplished without a
necessarily consequent increase of overall
programmatic risk. (Programmatic risk
relates to the successful completion
of engineering projects with respect
to expectations and priorities for cost,
schedule, capability, quality, and other
attributes.) This is because incremental

practices enable engineering

and mitigated promptly.
Incremental practices are
enabled through the use
of diverse techniques such
as modeling, simulation,

prototyping, and other means for early
validation—coupled with extensions to
earned-value models that measure and
give credit for the accumulating body
of evidence in support of feasibility.
Incremental approaches include iterative
approaches, staged acquisition, evidence-
based systems engineering, and other
methods that explicitly acknowledge
engineering risk and its mitigation.

incremental and iterative methods are

for innovative, software-intensive
engineering in the DoD, and they can
be managed more effectively through
improvements in practices and supporting
tools. The committee recommends a
diverse set of improvements related
to advanced incremental development
practice, supporting tools, and earned-
value models.

“...to avoid loss of leadership,
the DoD [should] take active steps to become more fully engaged
in the innovative processes related to software producibility.”

The Next Wave Vol 19 No 1 2011 47

FEATUREFEATURE

Practice improvement 2:

Architecture

Advances related to architecture
practice would facilitate the early focus
on systems architecture that is essential
particularly for systems with demanding
requirements related to quality attributes,

Software architecture models the
structures of a system that comprises
software components, the externally
visible properties of those components,
and the relationships among the
components. Good architecture entails
a minimum of engineering commitment
that yields a maximum value. In particular,
architecture design is an engineering
activity that is separate, for example,

standards-related policy setting.

encapsulating areas where innovation
and change are anticipated. Architecture

diverse quality attributes, ranging from
availability and performance to security
and isolation. Additionally, architecture
embodies planning for the interlinking of
systems and for product line development,
enabling encapsulation of individual
innovative elements of a system.

therefore, it may be more effective to
consider architecture and quality attributes

to functionality. Because architecture
includes the earliest and, often, the
most important design decisions—those

to change later—early architectural
commitment (and validation) can
yield better project outcomes with less
programmatic risk.

complex systems with emphasis on

quality attributes, architecture decisions
may dominate functional capability

committee also notes that architecture
practice in many areas of industry is

The committee recommends that DoD
more aggressively assert architectural
leadership, with an early focus on
architecture being essential for systems
with innovative functionality or
demanding quality requirements.

Practice improvement 3:

Assurance and security

Advances related to assurance and
security would facilitate achievement of
mission assurance for systems at greater
degrees of scale and complexity, and
in the presence of rich supply chains
and architectural ecosystems that are
increasingly commonplace in modern
software engineering.

Assurance is a human judgment
regarding not just functionality, but
also diverse quality attributes related
to reliability, security, safety, and other

system characteristics. The weights
given the various attributes are typically
determined on the basis of models of
hazards associated with the operational
context, including potential threats. The
process of achieving software assurance,
regardless of sector, is generally recognized
to account for approximately half the total
development cost for major projects.

In addition to overall cost, DoD
faces several particular challenges for

length relationship between a contractor
development team and government

and share the information necessary to
making assurance judgments. This can
lead to approaches that overly focus on
post hoc acceptance evaluation, rather
than on the emerging practice of “building
in” evidence in support of an overall
assurance case. Second, modern systems
draw on components from diverse
sources. This implies that supply-chain

be contemplated, with “attack surfaces”
existing within an overall application,

48 Critical Code: Software Producibility for Defense

and not just at its perimeter. This has
the consequence that evaluative and
preventive approaches ideally must be
integrated throughout a complex supply
chain. A particular challenge is managing
opaque, or “black box,” components in a
system—this issue is addressed in the full
report. Third, the growing role of DoD

national assets, and in the safeguarding
of human lives creates a diminishing
tolerance for faulty assurance judgments.
Indeed, the Defense Science Board
notes that there are profound risks
associated with the increasing reliance
on modern software-intensive systems:
“this growing dependency is a source of
weakness exacerbated by the mounting
size, complexity, and interconnectedness

losing the lead in the ability to evaluate
software and to prevent attacks can confer
advantage to adversaries with respect
to both offense and defense. It can also
force us to overly “dumb down” systems,
restricting functionality or performance to
a level such that assurance judgments can
be more readily achieved.

The Defense Science Board found
in 2007 that “it is an essential requirement
that the United States maintain advanced
capability for ‘test and evaluation’ of IT
products. Reputation-based or trust-based
credentialing of software (‘provenance’)
needs to be augmented by direct, artifact-
focused means to support acceptance

challenge, due to the rapid advance of
software technology generally and also
the increasing pace by which potential
adversaries are advancing their capability.
This, coupled with the observations
above regarding software innovation, is
an important part of the rationale for the
committee recommendation that the DoD
actively and directly address its software
producibility needs.

