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4. MOORED OCEANOGRAPHI C | NSTRUMVENT OBSERVATI ONS
by Bruce A. Magnell and Cinton D. Winant

4.1 | NTRODUCTI ON

The Ncces noored instrument program is designed to obtain high-quality time series of currents and
bottom pressures over the continental shelf and upper slope in the region from San Francisco to the Oegon
border. The moored array consists of 21 noorings with 40 current neters and nine bottom pressure gauges.
This section of the data report documents noored observations during the first deploynent period of the
main program Mrch through August 1988. COverall, the data return rate was very good. Instrunentation and
array design are described in subsections 4.2 and 4.3. Data coverage and quality for current observations
are described in subsection 4.4, followed by displays of the data in a variety of presentations, including
time-series plots, tidal harnonic anal yses, progressive vector diagrams, statistical tabulations, and
current roses. Subsections 4.5 and 4.6 present time-series plots and statistical summaries of noored
tenperature and bottom pressure data, respectively. Conbined plots of current conponent, tenperature, and
bottom pressure spectra are given in subsection 4.7. References are presented in subsection 4.8.

4.2 | NSTRUVENTATI ON

Near-surface current neasurements are a central elenent of the NCCCS. Accurate information on
vertical current structure is also inportant to describe the spatial structure, kinematics, dynamcs, and
response to forcing of currents over the shelf and sl ope.

The northern California continental shelf, which is narrow and exposed to the strong w nds and waves of
the north Pacific Ccean, is a high-energy environment, not conducive to easy current neasurements. Wave
orbital velocities associated with long Pacific swell can be significant relative to the mean currents at
all depths on the shelf. Aso, heavy fishing activity in the area poses a threat to noored instrunents,
particularly those on subsurface moorings. These factors require that the utnost enphasis be placed on
measurenent quality and mooring survivability. Vector Measuring Current Meters (vMCMs) suspended from
| arge, heavy surface buoys, simlar to the design used successfully on the CODE programin 1981-1982(}VVK],
1983], were used for all current neasurenents near the surface, and at all depths on the shelf. At depths
of 75 mover the slope, NBIS Acoustic Current Meters (acMs), which are also vector averaging instruments
were used with subsurface flotation to mnimze wave and mooring notion contamnation of the observations.
Only at depths of 150 m or greater were non-vector averaging Aanderaa Recording Current Meters (RCMs) used
and these were used exclusively with subsurface flotation. Figure 4-1 illustrates the nooring design and
placement of instrunentation in the water colum. Sl O-designed pressure/tenperature recorders, which
incorporate the Paroscientific quartz pressure sensor, Were used for high-resolution bottom pressure
nmeasurenents. The pressure recorders were rigidly mounted on the nooring anchors. Detailed descriptions of
all instrunents used are given in the pilot programdata report [EG&G, 1988] and are not repeated here

4.2.1 Calibration

Table 4-1 lists the specific instrumentation used in the first deploynment period by serial nunmber
including the deployment location for each instrunent, and summarizes the calibrations perforned prior to
the deployment. Calibration procedures and results are described bel ow.

4.2.1.1 Current Meter Calibration

Current neters were calibrated prior to the first main program depl oyment using the circulating water
flume at the S10 hydraulics laboratory. The flume is 1.1 x 1.1 min cross section, and has an effective
length of 12 m \Water is circulated in the flume by inpeller punps whose speed is electrically adjustable.
Fl owstraightening grids are located at the inlet end of the flume. A vMcM, previously calibrated using
the S10 tow tank, is used as a transfer standard to calibrate punp RPM versus water speed. Speed accuracy
Is estimated to be within about #1% and is limted primarily by the accuracy of the tow tank tests

Current neters are always mounted at the same location in the flume (exactly the sanme |ocation where
the transfer standard current neter was |ocated) using standard brackets, VMCMS are nounted vertically in
their external support frame, but are only partially imersed in the water. Since the pressure housing is
not inmmersed, the flow field around the sensors is probably slightly different fromthe fully imersed
situation. A simlar setup is used for the AcMs. RCMS are fully immersed, using a special bracket attached
on the downstream side of the instrument. No vane is used since orientation is irrelevant for calibration
of the RCM S omi directional Savonius rotor speed sensor

The S10 vMcMs were set to nornmal sanpling rates (one average per mnute) during the calibrations; EG&
instruments were set to output raw data every 2 seconds. For the SI0 VMCMs, general instrunent response was
checked at 50 cm/sec by rotating the instrument through 360° in 45" steps. A mninmumof five sanples were
obtained per step. A four-point calibration at speeds of 10, 25, 50 and 100 cm/sec was then done at a
single 45° orientation to the flow such that the WMCM's propellers were turning at an equal rate. A
slightly different procedure was used for the EG& VMGMs - these were calibrated at speeds of 10, 25, 50
75 and 100 cm/sec in two separate runs, each run having one sensor oriented into the flow, with the
instrument rotated 90° between runs.

Conpass calibrations were performed on an S10 fixture |ocated away from magnetic disturbances. Current
meters were supported by special brackets on a rotating table. All current meters were swing through a
conplete circle in 15° increnents, and the output direction reading was recorded. Prior to this
calibration, the conpass nount of each S10 VMCM was first adjusted to read zero when the reference propeller
axis was aligned with local True north (at La Jolla, California). EG& VMCMs are preset at the factory to
read zero when aligned with local magnetic (not True) north, and no attenpt was nmade to adjust their zero
poi nt .

Current neter calibration data collected during January and February 1988 are shown in Figure 4-2. It
Is inportant to note that calibration of current neters is performed primarily as a performance verification
measure to ensure that the instrument is functioning correctly over the expected range of current speeds
and directions, Calibration data are not generally used to derive or correct the algorithns used to convert
the raw data to engineering units, since the relationship between water notion and sensor response is
determned by the geometry of the sensor, and should be invariant. Departures of instrument performnce
fromthe nomnal true value are accepted if mnor. If, during calibration, an instrument’s perfornance is
found to be outside the manufacturer’s accuracy specification using the standard algorithm the instrunent
is repaired or adjusted. Aso, it nust be renenbered that the primary source of current neasurement errors
in the ocean are due to dynam c response problens, not steady-flow calibration errors, and there is no point
in using calibration data to derive custom zed, high-accuracy processing algorithns. The high degree of
simlarity between speed calibrations for the RCMS results from the unfortunate use of |-mnute sanpling

intervals for calibration. This results in a speed resolution of 2.8 cnfsee, which is generally not
adequate to resolve differences between instruments, all of which are, however, wthin specifications
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Conpass calibration data for several of the S10 vMCMs show disturbingly large errors. Unfortunately,
repl acements were not available for these conpasses. A though it would have been possible to modify the
processing algorithms in these instruments to account for the conpass calibration results, this was not done
because it was believed at the time that the conpass errors were not stable with tine and that corrections
mght result in even larger errors over the course of a deploynment (subsequent calibration results indicate
that the largest errors are fairly stable). During the March 1988 deploynent cruise, instruments with

notably poor conpasses were placed on a nooring at md-depth between two instruments with good conmpasses
when ever possi bl e.

4.2.1.2 Tenperature Calibration

For tenperature and pressure sensors, calibration serves as a primary neans of achieving high accuracy.
Calibration curves specific to each sensor are used during data processing to convert the raw data to
engi neering units.

Tenperature calibration of S10 vMcMs and pressure sensors is a three-step process. Conmon to all ccs'
tenperature measurenents is a standard YSI 30 Xohms thermistor with 0.2°C interchangeability (Mdel
#44008). The therm stors are potted into an alum num bolt for nounting inside the pressure case of the
instrunent and are then calibrated as a batch using a Solartron 7071 multimeter t 0 nMeasure resistance to the
nearest ohm (better than millidegree resol ution) over a 5 to 30°C range in 5° increments. Ihermstors are
then permanently assigned to a specific instrument, but can be renoved for later recalibration as necessary.

The actual tenperature circuit used in the instrunents consists of a voltage-controlled oscillator
(vco) which produces a frequency that varies as a function of the therm stor resistance. The VCOis
switched on and counted once every sample interval (typically once a ninute). Resolution varies (due to the
nonlinearity of the thermistor) between less than 7 millidegrees at 5°C to |less than 4 millidegrees at 25°C
per count or LSB. Frequent calibration of the tenperature circuit is done by.substitutin% a decade
resi stance box (General Radio Mbdel 1433-X) for the thermistor, setting the mid-range to 10"C (this is only
done once prior to a deploynent), and recording the tenperature channel as the decade box is varied from
25 Kohms to 80 Kohms in S-Kohms Steps (this is done once or twi ce before and after a depl oynent).

The final step is a conplete tenperature calibration of all the instruments in a very stable
tenperature bath (a few millidegrees accuracy) over the tenperature range of interest. is is done
imrediately prior to and after each depl oynent.

The SI0/CCS tenperature bath has very good short- and long-term stability. A Tronac Mdel PTC-41
precision tenmperature controller is used to control the bath tenperature. One-minute averages of the
measured bath tenperature yield a standard deviation fromthe mean of less than 0.001°C for several hours.
A quartz crystal thermoneter and a platinum resistance thermoneter are used as the tenperature standards.
Calibration of the platinum resistance thernometer is traceable to the National Bureau of Standards.

Resi stance neasurenents are made on a Solartron Digital Voltneter Mdel 7071, having an accuracy of 1.0 ppm
and a sensitivity of 10 mcro-ohns.

Tenperature calibration data for all S10 VMCMS and bottom pressure units are given in Table 4-2. EG&G
and GFE current nmeters were not calibrated for tenperature.

4.2.1.3 Pressure Calibration

Paroscientific Digiquartz Pressure Transducers are used in the S10 pressure sensors. The
manuf acturer’s specifications are (% of full scale instrument range):

Repeatability. . . . . . . . 0.005%
Hysteresis . . . . . . . . . 0.005%
Tenperature Span Shift . . . 0.047%/°C

To obtain corrections for the error in measured pressure due to changes in tenperature, the pressure
sensors are calibrated before and after deploynent through their entire range of pressure at 5 10 and 15°C.
A Ruska Digital Direct Reading Pressure Gauge is used as the pressure standard. The accuracy of the

Ruska instrunment is the sum of all uncertainty inherent to the transducer: repeatability, linearity,
hysteresis, and nechanical deviation, plus the uncertainty of the primary calibration standard used to

calibrate the transducer. The accuracy is #0.008%. Based on the systemrange, the follow ng accuracy can
be achi eved:

300 psi x 0.006% full-scale - 10.018 psi

300 psi x 0.008% reading = +0,024 pSi
Total at 300 psi - +0.042 psi
Accuracy = 0.014% of reading

Pre-pilot pressure calibration data fromthe S10 bottom pressure instruments is summarized in
Table 4-3.

4.3 MOORED ARRAY DESI GN

Resolution of the principal nmodes of current variability requires a three-dimensional array of current
neters. A key premise underlying the overall NCCCS moored array design is that cross-shelf and vertical
gradients are nmuch greater than alongshelf gradients, at |east within each mjor embayment of the coast.
This is based on the results of the CODE experinent (Winant et al., 1987], which was conducted in a linited
area near Pt. Arena in the southern part of the Ncces study area, and supported by the results of the Ncccs
pilot program (Ec&s, 1989]. This prenmise suggests that a single, fully instrunented current neter transect
in each embayment i S sufficient to resolve the current patterns and describe the local response to forcing.
Wth transects in several enbaynents, alongshelf differences in forcing and circulation patterns, and in the
ocean’s response to forcing, should be observable.

In addition, the ncces is concerned with the effects of major topographic features on circulation
patterns, since cross-shelf advection in the form of mesoscale jets and eddies is apparently closely |inked
to topography [Davis, 1985]. Cape Mendocino is the |argest topographic feature of the Ncces study area, if
not of the entire California coast. The orientation of the coastline changes fromnorth-south to northwest-
sout heast around the Cape, and the subnarine topodgraphy is complex. The shelf is very narrow, and the
1, 000- m hi gh Mendocino Escarpment extends westward fromthe Cape. pye to the mountainous character of the
|l and, the wind field is also expected to be substantially affected by the Cape. Anticipating that Cape
Mendocino has a profound influence on the shelf circulation, nmoored instrumentation north and south of the
Cape, at Eureka and Punta Corda, respectively, s also a part of the Ncces to provide information on flow
continuity and variability in this vicinity. The main program moored array (Figure 4-3) consisted of:

a four-mooring transect with ten current neters off Crescent Cty,

a three-nooring transect with eight current neters. off Eureka,

a single mooring with three current neters off Punta Gorda on the south side of Cape Mendoci no,

a four-mooring transect with ten current meters off Cape Vizcano, 4y

a four-nooring transect with ten current nmeters at Sea Ranch betvveendPt. Arena and Bodega (the CODE
study area).

SEere
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Moring locations are detailed in Table 4-4. The noored instrument transects (Figure 4-4) consisted of
noorings in standard water depths of 60, 90, 130 and 400 m These depths were based on the CODE results,
whi ch showed maxi mum anplitude of wind-driven shelf currents at the 90-misobath, and significant influence
of deep ocean nmotions at the 400-m i sobath {Winant et al., 1987). Standard instrunment depths of 10, 45, 75,
150 and 300 mwere used. Mored instrument records are identified in this report using the station nane
followed by the instrument depth. For exanple, K-130/10 refers to the 10-minstrunent on the 130-m K-1ine
moor i ng.

The' K-, V- and Clines (Figure 4-4) consisted of four noorings in the standard water depths. The 90-m
nmooring was instrunented at near-surface (10-m, md-depth (45-m, and near-bottom (75-m) levels in order to
resolve vertical current shear at the energetic md-shelf location. Morings with single, near-surface
current neters were deployed at 60- and 130-m depths to observe the cross-shelf structure of surface
currents.  The 400-m nooring was instrunented at 10-, 75-, 150- and 300-m depths to provide information on
upper-shel f currents and the influence of deep ocean currents on the shelf circulation. Bottom pressure
recorders were installed on the 60- and 130-m noorings. The 60- and 130-m pressure recorders provide a
direct measure of cross-shelf pressure gradient centered on the heavily instrumented 90-m m d-shel f isobath,
to compare with and suppl ement the current meter observations there’.

The E-line was simlar except that it had no 130-m mooring due to the narrowness of the shelf. The
G line consisted of only one nooring, since the three noorings deployed there during the pilot program
showed little cross-shelf variability.

4.4 MooRED CURRENT OBSERVATI ONS

This subsection presents the nmoored current observations from the first deployment period. Mored

tenperature and bottom pressure observations are described separately in subsections 4.5 and 4.6,
respectively.

4.4,1 MNoored Current Data Coverage_and Quality .

Two nmoorings were | ost early in the first depl oyment period: the V-400 subsurface mooring and the C-400
surface mooring; both noorings were replaced in early May. Oher data [osses which resulted from instrument
failures were: E-90/45 (no good data); V-90/45 (no good data); and C 400/ 75 (80%). Aside from these
| osses, which fortunately did not significantly conpromse the data set for scientific analysis, there were
virtually no gaps in the current records, and the data were judged to be of excellent quality. Current
nmeter data coverage, as a function of tine, is shown in Figure 4-5.

4.4.2 Tine Series of CQurrents and Wnds

Figure 4-6 presents the current data in tinme series form both unfiltered (hourly averages) and low-
pass filtered using the PL-33 filter [Flagg, 1977], The data are plotted in several formats, and wind data
are included in the plots where appropriate to facilitate conparison and interpretation.

A single alongshelf direction is defined for each nooring transect, based on the average orientation of
m d-shel f isobaths, and current vectors are resolved into alongshelf and cross-shelf conponents. The
alongshelf and cross-shelf directions thus defined do not necessarily coincide with the principal axis of
variance at each instrunment |ocation. However, since the nooring transects were deliberately located in
regions of snooth, shore-parallel topography, the use of a topographically defined coordinate systemis

physically consistent and avoids data-dependent coordinate orientations. The positive alongshelf (upcoast,
y coordinate) directions are:

K-1ine: 355° True
E-1ine: 027" True
Gline: 317" True
V-line: 354° True
Cline: 317" True

The positive cross-shelf (onshore, x coordinate) directions are 90° to the right of these directions. These
coordinate definitions are used throughout the noored instrument sections of this report.

Unfiltered data are shown as al ongshelf and cross-shelf conponents. Lowpass-filtered data are shown
as vectors as well as conponents; vector directions are plotted relative to the alongshelf direction, which

is straight up on the page. The time axis is Pacific Standard Time (PST), which is used throughout this
report unless otherw se noted,

Wnd Stress Vectors

Figure 4-6a shows vector plots of |ow passed wind stress at all offshore NDBC buoy |ocations and
coastal meteorology stations in the Ncccs study area and nearby; these wind data are shown in this section
to facilitate conparison with current data (winds are described in nore detail in Section 5). Wnd stress is
calculated from wi nd speed and direction using the method of Large and Pond [1981]. The mean wind direction
was general |y southward with an onshore tendency, except at the three buoys far offshore (Washington,

Oregon, and Papa) where winds were highly variable with a westerly tendency, North of Cape Mendocino, winds
were quite variable during the first half of the deployment period, while winds in the south were nore
uniformy northerly. Wnd stress variations were generally correlated over the northern half of the array
and over the southern half, but the magnitude of events was quite variable fromone wind station to another,
Coastal stations had noticeably weaker wind stress than offshore buoys only a few kiloneters away,
suggesting significant cross-shelf variability in the wind field. ~As found in the pilot program Shelter
Cove was again unusual in that the nmean wind direction was northward in contrast to sout hvvarg at nost ot her
stations.

Low Frequency Current Vectors

Near-surface (1Om current vectors from all stations are plotted in Figure 4-6b, together with wnd
stress vectors from principal offshore buoys. Currents were generally well correlated within each nooring
transect. As found in the pilot program K- and E-line currents |ooked sinmilar and najor differences
between E- and Gline currents were observed. Currents in the Cline were predoninantly southward, while
the V-1ine by conparison exhibited weaker and nore variable current velocities.

The vertical structure of currents iS illustrated in vector stickplots of current at each station
(K-1ine is shown in Figure 4-6¢c,-E- and Glines in Figure 4-6d, V-line in Figure 4-6e, and C-line in
Figure 4-6£y. Significant vertical shear is observed at all these stations, with deeper currents having a

marked tendency toward upcoast flow.  The upcoast flow was strongest and most steady in direction at the
Gand V-lines, south of Cape Mendoci no.

Low-Frequency Alongshelf Currents _ .
Time-series plots of |ow passed alongshelf near-surface current conponents (Figure 4-6g) illustrate

clearly the high correlation of 5- to 15-day fluctuations anong records from the sane nooring transect.
~ Alongshelf currents at each nooring location (Figures 4-6h through 4-6k) were correlated in the
vertical, although the magnitude of the fluctuations decreased with depth.
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Low-Frequency Cross-Shelf Currents

By contrast with the alongshelf currents, the cross-shelf currents appear disorganized. Near-surface
(10-m) | ow passed cross-shel f conponents (Figure 4-61) exhibit noderate correlation anong stations within
each transect north of Cape Mendocino, but exhibit great variability on the V- and Clines, There is no
evident correlation between cross-shelf currents and wind stress. Cross-shelf conponents were in general
not well correlated in the vertical (Figures 4-6m through 4-6p).

Unfiltered Current Components

Hourly averages of current conponents and |ocal wnd stress are shown in Figures 4-6q through 4-6z.
These are simlar in nost respects to the corresponding |owpass-filtered plots, but they illustrate the
relative magnitude of the tidal conponents conpared to the l|owfrequency currents. Tidal currents on the
E- and K-lines were about 25-30 cm/sec peak-to-peak. On the V- and C-lines, tidal currents were slightly
lower, about 15-25 cn’s peak-to-peak. However, on the Gline, there were very strong near-surface tidal
currents of over 1 knot (50 cmsee) especially during March and early My (Figure 4-6q). These strong
oscillations were also seen during the pilot program and are probably indicative of the presence of internal
tides at this location. This is inplied by the high vertical shear of tidal current anplitude at the Gline
moorings (Figure 4-6s) and the erratic variability of current anplitude.

4.4.3 Tidal Harnonic Analvsis of Currents

Current conponents are analyzed using the response method [Munk and Cartwight, 1966], which can be
applied co records of arbitrary length. The results are summarized in Table 4-5, which shows the anplitude
and phase (relative to Geenwich) of tidal harnmonic constituents for both current conponents at each current
neter location. The table also shows tidal ellipses for each instrument, giving the major and mnor axis
anplitudes, major axis orientation, and major axis phase for each significant constituent.

It should be noted that tidal currents are not as stable and predictable as tide heights. Vertical
shear in the water colum, particularly that associated with internal (bareclinic) tides, can change with
time as the stratification changes. This causes apparent variability in tidal current anplitude and phase,
and results in energy |eakage into nontidal frequency bands. These effects are especially evident in the
Gline data. The time-series plots of the preceding subsection show high tidal current anplitudes,
particularly in April and My, but the phase of these tidal oscillations is not stable, and the average
anplitude cal culated by the tidal analysis procedure (Table 4-5) is lower than the peak anplitude observed.

The phase-stable tidal constituents account for a large fraction of the total current variance.
However, in ternms of particle displacenent, the tidal oscillation is mnor conpared to the net displacement

dueto |owfrequency motions. Tidal current displacenent is less than 2 kmat the Gline, and is less than
+1 kmat opost other stations.

4.4.4 Progressive Vector Diagrams (PVDs)

PVDS (Figure 4-7) display the virtual displacement resulting from the flow measured at each instrunent
location. Although PVDS appear similar to drifter tracks, they are fundanentally different, being the time
integral of Eulerian current velocity nmeasured at a point in space. Drifter tracks are true Lagrangian
neasures of water notion, and they include the effects of spatial current variability, which PVDS do not.

For clarity of presentation, the current data are |lowpass filtered before integration and plotting.
|f this were not done, the tidal current ellipses would obscure the [owfrequency notions, particularly at
times of lownet flow However, tidal displacements (<2 km) are small conpared to the |owfrequency
di spl acenents shown (typically 1,000 km over 4.5 nonths),

4.4.5 Mean and low-Freguency Current Patterns

Figure 4-8 shows the average current at each measurenment |ocation over the entire 5-nonth duration of
the pilot program together with |owpass-filtered current ellipses. These ellipses are domnated by the
wi nd-driven current variance, which occurs on 5- to 10-day tine scales (see subsection 4.7). Table 4-6
sunmarizes statistics of currents observed during the pilot program

4.4.6 CQurrent Roses
As a final form of statistical presentation, the current data are sunmarized as current roses in

Figure 4-9, based on hourly averages. This type of presentation enphasizes the dom nant direction and
typi cal speed of flow at each neasurenent |ocation.

4.5 MOORED TEMPERATURE OBSERVATI ONS
4.5.1 Moored Temperature Data Coverage and Quality

Al but three of the current meters, and all of the bottom pressure recorders, were equipped with
tenperature sensors. Data return fromthe tenperature sensors was excellent (Figure 4-10). The mechani cal
problem that occurred in a few current neters did not necessarily affect the tenperature data, so the
overal | data return rate for tenperature (about 90% was higher than for currents.

4.5.2 Tine Series of Tenperature Data

Time-series plots of tenperature fromall noorings are shown in unfiltered and |ow pass-filtered form
in Figure 4-11. The unfiltered data (Figure 4-ha) contain a great deal of high-frequency variability,
particularly near the surface. Advection of thermal gradients and the effects of diurnal heating conbine
to produce these fluctuations.

Tenperature fluctuations associated with wind forcing are evident in the |owpass-filtered tenperature
data (Figure 4-11b). Strong downcoast wind events, causing rapid decreases in tenperature and reduced
stratification, occurred at different times in the northern and southern regions. Such events occurred in
md-My and early June at the K-, E- and Glines, and in late April and again in early June at the V- and
Clines. Wnd relaxations or upcoast w nd events were associated with rapid increases in surface
tenperature and water colum stratification. Qualitatively, these observations are consistent with the
concept of w nd-driven upwelling and pol eward rel axation as observed in CODE [Winant et al, , 1987]

However, in contrast to the CODE results, and consistent with the pilot programresults, the stratification
remai ned significant throughout nost of the first main deployment period. Aso, the col dest water
tenperatures were found at the G line, south of Cape Mendocino, where the current was flow ng generally

F&OZBSWard, opposite to the usual upwelling direction. Hghest mean tenperatures were found at E-90 and

4.5, 3 Temperature Statistics

~ The nean, standard deviation, and range of tenperatures observed at all noored instrument stations
during the pilot program are sunmarized in Table 4-7.
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4.6 BOTTOM PRESSURE OBSERVATI ONS
4.6.1 Mpored Bottom Pressure Data Coverage and Quality

The bottom pressure array also gave good data return (Figure 4-12). Data recording at K-60 and C 60
was cut short due to excessive power consunption of the pressure sensor, and the instrument at V-130
returned a blank tape. Aside fromthese, the bottom pressure data were judged to be of excellent quality,
and there were no gaps in the records.

4.6.2 Time Series of Bottom Pressure Data

Unfiltered Pressures

To illustrate the range of bottom pressure variations due to tides, Figure 4-13a shows hourly pressure
averages plotted relative to the record nean. The magnitude of the tidal pressure signal is typically
+150 mb.  The spring/neap cycle is clearly evident, and the tides appear to be highly coherent over the
entire array.

The abrupt 100 =mb increase in pressure observed at the E-90 nooring around 28 March and at C 130 around
27 March is believed to be due to a disturbance of the surface nooring anchor to which the bottom pressure
sensor was attached (the anchor probably tipped over).

Low-Frequency Pressure Field _ _ '

Lowfrequency fluctuations in bottom pressure, although obscured by tides in the unfiltered plots, are
dynamcally inportant. Bottom pressure fluctuations are due to the conbined effects of sea-|evel
fluctuations and changes in the depth-averaged density of the water colum (steric effects). At short
periods and in shallow water, density-related bottom pressure fluctuations are expected to be relatively
uninportant. In deeper water, the effect of density changes may be significant, especially if the
thernohaline stratification is subject to major changes on time scales of interest.

Figure 4-13b shows |owpass-filtered bottom pressures, together with wind stress vectors at selected
points along the coast. Fluctuations on typically 5- to 10-day periods can be seen, with peak-to-peak
anplitudes of 10 mh. Also apparent is a very |lowfrequency (about 90-day period) oscillation beginning in
early July. This variability is highly correlated over the pressure array, although the magnitude of the
fluctuations was slightly greater inshore than offshore. Thus, to a first approximtion, the bottom
pressure (and presumably the sea surface) rose and fell uniformy over the study area.

4.6.3 Tidal Harnoni C Analysis Of Bottom Pressures

Table 4-8 lists the results of tidal harmonic analysis applied to the eight bottom pressure records of
the main program Anplitudes and phases were sinilar at all locations, with the M constituent (12.42-hour
period) being largest (67 rob), followed by the ¥; (23.93 hours, 39 rob), and the o; (25.82 hours, 25 rob).

Both anplitude and phase of major constituents increased from south to north (Cline to K-1line) over the
array.

4.7 SPECTRAL ANALYSIS AND COVPARI SON

The distribution of water velocity, pressure, and tenperature variance as a function of frequency is of
interest because the driving forces and the ocean's response are frequency dependent, Figure 4-14 presents
aut ospectra of each record, with the noorings from each transect grouped for conparison, and with spectra
fromall instrunents on each nooring overplotted. Current vectors are resolved into alongshelf and cross-
shel f conponents, using the nom nal alongshelf orientation for each mooring transect described earlier,
Coincident time intervals were used in the spectral analysis wherever possible; small quantities of data at
the beginning and end of certain records were discarded in the interest of ensuring exact overlap.

Procedure and Presentation

Spectra are plotted on a logarithmc frequency scale in variance-conserving form The area under each
spectrum or part of a spectrum is proportional to the variance in that frequency band. The variance-
conserving presentation differs fromthe standard |og-10og energy density (ED) spectrum by having a |inear
ordinate scale proportional to the product of ED and frequency. This form of presentation enphasizes the
energetic constituents of the data and permts direct conparison of kinetic energy |evels anong various
recor ds.

