UNCLASSIFIED

. AD-A171 514 I GENT ﬁsﬂo INT g CT ULI?R CIIPHLIE 172
S S W

AUTHENTICATED
U.S. GOVERNMENT
INFORMATION

GPO

L

2

i = 2
s hes v

FEEFEEEE
EEEE
EEE

EF
[4
£

ICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

!

1.l

P
Lo
T

e ore
Barr

AD-A171 514 /) USR-CERL

US Army Corps

of Engineers TECHNICAL MANUSCRIPT N-86/16
Construction Enaineeri _

Research Laboratory July 1986

Intelligent Use of Constraints for
Activity Scheduling

by
Navinchandra

The primary goal of this research effort was to develop
a domain independent activity scheduling algorithm that
would be able to handle ad-hoc constraints.

The activity scheduling problem is one of assigning tasks
(activities) to objects (jobs) while adhering to time and re-
source constraints. Operations researchers originally had ap-
proached the problem using mathematical programming
techniques. This approach, however, is poor at solving real
world problems. Real World problems tend to be very large
and are often too complex to represent numerically.

An algorithm is presented that is based on an heuristic
search paradigm. It uses symbolic constraints to assist the
search process. Functionally, the task is similar to that of
linear programming. The scheduling problem is represented
as a group of variables. Each variable has a corresponding
set of possible values, called a value set. The aim is to assign
each variable a value from its value set while adhering to
the imposed constraints. The difference is that symbols
rather than just numbers are dealt with. In so doing, the
constraints are able to capture the nuances of complex
domains. &:

A pattern directed constraint definition language called
CDL-II is presented. The language is based on set theoretic

operators and allows one to input constraints in an ad hoc 3
fashion. The constraints are used to prune the search SEP 2 1986 ‘
space through the mechanisms of constraint generation, a
posting & propagation. e

A

A} proved for public release; distribution unlimited.

Mot

3
pocs

7

Y

The contents of this report are not to be used for advertising, publication, or
promotional purposes. Citation of trade names does not constitute an
official indorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO . ONGER NEEDED
DO NOT RETURN IT TO THE ORIGINATOR

‘—“

- o Pt e e o g

P

L o — —
UNCLASSIFIED
SECURITY CLASBIPICATION OF THIS PAGE (When Dete Bntered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

|. a:ron? NUMABER
CERL TM N-86/15

2. GOVY ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitie)
INTELLIGENT USE OF CONSTRAINTS FOR
ACTIVITY SCHEDULING

S. TYPE OF REPORYT & PERIOD COVERED

Final

6. PERFORMING ORG. REFORT NUMBER

7. AUTHOR(s)

Navinchandra

8. CONTRACT OR GRANT NUMBER(s)

. PERFORMING ORGANIZATION NAME AND ADDRESS
U.S. Army Construction Engr Research Laboratory
P.0. Box 4005
Champaign, IL 61820-1305

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

T1AO 128-85

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE
August 1986

13. NUMBER OF PAGES

130

TE. MONITORING AGENCY NAME & ADDRESS(/ different from Controlling Otltice)

15. SECURITY CL ASS. (of thie report)

UNCLASSIFIED

T5Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

T6. OISTRIDUTION STATEMENT (of thie Report)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

19. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service
Springfield, VA 22161

scheduling

activity scheduling
algorithms

ad hoe constraints

19. KEY WORDS (Continue on reverse side 1l necessary and identity by block number)

Continue an reverse otve ¥

algorithm that would be able to handle ad-hoc constraints.

represent numerically.

20 ASSTRACT nesevsary and identily by block number)
The primary goal of this research effort was to develop a domain independent activity scheduling

The activity scheduling problem is one of assigning tasks (activities) to objects (jobs) while
adheting to time and resource constraints. Operations researchers originally had approached the
problem using mathematical programming techniques. This approach, however, is poor at solving
real world problems. Real World problems tend to be very large and are often too complex to

DD , 507 WUI3 wormow or 1 wov es 15 ossoLeTE

SECUMTY CLASSIFICATION OF TH!IS PAGE (When Dets Entersd)

UNCLASSIF

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(WhAen Data Entered)

BIOCK 20 (Cont'd)

An algorithm is presented that is based on an Aeuristic search paradigm. It uses svmbolic
constraints to assist the search process. Functionally, the task is similar to that of linear
programming. The scheduling problem is represented as a group of variables. Each variable has a
corresponding set of possible values, called a value set. The aim is to assign each variable a value
from its value set while adhering to the imposed constraints. The difference is that symbols rather
thap just numbers are dealt with. In so doing, the constraints are able to capture the nuances of
complex domains.

A pattern directed constrained definition language called CDL-I! is presented. The language is
based on set theoretic operators and allows one to input constraints in an ad hoc fashion. The
constraints are used to prune the search space through the mechanisms of constraint generation.
posting & propagation.

7

Y

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

_ _Jﬂk_
g

FOREWORD

This is a reprint of a thesis submitted to the Department of Civil
Engineering, Massachusetts Institute of Technology, in partial fulfiliment of
the requirements for a Master of Science degree. The thesis supervisor was
Professor David H. Marks.

This work was performed for the U.S. Army Training Support Center, Fort
Eustis, VA, under Intra-Army Order 128-85, dated January 1985, for the
Division Gunnery Model (DIGUM) Development project. The Technical Monitor is
Maj. Robert Behncke, Army Development and Employment Agency, Fort Lewis, WA,

The research was supported by the Environmental Devision (EN), U.S. Army
Construction Engineering Research Laboratory (USA-CERL). Dr. R.E. Riggins is
Acting Chief of EN.

COL Paul J. Theuer is Commander and Director, USA-CERL, and Dr. L.R.
Shaffer is Technical Director.

et o —— ._a”ﬁ%,wwruw

Lo

1

Preface

Introduction

This thesis is an effort towards the development of a domain independent activity scheduling
algorithm that can handle ad-hoc constraints. By combining the techniques of Artificial Intelligence
and Operations research, a program has been developed that performs scheduling using a
constraint assisted search approach. The program has a high-level constraint definition language

which allows the user to input ad-hoc constraints.

Activity scheduling is the problem of assigning certain objects {jobs) to tasks (activities) while
adhering to time and resource constraints. It is a popular arca in Operations Research circles.
Operations researchers, however, have been unable to solve large real world scheduling problemns
through mathematical programming techniques. Consequently, the whole area of heuristic

scheduling has come to play an important role in this problem domain.

Several heuristic scheduling programs have been built. These programs tend to have the
specifics of the associated domain hard-wired into the program. The only flexibility that these
programs allow is the ability to change a few parameters in the constraint set. If a new,
unanticipated constraint is encountered, the program’s code necds to be changed. This is often not

easily done.

To handle this problem, we present a constraint definition language called CDL-II. It allows
the user to modify old constraints and add new ones at will. For example, let us consider the
domain of job shop scheduling. The typical inputs to the systern are the different jobs, the due
dates, the quantities to be produced etc. Each job shop presumably has constraints which need to
be adhered to. These constraints may range from due dates to machine preferences to problems
regarding resource availability. Such constraints are not static and are ever changing. These new
constraints may be of a totally unanticipated nature and would traditionally ha;'e been

incorporated by painfully changing the original code. On the other hand, our framework allows one

Laalh |

to just write the constraint in CDL-I and enter it into the computer.

The algorithm

The techniques/technologies which have played an important role in the development of the

- ideas in this thesis are:

a) Branch and Bound Algorithms (from OR)

b) Planning Research (from Al)

c) Constraint Analysis (from Al)

d) Search paradigms and backtracking (from Al)

The algorithm presented in this thesis is based on the search paradigm. It uses constraints to
prune the search space. Instead of following the branch & bound technique it has a prune and then

branch & bound flavor.

This is done by using the constraints through the processes of generalion, posting and
propagation. The constraints are written in a constraint definition language called CDL-1I. CDL-II is
a production rule type, pattern directed language. This language is based on the set theoretic
operators: intersection, difference, restriction and union. The other feature of CDL-II which has
proved valuable is the ability to write constraints which, in turn, write constraints. This process of

constraint generation is also pattern directed.

Currently the implementation uses chronological backtracking. Even though the scheduler
uses contexts for the development of different branches, we have not used dependency directed
backtracking [Sussman, 1978]. This is because our domain i;s not well suited for intelligent
backtracking. This is in contrast to Sussman & Stallman’s work wherein intelligent backtracking is
facilitated by the scientific principles that govern the behavior of the objects in their domain,

namely, electrical circuits.

7

=y

«

Thesis Reader’s Manual
The domain that has been chosen is that of Army Training Scheduling. The thesis starts off
with a scenario (Chapter 1) which describes the problem. The scer ario, though anecdotal in nature,

is representative of the problem and its complexity.
The second chapter introduces the problem and reviews the relevant literature.

The rest of the chapters discuss the use of constraints for activity scheduling. Two different
implementations have becn presented. The first implementation uses the constraints passively
(chapter 1l1). The constraints are used only for bounding the scarch. Such bounding is done only
after the branching step is taken. Chapter lll introduces a crude constraint definition language
called CDL-1. It will be shown how CDL-I fails to capture the complexity of the problem and how

the passive use of constraints is not a good approach.

NOTE: To understand the syntaz of CDL-1 & CDL-1l the reader is advised to perusc the
IMST manual (APPENDIX Aj. This manual describes the notion of an asserlional dalabase and

explains the use of the IMST production rule language. CDL-Il i3 completely written in IMST.

Having dispelled the concepts related to the passive use of constraints the thesis enters into a
discussion about the active use of constraints. Chapter IV introduces the ideas behind this

technique. It builds an intuitive feel for how constraints can be used for pruning the search.

Chapter V continues the discussion on the active use of constraints and goes on to describe
the workings of the second implementation. This implementation is based on a constraint definition
language called CDL-II. This language is entirely built in the IMSI' r .vironment (Appendix A).

Appendix B presents a trace of the program run.

The author has assumed that the reader is familiar with plunuing research and constraint
analysis. Here are a few papers that this thesis draws from. They make excellent background

reading.....

1) Fikes R.E. (1970) "REF-ARF : A System for Solving Problc:: Stated as Procedures.” Int.

J. of Al (1970) 1:27-120
2) Stefik M. (1981) "Planning with Constraints (MOLGEN: Partl),” Int. Journal of Artificial
Intelligence, Vol 16, pp 111-140.

3) Sussman G.J.,, Steele G.L. (1980) ~Constraints: A language for expressing almost

hierarchical descriptions ", Int. Journal of Artificial Intelligence 14:1-39.

4) Fikes R.E. and N.J. Nilsson (1971) "STRIPS: A new Approach to the Application of

Theorem Proving to Problem Solving”, Int. Journa! of Artificial Intelligence, Vol 2 pp 189-208.

I

m

DD FORM 1473
FOREWORD
PREFACE

A Scenarlo
Introduction
Il Literature Review

IL2 Current methodologies
1.3 The Role of Search in Scheduling

1.4 Scheduling Army Training Activities

Passive use of constraints:
- the first implementation

III.1 Introduction

112 Partial Schedules

I11.3 The constraints

I1.4 CDL-1: Performace Issues

Active use of constraints:
- some intultive ideas

IV.1 Introduction

IV.2 Instantiation

IV.3 Generation & Posting

IV.4 Propagation

IV.5 A Classification for Constraints

Actlve use of Constralnts:
- The second implementation

V.0 Introduction
V.1 The representation

Contents

Page

10

18

32

40

51

V.2 The Constraint Definition Language: CDL-II

V.3 The Algorithmn

V.4 Backtracking
vi Future Directions
V1.1 Exploiting the Flexibility of CDL-II
V1.2 Handling Multiple Heuristics in Scheduling
V13 Towards a system architecture

References & Blbliography

Appendix A IMST User's Manual

Appendix B Trace of a run (CDL-1)

72

78

80

102

—~——

Chapter 1

A Scenario

This chapter sets the stage for the application domain used in this thesis. An anecdotal
description of the domain is presented. It is representative of the complexity we had to deal with.
We have also tried to give the reader a flavor of the kind of expertise current domain experts

possess.

A

John Dale stood at the window watching trucks pass by. The air reeked of diesel and dust
from the parched land. In his twelve years as range officer at Ft. Kami's Firing Range he had never
seen such an influx of troops for fall training. Since the authorities had decided to move several
hattalions of the 5th Mechanized Infantry Division (MI) demand for firing ranges had been rising.
The move was to be completed over the next few months, "things are going to get tougher™ he said

to himself.

In the distance, he could hear the sound of M-1 tanks firing at practice targets. The schedule
on the wall told him that it. was battalion 26 of the 5th Ml Division on range__9. The convoy that
had just passed the field office, 22 trucks of troops, were all headed for M-16 training on range 8.
John Dale took great pride in his work and his acquired expertise in range scheduling and
coordination. The boys who just passed himt were headed for range _ 8, but he knew it would be
safe even though tanks were training in the adjacent range. Everything had been worked out, the

firing directions, the salety spans and the schedule conflicts.

John was concerned about the problems the new battalions might bring. He was going tn be
up against a very tough resource problem. The next master schedule was due in a month, and he

anticipated problems with having to schedule so many more battalions.

The operations research group down at Ft. Kami had been helping John prepare the master

10

T

plan every quarter. He would send them a listing of all the battalions and the amount & type of

training activities to be carried out by each battalion. A schedule would be returned in under 2

weeks.

The schedule was not always very useful. It did not take into consideration all those real-life
problems that cropped up time and again. John remembered the time he spent with Mark Maser, a
young eager systems analyst from Ft. Kami. He had told Mark all about the firing ranges and rules
of thumb used in scheduling. He had told him about how certain activities can be carried out only
on certain ranges and how the safety span considerations can change the way a schedule is built.
Mark had been a good listener and sure enough, he came back in 3 months with a really impressive
scheduling program. Since then whenever John had had some new requirements he'd just call up
Mark and the changes would be made in a matter of days. Mark was gone now, had found a job in
Silicon Valley. There was nobody to make changes anymore. The other programmers never seemed

to have the time, nor did they seem to understand the nuances of the problem at hand.

B

The phone was ringing, John turned around to watch his assistant Fred Rufus pick up the
phone. Fred reached for a pad and started making quick notes. It was that time of the quarter
when the battalions filed their training request forms. A training request form containes
information about the training activities the battalion wishes to perform, including preferences
about timing and precedences. Many officers called in by phone to relay some exceptions and
special requirements. Fred walked up to the scheduling board and stood there looking intently at.

He scratched his head.

John Dale looked on. Fred was quickly becoming adept at his work, but not good enough to
be allowed to make any changes without an endorsement from John. Fred better learn the ropes
soon enough. It took John several years before he could get a handle on all the considerations

required to run a l‘iring range safely and smoothly. He knew the ranges, their characteristics; the

11

oy

pguion

e

P

weapon systems and their characteristics like the back of his hand. His first and foremost concern
was safety, never should two battalions be scheduled to work on the same firing range on the same
day. Every time he scheduled a training activity he had to make sure that the safety spans of the
current weapon system did not interfere with any other training activity scheduled on an adjoining
range. He had all this information on his finger tips. Fred still had to refer to the range maps and

safety span traces to schedule an activity.
John walked up to Fred, "What's the matter Fred? ”

" Captain Roger Mason of battalion twenty-six, MI four called in and said that he would like

his men to train with battalion 9 of MI three for Mortar firing next quarter.”
"Two battalions together? That's something new”

" Battalion 26 of MI four is scheduled for Mortar on range 22 for the first week of December,
but battalion 17 of the fifth MI are on range2l during that period. I cannot figure out how I can

get 26 and 9 on adjoining ranges.”
"Why?"
"For one thing, range23 is not suited for Mortar fire and range 21 is the only choice”
John cut in, "Can you move batialion 17 elsewhere?”

"No, they had requested completion of Dragon Qual before Christmas and I do not see any

other free time windows.”

It was a tough problem. John wished Mark was around. He could have just called Mark and
told him about the change. He remembered the time when Central Training Command (CTCOM)
had issued an order to perform cyclic training. CTCOM had found that certain training activities
are most cffective when carried out in a cyclic basis. That is, the total annual amount of training
on certain activities was to be divided into 5 or 6 sessions. Each session was then to be scheduled

such that no two sessions were less than one month apart nor were they more than 2 months apart.

12

L

It took Mark two weeks o make this change. John shuddered at the thought of what might
happen if a directive as radical as the cyclic one were to be sent out by CTCOM today. John

longed for a system that would be able to handle ad-hoc requirements.

C

John walked back to his desk to finish up a2 Memo he was preparing for CERI. {the Corps of
Engineer’s Construction Engineering Research Lab.). Two researchers from CERL had come over
last week to discuss the development of a Intelligent Scheduler which would be able to handle
ad-hoc requirements. They had told him about how the scheduler would be able to handle changes

and would store all the rules of thumb he was trying to teach Fred.

John was preparing a memo describing the scheduling problem in the form of a small

representative example. He was to include a list of constraints.

The afternoon wore on, trucks were rolling past the range office. John Dale was smiling, he

had just finished the Memo:

13

D

2d

MEMORANDUM

From: Joha Dale, Range Officer, Ft. Kami
To: Bob James, CERL
Date: April 2, 1985

Here is a small representative cxample of the scheduling problem. I have included some

T

constraints as you had requested.
Consider a firing range having three ranges:

range A

Ll |

range B
and range_C

Refer figure 1.1

Thete are three battalions:
bat _A
bat _B
bat_ C

and there are three activilies:
act__A
act_B

act_C

p Let us assume a time period of two weeks:

days={123456789101112}

Now we have several constraints on the problem:

Constraint: C1

14

oty

L o §

i i

A battalion can do only one activity in one time period
(usually a day).
Constraint: C2
Conflicts: There shall be only one battalion on a
particular range on a particular day.
Constraint: C3
If any battalion is scheduled for activity act_ B
then that battalion should not be scheduled for anything
on the very next day. This is because act _B is very exahusting.

Constralnt: C4

There are only certain ranges that can host
certain activities:

Constraint# Activity Legal Ranges
C4_one act _ A range _A range_B
C4_two act_B range_C

C4_three act_C range_B

Constraint: C5

The battalions shall perform the activities
according to the following frequences:

activity
act _A act_B act_C
bat_ A 3 0 0
bat_B 1 1 1
bat_C 1 2 0

Constraint: Cé

15

e o bt SRt

-

/
|
~ l
o N N
!' ~ ’ ax
N | M
i 17 zZs
N [',
NI M—_B RaneE %
N OFFICE 5
NV/ ! Y
i Yange. A @%ﬁ # ::’(‘
N/ i -
V7 1
V7
{7 ramge.C !
Jihny \ ‘\\‘ 7, | >
5 T y ll 7 l i
—_— —)] ITRNS S /// 3
= 2o, ’y ! 3
— /// | w
—_ Rip] M
GE }l/ ! 3 J‘/v\
T t f@,ﬂﬁ/
FLRlN(a RAN GES
Flaure T 1
16
— bt

Rauali . o o

>y
- o gt

NP, Ve,

"W Ty e e gl e e BB @

ah,

There is a cyclic constraint on activity act__A.

