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1. Introduction: The Need for Reactive Experimentation

Lcarning in the context of problem solving can occur in multiple differont ways, ranging from macro-
operator formation 7, 16, 5] and gencralized chunking [9], to analogical transfer of problem solving strategies
{3. 4] and purc analytical or explanation-driven techniques [17, 6, 14). All of these techniques, however, focus
on the acquisition of control knowledge to solve problems faster, more cffectively, and to avoid pitfalls
encountered in similar situations. Newly acquired control knowledge may be encoded as preferred opcerator
sequences (chunks and macrooperators), improved heuristic left-hand sides on problem solving operators (as
in 1.EX [18]). or explicit scarch-control nules (as in PRODIGY [14]).

However important the acquisition of scarch control knowledge may be, the problem of acquiring factual
domain knowledge and representing it cffectively for problem solving is of at lcast equal significance. Most
systems that acquirc new factual knowledge do so by some form of inductive gcncralizat.ion‘, but opcrate
indcpendcently of a goal-driven problem solver, and have no means of proactive intcraction with an external
environment (with the exccption of some work in robotics learning and the world modelers project [1]).
When one obscrves real-world learncrs, ranging from children at play to scientists at work, it appears that
active cxperimentation plays a crucial role in formulating and extending domain theories, whether everyday
“naive” ones, or formal scicntific ones. Many actions are taken in order to gather information and learn
whether or not predicted results come to pass, or unforescen consequences occur. Of course, experimentation
can yield scarch control preferences, as well as factual knowledge, as we see in our later cxample,

In order to cndow a problem solver with the capability to experiment on the external world, we start by
interlcaving planning and execution monitoring, so that external fecdback is immediate. If the plan does not
unfold as cxpected (e.g., unforescen interactions take place, actions have unexpected consequences, etc.) the
system rcplans dynamically using better-known methods, or suspends pianning in order to determine the
source of the discrepancy. Here is where experimentation is triggered: divergence from expected results that
interfored with carrying out a plan for the active goal. The objective of the experiment is to augment the
domain theory (c.g., record previously unknown consequences, after determining what conditions are nceded
to bring them about), or to correct that domain theory (e.g.. deleting or altcring the expected effects or
applicability conditions of operators, in order to force the internal model to accord with external reality).
Experimentation is uscd to isolate the cause of cach discrepancy, and make the minimal modification possible
to the intcrnal model in order to establish external consistency. Moreover, this mewprinciple of "cognitive
incrtia” dictatcs that monotonic changes (adding ncw information) be preferred over non-monotonic ones
(changing previous information) if both are of equivalent scope.

“lhc rcader is referred (o the two rocent machne Iearning books for acveral good examplcs of inductive mcthodologies and sysiems

buil upon them |12, 1)),
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‘I'he rest of this paper describes the experimentation methods under development in a simplificd version of

the PRODIGY problem solver [15] by tracing their operation on an cxample planning problem. Whereas
PRODIGY is a complete working problem solver, and other lcarning techniques such as explanation-based
specialization for the analytic acquisition of control knowledge have been fully implemented, the
experimentation techniques are in the midst of devclopment, and are only partially functional as of this

writing.

2. Background: The Role of Experimentation in PRODIGY

The PRODIGY system [15, 14] is a gencral-purpose planncr at CMU that serves as the underlying basis for
much machinc-lcarning research. In essence, PRODIGY learns incrementally through experience in solving
increasingly morc complex problems in a task domain, and gradually transitions from naive student, to
apprentice, to journeyman, and cventually (we hope) to domain expert. ‘Thus far we have experimented
successfully with a version of cxplanation-based Icarning (FBL.) [17] that can lcarn from failed instances (to
avoid future failurcs that share the same underlying cause), as well as the standard EBL based on deductively
provable generalization from positive instances. We are also studying the role of case-based learning in
PRODIGY, and arc exploring interactive knowledge acquisition from a domain expert who looks over the
shoulder of the planning system, making concrete suggestions on the current plan being synthesized, and
occasionally providing more general advice.

