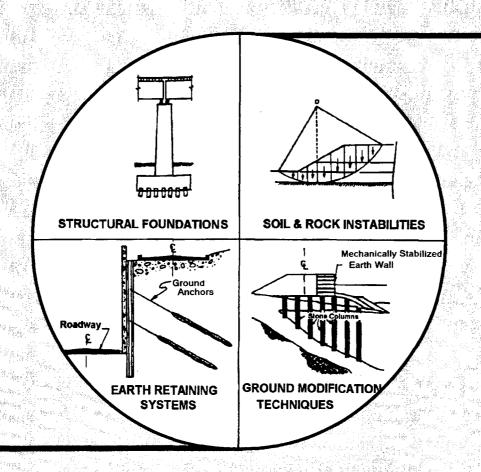


Administration

July 1998


OFFICE OF ENGINEERING
OFFICE OF TECHNOLOGY APPLICATIONS
400 SEVENTH STREET, SW
WASHINGTON, DC 20590

DRIVEN 1.0 User's Manual

A Program for Determining Ultimate Vertical Static Pile Capacity

DR99-104341

			Technical Repor	rt Documentation Page
1. Report No. FHWA-SA-98-074	PB9	9-104341	3. Recipient's Ca	talog No.
4. Title and Subtitle			4. Report Date	
Driven 1.0: A Microsoft Windows	IM Based Progra	am for Determining	May 1998	
Ultimate Vertical Static Pile Capacity			6. Performing Org	ganization Code:
7. Author(s) Mr. Dean Mathias, Ms. M	lichelle Cribb	S	8. Performing Or	ganization Report No.
9. Performing Organization Name and Address			10. Work Unit No	.(TRAIS)
Blue-Six Software, Inc. 13 Fairway Lane #4			11 0	
Logan, UT 84321			11. Contract or G DTFH61-94-P-01:	
Logali, OT 64321			DTFH61-96-P-60	
12. Sponsoring Agency Name and Address			13 Type of Repor	t and Period Covered
U.S. Department of Transportation			li.	
Federal Highway Administration				
Office of Technology Applications			14. Sponsoring A	gency Code
400 Seventh Street, S.W. Washington, D.C. 20590				
15. Supplementary Notes FHWA Contracting Officer's Technical Representative: Mr. Chien-Tan Chang (HTA-20), Ms. Michelle Cribbs (HNG-31) Technical Consultants: Mr. Richard Cheney, Mr. Jerry DiMaggio, (HNG-31) Mr. Chris Dumas (HST-03)				
16. Abstract The purpose of this manual is to provide instruction on the use of the computer program DRIVEN. This manual details the installation procedure, provides narration for each user input and output screen, discusses the engineering background used in the analytical development of the program, presents example problems, and finally provides a detailed description of the driveability analysis. This program is a significant step forward in pile design computing capability for the engineer. Please take the time to completely read through this manual. Only by reading through this manual can the DRIVEN software be utilized to its full potential.				
The DRIVEN program follows the methods and equations presented by Nordlund (1963, 1979), Thurman (1964), Meyerhof (1976), Cheney and Chassie (1982), Tomlinson (1980, 1985), and Hannigan, et.al. (1997). The Nordlund and Tomlinson static analyses methods used by the program are semi-empirical methods and have limitations in terms of correlations with field measurements and pile variables which can be analyzed. The user is encouraged to review further information on this subject in the "Design and Construction of Driven Pile Foundations" manual (Hannigan, et.al. 1997).				
Although DRIVEN has been completely rewritten from the ground up, its legacy lies in the SPILE program. Clearly, the most visible change is the move to a Windows based environment. The SPILE program was also developed by the FHWA and released in 1993. In SPILE, the user entered a soil profile to a planned pile toe depth and "ran" the program for the results of this input. When using the DRIVEN program, the user enters the entire sampled soil profile to the full depth of the profile. Based upon this input, DRIVEN will calculate pile capacities at predetermined depth intervals. This allows the user to view the pile capacity as a function of depth. There are many other new features that have been added. These options are discussed in full detail within the user's manual.				
17. Key Words: ultimate, vertical, static capacity, foundations, piles 18. Distribution Statement No restrictions.				
annual, rectain, success supposity, roundamond, prior				
19. Security Classif. (of this report) Unclassified	20. Security Class Unclassified		21. No. of Pages	22. Price

,		

Table of Contents

		<u>Page</u>
Introduction		1
Chapter 1	Installing the DRIVEN Software	4
Chapter 2	Getting Started Starting the Program Accessing the Menu	6 6 7
Chapter 3	Input User Interface Description Project Definition Soil Profile Pile Type Selection Soil Profile – Design	8 8 12 17 24
Chapter 4	Output User Interface Description Tabular Output Graphical Output	26 26 28
Chapter 5	Creating GRLWEAP Input File	31
Chapter 6	File Management	36
Chapter 7	Engineering Background Ultimate Vertical Load Capacity Point Resistance Shaft Resistance Plugging of Open End Pipe Piles	39 39 40 41 43
Appendix A	Tables and Figures	45
Appendix B	Dimensions of Metric H-piles	70
Appendix C	Standard Monotube Weights and Volumes	71
Appendix D -	Examples	
Exam Exam Exam Exam Exam Exam Exam	ple #1 - Precast Concrete Pile (english) ple #2 - Closed End Pipe Pile (metric) ple #3 - H-Pile (english) ple #4 - Precast Concrete Pile (metric) ple #5 - Opened End Pipe Pile (metric) ple #6 - Open End Pipe Pile (english) ple #7 - Timber Pile (english) ple #8 - Raymond Uniform Taper Pile (english) ple #9 - Monotube Pile (metric)	72 76 80 84 89 93 97 102 108
References		112

List of Figures

		<u>Page</u>
Figure 1-1.	Driven setup window.	4
Figure 1-2.	Driven setup, destination path window.	4
Figure 1-3.	Driven setup, destination group window.	5
Figure 1-4.	Driven setup, processing files window.	5
Figure 2-1.	Main screen for the Driven program.	6
Figure 2-2.	Driven File menu contents at program startup.	7
Figure 3-1.	Project definition input screen.	8
Figure 3-2.	Dialog box for SI system of units.	9
Figure 3-3.	Dialog box for English system of units.	9
Figure 3-4.	Soft compressible soils dialog box.	10
Figure 3-5.	Scourable soils dialog box.	11
Figure 3-6.	Diagram of long term degradation, contraction scour,	
	and local scour.	12
Figure 3-7.	Soil profile input screen.	13
Figure 3-8.	Dialog box for determining the internal friction angle from	
J	SPT values.	15
Figure 3-9.	Soil profile input screen for cohesive soil.	16
Figure 3-10.	Adhesion curve selection dialog box.	17
Figure 3-11.	Pipe pile - closed end dialog box.	18
Figure 3-12.	Pipe Pile – open end dialog box.	19
Figure 3-13.	Timber pile dialog box.	20
Figure 3-14.	Dialog box for pre-cast concrete pile.	21
Figure 3-15.	Raymond uniform taper pile dialog box.	21
Figure 3-16.	H-Pile dialog box for SI units.	22
Figure 3-17.	Monotube pile dialog box.	23
Figure 3-18.	Soil profile design screen.	25
Figure 4-1.	Tabular output screen.	27
Figure 4-2.	Graphical output screen.	29
Figure 5-1.	GRLWEAP driveability file dialog box for a pipe pile – closed end.	31
Figure 5-2.	GRLWEAP driveability file dialog box for a pipe pile – open end.	32
Figure 5-3.	GRLWEAP driveability file dialog box for a H-Pile.	32
Figure 6-1.	File drop down menu when a project is in memory.	36
Figure 6-2.	Open dialog box.	37
Figure 6-3.	Save As dialog box.	38
Figure 7-1a.	N _q factor for point resistance contribution.	46
Figure 7-1b.	α factor for point resistance contribution.	46
Figure 7-2.	Relationship between maximum unit pile point resistance and	
	φ for cohesionless soils.	48
Figure 7-3.	Adhesion values for piles in cohesive soils (Tomlinson 1979)	50
Table 7-4a.	Adhesion factors for driven piles in clay - through over lying sands	
	or sandy gravel (α method Tomlinson 1980).	54
Table 7-4b.	Adhesion factors for driven piles in clay - through overlying soft	
	clay (α method Tomlinson 1980)	54

Table 7-4c.	Adhesion factors for driven piles in clay - without different	
	overlying strata (α method Tomlinson 1980).	54
Figure 7-5.	Design curves for evaluating K_{δ} for piles when $\phi = 25^{\circ}$.	56
Figure 7-6.	Design curves for evaluating K_{δ} for piles when $\phi = 30^{\circ}$.	58
Figure 7-7.	Design curves for evaluating K_{δ} for piles when $\phi = 35^{\circ}$.	60
Figure 7-8.	Design curves for evaluating K_{δ} for piles when $\phi = 40^{\circ}$.	62
Figure 7-9.	Correction factor for $K_{\bar{o}}$ when $\bar{o} \neq \bar{\phi}$.	64
Figure 7-10.	Relation of δ/ϕ and pile displacement V, for various types of piles	. 66
Figure 7-11.	Chart for correction of N-values in sand for influence of effective	
	overburden pressure.	68
Figure D-1	Profile for example #1	72
Figure D-2	Profile for example #2	76
Figure D-3	Profile for example #3	80
Figure D-4	Profile for example #4	84
Figure D-5	Profile for example #5	89
Figure D-6	Profile for example #6	93
Figure D-7	Profile for example #7	97
Figure D-8	Profile for example #8	102
Figure D-9	Profile for example #9	108

List of Tables

		<u>Page</u>
Table 7-1a.	N _a factor for point resistance contribution.	45
Table 7-1b.	α factor for point resistance contribution.	45
Table 7-2.	Relationship between maximum unit pile point resistance and	
	φ for cohesionless soils.	47
Table 7-3.	Adhesion values for piles in cohesive soils (Tomlinson 1979)	49
Table 7-4a.	Adhesion factors for driven piles in clay - through over lying sands	
	or sandy gravel (α method Tomlinson 1980).	51
Table 7-4b.	Adhesion factors for driven piles in clay - through overlying soft	
	clay (α method Tomlinson 1980).	52
Table 7-4c.	Adhesion factors for driven piles in clay - without different	
	overlying strata (α method Tomlinson 1980).	53
Table 7-5.	Design curves for evaluating K_{δ} for piles when $\phi = 25^{\circ}$.	55
Table 7-6.	Design curves for evaluating K_{δ} for piles when $\phi = 30^{\circ}$.	57
Table 7-7.	Design curves for evaluating K_{δ} for piles when $\phi = 35^{\circ}$.	59
Table 7-8.	Design curves for evaluating K_{δ} for piles when $\phi = 40^{\circ}$.	61
Table 7-9.	Correction factor for K_{δ} when $\delta \neq \phi$.	63
Table 7-10.	Relation of δ/ϕ and pile displacement V, for various types of piles	65
Table 7-11.	Chart for correction of N-values in sand for influence of effective	
	overburden pressure.	67
Table 7-12	Relationship between standard penetration test and φ	69
Table 7-13	Dimensions of Metric H-pile shapes included in DRIVEN	70
Table 7-14.	Monotube Piles - Standard weights, volumes, and extensions.	71

INTRODUCTION

The purpose of this manual is to provide instruction on the use of the computer program DRIVEN. This manual details the installation procedure, provides narration for each user input and output screen, discusses the engineering background used in the analytical development of the program, presents example problems, and finally provides a detailed description of the driveability analysis. This program is a significant step forward in pile design computing capability for the engineer. Please take the time to completely read through this manual. Only by reading through this manual can the DRIVEN software be utilized to its full potential.

The DRIVEN program follows the methods and equations presented by Nordlund (1963, 1979), Thurman (1964), Meyerhof (1976), Cheney and Chassie (1982), Tomlinson (1980, 1985), and Hannigan, et.al. (1997). The Nordlund and Tomlinson static analyses methods used by the program are semi-empirical methods and have limitations in terms of correlations with field measurements and pile variables which can be analyzed. The user is encouraged to review further information on this subject in the "Design and Construction of Driven Pile Foundations" manual (Hannigan, et.al. 1997).

The application of this software product is the responsibility of the user. It is imperative that the responsible engineer understands the potential accuracy limitations of the program results, independently cross checks those results with other methods, and examines the reasonableness of the results with engineering knowledge and experience. There are no expressed or implied warranties.

New DRIVEN Features

Although DRIVEN has been completely rewritten from the ground up, its legacy lies in the SPILE program. Clearly, the most visible change is the move to a Windows based environment. The SPILE program was also developed by the FHWA and released in 1993. In SPILE, the user entered a soil profile to a planned pile toe depth and "ran" the program for the results of this input. When using the DRIVEN program, the user enters the entire sampled soil profile to the full depth of the profile. Based upon this input, DRIVEN will calculate pile capacities at predetermined depth intervals. This allows the user to view the pile capacity as a function of depth. There are many other new features that have been added. They are discussed below. These options are discussed in full detail within the user's manual.

Multiple Water Tables

Support for three water tables is now included. One water table at the time of sampling, another water table for restrike/driving considerations, and one water table for ultimate capacity considerations.

Soft Compressible Soils/Negative Skin Friction

The user may specify the depth of a soft compressible soil layer at the top of the soil profile. For ultimate calculations, the shaft resistance from this layer can be considered in two different ways, as soft compressible soil or as negative skin friction. If the shaft resistance is considered to be soft compressible soil, the skin friction for this layer is not include in the ultimate skin

friction capacity. If the resistance is negative skin friction, the skin friction from this layer is considered to be negative and is subtracted from the total skin friction for ultimate capacity computations. See Chapter 3 for a detail discussion on how the DRIVEN program calculates the ultimate capacity with soft compressible soils/negative skin friction conditions.

Scourable Soils

There are two kinds of scour conditions that the DRIVEN program can consider: short term (local) and long term (channel degradation and contraction) scour. In both cases, there is considered to be no shaft resistance. For the case of short term scour, the weight of the soil is still considered in the effective stress computation. For long term scour, the weight of the soil is not considered when computing effective stress. See Chapter 3 for a detail discussion on how the DRIVEN program calculates the ultimate capacity with scour conditions.

Open End Pipe Piles

The DRIVEN program supports the use of open-end pipe piles in its static analyses. For a detailed background on how DRIVEN computes open-end pipe pile capacities, refer to Chapter 7. This chapter provides comprehensive coverage of the engineering aspects of the DRIVEN software.

Capacities

The DRIVEN program computes three sets of capacities for three different conditions: *restrike*, *driving*, and *ultimate*.

Restrike

Restrike computes static skin and end bearing resistance for the entire soil profile. Restrike computations do not consider the effects of soft soils or scour conditions.

Driving

The user may enter a loss of soil strength in the soil profile for each soil layer due to the effects of driving. The driving computations are based upon the restrike calculations minus the soil strength loss due to driving.

Ultimate

Ultimate capacity computations consider the effects of soft soil conditions or scour. Hence, this is the ultimate capacity available to resist applied loads.

Output

The DRIVEN program presents the output in both tabular and graphical format. In the tabular format, the user can inspect each set of computations (restrike, driving, and ultimate) individually. The program presents each analysis depth in the profile with some of the contributing factors along with the skin, end, and total resistance. In graphical format, the program allows the user to select between the three sets of computations. The graphs plot the

depth versus capacity for the skin, end, and total resistance. The tabular results may be printed using the report button, while the graphical output can be either printed or sent to the Windows clipboard.

Units

DRIVEN includes support of both English and SI units. While using the program, the appropriate units for each data entry field are shown. If desired, the user can change the unit system for a project at any time and the DRIVEN program will convert all the input and output parameters to the new unit system.

Driveability

Finally, DRIVEN will prepare a partial driveability file for use by the GRLWEAP software. DRIVEN requests a few input parameters from the user then generates a data file that contains the soil and pile data that can be used by the GRLWEAP software to perform a driveability study. Please see chapter 5 for a more detailed explanation.

New Windows Users

An important note about the user's manual: The DRIVEN project was begun prior to the release of the Windows 95 operating system. Therefore, the DRIVEN software was written for the Microsoft Windows 3.1 operating environment. In August of 1995, Windows 95 was released. Windows 95 is backward compatible with Windows 3.1 programs, and therefore, the DRIVEN software will correctly run under it. Because of the timing of the release of DRIVEN relative to the release of Windows 95 all of the screen shots in this manual were taken under Windows 95 in recognition of the transition from Windows 3.1 to Windows 95 that is currently taking place in the computer industry.

Portions of the engineering background chapter of this manual were adapted from the Federal Highway Administration Publication No. FHWA-SA-92-044, "SPILE: A Microcomputer Program for Determining Ultimate Vertical Static Pile Capacity".

GRLWEAP is a registered trademark of GRL & Associates. Windows 3.1 is a registered trademark of Microsoft Corporation. Windows 95 is a registered trademark of Microsoft Corporation.

CHAPTER 1 - INSTALLING THE DRIVEN SOFTWARE

The minimum system requirements for using the DRIVEN software are:

- IBM PC or 100% compatible
- 386 25MHz processor
- 4 MB RAM
- Hard Disk with 6 MB of space available
- 100% Microsoft compatible mouse
- Windows 3.1 (or later)
- 1. Make sure that Windows 3.1 (or later) is running (setup cannot be run from DOS).
- 2. Insert the first distribution disk into the floppy drive.
- 3. From the Program Manager run the "Setup.exe" program on the floppy disk, or Start → Run in Windows 95. When this program is run, the screen will show a blue background with the prompt shown in figure 1-1. To continue with the installation, press the button labeled "Continue"; otherwise press "Exit" to stop the installation.

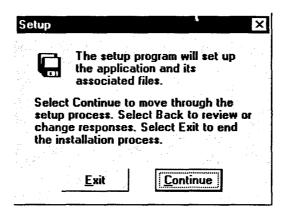


Figure 1-1. DRIVEN setup window.

4. The setup program will then prompt for the directory location to install the software, as shown by the example in figure 1-2. By default, the setup program will select the \DRIVEN directory. To have it installed in a different directory, simply type in the new directory name. If the directory does not already exist, the setup program will create it.

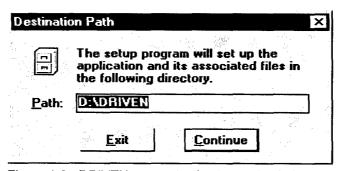


Figure 1-2. DRIVEN setup, destination path window.

5. The setup program will next prompt for the Program Group for the software. By default, the setup program will select "FHWA Software," as shown by the example in figure 1-3. The Program Group is the window in Program Manager (or Start menu in Windows 95) where the software icon will be located. To change this item, simply type in a new group name, or select the down arrow and choose an existing program group on the computer. Once the Program Group program group has been selected press the "Continue" button and the DRIVEN software will be installed onto the hard disk.

While the DRIVEN software is being copied onto the hard disk, a progress window, as shown in figure 1-4, will be on the screen. Once this operation has completed, the DRIVEN software installation is finished and the program can be used.

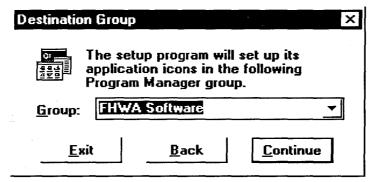


Figure 1-3. DRIVEN setup, destination group window.

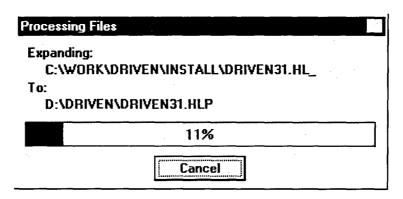


Figure 1-4. DRIVEN setup, processing files window.

6. The installation is now complete. Refer to the next chapter, entitled "**Getting started**," for an introduction on how to run the DRIVEN program.

Starting the Program

The DRIVEN program is a Microsoft Windows based program. Microsoft Windows must have first been started and the Program Manager should be active. Inside the Program Manager is a program group titled "FHWA Software." Alternatively, if a different group name was selected during setup, that will be the program group to find the DRIVEN program. Within this program group is a program icon titled "DRIVEN." Start the program by double clicking on this program icon. A window similar to the one shown in figure 2-1 will be displayed.

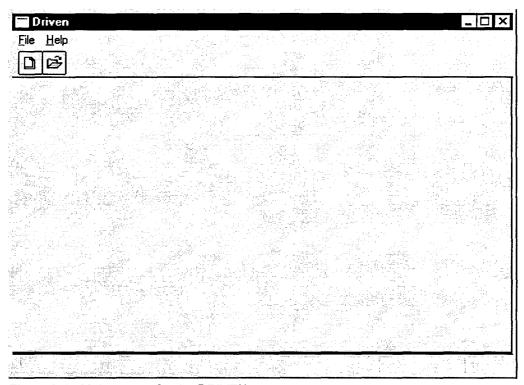


Figure 2-1. Main screen for the DRIVEN program.

From figure 2-1, note the following features on the DRIVEN software user interface. There is a title bar at the top of the window identifying the program as DRIVEN. Just below the title bar is a menu with two options, *File* and *Help*, that are available at program startup. Next, is a *SpeedBar* with two buttons corresponding to the menu options to create a new file and to open an existing file. At the bottom of the screen is a status bar that shows miscellaneous information about the program and the keyboard. For example, as the mouse passes over the SpeedBar, short informational messages will appear about the SpeedBar buttons functions. Additionally, the status bar will show the status of the Caps Lock, Num Lock, and Scroll Lock keys on the keyboard.

Accessing the Menu

Figure 2-2 shows an example of the DRIVEN *File* menu. At program startup, this menu contains options to create a new file, open an existing file, setup the printer, and exit the program. After choosing either to create a new file or to open an existing file, both the main menu and the *File* menu expand to include options available only when a project file is in the program memory.

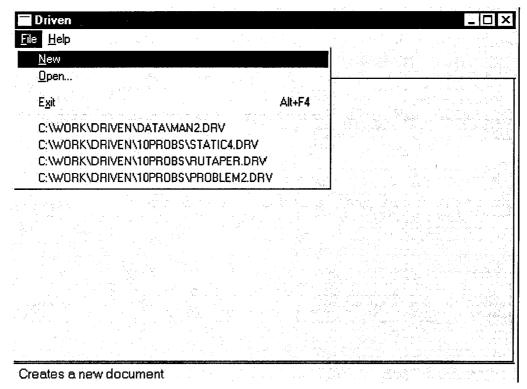


Figure 2-2. DRIVEN File menu contents at program startup.

To gain access to the main menu, use the mouse to single click the word *File* on the main menu. Alternatively, it is possible to open this menu by using the key combination of pressing <Alt> and the letter 'F' at the same time. To create a new project file, select the *New* menu option. To open an existing project file, select the *Open* menu option.

Refer to chapter 3, "Input User Interface Description," for a detailed discussion on each of the user interface screens and dialog boxes. This chapter presents each screen, dialog box, and input field along with a detailed description of each item and how it is used by the DRIVEN software. Please refer to Appendix D for 10 DRIVEN examples. For more information on file management within DRIVEN, please refer to chapter 6, "File Management." This chapter details the file management features of the DRIVEN software.

CHAPTER 3 - INPUT USER INTERFACE DESCRIPTION

This chapter provides a detailed description of each of the user interface components that are related to data input. Each screen, dialog box, and input field is demonstrated and described in detail.

Project Definition

The Project Definition is the location of the overall project design information and options. Figure 3-1 presents an example of the Project Definition input screen.

The Project Definition screen contains five important sections: Client Information, Unit System, Soil Layers, Water Tables, and Optional Design Considerations. Except for Client Information, each of these sections influences the overall project design. Each of these sections is discussed in more detail below.

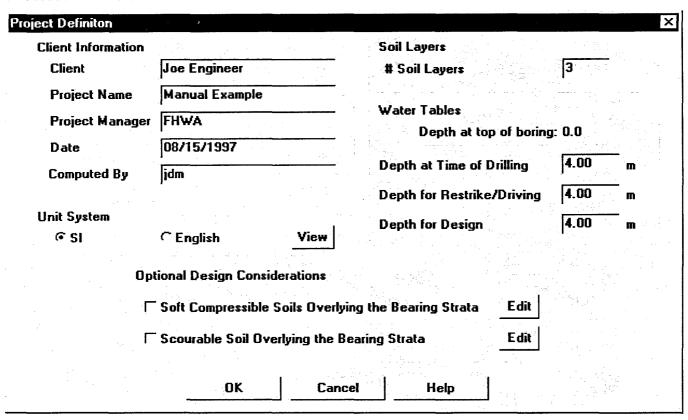


Figure 3-1. Project definition input screen.

Client Information

The Client Information section contains various data important to the management of the project. Obviously this data has no analytical bearing on the project; it is included to aid in the identification of the project. There are no "rules" for what may be entered into each of these fields. The following is a description of each input field.

Client This field can be used to identify for whom the design is being performed.

Project Name This field can be used to identify this project from all other projects.

Project Manager This field can be used to identify who is responsible for the results of the

design.

Date This field generally represents the date the DRIVEN file was created on

the computer. It is automatically filled in by the program when a project is created. The date can be changed, but the format of the date must follow

the form of MM/DD/YYYY.

Computed By This field can be used to identify the person who actually sat down at the

computer, entered the data, and generated the results.

Unit System

The DRIVEN program works equally well in either SI or English units. This section identifies which unit system is currently being used by the program. The unit system may be toggled between SI and English by selecting the appropriately labeled radio button. When the unit system is toggled, the computer will convert all of the input data into the appropriate values for the new unit system. All the input screens and dialogs will also reflect the new unit system. Additionally, all of the output information will be shown according to the selected unit system.

Just to the right of the two unit system radio buttons is a button labeled *View*. If this button is pressed, a dialog box will appear that shows what the various parameters and their units are for the current unit system. Figure 3-2 shows the dialog box for SI units and figure 3-3 shows the dialog box for English units.

One final note to the Unit System: when a GRLWEAP driveability file is created by the DRIVEN software, the unit system will be that of the system currently selected.

SI System of Units	×
Parameter	Unit
Depth	m
Pile Diameter	mm
Friction Angle	degrees
Unit weight of soil	kN/m^3
Unit weight of water	9.81 kN/m^3
Undrained shear strength	kPa
Pile resistance	kN
OK.	

Figure 3-2. Dialog box for SI system of units.

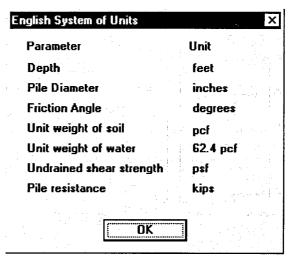


Figure 3-3. Dialog box for English system of units.

Water Tables

The DRIVEN software supports three different water tables: depth at time of drilling, depth at time of restrike/driving, and depth for ultimate considerations. The water table depth at the time of drilling is used in correcting SPT blows counts, if they are used. The water table depth for restrike/driving considerations is used for determining the effective stress in the soil layers below the water table for restrike and driving. The water table for ultimate considerations is used to determine the effective stress in soil layers below the water table for the ultimate condition.

Optional Ultimate Considerations

The DRIVEN software also supports the ability to use soft compressible soil/negative skin friction or scourable soil information as part of the ultimate capacity computations. These options only apply to the ultimate capacity computations, they do not apply to the restrike and driving computations. Each of these options may be selected by pressing the appropriately labeled checkbox. It is important to note that these two options are mutually exclusive. Therefore, the DRIVEN program does not allow both options to be selected at the same time. When selected, a dialog box will be presented for the specific soil information. Each of these options is discussed further below.

<u>Note</u>: It is important for the user to completely understand how the different ultimate condition considerations influence the ultimate capacity. The user needs to ensure that the effects of the ultimate considerations are applicable to their situation.

Soft Compressible Soil/Negative Skin Friction

Soft compressible soil information can be selected by pressing the checkbox labeled, *Soft Compressible Soils Overlying the Bearing Strata*. When selected, a dialog box will be displayed that requests the depth of the soft compressible soil layer.

Figure 3-4 shows an example of the dialog box that is displayed when the option is selected. There is a single parameter to input along with a computational option to select.

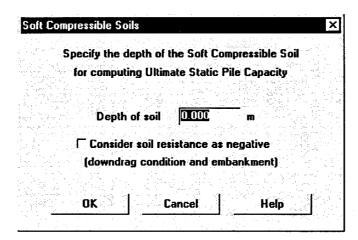


Figure 3-4. Soft compressible soils dialog box.

The Depth of soil field is the depth from the ground surface to the bottom of the soft compressible soil layer. (The ground surface is always considered to be at 0.0 ft or 0.0 m). The capacity contributions are ignored to this depth. However, the weight of the soil still contributes to the effective stress calculations for the lower soil layers.

Depending upon the nature of the ultimate condition, the *Consider soil resistance as negative* checkbox option can be selected. If this option is selected, the skin friction within the soft compressible soil layer will be considered negative resistance.

Scourable Soil

Scourable soil information can be selected by pressing the checkbox labeled 'Scourable Soil Overlying the Bearing Strata'. When selected, a dialog box will be displayed that requests the depths of both short-term and long-term scour.

Figure 3-5 shows an example of the dialog box that is displayed when the option is selected. There are two parameters to select: Local Scour and Channel Degradation Scour and Contraction Scour, one or the other or both may be selected.

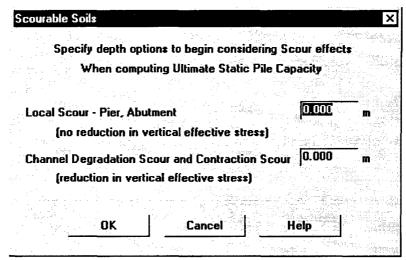


Figure 3-5. Scourable soils dialog box.

Figure 3-6 graphically displays each type of scour. The local scour in limited to an area generally around the pier or abutment. The long term degradation and contraction scour are considered to be widespread across the riverbed. The DRIVEN input requires that the long term degradation and contraction scour be added together since they affect the shaft resistance and effective stress in the same manner.

When the program is computing capacities for ultimate conditions, the depths of the Local Scour and Channel Degradation and Contraction Scour will be added together to determine the lowest depth for the scour conditions. Skin resistance will not be considered until after this combined depth has been reached for the ultimate capacity calculation. The effect of scour is not used in the computation of restrike or driving capacities

The local scour and the long-term degradation and contraction scour will influence the effective stress differently. The local scour occurs in a limited area around the pier or abutment. The soil outside of the local scour area is still considered to contribute to the effective stress for the computation of ultimate skin friction and end bearing capacities. However, since the long term degradation and contraction scour is over a wider area, the scoured soil is not considered in the effective stress calculations.

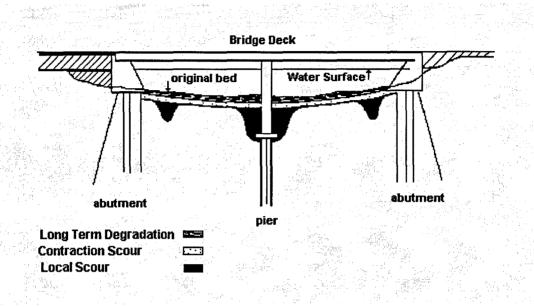


Figure 3-6. Diagram of long term degradation, contraction scour, and local scour.

This completes the discussion for the Project Definition screen. When creating a new project, press the *OK* button, and the DRIVEN program will automatically move to the Soil Profile screen. After a new project has been entered, the Project Definition screen can be brought back up by selecting it from the Project menu.

Soil Profile

The soil profile input screen is the heart of the data input for the DRIVEN software. This screen is where the soil profile is completed along with the pile parameters.

Figure 3-7 shows an example of the Soil Profile screen. The left-hand side of the screen presents a visual representation of the soil profile. The relative thickness of the layers is shown by the actual drawing size. In addition, a depth scale is drawn along the left-hand side of the soil profile drawing. As the depth to the bottom of each layer is updated, the soil profile drawing is automatically updated to reflect the relative size of the soil layer in comparison to all other soil layers. The right hand side of this screen contains two major grouping boxes labeled *Layer General Data* and *Layer Soil Type*. The information contained within each of these groupings is specific to each layer in the profile. The current soil layer is identified just above the *Layer General Data* group box. Additionally, the soil layer that is currently being worked with is highlighted with a blue highlight box around the layer on the visual profile representation.

Finally, the pile type selection is shown in a drop-down box just below the *Layer Soil Type* grouping box. Each of the major sections of this screen is discussed in further detail below.

Soil Layer Profile

A visual representation of the soil profile is shown on the left-hand side of the screen under the title *Soil Layer Profile*. This profile consists of two main features. The first is the visual representation in relative thickness and soil hatching of each layer. The soil hatching is based upon standard representation of cohesive or cohesionless soils; cohesive soils are represented with diagonal lines and cohesionless soils are represented with dots. The second is a profile depth axis on the left side of the soil layer drawing. The profile and axis size will remain the same size at all times, but the relative size of each layer and the scale on the axis will update according to the data entered.

The mouse can be used to select a layer in two ways. The first is to simply position the pointer over the desired layer and click with the left mouse button. The second is to use the scroll bar located just to the right of the profile drawing and either click on the up and down arrows, or move the scroll bar box to the select the layer desired. In either case, as a new layer is selected, the fields on the right hand side of the screen will update to show the data for the currently selected layer.

Figure 3-7. Soil profile input screen.

Layer General Data

The Layer General Data section defines three parameters common to all soil types used within the DRIVEN program. These are: Depth to bottom of layer, Total unit weight of soil, and Driving strength loss. Below is a discussion of each parameter.

Depth to bottom of layer

This input field is the depth at the bottom of the soil layer. It is not the thickness of the layer; instead, it is the depth value at the bottom of the layer measured from the ground surface, with the ground surface always considered to be at 0.0 m (ft). When a new project is first created, the DRIVEN program takes the number of soil layers entered in the Project Definition screen and evenly divides 100 m (ft) between the number of layers. For example, if three soil layers are chosen, initially DRIVEN will divide the soil profile into three 33 m (or 33 ft) layers. This is the starting point for the soil layer input. As the soil data is entered, the depth to the bottom of the layer profile is changed to reflect the actual soil profile.