This means that a battalion should perform act _A at
regular intervals. If the first schedule date is x

then the next date should be after x+2 but before x+4.

Constraint: C7
Safety spans: When act__A is carried out on range_ A,

the safety spans requires that it is unsafe to schedule
anything on range_ C.

17

PO S . Yy

o o

Lok ¢

Chapter I

INTRODUCTION

I1.0 Introductlion
In this chapter we shall set the stage for the intelligent use of constraints in scheduling
problems. We shall also review the relevant literature with includes references fromn both Artificial

Intelligence and Opcerations Research.

Scheduling had originally been looked upon as a problem suited to mathematical
programming techniques. This, however, is not true; the complexity and size of real-world
scheduling problems has moved research towards more tractable algorithms involving heuristic
search paradigms. Our hypothesis is that a domain independent scheduler can be built which
would only use constraints to guide the search. Scheduling, per se, has been tackled by several
researchers in Al, the most significant application is a system for Job-Shop scheduling called SIS |

Fox M.S., 1983].

We would like to remind the reader that scheduling has been researched by Management
Scientists and Operation Researchers for several years. Some very promising results have emerged

form such work. We now embark upon a survey of some of the work relevant to our interests,

I1.1 Literature Review

Parts of this section (11.1) has been adapted from [Fox, M.S. 1983):
Management Science

"Management science research in scheduling has focussed on understanding the variety
of scheduling environments that exist, and constructing s heduling algorithms specific to
them. Four types of "shops™ are distinguished in the literature:

* single machine -single operation

* parallel machines - single operation

* flow shop series of machines - multiple operations
* job shop network of machines - multiple operations

A jub is defined as having:

18

P

* one or more operations
* a processing time for each operation
* a due date

And the utility of scheduling is
measured in terms of:

* lateness

* flowtime

* tardiness

* makespan
It was recognized early in management science that scheduling is an example of a
constraint satisfaction problem which could be optimally solved using mathematical
programming techniques. Integer programming approaches, while theoretically valid are
useless practically. One branch of research focuses on the attainment of optimal resulis,
but algorithmic complexity has restricted these results to the one and two server cases.

The achievement of these results requires the removal of much of the constraints, and the
focus on single criterion for measuring schedule efficacy.”

Artificial Intelligence

The area of Planning Research is the most relevant part of Artificial Intelligence to
scheduling problems. The basic idea of using search to perform problem solving has been used both
by Al researchers and by Operations Researchers. The use of Constraints in Planning research has
proved very promising (Stefik Mark, 1981). Search is carried out within a space of possible solution
states for a state that satisfies a set of pre-specified requirements. A state can be changed into
another state by applying a heuristic operator to it. Planning can be viewed as a form of heuristic
search. The first problem in creating a planning system is to generate the states relevant to

reaching the goal.

"Given a description of the initial state, goal state, and a set of operators, the
operators can be iteratively applied to the initial state, and its solution path of operations,
ot plan. Depending on the 'strength’ of the operators, the space elaborated can be large or
small; however the better heuristics generate smaller search spaces and find the solution
faster. Planning, and related research, has focussed on a number of issues: for instance,
choosing the state to elaborate next, choosing which operator to expand a state, and
choosing alternative state representations and operators.”

Robot planning is the most popular area in planning research. The STRIPS system (Fikes &

Nilsson, 1971) represented operators with pre and post conditions.

19

This thesis has borrowed several ideas from a constraint analysis system called REF-ARF.
(Fikes, 1970). Its task was similar to that of linear programming. Given a set of linear equations as
constraints, it makes value assignments for all the variables. Instead of doing a brute force search
for a set of bindings that satisfies all the constraints (equations), it used the constraints to reduce
the generated binding set. Hence, the system can be viewed as a classical generate and test, where
the system was able to take the constraints and use them in the generator to reduce the size of the
search space. This thesis is an extension of REF-ARF wherein the constraints are symbolic in

nature and are pattern directed.

After the work on STRIPS came a very important and interesting planning program called
NOAH (Earl Sacerdoti 1975). By using hierarchical plan generation, Sacerdoti was able to
implement an intelligent planner. Taking a cue from NOAH, Austin Tate (Tate A, 1977) developed

NONLIN. It is a non-linear planner for generating Project Networks.

At about the same time some very interesting Constraint Analysis work was in progress at
MIT. Stallman & Sussman (1978) developed the concept of dependency directed backtracking. A
electrical circuit analyzer called EL was developed. EL used the concepts of constraint posting and
propagation together with intelligent backup.

In 1981-82 Mark Stefik worked on an Intelligent Planner called MOLGEN (Stefik 1981). It is
a planner for Genetic Experiments. MOLGEN uses constraints through the processes of generation,
posting and propagation. This work was one of the most significant contributions to symbolic

constraint propagation.
There are only a few Al scheduling systems:

... One of the few Al scheduling systems was in the domain of train scheduling
(Fukumori, 1980). It used a constraint-based approach to determine the arrival and
departure times of trains. ... A second Al scheduling study was that of Vere (1981). In it
plans are constructed, and times associated with each step in the plan. A sophisticated
algorithm for time propagation based on interactions is described.”

A third system is ISIS, a factory shop-floor scheduler. It is a constraint directed search

20

program which uses beam search to generate schedules. (Fox M.S. 1083)

Lastly there is a Intelligent Scheduling Assistant (ISA) project underway at the Al
Technology Center at DEC. It is a rule based scheduler and is built in OPS-5. | Orciuch Ed, Frost
John, 1985}

21

I1.2 Current Methodologles

In this section we shall describe two existing approaches to the scheduling problem. The first
one is a branch and bound method used for producing optimal schedules for a multi resource-
constrained case. The second is a constraint directed search methodology used for Job Shop

scheduling.
I1.2.1 Branch & Bound | Stinson Joel, et.al. 1978]

The Stinson algorithm uses a branch and bound cycle to develop a tree of choice nodes. In
order to keep the problem of tractable size, pruning is carried out using :

- Dominance Principles

- Lower bound pruning.
As the search tree is being expanded, dominance rules prune off nodes that are statically inferior to
other generated nodes or are subsets of them. Once a set of candidate nodes are generated it is
pruned using a lower bound estimate to complete. This estimate is calculated using heuristic

projection techniques.

As long as the estimate to complete is a lower bound on the real completion time, the

algorithm can be guaranteed to give optimal results.

The major problem with such an approach is that it cannot handle ad-hoc or complicated
constraints. Our research efforts are toward a system which can handle any realistic constraint that

is tossed at it.

11.2.2 Constraint Directed Search

[Fox, 1983

The ISIS system, built at the Robotics Institute of the Carnegie-Mellon university, performs
constraint directed heuristic search; constraints are used to bound and guide the search

(scheduling) process.

We shall now describe the process of constraint directed search. The mecthodology described

22

here may look similar to that of ISIS. This discussion however, is nut an attempt to explain 1818, it

is an attempt to familiarize the reader about the current techniques used.

Consider a scheduling problem wherein several jobs need to © - teduled in a machine shop.
Each job has a set of activities that need to be carried out on it. 7' ¢ activities are essentially a

sequence of operations to be carried out on several machines.

We start the scheduling by picking up the job with the highest priority and start scheduling
it. While scheduling a job we start with its first operation, say 'opl’. It is possible that 'opl’ may
be carried out on one of several machines. To represent such choices a activity-network for each
job is prepared. In figure 11.2.2.1 we can see that job J1 has three operations : opl, op2 and op3.
Operation opl may be carried out on machine mcl or me2 and so on.. For operation op3 machine

mc5 may be choseu in place of mc4 and mc6 taken together.

The scarch tree is then developed using this activity-network. Figure 11.2.2.2 shows the
development of such a search tree. At point 'A’ we were dealing with operation 'op1’ and have the
choice of either taking mcl or mc2. Going one step further we have four time periods to choose
from for each machine. The schedule developed up until the choice of the time period is called a
partial schedule. We now need some evaluation function by which the nodes can be weighted. This
evaluation function, as the readers can see, is very critical to the ¢f{icacy of the search paradigm.
These evaluations are heuristic in nature and much research has gone into the study of these

evaluation functions.

Setting aside this issue for a the moment we proceed to develsp our search tree. Assume we
decide to do operation opl on machine mcl in time period 't1'. T!.s places us at node 'H' with a
choice between nodes: [,JK or L. The hatched line in the figure shows the path taken till node K,

where time period 't4’ was chosen for 'me3’. This can be shown as a Gantt chart: figure 11.2.2.3

After having scheduled Job J1 fully, the system chooses the next job and performs the same

process. If there ever is a clash at a machine, the system tries to backup and choose another

23

A e e Bt ot ot e

MC6

MC4

MC 5
OP 3

MC 3

oP 2

FIG 11.2.21

»

24

[START J038= J1

@

MACHINES

MC 1 MC2 @

MC 3 @

MCS MC4 & MC6

FIG 11.22.2

25

N W pre r

Yoy

L |

-

- ® e

-l

[R S

(3] 'S 2 [) t 4
L~ =T
MC1 //11%
L~
s i

PanTiAL ScHEDULE AT NODE K IN Figure [1.2.2. 2

Freure 11.2.2.3

26

")

[l |

PR

machine. If this is not possible, the job with higher priority gets scheduled and the other one goes

back to the bag of unscheduled jobs.

That was the basic idea of scheduling using a search tree. We now discuss the method of
choosing a node when there are several viable choices. A evaluation function is used to find the

best choice.

In a constrained problem one can evaluate the nodes on the basis of the extent to which each
node satisfies the constraints. If each constraint has an utility then the total utility at a node i is
given by:

Utility = » (Utility of constraint i) * (level of satisfaction of i)

A

Such an utility can be calculated for each node, that is, for each partial schedule represented at
that node. The above evaluation function does not make an effort to "look forward”. In other
words, the evaluation is based upon the choices made up until the current node 'n’. Let us call this
utility g(n). If the choice of a node is said to be based on a value called f(n), then the evaluator just
described is:

f(n) = g(n) -2
The branch and bound technique’s f(n) is different

f(n) = g(n) + h(n) . |3

where h(n) is a heuristic estimate of the total cost to complete. If the h(n) is guaranteed to be

a lower bound on the actual cost to complete then the search is guaranteed to lerminate at a

optimal solution. [Nillson 1971]

The subsequent sections touch upon the problem we are trying to address in our scheduling

project. The domain is that of scheduling the training activities of troops at an army installation.

27

e

syl

11.3 The role of Search in Scheduling
We start this section with an explanation of the scheduling problem in a domain independent

fashion. A typical scheduler can be thought of as a system which answers the following questions

1 Who

2 Where
3 What
4 When

In the job shop scheduling domain the 'who' is the job, 'where’ is the machine, 'what’ is the
operation and 'when’ signifies the scheduled time. [Note: More dimensions (e.g. 'which’' for

resources) can be added to suit the domain in question]

Figure 11.3.1 shows how this kind of a scheme might work. Each cycle of choices "who ->

where -> what -> when ...” is called a scheduling cycle.

The search tree, as shown in figure I1.3.1, is bound to become very large. To avoid a
combinatorial explosion we could restructure the representation as in figure I1.4.1 Changes in search
or control of constraints are all carried out by heuristic rules. This formalism allows us to change

the perforinance of the system by changing the heuristic rules.

I1.4 Scheduling Army Tralnlng Actlvities
The research presented in this paper is all the product of the development of a scheduling

system for army training. Translating the framework presented in section I11.1, we have:

who = battalion

where = range

what = training activity
when = date

In addition to this basic framework, we have a large set of constraints that need to be

satisfied. The constraints specify the conditions to be met in the final solution. It is possible that

28

O —

SCHE DULIN,

CYCLE

HAT
RhAt O O 4O O

HWHEN - O O O N 0

S

HO
W O

j WHERE

\
}
!
' ’ \
[}
'
'
1

Fieupe I[[.3 1

29

UYOM 13BN AMAILDY ﬂé.: muaw_u

m"vl v AVd 4_? ¢ Avd wh_v. 1 AvVC wO
_ " | |
A= A =
| | " N
“ ! | "
i m .__ m W |

14)

tr
v

Id

30

proe

proasn

I — PPN

there are several solutions to the problem. Our first objective now, i: to {ind any of the satisficing

solutions.

For this domain, a activity network is drawn for each battalion. The network is shown in
figure 11.4.1 The figure shows the activity network of a battalions called 'B1' . The activities to be
chosen from are : al,a2 and a3. The firing range is to be chosen from among rl, r2 and r3. The
search tree has been reduced in size by assuming sequential scheduling. The activity network has

choice nodes at the beginning of each day.

Once an activity has been chosen for a particular day, the next step shall be the choice of the
range where the activity should be carried out. The ranges available to each activity is dictated by
the nature of the activity and the size of the range. (e.g. If a range is small, it cannot support

weapon systems which require large safety spans.)

Having presented the basics of schedule generation using the Search paradigm, we conclude
this introductory chapter. The following chapters start the discussion about the role of constraints

in scheduling.

1

e g

B~

Chapter III

Passive Use of Constraints:
The First Implementation

II1.1 Introduction
It is our aim to develop a scheduling system that will be able to handle ad-hoc constraints.
This chapter presents some of the representations used for schedule generation and discusses the

passive use of constraints.

Constraints are said to be passive when they do not play an active role in guiding the search
process. The constraints are used only after a partial schedule is generated. In essence it is a case of

the Generate and Test paradigm.

ITIL.2 Partial Schedules

As stated in section I1.3, the scheduling problem can be solved by search techniques. The
product of each scheduling cycle is an assignment of a battalion to a range for a particular training
activity on a particular day. This is represented as a predicate called scheduled. The form of the

predicate is thus:
(scheduled {battalion _name} {activity _name} {range_no} {time_ period})

Each such assignment is called a schedule element. The complete schedule consists of several
such schedule elements. Consider a scheduling cycle of the following configuration:

battalions: {bat_A bat_B bat_C}

activities: { act_A act_B act_C}

ranges: { range_ A range_B range C}

time periods: { 1234567891011 12}

A search tree is shown in figure: [[[.2.1 . The hatched lin-: in the figure shows us that

battalion: bat _ A is going to perform activity: act_ A on range_ C cr day: 8. In addition it shows

32

that battalion: bat _B will perform act_ C on range_ B on day: 6.

The scheduling elements developed in the figure are:
(scheduled bat_A act_A range_C 8)

(scheduled bat_B act_C range_B 6)

By going deeper in the search tree the scheduling elements start representing a more detailed

schedule. The constraints are used to check the schedules prepared by the search process.

A depth first search technique was employed. The first implementation was built with the
idea of using constraints in an after the fact fashion. For successful completion, the schedule
produced by the system had to satisfy all the constraints. Every time the path is expanded, it is
checked. There are three outcomes of such a check. The check function returns a message to the

scheduler telling it the status of the schedule generated.
I all_ satisfied
This means that all the constraints are fully satisfied, and that the schedule is complete.

2 continue

This message is passed back when the current schedule is found to be partial. When the
schedule is partial, all the constraints will not have been invoked. However, those invoked will he
satisfied. (Note: a eonstraint is invoked when it's premises are true.)

8 faslure

. As soon as a violation occurs, failure is indicated. The failure message causes the scheduler to
backtrack to the last scheduling decision. This action is called chronological backtracking and is

generally very inefficient.

33

START
ak_A |lad_8 bok. c
ack_A act_B act.c
vange Al [range.B Tange _C

Fiques [1[.2.1

rak_A lrek- 8 bek. ¢ |

[ace_{; act.B act.C |

Yange. 8

34

- AL D,

The procedure

1.0 Form a stack of constraints

2.0 Unstack the first constraint and test it against the
current partial schedule.

Add the returned message to a results list.

3.0 If any one of the results is failure then fail and
start backtracking .

40 If not end of constraints stack, go to 2.0

5.0 If any one of the results is: not-applicable then
continue the search.

6.0 If all results are 'satisfied’ then return the message:
'all_satisfied’ and terminate the search.

I11.3 The constralnts

The reader would have noticed the use of message called 'not-applicable’. This signifies the
situation where a partial schedule cannot satisfy all the constraints. Let us now examine what
'not-applicable’ means:-

Each constraint has three parts:

(1) Name of the constraint

(2) The applicability pattern/patterns

(3) The tesis

When a constraint is to be checked against a schedule, its applicability is checked first. If it is
applicable, then the tests are executed. The constraint is deem ed satisfied if all the tests return
'true’.

The constraints are written in a crude (first cut) constraint definition language called CDL-I.
The CDL used in a later implementation is more powerful than the one presented in this section.

Before we go further, let me set the stage for CDL-I and present a few examples.

35

CDL-! makes use of a pattern matching and variable binding facility. It’s patterns act directly
on the schedule elements. Extending the example problem presented in scenario (Chapte. 1) we

shall set up some constraints for the problem.

The syntax of a typical constraint is:

(constraint (name -name-)
(-pattern-)
(-tests-))

Let us now translate some of the constraints into CDL-1.

The constraint C1: "A battalion can do only one activity in one time period”.

(constraint (name C1)
(>bat >act >range >day)

--> (equal (sigma (<bat >act >range <day)) 1.0))

The above constraint has the name 'C1’ and has a pattern:
(>bat >act >range >day)

and a test (for testing the generated schedule).

The program has a stack of such constraints. It picks up a constraint and tests it. The first
step is to match the pattern against a database. The use of the symbol '>" (do not view it as a
greater-than sign} means that the attached word is a variable. This variable can be bound to any

value in the process of pattern matching. For example, if we match the pattern:

(bat_A >x1 >yl >z1)
with the schedule element (stored in the data base):

(bat_A act_A range_A 8)
then the matcher will match bat _ A to bat_A , x1 to act_A, yl to range__A and so on.

36

A e e e Bl s e

Consequently the bindings will be thus:

x1 = act_A
yl = range A

zl = 8
Once bound, the variables can be used in the testing part of the constraint.

