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1. Introduction: The Need for Reactive Experimentation
l.earning in the context of problem solving can occur in multiple different ways. ranging from macro-

operator formation [7, 16, 51 and generalized chunking [91. to analogical transfer of problem solving strategies

[3.41 and pure analytical or explanation-driven techniques [17, 6, 14]. All of these techniques, howcver. focus

on the acquisition of control knowledge to solve problems fastcr, more effectively, and to avoid pitfalls

encountered in similar situations. Ncwly acquircd control knowledgc may be cncodcd as prcferred operator

sequences (chunks and macroopcrators). improved heuristic le-hand sides on problem solving opcrators (as

in I F.X 1181). or explicit search-control rulcs (as in PROI)IGY [14Dl.

However important the acquisition of search control knowledge may be, the problem of acquiring factual

domain knowledge and represcnting it effectively for problcm solving is of at least equal significance. Most

systems that acquire new factual knowlcdge do so by some form of inductive generalization', but opcratc

independently of a goal-driven problem solver, and have no means of proactive interaction with an external

environment (with the exception of some work in robotics learning and the world modelers project [1).
When one observes real-world learners, ranging from children at play to scientists at work, it appears that

active experimentation plays a crucial role in formulating and extending domain theories, whether everyday
"naive" ones, or formal scientific ones. Many actions are taken in order to gather information and learn

whether or not predicted results come to pass, or unforeseen conscquences occur. Of course, experimentation

can yield search control preferences, as well as factual knowledge, as we see in our later example.

In order to endow a problem solver with the capability to experiment on the external world, we start by

interleaving planning and execution monitoring, so that external feedback is immediate. If the plan does not

unfold as expected (e.g., unforeseen interactions take place, actions have unexpected consequences, etc.) the

system rcplans dynamically using better-known methods, or suspends planning in order to determine the

source of the discrepancy. Here is where experimentation is triggered: divergence from expected results that

interfered with carrying out a plan for the active goal. The objective of the experiment is to augment the

domain theory (e.g., record previously unknown consequences, after determining what conditions are needed

to bring them about), or to correct that domain theory (e.g.. deleting or altering the expected effects or

applicability conditions of operators, in order to force the internal model to accord with external reality).

Fxperimentation is used to isolate the cause of each discrepancy, and make the minimal modification possible

to the internal model in order to establish external consistency. Moreover, this meaprinciplc of "cognitive

inertia" dictates that monotonic changes (adding new information) be preferred over non-monotonic ones

(changing previous information) if both are of equivalent scope.

rlle rcadcr it rnf(rred to the two efent machn e karning broia for v'erl good ezampIcs of inductivc mcthodnoies and systems
buift upon them 112. 13).
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The rest of this paper describes the experimentation methods under development in a simplified version of

the PRODIGY problem solver [IS] by tracing their operation on an example planning problem. Whereas

PRODIGY is a complete working problem solver, and other learning techniques such as explanation-based

specialization for the analytic acquisition of control knowledge have been fully implemented, the

experimentation techniques are in the midst of development, and are only partially functional as of this

writing.

2. Background: The Role of Experimentation in PRODIGY

The PRODIGY system [15, 14] is a general-purpose planner at CMU that serves as the underlying basis for

much machine-Icarning research. In essence. PRODIGY learns incrementally through experience in solving

increasingly more complex problems in a task domain, and gradually transitions from naive student, to

apprentice, to journeyman, and eventually (we hope) to domain expert. "lhus far we have experimented

successfully with a version of cxplanation-bascd learning (FBI.) [171 that can learn from failed instances (to

avoid future failures that share the same underlying cause), as well as the standard EBL based on deductively

provable generalization from positive instances. We are also studying the role of case-based learning in

PRODIGY, and are exploring interactive knowledge acquisition from a domain expert who looks over the

shoulder of the planning system, making concrete suggestions on the current plan being synthesized, and

occasionally providing more general advice.

"his paper focus on learning by experimentation, with three primary objectives:

" Experimentation to acquire and refine control knowledge - When multiple sequences of actions
appear to achieve the same goal, experimentation and analysis are required to determine which
plan is the most cost-effective or robust one, and to generalize and compile the appropriate
conditions so as to formulate the preferred plan in future problem solving instances where the
same goal and relevant initial conditions are present. Thus, experimentation may be guided
towards producing far more effective use of existing domain knowledge.