Total unit weight

This is the total unit weight of the soil layer selected.

Driving strength loss

The driving strength loss is the estimated soil strength loss due to the effects of pile driving. During the actual driving of the pile, in some cases the strength of the soil will be different due to the effects of driving. This parameter is used to estimate the effects of driving on the pile capacity. Also, this strength loss parameter is later used in the preparation of the GRLWEAP driveability input file.

Layer Soil Type

The Layer Soil Type section is dependent upon the type of soil chosen for the current layer. If a soil layer is cohesionless, the program will prompt for two internal friction angles, one for skin friction and one for end bearing. If the soil layer is cohesive, the program will display a box for undrained shear strength, along with a button to select the appropriate adhesion curve.

The example shown in figure 3-7 demonstrates a cohesionless soil layer. For each cohesionless layer, two internal friction angles must be entered, one for skin resistance and one for end bearing. Alternatively, it is possible to define the internal friction angle by entering SPT 'N' values. If this is desired, check the *Use SPT 'N' Values* check box. When this check box is selected for the first time, the DRIVEN program will present a dialog box that allows for the entry of SPT 'N' values as shown in figure 3-8. Once these values have been entered and the dialog box is closed, the equivalent internal friction angle is computed and entered into the appropriately labeled edit field. At this time (or any time after entering the SPT data), the SPT 'N' values may be edited by selecting the *Edit* button. To stop using the SPT 'N' equivalent internal friction angle, simply uncheck the *Use SPT 'N' Values* check box and enter the desired internal friction angle in the edit box.

The dialog box shown in figure 3-8 allows SPT 'N' values to be entered so the DRIVEN program can determine equivalent internal friction angle for the soil layer. The software will allow a

maximum of five different depths within each layer for blow count values. The actual number of values used in the soil layer can be changed by pressing the up and down arrows located just to the right of the field labeled *Number of SPT 'N' values (five are allowed)*. If desired, the program will correct the blow counts for the influence of the effective overburden pressure. Select either the *Yes* or *No* radio buttons at the top of the dialog box for the desired setting. Finally, the bottom section of the dialog box allows the input of the depth versus 'N' count values. The middle section of the dialog provides information about the valid range of depths for the soil layer. The program will not allow a depth parameter to be entered outside the limits of the valid range. When the data is entered for the layer, press the *OK* button to return to the Soil Profile screen. When this is done, the program will automatically compute the internal friction angle based upon the SPT data and place that value in the appropriate internal friction angle field. DRIVEN uses the relationship between standard penetration test values and the angle of internal friction for the soil as presented by Peck, Hanson, and Thornburn (1974).

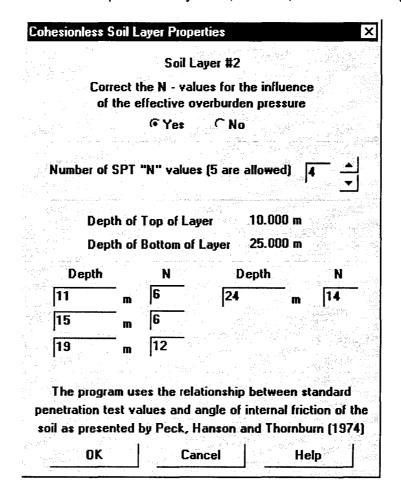


Figure 3-8. Dialog box for determining the internal friction angle from SPT 'N' values.

Alternatively, the soil layer may be cohesive. Figure 3-9 shows an example of how the program will display the information for a cohesive soil layer. For a cohesive soil layer, two input fields are available within the group box. The first is an edit field for the undrained shear strength of the soil. The second is a button that will bring up a dialog box allowing the user to select the appropriate adhesion curve as shown in figure 3-10.

Figure 3-10 shows an example of the adhesion curve selection dialog box. It is in this dialog box where the adhesion curve is selected. For detailed information about each of these adhesion curves, please refer to chapter 7 "Engineering Background" where each curve and table is presented. In the case of user defined adhesion, a single value will be used to represent the adhesion for that soil layer. When selected, an edit field becomes visible where the user-defined adhesion can be entered.

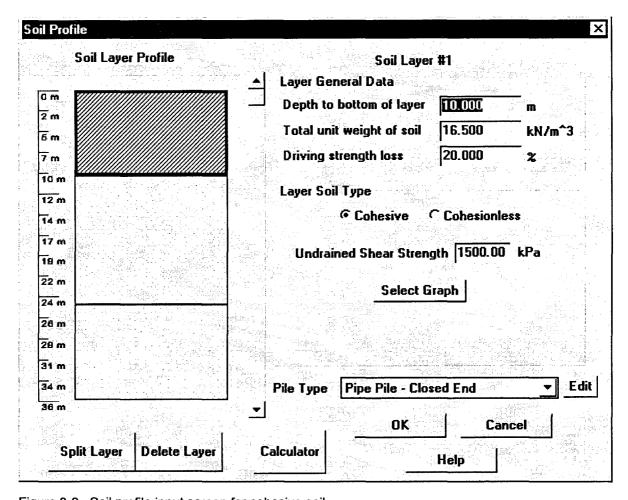


Figure 3-9. Soil profile input screen for cohesive soil.

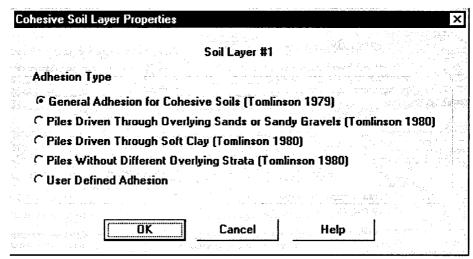


Figure 3-10. Adhesion curve selection dialog box.

Pile Type Selection

The *Pile Type* selection box displays the currently selected pile. If no pile has been selected, no pile type will be displayed. If a pile has already been selected, its parameters can be changed by pressing the *'Edit'* button located just to the right hand side of the pile name. If a new pile type is desired, press the down arrow button located inside the selection combo box and a list of supported pile types will be shown. Select the desired pile type from this list. When making a new pile selection, the DRIVEN program will automatically bring up the proper dialog box for the pile that allows the pile parameters to be edited.

Each type of pile supported by DRIVEN has its own unique input dialog box. The DRIVEN program supports seven different pile types: *Pipe Pile - Closed End, Pipe Pile - Open End, Timber Pile, Concrete Pile, Raymond Uniform Taper Pile, H-Pile, and Monotube Pile.*

Each of the pile type dialog boxes has a parameter that is common to all pile types. This parameter is the *Depth of Top of Pile*. The depth of pile top is the depth to which the top of the pile is embedded into the ground. The ground surface is always considered to be 0.0 m (ft). This parameter is the depth that the software will begin to consider skin friction and end bearing for the pile. The analysis depths above this depth will have capacities equal to 0.0 kN (kips).

For the most part, each of the pile types includes either a diameter of the pile or a length of the side for the square section piles. Note that on tapered piles there will be two diameters to input. The first is the diameter at the top of the pile, which is also the diameter of the straight section of the pile. The second diameter is at the pile tip. The program will use the difference in the diameters (along with the tapered section length) to compute the taper angle for the internal computations. A taper angle input is not necessary as the program will compute this value.

Pipe Pile - Closed End

Figure 3-11 is the *Pipe Pile - Closed End* dialog box. There are two parameters for this dialog box: *Depth of Top of Pile* and *Diameter of Pile*.

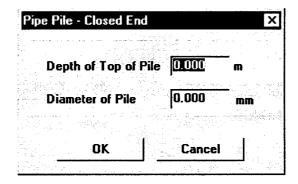


Figure 3-11. Pipe pile - closed end dialog box.

Depth of Top of Pile

The depth of the top of the pile is the depth from the ground surface to which the top of the pile is embedded into the ground. This parameter is the depth that the software will begin to consider skin friction and end bearing for the pile.

Diameter of Pile

The diameter of the pile is the outside diameter of the pile. When creating the GRLWEAP driveability file, the DRIVEN program will request the wall thickness at that time.

Pipe Pile - Open End

Figure 3-12 is the *Pipe Pile - Open End* dialog box. There are three parameters for this dialog box: *Depth of Top of Pile, Diameter of Pile*, and *Shell Thickness*. There is also a note at the bottom of the dialog to refer to the manual for detailed information about plugging. Please refer to chapter 7, "Engineering Background," for this information.

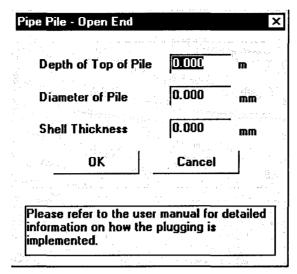


Figure 3-12. Pipe Pile – open end dialog box.

The depth of the top of the pile is the depth from the ground surface to which the top of the pile is embedded into the ground. This parameter is the depth at which the software will begin to consider skin friction and end bearing for the pile.

Diameter of Pile

The diameter of the pile is the outside diameter of the pile.

Shell Thickness

The shell thickness is the wall thickness of the pile.

Timber Pile

Figure 3-13 is the *Timber Pile* dialog box. There are four parameters for this dialog box: *Depth of Top of Pile*, *Diameter of Pile Top*, *Length of Tapered Portion*, and *Diameter of Pile Tip*.

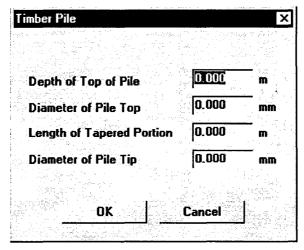


Figure 3-13. Timber pile dialog box.

Depth of Top of Pile

The depth of the top of the pile is the depth from the ground surface to which the top of the pile is embedded into the ground. This parameter is the depth that the software will begin to consider skin friction and end bearing for the pile.

Diameter of Pile Top

The pile top diameter is the diameter of the timber pile at the top. This should be the largest diameter.

Length of Tapered Portion

The length of the tapered portion is the tapered length of section of the pile as measured to the pile tip.

Diameter of Pile Tip

The pile tip diameter is the diameter of the timber pile at the bottom. This should be the smallest diameter.

If a timber pile is to be used without a taper, enter 0.00 for the length of the tapered portion and make sure the diameter at the pile top is the same as the diameter at the pile tip. The DRIVEN program will then consider the pile to be straight and have no taper.

Precast Concrete Pile

Figure 3-14 demonstrates the *Precast Concrete Pile* dialog box. There are two inputs for this dialog box: *Depth of Top of Pile* and *Side of Square Section*.

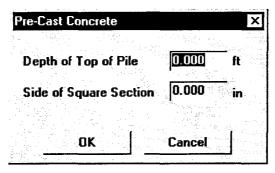


Figure 3-14. Dialog box for precast concrete pile.

Depth of Top of Pile

The depth of the top of the pile is the depth from the ground surface to which the top of the pile is embedded into the ground. This parameter is the depth that the software will begin to consider skin friction and end bearing for the pile.

Side of Square Section

The side of square section input parameter is the width of the side of the square pile.

Raymond Uniform Taper Pile

Figure 3-15 is the Raymond Uniform Taper Pile dialog box. There are four parameters for this dialog box: Depth of Top of Pile, Diameter of Pile Top, Length of Tapered Portion, and Diameter of Pile Tip.

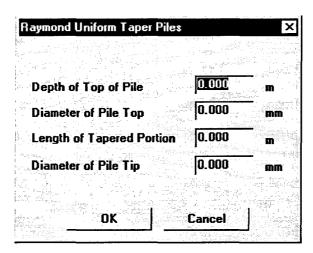


Figure 3-15. Raymond uniform taper pile dialog box.

The depth of the top of the pile is the depth from the ground surface to which the top of the pile is embedded into the ground. This parameter is the depth that the software will begin to consider skin friction and end bearing for the pile.

Diameter of Pile Top

The pile top diameter is the diameter of the uniform taper pile at the top. This should be the largest diameter.

Length of Tapered Portion

The length of the tapered portion is the tapered length of the pile as measured to the pile tip.

Diameter of Pile Tip

The pile tip diameter is the diameter of the pile at the bottom. This should be the smallest diameter.

If the pile is to be used without a taper, enter 0.00 for the length of the tapered portion and make sure the diameter at the pile top is the same as the diameter at the pile tip. The DRIVEN program will then consider the pile to be straight and have no taper.

H - Pile

Figure 3-16 is the H-Pile dialog box while working in SI units. There is a similar dialog box for English H-Pile sections to select. There are four areas where H-Pile options are chosen: *Depth of Top of Pile*, *Type of H-Pile*, *Pile Perimeter for Analysis*, and *Tip Area for Analysis*.

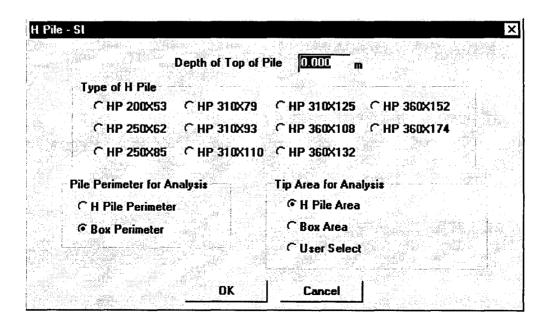


Figure 3-16. H-Pile dialog box for SI units.

The depth of the top of the pile is the depth from the ground surface to which the top of the pile is embedded into the ground. This parameter is the depth that the software will begin to consider skin friction and end bearing for the pile.

Type of H-Pile

This section is where the H-Pile section is chosen. Simply select the appropriately labeled radio button to choose the desired section.

Pile Perimeter for Analysis

The pile perimeter for analysis is the pile perimeter that will be used for the skin friction capacity computations. Choose the desired perimeter analysis radio button.

Tip Area for Analysis

The tip area for analysis is the bottom area of the pile that will be used for end bearing capacity. Choose the desired tip area radio button. If *User Select* is chosen, enter the tip area in the edit box that appears.

Monotube Pile

Figure 3-17 is the *Monotube Pile* dialog box. There are four parameters for this dialog box: Depth of Top of Pile, Diameter of Pile Top, Length of Tapered Portion, and Diameter of Pile Tip.

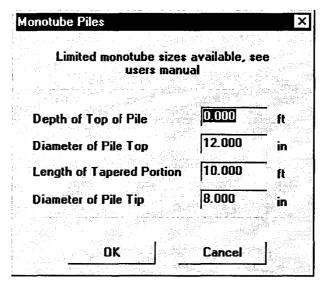


Figure 3-17. Monotube pile dialog box.

The depth of the top of the pile is the depth from the ground surface to which the top of the pile is embedded into the ground. This parameter is the depth that the software will begin to consider skin friction and end bearing for the pile.

Diameter of Pile Top

The pile top diameter is the diameter of the monotube pile at the top. This should be the largest diameter.

Length of Tapered Portion

The length of the tapered portion is the length of the tapered section of the pile to the pile tip.

Diameter of Pile Tip

The pile tip diameter is the diameter of the pile at the bottom. This should be the smallest diameter.

NOTE: Limited amounts of monotube pile sections are available. A chart of standard monotube piles is included as Appendix E. It is recommended that the diameter and length of the tapered section be selected from this chart to ensure pile availability.

Soil Profile - Design

The soil profile design screen presents in a single view an overall picture of the soil information. It contains the relevant information about the soil profile. This representation is essentially the same as shown in the *Soil Profile* dialog box with the exception that the unit weight, strength parameters, and driving strength loss is shown for each layer.

Figure 3-18 shows an example of the soil profile design screen. This screen is only for viewing the overall soil profile information, there are no areas where user input is needed. Each of the soil layers in the representation is hatched according to the type of soil; dotted for cohesionless soils and diagonal lines for cohesive. Within each layer are three of the soil input parameters. For cohesive soils, unit weight, undrained shear strength, and driving loss. For cohesionless soils, unit weight, internal friction angles, and driving loss. Finally, the design representation displays an axis on the left-hand side of the soil profile allowing the overall depth of the soil profile to be visualized.

This screen also introduces the use of two program features; the ability to place the representation on the Windows clipboard or directly printed on the printer.

To copy the soil profile to the Windows clipboard, press the button labeled *Clipboard*. The soil profile representation will now be on the Windows clipboard and, therefore, it will be available to any other program that can copy data from the clipboard.

To send the soil profile to the printer, press the button labeled *Printer*. A printer setup dialog box will appear for printer selection, then a small dialog box that identifies printing is taking place will be displayed while the computer is preparing the image to be sent to the printer. While this dialog box is displayed, the program will be unavailable for use. When this dialog box disappears the program may be used again.

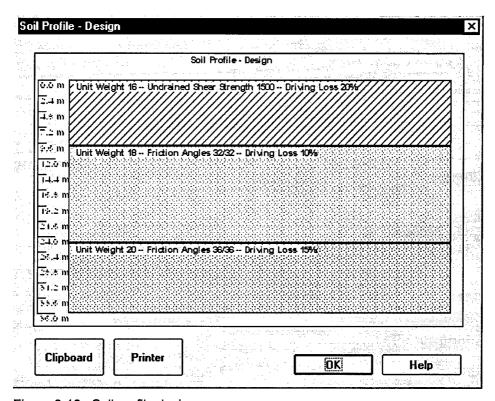


Figure 3-18. Soil profile design screen.

CHAPTER 4 - OUTPUT USER INTERFACE DESCRIPTION

This chapter discusses the output generation aspects of the DRIVEN software. Although the output of the software is all contained within two views, there is a lot of data that can be seen.

The DRIVEN software provides two different views of the same computation results. The first view is a tabular or textual representation of the results and the second is a graphical. The tabular representation allows the user to view the actual values that are the results of the computations. The graphical representation allows the user to examine the data in a qualitative manner. In the graphical view, the software generates various plots based upon the results of the computations. The values used to generate the graphs are the same as those shown in the tabular output.

One important item to note at this point: there is no concept of "running" the program to generate the output. The DRIVEN software will compute the output results when they are needed. This saves the user the step of "running" the computations each time an input parameter is changed. The computer is fast enough to perform all the calculations without the user being aware of them taking place.

The DRIVEN program's computational basis is outlined in detail in Chapter 7, "Engineering Background". This section discusses in detail how DRIVEN computes its results.

<u>Computational Note</u>: A computational error was discovered in DRIVEN just prior to its release. The error occurs when computing the <u>skin friction driving resistance for tapered piles</u>. This error could not be corrected for this version of the program. The user will need to independently compute the <u>skin friction driving resistance for tapered piles</u>. The restrike and ultimate capacities are not affected, nor are the capacities for piles that are not tapered

Tabular Output

The tabular output is used to view the actual numerical results of the computations. The tabular output screen can be accessed either from the main menu or by a button on the SpeedBar. The menu choice for the tabular output is the *Tabular* selection under the *Output* choice on the main menu. The SpeedBar button is the eighth button from the left. This button is gray with several black lines running through it. Once the tabular screen has been selected, a window similar to the one shown in figure 4-1 will be displayed. This screen contains a great deal of information. There are three main areas of information displayed in the tabular output: *Pile Type Data*, *Contribution Elements*, and *Total Capacity*.

Pile Type

The pile selected for the input is shown.

Contribution Elements

The contribution elements section is located in the middle of the screen. This section displays a few (not all) of the important internal computed parameters that were used to determine the skin friction and end bearing. The skin friction elements are: *Depth, Soil Type, Effective Stress*,

Sliding Friction Angle, and Adhesion. The end bearing elements are: Depth, Soil Type, Effective Stress, Limiting Factor, and Bearing Capacity Factor. Of course, depending upon the soil type, some of these parameters may not be valid. In this case, a "N/A" symbol is placed instead of an actual value.

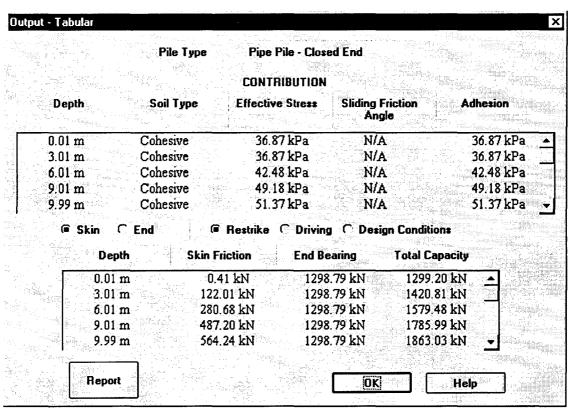


Figure 4-1. Tabular output screen.

Total Capacity

The capacity section is located in the bottom part of the screen. This section displays the results versus depth for the *Skin Friction* and *End Bearing* computations, along with the *Total Capacity*.

Not all of the capacity computations can fit into the small viewing boxes. Both the contribution and total capacity sections have scrollbars located on the right hand sides. To view all the results, use the mouse to press the up and down arrow buttons to scroll through all the values.

User control of output results to be displayed is located between the contribution elements section and the total capacity section. There are a series of five labeled radio buttons that provide the control. These radio buttons are grouped into two sections. The first section contains radio buttons for selecting either skin or end bearing in the contributing elements section. Depending upon the selection of these two radio buttons, the contribution elements will change to show either results for skin or end bearing computations. These two buttons do not affect the capacity results. The next series of radio buttons control which type of capacity

computations is displayed: Restrike, Driving, or Ultimate. Selecting one of these three radio buttons will change the results displayed in both sections of the output screen.

When the dialog box first opens, it defaults to the skin friction results for the restrike computations. The *Skin* radio button and the *Restrike* radio button will be highlighted. The contributions and computations that are shown can be changed by selecting the appropriate buttons as described in the previous paragraph. For example, to view the end bearing results for the driving computations, select the radio button labeled *End* and select the radio button *Driving*. Whenever a new radio button is selected, the program will automatically display the results for that combination.

One additional important feature of this dialog box is the ability to directly send this information in a report form to the printer. To send the information to the printer, press the button labeled *Report*. When this is done, DRIVEN will generate a full report of all input parameters and output results.

Graphical Output

The graphical output screen shows the results of the computations in a series of plots. The graphical output screen can be accessed either from the main menu or by selecting the appropriate button on the SpeedBar. The menu choice for the graphical output is the *Graphical* selection under the *Output* choice on the main menu. The SpeedBar button is the ninth button from the left that looks like it has three graphs plotted on it. Once the graphical screen has been selected, a window similar to the one shown in figure 4-2 will be displayed.

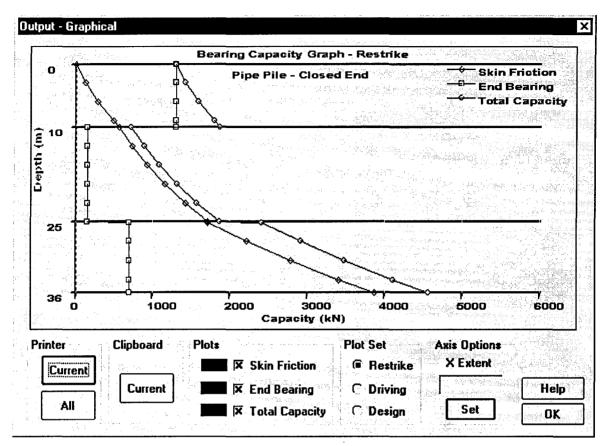


Figure 4-2. Graphical output screen.

This screen is similar to the tabular output screen. However, instead of displaying the results in numeric form, the screen displays a series of plots to represent the results. It shows the results of the skin friction, end bearing, and total capacity for restrike, driving, and ultimate conditions. The X-axis of the plot is the capacity and the Y-axis is the depth of the soil profile. Notice that the Y-axis draws a horizontal line at each of the soil layer boundaries. Each plot also displays a series of small symbols to represent computation points in the soil profile. Finally, a small legend is located in the upper right hand side of the plotting window that identifies each individual plot.

The graphical output screen offers three sections for user control of the output: *Plots, Plot Set,* and *Axis Options*.

Plots

The group labeled *Plots* allows the user to choose which combination of the three (Skin, End, and Total) plots to be displayed. These plots may be selected by pressing the checkbox located to the left of the plot label. Located to the left of each labeled plot checkbox is a box that shows the color of that plot in the plotting window. Any combination of the three plots may be selected.

Plot Set

The plot set section offers the ability to select either the Restrike, Driving, or Ultimate condition plot sets. These selections are made through a series of radio buttons. Only one set of plots can be displayed at a time. However, as described above, any combination of the three graphs can be selected in the *Plots* section.

Axis Options

The axis options section allows the user to define the X-axis extent. To rescale the X-axis, enter a value in the edit box and press *Set*. Once this value has been set, it will be in effect throughout the graphical output viewing session. The user defined X-axis value must be greater than the original default X value. The DRIVEN program will not rescale the axis using any value smaller than the original default X value. To discontinue the use of the user defined X-axis Extent, simply type in a 0 in the edit box and press the *Set* button.

When this dialog box first comes up, it defaults to showing all three bearing graphs for the restrike computations. All three graphs or any combination may be displayed by selecting the appropriate check boxes for the skin friction, end bearing, or total capacity. When one of the Plot Set radio buttons (Restrike, Driving, or Ultimate) is pressed, the current set of graphs being displayed is changed to reflect the new group of graphs selected.

The graphical output can be pasted to the Windows clipboard or directly sent to the printer. To paste the current graph to the clipboard, press the button labeled *Current* within the *Clipboard* section. When printing, either the current plot can be printed, or all three plots' sets (restrike, driving, and ultimate) can be printed on the same page. To print only the current plot, press the *Current* button within the *Printer* section. To print all three plot sets on the same page, press the *All* button within the *Printer* section.

CHAPTER 5 - CREATING GRLWEAP INPUT FILE

The DRIVEN software has the ability to create a partial input file for the GRLWEAP software package. This section is not meant to be a discussion on how to use the file in the GRLWEAP software. Please refer to the GRLWEAP documentation for information on how this file is used in that package. The driveability input file can be generated once the input of the soil and pile information has been completed. The GRLWEAP file that is created contains only the soil and pile information. To run the GRLWEAP program using this input file, the user must edit the GRLWEAP file and complete the file information, such as the hammer information. To access this feature of the DRIVEN software, select Driveability from the main menu and then select Generate from the Driveability menu. Alternatively, press the SpeedBar button with the lightning bolt symbol on it. Once this menu choice has been made, a window similar to figures 5-1, 5-2, and 5-3, based on pile type will be displayed. DRIVEN does not allow driveability files to be created for tapered piles.

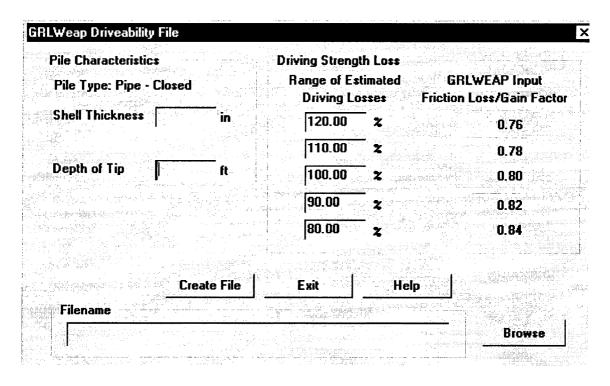


Figure 5-1. GRLWEAP driveability file dialog box for a pipe pile – closed end.

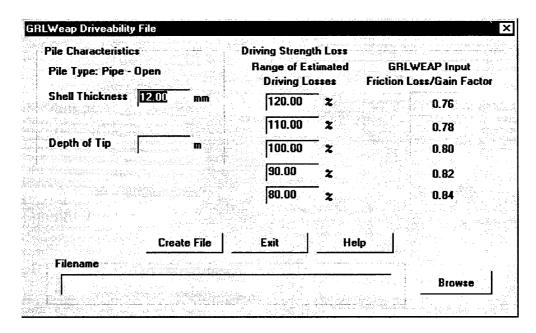


Figure 5-2. GRLWEAP driveability file dialog box for a pipe pile – open end.

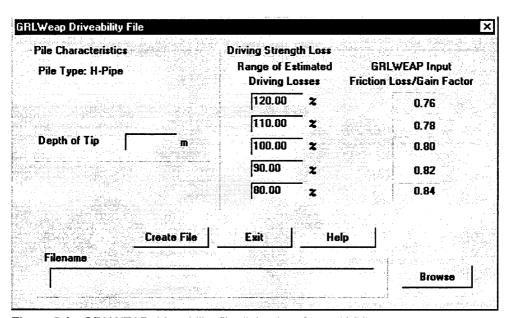


Figure 5-3. GRLWEAP driveability file dialog box for an H-Pile.

Figures 5-1, 5-2, and 5-3 show examples of the GRLWEAP file creation dialog box. This dialog box facilitates the creation of a driveability input file. There are three main input sections: *Pile Characteristics, Driving Strength Loss,* and *Filename*. Each of these sections is discussed below.

Pile Characteristics

Depending upon the type of pile selected for analysis, there will be one or two parameters required. In the case of open-end and closed end steel pipe piles: *Shell Thickness* and *Depth of Tip.* In the case of concrete piles and H-Piles: *Depth of Tip.* All other pile types are tapered and are not supported.

Shell Thickness

The shell thickness is the wall thickness of the pipe pile. This parameter is used to compute the cross sectional area of the pile.

Depth of Tip

The depth of the tip is used to locate the bottom of the pile. The ground surface is always considered to be 0.0 m (ft).

Driving Strength Loss

The five inputs under the title "Range of Estimated Driving Losses" are used by DRIVEN to compute the "GRLWEAP Input Friction Loss/Gain Factor values". These values are written to the driveability file and used by the GRLWEAP software to perform its driveability analysis. This section will briefly overview the loss/gain factors and discuss how the five friction loss/gain factors are determined by the DRIVEN program.

One to 10 friction gain/loss factors for both skin friction (shaft resistance in GRLWEAP) and end bearing (toe resistance in GRLWEAP) can be entered into the GRLWEAP program. The DRIVEN program will write five friction gain/loss factors as discussed below. DRIVEN also writes five values of 1.0 for the end bearing friction gain/loss factors. This means the end bearing is assumed to have no strength loss during driving. The remainder of this section will concentrate on the skin friction gain/loss factors.

Each of the friction gain/loss factors in GRLWEAP are analyzed separately. If there are five friction gain/loss factors, there will be five driveability analyses. An individual gain/loss factor is the estimated percent strength remaining during driving in the soil layer that loses the most strength during driving, (expressed as a decimal). For example, assume a soil profile having three layers and the following strength losses:

Layer	Estimated strength loss during driving
1	20%
2	35%
3	10%

The layer that loses the most strength during driving is layer No. 2. It is estimated that this layer loses 35% of its strength. So there is 65% (100% -35%) of the strength remaining in this layer during driving. The shaft resistance gain/loss factor for this soil profile is 0.65.

During the driveability analysis, the GRLWEAP program uses a setup factor to account for the different soil layer strength losses.

The Driven program writes five friction gain/loss factors -- the initial one and four others based on the initial factor. The "Range of Estimated Driving Losses" is used to determine the remaining four friction gain/loss. The remainder of the section will discuss how these are calculated.

In the example soil profile above, the percent strength loss during driving was <u>estimated</u>. This estimate may be too high, or it may be to low. Therefore, in the driveability analysis a range of friction gain/loss factors are used. This process allows the user to evaluate a set of estimated driving losses.

The GRLWEAP driveability analysis is a set of one to 10 analyses depending on the number of gain/loss factors specified. If there are five friction gain/loss factors, there will be five separate analyses during the driveability analysis each using a different gain/loss factor. Each analysis will use the same basic soil profile, the same hammer, and the same pile. The difference between each analysis is the loss/gain factor. There will be a different strength loss in the layer that loses the most strength as defined by the set of friction gain/loss factors. The strength loss in the other soil layers will be adjusted by the setup.

By default, the Driven program will write the five friction gain/loss factors as:

20% more strength loss in the layer that loses the most strength (120% of loss) 10% more strength loss in the layer that loses the most strength (110% of loss) Estimated strength loss in the layer that loses the most strength (100% of loss) 10% less strength loss in the layer that loses the most strength (90% of loss) 20% less strength loss in the layer that loses the most strength (80% of loss)

In the example above, the layer that lost the strength during driving lost 35% so the friction gain/loss factors would be calculated as:

RANGE	CALCULATION	DRIVING	FRICTION GAIN/LOSS FACTOR
		LOSS	(1-Driving loss)
20% more strength loss	0.35(120%)	0.420	0.580
10% more strength loss	0.35(110%)	0.385	0.615
Estimated strength loss	0.35(100%)	0.350	0.650
10% less strength loss	0.35(90%)	0.315	0.685
20% less strength loss	0.35(80%)	0.280	0.720

Within the GRLWEAP driveability analysis, the first analysis will assume that the layer which losses the most strength will loses 42% of it strength. For the second analysis, the same layer will lose 38.5% of its strength, and so on until all five analyses are done. The strength loss in the remaining soil layers will be accounted for by the setup factor.

The user can change the range of friction gain/loss factors by entering a new value in the "Range of Estimated Driving Losses." A value greater that 100% increases the strength loss, a value less than 100% reduces the strength loss. For further explanation of the friction loss/gain factors, please refer to the GRLWEAP manual.

Filename

The filename is the name of the driveability file. This can be any name, as long as it has the extension ".gwi". The extension can be omitted when saving the file and the DRIVEN program will automatically add it when the file is created. The GRLWEAP software will recognize the ".gwi" extension and display the file for use.

The *Browse* button can be pressed to bring up a standard Windows file selection dialog box. This dialog box is used to select the location and name for the driveability file.

Once all the options for the driveability file have been set, press the *Create File* button. When DRIVEN is finished writing the file, it will display a message acknowledging that the driveability file has been created. Additional files may be created at this time or press the *Exit* button to return to the main menu of the program.

CHAPTER 6 - FILE MANAGEMENT

There are three situations when it is appropriate to use the file management capabilities of the DRIVEN software: immediately after creating a new project, after editing an existing project, and when loading an existing project. DRIVEN handles file management in the same standardized manner as other Windows programs.