Now for an extended example: let us assume that there is a partial schedule that looks like
this:-
((bat_A act_A range B 8)
(bat_ B act_B range C 4)

(bat_C act_C range A 6)
(bat_ B act_A range A 4))

There is a problem in this schedule. Battalion: bat_B has been scheduled to do two different

things on the same day (i.e. day: 4).

The constraint C1 has to catch this. It has in its test a statement that says : "for each
battalion, the day assigned to each schedule element has to be unique to that schedule element™. In
other words, the total number of schedule elements in the database that have the same battalion

name AND the same day should be unity.

For example, let us choose bat_B. We start at the top with the first schedule element for

bat_B:
(bat_B act_B range_B 4)

The constraint C1 will have the following bindings: act = 'act _B’, range = 'range _C’ and
day = 4. It now knows that for bat_B there should not be any other schedule element with day
= 4. This is regardless of the activity and the range. In some sense, the total number of schedule

elements that match:

37

e — ———

PR USSR

(bat B >act >range 4)

should be unity. The summations is carried out by the c'~ma function in the CDL-I
constraint shown above. The pattern has two variables >act and > range in it. For this reason it
will match any element which has the string "bat _B” in the first ploce, anything in the second
and third places and "4” in the fourth place. We can see that the above pattern will match the

partial schedule twice. Consequently the test will fail.
Let us look at the constraint C1's code again. It had a test part with the pattern:
(<bat >act >range <day)

in it. This pattern has two variables >act and >range. It has a new symbol "<” . This
symbol means that the value of the variable should be instantiated. In other words the the above

pattern gets converted to
(bat_B >act >range 4).

This is the basic idea behind CDL-I's pattern matcher. We have used this method of binding

and instantiation because we later will write constraints which are able to write constraints.
The constraint C2: "There shall be only one battalion on a particular range in a particular

time period.”

(constraint (name C2)
(>bb >aa >rr >dd)

--> (equal (sigma (>b >a <rr <dd))
1.0))

Constraint C4: The ranges which are suited to each activity:

38

S ——

e

(constraint (name C4_ome)
(>bat act_A >range >day)
--> (or (equal <range range_A)
(equal <range range_B)))

(constraint (name C4_two)

(>bat act_B >range >day)
--> (equal <range range_C))

CDL-1 is not good for some complex constraints. A CDL-Il has been developed which allows

for the intelligent use of constraints.
111.4 CDL-I: Performance Issues

The performance of the CDL-]1 based search mechanism was very poor. The program took
several hours to run. Slightly bigger problems caused serious problems and was full of backups. It
always seemed to be looking down the wrong path! It has been estimated that if this strategy is
used for a full fledged problem, it may require several months of CPU' time before it can terminate

successfully. So much for the passive use of constraints.

The purpose of this chapter is to give the reader a feel for the motivations for moving
towards the intelligent use of constraints. The development of such intelligent techniques is the

essence of this thesis.

39

L

.

PN

O —

Chapter IV

Active Use of Constraints:
- Some Intuitive Ideas

IV.1 Introduction

This chapter adopts a highly intuitive approach to the concept of active constraint utilization.
In Chapter 1ll we saw how the generate & test method of search fails to deliver. In this chapter we
show how constraints can be used for search pruning. We present a framework wherein constraints
are not hard-wired into the scheduler but are input via a constraint definition language (CDL).
Consequently, the constraints can be changed by the user as and when adjustments are required.

Such flexibility is essential to real-world scheduling systems.

The constraints and the data are the only domain dependent parts of the program. The
constraints are essential to the operation of the scheduler. If there are no Constraints at all, the

program will do nothing. We need to tell it that it is a scheduler!
Consider the constraint shown below:-

[Note: The CDL used here is in plain English only for the sake of brevity, a more formal
development is presented in Chapter V|
[Constraint: Battalion #42 shall perform:
[1] 300 hrs of tank _training
[2] 50 hrs of Dragon _qual

[3] 50 hrs of M16_sustain
[4 1CALFX

(5]

Given the above constraint, the system may start scheduling all the activities on the same
day and maybe on the same range. More constraints necd to be added to avoid this problem:

[Constraint: There shall be only one activity per
battalion per day]|

40

e O AR F ¥

7

Lo §

[Constraint: There shall be only one battalion per
range per day|

These two constraints will avoid clashes and ensure safety.

Having given the reader a flavor of what we mean by constraints; we now embark upon a
series of examples to illustrate the operations on the constraints. The basic operations are:
[1] Instantiation
[2] Generation
[3] Posting
[4) Propagation
[5] Relaxation (not examined in this paper)

[6] Satisfaction

IV.2 Instantiation

A constraint is said to be instantisted when any of the variables within the CDL are bound to
objects in the domain. If there is a constraint which says that every battalion shall qualify on the
M-16:-
| Constraint: For all values of 'x’ ,where 'x’ is a

battalion, that 'x’ shall perform 50
bours of M-16 qualification]

The variable 'x’ is then free to be bound to any battalion in the database. Once this generic

constraint is bound, it is posted against the corresponding object.
IV.3 Generation & Posting

Constraint posting can be initiated cither by a pre-specified global constraint or by a
generated one.

(1) A pre-specified global constraint is one that is always
true (at least they are intended to be so).

Here's an example:-

[Constraint: There shall be no training on Sunday]

41

(2) A conditional constraint is generated in the process of
solution:

|Constraint: II tank-training is scheduled for rangel6

THEN It is not safe to train on the
adjoining ranges: rangel5 and range17.]

Such a constraint remains passive until its pre-conditions are met.

Preference constraints are also posted against objects in the database. One may prefer to do a
FTX type activity during the non-winter months or one may prefer not to schedule M16__qual on

rangel2. These constraints are posted at the appropriate location on the activity network.

IV.4 Propagation

The first significant use of constraint posting and propagation in planning was done by
Stallman & Sussman (1977). Later, Mark Stefik of Stanford built an excellent system called
MOLGEN (Stefik 1981). His work has shown us how symbolic constraints, through the process of

posting and propagation can help in complex domains.
There are several types of constraint propagation relevant to our work.

8) Forward Propagation

After a constraint is posted, it may be propagated. Consider a constraint which requires us to
perform an activity 'act6’ for 3 successive days:
[Constraint: IF 'act6'is scheduled on a day 'x’
THEN ’act6’ shall be scheduled on days x + 1
and x + 2 also]

Figure IV.4.1 shows us how such a change might occur. As soon as 'act6’ was scheduled on dayl1,

the above constraint was activated and it was propagated to day12 & day13. The next scheduling

cycle will start on dayl4.

b) Cross Propagation

In section IV.1 we introduced a constraint which required that only one battalion can be on a

range at a time. Figure IV.4.2 shows us how such a constraint is propagated from one job to

42

another. If the Armor Battalion10 is scheduled on range 'R1' on a particular day, the constraint is

propagated to other battalions and the range is deactivated.

Another kind of cross propagation is diagonal in nature. Consider the following preference
constraint:

[Constraint: IF tank _training was scheduled on range
'x' on day 'y’

THEN 1t is preferred to reschedule
tank __training on range 'x' on
day ('y' + 1).]
This constraint captures the fact that the setup costs of targets on a range for a particular activity
should be translated to the next activity scheduled on that range. Figure 1V.4.3 shows how this
may be done in a two battalion situation. As soon as tank _ training was chosen for Batl at range
R3 on DAY116 it propagates 'diagonally’ across to the other battalion and increases the preference

level of R3 for tank-training. In other words, if tank _ training is chosen for Bat2 on dayl17, then

range R3 would be preferred.

43

ﬁ.,v.\/w m,QDJ_n‘

47 Ava@ g Avda

11 AvQ

azo_.—tm vdodd

-
-

- thu-dv

RN
~

Zn.,.(.r—im
dordy

o7 Avd

44

(Na'Lvh Vdodd
y 4
7 3yo43¢@)

rd

.

// NQlivilv g
dowWdy

g

Agnor
gatranon- 10

a3

—

Day 25

S e,

N

A

-

-

—_——

/ AXN
] Necw ‘

1 —_—

InFanTARY

BarraLion &2

Fioure IV . 4 2

45

i At

[T
>
. (RS)
! TANR TRAINING \\
! ' AN |
| \\ | |
| | I
i l AN
} N\) |
e Dav 116 e DAy 117 =
| I~ |
| ' | [
‘L ! | \\\“ e TANIS TRANING
! ' | || |
|
(Crs) (R4)
BAT' Z ‘
R10
a1t) R2
b
p
Fiqure V. 4.3
46
- - v

c) Backward Propagation

We shall examine two forms of backward propagation, the first type is used for due-date
constraints.

[Constraint:Duedatel : Armor Battalion10 should complete
all training by Oct 15]

Backward propagation (i.e. backwards from the due-date) is to be used only if there was a failure in
the forward propagation. This mode of propagation is similar to forward propagation, but in

reverse.

The second type of backward propagation is very interesting. In the domain of troops
training, one has to design well balanced training programs. It is required that certain proficicncy
levels are maintained among the troops in different weapon systems. In keeping with this, a cyclical
constraint is imposed. Such a constraint requires that certain training activities should be carried
out at regular intervals, throughout the year. This ensures that the troops neither train on one
weapon system all at once, nor have long time gaps between training sessions of a particular type.
Figure IV.4.1 [Source: Eilts, Wright, Houck 1984] shows a plot of proficiency levels vs time. In order
to maintain a steady level of proficiency in any weapon system, troops should be trained on that
system periodically.

[Constraint: Cyclical : IF a battalion is scheduled for
tank _training on some day 'd’

THEN it should not be rescheduled for
tank-training over the next 30 days
after 'd’

AND it should be rescheduled in less
than 60 days after 'd’]

Assume that a typical tank-training session was 5 days long and there were to be five such
sessions in a year. Figure IV.4.5 shows this constraint as a bunch of blocks and springs. The blocks
signify the training sessions and the springs allow us to incorporate some slack. The length of a
block represents the time period of the corresponding session and the length of the spring between

two blocks is the time gap between sessions. The level of compression of the springs is a measure of

47

PROFICIENCY

SUSTAIN PROFICIENCY

e

\
| SKILL
\/

DECAY

A

TIME

Fiavre IN.4.4 Learning and Forae TTiNG

CURVES FoR TR.AINING-, (SOUECE: ElLTS, NRIGHT g Heouck ’quf)

48

deviation from the constraint’s tenets.

Once the scheduling starts, a constraint like the one in figure IV.4.5 lurks about the vicinity
of the planning networks and waits to be invoked. This constraint will come into effect only after
the first training session is actually scheduled. As the scheduler advances along the planning
network the cyclical constraint's block&spring system gets pushed back. As the end of year
approaches the block&spring system gets pushed up the 'utility mountain’ (figure IV.4.6). As the
scheduling front moves forward without scheduling tank-training it gets tougher and tougher to
push back the block&spring system. This is corrected by a backwardly propagated constraint. As
shown in the figure, constraint 'A’, propagates backwards and increases the preference level of

tank-training for the next day.
IV.5 A classification for constraints.

Constraints can be classified on the basis of the effects that they have on the schedule
elements and their variables. A constraint that uses data of several schedule elements is called
multi-element in nature. The multiplicity of variables is the other dimension.

Single Multi
Element Element

Single
variable SV/SE SV/ME

Multi
variable MV/SE MV/ME

The most complex constraint is the MV/ME (Multi-variable/multi-element) type. It involves
several scheduling elements and places constraints on a more than one variable. By using constraint
generation, it is possible to convert complex constraints into simpler cases. The simplest case is the
SV/SE case. The methods used to convert a constraint from one class to another is presented in

the next chapter.

49

session DY L YVIMNGsssion YT HYFWY Gossiom D YRNTHGESsion)0V 700

l 30 ,! 30 J
A

d1 44+ 30 4L +60

Filavre 1N . 4.5 Brock 2 sPRING sYSTERM

r,/‘

G ;
COMPRESSION (<

\Nrrr F

TANK

~
ATRAINING
/

RN

S A R HTET

END OF

DCHADULING

FRONT

Fiwvee IV & 6 B8ackwARD Prosa caTiOW

50

VEAR

.- e ma

Chapter V

Active Use of Constraints

- The Second Implementation

V.0 Introduction

Having given the reader a intuitive feel of how constraints may be used for scheduling. We
now proceed to understanding the workings of the second implementation. The second
implementation uses constraints through the powerful mechanisms of constraint generation, posting
& propagation. Unlike the passive case, this technique tends to be lot more efficient. Large problems

could be solved in reasonable (few hours) time.

A new and improved constraint definition language called CDL-1l was used. CDL-II is built

wholly in a production system (similar to YAPS) called IMST. (Refer ~ppendix A)

V.1 The representation

The basic task performed by the scheduling algorithm presented in this thesis is similar to
that of linear programming.

The problem is set up as a large group of variables. Each variable has a corresponding valuc
sel. These value sels are lists of atoms. Through a search process one of the atoms is chosen from

the value sel. This is done for each variable. When all the variables are assigned to unary (single

valued) sets, the schedule is deemed to be complete.

In Chapter IV we mentioned that a schedule consists of several schedule elements. In the
program the schedule elements have variables in them. For example, the achedule element (bat_A
act_C range_A 9) says that battalion bat_ A will perform activity act__C on range_ A on day:

9. This schedule element will now be represented as:
(bat_A actl rangei dayl)

where actl, rangel and dayl are variables that are attached to battalion: bat _A. The

51

corresponding variable bindings are:

actl = act_A
rangel = range A
dayl = 9

Each schedule element represents one schedule instance. That is, it represents a unique set of
variable assignments. These scheduling elements are stored in a data base. The element can be put

into the data base by using the assert function.

For a better understandiig of the concepts of assertional dalabeses and of pallern direcled
inferencing, the reader is urged to ~cad Chapters 1 & 2 of Appendiz A
V.2 The constralnt Definition language CDL-II

CDL-Il is based on the concepts of fundamental set theory. Each schedule element has

variables in it. For example a schedule element:
(bat_A act0019 range0019 day0019)

has three variables act0019, range0019 and day0019. These variables have associated sets of

values from which one value has to be chosen.

The constraints are used to trim and focus these value sets and thus help in pruning the

search space. The physical action of the constraints on these sets are set theoretic in nature:

- Intersection
- Subtraction
- Union

- Restriction

These basic operations allow us to manipulate value sets in various ways. The first three

operators are obvious. Restrict is used to filter a value set based on a particular predicates or some

52

[adh £

-~

7

A

testing function. For example, if one wants to restrict a list of the first 10 integers to only those

that are greater than 6:-

(restrict '(1 23456789 10)
' (gt $83 6)

The $$$ symbol signifies the list which has to undergo restriction. The result of the above

restriction will be (7 8 9 10).

The other functions available in CDL-II are:

(set _value -var- -list-)
this sets the value of a variable to a particular list.

{get _value -var-)
retrieves the latest value of a variable.

(selected? -var-)

checks to see if all the variables in the supplied list are
selected variables. A selected variable is one which has a value set
with only one value in it.

With these functions it is possible to write constraints. Once again, picking up the example

problem from part D of chapter 1.
(2) Constralint: C1
In English:
" A battalion can do only one aclivity in one time period .”

In CDL-I:

53

. g

A

N
e,

. 'WM —— gl ol e g G N

(constraint C1 (>bat >act >range >day)
test (selected? <day)

--> (constraint Ci_aux (<bat >al >r1 >d1)
test (not (equal (quote <day) di))
--> (set_value di

(subtract (get_value di)

(get_value (quote <day)))
)

Here is a good example of constraint generation. The constraint Cl produces a secondary
constraint called C1_aux. Once generated, the Cl1_aux performs SV/SE (refer Section IV.5)

propagation. Note that C1 is SV/ME constraint and it gets converted into the SV/SE case.

Let us complement this with an example. If we have a partial schedule:

1: (assert bat_A act001 range00O1 day001)
2: (assert bat_A act002 range002 day002)
3: (assert bat_A act003 range003 day003)
4: (set_value ‘act001 *(al))

5: (set_value 'act002 ‘(al))

6: (set_value 'act003 ’(al))

Figure: V.2.1

This way of setting up the data explicitly lists down the number of scheduling elements
required. Notice that the scheduling elements are added to the database via assertions which

consist of a battalion name followed by three variables. The database produced will be:

54

(bat_A =act001 range001 day001)
(bat_A act002 range002 day002)

(bat_A act003 range003 day003)

The corresponding variable bindings:

Variable Binding
act001 (a1)
act002 (al1)
act003 (al)

When the constraint C1 is executed it will generate the following new constraint.

(constraint Ci_aux (bat_A >al >ri >di)

pe

test (not (equal 'day001 d1))

~-> (set_value dl

RV SO TSR

(subtract (get_value d1)
(get_value 'day001))))

.

The other two constraints will have day002 & day003 in place of day001 above. C1_aux can

vangayBifiten

match any element of battalion 'bat _ A’ except the one with day001 in it. It will then proceed to
subtract the value from the current element's day set (bound to d1, above). For example if day001

was set to (8), then it would be deemed selected and will make constraint C1 generate C1_aux. In

turn C1_ aux will subtract out the value (8) from the value sets of all other day elments of that

battalion.
(b) Constraint: C2

In English:

55

There shall be only one battalion on a particular range in a parlicular time period.

i
r In CDL-IL:
{(constraint C2 (>bat >act >range >day)
test (selected? <range <day)

- - —

--> (constraint C2 one (>b2 >a2 >r2 >d2)
test (not (equal a2 (quote <act)))
; make sure its not the same one!

(equal (get_value r2) (quote <(get_value range)))

Y~

--> (set_value d2
1 (subtract (get_value d2)
(quote <(get_value day)))))

; the second constraint generated by C2 :-

A

(constraint C2_two (>b3 >a3 >r3 >d3)
test (not (equal a3 (quote <act)))
(equal (get_value d3)
(quote <{get_value day)))

--> (set_value r3
(subtract (get_value r3)
(quote <(get value range))))))

(The use of ! is equivalent of the use of the comma for the backquote macro.)

Constraint C2 looks for any schedule element that has both the range & the day selected.
Once this is done it generates two new constraints C2__one and C2_two. For example, il range:
range_ B is reserved for day 5, then C2_one will go around looking for any battalion that is
scheduled for range: range_ B, it will then remove day: 5 from the value set of that schedule

element. C2__two does just the opposite.
k Constraint C2 was multi-variable/multi-element whereas C2__one and C2_ two are SV/ME .

