Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest)

STRIPED BASS

Fish and Wildlife Service

Species Profiles: Life Histories and Envi ronnental Requi rements of Coastal Fi shes and Invertebrates (Pacific Sout hwest)

STRI PED BASS

by

Thonas J. Hassl er

California Cooperative Fi shery Research Unit
 Humbol dt State Uni versity
 Arcata, CA 95521

Proj ect Manager

Carroll Cordes
Proj ect Officer
Davi d Mbran
U. S. Fi sh and Wildife Service National Watlands Research Center 1010 Gause Boul evard Sl i del I, LA 70458

Perf or med for
Coastal Ecol ogy Group
Wat er ways Experi ment Station U. S. Army Corps of Engi neers
Vi cksburg, MS 39180
and
U. S. Departnent of the Interior Fish and Wildife Service Research and Devel opnent Nationa? Wetlands Research Center Whshi ngton, DC 20240

This series may be referenced as follows:
U.S. Fish and Wildife Service. 1983-19, Species profiles: life histories and envi ronnental requi renents of coastal fishes and invertebrates. U.S. Fish Villdi. Serv. Biol. Rep. 82(11). U.S. Arny Corps of Engi neers, TR EL-82-4.

This profile may be cited as follous:
Hassler, T.J. 1988. Species profiles: life histories and envi ronnental requi rements of coastal fishes and invertebrates (Pacific Southwest) -- striped bass. U. S. Fi sh Wildil. Serv. Bi ol. Rep. 82(11.82). U. S. Army Corps of Engi neers, TR EL-82-4. 29 pp.

PREFACE

This species profile is one of a series on coastal aquatic organisns, principally fish, of sport, commercial, or ecol ogical importance. The profiles are desi gned to provi de coastal managers, engi neers, and bi ol ogists with a bri ef comprehensive sketch of the bi ol ogical characteristics and environmental requi renents of the species and to describe how popul ations of the species nay be expected to react to envi ronment al changes caused by coastal devel opnent. Each profile has sections on taxonomy, life history, ecological role, environnental requi renents, and economic importance, if applicable. A three-ring binder is used for this series so that new profiles can be added as they are prepared. This project is jointly pl anned and financed by the U.S. Arny Corps of Engi neers and the U.S. Fi sh and Vildife Service.

Suggestions or questions regarding this report should be di rected to one of the foll owing addresses.

```
Inf ornation Transfer Specialist
National Vetl ands Research Center
U. S. Fi sh and Wildife Service
NASA SI i dell Computer Compl ex
1010 Gause Boul evard
Slidel I, LA 70458
```

or
U. S. Arny Engi neer Uter vays Experi nent Station

Attention: VESER-C
Post Office Box 631
Vicksburg, MS 39180

Metric to U.S. Custonary

millineters (mm) centineters (cm) neters (m) neters (m) kil onet ers (km) kil oneters (km)

```
square meters (m2)
square kiloneters ( }\mp@subsup{\textrm{km}}{}{2}\mathrm{ )
hectares (ha)
```

liters (1)
cubic meters (m^{3})
cubic neters (m^{3})
milligrans (ng)
grans (g)
kilograns (kg)
netric tons (t)
netric tons (t)
kilocalories (kcal)
Cel si us degrees (${ }^{\circ} \mathrm{C}$)

By
0. 03937
0. 3937
3. 281
0. 5468
0. 6214
0. 5396
10. 76
0. 3861
2. 471
0. 2642
35. 31
0. 0008110
0. 00003527
0. 03527
2. 205
2205.0

1. 102
2. 968
$1.8\left({ }^{\circ} \mathrm{C}\right)+32$
U. S. Custonary to Metric
3. 40
4. 54
5. 3048
6. 829
7. 609
8. 852
9. 0929
10. 590
11. 4047
12. 785
13. 02831
1233.0
14. 0
15. 35
0.4536
0.00045
0.9072
16. 2520
17. 5556 (${ }^{\circ} \mathrm{F}$ - 32)

To Obtai n

i nches
i nches
feet
fathons
statute miles nautical miles
square feet square miles acres
gal lons
cubi c feet acre-f eet
ounces
ounces
pounds
pounds short tons

British thernal units Fahrenheit degrees
millimeters
centimeters
meters
meters
ki I omet ers
ki I omet ers
square neters square kil oneters hect ares
liters
cubic meters cubi c neters
milligrans
grans
ki lograns
netric tons
netric tons
kilocal ories
Cel si us degrees

CONTENTS

Page
PREFACE iii
CONERSI ON TABLE iv
ACKNOVLEDGVENTS vi
NOMENCLATURE/ TAXONOMY/ RANGE 1
MORPHOLOGY AND I DENTI FI CATI ON AIDS 1
REASONS FOR INCLUSION IN SERI ES 3
I NTRODUCTI ON OF STRI PED BASS 3
ESTUARY 3
LI FE H STORY 4
Reproductive Physi ol ogy and Strategy 4
Spawni ng 4
Eggs 4
Larvae 6
J uveni I es 7
Adul ts 7
GRONTH CHARACTERI STI CS 7
Grouth 7
Length- Vei ght Rel ati ons 9
THE FISHRY 10
Commercial Fi shery 10
Sport Fi shery 10
Popul ati on Dynamics 12
ECOLOG CAL ROLE 13
Feedi ng Habits 13
Disease and Parasites 14
EMM RONMENTAL REQU REMENTS 15
Habi tat Suitability I ndex Mbdel s 15
Temper at ure 15
Salinity 17
Sal inity-Temper at ure Interaction 18
Di ssol ved Oxygen and pH. 18
Turbi dity 18
Current Vel ocity 19
Ent rai nment 19
Ri ver Fl ow and Water Di versi on 19
Envi ronment al Contani nants 20
LI TERATURE CI TED 23

ACKNOVLEDGMENTS

Iamgratefulfor reviens by Serge Doroshev, University of Californiaat Davis, and Maxwell El dridge, National Marine Fi sheries Service, Tiburon, Cal if ornia.

Fi gure 1. Striped bass.

STRI PED BASS

NOMENCLATURE/ TAXONOM/ RANGE

Geographic range: Atlantic coast from the St. Lawrence River, Canada (Magnin and Beaulieu 1967), west to Montreal (Vladykov and MEAlister 1961), and south to the St. Johns Ri ver, Fl orida (McLane 1955). Gulf of Mexico from west Fl orida coast to Loui si dna (McIlwain 1968). I nt roduced into the I ower Sacr anento River, California in 1879 (Scofield and Bryant 1926). Now extend from Barkl ey Sound, British Col umbia
south to Ensenada, Mexi co (Radovich 1961; Forrester et al. 1972; MIIer and Lea 1972). Introduced into waters of the Sovi et Uni on (Doroshev 1970) and France and Portugal (Setzler et al. 1980). Landl ocked form has been successfully introduced into freshwater impoundments in North America (Figure 2 is map of di stribution in the Pacific Southwest Region; distribution of fish that live only in freshwater is not i ncl uded).

MDRPHOLOGY AND I DENTI FI CATI ON AI DS

Meristic Characters: dorsal IX + I-II, 12, anal III, 9-11, pector al 1617; I ateral Iine scal es 57-67; gill rdkers 8-11 + 14-17; vertebrae 25 (MIIer and Lea 1972). Tho dorsal fins, one spiny and one soft, separdted dt bdse and about equal in

Figure 2. Pacific Southwest di stribution of striped bass.
length; operculum with tuo spines on posterior edge (Fay et al. 1983). Mouth large, but naxilla does not reach past the hi nd nargin of the eye; two distinct patches of teeth dt bdse of tongue (Moyle 1976). Eye small, less thdn one-fourth of head I ength; pectoral fins do not reach back beyond tips of pelvics (Roedel 1953).

Body elongated, with 6-9 ddrk, usually broken but sonetines continuous, horizontal stripes (Miller and Led 1972), one follous I ateral line dnd three are bel ow (Fay et al. 1983). Color: steel blue to olivegreen dbove beconing silvery on sides and belly, with brdssy iridescence (Roedel 1953).

REASONS FOR I NCLUSI ON I N SERI ES

The striped bass supports one of the nost important sport fisheries in the Pacific Southwest Region. It is one of Cal ifornia's top rdnking Sport fishes dnd is the domindnt sport fish in the Sacrdmento-San Joaquin Estuary (Figure 2). The only popul ations of striped bdss of consequence in the Pacific Southwest are in this Estuary and in the Pacific Ocean within 40 km of the est uary (Chadwick et al. 1977; Stevens 1979, 1980; Stevens et al. 1985). The fishery extends from the Pacific Ocean nedr San Frdncisco, upstreamthroughout San Franci sco, San Pabl o, and Sui sun Bdys, the Delta and nore than 200 km into the Sacramento and San Joaquin Ri vers (Figure 2). The striped bass is dnadronous and occupies many different types of holbitat from freshuater to coastal ocean waters. Freshudter spawning areas and estuarine nursery areas appedr to be the nost critical hdbitat requi renent for striped bass.

The Sacranento and San Joaqui n Rivers, the Del ta, and Sui sun Bay are the naj or spawni ng and nursery grounds for striped bass in the Pacific Southwest. These areas are greatly influenced by envi ronnental factors
dnd water managenent. A decline in abundance of striped bass in recent years in the Delta and adjacent bays is believed to be associated with decreased water quality and incredsed water nanagenent in the Sacranento and San Joaqui n Ri vers dnd Del ta (Stevens et al. 1985).

I NIRODUCTI ON OF STRI PED BASS

The striped bass was introduced into California in the I ate 1870's. In 1879, 135 yearlings frotn the Navesink River, New Jersey, were rel edsed in the Carqui nez Strait at Martinez, California, and in 1882, 300 yearlings from the Shrensbury River, New Jersey, were reledsed in Sui sun Bay near Arny Point (Scofield and Bryant 1926). Stri ped bass incredsed rapidly and were offered for sale on the California narket only 10 years after their first introduction (Craig 1928). The onl y ot her popul ations of striped bass of significance al ong the uest codst are in the Coos dnd Umpqua Ri vers, Oregon (Parks 1978).

ESTUARY

[^0]$\left(1,100 \mathrm{~m}^{3} / \mathrm{s}\right)$ has been reduced by about 50% as the result of consumptive water use upstream and water di versi ons from the Del td (Chadwick et al. 1977).

The San Jodqui n system has been devel oped for upstream uater use and the Sacranento system for transport of water through the Delta for use in southern California. Whter is exported by two large pumping plants in the southern Del ta. Export rates from these plants exceed the flow of the San J oaqui n Ri ver, and nost water must cone from the Saçramento River. About the first $100 \mathrm{~m}^{3} / \mathrm{s}$ of exported water from the Sacramento River crosses the Delta through channel s upstream from the nouth of the San Joaquin n_{3} River; at hi gher export rates ($>100 \mathrm{~m} / \mathrm{s}$), water is drawn up the San J oaquin Ri ver fromits confluence with the Sacramento Ri ver. Fl ow reversal s in the San Joaquin Ri ver are typi cal in spring, except in wet years, and in summer and fallin al years (Chadvick et al. 1977).

LI FE H STORY

Reproducti ve Physi ol ogy and Strategy
Striped bass are di oeci ous, though hernaphroditism has been reported (Mbrgan and Gerlach 1950; Westin 1978). Fenal es grow nore rapidly and to d Iarger sizetnan mal es (Scofield 1931; Collins 1982). In the Estuary, nal es begi n to nature at ages II or III, and all are mature dt age v; sone fenal es nat ure dt age IV and all are mature dt age VI and ol der (Scofiel d 1931; Stevens 1979).

