Validation of Current and Alternative Armed Services Vocational Aptitude Battery (ASVAB)
 Area Coriposites,

Based on Training and Skill Qualification Test (SQT)
Information on Fiscal Year 1981 and 1982 Enlisted Accessions

American Institutes for Research

Paul G. Rossmeissl
Army Research Institute

Lauress L. Wise, David A. Brandt, and Ming-mei Wang
American Institutes for Research

Selection and Classification Technical Area Manpower and Personnel Research Laboratory

U. S. Army

D
Research Institute for the Behavioral and Social Sciences
October 1984

$$
\begin{array}{lllll}
C-1 & 85 & 7 & 24 & 036
\end{array}
$$

U. S. ARMY RESEARCH INSTITUTE
 FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the
Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON
Technical Director
L. NEAL COSBY

Colonel, IN
Commander

Research accomplished under contract
for the Department of the Army
Human Resources Research Organization

Technical review by
John J. Mellinger (Army Research Institute)
Lloyd G. Humphreys (University of Illinois at Urbana-Champaign)
Robert I. Linn (University of Illinois at Urbana-Champaign)
Lonnie D. Valentine, Jr. (Air Force Human Resources Laboratory)
Lawrence M. Hansen (Army Research Institute)

NOTICES

OISTRIBUTION: Primery distribution of this report has been mede by ARI. Flense address correspondence concerning distribution of reportito: U.S. Army Research institute tor the Bendviorel end Social getences. AtTN: PERIdOT, 5001 EIsenhower Avenue, Alexendrle, Virginia 22333-5600.

FINAL OISPOSITION: ThIs report bey be destroyed when it Is no longer needed. Pleat do not return it to the U.S. Army Research institute for the Beneviopal and sociel selences.

Mote: Tho findings in this report sere not to be construed as an oftiel it Depertant of the Army position unless so asigineted by other authorized deeumefts.

$$
c-2
$$

ARI Technizal Report 651

20. (Continued)
differential validity, and possible prediction bias. Both sets of composites were found to perform well, with the aiternative set of four composites doing slightly better than the nine now in operational use.

Validation of Current and Alternative Armed Services Vocational Aptitude Battery (ASVAB) Area Composites,

Based on Training and Skill Qualification Test (SQT) Information on Fiscal Year 1981 and 1982 Enlisted Accessions

Donald H. McLaughlin
American Institutes for Research
Paul G. RossmeissI
Army Research Institute
Lauress L. Wise, David A. Brandt, and Ming-mei Wang American Institutes for Research

Submitted by
Newell K. Eaton, Chief
Selection and Classification Technical Area

> Approved as technically adequate and submitted for publication by Joyce L. Shields, Director Manpower and Personnel Research Laboratory
u.s. Apmy research institute for the behavioral and social sciences

5001 Eisenhower Avenue. Atexandria, Virginis 22332
Office, Deputy Chief of Staft for Personnel
Department sf the Army
October 1984

ARI Research Reports and Technical Reports are intended for sponsors of R\&D tasks and for other research and military agencies. Any findings ready for implementation at the time of publication are presented in the last part of the Brief. Upon completion of a major phase of the task, formal recommendations for official action normally are conveyed to appropriare military agencies by briefing or Disposition Form.

This document presents the results of the first step in ARI's large scale research effort for improving the selection, classification, and utilization of Army enlisted personnel. The research reported here is unique in that the very large sample sizes that were employed make it one of the largest investigations of test validity conducted to date. Two important findings emerged from the research. First, it is now clear that the current ASVAB composites are good predictors of soldier performance. jecond, the predictive power of two of the composites could be substantially improved with little change or cost to the current assignment system. With the operational use of the new composites which started in October 1984, the Army can expect improved performance in the clerical and surveillance/commications MOS, which can be attributed directly to this project.

This report was prepared by staff of the American Institutes for Research and the U.S. Army Research Institute for the Behavioral and Social Sciences, as specified in contract MMDA 903-82-C-0531 between the Army Research Institute and the Human Resources Research Organization, Newell K. Eaton, COR. The analytical work was carried out under the direction of the lead author, in close consultation with the second author. The sections on Historical Background, Purpose and Objectives, and Assessment of Predictive Bias were written by Paul Rossmeissl; the sections on Development of Alternative Composites, Predictive Validity of Alternative Composites, Differential Validity, and the Surmary were written by Don Mclaughlin. The section on Alternative Composite Scales and Cutoffs was written by Lauress Wise; the section on Predictive Validity of the Current Composites was written by David Brandt; and the Description of Data was writien by committee. Valuable inputs were provided by the project's principal investigator, John Campbell; by the project's Scientific Advisory Cormittee, especially Robert Linn; by the staff of the Army Research Institute, especially Newell k. Eaton, Hilda Wing, Larry Hanser, John Mellinger, and Mike Rumsey; and by reviewers representing the U.S. Air Force.

Requirements:

(1) To compute validity coefficients for the Army's Armed Services Vocarional Aptitude Battery (ASVAB) Area Composites for prediction of enlisted personnel performance in the first tour;
(2) To identify and comparatively validate the best alternative set of ASVAB composites based on the nine subtests of ASVAB forms 8, 9, and 10.

Procedures:

Data Preparation. Records of soldiers with either training outcome data or Skill qualification Test (SQT) scores as performance criteria were extracted from Army enlisted accessions for FY81 and FY82. The file was limited to enlistees who took ASVAB 8/9/10 and who had not had prior service. These recoras were extensively efited, then partitionee tnto andiysis "cells" with at least 100 cases each. Criteria were standardized within each cell.

A "training cell" was defined as a set of soldiers who took the same training course in the same MOS: and an "SQT cell" was defined as a set of soloiers who took the same form of an SOT test in the same MOS. The analysis was based on a total of 29,160 soldiers in 92 training cells and 65,193 soldiers' records in 112 sQT cells. A soldier who took two different SQT forms was included in each cell.

Two secondary data sets, consisting of representative samples of 19,027 apflicants for enlistment in FY81 and 13,319 in FY82, were extracted for the purpose of estimating the performance of composites with a set of typical enlistees.
Two derived data sets were produced in order to carry out and report anaiyses at the MOS level: (1) covariance matrices of the ASVAB and criterion scores for each cell aggregated, using sample weights, across cells within each Military Occupational Specialty (MOS); and (2) a file of 64,907 records containing a single criterion score for each individual. These combined criteria analyses were carried out for 98 MOS.

Predictive Validity Estimation. The correlation coefficient between each of the ASVAB Area Compcsites and the criterion measure was obtained for each training cell, each iqT cell, and each combined cell (MDS). These coefficients were adjusicd for range restriction using the multivariate adjustment based on the assumption of homogeneous linear regression (Lawiey, 1943). Because the composites are designed for use in selection
and classification of applicants for enlistment, the target population for the adjustment was taken to be the FY81 and FY82 applicants.

Identification of Alternative Composites. First, the training cells, the SQT cells, and the mos were partitioned into clusters, based on similarity of ASVAB profiles of successful performance. Then, for each cluster, the unit-meight composite with maximal predictive validity was identified.

The similarity measures were computed separately for training, SQT, and combined cells. The similarity between each pair of cells was defined as the correlation of the predicted criterion performances in the two cells, for the applicant sample. The performance predictions were based on ridge regression, using the ASVAB subtests as predictors.

The cells were clustered by adapting standard "leaf-to-stem" procedures. Upon finding that the results of the clustering were unstable, due to the high intercorrelations of the predicted criterion scores, the clustering procedure was modified to use as a starting point the Army's current groupings of MOS into the nine sets associated with the nine composites. These clusters were combined into four larger clusters when it was found that the overall predictive validity of four unit-weight composites was as high as nine separate unit-weight composites. The four-cluster solution was then further aggregated to three-, two-, and one-cluster solutions for comparative purposes.

Üifferenlidi V licitly Estimation. The validity of the composites for peredicting differences in an applicant's expected performance in different MOS was assessed, using a variant of Horst's Classification Efficiency index. Estimates were obtained for the current composites, for each of the alternative solutions, and for an application of the MAGE composites.

Predictive Bias Estimation. Validity coefficients were computed separately for men, women, blacks, and whites; and separate regression functions for each group were compared to identify potential problems of underprediction of performance of one group compared to another.

Norming of Alternative Composites. A table was prepared so that the alternative composites, calculated as simple sums of ASVAB subtest scores, can be transformed inti the same distribution as current composites. Although this allows for use of the same cutoff scores as in the past, a table of alternative cutoffs was prepared which would leave invariant the average AF QI score among applicants eligible for the mos.

Findings:

Predictive Validity of Current Composites. The validities for 98 MOS, based on combinations of training and SQl scores, ranged from . 12 to .74, with a mean of .45. Grouping MOS by the current composite clusters, the lowest mean validity was .42, for Surveillance and Communications MOS and for General Maintenance MOS, and the highest was .54, for Skilled Technical MOS. There was almost no tendency for the composite assigned to an MOS to have a higher validity than other current composites for that MOS.

Identification of Alternative Composites. Only unit-weight alternative composites were considered, after it was found that optimal unit-weight composites for four clusters possessed a root mean square (RMS) predictive validity 97% as great as the root mean square validity of ridge regression vectors computed separately for each of 98 MOS. The combination of losses due to using only four composites and limiting them to unit weights was minimal.

The alternative four-composite solution that we identified as maximizing the aggregate predictive validity across 98 MOS was:

Clerical (ACL):	$V E+A R+M K$
Skilled Technical (AST):	$V E+A R+M K+A S$
Operations (AOP):	$V E+A R+A S+M C$
Combat (ACO):	$V E+M K+A S+M C$.

The operations composite combines the current $S C, O F$, and MM clusters; and the combat composite combines the current $C D, F A, G M$, and $E L$ clusters.

Validity of Alternative Composites. The RMS validity of the four-composite set was . 486 . This compares with an RMS validity of .489 for the best set of nine unit-weight composites. Variations of validity in the third decmab place are neither statistically significant nor of great practical importance, and a variety of alternatives to the four-composite solution were explored.

Of special interest were the three-, two-, and one-composite solutions. The loss in validity which would resist from using the new "combat" composite (ACO) for both the "combat" and "operations" MOS is negligible (.001), as is the loss in, further, using the new Clerical composite (ANL) for doth Clerical MOS and Skilled Technical MOS. This two-composite solution captures 97\% of the predictive power of the ASVAB for the performance criferia used in these and lyses. Finale, use of the single (ACO) composite for all MOS resulted in a reduction to 96% of the predictive power of the asvab.

Certain of the composites account for a large part of the difference in validity between current and alternative composites. When compared to validities of optimal composites for the same clusters of mOS, the Clerical composite (CL) appeared to be weak, with a validity of .48 versus a potentidal of .56. One other composite, Surveillance and Communications (SC). was mildly weak, with a validity of .45 versus a potential of .50 .