Extending the data set in figure V.2.1 we have:

56

e oy o

L gird

e B Ry e,

7: (assert bat B act004 range004 day004)
8: (set_value ‘act004 ’(act_A))

9: (set_value 'range004 '(range_A))

10: (set_value 'day004 '(5))

11: (assert bat_B act006 range005 day005)
12: (set_value 'day0056 '(1 23 4567891011 12))
13: (set_value 'range006 '(range_A))

The statements 7,9 & 10 will cause constraint C2 to generate C2_one and C2_ two, as the

range & day are both selected for battalion bat__B, the new constraints that are generated are:

(constraint C2_one (b2 >a2 »>r2 >d2)

test (not (equal a2 ‘act004))
(equal (get_value r2 '(range_A)))

--> (set_value d2

(subtract (get_value d2) '(5))
»

(constraint C2_two (>b3 >a3 >r3 >d3)

test (not (equal a3 ’'act004))
(equal (get_value d3) '(5))

--> (get_value r3 (subtract (get_value r3)

'(range_one)))
)

Let us go through the process by which C2_two is tested against the partial schedule

presented in figures V.2.1 and V.2.2. When C2_two comes to expression 11. The bindings will be :
b2 = bat_A

57

L

N

a2 = act005

r2 = range005

d2 = day005

The first test is:(not (equal ’'act0056 ‘*act004)), the second one is: (equal

(get_value ’'range006) ’(range_A)). Both tests are true. The final part expands to:

(set_value ’'day006

(subtract (12345678910 °'(8)))

The value of day005 is now set to a new value set without the value (5). The search procceds

with this new restricted value set.
(¢)Constraint C3
In English:

If any baltalion 18 scheduled for activity act_ B then it should not be scheduled for anything in

the smmediately next period.

In CDL-II:

(constraint €C3 (>bat >act >ran >dd)
test (equal (get_value <act) '(act_B))
(selected? <dd)
--> (constraint C3 aux (<bat >actl >rani >ddd)
test (not (equal rani) (quote <ran))
--> (set_value ddd
(subtract (get_value ddd)

(list (+ 1 (car (get_value (quote <dd)))))
)DD))

58

. . -

a

Bk o B O

R

Ladd |

(d) Constraint C4
In English:
Activity act_A can be carried out on ranges range__ A and range__ B only

In CDL-II:

(constraint C4 (>bl >al »>ri >d1)
test (equal (get_value <al) '(activity_A))

--> (set_value <r1 ’(range_A range_B)))

Note that C4 is a SV/SE constraint and is directly applicable.
(e) Constraint C§

These const:aints are expressed directly as assertions and set__value calls. Figures V.2.1 &
V.2.2 show us how this may be done. This is probably one of the limitations of CDL-IL It requires
the user to specify the actual number of schedule elements. Each assertion produces one schedule
element with three variables, the constraints could be used to develop the elements but it would

require some kludgery.
(f) Constraint: C0
The cyclic constraint produces a constraint network which allows for backward propagation.
In English:

There iz a cyclic constraint on the activity called act_ A. This means that a batlalion should
perform act_A al regular intervals. If the first scheduled date i3 z, then the next dale should be

after z+2 but before z+4.

The constraint is clearly MV/ME in nature. It should allow for both backwards and forward
propagation, as discussed in section IV.4 . Being a MV/ME case we will have to reduce it to a

SV/ME case by using the constraint generation technique we have been using till now. To avoid

59

excessive kludgery it was decided to present only the SV/MI case (after generation is done).

The constraint (6 is to be exposed on act _A, there are three occurrences of act _ A (figure
V.2.1). From the figure we see that the three variables day00l, day002 & day003 are to be
governed by the cyclic constraint. Assuming that there is a function called create _cycle which

produces the following constraint, we have:

(constraint c6_one (bat_A act001 range001 day001)
; being specific to battalion_one
; could be done automatically

(set_value 'day003
(restrict (get_value ’day003)
*(and (ge $$$ (+ (get_min_value 'day002) 2))
(le $38 (+ (get_max_value ’day002) 4)))))

(set_value ’day002
(restrict (get_value 'day002)
'(and (ge 3 (+ (get_min_value ’day001) 2))
(le $%3 (+ (get_max_value ’day001) 4))
(le 3 (- (get_max_value 'day003) 2))
(ge $8% (- (get_min_value ’day003) 4)))))

(set_value 'day001
(restrict (get_value 'day001)
'(and (le $$$ (- (get_max_value 'day002) 2))
(ge $$$ (- (get_min_value 'day002) 4)))))
)

The functions get_max_value and get_min_value get the maximum and minimum value
of a specified variable. The form of the constraint sets up a constraint network (Sussman G.J., G L.
Steele 1980). This network deals with value sets and has to maintain consistent propagation. As the

values are numeric, propagation is simple and definitive.

Let us take up an example at this point. Extending the example in figure V.2.1 we have:

60

14: (set ‘'total period '(1 23 4586789 10 11 12))
15: (set ’'earlier '(1 2 3 4 5))
16: (set ‘'later '(8 9 10 11 12))

17: (set_value 'day001 later)
18: (set_value 'day002 total_period)
19: (set_value °'day003 total period)

Let us now walk through the propagation. The initial value sets are as below:

day001: (8 9 10 11)
day002: (123468789 10 11 12)
day003: (1234656678910 11 12)

When C6_one executes, the first set_value expands to:
(set_value 'day003
(restrict ‘(1 234667889 10 11 12)

'(and (ge $$% (+ 1 2))
(le $38 (+ 12 4)))))

The restriction causes the value set to shrink:

day003: (346566789101 12)

When the second part expands, we get:

61

(set_value ’'day002 (restrict ‘(1 23466789 10 11 12)

'(and (ge $$% 10)
(le $$$ 16)
(le $38 10)
(ge $38 (- 3 9)))
»

This will return:
day002: (10)
The next times C6_one is called we get:

day001: (8
day003: (12)

This is really how constraint propagation alone could be used to come up with answers.
Things do not always work out this way. Generally constraints reduce the value-sets to some

smaller sets which then require search techniques. This is the topic of the next section.

62

V.3 The Algorithm
The underlying algorithm is that of search. The process of search consists of propagation-

search-propagation cycles which terminates when all the variables have reached selected status.

The Algorithm:

1 Load data
2 Load Constraints
3 Carry out all the propagation possible.

Unless the propagation returns an error ,
continue propagation

IF a fallure Is reached

THEN backup and retract all
the generated constraints.

IF the backup returns fallure,

THEN announce schedule failure and stop.

4 After all propagation, choose the most constrained
varlable,l.e. the variable with the smallest value-set
other than unary.

IF no such varlable exists,
THEN announce success and stop.

3 Expand (branch further down the tree)

] Go to step 3

Figure V.3.1

63

Fny

N

There are two ways that the algorithin terminates:

(1) success

Success is reached when all the variables have unary vslue-sects. This condition is detected in
step4 in figure: V.3.1 . A function called get_most_ constrainted _variable searches from
among the variables which have yet to be assigned. It returns that variable which has the smallest

value sel other than unary. This is done to reduce the branching factor.

2) fallure

A total failure occurs when the backup (step 3) reaches the bottom of the scheduling stack.
Currently the backup is chrenological in nature. This is because non-chronological or dependency
directed backup is not easily determined (Stallman, R & G.J. Sussman 1977). These ideas will be
developed later in this chapter.

V.3.2 Contexts and thelr Tracking

Every time the scheduler passes through the propagate-branch cycle, it produces a new
context. The new values sets that are assigned to a variable in each propagation step are all
context dependent. Further, in order ot help backtracking the program stores a history of the
value eete for each variable. In this way, the retraction of a decision is done by just undoing all the
effects of the corresponding context. Contexts are represented by the symbol cycle. The
progression of Contexts is represented by numerically increasing the cycle number: cyclel
cycle2 cycle3d......

We will now go through an example which shows how new contexts are created and how they
are used. Before we go further, lets look at the functions set_ value and get_ value once again
and see what they really do. The value of a variable is actually stored as a push down stack. The
set__ value pushes the new value onto the stack along with the value of the current context. The

get _ value looks up the top of the stack and hence returns the latest value.

Consider a new example:

64

—temm oA

LD

1: (assert bat_A act! rangel dayl)

2: (set_value ‘act! '(act_A))

3: (set_value 'dayl '(1 2 3 4 5 6))

4: (set_value ’'rangel '(range_A range_B range C))
6: (assert bat_A act2 range2 day2)

6: (set_value ‘act2 ’(act_A))

7: (set_value 'range2 '(range_A))

8: (set_value ’day2 '(5))

9: (assert bat_B act3 range3 day3)

10: (set_value ‘act3 '(act_C))

11: (set_value 'range3 '(range_A range B range C))
12: (set_value 'day3 ‘(12345 8))

Figure: V.3.2

The above data assignments will translate into the variable assignments as shown in figure

V.3.3 . Assuming that the current cycle number is cycleO, we have:

Y

65

e o et o= & s

e 22 L e

actl!
dayt
rangel

act2
day2
range2

act3
range3
day3

((cycleO
((cycleO
((cycleO

((cycleO
((cycleO
((cycleO

((cycleO

((cycleO
((cycleO

Figure: vV.3.3

(act_A)))
(1 234586)))
(range_A range_B range C)))

(act_A)))
6)))
(range_A)))

(act_C)))
(range_A range_B range C)))
(123456)))

Note how the cycle number is stored along with the value-sets. We are now ready to start

applving the constraints. Using the same constraints as in chapter I (except constraint: C7) we get

the the following new values. These values are put in on the top of the stacks of the corresponding

variables:

Variable

rangel

range3

New value added Constraint
to the stack name
(cycleO (range_A range_B)) C4_one
(cycle0 (range_B)) C4_three
(cycle0 (1 2 3 4 8)) C1

day1

Note that during propagation the cycle number does not change. In the current

66

———

T

7

L aad

implementation the constraint numbers are not stored along with the propagated lists. If this

practice were adopted, it could help in performing dependency directed backtracking.

Once all the propagation is complete, the program looks for the most constrained variable.
This variable, by definition, is one whose latest value-set has the minimum number of values. The

minimum number is however has to be greater than unity.

The variable ‘rangel’ is the most constrained. The branches that are produced are: range _A
and range_B. These two values constitute two different choices and are hence attached to new

contexts. This is performed in two steps.

(set_value 'rangel ’(cyclel (range B)))

(set_value 'rangel ’'(cycle2 (range A)))

The stack for rangel now looks like this:

variable: rangel

(cycle2 (range_A))

(cyclel (range B))

(cycle0 (range_A range B))

(cycleO (range_A range B range C))

Figure: V.3.4

The program attempts propagation once again. The latest context being cycle2. No
effective propagation occurs. NOTE that we had dropped constraint C7 from the current

constraint set. We have dropped C7 only momentarily and will reintroduce it later.

Once again, the most constrained variable is chosen, this time it is day1l with the value set (1

2 3 4 6). The stack for day1 looks like this:

67

i

variable: dayl
(cycle7 (1))
(cycle6 (2))
(cycleb (3))
(cycleda (4))
(cycle3 (6))
’ (cycled (1 2 3 4 6))
(12345 6))

(cycle0

,

Figure: V.3.6

After the branching shown above, propagation is attempted. Once again, propagation does

not occur. We enter the next branching stage by choosing day3.

variable: day3

e L e —— ._.,,.‘__,/_._z.,.

; {cycle13 (1))
‘ (cycle12 (2))
' (cycletl (3))
4 (cyclel0 (4))
(cycles (5))
(cycle8 (6))
4 (cycle0 (1 2 3 4 b 8))

Figure: V.3.56

Once again no effective propagation occurs. We now look at a listing of all the variables and

v T — .

their values. The value of a variable, as returned by the function get__ value is it's latest value

-—

(top of the stack) regardless of the associated cycle number.

68

Variable (get_value -var-)
name

actl (cycleO (act_A))
dayl (cycle7 (1))
rangel (cycle2 (range_A))
act2 (cycle0 (act_A))
day2 (cycle0 (b))
range2 (cycleO (range_A))
act3 (cycle0 (act_C))
range3 (cycle0 (range_B))
day3 (cycle13 (1))

Figure: V.3.6

As all the vanables are unary, the program would announce success and stop (after

propagation) If however a contradicion was reached during propagation backup would be

nitiated

Let us reflect on thr cuvan., = for 2 moment Compared to the first implementation, this

program terminated very quickly tly judiciously using the constraints, backtracking was reduced.

PP S U vy

Using constraints through mechanisms hike generation,posting and propagation, search programs

have been found to reduce backtracking dramatically (Stefik M. 1980).

69

Yy

V.4 Backtracking

To ilustrate backtracking we now introduce the constraint C7 into the example we have
been working on. C7 is a safety constraint that says " doing activily: acl_A on range _A on a
particular day, will cause range__ B to be unusable on that day.” By glancing at the final results as
shown in figure V.3.6 one notices that C7 is violated. On day 'l’ battalion: bat_ A will be
performing act_A on range_ A, however range_ B will be occupied by bat_ B on the same day.

This causes an error when constraint C7 is enforced.
There are several ways of backtracking at this point:
1: Change day3 to (2)
or 2: Change dayl to (2)
or 3: Change rangel to (range _B])
or 4. Some combination of the above

It is very difficult to decide upon which backtracking technique to adopt. To get around this
decision, the current implementation just retracts the latest cycle. The latest cycle is cycle13 and
retracting it is equivalent to adopting strategy 1 (above). By popping the stack for variable day3,

the top of the stack now is: (cycle12 (2)). On propagating this, the program returns successfully.

Instead of ending on this rather encouraging note, we shall examine likely strategies for
backtracking. Using chronological backtracking can often be very inefficient. There should be some
way of finding out the best strategy. The first step in this direction is the identification of
dependencies. In other words, we look for the culprits, the variables and constraints which cause
the error to occur.

An error occurs when a constraint tries to set the value of a variable to the empty set (). The
null set means that the variable got over-constrained and that the constraints have forced a

contradiction to occur. At this point, the culprits are the corresponding constraints and all the

variables that take effect through that constraint. As the constraints are the only form of domain

70

dependent knowledge, backtracking should be based on the form and structure of the constraints
alone. | believe that the constraints can be pre-compiled into a complex, multi-referenced network.
This symbolic constraint network would be able to look-ahead and make intelligent choices. An
ability to look ahead is valuable because, under the current implemcntation, constraints seem to
suddenly pop up when certain choices are made. The constraints, ‘1 some sense, lurk about the

program and appear suddenly, often to the dismay of the scheduling program.

There is an important tradeoff while pre-compiling the constraints. 1¢ is possible that the time
spent in developing the constraint network itself might waste too much time, one might be better

of going ahead with the search.

71

b aadfad 2

R o g o - -

=X

Chapter VI

Future Directions
V1.1 Exploiting the Flexibility of CDL-II

V1.1.0 Personal Constraint sets

In real world scheduling probleins there are several people involved in the development of the
schedule. Each person has his/her own rcquirements off the schedule. As it is not possible to
accommodate all the people, traditional scheduling programs tend to have a few, well established
constraints hard wired into the system. These constraints, however, are subject to change. For
example, changes in the staff of an organization can bring new managers who have unanticipated

idiosyncrasies. You cannot rewrite old software to accommodate them!

Given the framework presented in this thesis, it is possible to input the constraints of several
people at the same time. Each person will have his/her own set of constraints. The computer
consequently tries to satisfy all the constraints. To facilitate usage, one would have to develop a
higher level constraint definition language than the one (CDL-11) presented in chapter V. Let us call

this natural constraint definition language: CDL-N.

Armed with something like CDL-N each person could input his/her own set of constraints.
Further, he/she will be able to review and edit the constraint sets to suit his/her personal feelings.
Each set of constraints will consequently reflect the personality of the person who owns it. These
data sets can be added and removed when required, for example:- when a person gets transferred
all he/she does is, take his/her constraint sets with him/her to his/her new job site. Likewise, if a

senior manager retires, his/her personality can be retained in the form of CDL-N statements.

In addition to personality datasets there are datasets which correspond to other extraneous
constraints:-
a) Personality dataset

b} Resources dataset

72

¢) Shop floor constraints

d) Environmental factors

Environmental constraints can cover expected conditions like snow fall or financial climate,

depending upon the application one is dealing with.

The system uses these constraints to draw up a plan and a schedule. It may not be possible
to satisfy all the constraints. Under such conditions, the system will initially try ot satisfy the
constraints which rank higher (fuzzy ranking). Further, a person higher up in the organizational
structure will get higher weightages.

Drawing from the concept that an organization is basically an information processor (at some
level), one will be able to model the whole organization. CDL-N could be an extension to the
Business Definition Language developed by IBM corporation.

VI.1.2 What If Games

Once the constraint sets are entered, the users can go into a wha! if mode and can change

their constraint sets to see how sensitive the system's response is to the changes he/she makes.

The system, in the process of scheduling should give reports on costs, resource requirement,
performance standards etc. The user can play around with his data set and see how he can best
adjust to the personalities of others.

The computer may even be able to ask itself what if questions.

V1.2 Handling Multiple Heurlstics in Scheduling:

- towards a system Architecture

V1.2.0 Introduction

This section explores the techniques that may be used for handling multiple heuristics.
Several researchers in Operations Research have developed heuristics for activity scheduling. Each

of the heuristic is suitable for particular types of problems. None of the heuristics can perform well

73

in all scheduling problems. In this chapter a system architecture is proposed that which allows one
to use these heuristics as and when required. It is stipulated that: If one could find out the
conditions under which a particular heuristic is effective or ineffective, then it may be possible to

recognize patterns and invoke the heuristics appropriately.

In section 11.3 we introduced the concept of the scheduling cycle. In figure 11.3.1 our cycle
looped from the choice of 'who' to 'where’ to 'what' to 'when' and back. There are two very

fundamental questions that this formalism raises:
1) How does one decide upon the sequence of choices in the scheduling cycle.
2) Having generated some choices how does one choose which to pick.

There are no hard-and-fact algorithms or techniques by which these problems can be

addressed. Only heuristic methods can be used to perform such tasks.
VI1.2.1 Muiltiple Heurlstics

Having decided to work with heuristics, how does one decide which kinds of heuristics are
best for our problem. If we really do decide upon a particular heuristic, is it possible that half way

through the scheduling process a different type of heuristic might be more relevant.

Heuristics come in all shapes and sizes. Aggressive strategies like to schedule as early as
possible. "Wait & see” strategies exercise least-commitment. Backup heuristics help in undoing

poor-choices.

Here are some examples:[Moder & Phillips 1983]

Name of Heuristic consultant Description
Late Finish Give priority to activities in
order of increasing late finish
time.
Minimum Slack Schedule first those activities

with low slack time.