Spectra are conputed using an ensenble averaging technique. Each record is first checked for gaps, and
any gaps less than 3 hours are filled by linear interpolation. Larger gaps are left unfilled. Then the
data are broken into nonth-l1ong gap-free segnents that are overlapped by about 50% The nean and trend of
each segnment are renoved by |east-squares fitting of a linear function. Each segment is tapered with a
Harmng (cosine) window prior to Fourier transformation, Spectra are averaged in the frequency domain
across the ensenmble of segments, and are further snoothed with the application of a geometric-progression
band- averagi ng technique that provides maximum smoothing at high frequencies. The segnenting/ensenble
averaging method pernmits spectral analysis even when large gaps are present in the data, and it also ensures
a common frequency resolution regardless of the length of the record. 1t does not resolve fluctuations at
periods longer than the segment |ength (30 days here).

Details of the spectral analysis procedure are summarized in Table 4-9. This table also lists the
90% confidence linits for each record; it would be inpractical to show these on the figures, since the
confidence linmt varies with both spectral anplitude and frequency in the variance-conserving presentation.

Current Spectra

Al current spectra in Figure 4-14 are simlar in the distribution of variance as a function of
frequency.  Tidal energy is concentrated in narrow spectral peaks, with the Mp being the sharpest. At the
diurnal frequency, the spectral peaks are broader and there is considerable variability fromrecord to
record. Tides are generally smaller at the v- and Clines, as was seen in the unfiltered current records
(Figure 4-6q through 4-6z).

Lowfrequency variance is concentrated in a broad period band from 3 days to 30 days, with the spectral
peak occurring at about 7 or 8 days (0.005 ecph). |n general, |owfrequency currents were polarized in the
al ongshel f direction and kinetic energy levels decreased toward the bottom” Energy |evels were simlar at
near-shore and offshore noorings. Near-surface currents were nore isotropic at tﬁe C-line offshore
nmoorings than anywhere el se.

Bottom Pressure Spectra

Pressure spectra show essentially the sane frequency distribution of energy as the current conponent
spectra, except that the tidal peaks were nuch stronger relative to the low-frequency €nergy. There a
marked anplitude decrease of the |owfrequency energy in the offshore direction -- the 130-m spectra W%é
only half the variance of the 60-m spectra on the CGline. This is consistent with the concept of a cross-
shel f sea-surface slope in geostrophic bal ance with alongshelf currents.

Tenperature Spectra

Tenperature changes in the water colum occur mainly as a result of advection of thermal gradients,
consequently do not have an unambiguous interpretation. The tenperature spectra shown in Figure 4-14
general |y resenble the alongshelf current spectra, jp that the energy is divided into distinct tidal and
low-frequency bands. The |owfrequency energy peaks are generally at” 7 to 8 days, ¢gincident with those of
the currents. This suggests that tenperature variations are closely coupled to current variations.

and
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Table 4-1. Mored instrument utilization and calibration summary.

| nst rument Depl oynent _Predeployment Calibration
Type S/N Owner Location Speedr Temp Pres
VMCM 1501 EG&G K- 130/ 75 X X NA NA
VMCM 2804 EG&G c-90/ 45 X NA NA
VMCM 003004 EG&G v- 130/ 75 X NA NA
VMCM 200503 EG&G C-400/10 X NA
VMCM 201104 EG&G E- 400/ 10 X NA
VMCM 202903 EG&G V-400/10 NA
VMCM 301010 EG&G K- 400/ 10 X NA
VMCM 50 SIO V-60/ 10 X NA
VMCM 51 S10 K- 130/ 10 X NA
VMCM 53 S10 G 90/ 75 X NA
VMCM 54 S10 v-90/ 75 X NA
VMCM 55 S10 v-90/10 X NA
VMCM 56 S10 G 90/ 10 X NA
VMCM 57 SIO E- 90/ 45 X NA
VMCM 58 S10 K-90/ 75 X NA
VMCM 59 S10 E-90/ 75 X NA
VMCM 60 S10 K- 60/10 X NA
VMCM 61 S10 v-130/10 X NA
VMCM 62 S10 c-130/1o X NA
VMCM 63 S10 E-60/10 ND NA
VMCM 64 S10 E-90/ 10 X NA
VMCM 65 SI0 c-60/ 10 X NA
VMCM 67 S10 v-90/ 45 ND ND X NA
VMCM 68 S10 c-90/ 75 X NA
VMCM 69 SI0 c-90/1o X NA
VMCM 70 S10 K- 90/ 45 X NA
VMCM 71 S10 K- 90/ 45 X NA
VMCM 72 S10 K- 90/ 10 X NA
VMCM 73 S10 G 90/ 45 X NA
ACM 080 EGG E- 400/ 75 X NA
ACM 106 EGG K- 400/ 75 X NA
ACM 1172 EGG V-400/75 - - - NA
ACM 1174 EGG C-400/75 X NA
RCM 7105 MVb C-400/300 X X NA
RCM 7106 MV C-400/150 X X NA
RCM 7169 MVs V-400/300 X X NA
RCM 7170 MVE K-400/150  x X NA
RCM 7171 MVE E-400/300 X X NA
RCM 7173 MMS V-400/300 X X NA
RCM 7175 MVs K-400/300 X X NA
RCM 7178 MVb E-400/150 x X NA
RCM 7262 MVs v-400/150  x - NA
BP/TR 02 S10 c-130/130 NA NA X X
BP/TR 07 S10 E-90/ 90 NA NA X X
BP/TR 09 S10 G 90/ 90 NA NA X X
BP/ TR 10 S10 K-130/130 NA NA X X
BP/ TR 11 S10 v- 60/ 60 NA NA X X
BP/TR 13 S10 K- 60/ 60 NA NA ND x
BP/TR 14 S10 c- 60/ 60 NA NA  x X
BP/TR 15 S10 se-1o/lo NA NA X X
NA - Not applicable
ND - No data
NG - No good

VMCM - Vector Measuring Current Meter

ACM "~ Acoustic Current Meter, NBIS ACMII
RCM - Recording Current Meter, Aanderaa RCM-4/5
BP/TR = Bottom Pressure/ Tenperature Recorder
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Table 4-2. S10 predeployment tenperature calibration data,

first deploynent of
NCCCS mai n program

Conputed val ue - ag + aj(count) + az(count)2 + a3(count)3,

where ag, aj, a2 and a3 are calibration constants. D - double precision.

Applied I nstrunent Qut put Conput ed
Tenperature (“C) (count) Tenperature (“C
uP 02
27 Feb 1988
6. 0453067 -11092 6. 7035460
7.9390216 - 8951 8.2096195
10. 0104132 -6795 10. 2630558
12. 0861311 - 4847 12. 3367863
Calibration Constants: 3.15108e+003 -8.63051e+002 7.86380e+001 -2.38795e+000
Vari ance: 1.582897e-001 °C2
pP 07
19 Feb 1988
6. 1449490 - 10967 6. 1700072
8.1583748 -8708 8. 1682987
10. 1031923 -6706 10. 1117496
12. 1470261 -4795 12. 1548405

Calibration Constants:

Vari ance:

-1.30126e+002 3.27168e+001
2.151735e-004 “C

-2.87626e+000 8.46168e-002

puP 09
19 Feb 1988
6. 1449490 -10924 6.1620116
8. 1583748 -8672 8. 1679020
10. 1031923 - 6682 10. 1130924
12. 1470261 -4782 12. 1581059

Calibration Constants:
Vari ance:

-1.78091e+002 4.57387e+001
1.506689e-004 “C

-4.05473e+000 1.20168e-001

PS 10
27 Feb 1988
6. 0453067 - 14678 6. 0443053
7.9390216 - 10405 7.9388671
10. 0104132 -6130 10. 0101871
12. 0861311 - 2256 12. 0858707

Calibration Constants:

Vari ance:

-2.24581e+001 4.39769e+000

-3.89754e-001 1.17205e-002
2.863640e-007 °C2

Ps 11
16 Feb 1988
6. 0034475 - 14659 6. 0062194
8. 1992483 -9760 8. 2003727
10. 1012020 -5873 10, 1018925
12. 0941162 -2175 12. 0955448

Calibration Constants:

Vari ance:

-3.28759e+001  7.24421e+000
2.866264e- 006 °'C

-6.49006e-001 1.95910e-002

ps 12
27 Feb 1988
6. 0453067 - 14917 6. 0308471
7.9390216 - 10636 7.9338012
10. 0104132 -6340 10. 0050602
12. 0861311 - 2453 12. 0815372

Calibration Constants:
Variance:

-4.31470e+001 1.00395e+001

? -9.02592e-001 2.72591e-002
7.152270e-005 °C
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Tabl e 4-2. Continued.

Applied

I nstrument Qut put

Conput ed

Tenperature (“C) (count) Tenmperature (“C
Ps 14
11 Ot 1988
5. 9815240 - 15269 5. 9809203
8. 1972589 -10237 8. 1955509
10. 0732803 -6353 10. 0750065
12.0621738 - 2605 12. 0603275
14. 1401968 961 14, 1400700

Calibration Constants:
Vari ance:

6. 2246585
8. 1862803
10. 0004435
12. 0601826
14. 0712729

Calibration Constants:
Vari ance:

7.3658156
8. 1354418
10. 0912304
12. 0312290
14. 0912390

Calibration Constants:
Vari ance:

7.3658156
8. 1354418
10. 0912304
12. 0312290
14. 0912390

Calibration Constants:

Vari ance:

6. 4468780
8. 0606594
10. 0632906
12, 0631704
14. 0602942

Calibration Constants:

Vari ance:

6. 4468780
8. 0606594
10. 0632906
12. 0631704
14. 0602942

Calibration Constants:
Vari ance:

-9.62177e+000 9.03992e-001

1.937270e-006 °C*

PS 15

2 Mar 1988

- 14268
- 9896
-6198
- 2355

1069

-7.28000e-002 2.13543e-003

6. 2244811
8. 1865482
10. 0003300
12. 0603275
14. 0714664

-2.38692e+000 -1.06965e+000 1.06620e-001 -3.29963e-003

3.493023e- 08 “C

CM 50

23 Feb 1988

- 12049
-10351
-6308
- 2639
908

-7.57062e+000 3.48055e-001

3.332538e-007 °C2

M 51

23 Feb 1988

-11810
-10127
-6115
-2470
1061

7. 3656554
8. 1363773
10. 0905399
12. 0317631
14. 0911808

-2.25716e-002 6. 22685e-004

7.3658080
8. 1362553
10. 0906620
12. 0317631
14. 0913029

-5.98258e+000 -8.10522e-002 1.60596e-002 -5. 35756e- Q04

2. 548364e- 007 °c2

M 53

26 Feb 1988

- 13630
-10072
-6011
- 2317
1069

6. 4491820
8. 0602055
10. 0651493
12. 0626163
14. 0610294

2.04369e+000 -2.28275e+000 2.17291e-001 -6.66365e-003

1.963460e-006 °C2

CM 54
26 Feb 1988

- 13695
-10125
- 6047
-2330
1068

6. 4462523
8. 0598087
10. 0634098
12. 0623417
14. 0600834

-3.48938e+000 -7.62976e-001 7.81810e-002 -2.42041e-003

3.720974e-007 °C2
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Table 4-2. Continued.

Applied I nstrument CQut put Conput ed
Tenperature (“C) (count) Tenperature (“Q
CM 55
23 Feb 1988
6. 0592599 - 14737 6. 0590758
8. 0596647 -10183 8.0594120
10. 0632906 - 6031 10. 0631351
12. 0671730 - 2245 12. 0671024
14. 0812559 1231 14.0811710

Calibration Constants:
Vari ance:

QM 56

23 Feb 1988
7.3668103 - 11857
8. 1354418 -10165
10. 0912304 -6142
12. 0312290 -2490
14. 0912390 1051

Calibration Constants:
Vari ance:

CM 57

2 Mar 1988
6. 2246585 - 14154
8. 1862803 -9769
10. 0004435 -6059
12. 0601826 - 2207
14. 0712729 1250

Calibration Constants:
Var i ance:

CM 58

24 Feb 1988
6. 3711400 - 14262
8. 0686350 -10448
10. 0852404 -6290
12. 0931196 -2524
14, 0752583 876

Calibration Constants:

Vari ance:

M 59

24 Feb 1988
6. 3711400 - 14045
8. 0686350 -10261
10. 0852404 -6134
12. 0931196 -2392
14. 0752583 1001

Calibration Constants:

Vari ance:

CM 60

2 Mar 1988
6. 2246585 - 14034
8. 1862803 -9694
10. 0004435 -6024
12. 0601826 -2214
14. 0712729 1221

Calibration Constants:

Vari ance:

~3.13487e+000 -8.57364e-001 8.66750e-002 -2.6788%e-003

2.681918e-008 °C*?

7.3659301
8. 1363773
10. 0899906
12. 0314884
14. 0909061

-9.68531e-001 -1.45735e+000 1.41992e-001 -4.37700e-003

6.730397e- 07 °C

6. 2228942
8. 1844120
10. 0012760
12. 0585575
14. 0707645

4.35019e+000 -2,89989e+000 2.72394e-001 -8. 30553e- Q03

2.039090e-006 ‘' C

6.3711791
8.0677128
10. 0859623
12. 0924015
14, 0751591

-3.66425e+000 -7.20951e-001 7.49042e-002 -2.33886e-003

3.797402e- Q07 “C

6. 3718505
8. 0681095
10. 0869083
12. 0924015
14. 0757084

9.47544e-001 -1.97529e+000 1.88601e-001 -5.77317e-003

8.562747e-007 “C

6. 2303405
8. 1862736
10. 0024967
12. 0604496
14. 0729618

1.51406e+001 -5.85607e+000 5.42275e-001 -1.65159e-002

7.884966e- 006 °c?



Table 4-2. Continued.

Applied | nstrunent Qut put Conput ed
Tenperature (°Q) (count) Tenperature (“C
CcM 61
29 Feb 1988
6. 2396064 14345 6. 2416625
8. 0576754 10259 8. 0568485
10. 0583143 -6135 10. 0605717
12. 0691643 - 2366 12. 0683537
14. 0562887 1049 14. 0569401

Calibration Constants:
Vari ance:

-1.44505e+000 -1.32222e+000 1.29230e-001 -3.97551e-003

2.217658e-006 °C2

CM 62

24 Feb 1988
6. 3711400 -14190
8. 0686350 -10349
10. 0852404 -6162
12. 0931196 - 2366
14. 0752583 1052

Calibration Constants:
Vari ance:

6.3713317
8. 0685368
10. 0854130
12. 0929508
14. 0751591

-6.47819e+000 5.26257e-002 4.09887e-003 -1.80890e-004

2.290399¢-008 “C

CM 63

2 Mar 1988
6. 2246585 - 14460
8. 1862803 - 10064
10. 0004435 - 6344
12. 0601826 - 2480
14. 0712729 961

Calibration Constants:
Vari ance:

CM 64

27 Feb 1988
6. 0453067 - 14805
7.9390216 - 10507
10. 0104132 -6215
12. 0861311 -2329
14. 0413046 - 15363

Calibration Constants:

Vari ance:

CM 65

23 Feb 1988
6. 0592599 - 15258
8. 0596647 -10692
10. 0632906 -6529
12. 0671730 -2734
14. 0812559 744

Calibration Constants:

Vari ance:

CM 66

23 Feb 1988
6. 0592599 - 14937
8. 0596647 -10411
10. 0632906 -6285
12. 0671730 -2521
14. 0812559 926

Calibration Constants:

Vari ance:

6.2238097
8. 1861515
10. 0000553
12. 0599003
14. 0710392

-3.59818e+000 -7.37649e-001 7.62990e-002 -2.37713e-003

2.043844e-007 °C*?

9.7073612
7.8257689
9.2036381
12. 2632999
10. 2007694

1.75388e+003 -4.84864e+002 4.45256e+001 -1.36260e+000

5.771091e+000 “C

6. 0590758
8. 0598087
10. 0632572
12. 0672550
14. 0813236

-5.31426e+000 -2.69068e-001 3.36702e-002 -1.08547e-003

1.340814e-008 ‘' C

6. 0589538
8. 0599308
10. 0625858
12. 0673771
14. 0811710

-5.94666e+000 -9.78703e-002 1.82112e-002 -6.19503e-004

1.420121e-007 “C
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Table 4-2.  Continued.
Applied I nstrunent Qut put Conput ed
Tenperature (“C (count) Tenperature (“Q
CM 67
24 Feb 1988
6. 3711400 - 14204 6. 3713317
8. 0686350 -10360 8. 0679874
10. 0852404 -6172 10. 0858097
12. 0931196 - 2382 12. 0925541
14. 0752583 1030 14. 0754337

Calibration Constants:
Vari ance:

6. 2396064

8. 0576754
10. 0583143
12. 0691643
14. 0562887

Calibration Constants:
Vari ance:

6. 2396064
8. 0576754
10. 0583143
12. 0691643
14. 0562887

Calibration Constants:
Vari ance:

6, 4468780
8. 0606594
10. 0632906
12. 0631704
14. 0602942

Calibration Constants:
Vari ance:

7.3658156
8. 1354418
10. 0912304
12. 0312290
14. 0912390

Calibration Constants:
Standard Deviation

6. 4468780
8. 0606594

10. 0632906

: 12. 0631704
14. 0602942

Calibration Constants:
Vari ance:

- 6. 32332e+0C00 5. 03305e-003 8.90769e-003 -3.41096e-004

2.261651e-007 °C°

29 Feb 1988

- 14406
-10312
-6183
-2410
1001

- 3. 76622e+000
1.150036e-006 °C2

29 Feb 1988

- 14338
-10265
-6157
- 2402
1007

6. 2405944
8. 0567265
10. 0601444
12.0684757"
14. 0565128

-6.91146e-001 7.20413e-002 -2.

6. 2399230
8. 0560551
10. 0602970
12. 0676517
14. 0566654

5.05193e-001 -1.85454e+000 1.77631e-001 -5

1.817259e-006 °C2

CM 70

26 Feb 1988

-13951
-10323
-6178
- 2402

1034

-8.69618e+000 6.60866e-001

2.510988e-008 °C2

M 71

23 Feb 1988

- 11965
-10273
- 6244

- 2584

945

-1.35504e+001 1.98295e+000

7.899045e-007 °C2

cM 72

26 Feb 1988

-13933
-10312
-6177
- 2405

1018

-1.19695e+001 1.55411e+000

1.280102e-006 “C
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6. 4470458
8. 0608768
10. 0631351
12. 0633183
14. 0603580

7.3649840
8. 1366520
10. 0899906
12. 0316105
14. 0909061

6. 4453063
8. 0607548
10. 0615177
12. 0631657
14. 0594120

24809e- Q03

.44148e-003

-5.15151e-002 1.51460e-003

-1.71570e-001 5.14927e-003

-1.32776e-001 3. 97904e-003



Table 4-2.  Continued.

Appl i ed I nstrunment Qut put Conput ed
Tenperature (“Q) (count) Tenperature (°C)
cM 73
29 Feb 1988
6. 2396064 - 14434 6.2403197
8.0576754 - 10366 8. 0563297
10. 0583143 - 6252 10, 0609684
12. 0691643 -2491 12. 0678043
14.0562887 919 14, 0567875

Calibration Constants: -3.70263e+000 -7.02445e-001 7.24786e-002 -2.24234e-003
Variance: 2.292385e-06 “C
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Table 4-3. S10 predeployment bottom pressure calibration data, first
depl oyment of NCccs main program

Comput ed value - ap + aj(count) + a2(count)2,

where ag, a3 and ap are calibration constants. D - double precision.

UP_02
first calibration 27 February 1988 T = 6°C Patm = 10148 dPa

Applied Pressure Measured Pressure (dPa)- Computed pressure

10148.0 10033.0 10155. 8
30832.4 30682, 0 30820. 1
51516. 8 51365.0 51518.0
72201. 2 72037.0 72204.5
92885. 6 92703.0 92884.5
113570.0 113377.0 113572.0
134254. 4 134042.0 134250. 2
154938. 8 154722.0 154942. 8
175623. 2 175387.0 175620. 0
196307. 6 196070. 0 196314. 8
216992.0 216731.0 216987. 2
Calibration Constants: 1.15195e+002 1.00076e+000 -5.21650e-010
Vari ance: 3.175424e+001 dPa?
second calibration 27 February 1988 T =8°C Patm = 10155 dPa

Applied pressure Measured Pressure (dPa) Computed Pressure

10155.0 10012.0 10160. 5
30839. 4 30670.0 30829. 8
51523.8 51355.0 51526.5
72208. 2 72025.0 72208. 4
92892. 6 92698.0 92893.5
113577.0 113373.0 113581.0
134261. 4 134037.0 134257. 7
154945. 8 154710.0 154943. 6
175630. 2 175382.0 175628. 8
196314. 6 196063. 0 196323. 3
216999.0 216720.0 216994. 1
Calibration Constants: 1.43088e+002 1.00054e+000 3.12197e-010
Vari ance: 2.422258e+00 dPa’
third calibration 28 February 1988 T - 10"C Patm - 10180 dPa

Applied Pressure Measured Pressure (dPa) Computed Pressure

10180.0 10038.0 10186. 8
30864. 4 30691.0 30853. 2
51548. 8 51373.0 51547.8
72233.2 72051.0 72237.8
92917.6 92722.0 92920.0
113602. 0 113394.0 113602. 5
134286. 4 134066. 0 134284. 3
154970. 8 154746, 0 154973. 5
175655. 2 175413.0 175648. 9
196339. 6 196101.0 196344. 6
217024.0 216772.0 217022. 6

Calibration Constants: 1.42093e+002 1.00068e+000 -8.22963e-010
vari ance: 2.536806e+001 dPa2
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Table 4-3. Continued.

fourth calibration

Applied Pressure

ppP_ 02

28 February 1988

Measured Pressure (dPa)

T = 12°

IE N N B B B N TR B B BN B e e EE e

Patm - 10168 dPa

Conput ed Pressure

10168.0
30852. 4
51536. 8
12221.2
92905
113590
134274,
154958
175643.
196327
217012

OoOoOoOONOPR~O O

Calibration Constants:

Vari ance:

first calibration

Applied Pressure

10013.
30670.
51356.
72031.
92697
113368
134031.
154711
175372
196057
216740

ODOOODODODOOODOCOOoO

1.48726e+002
4.473313e+001 dPa?

1.00075e+000

JMzz-

19 February 1988

T = 6°C

134268
154959

217019

10169. 2
30841.1
51541. 4
12230. 2
92909
113593

175631.
196326

~NoOoOuUuIoORrRrPO M

-6.67970e-010

Patm = 10164 dPa

Measured Pressure (dPa) Conputed Pressure

10164.0
.23953.6
37743.
51532
65322
79112
92901.
106691.
120480
134270
148060

ORrROMNOOPR~ODN

Calibration Constants:

Vari ance:

second calibration

Applied Pressure

10100, 0
23857.0
37649.0
51439.0
65227.0
79010.0
92804. 0
106583. 0
120367.0
134144.0
147954.0

7.02814e+001
6.437354e+001 dPa’

19 February 1989

Measured Pressure (dPa)

1.00056e+000

T = B°C

10175.7
23939.5
37737.7
51533. 2
65326.0
79113.2
92910. 7
106692. 5
120478. 6
134257.0
148067. 8

-1.77244e-009

Patm = 10164 dPa

Computed Pressure

10164.0
23953
37743
51532
65322
79112
92901
106691.
120480
134270
148060

Calibration Constants:

Vari ance:

third calibration

Applied Pressure

obhONOO ~NS

10109.0
23866. 0
37661.0
51445
65237
79013
92798
106583
120371.
134152
147947.

OO OO OO OO0O

5.84376e+001
3.7135%4e+001 dPa’

21 February 1988

Measured Pressure (dPa)

1.00066e+000

T- 10"C

10182.0
23971. 6
37761.2
51550. 8
65340. 4
79130.0
92919. 6
106709. 2
120498. 8
134288. 4
148078. 0

Calibration Constants:

Vari ance:

10124.0
23876.0
37670.0
51455
65258
79048
92814.
106596
120373
134162
147960

QOO ODODO OO

6.86821e+001
1.173434e+002 dpPa
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1.00040e+000

10173.9
23939.1
37741. 7
51532. 5
65330. 6
79112.0
92901. 7
106690. 6
120481.9
134265. 5
148062. 4

~1.85965e-009

Patm = 10182 dPa

Computed Pressure

10196. 7
23954.1
37753.5
51543. 9
65352. 3
79147.6
92918.9
106706. 2
120488. 4
134282. 7
148085, 9

-6.55255e-011



Table 4-3 Cont i nued

uP 07
fourth calibration 21 February 1988 T - 12°C Patm - 10158 dPa

Applied Pressure Measured Pressure (dPa) Computed Pressure

10158.0 10091.0 10170. 2
23947.6 23844.0 23931.8
37737.2 37637.0 37732.2
51526. 8 51427.0 51528. 3
65316. 4 65216.0 65322.0
79106.0 79000. 0 79109.5
92895. 6 92787.0 92898. 6
106685. 2 106570. 0 106682. 4
120474.8 120362. 0 120473.9
134264. 4 134151.0 134261.1
148054. 0 147949.0 148056. 0
Calibration Constants: 7.19988e+001 1.00075e+000  -3.44514e-009
Vari ance: 4.543491e+001 dPa’
UP 09
first calibration 19 February 1988 T = 6°C Patm - 10164 dPa

Applied Pressure Measured Pressure (dPa) Computed Pressure

10164.0 10132.0 10174.9
23953. 6 23904.0 23941.0
37743.2 37706.0 37736.8
51532. 8 51509.0 51533.0
65322. 4 65311.0 65327.9
79112.0 79108.0 79117.4
92901. 6 92901.0 92902. 4
106691. 2 106700. 0 106693. 0
120480. 8 120488.0 120472.2
134270. 4 134298.0 134273.0
148060. 0 148095. 0 148060. 3
Calibration Constants: 4.69150e+001 9.99613e-001  -1.10688e-009
Vari ance: 4.196316e+001 dPa’
second calibration 19 February 1988 T = 8°C Patm - 10164 dPa
Applied Pressure dpa Computed Pressure
10164.0 10140.0 10174.8
23953.6 23911.0 23940.1
37743.2 37715.0 37738.1
51532. 8 51520. 0 51536. 7
65322. 4 65315.0 65324.9
79112.0 79110.0 79112.7
92901. 6 92908. 0 92903. 2
106691. 2 106705.0 106692. 3
120480. 8 120501. 0 120480. 1
134270. 4 134299.0 134269.5
148060. 0 148098. 0 148059. 5
Calibration Constants: 3.87620e+001 9.99620e-001  -9.606%4e-010
Vari ance: 3,195444e+001 dPa’
third calibration 21 February 1988 T- 10"C Patm - 10182 dPa

Applied Pressure Measured Pressure (dPa) Computed Pressure

10182.0 10151.0 10190. 9
23971.6 23921.0 23956. 0
37761. 2 37735.0 37764.5
51550. 8 51528.0 51551. 6
65340. 4 65326. 0 65343. 2
79130.0 79120.0 79130. 4
92919.6 92917.0 92920.0
106709. 2 106715.0 106710. 2
120498. 8 120510.0 120496. 9
134288. 4 134309.0 . 134287. 2
148078. 0 148110.0 148078. 9

Caljbration Constants: 4.32553e+001  9.99684e-001 -1.25317e-009
Variance: 3.189687e+001 dPa’

4-29



Table 4-3. Continued

UP 09

fourth calibration 21 February 1988 T = 12*C Patm = 10158 dPa

Applied Pressure Measured Pressure (dPa) Computed Pressure

10158.0 10121.0 10171.2
23947. 6 23890.0 23934.3
37737.2 37691.0 37729.0
51526. 8 51495.0 51526, 1
65316. 4 65298. 0 65321. 8
79106. 0 79094.0 79110.0
92895. 6 92891.0 92898. 7
106685. 2 106683. 0 106681. 9
120474. 8 120487.0 120476. 6
134264. 4 134285.0 134264.9
148054, 0 148082. 0 148051. 6

Calibration Constants:

Vari ance:

first calibration

Applied Pressure

5.41887e+001  9.99617e-001

4.479962e+001 dPa?