Stri ped bass are polyganous; the eggs are broadcast into the water col um, where they are fertilized (Woodhull 1947; MIIer and McKechnie 1968). Fecundity is rel dted to age, length, and wei ght (West in and Rogers 1978). Mean fecundity of femal es from the Sacr anento-San J oaqui n Est uary ranges from 243, 000 eggs for fish of
age IV to 1.4 mili on for fish of age VII and ol der (Stevens et al. 1985).

Spawning
Adult stri ped bass dre dnddronous and migrate to fresh or nearly fresh water to spdwn. In the Sacranento-San J odqui n Estuary nost Sp dwning occurred from mid-April to mid-J une (Turner 1976). The princi pal spawni ng areas in the Pacific Southwest are the Sacramento River dnd Deltd (Cal houn et dl. 1950; Farley 1966; Turner 1976). More than 83% of the spawning in the Sacrament o Ri ver (1963, 1964, 1966, 1972) occurred bet neen ri ver miles 40 and 140 (Figure 3). Over 90\% of the spawning in the Delta (1966-72) occur red between ri ver miles 10 and 40. In 1968, some spawning occurred in the San Joaquin Ri ver between the nouths of the Stanislaus and Merced Ri vers (Turner 1976). Farl ey (1966) esti nated that 66\% of the striped bass spawning was in the Sacramento River and 34% in the Delta in 1964, and Turner (1976) estinated that 55\% v in the Sacranento Ri ver dnd 45\% in the Del ta in 1972.

In the Estuary, spawni ng occurred dt water temperatures of 14.0 to 23.9 ${ }^{\circ} \mathrm{C}$ and peaked at 16 to $20{ }^{\circ} \mathrm{C}$ (Scofiel d 1931; Farl ey 1966; Turner 1976; Kang 1981). In the Delta, nost spawning occurred at salinities (total di ssol ved sol $i d s$, or TDS) of ≤ 200 ppm in 1964-71 and at ≤ 200 to $15 \overline{00}$ ppmin 1972 (Turner 1976).

Eggs

Fertilized striped bass eggs are spherical, nonadhesi ve, semi buoyant, and nearly transparent when first spdwned. As they devel op, they becone al nost invi si ble (Hardy 1978; Vang 1981; Fay et al . 1983). Usual ly eggs have d si ngle oil gl obule (sonetines also small ones), and d wide perivitelline space. The eggs are hi gh in energy content $(7,808 \mathrm{cal} / \mathrm{g}$ dry wei ght) and exceed the cal oric

Figure 3. Map of striped bass spawning areas by river mile for the Delta upstream from Martinez, and for the Sacramento River upstream from its confluence with the San Joaquin River (from Turner 1976).
val ues of eggs from many freshwater, dnadronous, and marine fishes (El dridge et al. 1982).

Dry wei ghts, vol unes, and caloric contents of striped bass eggs dnd egg components at time of fertilization, dnd oxygen consumption of eggs dfter fertilization, were determined by El dridge et al. (1982). Medn egg di aneter of recently spawned eggs collected in the Delta ranged from 1.78 mm (not water-hardened) to 3.30 mm 1 hour Iater (Wbodhul I 1947). Di dmeters of eggs collected in Sacrdmento-San Joaquin Rivers were reported by Al brecht (1964) to rdnge from 2.5 to 4.4 mm (mean 3.8 mm . Mean weight of artificially fertilized eggs was $285 \mu \mathrm{~g}$ (Eldridge et al. 1981).

Striped bass eggs hatch 29 to 80 hours after fertilization, depending on water temperature (Setzler et al. 1980). Hardy (1978) summarized incubation ti nes at different water temperdtures, and Pol gar et al. (1976) expressed the relation between water temperature andhatching time asI = -4. $60 \mathrm{~T}+131.6$, where $\mathrm{I}=$ devel opment tine to hdtching in hours and $\mathbf{T}=$ temperat ure in Cel si us degrees.

Larvde

Yedr-cl ass strength of stri ped bass in the Sacr dnento- San J odqui n Estuary has been correlated with survi val and growth during the first 60 days after hatchi ng. The abundance of young striped bass (mean fork length [FL] 38 mm) was correl ated positively with freshuater outflow fromthe Delta dnd negativel y with the percent of the river inflow diverted from Del ta channel s during spring dnd early sumer by Federal and State water projects (Stevens et al. 1985). Thus year-cl ass size, which is rel ated to larvdl survi val, is gredtly affected by water di versi ons from the Deltd and the Sacramento and San J oaqui n Ri vers.

At hdtching, striped bass I arvde nere 3.0 to 4.0 mm in totdllength ($T L$) in the Estudry (Kang 1981) and 3. 3 to 4.5 mm FL in the laboratory (Eldridge et al. 1982). Yolk Sac absorption tine varied from $\mathbf{3}$ to 9 days, depending on water temperature (Al brecht 1964; Rogers et al. 1977; El dridge et al . 1982); total dbsorption of the nutrients in the yol k sdc often takes longer (Maxwel) El dri dge, Nati onal Marine Fi sheri es Service, Qers. comm.). Larvae began feedi ng acti vely 5 ddys dfter hdtching (7 days after fertilization) at $18{ }^{\circ} \mathrm{C}$. Yol k-sac I arvae maintain a surface oosition by swi ming, but sink if swi ming ceases (Fay et al. 1983). Larvae sink in the water col um faster than eggs the first 15 hours after hat chi ng (Mei nz dnd Heubdch 1978). The new y-hat ched I arvae acti vel y swi m of f the bottom essentially staying in suspensi on. Larvde dre free swi ming 100 hours after hatching. If I arvae si $n k$ to the bottom and renai n, high nortality ndy occur (Pearson 1938; Raney 1952; Setzler et al. 19801. Mbst larvae inflate their swim bl adders 5-10 ddys after hat ching, and thus acquire hydrostatic regul ation (Doroshev et al. 19811.

The vertical and lateral di stribution of eggs dnd I arvae in the Sacrdmento-San Joaquin Estuary are associated with river flow The di stribution in the Estuary has been descri bed by Al brecht (1964), Sasaki (1966), Turner and Chadwi ck (1972), Turner (1976) and Stevens et al. (1985). In the Sacramento Ri ver, virtually all larvae caught were near the bottomin mid-channel; few were dt the surface in mid-channel or near shore. In lowflow yedrs, virtually all striped bass eggs and I arvae were in the Delta. Eggs dnd Iarvae began entering Sui sun Bay in hi gher flow years dnd nost were in Sui sun Bay in the highest flow years.

Detailed descriptions dnd drawings of edrly devel opmental stages of striped bass were publ ished by

Pearson (19381, Mansueti (1958), Hardy (1978), and VAng (1981). The duration of the larval stage rdnged from 68 days at $15{ }^{\circ} \mathrm{C}$ to 23 days at $24{ }^{\circ} \mathrm{C}$ (Rogers et al. 1977). The I arvae became ddult-like (juveniles) dt 20-36 mm TL, depending on water temper at ure and food availability (Hardy 1978; Vang 1981).

Juveni L es
The $\mathbf{j u v e n i l e}$ stage lasts from met anorphosis to sexual maturity; duration varies with sex. In the Pacific Southwest Regi on, mal es 25 to about 320 mm FL and fenal es 25 to dbout 534 mm FL are consi dered juveni les. Nal es mat ure dt ages II or III and females at ages IV or V (Scofiel d 1931; Stevens 1979).

In the Est uary, juvenile striped bdss abundance is hi ghest in the convergence zone, where fresh and sdll t nater neet. Plankton popul ations are dense in this zone dnd its location is i mportant to juveniles (Massman 1971; Turner dnd Chadwi ck 1972; Arthur and Ball 1979; Orsi and Knutson 1979). The zone is downstream (usually in Sui sun Bay) when river outflous are high, and upstream (in the uestern Delta) when outflous are low, plankton production is much greater when the zone is in Sui sun Bay (Stevens et al. 1985). Generally, the princi pal food organi sms of young bass are concentrated in or near this zone.

During their second year, many striped bass still live in the Delta and Sui sun Bay, but others nove upstredm into the rivers dbove the Del ta dnd downstredm into San Pablo Bay (Sasaki 1966; Stevens 1979).

Adul ts.
Di stribution and migration patterns of adult striped bass in the Sacramento-San Joaquin Estuary have been determined by taggi ng studi es. Adults nove to freshwater (into the Delta and upstream in the Sacranento

River) to spawn in the spring. After spawning, nost return to San Pablo and San Frdncisco Bays and to the Pacific Ocean within about 40 km of the Gol den Gate Bridge, where they spend the summer. In fall, adults nove fromthe ocean into the bays; sone migrate to the Delta. During the winter, adult bass are spread from San Franci sco Bay to the Delta (Cal houn 1952; Chadwi ck 1967; Orsi 1971; Stevens 1979; Stevens et al. 1985). Adul t bass spend about 6 to 9 months annually in San Francisco and San Pablo Bays. I mature fish do not participate in the spring spawning nigration.

Striped bass tagged at different locations and at different times in the Delta and Sacramento Ri ver migrdted similarly. A maj or difference was thdt migration to the Delta was distinctive, in that bdss tended to return to the tagging area a year after they were tagged there (Chadwi ck 1967). Large adul ts migrated further downstream than smaller ones and onl y nedi umsized and Iarge fish went to the ocean. Fish I ength seened to influence migration pattern nore than sex did.

Striped bass reported from the Estuary have incl uded fenal es up to 16 yedrs old and 1080 mm FL by Scofield (19311, fish (probably fenal es) up to 20 years old and 1170 mm FL by Cl ark (1938), and fish uei ghi ng up to 37.2 kg by Scofield and Bryant (1926). The ol dest reported nale bass from the Estuary was age X l (MIler and Orsi 1969). Older dnd I arger stri ped bass have been reported from ot her areas (Fay et al. 1983).

GROWTH CHARACTERI STI CS

Grqut b

The grouth for striped bass up to 70 cm long from the Sacranento- San J oaqui n Est uary can be cal cul ated from scales by the formul a:

$$
Y=(L-I) \quad(R / S) \quad+1
$$

where $Y=$ back-cal cul ated tot al I ength (at tine of fornation of annulus in question) in centineters, $L=$ current total length of fish in centineters, R = radius of annulus in question, and S $=$ total scale radi us; R and S should be in the same (arbitrary) units (Scofieltd 1931). Robi nson (1960) cal cul ated grouth by using a di rect proportion nonograph corrected for the Y axis intercept that was determined from body l ength-scale radius rel ations for striped bass from San Pablo Bay and the Delta. Other body lengthscal e radi us rel ations and conversion factors nere revi ewed by Fay et al. (1983) .

Grouth rates for young-of-theyear (YOY) striped bass from the Sacr anent o-San J oaqui n Est uary have been det ermi ned daily and seasonally. Turner and Chadwick (1972) esti nated dai Iy grouth (J une-August, 1960-70) of 0.544 to 1.016 mm per day. The rate was calculated by determining the time in days requi red for the nedn length of the bass in the population to i ncrease from 25 to 41 mm FL. Chadwick (1964) reported Z - week grouth i ncrenents (J une- August, 1959-62) of 7.62 to 17. 78 mm Collins (1982) reported daily grouth (July-October, 1967-75) of 0.58 mm Grouth rates uere based on nean length change from the ti me when the bdss reached 25 mm FL through mid-October. Young striped bass reach -25 mm FL by 1 July (Chadwick 1966) and average 105 mm FL at the end of the first growing season (Scofield 1931; Robi nson 1960).