74

Random Priority given to jobs selected

randomly

Bumping If there is a clash, then
bump the activity of lower
priority.

Meta-OR If total variables in the

problem < 5000 & total
constraints < 5000 then use
Dynamic Programmiag

TABLE 1

Given a set of heuristics we have to decide which one is most useful. Presumably different
strategies are relevant in diffcrent situations. In addition some strategies may always performs

better than other. There are two ways of invoking a heuristics
(a) Pattern directed
(bj Relative grading

" Establishment of patterns for choosing a heuristic is very tough. The meta-OR heuristic in
Table [is an example. We do not have any good ideas in this area yet.
Heuristics can be graded relatively. This is done by running the system on several typical

problemns, each time with only one of the heuristics in place. Performance characteristics of each

heuristics is gathered and is used to rank the heuristics.
V1.2.2 Search Heurlstlcs

When coming down the search tree we will have to adopt some kind of pruning mechanism.
Having used some of the heuristics (like those in Table 1) we reach a stage, at the end of a
scheduling cycle, where there are several viable partial schedules. Due to time & computer memory
constraints all these nodes cannot be developed. As mentioned in Sections 11.2 & I1.3, we need a

function by which the nodes can be evaluated and then chosen for further branching.

From equation [3], section 1.2, there are two parts of a evaluation function: (at node n)

75

f(n) = g(n) + h(n)

A measure of goodness of a node is based on utilities, equati .n [1] of section 11.2 . This gives
us g(n) only. The estimate to complete is found by doing a depth first search from the node in
question. Such a search is designed to be a lower bound on the total utility and is hence conducted
in a rash manner; constraints are not fully satisfied, no backtrackinz is performed, due dates are
violated etc. This quick 'look ahead’ will give us a good h(n) to work vith. We now choose the node

with highest f(n).
V1.3 System Architecture
Based on the ideas presented till now, we proceed to develop an architecture :
a) The constraints are defined by users and are subject to chane.

b) The jobs (battalions) to be performed are ever-competing to be chosen next. For this

reason they are said to exist in a market of jobs.

c) Each heuristic consultant has his own way of doing things they may either support one-
another or give raise to conflicting situations. For this reason they are said to be in a board of

consultants. These consultants communicate via a blackboard.

With this we are able to hone in on a system architecture. Figure VI.3.1 . The controller
examines the advice (bids) deposited on the blackboard. A consultant is chosen and applied for a

few scheduling cycles. The constraints are used as outlined in sections IV & V.

76

FwY

MaArkeT ofF
JTops

T08 SeLeCT/own

4

Boarp

oF

CONSULTANTS

\ N

Biack
Boarp

CONSTRAINTS

GUIDES

ControLLer £

ARBITRATOR

Fieure VI. 3.1

SeaARCH
MecCHANIS™M

DEVELOPS

1

©
SCHEDULE o
-_—]

An ArcHiTEC TURE

77

e

EXAMNATION

Dot &

REFERENCES & BIBLIOGRAPHY

Bansal, S.P. 1977 Minimizing the Sum of Completion Times of a n Job over m machines in a

Flowshop- A Branch&Bound Approach”, AIIE Trans, Vol 9, No3, Sept 1977.

Chandra Navin, 1985 "IMST user's Manual: A tool for building Rule based Expert Systems”

MIT, Center for Construction Research & Education, Technical Report: CCRE-85-6.
Doyle, J. 1979 "A truth maintenance system”. Al 12: 231-272

Eilts, T.B., Wright, J.R., Houck, M.-H. (1984) "The division gunnery Model {(DIGUM) as an

aid in Army training decision”, Report CE-HSE-84-3, Purdue University.

Fahlman, Scott (1978) "A planning System for Robot Construction Tasks” (MS Thesis) Al

TR-283 MIT Al Lab.

Fikes R.E. (1970} "REF-ARF: A system for Solving Problems Stated as Procedures”, Artificial

Intelligence, Voli, pp27-120

Fikes R.E., and N.J. Nilsson (1971), "Strips: A New Approach to the Application of Theorem

Proving to Problem Solving”, Artificial Intelligence, Vol. 2, pp 189-208

Fox, M.S. (1983) "Constraint Directed Search: A case of Job Shop Scheduling™. PhD Thesis,

Carnegie-Mellon University.

Fukumori K., (1980) "Fundamental Scheme for train Scheduling”, MIT Al Memo No 596,

Artificial Intelligence Laboratory, MIT, Cambridge MA.

Goldstein 1.P.,Robert R.B. (1977) "NUDGE: A knowledge-based Scheduling program,” MIT

Al Memo 405.

Moder JJ,C R Phillips, E W Davis (1983) "Project Management with CPM PERT and

Precedence Diagramming”, VNR Company NY

Nilsson N.J. (1971) "Problem solving Methods in AI”, New York, N.Y.; Mc Graw Hill.

78

Ouciuch Ed, Frost John (1985)" ISA: Intelligent Scheduling ., Lt Al Technology

Center, Digital Equipment Corp. Hudson MA 01749

Sacerdoti, E.D. (1977) "A Structure for Plans and Behaviour.” NY: llsevier North-Holland ,
1977. Al Series.

Stallman,R. and G.J. Sussman (1977) "Forward reasoning and dependency directed

backtracking in a system for computer aided eircuit-analysis™, Al 9:135-196.
Stefik M. (1981) "Planning with Coastraints (MOLGEN: Part1)”, Al, Vol 16, pp 111-140.
Stefik M. (1980) "Planning with Constraints”, STAN-CS-80-784, PhD. Thesis

Stinson Joel, David Edward Khumwala Basheeer (1978). "Multiple Resource Constrained

Scheduling using Branch & Bound™, AIIE Trans, Vol 10, No 3, Sept 1978.

Sussman G.J., Steele G.L. (1980) "Constraints: A language for expressing ahnost heirarchical

descriptions” AlJournal 14:1-39.

Tate, Austin (1977) "Generating Project Networks” [JCAIL-77, Cambridge, Cambridge, MA

888-893

Vere, Steven A (1983) "Planning in Time. Windows and Durations for Activities and Goals.”

IEEE-PAMI, May 1983 pp245-267

Vere, Steven A (1984) "Temporal Scope of Assertions & Window cutoff.” Al Research Group

Report, Jet Propulsion Laboratory, Nov '84,

Wilkins, D.E. (1984) "Domain Independent Planning: Representation and Plan Generation.”

Artificial Intelligence. 22:3 April (1984). pp 269-301

Winston P.H., 1984 “Artificial Intelligence”, 2nd Ed. , Addison-Wesely, Reading,

Massachusetts.

79

oy

APPENDIXA

IMST

Users Manual

A Tool for Bullding Rule-based Expert Systems

April 1985

Copyright @ Navin Chandra
Center for Construction Research & Education

Department of Civil Engineering
Massachusetts Institute of Technology

80

| -

A

ABSTRACT

IMST is a tool for building rule-based systems. It has been built to merge the technologies of
Knowledge Representation in Artificial Intelligence with that of Relational Database Management
systems. While maintaining a relational (in the eyes of the user) type database it allows the user to

operate on the data using production rules.

IMST also allows the user to do some meta-level control. Rules can be loaded, and unloaded.

Facts can be blackboarded for easy access and modularity.

IMST is written in Franz-LISP (with parts in C) and is built for the user who is not familiar
with LISP. It, however, does allow the users to define their own functions and even their own

interface.

This paper explains the workings of IMST thrcugh the use of numerous examples.

81

Lo

e

POV Y NN SSUS A

Table of Contents

1.0

20

3.0

4.0

5.0

6.0

7.0

Introduction

1.1 The System Architecture
1.2 The data base

An Example

2.1 Introduction

2.2 Example

2.3 More Examples
The rule Syntax

3.1 The rule

3.2 Test Predicates
3.3 Actions

Database Capabilities

4.1 Tabular data
4.2 Database actions

Miscellaneous Actions

5.1 Meta level Control

5.2 1/O0 Commands

Top-level Command Summary

IMST functions list

82

Page

1.0 Introduction
IMST is an environment for building rule based expert systems. It is modeled after some of
the popular production systems like OPS-5 (Charles Forgy '81 Carnegie-Mellon U.) and YAPS (Liz

Allen '83 Maryland).

IMST was written to merge the technologies of rule based systems with that of data base

management. It allows the user to think of his/her data in the form of a relational database.

The system is written in Franz-Lisp and it operates in a UNIX 4.2 environment. Even though

IMST has its own top-level environment, it does not insulate the user from the full power of LISP.

1.1 The system architecture
IMST, like all other production systems, has two major parts; the rule base and a data base
of facts. The rules operate upon the facts and make inferences. These inferences are added back to

the facts list and are then available for use by the other rules.

IMST has its own top-level environment. The purpose of this environment is to let users
interact with the system without knowing any LISP. Cnce an application is developed, the IMST

top-level can be overridden by a user defined interface.

1.2 The data base
The data base is a collection of sentences. Each sentence is an assertion about the domain one

is dealing with. Data can be entered into the database via the function assert.

The assertions are stored in a file which can be loaded into the IMST environment by using

the loadfile command.
Consider a world about which we have the following information:

"There is a strong boy named john who lives on 33 Maple Street. There is a beautiful girl

who is 5.5 ft tall. They both are good dancers.”

This information can be broken up into assertional statements and can be stored in a file as

83

b)

Lainh |

-

shown in figure

1.2.1 below.

(assert mary
(assert john
(assert john
(assert john
(assert john
(assert mary
(assert mary
(assert mary

is_a girl)

is_a boy)

is strong)

address 33_maple_street)
is a good dancer)

is beautiful)

height 6.5)

is a good dancer)

Figure: 1.2.1

The database of facts can now be queried and can be used by a rule base.

Whenever an assertion is made, the first word is treated as an object and all subsequent

assertions having the same first word are grouped together. The assertions listed above will be

stored in the database like this:

john:

(john is_a boy)

(john address 33 maple_street)
(john is a good dancer)

(john is strong)

Figure: 1.2.2

mary:

(mary is_a girl)

(mary is beautiful)
(mary height 6.5)

(mary is a good dancer)

The reader should be aware that there is no restriction on the contents of an assertion. The

same data could be asserted like this:

(assert there

is a boy named john)

(assert he is strong and he lives on 33 maple_street)
(assert john is a good dancer)
(assert she is mary)

(assert she dances well)

(assert mary is five feet 8 inches)

84

k. ad

Py

(assert she is beautiful)

Figure: 1.23

The semantic content is the same but there is no modularity and consistency. The facls
{mary dances well} and {john is a good dancer) may be the same for the user but not to the
computer. The use of statements like (she is beautiful) can be very misleading. It is advisable to use
the (<object> <attribute> <value>) format . In essence, consistency is highly desirable.

Before closing this section it is useful to know that a database fact can be removed by the

unassert function. The file:

(unassert john is strong)

(unassert john is_a boy)

(unassert john is a good dancer)
(unassert john address 33_maple street)

Figure 1.2.4

will, when loaded, delete all the information on johp.

85

2.0 An example

2.1 Introduction
This chapter is intended to instruct the user about the use of IMST. It contains a simple

example and attempts to explain the important features of IMST through the example.

In section 1.2 the notion of an assertional database was introduced. We now show how the

data may be used by production rules.

A production rule is basically an IF-THEN rule. A rule states that IF certain facts are true

THEN there are a few other facts that are deemed true.

The example below is a fully annotated trace of the IMST environment. The text in boldface
is which is typed in by the user. The text in stalics is the explanation and the normal typeface is

that which is printed by the computer.

2.2 Example

2.2.1 First the dala:

To start IMST one first logs into the UNIX system where the program has been installed.

After logging in just type 'imst’ to the uniz shell
unix¥ imst

This may be followed by & few system messages and in about 5-8 seconds you will find yoursclf
with the IMST prompt: 'imst> '. The firsl thing to do is to initialize the system wilh the ‘init’

command
imst> Init

Now let us input some dala. The dala is normally added to the system via a file. To create

such a fiie we can go into the editor by using the 'emacs’ command. Let us call the file 'people’
imst> emacs people
This will put you into o full screen edilor. If you are net familiar with emacs you could use the

86

command: '’ (for the uniz visual editor). Here is how the data is entered in the file.

(assert john ia__a boy)
(assert john height 6.0)
(assert john gpa 3.8)
(assert john likes salling)

(assert jack is_a boy)
(sasert Jack height 6.5)
(sssert Jack gpa 5.0)

(assert mary 1s_a girl)
(assert mary is beautiful)
(assert mary gpa 4.2)
(assert mary height 5.5)
(nssert mary likes salling)
(assert boy is__a person)
(assert girl is__ a person)
(assert person ls_a mortal)
(assert person has a soul)

Figure: £ 2 0 oo

Having typed the data in, ezit emacs normally. This will put you back in IMST. You are now

ready to load the file.
imst> loadfile people

The above command will produce the following data base in [MST

ioba: (john is__a boy) iack: (jack is__a boy)
(john height 6.0) (jack height 5.5)
(iohn gpa 3.8) (jack gpa 5.0)
{(iobn likes sailing)

mary: (mary is__a girl) girk: (girl is__a person)
{mary is beautiful)
(mary gpa 5.0) boy: (boy is_a person)

(mary height 5.5)
(mary likes sailing) person: (person is__a mortal)
(person has a soul)

Figure 0.8, 8 cneee et

There 18 8 way of viewing this data. This is shown below:

imst> describe john
Description of object: john

is_a boy
height 6.0

2.2.2 Now for some rules

A rule consists of a sel of facls (patlerns) in the IF part, followed by a sel of actions in the

THEN part. The IF & THEN parts are scparated by a implication sign "-->’

Here i3 the syntaz:
(rule -pame- -pattern__1- -pattern_ 2-
.... -pattern _ n-
~> -action_1- -action_2- ... -action_m-)
Assume that we want to conclude that john knows how to swim because we know that he likes
sailing. Here iz what the rule may look like :
(rule john_swim (john likes sailing)

> (assert john knows swimming))

There iz only one pattern in this rule and when the rule 33 run, it will fire because the pattern
(john likes sailing) is found lo ezist in the database. The action ‘sssert’ will add (john knows

swimming) to the database.

There is a problem here, we also want to conclude that mary can swim because she loo goes
sailing. The rule should be able to handle all those who like sailing. In other words the rule should be

able lo handle variables. Here is what it might say "IF there 18 an ‘'z’ which likes sailing, then assert

88

that that 'z’ knows swimming”

————— e ———

This is done by introducing o varisble into the pattern. The patlern (>z likes sailing) will

malch any fact which has any object with the words 'likes’ & ’sailing’ in the aliribule and valuc

positions. In other words, {>z likes sailing) will match the fact (john likes sailing) and (mary likes

sailing) and will bind z to john & mary respeclively.

Assuming z is bound to john’, the assertion (assert <z knows swimming) will aclually asser!

(john knows swimming). The use of the the symbol > before a varisble name meane "bind this

variable” & the symbol < means "lookup the value

A mnemonic way of looking at this is:

>x can be looked upon as —~>x |, that is, a value going
into x

and <x can be looked upon as <-x , that is, the value coming
out of the variable x

Let us now write the rule tn a file called 'rule’

(rule swimming _rule (>x likes salling)

--> (assert <x knows swimming))

imst> loadfile rule

imst> run
Trying rule: swimming_rule

asserting > (john knows swimming)
asserting > (mary knows swimming)

done

imst> describe jJohn

Description of object john
is_a boy

height 6.0
spa 3.8

89

likes sailing
knows swimming

Notice that the data for object john has been updated. We now go on to wrile some more

rules:

Here is a rule that says that any boy with a gpa of 5.0 is & nerd (we have ¢ 5.0 systcm for
Grade point average here at MIT).

(rule nerd (>x gpa 5.0
(<x is_a boy)

-> (assert <x is_a nerd))
Here i3 how the rule works:

The first pattern will match (jack gpa 5.0) and z will be bound to ‘jack’. The second pattern
has a lookup for z and will become (jack ts__a boy). As the second pattern is found in the data base,

the rule will fire and (jack s8__a nerdj will be asserted. Notice that the rule will not fire for mary.

90

2.2.3 More examples
a) "If any boy's height is greater than 6 feet, then he is tall”
We now introduce yet another part of the IMST rule: the test. A test is a function that either

returns true or false.

(rule tall boys (>al is_a boy)
(<al height >ht)
test (ge <ht 6.0)

-—> (assert <al is tall))

The rule says: "IF there is a boy 'al’ of height 'ht’ and if 'ht’ is greater-than-or-equal-to (ge)
6.0 then assert that 'al’ is tall.”

b) ~If any boy is less than 6.0 feet tall but greater than 5.5 feet in height, then that person is

of average height”

(rule average_height_boys
(>x is_a boy)
(<x height >ht)
test (ge <ht 6.5)
(1t <ht 6.0)

--> (assert <x is of_average height))
) "All beautiful girls like nerds”

(rule only at _mit
(>x is_a girl)
(<x is beautiful)
(>y is_a nerd)

-3 (assert <x likes <y))

Notice how this rule uses the inference made by rule "nerd” of section 2.2.2

d) "To find who is taller than whom”

91

T SRR

(rule taller (>x height >xht)
(>y height >yht)
test (gt <xht <yht)

-=> (assert <x is taller than <y))

e) Now an interesting rule on inheritance:

Inheritance is an important part of building object based semantic networks. If an object 'y’
is_a object 'x’ (e.g. dog is_a animal), then the object 'y’ should inherit the propertis of 'y’

Stated in rule form we have:

"If there is any object x with property px and value vx and if some y is__a x then y should

also have the property px and value vx”

(rule inheritance (>y is_a >x)
(<x >px >vx)
-=> (assert <y <px <vx))

If we run this rule on the data in 2.2.2 we will get the following assertions ‘

(jack is_a person) (jack is_a mortal) (jack has a soul)
(mary is_a person) (mary is_a mortal) (mary has a soul)
(john is_a person) (john is_a mortal) (john has a soul)

You have just been exposed to the most important part of IMST and are ready to write rule

based systems!

f) A arithmetic rule: To convert the height to meters.

(rule feet_to_meters
(>x height >y)
--> (unassert <x height <y)
(assert <x height_metric
(/ (*+ (» <y 12.0) 2.54) 100.0)))

92

3.0 The rule Syntax

3.1 The rule

The rule in IMST are of the following form

(rule -rulename- -pattern_1i-
-pattern_2-
..... -pattern_n-
test -test_1- -test_2-
...... -test_p-
--> -action_1- -action_2- -action_m-)

The use of tests is optional. If there are no tests, simply drop the word ’test’ from the body of
the rule.