_Ps 10
27 February 1988

Measured Pressure (dra

-1.27033e-009

Patm = 10148 dPa

Computed pPressure

10148.0 9966. 0 10152.5
30832. 4 30586. 0 30805. 6
51516. 8 51266. 0 51516.0
72201. 2 71938.0 72215.6
92885. 6 92611.0 92913. 4
113570.0 113267.0 113591.5
134254. 4 133937.0 134280. 9
154938. 8 154473.0 154833. 3
175623. 2 175259. 0 175633. 3
196307. 6 195941.0 196326. 3
216992.0 216608. 0 217001. 6

Calibration Constants:

Vari ance:

second calibration

Applied Pressure

1.69563e+002 1.00173e+000

1.322991e+003 dPa’

27 February 1988
Measured Pressure (dPa)

-3.22733e-009

Patm - 10155 dPa

Computed Pressure

10155.0 9951.0 10169. 6
30839. 4 30582.0 30819. 4
51523.8 51259.0 51514.9
72208. 2 71950.0 72224.1
92892, 6 92597.0 92888. 9
113577.0 113267.0 113576. 3
134261. 4 133948.0 134274.3
154945, 8 154591.0 154934. 0
175630. 2 175272.0 175631. 3
196314. 6 195941.0 196316. 3
216999.0 216607, 0 216997.9
Calibration Constants: 2.09369e+002 1.00093e+000 -4, 25009e- 010

Vari ance:

third calibration

Applied Pressure

1.153842¢+002 dPa?

28 February 1988

Measured Pressure {dPa)

Patm = 10180 dPa

Computed Pressure

10180.0 9976.0 10193.0
30864. 4 30613.0 30848. 1
51548. 8 51286. 0 51538. 5
12233.2 71968. 0 72237. 4
92917.6 92642.0 92927.7
113602. 0 113308. 0 113609, 5
134286. 4 133973.0 134289. 6
154970. 8 154627.0 154958. 2
175655. 2 175305. 0 175650. 1
196339. 6 195988. 0 196346. 5
217024.0 216652. 0 217023. 4

Calibration Constants

Vari ance:

2.08106e+002

8. 757446e+00 dPa’
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Table 4-3. Continued

Ps 10
fourth calibration 28 February 1988 T = 12°C Patm - 10168 dPa

Applied pressure Measured Pressure (dPa) Computed Pressure

10168. 0 9953.0 10130.9
30852. 4 30598. 0 30829.0
51536. 8 51273.0 51551.0
72221.2 71956.0 72274.5
92905. 6 92610.0 92962. 6
113590. 0 113282.0 113662. 5
134274. 4 133942.0 134343.9
154958. 8 154197.0 154613.7
175643. 2 175268. 0 175693. 7
196327. 6 195953. 0 196381. 1
217012.0 216623. 0 217047. 1
Calibration Constants: 1.49949e+002 1.00288e+000 -7.44469e-009
Vari ance: 1.309188e+004 dPa’
Ps 11
first calibration 16 February 1988 T-6°C Patm = 10100 dPa

Applied Pressure Measured Pressure (dPa) Comput ed Pressure

10100.0 9888. 0 10138. 2
23889. 6 23572.0 23849. 7
37679. 2 37357.0 37659. 7
51468. 8 51140.0 51465.0
65258. 4 64930. 0 65274. 6
79048.0 78698. 0 79059.5
92837.6 92454. 0 92829. 6
106627. 2 106250. 0 106637.0
120416. 8 120026. 0 120421.8
134206. 4 133802.0 134203. 8
147996. 0 147584.0 147989. 1
Calibration Constants: 2.28603e+002 1.00225e+000 -7.15276e-009
Vari ance: 3.707272e+002 dPa’
second calibration 16 February 1988 T - 8°C Patm - 10088 dPa

Applied Pressure Measured Pressure (dPa) Computed Pressure

10088.0 9889.0 10110. 2
23877.6 23591, 0 23845. 4
37667. 2 37394.0 37679.0
51456. 8 51131.0 51443. 6
65246. 4 64918.0 65255. 5
79036.0 78671.0 79030. 4
92825. 6 92445.0 92823.5
106615. 2 106230. 0 106624. 7
120404. 8 120006. 0 120414.0
134194. 4 133776.0 134194.5
147984. 0 147549.0 147975. 1
Calibration Coefficients: 1.95437e+002 1,00268e+000 -7.56058e-009
Vari ance: 2.012322e+002 dPa’
third calibration 18 February 1988 T- 10"C Patm = 10124 dPa

Applied Pressure Measured Pressure (dpPa) Computed Pressure

10124.0 9896.0 10146.0
23913.6 23635.0 23900. 8
37703. 2 37408.0 37690. 5
51492. 8 51181.0 51481.0
65282. 4 64962. 0 65280. 3
79072.0 18740.0 79077.3
92861.6 92505.0 92862. 2
106651. 2 106287.0 106664. 8
120440. 8 120052.0 120451. 3
134230. 4 133811.0 134232.5
148020. 0 147561.0 148005. 5

Calibration Constants: 2.39056e+002  1.00108e+000 2. 09460e- 009
Vari ance: 1.355647e+002 dPa’
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Table 4-3. Continued

Ps 11
fourth calibration 18 February 1988 T = 12°C Patm - 10100 dPa

Applied Pressure Measured Pressure (dPa) Computed Pressure’

10100.0 9857.0 10118.9
23889. 6 23596. 0 23870. 8
37679. 2 37384.0 37672.7
51468. 8 51164.0 51467. 4
65258. 4 64940.0 65259, 0
79048.0 78713.0 79048. 5
92837.6 92481.0 92833.9
106627. 2 106269. 0 106640. 3
120416. 8 120034, 0 120424, 4
134206. 4 133792.0 134202.5
147996. 0 147558. 0 147989. 5

Calibration Constants: 2.53164e+002 1.00086e+000 2.35159e-009

Vari ance: 9,598655e+001 dPa’

Ps 12
first calibration 27 February 1988 T = 6°C Patm = 10148 dPa

Applied Pressure Measured Pressure (dpPa) Computed Pressure

10148.0 34573.0 10164. 4
30832.4 106191.0 30805. 8
51516. 8 178536. 0 51513.2
72201. 2 251324.0 72201.9
92885. 6 324687.0 92906. 2
113570.0 398446.0 113572. 8
134254. 4 472811.0 134257. 3
154938. 8 547689. 0 154930. 6
175623. 2 623153.0 175609. 3
196307. 6 699289. 0 196313.1
216992.0 775941.0 216995. 8
Calibration Constants: 1.49284e+002 2.90155e-001  -1.37802e-008
Vari ance: 1.578352e+002 dPa’
second calibration 27 February 1988 T = 8°C Patm - 10155 dPa

Applied pressure Measured Pressure (dPa) Computed Pressure

10155.0 34473.0 10166. 7
30839. 4 106139.0 30817.7
51523. 8 178480. 0 51520. 3
72208. 2 251324.0 72221.8
92892. 6 324587.0 92895. 6
113577.0 398406. 0 113577. 3
134261. 4 472811.0 134271.9
154945. 8 547649. 0 154933. 8
175630. 2 623149.0 175622. 7
196314. 6 699241.0 196315. 7
216999. 0 775905. 0 217003. 6
Calibration Constants: 1.82914e+002 2.90085e-001 -1.37162e-008
Vari ance: 1.042560e+002 dPa’
third calibration 28 February 1988 T = 10"C Patm - 10180 dPa
Applied pressure r Pr r dPa Computed pPressure
10180.0 34505.0 10191.9
30864. 4 106. 195.0 30848. 4
51548. 8 178508. 0 51541.5
72233.2 251316.0 72231.1
92917.6 324683.0 92932. 2
113602. 0 398506. 0 113612. 8
134286. 4 472843.0 134286. 2
154970. 8 547733.0 154959. 9
175655. 2 623253.0 175651.5
196339. 6 699329.0 196337.1
217024.0 776021.0 217029. 4

Calibration Constants: 1.99462e+002 2.90069e-001  -1.37319e-008
Vari ance: 8.664185e+001 dPa2
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Table 4-3. Continued.

Ps 12
fourth calibration 28 February 1988 T = 12°C Patm = 10168 dPa

Applied pressure Measured Pressure (dPa) Computed pressure

10168. 0
30852. 4
51536. 8
12221.2
92905. 6
113590. 0
134274. 4
154958. 8
175643. 2
196327. 6
217012.0

Calibration Constants:

Vari ance:

first calibration

Applied Pressure

10100. 0
23889. 6
37679. 2
51468. 8
65258. 4
79048.0
92837.6
106627. 2
120416. 8
134206. 4
147996. 0

Calibration Constants:

Vari ance:

second calibration

Applied Pressure

10088
23877
37667.
51456.
65246
79036
92825
106615
120404.
134194,
147984.

oOhhoONOOOMMNONOEO

Calibration Constants:

Vari ance:

third calibration

Applied Pressure

10124.0
23913.6
37703. 2
51492. 8
65282. 4
79072.0
92861. 6
106651. 2
120440. 8
134230. 4
148020. 0

Cal i bration Constants:

Vari ance:

34365. 0
106083. 0
178420.0
251220.0
324531.0
398350. 0
472691.0
547593.0
623065. 0
699177.0
775869. 0

2.18774e+002
6.530627e+00 dPa’

Ps 13
16 February 1988

Measured Pressure (dPa)

9995.0
23746.0
37538.0
51323.0
65106. 0
78894.0
92675.0

106468. 0
120254.0
134046.0
147839.0

1.07113e+002
3.701811e+001 dPa’

16 February 1988
Measured Pressure (dPa)

9987.0
23736.0
37532.0
51318.0
65101.0
78891.0
92671.0

106457, 0
120244.0
134039.0
147833.0

1.04243e+002
4.904608e+001 dPa’

18 February 1988

10023.0
23773.0
37564.0
51345.0
65135.0
78918.0
92699. 0
106486. 0
120271.0
134065. 0
147855, 0

1.03197e+002
4.137179e+001 dPa’
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2.90089e-001

1.00101e+000

1.00093e+000

10171.5
30837. 7
51539. 2
72228.1
92915.0
113596. 1
134272. 2
154950. 7
175630. 7
196327. 5
217021. 1

-1.37366e-008

Patm = 10100 dPa

Conputed Pressure

10111.8
23874.6
37676. 6
51469. 9
65259. 5
79052. 3
92836. 3
106630. 5
120416.0
134205. 8
147994. 8

-4.6300%e-009

Patm = 10088 dPa

Computed Pressure

10100.1
23860. 0
37665. 3
51459.1
65248. 3
79043.0
92826, 2
106613. 8
120400. 8
134194. 3
147985. 2

-4.08339e-009

T = 10°C Patm = 10124 dPa

Computed Pressure

1.00104e+000

10136. 2
23898. 5
37700, 2
51490. 4
65287, 9
79076. 8
92862. 1
106651. 8
120437. 8
134231.3
148019. 1

-4.23748e-009



Table 4-3. Continued.

fourth calibration

Applied Pressure

10100.0
23889. 6
37679. 2
51468.
65258.
79048.
92837.
106627.
120416.
134206.
147996.

OproOoONNOOO MO

Calibration Constants:
Vari ance:

first calibration

applied Pressure

10138
23927
30822
44612
61849
79086
96323
113560
130797
148034.

OO0 OCDOO MO

Calibration Constants:
Var i ance:

second calibration

Applied pressure

10121.0
23910. 6
30805. 4
44595, 0
61832.0
79069. 0
96306. 0
113543.0
130780.0
148017.0

Calibration Constants:
Vari ance:

third calibration

Applied preSSUre

Ps 13

18 February 1988
r Pr r

9999.0
23750.0
37543.0
51329.0
65113.0
78901.0
92683. 0

106472.0
120257.0
134052, 0
147846.0

1.03557e+002 1.000%6e+000

4.016178e+001 dPa’

_Ps 14

11 Cctober 1988

Measured Pressure (dPa)

10035.0
23806, 0
30698. 0
44487.0
61719.0
78945.0
96177.0
113409.0
130637.0
147872.0

1.03645e+002 1.00055e+000

1.130702e+001 dPa’

11 Cctober 1988

Measured Pressure (dPa)

Patm - 10100 dPa

Computed Pressure

10111.7
23873.9
37676. 4
51470. 3
65260. 6
79053.1
92838. 1
106628. 4
120413.0
134206. 0
147996. 4

-4.33628e-009

Patm = 10138 dPa

Computed Pressure

10144.0
23922.1
30817.5
44613.0
61852. 5
79085..5
96323. 8

113561. 6
130794. 7
148034. 3

-1.01773e-009

Patm = 10121 dPa

* Computed Pressure

10024.0
23803.0
30693.0
44478, 0
61706. 0
78937.0
96168. 0
113398. 0
130629.0
147863. 0

9.28701e+001  1.00061e+000

1.235160e+000 dPa’

12 Cctober 1988

Measured Pressure (dPa)

10154, 0
23943
30838
44628
61865
79102
96339
113576
130813
148050

[eoleoNoNoNo ol Yoyl

Calibration Constants:
Vari ance:

10051, 0
23853.0
30743.0
44534.0
61764.0
78990. 0
96225.0
113452.0
130684. 0
147921.0

9.36632e+001 1.00007e+000

2.146666e+001 dPa’
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10122.9
23909. 6
30803. 3
44595, 4
61831. 5
79069. 8
96307. 3
113543.0
130779.0
148017. 2

-1.32176e-009

Patm = 10154 dPa

Computed pressure

10145.5
23949. 2
30840. 2
44633. 6
61867. 4
79097.9
96338. 3
113571.4
130810. 4
148055.1

1.35202e-009



Table 4-3. Continued

fourth calibration

Applied Pressure

Ps 14
12 QOctober 1988

Measured Pressure (dPa)

T = 12°C

Patm - 10140 dPa

Comput ed Pressure

10140
23929
30824.
44614.
61851
79088
96325
113562
130799
148036

OCDOOCOO0OODOO RO

Calibration Constants:
Vari ance:

first calibration

Applied Pressure

10041.0
23842.0
30731.0
44517.0
61749.0
78972.0
96205. 0
113438.0
130670. 0
147909. 0

8.63638e+001  1.00033e+000
2.341239e+001 dPa’

Ps 15
12 March 1988 T =16°C

Measured Pressure (dPa)

10130. 7
23936. 1
30827. 3
44617.7
61855. 1
79083. 4
96321. 6

113559. 7
130796. 7
148040. 6

-1.62317e-010

Patm = 10110 dPa

Comput ed Pressure

10110.0
13557. 4
17004. 8
20452. 2
23899. 6
27347.0

Calibration Constants:
Vari ance:

second calibration

Applied_Pressure

10126.0
13573. 4
17020. 8
20468. 2
23915. 6
27363.0
30810. 4

Calibration Constants:
Vari ance:

third calibration

Applied Pressure

5031.0
6726.0
8452.0
10174.0
11902.0
13623.0

-7.48167e+001  2.03502e+000
1.205115e+002 dPa’

2 March 1988 T=28C

Measur ed Pressure (dPa)

10121.2
13537. 4
17006. 2
20457. 1
23910.0
27339.1

-1.66554e-006

Patm - 10126 dPa

Computed Pressure

5040.0
6736.0
8463.0
10186.0
11913.0
13636. 0
15355, 0

-1.64700e+001  2.01968e+000
1.503985e+002 dPa’

2 March 1988 T-

Measured Pressure (dPa)

10"C

10141.7
13550. 6
17016, 9
20470. 3
23926. 7
27370. 3
30800. 9

-8.25761e-007

Patm = 10125 dPa

Computed pressure

10125.0
13572, 4
17019, 8
20467. 2
23914.6
27362.0
30809. 4

Calibration Constants:
Vari ance:
fourth calibration

Applied pressure

10116.0
13563. 4
17010. 8
20458. 2
23905. 6
27353.0
30800, 4

Calibration Constants:

Vari ance:

5036. 0
6732.0
8460. 0
10183.0
11910, 0
13632.0
15358. 0

-2.17607e+001  2.02287e+000
1.262736e+002 dPa’

2 March 1988

Measured Pressure (dPa)

T = 12°C

10139. 4
13549.7
17018, 3
20470. 8
23925.2
27363. 4
30803. 6

-1.02527e- Q06

Patm = 10116 dPa

Conput ed Pressure

5241.0
6723.0
8449.0
10173,0
11899.0
13621.0
15346.0

-1.16982e+003  2.22987e+000
9.179211e+003 dPa
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10248.0
13379.0
16971. 4
20501. 3
23977. 1
27386. 6
30743.9

-9.79158e-006
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Latitude

K-400 41 33.309

K-400Ss 41 33.151

K-130 41 34,130

K-90 41 34.592

K-60 41 34.914

E-400 40 50.832

E-400S8S 40 50. 684

E-90 40 48.605

E- 60 40 47.477

G 90 40 10.907

Se-1o 40 01.012

V-400 39 37.078

V-400ss 39 36. 816

V-130 39 37.675

V-90 39 38.564

V-60 39 38.804

Table 4-4  Main program noored array |ocation and depl oynent data

Time of
Depl oynent /
Anchor - Buoy
Loran TDs Hook Time
Longitude (Mcroseconds) ( QW) Dat e
124 31.413 W 14431.2 23:32 5/ 4/ 88
X 27499.4 08:45 8/ 29/ 88
Y: 43848. 4
124 31.503 W 14432.2 01. 17 3/ 13/ 88
X: 27498.9 20:55 8/ 28/ 88
Y: 43859. 4
124 26.230 W 14434.8 21:45 3/ 12/ 88
X 27512.3 11:09 8/ 29/ 88
Y: 43863. 1
124 21.485 w. 14440. 4 04:11 3/ 13/ 88
X. 27523.5 06:20 8/ 29/ 88
Y: 43914.5
124 16.847 w: 14447.1 06:15 3/ 13/ 88
X: 27534.2 13:52 8/ 29/ 88
Y: 43919.7
124 28.379 w. 14753, 3 01:02 3/ 15/ 88
X. 27370.8 20:06 8/ 31/ 88
Y: 43786.9
124 28.331 W 14754.6 03:11 3/ 15/ 88
X: 27370. 3 ~22:30 8/ 31/ 88
Y: 43786.5 Rel ease
Triggered
124 23.820 W 14782.2 05:23 3/ 15/ 88
X 27372.4 18:29 8/ 30/ 88
Y: 43785.5
124 19. 487 W 14798.8 09:17 3/ 15/ 88
X: 27375.0 ~20:30 8/ 30/ 88
Y: 43786.7  (20:19-20:45
VMCM on deck)
124 26.301 w: 15155.5 22:43 3/17/ 88
X:27225. 6 02: 24 8/21/88
Y: 43693.1
124 03.688 W 151528 17:45 3/17/88
X: 27229.6 18:32 8/ 21/ 88
Y: 43695.4
123 59.516 W  15307.6 08:26 3/ 18/ 88
X: 27144.1 -07:13 8/ 16/ 88
Y: 43632.0 VMCM on deck
123 59.619 W 15308.9 05:03 5/ 2/ 888
X 27144.0 18:15 8/ 15/ 88
Y: 43631.9 Rel ease
Triggered
123 53. 885 W 15321.8 05:57 3/ 18/ 88
X: 27151,4 06:10 8/ 16/ 88
Y: 43637.0
123 50. 506 W 15327.0 18:07 3/ 18/ 88
X. 27158.2 04:35 8/ 16/ 88
Y: 43641. 7
123 49.202 W 15326.6 11:25 3/ 18/ 88
X: 27160.7 02:40 8/ 16/ 88
Y: 43643. 1
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VMCM
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BP

PTT

VMCM
VMM
VMM

PTT
VMCM
BP

SN

8155
301010

106
7170
7175
902502

8156
51
1501
10

8158
72

8154
201104

080
7178
7171
902402

8161
56
73
53
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Table 4-4. Continued.

Latitude

C-400 38 29.795

C400SS 38 30.013

C-130 38 33.606

C-90 38 36.772

C-60 38 38.369

Key:

Longitude

123 38. 486

123 38. 957

123 30.778

123 26, 968

123 24.613

Time of
Depl oynent /
Anchor - Buoy
Loran TDs Hook Ti e

(M croseconds) ( Qv Date
w 16:27 5/1/88
X: 22:47 8/19/88
Y:
W 15700. 8 03:58 3/20/88
X 26998. 2
Y: 43403.1
W 15712.7 08:05 3/19/88
X: 26998.1
Y: 43418. 9
w  15711.1 07:31 3/20/88
X: 26998.5
Y: 43432.4
W 15712.5 09:08 3/20/88
X: 26999.0
Y: 43439.4

vMcM  Vector Measuring Current Meter
ACM Nei | Brown Acoustic Current Meter
RCM-4  Aanderaa Recording Current Meter
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AR
PTT
BP

Dept h
Qm!

10

75
150
300
400

10
130

10
45
75

10
60

Quner

GFE
EG&G

EG&G
G-E
G-E
EG&G

GFE
S10
S10

GFE
S10
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Figure 4-6f. Time series of currents and winds , ncccs first deployment of the main program March- August
1988: |ow passed vectors, C-line currents and nearby wind stress.
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Figure 4- 6h.  Tine series of currents and winds, ncoes first depl oyment of the main program March- August
1988: | owpassed alongshelf component, K-line currents and nearby wnd stress.
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Figure 4-6i. Time series of currents and winds, Ncccs first deployment of the main program March- August

1988:

| ow passed alongshelf component, E- and Gline currents and nearby wind stress.
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Figure 4- 6. Time series of currents and winds, wNcces first depl oynent of the main program March- August
1988: |ow passed al ongshel f conponent, V.|ine currents and nearby wind stress.
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Figure 4-6k. Tine series of currents and winds, ycees first depl oyment of the main program March-August

1988: |owpassed alongshelf COMpONeNnt, ¢ |jne currents and nearby wind stress.
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Figure 4-61. Tine series of currents and winds, weeoe first depl oyment of the main program March- August
1988: | ow passed cross-shelf conponent,” 145 currents and nearby wind stress.
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Figure 4-61. Cent inued.
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Figure 4-6m  Tine series of currents and winds, wncces first deploynent of the main program, March- August

1988:

| ow passed cross-shel f conponent, g_1jine currents and near by w nd stress.
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Figure 4-60. Time series of currents and winds, Ncccs first deploynent of the main program March- August
1988: |owpassed cross-shelf conponent, V-line currents and nearby wind stress.
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Figure 4-6p. Tinme series of currents and winds, Ncces first deploynent of the main program March- August
1988: |ow passed cross-shelf conponent, C-line currents and nearby w nd stress.
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Figure 4- 6g. Time series of currents and winds , wncocs first deployment of the mmin program March- August
1988: hourly alomgshelf component, 10-m currents and nearby wind stress.
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Figure 4-69. Continued.
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Figure 4-6r. Tine series of currents and winds, wNcces first deploynent of the main program March- August
1988: hourly al ongshel f conmponent, K-|ine currents and nearby wind stress.
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Figure 4-6s. Tine series of currents and winds , wcocs first deployment of the mmin program March- August™'
1988: hourly alongshelf component, E- and Gline currents and nearby wind stress.
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Figure 4-6r. Time series of currents and winds, ycces first depl oyment of the main program March- August
1988: hourly alonmgshelf conponent, \.|jne currents and nearby wind stress.
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Figure 4- 6u.  Tinme series of currents and winds, Ncccs first deploynent of the main program March- August
1988: hourly alongshelf component, C-line currents and nearby wind stress.
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Figure 4-6w. Tine series of currents and winds, wcees first depl oyment of the main program March- August
1988: hourly cross-shel f component, K.|ine currents and nearby wind stress.
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Figure 4-6x. Tine series of currents and winds, wncccs first deploynent of the main program March- August
1988: hourly cross-shelf conponent, E- and Gline currents and nearby wind stress.
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Figure 4-6y. Tine series of currents and winds, wNcccs first depl oynment of the main program March- August
1988: hourly cross-shel f conponent, V-line currents ‘and nearby wind stress.
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PROGRESSIVE VECTOR DIAGRAMS (LOW PASS FILTERED)
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Figure 4- 7a.  Progressive vector diagrans (pvds) of |ow passed currents: K-line |ow passed pvDs.
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PROGRESSIVE VECTOR DIAGRAMS (LOW pass FILTERED)
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Figure 4- 7b. Progressive vector diagrans (pvDs) of |ow passed currents: E-line |ow passed PVDS.
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PROGRESSIVE VECTOR DIAGRAMS (LOW PASS FILTERED)
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PROGRESSIVE VECTOR DIAGRAMS (LOW PASS FILTERED)
NCCCS MAIN PROGRAM, MARCH - AUGUST 1988

C-LINE

7131
7/24

C-400/75 C-400/150 s/15 | C—400/300

3727

C-400/10

5/22

6/21

o

Q.

S
F,
-
=
o)
0
&
Z 7 3 NOTES
e ALL PVDS EXCEPT C-400/10 START ON 20 MARCH 19881200 PST
0o C-400/10 STARTS ON 03 MAY 19881200 PST
E STARTING POSITION ON THIS PAGE IS ARBITRARY
= 117 UP ON PAGE IS 317 DEGREES TRUE
=
o
E o 7

o \ 1

0 500 1000

KI LOVETERS CROSS-SHELF

Figure 4-7f. Progressive vector diagrans (pvDs) of |ow passed currents : C 400 and c-130 | ow passed PvDs.
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PROGRESSIVE VECTOR DIAGRAMS (LOW PASS FILTERED)
NCCCS MAIN PROGRAM, MARCH - AUGUST 1988
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Figure 4-8b. Mean and low-pass-filtered variance ellipses: E-line.
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Figure 4 8e Mean and low-pass-filtered variance ellipses: C-line
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3/12/88 TO 8/28/88
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SSE Ssw SSE
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Figure 4-9a. Current roses based on hourly values: K-400 and K-60.



K-130/10
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452 NORTH
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Figure 4-9b. Current roses based on hourly values: K-130 and K-90.
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E-400/10 E-60/1 o
3/14/88 TO 8/31/88 3/15/88 TO 8/30/88
45% NORTH 45X NORTH
NNW NNE
NW, 30% NE
WNW 15% ENE
w 2.0 E
4
wsW ESE
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Ssw SSE
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452 NORTH
NNW NNE
NW 30% NE
WNw 15% ENE
w 7.6 E
WSw ESE
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SSW SSE
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NNE NNE
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ESE ESE
SE SE
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Figure 4-9c. Current roses based on hourly values: E-400 and E-60.
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E-90/1 O G—90/1O
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Figure 4-9d. Current roses based on hourly values: E-90 and G 90.
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V—400/10 V— 60/10
3/18/88 TO 8/15/88 3/18/88 TO 8/15/88
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NNW NNE NNE
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wWsSw ESE ESE
SE SE
SSW SSE SSE
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Figure 4-9e. Current roses based on hourly values: V-400 and V-60.
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Figure 4-9f. Current roses based on hourly values: V-130 and V- 90.
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Figure a9q. Current roses based on hourly values: C400 and C 60.
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Figure 4-9n. Current roses based on hourly values: C 130 and C 90.
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Tabl e 4-5.