Figure 6-1 shows the File dropdown menu when a project is in memory. There are five specific file management options available along with a "Most Recently Used" (referred to as MRU) file list. The five file operations are: *New, Open, Close, Save,* and *Save As.* The DRIVEN program maintains an internal list of the last four files that have been accessed, with the most recent files located at the top of the list. Any of these four files can be chosen by selecting it from the menu. DRIVEN will load the file into memory when the menu choice is made.

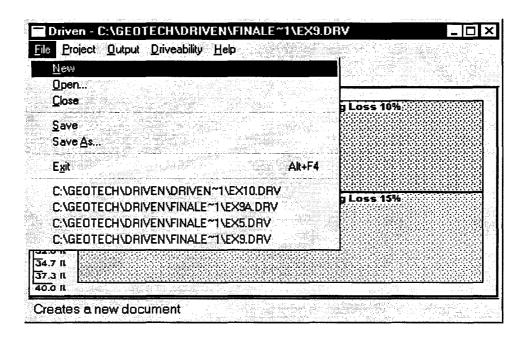


Figure 6-1. File drop down menu when a project is in memory.

Open

This menu choice allows a previously saved DRIVEN project to be loaded into the program memory. When chosen, DRIVEN will present a standard Windows open file management dialog box. Figure 6-2 shows an example of this dialog box.

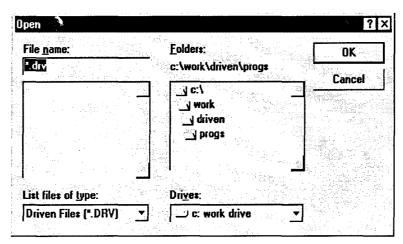


Figure 6-2. Open dialog box.

Figure 6-2 is an example of the standard Windows file management dialog box that DRIVEN will display. This dialog box is used to navigate through the directory structure and find the place where the data files are located. Using the mouse, select the desired file and press the *OK* button. DRIVEN will load the file and place it into memory for use. When a project is in memory, the name of the file is identified in the title bar of the DRIVEN program. For examples, "DRIVEN - D:\DRIVEN\DATA\FILE1.DRV." When no project is in memory, the title bar will only show the name of the DRIVEN program.

Close

When finished using the project in memory, select the *Close* menu choice to close the data file. The program will first prompt the user to save the file. To keep the changes made to the data file, press Yes, otherwise, the file will be closed and the updated items not saved. When DRIVEN closes the project, it will update the MRU list with the name of the file.

Save

If changes have been made to an existing project, select the *Save* menu item to save the data file. DRIVEN will use the current filename and save the project. If creating a new project and no filename has yet been selected, DRIVEN will automatically select the Save As function so that a filename for the project can be entered.

Save As

Select the Save As function after creating a new project, or modifying an existing project that is to be saved under a different filename. When this menu choice is selected, a standard Windows dialog box similar to the one shown in figure 6-3 will be displayed.

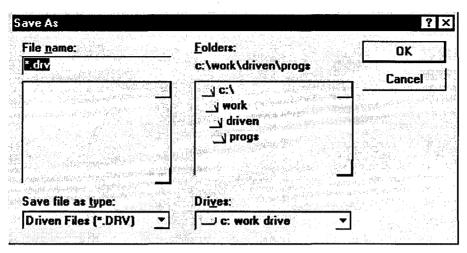


Figure 6-3. Save As dialog box.

Figure 6-3 demonstrates the Save As dialog box. This dialog box functions just like the Open file dialog box. It can be used to navigate the directory structure to locate the desired directory. When the desired location has been identified, type in a new filename making sure the file extension used is ".drv" and press the OK button The extension can be omitted and the DRIVEN program will add it automatically. The specific details of where to locate the data file are left up to the user.

CHAPTER 7 - ENGINEERING BACKGROUND

This section discusses the engineering background used for the development of the analytical aspects of the DRIVEN software.

The DRIVEN program follows the methods and equations presented by Nordlund (1963, 1979), Thurman (1964), Meyerhof (1976), Cheney and Chassie (1982), Tomlinson (1980, 1985), and Hannigan, et.al. (1997). The Nordlund and Tomlinson static analyses methods used by the program are semi-empirical methods and have limitations in terms of correlations with field measurements and pile variables which can be analyzed. The user is encouraged to review further information on this subject in the "Design and Construction of Driven Pile Foundations" manual (Hannigan, et.al. 1997).

Ultimate Vertical Load Capacity

A single pile derives its load-carrying ability from the frictional resistance of the soil around the shaft and the bearing capacity at the pile tip:

$$Q = Q_p + Q_s \tag{1}$$

where:

$$Q_p = A_p * q_p$$
 [2]

and:

$$Q_s = \int_0^L f_s C_d dz$$
 [3]

in which:

 A_n = area of pile tip

 q_p = bearing capacity at pile tip

 f_s = ultimate skin resistance per unit area of shaft

 C_d = effective perimeter of pile

L =length of pile in contact with soil

z = depth coordinate

The main requirement for design is to estimate the magnitude of f_s with depth for friction piles and q_p for end bearing piles.

Point Resistance

The point bearing capacity can be obtained from the equation:

$$q_p = cN_c + qN_q + \frac{\gamma B}{2}N_{\gamma}$$
 [4]

Where N_c , N_q , and N_γ are dimensionless parameters that depend on the soil friction angle ϕ . The term c is the cohesion of the soil, q is the vertical stress at pile tip level, B is the pile diameter (width), and γ is the unit weight of the soil.

The soil strength parameters, c and ϕ , the unit weight γ , and the vertical stress q may be considered in terms of effective stress or total stress.

Total Stress Analysis

For an undrained analysis, ϕ equals zero and c equals the undrained shear strength, S_u . With $\phi=0$, $N_{\gamma}=0$ and $N_q=1$. Combining equations [2] and [4], and considering the pile weight the following equation applies:

$$Q_p = A_p S_u N_c ag{5}$$

Values of N_c lie between 7 and 16. A value of $N_c = 9$ is typically used.

Effective Stress Analysis

For these conditions, equations [2] and [4] combine as follows:

$$\overline{Q}_p = A_p \left(\frac{\overline{\gamma}B}{2} N_{\gamma} + \overline{q} N_q + \overline{c} N_c \right)$$
 [6]

In most cases, $\sqrt[4]{\gamma}BN_{\gamma}$ and $\overline{c}N_{c}$ are small when compared to $\overline{q}N_{q}$. The net point bearing capacity can be approximated as:

$$Qpnet \cong A_p \overline{q} N'_q$$
 [7]

where $\overline{q}=\overline{\sigma}_{vo}$, the effective vertical stress at tip level, and $N_{_q}$ is a dimensionless bearing capacity factor that varies with $\overline{\phi}$.

DRIVEN uses a variation of [7] (Thurman 1964):

$$Qpnet = A_p \overline{q} \alpha N_q'$$
 [8]

where:

 N_a' = bearing capacity factor from figure 7-1

 α = a dimensionless factor dependent on the depth-width relationship of the pile

If DRIVEN computes a pile point resistance exceeding the limiting value suggested by Meyerhof (1976)(figure 7-2), then the limiting value is used by the program.

Shaft Resistance

The ultimate skin resistance per unit area of shaft is calculated as follows:

$$f_s = c_a + \sigma_h * \tan(\delta)$$
 [9]

in which:

 c_a = pile soil adhesion

 σ_h = normal component of stress at pile-soil interface

 δ = pile-soil friction angle

The normal stress σ_{k} is related to the vertical stress σ_{k} as $\sigma_{k} = K * \sigma_{k}$, where K is a coefficient of lateral stress. Substituting into equation [9] produces this result:

$$f_s = c_a + K * \sigma_v * \tan(\delta)$$
 [10]

Total Stress Analysis

For a $\phi = 0$ or total stress analysis, equation [10] reduces as follows:

$$f_s = c_a ag{11}$$

where the adhesion c_a is usually related to the undrained shear strength s_a in the following way:

$$c_a = \alpha * s_u$$
 [12]

where α is an empirical adhesion coefficient that depends mainly upon the following factors: nature and strength of the soil, type of pile, method of installation, and time effects. Figures 7-3 and 7-4 present the α values used by the program as suggested by Tomlinson (1979, 1980).

Effective Stress Analysis

Equation [10] reduces to

$$f_s = \overline{c}_a + K * \overline{\sigma}_v * \tan(\delta) \cong K * \overline{\sigma}_v * \tan(\delta)$$
 [13]

Because \overline{c}_a is either zero or small compared to $K^*\overline{\sigma}_v^*\tan(\delta)$.

The main difficulty in applying the effective stress approach lies in having to predict the normal effective stress on the pile shaft $(\overline{\sigma}_h = K * \overline{\sigma}_v)$.

Nordlund (1963,1979) developed a method of calculating skin friction based on field observations and results of several pile load tests in cohesionless soils. Several pile types are used, including timber, H, pipe, monotube, etc. The method accounts for pile taper and for differences in pile materials.

Nordlund (1963,1979) suggests the following equation for calculating the ultimate skin resistance per unit area:

$$f_s = K_{\delta} C_f \overline{P}_d \frac{\sin(\omega + \delta)}{\cos(\omega)}$$
 [14]

combine [3] with [14] to calculate the frictional resistance of the soil around the pile shaft as follows:

$$Q_{s} = \int_{0}^{L} K_{\delta} C_{f} \, \overline{P}_{d} \, \frac{\sin(\omega + \delta)}{\cos(\omega)} C_{d} dz$$
 [15]

which simplifies for non-tapered piles $(\omega = 0)$ as follows:

$$Q_s = \int_0^L K_{\delta} C_f \overline{P}_d \sin(\delta) C_d dz$$
 [16]

in which:

 Q_s = total skin friction capacity

 K_{δ} = coefficient of lateral stress at depth z

 \overline{P}_{d} = effective overburden pressure

 ω = angle of pile taper

 δ = pile-soil friction angle

 C_d = effective pile perimeter

 C_f = correction factor for K_δ when $\delta \neq 0$

To avoid numerical integration, computations are performed for pile segments within soil layers of the same effective unit weight and friction angle. The equation [16] becomes

$$Q_s = \sum_{i=1}^n K_{\delta i} C_{fi} \overline{P}_{di} \sin(\delta_i) C_{di} D_i$$
 [17]

where:

n = number of segments $D_i =$ thickness of single segment

Figures 7-5, 7-6, 7-7 and 7-8 give values of K_δ versus ϕ with δ equal to ϕ . Figure 7-9 gives a correction factor to be applied to K_δ when δ is not equal to ϕ . Figure 7-10 gives δ/ϕ for different pile types and sizes.

Figure 7-11 shows the correction factor of field SPT N-Values for the influence of effective overburden pressure.

These figures and equations [8] and [17] are used to calculate the ultimate bearing capacity of a pile in sand. For a step-by-step application of Nordlund's method, the reader is referred to Hannigan et. al (1997).

The remainder of this section presents graphs and tables of the above-described curves as used by the DRIVEN program.

Plugging of Open End Pipe Piles

The DRIVEN computer program follows the guidelines below for the analysis of open-end pipe piles with regard to plugging. As with other soil types, the skin friction and end bearing depend on the soil type. However, the skin friction and end bearing for the open end pipe piles in cohesive material is also dependant on whether it's during driving, or at a time after setup has occurred (restrike, ultimate). In granular materials, skin friction and end bearing are also dependent on the ratio of pile width to pile toe depth.

The open-ended pipe pile is considered to be either unplugged, acting like a non-displacement pile (i.e., H-pile), or plugged, acting like a displacement pile (i.e., closed end pipe pile). The chart below describes when the pile is considered to be plugged or unplugged.

In this chart, D = B = pile width and L = pile length.

Cohesive

Skin Friction

Driving - Unplugged (Use alpha for L > 40B in Tomlinson's charts) Restrike/Ultimate - Plugged (use actual L/B)

End Bearing

Driving - Unplugged (No end bearing)
Restrike/Ultimate - Plugged (use actual L/B)

Granular

Skin Friction

Driving/Restrike/Ultimate
L < 30 D No plug (non displacement pile)
L > 30 D Plugged (displacement pile)

End Bearing

Driving

L < 30 D No plug (no end bearing) L > 30 D Plugged (full end bearing)

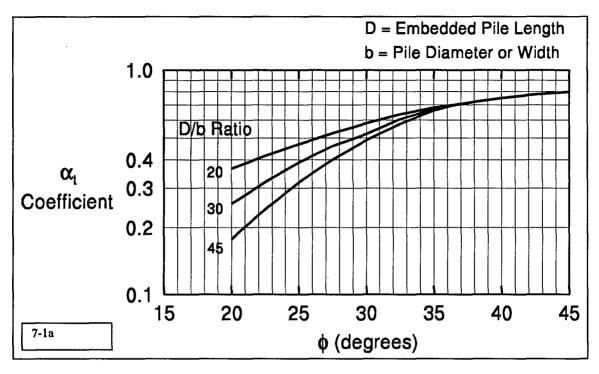
Static/Ultimate

Plugged (full end bearing)

Table 7-1a. Nq factor for point resistance contribution (digitized curve from figure 7-1a)

ϕ (degrees)	Value of Nq	
15.0	4.8	
17.5	6.2	
20.0	8.2	
22.5	12.0	
25.0	15.0	
27.5	21.0	
30.0	30.0	
32.5	43.0	
35.0	64.0	
37.5	98.0	
40.0	160.0	
42.5	265.0	
45.0	475.0	

Note: The friction angle permitted by DRIVEN varies between 15 and 45 degrees.


Table 7-1b. α factor for point resistance contribution

(digitized curves from figure 7-1b)

ϕ (degrees)	D/B = 45	/alues of α D/B=30	D/B=20	
20.0	0.177	0.256	0.365	
20.5	0.190	0.276	0.375	
22.5	0.242	0.319	0.416	
25.0	0.318	0.389	0.470	
27.5	0.400	0.460	0.525	
30.0	0.490	0.520	0.580	
32.5	0.578	0.605	0.637	
35.0	0.660	0.670	0.680	
36.5	0.700	0.700	0.700	
37.5	0.715	0.715	0.715	
40.0	0.750	0.750	0.750	
42.5	0.780	0.780	0.780	
45.0	0.800	0.800	0.800	

Note:

- 1. If ϕ < 20.5°, DRIVEN uses ϕ = 20.5°
- 2. If ϕ > 45°, DRIVEN uses ϕ = 45°

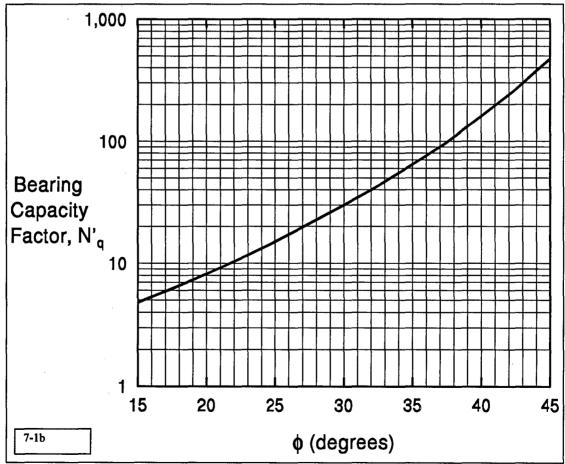


Figure 7-1. Chart for Estimating α_t Coefficient and Bearing Capacity Factor N'_q (Chart modified from Bowles, 1977).

Table 7-2. Relationship between maximum unit pile point resistance and

ϕ for cohesionless soils

(digitized curve from figure 7-2)

ϕ (degrees)	Limiting Unit Point Resistance (kPa)
30.00	637.8
31.25	1077.3
32.50	1915.2
33.75	3112.2
35.00	5151.9
36.25	7785.3
37.50	11251.8
38.75	15273.7
40.00	19994.7
41.25	25137.0
42.50	30528.3
43.75	35316.3

Note: 1. If ϕ < 30°, DRIVEN uses the value for ϕ = 30°

2. If ϕ > 43.75°, DRIVEN uses the value for ϕ = 43.75°

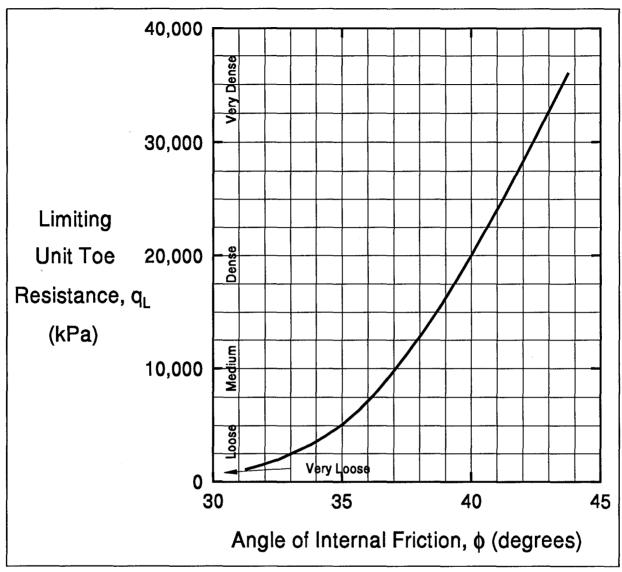
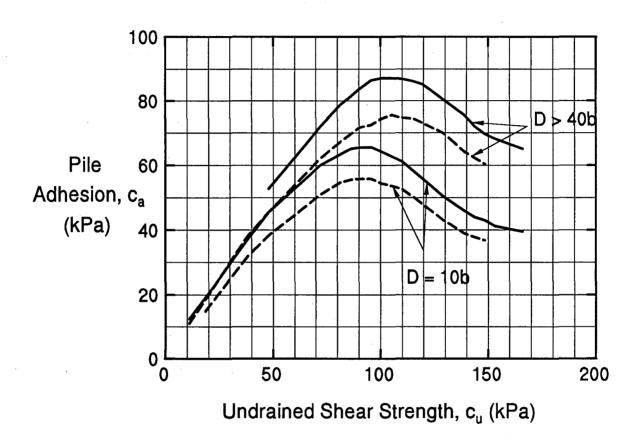



Figure 7-2. Relationship Between Maximum Unit Pile Toe Resistance and Friction Angle for Cohesionless Soils (after Meyerhof, 1976).

Table 7-3. Adhesion values for piles in cohesive soils (Tomlinson 1979) as presented by FHWA, 1982

(digitized curves from figure 7-3)

Undrained Shear	Concrete, Timber, Corrugated Steel Piles		Smooth S	teel Piles
Strength (kPa)	L > 40B	L = 10B	L > 40B	L = 10B
11.0	11.01	12.45	11.01	11.01
18.4	18.43	19.15	18.43	14.84
23.9	23.94	23.94	23.94	19.63
38.3	38.30	37.11	38.30	31.84
47.9	47.88	45.49	45.49	38.30
71.8	71.82	59.85	62.00	50.75
81.4	77.57	63.44	67.27	53.63
86.2	81.40	65.12	69.67	55.54
95.8	86.42	65.60	72.54	55.78
100.5	87.14	64.16	74.45	54.34
105.3	87.14	62.72	75.65	53.63
110.1	86.90	61.77	74.69	52.43
114.9	86.18	58.41	74.45	50.27
119.7	85.71	55.78	73.02	47.88
129.3	80.44	50.27	69.90	43.09
138.9	75.65	45.96	64.16	39.02
143.6	72.06	44.05	62.24	37.83
148.4	69.67	43.09	60.33	36.87
153.2	68.23	41.18		
165.9	65.12	39.50		

Concrete, Timber, Corrugated Steel Piles

---- Smooth Steel Piles

D = Distance From Ground Surface to Bottom of Clay Layer or Pile Toe; Whichever is Less

b = Pile Diameter

Figure 7-3. Adhesion Values for Piles in Cohesive Soils (after Tomlinson, 1979).

Table 7-4a. Adhesion factors for Driven piles in clay

(α method, Tomlinson 1980) (digitized curves from figure 7-4a)

Piles Driven Through Overlying Sands or Sandy Gravels

L < 10B S _u (kPa)	α	L = 20B S _u (kPa)	α	L > 40B S _u (kPa)	α	
0.00	1.00	0.00	1.000	0.00	1.000	
478.8	1.00	23.69	1.000	23.69	1.000	
•		75.79	1.000	35.49	0.972	
		88.17	0.972	46.08	0.941	
		99.97	0.935	57.88	0.896	
		108.96	0.899	68.38	0.845	
		117.96	0.845	77.87	0.789	
		128.96	0.789	88.17	0.727	
		141.95	0.750	99.97	0.648	
		238.92	0.750	108.96	0.592	
				118.96	0.535	
				131.95	0.451	
				142.95	0.414	
				157.95	0.389	
				238.92	0.389	

Table 7-4b. Adhesion factors for Driven piles in clay

(α method, Tomlinson 1980) (digitized curves from figure 7-4b)

Piles Driven Through Overlying Soft Clay

L > 20B S _u (kPa)	α	L = 10B S _u (kPa)	α	
24.19	0.838	21.59	0.532	
36.79	0.778	33.89	0.466	
49.98	0.740	42.59	0.416	
63.88	0.707	53.88	0.378	
77.57	0.685	65.78	0.345	
92.57	0.677	77.57	0.323	
104.96	0.671	90.27	0.301	
117.96	0.658	102.96	0.293	
133.95	0.641	115.96	0.274	
149.95	0.616	128.96	0.266	
227.92	0.526	141.95	0.247	
		217.92	0.184	

Table 7-4c. Adhesion factors for Driven piles in clay

(α method, Tomlinson 1980)

(digitized curves from figure 7-4c)

Piles Without Different Overlying Strata

L > 40B S _u (kPa)	α	L = 10B S _u (kPa)	α	
73.37	1.000	23.69	0.984	
83.37	0.973	33.19	0.959	
93.67	0.918	42.86	0.940	
104.96	0.822	52.58	0.907	
114.96	0.740	62.58	0.874	
124.96	0.658	73.17	0.822	
134.95	0.564	84.17	0.767	
146.95	0.479	93.67	0.707	
160.94	0.411	101.96	0.630	
172.94	0.370	108.96	0.548	
184.94	0.329	116.96	0.466	
197.93	0.301	125.96	0.392	
211.93	0.299	136.95	0.332	
238.92	0.299	146.95	0.288	
		160.94	0.250	
		175.94	0.238	
		238.92	0.238	

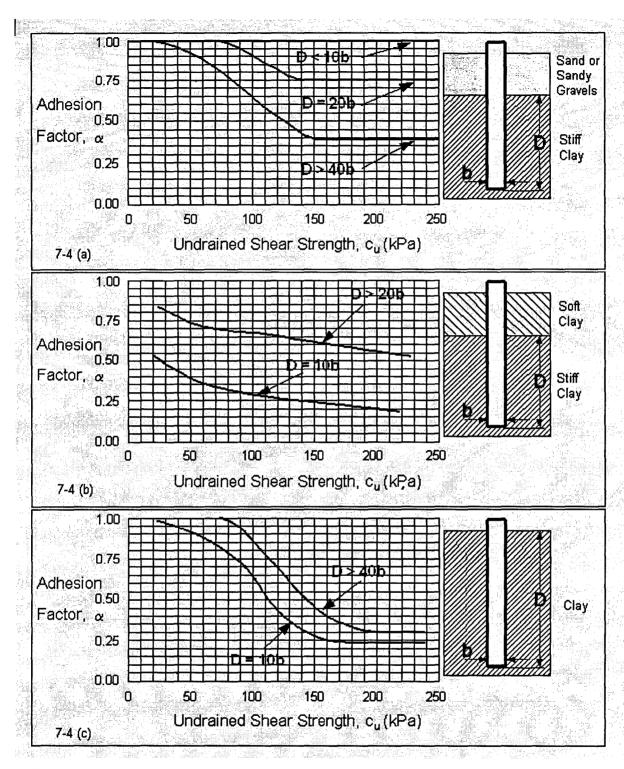


Figure 7-4. Adhesion factors for driven piles in clay (α method, Tomlinson 1980).

Table 7-5. Design curves for evaluating $\,K_{\!{}_{\! \delta}}\,$ for piles when

 $\phi = 25^{\circ}$ (digitized curves from figure 7-5)

Taper ω	$K_{_{\delta}}$ values			
(degrees)	V = 0.0093	V = 0.093	V = 0.93	
0.00	0.700	0.850	1.000	
0.10	0.739	0.902	1.050	
0.20	0.817	0.992	1.136	
0.30	0.922	1.085	1.237	
0.40	1.042	1.206	1.349	
0.50	1.194	1.353	1.478	
0.60	1.400	1.536	1.646	
0.70	1.614	1.703	1.789	
0.80	1.808	1.886	1.944	
0.90	2.073	2.116	2.147	
1.00	2.322	2.337	2.361	
1.07	2.559	2.559	2.559	
1.20	2.917	2.917	2.917	
1.30	3.169	3.169	3.169	
1.40	3.383	3.383	3.383	
1.50	3.578	3.578	3.578	
1.60	3.733	3.733	3.733	
1.70	3.869	3.869	3.869	
1.80	3.986	3.986	3.986	
1.90	4.072	4.072	4.072	
2.00	4.130	4.130	4.130	

Notes: 1. Volume in m³/m

2. If $\phi < 25^{\circ}$ then DRIVEN uses the $\phi = 25^{\circ}$ curve

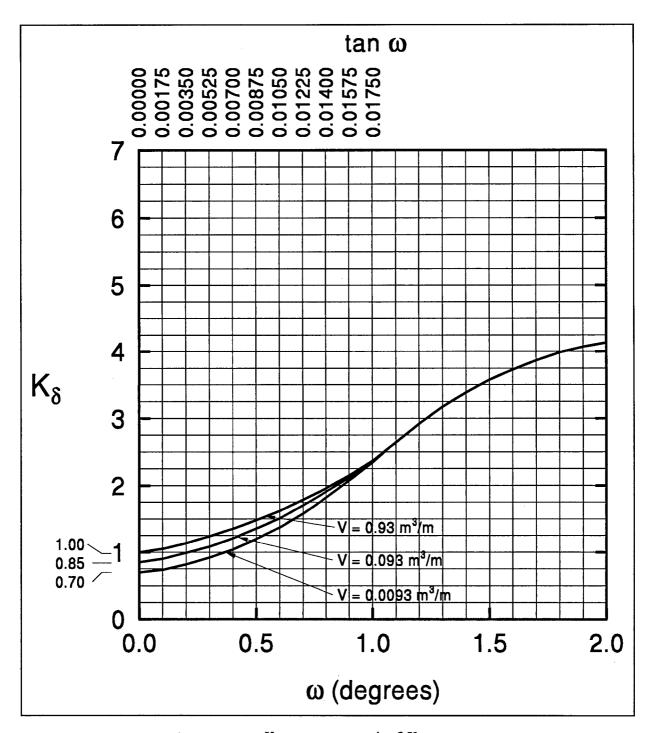


Figure 7-5. Design curves for evaluating K_s for piles when $\phi=25^\circ$ (after Norlund 1979).

Table 7-6. Design curves for evaluating $\,K_{\!\scriptscriptstyle s}\,$ for piles when

 $\phi = 30^{\circ}$ (digitized curves from figure 7-6)

Taper ω (degrees)	$K_{_{\delta}}$ values			
	V = 0.0093	V = 0.093	V = 0.93	
0.00	0.850	1.150	1.450	
0.10	1.043	1.408	1.745	
0.20	1.260	1.629	1.978	
0.30	1.551	1.958	2.339	
0.40	2.017	2.435	2.746	
0.50	2.560	2.928	3.180	
0.60	3.180	3.444	3.638	
0.70	3.770	3.936	4.072	
0.80	4.332	4.421	4.499	
0.90	4.925	4.925	4.925	
1.00	5.360	5.360	5.360	
1.10	5.701	5.701	5.701	
1.20	5.934	5.934	5.934	
1.30	6.127	6.127	6.127	
1.40	6.244	6.244	6.244	
1.50	6.329	6.329	6.329	
1.60	6.399	6.399	6.399	
1.70	6.456	6.456	6.456	
1.80	6.487	6.487	6.487	
1.90	6.494	6.494	6.494	
2.00	6.494	6.494	6.494	

Note: Volume in m³/m

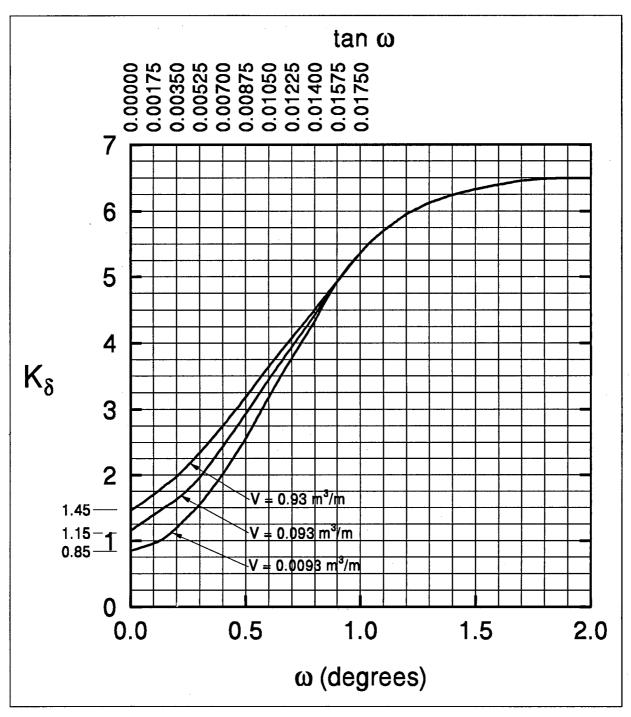


Figure 7-6. Design curves for evaluating $\,K_{\!s}\,$ for piles when $\,\phi=30^{\rm o}\,$ (after Norlund 1979).

Table 7-7. Design curves for evaluating K_s for piles when

 $\phi=35^{\circ}$ (digitized curves from figure 7-7)

Taper ω (degrees)	$K_{_{\! s}}$ values			
(degrees)	V = 0.0093	V = 0.093	V = 0.93	
0.00	1.15	1.75	2.35	
0.10	1.47	2.01	2.76	
0.20	2.00	2.59	3.37	
0.25	2.32	2.98	3.72	
0.30	2.90	3.56	4.26	
0.40	4.18	4.66	5.19	
0.50	5.42	5.65	6.08	
0.60	6.81	6.85	7.12	4
0.75	8.55	8.55	8.55	
0.88	9.75	9.75	9.75	
1.00	10.18	10.18	10.18	
1.11	10.34	10.34	10.34	
2.00	10.34	10.34	10.34	

Notes: Volume in m³/m

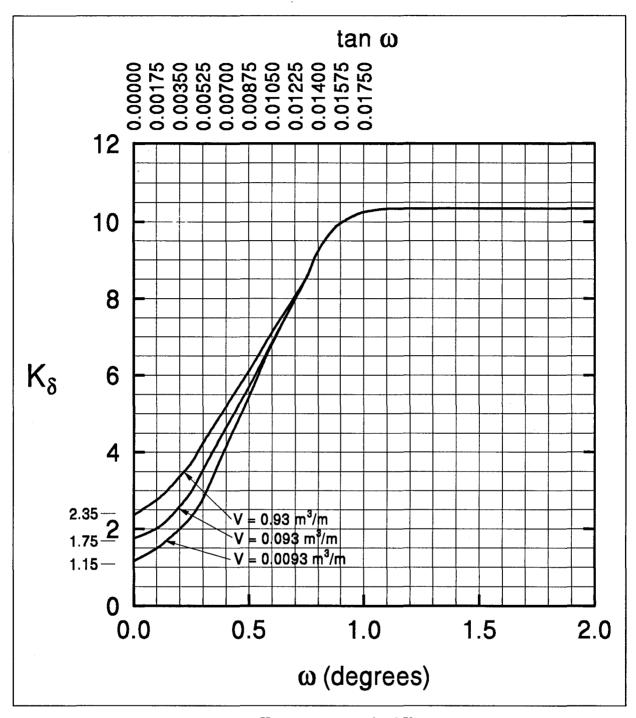


Figure 7-7. Design curves for evaluating K_s for piles when $\phi=35^\circ$ (after Norlund 1979).

Table 7-8. Design curves for evaluating K_s for piles when

 $\phi = 40^{\rm o}$ (digitized curves from figure 7-8)

Taper ω	$K_{_{\delta}}$ values						
(degrees)	V = 0.0093	V = 0.093	V = 0.93				
0.00	1.70	3.00	4.30				
0.10	5.12	6.352	7.04				
0.15	7.36	8.00	8.48				
0.22	10.56	10.56	10.56				
0.30	13.60	13.60	13.60				
0.40	15.84	15.84	15.84				
0.43	16.64	16.64	16.64				
0.50	17.28	17.28	17.28				
0.56	17.54	17.54	17.54				
2.00	17.54	17.54	17.54				
2.00	17.54	17.54	17.54				

Notes: Volume in m³/m

For friction angles greater than 40° , DRIVEN uses the 40° table

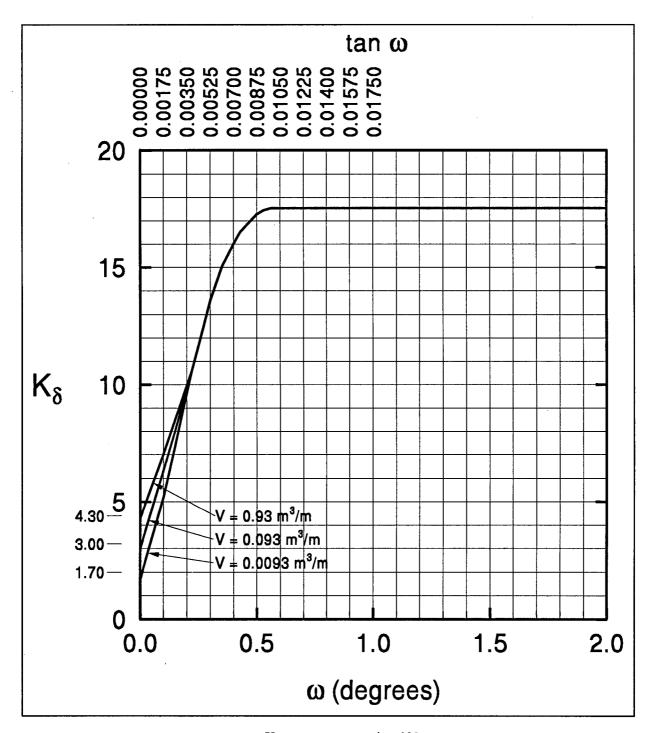


Figure 7-8. Design curves for evaluating $K_{\rm s}$ for piles when $\phi=40^{\rm o}$ (after Norlund 1979).