Si ze differential s established in YOY striped bdss during different yedi's in the Estudry are noli ntai ned throughout life. Collins (1982) found that although striped bdss of the 1970 and Idter yedt classes in the Estuary averdged $2 \mathrm{~cm} \sin$ ller than the 1965 to 1969 year cl asses, the actual grouth rates of adult fish hod not changed. The size reduction was due to sl over grouth during the first year of Iife of the 1970 and iatsr year cl asses.

Striped bass eggs, yol k and oil vol une, and feedi ng, grouth, and energy conversion of artificially fertilized eggs from the Sacranento River were studi ed in the I aboratory by El dridge et al . (1982). Eggs nere i ncubated at $18{ }^{\circ} \mathrm{C}$ and hat ched 2 days after fertilization. Yol k sac lengths were $3.9 \pm 0.6 \mathrm{~mm}$ standard I ength (SL) at hatching dnd $5.8+0.3 \mathrm{~mm} \mathrm{SL}$ at first feeding, $\overline{7}$ days after fertilization. Enbryos and I arvae consuned the yol k Ii nearly, and grouth after hatching was di rectly rel ated to food concentration. The 58\% of the yol k energy that remai ned at hatchi ng uas used by days 6 to 7, the time when acti ve feedi ng began. The 86% of egg oil energy that remai ned at hatching uas compl etel y used by days 20 to 29. The rate of entoryo grouth in wei ght (Gw) from fertilization to hatching ($G W=1.872$) was three ti nes that to feeding age ($G W=0.647$). Larvde were 11 mm SL 29 days after fertilization, when the experiments were terminated (El dridge et al. 1982).

Grouth and survival of striped bass I arvae fed different rations were studi ed by Ddni el (1976). Survi val of I arvae increased with the number of brine shrimp nauplii (Artemiasalina) consumed. Mean daily length increase after 10 days was 0.04 mm for I arvae fed no naupl ii and 0.27 mm for I arvae fed 30, 000 nauplii/m of water.

The nean lengths for male and fenale striped bass of ages I to XIII collected during different years from the Sacramento-San J oaquin Estuary are shown in Table 1. Mal es dnd femal es grew at the sdme rate unti 1 age IV, when fenal es began to mat ure dnd grow faster (Scofiel d 1931; Robi nson 1960). Grouth occurred primarily between May and Novenber but some grouth occurred in winter anong fenal es of ages Ill to V (Collins 1982). The von Bertalanffy grouth equation described the grouth of ddult striped bass nel I, but underestimated the length of I onger fish (Figure 4). The correlation coefficients bet ween

Table 1. Mean fork lengths (m) for nale and fenale striped bass from Sacramento-SanJodquinEstuary in different yedrs ($M=$ male, $F=$ female).

Years of Collection

	1925-1928 ${ }^{\text {d }}$				1957-1958 ${ }^{\text {b }}$		1961-1965 ${ }^{\text {c }}$		1969-1978 ${ }^{\text {d }}$	
Age	M	F	M^{e}	F^{e}	M^{2}	F^{e}	M	F	M	F
I	98	97	106	106	104	104				
II	$? 86$	264	251	247	249	249				
III	373	346	371	370	386	289	$414{ }^{\text {f }}$	424	429 f	
V1	463	458	445	463	493	500	485	523	504	539
V	499	535	516	542	566	594	572	650	578	637
IV	541	605	563	612	622	683	643	693	649	709
VII	610	686	612	680	671	747	711	752	706	768
VIII	685	777			716	800	739	803	751	816
IX	805	795			762	836	565	a41	785	a53
X	785	870					785	876		
XI		947					864			
XII		990								

991

XI II	980
XI V	1030
$X Y$	1050

XVI 1080
ascofield 1931.
$b_{\text {Rob inson }} 1960$.
GMiller dnd Orsi 1969.
${ }^{\mathrm{d}}$ Collins 1982.
${ }^{\text {CCalculated }}$ I engths dt aqe.
fiased hi gh due to sampling program
observed I engths dnd those predi cted from the von Bertal anf $f y$ equation were 0.998 for males and 0.996 for femal es (Collins 1982). Males grew from dbout 400 mm dt age II Ito dbout 360 mm dt age XII, and fenal es from about 400 mm at dge III to about 960 mm at age XII.

Length-Weight Relations

Length- wei ght rel ations of striped bass have bee" devel oped for larvde in the laboratory and for juveniles and ddults conbi ned fromthe Sacr dment o-San Jodquin Estuary.

Larvdl I ength- wei ght rel ation was exponentidl and described by the equation:

$$
Y=0.0028787 e^{0.631929 x}
$$

where $\mathbf{Y}=\operatorname{dry}$ wei ght mg and $\mathrm{X}=\mathrm{SL} \mathbf{m m}$ (Eldridge et al. 1982). The lengthwei ght rel ation of male and fenale strined bass from the Estuary commercial Catch (March- April 1927) was presented graphically and described by the equation $\mathbf{V} \neq F{ }^{\text {b }}$ (units $=$ pounds and cm FL; Scofield 1931). Robi nson (1960) described the length

Figure 4. Von Bertal anffy grouth curves for stri ped bass sampl ed during spring (1969-76) in the Sacrament o- San Joaquin Estuary. Numbers next to dat a poi nts indi cate number of over lapping poi nts (from Collins 1982).
nei ght rel ation of bass from the Estuary by the equation:

$$
\log w=-2.1393+3.0038 \log L
$$

where $\mathbf{W}=$ pounds and $\mathbf{L}=\mathbf{i}$ nches $F L$.

THE FI SHERY

Commerci al Ei shery

After the striped bass was introduced into the Sacr anento-San J oaqui n Est uary in 1879, the popul ation grew rapidly. The commercial catch in the Estuary, primarily with drift gill nets, was 7400 kg by 1889, and $560,000 \mathrm{~kg}$ by 1899, j ust 20 years
after the species was introduced. The hi ghest recorded catch, in 1915, was about $810,000 \mathrm{~kg}$. Subsequent catches declined to about 328, 000 kg by 1929. The decline dpparently uds caused by restrictions in mesh size of nets, in reduction of the areas open to fishing, in durdtion of the fishing season, and in size limits (Crdig 1928). In 1935, commercial fishing for striped bass in California uas prohi bi ted. The cl osure was largel y a result of conflicts between sport and commercial fishing interests dnd not a result of stock depl etion (Stevens 1980).

Sport Fi shery

Striped bass provide an extensive sport fishery in the SacramentoSan Joaquin Estuary. The present fishing regul ations incl ude a mi num length of $45.7 \mathrm{~cm}(T L)$ and a daily bag linit of two fish. Bef ore 1956, the length and bag limit were usually 30.5 cm and 5 fish; from 1956-1981, the limits were adjusted to 40.6 cm and 3 fish (Sterns et al. 1985). Striped bass anglers fish in the Pacific Ocean near the Gol den Gate Bridge and throughout the Estuary to the Sacranento-San Joaqui n Ri vers at I east 200 km above the Del ta. Angling occurs al l year but varies by area and season in accordance with the migratory pattern of the fish (Stevens 1980).

Fishing for striped bass occurs from shore, private boats, and commercial passenger fishing boats (charter or party boats). In 1969-79, 65% of the catch was taken from private boats, 21% from shore or piers, and 14\% from charter boats (White 1986). Angler success was poorer for the fishery as a whole than for the charter-boat fishery. Annual medn catch rates for anglers on charter fishing boats were 1.4 to 2.4 ti nes hi gher than those for angl ers on private boats. Angler success was hi ghest from Nay through Novenber, when 80% of the catch occurred--
nostly in San Franci sco Bay. The Codtch was lowest in the San Jodquin River(Whi te 1986).

Charter bodt operators have been required to report catches to the California Depdrtment of Fish and Gane since 1938. These records are the best long-term striped bdss catch records dvailable, even though only 14% of the Cdtch is taken by pdrty boats and fishing locations dnd methods hdve changed. The dnnual Cdtch of striped bass per angler ddy rdnged from 0.78 to 2.63 (nean 1.58) in 1938-77 and from 0.78 to 1.68 in 1972-77 (Stevens 1980).

Striped bass fishing success in the Estuary was fornerly hi gher than it is currently. In recent yedrs, about 200, 000 anglers per year have fished for striped bass in the Estuary and hdve caught about 300,000 fish. In the early 1960's the annual catch was about 750, 000 (Stevens 1980). The decline in fishing success appears to be due to a decrease in bass abundance that is rel ated to low recruit-nent in nost years si nce 1969 (Stevens 1977b).

Striped bass hdrvest rates have been estimated by taggi ng si nce 1958 (Chadwi ck 1968; MIIer 1974; Stevens et al. 1985; Vhite 1986). The harvest has varied from 11% of the estimated legal population (bass $\geq 40.6 \mathrm{~cm} \mathrm{TL}$) in 1978 to 37% in 1958. ${ }^{-}$The harvest
rate equal ed or exceeded 19\% eachyear from 1958 to 1964, but reached $\mathbf{2 0 \%}$ in Onl y four years from 1965 to 1979. The decrease in harvest apparently is partly d result of decline in fishing effort thdt accompanied decredsed success dfter the early 1960's (Stevens 1980).

The striped bass Cdtch in the Estuary has varied by age and sex. From 1969 to 1979, in the San Franci sco-Sui sun Bay area, fish of ages III, IV, and V composed 67% of the catch; fish of age IV were generally the nost numerous. In the San Francisco Bay area, fenal es were nore abundant than mal es in the cat ch in 10 of the 11 years (White 1986).

The economic val ue of the striped bass fishery in the Estuary area has decredsed over the yedrs. The decline in abundance of striped bass from 1970 to 1983 brought about an estimated loss of $\$ 587 \mathrm{milli}$ on in sal es revenue and $\$ 314$ million in net disposable incone to California (Meyer Resources 1985). Return of the val ue of the bass fishery to the 1968-75 average val ue noul d require a 2.5 X increase in the size of the bass stock. The economic val ue of the striped bass sport fishery in the Est uary ared (computed on the basis of average catch data for 1979-83) is shown in Table 2.

Table 2. Val ue (thousands of dollars) of the striped bass sport fishery in the Sacranento-San Joaqui n Estuary area, based on 1979-83 average Codtch. (Dol I ar val ue per fish is shown inparentheses)(frum Meyer Resources 1985).

Uni t	Market val ues		Non- market val ues	Total net val ue	State income	
	Businss	Busi				
	revenue	profit			Total	Net
Thousands	$\begin{aligned} & \$ 8,802 \\ & (71.56) \end{aligned}$	$\begin{gathered} \$ 2,641 \\ (21.47) \end{gathered}$	$\begin{gathered} \$ 31,109 \\ (252.92) \end{gathered}$	$\begin{aligned} & \$ 33,750 \\ & (274.39) \end{aligned}$	$\begin{aligned} & \$ 31,687 \\ & (257.62) \end{aligned}$	$\begin{gathered} \$ 16,944 \\ (137.75) \end{gathered}$

Populatjon_ Dynanics

The popul ation of striped bass in the Sacrament o-San J oaqui n Est uary has never been domi nated by strong year classes and until recently has been rel ativel y stable. Now, however, the adult bass population is onl y about 25% of what it uas 20 years ago, and the production of young bass over the past 8 years has been 33% to 50% of the expected numbers (Stevens et al. 1985).