K-60/1o

Constituent
& Period
(hours)
Q, 26.868
0, 25.819
M, 24.833
K, 23.934
J, 23.098
B, 12.872
N, 12.658
M, 12.421
L, 12.192
s, 12.000

K-90/10

Constituent

& Period
(hours )

Q, 26.868
0, 25.819
M, 24.833
K, 23.934
3, 23.098
u, 12.872
N, 12.658
M, 12.421
L, 12.192
s, 12.000

K-90/ 45

Constituent
& Period
(hours )
Q, 26.868
0, 25.819
M, 24.833
K, 23.934
J, 23.098
B, 12.872
N, 12.658
M, 12.421
L, 12.192
S, 12<000

K-90/ 75

Constituent
_& Period
(hours)

Q, 26.868

0, 25.819

M, 24.833

K, 23.934

J, 23.098

B, 12.872

N, 12.658

M, 12.421

L, 12.192

S, 12.000

K-130/10

Const i t uent
_& Period
(hours)
Q, 26.868
0, 25.819
M, 24.833
K, 23.934
J, 23.098
g, 12.872
N, 12.658
M, 12.421
L, 12.192
s, 12.000

Tidal harmonic constituents of current conponents and tidal ellipse parameters, March-August
1988
Upcoast alongshore direction is 355° true
n-off Shore Alongshore Major Mnor  Major AXiS Phase of Sense of
Ampl,  Phase! Ampl,  Phase' Axis axis Orientation Max. Curr,® Rotation
(cnl see) (deg) (cni see) (deg) (cm'see) (cnlsee) ("true) (deg)
0.463 32.9 0.776 14. 4 0.895 0.128 25.1 19.1 cw
0. 247 191. 4 1. 660 70.8 1. 664 0.212 350. 6 70. 2 cw
0.100 162.3 0.207 96,4 0.212 0.089 8.5 102.2 Cw
0.629 143.3 2.570 94.9 2.605 0.465 4.5 96.6 W
0.163 284.9 0.150 197.7 0.164 0.149 249, 7 90.9 cW
0.967 139.3 0.967 55.3 1.017 0.914 40.2 97.5 cy
0,483 74.7 0.282 13.2 0.507 0.236 64.9 65. 1 W
0.795 218.6 4.396 154,2 4.410 0.715 359. 6 154.9 cw
0.150 33.7 0.033 246.9 0.153 0.018 95,7 35.0 cW
1.006 189.1 2.132 143.4 2.257 0.680 15,2 149.7 Cw
Upcoast al ongshore direction is 355" true
n-off Shore Alongshore Maior Mnor Major Axis Phase of Sense_of
Ampl . Phase! Ampl Phase! Axis Axis Oientation Mx. Curr.® Rotation
(cn see) (deg) (cnlsee) (deg) (cm see) (cnlsee) ("true) (deg)
0.434 29. 6 0.611 15. 0.744 0.088 30.1 20.0 cW
0.568 164.5 1. 975 81.7 1.977 0.563 357.2 82.4 cW
0.126 140.9 0.227 89.1 0.243 0.093 17.5 98.1 cW
1.282 77. 4 2.314 80. 3 2. 644 0. 057 24.0 79.6 Ccw
0.193 -52.3 0.162 208. 2 0.198 0.155 286.2 144.6 cw
1.222 52.1 1.113 321.6 1.222 1.113 87.7 54.6 CW
1.784 81.2 1.138 334.4 1. 830 1. 062 100.9 90.6 cW
4.220 121.9 2. 658 111.2 4.969 0. 422 53.0 118.9 cw
0, 146 233.6 0.229 151.5 0. 230 0.144 3,2 156.7 cwW
1.819 359.1 2. 348 222, 1 2.779 1.049 139.7 27.1 cW
Upcoast al ongshore direction is 355° true
On-off Shore Alongshore Major Mnor Major AXiS Phase of Sense of
Ampl . Phase! Ampl . Phase! Axis Axis Orientation® Mix. Curr.’ Rotation
(cm see) (deg) (cm see) (deg) (cm see) (cmsee) ("true) (deg)
0.201 131.0 0.462 49.3 0.463 0.198 359. 4 51.2 CwW
0.817 111.1 1.752 49.9 1.804 0.695 9.9 55.7 cw
0.045 128.5 0.114 76.0 0.117 0.034 9.7 80.4 Ccw
1.386 153.7 3.003 94.8 3.101 1.149 10.6 100.7 Cw
0.137 141.6 0.243 89.8 0.260 0.100 17.8 99.1 cw
0.272 213.2 0.386 137.3 0.396 0.257 12.2 148.7 CW
0.635 247.1 1.395 154.1 1.395 0.634 353, 3 153.3 cw
1.494 222.0 5.037 156.1 5.077 1.353 2.4 158.1 Cw
0.043 62.0 0.085 176.4 0.087 0.038 160. 2 3.0 Ccw
0.742 206.4 2.203 157.4 2.260 0.546 8.3 160.7 CcwW
Upcoast al ongshore direction is 355° true
On-of f Shore Alongshore Mai or Mnor  Major AXi S Phase of Sense of
Ampl, Phase! Ampl, Phase! Axis Axis Oientation Mx. Curr.® Rotation
(cm see) (deg) (cm see) (deg) (cm see) (cnlsee) (° true) (deg)
0. 359 177.2 0.472 85.3 0.472 0.358 351.5 82.6 Cw
0. 809 148.7 1.746 64. 6 1. 749 0.804 358.5 66.2 cW
0.034 207.7 0.093 86.7 0.095 0.029 343.3 83.2 CcwW
1.835 198.9 3.153 107.8 3.153 1.835 354.1 107.3 Cw
0.185 162.1 0.307 91.8 0.316 0.169 11.3 100.7 Cw
0.433 225.4 0.543 130.7 0.546 0,430 345.2 123.0 cwW
0.374 0.7 0.721 137.7 0.777 0.236 331.9 145.1 Ccw
0.215 237,2 4.026 148.3 4.026 0.215 355,1 148.3 cw
0.148 114.4 0.086 95.1 0.169 0.025 55.6 109.7 CcW
1.606 212.6 2.364 152.3 2.548 1.295 20.7 166.0 Cw
Upcoast al ongshore direction is 355° true
On-of f _Shore Alongshore Major Mnor, Major AXiS Phase of Sense of
Ampl, Phase? Ampl, Phase? Axis Axis Qrientation Max, Curr.® Rotation
(cm see) (deg) (cm see) (deg) (cm see) (cm/sec)  (“ true) (deg)
0.491 1.3 0.471 27.4 0. 663 0. 153 41.3 13.8 Ccw
0.553 156. 7 1.383 57.5 1. 386 0. 545 350. 7 55.8 Qw
0. 150 119.1 0,113 75.3 0,176 0. 067 50.9 104.7 cW
2.079 63. 4 1.162 68.0 2. 380 0. 082 55, 8 64.5 Ccw
0.177 -55.5 0. 068 216. 6 0.177 0. 067 264.1 124,2 cw
0.478 343. 4 0.563 249.8 0. 566 0. 475 164. 6 61.1 cW
1. 862 5.4 1.295 247.5 2.003 1. 064 110.8 19.8 cw
4. 487 48. 2 2.787 214.9 5. 254 0.544 116.5 44.5 Ccw
0.167 89.9 0. 090 132.5 0. 182 0. 056 60. 9 97.8 GCW
2.099 210. 7 2.331 164. 3 2.886 1.228 215.7 4.4 ow
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Tabl e 4-5.  Continued.

K-130/75 Upcoast al ongshore direction is 355" true
Constituent On-off Shore Alongshore Mijor ~ Mnor Major AXis = Phase of = Sense of
& Period Ampl . Phase’ Ampl,  Phase' Axis axis Qlientation” MaX. Curr,?
(hours) (cm see) (deg) (cnlsee) (deg) (cm see) (cnlsee) (“ true) (deg)
Q, 26.868 0.302 160.5 0. 402 58.8 0.412 0. 289 337.6 46. 4 cwW
0, 25.819 0.772 125.7 1. 169 59.1 1.228 0.675 16.5 71.3 cw
M, 24.833 0.026 171.8 0. 085 99.3 0. 086 0.025 0.7 101.0 cw
K, 23.934 1.624 179.0 2. 602 102.0 2. 642 1. 559 7.3 109. 3 cwW
J, 23.098 0.177 146.7 0.190 83.0 0.221 0.137 35.5 110.8 cw
gy 12.872 0. 500 99.9 0.299 65. 8 0.563 0. 149 56.5 91.7 cW
N, 12.658 1,275 130.5 0.988 89.9 1.520 0.540 49. 4 116.3 cw
M 12.421 3. 158 177.2 4.754 139.7 5. 457 1.672 26.0 150. 2 cW
L, 12.192 0.121 233.5 0.168 154.7 0,171 0.116 10.1 165, 2 cwW
S, 12.000 0.911 344.0 2. 041 191.2 2.201 0. 387 152. 6 7.1 cwW
K- 400/ 10 Upcoast al ongshore direction is 355" true
Const i t uent n-of f Shore Alongshore Major Mnor  Major AXiS Phase of  Sense of
_& Period Ampl,  Phase' Ampl Phase’ Axis Axis Qientation Curr.® Rotation
(hours) (cm see) (deg) (cn see) (deg) (cmsee) (cmsee) ("true) (deg)
Q, 26.868 0.576 9.9 0. 288 5.8 0.643 0.018 58. 4 9.1 cW
0, 25.819 1.181 128.1 1.349 90. 2 1.698 0.577 35.2 106. 2 cW
M, 24.833 0.216 118.3 0.158 85,5 0. 258 0.072 50. 3 107. 4 W
K, 23.934 2. 334 90.5 1. 602 73.5 2. 804 0. 392 51.0 85.1 cw
J, 23.098 0. 153 258. 7 0.103 200. 3 0. 166 0. 081 238.8 65. 2 cw
py 12.872 0. 369 308.7 0. 585 202. 3 0.599 0. 346 159. 8 13.4 cw
N, 12.658 1. 360 336.0 1.651 216.0 1. 869 1. 041 140.7 15.1 cwW
M, 12.421 3.182 335.8 5.798 205.0 6, 221 2. 246 152.1 16. 4 cwW
L, 12.192 0. 040 117.0 0.084 143.6 0.092 0.017 18.9 139.1 Cew
S, 12.000 2.098 188.0 2.042 134.8 2.618 1.311 41.3 162. 4 cw
K- 400/ 75 Upcoast al ongshore direction is 355° true
Constituent On-of f Shore ‘Alongshore Major Minor Major AXis Phase of Sense_of
& Period Ampl, Phase?! Ampl, Phase! Axis Axis Olientation Max. Curr,® Rotatijon
(hours) (cm see) (deg (cni see) (deg) (cmsee) (cmsee) (0 true) (deg)
Q, 26.868 0.398 91.2 0.379 55.7 0.523 0. 167 41.8 74.5 cw
0, 25.819 0.555 111.0 1.490 89. 4 1.578 0.193 14.4 91.9 cW
M, 24.833 0. 063 175.2 0. 146 105.8 0.148 0. 058 5.3 110.0 cw
K, 23.934 1. 068 158. 3 2.674 107.6 2. 766 0.799 10.5 112.2 CW
J, 23.098 0.021 -5.7 0.126 121.0 0, 127 0.016 349.3 121.7 Cew
B, 12.872 0. 368 306. 6 0.370 161.7 0. 497 0. 157 310.2 144.3 cwW
N, 12.658 0.720 292.1 1. 356 174.6 1. 407 0.616 337.8 166. 9 cwW
M, 12.421 0.747 275. 2 5. 663 161.1 5.671 0. 682 351.9 160. 7 cwW
L, 12.192 0.026 176.0 0.084 151.9 0.088 0.010 11.3 153.9 cW
S, 12.000 1.017 224.1 2. 905 168. 2 2. 966 0.825 7.0 171.6 CwW
K- 400/ 150 Upcoast al ongshore direction is 355° true
Consti tuent On-off Shore Alongshore Mai_or Mnor Major AXis Phase of Sense of
& Period Ampl, Phase! Ampl, Phase! Axis Axis Qlientation Mux, Curr.’Rotation
(hours) (cm see) (deg) (cm see) (deg) (cm/sec) (cnisee) ("true) (deg)
Q, 26.868 0.064 107.0 0.294 82.5 0. 300 0.026 6.3 83.4 A
0, 25.819 0.510 118.7 1.068 93.5 1. 166 0.198 19.1 97.9 cw
M, 24.833 0. 042 133.0 0, 086 114.1 0.095 0.012 20.0 117.6 cW
K, 23.934 1. 064 159.0 1.876 116.9 2. 056 0.651 20. 6 125.5 cw
J, 23.098 0. 107 161.8 0.109 109.3 0. 137 0.067 38.8 134.6 cw
By 12.872 0.375 147.9 0. 463 109. 6 0. 565 0.191 32.4 124.1 cw
N, 12.658 1. 006 198.1 2.091 136.8 2. 157 0. 855 10.5 143.1 cwW
M 12.421 2. 154 191.4 5.520 150.0 5. 766 1.363 12.3 154. 2 CW
L, 12.192 0.079 327.5 0. 162 211,6 0. 167 0, 069 160, 4 25. 4 cw
S, 12.000 0. 865 150, 1 1.266 181.6 1.484 0. 385 27.7 172.1 Ccw
K- 400/ 300 Upcoast al ongshore direction is 355° true
Consti t uent On-off Shore Alongshore Major Mnor  Major AXis Phase of Sense of
& Period Ampl ~  Phase! Ampl,  Phase! Axis aAxis QOrientation’Max, Curr,® Rotation
(hours) (cnisee) (deg) (cnisee) (deg) (cmisee) (cmisee)  (* true) (deg) -
Q, 26.868 0.074 16.7 0.330 23.2 0.338 0. 008 7.6 22.9 CCW
0, 25.819 0.489 117.1 0.820 130.7 0.949 0.099 25. 4 127.2 ccw
M, 24,833 0.044 119.0 0.125 134, 8 0.132 0.011 13.9 133.1 CCW
K, 23.934 0.679 180.7 1. 499 149.1 1.612 0.331 17.1 153.9 cw
J, 23.098 0.123 200, 7 0. 167 216. 2 0.206 0. 027 211.0 30.8 CCW
B, 12.872 0. 549 56, 7 0.053 355.1 0.549 0. 047 82.3 56.5 cwW
N, 12.658 1.312 79.9 0, 512 116.8 1.377 0.292 66. 8 83.9 CCW
M, 12.421 3.937 134.3 3. 582 141.9 5.311 0. 352 42,7 137.7 Cew
L, 12.192 0.131 177.3 0.134 157.9 0,184 0,031 39.3 167.4 cw
S, 12.000 1.331 250. 4 2.412 193.5 2. 544 1. 056 195.5 22.3 cwW
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Table 4-5. Continued.

E-60/ 10 Upcoast al ongshore direction is 27" true
Const i t uent On-off Shore Alongshore Maior Mnor DMter Ais Phase of  Sense of
_& Period Ampl . Phase! Ampl ., Phase! Axis Axis Orientation®* Max. Curr,® Rotation
(hours ) (cm see) (deg) (cnlsee) (deg) (cmsee) (cm see) ("true) (deg)
Q, 26.868 0.228 302.4 0. 396 272.5 0. 446 0.101 235.1 99.4 CW
0, 25.819 0.601 -0.1 2.907 281.5 2.909 0.588 209.5 102.0 cw
M, 24.833 0.081 39.4 0.247 290. 8 0.248 “ 0.076 200. 4 108. 8 cwW
K, 23.934 2.090 51.7 5.583 -51.1 5, 605 2.030 201.5 126.9 CcW
J, 23.098 0. 168 60. 1 0.491 -46,0 0, 493 0.160 200.9 132.0 cwW
By 12.872 0.187 126.3 0.119 79.7 0. 207 0.078 89.0 115.0 cw
N, 12.658 0.197 189.5 0.930 158.0 0. 945 0.102 37.4 159.1 cw
M, 12.421 1.293 341.3 4,836 192.2 4.964 0. 647 193.8 10. 4 cw
L, 12.192 0.089 323.1 0.185 202. 9 0.191 0.075 190. 8 16.4 cwW
S, 12.000 1.106 103.6 0.536 269.5 1.223 0.118 142. 4 101.0 Ccw
E-90/ 10 Upcoast al ongshore direction is 27° true
Const i t uent On-off Shore Alongshore Major Minor Major AXis Phase of  Sense of
& Period Ampl. Phase? Ampl, Phase! Axis Axis Orientation Mx, Curr.,® Rotation
(hours) (cn see) (deg) (cnlsee) (deg) (cmsee) (cm see) (“ true) (deg)
Q, 26.868 0. 389 56. 1 0.472 279, 3, 0.570 0.220 169.5 82.8 cW
0, 25.819 1.176 69. 3 1. 998 286, 2 2.230 0.632 179.4 97.8 cw
M, 24.833 0.114 95.0 0.154 -52.8 0.184 0. 050 172.0 116.3 CW
K, 23.934 2.863 84.6 3.756 -40. 4 4,241 2.078 174.8 122.5 cW
J, 23.098 0.177 58.7 0, 285 -43.6 0.289 0.170 195.4 129.5 oW
py 12.872 0.159 78.9 0.092 252. 6 0.184 0. 009 146. 9 77.3 CCW
N, 12.658 0.731 339.0 0. 644 177.7 0. 962 0. 157 338. 2 167.2 CW
M, 12.421 2.303 316.5 5,613 192.3 5.779 1.849 192.5 7.6 cW
L, 12.192 0. 061 13.2 0.182 179.0 0.192 0.014 189.0 0.4 CCW
s, 12.000 1.578 57.9 1.913 273. 1 2. 369 0.734 168. 7 79.3 CcW
E- 90/ 75 Upcoast al ongshore direction is 27° true
nstituen On-off Shore Alongshore Mai Or Mnor Major AXis Phase of  Sense of
& Period Ampl Phase! Ampl, Phase'® Axls Axis Oientation Mx, Curr,® Rotation
(hours) (cm see) (deg) (cnlsee) (deg) (cmsee) (cmsee) ("true) (deg)
Q, 26.868 0.696 -39.8 0.567 231. 4 0. 697 0. 566 294, 2 137.9 cw
0, 25.819 3.200 9.0 4,155 268.5 4,246 3.079 189. 6 75.7 cW
M, 24.833 0.275 30.7 0.341 277. 1 0.372 0.230 176. 3 76.8 cW
K, 23.934 5. 650 68.0 6. 046 -49.6 7.086 4,274 166. 2 102.9 CW
J, 23.098 0.638 86.9 0. 662 -27.3 0.772 0. 499 164.6 122.2 cW
p, 12.872 0.225 273.6 0.401 163.1 0.411 0.205 12.1 155.5 cw
N, 12.658 0.961 261. 8 1,951 155.9 1.974 0.914 17.2 151.3 cwW
M, 12.421 3.343 60.0 2.921 184.7 3.945 2.036 155.3 .37.8 CCW
L, 12.192 0.188 22.8 0.164 231.9 0.242 0. 062 157.6 35.2 CW
S, 12.000 2.414 149. 3 0.973 107.5 2.528 0.618 99.2 144.8 CW
E- 400/ 10 Upcoast al ongshore direction is 27° true
Consti tuent n-of f Shore Alongshore Major Mnor Myjor AXis Phase of Sense of
& Period Ampl Phase! Ampl, Phase! Axis Axis Oientation Mx, Curr,® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cm see) (cm/sec) (°true) (deg)
Q, 26.868 0,621 31.7 0. 436 275. 3 0. 666 0.364 142. 4 46.3 CW
0, 25.819 1.048 33.7 1. 564 286. 9 1.611 0.974 189.5 96.1 cw
M, 24.833 0.083 98.7 0.131 -52.5 0.151 0.035 176.1 119.7 cW
K, 23.934 1.992 76.7 2.921 -52. 4 3.251 1.390 177.9 114.2 cwW
J, 23.098 0. 096 8.3 0.170 296. 4 0.174 0.090 220. 7 123.6 cw
B, 12.872 0. 358 234.0 0.818 145, 7 0.818 0. 358 27.9 146.0 cw
N, 12.658 0.875 262, 3 2. 060 163.4 2. 066 0. 862 22. 4 161.4 cw
M 12,421 3.600 234.1 8.108 166. 4 8.244 3.277 38.4 170.9 cw
L, 12,192 0. 052 127.8 0.070 163. 2 0.084 0.025 61.8 151.3 Cew
S, 12.000 1. 497 284. 4 2.920 190.1 2.923 1.491 204.0 8.6 cw
E- 400/ 75 Upcoast al ongshore direction is 27° true
OgnStPletrliJ%gt Amml- off Shore . Alongshore X Majox Mnor Major Axis Phase of Sense of
Amp hase Ampl Phase Axis Axis Orientation? Mx, Curr.® Rotation
(hours ) (cm'see) (deg) (cm see) (deg) (cm'see) (cm'see) ~ (“true) (deg)
Q, 26.868 0.304 1.7 0.071 255. 6 0. 305 0. 068 120.9 2g6 cW
o, 25819 1647  42.0 1.179  284.1 1782 0.963 143.9 57.4 c
M, 24.833 0.152 52.7 0.113  284.8 0.172 0.078 148. 8 68. 4 v
K, 23.934 2.571 68.5 2.232  303.7 3.029 1.555 155. 0 90. 4 o
J,  23.098 0.193 97.1 0.206  -41.7 0. 264 0. 099 164. 5 119.3 o
wy 12.872 0.311  228.1 0.428  142.9 0. 430 0. 309 34.3 148. 2 o
N 12.658 0.891  253.0 1.587  151.8 1. 600 0. 867 18.2 147.0 o
M, 12.421 2.819  277.7 7777 174.9 7.805 2. 739 21.8 173.0 o
L, 12.192 0.059  317.5 0.207  174.9 0.213 0.035 13.9 172.7 83
s, 12.000  0.379  234.4 1.765  198.7 1792 0.218 217.0 19.9 cw
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Table 4-5. Continued.

E-400/150 Upcoast alongshore direction is 27° true
Constituent On-of f Shore Alongshore Mai Or Mnor  Major AXis Phase of Sense_of
_& Period Ampl,  Phase! Ampl,  Phasel Axis Axis Qientation Mx. curr.® Rotation
(hours ) (cm see) (deg) (cnisee) (deg) (cnisee) (cm see) ("true) (deg)
Q, 26.868 0.072 18. 4 0. 156 159.0 0.166 0.043 6.1 164. 6 CCW
0, 25.819 0.902 24.1 0.758 275.5 0.970 0. 667 147.6 46. 2 cwW
M, 24.833 0.076 27.0 0. 095 272.5 0.104 0. 063 176.3 72.7 cw
K, 23.934 1.589 53.6 1.280 291.3 1.804 0.953 150.9 73.2 Ccw
J, 23.098 0.163 64.6 0. 137 -19.6 0.165 0.135 102, 1 52.3 cw
By 12.872 0.510 113.2 0.354 40.4 0.528 0.327 97.8 101.0 cw
N, 12.658 0. 444 166.0 0.663 114.4 0.733 0.315 55.2 127.4 CcwW
M 12.421 1.277 217.8 4.141 149.7 4,170 1.177 34,1 151.7 cwW
L, 12.192 0.101 309.0 0.132 178.3 0.152 0. 066 353.0 161.9 CcwW
S, 12.000 0.891 148 .4 0.813 162. 4 1.197 0. 146 4.7 154. 8 Cew
E- 400/ 300 Upcoast al ongshore direction is 27° true
Consti tuent On-off Shore Alongshore Major Mnor  Major AXisS Phase of Sense of
& Period Ampl | Phase? Ampl, Phase! Axis Ais Olientation® Mx. curr.® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cml see) (cm/sec)  ('true) (deg)
Q, 26.868 0, 35.6 0.103 183.0 0.106 0.016 192.6 5.2 Ccw
0, 25.819 0.330 30.6 0.428 148.0 0.470 0. 267 356. 8 166. 3 Ccw
M, 24.833 0.038 39.7 0.012 157.0 0.038 0.010 125.7 37. 4 CCW
K, 23.934 1.103 44,2 0. 642 230.9 1.275 0. 065 147.1 45.9 cwW
J, 23.098 0. 097 35.9 0. 082 210.5 0.127 0. 006 157.3 33.6 CCW
sy 12.872 0.591 342.5 0. 257 306.7 0.628 0.142 276.5 157.7 cwW
N, 12.658 0.361 342.6 0.503 140. 2 0. 609 0.113 352.1 147.6 Cew
M, 12.421 3.610 25.6 2.183 123.3 3.628 2.153 124.2 21. 4 Cew
L, 12.192 0. 066 306. 2 0.100 174.1 0.112 0.044 358. 6 162.1 CW
S, 12.000 2.181 45. 4 0. 380 166. 2 2.189 0.325 122.2 44. 6 Ccw
G 90/ 10 Upcoast al ongshore direction is 317° true
Const i tuent O-off Shore Alongshore Major Mnor  Maior AXi S Phase of Sense of
& Period Ampl, Phase! Ampl . Phase! Axis Axis Orientation® Mx, curr.® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cm see) (cn see) (“ true) (deg)
Q, 26.868 0.715 41.6 1.538 -16.2 1.592 0.584 153. 2 169.9 cw
0, 25.819 2. 247 50.4 3.861 12.6 4,292 1.239 344.1 21.0 cw
M, 24.833 0.172 79.1 0. 356 54.5 0.390 0. 065 341.5 58.9 cw
K, 23.934 4.033 82.0 7.562 66. 2 8.514 0.975 344 .6 69.6 cwW
J,  23.098 0.235 70. 3 0.448 85.8 0.503 0. 056 344, 2 82.5 Cew
p, 12.872 0.524 157,0 0.631 124.7 0.789 0.224 355. 8 137.5 cw
N, 12.658 0. 857 137.7 3.722 145, 2 3.818 0.109 329.9 144l8 CCW
M, 12.421 3.576 185. 6 14. 626 160. 6 14,984 1. 476 329. 6 161,8 cw
L, 12.192 0.089 171.7 0.430 182.1 0.439 0.016 148. 5 1 | 6 Cew
s, 12.000 2.723 217.9 4.509 169. 8 4,930 1. 854 162: 9 0 1 cwW
G 90/ 45 Upcoast al ongshore direction is 317° true
Const i t uent On-of f Shore Alongshore Mai or '
& Period Ampl. Phase! Ampl, Phase! AXi s MA)TIO% Ig)mioerntAc’jl(tl ison NE?(aS%ucx)']; 3 Iggtn;tel CC))I]
(hours) = (cmsee) (deg)  (cnisee) (deg)  (cm/sec) (cm/sec) (* true) (deg)
Q, 26.868 0.430 52.0 0.532 -8.4 0.598 0. 332 350. 3 ﬁg;
0, 25819  1.229  67.2 2.435  25.2 2.618  0.765 339. 6 32.1 o
M, 24.833  0.089 953 0.210  53.7 0.221  0.056 335, 9 58. 7 o
K, 23.934 1538  99.9 5425  79.4 5614 .51 332. 0 80. 8 o
J, 23.098  0.047  116.5 0.513  85.9 0.515 ' ' ' o
. . 0.024 321.5 86. 2 cw
uy 12,872 0. 448 121.1 0,484 75. 8 0. 609 0.254 358.9 96. 2
N, 12.658  1.025  98.5 2.125  138.9 2.276  0.621 338. 9 132. 7 &
M 12,421 5328 1458 11001  144.5 12.223 | - . Cow
. 0,112 342.8 144, 7 CcW
Iéz 1%2 10%% 0. 183 125.9 0.232 168. 8 0.276 0, 105 352.9 153.6 CcCcW
X : 1.531 173.0 3.239 169.5 3.582 0.084 342.3 170.1 cw
G 90/ 75 Upcoast al ongshore direction is 317" true
Constituent n-of f _Shore Alongshore Mai_or '
LU . Minor Major AXiS Phase of Sense of
& (ﬁ%h?gj' (ﬁﬁﬁigee szse Ampl, Phase! Axis Axis Qr%enCatioq? Max. Curr.® Rotation
) (deg) (cm see) (deg) (cmsee) (cmisee)  (“true)
Q, 26.868 0.372 94.6 0. 489 57.3 0. 585 0,189 352. 4 (ge8)
0, 25.819 0.625 138.0 1. 910 33.2 . , ' r0.2 cw
. 1.917 0. 602 311.7 31.5 CcW
M, 24.833 0. 059 184.8 0.100 62.6 0.106 0. 047 295
K, 23.934 0.703  244.9 4.143 85. 7 4.195 0. 247 £ oz cu
55 23008 0% 289 418 8.1 419 0.247 308. 0 85, 2 W
W 181 015 ada o451 68 0.448 0,006 300. 7 72.0 Cow
N 12.658  1.166  78.0 1.881  117.6 2.111 ' g o cow
M 12421 R Lol 7.6 2 0. 662 345, 6 107. 9 cow
L, 12.192  0.198  123.9 0.289  152.8 0341 008 3500 o
S, 12.000 0. 658 58.7 3.413 186. 6 3. 437 0.515 130.1 7..6 ggg
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Tabl e 4-5.

v-60/ 10

Const i tuent
& Period
(hours)
Q, 26.868
0, 25.819
M, 24.833
K, 23.934
J, 23.098
B, 12.872
N, 12.658
M, 12.421
L, 12.192
S, 12.000

v-90/1o0

nstituen
& Period
(hours)
Q, 26.868
0, 25.819
M, 24.833
K, 23.934
J, 23.098
p, 12.872
N, 12.658
M, 12.421
L, 12.192
s, 12.000

v-90/ 75

Const i t uent
& Period
(hours)

Q, 26.868
0, 25.819
M, 24.833
K, 23.934
J, 23.098
p, 12.872
N, 12.658
M, 12.421
L, 12.192
s, 12.000

v-130/10

Const i t uent
& Period
(hours)

Q; 26.868
0, 25.819
M, 24.833
K, 23.934
J,  23.098
By, 12.872
N, 12.658
M, 12.421
L, 12.192
S, 12.000

v-130/ 75

Consti t uent
& Period

(hours)
Q, 26.868
0, 25.819
M, 24.833
K, 23.934
J, 23.098
By 12.872
N, 12.658
M, 12.421
L, 12.192
S, 12.000