Table 7-9. Correction factor for K_s when $\delta \neq \phi$

(digitized curve from figure 7-9)

Correction Factor

ϕ	δ / ϕ =									
(degrees)	0.2	0.4	0.6	0.8	1.0	1.2	1.4			
14	0.83	0.90	0.95	0.99	1.00	1.01	1.02			
18	0.77	0.85	0.92	0.98	1.00	1.02	1.03			
22	0.71	0.80	0.89	0.97	1.00	1.02	1.03			
26	0.64	0.74	0.85	0.95	1.00	1.02	1.04			
30	0.58	0.69	0.82	0.94	1.00	1.03	1.06			
34	0.50	0.63	0.77	0.92	1.00	1.05	1.08			
38	0.42	0.56	0.72	0.90	1.00	1.07	1.10			
42	0.32	0.49	0.66	0.87	1.00	1.09	1.13			
45	0.24	0.43	0.62	0.84	1.00	1.12	1.16			

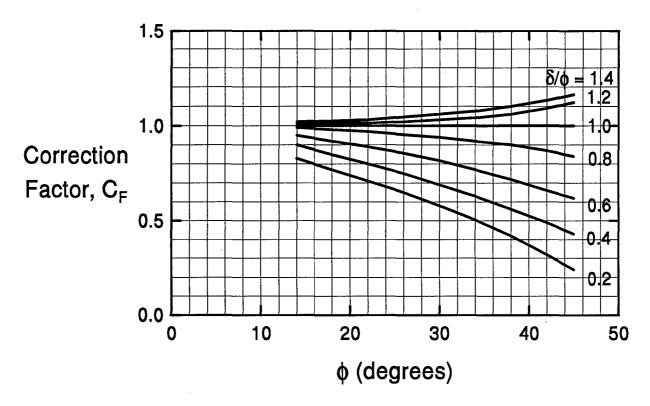


Figure 7-9. Correction factor for K_s when $\delta \neq \phi$ (after Norlund 1979).

Table 7-10. Relation of δ/ϕ and pile displacement, V, for

various types of piles

(digitized curves from figure 7-10)

Volume	Values o	f δ/ϕ					
m³/m	curve a	curve b	curve c	curve d	curv	e g	curve e
0.028	0.342	0.404	0.466	0.571	0.64	3	0.801
0.037	0.410	0.466	0.525	0.637	0.69		0.845
0.046	0.466	0.519	0.581	0.689	0.74		0.888
0.056	0.516	0.562	0.630	0.736	0.79		0.925
0.065	0.559	0.602	0.671	0.776	0.82		0.960
0.074	0.593	0.637	0.708	0.814	0.86		0.994
0.084	0.627	0.665	0.739	0.845	0.88		1.025
0.093	0.652	0.693	0.767	0.873	0.91		1.053
0.102	0.673	0.712	0.789	0.894	0.93		1.081
0.111	0.697	0.734	0.813	0.917	0.95		1.110
0.121	0.717	0.751	0.832	0.936	0.97	6	1.135
0.130	0.733	0.766	0.848	0.953	0.99	4	1.159
0.139	0.749	0.781	0.864	0.971	1.01	3	1.184
0.149	0.763	0.793	0.877	0.985	1.02	4	1.207
0.167	0.788	0.816	0.904	1.013	1.05	1	1.252
0.177	0.798	0.825	0.914	1.024	1.06	2	1.270
for curve f:						,	
volume (m ³		7 0.009	0.019	0.028	0.037	0.046	0.049
δ/ϕ value			0.827	0.8875	0.933	0.972	0.980

Note: If the pile volume is greater than the maximum volume contained in the table, DRIVEN uses the maximum δ/ϕ value.

Curve a - Closed end pipe and non-tapered portion of monotube

Curve b - Timber

Curve c - Pre-Cast Concrete

Curve d - Raymond Step Taper

Curve e - Raymond Uniform Taper

Curve f - Non-Displacement Steel

Curve g - Tapered portion of monotube

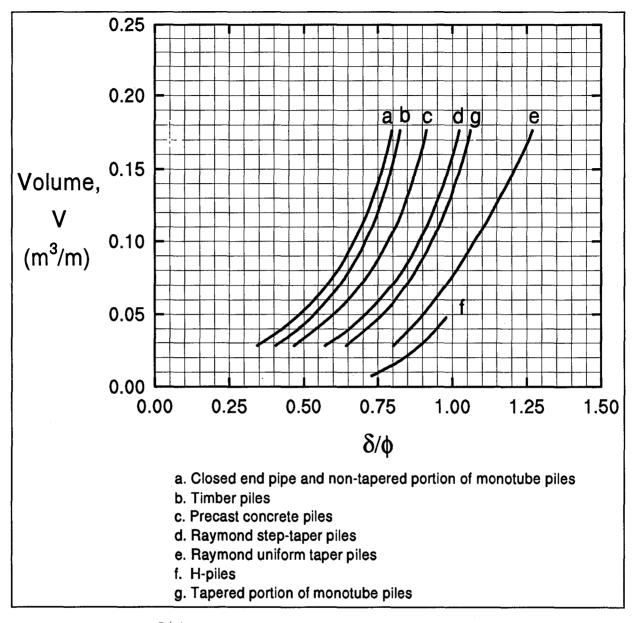


Figure 7-10. Relation of δ/ϕ and pile displacement, V, for various types of piles (after Norlund 1979).

Table 7-11. Chart for correction of N-values in sand for influence of effective overburden pressure

(digitized curve from figure 7-11)

Correction Factor	
2.000	
1.470	
1.200	
1.080	
1.000	
0.940	
0.875	
0.800	
0.770	
0.740	
0.700	
0.660	
0.620	
0.600	
0.580	
0.560	
0.5375	
0.520	
0.500	
0.4875	
0.470	
	2.000 1.470 1.200 1.080 1.000 0.940 0.875 0.800 0.770 0.740 0.700 0.660 0.620 0.600 0.580 0.560 0.5375 0.520 0.500 0.4875

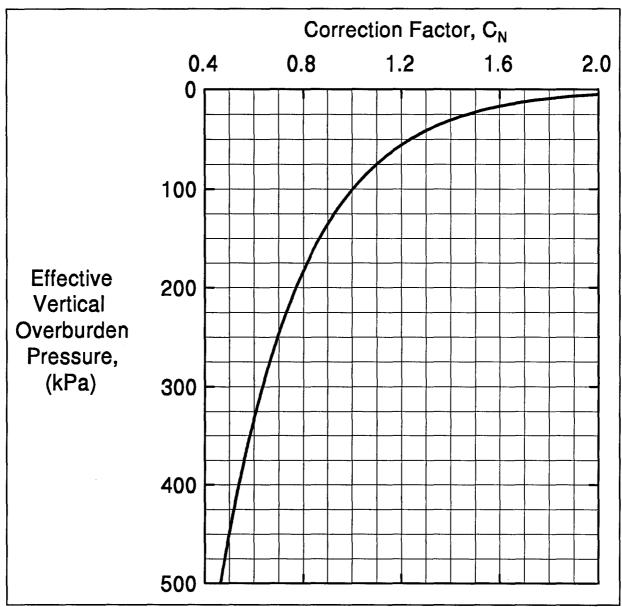


Figure 7-11. Chart for correction of N-values in sand for influence of effective overburden pressure (after Peck et. al. 1974).

Relationship between standard penetration test and ϕ (friction angle)

SPT N Value	ϕ (degrees)	
5.0	28.1	
10.0	30.0	
15.0	31.5	
20.0	33.0	
25.0	34.5	
30.0	36.0	
35.0	37.5	
40.0	38.8	
45.0	40.0	
50.0	41.0	
55.0	42.0	
60.0	43.0	

Dimensions of Metric H-Pile shapes included in DRIVEN

(from FHWA Geotechnical Metrication Guidelines)

H – Pile Designation	PILE Area mm²	Width mm	Perimeter mm	BOX Area mm²	BOX Perimeter mm
HP 360 X 174	22 200	378.0	2153.0	136 458.0	1478.0
X 152	19 400	376.0	2140.0	133 856.0	1464.0
X 132	16 900	373.0	2122.0	130 923.0	1448.0
X 108	13 800	370.0	2106.0	128 020.0	1432.0
HP 310 X 125	15 800	312.0	1805.0	97 344.0	1248.0
X 110	14 000	310.0	1793.0	95 480.0	1236.0
X 93	11 800	308.0	1780.0	93 324.0	1222.0
X 79	9 970	306.0	1768.0	91 494.0	1210.0
HP 250 X 85	10 800	260.0	1491.0	66 040.0	1028.0
X 62	7 980	256.0	1467.0	62 976.0	1004.0
HP 200 X 53	6 810	207.0	1190.0	42 228.0	822.0

MONOTUBE PILES
Standard Monotube Weights and Volumes

TYPE	SIZE POINT DIAMETER X BUTT DIAMETER X LENGTH		/eight	(N) pe	rm	EST. CONC. VOL.	
	BOTT DIAMETER & LENGTH	9 GA	7 GA.	5 GA.	3 GA .	m 3	
F Taper 3.6 mm per Meter	216 mm x 305 mm x 7.62 m	248	292	350	409	0.329	<u> </u>
	203 mm x 305 mm x 9.14 m	233	292	336	394	0.420	n type N
	216 mm x 356 mm x 12.19 m	277	321	379	452	0.726	-Extension Type
	203 mm x 406 mm x 18.29 m	292	350	409	482	1.284	
	203 mm x 457 mm x 22.86 m	-	379	452	511	1.979	٠,
J Taper 6.4 mm per Meter	203 mm x 305 mm x 5.18 m	248	292	336	394	0.244	lapared Section Type F.J. or Y
	203 mm x 356 mm x 7.62 m	263	321	379	438	0.443	Section
	203 mm x 406 mm x 10.06 m	292	350	409	467	0.726	Tapered
	203 mm x 457 mm x 12.19 m	-	379	438	511	1.047	
Y Taper 10.2 mm per Meter		248	292	350	409	0.138	203mm - -
	203 mm x 356 mm x 4.57 m	277	321	379	438	0.260	
	203 mm x 406 mm x 6.10 m	292	350	409	482	0.428	
	203 mm x 457 mm x 7.62 m	-	379	452	511	0.657	

Extensions (Overall Length 0.305 m Greater than indicated)

TYPE	DIAMETER + LENGTH	9 GA.	7 GA.	5 GA.	3 GA.	m 3 /m
N 12	305 mm x 305 mm x 6.10 / 12.19 m	292	350	409	482	0.065
N 14	356 mm x 356 mm x 6.10 m / 12.19 m	350	423	496	598	0.088
N 16	406 mm x 406 mm x 6.10 m / 12.19 m	409	482	569	671	0.113
N 18	457 mm x 457 mm x 6.10 m / 12.19 m	-	555	642	759	0.145

Table 7-14 Monotube Piles - Standard weights, volumes, and extensions.

0 ft --

φ = 33°Skin Friction
 φ = 38°End Bearing
 γ = 120 pcf
 10% Driving Loss

25 ft —

 $C_U = 2800 \text{ psf}$ $\gamma = 110 \text{ pcf}$ 40% Driving Loss

50 ft —

Water Table
Drilling = 10 ft
Restrike/Driving = 10 ft
Ultimate = 0 ft

Pile - Precast Concrete Side = 12 in.

Other Design Considerations: 5 ft Local Scour

Example #1c

♂					109.69					197.07		
					95.70				25.2	25.2	25.2	25.2
Op lim	Æ	268.60	268.60	268.60	268.60	268.60	268.60					
Ocalc	S	0.10	86.18	95.55	95.70	137.02	164.47		25.2	25.2	25.2	25.2
νδ		110.4	110.4	110.4	110.4	110.4	110.4					
alpha					0.722				9.0	9.0	9.0	9.0
q-bar	(bsd)	1.2	1081.2	1198.8	1.0 1200.6	1719.0	2063.4	Su	2800	2800	2800	2800
Αp	(ft^2)								1.0	1.0	1.0	1.0
Š	total	00'0	11.34	13.94	14.00	44.58	70.91		71.07	171.87	236.10	264.47
လိ	Layer	0.00	11.34	13.94	0.03	30.61	56.94		0.11	100.91	165.14	193.51
D (ft)					0.01			D (ft)	0.01	9.01	18.01	24.99
Cd (ft)		4.00			4.00					4.00	4.00	4.00
Sin delta		0.60 0.427531	0.427531	0.427531	0.427531	0.427531	0.427531	Ca (pst)	2800.00	2800.00	2292.39	1935.89
Pd (psf)	mid point	09.0	540.60	599.40	1200.29 0.427531	1459.49	1631.71	alpha	1.0000	1.0000	0.8187	0.6914
Cť		1.51 0.9015	1.51 0.9015	1.51 0.9015	5106.0 15.1	1.51 0.9015	1.51 0.9015	Cu	2800	2800	2800	2800
		1.51	1.51	1.51	1.51	1.51	1.51					
Layer Analysis K-delta	Depth	0.01	9.01	66.6	10.01	19.01	24.99		25.01	34.01	43.01	49.99
Layer		18	la	la	116	116	1b.		2	2	7	7

Example #1c

Layer	Analysis K-delta	K-delta	čť	Pd (psf)	Sin delta	Cd (ft)	D(ft)	Driving	ő	ŝ	Αp	q-bar	alpha	βď	Qcalc	Op lim) &	×
	Depth			mid point					Layer	total	(ft^2)	(bsd)			(k)	(k)	(k) (k)
la	10.0	1.51	1.51 0.9015	09.0	0.4275314				00.0	0.00	1.0	1.2	0.722	110.4	0.10	268.60	0.10	0.10
la	9.01	1.51	0.9015	540.60	0.4275314				10.20	10.20	1.0	1081.2	0.722	110.4	86.18	268.60	86.18	96.39
1a	9.99	1.51	0.9015	599.40	0.4275314				12.55	12.55	1.0	1198.8	0.722	110.4	95.55	268.60	95.55	108.10
la	10.01	15.1	0.9015	1200.29	1200.29 0.4275314	4.00	0.01	10%	0.03	12.60	1.0	1200.6	0.722	110.4	95.70	268.60	95.70	108.29
16	19.01		1.51 0.9015	1459.49	0.4275314				27.55	40.12	1.0	1719.0	0.722	110.4	137.02	268.60	137.02	177.14
16	24.99		1.51 0.9015	1631.71	0.4275314				51.25	63.82	1.0	2063.4	0.722	110.4	164.47	268.60	164.47	228.29
			ಬೆ	alpha	Ca (pst)		D (ft)					Su	Nc					
2	25.01		2800	1.0000	2800.00		0.01		0.07	63.91	1.0	2800	9.0		25.2		25.2	89.11
2	34.01		2800	1.0000	2800.00	4.00	9.01	40%	60.55	124.39	1.0	2800	9.0		25.2		25.2	149.59
2	43.01		2800	0.8187	2292.39		18.01		60.66	162.92	1.0	2800	9.0		25.2		25.2	188.12
2	49.99		2800	0.6914	1935.89		24.99		116.11	179.95	1.0	2800	9.0		25.2	:	25.2	205.15

45.13 50.88 51.00 109.83 65.54 166.34 230.57 258.94 0.00 0.00 22.96 154.93 25.2 25.2 25.2 25.2 45.96 87.28 0.00 41.37 45.87 114.73 268.60 268.60 268.60 268.60 268.60 268.60 268.60 268.60 0.00 87.28 22.96 45.96 114.73 25.2 25.2 25.2 25.2 41.37 45.87 Ocalc 110.4 110.4 110.4 110.4 110.4 110.4 110.4 ξ 0.722 0.722 0.722 0.722 alpha 576.6 1095.0 519.0 287.4 288.0 575.4 1439.4 Su 2800 2800 2800 2800 0.1 1.0 22.55 40.19 205.37 0.00 0.00 3.77 5.04 40.34 141.14 5.01 1.68 3.77 165.14 35.16 17.52 0.11 100.91 5.01 0.01 193.51 24.99 4.99 14.99 5.00 9.01 18.01 9.01 0.01 0.01 Sin delta Cd (ft) D (ft) D (ft) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 Cd (ft) 2292.39 2800.00 1935.89 2800.00 0.427531 0.427531 0.427531 0.427531 0.427531 0.427531 0.427531 Ca (pst) 0.42753] 0.29 403.49 1.0000 144.00 576.29 143.71 835.49 1.0000 431.71 0.8187 0.6914 1007.71 Pd (pst) mid point 0.9015 0.9015 0.9015 0.9015 0.9015 Cu 2800 2800 2800 0.9015 0.9015 0.9015 \mathcal{F} 1.51 1.51 1.51 1.51 1.51 1.51 K-delta 0.01 5.00 9.01 9.99 24.99 25.01 43.01 49.99 Analysis 19.01 34.01 10.01 Depth gwt = 0.ftLayer 18 la

Example #1c

0 m-

 $\phi = 30$ °Skin Friction $\phi = 30$ °End Bearing $\gamma = 18 \text{ kN/m}^3$ 20% Driving Loss

5 m-

 $\phi = 35^{\circ}$ Skin Friction $\phi = 35^{\circ}$ End Bearing $\gamma = 20 \text{ kN/m}^3$ 10% Driving Loss

10 m

Water Table
Drilling = 0 m
Restrike/Driving = 3 m
Ultimate = 1 m

Pile - Closed End Pipe diameter = 508 mm

Other Design Considerations: 2 m Long Term Scour

_							_						
ď	_										779.08		
ð	Ē	0.63	62.85	63.48	64.11	129.26	129.26	129.26	129.26	129.26	621.85	891.72	1044 15
op lim	<u>S</u>	129.26	129.26	129.26	129.26	129.26	129.26	129.26	129.26	129.26	1044.15	1044.15	1044 15
Q)	2	29.06	29.06	29.06	29.06	29.06	29.06	29.06	29.06	29.06	234.75	234.75	27 450
Ocalc	(E)	0.63	62.85	63.48	64.11	18681	190.44	190.73	247.98	248.27	621.85	891.72	1069.83
Ocal Ocal	8	0.14	14.13	14.27	14.41	42.67	42.81	42.88	55.75	55.82	139.80	200.48	240 52
δN	_	30	8	30	30	8	30	30	8	30	2	2	3
[stights		· 0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	89.0	99.0	890
req-b	(kPa)	0.18	17.82	18.00	18.18	53.82	54.00	\$4.08	70.32	70.40	70.50	101.10	121.29
q-bar	(bet)	3.76	372.20	375.96	379.72	1124.11	1127.87	1129.58	1468.62	1470.33	1472.46	2111.47	2533.22
Αp	(F*2)	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18
Os (KN)	total	00.00	6.71	6.85	66.9	61.23	61.64	62.05	155.76	156.30	157.24	500.51	704 13
	- 1										35.35		
(ম) গ্	Layer										0.21		
(f)		0.03	3.25	3.28	0.03	6.53	6.56	0.03	6.53	6.56	0.03	9.88	16.37
C4 (ft)											5.2360		
Sin delba		0.4057798	0.4057798	0.4057798	0.4057798	0.4057798	0.4057798	0.4057798	0.4057798	0.4057798	0.4683925	0.4683925	0.4683925
Pd (Kps)	mid point	0.09	8.91	9.00	18.09	35.91	36.00	\$4.04	62.16	62.20	70.45 0.46	85.75	95 84
Pd (psf)		_									1471.395		
Cľ		0.9388	0.9388	0.9388	0.9388	0.9388	0.9388	0.9388	0.9388	0.9388	0.9134	0.9134	0.9134
K-delta		1.2516	1.2516	1.2516	1.2516	1.2516	1.2516	1.2516	1.2516	1.2516	1.9533	1.9533	1.9533
Midpoint	of layer (ft)	910:0	1.624	1.640	3.297	6.545	6.562	9.859	13.107	13.123	16.421	21.342	24 590
Analysis		0.033	3.248	3.281	3.314	9.810	9.843	9.875	16.371	16.404	16.437	26.280	37 776
Analysis	Depth (m)	10.0	0.99	1.00	1.01	2.99	3.00	3.01	4.99	\$.00	10'5	8.01	80
Layer			In	la I	18	=		la l	=	la	2	2	2
				_	_	_		_	_	_	_	_	_

г	-	3	22	96	8	24	22	8	87	35	80	8	8
ŏ	3										747.78		
U	(kg)	Ì									621.85		
1-							- 1				1044.15		
S Hill S	3	29.06	29.06	29.06	29.06	29.06	29.06	29.06	29.06	29.06	234.75	234.75	234.75
Octo	(EN)	0.63	62.85	63.48	64.11	189.81	190.44	190.73	247.98	248.27	621.85	891.72	1069.83
Ocelo	3	0.14	14.13	14.27	14.41	42.67	42.81	42.88	55.75	55.82	139.80	200.48	240.52
- PX		æ	R	8	æ	8	æ	æ	8	R	2	2	2
alda	•	850	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	89.0	99.0	890
q-ber	(F _a)	91.0	17.82	18.00	18.18	53.82	24.00	\$4.08	70.32	30.46	8.5	101.10	121.29
o-ber	(bet)	3.76	372.20	375.96	379.72	1124.11	1127.87	1129.58	1468.62	1470.33	1472.46	2111.47	2533.22
Ş	(F.73)	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18
S (EN	total	0.00	5.37	5.48	5.59	48.98	49.31	49.64	124.61	125.09	125.94	434.89	699 14
88	total	•									28.31		_
300	Layer	0.00	173	1.23	0.02	9.78	9.85	0.07	16.93	0.11	61.0	69.65	129 06
SILVING.	Loss	70%	20%	20%	20%	20%	20%	20%	20%	701	10%	10%	10%
D(A)			3.25	3.28	0.03	6.53	9.50	0.03	6.53	0.03	0.03	88.6	16.37
€	:	5.2360	5.2360								5.2360		
Sin delta		0.4057798	0.4057798	0.4057798	0.4057798	0.4057798	0.4057798	0.4057798	0.4057798	0.4057798	0.4683925	0.4683925	0.4683925
Pd (Kpa)	mid point	600	8.91	00.6	18 09	35.91	36.08	<u>x</u>	62.16	20.36	70.45 0	85.75	95.84
Pd (psf)	mid point	1.880	186.098	187.978	377.835	750.032	751.911	1128.723	1298.242	1469.473	1471.395	1790.901	2001.775
2		0.9388	0.9388	0.9388	0.9388	0.9388	0.9388	0.9388	0.9388	0.9388	0.9134	0.9134	0.9134
K-delta		1.2516	1.2516	1.2516	1,2516	1.2516	1.2516	1.2516	1.2516	1.2516	1.9533	1.9533	1.9533
Midpoint	of layer (ft)	910'0	1.624	1.640	3.297	6.545	6.562	9.859	13.107	16.388	16.421	21.342	24.590
Analysis	Depth (ft)	0.033	3.248	3.281	3.314	9.810	9.843	9.875	16.371	16.404	16.437	26.280	32.776
Analysis	Depth (m)	10.0	0.99	1.00	10.1	2.99	3.00	3.01	4.99	200	10'5	8.01	666
Layer			2		2	=	=	•	=		~	~	_

	_		_	_	_	_	_		~	~	ó^	<u> </u>		Ŧ	~	_
	ర	(KN)	0.0	0.0	0.00	00.0	0.0	0.00	31.68	32.03	32.38	114.3	114.8	246.2	676.13	1026.9
	ඵ	(EJ)	00:0	0.00	0.00	0.00	0.00	0.00	28.62	28.91	29.20	86.45	86.74	217.84	487.71	665.82
Ì	Sp. lim	(RN)			i			0.00								
	Co lim	(K)	0.00	0.00	0.00	0.00	0.00	0.00	29.06	29.06	29.06	29.06	29.06	234.75	234.75	234.75
	Cealc		0.00	0.00	0.00	0.00	0.00	0.00	28.62	28.91	29.20	86.45	86.74	217.84	487.71	665.82
	Ocale	(K)	0.00	0.00	0.00	0.00	0.00	0.00	6.44	6.50	6.57	19.44	19.50	48.98	109.65	149.69
	Nq	_	00.0	0.00	00.0	0.00	0.00	0.00	30	39	30	8	30	4	B	2
	N sudie		0.00	_		0.00	0.0	0.00	95.0	0.58	95.0	0.58	0.58	99.0	89.0	89.0
		(. 00'0	8	8	8	8	0.00	12	20	38	51	09	92.	53	\$
	aq-b	(kP														
	q-b	(bet)	0.0	9	0.0	0.0	0.0	0.00	169.5	171.2	172.9	\$11.9	513.6	515.8	1154.8	1576.5
	ď	(fr ² 2)	0.00	0.00	1			0.00								
	(KN)	total	0.00	0.00	0.00	0.00	0.00	0.00	3.06	3.12	3.18	27.89	28.07	28.40	188.42	361.09
	(K)	total	0.00	0.00	0.00	0.00	0.00	0.00	69.0	0.70	0.72	6.27	6.31	6.39	42.36	81.18
		Layer	00:00	0.00	0.00	0.00	90.0	0.00	69.0	0.70	0.01	5.57	0.04	0.07	36.05	74.87
	D (ff)		0.00	0.00	0.00	0.00	0.00	0.00	3.25	3.28	0.03	6.53	0.03	0.03	9.88	16.37
	(tt)		0.0000	0.0000	0.0000	0.000	0.000	0.0000	5.2360	5.2360	5.2360	5.2360				5.2360
	Sin delta		0.0000	0.0000	0.0000	0.000	0.000	0.000	.4057798	.4057798	.4057798	0.4057798	0.4057798	0.4683925	.4683925	0.4683925
	Pd (Kpa)	mid point	0.00	0.0	00.0	0.00	0.00	0.00	4.06 0	4.10 0	8.24 0	16.36	24.55 0	24.65 0	39.94	50.02
	Pd (pst) P		0.0000	0.0000	0.0000	0.0000	0.000	0.0000	84.759	85.616	172.087	341.606	\$12.838	514,759	834.265	1045.139
	ct		0.000	0.0000	0.0000	0.000	0.000	0.0000	0.9388	0.9388	0.9388	0.9388	0.9388	0.9134	0.9134	0.9134
	K-delta		0.0000	0.000	0.0000	0.0000	0.000	0.0000	1.2516	1.2516	1.2516	1.2516	1.2516	1.9533	1.9533	1.9533
	Midpoint	of layer (ft)	0.0000	0.000	0.0000	0.0000	0.000	0.0000	1.624	1.640	3.297	6.545	9.826	658'6	14.780	18.028
	Analysis	€	0.033	3.248	3.281	3.314	6.529	6.562	9.810	9.843	9.875	16.371	16.404	16.437	26.280	32.776
	Amalysis	Depth (m)	10.0	0.99	1.00	10.1	81	2.00	2.99	3.00	3.01	4.99	5.00	5.01	10.8	666
	Layer		14	10	=	Je.	. =	i.	1	=	4	=	la I	2	2	2

45 ft —— 26

Water Table

Drilling = 5 ft

HP 12X63

Restrike/Driving = 10 ft

top of pile = 2 ft

Ultimate = 1-ft

Other Design Considerations:

8 ft Soft Soil - downdrag condition

Exan	Example 3					ست											-	
Layer	_	Analysis Mid point																
	Depth	of layer				Ca (pst) Cd (ft)	Cq (t)	D (ff)	Qs-layer (k)	Qs-total (k) Ap(ft^2)		Cu (pst)	Nc		Qcalc (k) Qp tim (k) Qp (k)	lp lim (k) C		Qt (k)
F	0.01									00.00					-			00.00
<u>-</u>	<u>.</u> 8									0.00								0.00
,	2.00					732.50	5.95				0.13		00.6				1.04	1.02
_	9.01					732.50	5.95		30.53	30.53	0.13	006	00.6				<u>4</u>	31.57
_	14.99					746.07	5.95	12.99	57.62	57.62	0.13	900	00.6				1.04	58.66
			K-delta	ರ	Pd (pst)	Sin delta Cd (ft)	Cq (#)	(ft)			Ap(ft^2)	q-bar	alpha	h,d				
	15.01	0.005	1.099174		0.90 1338.28	8 0.43	5.95		0.03	57.71	0.13	1338.56	0.6502832	49.49	5.50	7.08	5.50	63.21
7	24.01		4.505 1.099174	0.30	1588.48	8 0.43	5.95		36.42	94.09			0.6408003	49.49	7.45	7.08	7.08	101.17
5	33.01		9.005 1.099174	0.90	1838.68	8 0.43	5.95	18.01	84.27		0.13	2339.36	0.6212085	49.49	9.19	7.08	7.08	149.02
7	42.01	13.505	1.099174	0.00	2088.88	8 0.43	5.95		143.57				0.6082939	49.49	10.92	7.08	2.08	208.33
2	44.99		14.995 1.099174		0.90 2171.72	2 0.43	5.95	29.99	165.74	223.41	0.13		3005.44 0.6040178	49.49	11.48	7.08	7.08	230.49

•
7
.=
>
-
~

Exa	Example 3																		
															L				
Layer	-	Analysis Mid point							Driving									_	
	Depth	of layer				Ca (pst) Cd (ft)		D (ft)	Loss	Qs-layer (k)	Qs-layer (k) Qs-total (k)	Ap(ft^2)	Cu (pst)	Nc		Acalc (k) Ap lim Ap (k)	3p lim Qp		Qt (k)
_	0.01	1									00:00						-		0.00
_	1.99	6									00.0								0.00
_	2.00	0				732.5	5.95	0.00	40%	00.0	00.0	0.13	006	9.00				<u>4</u>	1.04
_	9.01	1				732.5	5.95	7.01	40%	18.32	18.32	0.13	006	9.00				1.04	19.35
1	14.99	6				746.1	5.95	12.99	40%	34.57	34.57	0.13	900	9.00				1.04	35.61
			K-delta	ડ	Pd (psf)	Sin delta Cd (ft)		D (ft)				Ap(ft^2)	q-bar	alpha	N'q				
	15.01	1 0.005	1.099174	06'0	1338.278	0.43	5.95	0.01	10%	0.03	34.64	0.13	1338.56	0.6502832	49.49	5.50	7.08	5.50	40.15
7	24.01	1 4.505	1.099174	06'0	1588.478	0.43	5.95	9.01	10%	32.78	62.39	0.13	1838.96	0.6408003	49.49	7.45	2.08	7.08	74.47
7	33.01	1 9.005	1.099174	06'0	1838.678	0.43	5.95	18,01	10%	75.84	110.45	0.13	2339.36	0.6212085	49.49	9.19	2.08	2.08	117.53
7	42.01	13.505	1.099174	06'0	2088.878	0.43	5.95	27.01	10%	129.22	163.83	0.13	2839.76	0.6082939	49.49	10.92	7.08	7.08	170.91
٥	44 99		14 995 1 099174	060	2171 722	0.43	3,00	29 99	10%	149 16	183 78	0.13		3005 44 0 6040178	49 49	11 48	7 08	7 08	190 86

Example 3	ole 3														_			
Layer		Analysis Mid point																
	Depth:	of layer				Ca (pst)	(¥) PO	D (ft)	Qs-layer (k)	اكوا) اكما كما (لا) Ap(ft^2 Cu	Ap(#^2 C		Nc	J	Qcalc (k) Qp lim (k) Qp (k)	o lim (k) C		at (k)
1	0.01									00:00								00:00
-	1.99									00.0								00.0
_	2.00					732.50	5.95	00.00	0.00		0.13	006	9.00				1.04	1.02
-	7.99					732.50	5.95	5.99	26.09	-26.09	0.13	006	9.00				1.04	-25.05
_	8.00					732.50	5.95	00.9			0.13	006	00.6				4	-25.10
_	9.01					732.50	5.95	1.01	4.40	-21.73	0.13	006	9.00				1.04	-20.70
-	14.99					746.07	5.95	6.99	31.01	4.88	0.13	006	00.6				1.04	5.91
			K-delta	Cť	Pd (psf)	Sin delta Cd (ft)		(u)			Ap(ft^2 q-bar		alpha	N'q				
	15.01		0.005 1.099174	0.30	776.678	8 0.43	2	0.01	0.02	4.94	0.13	96.92	0.65028	49.49	3.19	7.08	3.19	8.14
2	24.01		4.505 1.099174	0.30	1026.878	8 0.43	9	9.01	23.54	28.47	0.13	1277.36	0.64080	49.49	5.18	7.08	5.18	33.64
2	33.01	9.005	1.099174	0.30	1277.078	8 0.43	9	18.01	58.53	63.45	0.13	1777.76	0.62121	49.49	6.98	7.08	6.98	70.43
7	42.01		13.505 1.099174	0.30	1527.278	8 0.43	5.95	27.01	104.97	109.90	0.13	2278.16	0.60829	49.49	8.76	7.08	7.08	116.98
2	44.99		14.995 1.099174	0.90	1610.122	2 0.43	5.95	29.99	122.88	127.80	0.13	2443.84	0.60402	49.49	9.33	7.08	7.08	134.88

ex3.xls

0 m-

$$C_u = 50 \text{ kPa}$$

 $\gamma = 14 \text{ kN/m}^3$
 $40\% \text{ Driving Loss}$

25 m-

 $\phi = 33$ °Skin Friction $\phi = 33$ °End Bearing $\gamma = 18 \text{ kN/m}^3$

10% Driving Loss

40 m

Water Table
Drilling = 0 m
Restrike/Driving = 3 m
Ultimate = 0 m

Pile - Square Concrete Side = 610 mm

Other Design Considerations:

- a) 4 m Soft Soil
- b) 4 m negative skin friction

Restrike

ex4.xds	

Example 4	ेहें 4								_															
							Skir	Skin Friction											End	End Bearing				
Layer				Ca (pst)																				
	(m)	D (ft)	8	inter	Ca (kPa)	Cd (m)	Cd (#)					Os (kip)	Qs (KN)	Os-total (k Ap(ft²)	Ap(ft²)	Cu (pst)	Cu (pst) Cu (kPa) No	Sc			,	Qp (kip) Qp (kN)		(KN)
-	0.01	0.03	0.0164 976.57	976.57	46.76		2.44 8.0052	7				0.25648	1.14	1.14	4.00525	1044.28	50.00	9.0				37.64	167.44	168.58
-	3.01	9.88	4.9344	4.9344 976.57	46.76		2.44 8.0052	7				77.2019	343.39		343.39 4.00525 1044.28	1044.28	50.00	9.0				37.64	167.44	510.83
-	6.01	19.72	9.8525	976.57	46.76		2.44 8.0052	2				154.147	685.65	685.65	t t	4.00525 1044.28	50.00	9.0				37.64	167.44	853.09
-	9.01	29.56	14.7705 1001.8	1001.8	47.97		2.44 8.0052	7				237.07	1054.49	1054.49	4.00525	1044.28	50.00	9.0				37.64	167.44	1221.93
-	12.01	39.40	19.6885 1027.9	1027.9	49.21		2.44 8.0052	5				324.221	324.221 1442.13	1	1442.13 4.00525 1044.28	1044.28	50.00	9.0				37.64	167.44	1609.57
-	15.01	49.25	24.6066 1053.9	1053.9	50.46		2.44 8.0052	~				415.475	415.475 1848.03	1848.03		4.00525 1044.28	50.00	0.6				37.64	167.44	2015.47
-	18.01	59.09	29.5246	1080	51.71	2.4	2.44 8.0052	2	_			510.832	510.832 2272.18		2272.18 4.00525 1044.28	1044.28	50.00	9.0	L			37.64	167.44	2439.62
-	21.01	68.93	34.4426	1106	52.96		2.44 8.0052	7				610.294	610.294 2714.59		2714.59 4.00525 1044.28	1044.28	50.00	0.6				37.64	167.44	2882.02
-	24.01	78.77	39.3607	1132	54.20		2.44 8.0052	2				713.859	713.859 3175.25	3175.25	4.00525	4.00525 1044.28	50.00	9.0				37.64	167.44	3342.68
1	24.99	81.99	40.9672 1135.4	1135.4	54.36		2.44 8.0052	2				745.218	3314.73	3314.73	745.218 3314.73 3314.73 4.00525 1044.28	1044.28	50.00	9.0				37.64	167.44	3482.17
		_	midpoint (midpoint	midpoint (midpoint o', (pst) o', (kN) K.	o', (kN)	Ž,	ტ	Sin 8	౮	۵	Q, (kips)	Q. (kips) Q. (kN) Q. (kN) AP(ft ²)	(NX)		q-bar (psi	q-bar (psf q-bar (kp α		N _P	Pp calc (k C	Op calc (k Op calc (kn Op lim (k Op (kN) Ot (kN)	Op lim (k) (NX) dC	KN)
2	25.01	82.05	25.005	82.037	25.005 82.037 #######		1.7993	134.41 1.7993 0.96775 0.5024	5 0.502	80	5 0.0328	00525 0.0328 0.64502	2.87	3318.93	4.00525	4.00525 2808.02		134.45 0.6007	47.2	318.88	1418.37	890.77	890.77	4209.69
2	28.01	91.90	26.505	86.959	86.959 3064.015		1.7993	146.71 1.7993 0.96775 0.5024	5 0.502	4 8.00525	5 9.875	9.8753 211.917	942.60	4258.66		4.00525 3321.72	159.04	0.5944	47.2	373.26	1660.27	890.77	890.77	5149.43
2	31.01	31.01 101.74	28.005	91.88	91.88 3320.862		1.7993	3 0.9677	5 0.502	4 8.0052	159.00 1.7993 0.96775 0.5024 8.00525 19.718	458.599	2039.85	5355.90	458.599 2039.85 5355.90 4.00525 3835.41	3835.41	183.64	0.5944	47.2	430.99	1917.02	890.77	890.77	6246.67
2	34.01	111.58	29.505	96.801	96.801 3577.709		1.7993	171.30 1.7993 0.96775 0.5024	5 0.502	8.00525	29.56	740.691	3294.60	6610.65		4.00525 4349.11	208.24	0.5944	47.2	488.71	2173.78	890.77	890.77	7501.42
2		37.01 121.42	31.005	101.72	31.005 101.72 3834.556		1.7993	183.60 1.7993 0.96775 0.5024	5 0.502	4 8.0052	5 39.400	8.00525 39.403 1058.19 4706.85 8022.91	4706.85	8022.91	4.00525	4.00525 4862.80	232.83	0.5944	47.2	546.43	2430.53	890.77	890.77	8913.67
2	39.99	39.99 131.20	32.495	106.61	32,495 106.61 4089,691		1 1.7993	3 0.9677	5 0.502	195.81 1.7993 0.96775 0.5024 8.00525		49.18 1408.64 6265.62 9581.68 4.00525 5373.07	6265.62	9581.68	4.00525	5373.07		257.26 0.5944 47.2	47.2	603.77	2685,58	890 77	890.77 10472.45	10472 45

Ap(ft*) Cu (psf) Cu (kPa) Nc End Bearing 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 4,00525 1044.28 50.00 9.0 37.64 <
Cs-total (My) Aptit') Cu (Mya) Nc End Bearing
End Bearing Cu (psr) Cu (wPa) Nc. Cu (wp) Qp (wp) Qp (wp) Qp (wh) Qp (wh)
End Bearing 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.
End Bearing
Q 4 4 4 4 4 4 4 4 4 D C C C C C C C C C C
Q 4 4 4 4 4 4 4 4 4 6 C C C C C C C C C C

ex4.xls

				<u>₹</u>	0.00	0.00	00.00	167.44	396.75	753.79	1129.26	1522.99	1934.97	2365.21	2813.70	2951.60	Ot (KN)	3678.50	4429.92	5338.85	6405.28	7629.22	9000
				Op (KN) Of (KN)	0.00	00.0	0.00	167.44	167.44	167.44	167.44	167.44	167.44	167.44	167.44	167.44	Op (KN)	890.77	890.77	890.77	890.77	890.77	200 77
				Op (kip)	37.64	37.64	37.64	37.64	37.64	37.64	37.64	37.64	37.64	37.64	37.64	37.64	Op lim (k	890.77	890.77	890.77	890.77	890.77	200 77
				J													ip calc (kn	1418.37	1660.27	1917.02	2173.78	2430.53	2685 58
		End Bearing															Op cale (k Op cale (kn Op lim (k Op (kN) Ot (kN)	318.88	373.26	430.99	488.71	546.43	Ens 77
	_	End											-		_		N _q	47.2	47.2	47.2	47.2	47.2	17.0
				ပ	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0		0.601	0.5944	0.5944	0.5944	0.5944	
				u (kPa) N	20.00	20.00	20.00	50.00	50.00	20.00	20.00	50.00	20.00	20.00	20.00	50.00	-bar (kp o	134.45	159.04	183.64	208.24	232.83	757 05 0 5044
				Cu (pst) Cu (kPa) Nc	044.28	044.28	1044.28	1044.28	1044.28	1044.28	1044.28	1044.28	1044.28	1044.28	1044.28	1044.28	q-bar (psf q-bar (kp α	2808.02	3321.72	3835.41	4349.11	4862.80	1272 07
				_	4.00525 1044.28	4.00525 1044.28	4.00525 1	4.00525 1	4.00525 1	4.00525 1	4.00525 1	4.00525 1	4,00525 1044.28	4.00525 1	4.00525 1044.28	4.00525 1044.28	Ap(الرً) q-	4.00525 2808.02	4.00525 3321.72	4.00525 3	4.00525 4	4.00525 4	3 30300
				Os-total (k Ap(ft²)	0.00	00'0	00.00	0.00	229.31	586.35	961.82	1355.55	1767.53	2197.77	2646.26	2784.16	Q (KN) A	2787.73	3539.15	4448.08	5514.51	6738.45	0440 47 4 AAEAE E272 A7
				Os (KN) Os	1.14	343.39	455.20	456.34	229.31	586.35	961.82	1355.55	1767.53	2197.77		1		2.24	753.66		2729.02	1	
				Os (kip)	0.25648	77.2019	102.337	102.594	51.5535	131.823	216.237	304.755	397.377 1	494.103 2	594.932 2646.26	625.936 2784.16	Q. (kips) Q. (kN)	0.5039		373.784 1662.59	613.539 2	888.706 3952.96	40 40 4407 00 5324 68
				a		. ~	•-	•	1	•			ř	1	*)	o a	0.0328	9.8753 169.438	19.718	29.56	39.403	40 40
																	ت ت	8.00525	8.00525	8.00525	8.00525	8.00525	909000
					0.0328	3.01 9.8753	13.091	4.00 13.123	2.01 6.5945	16.437	26.28	11.01 36.122	14.01 45.965	55.807	65.65	20.99 68.865	Sin 8		0.9678 0.5024	0.9678 0.5024	0.9678 0.5024	0.9678 0.5024	
		Skin Friction		٥	0.01		3.99			5.01	8.01			17.01	20.01		Ç	105.00 1.7993 0.9678 0.5024	3 0.9678				466 44 4 7003 0 0679 0 5034
		Skin		(¥) Cq	2.44 8.0052	2.44 8.0052	2.44 8.0052	2.44 8.0052	2.44 8.0052	2.44 8.0052	2.44 8.0052	2.44 8.0052	2.44 8.0052	2.44 8.0052	2.44 8.0052	2.44 8.0052	ኧ	1.799	1.7990	1.7990	1.7993	1.799	4 7002
					2.44		2.44	2.44	2.44	2.44	2.44	2.44	2.44						117.30 1.7993	129.60 1.7993	141.89 1.7993	154.19 1.7993	l
				Ca (KPa Cd (m)	46.76	46.76	46.76	46.76	46.76	47.97	49.21	50.46	51.71	52.96	54.20	54.36	م, ^د (bst)	2193	2449.8	2706.7	2963.5	3220.4	3 A7E E
			Ca (psf)	inter	976.5664	976.5664	976.5664	976.5664	976.5664	1001.8270	1027.8689	1053.9108	29.5246 1079.9527	1105.9946	1132.0364	40.9672 1135.4219	midpoint (m midpoint (ft) a'_ (psf) a'_ (kt/l)	25.005 82.037402	26.505 86.958661 2449.8	91.879921 2706.7	96.801181	31.005 101.72244 3220.4	400 04000 3475 E
			J		0.0164	4.9344	6.5410	6.5574	9.8525	14.7705	19.6885	24.6066	29.5246	34.4426	39.3607	40.9672	point (m n	25.005	26.505	28.005	29,505	31.005	20 AOE
				<u>\$</u>	0.03	9.88	13.09	13.12	19.72	29.56	39.40	49.25	59.09	68.93	78.77	81.99	mic	82.05	31.90	11.74	11.58	21.42	24.00
4				D (m) D	0.01	3.01	3.99	4.00	6.01	9.01	12.01	15.01 4	18.01 5	21.01 6	24.01 7	24.99 8		25.01 8	28.01 91.90	31.01 101.74	34.01 111.58	37.01 121.42	20 00 424 20
Example 4			Layer	٥	-	-	1	1a	1a	1a	1a 1	1a 1	1a 1	1a 2	1a 2	1a 2		2 2	2 2	2 3	2 3	2 3	0

Ultimate - soft soil

Example 4	ile 4	-	-										-											
							Skin Friction	riction											End	End Bearing				
Layer		Н)	Ca (pst)																				
	D (m) D (D (ft)		inter	Ca (kPa Cd (m)		Cd (ft)	٥				Os (kip) Os (kN)		Qs-total (k Ap(ft²)		Cu (pst) Cu (kPa)	Cu (kPa)	Se				Qp (kip) Qp (kN)		(<u>S</u>)
-	0.01	0.03	0.0164	976.5664	46.76	2.44	2.44 8.0052	0.01	0.01 0.0328			0.25648	1 14	-1.14	4.00525	4.00525 1044.28	20.00	9.0				37.64	0.00	-1.14
-	3.01	9.88	4.9344	976.5664	46.76	2.44	2.44 8.0052	3.01	3.01 9.8753			77.2019	343.39	-343.39	l	4.00525 1044.28	50.00	9.0				37.64	0.00	-343.39
-	3.99	13.09	6.5410	976.5664	46.76	2.44	2.44 8.0052	3.99	3.99 13.091			102.337	455.20	455.20	4.00525	4.00525 1044.28	20.00	9.0				37.64	0.00	-455.20
1a	4.00 1	13.12	6.5574	976.5664	46.76	2.44	2.44 8.0052	4.00	4.00 13.123			102.594	456.34	-456.34	4.00525	4.00525 1044.28	50.00	9.0				37.64	167.44	-288.90
1a	6.01	19.72	9.8525	976.5664	46.76	2.44	2.44 8.0052	2.01	2.01 6.5945			51.5535	229.31	-227.03	4.00525	4.00525 1044.28	50.00	9.0				37.64	167.44	-59.59
1a	9.01 2	29.56	14.7705	14.7705 1001.8270	47.97	2.44	2.44 8.0052	5.01	5.01 16.437			131.823	586.35	130.01	4.00525	4.00525 1044.28	50.00	9.0				37.64	167.44	297.45
1a	12.01	39.40	19.6885	19.6885 1027.8689	49.21	2.44	2.44 8.0052	8.01	26.28			216.237	961.82	505.48	4.00525	4.00525 1044.28	50.00	9.0				37.64	167.44	672.92
1a	15.01 4	49.25	24.6066	24.6066 1053.9108	50.46	2.44	2.44 8.0052	11.01	36.122			304.755	1355.55	899.21	4.00525	4.00525 1044.28	50.00	9.0				37.64	167.44	1066.65
1a	18.01 5	59.09	29.5246	29.5246 1079.9527	51.71	2.44	2.44 8.0052	14.01	14.01 45.965			397.377	1767.53	1311.20	4.00525	4.00525 1044.28	50.00	9.0				37.64	167.44	1478.63
1a	21.01	68.93	34.4426	34.4426 1105.9946	52.96	2.44	2.44 8.0052	17.01	25.807			494.103	2197.77	1741.43	4.00525	4.00525 1044.28	50.00	9.0				37.64	167.44	1908.87
1a	24.01 7	78.77	39.3607	39.3607 1132.0364	54.20	2.44	2.44 8.0052	20.01	65.65			594.932 2646.26	2646.26	2189.92		4.00525 1044.28	50.00	9.0				37.64	167.44	2357.36
1a	24.99 8	81.99	40.9672	40.9672 1135.4219	54.36	2.44	2.44 8.0052	20.99	20.99 68.865			625.936 2784.16	2784.16	2327.82		4.00525 1044.28	50.00	9.0				37.64	167.44	2495.26
		Ē	idpoint (m	midpoint (m midpoint (ft) o', (pst) o', (kN)	ر(psd) د	7, (KN)	K,	C,	Sin 8	ී	D	Q. (kips) Q. (kN)		Q. (KN)	Ap(ft²)	q-bar (psf q-bar (kp	q-bar (kp	В	N.	p calc (k	Op calc (k Op calc (kn Op Iim (k Op (kN) Ot (kN)	Op lim (k	CKN) dc	¥ (₹2)
2	25.01 8	82.05	25.005	25.005 82.037402	2193	105.00	1.7993	105.00 1.7993 0.9678 0.5024	0.5024	8.00525 0.0328	0.0328	6603.0	2.24	2331.39		4.00525 2808.02	134.45	0.601	47.2	318.88	1418.37	890.77	890.77	3222.16
2	28.01 9	91.90	26.505	26.505 86.958661 2449.8	2449.8	117.30	1.7993	117.30 1.7993 0.9678 0.5024	0.5024	8.00525	9.8753	169,438	753.66	3082.81	4.00525	4.00525 3321.72	159.04	0.5944	47.2	373.26	1660.27	890.77	890.77	3973.58
2	31.01 101.74	01.74	28.005	28.005 91.879921 2706.7	2706.7	129.60	1.7993	129.60 1.7993 0.9678 0.5024	0.5024	8.00525		19.718 373.784	1662.59	3991.74	4.00525 3835.41	3835.41	183.64	0.5944	47.2	430.99	1917.02	890.77	890.77	4882.51
2	34.01 11	111.58	29.505	29.505 96.801181 2963.5	2963.5	141.89	1.7993	141.89 1.7993 0.9678 0.5024	0.5024	8.00525	29.56	613.539	2729.02	5058.17	4.00525	4.00525 4349.11	208.24	0.5944	47.2	488.71	2173.78	890.77	890.77	5948.94
7	37.01 121.42	21.42	31,005	31.005 101.72244 3220.4	3220.4	154.19	1.7993	154.19 1.7993 0.9678 0.5024	0.5024	8.00525	39.403	39.403 888.706	3952.96	6282.11	4.00525	4.00525 4862.80	232.83	0.5944	47.2	546.43	2430.53	890.77	890.77	7172.88
7	39.99 131.20	31.20	32.495	32.495 106.61089 3475.5	3475.5	166.41	1.7993	166.41 1.7993 0.9678 0.5024	0.5024	8.00525	49.18	49.18 1197.09 5324.68		7653.83		4.00525 5373.07	257.26	0.5944	47.2	603.77	2685.58	890.77	890.77	8544.60

ex4.xis

0 m 1 m C_u = 100 kPa γ = 18 kN/m³ 17% Driving Loss

φ = 32°Skin Friction
 φ = 32°End Bearing
 γ = 18.5 kN/m³
 8% Driving Loss
 17 m
 φ = 36°Skin Friction
 φ = 36°End Bearing
 γ = 18.5 kN/m³
 8% Driving Loss
 24 m
 φ = 38°Skin Friction
 φ = 38°End Bearing
 γ = 19 kN/m³
 5% Driving Loss

Water Table

31 m

Drilling = 2 m

Restrike/Driving = 2 m

Ultimate = 0 m

Pile - Opened End Pipe

Diameter = 508 mm

Shell Thickness = 6.35 mm

Other Design Considerations:

1.5 m Soft Soil

Example 5		Layer	۵	+	-	•	1	7	-	-	9	2	2	2	2b	2b	3	3	3	3	4	4	4	
2		Analysis	Depth (m)	0.01	0.99	1.00	3.01	6.01	9.01	66.6		10.01	13.01	15.23	15.25	16.99	17.01	20.01	23.01	23.99	24.01	27.01	30.01	
		Analysis	Depth (ft)	0.03	3.25	3.28	9.88	19.72	29.56	32.78		32.84	42.68	49.97	50.03	55.74	55.81	65.65	75.49	78.71	78.77	88.62	98.46	
			8	0.0000	0.0000	0.0000	3.9567	9.8622	15.7677	17.6969	midpoint (ft o', (psf)	32.8248	37.7461	41.3878	50.0164	52.8707	25.7907	60.7119	65.6332	67.2408	78.7566	83.6778	88.5991	l
		Ca (pst)	inter	1138.43358	1138.43358	1138,43358	1138.43358	1138.43358	1217.64131	1244.13400	a', (psf)	2122.67	2395,18	2596.84	3074,64	3232,70	3394,39	3666,90	3939.41	4028,44	4666.16	4954.34	5242.52	
			Ca (kPa)	00:00	9.00	8 54.51	8 54.51	8 54.51	11 58.30	0 59.57	σ', (kPa)	7 101.63		4 124.34	4 147.21	0 154.78	9 162.52	0 175.57	188.62	4 192.88	6 223.42	4 237.21		Ì
	S		Cd (m)								ጜ	3 0.98356	114.68 0.98356 0.89839				2.2507		2.2507				251.01 2.84556 0.89820	
	Skin Friction		Cd (ft)	1.59593 5.23599	1.59593 5.23599	1.59593 5.23599	1.59593 5.23599	1.59593 5.23599	1.59593 5.23599	1.59593 5.23599	ΰ	0.89839	0.89839	0.98356 0.89839	1.53229 0.92865	1.53229 0.92865	0.90835	2.2507 0.90835	0.90835	2,2507 0,90835	2.84556 0.89820	2.84556 0.89820	0.89820	
	١		(#)	0	0	0	6:29	16.44	26.28	29.49	Sin 8	0.41	0.41	0.41	0.43	0.43	0.48	0.48	0.48	0.48	0.50	0.50	0.50	-
											ပီ	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24	
1			J						-		0	0.03281	9.87533	17.15879	0.03281	5.74147	0.03281	9.87533	5.24 19.71785	5.24 22.93307	5.24 0.032808	5.24 9.875328	19.7178	
	1		Os (kip) Os	0	0	0	39.3086	97.9781	167.547	192.137	Q, (kips) Q,	0.132	44.689	84.186	0.324	59.612	0.573	186.317	399.661	475.335	1.034	330.578	698.450	
			Os (KN)	00:0	0.00	0.00	174.84	435.81	745.25	854.62	Q (KN)	65.0	198.77	374.46	1.44	265.16	2.55	828.74	17777.69	2114.29	4.60	1470.41	3106.71	
			Os-total (kN)	00:00	0.00	00:00	174.84	435.81	745.25	854.62	Q, (KN)	856.35	1054.54	1230.22	1232.51	1496.22	1500.36	2326.55	3275.51	3612.10	3620.20	5086.01	6722.31	
			Ap(ft)	0.00000	0.00000	2.18166	2.18166	2.18166	2.18166	2.18166	Ap(ft²)	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	
+	1		Cu (pst) C	2088.55	2088.55	2088.55	2088.55	2088.55	2088.55	2088.55	q-bar (psf q-bar (kpa α	2123.58	2668.60	3071.92	3075.55	3391.67	3395.30	3940.32	4485.35	4663.39	4667.13	5243.48	5819.83	
	1		Cu (kPa) Nc	100.00	100.00	100.00	100.00	100.00	100.00	100.00	-bar (kpa a	101.68	127.77	147.08	147.26 0.58796	162.39	162.57	188.66	214.76	223.28	223.46	251.06	278.65	
+	-		0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	z	0.6256	0.6045	0.5881	3.58796	0.5817	0.6892	0.6879	0.6867	0.6867	0.722	0.722	0.722	
+	End Bearing										ð	40.40	40.40	40.40	40.40	40.40	77.60	77.60	77.60	77.60	110.40	110.40	110.40	
	ırıng										Op calc (k) Op	117.09 71.994832	142.18 71.994832	159.22 7	159.38 71.994832	173.88 7	396.18	458.90	521.42	542.12	811.60	911.83	1012.05	
			O								Op lim (k)	1.994832	1.994832	71.994832	1.994832	71.994832	330.74	330.74	330.74	330.74	585.99	585.99	585.99	
			Qp (kip) Qp	00.00	00.0	41.01	41.01	41.01	41.01	41.01	Qp (kip) Qp	71.99	71.99	71.99	71.99	71.99	330.74 14	330.74 14	330.74 14	330,74 1471,13	585.99 20	585.99 26	585.99 20	
	-		Op (kN) Ot (kN)	0.00	0.00	182.41 182.41	182.41	182.41 618.21	182.41 927.65	182.41 1037.03	Op (KN) Or (KN)	320.23 1176.58	320.23 1374.77	320.23 1550.45	320.23 1552.74	320.23 1816.46	1471.13 2971.49	1471.13 3797.68	1471.13 4746.64	171.13 5083.23	2606.50 6228.71	2606.50 7692.51	2606.50 9328.81	

S

				Q (KN)	0.00	0.80	0.00	197.64	492.62	787.61	883.97	Qt (KN)	885.60	1067.93	1229.56	1551.90	1794.51	2949.22	3709.31	4582.35	4892.02	6035.09	7427.61	8982.09	9524 98
				Qp (kN)	0.0	0.00	0.0	0.0	0.00	0.00	0.00	Qp (kN)	0.0	0.00	0.00	320.23	320.23	1471.13	1471.13	1471.13	1471.13	2606.50	2606.50	2606.50	2606 50
			-	Qp (kip) C	0.0	0.00	0.0	0.0	0.00	0.0	0.00		0.00	0.00	0.00	71.99	71.99	330.74	330.74	330.74	330.74	585.99	585.99	585.99	585 99
				O								b lim (k) c	0.00 71.99483	71.99483	71.99483	1.99483	71.99483	330.74	330.74	330.74	330.74	585.99	585.99	585.99	585 99
-		End Bearing			-							Qp calc (k) Qp lim (k) Qp (kip)	0.00	0.00	0.00	159.38 71.99483	173.88 7	396.18	458.90	521.42	542.12	811.60	911.83	1012.05	1044 80
_		End B			-					_		å	40.40	40.40	40.40	40.40	40.40	09.77	77.60	77.60	77.60	110.40	110.40	110.40	110.40
			L		9.0	9.0	9.0	9.0	9.0	9.0	9.0	z	_		8	96	317	392	379	298		0.722			
			L) Nc	L							Ba	0.0000	0.0000	0.0000	6 0.58796	9 0.5817	7 0.6892	6 0.6879	6 0.6867	8 0.6867				
				Cu (kPa) Nc	100.00	100.00	100.00	100.00	100.00	100.00	100.00	q-bar (psf q-bar (kp	8 101.68	127.77	2 147.08	5 147.26	7 162.39	0 162.57	2 188.66	5 214.76	9 223.28	3 223.46	8 251.06	3 278.65	1 287 67
				(psd) no	0.0	0.00	0.00	0.00	0.0	0.00	0.00	q-bar (ps	2123.58	2668.60	3071.92	3075.55	3391.67	3395.30	3940.32	4485.35	4663.39	4667.13	5243.48	5819.83	6008 11
			Ĺ	Ap(ft')	0.0000	0.00000	2.18166	2.18166	2.18166	2.18166	2.18166	Ap(ft²)	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2.18166	2 18166
				Os-total (00.0	0.00	0.00	197.64	492.62	787.61	883.97	Q, (KN)	885.60	1067.93	1229.56	1231.66	1474.28	1478.09	2238.18	3111.22	3420.89	3428.59	4821.11	6375.59	6918 48
				(KN)	0.00	0.00	0.00	197.64	492.62	787.61	883.97	KN)	0.54	182.87	344.50	1.33	243.94	2.34	762.44	1635.48	1945.15	4.37	1396.89	2951.37	3494 26
	-) Qs (kN)	•	0	0	32111	51437	39662	198.733616	s) Q _s (kN)	0.121	41.114	77.451	0.298	54.843	0.527	171.411	367.688	437.308	0.983	314.049	663.528	785 581
			Loss	Os (kip)	17%	17%	17%	17% 44.4332111	17% 110.751437	17% 177.069662	17% 198.73	Q _s (kips)	8%	8%	8% 7	8%	8%	8%	8% 17	8%	8% 43	5%	5% 31		5% 78
			Driving Loss	(%)	1,	17	1	-	17	17	11														L
												٥	0.03281	9.87533	17.15879	0.03281	5.74147	0.03281	9.87533	19.71785	22.93307	0.032808	9.875328	19.717848	22 933071
		_										ီ၁	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24	5.24
		Skin Friction	-	D (#)	0	0	0	6.59	16.44	26.28	29.49	Sin 8	0.41	0.41	0.41	0.43	0.43	0.48	0.48	0.48	0.48	0.50	0.50	0.50	0.50
		Š		Cd (#) D	5.23599	5.23599	5.23599	5.23599	5.23599	5.23599	5.23599		0.89839	89839	0.89839	3.92865	0.92865	0.90835	0.90835	0.90835	0.90835	0.89820	0.89820	0.89820	89820
				Cd (m) C	1.59593 (1.59593	1.59593	1.59593	1.59593	1.59593 5.23599	1.59593	٥	0.98356	114.68 0.98356 0.89839	0.98356	1.53229 0.92865	1.53229	2.2507	2.2507	2.2507	2.2507	2.84556	2.84556 0.89820	2.84556	255.52 2.84556 0.89820
				Ca (kPa) C	00:0	0.00	54.51	74.23	74.23	74.23	74.23	o'(kPa) K _s	101.63	114.68	124.34	147.21	154.78	162.52	175.57	188.62	192.88	223.42	237.21	251.01	255.52
Н			(₁	ပိ	1550.42189	1550.42189	1550.42189	1550.42189	1550.42189	1550.42189	1550.42189		2122.67	2395.18	2596.84	3074.64	3232.70	3394.39	3666.90	3939.41	4028.44	4666.16	4954.34	5242.52	5336.66
			Ca (psf)	inter								midpoint (ft a', (psf)						١,							
				a∩ (3 40,0000	40.0000	8 40.0000	8 40.0000	2 40.0000	6 40.0000	8 40.0000	midpoint	4 32.8248	37.7461	7 41.3878	3 50.0164	4 52.8707	1 55.7907	5 60.7119	9 65.6332	1 67.2408	7 78.7566	2 83.6778	.6 88.599	7 90.2067
			Analysis	Depth (ft)	0.03	3.25	3.28	9.88	19.72	29.56	32.78		32.84	1 42.68	3 49.97	5 50.03	3 55.74	1 55.81	65.65	75.49	78.71	18.77	88.62	1 98.46	101.67
5			Analysis	Depth (m)	0.01	0.39	1.00	3.01	6.01	9.01	9.99		10.01	13.01	15.23	15.25	16.99	17.01	20.01	23.01	23.99	24.01	27.01	30.01	30.99
Example 5			Layer A	0	1	1	1	1	1	1	F		2	2	. 2	2p	2b	3	3	3	3	4	4	4	4

Analysis Ca (psf) Ca (psf) Ca (kpa) Ca (kip) Os (kip)
Skin Friction Skin Frictio
Skin Friction Skin Frictio
Skin Friction Skin Frictio
Skin Friction
Skin Friction Skin Frictio
Skin Friction Skin Frictio
Skin Friction Depth (ft) Lb Ca (psf) Ca (kPa) Ca (kPa)
Skin Friction Ca (pst) Ca (pst) Ca (pst) Ca (kPa) Ca (
Skin Friction
Skin Friction Skin Friction Skin Friction Skin Friction Ca (pst)
Skin Friction Skin Frictio
Skin Friction Skin Friction Ca (psf)
Skin Friction Skin Frictio
Skin Friction Ca (psf) Ca (wPa) Cd (m)
Skin Friction Skin Frictio
Skin Friction Ca (psq) Ca (
Ca (pst) Ca (pst) Ca (kPa) Ca (m) Ca (kPa) Ca (m) Ca
Ca (psf) Ca (psf)
Palysis Analysis Ca (psf) Pepth (m) Depth (f) L/b inter 0.01 0.03 0.0000 1138.43358 1.00 3.28 0.0000 1138.43358 1.00 3.28 0.0000 1138.43358 1.00 3.28 0.0000 1138.43358 1.50 4.89 0.9845 1138.43358 3.01 9.89 3.9842 1138.43358 9.01 29.56 15.7677 1217.64131 9.99 32.78 17.6969 1244.13400 10.01 32.84 17.6969 1244.13400 10.01 32.84 32.8248 1713.22 13.01 42.68 37.7461 1985.73 15.23 49.97 41.3878 2187.39
Palysis Analysis Capth (ft) Depth (ft) L/b int 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Palysis Analysis epth (m) Depth (m) 0.01 0.03 0.09 0.09 0.00 0.00 0.00 0.00 0.00
allysis eph (m) 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.0
3yer Ann ayer Ann 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

70 ft-

Water Table Pilo
Drilling = 6 ft
Restrike/Driving = 3 ft
Ultimate = 1-ft

Pile - Open Ended Pipe diameter = 36 in. wall thickness = 0.5 in.