This paper focus on learning by experimentation, with three primary objectives:

o Experimentation to acquire and refine control knowledge — When multiple sequences of actions
appear to achieve the samc goal, experimentation and analysis arc required to determine which
plan is the most cost-cffective or robust one, and to generalize and compile the appropriate
conditions so as to formulatc the preferred plan in future problem solving instances where the
same goal and relevant initial conditions are present. Thus, experimentation may be guided
towards producing far more effective use of existing domain knowledge.

o Experimentation to augment an incomplete domain theory — Expcriments may be formulated to
synthesize new operators, learn new consequences of existing operators or determine previously
unknown intcractions among existing operators. Also, performing known actions on new objects
in the task domain in a systcmatic manner, and observing their consequences, serves to acquire
properties of thesc new objects and classify them according to pragmatic critcria determined by
the task domain. Thus, expcrimentation may be guided towards acquiring new domain
knowledge from the external environment,

o Experimentation to refine an incorrect domain theory — No comprechensive theory is ever perfect,
as the history of science informs us, whether it be Newton's laws of motion or more ill-structured
domain theorics cmbedded in the knowledge bases of expert systems. However, partially correct
theorics often prove uscful, and are gradually improved to match external reality (and are
occasionally totally replaced by a newer conceptual structure). Here we dceal only with minor
crrors of commission in thc domain theory, which when locally corrected improve global
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performance. We believe automated knowledge refinement is a very important aspect of
autonomous Icarning not heretofore investigated in Al and one where success is potentially much
closer at hand than the far more difficult and scldoinly encountered phenomenon of formulating
radically new theories from ground zero. Thus, experimentation may be guided at incremental

correction of a domain thcory

We start with the hypothesis that a universal method to direct experimentation exists in the acquisition of
both domain and control knowlcdge ~ since are developing precisely such a method. as illustrated in our
worked-out example below. The central thesis is that experimentation is invoked when missing domain
knowledge prevents the fornnulation of a plan to solve the problem at hand; thus "idlc curiosity” is not our
target. Morcover, the entire planning context is used to formulate and guide the experiment, in order to focus
on the most direct and cconomical way of inferring the missing knowledge.  Finally, concessions must be
made to other protected goals in the course of the experimentation: assuring safety of the experimenter. not
consuming a resource in the experiment-t.hat will be required to carry out the rest of the plan, etc. Thus,
experiment formulation, once invoked with the appropriate constraints, becomes itself a meta-problem
amecnable to all the methods in the gencral purpose planner. The EBL method (or perhaps a similarity-based
mcthod — SBL) may then be invoked to retain not just the result of the instance experiment, but its provably

correct gencralization (or empirically appropriate one if SBL is used).

3. The Base-Level System: Knowledge Required for Planning

Consider an example domain of expertise: crafting a primary telescope mirror from raw materials (such as
pyrex glass, pure aluminum, distilled watcer, etc.) and pertinent tools (such as grinding equipment, aluminum
\raporizers,3 etc.). The operators in the domain include: GRIND-CONCAVE, POLISH, ALUMINIZE, and CLEAN,
A complete domain theory would include, in addition to these four operators themselves, knowledge of:

o all the rclcvant preconditions for cach operation to procced successfully,
o all the consequences of applying cach operator (stated as changes to the global world state),

e and all the objects to which thesc operators may be applied to achieve the desircd effects (for
instance, wood may bc ground into a concave shape, but the result would not be an optical-quality

telescope mirror).

ZWQ note that & totally incorrect theory, requiring wholesale reconceptualization, will not be addressed by our incremental methods.
Such & paradigm shift, as Kuhn would call it [8), requires a differcnt approach. onc along the tines of the more futuristic work in Machine

Discovery {10, 11).

3»\lmnimam is placed on the primary refllocting surface of a glass mirror blank by placing the blank in a vacuum chamber and passing a
strong current through a thin pure aluminum sinp. which then vaporizes and is deporited cvenly, several molecules thick, ou the glass
surface to produce optical-quality mirrors. For simplicity in our discussion, these detils of the aluminizing process are suppressed. as are
internal deuwils of the grinding and polishing processcs. flence, though the domain we have chosc 1s very much a real one, we discuss 1t at
suitable level of absiraction and simplification.
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In addition to the domain thcory, an optimal-performance system nceds to know control rules (hard and
fast ones, as well as heuristic ones). These rules perform the following tasks:

e When multiple goals are present, determine which goals to work on first — or which ones to work
on at all. For instance, if the goals is-polished and is-ground-concave arc both present, it is better
to work on the latter first so as not to undo polishing by later grinding. Similarly, if the goal of
reduce-weight of the glass and is-ground-concave arc both present, it may prove unnccessary to do
morc than grind, as that reduccs weight as a sidc-cffect of grinding away some of the glass in the
process of making it concave. Such intcractions have been investigated before, albeit if not in a
very systematic manner [20, 2, 21). Here we are focusing on an intcgrated architecture to acquire
knowledge of plan interactions through obscrvation of the consequences of its actions on the
external environment, and when necessary through focused experimentation,

e When multiple operators may be chosen in order to make progress towards the active goal,
determine which one(s) to apply. This is the standard role of a heuristic evaluation function {19},
but we proposc to do the sclection by compiling explicit symbolic reasoning, rather than a-priori
numerical metrics. The notion of learning operator preferences in the context of an active goal
was the central task of LLEX [18]. and is onc of the major effects of chunking and universal
subgoaling in SOAR [9]. At one end of the spectrum one can view a string of purcly deterministic
preferences as cquivalent to a lincar macro-operator [7, 16, 5}, and at the other extreme as guiding
search in preferential directions based on past experience.

e When multiple objects may be choscn on which to apply the operators, determine which one(s) to
select. Again, these can be categorical (polishing and aluminizing the wrong surface of a mirror
will never yield desired results) or prefercntial (choosing a fast rough-grinding tool, vs choosing a
slow finc-grinding one, vs chousing both ~ the former for rough shaping, followed by the lauer
for fine adjustment). Prefcrences may be stated in terms of achieving higher quality plans (more
efficicnt ones to execute, or oncs more likcly to succeed), or in terms of minimizing planning
effort (producing a working solution quickly, even if it may be far from an optimal plan). ,

4. Learning by Experimentation: A Detailed Example

Let us return to our telescope mirror example, and assume that we have only a partial domain theory and
virtually no control knowlcdge. How can PRODIGY through its attempts to solve the problem learn to plan
better the next time? Can lkarning be improved by formulating subtasks just for the sake of acquiring

knowledge, in addition o pursuing extcrnally-given tasks? Supposc we start with the following (greaty
simplificd) knowledge base:
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5
OPERATORS PRECONDITIONS CONSEQUENCES
1) GRIND-CONCAVE(<obj>) ISA(<obj>. solid) 1S-CONCAVE (<ob j>)
2) POLISH(<obj>) ISA(<obj>, glass) I1S-POLISHED( <ob j>)

1S-CLEAN( <obj>)

3) ALUMINIZE(<obj>) IS-CLEAN(<0bj>) IS-REFLECTIVE(<obj>)
ISA(<obj>, solid)

4) CLEAN(<0bj>) ISA(<obj>, solid) 1S-CLEAN( <obj>)

B -

INFERENCE RULES:

1) IS-REFLECTIVE(<obj>) & IS-POLISHED(<obj>) --> IS-MIRROR(<obj>)

2) IS-MIRROR(<obj>) & IS-CONCAVE(<obj>) <-> IS-TELESCOPE-MIRROR(<obj>)

Given the opcrators and inference rules above, let us suppose that the goal of producing a telescope’ mirror
arises, and we have a glass blanks and a wood pieces to work with, none of them with clean or polished
surfaces. PRODIGY starts backchaining by matching the goal staté'against the right hand side of operators
and inference rules, concluding that in order to make a telescope mirror it should first make a mirror, and
then make its shape concave. Then seeing how to make a mirror, it concludes that it should make it reflective
and then polish it (by matching IS-MIRROR against the right hand side of the sccond inference rule). Let us
assume for now that PRODIGY correctly selected the glass blank (it was listed first) as the starting object.
Now it must apply the operator ALUMINIZE to the glass, which requires that it be a solid (see figure 2 for
the object hicrarchy), and that it be clean. The first precondition is satisficd (glass is a solid), and the second
one requires applying thc CLEAN operator, which succecds becausc any solid thing may be cleaned. These
successes enable the ALUMINIZE operator to apply successfully, and go on to the next goal in the
conjunctive subgoal set: IS-POLISHED (again, sec figure 1). Thus far, there have been no surprises and no
lcaming, just locally successful performance.