Cont i nued
Upcoast al ongshore direction is 354° true
M-off Shore Alongshore Maj or M nor Major AXxis Phase of Sense of
Ampl . Phasel Ampl .  Phasel Axis Axis Oientation® Max. Curr.® Rotation
(cm see) (deg) (cnisee) (deg) (cm'see)  (cnlsee) ("true) (deg)
0.106 156.7 0. 405 59.8 0. 405 0.105 352.0 59.2 cw
0.224 16. 3 0.985 117. 8 0. 986 0.219 351.3 118. 4 ccw
0. 022 -15.8 0.070 142.6 0.073 0.008 337.4 144. 4 Cew
0. 608 62. 2 1. 395 254.7 1.517 0.121 150. 8 72.7 cw
0.116 57.5 0.322 254, 7 0. 340 0.032 154.8 72.8 cw
1. 320 351.7 0.901 270. 2 1.332 0.883 253.6 164.7 cw
1. 806 314.8 1. 479 226.9 1. 808 1. 476 258.9 130.7 cW
2.048 76. 2 0. 445 87.2 2.094 0.083 71.9 76.7 Ccw
0.011" 345.0 0.019 197.9 0.022 0.005 147.0 10.8 cw
0.453 19.7 0.991 212.6 1.085 0.093 149. 8 30.4 cw
Upcoast al ongshore direction is 354" true
On-of f Shore Alongshore Major Mnor Mjor AXis Phase of  Sense of
Ampl, Phase! Ampl | Phase! Axis Axis Orientation® Mx, Curr.® Rotation
(cnlsee) (deg) (cnisee) (deg) (cm'see) (cm see) ("true) (deg)
0.198 133, 3 0.201 64.7 0.233 0. 159 37.3 97.7 cW
0.348 82.5 1. 008 115.0 1.051 0.179 10.7 112.0 Cew
0.014 34.6 0. 047 127.6 0.047 0.014 353.0 127.9 Cew
0.713 57.9 1.780 240.7 1.917 0.033 152.2 60. 3 cW
0.111 40. 8 0.311 230.0 0.329 0.017 154. 5 49.0 cwW
1.216 318.3 0.620 247.2 1.238 0,576 252.0 132. 6 cw
1.675 285. 4 1.178 190, 1 1.682 1. 169 271.1 110. 3 cw
3. 443 55.1 0.740 309.7 3.449 0.712 87. 4 55.9 cW
0.075 27.7 0.089 240. 6 0.112 0.032 135.0 47.4 cW
0.813 304.5 0.835 214. 1 0.836 0.813 166. 8 27.1 cwW
Upcoast al ongshore direction is 354" true
n-off Shore Alongshore Major Mnor Major AXi S Phase of Sense of
Ampl, Phase! Ampl, Phase! Axis Axis Olientation Mx, Curr,® Rotation
(cm see) (deg) (cm see) (deg) (cmsee)  (cnisee) (“ true) (deg)
0.223 184.6 0.288 109. 6 0. 300 0. 207 16,5 125. 6 cW
0.190 147.3 1.078 118.2 1.091 0.091 2.8 118.9 cw
0.014 -52.6 0. 056 155.5 0. 057 0. 006 341. 4 154.1 cW
0.288 148.0 1. 802 199.7 1.811 0.225 179.8 19.0 Cew
0. 090 95.0 0.191 200. 3 0.193 0.086 165. 1 24. 3 CCW
1.315 112.6 0.718 23.7 1.315 0.718 83.1 112,1 cw
2.066 84.9 0. 669 4,2 2. 069 0. 659 80.7 83.9 cw
1. 950 187.7 2. 097 128.1 2. 488 1.418 34.9 154.3 cW
0.031 205. 2 0. 045 190.5 0. 054 0. 007 208.5 15.2 cw
0.772 68. 5 0. 261 124.1 0. 787 0.211 72.3 71.7 CCW
Upcoast al ongshore direction is 354" true
-off Shore Alongshore Major Mnor Major AXisS Phase of Sense of
Ampl, Phase? Ampl, Phase? Axis axi S  Orientation Mx, Curr.® Rotation
(cm see) (deg) (cm see) (deg) (cm/sec) (cm/sec) ("true) (deg)
0. 240 70.9 0. 400 -18.0 0.400 0. 175.0 162.6 cw
0.244 244.9 0.799 128.3 0.807 0.216 345.6 126.1 cw
0. 042 153. 3 0.098 95.3 0.101 0.035 8.7 100.5 cw
2.166 49,5 1.527 293.8 2.317 1. 287 109. 3 64.2 Cw
0.315 3,8 0,412 245.5 0.453 0. 252 144.0 47.7 Cw
0. 657 4,7 0.477 272.1 0.658 0.476 87.9 75 - Cw
0.841 327.6 0. 880 214.9 1.014 0.673 132.4 4,4 Cw
2. 526 356. 6 0.951 236.9 2.574 0.811 95.7 0.4 cW
0.100 298.5 0. 068 223.3 0.103 0. 065 247. 4 107.9 cw
1. 465 55.0 0.404 311.0 1.469 0.391 88.1 56.1 cW
Upcoast al ongshore direction is 354" true
On-of f Shore ] Alongshore Major Mnor  Major AXiS Phase of Sense of
Ampl Phase Ampl, Phase? Axis Axis Olientation Max. Curr,® Rotation
(cm see) (deg) (cnlsee) (deg) (cm'see) (cm see) (“ true) (deg)
0.230 192.0 0.302 132.9 0.336 0.178 24.9 150.5 cw
0. 562 154,7 1,200 122.1 1. 295 0.281 16.7 127.2 cW
0.017 135.7 0. 042 141, 3 0, 045 0. 002 16.5 140. 4 Cew
0. 537 155. 6 1,426 210.1 1. 464 0.426 187.5 26.1 Cew
0.076 129.0 0.170 203. 3 0.172 0.073 182.5 19.7 Cew
0. 149 348.0 0.093 281.2 0.156 0. 082 244.5 157. 4 cw
0.235 338.8 0.358 189. 4 0.416 0.103 142.3 0.7 cw
2.072 114.1 1.234 105.0 2. 405 0.168 53.4 111.7 cw
0. 086 88. 7 0.011 349.1 0.086 0.011 85. 2 88. 8 cw
0. 066 92.0 0.410 189. 6 0.410 0. 066 172.7 9.8 Cew
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Table 4-5.  Continued.
V-400/10 Upcoast al ongshore direction is 354° true
Const it uent n-of f Shore Alongshore Major Mnor  Major AXiS Phase of Sense of
_& Period Ampl  Phase' Ampl.  Phase’ Axis AXis Qlientation Max, Cury,® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cnsee)  (cnisee) (“true) (deg)
Q, 26.868 0.353 22. 4 0.216 283.0 0. 356 0.212 92.9 27.7 cW
0, 25.819 0.616 169. 9 1.270 124.0 1. 348 0.417 14.7 130. 6 cW
M, 24.833 0.126 122. 4 0.113 66. 9 0.150 0.078 44.5 99.2 cw
K, 23.934 2.699 46. 1 2.095 -54.1 2.756 2.020 101.3 58.9 cw
J, 23.098 0. 307 -27.1 0.376 241. 3 0.376 0. 307 169. 9 57.9 cw
By, 12.872 0.579 129. 4 0. 366 108. 3 0.676 0.113 52.5 123.6 cw
N, 12.658 0.889 81.7 0. 367 179.5 0.890 0.363 87.8 80. 1 CCW
M, 12.421 1. 686 173.3 2.254 138.0 2. 694 0.815 29.1 150.0 cw
L, 12.192 0. 087 107. 6 0.081 4.1 0.094 0.073 120. 2 137.3 cw
s, 12.000 0.619 43.5 1. 026 191.9 1.164 0. 286 144,9 19.7 CCW
V-400/75 Upcoast alongshore direction is 354° true
Const i tuent On-of f Shore Alongshore Major Mnor Major AXiS Phase of  Sense of
& Period Ampl Phase! Ampl., Phase! Axis Axis Olientation Mx, Curr,® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cmsee) (cm/sec)  (* true) (deg)
Q, 26.868 0. 327 168.9 0.143 49.3 0.335 0.121 98.1 174.1 cw
0, 25.819 0.082 128.0 1.241 165. 9 1.242 0. 050 357.0 165. 8 Cew
M, 24.833 0. 057 294. 6 0.127 162.9 0.134 0.041 335.7 157.1 cW
K, 23.934 0.774 258.1 1. 892 199. 3 1. 940 0. 646 187.5 23.9 cw
J,  23.098 0.051 85. 2 0. 259 230.5 0.263 0.028 164. 8 51.5 ccW
B, 12.872 0. 250 164. 2 0. 041 109. 1 0.251 0.033 78.6 163.5 cw
N, 12.658 0. 268 86. 4 0, 489 194.0 0.498 0.251 161. 3 20.5 Cew
M, 12.421 1.181 153. 6 1. 644 157.0 2.023 0. 057 29.7 155. 8 Cew
L, 12.192 0.053 105. 8 0.021 216.9 0. 054 0.019 93.3 102.5 Cew
S, 12.000 2.013 227.3 1.578 149.8 2.076 1.493 243.3 32.1 cw
V-400/150 Upcoast alongshore direction is 354° true
Constituent On-off Shore Alongshore Major Mnor  Major AXiS Phase of  Sense of
& Period Ampl, Phase! Ampl, Phase! Axis Axis Olientation Mix. Curr,® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cnsee) (em/sec)  (“true) (deg)
Q, 26.868 0. 060 204.5 0.078 223. 4 0.097 0.016 211.3 36.4 Cew
0, 25.819 0.182 231.5 1. 308 154. 4 1.309 0.177 355.8 154.6 cw
M, 24.833 0.012 282.2 0.093 149.3 0.094 0.009 348.9 148.9 cw
K, 23.934 0.393 -38.5 2. 117 201.8 2.127 0. 340 168. 6 21,0 cw
J, 23.098 0. 042 -33.0 0. 304 206.0 0.305 0.036 169. 8 25.5 cw
By 12.872 0.418 89.7 0.176 4.0 0.418 0.175 81.8 88.8 cw
N, 12.658 0.532 22.0 0.679 229. 3 0.839 0.198 136.7 39.2 cw
M, 12.421 1. 253 194.1 2.435 146.9 2.600 0.861 15.8 154.5 cw
L, 12.192 0. 051 84.5 0.033 348.1 0.052 0.032 90.7 88. 8 cw
S, 12.000 0.991 62. 1 0. 626 195.8 1.099 0.408 111.7 51.0 Cew
V-400/300 Upcoast al ongshore direction is 354° true
Const i tuent n-off Shore Alongshore ajor Minor Major AXis Phase of Sense of
& Period Ampl, Phase! Ampl Phase! Axis Axis Olientation Mx. Curr,® Rotation
(hours) (cni see) (deg) (cm see) (deg) (cm'see) (cnfsee) (“ true) (deg)
Q, 26.868 0.063 203.5 0.178 194. 4 0.189 0.009 193.3 15.4 cw
0, 25.819 0.271 201. 2 1. 456 144.8 1.463 0.225 0.0 145.7 cW
M, 24.833 0.010 166. 7 0. 088 139.8 0.089 0.005 0.0 140.1 cW
K, 23.934 0.292 32.5 2.161 192.9 2.178 0.097 166. 7 13.2 Cew
J, 23.098 0. 046 -4.5 0, 300 192.2 0.304 0.013 165. 6 11.8 cw
B, 12.872 0.617 282.3 0. 542 166. 1 0.701 0.428 300. 8 126.8 cw
N, 12.658 0.848 264. 1 0. 745 163. 4 0.883 0.703 291, 6 106.7 cW
M 12.421 2.675 42.8 1.718 233.9 3.167 0.278 116.5 46.0 CW
L, 12.192 0. 091 39,0 0. 026 253,0 0.094 0.014 97.6 41.1 cw
S, 12.000 0.437 188.9 1.530 149.3 1.568 0.272 6.8 151.5 cw
V- 400/ 300a Upcoast al ongshore direction is 354° true
Const i t uent On-off _Shore Alongshore Major Minor Major Axis Phase of Sense of
& Period Ampl, Phase! Amp] Phase! Axis Axis Orilentation® Max, Curr.® Rotation
(hours) (Cl see) (deg) (cnm see) (deg) (cm'see) (cnfsee) ("true) (deg)
Q, 26.868 0.174 -19.9 0.391 207. 3 0.410 0.122 155. 4 21.6 cw
0, 25.819 0.243 185.7 2.034 160. 4 2.045 0.103 0.2 160. 8 cw
M, 24.833 0.038 141.8 0.135 153.5 0. 140 0. 007 9.4 152.7 cCW
K, 23.934 0. 443 216. 2 3. 409 179.8 3. 427 0. 262 180.0 0.2 cW
J, 23.098 0.124 232.7 0. 382 176.0 0. 389 0.102 4.9 178.9 cw
B, 12.872 1.318 303.9 1. 304 227.0 1. 452 1. 153 220. 4 86. 8 cW
N, 12.658 1. 630 316. 3 1.399 200.5 1. 832 1.121 299, 3 159.7 cw
12.421 5. 949 25.5 3.088 280.0 6.025 2.938 94. 4 30.7 CW
L, 12.192 0.118 77.3 0. 089 159.0 0.119 0. 087 70.5 87.2 Cew
s, 12.000 0.580 341.2 1.313 168. 4 1. 434 0. 067 330.3 167.3 cW
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Table 4-5. Continued
V- 400/ 300b Upcoast al ongshore direction is 354° true
Constituent On-off Shore Alongshore Mal_or Minor Mafor Axis  Phase of ~ Sense of
_& Period Ampl . Phase! Ampl . Phase’ Axis axis Qlientation Mx. Curr,® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cnsee)  (cntsee) (“ true) (deg)
Q, 26.868 0.077 160. 6 0.084 182.2 0.112 0.021 36. 4 172.4 ccw
0, 25.819 0. 257 205.5 1.338 139.9 1.342 0.233 358.7 140.7 cw
M, 24.833 0.014 197.9 0.088 137,3 0.088 0.012 358. 4 137.9 cw
K, 23.934 0. 369 32.5 2. 043 195.6 2.073 0.105 164.2 16.1 ccwW
J; 23.098 0.076 0.6 0. 300 198.1 0.309 0.022 160. 3 17.1 cwW
p, 12.872 0. 495 280. 7 0,477 142.2 0.643 0.244 307.6 120.5 cwW
N, 12.658 0. 889 254.5 0. 680 151.5 0.916 0.643 283.7 88.6 cwW
M, 12.421 2. 059 54.0 1. 767 216. 2 2.682 0.414 124. 4 46.5 Cew
L, 12.192 0.092 28.0 0. 045 262. 8 0. 096 0.035 102, 5 35.1 Cw
s, 12.000 0. 559 192.6 1. 165 151.8 1.246 , 0.341 15.7 158.1 Cw
C-60/ 10 Upcoast al ongshore direction is 317° true
Constituent On-off Shore Alongshore Mai or Mnor Major axis Phase of  Sense of
_& Period Ampl,  Phasel Ampl,  Phase! Axis Ais Orientation? Mix, Curr,® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cmsee) (cm/sec) (° true) (deéf
Q, 26.868 0.199 -41. 4 0. 307 291.7 0. 357 . 168. 6 119. 2 Cw
0, 25.819 0.092 -39.4 1. 690 302. 4 1.692 0.029 139.9 122.4 cw
M, 24.833 0.044 72.9 0.121 -35.6 0.122 0. 042 129.5 141.8 cw
K, 23,934 1.058 41.7 3. 268 -6.0 3.349 0.764 150.0 177.0 cw
J, 23.098 0.040 -7.3 0.326 -4.5 0.328 0. 002 144. 1 175.5 Cew
By, 12.872 0. 302 29.2 0. 258 300.5 0. 302 0. 258 43.0 25.9 cw
N, 12.658 0. 052 325.2 0.530 177.4 0.532 0.028 312.2 177.2 cwW
M, 12.421 0. 477 56. 9 1.494 143.8 1. 494 0. 476 318.1 143.5 Cew
L, 12.192 0. 067 295.1 0.093 205. 7 0.093 0. 067 138.0 26. 4 CW
s, 12.000 0.512 10.1 1. 306 199.1 1.400 0.075 115, 7 17.9 cwW
c-90/10 Upcoast al ongshore direction is 317° true
Constituent n-off Shore Alongshore Major inor Major AXis Phase of Sense of
& Period Ampl, Phasel Ampl, Phase!l Axis Axls Orientation®? Mx. Curr.’ Rotation
(hours) (cnisee) (deg) (cnisee) (deg) (cnsee) (cm see) ("true) (deg)
Q, 26.868 0.131 262.8 0.334 235.1 0.354 0.057 156. 7 58.4 cw
0, 25.819 0.427 106.4 1.231 286. 4 1.303 0.000 117.9 106.4 cw
M 24,833 0.089 81.5 0.124 -28.2 0.130 0.080 114.9 137.9 CW
K, 23.934 2.295 75.4 4,232 -2.2 4.271 2.221 326.1 2.5 cw
J, 23.098 0.173 74.0 0.439 -2.3 0.441 0.168 323.2 0.1 CW
By 12.872 0.497 310.7 0,479 217.8 0.503 0.472 253.9 156.2 cw
N, 12.658 0.231 262.2 0. 475 157.7 0.479 0.222 308. 2 153.6 cw
M, 12.421 0.411 345.9 2.144 140.5 2.176 0.174 307.1 141.3 Cccw
L, 12.192 0.066 207.9 0.123 118.4 0.123 0.066 317. 4 118.6 CcwW
s, 12.000 1.614 337.9 1.975 216.8 2.242 1.217 102.7 16.5 cW
C - 90/45 Upcoast alongshore direction is 317° true
Const it uent On-off Shore Alongshore ajor Mnor  Major AXis Phase of Sense of
& Period Ampl, Phase! Ampl, Phase! Axis Axis Orientation? Mx. Curr.,® Rotation
(hours) (cm see) (deg) (cmisee) (deg) (cm/see} (cm see) ("true) (deg)
Q, 26.868 0.285 67.1 0. 487 -32.4 0.490 0.279 128.8 142.9 cw
0, 25,6819 0. 099 238.9 1. 358 299. 4 1.359 0. 086 139.1 119.2 CCW
M, 24.833 0. 058 188.1 0.019 -18.8 0.060 0.008 243. 4 5.8 Cew
K, 23.934 0. 608 121.6 1.719 31.6 1.719 0, 608 317.0 31.6 cw
J, 23.098 0.101 -9.6 0. 169 1.8 0.196 0.017 167.5 178.9 ccw
u, 12.872 0.118 18.1 0. 155 210.2 0.194 0. 020 99.9 25.8 cwW
N, 12.658 0.295 24.5 0.271 224. 8 0.394 0.070 89. 4 33.7 cw
M, 12.421 1.199 102. 2 1. 478 111.0 1.898 0. 142 356.0 107.5 ccw
L, 12.192 0. 049 108. 6 0.074 61.8 0.083 0.032 345. 8 73.8 cw
S, 12.000 0.413 155.3 1.083 172. 4 1.153 0.114 337, 2 170. 4 CcCW
c-90/75 Upcoast al ongshore direction is 317" true
Const i t uent On-off _Shore Alongshore Maior inox Mijor AXis
& Period Ampl, Phase! Ampl, ase! _ziié MAXiS Qr;en;agiggz M;?asgugila gﬁ:iiigi
(hours) (cnfsee) (deg) (cm/sec) (deg) (cnisee) (cnisee)  ("true) (deg)
Q, 26.868 0.278 199.0 0.226 295.9 0.281 0.221 241.8 7.3 ccw
0, 25.819 0.593 84.4 0. 643 284. 4 0.861 0. 152 94.5 95. 3 cW
M, 24.833 0. 046 4.8 0. 009 -47.7 0. 046 0. 007 39.8 3.7 cw
K, 23.934 0.910 199.0 0.651 55. 8 1. 068 0.332 260.5 30.7 CW
J, 23.098 0,216 146. 9 0.072 48.7 0.216 0.071 50. 1 147.9 cw
By 12.872 0.131 163.0 0.115 121.8 0.163 0.061 7.1 145. 7 cW
N, 12.658 0. 300 112.1 0. 262 170.2 0. 350 0.191 9.1 135. 1 ccw
M 12.421 0.696 121.7 0. 644 96. 4 0.925 0. 207 4.5 110. 1 cw
L, 12.192 0.033  124.1 0.041  349.5 0. 049 0. 020 99. 9 152.4 oW
S, 12.000 0.595 142,8 0.536 84.7 0.702 0. 386 7.6 118.5 cw
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Table 4-5. Continued
c-130/lo Upcoast al ongshore direction is 317° true
Constituent O-off Shore Alongshore W Minor Major AXi S Phase of Sense of
& Period Ampl, Phase!? Ampl, Phase! Axis Axis Oientation Mx, curr,® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cn'see)  (cnisee) (° true) (deg)
Q, 26.868 0.635 20. 7 0. 480 273.9 0. 663 0. 440 69.7 36.1 cw
0, 25.819 1.159 14,6 1.534 271.2 1.581 1. 095 117. 4 77.4 cw
M, 24.833 0.096 79.5 0.115 -40.7 0.131 0.073 101.6 117.6 cw
K, 23.934 3.208 56.9 4.290 -34.4 4,291 3. 206 134.8 143.9 cw
J, 23.098 0. 236 12.5 0. 369 -51.8 0. 389 0. 202 158. 6 139.8 cw
By 12.872 0. 166 85.9 0.314 45,2 0.341 0. 100 341.0 52.6 cw
N, 12.658 0.201 104.0 0. 582 236. 2 0.599 0. 145 123.1 59.6 ccwW
M, 12.421 3.424 110.6 1. 550 59.0 3.574 1. 165 29. 4 104. 7 cw
L, 12.192 0.090 72.7 0.164 327.9 0. 166 0. 086 126.1 142.2 A
S, 12.000 1.712 158.2 1. 359 128.1 2.115 0.551 9.5 146.9 cwW
C-400/10 Upcoast al ongshore direction is 317° true
Constituent On-off Shore Alongshore Major Mnor  Major Axis Phase of Sense_of
& Period Ampl . Phase' Ampl,  Phase' Axis Axis QOlientation Max, Curr.’ Rotation
(hours) (cm see) (deg) (cm see) (deg) (cmsee) (cmsee) (° true) (deg)
Q, 26.868 0.525 34.9 0. 442 301.0 0.528 0.439 57.6 43.7 cwW
0, 25.819 0.127 198.0 0,538 261.8 0.541 0.113 143.2 80. 5 CCW
M, 24.833 0.137 144.0 0.076 41.9 0.139 0,073 56.2 148.9 cW
K, 23.934 3.101 90.1 3.078 -2.4 3.158 3.020 87.3 129.2 cW
J, 23.098 0. 226 15.3 0. 259 -48,5 0.293 0.179 173.5 155. 8 cw
By 12.872 0.282 74. 4 0. 668 1.0 0.673 0. 268 325.2 4.3 cw
N, 12.658 1.254 44,2 1. 360 302.9 1.440 1.161 103.3 94.6 cw
M, 12.421 3. 405 94.8 1.184 95.5 3.605 0.013 27.8 94.9 Cew
L, 12.192 0.148 97.2 0.073 359.3 0.148 0.072 52.0 99.6 CW
s, 12.000 1,167 233.7 1. 637 194.1 1.906 0.638 169.9 26.3 CcW
C-400/75 Upcoast alongshore direction is 317° true
Constituent On-of f Shore Alongshore Major Mnor Major AXis Phase of Sense_of
& Period Ampl . Phase! APl . Phase! Axis Axis QOlientation’ Max, Curr.® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cmsee)  (cm see) ("true) (deg)
Q, 26.868 0.054 282.8 0.191 230.7 0.194 0.042 147. 4 53.0 cw
0, 25.819 0. 365 6.4 1.022 262. 4 1.027 0. 353 131. 4 80. 5 cw
M, 24.833 0.028 13.2 0.081 268. 4 0.081 0.027 131. 4 86. 6 cw
K, 23.934 0.562 90.9 0. 985 291.5 1.121 0.173 108. 1 106. 6 cw
J,  23.098 0.102 97.6 0.094 -16.1 0.116 0.075 86. 2 125.4 cw
B, 12.872 0.277 225. 4 0.518 167. 4 0.543 0.224 336. 3 175.6 cw
N, 12.658 0.464 230.4 0. 860 126.6 0.869 0. 446 306. 9 121. 4 cw
M 12.421 2,475 70. 4 1.199 78.6 2.746 0.154 21.3 72.0 CCW
L, 12.192 0.131 39.8 0. 053 59.7 0,141 0.017 25.8 42,5 CcCcw
s, 12.000 1,417 152.0 0. 946 120. 3 1.649 0.427 15.0 142, 8 cw
C-400/75a Upcoast alongshore direction is 317° true
Const i t uent On-of f _Shore Alongshore Major Mnor  Majer AXis Phase of Sense_of
& Period Ampl hase!? Ampl, Phase! Axis Axis Qientation Mx. Curr,® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cm/see) (cnsee) (“ true) (deg)
Q, 26.868 0.817 261.6 1.171 219.8 1.347 0.473 168. 9 52.1 cw
0, 25.819 0.434 -40.0 1.733 266.0 1.753 0. 347 145.7 87.7 CcwW
M, 24.833 0.114 18.2 0. 202 -47.5 0.209 0.101 154.2 141.0 Ccw
K, 23.934 0.679 112.5 1.893 -15.4 1.942 0. 522 123.6 160.9 CwW
J, 23.0.98 0.374 136.7 0. 388 61.5 0.427 0.329 358.0 95.2 cw
p, 12.872 0,427 181.9 0.741 197.2 0.850 0.098 166, 5 13.5 ccw
N, 12.658 0.451 292.8 1. 082 158. 4 1.131 0.308 299.4 153. 4 cw
M, 12.421 2. 358 84.2 2. 065 63. 7 3,085 0.553 6.0 75.3 CW
L, 12.192 0.239 55. 6 0.104 41.5 0.259 0.023 23.9 53.4 cw
S, 12.000 2. 305 152.6 0.438 147.0 2.346 0. 042 36.3 152. 4 cw
C-400/75b Upcoast alongshore direction is 317° true
Consti t uent On-of f _Shore Alongshore Major Mnor  Major AXiS Phase of Sense of
& Period Ampl, Phase! Ampl, Phase! Axis axis Qientation Max, Curr,® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cnfsee)  (cnisee) (“ true) (deg)
Q, 26.868 0. 205 81.0 0. 083 -34.2 0.209 0,074 58. 2 85.0 cw
0, 25.819 0.394 17.4 0.819 256.1 0, 849 0.325 120.5 69.6 CcW
M, 24.833 0. 008 275.8 0.062 240.7 0, 062 0. 004 142.8 61.1 cw
K, 23.934 0. 600 79. 4 1.041 278.8 1.189 0.174 107.8 94.1 CcW
J, 23.098 0. 107 35.6 0.140 294.3 0.143 0.102 119.3 101.5 Cw
By 12.872 0. 347 277,8 0.423 165.5 0.461 0.294 285. 9 144.4 CW
N, 12.658 0.572 201.5 0.723 111.6 0.723 0.572 317.3 111.8 cw
M 12.421 2.514 69. 3 0. 837 99.3 2.619 0.401 30.5 71.9 CCW
L, 12.192 0.047 5.5 0. 060 106. 6 0. 062 0. 045 298. 4 120.3 CCW
s, 12.000 0.430 222.7 1.229 129.2 1.229 0.429 315.6 128.7 cW
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Table 4-5. Continued,

C-400/150 Upcoast al ongshore direction is 317" true

Const i tuent On-off Shore Alongshore ajor Mnor Major AXis Phase of Sense of

& Period Amp1l, Phase? Ampl, Phase! Axis Axis Oientation® Mux. cCurr.® Rotation
(hours) (cm'see) (deg) (cmsee) (deg) (cm'see) (cm/sec) (" true) (deg)

Q, 26.868 0.203 117.0 0.284 -39.7 0.343 0. 067 102. 3 132.7 cW

0, 25.819 0.527 83.0 0.882 270.3 1.026 0. 058 106. 2 88. 4 cw

M, 24.833 0.024 114.8 0.016 222.6 0.024 0.015 66. 6 102. 5 ccw

K, 23.934 1.198 119.0 0. 962 3.2 1.320 0.786 78.5 139.1 cw

J, 23.098 0.132 89.2 0. 140 -35.0 0.170 0. 090 95.2 119.7 cw

By 12.872 0. 305 218.5 0.404 179.2 0.480 0.163 171.9 12.5 cW

N, 12.658 0.333 141.1 0.569 148.7 0.658 0.038 347.2 146. 8 ccw

M, 12.421 1.672 125.0 1.535 118.8 2.266 0.122 4.5 122.2 cW

L, 12.192 0.099 111.4 0.070 74.5 0.116 0.036 13.7 99.8 cw

S, 12.000 0.728 209.7 1. 027 165.9 1.181 0.438 349.1 179.0 cw
C-400/300 Upcoast al ongshore direction is 317" true

Constituent n-of f Shore Alongshore Major Mnor Major AXisS Phase of Sense_Of

& Period Ampl Phase! Ampl ., Phase?® Axis Axis Ojentation Mx. Curr,® Rotation
(hours) (cm see) (deg) (cm see) (deg) (cm'see) (cnisee) (“true) (deg)

Q, 26.868 0.118 118.5 0. 058 271.8 0.129 0.024 71.5 113.7 CCW

0, 25.819 0.244 78.9 0.372 230. 3 0.434 0.100 105. 2 58.5 Cew

M, 24.833 0. 006 114.5 0.019 220.0 0.019 0.006 131. 4 41.8 Cew

K, 23.934 0.470 112.7 0. 400 289. 8 0.617 0.015 87.4 111.5 CCW

J, 23.098 0. 060 74.8 0, 062 287.2 0.083 0.024 93.2 91.6 cW

B, 12.872 0,135 36.2 0.123 286. 8 0.149 0. 105 84.5 64. 4 Cw

N, 12.658 0.261 30.1 0.537 208.0 0.597 0.008 111.1 28. 4 ccw

M 12.421 1,651 74.8 0.548 140. 3 1.668 0.494 38.4 77.4 ccw

L, 12.192 0. 046 49.6 0.033 268. 4 0.053 0.018 80, 6 62.0 cW

S, 12.000 0.293 114. 4 0. 846 139.8 0.887 0.120 334.7 137.3 CCW
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K- 400/ 10
K- 400/ 75
K- 400/ 150
K- 400/ 300
K-130/ 10
K-130/ 75
K-90/10
K- 90/ 45
K-90/ 75
K-60/10

E400/ 10
E-400/75
E- 400/ 150
E- 400/ 300
E-90/ 10
E-90/75
E-60/10

G 90/ 10
G 90/ 45
G 90/ 75

V-400/10
V-400/75
V-400/150
V-400/300

v-130/10
v-130/ 75
v-90/ 10
v-90/ 75
V-60/ 10

C-400/10
C-400/75

C-400/150
C-400/300
c-130/10
c-90/1o
c-90/ 45
c-90/ 75
C-60/ 10

Tabl e 4-6.