The gain in expected performance if these composites were changed can only De approximated because of the constrained nature of the selection and classification process. If, however, the choice were purely bet.ieen assignment to an individual MOS and rejection, application of Cronbacn's formula yields an expected gain of .05 standard deviations per person in
the two clusters of MOS from introduction of these two revisions to the current composites.

Differential Validity of Current and Alternative Composites. The ability of current and alternative composites to identify the best MOS for each enlistee was assessed, using a varfant of Horst's Classification Efficiency index. The eurrent composites and five alternative sets of composites all possessed between 43\% and 68\% of the differential validity of the ASVAB as a Dattery. There was small positive relationship between the number of composites in a set and the measure of differential validity. The ninecomposite sets appeared to capture more of the battery's differential predictive value than the one-, two-, three-, or four-composite sets. The performance of the current composite set (68\%) was virtually identical to the performance of the alternative which merely replaced the CL and SC composites (66\%). In general, the differential validity of the ASVAB as a battery was higher for low-frequency MOS, but this effect was less pronounced for the sets of unit-weight composites.

Predictive Bias of the Current Composites. The validities of the composites are slighty higher overall for whites (.45) than blacks (.38), but there is, if anything, a tendency to underpredict performance of whites more than blacks. The validities of the EL and SC composites are greater for nales than for females, but overall the average difference in validity only slightly favors males (.47) over females (.43). Underpredictions of performance were split between males and females, with the most noticeable underprediction being rougnly. 06 standard deviations for women using the Si composite. In general, the over- and underpredictions were small, aspecially in the region near the cutoffs.

Predictive Bias of Alternative Composites. In general, the patterns of differential validity and underprediction ooserved for the current composites also were found for the four alternative composites, ACL, AST, AOP, and ACD. The overall average validity for whites (.47) was somewhat higner than for blacks (.40), but the underpredictions of performance were suffered primarily oy wites. An exception to this was the underprediction of blacks' performance by the alternative skilled technical composite (AST). Blacks' criterion scores in the of cluster were underpredicted by both the current and alternative composites, and the degree of underprediction was sligntly greater using the proposed comporite.

The alternative composites had a slightly smaller difference in validities between men and women (. 48 vs. . 42) than the current composites, but again the most noticeable differences were the greater validities for men in the EL and SC clusters. There were also somewhat greater underpredictions of women's performance in the $C L$, 0 , and $S C$ clusters using the alternative composites, although in general ine differences were small.

Selection of a Composite Set. First, the results on predictive validity Favor the alternative four-Composite solution over the current nine composites in terms of overall absolute predictive validity and differential validity for MOS classification. The results for predictive bias are mixed, but the effects are not large in either direction. The average validity of the alternative composites is .48 , vs. . 45 for the current composites. The differential validitits of the three-, two- and onecomposite sets were progressively worse, but the magnitude of the differences were small.

The major source of the relative deficiency of the current composites lay in two of the composites, CL and SC. Because of the costs of implementaton of different levels of change in composites, an interim proposal is to replace these two composites with the ACL and AOP composites, respec. lively, keeping intact the nine-cumposite structure. The average validity of the revised nine composites would be raised from . 45 to .47 , while the differential validity as measured by the criterion adapted from Horst (1954) would be virtually unchanged. This solution would also avoid the introduction of AST, with its small increase in underprediction of blacks' performance in skilled technical MOS.

Broadening the Span of Predictors. The current composites, as well as the best alternative composites, account for only about 20 t= 25 percent of the variance in the criteria, but they account for over 90% of the variance in the criteria that is predictable from the ASVAB. The ASVAB medsure four common factors, but only two eigenvalues are greater than one, and the first principal component accounts for roughly half the variance.

This level of predictability is clearly not sufficient for accurate idemtification of the optimal assignments of enlisted personnel to MOS. While it wis impossible to assess the contributions of limitations of the riteri and of the ASVAB separately in these analyses, the adjusted validities were modest, with only 14 out of 98 greater than . 6 . There is a need for use of a broader set of predictors in the selection and classification process for enlisted personnel.

Increasing the Sample Size. The present analyses combined the data from two years, FY81 and FY82, with a substantial increase in the possible coverage of MOS over the coverage available from one year's accessions. For many MOS, there are not sufficient numbers in any year to support needed parameter estimation for the purposes of deriving optimal assignment procedures. However, with a proper control for trends across years, the data base can be built up over a few years to the point where the needed two thousand cases in each MOS are available for analysis.

Although the replication of these analyses two years hence was to focus on the FY83 and FY84 cohorts (with the addition of utility information.), the data base for those analyses will actually be the four-year cohort, FY81 through fy8d accessions. This will provide the basis for exploring both trends and criterion measures taken later in a soldier's career, as well as an adequate data base for a larger set of MOS.

Utilization:

The major practical result of this investigation was the identification of suitable replacements for the two relatively weak ASVAB Area Composites currently in operational use by the Army. Introduction of new composites for the Clerical \& Administrative and Surveillance \& Communications MOS will significantly improve the expected performance of enlisted personnel entering these : WS, without affecting differential validity of the composits or int c using significant predictive bias.

In addition, this effort resulted in the development of systematic processdures for the validation of ASVAB composites, including data editing, range restriction adjustment, ridge regression estimates of optimal composites, differential validity estimation, predictive bias assessment, and setting of cutoff scores. At the same time, the results highlighted needs for additional research and development to build on the foundation of credibility created by this effort. In particular, there are needs for criterion validity and reliability information, performance utility astimates, cumulative additions to sample sizes, further work on range restrictimon adjustment and differential validity measurement, and a broadening of the coverage of skills required in different MUS. This coverage must be included in both the criterion measures and the predictors.

Throughout the remainder of this project, work will go forward on the development of better predictors and better criteria; and future validalions of enlisted personnel selection and classification procedures can be expected to refine and extend the results presented here.

Table of Contents

Page
Historical Background 1
Purpose and Objectives 5
Description of Data 7
Overview 7
Samples 7
ASVAB Data 9
Training Data 12
SQT Data 16
Trimming of Outliers 17
Combined Criteria 17
Predictive Vaidity of the Current Composites 21
Introduction 21
Adjustment for Restriction of Range 21
Validities of AA Composites Using Combined Criterion 22
Training Data 24
Validities by Training Cell 25
SQT Data 25
validities by Clusters of SQT Cells 26
Validities by SQT Cell 26
Discussion 27
Development of Aliernative Composites 29
Identification of MOS Clusters 29
Similarity Measure 30
Initial Cluster Analyses 32
Final Cluster Analyses 33
Predictive Validity of the Alternative Composites 39
Comparisons to Other Sets of Composites 42
Differential Validity 45
Case 1: both MOS i and MOS j use the same composite 48
Case 2: MOS \mathfrak{i} and MOS j use different composites 48

Table of Contents (contd)

Page
Assessment of Predictive Bias 53
Analyses of Differences by Race 53
Analyses of Differences by Gender 70
Other Analyses of Subgroup Differences 80
Summary 101
Alternative Composite Scales and Cutoffs 103
Composite Scales 103
Cutoff Scores 103
Summary 105
Limitations 105
Information on Criterion Quality 105
Information on Utility of Performance 105
Sample Size 106
Findings 106
Predictive Validity of Current Composites 106
Identification of Optimal Alternative Composites 106
Validity of Alternative Composites 107
Differential Validity of Current andAlternative Composites107
Predictive Bias of the Current Composites 108
Predictive Bias of Alternative Composites 108
Recommendations 108
Selection of a Composite Set 108
Relative Value of Composites and Cutoffs 109
Broadening of Span of Predictors 109
Increase the Sample Size 110
Conclusion 110
References 111
Appendix A Supplemental Tables A-1
Appendix B Editing of Training Outcome Scores BE
Appendix C Conversion of Sum of Subtest Standard Scores to Army Standard Scores C-1
Addendum

List of Tables

Page
Table 1: Operational Composites Currently in Use by the Army 3
Table 2: Other Composite Systems 4
Table 3: ASVAB 8/9/10 Subtests 9
Table 4: Correlations and Standard Deviations among the Nine ASVAB Subtests 11
Table 5: Distribution of fY81/82 Accessions by Cluster 12
Table 6: Descriptive Statistics on the Training Criterion by Criterion Cell 14
Table 7: Descriptive Statistics on the SQT Criterion by Criterion Cell 18
Tape 8: Adjusted Validities of the Current Composites: Combined Criteria 22
Table 9: Intercorrelations among the Current Composites: Applicant Population 23
Tape 10: Sample Correlations and Adjusted Validities: Training Criterion 24
Tape 11: Average Adjusted Validities: Training Criterion 25
Table 12: Sample Correlations and Adjusted Validities: SQT Criterion 26
Table 13: Average Adjusted Validities:
SQT Criterion 27
Table 14: Optimal Unit-Weight Composites for each Current Cluster 35
Table 15: Local Optimal Four-composite Solution 35
Table 16: (Weighted) Average Adjusted Yalidities
Combined Criterion 37
Table 17: (Weighted) Average Adjusted Validities:
SQT Criterion 37

List of Tables (cont'd)