The popul ation of ddult striped bass ($>40.6 \mathrm{~cm}$ TL) in the Estuary, whi ch has been nedsured on the basi s of catch per effort (Hallock et al. 1957) and Petersen esti nates (Bail ey 1951; Stevens 1977 d) si nce 1969, has shown a variation bet ween about 0.8 and 1.9 mili on fish from 1969 to 1982, and was estimated at about 0.9 milion in 1982 (Stevens et al. 1985).

The total mortality rate of adult striped bass of age V and ol der in the Estuary, which has been esti mated annual I y si nce 1969, i ncredsed from 30\% in 1971 to 49\% in 1977. Thè greatest change occurred bet neen 1970 and 1976 when t he harvest of adul t bass of age V and ol der increased from 15% to 27% (Stevens et al. 1985). The harvest of $\mathbf{f i s h}$ of age III and ol der has increased from 13% to 23% during the same period (White 1986).

The adult striped bass popul ation in the Sacranento-San Joaquin Estuary area is at its lowest level since stock assessments were first available. The Striped Bass Wbrking Group of sci entists, appoi nted by the California Whter Resources Control Board to anal yze the probl em concl uded that the decline was probabl y the result of a conbi nation of (1) the reduced adult popul ation producing fewer eggs; (2) reduced food production in the nursery area; (3) ent rai nment losses of YOY in water di versi ons; and (4) toxi ci ty (Stevens et al. 1985).

The decline in abundance of adult striped bass in the Estuary has resulted in an $\mathbf{8 0 \%}$ decline in egg production since 1975. The egg production nay now be i nadequate to maintain the bass popul ation at former l evel s under current envi ronnent al conditions. The survi val of striped bass from the egg to a length of 38 mm (FL) has been correl ated with river flows and ddi versi ons (Turner and Chadwi ck 1972; Chadwi ck et al. 1977; Stevens 1977a, 1977b; Stevens et al. 1985). High outflows in recent years hdve not, however, resulted in high striped bass popul ations as they previ ousl y did. Thus, reduced egg production by the smaller adult popul ations has not resulted in a densi ty-dependent i ncrease in survi val rates from egg to the $38-\mathrm{mm}$ stage. Recent surveys have shown that less than hal f as nany YOY are bei ng produced as were produced a decade ago. Hence, any losses of adults or early life stages could contribute to the further reduction of adult stri ped bass in the Estuary (Stevens et al. 1985).

The striped bass situation in the Sacramento-San Joaqui n Estuary is the result of several factors. The reduced number of eggs and I arvae that now drift downstream to enter the nursery hdbitat, and the reduced production of plankton, probably combi ne to reduce the bass popul ation. One management practice adopted to address this problem is the stocking of hatchery fish I arge enough to avoi d the Iimiting food condition. In 1981, California passed legislation requiring striped bass anglers to purchase a striped bass stamp for $\$ 3.50$. The proceeds, about $\$ 2 \mathrm{mili}$ on a year, are to be spent on research and nanagenent (e.g., stocki ng) that have potential to i mprove the fishery. St ocking of hat chery fish is al so pl anned to repl ace fish lost from the Estuary by di versi ons (Stevens et al. 1985).

The current use of Delta channels to convey water for export has contributed to the long-term decline of striped bdssin the Estuary area. Planned increases in water export and reduced Delta outflous will hei ghten the probl ens of reduced food production and entrai nnent unl ess a properly desi gned and oper ated Del ta water transfer system is built. In addition, management agenci es should adopt pol icies to reduce I osses to al I sources of entrai nnent, to reduce the deposition of toxic substances, and to conti nue to eval uate the restrictions pl aced on the fishery in 1982 and the experi ment al stocki ng program (Stevens et al. 1985).

ECOLOG CAL ROLE

Feeding -Habits

The tine of first feeding of I arval striped bdss varies with water temperdture, food concentration and rearing dred. Under I aborat ory conditions, I arvae ($6.1 \mathrm{~mm} S L$) begdn feeding 5 days after hatching (7 days after egg fertilization) at $18{ }^{\circ} \mathrm{C}$. When I arvae were $>7.0 \mathrm{~mm}$ SL, over 80% fed actively when concentrations of brine shrimp nauplii Artemia salina were $0.50-5.0 / \mathrm{ml}$. Larvde collected from the Sacrdmento- San J oaqui n Estuary nere 4-4.9 mm SL at the tine of first feeding, and over 75\% were feedi ng at $7.0-7.9 \mathrm{~mm}$ Larvae 411.9 mm SL preferred cladocerdns, the copepod Cyclops sp., and the copepod Eurytenard sp. , whi ch (conbi ned) accounted for 89% of all food eaten (Eldridge et al. 1982).

Young- of-the-yedr stri ped bass (3-114 mm FL) collected in the Estuary area fed primarily on the mysid Neornysis mercedis, copepods, cladocerdns, the arnphi pod Corophi um spinicorne, and tendi pedid Tarvae during their first year of life (Heubach et al. 1963). In summer, Neorysis dnd Corophium were the nost important food-itens of bass $>25 \mathrm{~mm}$

FL. In fall, copepods and Corophi um were the nost important. In the rivers above the Delta (freshwater), tendi pedi d I arvae and pupae vere the domi nant food. Fi sh were uni mportant in the di et of YOY. The occurrence of organi sns in the stonachs generally agreed with the distribution of pl anktonic and benthic organi sns in the Estuary. Sal inity and water flow were the most important factors controliing pl ankton distribution -and thus feedi ng habits.

The di et of young ($50-230 \mathrm{~mm}$ FL), juveni le (130-350 mm), subadult (260470 mm), and adul t (>380 mm) stri ped bass from the Estuary was described by Stevens (1966). The importance of fish and invertebrates in the di et of bass varied by age and size of striped bass and season (Fi gure 5). The nost important food itens of striped bass of any age and in any season were the nysid Neonysis awat schensis, Corophi um small striped bass, threadf in shad (Dorosona petenense), and di scarded sardine and anchovy bait. Few stomachs cont ai ned sinall chi nook sal non (Oncorhynchus \pm shawy schd). Thomas (1966) reported

Fi gure 5. Occurrence of fishes and invertebrates in stonachs of striped bass of different ages in fall (F), winter (W), spring (Sp), and summer (S) (from Stevens 1966).
thdt \mathbf{j} uvenile bass ($<416 \mathrm{~mm} \mathrm{~T}_{\mathrm{L}}$) dte sizable quantities of small chi nook sal non in the Sacramento River. Other major food itens reported by Thomas in the di et of $\mathbf{j u v e n i l e}$ dnd adult striped bdss in the Estuary and ri ver -incl uded northern anchovy (Engrdulis nordax), shi ner perch (fypatogaster dggregata), striped bass, comon carp (Cyprinus carpio), crayfish (Pacifiastarus leniusculus), bay shrímps macrodactylus), isopods (Synidotea i nsect I arvde. Threadfin shdd uere not an important food, perhaps because they did not becone dbundant in the Delta until 1962, after the data hdd been collected (Thonas 1966).

In the Estuary, sone organi sns that are of d size suitable for food are sel dom eaten. American shdd (Alosa sapidissima) were sel dom eaten by striped bass, even when small shad were dbunddnt (Stevens 1966; Thomas 1966). Delta snelt (Hypomesus transpacificus), white catfish (Ictalurus catus), and various ndtive minnows were nore dbundant in the Delta and the Sacramento River thdn thei r occurrence in the di et of bass indicated (Thomas 1966). Striped bass consuned zoobent hos of only 8 of 35 taxa collected from the Delta. and Corophi un was the onl y taxon eaten in significant amounts.

Young bass seened to prefer the mysid N. auatschensis over Corophi um (Stevens 1966). Indices of N. duatschensis dnd Corophi un in the environment when compared with the frequency of occurrence of these orgdnisns in the stomachs of bass, showed that young bdss fed primarily on Corophiun only if Coroghi um was abundant and N awat schensis was scarce. If \bar{N}. awatschensis and Corophi _um were ${ }^{-}$abundant, if \mathbf{N} avatschensi s was dbundant and Corophi um was not, and if N awatschensis and Corophium were scarce, young bass fed primarily on N. awatschensi.s.

Di sedse dnd Pardsites
Parasites of striped bass from the Sacramento-San Joaquin Estuary nere reported by Mbser et al. (1985). The two nost commonly seen parasites in the Estuary were the metacestode Laci storhynchus tenuis dnd the I arval nernatode ADisakjs sp. Al though striped bass from the Estuary are an incompatible host for both species of parasites, Mbser et al. (1984) showed that L. tenuis is pathological to strioed bass in the Estuarv. There were' also rel ativel y high infections of adult striped bdss with roundworm (Anesakidae) I arvae (Whipple 1983).

In the Sacranento-San J oaqui n Estuary, factors other thanangling cause dbout 15% to 30% nortality of the ddult striped bass each year (Chadwi ck 1968; Mller 1974; St evens 1977b). For at least 25 years, an unknown fraction of ddult bass nortality hds occurred during Idrge die-offs in the Suisun- San Pablo Bay ared. In recent years, the timing and location of die-offs hdve been monitored by the California Depdrtment of Fish and Gane (Stevens 1979). Attempts to determine the cause of the nortality in the Sui sun- San Pablo Bay area have been unsuccessful. Factors examined but not el ininated as causes incl ude poi soning by heavy netal s or hydrogen sulfide, bacterioloaical pathogens, red tides and various clinatol ogi cal factors. Increased temperat ure and reduced di ssol ved oxygen have dl so been suggested as factors (Coutant 1985). The die- of $f s$ occur only in late spring and summer, when bdss migdte from fresh- to sdl t water.

Di seases and parasites of striped bass from other areas have been studied and reported by Bonn et al. (1976) and Paperna and Zwerner (1976). The nost commonl y reported di sedses of striped bdss dre fin rot disease, pdsteurellosis, col umnaris, 1 ymphocystis, and epi theliocystis (Setzler et al. 1980). Summary tables of
parasites and di seases nere provided by Snith and Vells (1977), Westin and Rogers (1978), and Setzler et al. (1980) .

ENM RONMENTAL REQU REMENTS

Habi tat Suitability Index Model s
Habi tat suitability index nodels have been devel oped for striped bass of coastal stocks (Bain and Bain 1982) and inl and stocks (Crance 1984). The nodel s were devel oped from a revi ew of existing infornation and can be used to assess habitat impact and to devel op managenent al ternatives.

Tempecature

Striped bass eggs hdve a brodd range of temperature tolerance (Table 3). Turner (1976) collected recently fertilized eggs (< 8 h old) at 14$21^{\circ} \mathrm{C}$ in the Sacranento River. In the I aboratory, eggs hatched after diurnal temperat ure exposures of $5.6{ }^{\circ} \mathbf{C}$ bet ween 14 and $23^{\circ}{ }^{\circ} C$ (Al brecht 1964).

Lethal temper at ures nere reported to be $10{ }^{\circ} \mathrm{C}$ and bel ow (Mbrgan and Rasi n 1981) and $23^{\circ} \mathrm{C}$ and above (Shannon and Smith 1968).