Data Span
1987

3/12 o 8/29
3/12 to 8/28
3/12 o 8/ 28
3/12 o 8/28
3712 to 8/ 29
3/12t0 8/ 29
3/12 to 828
3712 to 8/ 20
3/12 to 8/28
3/12 10 8/12

3/14 toe/n1
3/14 10 8/31
3/15 to 8/31
3/14 to 8/31
3/14 to 8/ 30
3/14 to 8/30
3/15 to B/30

3/17 to 8/21
3/17 to 8/21
3/17 to 8721

3/18 t0 8/15
5/02 to 8/15
5/02 to 8/15
3/19 to 4/13
5/02 w 8/15
3/17 to 8/15
3/ 17 tos/15
3/Mto er1s
3/18 to 8/15
3/18 to B/15

5/01 to 8/19
3/19 to 5/11
6/07 to 8/19
3/19 to 8/19
3/19 to 8/19
3/19 to 8/18
3/19 tosr1s
3/19 to 8718
3/20 to &/18
3/20 to 818

Summary of current statistics - moored instrument data, March-August 1988.

Number Of Alongshore

Hourly

Aversges (deg TrUE) Alongshore Cro0ss-shore

4066
4045
4049
4030
4068
4069
4057
4057
4057
3659

4075
4073
4063
4075
4044
4044
4042

3770
3770
3770

3622
2509
2508

3129
3623
3624
3610
3610
3615

2645

2397
3663
3664
3666
3634
3635
3634
3635

Upcoast

Direction

Mean Current

{ cms 'SEC 3

Standard Devi

355
355
355
355
355
355
355
355
355
355

027
027
027
027
027
027
027

317
317
i

354
354
354

354
354
354
354
354
354

37

317
317
317
317
317
317
317
317

-18. 88
-1.96
5.79
5.40
-16. 68
1.28
-14.28
-0.93
2.40
-1.81

-12.19
-1.20
1.84
1.34
-8.62
3.26
-11.23

4.48
9.97
7.23

-1.22
2.40
14.45

13.39
-10. 06
4.48
-6.85
4.59
-5.08

-18.63

-0,80
6.22
522

-22.9%
-15.10

-2.77
0.92

-1.10

ation

13.29
9.20
6. 69
5.78

12.28
6.59

1321
7.03
7.40
9.70

11,26
8.75
5.65
6.13
9.75

11.06
8.12

12.15
7.33
9,48

10.61
71.32
4.80

4.34
10.88
4.48
8.86
6. 47
6.72

19.56

8.95
5.68
3.49
17.02
8.12
5.00
5.85

of Hourly Averages
(cm/sac)

-4.48 24.68
179 20.00
1.25 14.62
117 10. 46
-0.68 25.12
2.14 11.30
-1.43 20.51
1.66 13.94
-0.49 11. 42
0.96 15.94
0.51 17.96
2.34 13..63
1.13 10,07
0.70 8.98
1.04 17.50
-1.21 12.35
-1.80 18.20
-5.04 25.26
4.88 19.09
-0.60 15. 06
2.44 19.69
2.98 13.88
0.30 10. 69
-1.53 6.97
1.59 15.67
1.23 10. 05
-1.15 16. 44
-0.44 10. 45
0.52 15.76
-5.76 19.65
0.38 12.95
3.21 8. 47
1.95 4.79
-12.74 21.46
-5.24 24. 42
1.2 15.06
1.73 1.67
-0.21 18.35
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4.1

Standard Deviation
of Low pass Filtered
Time Series (cmsee)
Alongshore Cro0ss-shore Alengshore Cross-shore

22.43
16.24
13.29

9.51
22.83

9,53
16.95
11.81

9.24
12.92

14.29
10.44
8.58
8.01
14.91
8.10
15.75

19.01
15.64
11.17

18.15
12,04
9.04

5.09
14.23
9.45
15.26
9.64
14.94

18.36

11.74
7.58
3.93

19. 66

23.59

14.64
6.78

17.51

8.47
6,20
4.59
2.80
6.18
2.64
6.22
4.10
3.29
5.35

7.07
4,91
2.95
2.24
517
3.48
3.69

6.81
2,98
4.58

6. 65
3.99
2.25

1.35
8.16
1.93
4,19
2.35
2.57

17.73

7.67
3.87
1.50
14.76
543
3.69
4.33
2.32

Max imum/Min imam
of Hourly Averages

( co/sec )

Alongshore

50.35/ -89.00
57.68/ - 56. 64
53.16/ -65.99
39.76/ -30.15
5171/ -99.34
34,18/ -39.48
52,22/ -93.37
40.60/ -59.47
36.43/ -44. 89
40. 11/ -76.09

43,30/ -73.37
43,47/ -47.88
33.32/ -35.68
28.25/ -31.02
42,21/ -82.10
48,98/ -43.19
42,28/ - 08. 65

64. 80/-102. 06
64.96/ -77.02
49,93/ '48.61

43, 90/ -82.93
38.58/ - 56.87
43,381 -27.16

37.98/ -10. 36
3ar.01/ -78.37
32,07/ -30.76
33.84/ -69.11
29. 46/ -31.61
32.50/ -62.16
38.53/ -80.56
28.52/ *46.19
30.59/ -18.25
21.29/ -10.76
25.35/ -87.47
52.90/ -83.10
.17/ -50.27
27.07/ -36.63
43.37/ - 77. 49

Cross-shore

47,20/ -49.84
34.61/ -28.80
21.31/ -56.51
20.94/ -21.97
50.09/ -42.39
25,07/ -21.53
54,25/ -49.27
29.75/ - 26,76
28.25/ -32.42
41.331 -34.32

-39.85
-29.35
-19.59
-23,15
-38.52
-41.60
-30. 52

45,92/
30. 62/
23. 19/
25. 05/
40. 36/
31.98/
37.18/

-45.22
-25.97
-45.05

53.88/
35. 95/
30. 66/

36. 74/
30. 53/
15. 98/

-34.24
-20.21
-18.21

20.17/ -17.45
46,48/ -29.96
28,77/ 14.38
24.51/ -31.46
26.05/ -26.30
34,53/ - 21,69

58.271 -75.16

25. 04/
20. 39/
13. 35/
33.09/

-39.05
-19.21
12,46
-70. 41
30.03/ -26.76
16.90/ -17.44
31.90/ -18.03
31.33/ -16.08



Recovery of temperature data from current meters and bottom ) Scheduled

. . . B Volid Doto
pressure gauges during the first main program deployment Not Processed

T2 Instrument Loat

CURRENT HMETER DATA

K- 400/ 75

K= 240) 0/ 30 ()
K-130/ 10 ! | I . s—

K-90/ 10
K- 90/ 45
K-90/ 75
K-60/10
E- 400/ 10
E- 400/ 75
E- 400/ 150
E- 400/ 300
E-90/ 10
E-90/ 45
E-90/ 75
E-60/10
6-90/ 10
G 90/ 45
G 90/ 75
V-400/10
V-400/75 ol Aiahnalib Aol duetaduaueae . ]
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Figure 4-10. First deploynment of the main program data coverage: tenperature data from moored current
meters and bottom pressure recorders.
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Table 4-$. Summary of tenperature statistics - noored instrunent data, March-August1988,

Standard Devi ation

Nunber of Aver age Maxi num M ni mum (degrees C)
Hour |y Tenperature Tenperature Tenperature Hourly Low Pass
Data Span Aver ages (degrees C) (degrees C) (degrees C) Averages Filtered

K- 400/ 10 3/12 to 8/29 4066 10. 81 14. 46 8.83 1.08 1.05
K- 400/ 75 3/12 to 8/28 4045 8. 24 10. 11 7.14 0.54 0.52
K- 400/ 150 3/12 to 8/28 4050 7.51 8.38 6,70 0. 36 0.35
K- 400/ 300 3/12 to 8/28 4050 6.51 7.55 5.74 0. 37 0.35
K- 130/ 10 3/12 to 8/29 4068 10. 37 13.43 8.20 1.00 0.95
K- 130/ 130 3/12 to 8/29 4068 7.53 8.71 6. 68 0. 46 0. 46
K-90/ 10 3/12to 8/28 4057 10. 05 13. 36 7.76 1. 05 0.99
K- 90/ 45 3/12 to 8/28 4057 8.37 10. 04 7.03 0.52 0.48
K-90/ 75 3/12 to 8/28 4057 7.87 9.14 6.48 0.54 0.54
K-60/10 3/12 to 8/12 3659 9.86 , 13.53 7.76 1.10 1. 04
E- 400/ 10 3/14 to 8/31 4075 11.01 14. 26 8. 69 1.18 1.13
E- 400/ 75 3/14 to 8/31 4071 8.39 9. 64 7.20 0.38 0.35
E- 400/ 150 3/15 to 8/31 4063 7.66 8, 54 6. 84 0.39 0.38
E- 400/ 300 3/14 to 8/31 4075 6. 65 8. 05 5.68 0.51 0.48
E-90/ 10 3/14 to 8/30 4044 11.85 15. 97 9.62 1.57 1.50
E- 90/ 45 3/14 to 8/30 4044 8.63 11. 69 7.37 0.55 0. 49
E-90/ 75 3/14 to 8/30 4044 8. 06 9.65 4.87 0.52 0.48
E-90/90 3/14 to 8/30 4044 7.79 9.34 6. 55 0.51 0.49
G 90/ 10 3/17 to 8/21 3770 9.12 12, 32 7.00 1.07 1.03
G 90/ 45 3/17 to 8/21 3770 8.31 10. 36 6.75 0.73 0.69
G 90/ 75 3/17 to 8/21 3770 7.98 9.73 6. 50 0.64 0. 62
G 90/ 90 3/17 to 8721 3770 7.93 9.48 6. 51 0. 62 0.60
se-lo/lo 3/17 to 8/21 3767 10. 16 14.01 7.56 1. 34 1.32
V-400/10 3/18 to 8/15 3622 10. 53 13.59 8.46 1.03 0.99
V-400/75 5/02 to 8/15 2509 8.83 10. 55 7,67 0.56 0.53
V-400/150 5/02 to 8/15 2508 7.78 8. 89 6.79 0. 46 0.45
V-400/300 3/19to 4/13

502 to 8/15 3130 6. 89 8.01 5.92 0.41 0.39
v-130/10 3/17 to 8/15 3623 10. 09 12.92 8.10 1.02 0.96
v-90/10 3/18 to 8/15 3610 9.94 13.25 7.74 1.11 1.06
v-90/ 45 3/18 to 8/15 3610 8. 54 10. 66 7.22 0.65 0.63
v-90/ 75 3/18 to 8/15 3610 8.14 10. 63 6. 99 0.59 0. 57
V- 60/ 10 3/18 to 8/15 3615 9.92 13. 06 7.50 1.19 1.16
v- 60/ 60 3/18 to 8/15 3615 8.36 10. 23 7.12 0.63 0.61
C-400/10 5/01 to 8/19 2645 11.66 15. 25 8.55 1.34 1.32
C-400/75 3/19to 5/n

6/07 to 8/19 2397 8.98 19.95 8.02 0.60 0.24
C-400/150 3/19 to 8/19 3664 7.51 8. 32 6.61 0.29 0.27
C-400/300 3/19 to 8/19 3664 6. 87 7.63 6. 16 0.23 0.21
c-130/10 3/19 to 8/18 3666 10. 37 14,88 8. 26 1.28 1.26
c- 130/ 130 3/19 to 8/18 3666 8.14 9.06 7.26 0. 40 0.40
c-90/10 3/20 to 8/18 3634 9.85 14.69 7.78 1.40 1.39
c-90/ 75 3/20 to 8/18 3634 8.28 9. 86 7.18 0.58 0.57
C- 60/ 10 3/20 to 8/18 3635 9.73 14.78 7.87 1.59 1.59
c- 60/ 60 3/20 to 7/25 3050 8.29 9.95 7.38 0.55 0.53
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HOURLY TEMPERATURE AT ALL LEVELS ON THE K, E AND G LINES
AND 33 HOUR FiLTE Rep WIND stress vecTors (UPCOAST TOWARD TOP OF PAGE)
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Figure 4-ha. Tine series of tenperature, March-August 1988: hourly values of tenperature and |ow passed
| ocal wind stress.
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HOURLY TEMPERATURE AT ALL LEVELS ON THE V ANC C LINES
AND 33 HOUR FILTERED WIND STRESS VECTORS (UPCOAST TOWARD TOP OF PAGE)
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Figure 4-ha. Continued.
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33 HOUR FILTERED TEMPERATURE AT ALL LEVELSON THE K, E AND G LINES
AND WIND STRESS VECTORS (UPCOAST TOWARD TOP OF PAGE)
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Figure 4- 11b. Tine series of tenperature, March-August 1988:

Stress | ow- passed tenperatures and local wind
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33 HOUR FILTERED TEMPERATURE AT ALL LEVELS ON THE V ANC C LINES
AND WIND STRESS VECTORS (UPCOAST TowARD TOp or PAGE)
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Figure 4-11b. Conti nued.
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Recovery of pressure data from bottom pressure ) Scheduled

gauges during the first main program deployment EA Volid Dota
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Figure 4-12.  First deployment of the main program data coverage: bottom pressure data

4-110



UNFILTERED BOTTOM PRESSURES AND FILTERED WIND STRESS VECTORS
UPCOAST IS TOWARD TOP OF PAGE
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Figure 4-13a. Tine series of bottom pressure, March-August 1988:

\ hourly val ues of bottom pressure and
| ow passed |ocal wind stress.
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FILTERED RESIDUAL BOTTOM PRESSURES AND WIND STRESS VECTORS
UPCOAST IS TOWARD TOP OF PAGE
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Figure 4-13b. Time series of bottom pressure, March-August 1988:

. | ow- passed bottom pressures and | ocal
wind stress.
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Table 4-8. Tidal
August 1988.
K- 60/60
Constituent Period
(hours)
Q, 26.868
0, 25.819
M, 24.833
K, 23.934
Jy 23.098
By 12.872
N, 12.658
M, 12.421
L, 12.192
S, 12.000
K- 130/ 130
Const i t uent Peri od
(hours)
Q, 26, 868
0, 25. 819
M, 24. 833
K, 23.934
J, 23.098
7oy 12. 872
N, 12. 658
M, 12. 421
L, 12. 192
Ss 12. 000
E-90/90
Consti tuent Period
(hours)
Q, 26.868
0, 25.819
M, 24.833
K, 23.934
J, 23.098
7 12.872
N, 12.658
M 12.421
L, 12.192
S3 12.000
G-90/90
Constituent Peri od
(hours)
Q, 26. 868
0, 25. 819
M, 24. 833
K, 23.934
Jy 23.098
B 12. 872
N, 12. 658
M, 12. 421
L, 12. 192
S, 12. 000
se-lo/lo “
Constit uent Peri od
(hours)
Q 26. 868
0, 25. 819
M, 24. 833
K, 23.934
J, 23.098
B 12. 872
N, 12. 658
M, 12. 421
L, 12. 192
S, 12. 000
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Table 4-8. Continued.

v-60/60

Consti tuent Per i od Amplitude  Phasel
(hours) (mbars) (deg)
Q 26. 868 4,494 193.9
0, 25. 819 23.782 208. 4
M, 24. 833 2.007 216.8
K, 23.934 38. 147 224.3
J, 23.098 2.416 232. 7
T 12.872 3. 368 154. 3
N, 12. 658 12. 343 175.2
M, 12. 421 59.710 200.1
L, 12.192 1.578 206. 3
S, 12.000 12.537 216.6

c-60/60

Constituent Period Amplitude Phasel
(hours) (mbars) (deg)
Q, 26. 868 4,485 193.7
0, 25. 819 23. 254 208.6
M, 24. 833 1.951 216.8
K, 23.934 36. 253 223.7
J, 23.098 2.210 233.1
J75y 12.872 3. 268 151.5
N, 12. 658 11, 748 170.5
M, 12. 421 55. 065 194. 3
L, 12.192 1. 425 200. 2
Ss 12,000 11. 418 203.8

c-130/130

Consti t uent Peri od Amplitude Phasel
(hours) (mbars) (deg)
Q 26. 868 4,468 196.2
o, 25. 819 23. 485 2084
M, 24. 833 1.948 216.0
K, 23.934 36. 740 223.1
J, 23.098 2.302 230.9
Ha 12. 872 3.113 148.9
N 12. 658 11. 610 169.9
M 12. 421 54. 903 193.9
L, 12. 192 1. 455 200.8
S, 12. 000 11. 621 203.9
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Table 4-9. Spectral analysis sunmary -

moor ed imstrument data, NCCCS nmin program, March-
August 1988.

CURRENT SPECTRA . o
90% Conf i dence Linmits (| ower/upper)"

Data Span 30- day at Periods of:

start 0000 PST §§gmgg§§2 Overlap 30 _days 15 days 10 days 7.5 days
K- 400/ 300 3/15 to B8/27 10 50% 63%/188%  74%/142%  T8% 132%  80% 127%
K- 400/ 150 3/15 to 8/27 10 50% 63%/188% 749 142%  78% 132%  80% 127%
K- 400/ 75 3/15 to 8/27 10 50% 63%/188%  74%/142%  78% 132%  80% 127%
K- 400/ 10 3/15 to 8/27 10 50% 63%/188%  74%/142%  78% 132%  80% 127%
K- 130/ 75 3/15to 8/ 27 10 50% 63%/188%  74% 142%  78% 132%  80% 127%
K- 130/ 10 3/15 to 8/27 10 50% 63%/188%  74% 142%  78% 132%  80% 127%
K-90/ 75 3/15 to 8/27 10 50% 63%/188%  74%/142%  78% 132%  80% 127%
K- 90/ 45 3/15 to 8/27 10 50% 63%/188%  74%/142%  78% 132%  80% 127%
K-90/ 10 3/15 to 8,27 Lo 50X 63%/188% 742/ 142%  78% 132%  80% 127%
K-60/10 3/15 to 8/12 9 50% 62%/195%  73%/148%  T7%135%  80% 129%
E- 400/ 300 4702 to 8/27 8 50% 60% 205% 719 153%  76% 140%  79x/ 130%
E- 400/ 150 3/15 to 8/27 10 50% 63% 188%  749% 142%  78% 132%  80% 127%
E- 400/ 75 3/15 to 8/27 10 50% 63% 188%  74%/142%  78% 132% 809 127%
E- 400/ 10 3/15 to 8/ 27 10 50% 63% 188%  74% 142%  78% 132%  80% 127%
E-90/ 75 3/15 to 8/ 27 10 50% 63% 188%  74% 142%  78% 132%  80%/127%
E-90/ 10 3/15 to 8/27 10 50% 639 188% 749 142%  78% 132%  80% 127%
E-60/10 3/15 to 8/27 10 50% 63% 188% 749 142%  78%/132%  80% 127%
G 90/ 75 3/20 to 8/17 9 50% 62%/195% 73%/148% 77%/135%  80%/129%
G 90/ 45 3/20 to 8/17 9 50% 62%/195% 73%/148% 77%/135%  80%/129%
G 90/ 10 3/20 to 8/17 9 50% 62%/195% 73%/148%  77%/135%  80%/129%
V-400/300 5/03 to 8/15 6 52% 57%1236% 68% 164%  73% 148%  76%/139%
V-400/150 5/03 to 8/15 6 52% 57%/236%  68% 164%  73% 148%  76%/139%
V-400/75 5/03 to 8/15 6 52% 57%/236%  68% 164%  73% 148%  76%/139%
V-400/10 3/18 to 8/15 9 50% 62%/195% 73% 148%  77% 135%  80%/129%
v-130/ 75 3/18 to 8/15 9 50% 62%/195% 739% 148%  77x/135%  80%/129%
v-130/10 3/18 to 8/15 9 50% 62%/195% 73% 148%  77% 135%  80%/129%
V- 90/75 3/18 to 8/15 9 50% 62%//195%  73% 148%  77% 135%  80%/129%
v-90/10 3/18 to 8/15 9 50% 62%/195% 73% 148%  77% 135x 80%/129%
V-60/ 10 3/18 to 8/15 9 50% 62%/195% 73% 148%  77% 135%  80%/129%
C-400/300 3/20 to 8/17 9 50% 629 195%  73% 148%  77% 135%  80%/129%
C-400/150 3/20 to 8/17 9 50% 629 195%  739% 148%  77% 135%  80% 129%
C-400/75 6/07 to 8/17 3 50% 47% 381% 609 209%  65% 179%  68% 162%
C-400/10 5/02 to 8/17 6 50% 579 236%  68% 164%  73% 148%  76% 139%
c-130/1o0 3/20 to 8/17 9 50% 62% 195%  73% 148%  77%/135%  80% 129%
c-90/ 75 3/20 to 8/17 9 50% 62% 195%  73% 148%  77% 135%  80% 129%
c-90/ 45 3/20 to 8/17 9 50% 62% 195%  73% 148%  77%/135%  80% 129%
€-90/10 3/ 20 to 8/17 9 50% 629 195%  73%/148%  77%/135x  80% 129%
C-60/10 3/20 to 8/17 9 50% 62% 195%  73% 148%  77%/135%  80% 129%
TEMPERATURE SPECTRA

90% Confidence Limits (lower/upper)!
Data Span 30-day at Periods of:

(start 0000 PST) Segments“ Qverlap 30 days 15 days 10 days 7.5 days
K- 400/ 300 3/15 to 8/27 10 50% 63%/188% 74%/142% 78%/132% 80%/127%
K- 400/ 150 3/15 to B8/27 10 50% 63%/188% 74%/142% 78%/132%  80%/127%
K- 400/ 75 3/15 to 8/27 10 50% 63%/188%  74%/142%  78%/132%  80%/127%
K- 400/ 10 3/15 to 8/27 10 50% 63%/188% 74%/142% 78%/132% 80%/127%
K-130/10 3/15 to 8/27 10 50% 63%/188% 74%1142% 78%/132%  80%/127%
K-90/ 75 3/15 to 8/27 10 50% 63%/188% 74%/142% 78%/132% 80%/127%
K- 90/ 45 3/15 to 8/27 10 50% 63%/188%  74%/142% 78%/132% 80%/127%
K-90/ 10 3/15 to 8/27 10 50% 63%/188% 74%/142% 78%/132% 80%/127%
K-60/10 3/15 to 8/12 9 50% 62%/195% 73%/148% 77%/135%  80%/1292
E- 400/ 300 4/02to 8/27 8 50% 60%/205% 71%/153% 76%/140% 79%/130%
E- 400/ 150 3/15 to 8/27 10 50% 63%/188% 74%/142% 78%/132% 80%/127%
E- 400/ 75 3/15 to 8/27 10 50% 63%/188% 74%/142% 78%/132%  80%/127%
E- 400/ 10 3/15 to 8/27 10 50% 63%/188% 74%/142% 78%/132%  80%/127%
E- 90/ 75 3/15 to 8/27 10 50% 63%/188%  74%/142%  78%/132%  80%/127%
E- 90/45 3/15 to 8/27 10 50% 63%/188%  74%/142% 78%/132%  80%/127%
E-90/ 10 3/15 to 8/27 10 50% 63%/188% 74%/142% 78%/132%  80%/127%
G 90/ 75 3/20to 8/17 9 50% 629 195%  73%148%  779%135%  80% 129%
G 90/ 45 3/20 to 8/17 9 50% 629 195%  73%148%  77% 135%  80% 129%
G 90/ 10 3/20 to 8/17 9 50% 62% 195%  73% 148%  77% 135%  80% 129%
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Table 4-9. Continued.

TEMPERATURE SPECTRA (Cont i nued)
90% Confi dence Linits (lower/upper)!

Data Span 30- day at Periods of:

(start 0000 PST) Segments? Overlap 30 days 15 days 10 days 7.5 daYs
v-400/300 5/03 to 8/15 6 52% 57% 236%  68% 164%  73% 148%  76%/139%
V-400/150 5/03 to 8/15 6 52% 57% 236%  68% 164%  73% 148%  76%/139%
V-400/75 5/03 to 8/15 6 52% S7%/236%  68% 164%  73% 148%  76%/139%
V-400/10 3/18 to 8/15 9 50% 629 195%  73% 148%  77% 135%  80%/129%
v-130/lo 3/ 18 CO 8/ 15 9 50% 62%/195%  73%148%  77% 135%  80%/129%
v-90/75 3/18 to 8/15 9 50% 629 195%  73% 148% 779 135%  80%/129%
v-90/45 3/18 to 8/15 9 50% 62%/195%  73%/148%  T7%135%  80%/129%
v-90/lo 3/18 to 8/15 9 50% 62% 195%  73% 148%  77% 135%  80%/129%
V-60/10 3/18 to 8/15 9 50% 629 195%  73% 148% 779 135% = 80%/129%
C-400/300 3/20 to 8/17 9 50% 629 195%  73% 148%  77% 135%  80% 129%
C-400/150 3/20 to 8/17 9 50% 629 195%  73%148%  77% 135% 80% 129%
C-400/75 6/07 to 8/17 3 50% 47% 381%  60%209%  65%179%  68% 162%
C-400/10 5/02 to 8/17 6 50% 57% 236%  68% 164%  73% 148%  76% 139%
c-130/lo 3/20 to 8/17 9 50% 629 195%  73% 148%  77% 135%  80% 129%
c-90/75 3/20 to 8/17 9 50% 62% 195%  73% 148%  77% 135%  80% 129%
c-90/lo 3/20 to 8/17 9 50% 62% 195%  73% 148%  77%/135%2  80% 129%
G-60/10 3/20 to 8/17 9 50% 629 195%  73% 148%  77%/135%  80% 129%
BOTTOM PRESSURE SPECTRA

90% Confidence Linits (lower/upper)l
Data Span 30- day at Periods of:

(start 0000 PST) Seg,gent:s2 Overlap 30 days 15 davs 10__days 1.3 days
K-130 3/15 to 8/27 10 50% 63%/188% 74%/142% 78%/132% 80%/127%
E- 90 3/29 to 8/27 9 50% 62%/195% 73%/148% 77%/135% 80%/129%
G 90 3/20 to 8/17 9 50% 62%/195% 73%/148% 77%/135% 80%/129%
Se-10 3/20 to 8/17 9 50% 62%/195%  73%/'148%  77%/135%  80%/129%
V- 60 3/18 to 8/15 9 50% 62%/195%  73%/148%  77%/135%  80%/129%
C- 130 3/29 to 8/17 8 50% 60%/205%  71%/153%  76%/140%  79%/130%
C 60 3/20 to 7/25 7 50% 58%/217% 70%/158%  74%/143% 77%1136%
Not es

lgeometric progression running-mean band aver aging:
1st spectral estimate (1.39 x 10°cycles/hour): 1 pt. averaged
2nd spectral estimate (2.78 x 10°cycles/hour): 3 pts. averaged
3rd spectral estimate (4.17 x 10°cycles/hour): 5 pts. averaged
4th and higher (5.56 x 10°cycl es/hour): 7pts. averaged

‘Hanning (full cosine) taper applied to linear de-trended segnents.
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5. METEOROLOGICAL OBSERVATI ONS
by JohnF. Borchardt

5.1 1 NTRODUCTI ON

The data col |l ection objectives of the neteorol ogi cal conponent of the NCCCS include the neasurement of
Wi nds, barometric pressure, air tenperature, and other atmospheric parameters of interest within the marine
boundary layer for joint analysis with oceanographic data. A secondary, but still inportant objective, is
to further the scientific understanding of meteorological processes within the marine boundary |ayer
itself, particularly within [ocal areas where prom nent coastal topographic features are thought to have
important effects. The network of neteorological stations selected to neet these objectives is essentially
the sane as during the Ncccs pilot program perforned in 1987, with certain additions to satisfy specialized

anal ysis requirements. Coverage extends over a w de section of the west coast, from Washington (47°N) to
southern California (34°N).