Page
Table 18: (Weighted) Average Adjusted Validities: Training Criterion 37
Table 19: Average Adjusted Validities of the Proposed Composites: Combined Criterion. 39
Table 20: Intercorrelations among Proposed Composites in the Applicant Population 40
Table 21: Average Adjusted Validities of the Proposed Composites: SQT Criterion 41
Table 22: Average Adjusted Validities of the Proposed Composites: Training Criterion 41
Table 23: Average Adjusted Validities of the MAGE Composites: Combined Criterion 43
Table 24: Average Adjusted Validities for the High School Composites: Combined Criterion 43
Tape 25: Intercorrelations among the MAGE Composites in the Applicant Population 44
Tape 26: Intercorrelations among the High School Composites in the Applicant Population 44
Table 27: Differential Validity Estimates for Alternative Sets of Composites (Unweighted) 50
Table 28: Differential Validity Estimates for Alternative Sets of Composites (Weighted) 51
Table 29: Sample and Adjusted Validities for Blacks ("B") and Whites ("W"): Current Operational Composites, SQT and Training Criteria Combined 54
Table 30: Sample and Adjusted Validities for Blacks ("B") and Whites ("W"): Four Alternative Composites, SQT and Training Criteria Combined 54
Table 31: Predicted Criterion Scores for Blacks ("B") and whites ("W"): Current Operational Composites 56
List of Tables (cont'd)
Page
Table 32: Predicted Criterion Scores for Blacks ("g") and Whites ("WM): Four Alternative Composite Solutions 58
Table 33: Sample and Adjusted Validities for Males ("M") and Females ("F"): Current Operational Composites SQT and Training Criteria Combined 71
Table 34: Sample and Adjusted Validities for Males ("M") and Females ("F"): Four Alternative Composites Solution SQT and Training Criteria Combined 71
Table 35: Predicted Criterion Scores for Males ("M") and Females ("F"): Current Composites 79
Table 36: Predicted Criterion Scores for Females (${ }^{(F ")}$ and Males ("M"): Four Alternative Composites Solutions 81
Table 37: Means and Standard Deviations of the Combined Criterion Scores for Black ("B") and White ("W") Subgroups 83
Table 38: Means and Standard Deviations of the Combined Criterion Scores for Male ("M") and Female ("F") Subgroups 83
Table 39: Predicted Score Differences (Diff.) andStandard Errors (SE) of the Differencebetween Blacks ("B") and Whites ("W") forParticular MOS Current Operational Composites 99
Table 49: Predicted Score Differences (Diff.) and Standard Errors (SE) of the Difference between Males ("M") and Females ("F") for Particular MOS Current Operational Composites 100
Table 41: Predicted Score Differences (Diff.) and Standard Errors (SE) of the Difference between Blacks ("B") and Whites ("W") for Particular MOS Four Alternative Composites Solution 101
List of Tables (contd)
Table 42: Predicted Score Differences (Diff.) and Standard Errors (SE) of the Difference between Males ("M") and Females ("F") for Particular MOS Four Alternative Composites Solution 102
Page
Table $A-1$: List of MOS in the Army A - 1
Table A-2: MOS with Multiple Tracks for SQT Testing A - 5
Table A-3: Sample Validities for Current Composites: Combined Criterion $A-8$
Table A-4: Adjusted Validities for Current Composites: Combined Criterion $A-10$
Table A-5: Sample Correlations for the Current Composites: Training Criterion $A-12$
Tape A-6: Adjusted Validities for the Current Composites: Training Criterion A - 14
Table A-7: Sample Validities for Current Composites: SQT Criterion $A=16$
Table A-3: Adjusted Validities for Current Composites: SQT Criterion $A-18$
Table A-9: Ridge Regression Coefficients for Training Criterion $A=20$
Table A-10: Ridge Regression Coefficients for
SQT Criterion $A-23$
Table A-11: Ridge Regression Coefficients for Combined Criteria A. 26
Table A-12: Matrix of Correlations of Expected
Outcome Functions for MOS, Combined Training and SQT Criteria $A=29$ 29
Table A-13: Adjusted Validities for Current and Alternative Composites, by Current Cluster and MOS A-31 31
Table A-14: Sample Validities for the Proposed
Composites: Combined Criteria A - 33
Table A-15: Adjusted Validities for the Proposed
Composites: Combined Criteria A -35

List of Tables (cont'd)
Table A-16: Sample Validities for the MAGE Composites: Combined Criterion $A=37$
Table A-17: Adjusted Validities for the MAGE Composites: Combined Criterion A - 39
Table A-18: Sample Validities for High School Composites: Combined Criterion A - 41
Table A-19: Adjusted Validities for High School Composites: Combined Criterion $A-43$
Table A-20: Cumulative Distributions for the Current Composites Based on a 2% Sample of all FY81/82 Applicants A. 45
Table A-2l: Conversions from Sum Scores to Composite Scores SQT Criteria $A=47$
Table A-22: New and Current Composite Scores Maintaining Constant AFQT Means for Elig:oles Based on a 2\% Sample of FY81/82 Applicants A - 49
Table A-23: Aptitude Area Composite Cutoffs by MOS $A=57$
Tad A-24: ASVAB Subtest Means by Training Criterion Cell A - 58
Table A-25: ASVAB Subtest Means by SQT Criterion Cell A -60

List of Figures

Page
Figure 1: Frequency of Correlations of MOS Similarity Profiles 33
Figure 2: Regression Lines for Current and Alternative Composites for CL MOS, by Race 61
Figure 3: Regression Lines for Current and Alternative Composites for CO MOS, by Race 62
Figure 4: Regression lines for Current and Alternative Composites for EL MOS, by Race 63
Figure 5: Regression lines for Current and Alternative Composites for FA MOS, by Race 64
Figure 6: Regression lines for Current and Alternative Composites for MM MOS, by Race 65
Figure 7: Regression lines for Current and Alternative Composites for OF MOS, by Race 66
Figure a: Regression lines for Current and Alternative Composites for GM MOS, by Race 67
Figure 9: Regression lines for Current and Alternative Composites for SC MOS, by Race 68
Figure 10: Regression lines for Current and Alternative Composites for ST MOS, by Race 69
Figure 11: Regression Lines for Current and Alternative Composites for CL MOS, by Gender 73
Figure 12: Regression Lines for Current and Alternative Composites for EL MOS, by Gender 74
Figure 13: Regression Lines for Current and Alternative Composites for MM MOS, by Gender 75
Figure 14: Regression Lines for Current and Alternative Composites for OF MOS, by Gender 76
List of Figures (contra)
Page
Figure 15: Regression Lines for Current and Alternative Composites for SC MOS, by Gender 77
Figure 16: Regression Lines for Current and Alternative Composites for ST MOS, by Gender 78
Figure 17: Regression Lines for Current and Alternative Composites for MOS 118, by Race 85
Figure 18: Regression Lines for Current and Alternative Composites for MOS 13B, by Race 86
Figure 19: Regression Lines for Current and Alternative Composites ir MOS 36C, by Race 87
Figure 20: Regression Lines for Current and Alternative Composites for MOS 64C, by Race 88
Figure 21: Regression Lines for Current and Alternative Composites for KOS 750, by Race 89
Figure 22: Regression Lines for Current and Alternative Composites for MOS 13F, by Race 90
Figure 23: Regression Lines for Current and Alternative Composites for mos 11 H , by Race 91
Figure 24: Regression Lines for Current and Alternative Composites for MOS 3IM, by Race 92
Figure 25: Regression Lines for Current and Alternative Composites for MOS OSC, by Gender 93
Figure 26: Regression Lines for Current and Alternative Composites for MOS 75C, by Gender 94
Figure 27: Regression Lines for Current and Alternative Composites for MOS 72E, by Gender 95
Figure 28: Regression Lines for Current and Alternative Composites for MOS 76Y, by Gender 96
Figure 29: Regression Lines for Current and Alternative Composites for MOS 9IE, by Gender 97
Figure 30: Regression Lines for Current and Alternative Composites for MOS 958, by Gender 98

Historical Background

The Armed Services Vocational Aptitude Battery (ASVAB) is a test battery for assessing cognitive abilities and is used oy the military services as their primary instrument for selecting and classifying enlisted personnel. The current operational version of ASVAB (Forms $8 / 9 / 10$) and all previous versions of military selection anid classification tests have been referenced and normalized to the scale of the Army General Classification Test (AGCT), as used during world war Id. In the case of the Army, the development and history of ASVAB $8 / 9 / 10$ as a classification instrument can be more directly traced back through ASVAB $6 / 7$ to the Army Classification Battery.

For many years prior to the operational implementation of ASVAB in 1976, each of the services maintained its own test batteries. Within the Army, the selection and classification decisions were based upon the Army Classification Battery (ACB). The ACB was first used in 1949 when the aptitude drea system was introduced operationally by the Army. Under this system, an indivioual recruit needed to achieve a minimum score in a particular aptitude area before being assigned to an occupation. The original ACB was substantially revised and improved by Maier and Fuchs (1973) based on an empirical validation in seven joo areas, to produce $A C B-73$. The ACB-73 in its final form consisted of twelve subtests and an interest inventory from which four interest scales were derived.

In 1974 the Department of Defense (DoD) recomented the use of a single interservice test pattery for military selection and classification, and in January 1976, As.. 3 6/7 became operational as the DoD-wide selection and classification instrument. ASVAB 6/7 contained parallel forms of all of the subtests that had been a part of ACB-73 plus an additional speeded test (numerical operations). For a number of reasons, not yet completely known (Maier \& Truss, 1983), the original scale scores of ASVAB forms $6 / 7$ were miscalioratea. The result of this miscalibration was that examinees in the lower range of the ability distribution were given higher scores than they would have received if the battery had been correctly caliorated. DoD supported inree research efforts to identify and then correct this calibration error. These efforts resulted in a revised set of norms for the dattery. In addition, a panel of experts was formed to review the recalibration rescaren anc to insure that calibration efforts for other operationai oatteries did not result in a similar error (Jaeger, Linn, \& Novick, 1980).

ASVAB 8/9/10 replaced ASVAB $5 / 7$ as the operational tast battery in octoter 1980. Forms 8/9/10 differed substantially from the former bartery. Some of the old subtests were dropped or combined into single subtests, and two new subtests were added. Finally the complete interest inventory was deleted. These changes resulted in a battery of ten subtests: General Science (GS), Arithmetic Reasoning (AR), Word Knowiedge (WK), Paragraph Comprehension (PC). Mumerical Operations (NO), Coding Speed (CS), Auto/Shop information (AS), Mathematics Knowledge (MK), Mechanical Comprehension (MC), and Electronics Information (EI). iSVAB $8 / 9 / 10$ is the Dattery currently in use by the armed services.

Scores from the ten subiests of the current ajvas are combined into composite scores in several affiferent ways. One combination, the Armed forces Qualiafiction Test (AFQT; is used by all the services for the initio) selection of personnel. The other composites serve as the basis for assignment of personnel to particular jobs or training slots. A minimum qualifying score on one of the aptitude area composites is required for admission to the Army initial level training courses. For example, the combat (CO) composite is used to classify recruits into the infatitry and armor specialties.

The nine aptitude area (AA) composites now being used to classify Army personnet have pen in place for over ten years (Mater (Fuchs, 1973). The composites were developed empirically, first by clustering Army jobs or Military Occupational Specialties (MOS) based upon their content, and then by using forward stepivise regression, with success in training as the criterion, to select the variables or subtexts to be included in the composite score. These subtests were then given unit weights for operational use. When the ACB-73 was replaced by ASVAB 6/7, the Army decided to retain the $A A$ composites that had been used with ACB-73. This decision resulted from the pressures to implement the service-wide test battery as soon as possible, and the decision was considered practical because of the high similarity among the subtests of the two batteries.
when $A S V A B 8 / 9 / 10$ became operational, there were substantial enanges in the battery, particularly the deletion of two of the subtests and the interest inventory. The direct transfer of computational formulas for the composites Was not possible. The situation had been further complicated by a change in Army training testing procedures. In the mid-1970's, the Army adopted a criterion-referenced model for its training proficiency tests, and also converted many courses to a self-paced mode. While such procedures are appropriate as measures of training success, they do not generally produce data that are well-suited for validation research. Specifically, the criterionreferenced model typically produces test scores that are either pass/fail or have a very limited range of values, all of which denote acceptable performance. Additional information on the time taken to completion, or the number of attempts prior to success, would be far more useful for validation analyses.