Striped bdss larvaetolerated d brodd range of temperatures (Table 4). The 48-h upper LT50 for I drvae collected from the Sacrdnento-San Joaquin Estuary rdnged from 30 to 33 Cr for 8 to 31 mm TL larvae (Kelly and Chadwi ck 1971). Survi vdl was ddjusted by di viding the actual survival by the control survi val dnd malliplying by 100.

Juvenile and adult striped bdss tol erated a broad temperature range with no ill effects (Table 5). Juveniles acclimated to hi gher temperatures had higher lethal limits than fish acclimated to lower temperat ures (Table 5). Juveni les survi ved dbrugt transfer in freshuater from 7 to 21 C but 20% of the fish di ed when transferred from 21 to $7{ }^{\circ} \mathrm{C}$ (Tagatz 1961). No juveniles died if temperature decrease uas gradual ($4^{\circ} \mathrm{C} / \mathrm{h}$). Adult preferred temperatures varied with

Table 3. Effects of sel ected envi ronnental factors on striped bass eggs.

Envi ronmental factor	Tol erance	Opt i mum	Lethal	Sour ce
-1_ -		--		
Temperature (${ }^{\circ} \mathrm{C}$)	14-23	17-20		Mansueti (1958)
	13-24	19-21		Al brecht (1964)
		18-21	<12	Rogers et al. (1977)
	12-28	18	10	Mbrgan et al . (1981)
			>23	Shannon and Smith (1968)
Salinity (ppt)	O. 10	1. 5-3. 0		Mansueti (1958)
	0-9	1. 7		Al brecht (1964)
	0-8			Morgan and Rasi n (1973)
Dissolved O_{2} (ma/l)			<1.5	Mansueti (1958) Turner and Farley (1971)
Turbi dity ($\mathrm{mg} / 1$)	O. 500		>1000	Aul d and Schubel (1978)
pH	5.8-10.0			Regdn et al . (1968)
$\begin{aligned} & \text { Current vel ocity } \\ & (\mathrm{cm} / \mathrm{s}) \end{aligned}$	30. 5-500	100-200	<30.5	

Table 4. Effects of selected envi ronnental factors on striped bdss larval stages.

Envi ronnent al fact or	Experi mental condi ti ons	Tol er ance	Opt i mum	Lethal	Source
Temperat ure (${ }^{\circ} \mathrm{C}$)		12-23	16-19		$\begin{aligned} & \text { Regan et al . } \\ & (1968) \end{aligned}$
		10-25	15-22	<10	Davi es (1970)
			18-21		Rogers et al. (1977)
				>30	Kelly and Chadwi ck (1971)
Sal inity ($p p t$)		0-15	5-10		$\begin{gathered} \text { Regan et al . } \\ (1968) \end{gathered}$
	1-6 days		3.4		Lal et al. (1977)
	7-13 days		6. 7		Lal et al. (1977)
	14-20 days		13. 5		Lal et al. (1977)
	21-29 days		20. 2		Lal et al. (1977)
	30-35 days		33.7		Lal et al. (1977)
	Yolk sac		5-15		Rogers dnd West in (1978)
	Post yol k		5-25		Rogers dnd West in (1978)
Dissol ved 0_{2} (mg/l)	Yolk sac			<2.3	Rogers and Westin (1978)
	Post yol k			<2.4	```Rogers and West in (1978)```
Turbi dity (mg/l)	Yolk sac			>500	Aul d and Schubel (1978)
	48-h LD ${ }_{50}$			3411	Morgan et al. (1973)
pH		6-10	7-8		Regan et al. (1968)
Current vel ocity (cmis)		0. 500	30-100		Regan et al. (1968)

anbi ent acclimation t emper at ures (Meldrim and Gift 1971). The naxi mum upper avoi dance temperat ure for adults was $34{ }^{\circ} \mathrm{C}$ (ambi ent $27{ }^{\circ} \mathrm{C}$) and they avoi ded $13{ }^{\circ} \mathrm{C}$ if acclimated at $5{ }^{\circ} \mathrm{C}$.

In the Sacr ament o-San J oaqui n Est uary water temperat ure is important to striped bass di stribution and survi val . Coutant (1985) summarized striped bass temperature preference
(thernal ni che) data from the Estuary rel ati ve to striped bass di stribution and migration. He suggested that high water temper at ure might Iimit the di stribution of bass in the Estuary and result in the crouding of the largest bass into areas with poor food and hi gh toxicant level s; the result in low flow years might be expected to be increased nortality of I arge fish and reduced fecundi ty.

Table 5. Effects of sel ected envi ronnental factors on striped bass \mathbf{j} uvenile and adult stages.

Envi ronnent al factor	Experi nent al condi tions	Tolerance	Opt i mum	Let hdl	Source
Temperdture ($20-50 \mathrm{~mm} \mathrm{TL}$	10-27	16-19		$\begin{array}{r} \text { Bogdanov et al. } \\ (1967) \end{array}$
	50-100 mm TL	<39	18-23		Bogdanovet al. (1967)
	Acclim at $15.6^{\circ} \mathrm{C}$			31.0	Loeber (1951)
	Acclim at $11.0^{\circ} \mathrm{C}$			29.4	Loeber (1951)
Salinity ($p p t$)	20-50 mm TL	0. 20	10-15		$\begin{aligned} & \text { Bogdanov et al. } \\ & (1967) \end{aligned}$
	50-100 mm TL	0-35	10-20		$\begin{aligned} & \text { Bogdanov et al. } \\ & (1967) \end{aligned}$
Dissol ved 02 (mg/1)		3-20	6-12		$\underset{(1967)}{\text { Bogdanov al. }}$
	$\begin{gathered} \text { Accl im m} \\ 32.8^{\circ} \mathrm{C} \end{gathered}$			<2.4	Dorf nan and Westman (1970)
pH		6-10	7-9		$\begin{aligned} & \text { Bogdanov et al. } \\ & (1967) \end{aligned}$
				5. 3	$\left.\begin{array}{c} \text { Tatum et } \\ (1966) \end{array}\right)$
Current vel ocity (cm / s)		O. 500	O. 100		Bogdanov et al. (1967)
Temper at ure (${ }^{0} \mathrm{C}$)		7. 2-27			Tagatz (1961)
Salinity (ppt)		0-33.7			Rogers and Westin (1978)

Salinity

In the Sacrament o-San Joaqui n Estuary, striped bass eggs were observed in slightly saline water: eggs and I arvae should survive all sal inities encountered in the Estuary (Albrecht 19641. In the I abordtory, the hi ghest hat ch of eggs and survi val of I arvae were achi eved at low salinities (Tables 3 and 4). Lal et dl. (1977) reported that I-day-ol d eggs hatched at salinities of 3.4 to 16. 7 ppt and that survival of eggs to hatching was hi gher in sal ine than in freshuater; however, they recommended not incubating striped bass eggs at
salinities above 3.4 ppt because the survi val of I arvae declined progressi vely for eggs hatched in hi gher salinities.

Lal et al. (1977) reported thdt optimal salinities for rearing of I arvae through met anorphosis progressi vel y increased during devel opnent (Table 4). After net anorphosi s, striped bass fry were reared in sea water (33.4 ppt) for 15 nonths. Juvenile and adult striped bass tol erated salinities of 0.33 ppt (Table 5). Gei ger and Parker (1985) compiled a water quality survey of 57 striped bass hatcheries and reported that
salinity >0.5 ppt was the single nost i mportant factor influencing striped bass production.

Sal inity-Temper at ure Interaction

The response of striped bass eggs and 1 arva to salinity-temperature interactionhas been medsured. Dtwell and Merriner (1975) reported that nortality in test groups of \mathbf{j} uveniles was hi ghest in tests conbi ni ng the hi ghest sdinity with the lowest temper at ure. However, the conbi ned effect of sal inity and temperature did not exceed the effect of ei ther salinity or temperdture dl one. Survi val uas higher in fish younger than 28 days than in older fish at a given salinity-temper at ure combination, and temperature was nore limiting than salinity to grouth and survi vdl of $\mathbf{j} u v e n i l e s$.

Tagdtz (1961) reported that striped bass survived abrupt transfers bet ween sal twater (33 ppt) and freshwater dt temperat ures from 7.7 to $26.7{ }^{\circ} \mathrm{C}$ for adul ts and 7.7 to $21.1{ }^{\circ} \mathrm{C}$ for juveniles. Mbrgan and Rasin (1981) reported that salinitytemperat ure conbi nations affected the percent hatch of striped bass eggs dnd survival of I arvae (1 day after hatching), but not nean length. The percent hatch and survi val of I arvae nere best expressed by the following equati ons:

Percent hatch $=-0.83 \mathrm{~T}^{2}+30.64 \mathrm{~T}-$ $0.12(S \times T)+2.22 S-205.80$
and
Percent survival $=-1.03 T^{2}+$ 35.86T+0.54S-246.63
where $\mathbf{T}=$ Cel si us degrees and sal inity $(S)=p p t$. The cal culated optinn for survi val nere $18{ }^{\circ} \mathrm{C}$ and 10 ppt.

Di ssol ved Oxygen and pH
Striped bass sel ect a brodd range
of di ssol ved oxygen
(D)
concentrations (Table 5). Survi val of eggs in the I aboratory decreased to $\leq 50 \%$ of survi val of controls (in saturated DO concentrations) with a decrease in DO to 4 and 5 ppm at 18 to $23{ }^{\circ} \mathrm{C}$ (Turner and Farl ey 1971). Cech et al. (1984) reported that grouth of juveniles ($<1 \mathrm{~g}$) was reduced by I ow DO (90 torr PO_{2}) at 20 and $25{ }^{\circ} \mathrm{C}$. Meldriin et al $^{-2}$. (1974) reported thot juveniles generally avoi ded DO concentrations of 3.8-4 ppm Coutant (1985) reported that adul ts (field and I abor atory) becane stressed as DO decreased to near 3 ppm and water cont ai ni ng nedr 2 ppm DO were uni nhabited by bass. Tal bot (1966) suggested that 4 ppm DO may be too low for successf ul reproduction. Hill et al. (1981) found that juveniles sel ected the hi ghest DO dvailable (6.8-7.0 ppm).

Gei ger and Parker (1985) report ed the pH in 57 striped bass hatcheries rdnged from 6.4 to 7.3. Hill et al. (1981) found that striped bass juveniles (55-82 mm SL) sel ected a preferred pH (7.1-7.2) when both Do and di ssol ved sol i ds were low (3.9 and 1400-1500 ppm respectivel y). How ever, when DO and di ssol ved sol $i d s$ were 9 and 1300 ppm respectivel y, juveniles sel ected a pH range of 7.88.2. Regan et al (1968) det ermined pH tol erance limits for eggs and Regan et al. (1968) for I arva (Tables 3 and 4).

Tur bi dity

Striped bass spawn in turbid streans but turbi dity was not reported (Mansueti 1962; Tal bot 1966). Woodhull (1947) nentioned that in the Del ta where striped bass were spawning, the water was rather turbid (visibility 15 inches). Auld and Schubel (1978) found that high turbidities were lethal to eggs and I arvae (Tabl es 3 and 4). Mbrgan et al. (1973) determined the 48-h LD50 for I arvae (Table 4).