The rule fires when all the patterns match & all the tests are true. The tests are evaluated

using the lisp eval, the same goes for the actions.

3.2 Test Predicates

There are several predicates that are provided by IMST:

(ge -argl- -arg2-) Returns true if argl is greater than or equal to arg2.
(le -argl- -arg2-) Less than or equal to

(gt -argl- -arg2-) Greater than.

{It -argl- -arg2-) Less than.

(== -argi- -arg2-) Equal to

{ne -arg)- -arg2-) Not Equal to

(not® -patternl-) The patternl does not exist in the database.(The pattern should not have

any variables in it.)

93

A

3.3 Actions
The most common action i assert. One can use any user-defined LISP function. By using

Franz Lisp’s Fasl function it is possible to include actions that are written in C or Fortran.

The other pre-defined actions provided by IMST are presented in the following chapters.

94

—

|
i
{
1
|
!

e L R P

UNCLASSIFIED

2

1.25 |l 1.4
=

reeEFEERE
EEEE

FEFE

E
3
(2]

5

{CROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

e

=t et

Btk

S

4.0 Database Capabilities
In building real-life systems, it is not possible to have a long data file full of assertions. IMST

has a ability to handle tabular data.

4.1 Tabular Data

4.1.1

It is popular to think of data in a tabular form. IMST allows you to input data in this form.

Consider the table below

student [D# Gpa Height
john 43433 3.8 6.0

jack 39393 5.0 5.5

mary 39204 50 5.5

The data is converted into object-attribute-value triples automatically . Here is what will be

asserted for john:

(john ID# 43433)
(john gpa 3.8)
(john height 6.0)
(john is_a student)

The above 'is__a’ relationships are implied by the virtue of the fact that the names john, jack

& mary are listed below the field 'student’.

4.1.2 The create, edit & loaddata commands.

create

The create cdmmand takes no arguments and is used to create a table. Here is a self

explanatory example:

95

imst> create

Name of the file => people
type 'quit’ to finish up

Field 1 => student

Field 2 => ID#

Field 3 =>gpa

Field 4 => helght .
Field 6 => quit

imst>

A file should be created only once. Having created the file, it is now ready for editing.

edit

edit takes no arguments and it is used to edit a tabular data file. It allows one to input data

record by record. It can be used to edit old files too.

The editor is currently very simple, it only allows you to go forward from field to field & from
record to record. After typing in data one can exit the editor by hitting return on a blank line only.
If you make a mistake, you will have to exit the editor and re-enter the editing routine, you cannot

go back.

Note: The editor forces you to use a directory to store your files. You can choose your current

directory by providing the appropriate pathname in full.

For example: If we wish to store the above file 'people’ in a sub-directory called 'knowlcdge-

base’, then the trace may look like this:

imst> edit
Give me a directory name => knowledge-base
Name of the data file within the above directory => people

Which record would you like to start at?
(if this is a new file, start at #1) =>1

96

[l §

loaddata

This function takes no arguments and it is used to load in a file which was a product of the

create and edit commands. It automatically converts the records into a frame representation and

makes the appropriate assertions.

4.2 Database actions

Here are some of the datahase actions that IMST can perform within the body of a rule:
(mmsert ...data...}) To assert data into the database.
(unassert ...data..) To remove a data element from the database.

(glue string 1 string__2) It is used to create mew objects. For example: If x is bound to

’john’ and we wish to create a new object called ’johns _girlfriends’ then one could use:
{assert (glue <x s__ girlfriends)data....)
(cardinality object1) Counts the number of facts within a given objectl.

(summation field1 object1) Returns the summation of a particular field from an object. It

requires that the selected object has the specified in the 'value’ position (rightmost) in each fact.

(average field1 objectl1) Same as summation, only it returns the arithmetic mean .

97

P

5.0 Misceitaneous Actions

5.1 Meta Level Control

The rule base in IMST exists in two areas, the active and the inactive set.
(swapin rulel) This will swapin the rulel into the active set from the inactive set.
(swapout rulel) Will send an active rule to the inactive set.

(rmrule rulel) Will remove the rulel from the active set, forever.

(loadfile file 1) This will load the file IMST into the top-level and is useful for pattern

invoked loading or rulebases.

(initrules) Will clean up all the rules in the current active ruleset.
5.2 1/O Commands

{skip n) Skips 'n’ lines.

(tab n) Will tab cursor forward by n columns.

(say ..message....) The say action is like assert but does not assert the message but just

echo’s it to the screen.

(ask ..question....) It will accept a value for a variable in the text of the question. For
example:

(ask What is your >name)

The system will stop and wait for input from the user. The input will be bound to the

variable 'name’ .

98

6.0 Top-Level Command Summary
A summary of all the commands that can be issued from the IMST top-level.
ereate Creates table

describe object Returns a description

dumplisp fllename Will dump the whole system, the data, the rules and IMST into the

specified file. You need about 2.0 megabytes.
edit Edit a created table
emacs flle Edit a unix file using emacs.
help Gives some help
Init Initializes the whole system.
Inltrules Throws away the current ruleset but aot the data.
lisp Lets you talk to Franz lisp directly.
loaddata Used for tabular data loading.
loadfile fllename Will load the specified file.
quit Quit
run Starts the inference Lngine
top Return to top-level of IMST.

vi file The unix vi editor

99

7.0 IMST function list
The test and actions in IMST can be any lisp function. IMST comes with a library of useful

functions:

Arithmetic functions:

The operators: + [* -

The predicates: gt It ge le = ne not*

Database operations:

assert

unassert

glue

cardinality
summation average

1/0

say
ask
skip

tab

Meta-level Control

swapin ;
swapout

tmrule

loadfile

loaddata

initrules
100

APPENDIXB

Trace of a run

This appendix is the trace of a run. It has three part:
Part]l The ilp\ll‘ data to the program.

Partll The e@utnints (i CDL-NI)

Partlll An annotated trice of the run.

The example used here is an extention of the case presented in Chapter I.

101

Appendix B

Part 1

The input data

wTHE INPUT DATA

;; This file contains the dats used for the trace of CDL-fI
:; 1t contains the definition of all the schedule elements

LGOI REPPPCNNSIINERNNNBNEFELOPNINCIUIN RSN IINISESINISENRIRERY
"

;; The TIME PERIODS & FIRING RANGES
UL I D L DL I A A LR IR T A R A T A P T P T LR

;; Setting the full time period to be one month

(set ‘one_month (123456780 1011121314151617 18
19 20 21 22 23 24 25 26 27 28 20 30))

i; Setting the holidays

(set 'bolidays (1 8 14 22 28))

;; Setting sub time periods: early and late.

(set 'early (123 458))

{set 'late '(26 27 28 20 30))

:; Setting the firing ranges

(set "all_ranges '(range A range B range C range_D range_E range F))

OPO0RURTEOUTEIURIOIINTREONIROPEINIIEIILIIISRRVYIVEINIINUIRLRORNINY
1"

+» THE BATTLIONS

;; Defining the battalions and their schedule elements
SO0 00000EIININNEPEINNNNEITINeERTIINIItItILIIITINNIIIINEIEINIIRS
"

i BATTALION : bat_ A

;; The first schedule element, "bat _ A will carry out
3 act__ A od any range sny time of the total period

(assert bat A actAl rangeAl dayAl)

(set _value "actAl '{act_A))

(set _value 'dayAl one _month)

(set _ value 'rangeAl '(range A range B range_ C))
:; The second schedule element:

(assert bat _ A actA2 rangeA2 dsyA2)

(set _ value 'dayA2 one _month)

(set _value 'rangeA2 '(range _ A range B range_C))
(set __value 'actA2 '(act _A))

;» The third scheduie element

(sssert bat _ A actA3 rangeA3 dayA3)

{set _value ‘dayA3 one _month)

(set _value 'rangeA3 ‘(range _ A range _B range_C))
(set _value 'actA3 ‘(act _A))

103

e - i o i

e o .

;i The fourth schedule element
(assert bat _ A actAd rangeAd dayAd)
(set _ value 'actAd "(act _B))

(set _value 'rangeA4 all _ranges)

(set_ value 'dayAd early)

T

;i BATTALION 'B’
;; First Schedule element:

{assert bat _ B actBl rangeB1 dayB1)

(set _ value 'dayB1 one _month)
(set _value ‘rangeB1 all_ ranges)
(set_ value "actB1 *(act_ B))

is the second schedule element:
(assert bat _ B actB2 rangeB2 dayB2)

(set _value 'actB2 '(act_A))
{set _ value 'rangeB2 all _ranges)
(set _ value 'dayB2 late)

;: the third schedule element:

(assert bat _ B actB3 rangeB3 dayB3)
(set_value ‘actB3 ‘(act _C))

(set _ value 'rangeB3 all __ranges)
(set _ value 'dayB3 late)

:t BATTALION "C"

; the first element

{assert bat _C actC'1 rangeC1 dayCi)
(set _value ‘actC1 (act _A))
(set _ value 'rangeC1 all_ ranges)
(set _ value 'dayC1 one __month)

; the second element

(assert bat _C 8ctC2 rangeC2 dayC2)
(set _value 'actC2 '(act _B))
(set _ value 'rangeC2 all _ranges)

(set _value 'dayC?2 early)

3 the third elememnt

(assert bat _ C actC3 rangeC3 dayC3)

(set _value 'actC3 '(act_ B))
{set__value 'rangeC3 all_ ranges)

104

e

haduaidiong,

(set_ value 'dayC3 one _month)

;s BATTALION "D"

; the first element

(assert bat_ D actD1 raugeD1 dayD1)
(set _value 'actD1 '(act _A)}

(set _value 'rangeD1 all _ ranges)

(set_ value 'dayD1 early)

;: the second element

(assert bat _D actD2 rangeD2 dayD2)
(set _value 'actD2 "(act __A))

(set _ value 'rangeD2 all _ranges)
(set _value 'dayD2 late)

105

P SO SO, vy

Appendix B

Part I1

The Constraints (in CDL-II)

-

M 3y dr ST A,

i+ THE CONSTRAINTS (IN CDL-II)
:: The constraint set presented here is used in the attached trace of
:+ the program.

OO POPITEEEIVINERNRININTINERRLOPICEI0NENOICINUIIPVIPISCIINVISEOPINOETTS
"

;s CONSTRAINT C1

:: A battalion can do only one activity per day

(constraint C1 (>bat >act >range >day)
test (selected? <day)

—> (constraint ¢l _aux (<bat >a1 >r1 >d1)
test (not (equal (quote <day) d1))

-> (set_value d1
(subtract (get _ value d1)
(get _value (quote <day})})

)

L EPEPIOROISPRIUSINNOSPIVENLOOIRPNIEIIRIVIICISEROEOPEP0EO900000000E
"

S OOEIINEIRITENtINERIITIIIIIIIIIITENNNITININININIIITIIItINeINNNNee
;i CONSTRAINT C2

I

; Constraint 2:: Two battalions cannot be on the same range
; on the same day.

(constraint C2 (>bat >act >range >day)
test (selected? <range <day)

-~> (constraint C2_one (>b2 >2a2 >r2 >d2)
test (not (equal a2 (quote <act))} ; make sure its not the same one!
(equal (get _ value r2) (quote ! {(get __value range)))

-2 (set _value d2
(subtract (get _ value d2) (quote ! (get _ value day)))})

(constraint C2_two (>b3 >a3 >r3 >ds)
test (not (equal a3 (quote <act)))
(equal (get _ value d3) (quote ! (get _ value day)))

—> (set__value r3
(subtract {(get_ value r3) (quote ! (get _ value range))})))

“'OOOOOQ'..‘O.“‘O..."..‘...‘.O...‘....‘..‘.‘.O‘0.0.".‘.O..‘.Q.‘.‘O0.0Q.

1 OEPN00NIN0ETINININNNINIIIIININIINITINIIIIRIINIINIITINITEIIINIININIITIINY
;i CONSTRAINT C3

;; constraint C3
; if any battalion is scheduled for activity act _ B then that

; battalion should not be scheduled for anything
; the very next day.

107

(constraint C3
(>bat >act >range >day)
test (selected? <day <act)
(equal (get __value act) '(act_B))

--> (constraint C3_ aux (< bat >al >r1 >dit)
test (not (equal (quote <day) di))

--> (set_ value d1
(subtract (get__value d1)
(list (4 1 (car (get _ value (quote <day}))}))))

PO IERNCIREIPIRPNIERENRINCICEIRCOENSINIISINPNRNCONIIICOIPEUNINOINEIONED
"
~OOOREERRNRISICNRISNPRITEENRIPRINIERIN VISR L RNV RNINENNNETORIIIIEENNY
"

“ ;+ CONSTRAINT C4

; Constraint C4
; assignment of ranges to activities

L)

} ; actvity acceptible ranges
; act_A range A range_B
; act_B range C
; act_C range B

1 ;

(constraint C4__one (>bat >act >range >day)
test (equal (get_ value act) (act_ A))
=> (set _value range '(range _A range _ B)))

Py

(constraint C4 _two (>bat >act >range >day)
q test (equal (get _ value act) '(act _ B))
~> (set_value range (range _ C)))

(constraint C4_ three (>bat >act >range >day)
test (equal (get _ value act) '(act _C))
-~> (set_ value range '(range_ B)))

e

e

SO ENIREIINIRINIIRRIIIRRIIIISREL ORI O000DSRSIIINSERISEIREREIIPIRY
”

“O.‘...OO‘.Q..OO'0‘.0O.““OOO..‘...O‘.00"0.‘.......""'0...00‘.“
4 ;i CONSTRAINT Co

‘ 3+ Cyclic constraint on sctivity act _A.
;s the window is set at x+5 and x+10

J (constraint C6_one (bat _ A actAt rangeAl dayAl)
1 ; being specific to battalion _one
‘1 ; could be done automatically .

i > (set _value 'dayA3 (restrict (get _value 'dayAs)
'(and (ge 3 (+ (get __min _valye 'dayA?2) 6))
(le 838 (+ (get__max_ value *dayA2) 10)))))

(set _ value 'dayA2 (restrict (get _ value 'dayA2)
"(snd (ge 338 (+ (get _ min__value 'dayAl) 5))
(le $33 (+ (get _max_ value 'dayAi) 10))
(le 888 (- (get_ max_ value 'dayA3) 5))
(se $88 (- (get _ min_value 'dayA3) 10)))))

108

o ?

N aa g

(set _value 'dayAl (restrict (get _ value 'dayAl)
'(and (le $33 (- (get _ max_ value *dayA2) 5))
(ge 333 (- (get _min _ value 'dayA2) 10)))))

L IPRPOEEREIELETIEIEREINIEIIIIEENINE T IINISIEIPIITIOTIINNIOIEI4000000000
;; CONSTRIANT C7

;;Constriant C7

;; The safety spans constraint: When act _ A is carried out on range_ A
;; then the safety spans requires that it is unsafe to schedule anything on
;» range_C

(constraint C7 _safety _spans (>bat >act >range >day)

test (selected? <day <sct <range)
(equal (get_value act) '(act__A))
(equal {get _value range) ’(range _ A))

;; has two parts: If the range is range _ C then do not use the day
A If the day is the same then do not use range_ C
—> (constraint C7 _aux (>bb >aa >rr >dd)
test {not (equsl aa (quote <act)))
(equal (get _ value rr) '(range _C))
—> (set_value dd
(subtract (get_ value dd)
(get _ value (quote <day)))))

(constraint C7_sux__sux (> bbb >asa >rrr >ddd)
test (not (equal aaa (quote <act)))
(equal {get _ value ddd) (quote <day))

~> (set_value rrr
(subtract (get value rrr)
‘(range __C))))

b5
P OPCPORCCOOPENPIIORIOIC00000000R000000000200000030CINCEOSRRTRORYY
"

0000000000000 0IEINORINOIVININEIIRUNCOIVIININNDRPIPNI0INNN0ICIIONSE
”

;: CONSTRAINT C8
i1: Constraint C8 : "there shall be no training on holidays”
(constraint C8 (> bat >act >range >day)

->

(set__value day
(restrict (get _ value day)
‘(not (member 3 holidays)))))

“."0.0.......0..“0..‘.“‘..‘O...O..‘..Q..’."‘O..““'.‘.‘....OO.‘O.

109

Appendix B

Part Il

The Trace of the Program
This trace uses the data and the constraints shown in parts 1 and Il of this appendix. The
program is started by entering lisp, loading the program, the data, and then issuing the command :
(search)
The program follows the algorithm oulined in section V.3 of this thesis. The main steps are:

(1) Try to propagate the constraints.
Whenever a constraint causes an effect
the new value is echoed along with the
current cycle number.
At the end of each propagate cycle the
program echoes "PROPAGATION COMPLETE”

(2) After the above step, it branches and sets up
new contexts. The word "BRANCHING” is echoed

on the screen.

If during the propagation stage the program encounters a contradition, it backs up and

"PURGES” the latest context.