For these reasons Mayer and Grafton (1981) used Skill Qualification Test (SQT) scores in developing the new composite formulas for ASVAB 8/9/10, based on an empirical validation in 19 mOs . The sQl had been implemented operationally in 1976 to measure job proficiency in a large number of Army jobs. Unlike the criterion-referenced training tests, the SQT yields continuous scores as well as pass/fail information and, therefore, provides a more acceptable criterion measure for validation research. Mater and Grafton found that when SOTs were used as criterion measures, it was possible to compute a set of scoring formulas for the nine AA composites yielding validities that were adequate to justify their operational use for the selection and classification of recruits. The set of $A A$ composites developed by Mater and Grafton are given below:

Table 1
Operational Composites Currently in Use by the Army

Composite		Subtests
Clerical/administrative	CL	(V T + NO+CS
Combat	60	$(A R+C S+A S+M C)$
Electronics Repair	EL	(GS + MR $+M K X+E I)$
Field Artillery	FA	($A R+C S+M K+M C$)
General Mainteflance	GM	$(G S+A S+M K+E I)$
Mechanical Maintenance	MM	($\mathrm{NO}+\mathrm{AS}+\mathrm{MC}+E \mathrm{E}$)
Operators/Food	OF	$(V E+M O+A S+M C)$
Surveillance/Communicatiors	SC	$(\mathrm{VE}+\mathrm{NO}+\mathrm{CS}+\mathrm{HS})$
Skilied Technical	ST	$(G S+V E+M K+M C)$

VE (verbal ability) is a combination of the word knowledge (wK) and paragrapn comprenension (PC) subtests. These composites are now being used by ine armig on an operationat basis. Mater and fraftun dia not investigale alternative groupings or clusters of the MOS to be predicted by these composites. as new MOS have been created, they have been assigned area composites dased on rational judgments. Otherwise, the assignment of area composites to MOS have remained the same since the development of AcB-73.

There are two otner sets of composites not now used operationally by the army that are routinely computed from ASVAB. The first of these composite sets is used by the Air force to select and classify potential enlisted personnel. The Air force currently uses four ASVAB composites. They are Mecnanical (M), Administrative (A), General (G), and Eleceronic (E). Collectively they are referred to as the MAGE composites.
anotner set of ASVAB composites nas deen developed for use when ASVAB is administered io hign school students as a career guidance tool (US Military Enlistment processing Command, in press). This set includes a composite for Hechanicai Trades, for Ôfíice anj Suppiy, for Electronics/Electrical, for Skilled Services, and for Academic Ability. Maier and Truss (1983) have recomended that the first four of these high school composites be used by the Marine Corps as the Dasis for enlisted personnel selection and classification. The composition of botn the MAGE ard the High School composites is presented in Tade 2. Since these composites are already in operational use within DOD, it is important that they be considered by the Army as it considers a change to its personnel allocation system.

Table 2
Other Composite Systems

MAGE Composites		
Mechanical Administrative General Electronic	$\begin{aligned} & M \\ & A \\ & G \\ & G \end{aligned}$	$\begin{aligned} & M C+A S+G S \\ & V E+N O+C S \\ & A R+V E+G S+E I \\ & A R+M K+G S+E \end{aligned}$
High School Composites		
Mecnanical Trades	HSMT	$A R+M C+A S E I$
Sitite and Sujply	HSOS	VE + CS + MK
Electronics/Electrical	HSEE	$A R+E I+M K+G S$
Skilled Services	HSSS	$A R+V E+M C$
Arademic ADility	HSAA	$A R+V E$

A comparison of these tnree tades revals the following relationships. The C composite in operational use by the Army is known within the MAGE system as Administrative (A). Also, the EL composite (Army) is the Electronic composite in MAUE and aiso the Electronics/Electrical composite in the High senool system. In adoition, dotn MaGe and the hign Scnool systems use the ($A R$ + VE) combination. In MAGE, it is known as the General composite and it also appears as the Academic ADility composite in the High Scnool set.

Purpose and Objectives

The Army Research Institute (ARI) is currently in the midst of a la -ge-scale research effort to improve the methods the Army uses to select and "lassify enlisted personnel. This research includes the development of both lew presdictor variables and new criterion measures. As part of that effort, the research reported here assessed the validity of the present predictor cattery as measured by the currently available performance criteria. The validities of the operational ASVAB $8 / 9 / 10$ composites were computed and compared to alternative sets of empirically developed composites. In addition, the differential validity of the composites was assessed; and finally, the possibility of predictive bias was investigated.

The major steps in this effort are described below.
First, the validities of the current operational $A A$ composites were carefully examined using both training grades and SQT scores as criteria. Next, an alternative set of AA composites was empirically derived. The possibility of a regrouping of the MOS to be predicted by single composites was considered, as well as the selection of different subtests to form that composite. The alternative set of composites was compared to the operational set in terms of overall predictive validity, differential validity, ad predictive Dias.

This work provides the basis for possible ARI recommendations or changes to the current set of composites, potentially implemented beginning with ASVAB $11 / 12 / i 3$. Finally, on the basis of these validation results, a clearer understanding emerges as to the limitations of ASVAB and the current criterion measures in the development of improved selection and classification procedures for the army. The areas that show the most promise and need for further research are identified.

In order to accomplish these goals, the following objectives were set:
(1) To collect predictor and criterion data from existing Army and DoD sources, and to edit and check these data;
(2) To adjust the data for range restriction and violations of model assumptions;
(3) To assess the predictive validity of the current operational AA composites, using training grades and SQT scores as criteria;
(6) To construct a set of homogeneous MOS groups on the basis of predictor-criterion relationships;
(5) To derive the best set oi ASVAB subtests to predict performanse for each MOS group using multiple regression;
(6) To cross-validate the procedures used in steps 4 and 5;
(7) To investigate the effects of moderator variables for both sets of composites in order to determine the appropriateness of using a common composite for all applicant groups;
(8) To estimate the value to the Army of adopting the alternative set of composites in terms of classification efficiency, increased validity, and cost savings; and
(9) To generalize the results obtained from the MOS with sufficient data to be included in these analyses to all MOS.

Description of Data

Overview

The primary use of ASVAB and the composite measures it provides is in the initial selection and classification of enlisted personnel in the armed forces. As such, the value of ASVAB is uased on its ability to predict (1) which recruits will perform well and (2) in which occupational specialties these recruits will perform best relative to other recruits. Therefore, rational validation of current area composites and identification of alternative area composites relies on information about the relations between performance on subtests of the ASVAB and later criterion performance. This, in turn, requires a data base containing both ASVAB scores and valid and reliable criterion measures for a large, representative sample of Army enlisted personnel.

Samples

The present validation is based on 29,160 soldiers with training performance scores and 65,193 SQT records. The sample consisted of all appropriately screened entisted accessions in the period fram 1 October 1980 to 30 September 1982, referred to as the FY81/82 cohort. (Prior service recruits and delayed entry accessions who had not taken ASVAB 8/9/10 were eliminated from consideration.) This represents a sizeable portion of the 274,220 accessions in that time period and covers all major skill areas in the Army. Analyses Dased on training outcomes drew upon data from $81 \mathrm{Mili}-$ tary Occupational Specialties (MOS); analyses based on SQT scores covered 68 MOS. Of these MOS, 46 were in common to the two sets of analyses. Appenaix Table $A-1$ contains a complete list of MOS in the Army.

Information on race and gender was included in the analysis file in order to assess posside predictive dias that would result from using composites based on analyses ignoring these variables. This information was extracted from Applicant Data files and Enlisted Manpower Files and edited and recoded to ensure accuracy. Analyses investigating the possibility of predictive bias Dy race were limited to a comparison of the procedures for black and white applicants decause other minority groups were not present in sufficient numders in enough MOS to support analyses. For example, there were only ten MOS in which there were sufficient numbers of Hispanics to support analyses. Such a sample of MOS was ceemed insufficient to generalize to all MOS in the Army.

From the file of accessions in the FY81/82 cohort, 77,520 were selected for analysis. These soldiers possessed criterion data, took ASVAB 8/9/10, and had no prior service. Of these, 70,829 wera in "criterion cells" with at least 100 soldiers each. A soldier with both training and SQT scores, or SQT scores in different cells, was used for estimation of statisiics in each of those cells.

For the training data, a criterion cell was defined as an MOS, school, and course combination. This level of differenticicion was used because tests used and scores reported in differint courses within an MOS possessed
significantly different characteristics. For the SQT data, a criterion cell was defined as an MOS, track, and SQT-year combination. Soldiers in different tracks in an MOS performed different tasks, and SQT forms differed by year. The data for the criterion measures are described in greater detail below.

In addition to the primary analysis file, the FY81/82 applicant file was constructed for use in some of the analyses. This file of applicants was extracted for the FY81/82 cohort, which because of delays between application and acceptance, differed slightly from the accessions cohort. A total of 28,981 of the 274,220 accessions (10.6%) during FY81/FY82 had applied and signed a contract prior to October 1980. Virtually all of these recruits took an earlier form of the ASVAB and were therefore excluded from the analysis sample on that basis. Thus, the slight difference in cohort definition was considered inconsequential for purposes of these analyses.

A sample of 19,027 FY81/82 applicants was drawn and used as the basic population to which the validities would de adjusted and as the sample on which alternative composites would be validated for selection. ihe sample was drawn by first concatenating the FY81 and FY82 applicant files and then systematically sampling within cohort-years. A separate sample of 13,319 applicants was later used for norming the alternative composites and setting tentative cutofis.

Because separate validations were required for each MOS included in the analyses, a minimum requirement was imposed on the size of sample in each MOS. This minimum sample size would determine the minimum difference between validities which could be reliably assessed. Two types of comparison are critical: comparison between different composites for the same individuals, and comparison of the same composite for different cultural groups. For the former, the estimation of a minimum sample size was further complicated dy the expectation of correlations between the composites. Finally, the need to generalize to the entire population of MOS was recognized, and this necessitated setting the minimum sufficiently small to include a representative sample of MOS.

The selection of a minimum sample size of 100 served as a compronise. First, assuming a correlation of .90 between two composites, each with a validity of approximately .50 , this allows for reliable identification of differences of . 08 between their validities. Second, detween two groups for which the validity of a composite is roughly .5 , one with a sample size of 100 and the other four times larger, a difference in validities of about . 15 can be treated as significant. The estimation of the sample size needed for reliade cluster analysis was deferred until cluster analyses were run, at which time the stability of analyses between half-samples could be examined. The selected sample size permitted the inclusion of 98 MOS in the final comoined-criteria validations and 35 and 19 MOS in the investigation of predictive bias for race and gender, respectively.