Current. Vel ocity
In the Sacrament o-San J odqui n Estuary, current vel ocity and river discharge are important to survivall of eggs and larvae. Albrecht (1964) found that \rightarrow mini mum current vel ocity of $30.5 \mathrm{cin} / \mathrm{s}$ was needed to keep striped bass eggs suspended above the bottom andin labordtory experiments eggs al lowed to rest on a grdvel substrate did not hatch. Larvae will remai n suspended in the water column dt a bed layer vel ocity of $51.9 \mathrm{~cm} / \mathrm{sec}$ dnd $21.4 \mathrm{~cm} / \mathrm{sec}$ over rippled and smooth Sacramento River channel bottom respectively (Meinz and Heubach 1978). Striped bdsr eggs have tolerated much higher velocities (Table 3). In the Estuary the sal inity gradi ent zone was f drther downstredin thdtl usud) (Suisun Bay) when freshwater outflous were hi gh and farther upstream (Delta) when outflous were low Both the survi vdl of juveniles drld the production of pl ankton uere mach hi gher when the zone was in Sui sun Bay (Stevens et al. 1985).

Entrainment

Striped hdss eggs, I arvae and juveniles are lost to entrdi nnent in unscreened Sacramento dnd San Jodqui n Rivers di versions, to export di versi ons of Del ta water by State dnd federal pumping plants, which may be screened, and to agriculture and power plants, which nay al so be screened. Export di versi ons, whi ch affect bass substantially nore than ri ver di versi ons, have I ouver screens, but the screens do not attain even 50\% efficiency until fish are 19 mm FL. Screen efficiency incredses gradually to about 85% for bass I onger thdn 100 mm FL (Ski nner 1974). Stevens et al. (1985) reported that esti mated losses of young striped bass rdnged from 2 mili on to 4.5 billion in State and Federdl pumping pl dnts in 1968-79, were 598 milio in 1978 and 562 milion in 1979 in Delta agriculture di versions, and nere 154
milion in 1978 and 62 milion in 1979 in power plants.

The dbundance of striped bdss survi ving to 38 mm T L nas si gnificantly reduced by the losses from the conbi ned ent rai nnent (Stevens et al. 1985). This long-term reduction in young striped bass from the Estuary probdbly has contributed to the decline in the ddult bdsr popul dtion. In addition, export di version of water from the Delta causes high flow vel ocities in the channels that convey udter from the Sacranento Ri ver to the pumping plants (Stevens 1980). The reduction in standing crops of i mportant food organi sns of young bass resulting from the high water vel ocities (Turner 1966; Yeubach 1969) may further decrease the bdss popul ation.

Ri ver Fl ow and Whter Di versi on

Studies of striped bdss in the Sacrdmento-San Joaquin Estuary hdve denonstrdted that the abundance of young bass has been dssoci dted with river outflow from the Delta and the percent of the river inflow di verted (Stevens 1980). The dbundance of young bass in the Estuary has been nedsured annually si nce 1959, and an i ndex of the number survi vi ng to 38 mm FL (juveniles) has been devel oped and correl ated with flous (Turner and Chadwi ck 1972). During 1959-76, the dbundance of j uveniles in the Del ta was correl ated with the May-June outflous fromthe Delta dnd the dmount of water di verted in those months. In Sui sun Bdy, the abundance of j uvenil es was best expl di ned by the J une-J ul y outflous (Stevens et al. 1985). The dat a suggested thdt survi val from eggs to 38 mm could depend on flous dnd di versi ons (Tur ner and Chadvi ck 1972; Chadwick et al. 1977; Stevens 1977b). However, si nce 1977, the abundance of young bdss has been consi der abl y I ower than predicted by the 1959-76 regressions. Both young bass dbunddnce dnd the ability to predict -it have been greatly reduced (Stevens
et al. 1985). An i ndex of survi val between the egg and $38 \mathrm{~mm}(1969-82)$, when egg production estinates were available, was devel oped and cal cul ated as:
survi val i ndex =
i ndex of abundance at 38 mm mean FL egg production index

The survi val i ndex was si gnificantly rel ated to outflow from the Delta and described by:

> Survival $=2.39 \log _{10}$ outfl ow $(\mathrm{m} / \mathrm{s})^{\prime}$ from the Dell mas nus 3.70

The regression was significant but it only accounted for 29% of the varidtion in survi val. The results were affected by impreci si on in the variables used to calculate the survi val index (Stevens et al . 1985).
The dnal ysis of recent dat a
(1969-82) relationship between survi val from egg to 38 mm FL and flow and di versi on has not changed substantially. Survival rates still appear to be controlled by Delta outflow (Stevens et al. 1985).
Even though survi val to 38 mm appears to be dssocidted with flows and di versi ons, the current thi nki ng is thott reduced striped bdss abunddnce in the Estuary is rel dted to the factors mentioned on page 12 --reduced adul t stocks, reduced food production, entrdinment losses, and toxicity (Donald Stevens, Californi a Depdrtment of Fi sh dnd Gare, pers. comm.)

Envi ronment al Cont ami nant s

The steady decline in abunddnce of striped bass in the Sacramento-San Joaquin Estuary si nce the 1960s may be rel dted to chemical residues. Whi pole (1983), who summarized work on the effects of pollutants on striped bdss in the Estuary, wrote thot field and laboratory studi es of spawni ng bass showed concentrations of nonocyclic drondtic hydrocarbons (benzene,
xylene) and zinc were correl ated with reduced bass reproductive capacity, fecundity, dnd gdmetic viability. Crosby et al. (1983), who al so anal yzed tissues and organs of striped bass from the Estuary, found that com mon chl ori nated hydrocarbons represented the nost preval ent tissue resi dues (Table 6). They stated that Sacramento Ri ver striped bass contai ned I evel s of hydrocarbons that exceeded Iimits for fish survival recommended by the National Acadeny of Science as well as the actionable I evel s for ani nal feed publ i shed by the U.S. Department of Agriculture. The Sacramento fish were in poor hedlth, compared with those from Coos Ri ver, Oregon, and showed nottled-pink livers with fibrous lesi ons, parasites, and external lesi ons. The Oregon bass were I arger and ol der than the Est uary bdss but had si gnificantly lower tissue burdens of toxic pol I utants. Whi pple et al. (1981) reported al icyclic hexanes in liver dnd ovary tissue (0.02 to $16 \mu \mathrm{l} / \mathrm{kg}$ wet nei ght) of striped bass from the Est uary. Benville et al. (1985) determined that the 96-h LC50s for seven alicycl ic hexanes ranged from 3. 2 to $9.3 \mu \mathrm{l} / 1$ for striped bass from the Estuary.

The effects and $\begin{aligned} & \text { I ethal } \\ & \text { concentrations of pesticides, } \\ & \text { heavy }\end{aligned}$
metals, pharmaceutical drugs, and ot her commonl y di scharged chemi cal substances on striped bass frotn other areas were summarized by Bonn et al. (1976) and West in and Rogers (1978). Pal auski et al. (1985) determined the toxicity to young striped bass of a mixture of 18 chemicals and the indi vi dual toxicities of the inorganic and organic fractions that composed the mixture. They al so determined that the sensitivity of young striped bass to seven inorgani compounds and three organi c pesticides equal ed or slightly exceeded thodt of nost sdl noni ds, and exceeded t hat of certain cyorinids, ictalurids, and centrdrchi ds.

Table 6. Mean ($n=8$) resi due level s ($p \mathrm{pm}$) for maj or asses of organochlorine compounds in tissues of female striped bass fromthe Sacranento River, 1981 (from Crosby et al. 1983). ${ }^{\text {a }}$

Source of resi due

Compound	LateralTine		Ovary		Tiver	
			LW	TW	LW	TW
Arocl or 1260.	18. 01	1. 36	9. 05	1. 70	12. 30	1. 03
Arocl or 1254	13. 16	1. 18	9. 69	1. 84	11. 64	1. 67
Toxaphene	1. 85	0. 18	1. 83	0. 35	1. 82	0. 12
DDT	10. 35	0. 90	7. 21	1. 33	6. 13	0. 53
Other Organochlorines ${ }^{\text {b }}$	3. 89	0. 35	1. 94	0. 35	1. 98	0. 20
Tot al Organochl ori nes	48. 81	4. 14	30. 72	5. 77	36. 24	3. 38
$a_{L W}=$ Iipid nei ght bas ${ }^{\text {b }}$ Chlorinated cycl odi ene	$\begin{gathered} \text { TW }= \\ \text { hexac } \end{gathered}$	ssue or ob	is.			

登

Al brecht, A. B. $1964 . \quad$ Sone
observations on factors associated with survi val of striped bass eggs and larvae. Calif. Fi sh Gane 50:100-113.

Arthur, J.F., and MD. Ball. 1978. Ent rapment of suspended materials in the San Franci sco Bay-Del ta Estuary. U. S. Bureau of Recl anation, Water Quality Branch, Md-Pacific Region, Sacranento, Calif. 106 pp.

Arthur, J.F., and MD. Bal I. 1979. Factors influencing the entrapment of suspended material in the San Frdnci sco Bay-Del ta Estuary. Pages 143-174 in T.J. Cononos, ed. San Frdnci sco- Bay: the urbanized estuary. Pacific Di vision Anerican Association for the Advancement of Sci ence, San Frdnci sco, Calif.

Aul d, A B., and J.R. Schubel . 1978. Effects of suspended sedi nent on fish eggs and Iarvae: a laboratory assessnent. Estuarine Coastal Mar. Sci. 6:153-164.

Bailey, NT.J. 1951. On esti mating the size of nobile popul ations from recapt ure data. Bi onetrika 38: 293306.

Bai n, M B., and J.L. Bai n. 1982. Habitat suitability index nodels: Coastal stocks of striped bass. U.S. Fi sh WIIdI. Serv. Rep. FWS/OBS82/10.1. 29 pp.

Benville, P. E., Jr., J.A. Whi pple, and M B. El dridge. 1985. Acute toxicity of seven alicyclic hexanes to striped bass, Mbrone saxatilis, and bay shrimp, Crangon
franci scorum in sedwater. Calif. Fish Game 71:132-140.

Bogdanov, AS., S.I. Doroshev, and A. F. Karpevich. $1967 . \quad$ Experi nental transfer of (Salmo gairdneri) and (Roccus saxatilis) from the USA for acclimatization in bodies of water of the USSR Vopr. Ikhtiol. 42:185-187. (Transl ated from Russi an by R.M Howland, Narragansett Marine Gane Fish Research Laboratory, R.I.)

Bonn, E.W, WM Bailey, J.D. Bayless, K. E. Eri ckson, and R. E. Stevens, eds. 1976. Guidelines for stri ped bass culture. Striped Bass Committee of the Southern Division, Ameri can Fi sheri es Soci et y, Bethesda, MU. 103 pp.

Cal houn, A. J. 1952. Annual migrations of California striped bass. Calif. Fish Gane 38:391-403.

Cal houn, A.J., C. A. Wbodhul I, and WC. Johnson. 1950. Stri ped bass reproduction in the Sacramento River system in 1948. Calif. Fish Gane 36:135-145.

Cech, J.C., Jr., S.J. M tchell, and T. E. Wagg. 1984 . Comparative grouth of juvenile white sturgeon and striped bass: effects of temperature and hypoxi a. Estuaries 7:12-18.

Chadwick, HK 1964. Annual abundance of young stri ped bdss (Roccus saxatilis) in the Sacramento-San Joaquin Delta, California. Calif. Fish Gane 50:69-99.
 Calif. Dep. Fi sh Gane Inland Fi sh. Admi n. Rep. No. 66-11: 6 pp.

Chadwi ck, H K 1967. Recent migrati ons of the Sacrdnento-San Jodqui n Ri ver striped bass popul ation. Trans. Am Fish. Soc. 96:327-342.