" Experimentation to augmeat an Incomplete dommin theory - Experiments may be formulated to
synthesize new operators, learn new consequences of existing operators or determine previously
unknown interactions among existing operators. Also, performing known actions on new objects
in the task domain in a systematic manner, and observing their consequences, serves to acquire
properties of these new objects and classify them according to pragmatic criteria determined by
the task domain. Thus, experimentation may be guided towards acquiring new domain
knowledge from the external environment.

" ExperimenaMtim to refine an Incorrect domain thewry - No comprehensive theory is ever perfect,
as the history of science informs us, whether it be Newton's laws of motion or more ill-structured
domain theories embedded in the knowledge bases of expert systems. However, partially correct
theories often prove useful, and arc gradually improved to match external reality (and are
occasionally totally replaced by a newer conceptual structure). Here we deal only with minor
errors of commission in the domain theory, which when locally corrected improve global

- * - " -
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performance. We believe automated knowledge refinement is a very important aspect of
autonomous learning not hcretoforc invcstigatcd in At. and one where success is potentially much
closcr at hand than the far morc difficult and scldomly cncountercd phenomenon of formulating
radically new theories from ground zero. Thus, experimentation may be guidcd at incrcmental
correction of a domain theory. 2

Wc start with the hypothesis that a universal mcthod to direct cxperimcntation exists in thc acquisition of

both domain and control knowledge - since are developing precisely such a method, as illustrated in our
worked-out example below. The central thesis is that experimentation is invoked when missing domain

knowledge prevents the fonnulation of a plan to solve the problem at hand; thus "idle curiosity" is not our
target. Moreover, the entire planning context is used to formulatc and guide the experiment, in order to focus

on the most direct and economical way of inferring the missing knowledge. Finally, concessions must be
made to other protectcd goals in the course of the cxpcrimentation: assuring safety of the experimenter. not

consuming a resource in the experiment that will be required to carry out the rest of the plan, etc. Thus,
experiment formulation, once invoked with the appropriate constraints, becomes itself a meta-problem
amenable to all the methods in the general purpose planner. The EGL method (or perhaps a similarity-based

method - SBL) may then be invoked to retain not just the result of the instance experiment, but its provably

correct generalization (or empirically appropriate one if SBL is used).

3. The Base-Level System: Knowledge Required for Planning

Considcr an examplc domain of expertise: crafting a primary telescope mirror from raw materials (such as
pyrex glass, pure aluminum, distilled water, etc.) and pertinent tools (such as grinding equipment, aluminum

vaporizers,3 etc.). The operators in the domain include: GIND-CONCAVE, POLISH, ALUMINI7., and CLEAN.

A complete domain theory would include, in addition to these four operators themselves, knowledge of:

* all the relevant preconditions for each operation to proceed successfully,

" all the consequences of applying each operator (stated as changes to the global world state),

" and all the objects to which these operators may be applied to achieve the desired effects (for
instance. wood may be ground into a concave shape, but the result would not be an optical-quality
telescope mirror).

2We ante that a iogally bmeon'c theory. requiring wholesale reconceptualittion, will not be addressed b)' our incrementa methods.
Sudh a paradigm itift. is Kuhn would call it Ill. requires a difTerent approacl, one along the lims of the more futuristic work in Machine
D [stemy 110, 11).

3Aluminum is placed on the prnurry reflecting surrace of a glass mirror blank by placng the blank in a vacuum chamber and passing a
tron current through a thin pure aluminum strip. which then vapuites and is deplited evenly, several molecules thick, oti the glass

surface to produce optiml-quality minors. For implicity in our discussion, thes details of the aluminizing proes are supprasd. as are
iternal details of the grnding and polishing process. I lence. though the domain we have chow is very much a real one. we ducut. it at

uitable level of abstraction and simplication.