In the following sections, we briefly describe the ASVAB measures and the two criteria used. Finally, we describe the method by which the two criterion measures were combined.

As described above, the Armed Services Vocational Aptitude Battery has evolved over several decades. The version currently in use, Forms 8, 9, and 10 , consists of ten subtests. The subtests, testing time, and reliabilities are given in Table 3. The ir R-20 reliabilities for the power subtests are from Ree, Mullins, Mathews, and Massey (1982). They were obtained from a sample of 19,359 applicants who were tested at twenty AFEES. Alternate forms reliabilities for the speeded tests, NO and CS, obtained from Sims and Heat (1981), are also presented.

Table 3
ASVAB 8/9/10 Subtexts

	Subtlest	Testing Time (min)	Reliability
GS	General Science		
AR	Arithmetic Reasoning	11	.86
PC	Paragraph Comprehension	36	.91
WK	Word Knowledge	13	.81
NO	Numerical Operations	11	.92
CS	Coding Speed	2	.78
AS	Auto Shop Information	11	.85
MK	Mathematical Knowledge	24	.87
MC	Mechanical Comprehension	19	.87
CI	Electronics Information	9	.85
			.82

Two subtests, $P C$ and $W K$, are ordinarily combined to form $V E$, a more general verbal ability subtest.

In the fall of 1980, form 8 of the ASVAB was administered to a national sample of American youth that was weighted to be a representative sample of American 18-23 year old males and females. In 1983 the Department of Defense adopted this population as the reference population for constructing the ASVAB score scale and determining the intercorrelations and standard devatins of ASVAB subtests. This population is referred to as the " 1980 Reference Population." It is noted, however, that this population has not yet been used to norm the ASVAB. ASVAB $8 / 9 / 10$ was normed using the AGCT.

The correlations among the subtests for the 1980 Reference Population, for the : $\mathrm{Y} 81 / 82$ applicants, and for the accessions on the analysis file used for the validation (pooled within "criterion cell"), are shown in Table 4.

Standard deviations are shown on the diagonal. While the intercorralations in the 1980 Reference Population and the FY81/82 applicant sample show good agreement, the pooled-within group correlations are substantially lower. This is no doubt due to the restriction of range that results from the the selection and classification process.

The subtests of the ASVAB have relatively high intercorrelations in the Reference Population and in the FY81/82 cohort populations. As a result, composites based on sums of the subtest scores tend to have increased relicability as selection instruments. For the purposes of classification into separate MOS, however, this intercorrelation may be detrimental. If we assume that different skills come into play in achieving proficiency in different MOS, then efficient classification requires that these be measured by the instrument used for assignment to MOS. Although four factors have been identified in the ASVAB by Kass, Mitchell, Grafton, and Wing (1983), (Quantitative [AR and MK], Verbal [VE and GS], Speed [NO and CS], and Technical [AS, MC, and EI]), the first principal component accounts for 60\% of the variance, and the second for another 15\%. Thus, the number of dimensions effectively measured by ASVAB may not be ideal for predicting soldier effectiveness in a substantial number of MOS.

The use made of the ASVAB for selection and classification is through comparison of composites to cutoffs. Ten composites are currently in use by the Army, the Armed forces Qualification Test (AfooT) and nine vocational aptitude area composites. The latter nine are the focus of this validation effort: to assess their validity as predictors of performance in the Army and to identify a set of alternative composites.

Applicants must score above the cutoff on the AFQT to be considered for entry into the Army, but they must also score above preset cutoffs on the area composites to be eligible for corresponding MOS. Applicants who desire an MOS and are otherwise qualified for the Army and who score above the cutoff for the MOS are accepted, if there is an opening in the MOS. If there is no current opening, they are frequently accepted for "delayed entry." (It should be noted that there are other reasons for delayed entry.)

Each of the area composites is equated to a mean of 100 and a standard deviation of 20 in the 1944 reference population using an equipercentile proseduce. with a few exceptions, each MOS is associated with one of these composites. A few MOS, such as members of the Army band, are evaluated in terms other than ASVAB 8/9/10, and in 22 cases, two composites are recognized as requirements. A single composite was used for the five of these 22 MOS included in the analysis. The relative proportions of $\mathrm{FY} 81 / 82$ accessions entering MOS associated with each of these composites is shown in Table 5.

The cutoffs are normally set at multiples of five, ranging from 80 to 120, and they are subject to revision in response to changing demands of the Army for different occupational specialties.

Table 4
Correlations and Standard Deviations among the Nine RSVAB Subtests

1 Correlations and standard deviations for the FY81/82 Applicant Sample.
2 Correlations and standard deviations taken from 1980 reference population.
3 Correlations and standard deviations for the Analysis file used for the Validation (pooled within Criterion Cell).

Table 5
Distribution of FY81/82 Accessions Dy Cluster

Current Aptitude Area Composite	Percent
CL	14.7
CO	20.2
EL	9.5
FA	5.7
GM	10.0
MM	9.3
OF	14.1
SC	6.0
ST	100.0
Blank	
TOTAL	

Training Data

The Army Researen Institute gathered end-of-course test scores in soldiers in 172 Mus at 23 schools during 1981 (Dept. of Army, 1981). The type of test score varied qualitatively between courses, and for the purposes of this validation, they were extensively edited. A memorandum describing the editing of training data for this task has been prepared (Wang, 1983) and is reproduced in Appendix B. In some cases, two scores were available for a single individual, based on different courses; and in same cases, a meaningfut criterion score had to be computed as the ratio of two numbers on a record (egg., number of tries divided by number of tests). For these cases, wang (1983) also gives the procedures we used in determining a training friterion score for the analyses.

Unfortunately, we were unable to obtain data on the reliability or validity of the end-of-course training scores. These tests were made up at the schools for the purpose of testing whether the students had learned what had been taught, and in most cases they were criterion-referenced. That is, passing students were expected to perform nearly perfectly. Thus, the high frequency of scores close to 100 is not surprising. In a few cases, the scores were the number of times the student had to take and retake a test in order to pass.

In addition to the scores, qualitative information on the outcome of training was available, and this ks used in screening the data. for attrition, a reason for attrition was given, and scores for non-academic attrition were highly suspect and therefore deleted. Validations were limited to (1) gradsates, including graduates going on to further training, and (2) non-gradudates for academic reasons.

For many soldiers, multiple training records were available, based on searate training events. Because of the unknown effects of one training course on another and because of unknown differences in the types of learners who take multiple training courses, a single training event was selected for analysis for each student. This was the earliest one for which (1) a training score was present and (2) the event was eligible for analysis (i.e., not a non-academic failure).

There were a few records for which the score was missing anci a few more that were set to missing after identification as outliers. The missing scores were imputed according to the following rules: (1) for graduates, the mean of graduates in that cell was imputed; and (2) for (academic) non-graduates, the value imputed was equal to the first quartile score of the graduates minus one interquartile range $\left[\left(Q_{3}-Q_{1}\right) / 2\right]$ among graduates. The first quartile was used in lieu of the minimum score on the file in order to perevent erroneous data entries from influencing the imputed value. Inspection of the univariate plots by training cell strongly suggested that some of the low scores for graduates may actually be data entry errors. For example, several of the large MOS in the CO cluster contained values of 9 for gradusdates. It is very likely that the correct scores for these soldiers are in the 90's, since this is where the great mass of the data for these MOS is found.

Only seven scores for graduates were imputed; the great bulk of the imputatimon was for non-graduates. The rule as stated above was carried out for 1,604 cases. In two Training cells, corresponding to MOS 150 and $15 E$, only four and five distinct values were used, and were equally spaced in the range $0-100$. Therefore, the lowest non-zero score was imputed for these two cells. Ten and four scores were imputed in these two cells, respectively.

Our attention was especially focused on the cells with at least 100 observatins, because these were cells for which reasonably stable estimates of relations between $A S V A B$ subtests and the criteria could be generated. There were 92 such "training cells," or combinations of MOS, school, and course.

The raw scores ranged from 0 to 100 except for a few cells in which the sign was reversed. Table 6 presents summary descriptive statistics by Training cell. In 33 of the 92 cells, the first quartile score was greater than 85 , although the average minimum for these 33 cells was 61 . In some other cells, the scale from 0 to 100 was merely a crude standardization of a short test (e.g., scores of $0,25,50,75$, and 100 for a four-item test). Finally, the scores were transformed to a mean of 100 and standard deviation of 20 in each training cell.