Other Design Considerations:

1-ft local scour

3 ft long term scour

Example 6	3																	
Layer	Analysis	Analysis Mid point						_										
	Depth	of layer	K-delta	Ç	Pd (psf)	Sin delta	Cd (#) [D (ff) C	Qs (k)		Ap(ft^2)	q-bar	alpha	N'q	Qcalc (k)	Qcalc (k) Qp lim (k Qp (k)		Qt (k)
1	0.01						_											
1	66.0																	
-	1.01																	
-	1.99																	
-	2.00	1.500			0.0								0.63437				45.63	45.63
-	2.99	2.495	1.25360			0.500	9.42	0.99	1.71	1.71	7.07		358.80 0.63437	42.4	68.22	:	68.22	69.92
1	3.01	3.005	1.25360	0.974	360.29	0.500	9.42	0.01	0.02	1.75			0.63437			271.326	68.55	70.30
~	12.01	7.505	1.25360	0.974	619.49	0.500	9.42	9.01	32.14	33.86	70.7		878.98 0.63437	42.4	167.12	271.326	167.12	200.98
1	14.99	8.995	1.25360	0.974	705.31	0.500	9.45	11.99	48.69	50.42	7.07	Ì	1050.62 0.63437	42.4	199.75	271.326	199.75	250.17
																	•	
	15.01	15.005	1.47415	9696.0	1051.49	0.532	9.42	0.01	0.08	50.55	70.7		1051.78 0.67483	61.47	308.42	688.16	308.42	358.97
2	24.01	19.505	1.47415	9696.0	1310.69	0.532	9.45	9.01	84.71	135.19	7.07		1570.18 0.67483	61.47	460.44	688.16	460.44	595.62
2	33.01	24.005	1.47415	0.9696	1569.89	0.532	9.45	18.01	202.81	253.29	7.07		2088.58 0.67483	61.47	612.45	688.16	612.45	865.74
2	34.99	24.995	1.47415	0.9696	1626.91	0.532	9.42	19.99	233.28	283.76	7.07		2202.62 0.67483	61.47	645.90	688.16	645.90	929.66
				Cu (psf) alpha	alpha	Ca (psf)] (¥) PO	(#) a			Ap	Su	Nc					
က	35.01			2500.00	1.00	2500.00	9.42	0.01	0.24	284.16	20'2		9.00				159.043	443.20
3	44.01			2500.00	1.00	2500.00	9.42	9.01	212.29	496.21	20'2	2500.00	9.00				159.043	655.26
3	53.01			2500.00	1.80	2500.00	9.45	18.01	424.35	708.27	20'2		9.00				159.043	867.31
4	62.01			2500.00	1.00	2500.00	9.42	27.01	636.41	920.33	70.7	2500.00	9.00				159.043	1079.37
5	69.33			2500.00	0.97	2431.86	9.42	34.99	801.96	1085.88	70.7	2500.00	00.6				159.043	1244.92

Restrike

Example 6	·~																		
Layer	Analysis	Analysis Mid point							Driving										
	Depth	of layer	K-delta	Cf	Pd (psf)	Sin delta	(¥) PO	1 (w) a) (%) sson	Qs (k)	⋖	Ap(ft^2) c	q-bar	alpha	Ŋ,d	Qcalc (k)	Qcalc (k) Qp lim (k) Qp (k)		Qt (K)
1	0.01																		
-	0.99																	-	
1	1.01														***************************************	•			
1	1.99																		
1	2.00	1.500										0.00	240.00	240.00 0.63437	42.4		271.326		00.0
1	2.99	2.495	1.25360	0.974			9.42	0.99	15%	1.45	1.45	0.00	358.80	358.80 0.63437	42.4		271.326	0.00	1.45
1	3.01	3.005	1.25360	0.974	360.29	0.500	9.42	0.01	15%	0.02	1.49	0.0	360.58	360.58 0.63437	42.4	0.00	271.326		1.49
1	12.01	7.505	1.25360	0.974	619.49	0.500	9.45	9.01	15%	27.32	28.78	0.00	878.98	878.98 0.63437	42.4	00.00	271.326	0.00	28.78
1	14.99	8.995	1.25360	0.974	705.31	0.500	9.42	11.99	15%	41.39	42.85	0.00	1050.62	1050.62 0.63437	42.4	00.00	271.326	0.00	42.85
	15.01	li	1.47415	0.9696	1051.49	0.532	9.42	0.01	10%	0.07	42.98	0.00	1051.78	1051.78 0.67483	61.47	0.00	688.16	0.00	42.98
2	24.01	19.505		0.9696	1310.69	0.532	9.42	9.01	10%	76.24	119.15	0.00	1570.18	1570.18 0.67483	61.47	0.00	688.16	0.00	119.15
2	33.01	24.005	1.47415	0.9696	1569.89	0.532	9.42	18.01	10%	182.53	225.44	0.00	2088.58	2088.58 0.67483	61.47	00'0	688.16	0.00	225.44
2	34.99	24.995	1.47415	0.9696	1626.91	0.532	9.42	19.99	10%	209.96	252.86	0.00	2202.62	2202.62 0.67483	61.47	0.00	688.16	0.00	252.86
				Cn (bst)	alpha	Ca (psf)	(#) PO	D (ft)			▼	Ap	Su	Nc					
3	35.01			2500.00	0.53	1325.52	9.42	0.01	22%	0.097	253.09	0.00	2500.00	00'6	!			0	253.09
3	44.01			2500.00	65.0	1325.52	9.42	9.01	22%	87.797	340.78	0.00	2500.00	9.00				0	340.78
3	53.01			2500.00		1325.52	9.42	18.01	22%	175.496	428.48	0.00	2500.00	00'6				0	428.48
4	62.01			2500.00	0.53	1325.52	9.42	27.01	22%	263.195	516.18	0.00	2500.00	00'6				0	516.18
5	69.99			2500.00	0.53	1325.52	9.42	34.99	22%	340.955	593.94	0.00	2500.00	00'6				0	593.94

Driving

Mid point Color Ped (psf) Sin delta Cd (ft) D (ft) Qs (k) Ap(ft'2) q-bar aipha N'q Qcalc (k) Qp Im (k Qp (k) Qt Qt Qt Qt Qt Qt Qt Q	Example 6	2																	
Automatical Michaelina Automatical Michael																			
Depth Of layer K-defta Cf Def (psf) Sin defta Cf (ft) D(ft) Qs (k) Def (ht) Cf (ht)	Layer	Analysis	Mid point																
1 0 0 0 0 0 0 0 0 0		Depth		K-delta	ਨੁੱ	Pd (pst)		(ft)		വട (k)		Ap(ft^2)	q-bar	alpha	N'q	Qcalc (k) Op lim (k	Qp (k)	2t (k)
1 1.09 1.09 1.00 1.0	1	0.01																	
1 10 10 10 10 10 10 10	-	0.99																	
1 199	1	1.01																	
1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00 1 2.00	-	1.99																	
1 2.99 1 2.99 1 2.99 1 2.99 1 2.99 1 2.99 1 2.99 1 2.90 1 2.90 1 2.90 1 2.90 1 2.90 1 2.90 1 2.90 1 2.90 2.20	-	2.00																	
3.00 3.01 3.01 3.02	_	2.99																	
1 3.01 3.01 4.02 0.000 9.42 8.01 13.30 7.07 57.60 0.63437 42.4 10.95 27.1326 10.95 1 4.00 1.25360 0.974 288.29 0.500 9.42 8.01 13.30 7.07 518.98 0.63437 42.4 10.95 27.1326 10.95 1 1.201 4.005 1.25360 0.974 374.11 0.500 9.42 10.99 23.67 7.07 518.98 0.63437 42.4 131.31 271.326 131.31 1 1.201 4.005 1.25360 0.974 374.11 0.500 9.42 10.01 0.05 23.76 7.07 690.62 0.63437 42.4 131.31 271.326 131.31 2 24.01 1.5005 1.47415 0.9896 680.63 9.42 10.01 0.05 23.76 7.07 128.83 61.47 55.87 131.31 131.31 131.31 131.31 131.31	-	3.00																	
1 3.99 1 3.99 1 3.99 1 3.99 1 3.99 1 3.99 1 4.00 0.000 1 2.00 0.6509 9.42 8.01 13.30 13.30 7.07 518.99 0.63437 42.4 10.95 27.1326 10.95 27	-	3.01																	
1 4,00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000 4.00 0.000	1	3.99																	
12.01 4.005 1.25360 0.974 288.29 0.500 9.42 8.01 13.30 13.30 7.07 518.98 0.63437 42.4 98.67 271.326 98.67 98.67 13.131 271.326 98.67 13.131 271.326 98.67 13.131 271.326 98.67 13.131 271.326 13.131 13.13	-	4.00										70.7)9'25						10.95
14.99 5.495 1.25360 0.974 374.11 0.500 9.42 10.99 23.67 7.07 690.62 0.63437 42.4 131.31 271.326 131.31 15.01 15.02 1.47415 0.9696 691.49 0.532 9.42 0.01 0.05 23.76 7.07 1210.18 0.67483 61.47 202.86 688.16 202.86 24.01 19.505 1.47415 0.9696 1209.89 0.532 9.42 18.01 166.39 7.07 1210.18 0.67483 61.47 506.89 688.16 50.89 33.01 24.00 1.47415 0.9696 1206.91 0.613 181.66 205.38 7.07 1728.58 0.67483 61.47 540.33 688.16 506.89 33.01 24.096 1.266.91 0.610 0.610 0.02 181.06 7.07 182.62 0.67483 61.47 540.33 688.16 506.89 35.01 24.90 1.00 250.00		12.01	4.005						8.01	13.30	13.30	70.7	518.98	3 0.63437	42		_		111.97
15.01 15.005 1.47415 0.9696 691.49 0.532 9.42 0.01 0.05 23.76 7.07 691.78 0.67483 61.47 202.86 688.16 202.86 24.01 19.505 1.47415 0.9696 950.69 0.532 9.42 18.01 180.02 7.07 1728.58 0.67483 61.47 506.89 688.16 508.89 24.01 19.505 1.47415 0.9696 1209.89 0.532 9.42 18.01 180.02 7.07 1728.58 0.67483 61.47 506.89 688.16 506.89 33.01 24.005 1.47415 0.9696 1266.91 0.61 0.24 205.38 7.07 1728.58 0.67483 61.47 540.33 688.16 506.89 33.01 24.995 1.676.99 18.06 0.01 0.24 20.01 0.024 205.74 7.07 2500.00 9.00 159.043 35.01 2500.00 1.00 2500.00 1.00	1	14.99							10.99	23.67	23.67	7.07	9.069		42		_		154.98
15.01 15.005 1.47415 0.9696 691.49 0.532 9.42 0.01 0.05 23.76 7.07 691.78 0.67483 61.47 202.86 688.16 202.86 24.01 19.505 1.47415 0.9696 950.69 0.532 9.42 18.01 156.30 7.07 1728.58 0.67483 61.47 506.89 688.16 506.89 33.01 24.005 1.47415 0.9696 1209.89 0.532 9.42 18.01 156.30 7.07 1728.58 0.67483 61.47 506.89 688.16 506.89 33.01 24.005 1.47415 0.9696 1266.91 0.532 9.42 18.16 205.38 7.07 1822.62 0.67483 61.47 540.33 688.16 540.33 35.01 24.995 1.06 (psf) 1.06 (psf) 1.06 (psf) 0.07 2500.00 9.00 0.07 2500.00 9.00 0.07 2500.00 9.00 0.07 2500.00 9.00 0.0																			
24.01 19.505 1.47415 0.9696 950.69 0.532 9.42 9.01 61.44 85.15 7.07 1210.18 0.67483 61.47 354.87 688.16 354.87 33.01 24.005 1.47415 0.9696 1209.89 0.532 9.42 18.02 7.07 1728.58 0.67483 61.47 506.89 688.16 506.89 33.01 24.005 1.47415 0.9696 1266.91 0.532 9.42 18.16 205.38 7.07 182.20 0.67483 61.47 540.33 688.16 506.89 34.99 1.47.11 0.9696 1.266.91 0.41 0.07 1.07 2500.00 9.00 0.07 1.500.00 9.00 0.07 1.500.00 9.00 0.00		15.01	15.005	Ì					0.01	0.05	23.76	7.07	82.18	3 0.67483					226.62
33.01 24.005 1.47415 0.9696 1209.89 0.532 9.42 18.01 156.30 17.28.58 0.67483 61.47 506.89 688.16 506.89 34.99 24.995 1.47415 0.9696 1266.91 0.532 9.42 19.99 181.66 205.38 7.07 1842.62 0.67483 61.47 540.33 688.16 506.89 1 1 1 0.632 9.42 19.99 181.66 205.38 7.07 1842.62 0.67483 61.47 540.33 688.16 540.33 35.01 2 1 0.04 2.06 0.07 2500.00 9.00 0.07 2500.00 9.00 0.00 159.043 44.01 2500.00 1.00 2500.00 9.42 18.01 424.35 629.86 7.07 2500.00 9.00 0.00 159.043 159.043 69.99 1 0.07 2500.00 9.00 1.00 2500.00 9.42 27.01 636	2	24.01	19.505						9.01	61.44	85.15	7.07	1210.18	3 0.67483					440.03
34.99 24.995 1.47415 0.9696 1266.91 0.532 9.42 19.99 181.66 205.38 7.07 1842.62 0.67483 61.47 540.33 688.16 540.33 35.01 Cu (psf) lapha Ca (psf) Cd (ft) D (ft) Ca (psf) Cd (ft) D (ft) Ca (psf) Cd (ft) Cd (ft) Ca (psf) Cd (ft) Ca (psf) Ca	2	33.01	24.005							156.30	180.02	7.07	1728.58	3 0.67483				- 1	686.90
35.01 Cu (psf) lapha Ca (psf) Cd (ft) D (f	2	34.99					0.532			181.66	205.38	7.07	1842.6	0.67483					745.71
35.01 2500.00 1.00 2500.00 9.42 0.01 0.24 205.74 7.07 2500.00 9.00 159.043 44.01 2500.00 1.00 2500.00 9.42 9.01 212.29 417.80 7.07 2500.00 9.00 159.043 53.01 2500.00 1.00 2500.00 9.42 18.01 424.35 629.86 7.07 2500.00 9.00 159.043 159.043 62.01 2500.00 1.00 2500.00 9.42 27.01 636.41 841.92 7.07 2500.00 9.00 159.043 159.043 69.99 2500.00 0.97 2421.86 9.42 34.99 801.96 1007.47 7.07 2500.00 9.00 159.043 159.043					1	alpha		(L)	D (ff)			Αp	Su	S					
44.01 2500.00 1.00 2500.00 9.42 9.01 212.29 417.80 7.07 2500.00 9.00 159.043 53.01 2500.00 1.00 2500.00 9.42 18.01 424.35 629.86 7.07 2500.00 9.00 159.043 62.01 62.01 2500.00 1.00 2500.00 9.42 27.01 636.41 841.92 7.07 2500.00 9.00 159.043 159.043 69.99 2500.00 0.97 2421.86 9.42 34.99 801.96 1007.47 7.07 2500.00 9.00 159.043 159.043	3	35.01			2500.00				0.01	0.24	205.74	7.07	2500.00					159.043	364.79
53.01 2500.00 1.00 2500.00 9.42 18.01 424.35 629.86 7.07 2500.00 9.00 159.043 159.043 62.01 62.01 62.01 7.07 2500.00 9.00 159.043 159.043 69.99 100.02 2500.00 9.42 27.01 636.41 841.92 7.07 2500.00 9.00 159.043 159.043 100.00	3	44.01			2500.00			9.42	9.01	212.29	417.80	70.7	2500.00					159.043	576.84
62.01 2500.00 1.00 2500.00 9.42 27.01 636.41 841.92 7.07 2500.00 9.00 159.043 69.99 2500.00 0.97 2431.86 9.42 34.99 801.96 1007.47 7.07 2500.00 9.00 159.043 159.043	3	53.01			2500.00			9.45		424.35	629.86	7.07						159.043	788.90
69.99 2500.00 0.97 2431.86 9.42 34.99 801.96 1007.47 7.07 2500.00 9.00 159.043	4	62.01			2500.00			9.42		636.41	841.92	7.07						159.043	1000.96
	5	69.33			2500.00		2431.86	9.45	34.99	801.96	1007.47	70.7	2500.00					159.043	1166.51

Ultimate

0 ft-

 $C_u = 1580 \text{ psf}$ $\gamma = 110 \text{ pcf}$ 20% Driving Loss

10 ft _____

 $\phi = 27^{\circ}$ Skin Friction

 $\phi = 33^{\circ}$ End Bearing

γ = 120 pcf 10% Driving Loss

20 ft-

 $\phi = 38^{\circ}$ Skin Friction

 $\phi = 38^{\circ}$ End Bearing

 $\gamma = 120 \text{ pcf}$

2% Driving Loss

30 ft -----

Water Table

Pile - Timber

Drilling = 0 ft

Restrike/Driving = 5 ft

Ultimate = 0 ft

diameter at top = 12 in. diameter at bottom = 8 in.

length of taper = 30 ft

Other Design Considerations:

3 ft Soft Soil

Exan	Example 7																	
Laye	Layer Analysis	Mid point	ıt															
	Depth	of layer				Ca (psf)	1 (H) bo	D (#) a	Qs layer Q	Qs total /	Ap(ft^2 Su	•	Nc		Qcalc (k)	Qp lim (k	Qp (k) (at (k)
1	0.01	0.005	19			1280.000	2.095	0.01	0.03	0.03	0.35	1580.00	00000016		4.96		4.96	4.99
_	9.01	4.505	10			1302.969	2.252	9.01	26.43	26.43	0.35	1580.00	9.000000		4.96		4.96	31.40
,	9.39	4.995				1314.245	2.269	9.99	29.79	29.79	0.35	1580.00	9.000000		4.96		4.96	34.75
						Ca (pst)	Cd (ft) [(#) a										
			K-delta	Ç.	Pd (pst)	Sin delta	1 (¥) PO	D (ft)		1	Ap(ft^2 q-bar	bar	alpha	h,N				
-	10.01 0-10	5.000	(-	ŀ	1314.340	2.269	10.00	29.83									
5	10.01 10-10.01	0.01 0.005		1.3629018 0.7473127	788.29		2.095	0.01	0.00	29.83	0.35	788.58	0.645600	47.2000	8.39	17.4533	8.39	38.22
<u>-</u>	19.01 0-10	5.000	(1		1299.301	2.583	10.00	33.57									
2	19.01 10-19.01	9.01 4.505		1.3793281 0.7665019	1047.49	0.22410	2.252	9.01	5.03	38.60	0.35	1306.98	0.622099	47.2000	13.40	17.4533	13.40	52.00
_	19.99 0-10	5.000	- 0	-	-	1297.88	2.618	10.00	33.97									
7	19.99 10-1	10-19.99 4.995	1.3810471	0.76838	1075.71	0.22560	2.269	9.99	5.84	39.81	0.35	1363.42	0.618041	47.2000	13.88	17.4533	13.88	53.69
						Ca (psf)] (#) bo	D (#)										
			K-delta	Ç	Pd (pst)	Sin delta	2d (ft)	(#) D										
-	20.01 0-10	5.000				1297.852 2.61834	2.61834	10	33.98									
2	20.01 10-20	00005 0		1.3810995 0.7684346	1076	1076 0.225642	2.26928	10	5.85									
က	20.01 2020.01	20.01 0.005	9.7959605	9.7959605 0.5875655	1364.29	1364.29 0.248254	2.09457	0.01	0.04	39.87	0.35	1364.58	0.722000	110.4000	37.97	93.7591	37.97	77.84
	29.01 0-10	2.000				1286.37	2.9325	10	37.72									
	29.01 10-20	0002 0	1.4105515	1.4105515 0.8036173	1076	1076 0.253635	2.58344	10	7.99									
	29.01 20-29.01	9.01 4.505		9.8117149 0.6142635	1623.49	1623.49 0.310612	2.25165	9.01	61.66	107.37	0.35	1882.98	0.722000	110.4000	52.39	93,7591	52.39	159.76
	29.99 0-10	5.000				1285.266	2.96671	10	38.13									
	29.99 10-20.00		5.000 1.4135395	0.807118	1076	0.25641 2.61764	2.61764	10	8.24									
	29.99 20-29.99	4	4.995 9.8133636 0.6168723	0.6168723	1651.71	1651.71 0.312667 2.26875	2.26875	9.99	70.86	117.23	0.35	1939.42	0.722000	110.4000	53.96	93.7591	53.96	171.19

Restrike

Exam	Example 7																				
[]	A not de		100],					\int				†							ľ	
Laye	Depth		of laver	_			Ca (bsf)	æ PS	(E)	Os laver	Loss	Os lav lo	Os total	Ap(ff^2)	Su	S		Ocalc (k)	Op lim (Op (k)	1	Of (K)
_	0.01		0.005				1280.000		10	_	8	0.02	ऻ॑≂	0.35		+		4.96		4.96	4.99
1	9.01		4.505				1302.969		6	26.43	20%	21.15	21.15	0.35	1580.00	_		4.96		4.96	26.11
1	9.99		4.995				1314.245		ြ		20%	23.83	23.83	0.35	1580.00			4.96		4.96	28.79
							Ca (pst)	(¥) PO	(#) D			-							·		
				K-delta Cf	ರ	Pd (psf)	Sin delta	Cq (L)	D (ff)					Ap(ft^2)	q-bar	alpha	Ν̈́				
_	10.01	0-9.99	4.995	1			1314.245	5 2.269	၈	29.79	20%	23.83									
_	10.01	9.99-10		1	1	ı	1324.566			0.03	10%	0.03									
2	10.01	10-10.01	0.005	1.363	0.7473	788.29		5 2.095	5 0.01	0.00	10%	0.00	23.86	0.35	788.58	0.645600	47.2000	8.39	17.453	8.39	32.25
	19.01	19.01 0-9.99	4.995	-	-	1	1299.185	5 2.584	4 9.99	33.53	20%	26.83									
1	19.01	9.99-10	9.995	-	1	1	1307.163		9 0.01	0.031	10%	0.03									
2	19.01	19.01 10-19.01	4.505	1.379	0.7665	1047.49	0.22410	2.252	2 9.01	5.035	10%	4.53	31.39	0.35	1306.98	0.622099	47.2000	13.40	17.453	13.40	44.78
1	19.01	19.01 0-9.99	4.995	-	1	-	1297.767		8 9.99	33.94	20%	27.15									
1	19.01	19.01 9.99-10		11	1		1305.532	2 2.443	3 0.01	0.03	10%	0.03									
2	19.99	19.99 10-19.99	4.995		1.381 0.76838	1075.71	0.22560		9 9.99	5.84	10%	5.25	32.43	0.35	1363.42	0.618041	47.2000	13.88	17.453	13.88	46.32
							Ca (pst)		(ft)												
				K-delta Cf	ರ	Pd (psf)	Sin delta	Cd (#)	D (ff)												
1	20.01	20.01 0-9.99					1297.73	1297.738 2.61852	2 9.99	33.95	20%	27.16									
-	20.01	9.99-10					1305.499	1305.499 2.44398	0	0.03	10%	0.03			İ						
7	20.01	10-19.99		1.381			1075.712 0.225658	8 2.26945	6		10%	5.26									
2	20.01	19.99-20		1.363	1		1939.712 0.208778 2.09492	3 2.0949	0		7%	0.01									
က	20.01	20.01 2020.01		9.796	0.5876		1364.29 0.248254 2.09457	4 2.0945	7 0.01	0.04	2%	0.04	32.49	0.35	1364.58	0.722000	110.4000	37.97	93.759	37.97	70.46
-	20.00	000					1286 263	1286 268 2 03268	000	27.60	7000	30.15									
_	29 01	9 99-10					1292 419	9 2 75814	C	L	10%	003									
2	29.01	10-19.99		1.411	0.8036		1075.712 0.253649 2.58361	9 2.5836	╁.,		10%	7.18									
7	29.01	19.99-20		1.395	0.7843	1	1363,712 0.238287	7 2.40908	8 0.01	0.01	7%	0.01									
က	29.01	29.01 20-29.01		9.812	0.6143		1623.49 0.310612	2 2.25165	5 9.01	61.66	2%	60.43	97.80	0.35	1882.98	0.722000	110.4000	52.39	93.759	52.39	150.19
									\Box												
	29. 39.	0-9.30					1285.166			38.09	20%	30.47									
	29.39	29.99 9.99-10			- 1		٠ ١	3 2.79235	0	0.04	10%	0.03									
	29.99	10-19.99		1.398			2 0.2414	0.24149 2.44329	5			6.29									
	29.99	29.99 19.99-20		1.414	- 1	-	1363.712 0.256424 2.61782	4 2.6178							٠ ا						
	29.99	20-29.99		9.813	0.6169		1651.71 0.312667 2.26875	7 2.2687	5 9.99	70.86	2%	69.44	106.34	0.35	1939.42		0.722000 110.4000		53.96 93.759	53.96	160.30

Second Control Contr	Example 7	7 e/c											_							
Particle Mid boint Califor C																				
Order Orde	Layer	Analysis	Mid	point																
0.00 0.00 <th< th=""><th></th><th>Depth</th><th>of k</th><th>ıyer</th><th></th><th>i</th><th></th><th></th><th>_</th><th>(ft)</th><th>layer</th><th></th><th>p(ft^2 S</th><th></th><th>Nc</th><th></th><th>Qcalc (k)</th><th>Qp lim (k</th><th>Qp (k) (</th><th>Qt (k)</th></th<>		Depth	of k	ıyer		i			_	(ft)	layer		p(ft^2 S		Nc		Qcalc (k)	Qp lim (k	Qp (k) (Qt (k)
2.89	1	0.01		.005	_			0.000	2.095	0.01	0.00	0.00	0.35	0.00			00.00		0.00	0.00
3.00 1.500 1.500 1.500 1.500 1.200 1.200 1.720 1.035 1.500 1.035 1.300 1.035		2.99		.495				0.000	2.147	2.99	0.00	0.00	0.35	0.00			00.00		0.00	
9.00 4.956		3.00	-	.500				0.000	2.147	3.00	0.00	0.00	0.35	00.00			00.00		0.00	
9.89	1	9.01	4	1.505				1305.642	2.199	6.01	17.26	17.26	0.35	1580.00	00.6		4.96		4.96	22.22
10.01 0.10 0.10 0.00 0.00 0.13629018 0.7473127 0.2065019 0.7473127 0.2065019 0.7473127 0.2065019 0.7473127 0.2065019 0.7473127 0.2065019 0.7473127 0.2065019 0.7473127 0.2065019 0.7473127 0.2065019 0.7473127 0.2065019 0.7473127 0.2065019 0.7473127 0.2065019 0.724710 0.2065019 0.7473127 0.224710 0.	1	9.99	4	1.995				1317.164	2.216	6.99	20.41	20.41	0.35	1580.00	9.00		4.96		4.96	25.37
10.01 0-100 1.00								Г	€	(ft)										
10.01 0-10 5.000				K-deft.				·		(ft)		₹	p(ft^2 q			N.a				
1911 0-10 0.005 1.3629018 0.7473127 4.76.29 0.20875 2.055 0.01 0.00 20.44 0.35 476.58 0.645600 47.2000 5.07 17.4533 1.901 0-10 5.000	1	10.01		- 000		1	,	1317.261	2.217	7.00	20.44									
19.01 0-10	2	10.01	_		9018	7473127	476.29		2.095	0.01	0.00	20.44	0.35	476.58	0.645600	47.2000	5.07	17.4533	5.07	25.51
19.04 0-10 5.000																			i	
19.04 10-19.01 4.505 1.3793281 0.7665019 735.49 0.22410 2.255 9.01 3.54 26.60 0.35 994.98 0.622099 47.2000 10.20 17.4533 17.853281 0.7665019 735.49 0.22410 2.255 9.01 3.54 2.66 0.35 994.98 0.622099 47.2000 10.20 17.4533 17.8536 1.3810471 0.76838 763.71 0.22560 2.269 9.99 4.14 27.49 0.35 1051.42 0.618041 47.2000 10.71 17.4533 17.8536 1.3810471 0.76838 763.71 0.22560 2.269 9.99 4.14 27.49 0.35 1051.42 0.618041 47.2000 10.71 17.4533 17.891089 1.38108 1.381089 1.3	1	19.01 0-		000	}		,	1301.548	2.531	2.00	23.06									
19.99 0-10 5.000	2	19.01 10		1.505 1.379	13281 0	.7665019	735.49	0.22410	2.252	9.01	3.54	26.60	0.35	994.98	0.622099	47.2000	10.20	17.4533	10.20	36.79
19.39 0-10 5.000																İ				
19.99 10-19.99 4.995 1.3810471 0.76838 763.71 0.22560 2.269 9.99 4.14 27.49 0.35 1051.42 0.618041 47.2000 10.71 17.4533 10.2160 2.2697 0.010 0.005 0.25642 0.26424 0.22642 0.26424 0.22642 0.26424 0.005 0.22642 0.26424 0.22642 0.26424 0.005 0.22642 0.26424 0.22642 0.26424 0.005 0.26424 0.22642 0.26424 0.005 0.26424 0.22642 0.26424 0.005 0.26424 0.22642 0.26424 0.005 0.26424 0.22642 0.26424 0.005 0.26424 0.22642 0.26424 0.005 0.26424 0.26424 0.26424 0.26424 0.26424 0.005 0.26424 0.26424 0.26424 0.005 0.26424 0.005 0.26424 0.26424 0.26424 0.005 0.26424 0.26424 0.26424 0.005 0.26424 0.26424 0.26424 0.005 0.26424 0.2	1	19.99 0-		000	1	•		1300.07	2.565	7.00	23.35									
20.01 0-10 5.000 1.3810995 0.24(47) D (ft)	2	19.99 1(0471	0.76838	763.71	0.22560	2.269	9.99	4.14	27.49	0.35	1051.42		47.2000	10.71	17.4533	10.71	38.20
20.01 6-10 5.000 1.3810995 0.764elta Cf Pd (psf) Sin delta Cd (ft) D ((#)										
20.01 0-10 5.000 1.3810995 0.7684346 764 0.225642 2.26928 7 23.35 9.35 9.35 9.37591 20.01 10-20 5.000 1.3810995 0.7684346 764 0.225642 2.26928 10 4.15 9.35 1052.58 0.35 1052.58 0.722000 110.4000 29.29 93.7591 29.01 20.01 5.000 1.4105515 0.8036173 764 0.253635 2.58344 10 5.67 9.35 1570.98 0.722000 110.4000 43.71 93.7591 29.01 10-20 5.000 1.4105515 0.8036173 764 0.253635 2.58344 10 5.67 9.35 1570.98 0.72200 110.4000 43.71 93.7591 29.01 10-20 5.000 1.4105515 0.8117149 0.6142635 1.21665 9.01 49.81 81.45 0.35 1570.98 0.722000 110.4000 43.71 93.7591 29.99 10-20								_		(#)										
20.01 10-20 5.000 1.3810995 0.7684346 764 0.225642 2.26928 10 4.15 6.00 1.3810995 0.7684346 764 0.225642 2.26928 10 0.03 27.53 0.35 1052.58 0.722000 110.4000 29.29 93.7591 29.01 20.02 5.000 1.4105515 0.8036173 764 0.253635 2.58344 10 5.67 81.7749 83.774 1286.966 2.91435 7.25165 9.01 49.81 81.45 0.35 1570.98 0.72200 110.4000 43.71 93.7591 29.01 10-20 5.000 1.4105515 0.8036173 7.25165 9.01 49.81 81.45 0.35 1570.98 0.72200 110.4000 43.71 93.7591 29.99 0-10 5.000 1.4135395 0.807118 764 0.25641 2.61764 10 5.85 80.35 1627.42 0.722000 110.4000 45.28 93.7591	1	20.01 0-		000					2.56598	7	23.35									
20.01 2020.01 0.005 9.7959605 0.5875655 1052.29 0.248254 2.09457 0.01 0.03 27.53 0.35 1052.58 0.722000 110.4000 29.29 93.7591 29.01 0-10 5.000 1.4105515 0.8036173 764 0.253635 2.58344 10 5.67 81.17149 0.6142635 1311.49 0.310612 2.25165 9.01 49.81 81.45 0.35 1570.98 0.722000 110.4000 43.71 93.7591 29.01 20-29.01 5.000 1.4105515 0.807118 764 0.25641 2.6256 9.01 49.81 81.45 0.35 1570.98 0.722000 110.4000 43.71 93.7591 29.99 1-0.00 5.000 1.4135395 0.807118 764 0.25641 2.6256 9.95 6.35 1627.42 0.722000 110.4000 45.28 93.7591	2	20.01 10			0995 0	.7684346	764		2.26928	10	4.15									
5.000 1.4105515 0.8036173 764 0.253635 2.88014 75.97 81.45 0.35 1570.98 0.722000 110.4000 43.71 93.7591 4.505 9.8117149 0.6142635 1311.49 0.310612 2.25165 9.01 49.81 81.45 0.35 1570.98 0.722000 110.4000 43.71 93.7591 5.000 1.4135395 0.807118 764 0.25641 2.61764 10 5.85 0.35 1627.42 0.722000 110.4000 45.28 93.7591	3	20.01		.005 9.795	39605 0	.5875655	1052.29	0.248254	2.09457	0.01	0.03	27.53	0.35	1052.58		110.4000	29.29	93.7591	29.29	56.82
5.000 1.288.109 2.88014 7 25.97 6.000 1.4105515 0.8036173 764 0.253635 2.58344 10 5.67 9.01 4.505 9.8117149 0.6142635 1311.49 0.310612 2.25165 9.01 49.81 81.45 0.35 1570.98 0.722000 110.4000 43.71 93.7591 5.000 1.4135395 0.807118 764 0.25641 2.61764 10 5.85 0.35 1627.42 0.722000 110.4000 45.28 93.7591																				i
5.000 1.4105515 0.8036173 764 0.253635 2.68344 10 5.67 81.45 0.35 1570.98 0.722000 110.4000 43.71 93.7591 4.505 9.8117149 0.6142635 1311.49 0.310612 2.25165 9.01 49.81 81.45 0.35 1570.98 0.722000 110.4000 43.71 93.7591 5.000 1.4135395 0.807118 764 0.25641 2.61764 10 5.85 9.35 1627.42 0.722000 110.4000 45.28 93.7591		29.01 0-		000.				1288.109	2.88014	7	25.97									
4.505 9.8117149 0.6142635 1311.49 0.310612 2.25165 9.01 49.81 81.45 0.35 1570.98 0.722000 110.4000 43.71 93.7591 5.000 1.4135395 0.807118 764 0.25641 2.61764 10 5.85 9.99 57.47 89.58 0.35 1627.42 0.722000 110.4000 45.28 93.7591		29.01 10			15515 0	.8036173		0.253635	2.58344	10	2.67									
5.000 1.286.966 2.91435 7 26.25 <		29.01 20			7149 0	.6142635			2.25165	9.01	49.81	81.45	0.35	1570.98	0.722000	110.4000	43.71	93.7591	43.71	125.16
5.000 1.286.966 2.91435 7 26.25 6.000 1.4135395 0.807118 764 0.25641 2.61764 10 5.85 6.35 1627.42 0.722000 110.4000 45.28 93.7591																				
5.000 1.4135395 0.807118 764 0.25641 2.61764 10 5.85 0.35 0.35 0.31339.71 0.312667 2.26875 9.99 57.47 89.58 0.35 1627.42 0.722000 110.4000 45.28 93.7591		29.99		- 1				1286.966	2.91435	7	26.25									
4.995 9.8133636 0.6168723 1339.71 0.312667 2.26875 9.99 57.47 89.58 0.35 1627.42 0.722000 110.4000 45.28 93.7591		29.99		0000 1.413	15395	0.807118	764	\neg	2.61764	10	5.85							- 1		
		29.99 20		.995 9.813	3636 0	.6168723	1339.71		2.26875	9.99	57.47	89.58	0.35	1627.42	0.722000	110.4000	45.28		45.28	134.86