!.." '', . .'...
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In addition to the domain theory, an optimal-performance system needs to know control rules (hard and

fast ones, as well as heuristic ones). These rules perform the following tasks:

* When multiple goals are present, determine which goals to work on first - or which ones to work
on at all. For instance, if the goals is-polished and is-ground-concave arc both present. it is better
to work on the latter first so as not to undo polishing by later grinding. Similarly, if the goal of
reduce-weight of the glass and is-ground-concave arc both present, it may prove unnecessary to do
more than grind, as that reduces weight as a sidc-effect of grinding away some of the glass in the
process of making it concave. Such interactions have been investigated before, albeit if not in a
very systematic manner [20, 2,21]. Herc we arc focusing on an integrated architecture to acquire
knowledge of plan interactions through ohscrvation of the consequences of its actions on ihe
external environment, and when necessary through focused experimentation.

* When multiple operators may be chosen in order to make progress towards the active goal,
determine which one(s) to apply. This is the standard role of a heuristic evaluation function 119],
but we propose to do the selection by compiling explicit symbolic reasoning, rather than a-priori
numerical metrics. The notion of learning operator preferences in the context of an active goal
was the central task of I.EX [181. and is one of the major effects of chunking and universal
subgoaling in SOAR (9]. At one end of the spectum one can view a string of purely deterministic
preferences as equivalent to a linear macro-operator 17, 16, 5], and at the other extreme as guiding
search in preferential directions based on past experience.

* When multiple objects may be chosen on which to apply the operators, determine which one(s) to
select. Again, these can be categorical (polishing and alureinizing the wrong surface of a mirror

will never yield desired results) or preferential (choosing a fast rough-grinding tool, vs choosing a
slow fine-grinding one, vs choosing both - the former for rough shaping, followed by the lauer
for fine adjustment). Preferences may be stated in terms of achieving higher quality plans (more
efficient ones to execute, or ones more likely to succeed), or in terms of minimizing planning
effort (producing a working solution quickly, even if it may be far from an optimal plan).

4. Learning by Experimentation: A Detailed Example

Let us return to our telescope mirror example, and assume that we have only a partial domain theory and

virtually no control knowledge. How can PRODIGY through its attempts to solve the problem learn to plan

better the next time? Can learning be improved by formulating subtasks just fbr the sake of acquiring

knowledge, in addition to pursuing externally-given tasks? Suppose we start with the following (greatly

simplified) knowledge base:

! 4
p ~ *



OPERATORS PRECONDITIONS CONSEQUENCES

1) GRIND-CONCAVE(<obJ>) ISA(<obj>. solid) IS-CONCAVE(<obj>)

2) POLISH(<obj>) ISA(<obj>, glass) IS-POLISHED(<obj>)
IS-CLEAN( <obj>)

3) ALUMINIZE(<obJ>) IS-CLEAN(<ob>) IS-REFLECTIVE(<obj>)
ISA(<obJ>. solid)

4) CLEAN(<obJ>) ISA(<obj>, solid) IS-CLEAN(<obj>)

INFERENCE RULES:

1) IS-REFLECTIVE(<obJ>) & IS-POLISHED(<obj>) --> IS-MIRROR(<obJ>)

2) IS-MIRROR(<obJ>) & IS-CONCAVE(<obj>) --> IS-TELESCOPE-MIRROR(<obJ>)

Given the operators and inference rules above, let us suppose that the goal of producing a telescope mirror

arises, and we have a glass blanks and a wood pieces to work with, none of them with clean or polished

surfaces. PRODIGY starts backchaining by matching the goal state against the right hand side of operators

and inference rules, concluding that in order to make a telescope mirror it should first make a mirror, and

then make its shape concave. Then seeing how to make a mirror, it concludes that it should make it reflective

and then polish it (by matching IS-MIRROR against the right hand side of the second inference rule). Let us

assume for now that PRODIGY correctly selected the glass blank (it was listed first) as the starting object.

Now it must apply the operator ALUMINIZE to the glass, which requires that it be a solid (see figure 2 for

the object hierarchy), and that it be clean. The first precondition is satisfied (glass is a solid), and the second

one requires applying the CLEAN operator, which succeeds because any solid thing may be cleaned. These

successes enable the ALUMINIZE operator to apply successfully, and go on to the next goal in the

conjunctive subgoal set: IS-POLISHED (again, see figure 1). Thus far, there have been no surprises and no

learning, just locally successful perfomance.