Tade
Descriptive Statistics on the Training Criterion
by Criterion Cell

TCELL	N	MEAN	MODE	STD	ORANGE	HIN	91	MEDIAN	83	max
0582nl13	519	91.95	100.00	9.25	5.50	56.00	8 8.00	25.0	99.00	100.00
05C2D113	613	80. 19	10.00	5.90	3.50	63.00	85.00	89.0	92.00	100.00
11BINEO9	976	46.28	97.00	4.98	3.50	73.00	50.00	13.0	97.00	100.00
LICINBOS	578	93.14	57.00	5.56	3.50	70.00	50.00	93.0	97.00	100.00
11HINEO9	444	93.89	37.00	5.33	3.50	70.00	10.00	93.0	97.00	100.00
1101N809	124	94.54	97.00	4.45	3.00	77.00	51.00	97.0	97.00	100.00
128A8807	143	10.80	15.00	15.24	12.00	35.00	71.00	04.0	95.00	100.00
12FAFB07	224	07.73	94.00	10.64	6.50	50.00	11.00	51.0	94.00	100.00
13838120	1080	73.64	33.00	20.09	\%.00	17.00	67.00	63.0	83.00	100.00
13E3E10	483	36.02	100.00	7.01	0.00	70.00	100.00	200.0	100.00	100.00
1373 P10	679	13.64	13.00	5.20	4.00	69.00	73.00	33.0	17.00	18.00
15050010	295	73.7	10.00	22.56	20.00	20.00	60.00	18.0	100.00	100.00
15E5EA 10	283	12.16	100.00	11.32	12.50	25.00	75.00	75.0	100.00	100.00
16BEAIL	165	92.50	92.00	3.61	2.50	75.00	\$0.00	92.0	95.00	100.90
168Ecsil	131	95.71	97.00	3.01	2.50	16.00	93.00	97.0	90.00	100.00
i6CCAPil	1\%	-3.70	12.00	4.60	2.63	76.00	91.75	35.0	97.00	99.00
16 DDB811	112	95.19	96.00	3.24	2.38	85.00	93.00	96.0	97.75	100.00
16EEBA1	137	99.81	200.00	1.51	0.00	15.00	100.00	200.0	100.00	100.00
16 HHBA 11	105	86.49	85.00	5.78	3.50	70.00	13.00	86.0	90.00	98.00
16JJasil	119	91.42	93.00	4.01	2.00	71.00	90.00	92.0	94.00	98.00
16 PPAB11	115	75.15	88.00	19.00	15.00	24.00	58.00	32.0	E. 600	97.00
16RRA811	107	\$0.30	67.00	8.08	1.00	40.00	87.00	92.0	95.00	100.00
165SAE11	596	77.59	85.00	9.21	6.50	43.00	72.00	73.0	85.00	98.00
1757 C061	186	92.23	100.00	10.51	1.50	50.00	83.00	100.0	100.00	100.00
17 KGA301	136	77.92	75.00	17.50	1.75	25.00	64.50	75.0	88.00	100.00
19090804	215	19.16	100.00	10.14	7.50	54.00	45.00	92.0	100.00	100.00
1989E804	171	80.65	15.00	10.49	1.00	50.00	72.00	13.0	90.00	100.00
19F9F804	220	05.50	90.00	0.36	5.00	56.00	80.00	85.0	90.00	100.00
27E7E083	184	6.77	10.00	6.85	5.38	60.00	11.25	18.0	92.00	98.00
31440113	604	91.50	66.50	5.26	4.75	74.00	16.50	52.0	96.00	100.00
3188C113	193	97.63	100.00	2.75	2.00	66.00	96.00	99.0	100.00	100.00
31VIV061	457	89.67	100.00	9. 00	- .75	60.00	10.50	93.0	100.00	100.00
36CMA113	376	97.32	200.00	3.29	2.00	82.00	96.00	91.0	200.00	100.00
36KAC1:3	660	94.42	96.00	4.13	2.50	71.00	92.00	9.0	97.00	100.00
41 C67091	105	-1.20	-1.14	0.18	0.09	-2.25	-1.27	-1.2	-1.09	-1.00
44EJ1091	137	-1.55	-1.71	0.17	0.13	-1. 33	-1.66	-2. 5	-1.13	-1.00
45kx 091	102	-1.43	-1.35	0.25	0.27	-2.33	-1.60	-1.4	-1. 25	-1.00
45kK\$091	129	-1.67	-1. 1.3	0.32	0.29	-3.00	-1. 86	-1.6	-4.56	-1.00
51KEE107	167	\$1.60	18. 50	5.99	3.75	66.00	E. 1.50	92.0	\$6.00	100.00
54C53031	183	12.66	26.00	6.25	5.65	67.50	16.20	16.0	17.50	100.00
54ESA031	272	74.09	63.09	12.46	23.37	58.65	13.09	12.0	19.84	98.48
55858093	234	15.55	10.00	4.44	4.00	71.00	11.00	85.0	19.00	98.00
$57 \mathrm{tPE104}$	126	57.78	93.00	2.00	1.00	91.00	57.00	98.0	99.00	100.00
57HO1551	224	© 6.65	38.16	3.35	2.08	74.67	04.84	6.9	19.00	94.26
61806551	186	79.89	13.00	10.10	C. 50	43.00	72.00	12.0	19.00	97.20
61 CH1551	134	81. 15	17.00	7.67	5.50	59.00	76.00	12.0	17.00	95.00

Table 6

Descriptive Statistics on the Training Criterion by Criterion Cell (Continued)

TCELL	N	MEAN	mode	ST0	ornmet	MIN	01	medtan	03	MHX
628cs807	264	90.61	93.00	6. 0.7	5.50	70.00	16.00	21.5	37.00	100.00
62ECES07	133	34.17	77.00	5.74	5.25	74.00	78.50	14.0	19.00	17.00
62FCP907	249	85.14	77.50	7.32	6.75	65.00	77.50	66.0	51.00	98.00
63831403	555	07.15	02.00	3.71	1.00	64.00	13.00	12.0	11.00	100.00
63831805	318	95.29	98.00	3.45	2.50	82.00	93.00	96.0	18.00	100.00
63 SSA171	342	98.83	100.00	2.12	0.00	\$0.00	200.00	100.0	100.00	100.00
63647091	161	-1.14	-1.00	0.13	0.07	-1.57	-1.21	-1.0	-1.07	-1.00
63HH2091	706	-1.07	-1.00	0.06	0.04	-1.31	-2. 20	-1.0	-1.02	-1.00
63NTS171	509	99.04	100.00	1.64	1.00	92.00	94.00	100.0	100.00	100.00
637F1171	572	97.08	100.00	5.05	1.50	71.00	97.00	100.0	100.00	100.00
63641091	418	-2.13	-1.00	0.12	0.10	-1. 60	-1.20	-1.1	-1. 20	-1.00
63 YTV171	175	98.03	100.00	2.89	2.00	90.00	96.00	100.0	100.00	100.00
64 CECE07	202	11.23	85.00	4.34	2.50	70.00	10.00	13.0	15.00	15.00
64C4C303	561	12.62	44.00	5.90	4.50	74.00	18.00	31.0	57.00	100.00
$67 \mathrm{N65011}$	163	90.75	11.00	4.31	3.00	10.00	19.00	\$1.0	94.00	98.00
67TL6551	124	17.41	12.00	5.50	4.50	72.00	03.00	18.5	92.00	39.00
67UP1551	210	90.69	96.00	7.61	4.00	60.00	88.00	92.0	96.00	100.00
67 V 11011	194	90.15	31.00	5.08	3.50	75.00	8. 8.00	82.0	95.00	99.00
67751551	144	12.74	76.00	6.20	5.50	63.00	77.00	43.0	48.00	96.00
68DT1551	121	14.89	45.00	5.26	1.00	70.00	ti. 00	E5.0	59.00	97.00
68JW6551	120	85.79	16.00	6.32	3.88	65.00	12.25	66.0	90.00	97.00
68mins51	134	55.52	90.00	-. 32	3.75	51.00	02.75	E. 0	90.25	98.00
71NL251	275	13.09	09.00	6.91	5.00	50.00	79.00	8. 4.0	19.00	98.00
72836113	143	98.62	100.00	2.31	2.00	88.00	88.00	39.0	100.00	100.00
73C5R121	202	93.44	19.00	6.46	3.50	69.00	11.00	96.0	98.00	100.00
7585E121	494	15.10	08.00	12.71	7.13	35.00	79.75	Et.0	94.00	100.00
75D50605	233	12.57	71.00	9.40	2. 50	70.00	71.00	44.0	90.00	99.00
75ESE805	276	11.12	74.00	7.17	6. 50	70.00	74.00	80.0	47.00	97.00
76CEC101	1142	05.95	90.00	6.63	5.00	60.00	11.00	87.0	91.00	99.00
76PsFI01	560	16.92	18.00	5.09	4.00	75.00	13.00	67.0	91.00	90.00
76VEV101	401	0.98	1.00	0.03	0.01	0.88	0.97	1.0	1.00	1.00
76WDE101	130	92.26	95.00	5.14	3.50	75.00	59.00	94.0	96.00	200.00
76WPW101	344	12.26	93.00	4.37	2.50	78.00	90.00	33.0	95.00	99.00
7625x101	158	¢3.91	14.00	2.94	2.00	32.00	12.00	14.0	16.00	100.00
76YEY102	316	0.92	1.00	0.07	0.06	0.70	0.89	0.9	1.00	1.00
76Y5G101	291	10.04	17.00	1. 34	3.50	77.00	17.00	19.0	94.00	200.00
76Y6YE05	470	90.98	100.00	1.55	1.50	69.00	13.00	92.0	100.00	100.00
-2carsio	390	61.76	10.00	17.51	13.63	20.00	47.75	61.5	75.00	\#i. 00
91801929	733	14.63	100.00	0.69	4.00	34.00	12.00	97.0	100.00	100.00
91 c02929	233	09.92	14.00	7.69	4.00	51.00	17.00	92.0	95.00	100.00
01805929	162	8. 6.12	93.00	6.33	3.63	\$2.00	15.75	10.0	93.00	100.00
22825929	233	E3.05	14.00	e. 12	3.75	52.00	11.50	15.0	19.00	97.00
94184102	627	6. 6.37	16.00	1.63	1.00	11.00	15.00	46.0	17.00	91.00
9434日E03	237	66.69	90.00	6.92	5.00	70.00	13.00	17.0	93.00	100.00
1441805	416	\$3.56	44.00	1.32	2.00	19.00	33.00	94.0	35.00	97.00
95188313	725	81.33	12.67	5.13	3.05	60.00	7 \% 50	12.0	14.67	95.33

SQT Oata

Since 1917, The Army has administered the Skill Qualification Test (SQT) to enlisted soldiers. The purpose of these tests was to assess individual qualifications for promotion and to evaluate the overall effectiveness of Army training programs. Each year, a separate SQT is constructed for each MOS and skill level (with the exception of a very few exempted MOS). In many cases, alternative forms are constructed for the same MOS and skill level corresponding to different "tracks" within that MOS. An SQT "track" corresponds to a specialized job within an MOS. Most commonly, separate tracks correspond to different types of equipment to which soldiers in the MOS might de assigned. In some other instances, the different test tracks correspond to additional responsibilities for selected individuals with in the MOS such as Special Forces. Soldiers in different tracks within the same MOS, in general, take different SQT tests. A list of MOS with multiple SQT tracks in FY82 is contained in Appendix Table A-2.

Eacn test assesses a soldier's ability to perform tasks specified in the Soldier's Manual for the coiresponding MOS and skill level. Anywhere from a dozen to several dozen tasks are selected each year for testing. Announcements are prepared and distributed identifying the specific tasks to be tested, allowing soldiers opportunity for preparation. In the past, both nands-on and written assessment procedures were used in determining a passfail score for each soldier on each of the tested tasks. For the period of data covered in this analysis, only written measures were used. A number of multiple choice items were constructed for each task. The number of items varied from as few as 2 or 3 to up to 9 or 10. A passing score was set requiring the soldier to correctily answer all or nearly all of the multipie encice questions in order to pass the task. The soldier's total score is tnen the percentage of items passed, averaged across tasks.

Major changes in the SQT program were introduced in 1983. At this time, the SQT decame one component in the Army Individual Training Evaluation Program (ITEP). The other components include a new Common Task Test (CTT) and the Commander's Evaluation. The SQT was changed to include only MOS-specific tasks, decause the common soldier's tasks were to be tested separately in the CTT. In addition, most of the tracking of tests within MOS and skill level was oropped.

The different SQT forms assess different tasks and are not precisely equated with respeci to difficulty. procedures for more precisely equating alternative forms are being studied for 1984. As a consequence, it is essentiai that each form be standardized separately.