Mail Paper Mail Paper Carger Ca	Example 7	ple 7							-	\mid		-							
1 1 1 1 1 1 1 1 1 1																			
Depth Dept	Layer	Analysis	Mid poin	t															
1 10 10 10 10 10 10 10		Depth	of layer						_					Nc		Ocalc (k)	Op lim (k		ot (k)
2.29 1.465 1.465 1.465 1.465 1.260 1.260 2.147 2.99 4.22 4.24 2.95 0.05 0	1	0.01	0.005				1280.000	2.096	0.01	-0.03	-0.03	0.35	0.00			0.00		0.00	-0.03
100 200		2.99	1.495				1280.000	2.147	2.99	-8.22	-8.22	0.35	0.00			0.0		0.00	
1 20 10 0.3 1.20 1		3.00	1.500				1280.000	2.147	3.00	-8.24	-8.24	0.35	0.00			0.00		0.00	
1 1 1 1 1 1 1 1 1 1	+	9.01 0-3					1280.000	2.357	3.00	-9.05		0.35	1580.00	9.00		4.96		4.96	4.96
1 1 1 1 1 1 1 1 1 1	-	9.01 3-9.01					1305.642	2.199	6.01	17.26	8.21								
1 81899 3-9399 1 1 1 1 1 1 1 1 1																			
1 1 1 1 2 2 2 2 2 2	-	9.99 0-3					1280.000	2.391	3.00	-9.18		0.35	1580.00	9.00		4.96		4.96	4.96
10 01 0-3	-	9.99 3-9.99					1317.164	2.216	6.9	20.41	11.23								
10 OI OI OI OI OI OI OI OI OI OI OI OI OI									(ft)										
10.01 c-3 1317.281 2.065 0.2367 2.265 0.46580 0.4753127 0.2067 2.266 0.10.29 0.10.29 0.204 0.10.29 0.204 0.10.29 0.204 0.10.29 0.204 0.10.20 0.10.29 0.204 0.10.29 0.2067 0.206				K-delta	๋	Pd (psf)			(£)			% ft^2 q-	bar		b.N				:
1 10.00 3.10 3.		10.01 0-3					1280.000	2.391	3.00	-9.18									
2 10.01 10.01 (0.10.01) 0.0005 (1.36.29016) 0.7473127 476.29 0.000 11.26 0.00 11.26 0.00 47.2000 5.07 (1.4533) 5.07 1 19.01 (0.34) - <td>1</td> <td>10.01 3-10</td> <td></td> <td>1</td> <td></td> <td>ı</td> <td>1317.261</td> <td>2.217</td> <td>7.00</td> <td>20.44</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	10.01 3-10		1		ı	1317.261	2.217	7.00	20.44									
1901 0-3 0-3 0-4 0-5	2	10.01 10-10.01			0.7473127	476.29	l	2.095	0.01	0.00	11.26	0.35	476.58		47.2000			5.07	16.33
1901 0-3																			
19.01 3-10 1-10 0.01 1-1	_	19.01 0-3		ı	1	i	1280.000	2.706		-10.39									
2 19.01 10-19.01 4.505 13792281 7.264.0 7.224.0 3.06 -10.52 9.01 9.02 -10.52 9.01 -10.52 9.02 -10.52 9.03 -10.52		19.01 3-10		ı	1			2.531	2.80	23.06									
19.99 0.3 0.3 0.4 0.6 0.5 0.5 0.6 0.5 0.6 0.		19.01 10-19.01						2.252	9.01	3.54	16.21	0.35	994.98		47.2000			_	26.40
19.99 0-3 1280.00 2740 3.00 -10.652 10.6142 0.618041 47.2000 10.71 17.4533 10.71 19.99 -1.99																			
19.99 3-10 10-20 1.3810471 0.76838 763.71 0.22569 9.99 4.14 16.97 0.35 1051.42 0.618041 47.2000 10.71 17.4533 17.41 10.4000 29.29 93.7591 29.29 17.41 10.4533 19.41 10.4546 17.4543 17.4543 17.72 17.4543 17.72 17.4543 17.4	1	19.99 0-3		1	1	1	1280.00	2.740		-10.52									
19.99 10-19.99 4.995 1.3810471 0.76638 763.71 0.22560 2.269 9.99 4.14 16.97 0.35 105142 0.618041 47.2000 10.71 17.4533 10.71 17.45	_	19.99 3-10			ı	i		2.565		23.35									
Car (psr) Car	2	19.99 10-19.99			0.76838	763.71		2.269		4.14	16.97	0.35	1051.42		47.2000			10	27.67
Note Column Col									(#) C										
20.01 0-3 - - 1290.00 2.74052 3 -10.52 9 - - - 1290.00 2.74052 3 - - - - 1290.00 2.74052 3 -				K-delta	Ç	Pd (psf)		Cd (ft)	(ft)										
20.01 3-10 —<	1				1	1	1280.00	` '	3	-10.52									
20.01 10-20 5.000 1.3810996 0.7684346 764 0.225642 2.26928 10 4.15 9.000 10-20 0.005 9.7859605 0.7884346 764 0.225642 2.09457 0.01 0.035 10-20 110.4000 29.29 93.7591 29.29 20.01 2020.01 0.005 9.7959605 0.5875655 1.0280.0 3.05468 3 -11.73 -	~	20.01 3-10		1	1		1300.04	2.56598	7	23.35									
20.01 2020.01 0.005 9.7959605 0.5875655 1052.29 0.248254 2.09457 0.01 0.03 17.01 0.35 1052.68 0.722000 110.4000 29.29 93.7591 29.29 29.01 0.3 - - - 1280.14 7 25.97 - - - 1280.14 7 25.97 - <td< td=""><td>7</td><td>20.01 10-20</td><td>_</td><td>1.3810995</td><td>0.7684346</td><td></td><td>0.225642</td><td>2.26928</td><td>0</td><td>4.15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	7	20.01 10-20	_	1.3810995	0.7684346		0.225642	2.26928	0	4.15									
29.01 0-3 - - 1280.00 3.05468 3 -11.73 - - - - 1280.11 2.89014 7 25.97 -	က	20.01 2020.0	_	9.7959605	0.5875655		0.248254	2.09457	0.01	0.03	17.01	0.35	1052.58		110.4000			29.29	46.30
29.01 0-3 - - 1280.00 3.05468 3 -11.73 9.01.73 9.05468 3 -11.73 9.05468 3 -11.73 9.05468 3 -11.73 9.05468 3 -11.73 9.05468 3 -11.73 9.054688 9.054688 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
29.01 3-10 — — — 128.014 7 25.97 —	_	29.01 0-3		I	I	ı	1280.00	3.05468	က	-11.73									
29.01 10-20 5.000 1.4105515 0.8036173 764 0.253635 2.58344 10 5.67 9.01 4.505 9.8117149 0.6142635 131.49 0.310612 2.25165 9.01 49.81 69.72 0.35 1570.98 0.722000 110.4000 43.71 93.7591 43.71 29.99 -3 - - 1280.00 3.08888 3 -11.86 - - 1280.00 2.9435 7 26.25 -	_	29.01 3-10			ı	1	1288.11	2.88014	7	25.97									
29.01 20-29.01 4.505 9.8117149 0.6142635 131.49 0.310612 2.25165 9.01 49.81 69.72 0.35 1570.98 0.722000 110.4000 43.71 93.7591 43.71 29.99 -3 - - 1280.00 3.08888 3 -11.86 - 26.25 - - - 1280.00 2.9435 7 26.25 - <td>7</td> <td>29.01 10-20</td> <td></td> <td></td> <td>0.8036173</td> <td></td> <td>0.253635</td> <td>2.58344</td> <td>5</td> <td>2.67</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	7	29.01 10-20			0.8036173		0.253635	2.58344	5	2.67									
29.99 0-3 - - 1286.00 3.08888 3 -11.86 - - 1286.00 3.08888 3 -11.86 -	က	29.01 20-29.01			0.6142635		0.310612	2.25165	9.01	49.81	69.72	0.35	1570.98	_		43		8	113.43
29.99 0-3 1280.00 3.08888 3 -11.86 1280.00 3.08888 3 -11.86																			
29.39 3-10 - - 1286.97 2.91435 7 26.25 - </td <td>_</td> <td>29.99 0-3</td> <td></td> <td>1</td> <td>1</td> <td>ı</td> <td>1280.00</td> <td>• •</td> <td>က</td> <td>-11.86</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_	29.99 0-3		1	1	ı	1280.00	• •	က	-11.86									
29.99 10-20.00 5.000 1.4135395 0.807118 764 0.25641 2.61764 10 5.85 29.99 20-29.99 4.995 9.8133636 0.6168723 1339.71 0.312667 2.26875 9.99 57.47 77.72 0.35 1627.42 0.722000 110.4000 45.28 93.7591 45.28	~	29.99 3-10				ľ		2.91435	7	26.25									
29.99 20-29.99 4.995 9.8133636 0.6168723 1339.71 0.312667 2.26875 9.99 57.47 77.72 0.35 1627.42 0.722000 110.4000 45.28 93.7591 45.28	7	29.99 10-20.00	\dashv		0.807118		-	2.61764	5	5.85									
	ဗ	29.99 20-29.96	_		0.6168723			2.26875	9.99	57.47	77.72	0.35	1627.42						123.00

Example #8

0 ft 0.5 fr

 $\phi = 31^{\circ}$ Skin Friction

 $\phi = 36^{\circ}$ End Bearing

 $\gamma = 114 \text{ pcf}$

12% Driving Loss

20 ft-

 $C_{11} = 2000 \text{ psf}$

 $\gamma = 110 \text{ pcf}$

20% Driving Loss

30 ft-

 $\phi = 35^{\circ}$ Skin Friction

 $\phi = 35^{\circ}$ End Bearing

 $\gamma = 120 \text{ pcf}$

7% Driving Loss

48 ft -

Water Table

Pile - Raymond Uniform Taper

Drilling = 0 ft

diameter at top = 54 in.

Restrike/Driving = 6 ft

diameter at bottom = 36 in.

Ultimate = 3 ft

length of taper = 50 ft

Other Design Considerations:

- a) 2 ft Local Scour
- b) 2 ft Long Term Scour
- c) 1-ft Local and 1-ft Long Term Scour

Example8			-					ex8.xls								ŀ	Γ
Similar A	Mid major																
Layer Analysis Depth	of layer	K-deita	C L	Pd (psf) S	Sin delta	(¥) PO	(ft)	Qs layer	Qs total /	4p(ft^2) c	q-bar	alpha	p,			(k)	3
10.01	0.000	٥	0000	٥		°	0.0	0.00	18	7.068583	0		77.6		71.60	0.00	1 1
0.49	0.000	00	0.0000	0 0	0 0	00	8 6	00.0	0.00	7.068583	0 25	0.693	77.6	0.00	1071.60	0.00	0.00
0.00-0.5	0.250	5.71023	1	28.5 0	1.64592181		0.00	0.00			5	4 1	<u> </u>	3			3
0.50-2.99	1.745	5.70991	1.0455	198.93	0.64592181	9.542	2.49	18.225	18.23	7.068583	340.86	0.693	77.6	129.63	1071.60	129.63	147.86
0.00-0.50	0.250	D 0	0.0000	1995	0 64592181	9 544	0.00	0.00									
3.00-3.01	3.005	5.70964	1.0455	342.57	1.64592181			0.12	18.48	7.068583	343.14	0.693	77.6	130.50	1071.60	130.50	148.98
0.00-0.50	0.250	l i	0.0000	0	0			00.0									
3.00-5.99	3.005	5.71055	1.0455	199.5 (0.64592181	9.824	2.50	18.90	75.41	7.068583	682.86	0.693	277.6	259.70	1071.60	259.70	335.11
0.00.0 50	0.250	c	0000					000									
0.50-3.00	1.750	5.71056	1.0455	199.5 (3.64592181			18.90									
3.00-6.00	6.005	5.70964	1.0455	513 (0.64592181	9.567	3.00	56.77	75.92	7.068583	684.52	0.693	77.6	260.33	1071.60	260.33	336.25
0.00-0.50	0.250	4	0.0000	100	0			0.00								1	
3.00-6.00	4.500	5.71184	0455	513 (0.64592181	10.42	3.00	61.83									
6.00-15.01	6.005	rci	0455	916.458 (0.64592181			313.64	396.01	7.068583	1148.92	0.693	77.6	436.94	1071.60	436.94	832.95
0.00-0.50	0.250	a	0000	0	0			0.00									
0.50-3.00	1.750	5.71333	1.0455	199.5 (0.64592181	11.14	2.50	21.44									
6.00-19.99	10.995 5.7	5.71113	0455	1044.94 (0.64592181		1 1	568.55	654.62	- 6	1405.884	0.693	77.6	534.67	1071.60	534.67	1189.29
0.00-0.50	+	-	0000	c				000		Ap(ff^2) \$	ng.	2					
0.50-3.00	1.750 5.7	1333	1.0455	nionia	0.64592181	11.15	2.50	21.45									
3.00-6.00	+	1281	1.0455	1045 2 (0.64592181			569 18									
20.00-20.01	+	2	200	al I	2000			0.189	655.45	7.068583	2000	6		127.23		127.23	782.69
0:00-0:20	+	0	0.0000	0	0		- 1	0.00									
0.50-3.00	1.750	5.71346	1.0455	199.5	0.64592181	11.99	2.50	23.08									
3.00-6.00	13,000	5.71346	1.0455	n lo	0.64592181		- [69.68									
20.00-29.01	24.505	0.7 1.20 1	3	4l l	2000			177.486	887.49	7.068583	2000	6		127.23		127.23	1014.72
0.00-0.50	-	10		0	0			00.0									
0.50-3.00	1.750	5.71346	1.0455	199.5	0.64592181	12.09	2.50	23.26									
3.00-6.00	13.000	5.71309		1045.2	0.64592181			70.23									
20.00-29.99	24.505	200			2000		1 1	197.713	913.68	7.068583	2000	6		127.23		127.23	1040.91
0.00-0.50	+	0	0000	c				000			q-bar	alpha	ρ				
0.50-3.00	1.750	5.71346	1.0455	199.5	0.64592181	12.09	2.50	23.26									
3.00-6.00	-	5.71346	1.0455	513	0.64592181			70.24									
20.00-30.00	+-	121/12	25	7.040.7	2000		1	197,939									
30.00-30.01	+	9.55959	1.0655	1882.69	0.7109945			1.29	915.31	7.068583	1882.98	0.68	95	579.25	760.58	579.25	1494.56
0.00-0.50	+	0		0	0		- !										
0.50-3.00	1.750	5.71346	1.0455	10	0.64592181	12.94	2.50	H									
3.00-5.00	13 000	5.71346		513 (0.64592181			670.54									
20.00-30.00	24.505				2000		1 1										
30.00-39.01	+	9.55959	1.0655	2141.89	0.7109945				2362.13	7.068583	2401.38	99.0	67	738.72	760.58	738.72	3100.85
0.00-0.50	+	0	0.0000	0	0	0		00.0									
0.50-3.00	1.750	5.71346	1.0455	199.5	0.64592181	13.78	2.50	26.52									
6.00-20.00	13.000	5.71346	1.0455	1045.2	0.64592181	12.72		718.30									
20.00-30.00	24.505	0,000	1,000		2000	11.59		231.831			00000				1		
30.00-47.88	-	9.00909	ccan:	7400.51	0.7109945	10.2/		Acid.//	4269.65	7.058383	2918.62	0.68	54	897.84	/60.58	/60.58	5030.24

. [T		(<u>x</u>)	21.68	145.67			326.06	,		327.14			785.43			1110.74				703.96					127.23				046.40	910.40					1369 06						2861.63						4660.10
İ		т		21 0 00	129.63		130.50	259.70			260.33		Ħ	436.94		Ì	534.67		1		127.23	1	T			127.23	T	T		407.00	57:17					579 25			Ħ			738.72		Π	П			760.58
ľ	1		07160	1071.60	1071.60		1071.60	1071.60			1071.60	Ħ	_	1071.60			1071.60					T	T	Ī			Ħ				T					760.58						760.58		Ħ	П			760.581
ŀ	+	3	2 (K)	21.68	129.63		130.50 1	259.70			260.33			436.94			534.67	\parallel			127.23	†	T		\parallel	127.23			ļ	04.00	57.77				\dagger	579 25		+				738.72	-				H	897.84
ŀ	+	l	25 977	77.6	77.6		77.6	77.6	ш		77.6	H		77.6			377.6	\prod	1	H		+	+		\parallel	1		+	H		-		-		\dagger	28	1	+		\dagger	H	29	+	H	H	+		94
		1	2 2	, m m		\coprod	- m	-			6		$\perp \mid$	<u></u>							0	1			Ц	6					Ş.		_	Ц		-		1		1	Ц	80		\coprod	\perp	4-	\coprod	<u>8</u>
		Į	appa 0	0 0 693	0.693	Ц.	4 0.693	6 0.693	, ,		2 0.693		\dashv	2 0.693	\coprod	-	0.693					1			Ш						apha				\perp	890	Ш			1	\coprod	8 0.68	_	\coprod	$\perp \mid$	\perp		
			d-Dar	0 57	340.86		343.14	682.86			684.52			1148.92			1405.884				2000					2000				0000	Pag.					1882 98	Ш					2401.38					Ш	2918.62
		(044)-4		7.06858	7.06858		7.06858	7.06858			7.06858			7.06858			7.06858				7.06858					7.06858				7 00050	` ₹					7 06858	1_1					7.06858						7.06858
			OS total	0.0	16.04		16.26	66.36			66.81			348.49			576.07				576.73					766.72					/88.1/					789.81	1 1					2122.91						3899.52
ex8.xts		П			0.00	6	16.15	16.63	0.00	16.63	0.22	0.00	18.07	276.00	0000	56.87	500.33	0.0	18.87	500.37	0.15	0	20.31	61.32	0.45	141.99	0.00	20.47	547.28	0.45	138.17	0.00	61.81	547.51	158.20	1 20	2	21.91	66.24	589.65	164.24	1280.18	0.00	23.34	631.67	0.52	0.21	% 2987.82
ě	I				12%		12%	12% 12%	12%	12%	12%	12%	12%	12%	12%	12%	15%	12%	12%	12%	% 50% 17%	300	12%	12%	20%	50%	12%	12%	12%	20%	% 07	12%	12%	12%	20%	7%		12% 12%	12%	12%	20%	7%	12%	\$ 2	2 2	20%		* 6
			ŝ	0.00	0.00		18.35	0.00 18.90 56.51	Ш.	18.90	11		20.54 61.83		0.00		568.55	0.00	21.40	568.61	0.189	2	23.08	69.68	0.56	177.486	0.0	23.26	621.90	0.56	197.78	000	70.24	622.16	0.55 197.751	0.189		24.89				1376.54	0	26.52	717.81	231,608	0.222	3212.11
		á	(E) C)	000	0.00	11	2.50	2.50	t t	2.50	1 [1 1	3.00		0.00		13.99	8	3.00	13.99	0.0	5	2.50	3.00	0.0	9.01	9.0	2.50	13.99	0.0	86.68	0.00	3.00	13.99	9.99	0.01	2	2.50					0.00	2.50	13.99	000	0.01	23
l		1	<u>8</u>		9.683	ľ	9.544	9.824 9.566	0	9.826	9.425	0	10.67	9.849	0 \$	10.88	10.08	0	108	10.08	9.426	٩	11.99	11.73	10.27	9.849	°	12.09	11.03	10.37	88.6	0	11.83	11.03	9.897	9.426		12.94	12.68	1.88	10.28	9.849	°	13.78	12.72	12.06	11.12	10.27
		1	Sin derita	00	0.6459218	Š	0.6459218	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0.6459218 9.826	0.6459218	0	0.6459218 10.67	0.6459218	0 6460218	0.6459218	0.6459218	0	0.6459218	0.6459218	2000 9.426		0.6459218	0.6459218	0.6459218 10.27	2000	0	0.6459218	0.6459218	0.6459218 10.37	2002	0	0.6459218	0.6459218	2000	2000 5	2	0.6459218	0.6459218	0.6459218	2000	0.7109945 9.849	0	0.6459218	0.6459218	5 1406.14 0.6459218 12.06	2000	0.7109945
			(pst)	00	28.5	•	199.5	199.5 512.43	$\prod_{i=1}^{n}$	199.5	684.26	٥	199.5 513	916.46	0 90	513	1044.9	٥	513.00	1044.94	406.14	-	199.5	513	1406.14			199	1044	1406.1		0 007	513	1045.2	1406.14	1882 7		199.5	513	1406.14		2141.9	0	199.5	1045.2	1406.14		2400.5
Ī	T		5000	00000	1.0455		1.0455	1.0455	0.0000	1.0455	1.0455	0.0000	1.0455	1.0455	0.0000	1,0455	1.0455	0.0000	10455	1.0455	CC+0.	٤	1.0455	1.0455	10455		0.000	1.0455	1.0455	1.0455		0.0000	1,0455	1.0455	1.0405	1 0655		1.0455	1.0455	10455		1,0655	0.000	1.0455	1.0455	1.0455		1.0655
	T	\vdash		00	5.7102	•	5.7099	5.7106 5.71	0	5,7106 1,0455	5.7096	٥	5.7124	5.7106	0 24	5.7128	5,7111	٥	5.7128	5.7111	9 20 70	-	5.7135	5.7135	57115		٥	5.7135 1.0455	5.7131	5.7117	Ī	0 447	5.7135	5.7131	7117.0	96550		5.7135	5.7135	5.7135		9.5596	-	5.7135	5.7135	5.7135		9.5596
f	T	Mid point		0.000	0.250		3.005	0.250 1.750 3.005		1.750			4.500		0.250			0.250	200	12.995	20.005	036.0	1.750	4.500	19.995	24.505	0.250	1.750	12.995	19.995	24.503	0.250	4.500	13.000	24.995	30 005		1.750	4.500	12.995	24.995		0.250	1.750	12.995	19.995	29.995	34.500
		Analysis	I	0.49	0.00-0.5	090	3.00-3.01	0.00-0.50	0.00-0.50	0.50-3.00	5.00-6.01	0.00-0.50	3.00-6.00	5.00-15.01	0.00-0.50	Н		_	_	_	20:00-20:01	_	_	3.00-6.00	_	_	Н	0.50-3.00	+	Η.						30 00-30 01		0.00-0.50					050-0.50	.50-3.00	3.00-19.99	20.00-29.99	3 99-30 00	30.00-47.39
	EXBI	Layer	ļ													,,,		Ĭ				Ì					Ĭ									.,,,,		J										

		3)	0.00	0.0	88.71	139.92	140.80	245.69	246.45	677.53	995.18	659.68	881.49	906.59	1302.47	2778.38	4624.98
		(8)	8 8 8	0.00	86.71	129.63	130.28	188.74	189.13	365.75	463.48	127.23	127.23	127.23	521.88	681.14	760.58
		(k)	1071.60 1071.60 1071.80	1071.60	1071.60	1071.80	1071.80	1071.60	1071.60	1071.60	1071.80				780.58	760.58	780.58
		cale (K)	0 0 0	0.0	86.71	129.63	130.28	188.74	189.13	385.75	463.48	127.23	127.23	127.23	521.86	681.14	840.25
			77.6	77.8	77.8	77.8	8.77	77.8	77.8	77.6	77.6			Ş		2	18
	\dagger	Physical	0.693	0.693	0.693	0.693	0.693	0.693	0.693	0.693	0.693	6	6	9 8	0.68	0.68	0.68
		Par	000	0	228	340.86	342.52	496.28	497.32	961.72	1218.68	2000	2000	2000	1885.78	2214.18	2731.42
		₽(ff*2)	7.06858 7.06858 7.06858	7.08858	7.06858	7.06858	7.06858	7.06858	7.06858	7.06858	7.08858 An(#42)	7.06858	7.08858	7.06858 Apr (#2)	7.06858	7.06858	7.08858
		2s total	0.00	8.9	0.00	10.28	10.53	56.95	57.32	311.78	531.71	532.45	754.28	779.33	780.81	2087.25	1 3864.38
ex8.xds		Os layer	0.00	0.00	0.00	10.28	0.00 0.00 10.41	0.00 0.00 10.72 46.23	0.00 0.00 10.72 48.42 0.18	0.00 0.00 11.86 50.55 249.57	0.00 0.00 12.18 52.83 466.70	0.00 0.00 12.18 52.84 467.24 0.189	0.00 0.00 13.11 56.87 508.69	111111	0.00 0.00 13.21 57.43 57.43 197.939 1.18	0,00 0,00 14.15 81.54 214.804 126.23	0.00 0.00 15.08 65.65 589.65 231.831 2802.17
	T	(¥)	888	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00 3.00 1.00	3.00	0.00 1.00 14.00 0.01	0.00 1.00 14.00 19.01	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	3.00 1.00 1.00 1.00 1.00 17.99
		(E) Po	000	9.589	0 0	8 9.683 8 9.589 8 9.471	0 0 0 0 8 9.473 8 9.425	0 0 0 0 8 9.566	0 0 0 0 8 9.756 8 9.567 8 9.425	0 0 0 0 8 10.6 8 10.42 8 9.849	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 8 11.08 8 10.89 0 9.425	0 0 0 0 0 0 0 11.92 8 11.92 6 10.93	8 12.02 8 11.03 8 11.03 0 9.896	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 12.87 0 10.75 5 9.849	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Sin delta		0.6459218	0.015	28.5 0.6459218 9 142.5 0.6459218 8 284.43 0.6459218 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 285 0.6459218 E 419.14 0.8459218	0.6459218 E 0.6459218 E 0.6459218 E	0 0.8459218 0.6459218 0.6459218	0 0.6459218 0.6459218 0.6459218	0.6459218 0.6459218 0.6459218 0.6459218	285 0.8459218 418.4 0.6459218 858.00 0.6459218	0.8459218 0.8459218 0.8459218 0.8459218 2000	0.6459218 0.6459218 0.6459218 0.6459218 0.6459218 0.7108845	0.0459218 0.0459218 0.0459218 0.0459218 0.07109945	285 0.0459218 1 285 0.0459218 1 419.4 0.6459218 1 855.00 0.9459218 1 2000 2000 1 2213.3 0.7109946 1
		(sd) Pd	000	28.5	198.93		0 0 285 342.26	0 0 285 419.14	285 285 419.4 497.08	285 419.4 729.26	285 419.4 857.74	285 419.4 858.00	285 285 418.4 858.00	0 0 285 419.4 858.00	285 419.4 858.00	285 418.4 858.00	285 419.4 419.4 858.00
		5	0.0000	1.0455	0.0000	1.0455 1.0455	0.0000 0.0000 1.0455 1.0455	0 0.0000 0 0.0000 5.7104 1.0455 5.71 1.0455	0.0000 0.0000 1.0455 1.0455	0.0000 0.0000 1.0455 1.0455	0.0000 0.0000 1.0455 1.0455	0.0000 0.0000 1.0455 1.0455	0.0000 1.0000 1.0455 1.0455	0.0000 1.0455 1.0455 1.0455	1.0455 1.0455 1.0455 1.0455 1.0455	0 0.0000 0 0.0000 1.0455 1.0455 1.0455 1.0455	0 0.0000 1 1.0455 5 1.0455 5 1.0455 6 1.0455
		K-delta		5.71	00	5.7102 5.71 5.7097	0 0 5.7098 5.7096	5.7104 5.71	5.7104 5.7104 5.7096	5.7122 5.7128 5.7108	5.7132 5.7128 5.7111	0 5.7132 5.7128 5.7111	0 0,0000 0 0,0000 5,7135 1,0455 5,7129 1,0455	5.7152 5.7135 5.7135 5.7131	6.7152 1 6.7135 1 6.7135 1 7.7131 1 8.5596 1	5.713 5.713 8.559	5.718 5.713 5.713 5.713 9.559
		Mid point of layer	0.000	1.245	1,745	0.250 1.250 2.495	0.250 1.250 2.500 3.005	0.250 1.250 2.500 4.495	0.250 1.250 2.500 4.500 6.005	0.250 1.250 2.500 4.500 10.505	0.250 1.250 2.500 4.500 12.995	0.250 1.250 2.500 4.500 20.005	0.250 1.250 2.500 4.500 13.000 24.506	0.250 1.250 2.500 4.500 13.000 24.505	12.00 2.50 13.00 25.00 25.00 30.00 30.00	1.250 2.500 4.500 25.000 25.000 34.505	0.250 1.250 4.500 13.000 25.000 38.995
		Analysis Depth		0.00-0.5	0.00-0.5	0.00-0.5 0.50-2.00 2.00-2.99	0.00-0.50 0.50-2.00 2.00-3.00 3.00-3.01	0.00-0.50 0.50-2.00 2.00-3.00 3.00-5.89	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 6.00-6.01	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 6.00-15.01	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 6.00-19.89	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 6.00-20.00 20.00-20.01	0.00-0.50 0.50-2.00 2.00-3.00 3.00-8.00 6.00-20.00 20.00-29.01	0.00-0.50 0.50-2.00 3.00-6.00 6.00-20.00 20.00-29.89	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 6.00-20.00 20.00-30.00 30.00-30.01	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 20.00-20.00 30.00-30.00	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 6.00-20.00 20.00-30.00 30.00-47.99
	Example	Layer	-														