5.2 METEOROLOGICAL DATA COLLECTI ON METHODOLOGY
52.1

The meteorol ogical station network for the main programis shown in Figure 5-1. The DTITTHTK conponent
of this network is the station array operated by the National Data Buoy Center (NDBC). During the pilot
program data were collected from 14 offshore buoys and four coastal (C-MAN) stations. Two additional NDBC
buoys were included for the main program SE Papa (46006), which is located well offshore (137°w) and is not
shown on the station map, and Cape Elizabeth (46041), which extends the coverage farther north (47°N).
Table 5-1 presents a listing of the 16 buoys included in the data base for the first deploynent period.

Table 5-2 presents a listing of 14 coastal stations which are included in the data base to supplement
the coverage offered by the buoy array. These stations were carefully screened during the pilot program
according to several criteria designed to insure that the winds were reasonably representative of over-the-
water conditions within the marine layer and were suitable in terns of neasurenent accuracy and sanpling
frequency [(EG&G, 1988].

Data fromtwo of these stations, Pillar Point and Pigeon Point, are available only in paper-copy fornat
and at less than hourly sanpling intervals. These records have not been entered into the NCCCS data base

due to the extensive manual data entry effort involved. Instead, they are included in the station listing
on a provisional basis, wth the intention that the data coul d be accessed during selected tine internals or
net eorol ogi cal events of interest. In particular, these stations provide a cross-shelf match with wnds and

sea-level pressure neasured at the Santa Cruz buoy (46012) and could be used to investigate this aspect of
the wind field if it is indicated to be a worthwhile analysis objective.

Among the remaining 12 stations in the listing are four CMAN stations, operated by the NDBC, which
were also included in the pilot program data base. These stations are essentially sinilar to the offshore
buoys, except that they are located at |ighthouse facilities on promnent headl ands.

Data records in conputer-conpatible format are available fromtwo Flight Service Stations (North Bend,
Oregon, and Arcata, California) as continuous, hourly records. The observations are manually recorded by
FAA personnel at the stations, and the logs are entered into the conputer archives at the National Cimatic
Data Center (ncpc) on a monthly schedul e.

Data from two additional Flight Service Stations, not shown in the table listing, have been obtained
from NCDC as a source of sea-level pressure only. These include Astoria, Oregon, which provides the
baronetric pressure adjustment for the nearby tide gauges at Astoria and Hanmond. Al so, sea-level pressure
records were obtained for Redding, California, With the objective of nonitoring the thermal |ow pressure
system whi ch devel ops over the central California valleys during the summer.

The Flight Service Station at the Crescent City airport (Jack McNamara Field) is a source of
met eor ol ogi cal observations in the form of handwitten logs during daylight hours only. This station
location is potentially inportant as an onshore match with the Point St. George buoy (46027), but the |ack
of continuous coverage limts the usefulness of the data records. Consequently, an automated Data
Acqui sition System (DAS) was Installed at the airport to record hourly wnd speed and direction.

Unfortunate 1y, this system experienced a power failure early in the deploynent period and the data return
was limted to a 6-week record.

Anot her station location of critical inportance is Shelter Cove, |ocated south of Cape Mendoci no.

Al though observations are routinely provided here by an Nus observer, the lack of continuous nonitoring
again limts the usefulness of the data for many prospective analysis applications. A second DAS was
installed here during the pilot program and has been maintained in nearly continuous operation since that
tine.

Data for two of the coastal stations, North Spit and Trinidad Head, have been provided by the Hunbol dt
Bay Harbor District (HBHD). The district operates a conputerized real-tinme data display system at the
Woodley |sland Marina in Eureka, California. This systemis programmed to automatically access two NWS
anenoneters at the Hunbol dt Bay (Sanpa) Coast Cuard Station and at Trinidad Head. The data are accessed via
a dial-up system (DARDC) every 20 mnutes and displayed on a nmonitor at the HBHD office at the nmarina for
use by local comercial and recreational fishermen and boaters. The systemalso logs the data to diskette,
including wind speed and direction and tide height fromthe NOAA tide gauge at the Coast Guard Station.
Unfortunately, the communications interface for the tide gauge has been operating only intermttently.
However, the gauge itself has continued to function reliably and the sea-level data are available from the
National Ccean Service archives (see Section 6). Coast Guard personnel log wind data manually and subnit
the records to the National Climatic Data Center on a monthly basis. Similar records are kept by personnel
at the Humboldt State University Laboratory at Trinidad. These records serve as excellent back-up sources
for the HBHD system and may be useful in filling several short data gaps.

The Bodega Marine Laboratory of the University of California operates its own neteorol ogical and
oceanographic monitoring station which logs a wide variety of parameters at 20-mnute sanpling intervals.
The laboratory does not routinely report to NWS, but maintains its own archive for research purposes. This
station offers an excellent primary data source due to its desirable location, the high quality of
instrumentation, and the scientific qualifications of the attending personnel. After a short period of
trial operation during the pilot programin 1987, the station was tenporarily shut down during the w nter of
1987/ 88 while a hardware upgrade was conpleted. The station resumed operation in April 1988 and has been in

nearly continuous operation since then. Data records were recently received fromthe laboratory, but not in
sufficient tinme to be included in this report.

5.2.2 _Instrunentation

One of the primary advantages of the NDBC data sets is the use of uniforminstrunentation which insures
conpar abl e nmeasurement characteristics between stations. Specifications for the |nstrunentat|on utlllzed by
the NDBC have been provided in the Data Report for the pilot program (EGss, 1988]. ially, nd
measurenments are obtained with vane-directed inpellers (Belfort/R.M. Young) with spee resol uti'én to within
0.1 msee and directional resolution to within 1 degree. Wnd sensor out puts speed and direction) are
burst sanpled (1 Hz) and averaged. The GSBP payload performs vector averaging o both speed and direction
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whi | e the DACT payl oad performs scalar averaging of speed and vector averaging of direction. Payloads at

C- MAN stations typically collect 2-ninute bursts, Wwhile buoy payloads collect 8-mnute bursts, in order to
renove the effects of platformnmotion. The data are transmtted via the GOES satellite through the National
Weat her Service Tel econmuni cations Gateway (NWSTG) and disseminated in near real time. However, the data
presented here have been obtained fromthe archives at the National Oceanographic Data Center (NODC). These
records have been subjected to quality assurance inspection and editing by NDBC personnel prior to being
transferred to Nobc. Total systemaccuracy specifications as stated by NDBC (E. Meindl, personal

comuni cation) are as follows: wnd speed, +1 nisee; wind direction, #15 degrees; barometric pressure,

#1 nb; air and water tenperature, +1° C

Uniform instrumentation is also utilized at the various NWS coastal stations, and is calibrated and
serviced on a regul ar schedul e by NWB technicians. The typical wnd sensor configuration consists of a cup-
and-vane anenonet er (F420¢) nounted on a 20-foot (6.1-n) tower. Barometric pressure is typically neasured
with an aneroid barometer calibrated to an accuracy of 0.3 mb (0.01 inch ng) . Meteorological observations
at Flight Service Stations are manually recorded by FAA personnel at least hourly and the conpleted Iog
sheets transmitted to Ncbc, where the data are transcribed in conputer-conpatible format, reviewed and
edited, and archived.

The DAS installations at Shelter Cove and Crescent Gty enployed different instrumentation
configurations. The Shelter Cove neasurements were acquired using an Aanderaa Automatic Veather Station.
This system utilizes a cup-and-vane anemoneter which outputs the nean speed over the full sanmpling interval
and an instantaneous direction measured at the end of the interval. The vane design incorporates fluid
danping and so provides some filtering effect on rapid changes in direction. The manufacturer’s
specifications state a speed accuracy of +2% of the neasured value and a directional accuracy of
2.5 degrees. The station also includes an airtenperature sensor (+0.1°C) and barometric pressure sensor
(0.2 rob).

The Crescent City DAS was equipped to record wind speed only. The wind speed sensor consisted of a
Belfort Type L Wnd Transmitter with sanpling and recording capability provided by a Sea Data 1250B Dat a
Logger. The recorder was set to burst sanple each hour at 1 Hz for 256 seconds. This corresponds to the
same sanpling protocol used by NDBC for C-MAN stations. Unfortunately, this system experienced a power
failure after roughly 6 weeks of operation, and could not be repaired until after the end of the first
depl oyment peri od.

5.2.3 Data coverage and Quality

In general, tenporal coverage and data quality were excellent throughout the first deployment period,
as indicated by the time chart in Figure 5-2. Perhaps the nost significant enhancenent in coverage, in
conparison with che pilot program Wwas the data return fromthe Blunts Reef buoy (46030) located directly
of f Cape Mendocino. This station was inoperable throughout the pilot program but was returned to service
on 19 March 1988". Shortly thereafter, it experienced a |-nonth outage during May and early June 1988, but
provided reliable data return throughout the remainder of the first deploynent period.

The nost significant failure was the Point Arena buoy (46014) which provides the only offshore coverage
in the central portion (Point Arena Basin) of the study area. This station failed in late February and was
i noperable until the end of May. The Bodega buoy was inoperable throughout nost of the 1987/88 winter
season, but was returned to service by nid-March. The Eel River buoy (46022) experienced a short outage in
| ate March.

The nost prolonged data gap occurred with the SE Papa buoy (46006). This buoy is |ocated well offshore
(137°W) at approximtely the mean position of the North Pacific subtropical high during the sumer and early
fall months. It was hoped that the baronetric pressure at this station would be a useful neasure of the
position and strength of this system Unfortunately, the buoy failed in md-Mrch and was not returned to
service until early August. Effective evaluation of this station will have to be deferred until the second
and third depl oynent periods.

The data return from the coastal stations was nearly conplete, except for the Crescent City DAS. The
mssing data indicated in Figure 5-2 for July at Arcata and North Bend are currently being processed at NCDC
and will be added to the data base in the near future.

5.2.4 DataProcessing Procedures

Data for all NDBC platforms were obtained from the archives of NODC. The data from each platform are
routinely reviewed and edited on a nmonthly basis by NDBC personnel before being sent to NodC. These records
required no further editing prior to being added to the NCCCS data base. Also, records fromall FAA Flight
Service Stations archived at the National Cimatic Data Center (NcDC) were received in simlarly edited form
and added directly to the NccCS database. Standard quality assurance procedures were applied to the data
collected with the automated stations at Crescent City and Shelter Cove, and to the Woodley |sland data

sets.

All of the Ncccs archived files contain wind data in the form of direct measurements, i.e., wind speed
and direction with reference to true north. |t should be noted that none of the wind data have been
adjusted to account for variations in anemoneter height, as |isted in Tables 5-1 and 5-2. |t was j udged
that, although such adjustments will be necessary for analysis purposes, in general, it was preferable not

to alter the data contained in the basic archive files, Aso, the baronetric pressure neasured at Shelter
Cove has not been adjusted to equivalent sea-level pressure.

5.2.5 Ancillary Meteorological Data

The time-series neasurenments described above form the basic conponent of the neteorological data base.
However, additional data sources exist which provide information of a specialized nature to assist in
meeting certain analysis tasks. First, as noted in Section 3 (Volume |), extensive meteorol ogical

observations Were recorded during the hydrographic cruises. These observations provide a valuable source of
information regarding the spatial variability of the wind field during time periods when joint analysis is
possible with data fromthe drifter, noored, hydrographic, and satellite conponents.

Further data are also available fromthe archives maintained by the National Center for Atnospheric
Research (NCAR) containing the operational output of the LFM and NGM nunerical nodels. assistance in
obtaining these data has been provided by Dr. P. Ted strub of Oregon State University under a cooperative
data exchange agreement between principal investigators of the Ncces and Coastal Transition Zone program
Additional available data consists of daily surface analysis charts, pup|jshed by NOAA and GOES visible

and IR satellite imgery, available from Noaa/NESDIS archives for selected tinme periods of interest.

5.3 DESCRI PTI ON OF OBSERVATI ONS
5.3.1 Tine Series Data and Statistics
Table 5-3 presents a statistical summary of the meteorological records for the first deployment period.

Significant data gaps are identified, together with the total number of valid data points over the 6-nmonth
duration of the time series.

5-2



Figure 5-3 presents vector plots of the wind data collected at the offshore buoys and onshore coastal
stations for the first deployment period. Al though these plots are lowpass filtered, it is enphasized that
the original data were archived at the original sanpling rates. The filtering renoves a considerable degree

of diurnal variance during sone portions of the record, especially during md to late summer. It is not the
intention to ignore this variability, but sinply to provide plots which are conparable with the |ow passed
current vectors shown in Section 4. It is also inportant to note that the vector plot for each station has

been rotated to align the coastal orientation given in Table 5-3 with the vertical direction for the
respective tier in the figures. Thus, any horizontal conponent in the plotted wind corresponds to a cross-
shore flow. This plotting procedure is again consistent with the presentation of the noored current
measurements shown in Section 4.

The second variable of major interest is the sea-level baronetric pressure. This parameter has
application in connection with adjustments to the records Of coastal sea level as discussed in Section 6.
Also, it can be analyzed in conjunction with the wind data to describe processes within the marine boundary
layer from a purely neteorol ogical perspective. Figure 5-4 presents scalar plots of the available pressure
data fromthe offshore and coastal stations. Again, these data have been |low pass filtered for the sake of
consi stency.

Air tenperature is also routinely available at nost of the offshore and coastal stations, as plotted in
Fi gure 5-5.

5.3.2 Autospectrum Analysis

Figure 5-6 presents autospectra of the alongshelf and cross-shelf w nd conponents and the baronetric
pressure at selected stations. Were cross-shelf station pairs are available, the spectra have been
overplotted to allow convenient conparison. These plots reveal the diurnal and higher-frequency energy
renoved by the filtering operations in the vector tine series plots. Table 5-4 |lists the paraneters
describing the spectral conputations, prinarily the averaging procedures, for each of the data records.

5.4 REFERENCES

Ee&6 . 1988. Northern California Coastal Circulation Study Data Report No. 1: Pilot Measurement Program
Mar ch- August 1987.  Prepared for Department of Interior, Mnerals Mnagenent Service, EG& WASC
Cceanographi ¢ Services Report No. NCCCS-88-9, Waltham, Massachusetts, 268 pp.  Septenber.

5-3



38° N 40° N 42° N 44° N 46° N 48° N

aR° N

4’ N

CAPE EL ZABETH

WASHINGTON

(46005)
CAPE FOULWEATHER
(46040) NEWPORT C-MAN
NORTH BEND FSS
CAPE ARAGO C-MAN
~ OREGON
(46002)

POINT ST GEORGE

(46027) Y CRESCENT CITY DAS"

¢ TRINIDAD HEAD
EEL RIVER, /® ARCATA FSS

(46022) ” HUMBOLDT BAY
BLUNTS REEF O

(46030)
o SHELTER COVE DAS
POINT ARENA ¢
(46014) o BT ARENA C-MAN
BODEGA MARINE LA:
BODEGAO
(46013)
SAN FRANCISCO 5
(46026) L WPILLAR POINT
SANTA CRUZ O ¥
(46(912) < PIGEON POIN]
MONTEREY
(46042)

CAPE SAN MARTIN 4
(46028)

SANTA MARIA
(46011)  ©

PT ARGUELLO C—MAN®

PT CONCEPTION °
(46023)

134

0

W

132° W

Figure 5-1.

130° W 128° W 126° W 124° W 122° W 12 0 w

Met eor ol ogi cal stations during the Ncccs nmain program March- August 1988.

5-4



Table 5-1. O fshore neteorological stations, NDBC buoys

Location Buoy Anenonet er

1D Station Nane Latitude Longitude Type Pavload Height
46002 Oregon 42°31.6N 130°23.4W 6N GSBP 5.0 m
(prior to 4/29/87) 42°27.0N 130°16.9W 6N GSBP 5.0 m

46005  Washi ngton 46°05.0N 131°00.0W 6N GSBP 5.0 m
46006 SE Papa 40°48.7N 137°39.0W 12D DACT 10.0 m
46011  Santa Maria 34°52.8N 120°52.1w 10D GSBP 10.0 m
(prior to 4/29/87) 34°52.8N 120°52.4W 6N GSBP 5.0 m

46012  Santa Cruz 37°23.1N 122°39.7W 10D GSBP 10.0 m
(prior to 9/16/88) 37°23.8N 122°40.1W 3D DACT 5.0 m
(prior to 6/16/87) 37°23.4N 122°39.6W 3D DACT 5.0 m

46013 Bodega 38°13.9N 123°18.1W 10D GSBP 10,0 m
46014  Point Arena 39°13.3N 123°58.4VW 10D GSBP 10.0 m
46022  Eel River 40" 44. 8N 124°30.1W 6N GSBP 5.0 m
(prior to 3/21/87) 40°45.5N 124°30.8W 6N GSBP 5.0 m

46023  Point Conception 34°15.0N 120°40.0W 10D GSBP 10.0 m
(1/27/88 thru 5/19/88) 34°15.0N 120°40.0W 3D DACT 5.0 m
46026  San Francisco 37°45.0N 122°41.5W LNB DACT 13.8 m
46027  Point St. George 41°50.2N 124°23.8W LNB DACT 13.8 m
46028  Cape San Martin  35°45.3N 121°52.0W 6N GSBP 50m
46030 Blunts Reef 40°26.5N 124°30.2wW ELB DACT 7.2 m
46040 Cape Foulweather 44746.9N 124°18.1W 3D DACT 50 m
(prior to 1/5/89) 44°46.3N 124°17.4W 3D DACT 5.0 m

46041  Cape Elizabeth 47°25.0N 124°32.0W 3D DACT 50 m
46042  Monterey 36°45.0N 122°24.44 3D DACT 5.0 m
(prior to 12/1/87) 36°45.9N 122°13,5W 3D DACT 5.0 m

Table 5-2. Coastal neteorological stations .

Station Locati on Station Anenonet er Sanpling Averaging Q her
Station —ID Source Lat Long Elevation Hei ght I nterval I nterval Vari abl es

Newport G- MAN NWPO3 NDBC 44 35.9N 124 06.7W S.1m 9.4 m 60 Oin 2 nin PIT
North Bend FSS 24284 NCDC 43 25.0N 124 14.5W 35 m 6.1 m 60 nin 1 nin PIT
Cape Arago C-MAN CARO3 NDBC 43 20.5N 124 22.5W 18.0 m 14.9 m 60 Oin 2 nmin P/T
Crescent City FSS CEC NCDC 41 46.4N 124 14,24 17.4m 6.1 m 60 nin 1mn P
Crescent City DAS EG&G 41 46.4N 124 14.2W 17.4 m 10.0 m 60 min 1 min®
Trini dad Head DARDC 96Q NWS/HBHED 41 03.3N 124 08.9W 109.1 m 6.1 m 20 min 1 mn
Arcata FSS 24263 NCDC 40 58.6N 124 06.4W 68.6 M 6.1 m 60 nin 1nmn P/T
Humbol dt Bay DARDC 88Q NWS/HBHD 40 46.1N 12413.8W 1.8 m 6.1 m 20 min 1mn
Shel ter Cove DAS EG&G 40 01.3N 124 04.3W 14.5 m 10.0 m 30 Oin 30 nin P/ T
Point Arena C MAN PTAC 1 NDBC 38 57.3N 123 44.4HW 17.4 m 12.5 m 60 Tin 2 mn B/T
Bodega Marine Lab BML 38 19.1N 123 04.2w 11 m 15 m 60 min 20 min’ P/T
Pillar Point MARS 53Q NWS/NCDC 37 28.6N 122 28.8W 39.6 m 15.2 m 180 min 1nn
Pi geon Point DARDC 93Q NWS/NCDC 37 10.9N 122 23.6W 15,5 m 6.1 m 180 min 1 mn T
Poi nt Arguello C-MAN  PTGC 1 NDBC 34 34.6N 120 38.8W 12.2 m 9.4 m 60 nin 2 nmin P/T

Abbreviation :

C-MAN : Coastal Mrine Automated Network

FSS: Flight Service Station
DARDC : Device for Automatic Renpte Data Collection
MRS ©  Marine Reporting Station

DAS : Data Acquistion System

Notes:

Lapproximate time constant for F420C anenoneter.
Vect or average.

3Manually recorded vind speed and direction, SuUbjective averaging.

5-5



Availability of wind and sea level pressure 1 Scheduled
data from meteorological stations during ®8Volid Data
Not Processed
the first main program deployment [ Instrument Lost

WIND VELOCITY

BUOYS
Oregon 46002
Washington 46005
SE Papa 46006
Santa Maria 46011
Santa Cruz 46012
Bodega 46013
Pount Areng 45014
Eel RLver 46022
Pt.Conception 46023
San Francisco 46026
Pt. St. George 46027
San Mariin 46028
BLunts Reef 46030
FoulL Weather 46040
Cape ElLizobeth 46041
Monterey 46042

CORSTAL
Cape fArago CARO3
Newport NWPQ3
Point Arena PTACI
Point Arguello PTGCI
ReddingCh 24257
Arcata CA,ACV 24283
North Bend OR 24284
Astoria OR 94224
Shelter Cove
Trinidad Head DRARBC
Humboldt Bay DARDC

BUOYS

Oregon 46002
Washington 46005
SE Papa 46006
Santa Maria 46011
Santa Cruz 46012
Bodega 46013
Point Arena 46014
Eel River 46022
Pt. Conception 46023
San Francisco 46026
Pt. St. beorge 46027
San Martin 46028
Blunts Reef 46030
Foul. Weather 46040
Cape Elizabeth 46041
Monterey 46042

COASTAL
Cope Arago CARO3
Newport NWPO3
Point Arena PTAC!
Point Arguello PTBCI
Redding CR 24257
ArcataCA,ACY 24283
North Bend OR 24284
Astoria OR 94224
Shelter Cove

T L S B | T

e ————T———— s s
1 8 1522295 12 19 253 10 17 24 31 14 21'285 12192629 ‘16 2330
MARCH APRIL MA Y JUNE JULY AUGUST

1988

Figure 5-2. Tinme chart of meteorological data coverage, March-August 1988,

5-6



Table 5-3 Statistical summary of meteorological measurements

Period of Record Data Gaps Valid Data Coastal Alongshore Wind . Cross-shore HWind Barometric Pressures Air Temperaturse
Station Start end Start End Pts. z Orientation Mean Std Dev Max Min Mean Std Dev Max Min Mean Std Dev Mean Std Dev
(deg true) (m/sec) (m/se8c) (mb) (deg C)
Ocean Buoys
Washington 460°5 3/12 8/31 4127 93 ° 0.23 4.8 16.2 -11.3 2.62 4.2 17.6 -16 1 1018.71 7.8 10.96 2.6
Oregon 4602 3/01 7/11 1702 38 ° 0.16 4.7 15.5 -11t.0 2.82 3.8 14.3 -7.8 102145 7.2 10.36 1.4
SE Papa 4606 3/01 8/31 3/15 8/-E 858 18 o -0.16 5.7 14.2 -9.9 1.48 4.2 16.8 -9:4 1023.06 4.5 15.41 3.3
Offshore Buoys
Cape Elizabeth 46041 3/01 8/31 4395 99 335 -0.68 4.2 15.9 -10.9 0.87 2.4 12.86 -9.2 1018.16 5.7 10.43 2.3
Cape Foulweather 46040 3/01 8/31 4/05 5/26 3164 72 5 -1.81 5.4 18.7 -12.0 1.24 2.4 13.1 -9.4 1019,70 4.7 11.45 2.3
Paint St. George 46027 3/01 8/31 4320 98 355 -2.57 5.7 15.4 -17.9 0.65 1.9 9.0 ~7.0 1019.01 5.1 10.83 1.6
Eel River 46022 3701 8/31 3/16 3/29 4082 92 27 -2.50 4.3 12.7 -12.1 1.74 2.7 8.4 -7.9 1018.15 4.6 11.58 1.4
Blunts Reef 46030 3/18 8731 5/10 6/11 3208 73 0 -4,27 4.8 11.5 -16.0 -0.31 1.9 9.5 -9.6 1017.12 4.9 10.96 1.2
Point Arena 46014 5/26 8/31 2324 53 354 -4.33 4.9 9.2 -15.2 1.06 1.8 6.8 -4.4 1016.72 4.8 11.65 1.4
Bodege 46013 3/15 a/31 4052 g2 317 -6.12 5.8 9.2 -18.2 0.81 16 7.8 -5.3 1016.18 4.3 11.81 1.3
San Francisco 46026 3/01 8/31 5/28 6/14 3aggl 90 317 -3.87 [ 10.5 -17.5 2.25 1.9 8.2 -7.8 1016.25 4.4 12.06 1.6
Santa Cruz 46012 3/01 8/31 4381 99 345 -2.19 3.6 10.0 -13.6 2.06 2.0 10.6 -4.0 1017.05 4.3 11.49 1.3
Monterey 46042 3/01 8/31 4168 94 340 ~3.87 4.0 10.8 -13.2 2.08 1.8 7.7 ~5.0 1016.14 4.1 12.38 1.5
Cape San Martin 46028 3/01 8/31 4383 89 320 -5.92 4.8 10.1 -16.2 ~0.56 1.4 6.4 -6.3 1016.46 3.8 13.43 1.5
Santa Maria 46011 3/01 8/31 multiple gaps 3817 86 4] -3.12 3.4 8.0 -13.8 3.75 3.3 15.7 -6.8 1015.77 3.3 13.48 1.7
Pt Conception 46023 3/01 8/31 4384 ag [ -5.05 3.6 6.8 -13.0 3.85 2.6 13.0 -7.0 1015.14 3.3 13.93 1.8
Coastal Stations
Astoria FSS 94224 3/01 8/31 4417 100 0 0.08 3.6 18.5 -9.4 .79 3.0 12.1 -9.86 1018.87 5.3 1 .02 .6
Newport C-MAN NWPO3 3/01 8/31 4380 99 5 -0.68 4.8 20.5 -1z2.9 . HN 2.3 12 & -8.2 1019.34 5.2 1% 57 M 4
North Bend FSS 24283 3/01 8/31 7/012 8/01 3672 83 17 -0.65 3.7 12.8 -12.3 s uo 3.0 10 3 -5.8 1019.49 5.3 1, .43 = 7
Cape Arago C-MAN CARO3 3/01 8/31 4394 99 17 -0.386 4.8 16.6 -14.3 ovNo 1.8 12 8 -4.8 P18 74 5.0 10.76 N_N
Trinidad Head DARDC 3701 8/31 6/30 7/05 4034 91 355 -1.29 3.6 11.6 -13.1 0 9 2.2 116 -8.9 NA NA
Arcata FSS 24283 3/01 8/31 7/01 8/01 3672 83 27 -0.30 2.0 8.5 -8.1 1 20 2.8 10.5 -6.4 1018.37 5.3 10 .66 3.4
Bumboldt Bay DARDC 3/01 8/31 6/30 7/05 4084 92 27 -0.52 2.3 9.6 -10.1 0 75 1.8 8 6 ~6.4 NA NA
Redding FSS 24527 3/01 8/31 4417 100 1] -0.05 3.7 15.5 -12.3 0.56 1.9 81 -8.7 1014.28 5.4 21 56 9.3
Shelter Cove EG&G 3/01 8/31 multiple gaps 37893 86 317 0.15 3.2 13.7 -10.6 -0 .53 2.3 7 6 -9.2 1215 78 4 9 10 .69 1.8
Point Arena C-MAN PTAC1 3/01 8/31 43889 98 354 ~-2.96 4.4 12.2 -19.0 -0 .03 1.3 72 -5.4 1017.11 4.6 <0 .88 1.7
Pt Arguelloc C-MAN PIGC1 3/13 8731 4084 a3 [ -6.41 5.2 13.5 -20.6 Q.55 1.6 13.0 -7.9 1015, 54 3.3 +3 .32 1.8
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Table 5-4 Spectral analysis summary - wind data, Ncccs main program March- August 1988.