For many soldiers, multiple SOT test results were available, either for different MOS, different tracks, or different SQT-years. Because taking an SOT test was not considered to have a major influence on future skills, multiple SQT scores for an individual appearing in different cells were treated as separate events, each in its own MOS/track/SQT-year "cell." inere were 112 cells with at least 100 records, and these covered 68 MOS.

The rationale for including the multiple records for an individual when they were in differtent cells is as follows. The criteria are regarded as proxies
for an underlying and unobserved indicator of performance throughout a solder's career. Under this assumption, multiple records give a more complete sampling of performance over the entire career. It was not within the scope of the present effort, however, to take the further step of combining the measures into a single time-weighted average of performance for each indivioul. Such a refinement would be appropriate when utility of performance data are availade.

Although the SOT forms were professionally developed, reliability and validty information on these forms could not be obtained. ! em statistics supficient for the derivation of internal estimates of consistency were not available.

The SQT scores, like the training scores, were transformed to a mean of 100 and standard deviation of 20 for analyses. Prior to the standardization, the SQT scores ranged theoretically from 0 to 100 , and 60 was considered a nominal passing score. However, the majority of the scores were greater than 85 , and many were 100 . Table 7 presents summary descriptive statistics for the SQT criterion score.

Irimaning of Outliers
As noted in the discussion of the training data, several very implausible values remained on the file following the imputation. This was also observed for the SQ data. Therefore, a method of trimming these outliers was employed.

After completing the editing and imputing oi the Training and SQT scores, OLS regressions of each criterion on the ASVAB subtests were run within Training and SQ! criterion cells to identify outliers. Residuals from the regression lines as well as several so-called "influence diagnostics" were examined. On the oasis of this examination it was decided to delete all cases from the file for which tine regression residual was greater than four standard deviations. For the training criterion cells, the standard deviation of the graduates was used. For the Training data, 272 data points were deleted; for SQT, 247 values were removed. The major effect of intis trimming was to eliminate implausible scores that likely were the result of data entry errors.

Combined Criteria

The main validation analyses were undertaken separately for the two sets of criteria with the understanding that if the results were to differ substantidally, a method for combining the results would be needed. Three major alternatives were considered:
(1) Select: one of the criteria, if evidence indicates that it is clearly better than the other, either on psychometric grounds, on reasonableness of the results of the validacion, or on sample size and coverage of the space of MOS;

Descriptive Statistics on the SQT Critericn of Criterion Cell

Descriptive Statistics on the SQT Criterion
by Criterion Cell（Continued）

PCELL	N	HEAN	MODE	ETD	QRANGE	MINIMUM	01	MEDIAN	93	MAXINUM
$36 \mathrm{KOLP3}$	847	67.45	63.73	9.09	6． 31	35．88	60.98	67.55	73.73	98.82
4350183	100	75．62	100.00	20.08	12.86	20.00	64.29	10.00	90．00	100.00
5180182	196	05.01	87．50	0.48	6.25	54.17	79.17	07.50	91．67	100.00
5200102	176	77.66	84.62	11.54	6.59	26．57	71.43	78.76	4．4．62	96.15
55B1182	230	10．84	Bi． 46	0．65	6.73	50.00	75.00	81.29	8．8．46	96.15
$57 \mathrm{HOL83}$	194	68． 2 家	66.67	11．40	7.15	26.32	80.71	67.86	75.00	100.00
6280182	220	80.69	18．00	9.27	6.50	52．38	75.00	92.21	88.00	100.00
c2F0142	172	63.62	85．71	E．48	5.76	57.69	7\％．78	85.45	89.29	200．00
6270182	117	73．66	69．29	9.58	5.76	55．56	77.78	85．71	69．29	100.00
63 \％ 62	1471	75.96	76.67	7.66	3.34	47.37	73.33	76.67	0.000	93.33
63 HOLEZ	315	77.99	77.78	1． 24	5.77	50.00	73.08	77.78	84.62	94.74
$63 N 01$ ¢2	286	75.75	79.31	7.99	5.27	50.00	72.22	75.86	12.76	93.10
$63 W 0282$	2.0	63．44	80．89	0.06	5.55	58.82	77.7 角	85.19	48．89	100.00
6370182	100	\％ 8.50	88.89	5.44	3.70	74.07	85．19	18．89	92．59	100.00
$64 C 0182$	1573	79.98	79.31	9.43	5.27	3 F .85	75.86	73.34	意t．21	200.00
6460183	2043	80．65	－5．71	B． 28	5.35	44．44	75.00	12.24	6．71	100.00
67 N 182	123	91.51	42.00	6.61	4.00	72.00	88．00	92.00	96.00	100.00
67NOLE2	386	90.03	93.75	6.10	3.33	64.52	67． 10	90.63	93.75	100.00
67 60182	207	97.77	89.55	\％． 7.6	5.17	65.52	82．76	89.66	93.10	100.00
$67 \mathrm{VOL8}$	232	11．36	92．31	5.76	3.77	69.23	18．46	92.31	86.00	100.00
6790182	194	8． 8.13	92.59	6.52	3.99	52.96	4.62	88．89	92.59	100.00
$68 G 0182$	121	88．06	92.31	7．4．	4.15	61.54	14．00	88．46	92.31	100.00
6810162	119	92.20	100.00	7.28	3． 85	54.71	88.46	92．31	90.15	100.00
7100182	115	90.37	96.00	9.96	5.15	50.00	85．71	92.00	96.00	100.00
71L1183	． 628	55.93	52.77	12.32	－． 24	19.90	47.55	55.38	64.04	100.00
7162103	167	59.32	64.16	14.72	9.92	17．64	50.22	61.34	70.06	69．23
7140182	182	64．50	89.79	9.24	5.74	50.00	78．57	05.71	90.04	100.00
7280183	564	74.93	76.20	9.94	6.65	39.49	68.75	75.77	82．05	98.08
7360182	268	70.02	76.00	15．30	10.00	20．4	60.00	72.00	80.00	100.00
$23 \operatorname{co1} 3$	415	72.09	\％2．69	14.38	10.57	21.15	61.54	75.00	－2．69	100.00
7403203	132	74．89	92.00	11.55	8.15	47．40	71.57	78.41	87.88	100.00
7580142	423	68.94	62.00	17.10	10.00	6．25	60.00	65.57	00.00	100.00
7580283	631	55.63	41.08	14．80	11.00	0.00	44.91	55.38	66.90	94．10
75c3102	116	66.88	60.00	15.04	10.00	18.75	56.00	68.00	76.00	100.00
75 COLE 3	289	60.79	51.41	11.96	7.02	30.13	53.08	41.15	67.11	100.00
7500192	370	67.36	68.00	14．64	3．22	12．50	\＄0．00	68.00	7 7． 43	100.00
7500183	650	51.57	44.23	13.60	1.47	7.69	42.21	50.77	61.15	96.54
7520182	175	68.26	68.00	15.61	10.00	12．50	60.00	¢ ${ }_{\text {E }} .00$	10.00	100.00
7580183	2：9	56.13	54.71	13．08	－ 0.8	15.30	47.22	56.19	64.89	98.46
75F9183	144	64.04	57.69	12.05	1．79	37.37	56.00	62.88	73.59	09.49
76 COL 3	320	63.71	61.43	10.98	7.50	32．14	56.67	62.32	71.67	90.71
78V0183	21.6	69.44	67.44	10.46	7.27	40.39	62.65	69.52	76.98	94.00
$76 \text { WO1 } 82$	． 95	70.93	30.00	24.02	4．is	25.00	63.64	72.00	10．00	100.00
7610163	722	68.94	73.89	11.62	7.22	19.14	63.22	70.00	76.67	97.78
－2c1112	209	92．76	104．00	7.14	5.77	68.75	18．16	36.00	100.00	100.00
－2C21㟺2	133	92.31	100.00	7.16	4.07	61.00	E1．00	93．75	46.15	100.00
91 E012	203	88．61	92.00	6.86	1．00	68．00	4.00	\％1．30	92.00	100.00
$91 \text { P01 } 12$	159	79.22	13.23	－． 4	6.53	53.33	73.31	79.17	－6．96	100.00
91景0142	145	19．0\％	96.00	1． 4.5	6.00	54.17	4.800	\％1．67	56.00	100.00
9280182	310	91．05	100.00	7.02	3.92	64．71	Be．46	92．59	96.30	100.00
＋3HO1家2	114	16．19	05．71	0.45	6.04	61.54	10．77	6．71	52.86	100.90
9480112	2543	87．91	90.00	1.07	5.00	53.33	13．33	50.00	93.33	$100.0 \mathrm{C}$
9480103	2306	75.64	79.33	9.40	6.16	32.19	70.00	76.67	82.33	100.00
5580182	1853	18.08	$\text { it. } 89$	7.90	3.99	55.00	84.62	18.89	92.59	100.00
9580183	2 P 80	88.29	0.93	5.42	3.52	64.94	15.06	82.75	92.09	100.00
$96801: 3$	172	76.30	34.62	15.52	7.70	30． 77	69.23	76.92	14．62	100．01）
$90 \mathrm{Cul} 14$	16	66.45	70.00	16.69	12.50	15.00	55.00	70.00	80．00	95.05

(2) Rely primarily on one of the criteria, but where the results using the other criterion would make more sense, use the other; or
(3) Combine the data prior to analysis.

In fact, the results based on the two different types of criteria were not similar, and combination was judged necessary. The lack of convergence is indicated by the correlation between training and SQT criteria, for individduals with both variables. We computed the sample correlation between training outcome and SQT score for soldiers in analysis cells that had 50 or more complete observations. Eighty-one such cells, containing 10,615 records, were found. The correlations ranged from -. 12 to .56 in different MOS, with an unweighted mean of .22 (Weighting by the number of soldiers in each analysis cell yielded a correlation of .21). While the low correlations may be due in part to restriction of range, unreliability, and methods-contamination of ore or the other of the criteria, they may also indicate valid differences in the aspects of soldier performance covered by the two types of measures.

The third method of criterion combination was used. No overriding cause was uncovered for favoring one criterion over the other, and to ignore one part of the criterion base for an MOS would blind the validation to a possibly very important aspect of a soldier's success in an MOS. The only way to maximize the representativeness of the analyses for entire MOS was to comDine the criteria.

For the purpose of identification of clusters and predictive validation of current and alternative composites, the combination was at the MOS level. ASVAB-criterion covariance inatrices were computed for each MOS as the weighted average of "cell" covariance matrices, using the sample sizes for weights. Pooled covariance matrices were generated for the 98 MOS. Other analyses in the research required scores at the individual level (e.g., regression residuals). Such a file was generated using either the standardized SQT or Training criterion if only one was available, or the nigher of the scores if both existed. This file contained 64,907 observations. The frequencies by MOS ane: AK cluster are presented in the following section in Table 8 and Appendix Table A-3.