110

=t

P

W PP W P

Script started on Wed May 8 10:43:31 1985
hera% rsh hades lisp
Frans Lisp, Opus 38.91

-> (load 'RUN.])
{load RUN.1|
[fast compiled/rulengine.o]
[fas] compiled/edl.o}
[fasl compiled/utils.o)
[fast compiled/search.o]
you will have to load data and then issue command (search)t
-> (load 'data.l)
[load data.l]
asserting > (bat_ A actAl rangeAl dayAl)
Setting value of actAl to (act__ A) with context == cycle
Setting value of dayAl1 to (1234567 8010111213 141516 17 18 10 20 21 22 23 24 25 26 27 28 20 30) with conte
Setting value of rangeAl to (range A range _ B range_ C) with context == cycle

asserting > (bat_ A actA2 rangeA2 dayA2)
Setting value of dayA2to (123456789 10111213 14 1516 17 18 10 20 21 22 23 24 25 26 27 28 20 30) with conte

Setting value of rangeA2 to (range _ A range_ B range _ C) with context = cycle
Setting value of actA2 to (act _ A) with context == cycle

asserting > (bat_ A actA3 rangeAS dayA3)
Setting value of dayA3to (1234567801011 121314151817 1819 20 21 22 23 24 25 26 27 28 20 30) with conte

Setting value of rangeA3 to (range_ A range _ B range_ C) with context = cycle
Setting value of actA3 to (act _ A) with context == cycle

asserting > (bat_ A actAd rangeAd dayAd)
Setting value of actA4 to (act__B) with context == cycle

Setting value of rangeA4 to (range _A range B range _C range_ D range__E range _F) with context == cycle
Setting value of dsyA4 to (1 23 4 5 8) with context = cycle

asserting > (bat_ B actB1 rangeBl dayBt)
Setting value of dayB1 t0 (123456780 1011 12 13 14 15 16 17 18 10 20 21 22 23 24 25 26 27 28 20 30) with conte

Setting value of rangeB1 to (range_ A range _ B range _ C range _ D range_ E range _F) with context = cycle
Setting value of actB1 to (act _B) with context == cycle

asserting > (bat _B actB2 rangeB2 dayB2)
Setting value of actB2 to (act _ A) with context m= cycle

Setting value of rangeB2 to (range _ A range_ B range _ C range_ D range__E range _F) with context s= cycle
Setting value of dayB2 to (26 27 28 20 30) with context == cycle

asserting > (bat _B actB3 rangeB3 dayB3)
Setting value of actB3 to (act _C) with context == cycle

Setting value of rangeB3 to (range _ A range_ B range _ C range_ D range__E range _F) with context == cycle

Setting value of dayBs$ to (26 27 28 20 30) with context == cycle

111

asserting > (bat_ C actC1 rangeCt dayCl)
4 Setting value of actCl to (act _ A) with context = cycle

. Setting value of rangeC1 to (range _ A range B range _C range__ D range E range _F) with context == cycle

Setting value of dayC1 to (1234567891011 1213 141518 17 18 10 20 21 22 23 24 25 28 27 28 20 30) with conte

asserting > (bat _C 2ctC2 rangeC2 dayC?)
Setting value of actC2 to (act __B) with context = cycle

Setting value of rangeC2 to (range _ A range B range_C range D range _E range_ F) with context = eycle
Setting value of dayC2 to (123 4 5 8) with context = cycle

asserting > (bat_C 2ctC3 rangeC3 dayC3)
Setting value of actC3 to (act_ B) with context = cycle

Setting value of rangeC3 to (range A range_ B range_ C range_ D range _E range _F) with coutext = cycle
Setting value of dayC3to (123456780 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30) with conte

} asserting > (bat_ D actD1 rangeD1 dayD1)
Setting value of actD1 to (act __A) with context = cycle

Setting value of rangeD1 to (range A range B range C range D range _E range_ F) with context = cycle
& Setting value of dayD1 to (1 2 3 4 5 8} with context = cycle

¥ asserting > (bat _ D actD2 rangeD2 dayD2)
Setting value of actD2 to (act_ A) with context = cycle

n Setting value of rangeD2 to (range _ A range B range C range_ D range _E range _F) with context = cycle

Setting value of dayD2 to (28 27 28 20 30) with context = cycle

!
] We can inquire the database by using the describe functlon. This function
3 takes as an argument the name of an object. It echoes all the associated
j variables and their values.
] >
{ (describe 'bat_A)
actAd = (act_B) cycle = cycle
1 rangeA4 = (range_ A range B range_Crange_Drange_E range_F) cycle = cycle

dayAd = (123458) cycle = cycle
3clA3 == (act_A) cycle = cycle
rangeA3 == (range A range B range C) cycle == cycle
dayA3 == (1234567801011 121314151617 18 10 20 21 22 23 24 25 26 27 28 29 30) cycle = cycle
1' 3CtA2 == (act_A) cycle = cycle
rangeA2 == (range__ A range B range_C) cycle == cycle
dayA2 == (1234567860 1011121314151617 1810 20 21 22 23 24 25 26 27 28 20 30) cycle = cycle
sctAl == (act_A) cycle = cycle
rangeAl == (range A range B range _C) cycle == cycle
1 dayAl == (1234507801011 1213 14151617 18 10 20 21 22 23 24 25 26 27 28 20 30) cycle = cycle
il
‘ -> (describe 'bat _ B)
sctB3 = (act C) cycle == cycle
J rangeB3 == (range A range B range_C range__D range_E range _F) cycle == cycle
dayB3 == (26 27 28 20 30) cycle == cycle
8ctB2 = (act _ A} cycle = cycle

112

R

T

py—

Yy

rangeB2 = (range _A range_ B range_C range__D range_E range F) cycle = cycle

dayB2 == (28 27 28 20 30) cycle = cycle

sctBl = (act_B) cycle = cycle

rangeBl = (range _A range B range_ C range D range _E range_F) cycle = cycle

dsyBl = (1234567891013 1213 14 1516 17 18 10 20 21 22 23 24 25 26 27 28 20 30) cycle = cycle

-> (describe 'bat _C)

actC3 = (act_B) cycle = cycle

rangeC3 = (range_ A range_ B range_ C range_D range _E range _F) cycle = cycle
dayC3=(12345678010111213 14151617 18 10 20 21 22 23 24 25 26 272820 30) cycle = cycle

2ctC2 = (act_B) cycle = cycle

rangeC2 == (range__ A range_ B range _C range_D range E range_F) cycle = cycle
dayC2=(123458) cycle == cycle

actCl = (act_A) cycle = cycle

rangeCl == (range_ A range_ B range _ C range__D range _E range_F) cycle = cycle
dayCl1==(12345067801011121314151061718102021222324 25 26 27 28 20 30) cycle = cycle
nil

-> (describe 'bat__D)

actD2 = (act _A) cycle = cycle

rangeD2 == (range__A range_ B range_ C range_D range_E range_F) cycle == cycle
dayD2 = (26 27 28 20 30) cycle == cycle

actD1 = (act _A) cycle = cycle

rangeD1 = (range_ A range_ B range_ C range_ D range_ E range_F) cycle = cycle
dayD1 =(123458) cycle = cycle

nil

Having loaded all the data we now issue the command: (search) We do not
have to load the constraints yet, the search routine will do that automatically.

The computer starts off in the propagation state. Whenever a constraint is
used It echoes the fact that it is setting the value of a variable to some new
value set. The computer echos "USING CONSTRAINT:” followed by the

name of the constraint.

-> (search)

[load constraints.l}

USING CONSTRAINT: C8

Setting value of dayD2 to (26 27 20 30) with context = cycle

Setting value of dayD1 to (2 3 4 5) with context == cycle

Setting value of dayC3t0 (2345780 10 11 12 13 15 16 17 18 19 20 21 23 24 25 26 27 20 30) with context = cycle
Setting value of dayC2 to (2 3 4 5) with context == cycle

Setting value of dayC1 10 (234567801011 1213 1516 17 18 10 20 21 23 24 25 28 27 20 30) with context == cycie
Setting value of dayB3 to (28 27 20 30) with context == cycle

Setting value of dayB2 to (26 27 20 30) with context == cycle

Setting value of dayB1 t0 (23457890 10 11 12 13 15 16 17 18 19 20 21 23 24 25 26 27 20 30) with context = cycle

Setting value of dayA4 to (2 3 4 5) with context == cycle

113

Setting value of JayA3to (234578901011 1213 1516 17 18 19 20 21 23 24 25 26 27 20 30) with context = cycle
Setting value of dayA2t0 (23457801011 12131516 17 18 10 20 21 23 24 25 26 27 20 30) with context = cycle

Setting value of dayAl to (234578010 11 1213 15 16 17 18 10 20 21 23 24 25 26 27 20 30) with context = cycle

USING CONSTRAINT: C8 __one

Setting value of dayA3 to (7 80 10 11 12 13 15 16 17 18 10 20 21 23 24 25 26 27 20 30) with context = cycle
Setting value of dayA2 to (7 80 10 11 12 13 15 18 17 18 19 20 21 23 24 25) with context = cycle
Setting value of dayAl to (23457801011 1213 15 18 17 18 19 20) with context = cycle
USING CONSTRAINT: C4__three

Setting value of rangeB3 to (range _ B) with context == cycle

USING CONSTRAINT: C4_ two

Setting value of rangeC3 to (range _ C) with context = cycle

Setting value of rangeC2 to (range _C) with context = cycle

Setting value of rangeB1 to (range C) with context = cycle

Setting value of rangeA4 to (range C) with context = cycle
USING CONSTRAINT: C4 _one

Setting value of rangeD2 to (range _ A range _B) with context = cycle

Setting value of rangeD1 to (range A range B) with context = cycle

Setting value of rangeC1l to {range A range _B) with context = cycle

Setting value of rangeB2 to (range _ A range _ B) with context = cycle

Setting value of rangeA3 to (range A range B) with context == cycle

Setting value of rangeA2 to (range _ A range B) with context = cycle

Setting value of rangeAl to (range A range _B) with context = cycle
USING CONSTRAINT: C8 _one

Setting value of dayA3 to (12 13 15 16 17 18 10 20 21 23 24 25 26 27 20 30) with context == cycle

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of rangeD2 to (range _ B) with context = cycle0
Setting the value of rangeD2 to (range A) with context == cyclel
PROPAGATION COMPLETE

BRANCHING ...
Setting the value of rangeD1 to (range _B) with context == cycle2

Setting the value of rangeD1 to (range A) with context = cycle3

114

PROPAGATION COMPLETE
BRANCHING ...
Setting the value of rangeC1 to {range_ B) with context = cycle4

Setting the value of rangeCl to (range __A) with context = cycleb

PROPAGATION COMPLETE
BRANCHING ...
Setting the value of rangeB2 to (range _ B) with context == cycle8

Setting the value of rangeB2 to (range _A) with context == cycle?

PROPAGATION COMPLETE

BRANCHING ...
Setting the value of rangeA3 to (range__B) with context = cycle8
Setting the value of rangeA3 to (range _ A} with context == cycle
BRANCHING ...

Setting the value of rangeA2 to (range _ B) with context == cyclel0

Setting the value of rangeA2 to (range _ A) with context = cyclell

PROPAGATION COMPLETE
BRANCHING ...
Setting the value of rangeAl to (range_ B) with context == cyclel?2

Setting the value of rangeAl to (range _ A) with context == cycle13

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayD2 to (30) with context = cyclel4

Setting the value of dayD2 to (20) with context == cyclel§

Setting the value of dayD2 to (27) with context == cyclel8

Setting the value of dayD2 to (26) with context == cycle1?

Setting value of dayC1 to (28457801011 1213 1516 17 18 19 20 21 23 24 25 27 20 30) with context = cycle1?7
Setting value of dayB2 to (27 20 30) with context == cycle1?

Setting value of dayA3 to (12 13 15 16 17 18 10 20 21 23 24 25 27 20 30) with context == cyclel?
USING CONSTRAINT: C7_ aux_ aux

USING CONSTRAINT: C7 _ aux

Setting value of dayC3 (0 (2345780 1011 1213 15 18 17 18 10 20 21 23 24 25 27 20 30) with context = cyclel1?

115

Setting value of dayBl to (234578010 11 1213 15 16 17 18 19 20 21 23 24 25 27 20 30) with context = eyclc17

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayB2 to (30) with context = cycle18
Setting the value of dayB2 to (28) with context = cyclel¢

Setting the value of dayB2 to (27) with context == cycle20

USING CONSTRAINT: cl _ aux

Setting value of dayB3 to (28 20 30) with context = cycle20

Setting value of dayBl1 to (23457 89 10 11 12 13 15 16 17 18 10 20 21 23 24 25 20 30) with context = cycle20
USING CONSTRAINT: C2_ one

Setting value of dayC1t0 (2345780 1011 1213 15 18 17 18 19 20 21 23 24 25 29 30) with context == cycle20
Setting value of dayA3 to (12 13 15 16 17 18 10 20 21 23 24 25 20 30) with context == cycle20

USING CONSTRAINT: C7 _ sux

Setting value of dayC3 10 (23 4578901011 12 13 1516 17 18 19 20 21 23 24 25 20 30) with context = cycle20
PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayB3 to (30) with context == cycle21

Setting t1 2 value of dayB3 to (20) with context == cycle22

Setting the value of dayB3 to (28) with context = cycle23

PROPAGATION COMPLETE

BRANCHING ...
Setting the value of dayD1 to (5) with context == cycle24
Setting the value of dayD1 to {4) with context = cycle25

Setting the value of dayD1 to (3) with context = cycle26
Setting the value of dayD1 to (2) with context = cycle27

USING CONSTRAINT: C2_one

Setting value of dayC1 to (3 45780 10 11 12 13 15 18 17 18 10 20 21 23 24 25 20 30) with context == cycle27
Setting value of dayA1 to (3 45780 10 11 12 13 15 16 17 18 10 20) with context == cycle27?

USING CONSTRAINT: C7 _ aux

Setting value of dayC3 10 (345780 1011 1213 15 16 17 18 10 20 21 23 24 25 20 30) with context = cycle27

Setting value of dayC2 to (3 4 5) with context = cycle2?

116

A e

Setting value of dayBl to (3 457 89 10 11 12 13 15 18 17 18 10 20 21 23 24 25 20 30) with context = cycle27
Setting value of dayAd to (3 4 5) with context == cycle27

USING CONSTRAINT: C6_ one

Setting value of dayA2 to (89 10 11 12 13 15 16 17 18 10 20 21 23 24 25) with context = cycle27
PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayC2 to (5) with context == cycle28

Setting the value of dayC2 to (4) with context = cycle20

Setting the value of dayC2 to (3) with context == cycle30

USING CONSTRAINT: C8__one

Setting value of dayA3 to (13 15 16 17 18 19 20 21 23 24 25 20 30) with context = cycle30

USING CONSTRAINT: ¢l _sux

Setting value of dayC3 to (4 57 8 010 11 12 13 15 18 17 18 19 20 21 23 24 25 20 30) with context = cycle30
Setting value of dayC1 to {4 57 8 010 11 12 13 15 16 17 18 10 20 21 23 24 25 20 30) with context == cycle30
USING CONSTRAINT: C2_ one

Setting value of dayB1 to (4 57 8 010 11 12 13 15 18 17 18 10 20 21 23 24 25 20 30) with context = cycle30
Setting value of dayA4 to (4 5) with context == cycle30

USING CONSTRAINT: C3_ aux

Setting value of dayC3 to (5780 10 11 12 13 15 16 17 18 19 20 21 23 24 25 20 30) with context = cycle30
Setting value of dayC1to (57 8 0 10 11 12 13 15 18 17 18 19 20 21 23 24 25 20 30) with context = cycle30
PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayAd to (5) with context == cycledt

Setting the value of dayA4 to (4) with context == cycle32

USING CONSTRAINT: ct _aux

Setting value of dayAl1 to (357801011 12 13 15 18 17 18 19 20) with context == cycle32

USING CONSTRAINT: C2_ one ‘

Setting value of dayB1 to (5780 10 11 12 13 15 16 17 18 10 20 21 23 24 25 20 30) with context == cycle32
USING CONSTRAINT: C3_ aux

Setting value of dayAl to (3789 10 11 12 18 15 16 17 18 19 20) with context s= cycle32

PROPAGATION COMPLETE

BRANCHING ...

117

e o o e

P .

Setting the value of dayA3 to (30) with conlext = cycle33
Setting the value of dayA3 to (20) with context = cycle34
Setting the value of da);As to (25) with context = cycled5
Setting the value of dayA3 to (24) with context = cycle38
Setting the value of dayA3 to (23) with context = cycle37
Setting the value of dayA3 to (21} with context = cycle38
Setting the value of dayA3 to (20) with context = cycle39
Setting the value of dayA3 to (19) with context = cycled0
Setting the value of dayA3 to (18} with context = cycle41
Setting the value of dayA3 to (17) with context = cycle42
Setting the value of dayA3 to (18) with context = cycle43
Setting the value of dayA3 to (15) with context = cycled4
Setting the value of dayA3 to (13) with context = cycled5
USING CONSTRAINT: C8_ one

Setting value of dayA?2 to (8} with context == cycle45

Setting value of dayAl to (3) with context = cycle45

USING CONSTRAINT: C2_ one

Setting value of dayC1 to (57 6 10 11 12 13 15 16 17 18 10 20 21 23 24 25 20 30) with context = cycle45

USING CONSTRAINT: C2_ two

USING CONSTRAINT: C2_ one

Setting value of dayC1 to (57 9 10 11 12 15 16 17 18 19 20 21 23 24 25 20 30) with context = cycle45

USING CONSTRAINT: C7 _aux

Setting value of dayC3 to (5780 10 11 12 15 18 17 18 10 20 21 23 24 25 20 30) with context = cycle45

Setting value of dayB1 to (57 80 10 11 12 15 16 17 18 19 20 21 23 24 25 290 30) with context = cycledb

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayC1 to (30) with context s= cycled
Setting the value of dayC1 to (20) with context == cycle4?
Setting the value of dayC1 to (25) with context == cycleds
Setting the value of dayC1 to (24) with context m= cycled9

Setting the value of dayCl to (23) with context = cycle50

118

Setting the value of dayCl
Setting the value of dayC1
Setting the value of dayCi
Setting the value of dayCl1
Setting the value of dayCl
Setting the value of dayC1
Setting the value of dayCl
Setting the value of dayCl
Setting the value of dayCl
Setting the value of dayCi
Setting the value of dayCi
Setting the value of dayC1

Setting the value of dayC1

USING CONSTRAINT: ¢l _

to (21) with context = vycle51
to (20) with context == cycle52
to (19) with context = cycle53
to (18) with context = cycle54
to (17) with context = cycless
to (16) with context = cycle58
to {15) with context = cycle§?
to (12) with context = cycle58
to (11} with context = cycle§¢
to (10) with context = cycle60
to (9) with context = cyclesl

to (7) with context = cycle62

to (5) with context = cycle83

aux

Setting value of dayC3 to (7 89 10 11 1215 18 17 18 19 20 21 23 24 25 20 30) with context = cycle63

USING CONSTRAINT: C7 _ sux

BACKTRACKING... purging context cycle8s

Here 1s the first BACKTRACKING point. It found a problem at constralnt
C7_aux. It does a chronological BACKTRACKING by Just purging the

context cycle83.

We shall break the program to look at the current state of the problem. It

would be interesting to find out the cause of the fallure.