However, wherea_s PRODIGY believed that the POLISH operator preconditions were satisfied (it believes
in temporal persistence of states, such as IS-CLEAN, unless it learns othcrwisc), the environment states the
contrary: the glass is not clean. The first lcarning step occurs in the attribution of this statc change to one of
the actions that occurred since the state IS-CLEANED was brought about. Since there was only one
intervening operator invocation (ALUMINIZE), it infers that a previously unknown consequence of this
operator is ~IS-CLEAN (mcaning rotracting IS-CLEAN from the current state). If there had been many
intermediate operators, specific experiments to perform some but not other steps would have been required to
isolate the culprit operator. After applying the CLEAN operator once more, it again attempts to POLISH,
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but the operator docs not result in the expected state I1S-POLISHED. This means that either it is missing
somc knowledge ( ome other precondition for POLISH is required), or its existing knowledge is incorrect
(IS-POLISHED is not a conscquence of POLISH). Always preferring to belicve its knowledge correct unless
forced otherwise, it prefers to cxamine the former alternative. But, how can it determine what precondition
could be missing?

Well, time to formulate an cxperiment:  Are there other objects on which it could attempt the POLISH
operation? The only possibilitics are un-aluminized dirty glass blanks, and dirty wood blanks. It can only
polish glass (see the precondition table), and all the glass blanks are identical to each other, but different from
the current object in that they are both dirty and unaluminized, so it choses a glass blank. After clcaning it,
the POLISH opcrator succecds, and once again it must establish a reason for the operator succeeding this
time, but failing earlier: the only difference is the glass not being aluminized. Thus a new precondition for
POLISH is lcarned as a result of a simple dirccted experiment; ~IS-REFLECTIVE(KOBJ>), meaning that
once coated with aluminum, it cannot polish the substrate substance.

Now back to the problem at hand. In order to POLISH the glass it must unaluminize it, but there is no
known operator that removes aluminum.* So the IS-POLISHED subgoal fails, and failure propagates to the
1S-MIRROR subgoal, with the causc of failure being that the IS-REFLECTIVE prevented POLISH from
applying. Here one may apply a criterial subgoal-ordering heuristic:

If the cause of failure of one conjunctive subgoal is a consequence of an operator in an earlier
subgoal in the same conjunctive sel, try reordering the subgoals.

That heuristic succeeds by POLISHing before ALUMINIZing. Having obtained success in one ordcring and
failure in another, the system tries to prove to itsclf that this ordering is always required, and succeeds by
constructing the proof: ALUMINIZE will always produce IS-REFLECTIVE which blocks POLISH, and
si;icc there are no other known ways to achicve IS-POLISHED, failure is guarantced. The present version of
PRODIGY is capable of producing such proofs in failurc-driven EBL mode. Thus, a goal-ordering control
rule is acquircd for this domain: always choose POLISH beforc ALUMINIZE, if both are in the same
conjunctive goal set and both are apply to the same object.

Now, once again, back to the problem at hand. The system succeeded in producing a mirror, but now
necds to make it concave. The only operator to make IS-CONCAVE true is GRIND-CONCAVE. Its only
precondition is that the object be solid, and so it applies. At this point the system checks whether it finally has
achieved the top-level goal IS-TELESCOPE-MIRROR, and discovers (much to its dismay, were it capable of

‘If fts domain knowledge were greater, it would know that grinding would remove aluminum and well as changing the shape and
removing surface polish. In fact. this knowicdge is acquirced later in the example, as an unlontunaic side cffect of attempting 1o make a Nlay
mirror concave by grinding it.




cmotions), that all its work on POLISHing and ALUMINIZing has disappeared. The only operator that
applicd sincc the mirror was polishced and aluminized was GRIND-CONCAVE, and so it lcarns two new
consequences for GRIND-CONCAVE: ~IS-POLISHED and ~IS-REFLECTIVE. No explicit expcriment
was nceded as only one operator (GRIND-CONCAVE) could have caused those changes. At this point
PRODIGY would spawn off the subgoal to make the concave glass back into a mirror, and all that it Jcarned
when making the flat glass into a mirror applics (POLISH before ALUMINIZE, cic.) producing the plan
more cfficicntly. Finally, the top lcvel goal of IS-TELESCOPE-MIRROR is achieved.