W ND SPECTRA
Data Span
(start 0000 PST)

Cape Elizabeth 46041 3/ 1 to 9/ 1
Washi ngton 46005 3/12 to 8/31
Foul Weather 46040 3/ 1to 9 1
Newport NWPO3 3/ 1 to9/1
North Bend FSS 3/ 1to 8/31
Cape Arago CAR03 3/ 1 to 9/ 1
Oregon 46002 3/ 1to9/1
Pt. St. George 46027 3/ 1 to 9/ 1
Trinidad Head DARDC 3/ 1to 8/31
Arcata FSS 3/ 1to 8/31
Hunbol dt Bay DARDC 3/ 1to 8/31
Eel River 46022 3/ 1to9/1
Bl unts Reef 46030 3/18 to 8/31
Shel ter Cove 3/1to 9/ 1
Point Arena 46014 5/26 to 8/31
Poi nt Arena PTACl 3/ 1to9/1
Bodega 46013 3/15 to 8/31
San Francisco 46026 3/ 1 to9/1
Santa Cruz 46012 3/ 1to 8/31
Monterey 46042 3/ 1to 9/ 1
San Martin 46028 3/1to 9/ 1
Santa Maria 46011 3/ 1to 8/31
Poi nt Arguello PTGCl 3/13 to 8/31
Pt. Conception 46023 3/1to9/1

Not es:

lgeometric progression running-nmean band averagi ng:

30-day
Seggem:s2

12
11
7

12

12

12

12
11

12
12
12
12
11
10

Overlap

50%
50%
50%

50%
50%
50%
50%
50%

50%
50%
50%
50%
50%
50%
50%
50%
50%
50%
50%
50%
50%
50%
50%
50%

30 davs

65% 175%
64% 181%
58% 217%

65% 175%
62% 195%
65% 175%
60% 205%
65% 175%

57% 236%
62% 195%
57X/ 236%
63% 188%
58% 217%
58% 217%
57% 236%
65% 175%
64% 181%
62% 195%
65% 175%
65% 175%
65% 175%
65% 175%
64% 181%
63% 188%

1st spectral estimate (1.39 x 1073 cycles/hour): 1 pt. averaged
2nd spectral estimate (2.78 x 107° cycles/hour): 3 pts. averaged
3rd spectral estimate (4.17 x 10°cycl es/hour): 5pts. averaged

4th and higher (5.56 x 10°cycles/hour): 7 pts. averaged

*Hanning (full cosine) taper applied to linear de-trended segnents
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at Periods of:

15 days
76% 138%

75% 140%
70% 158%

76% 138%
73% 148%
76% 138%
71% 153%
76% 138%

68% 164%
73% 148%
68% 164%
74%/142%
70% 158%
70X/ 158%
68X/ 164X
76% 138%
75x/ 140%
73X/ 148%
76X/ 138%
76% 138%
76%/138%
76X/ 138%
75x/ 140x
74X/ 142X

10 davs

80% 129%
79% 130%
74% 143%

80X/ 129X
77x/ 135x
80X/ 129%
76X/ 140%
80% 129%

73% 148X
77% 135%
73%/148%
78%/132%
74% 143%
74% 143X
73% 148X
80% 129%
79% 130%
77% 135%
80% 129X
80% 129X
80% 129%
80% 129%
79x/ 130%
78X/ 132%

90% Confidence Limits (lower/upper)l

7.5 days

82X/ 125%
81% 126%
77% 136%

82% 125X
80% 129X
82% 125%
79% 130x
82X/ 125X

76% 139%
80X/ 129X
76X/ 139%
80% 127%
77% 136%
77X/ 136X
76% 139%
82X/ 125X
81% 126%
80X/ 129%
82% 125X
82% 1251
82% 125X
82% 125X
81X/ 126%
80X/ 127X



6  COASTAL SEA-LEVEL OBSERVATI ONS
by John F. Borchardt

6.1 1 NTRODUCTI ON

Coastal sea-level data for the first deployment period of the main program have been collected from an
array of 13gauges operated by the National Ocean Service (N0S). The locations range fromthe vicinity of
Point Conception (Port San Luis) on the central California coast, north to the Strait of Juan de Fuca (Neah
Bay) . This array includes all of the active, long-termcontrol gauges within this section of the west coast
|l ocated at exposed sites, or within enbaynents a short distance frominlets or other direct connection to
the open sea. Four of the gauges are located within the Ncccs study area.

6.2 SEA-LEVEL DATA COLLECTI ON METHODOLOGY
6.2.1 Station Descriptions _

A map of the 13 station locations is shown in Figure 6-1, and Table 6-1 1ists the attributes of these
and two other stations of interest. Arena Cove, California, was first established in 1978, but suffered
storm damage during late 1982 and has not been returned to service. Data fromthis gauge were used during
t he CODE and Super CODE prograns and may be of historical interest in future NCCCS anal yses. Also, the
gauge at Trinidad was discontinued by NOS as of 27 Septenber 1987, shortly after the end of the pil ot
rogram
Pres The gauge at Hammond, Oregon, was installed relatively recently (1982). The nost recent tidal datuns
published in 1984 for this station are based on little more than 1 year of direct observations {Septenber
1983 to January 1985) so that there is significant uncertainty in these results. A so, N0S has not
publ i shed harmonic constants for this station and no relationship has been established to geodetic datum
Neverthel ess, this station is considered to be a worthwhile source of data in terms of the relative
variability of sea level because of its proximty (within 5 nles) to the nouth of the Colunbia River. The
| onger - establ i shed gauge at Astoria is roughly 10 mles from the mouth, Consequently, the data from Hanmond
may provide a cleaner signal of oceanic variability. .

The remaining stations have all been in continuous operation for at |east 10 years. Five of these
(Port San Luis, San Francisco, Crescent City, Astoria, and Neah Bay) are primary stations which have been in
continuous operation for at least 19 years. The tidal datum planes for these stations have been
establ i shed from 19-year averages over the period of the latest epoch (1960-1978). Al of the stations have
publ i shed benchmark sheets available from NOS which docunment the relative positions of the tidal datum
pl anes and, with the exception of Astoria, provide a relationship to a commobn geodetic datum (NGVD 1929).

In addition to benchmark sheets, NOS has published harnonic constants for all stations (except Hammond)
determned by |east-squares analysis of a 365-day record. In the case of Port Orford, the published
constants are based on a record length of 205 days measured during 1978. This is the longest record |ength
available for this station during the period of the |atest epoch.

6.2.2 lnstrumentation

All of the 13 stations are equipped With nechanical float gauges (Leupold-Stevens ADRs) which output to
punched paper tape at 6-minute intervals. Sone of the stations are provided with bubbler gauges as backup
units; however, all of the records obtained during the first depl oyment period have been measured with the
nechani cal gauges. Al gauges are installed within stilling wells of standard design.

Several of the gauges (Port San Luis, San Francisco, Crescent City, Toke Point, and Neah Bay) are
equi pped with tel ephone telenetry interface units and are accessible in near-real time. These stations have
been regularly nonitored since the beginning of the pilot program using the NOAA conputer program TIDES ABC.
The data reported here, however, have been obtained directly fromthe NOS archives and thus have been
subjected to NOS quality assurance and data editing procedures described below.

6.2.3 Data Processing Procedures

The nature of NOS tidal data collection and processing is well documented in a variety of NOAA
publications [e.g., c&s, 1965]. The followi ng subsection describes certain of the pertinent aspects of the
NOS procedures and the additional processing steps performed in adding these records to the NCCCS data base.

Al gauges are serviced nonthly by NOAA personnel, and the data records are retrieved and transferred
to the NOS office in Rockville, Maryland. Ofset adjustnents are nade in accordance with any differences
observed between sinultaneous gauge and staff readings as noted periodically by service personnel. The
recorded elevations are thus expressed relative to the staff zero datum  Further processing by NOS consists
of averaging and subsampling at hourly intervals. Gaps in the records are normally filled using data from
the backup gauges. If these are not available, mnor gaps (several hours) may be filled by |inear
interpolation.  Such interpolated values are flagged to distinguish them from actual observations. Gaps
extending up to 3 days, depending on the noise level, nmay be filled with data from nei ghboring stations.
Gaps larger than 3 days are flagged by null values, indicating mssing data.

The rel ationships between staff zero datum and the various tidal datum planes are ideally established
for each station by averaging observations over a period of a full tidal epoch, equal to 19 years (1960-
1978) . This is possible at the five primary stations. At the remmining secondary stations, some |esser
period of record nust be used, asindicated in Table 6-1. Elevation differences between various datums as
deternmined by NOS are also listed in the table. Note that these differences are expressed relative to Mean
Lower Low Water (MLLW) in units of feet. A positive difference indicates a datum plane at a higher
elevation. Mst of the gauges are also related to geodetic datum (e.g., NG/D 1929) so that observations can
be adjusted to a common reference |evel and conpared from one station to another. O course, gych a
conparison nust take into account |leveling errors inherent in the datumitself.

For the purposes of constructing the Ncccs data base, sea-level records have been adjusted to a datum
of MLLw as defined by the staff offsets indicated in Table 6-1. The hourly heights, initially provided in
hundredths of feet, have been converted to meters.

Qur primary interest in the sea-level data lies with the subtidal variability. |n order to clearly

reveal this underlying signal, the records were detided by subtracting the NOS. predicted tide. . hi .
prediction consists of a linear superposition of up to 37 constituents as determ ned from harnoni alysis

of a 365-day record. The NOS prediction typically includes several |owfrequency constituents with periods
ranging from 2 weeks up to 1 full year. There are significant tidal potentials associated with several of

these constituents and, to the extent that the predicted anplitudes faithfully represent astronomc
forcing, these constituents should be removed from the raw sea-level data. |yuever e suspect that non-

astronomc forcing is also reflected in several of these predicted anplitudes. his is certainly true in
the case of the annual (Sa) and semi annual (Ssa) tides which conbi ned have typi caT anpl1tudes in-the range
of 10 cm This is considerably greater than would be inferred on the basis of the theoretical tidal

potentials at these frequencies. Also, we have not renoved any |ow frequency constituents from the bottom
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pressure data (Section 4) because of the insufficient record lengths yet available to reliably estimte the
respective anplitudes. Accordingly, we have not renoved the |owfrequency constituents from the NOS sea-

|l evel data during our detiding process. Further analysis is planned later in the study based on nore
extensive records to determne the nost appropriate procedure for detiding both types of data.

I nspection of the residual sea-level time series after detiding reveals substantial high-frequency
variations still remaining in nost records. These are apparently not attributable to the astronomc tides
but rather are the result of neteorological or other forcing and interactions with the coastal topography.
One exanple is the appearance of short-period (2-4 hour) oscillations in the Humboldt Bay data. This may be
attributable to seiching between arcata Bay and South Bay. Another general feature is the presence of
variable anplitude diurnal oscillations which remain after subtracting the nean anplitude of the Sl tide.
Again, this presumably reflects neteorological forcing, especially during late summer. In order to exanine
the subtidal signal, this high-frequency variability was renoved by neans of |owpass filtering using the
PL-33 filter (see subsection 4.4). Finally, the resulting decided, |owpass-filtered sea-level signal was
converted to an equivalent pressure expressed in mllibars, based on a reference seawater density of
1. 025 g/cm3.

An adjustment to include the baronmetric pressure nust be made to the sea-level data in order to obtain
the equivalent of total pressure, as neasured by the bottom nounted pressure recorders. The sources of
barometric pressure data consist of selected coastal meteorological stations, as indicated in Table 62
These stations are limited to NDBC platforms or FAA Flight Service Stations where the data quality is
expected to be high. Due to gaps in the neteorol ogical coverage, it was necessary to concatenate pressure
records fromtw or nore neighboring sources forseveral of the sea-level stations. The resulting low-pass-
filtered baronmetric pressure records for each tide station are plotted in Figure 6-2.As can be seen from
this figure, the spatial correlation of the pressure field remains high over relatively large distances and
there is little need for nore involved spatial interpolation procedures in determning the appropriate
adjustments to the sea-level data

6.3 DESCRI PTI ONS OF OBSERVATI ONS

The total pressure records obtained by adding the detided sea-level records and baronetric pressures
are presented in Figure 6-3. These data have been termed “synthetic subsurface pressure” by Brown et al.
[1985] . \en expressed in equivalent height of seawater, the term “adjusted sea-level” is also commonly
used. A statistical summary of the data is presented in Table 6-3.

It may be noticed that the signal plotted for Port Oford retains relatively strong diurnal and
semidiurnal variations over at least a portion of the 6-nonth record. The reason for this may be related to
the fact that the NOS predicted tide is based on a harnonic analysis of only 205 days of record available
during the last year of the latest epoch (1978). Further analysis is required to obtain more efficient
detiding in this case.

The ssp variability at Toke Point appears to be especially strong. This nmay be primarily attributable
to the location of the gauge well within Wwillapa Bay in an area surrounded by extensive tidal flats. The
broad, shallow expanse of this bay presumably serves to intensity wind surge effects, in conparison with the
open coast. The utility of this station will need to be examned further during the main program

Figure 6-4 presents autospectra of the hourly synthetic pressure data before detiding and |ow pass
filtering. The spectra are plotted in variance-conserving format (subsection 4.7). The tidal peaks in the
spectra are deliberately allowed to be off scale in order toshow the variability in subtidal energy.
Pertinent details of the spectral analysis procedures are summarized in Table 6-4. The spectra, together
with thﬁ time-series plots, reveal the strong increase in subtidal variability anong the stations from south
to north.

6.4 REFERENCES

Brown, WS., N.R. Pettigrew, and J.D. Irish. 1985. The Nantucket Shoals Flux Experinent (NSFE79). Part ||
The structure and variability of across-shelf pressure gradients. J. Phys. Ocean., 15:749-771.

C&6s . 1965. Manual of Tide Cbservations.  Publication 30-1, Coast and Geodetic Survey, U S. Dept. of
Conmerce, Washi ngton, DC. 72 pp.
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Table 6-1. Listing of NOS coastal sea-level stations.

Installation Published Averaging Datm Plane Adiustents’

Station Name NOS No, Latitude longitude D ate BM Sheet Period NGVD MSL Staff
Neah Bay, WA 044-3000 4822 IN 124 37.0W 1934 06-21-76  60-78  +4.41  +4.30  -2.15
Toke Point, WA 044-0910 46 41.0N 123 &5.W 1972 07-17-84  68-78  +4.46 4.73  -4.55
Astoria, ® 943-9040 46 12.5N 1.23 46.W 1925 01-18-84  60-78 NA 4439 -2.34
Hamond, CR 943-9011  4612. 1N 123 S6.6W 1982 10-11-85  83-84 M 4.45 251
Southbeach, (R 98-5380 44 37.5N 124 02.64 1962 03-24-88  68-8  +4.151 +4.46  -4.59
Charleston, (R 943-2780 43 207N 124 19.3W 1972 10-30-86  71-84  +4.22  +4.08  -3.72

Port Orford, (R 943- 1647 42 Lh 4N 1.24 V.8 1977 05-20-86 79, 82-84 +#4.132 44.00  -23.02
Crescent City, CA  941-9754 41 447N 124 1. 1933 W-12-84 60- 78 +3.793 +3.75 -3.66

Trinidad, CA 941- 9059 41 03.5N 124 08.8W 1972 08-22-84  75,78-80 NA +3.60 -4.91
huboldt Bay, CA 941- 8767 40 46.0N 1.24 B.W 1977 08-22-84 79-80 +3, 72 NA  -14.34
Avena Cove, CA 941- 6841 38 54.8N 123 42.5W 1978 08-07-84 79-81 NA NA NA

Point Reyes , (A 941-5020 37 59.8N 122 58.5 1975 10-16-86 75-84 +2. 88 +3. 14 -3.72
San Francisco, ¢ 941-4290 37 48.4N |-22 U.W 1854 01-12-84 60-78 +2.843 +3.13 577
MontereyH arbor, CA 941-2450 36 36,3N 121 53.W 1973 08-22-84 74-84 +2.85'+2.88 -3.14
Port San Luis, cA  941-2110 35 10.2N 12045, 1w 1% 03-19-81 60-78 i-2.73 +2. 83 -4.13

Notes :
1Baced on adiystment Of 1966
ZBased on adjustment of 1947

on adiustment of 1973
“Based on adjustment of 1961

SReferenced t0 MUW in feet (Ma = Not Available)

Table 6-2. Sources of barometric pressure data used to adjust sea-level
records at NOS gauging stations.

Station Nane Baronetric Pressure Source
Neah Bay, Wwa Cape Elizabeth 46041: 3/1--8/31
Toke Point, WA Average: Cape Elizabeth 46041: 3/1--4/4, 5/28--8/31

Cape Foul weather 46040: 3/1--4/4, 5/28--8/31
Average: Cape Elizabeth 46041: 4/5--5/27
Newport Nwpo3: 4/5--5/27

Astoria, OR Sane as Toke Point, WA
Hamond, OR Sane as Toke Point, WA
Southbeach, OR Newport Nwpo3: 3/1--8/31
Charleston, OR Cape Arago CARO3: 3/1--8/31
Port Oford, OR Average: Cape Arago Car03: 3/1--8/31
Pt. St. Ceorge 46027: 3/1--8/31

Crescent City, CA Point St. GCeorge 46027: 3/1--8/31
Trinidad, CA --
Hunmbol dt Bay, CA Eel River 46022: 3/1--8/31
Arena Cove, CA
Poi nt Reyes, CA Bodega 46013: 3/15--8/31

San Francisco 46026: 3/1--3/14
San Francisco, CA San Francisco 46026: 3/1--5/27, 6/14--8/31

Bodega 46013: 5/28--6/13
Monterey Harbor, CA Santa Cruz 46012: 3/1--8/31

Port San Luis, Ca Cape San Martin 46028: 3/1--8/31
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FILTERED BAROMETRIC PRESSURES FOR COASTAL SEA-LEVEL STATIONS
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Figure 6-2. Representative barometric pressure records for coastal sea-level stations (low pass
filtered) .
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Table 6-3. Statistical summary of |ow pass-filtered sea-level and baronmetric pressure data.
Mean Tidal Rangel Barometric Pressure* (rob) Subsurface Synthetic Pressure? (mb)
Station Nane MHHW-MLLY (cm) Mean Std Dev Max Min Mean Std Dev Max Min
Neah Bay, WA 242.0 1017.77 5.80 1033.7 998.3 1130.65 7.53 1155.3 1115.7
Toke Point, WA 268. 2 1018.30 5.38 1033.0 1002.1 1165.09 13.18 1219.1 1133.0
Astoria, OR 256. 6 1018.30 5.38 1033.0 1002.1 1143.04 10.87 1183.2 1119.1
Hammond, OR 256.6 1018.30 5.38 1033.0 1002.1 114588 9.21 1180.2 1128.1
South Beach, OR 254.7 1018.95 5.20 1034.5 1003.5 1150.16  7.11 1177.8 1134.7
Charleston, OR 231.9 1019.38 5.09 1035.7 1002.8 1135.98  5.44  1155.7 1123.0
Port Oford, OR 226.1 1018.99  4.93  1035.4 1002.5 1130.92 5.88 1146.6 1115.8
Crescent City, CA 212.1 1018.60 5,11 1035.4 1002.1 1123.94 6.00 1138.4 1105.8
Hunbol dt Bay, CA 210.9 1018.17  4.82 1035.0 1000.9 1128.10 5.49 1140.9 1111.6
Point Reyes, CA 177.3 1016. 26 4.49 1029.5 1003.4 1111.05 6.36 1124.7 1092,1
San Francisco, CA 177.6 1015. 99 4.31 1029.5 1003.7 1111.27 5.63 1122.1 1094.1
Mont erey, CA 165. 1 1016,66 4.24 1030.2 1004.4 1105.97 4.83 1116,4 1093.8
Port San Luis, CA 164, 2 1016,08 3.82 1027.9 1006.1 1103.15 4.95 1112.4 1087.9
Not es:
lsource: NOS Tidal Datum Sheets
Zperiod Of Record: 1 March 1988 through 31 August 1988
Table 6-4. Spectral analysis summary - sea level data, NCCCS mamin program March-August 1988.
SEA LEVEL SPECTRA
90% Confi dence Linits (lower/upper)!
Data Span 30-day Over- at Peri ods of:
(start 0000 PST) Segments? _lap 30 days 15 davs 10 days davs
Hammond, OR 3/01 to 9/01 13 50% 66%/173% 77%/137% 80%/127% 82%/125%
Toke Point, WA 3/01 to 9/01 13 50% 66%/173% 77%/137% 80%/127% 82%/125%
Neah Bay, WA 3/01 to 9/01 13 50% 66%/173% 77%/137%2  80%/127% 82%/125%
Astoria 3/01 to 9/01 13 50% 66%/173% T7%/137% 80%/127% 82%2/125%
Sout h Beach 300 to 9/01 13 50% 66%/173% 77%/137% 80%/127% 82%/125%
Charl eston 3/01 to 9/01 13 50% 66%/173% 77%/137% 80%/127% 82%/125%
Port Oford 3/01 to 9/01 13 50% 66%/173% 77%/137% 80%/127% 82%/125%
Crescent City 3/01 to 9/01 13 50% 66%/173.2 77%/137% 80%/127% 82%/125%
Hunbol dt Bay 3/01 to 9/01 12 50% 65%/175% 76%/138% 80%/129% 82%4/125%
Poi nt Reyes 3/01 to 9/01 13 50% 66%/173% 77%/137% 80%/127% 82%/125%
San Franci sco 3/01 to 9/01 13 50% 66%/173% T7%/137% 80%/127% 82%/125%
Mont er ey 3/01 to 9/01 13 50%  66%/173%  77%/137%  80%/127%  82%/125%
Port San luis 3/01 to 9/01 13 50%  66%/173%  77%/137%  80%/127%  82%/125%

Not es:

lgeometric progression running-mean band averagi ng:

1st spectral estimate (1.39 x 107 cycles/hour): 1 pt. averaged

2nd spectral estimate (2.78 x 10°cycles/hour): 3 pts. averaged
3rd spectral estimate (4.17 x 10°cycles/hour): 5 pts. averaged
4th and higher (5.56 x 10°cycles/hour): 7 pts. averaged

Hanni ng (full cosine) taper applied to |inear de-trended segments,
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Figure 6-4. Autospectra Of unfiltered subsurface synthetic pressure records.
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APPENDIX A

| NTERI M MOORI NG DEPLOYMENT

| NTRODUCTI ON

The original design of the NCCCS included a tenporary suspension of data collection activities during
the interim period between the pilot and main prograns (August 1987 through March 1988). Following its
initial review, the Quality Review Board recommended that current neasurenents should be collected
continuously at one location over the entire duration of the field investigation, including the interim
period. The NCCCS investigators and MVS concurred with this reconmendation, and the program was expanded to
include provisions for naintenance of the E-130 nmooring off Eureka. Instrumentation included a single near-
surface (15-m) VMCM and a bottom nounted pressure gauge. Data return fromthis interim deploynment period
was essentially complete and the quality was excellent.

DESCRI PTI ON OF OBSERVATI ONS

Time series of plots of the currents measured at the E-130 nooring are presented in vector and
conponent formin Figure A-1. The orientation of the alongshelf and cross-shelf conponent directions is
consistent with the specifications given in Section 4. This figure also includes vector plots of the w nds
neasured at selected neteorologi cal buoys and coastal stations. In particular, the coastal station
established during the pilot program at Shelter Cove was maintained in operation during the interim period,
except for a gap of roughly 6 weeks from md-COctober until early December 1987.

Figure A-2 presents a conposite plot for the current measurements, including a progressive vector
diagram |ow pass-filtered variance ellipse, and current rose diagram It is interesting to note that the
virtual alongshelf displacement over the full deployment period was essentially zero, despite the many |arge
excursions associated with individual current events during the winter season.

In addition to the meteorol ogical records, sea-level data were collected from NOS gauging stations to
conpl ement the noored measurenents. The data from sel ected gauging stations is shown in Figure A-3 in the
form of synthetic subsurface pressures (see Section 6 for a description of processing procedures).

Finally, autospectra of the various conponents of the interim period data base are presented in
Figures A-4 through A-6. Figure A-4 contains the spectra for the alongshelf and cross-shelf current
conponents and water tenperature. Figure A-5 contains the spectra of selected synthetic subsurface pressure
records. Consistent with the treatment in Section 6, these spectra have been calculated from hourly records
prior to the detiding and filtering operations used in preparing the time-series plots in Figure A3. As
expected, the lowfrequency portions of these spectra contain substantially more energy in conparison wth
the results of the pilot program from the previous summer nonths.

Figure A-6 presents spectra from selected meteorol ogical stations, including alongshelf and cross-
shel f wind conmponents and baronetric pressure. The orientation of the wind components is consistent with
the specifications given in Section 5. The conputational procedures applicable to individual spectrunms in
this figure, including record lengths and confidence intervals, are |isted in Table A-1.
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Figure A-1. Lawpass- filtered currents fromthe E- 130 rmooring and winds from sel ected neteorol ogical
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1987 through March 1988.
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VARIANCE CoNSERV=NG AUTOSPECTRA
NCCCS INTERIM. AUGUST 1987
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Figure A-4. Autospectra of alongshelf and cross-shelf current components and temperature from the interim E-130 mooring,
August 1987 through March 1988.



VARIANCE CONSERVING AUTOSPECTRA
NCCCS INTERIM, AUGUST 1987 — MARCH 1988
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NCCCS INTERIM, AUGUST 1987 - MARCH 1988
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Figure A-6.  Continued.
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Table A-1.  Summary of wind spectra record |engths and confidence intervals.

90% Confi dence Linits (lower/upper)!

Data Span 30- day at Periods of:

(start 0000 PST) Segments? Overlap 30 days 15 days 10 days 7.5 days
Foul weat her 46040 8/10/87 to 3/31/88 14 50% 67% 170% 77% 134% 81% 126% 82% 125%
Cape Arago CARO3 8/10/87 to 3/31/88 14 50% 67%/170% 77%/134% 81%/126% B82X/125%
Pt. St. George 46027 8/10/87 to 3/31/88 12 50% 65% 175% 76% 138% 80% 129% 82% 125X
Eel River 46022 8/10/87 to 3/31/88 10 50% 67% 170% 77% 134% 81% 126% 82% 125X
Shel ter Cove 8/10/87 to 3/31/88 9 50% 62% 195% 73% 148% 77% 135% 80% 129%
Poi nt Arena PTAC1 8/10/87 to 3/ 31/ 88 14 50% 67% 170% 77% 134% 81% 126% 82% 125%
Bodega 46013 8/10/87 to 3/31/88 5 50% 54% 260% 66% 173% 71% 154% 74% 144%
Santa Cruz 46012 8/10/87 to 3/31/88 15 50% 68% 165% 78% 131% 81% 1. 26% 82% 125%
Cape San Martin 46028  8/10/87 to 3/31/88 9 50% 629% 195% 73% 148% 77% 135% 80% 129%
Santa Maria 46011 8/10/87 to 3/31/88 9 50% 62X/ 195% 73% 148% 77% 135% 80% 129%

Not es:

‘Ceonetric progression running-nean band averaging:
lst spectral estimate (1.39 x 107°cycles/hour): 1 pt. averaged
2nd spectral estimate (2.78 x 10°cycles/hour): 3 pts. averaged
3rd spectral estimate (4.17 x 10°cycles/hour): 5 pts. averaged
4th and higher (5.56 x 10°cycles/hour): 7 pts. averaged
‘Hanning (full cosine) taper applied to linear de-trended segments.
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