USING CONSTRAINT: ci

_aux

Setting value of dayC3 to (580 10 11 12 15 16 17 18 19 20 21 23 24 25 20 30) with context = cycie62

USING CONSTRAINT: C7__aux

BACKTRACKING... purging context cycle82

[toad constraints.l]

USING CONSTRAINT: C8

‘C

Interrupt:

Break nil

<1>: (describe 'bat__A)

actAd == (act_B) cycle == cycle
rangeAd == (range_ C) cycle m= cycle
dayAd == (4) cycle == cycle32

119

Cadl {

P ORGP G Yy

actA3 = (act A) cycle = cycle
rangeA3 = (range A} cycle = cycle9
dayAs = (13) cycle = cycle45

actA2? = (act _A) cycle = cycle
rangeA2 = (range _A) cycle == cyclell
dayA2 = (8) cycle = cycleds

actAl = (act_ A) cycle = cycle
rangeAl = (range A} cycle = cycle13
dayAl = (3) cycle = cycle45

nil

<1>:

(describe 'batB _ B)

actB3 = (act _C) cycle = cycle
rangeB3 = (range B} cycle = cycle
dayB3 = (28) cycle = cycle23

actB2 = (act _ A) cycle = cycle
rangeB2 = (range _A) cycle = rycle?
dayB2 = (27) cycle = cycle20

actBl = (act_ B} cycle = cycle
rangeB1 = (range _C) cycle = cycle
dayBl = (5780 10 11 1215 16 17 18 10 20 21 23 24 25 20 30) cycle = cycled5
nil

<1>:

{describe 'bat _ C)

actC3 = (act_B) cycle = cycle
rangeC3 == {range_ ') eycle = cycle
dayC3 = (57801011 12151617 18 19 20 21 23 24 25 20 30) cycle = cycle4$
2ct(C2 = (act_B) cycle = cycle
rangeC2 = (range _C) cycle = cycle
dayC2 = (3) cycle = ¢cycle30

2ctCl = (act _ A} cycle = cycle
rangeCl = (range A) cycle = cycle5
dayC1 == (0) cycle = cycle8l

nil

<1>:

(describe 'bat _ D)

actD2 = (act __A) cycle = cycle
rangeD2 == (range A) cycle = cyclel
dayD2 == (28) cycle = cyclel?

actDl = (act _A) cycle = cycle
rangeD1 = (range A) cycle = cycle3
dayD1 = (2} eycle = cycle27

nil

We see that the backup was Initiated by using the constraint C7_aux. This
constraint says that If activity act_ A is scheduled on range_ A on any day ’'x'.
Then range__C will be unsafe to use on that day.

We gee that

rangeAl = range_ A
actAl = act_A

dayAl = (3) Cycle = 45
rangeC2 = range C
dayC2 = (3) Cycle = 30

120

With the current context, however, Is cycle61. The stupld program does not
realize that It should backtrack to cycle45 to get rid of the problem. It will
backtrack and try to propagate 20 times. I hereby force the backup just to
save time. This Is the problem in chronological BACKTRACKING.

I take the liberty of backing up to cycle45.... This is done despite the fact
the program will (eventually) reach do the same.

<1>: {loop for x from 45 to 81 do (backtrack))

BACKTRACKING..

BACKTRACKING...

BACKTRACKING...

BACKTRACKING...

BACKTRACKING...

BACKTRACKING...

BACKTRACKING...

BACKTRACKING...

BACKTRACKING...

BACKTRACKING...

BACKTRACKING...

BACKTRACKING...

BACKTRACKING...

. purging context cycle8i

purging context cycle60

purging context cycleS9

purging context cycleSs

purging context cycle57

purging context cycleS6

purging context cycle55

purging context cycleSq

purging context cycle53

purging context cycle§2

purging context cycleSt

purging context cycle50

purging context cycle4g

121

B ..M-A—-<‘——.‘,“ .

[IS e i

-

f.‘”,.-------’l Ny e

BACKTRACKING... purging context cycle48

BACKTRACKING... purging context cycled?

BACKTRACKING... purging context cycled6

BACKTRACKING... purging context cycle45

nil
<1>: (reset)

{Return to top level]

-> (describe *bat _A)

actAd4 = (act _B) cycle = cycle

rangeA4 = (range__C) cycle = cycle

dayA4 = (4) cycle = cycle32

actA3 = (act _ A} cycle = cycle

rangeA3 = (range _A) cycle == cycle®

dayA3 = (15) cycle = cycledd

8ctA2 == (act _A) cycle = cycle

rangeA2 = (range _A) cycle = cyclell

dayA2= (801011 1213151617 18 10 20 21 23 24 25) cycle = cycle2?
actAl == (act_A) cycle = cycle

rangeAl = (range _ A} cycle = cycle13

dayAl = (3780 101112131516 17 1819 20) cycle = cycle32
nil

->

(describe 'bat _ B)

2ctB3 = (act_C} cycle = cyele

rangeB3 = (range B} cycle = cycle

dayB3 = (28) cycle == cycle23

2ctB2 = (act_A) cycle = cycle

rangeB2 = (range _A) cycle = cycle?

dayB2 = (27) cycle == cycie20

sctBl = (act_B) cycle = cycle

rangeBl = (range _C) cycle = cycle

dayB1 == (5780 10 11 12 13 15 16 17 18 10 20 21 23 24 25 20 30) cycle == cycle32
nil

-> (describe 'bat _ C}

2ctC3 = (act _ B} cycle == cycle

rangeC3 = (range _ C) cycle = cycle

dayC3 = (5780 101112131516 17 18 10 20 21 23 24 256 20 30) cycle = cycle30
8ctC2 = (act_B) cycle == cycle

rangeC’2 = (range _C) cycle = cycle

dayC2 = (3) cycle == cycle30

actCl == (act _A) cycle == cycle

rangeCl = (range A) cycle = cycles

dayCl == (5780101112 13 1510 17 18 10 20 21 23 24 25 20 30) cycle == cycle30
nil

->

(describe 'bat _D)

actD2 = (act _A) cycle = cycle
rangeD2 = (range A} cycle == cyclel
dayD2 = (26) cycle = cycle1?

sctDl w= (act _A) cycle == cycle
rangeDi == (range_ A} cycle == cycle3
dayDt == (2) cycle == cycle2?

122

I PP ULV

nil

-> (search)
USING CONSTRAINT: C6_ one
Setting value of dayA2 to (8 9 10) with context = cycle44

Setting value of dayAl to (3) with context = cycleds

USING CONSTRAINT: C2_one

Setting value of dayCl to (57 89 10 11 12 13 16 17 18 19 20 21 23 24 25 20 30) with context = cycled4

USING CONSTRAINT: C7 _aux
Setting value of dayC3 to (57 8 0 10 11 12 13 16 17 18 10 20 21 23 24 26 20 30) with context = cycle44

Setting value of dayB1 to (57 89 10 11 12 13 16 17 18 19 20 21 23 24 25 29 30) with context = cycledd

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayA2 to (10) with context = cycle45
Setting the value of dayA2 to (9) with context == cycle4s

Setting the value of dayA2 to (8) with context == cycled?

USING CONSTRAINT: C2_ one

Setting value of dayCl to (57 0 10 11 12 13 18 17 18 10 20 21 23 24 25 20 30) with context = cycle4?

USING CONSTRAINT: C7 _ aux

BACKTRACKING... purging context cycle4?

USING CONSTRAINT: C2__one

Setting value of dayC1 to (57 8 10 11 12 13 18 17 18 10 20 21 23 24 25 20 30) with context = cycle4s

USING CONSTRAINT: C7__aux

BACKTRACKING... purging context cycle4s

USING CONSTRAINT: C2_ one

Setting value of dayC1 to (67890 11 12 13 16 17 18 10 20 21 23 24 25 20 30) with context == cycle4$

USING CONSTRAINT: C?__sux

BACKTRACKING... purging context cycleds

123

USING CONSTRAINT: C7__aux

BACKTRACKING... purging context cycle44

USING CONSTRAINT: C8__one
Setting value of dayA2 to (8 9 10 11) with context = cycle43

Setting value of dayAl to (3) with context = cycle43

USING CONSTRAINT: C2_ one

Setting value of dayC1 to (57 8 0 10 11 12 13 15 17 18 10 20 21 23 24 25 20 30) with context = cycle43

USING CONSTRAINT: C7_ aux
Setting value of dayC3 to (57 8 0 10 11 12 13 15 17 18 19 20 21 23 24 25 20 30) with context = cycle43

Setting value of dayB1 to (5780 10 11 12 13 15 17 18 10 20 21 23 24 25 20 30) with context = cycle43

USING CONSTRAINT: C1

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayA2 to (11) with context = cycle44
Setting the value of dayA2 to (10) with context = cycle45
Setting the value of dayA2 to (9) with context = cycle48

Setting the value of dayA2 to {8) with context = cycle4?

USING CONSTRAINT: C2 _one

Setting value of dayCl to (57 0 10 11 12 13 15 17 18 10 20 21 23 24 25 20 30) with context == cycle47

USING CONSTRAINT: C7 _aux

BACKTRACKING... purging context cycle4?

USING CONSTRAINT: C2_ one

Setting value of dayC1 to (57 8 10 11 12 13 15 17 18 10 20 21 23 24 25 20 30) with context = cycle46

USING CONSTRAINT: C7_ aux

BACKTRACKING... purging context cycle4s

124

PO

"y

USING CONSTRAINT: C2_ ope

Setting value of dayC1 to (57 8 0 11 12 13 15 17 18 10 20 21 23 24 25 20 30) with coutext == cycled’

USING CONSTRAINT: C7_aux

BACKTRACKING... purging context cycled$

USING CONSTRAINT: C2__one

Setting value of dayC1 to (57 8 0 10 12 13 15 17 18 10 20 21 23 24 25 20 30) with context = cycled4

USING CONSTRAINT: C7 _aux

BACKTRACKING... purging context cycled4

USING CONSTRAINT: C7_ aux

BACKTRACKING... purging context cycle43

USING CONSTRAINT: C6_ one
Setting value of dayA2 to (8 0 10 11 12) with context == cycleq2

Setting value of dayA1l to (3 7) with context == cycle42

USING CONSTRAINT: C2_one
Setting value of dayCl1 to (57 89 10 31 32 13 15 16 18 10 20 21 23 24 25 20 30) with context == cycle42
USING CONSTRAINT: C2_ two
USING CONSTRAINT: C7_ aux
Setting value of dayC3 to (57 8 0 10 11 12 13 15 16 18 19 20 21 23 24 25 20 30} with context == cycle42

Setting value of dayB1 to (5789 10 11 12 13 15 16 18 10 20 21 23 24 25 29 30) with context == cycle42

PROPAGATION COMPLETE
BRANCHING ...
Setting the value of dayAl to (7) with context a= cycled3

Setting the value of dayAl to (3) with context == cycleds

USING CONSTRAINT: C7_ sux

BACKTRACKING... purging context cycled4

125

USING CONSTRAINT: C8_ one

Setting value of dayA2 to (12) with context == cycle43

USING CONSTRAINT: C2_ one
Setting value of dayC1 to (58 0 10 11 12 13 15 18 18 10 20 21 23 24 25 20 30) with context == cycle43
USING CONSTRAINT: C2_ one

Setting value of dayCl to (S8 90 10 11 13 15 16 18 10 20 21 23 24 25 20 30) with context = cycle43

USING CONSTRAINT: C7_ aux
Setting value of dayC3 to (58 0 10 11 12 13 15 16 18 19 20 21 23 24 25 20 30) with context = cycle43

Setting value of dayB1 to (589 10 11 1213 15 16 18 19 20 21 23 24 25 20 30) with context = cycle43

PROPAGATION COMPLETE

.

.

.

A

el

BRANCHING ...

Setting the value of dayC1
Setting the value of dayCi
Setting the value of dayC1
Setting the value of dayCi
Setting the value of dayCi
Setting the value of dayCi1
Setting the value of dayCi
Setting the value of dayC1
Setting the value of dayCi
Setting the value of dayCl
Setting the value of dayCl1
Setting the value of dayCl
Setting the value of dayCi
Setting the value of dayCi
Setting the value of dayC1
Setting the value of dayCi

Setting the value of dayCt

to (30) with context = cycle44
to (20) with context = cycle45
to (25) with context = cycle4s
to (24) with context = cycle47
to (23) with context = cycle48
to (21) with context = cycled0
to (20) with context = cycle50
to (19) with context == cycle51
to (18) with context = cycle52
to (18) with context == cycle53
to (15) with context == cycle54
to (13) with context == cycle§5
to (11) with context == cycle58
to {10) with context == cycle§?
to (9) with context = cycle58

to (8) with context == cycle59

to {5) with context == cycle80

P——,_n— e L a——

USING CONSTRAINT: ¢1 _aux

Setting value of dayC3 to (89 10 11 12 13 15 18 18 19 20 21 23 24 25 20 30) with context = cycles0

126

USING CONSTRAINT: C7_aux
Setting value of dayC3 to (8 9 10 11 13 15 18 18 10 20 21 23 24 25 20 30) with context == cycle60

Setting value of dayB1 to (58 9 10 11 13 15 16 18 10 20 21 23 24 25 20 30) with context = cycle80

USING CONSTRAINT: C7 _ aux

Setting value of dayB1 to (8 9 10 11 13 15 18 18 19 20 21 23 24 25 20 30) with context = cycle60

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayC3 to (30) with context == cyclesi
Setting the value of dayC38 to (29) with context = cycles2
Setting the value of dayC3 to (25) with context == cycle83
Setting the value of dayC3 to (24) with context = cycled4
Setting the value of dayC3 to (23) with context == cycle85
Setting the value of dayC3 to (21) with context == cycless
Setting the value of dayC3 to (20} with context = cycle8?
Setting the value of dayC3 to (18] with context = cycles8
Setting the value of dayC3 to (18) with context = cycle6®
Setting the value of dayC3 to (18) with context = cycle70
Setting the value of dayC3 to (15) with context == cycle71
Setting the value of dayC3 to (13) with context = cycle72
Setting the value of dayC3 to (11) with context »= cycle73
Setting the value of dayC3 to (10) with context = cycle?4
Setting the value of dayC3 to (0) with context == cycle?$

Setting the value of dayC3 to (8) with context == cycle78

USING CONSTRAINT: C2_one

Setting value of dayB1 to (0 10 11 13 15 16 18 10 20 21 23 24 26 20 30) with context == cycle78

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayB1 to (30) with context == cycle?7
Setting the value of dayB1 to (20) with context == cycle78
Setting the value of dayB1 to (25) with context == cycle79

Setting the value of dayB1 to (24) with context w= cycleso

127

Setting the value of dayB1 to (23) with context = cycleft
Setting the value of dayB1 to (21) with context == cycle82
Setting the value of dayB1 to (20) with context == cycle83
Setting the value of dayB1 to {10) with context = cycle84
Setting the value of dayB1 to (18) with context == cycle85
Setting the value of dayB1 to (18) with context == cycle88
Setting the value of dayB1 to (15) with context == cycleB?
Setting the value of dayB1 to (13) with context = cycle88
Setting the value of dayB1 to (11) with context = cycles9
Setting the value of dayB1 to (10) with context = cycle90

Setting the value of dayB1 to (9) with context == cycledl

PROPAGATION COMPLETE
BRANCHING ...

SCHEDULE GENERATED SUCCESSFULLY t

The program has successfully terminated. We now look at the results. The
four battalions are described below.

At the end, we look at the stack of one of the variables. It Is lntel;estlng to
note how the value of dayA2 changed from one context to another. Note that
the cycle numbers jump from nil to 27 to 42.

-> (describe 'bat__ A}

actAd = (act_ B} cycle = cycle
rangeAd = (range_C) cycle = cycle
dayAd = (4) cycle = cycle32

actA3 = (act _A) cycle = cycle
rangeA3 = (range_A) cycle = cycle®
dayA3 = (17) cycle = cycle42

actA2 == (act_A) cycle = cycle
rangeA2 = (range A} cycle = cyclell
dayA2 == (12) cycle = cycle43

sctAl = (act _A) cycle = cycle
rangeAl == (range _A) cycle == cyclel3
dayAl s=(7) cycle = cycle43

nil

-> (deseribe 'bat _ B)

actB3 = {act_C) cycle == cycle
rangeB3 = (range _B) cycle = cycle
dayB3 = (268) cycle = cycle23

2ctB2 == (sct _A) cycle == cycle
rangeB2 == (range _A) cycle = cycle?
dayB2 == (27) cycle = cycle20

actBl = (act_B) cycle = cycle
rangeBl s= (range _C) cycle s= cycle
dayBl == (9) cycle = cycle9l

nil

128

-> (describe 'bat_C)

2ctC3 = (act_B) cycle = cycle
rangeC3 = (range_C) cycle = cycle
dayC3 = (8) cycle = cycle78

2ctC2 = (act _B) cycle = cycle
rangeC2 == (range_C) cycle == cycle
dayC2 = (3) cycle = cycle30

8ctCl == (act _A) cycle = cyele
rangeC1 = (range _A) cycle = cycle§
dayCl = (5) cycle = cycle8n

il

->

(deseribe *bat D)

actD2 = (act _ A} cycle = cycle
rangeD2 = (range_A) cycle = cyclel
dayD2 = (28) cycle = cycle17

actD1 = (act_A) cycle = cycle
rangeD1 = (range_ A} cycle = cycle8
dayD1 = (2) cycle = cycle2?

nil

-> (get 'dayD1 ‘values 0
nil

t

-> (apply 'pp (get 'dayA2 'values))

(cycle43 (12)}

{cycle42 (8 0 10 11 12))

(cycle27 (8 6 10 11 12 13 15 16 17 18 19 20 21 23 24 25))

{cycle (78910 11 12 13 15 16 17 18 10 20 21 23 24 25))

(cycle (23457801011 1213151617 18 19 20 21 23 24 25 26 27 20 30))
(cyele (1234578010111213151617 18 10 20 21 23 24 25 26 27 29 30))
cycledl

hera% "D script done on Wed May 8 12:03:22 1985

129

DISTRIBUTION

Chief of Engineers

ATTN: DAEN-RDM
ATTN: DAEN-ZCE
ATTN: DAEN-ZCF
ATTN: DAEN-ZCI
ATTN: DAEN-ZCM

FESA, ATTN: Library 22060

US Army Engineer Districts
ATTN: Library (41)

US Army Engineer Divisions
ATTN: Library (14)

CRREL, ATTN: Library 03755
WES, ATTN: Library 39180
NCEL, ATTN: Library, Code LO8A 93041

Defense Technical Info. Center 22314
ATTN: DDA (2)

US Govt Printing Office 22304
Receiving Sect/Depository Copies (2)

Army Development and Employment Agency (ADEA)
ATTN: MODE-FDD-TDB
Ft. Lewils, WA 98433-5000

ADEA
P.0. Box 33368
Ft. Lewis, WA 98433-0368

Commander

Army Training Board
ATTN: ATTG-BT

Ft. Monroe, VA 23651

The Army Library (ANRAL-R) 20310
ATIN: Army Studies Section

		Superintendent of Documents
	2025-07-02T19:13:38-0400
	Government Publishing Office, Washington, DC 20401
	U.S. Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