However, whereas PRODIGY believed that the POLISH operator preconditions were satisfied (it believes

In temporal persistence of states, such as IS-CLEAN, unless it learns otherwise), the environment states the

contrary: the glass is not clean. The first learning step occurs in the attribution of this state change to one of

the actions that occurred since the state IS-CLEANED was brought about. Since there was only one

intervening operator invocation (ALUMINIZE), it infers that a previously unknown consequence of this

operator Is -IS-CLEAN (meaning retracting IS-CLEAN from the current state). If there had been many

intermediate operators, specific experiments to perform some but not other steps would have been required to

Isolate the culprit operator. After applying the CLEAN operator once more, it again attempts to POLISH,

i ill l
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but the operator does not result in the expected state IS-POLISH-D. This means that either it is missing

some knowledge ( ome other precondition for POLISH is required), or its existing knowledge is incorrect

(IS-POLISHED is not a consequence of POLISH). Always preferring to believe its knowledge correct unless

forced otherwise, it prefers to examine the former alternative. But. how can it determine what precondition

could be missing?

Well, time to formulate an experimcnt: Arc there other objects on which it could attempt thc POI.ISH

operation? The only possibilities are un-aluminized dirty glass blanks, and dirty wood blanks. It can only

polish glass (see the precondition table), and all the glass blanks are identical to each other, but different from

the current object in that they are both dirty and unaluminized, so it choses a glass blank. After cleaning it,

the POLISH operator succeeds, and once again it must establish a reason for the operator succeeding this

time, but failing earlier: the only difference is the glass not being aluminized. Thus a new precondition for

POLISH is learned as a result of a simple directed experiment: -IS-REFLECTIVE(<OBJ)), meaning that

once coated with aluminum, it cannot polish the substrate substance.

Now back to the problem at hand. In order to POLISH the glass it must unaluminize it, but there is no

known operator that removes aluminum.4 So the IS-POLISHED subgoal fails, and failure propagates to the

IS-MIRROR subgoal, with the cause of failure being that the IS-REFLECTIVE prevented POLISH from

applying. Here one may apply a criterial subgoal-ordering heuristic:

If the cause of failure of one conjunctive subgoal is a consequence of an operator in an earlier
subgoal in the same conjunctive set. try reordering the subgoals.

That heuristic succeeds by POLISHing before ALUMINIZing. Having obtained success in one ordering and

failure in another, the system tries to prove to itself that this ordering is always required, and succeeds by

constncting the proof: ALUMINIZE will always produce IS-REFLECTIVE which blocks POLISH, and

since there are no other known ways to achieve IS-POLISHED, failure is guaranteed. The present version of

PRODIGY is capable of producing such proofs in failure-driven EBL mode. Thus, a goal-ordering control

rule is acquired for this domain: always choose POLISH before ALUMINIZE, if both are in the same

conjunctive goal set and both are apply to the same object

Now, once again, back to the problem at hand. The system succeeded in producing a mirror, but now

needs to make it concave. The only operator to make IS-CONCAVE true is GRIND-CONCAVE. Its only

precondition is thai the object be solid, and so it applies. At this point the system checks whether it finally has

achieved the top-level goal IS-TELESCOPE-MIRROR, and discovers (much to its dismay, were it capable of

41f dfs domain knowledge were grater. it would know that grinding would remove aluminum and well as changing the shape and

removing wrfacc polish. In faCL this knowledge is acquired later in the exuamplc, as an unonunatc side cffect oraucmpin to make a nai
iwnror ooncave by Srnding it.

1 6, A



emotions), that all its work on POLISHing and ALUMINIZing has disappeared. The only operator that

applied since the mirror was polishcd and aluminized was GRIND-CONCAVE. and so it learns two new

consequences for GRIND-CONCAVE: -IS-POLISHED and -IS-REFLECTIVE. No explicit experiment

was nccded as only one opcrator (GRIND-CONCAVE) could have caused thosc changes. At this point

PRODIGY would spawn off the subgoal to make the concave glass back into a mirror, and all that it learned

when making the flat glass into a mirror applies (POLISH before ALUMINIZE, ctc.) producing the plan

more efficiently. Finally, the top level goal of IS-TELESCOPE-MIRROR is achieved.

The learning system, however, is seldom quiescent, and though global success was achieved, some states

(IS-MIRROR, IS-REFLECTIVE, IS-POL[SIIED, IS-CLEAN) had to be achievee multiple times.