Chadwi ck, HK. 1968. Mbrtality rates in the California striped bass popul ation. Calif. Fish Gane 54:228-246.

Chadwi ck, H K. D. E. Stevens, and L. W MIIer. $1977 . \quad$ Sone f actors regul dting the striped bass populdtion in the Sacranento-San J oaqui n Est uary, Cal if orni a. Pages 18-35 in W Van Vínkle, ed. Proceedings of the conf erence on assessing the effects of powerplantinduced nortality on fish popul dtions. Perganon Press, New York.

Cl ark, G. H 1938. Wei ght and age determination of striped bass. Calif. Fish Gane 24:176-177.

Collins, B. W 1982. Grouth of adult striped bass in the Sacranento-San Joaquin Estuary. Calif. Fish Gane 68:146-159.

Coutant, C.C. 1985. Striped bass, temperat ure dnd di ssol ved oxygen: a specul ative hypothesi s for envi ronnent al risk. Trans. Am Fish. Soc. 114:31-61.

Crai g, J.A. 1928. The striped bass suppl y of California. Calif. Fish Gane 14:265-272.

Crance, J.H. $1984 . \quad$ Habitat suitability index nodel s and instream flow suitability curves: inl and stocks of striped bass. U.S. Fi sh Wildl. Serv. FWS /OBS $-82 / 10.85$. 63 pp.

Crosby, D. G, K. Hogan, and G. W Bowes. 1983. Pages 191-200 in Thi rd progress report, cooperative striped bass study. Calif. State Water Resour. Control Board, Toxic Substances Control Program Spec. Proj. Rep. 83-3SP.

Dani el , D. A 1976. A I aborat ory study to define the rel ationshi p bet ween survi val of young striped bass (Marone saxatilis) and their food supply. Calif. Dep. Fish Gane Anad. Fi sh Branch, Admin. Rep. No. 76-1. 13 PP.

Davi es, WD. 1970. The effects of temperat ure, pH , and total di ssol ved solids on the survi val of immature striped bass. Ph. D. Thesi s. North Carol ina State Uni versity, Ral ei gh. 100 pp.

Dorf man, D., and J. Westman. 1970. Responses of some anadronous fishes to varied oxygen concentration and increases in temperature. Whter Resour. Res. Inst. Publ. No. PB 192312 (Rutgers Uni v.). . 75 pp.

Doroshev, S.I. 1970 . Bi ol ogi cal feat ures of the eggs, I arvae and young of the striped bass Roccus saxatilis (Walbaum) in connection acclimatization in the USSR J. I cht hyol . 10: 235-278.

Doroshev, S.l., J.W. Cornacchia, and K. Hogan. 1981. Initial swi m bladder inflation in the larvae of physoclistous fishes and its i mportance for larval culture. Rapp. P. - v. Rei \mathbf{n} Cons. int. Expl or. Mer, 178:495-500.

El dri dge, M B. , J.A. Whi ppl e, M.J. Bowers, and B.M Jarvis. 1981. Effects of food and feeding factors on labor at ory-reared striped bass I arvae. Trans. Am Fi sh. Soc. 110:111-120.

El dridge, MB., J.A. Whi ppl e, and M.J. Bowers. 1982. Bi oenergetics and
grouth of striped bass, Morone sdxdtilis, enbryos andlarvae. U.S. NatI. Mar. Fish. Serv. Fish. Bull. 80:461-474.

Farley, T. C. $\quad 1966 . \quad$ Striped bass (Roccus saxatidis) spawning in the Sacrdmento-San Joaquin River system during 1963 and 1964. Calif. Dep. Fi sh Gane Fish Bull. 136:28-43.

Fay, C.W., R.J. Neves, and G.B. Pardue. 1983. Species profiles: life histories and environnental requirenents of codstdl fishes and invertebrates (Mid-Atlantic) - striped bass. U.S. Fish WIdl. Serv. FWS/OBS-82/11.8; U. S. Army Corps of Engi neers, TR EL-82-4. 36 PP.

Forrester, C. R. A. E. Peden, and R. M Vilson. 1972. First records of the striped bass, Mbrone saxatilis, in British Columbid waters. J. Fish. Res. Board Can. 29:337-339.

Gei ger, J.G. and NC. Parker. 1985. Survey of striped bass hatchery ndndgement in the southeastern United States. Prog. Fish-Cult. 47:1-13.

Hallock, R.J., D.Y. Fry, Jr., and D. A i. aFaunce. 1957. The use of wire fyke traps to estindte runs of adult sal mon dnd steel hedd in the Sacranento River. Calif. Fish Gane 43:271-298.

Hardy, J. D., J r. 1978. Devel opnent of fishes of the mid-Atlantic Bi ght: dn atlas of the egg, larval and juveni le st dges, Vol. 3. U.S. Fi sh Vill dil. Serv. Bi ol. Serv. Program FWS/OBS-78/12. 394 pp.

Heubach, w. $1969 . \quad \frac{\text { Neomys is }}{\text { awatschensis in the Sacranento-San }}$ $\frac{\text { awatschensis in the Sacranento-San }}{\text { Joaquin }}$ Oceanogr. 14:533-546.

Heubach, W, R.J. Toth, and A.M YcCready. 1963. Food of young-of-the-yedr striped bass (Roccus
saxatilis) in the Sacramento-San Joaquin Ri ver system Calif. Fi sh Gane 49:224-239.

Hill, L. G. G. S. Schnel I, and W.J. Matthews. 1981. Loconotor responses of the striped bass, (Mbrone saxatilis), to envi ronnental variables. Am. Mdl and Nat. 105:139-148.

Kelley, D.W, and J.L. Turner. 1966. Fisheries protection and enhancenent with water devel opment of the Sacr amento-San J oaqui n Est uary. Pages 78-82 in R. F. Smith, A. H. Swartz and W.H. Mossman, eds. A symposi um on estuarine fisheries. Am Fish. Soc. Spec. Publ. No. 3.

Kel Iy, R., and H K. Chadwi ck. 1971. Sone observaltions on striped bass temperat ure tol erances. Calif. Dep. Fish Gane Anad. Fi sh Branch Admin. Rep. No. 71-9. 11 pp.

Lal, K, R. I-asker, and A. Kuljis. 1977. Acclimation dnd rearing striped bass I arvae. Caljf. Fish Gane 63:210-218.

Loeber, T. S. 1951. A report of an i nvestigation of the temperature and salinity rel ationships of striped bdss and sal mon in connection with the Reber pl an. Calif. Dep. Fish Gane Inl and Fi sh Admin. Rep. No. 5127. 40 pp .

Magni n, E. , and G Beaulieu. 1967. Striped bass of the St. Lawrence River. Nat. Can. (Que.) 94:539-555.

Mansueti, R.J. 1958. Eggs, I arvae, and young of the striped bass. Chesdpeake Lab. Bi ol. Contrib. Nb. 112. 35 pp .

Mansueti, RJ. 1962. Effects of ci vilization on striped bass and ot her estuarine bi ota in Chesapeake Bay and tributaries. Proc. Gulf Caribb. Fish. Inst., 14th Annu. Sess. p. 110-136.

Massman, WH 1971. The si gni ficance of an estuary on the bi ol ogy of aquatic organisns of the middle Atlantic region. Pages 96-109 in P. A. Dougl as and R.H Stroud, eds. A symposi um on the biological si gnificance of estuaries. Sport Fi shi ng Institute, Whshi ngton, D. C.

McIlwain, T. D. 1968. Distribution of striped bass,
(Walbaum),
in Mississippi $\frac{\text { Raxatilis }}{\text { Waters. }}$ Proc. Annu. Conf. Southeast. Game Fish Comm 21:254-257.

McLane, WM 1955. The fishes of the St. John's Ri ver system Ph. D. Thesis. Uni versity of Florida, Gai nesville. 361 pp.

Mei nz, M and W Heubdch. 1978. Factors affecting si nking rates of striped bass (Mrone saxatilis) eggs and Iarval. Calif. Dept. Fish Gane Anad. Fi sh Branch, Admin. Rep. No. 77-7. 22 PP.

Meldrim, J.W., and J.J. Gift. 1971. Temperature preference, avoidance and shock experiments with estuari ne fishes. Ichthyol. Assoc. Bull. 7. 75 PP.

Meldrim, J.W., J.J. Gift, and B. S. Petrosky. 1974. The effect of temper dture dnd chemical pol lutants on the behdvior of severdl estuarine orpdni sns. Ichthyol. Assoc. Bul I. No. 17. 129 pp.

Meyer Resources, Inc. 1985. The economic value of strived bass (Mbrone saxatilijs), chi nook sal non (Dncorhynchus. - tshawytscha) and steel head trout (Salmo gdirdneri) of the Sacramento dnd Sān Jodạuín River systens. Calif. Dep. Fish Gane Andd. Fi sh Branch Admin. Rep. No. 85-03 Revi sed. 44 pp.

Miller, L.W 1974. Mortality rates for California striped bodss (Morone saxatilis) from 1965-1971. Calif. Fish Game 60:157-171.

MIIer, L.W., and R.J. McKechnie. 1968. Observation on striped bdss spawning in the Sacranento River. Calif. Fi sh Gane 54:306-307.

MIIer, L. W, and J.J. Orsi. 1969. Grouth of striped bass (Mbrone saxatilis) in the Sacramento-San Joaqui n Estuary from 1961-1965. Calif. Dept. Fi sh Gane, Anad. Fi sh Branch Admin. Rep. No. 16-6. 7 pp.

MIIer, D.J., and R.H Lea. 1972. Guide to the coastal marine fishes of Cal ifornia. Calif. Dep. Fi sh Gane Fish Bull. 157. 249 pp.

Morgan, A R, and AR Gerlach. 1950. Striped bass studi es in Coos Bay, Oregon, in 1949 and 1950. Oregon Fi sh. Conm No. 14. 31 pp.

Mrgan, R.P., II, and V.J. Rasi n, Jr. 1973. Effects of salinity and temperature on the devel opnent of eggs and I arvae of stri ped bass and white perch. Chesdpeake Bay Inst. Nat. Resour. Ref. No. 73-110. 21 pp.

Mrgan, R.P., II, and V.J. Rasin Jr. 1981. Temperature and salinity effects on devel opnent of striped bass eggs and larvae. Trans. Am Fish. Soc. 110:95-99.

Morgdn, R. P., II, V.J. Rasi n, J r., and L.A Noe. 1973. Effects of suspended sedi ments on the devel opnent of eggs and I arvae of striped bass and white perch. In Hydrogrdphic and ecol ogi cal effects of enl argenent of the Chesapeake and Del aware Canal. U.S. Army Corps of Engi neers, Phil adel hi a District Contract No. DACW61-71-C-0062. 21 pp.

Morgan, R P., II, V.J. Rasi n, J r., and R. L. Copp. 1981. Temperat ure dnd salinity effects on devel opnent of striped bass eggs and Idrvae. Trans. Am. Fish. Soc.110:95-99.

Moser, M , J. Sakanari, S. Velling and K. Li ndstrom 1984. Incompatability between San Francisco striped bass Mbrone saxatilis (Walbaum), and the metacestode Laci st orhynchus tenui s (Beneden 1958). J. Fish Dis. 7:397-400.