		(K) 0.00 0.00 0.00	0.00	0.00	4.96	45.87	125.26	125.85	475.98	745.96	497.05	705.39	728.89	1054.58	2370.67	4115.37
		Op (k) 0.00 0.00 0.00	0.00	0.0	42.92	43.55	102.03	102.42	279.04	378.77	127.23	127.23	127.23	451.52	811.00	760.58
		Op Im (k) 1071.60 1071.60	1071.60	1071.60	1071.60	1071.60	1071.60	1071.80	1071.60	1071.80				760.58	780.58	780.58
Ì		Ocalc (k) C 0.00 0.00	000	80	42.92	43.55	102.03	102.42	279.04	376.77	127.23	127.23	127.23	451.52	011.00	770.12
	\parallel	N'q 77.8 77.8	77.8	77.8	77.6	77.8	77.8	77.6	77.8	77.6				P	25	2
		alpha 0.693 0.693	0.693	0.693	0.693	0.693	0.693	0.693	0.693	0.893	2	8	6	0.68	0.68	0.68
		q-bar 0		0	112.86	114.52	268.28	269.32	733.72	990.68	2000	2000	2000	1467.78	1986.18	2503.42
		Ap(ff*2) 7.06858 7.06858 7.06858	7.06858	7.06858	7.06858	7.08858	7.06858	7.06858	7.06858	7.08858	7.06858	7.06858	7.06858	7.06858	7.08858	7.06858
		Os total 0.00 0.00 0.00 0.00	0.0	0.0	2.04	2.12	23.22	23.42	196.95	389.19	368.82	578.15	801.76	803.06	1759.87	3354.79
ex8.xls		Os tayer 0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.00 2.14 21.08	0.00 0.00 2.14 21.18 0.10	0.00 0.00 2.33 23.07 171.55	0.00 0.00 2.44 24.11 342.64	0.00 0.00 2.44 24.12 343.08 0.189	0.00 0.00 2.62 26.00 372.05	0.00 0.00 2.64 26.20 375.20	0.00 0.00 2.64 26.21 375.27 197.939 1.00	0.00 0.00 2.83 28.09 404.15 214.804 1108.70	0.00 3.02 3.02 28.98 432.96 231.831 2657.03
,		läl i l		111	+111	11111	11111		+ $+$ $+$ $+$ $+$ $+$							
	\parallel	€ 0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00 1.00 3.00 8.01	0.00 0.00 3.00 13.89	0.00 0.00 3.00 14.00 0.01	0.00 1.00 3.00 14.00 8.01	0.00 1.000 14.00 9.99	0.00 1.00 1.00 10.00 10.00	0000 1,000 1	0.00 1.00 3.00 14.00 10.00 17.98
		Cd (ft) D (ft) 0 0.00 0 0.00 0 0.00	00.0 0.00		9.683	0 0 9.473 8.425	3	1 1 1 1 1 1	1 1 1 1 1 1	0 11.07 10.08	0 0 11.08 10.09 9.425	0 0 11.92 11.73 10.93 8.849	0 0.00 12.13 0.00 12.02 1.00 11.83 3.00 11.03 14.00 5.896 8.99	0 12.14 12.02 11.83 11.03 8.897 8.425	0 0 12.87 12.68 11.88 10.75 9.849	13.83 0.00 13.71 1.00 12.72 14.00 11.59 10.00 10.27 17.89
		Sin delta Cd (ft) D (ft) 0 0 0.00 0 0 0.00 0 0 0.00	0.015 0 0.00 0.0459218 9.589 0.00	0.015 0	0.6459218 9.683 0.6459218 9.589 0.6459218 9.471	0 0 0 0 0.6459218 9.473 0.6459218 9.425	0 0 0 0 0.6459218 9.754 0.6459218 9.566	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0459218 10.42 0.6459218 10.42 0.6459218 9.849	0 0 0.6459218 11.07 0.6459218 10.88 0.6459218 10.08	0.06459218 11.08 0.6459218 11.08 0.6459218 10.89 0.6459218 10.09 2000 9.425	0.0459218 11.92 0.0459218 11.93 0.0459218 11.93 2000 8.849	0 0.00 12.13 0.00 12.02 1.00 11.83 3.00 11.03 14.00 5.896 8.99	0.06458218 12.14 0.0458218 12.02 0.0458218 11.03 0.0458218 11.03 2000 9.897 0.7108945 9.425	0.8459218 12.87 0.6459218 12.88 0.6459218 11.88 0.6459218 11.88 200 10.75	0.06459218 13.83 0.6459218 13.71 0.6459218 12.72 0.6459218 12.52 2000 11.59 0.7108945 10.27
		Pd (psf) Sin delta Cd (ft) D (ff) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.015 0 0.00 0 0.0459218 9.589 0.00	0 0.015 0 0 0.0459218 0	0 0.6459218 9.683 0 0.6459218 9.589 56.43 0.6459218 9.471	0 0 0 0 0 0 0 57 0.6459218 9.473 114,26 0.6459218 9.425	0 0 0 0 0 0 57 0.6459218 9.754 191.14 0.6459218 9.566	0 0 0 0 0 0 0 57 0.6459218 9.756 191.40 0.6459218 9.425	0 0 0 0 0 0 57 0.8459218 10.8 191.40 0.8459218 9.849 501.28 0.8459218 9.849	0 0 0 0 0 0 0 57 0.6459218 11.07 191.40 0.8459218 10.88 829.74 0.6459218 10.08	0 0 0 0 0 0 0 0 0 57 0.6459218 11.08 191.40 0.8459218 10.89 630.00 0.8459218 10.08 2000 9.425	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.6456218 12.13 0.00 0 0.6456218 12.13 0.00 19.0 0.6456218 11.83 3.00 630.00 0.6456218 11.83 14.00 200.00 9.896 8.99	0 06459218 12.14 57 06459218 12.02 191.40 06459218 11.83 50.00 06459218 11.83 2000 06459218 11.83 1467.5 0.7108945 9.425	0 0 0 0 0 0 0 0 57 0.8459218 12.87 191.40 0.6459218 12.68 830.00 0.64562218 11.88 2000 10.75 1728.7 0.7108945 8.849	0 0.6456218 13.83 0 0.6456218 13.52 57 0.6456218 13.52 830.00 0.6456218 12.72 2000 11.59 1985.3 0.7109945 10.27
		CT Pd (psf) Sin delta Cd (ft) D (ft) 0.0000 0 0 0.000 0.0000 0 0.000 0.0	0.0000 0 0.015 0 0.00 1.0455 0 0.8459218 9.589 0.00	0.0000 0 0.015 0 0.0000 0 0.6459218 0	1.0455 0 0.8459218 9.683 1.0455 0 0.8459218 9.589 1.0455 56.43 0.8459218 9.471	0.0000 0 0 0 0.0000 0 0 0 1.0455 57 0.6459218 9.473 1.0455 114,28 0.6459218 9.425	0.0000 0 0 0 0.0000 0 0 0 1.0456 57 0.6459218 9.754 1.0455 191.14 0.6459218 9.566	0.0000 0 0 0 0.0000 0 0 0 1.0455 57 0.6459218 9.756 1.0455 191.40 0.8456218 9.567 1.0455 269.09 0.9459218 9.425	0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000 0 0 0 0 0.0000 0 0 0 0 1.0455 57 0.8459218 11.08 1.0455 693.00 0.8459218 10.08 2000 8.455	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000 0 0.0458218 12.13 0.00 1.0455 57 0.0458218 12.02 1.00 1.0455 191.40 0.0458218 11.83 3.00 1.0455 630.00 0.0458218 11.03 1.00 1.0455 630.00 0.0458218 11.03 14.00	0 06459218 12.14 57 06459218 12.02 191.40 06459218 11.83 50.00 06459218 11.83 2000 06459218 11.83 1467.5 0.7108945 9.425	0.0000 0 0 0 0 1.0455 57 0.0469218 12.88 1.0455 59.00 0.0469218 11.88 1.0455 17.00 0.0469218 11.88 2.000 0.0469218 11.88 2.000 0.0469218 11.88 2.000 10.0469218 11.88	0.0000 0 0.0456218 13.83 1.0455 07 0.0456218 13.82 1.0455 830 0.0456218 13.52 1.0456 830 0 0.0456218 13.52 1.0456 830 0 0.0456218 13.52 1.0455 1985.3 0.7108945 10.27
		Cf Pd (psf) Sin delta Cd (ft) D (ft) 0.0000 0 0 0.00 0.0000 0 0 0.00 0.0000 0 0 0.00 0.0000 0 0 0.00	0 0.015 0 0.00 0 0.0459218 9.589 0.00	0 0.015 0 0 0.0459218 0	5.7102 1.0455 0 0.6456218 9.683 5.71 1.0455 0 0.6456218 9.589 5.7097 1.0455 68.43 0.6456218 9.471	0 0 0 0 0.6459218 9.473 0.6459218 9.425	0 0.0000 0 0 0 0 0.0000 0 0 0 5,7104 1.0456 57 0.0459218 9.564 5,71 1.0456 191.14 0.0459218 9.566	0 0,0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 5.7152 1.0455 5.7152 1.0455 5.7152 1.0455 5.7152 1.0455 5.7152 1.0455 5.7152 1.0455 1.045	0 06459218 12.14 57 06459218 12.02 191.40 06459218 11.83 50.00 06459218 11.83 2000 06459218 11.83 1467.5 0.7108945 9.425	0.8459218 12.87 0.6459218 12.88 0.6459218 11.88 0.6459218 11.88 200 10.75	6.7181 10.0000 0 0.6469281 13.83 6.7138 1.0465 0 0.6469281 13.83 6.7138 1.0465 0 0.6469281 13.82 6.7138 1.0465 191.40 0.0469281 13.82 6.7136 1.0465 190.0469281 13.82 2000 1.6467 1.0467 10.0467 9.5596 1.0865 1985.3 0.7108945 10.27
		CT Pd (psf) Sin delta Cd (ft) D (ft) 0.0000 0 0 0.000 0.0000 0 0.000 0.0	0 0.0000 0 0.015 0 0.00 5.71 1.0455 0 0.0459218 9.589 0.00	0.0000 0 0.015 0 0.0000 0 0.6459218 0	1.0455 0 0.8459218 9.683 1.0455 0 0.8459218 9.589 1.0455 56.43 0.8459218 9.471	0.0000 0 0 0 0.0000 0 0 0 1.0455 57 0.6459218 9.473 1.0455 114,28 0.6459218 9.425	0.0000 0 0 0 0.0000 0 0 0 1.0456 57 0.6459218 9.754 1.0455 191.14 0.6459218 9.566	0.0000 0 0 0 0.0000 0 0 0 1.0455 57 0.6459218 9.756 1.0455 191.40 0.8456218 9.567 1.0455 269.09 0.9459218 9.425	0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 57 0.6459218 11.08 191.40 0.8459218 10.89 630.00 0.8459218 10.08 2000 9.425	0.250 0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.250 0.0000 </th <th>0.0000 0 0.0452218 12.14 1.0455 57 0.0459218 12.05 1.0456 191.40 0.0459218 11.03 1.0456 63.00 0.0459218 11.03 1.0456 1497.5 0.7109945 8425</th> <th>1.250 0.0000 0 0.0000 0 0 0 0 0 0 0 0 0 0 0</th> <th>0.250 0.0000 0.0465218 13.83 1.250 5.7181 1.0465 0.0465218 13.83 4.500 5.7138 1.0465 0.0465218 13.52 13.000 5.7138 1.0465 0.0465218 13.52 25.000 5.7136 1.0465 0.00 0.0465218 13.52 25.000 1.500 0.0465218 13.52 35.000 1.500 1.500 1.500 13.50</th>	0.0000 0 0.0452218 12.14 1.0455 57 0.0459218 12.05 1.0456 191.40 0.0459218 11.03 1.0456 63.00 0.0459218 11.03 1.0456 1497.5 0.7109945 8425	1.250 0.0000 0 0.0000 0 0 0 0 0 0 0 0 0 0 0	0.250 0.0000 0.0465218 13.83 1.250 5.7181 1.0465 0.0465218 13.83 4.500 5.7138 1.0465 0.0465218 13.52 13.000 5.7138 1.0465 0.0465218 13.52 25.000 5.7136 1.0465 0.00 0.0465218 13.52 25.000 1.500 0.0465218 13.52 35.000 1.500 1.500 1.500 13.50
	89	K-deta Cf Pd (per) Sin delta Cd (ft) D (ft) 0 0,0000 0 0 0 0 0 0,0000 0 0 0 0 0 0,0000 0 0 0 0 0 0,0000 0 0 0 0 0 0,0000 0 0 0 0 0 0,0000 0 0 0 0 0 0,0000 0 0 0 0 0 0 0,0000 0 0 0 0 0 0 0,0000 0 0 0 0 0 0 0,0000 0 0 0 0 0 0 0,0000 0 0 0 0 0 0 0,0000 0 0 0 0 0 0 0,0000 0 0 0 0 0 0 0 0,0000 0 0 0 0 0 0 0 0,0000 0 0 0 0 0 0 0 0,0000 0 0 0 0 0 0 0	0 0.0000 0 0.015 0 0.00 5.71 1.0455 0 0.0459218 9.589 0.00	0 0.0000 0 0.015 0 0 0.0000 0 0.0459218 0	5.7102 1.0455 0 0.6456218 9.683 5.71 1.0455 0 0.6456218 9.589 5.7097 1.0455 68.43 0.6456218 9.471	0 0.0000 0 <td>0 0.0000 0 0 0 0 0.0000 0 0 0 5,7104 1.0456 57 0.0459218 9.564 5,71 1.0456 191.14 0.0459218 9.566</td> <td>0 0,0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0.250 0.0000 0</td> <td>0.250 0.0000<!--</td--><td>\$\begin{array}{c c c c c c c c c c c c c c c c c c c </td><td>1.250 0.0000 0 0.0000 0 0 0 0 0 0 0 0 0 0 0</td><td>0.0000 0 0.0456218 13.83 1.0455 07 0.0456218 13.82 1.0455 830 0.0456218 13.52 1.0456 830 0 0.0456218 13.52 1.0456 830 0 0.0456218 13.52 1.0455 1985.3 0.7108945 10.27</td></td>	0 0.0000 0 0 0 0 0.0000 0 0 0 5,7104 1.0456 57 0.0459218 9.564 5,71 1.0456 191.14 0.0459218 9.566	0 0,0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.250 0.0000 0	0.250 0.0000 </td <td>\$\begin{array}{c c c c c c c c c c c c c c c c c c c </td> <td>1.250 0.0000 0 0.0000 0 0 0 0 0 0 0 0 0 0 0</td> <td>0.0000 0 0.0456218 13.83 1.0455 07 0.0456218 13.82 1.0455 830 0.0456218 13.52 1.0456 830 0 0.0456218 13.52 1.0456 830 0 0.0456218 13.52 1.0455 1985.3 0.7108945 10.27</td>	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	1.250 0.0000 0 0.0000 0 0 0 0 0 0 0 0 0 0 0	0.0000 0 0.0456218 13.83 1.0455 07 0.0456218 13.82 1.0455 830 0.0456218 13.52 1.0456 830 0 0.0456218 13.52 1.0456 830 0 0.0456218 13.52 1.0455 1985.3 0.7108945 10.27

ſ		Q€ (€)	0.00	0.0	43.36	92.44	83.24	185.47	186.15		578.76	870.57		578.37	793.44		817.78	1178.53		2574.53			4370.17
Ì		(S) 0.00	0.00	0.00	43.36	86.28	86.91	145.39	145.78		322.39	420.12		127.23	127.23		127.23	486.59		646.07			760.58
		Op lim (k) 1071.60	1071.60	1071.60	1071.60	1071.80	1071.80	1071.60	1071.60		1071.60	1071.80						760.58		780.58			760.58
Ì	\parallel	Ocalc (k) 0	8	0.00	43.36	86.28	86.91	145.39	145.78		322.39	420.12		127.23	127.23		12/23	486.59		648.07			805.18
ŀ		77.8	9	77.8	77.8	77.8	77.8	77.6	8.77		77.6	77.6						2		3			94
ŀ	\parallel	alpha N'q 0.693	0.693	0.693	0.693	0.693	0.683	0.693	0.693		0.693	0.693	2	۵	G)		e PN styde	89.0		89.0			0.68
		q-bar 0	0	0	114	226.86	228.52	382.28	383.32		847.72	1104.68		2000	2000		q-bar	1581.78		2100.18			2617.42
Ì		Ap(ft*2) q 7.06858	7.06858	7.06858	7.06858	7.08858	7.06858	7.06858	7.06858		7.06858	7.06858		7.06858	7.08858		7.06858 Ap(ff^2)	7.06858		7.06858			7.08858
		Os total 0.00	0.00	0.00	0:0	8.16	6.33	40.09	40.37		254.36	450.45		451,13	886.20		690.54	691.93		1928.46			3609.59
ex8.xds		Os layer 0.00	000	0.00	0.00	0.00	0.00 0.00 6.25 0.08	0.00 0.00 6.43 33.65	0.00 0.00 0.43 33.80	0.00	210.58	0.00 0.00 7.31 38.47 404.67	0.00	38.48 405.16 0.189	0.00 0.00 7.87 41.48 439.37	0.00 0.00 7.93 41.81	0.00	7.83 41.82 443.17 197.939 1.08		44.81 477.29 214.904 1182.97		9.05 47.81 511.30	
Ī		0.00	11	0.00	0.00	00.00	0.00	0.00	0.00	0.00	11	0.00 1.00 3.00 13.99	111	3.00	0.00 1.00 3.00 14.00	0.00 1.00 3.00 14.00	00.0	3.00 14.00 10.00		3.00 14.00 10.00 10.00	0.0	3.00	10.00
		€ 0 C	0	9 8589	0 0	9.583 9.589 3 9.471	9 9.425	0 0 0 0 8 9.566	0 0 0 0 8 9.756 8 9.567 8 9.425	0 0 0 0 0 0 8 10.6	8 9.849	0 0 0 0 8 11.07 8 10.88 8 10.08	000	8 10.89 8 10.09 0 9.425	0 0 0 8 11.92 8 11.73 0 9.849	0 0 0 8 12.13 8 11.83 8 11.83	8.896 0 0 0 0 12.14	8 12.02 8 11.83 8 11.03 0 9.897 5 9.425	0 0 0	8 12.68 0 10.75 5 9.849	0 0 0	8 13.52 8 12.72	5 10.27
		Sin delta		0.015	0.015	0.8459218 0.8459218 0.8459218	0 0.6459218 0.6459218	0 0 0 171 0.8459218 305.14 0.8459218	0 0 0 171 0.8459218 305.4 0.8459218 383.06 0.8459218	0 0 0 171 0.6459218 305.4 0.6459218	0.845921	0 0 0 0 0 0 171 0.6459218 305.4 0.6459218 743.74 0.6459218	100376	0.6459218 0.6459218 2000	0 0.6459218 0.6459218 0.6459218 2000	0 0.8459218 12.13 171 0.8459218 12.02 305.4 0.6459218 11.83 744.00 0.8459218 11.03	200	305.4 0.8459218 305.4 0.8459218 744.00 0.8459218 2000 1581.5 0.7109945	0.845021	305.4 0.6459218 744.00 0.6459218 2000 1840.7 0.7108945	0.645921	0.8459218 0.8459218 0.8459218	0.710994
		Pd (psf)		00	00	170.43	0 0 171 228.28	0 171 305.14	0 0 171 305.4 383.06	171	615.26	0 171 305.4 743.74	0 0	305.4	171 171 305.4 744.00	0 0 171 305.4 744.00	00	305.4 744.00 1581.5	0 0	305.4 744.00 1840.7	0 0	171 305.4 744.00	2089.3
		0.0000	0.0000	1.0455	0.0000	1.0455 1.0455	0.0000 1.0455 1.0455	0.0000 1.0455 1.0455	0.0000 0.0000 1.0455 1.0455	0.0000 1.0455 1.0455	1.0455	0.0000 0.0000 1.0455 1.0455	0.0000	1.0455	0.0000 0.0000 1.0455 1.0455 1.0455	0.0000 1.0455 1.0455 1.0455	0.0000	1.0455 1.0455 1.0455	0.0000	1.0455	0.0000	1.0455 1.0455 1.0455	1.0655
Ì		K-delta		5.71	00	5.7102 5.71 5.7097	0 5.7098 5.7096	0 5.7104 5.71	5.7104 5.71086 5.7086	0 0 5.7122 5.7118	5.7106	5.7132 5.7128 5.7111	00	5.7128	5.7135 5.7135 5.7128	5.7152 5.7135 5.7135 5.7131	5.7152	5.7135 5.7135 5.7131 9.5596	0 0	5.7135 5.7135 9.5596	5.7181	5.7135 5.7135 5.7135	9.5598
Ī		of layer 0.000	0.250	1.245	1.745	1.250	0.250 1.250 2.500 3.005	1.250 2.500 4.495	0.250 1.250 2.500 4.500 8.005	1.250 2.500 4.500	10.505	0.250 1.250 2.500 4.500 12.995	1.250	4.500 13.000 20.005	0.250 1.250 2.500 4.500 13.000 24.505	0.250 1.250 2.500 4.500 13.000	0.250	2.500 4.500 13.000 25.000 30.005	1.250	4.500 13.000 25.000 34.505	0.250	2.500 4.500 13.000	38.995
. [П	Analysis Depth 0.01		0.00-0.5	0.00-0.5	0.00-0.5 0.50-2.00 2.00-2.99	0.00-0.50 0.50-2.00 2.00-3.00 3.00-3.01	0.00-0.50 0.50-2.00 2.00-3.00 3.00-5.99	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 6.00-6.01	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00	6.00-15.01	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 6.00-19.89	0.50-0.50	3.00-6.00 6.00-20.00 20.00-20.01	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 6.00-20.00 20.00-29.01	0.00-0.50 0.50-2.00 2.00-3.00 3.00-6.00 6.00-20.00	0.00-0.50	2.00-3.00 3.00-6.00 6.00-20.00 20.00-30.00 30.00-30.01	0.00-0.50	3.00-6.00 6.00-20.00 20.00-30.00 30.00-38.01	0.00-0.50	3.00-3.00 3.00-8.00 6.00-20.00	30.00-47.99
		Layer	T																				

Example #9

0 m ______

 $C_u = 90 \text{ kPa}$ $\gamma = 15 \text{ kN/m}^3$ 20% Driving Loss

 $\phi = 32^{\circ}$ Skin Friction

 $\phi = 36^{\circ}$ End Bearing

 $\gamma = 18 \text{ kN/m}^3$

8% Driving Loss

20 m

Water Table

Pile - Monotube

Drilling = 2 m

J-taper 203 mm x 356 mm x 10.06 m

Restrike/Driving = 2 m

Extension 356 mm x 356 mm x 12.12 m

Ultimate = 1 m

Other Design Considerations:

2 m Soft Soil

estrike	

			0.00		26.21			124.80	7		288.86		7	424.72			50	505.70				783.71					1188.04	7				1808.75					2333.62
	_	<u>8</u>				ļ			-						_					4			4	4				_									
		Qp (kN)			3 26.21			26.21			3 26.21			9 26.21				105.86				148.08		_			3 190.50	_				6 232.92				١.	1 234.92
		Q (S)	5.89	5.89	5.89			5.89			5.89			5.89				23.80				33.29					42.83					52.36					52.81
		Qp lim (k																52.81				52.81					52.81					52.81					52.81
		Qcalc (k)	5.89	5.89	5.89			5.89			5.89			5.89				23.80				33.29					42.83					52.36					61.84
															b,N			77.60				77.60					77.60					77.60					77.60
		Nc	9.00	9.00	9.00			9.00			9.00			9.00	alpha			0.6879				0.68666667					0.68666667					0.68666667					159.49 0.68666667
		z													В			61.27				85.87					110.47					135.06					159.49
		Cu (pst)	1879.70	1879.70	1879.70			1879.70			1879.70			1879.70	q-bar	-		1279.74				1793.43					2307.12					2820.82					3331.09
		Ap(ft^2) Cι	0.35	0.35	0.35			0.35	1		0.35			0.35	Ap(ff^2) q-			0.348379				0.35					0.35					0.35					0.35
		Qs-total (k) A						98.58			262.65		-	398.51				399.85				635.62					997.54					1575.84					2098.70
		Qs-layer (kN)					0.00	98.58		0.00	262.65		0.00	398.51		0.00	399.43	0.41	00.00	28.00	422.74	184.88		0.00	214.66	257.53	525.35		0.00	430.95	70.57	1074.32		0.00	513.61	63.97	1521.12
		Qs-layer (k) Q					0.00	22.16		000	59.05		0.00	89.59		00.0	89.80	60.0	0.00	6.29	95.04	41.56		0.00	48.26	57.90	118.11		0.00	96.89	15.87	241.53		0.00	115.47	14.38	341.98
\parallel	Ê						0.0	3.235	4	0.0	3.077		0.0	24.573	L	0.0	4.606	0.03	1.640	1.476	3.130	9.88		1.640	1.319	3.287	19.72		1.640	21.161	3.445	29.56		1.640	24.606	6.33	33.01
-) [(#)			-		0.00		- 1	8	- 1	- 1	- 1	2.68 2			ı	5.09	 _		3.12 2	1				3.35					3.59				3.67		
	psf) Cd (ft)	Sin delta Cd (ft)	00	8	80		0.00	5.75		0.00	1294.03		8	1360.73		0.00	1360.87	0.37197	0.00	1161.99	1318.36	9443		0.00	1.99	1299.98	0.41779		0.00	1247.75	1284.01	0.43889		0.00	8.91	9390	4523
	Ca (pst)		0	0	0		O	117		o	139		0	136	-	Ö	136	61.23 0.3	Ö	116	131	73.53 0.39443		0	116	129	85.83 0.4		0	124	128	98.13 0.4	Ц	0	1278.91	69.10 0.3	18.25 0.4
\parallel		sf) Pd (kPa)						-					_		-		_	1278.88				1535.73					1792.57					2049.42		_		1443.26	
-	_	Pd (pst)					_		-	-	_		-		_	_		0.84 127				0.87 153					0.90 179		_			0.93 204					0.93 246
\parallel		ය ර								-							_		L																		
\parallel	ţōţ	K-delta					Ц				_				L			05 3.390501				9.505 3.427158					05 3.460285					05 3.490503		_		8.965 1.402583	3.500
	Bottom o Midpoint of	Layer		Ц						5			2	6				1 8.005		2				ر ا	2		11.005		_	2	0	12.505		0			
	Bottom	Layer		_			0.200			0.5						0.50		8.01	L	0.95		11.01					_			0 6.95		17.01			00.8		
Example 9	Layer Top of	Layer	1 0.01	1 0.49	1 0.50		1 0.00	1 0.5			1 0.5		1	1 0.5		0.00	1 0.5	2 8.00	1 0.00	1 0.50	1 0.9	2 8.00		1 0.0	1 0.5	3.95	2 8.00		1 0.0	1 0.5	1 6.95	2 8.00		1 0.0	1 0.50		2 9.93
Exan	Laye													Ĺ	L			Ľ	Ĺ	Ĺ																	

	1	7	7	9	ō	9			<u> -</u>		Ö			၅	r		_			, _F	_	_		_	~						ஓ	Т	Т	Т	Т	j,-l		7	_	7	-	æ
			ğ S						104.67		226.90			324.53					405.23						661.12						1041.99					1609.71						2087.58
			Qp (kN)	0.00	0.00	0.00			26.21		26.21			26.21					105.86						148.08						190.50					232.92						234 92
		╗	Qp (k)	5.89	5.89	5.89			5.89		5.89			5.89					23.80						33.29						42.83					52.36						52.84
	1		Op lim (k c																52.81						52.81						52.81					52.81		1				52.84
			Ocate (k) C	5.89	5.89	5.89			5.89		5.89			5.89					23.80						33.29						42.83					52.36						84
	t	1	۷																77.60					_	77.60						77.60			T		77.60				1		77 60
+	+	-	-	9.00	9.00	9.00			9.00		9.00		_	9.00	Ν̈́				0.6879						2999		-				2999	-	-			6866667				-		6667
	1		Š												alpha										7 0.6866667						7 0.6866667	-				0				4	- 1	0 686667
																			61.27						85.87						110.47					135.06						450 40
			Cu (pst)	1879.70	1879.70	1879.70			1879.70		1879.70		,	1879.70	q-bar				1279.74						1793.43						2307.12					2820.82						00 7000
	1	7	Ap(ft^2) C	0.35	0.35	0.35			0.35		0.35			0.35	Ap(ft^2) q				0.348379						0.35						0.35	\dagger				0.35						1000
	1	_	Os-total (k) 14						78.46		200.68			298.32	-				299.37						513.04						851.49	1				1376.79						4050 61
	1		Os-layer (kN) O					0.00	78.46	0.00	200.68		0.00	298.32		0.00	298.62	0.37	0.38		0.00	22.40	320.11	0.44	170.09		0.00	171.73	195.93	0.51	483.32	000	334.33	53.59	0.50	988.37	8	3	393.78	0.60	58.85	4000 40
	+	┑						0.00	17.64	0.00	45.12		0.00	67.07		0.00	67.14	90.0	0.09		8.0	5.04	71.97	0.10	38.24		0.00	38.61	44.05	0.11	108.66	000	75.16	12.05	0.11	222.21	2	3	88.53	0.14	13.23	24.4 62
	-	-	Os-layer (k)					20%	%		20%		%	%		%	8	8%	8%		8	8	8	8%	8%		8	3 8	%	8%		8	8	8	38		8	R	8	8%		000
i		Driving	Loss					20	20%		×		20%	20		20	20%	۳			2	20%	20	æ	۳.		20%	2	20%	ш,		20%	8	2	20%	80		ROY	8	8	8	۰
	Т	Œ C	D (#)						8.235	0.0	18.077		0.0				24.573	ľ	0.03		1.640			0.033			1.640			0.033	19.72	1 640	21.161	3.412	0.033	29.56	1 640	0.01	24.573	0.033	6.33	22.04
	İ		(¥)					0.00	2.29	0.0	2.52		0.00	2.68		3.31	2.68	2.09	2.09		3.67	3.67	3.12	2.56	2.33		3.67	3.67	3.35	3.04	2.56	3.67	3.67	3.59	3.51	2.80	2 67	3.07	3.67	3.67	3.67	100 C
		Ca (pst)	π	0.00	0.00	0.00		0.00	1169.69	0.00	1235.92		0.00	1273.26		0.00	1273.07	1321.13	0.37197		8	1161.99	1249.31	1281.11	0.39443		0.00	1161.99	1239.04	1253.49	0.41779	800	1210.01	1230.12	1233.28	0.43889	5	3	1227.29	1227.45	0.36390	44522
	ľ		Pd (kPa) S								`								61.23 (Ì	·	_	73.53 (,	•	85.83 (98.13 (1				99.10	418 OF 0 44522
	1	- 1	Pd (pst) P																1278.88						1535.73				_		1792.57	\dagger			-	2049.42			1		1443.26	2460 70
	†											1							0.84					_	0.87						0.90	+		-		0.93			1	1	- 1	800
	\dagger	1	K-detta Cf						H			_							3.390501						3.427158	-					3.460285	+			-	3.490503	+			+	02583	CRACO
		Ē										-							8.005 3.3						9.505 3.4						11.005			L	_	12.505 3.4				1	8.965 1.402583	14 061 25
	_	Ē	er Layer					0.500	3.010	0.5	6.01	-	0.5	7.99	<u> </u>	0.50	7.99	8.00			0.50	0.95	7.99		11.01		0.50	3.95	7.99		14.01	0.50	6.95	7.99	8.00		09.0	3	2.8		9.93	
	_	┱	/er Layer	0.01	0.49	0.50	Н		0.50	ı	0.5			0.5	L		L				Ì		0.95			- (0.50			8.00		0.50	L		8.00		3 1				000
Example 9	+	Layer lop of	Layer	F	F	-	<u> </u>	-	-	-	-	-	1	-	-	-	-	-	2		-	=	+	-	2		+	F	+	-	2	-	-	-	-	2	-	_	-	+		·
		-1				_						1						1		11				<u></u>	ı I	- 1		- 1			L		1	1	1	1	L_	_1	1		- 1	

							_		 _	_		_		_		_	_	 	_			_	_	_					_	_	_	_	_	_	_	_	_
		Qt (K)	0.00		26.21			64.05		210.09			334.06				397.94					643.58					1017.81					1584,31					2095.73
		Qp (kN) (0.00	0.00	26.21			26.21		26.21			26.21				88.92					131.18		1			173.60					216.01					234.92
		П	5.89	5.89	5.89			5.89		5.89			5.89				19.99					29.49					39.03					48.56	1	1			52.81
		Qcalc (k) Qp lim (k Qp (k)															52.81					52.81					52.81					52.81		1			52.81
		Calc (k)	5.89	5.89	5.89			5.89		5.89			5.89				19.99					29.49		1		Ì	39.03					48.56					58.04
		J												1			77.60					77.60		1			77.60					77.60		7			77.60
			9.00	9.00	9.00			9.00		9.00			9.00	P'N			0.6879					0.68666667		1			0.68666667					0.68666667				-	299999
H	-	Sc								_	-			alpha			51.47					76.07 0.686	+	1		ı	100.66 0.686				1	125.26 0.680		_	-		149.69 0.68666667
																	51					76															
		Cu (pst)	1879.70	1879.70	1879.70			1879.70		1879.70			1879.70	q-bar			1075.01					1588.71			İ		2102.40				İ	2616.09					3126.36
		Ap(ft^2) C	0.35	0.35	0.35			0.35		0.35			0.35	Ap(ff^2) o			0.348379					0.35					0.35					0.35					0.35
		Os-total (k) A						37.84		183.88			307.84	٧			309.02					512.40		1			844.21					1368.30		1			1860.82
	\mid	Os-layer (kN) Os					0.00	37.84	0.00	183.88		0.00	307.84		0.00	308.67	0.35	0.00	00.0	00:00	352.17	160.23	6	3	121.33	257.53	465.35	000	0.0	330.73	70.57	00'296		0.00	410.89	54.89	1395.03
	H	П					0.00	8.51	9.00	41.34		0.00	69.21		0.00	69.40	90.0	8	0.00	0.00	79.17	36.02	100	3	27.28	27.90	24.62	- 6	3	74.35	15.87	217.40		0.00	92.38	12.34	313,63
		Qs-layer (k)																																			
		(¥)					0.0	Ц	_	13.156			5 19.652		0.0	ŝŧ			7 1.476		19.6	9.88	1	700.0			6 19.72		4	7 16.240		0 29.56	Ц		¥	_	33.01
	(H) Cq (H)	Cd (ft)					0.00	2.17	0.00	2.41		0.00	2.56		3.19	2.56	2.09	3.67	3.67	3.67	3.03	2.3	6	3.07	3.67	3.35	2.56	Č	3.5/	3.67	3.59	2.80		3.67	3.67	3.67	2.88
	Ca (psf) (- m	0.00	0.00	0.00		0.00	1182.21	8.0	1305.64		0.00	1374.69		0.00	1374.83	0.37197	8	0.00	0.00	1325.47	0.39443	0	3	1161.99	1299.98	0.41779	000	3	1247.75	1284.01	0.43889		0.00	1278.91	59.30 0.36390	0.44523
		Pd (kPa)															51.43					63.73					76.03					88.32				59.30	108.45
		Pd (psf) F								-		-	-				1074.16					1331.00					1587.85					1844.70				1238.54	2265.07
		<u>ه</u> ت									-						0.84					0.87	+				0.90					0.93				0.84	0.93
		K-delta															3.390501					3.427158					3.460285					3.490503				1.402583	3.500482
	Midpoint of	Layer															8.005					9.505	1				11.005					12,505					
\parallel	Bottom o Mi	Layer La	-	-		_	2.000	3.010	7	6.01		2	7.99	\vdash	2.00	8.00	8.01	0.50	0.95	2.00	8.00	11.01	6	2.00	3.95	8.00	14.01	- 6	7.60	6.95	8.00	17.01		700	8.00	9.93	19.99
6 9	Top of B		0.01	0.49	0.50		0.00	2.00	0	2		٥	2		0.00	2.00	8.00	0.00	0.50	0.95	2.00	8.00	9	0.00	58	3.95	8.00	000	3	2.00	6.95	8.00		8	2.00	8.00	9.93
Example 9	Laver		╒	-	-		-	1	Ŧ	-		-	-	Г	-	F	2	+	-	F	-	7	1	-	-	Ŧ	2	1	=	Ŧ	F	2	П	Ŧ	Ŧ	=	7

ex9.xls

REFERENCES

Bowles (1977), <u>Foundation Analysis and Design</u>, McGraw-Hill Book Company, New York, 2nd edition.

Cheney, R.S. and Chassie, R.G. (1982), "Soils and Foundations Workshop Manual" U.S. Department of Transportation, Federal Highway Administration.

Hannigan P.J., et. al. (1997), "Design and Construction of Driven Pile Foundations," U.S. Department of Transportation, Federal Highway Administration.

Meyerhof, G.G. (1976), "Bearing Capacity and Settlement of Pile Foundations," Journal of Geotechnical Engineering Division, ASCE, Vol. 102, No. GT3, Proc. Paper 11962, pp. 195-228.

Nordlund, R.L. (1963), "Bearing Capacity of Piles in Cohesionless Soils," ASCE, SM&F Journal SM-3.

Nordlund, R.L. (1979), Point Bearing and Shaft Friction of Piles in Sand," 5th Annual Fundamentals of Deep Foundation Design, University of Missouri-Rolla.

Peck, Hanson and Thornburn (1974) Foundation Engineering, John Wiley & Sons, New York, 2nd edition.

Stream Stabilization and scour at Highway Bridges (1995) NHI course 13046 Participants Workbook, FHWA-HI-91-011.

Thurman, A.G. (1964), "Computed Load Capacity and Movement of Friction and End-Bearing Piles Embedded in Uniform and Stratified Soil," Ph.D. Thesis, Carnegie Institute of Technology.

Tomlinson, M.J. (1980), Foundation Design and Construction, Pitman Advanced Publishing, Boston, MA, 4th edition.

Tomlinson, M.J. (1985), Foundation Design and Construction, Longman Scientific and Technical, Essex, England.