The learning system, however, is seldom quiescent, and though global success was achieved, some states
(IS-MIRROR, IS-REFLECTIVE, IS-POLISHED, IS-CLEAN) had to be achieved multiple times.
Retrospective examination of the less-than-optimal solution suggests that another goal reordcring heuristic
applies:

If a the result of a subgoal was undone when pursuing a later subgoal in the same conjunctive sei, try
reordering these two subgoals.

So, PRODIGY goes off and tries the expcriment of achieving IS-CONCAVE before achieving IS-MIRROR,
resulting in a more efficient plan.s A proof process would again be invoked to determinc whether to make it a
criterial reordering rule, concluding that it is always better to achieve IS-CONCAVE first. The chart below,
summarizes the new knowlcdge acquired (in italics) as a result of the problem solving cpisodes, experiments,
and proofs. Such is the process of fleshing out incomplete domain and control knowledge through experience
and focused intcraction with the task environment. Although in the example all the preconditions are
conscquences learned are negated predicates, the same process applics to acquiring simple atomic predicates.
The process of acquiring logical combinations of atomic predicates is significantly more complex.

sln general we are measuring relative efficiency by requiring fewer total sieps and no repeated subgoals. In the instance case we have a
stronger condition: the keaf-nade actions of the more efficient plan convnuic a proper subset of the keal-node actions of the previous less
efficient plan.
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8
OPERATORS PRECONDITIONS CONSEQUENCES
1) GRIND-CONCAVE(<obj>) ISA(<obj>, solid) 1S-CONCAVE (<ob j>)
~1S-POLISHED(<0b)>)
~1S-REFLECTIVE(<obj?)
2) POLISH(<obj>) ISA(<obj>, glass) 1S-POLISHED(<obj>)
IS-CLEAN(<o0bj>)
~IS-REFLECTIVE(Cob)
3) ALUMINIZE(<obj>) IS-CLEAN(<ob3>) 1S-REFLECTIVE(<obj>)
ISA(<obj>, solid) ~IS-CLEAN(<ob)>)
4) CLEAN(<obj>) ISA(<obj>, solid) IS-CLEAN(<ob j>)

INFERENCES:
1) IS-REFLECTIVE(<obj>) & IS-POLISHED(<obj>) --> IS-MIRROR(<obj>)
2) 1S-MIRROR(<obj>) & IS-CONCAVE(<obj>) ~-> IS-TELESCOPE-MIRROR(<obj>)

NEWLY ACQUIRED CONTROL RULES for SUBGOAL ORDERING:

1) Select IS-POLISHED(<0b)>) before IS-REFLECTIVE(<obj>) if both are
present in the same conjunctive subgoal sel.

2) Select IS-CONCAVE(<Cob))) before IS-MIRROR(<obj)) if both are
present in the same conjunctive subgoal set.

4.1, Concluding Remark: Beyond Simple Experimentation

Additional learning could occur by attempting to generalize the newly acquired preconditions and
conscquences to other sibling operators in the operator hierarchy (sce figure 3). For instance, the newly
learned conscquences of destroying a polished or aluminized surface apply not just to GRIND-CONCAVE,
but to any GRIND operation (such as GRIND-CONVEX, GRIND-PLANAR). However, these
consequences do not apply to other RESHAPE operations such as BEND, COMPRESS, etc. The process to
determine the appropriate level of generalization again requires experimentation (or asking focused questions
to a human expert). For instance, observing the consequences of GRIND-PLANAR on a previously
aluminized mirror, provides evidencc that all GRINDs behave alike with respect to destroying surface
attributes, and observing the consequences of bending a polished reflective glass tube without adverse cffects
prevents generalization above GRIND.

In addition to proposing experiments to guide generalization, we are starting to investigate tradcoffs
between experimentation and resource consumption (minimizing the latter, while maximizing the
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information gained from the former), and tradcoffs bctwcen experimentation and other goals such
jeopardizing safety of the robot or person conducting the experiment. Our ultimate aim is to develop a set of
general techriques for an Al system to acquire knowledge of its task domain systematically under its own
initiative, starting from a partial domain theory and little if any a-priori control knowledge. The impact of this
work should bc felt in robotic and other autonomous planner domains, as well as in cxpert systems that must
deal with a potentially changing environment of which they cannot possibly have complete and accurate
knowledge beforchand.
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