Mbser, M, J.A. Sakandri, C. A. Reilly and J. Whi ppl e. 1985. Preval ence, intensi ty, I ongevi ty, and persi stence of Ani saki s sp. I arvae and Laci storhynchus tenuis met acest odes in San Franci sco striped bass. NOAA Tech. Rep. NMFS 29. 4 PP.

Mbyl e, P. B. 1976. I nl and fishes of Cal iforni a. Uni versity of Cal iforni a Press, Berkel ey. 405 pp.

Orsi, J.J. 1971. The 1965-1967 migrdtions of the Sacranento-San J oaqui n Est uary stri ped bass popul ation. Calif. Fish Game 57:257-267.

Orsi, J.J., and A. Knutson. 1979. The role of mysid shrimp in the Sacr anento-San J oaqui n Estuary and factors affecting their abundance and di stribution. Pages 401-408 in T.J. Cononos, ed. San Franci sco Bay: the urbanized estuary. Pacific Di vi si on, Aneri can Associ ation for the Advancenent of Sci ence, San Franci sco, Calif.

Otuel I, WS., and J.V. Merriner. 1975. Survi val and grouth of juvenile striped bass, Mbrone saxatilis, in a factorial experiment with temperature, salinity and age. Trans. Am Fi sh. Soc. 104:560-566.

Pal auski, D. , J.B. Hunn, and F. J. Dwyer. 1985. Sensitivity of young striped bass to organic and i norgani c contani nants in fresh and saline waters. Trans. Am Fish Soc. 114:748-753.

Paper na, I., and D. E. Zwer ner. 1976. Parasites and di seases of striped bass (Mbrone saxatilis) Val baum
from the I ower Chesapeake Bay. J. Fi sh Biol. 9:267-281.

Parks, NB. 1978 . The Pacific Northwest commercidl fishery for striped bass, 1922-1974. Mar. Fi sh. Rev. 40:18-20.

Pearson, J.C 1938. The Iife history of the strioed bass. or rockfish. Roccus saxatilis (Walbaum). U.S. Bur. Fish. Bull. 48:825-851.

Pol gar, T. , J.A. Mhursky, R. E. Ul anowi cz, R. P. Mbrgan, and J. S. Wilson. 1976. An anal ysis of 1974 striped bass spawning success in the Pot onac Estuary. Pages 151-165 in M. Villey, ed. Estuarine processes, Vol une 1. Academic Press, New York.

Radovi ch, J. 1961. Rel ati onshi ps of some narine organi sns of the northeast Pacific to water temperat ure particul arly during 1957 through 1959. Calif. Dept. Fi sh Gane Fi sh Bull. 112. 62 pp.

Raney, E. C. 1952. The life hi st ory of the striped bass. Bi ngham Oceanogr. Collect. Yal e Uni v. Bull. 14:5-97.

Regan, D. M , T. L. Wel I born, J r., and R. G Bowker. 1968. Stri ped bass: devel opment of essential requi renents for production. U. S. Fish Vildl. Serv. Bur. Sport Fi sh. Vildl., Div. Fish Hatcheries, Atl anta, Ga. 133 pp.

Robi nson, J.B. 1960. The age and grouth of striped bass (Roccus saxatilis) in California. Calif. Fish Gane 46:279-290.

Roedel , P. M 1953. Common ocean fishes of the California coast. Calif. Dep. Fish Game Fish Bull. 91. 184 pp.

Rogers, B. A , and D.T. Westin. 1978. A culture nethodol ogy for striped
bass. EPA Ecol. Res. Ser. Rep. No. 660/3-78-000.

Rogers, B. A , D.T. Westin, and S. B. Saila. 1977. Life stage durdtion i n Hudson Ri ver striped bass. Uni v. R.I. Mar. Tech. Rep. No. 3. 111 pp.

Sasaki, S. 1966. Di stribution of young striped bass, Roccus saxatilis, in the Sacramento-San Game Fish Bull. 136, Part 2:44-58.

Scofiel d, E. C. 1931. The striped bass of California (Roccus lineatus). Calif. Dep. Fish Game Fish Bull. 29. 84 pp .

Scofiel d, NB., and HC. Bryant. 1926. The striped bass in California. Calif. Fish Gane 12:55-74.

Setzl er, E. M, WR. Boynt on, K. V. Wbod, H H Zion, L. Lubbers, N K Mount ford, P. Frere, L. Tucker, and J.A. M hursky. 1980. Synopsis of biological data on striped bass. Natl. Mar. Fi sh. Serv., FAO Synops. No. 121. 69 pp.

Shannon, E. H, and WB. Smith. 1968. Preliminary observations on the effect of temperdture on striped bass eggs and sac fry. Proc. Annu. Conf. Southeast. Assoc. Gane Fish Comm 21:257-260.

Ski nner, J.E. 1974. A functional eval uation of a large louver screen installation and fish facilities research on California water di versi on projects. Pages 225-249 in L. D. Jensen, ed. Proceedi ngs of the second entrai nnent and intake screeni ng workshop. J ohn Hopki ns Uni v. Cool ing Water Res. Proj. Rep. Nb. 15.

Smith, WG, and A. Wells. 1977. Bi ol ogi cal and fisheries data on striped bass. Sandy Hook Lab. Tech. Ser. Rep. Nb. 4. 42 pp.

Stevens, D. E. 1966. Food habits of striped bass (Roccus saxatilis) in the Sacr anento-San J oaqui n Del ta. Calif. Dep. Fish Gane Fish Bull. 136, Part 2:68-96.

Stevens, D. E. 1977a. Striped bass (Mbrone saxatilis) nonitoring techniques in the Sacramento-San Joaqui n Estuary. Pages 91-109 in W Vdn Vinkle, ed. Proceedings of \mathbf{d} conference on assessing the effects of powerpl ant-induced nortality on fish popul ations. Perganon Press, New York.

St evens, D. E. 1977b. Striped bass (Mbrone saxatilis) year cl ass strength in relation to river flow in the Sacrament o-San Joaqui n Est uary, Cal iforni a. Trans. Am Fi sh. Soc. 106:34-42.

St evens, D. E. 1979. Envi ronment al factors affecting striped bass (Mbrone saxatilis) in the Sacramento-San Joaqui n Estuary. Pages 469-478 in T.J. Cononos, ed. San Franci sco ' Bay: the urbani zed estuary. Aneri can Associ ation of the Advancenent of Science, Pacific Di vision, San Francisco, Calif.

Stevens, D. E. $1980 . \quad$ Factors affecting the striped bass fisheries of the west coast. Pages $15-28$ in H C epper, ed. Marine recreations fisheries 5 . Sport Fishing I nstitute, Whshi ngton, D. C.

St evens, D. E. , D. W Kohl horst, and L. W Mller. 1985. The decline of striped bass in the Sacranento-San J oaqui n Est uary, Cal if ornia. Trans. Am Fish. Soc. 114:12-30.

Tagat z, ME. 1961. Tol erance of stri ped bass and American shad to changes of temperature and sal inity. U. S. Fi sh Wildi. Serv. Spec. Sci. Rep. Fi sh. 388. 8 pp.

Tal bot, G B. 1966. Estuarine requi rements and Iimiting factors for striped bass. American

Fisheries Society Special Publication 3:37-49.

Tatum B. L., J. Bayless, E.G MtCoy, and WB. Snith. 1966. Preliminary experiments in artificial propagation of striped bass. Proc. Annu. Conf. Southeast. Assoc. Gane Fish Comm 19:374-389.

Thonas, J.L. 1966. The di et of i uvenile and adult stri ped bass, Roccus saxatilis, in the Sacramento: San Joaquin River system Calif. Fish Gane 53:49-62.

Turner, J.L. 1966. Seasonal di stribution of crustacean plankters in the Sacramento-San Joaquin Del ta. Calif. Dep. Fish Gane Fish Bull. 133:95-104.

Turner, J.L. 1976. Stri ped bass spawning in the Sacramento and San Joaquin Ri vers in Central Cal ifornia from 1963 to 1972. Calif. Fi sh Gane 62:106-118.

Turner, J.L., and T. C. Farl ey. 1971. Effects of temperature, salinity, and di ssol ved oxygen on the survi val of stri ped bass eggs and I arvae. Calif. Fish Gane 57:268-273.

Turner, J.L., and HK. Chadwi ck. 1972. Di stri bution and abundance of young- of-the-year stri ped bass, Mbrone saxatilis, in rel ation to river flowin the Sacramento-San J oaqui n Estuary. Trans. Am Fi sh. Soc. 101:442-452.

Uadykov, V. D., and D.E. MtAlister. 1961. Preliminary list of marine fishes of Quebec. Nat. Can. (Que.) 88:53-78.

Whing, J.C.S. 1981. Taxonony of the early life stages of fishes -fishes of the Sacramento-San Joaquin Estuary and Mbss Landi ing Harbor -Elkhorn Sl ough, California. Pacific Gas and El ectric Company San Franci sco, California. 168 pp.

Westin, D.J. 1978. Serum and blod from adult striped bass (Morone saxatilis). Estuari es 1:126-128.

Westin, D. T., and B. A. Rogers. 1978. Synopsis of the biological data on the stri ped bass. Uni v. R.I. Mar. Tech. Rep. No. 67. 154 pp.

Whi ppl e, J.A. 1983. Cooperative sampling program Pages $1-190$. in Thi rd progress report, cooperative striped bass study. Calif. State Whter Resourc. Control Board, Toxic Substances Control Program Spec. Proj. Rep. No. 83- 3SP.

Whi ppl e, J.A., M B. El dri dge, and P. Benville, Jr. 1981. An ecol ogi cal perspective of the effects of nonocyclic aronatic hydrocarbons on fishes. Pages 483-551 in F.J. Vernberg, A. Calabrese, F. P. Thurberg and WB. Vernberg, eds. Biol ogical monitoring of marine pol lutants. Academic Press, New York.

White, J.R. 1986. The striped bass sport fi shery in the Sacranento- San J oaquin Est uary, 1969-1979. Calif. Fish Gane 72:17-37.

Wbodhull, C. 1947. Spawning habits of the striped bass (Roccus saxatilis) in California waters. Calif. Fish Gane 33:97-102.

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

U.S. DEPARTVENT OF THE INEER OR HSHANDLDIE SRMC

TAKE PRIDE

UNITED STATES
DEPARTMENT OF THE INTERIOR
FISH AND WILDLIFE SERVICE
National Wetlands Research Center
NASA-Slidell Computer Complex
1010 Gause Boulevard
Stidell, LA 70458

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

[^0]: The Sacrament o-San J oaqui n Estuary, the nost important striped bass nursery area in the Pacific Southwest Regi on, incl udes the Del ta and Sui sun, San Pabl o, and San Franci sco Bays (Figure 2). The Delta is a recl ai ned tidal narsh where the Sacramento and San Jodqui n Ri vers \mathbf{j} oi n bef ore flowing into Sui sun Bay. The Del ta consi sts of 298, 300 hd, with nore than 40 l arge f drmed i slands protected by I evees and surrounded by 1, 130 km of channel s (Kelley and Turner 1966; Chadwi ck et al. 1977; Arthur and Bal I 1978). 4 salinity gradi ent extends from the western Del ta to San Pablo Bay (80 km) and someti nes to San Frdnci sco Bdy. Freshuater outflows from the Delta range from 1,500-4,500 $\mathrm{m}^{3} / \mathrm{s}$ in winter to $100 \mathrm{~m}^{3} / \mathrm{s}$ in summer (Stevens et al. 1985). The historical nean freshwater outflow to the ocean