In the full report, the committee
addressed a broad range of issues related
to software assurance, including evidence-
based approaches, evaluation practices,
and security-motivated challenges related

the presence of dynamism) and separation
(including isolation and sandboxing).

The committee notes that traditional
approaches based purely on testing and
inspection, no matter how extensive, are

software systems. It emphasizes that
evaluation practices that focus primarily
on post hoc acceptance evaluation are not

to justify useful assurance judgments.
That is, quality and security must be
built in, and not “tested in”—with the
consequence that evidence production in
support of assurance must be integrated
into software development.

is facilitated by advances in diverse aspects
of software engineering practice and
technology, including modeling, analysis,
tools and environments, traceability

programming languages, and process

after many years of slow progress,
recent advances have enabled more
rapid improvement in assurance-related
techniques and tools. This is already
evident in the most advanced commercial
development practice. The committee

assurance-related evidence with ongoing
development has high potential to
improve the overall assurance of systems.
The committee recommends enhancing
incentives for preventive software
assurance practices and production of
assurance-related evidence throughout
the software lifecycle and through
the software supply chain. This
includes both contractor and in-house
development efforts.

The challenge of DoD
software expertise

The committee also took up
the issue of software expertise that is

The committee found that DoD has a
growing need for software expertise,

The Next Wave Vol 19 No 1 2011 49

FEATUREFEATURE

but that it is not able to meet this need
through intrinsic resources. This need
is essential for the DoD to be a smart
software customer and program manager,
particularly for larger-scale innovative
software-intensive projects. In particular,
access to DoD-aligned expertise is
important for the DoD to be able to take
effective action in the three areas of

to DoD-aligned expertise has been an
area of ongoing challenge to the DoD,
with recommendations made by various
panels and committees since the 1980s.

The need to reinvigorate
DoD software engineering
research

In addition to recommending
improvements to the three areas of
practice, as outlined above, the committee

research for consideration by science
and technology program managers
(managing 6.1, 6.2, and 6.3a funds and

the basis of four criteria: (1) Advances

DoD software producibility. (2) A well-
managed research program would result
in feasible progress. (3) The goals are not

agencies. (4) The pace of development
in industry or research labs would be

In each of the seven areas, the

research and technology development
that, in its judgment, could feasibly meet
the four criteria. The areas and, for each,

below. (Details are in the full report.)

1. Architecture modeling and
architectural analysis. Goals include:
(1) Early validation for architecture
decisions; (2) Architecture-aware systems
management, including: Rich supply
chains, ecosystems, and infrastructure;

(3) Component-based development,
including architectural designs for
particular domains

of design and code. Goals include:
(1) Effective evaluation for critical quality
attributes; (2) Components in large
heterogeneous systems; (3) Preventive
methods to achieve assurance, including
process improvement, architectural
building blocks, programming languages,
coding practice, etc.

3. Process support and economic
models for assurance. Goals include:
(1) Enhanced process support for assured
software development, (2) Models for
evidence production in software supply
chains, (3) Application of economic
principles to process decision-making

4. Requirements. Goals include:
(1) Expressive models, supporting tools
for functional and quality attributes;
(2) Improved support for traceability and
early validation

5. Language, modeling, coding, and
tools. Goals include: (1) Expressive
programming languages for emerging
challenges, (2) Exploit modern
concurrency: shared-memory and scalable
distributed, (3) Developer productivity
for new development and evolution

6. Cyber-physical systems. Goals
include: (1) New conventional
architectures for control systems,
(2) Improved architectures for embedded
applications

7. Human-system interaction. Goals
include: (1) Engineering practices for
systems in which humans play critical
roles. (This area is elaborated in a
separate NRC report.)

Science and Technology Policy (OSTP)
and the National Science and Technology
Council (NSTC), there is a National

and Information Technology Research

and Development (NITRD) program. The
NITRD program provides a framework
for diverse federal agencies to coordinate
R&D in areas related to networking and
information technology. The framework
includes two areas that primarily relate to
software producibility, which are Software
Design and Productivity (SDP) and

(HCSS). There is also a third area, Cyber
Security and Information Assurance
(CSIA) that encompasses some activities
related to software producibility.

The committee undertook a
longitudinal study of sponsored R&D

It found that while NITRD overall has
grown over the past decade, there has

overall and DoD-sponsored R&D in SDP
and HCSS. The committee recommends
that DoD take immediate action to
reinvigorate its investment in software
producibility research, with focus in

		Superintendent of Documents
	2023-12-14T17:21:03-0500
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