Retrospective examination of the less-tLhan-optimal solution suggests that another goal reordering heuristic

applies:

If a the result of a subgoal was undone when pursuing a later subgoal in the same conjunctive se& try
reordering these two subgoals.

So, PRODIGY goes off and tries the experiment of achieving IS-CONCAVE before achieving IS-MIRROR,

resulting in a more efficient plan.5 A proof process would again bc invoked to determine whether to make it a

criterial reordering rule, concluding that it is always better to achieve IS-CONCAVE first. "he chart below,

summarizes the new knowledge acquired (in italics) as a result o? the problem solving episodes, experiments,

and proofs. Such is the process of fleshing out incomplete domain and control knowledge through experience

and focused interaction with the task environment. Although in the example all the preconditions are

consequences learned are negated predicates, the same process applies to acquiring simple atomic predicates.

The process of acquiring logical combinations of atomic predicates is significantly more complex.

SIn general we are measuring relativ efficiency by requiring fewer total steps and no repeated subloalr In the instance case we have a

gartl;cr c ndiliot: fhc e.,if-ondc .k-i ioiIm of ihc morc efficicnt plan con,,iItic a proper subset of the lcaf-nodc actinni of the preaous less
cfficnt plan.
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OPERATORS PRECONDITIONS CONSEQUENCES

1) GRIND-CONCAVE(<obJ>) ISA(<obJ>, solid) IS-CONCAVE(<obj>)
-IS-POLISHED((obj))
~IS-R EFLECT! VE(obft)

2) POLISH(<obj>) ISA(<obJ>. glass) IS-POLISHED(<obj>)
IS-CLEAN(<obJ>)
~-IS-RErLECTI VE((obj))

3) ALUMINIZE(<obJ>) IS-CLEAN(<obj>) IS-REFLECTIVE(<obj>)
ISA(.<obj>, solid) -IS-CLEAN(KobWJ

4) CLEAN(<obj>) ISA(<obj>, solid) IS-CLEAN(<obJ>)

INFERENCES:

1) IS-REFLECTIVE(<obJ>) & IS-POLISHED(<obj>) --> IS-MIRROR(<obJ>)

2) IS-MIRROR(<obJ>) & IS-CONCAVE(<ob>) --> IS-TELESCOPE-MIRROR(<obJ>)

NEWLY ACQUIRED CONTROL RULES for SUBGOAL ORDERING:

1) Select IS-POLISHED{(obj)) before IS-REFL EC Ti VE((obj)) if both are
present in the same conjunctive subgoal set.

2) Select IS-CONCA VE((obj)) before JS-MRROR((obj)) if both are
present in the same conjunctive subgoal seL

4.1. Concluding Remark: Beyond Simple Experimentation

Additional learning could occur by attempting to generalize the newly acquired preconditions and

consequences to other sibling operators in the operator hierarchy (see figure 3). For instance, the newly

learned consequences of destroying a polished or aluminized surface apply not just to GRIND-CONCAVE,

but to any GRIND operation (such as GRIND-CONVEX, GRIND-PLANAR). However, these

consequences do not apply to other RESHAPE operations such as BEND, COMPRESS, etc. The process to

determine the appropriate level of generalization again requires experimentation (or asking focused questions

to a human expert). For instance, observing the consequences of GRIND-PLANAR on a previously

aluminized mirror, provides evidence that all GRINDs behave alike with respect to destroying surface

attributes, and observing the consequences of bending a polished reflective glass tube without adverse effects

prevents generalization above GRIND.

In addition to proposing experiments to guide generalization, we are starting to investigate tradcoffs

between experimentation and resourcc consumption (minimizing the latter, while maximizing the

V!
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information gained from the former), and tradeoffs between experimentation and other goals such

jeopardizing safety of the robot or person conducting the experiment. Our ultimate aim is to develop a set of

general techniques for an Al system to acquire knowledge of its task domain systematically under its own

initiative, starting from a partial domain theory and little if any a-priori control knowledge. The impact of this

work should be felt in robotic and other autonomous planner domains, as well as in expert systems that must

deal with a potentially changing environment of which they cannot possibly have complete and accurate

knowledge beforehand.
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