Introduction

This section describes our procedures for adjusting for restriction of range and discusses the validities of the current ASVAB composites after adjustmont. Our discussion focuses on several interrelated issues:

- The levels of predictive validity, after adjustment;
- Differences among composites in ability to predict performance;
- Differences among MOS clusters of predictability of performance.

Abstract

The predictive validity coefficients indicate the extent to which the composites cover the skills necessary to obtain proficiency in the corresponding MOS, as measured by training outcomes and SQT scores. Although the primary interest is in the composite associated with each particular mos, there is also some interest in the entire matrix of composites by MOS, in order to adores the question of whether a lower than average validity in a particular MOS is due to the nature of the composite or to the relation of the criterion in that MOS to the ASVAB in general. Differences among MOS in the overall relation of the ASVAB criterion can be interpreted as indicators of either (1) needs for greater criterion reliability or (2) areas in which the skil's covered by the ASVAB need to be broadened.

Because the major conclusions of these analyses are based on comparisons of validity coefficients, it is essential that these be adjusted, insofar as possible, for known artifactual sources of variation. In particular, we know that: some MOS are much more selective than others in ASVAE skills. It is known that observed validities are reduced as a furction of selectivity. Therefore, the observed validities were adjusted for selectivity, or range restriction, prior to comparison.

Adjustment for Restriction of Range

Classical methods of adjustment that have been used in previous ASvAB validations were used here. We chose to adjust to the FY81/82 applicant populatin rather than the 1980 Reference Population on the assumption that this population was more representative of the applicant pool presently available to the Army.

For the purposes of ASVAB validation, the multivariate adjustment due to Lawley (1943) and described by Lord and Novick (1968, pp. 146ff) was used. We assumed that explicit selection was being made on all ASVAB subtests. In the follutirig sections we will first discuss the validities for the combined criteria and then present results for Training and SOT data separately.

Validities of AA Composites Using the Combined Criterion

Table 8 gives tine adjusted validities for the nine current composites for each of the AA clusters and Table 9 gives the intercorrelations among the composites in the FY81/82 applicant population. The validities were obtained Dy averaging the validities for the individual MOS within each AA cluster and weighting by the number of soldiers in each MOS in the FY81/82 cohort. The main diagonal of joule 8 gives the validities of the composites assocate with each cluster of MOS.

Tables of sample correlations and adjusted validities for individual MOS are given in Appendix Tables A-3 and A-4. These tables also contain estimates of the standard errors of the validity coefficients. The SE's paired with each validity estimate were obtained by the so-called "bootstrap" method of generating repeated replications (Efron, 1979; Diaconis \& Efron, 1983). A method of obtaining sampling errors by repeated replication was used because it was believed that the classical formula for the standard error of an unadjusted correlation coefficient would not be appropriate for the adjusted validities.

A "bootstrap" replicate is defined as a sample of size N drawn with replacement from a sample of size N. To compute the estimates found in this report, 100 bootstrap samples were drawn from each MOS in the combined criterion file. For each bootstrap sample ($M=64,907$). a matrix of adjusted validities was computed. These hundred matrices were then merged, and the standard errors were computed from the distributions of

Table 8
Adjusted Validities of the Current Composites:
Combined Criteria

| Cluster
 of MOS | N | CL | CO | EL | FA | GM | MM | OF | SC | ST | Average |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CL | 10368 | 48 | 51 | 53 | 54 | 49 | 46 | 50 | 50 | 53 | 50 |
| CO | 14266 | 36 | 44 | 43 | 43 | 43 | 42 | 44 | 40 | 44 | 42 |
| EL | 5533 | 38 | 47 | 47 | 46 | 47 | 46 | 47 | 44 | 47 | 45 |
| FA | 5602 | 39 | 49 | 48 | 48 | 49 | 49 | 49 | 45 | 44 | 47 |
| GM | 2571 | 39 | 48 | 46 | 46 | 47 | 48 | 48 | 45 | 47 | 46 |
| MM | 7073 | 36 | 48 | 46 | 45 | 48 | 48 | 48 | 43 | 46 | 45 |
| OF | 8704 | 38 | 48 | 47 | 45 | 48 | 47 | 48 | 44 | 48 | 46 |
| SC | 3729 | 39 | 49 | 48 | 47 | 48 | 47 | 48 | 45 | 49 | 47 |
| ST | 7061 | 51 | 56 | 57 | 57 | 55 | 54 | 56 | 54 | 58 | 55 |
| | | | | | | | | | | | |
| Average | | An | 49 | 48 | 48 | 48 | 47 | 49 | 46 | 48 | 47 |

Table 9
Intercorrelations among the Current Composites:
Applicant Population

the hundred replicates. For comparison purposes, the process was also carpied out for the unadjusted validities.

Tapes $A-3$ and $A-4$ present these validities and bootstrap estimates of standard errors. For comparison, the approximate large-sample standard error of a correlation based on the formula, one divided by the square root of N , is included as the last column. For unadjusted coefficients, the bootstrap and large-sample estimates of standard errors should and do show good agreement. For adjusted validities, the bootstrap estimates are consistently higher.

For tables that present validites at the cluster level, standard errors are not included because the number of observations at this level of aggregation is so large that the standard errors are all. 02 or less.

The most striking feature of the data in Table 8 is the uniformity of the validities. All of the entries are between .36 and .58 , and the mean of the validities for the set of operational composites is .47. Except for the CL composite, whose validites range from .36 to .51 , the composites all perform about the same. In every instance, a given MOS cluster is predicted about as well from its own composite as from several of the others. One MOS cluster, ST, appears to be slightly more predictable than the others; and another cluster, $C O$, appears to be slightly less predictable. The remaining MOS clusters show very little variance.

Of the current composites, on by CL consistently shows validities in the 30 's. We will discuss the possible weaknesses oi the CL composite and the speeded tests in our more detailed analysis of the validities by individual MOS cells using Training and SQT criteria separately.

Training Data

The sample correlations of the operational composites and the adjusted validties for each of the MOS clusters based on Training outcomes scores is peresented in Table 10. These statistics are weighted by the number of FY81/82 accessions in each MOS. For cases in which there is more than one training criterion cell per MOS, the weight was allocated on the basis of the propercion of observations for that MOS in each criterion cell.

Table 10
Sample Correlations and Adjusted Validities: Training Criterion

MOS Cluster	Sample r	Adjusted Validity
CL	19	$4 \dot{u}$
CO	25	36
EL	22	40
FA	25	35
GM	29	52
MM	28	44
OF	20	35
SC	18	34
ST	32	54

Tape 10 shows the effects of the restriction of range adjustment on the validity. Due to differences in selection ratios and differences in the distributions of the criterion, the adjustment cannot be expected to have the same effect on all correlations. While the table does show that some clusters are better predicted by their composite than others, it is not at all clear from these data whether certain composites are "better" than others or whether, in general, some MOS clusters are better predicted than others, regardless of composite.

Table 11 presents the average adjusted validities for all the composites in the same form as Table 8. it is apparent from Table 11 that there is no great variation in the average effectiveness of the composites using the training criterion. Except for the clerical composite, which is slightly less predictive than the remaining composites, the average validities across all MOS clusters in the Army are within two points of each other.

Performance in some MOS clusters is appreciably less well predicted than in others. The CO, OF, FA, and SC clusters are well below the overall mean. Each of these MOS clusters is composed of MOS that involve a substantial
amount of physical and psychomotor skill. It may be that the reason that the ASVAB does relatively poorly for these MOS is that especially important predictors are absent from the battery. Regrettably, in each instance there is no composite that predicts that cluster relatively well.

Table 11
Average Adjusted Validities: Training Criterion

Validities by Training Cell. The sample and adjusted validities for the $\overline{A S V A B}$ composites using training outcome as the criterion are presented in the Tables $A-5$ and $A-6$ of the Appendix.

On the basis of Table A-6, some general comments can be made about the performance of some of the composites. Clearly, the weakest composite is CL . it was not the best composite for any cell in this sample. In fact, fin was better than $C L$ for all the training cells in which $C L$ is the operational composite. The other weak composite, SC, was not the best composite for any of the cells for which it is operational and was the best composite for only five cells--and three of the five were cells with validities in the .30 's.

SQT Data

Table 12 presents the averaged sample and adjusted validities for the nine MOS clusters using the SQT score as the criterion. These data suggest that SQT may be slightly better predicted by the ASVAB than the training critepion. This may, in part, be due to the more favorable distributions of SQT
scores and that these SQT scores were generated entirely from paper-andpencil tests. We examine the SQT validities more closely in the sections below by following the same procedures used for the training criterion.

Table 12
Sample Correlations and Adjusted Validities: SQT Criterion

MOS Cluster	Sampler	Validity
CL	29	49
CO	33	44
EL	28	45
FA	34	45
GM	23	40
MM	28	45
OF	33	50
SC	29	47
ST	32	55

Validities by Clusters of SQT Cells. Table 13 displays the weighted average adjusted validities of the clusters of MOS in the sample using the SQT as the criterion. As was the case with the training data, there is little variability among composites within a cluster. Except for the CL and SC composites, the average validities of the composites are within a couple of points of one another when collapsed across AA clusters. There is greater variability in the predictability of clusters, and the pattern is slightly different than for training data. GM, MM, and CO are most poorly predicted by the ASVAB, while CL and ST are best predicted. As before, the CL composlite predicts performance in the CL cluster better than would be expected, but it must be remembered that the CL composite performs worst overall. Generally, composites that include GS, MK, AS, and MC tend to have higher validities thar other composites.

Validities by SQT Cell. Tables $A-7$ and $A-8$ in the Appendix present the sample and adjusted validities for the SQT Cells included in this analysis. They show that the performance of the two weak composites identified in the analysis of the training data is similar. The CL composice had the highest validity for only one SOT cell--and that was not a ceil in which CL was the operational composite. $5 i$ had the highest validity for only three cells-again none were for the cells that use SC as their composite. The comparison of the validities of the composites in comparison to the vaiivily of the AFQT shows the same pattern. The AFQT was better than the CL composite for all nineteen cells in the sample that used $C L$ and was better than four of
the five $S C$ cells in the sample. By contrast, all other composites were better than AFQT for most of their cells. Because the weak performance of CL and SC replicates across criteria, it appears that there is room for improvement in the absolute prediction of performance in these MOS.

Table 13
Average Adjusted Validities: SQT Criterion

Discussion

From these results a few general trends emerge. Among the composites, $C L$ appears to be the least adequate. Alternative composites that included a quantitative component consistently did better for the MOS in which CL is operational. The FA composite, which includes both AR and MK, was consestent ry better than the CL composite for the Clerical MOS. Maser (1982) peregents data that show that adding more mathematical content to CL does increase its validity. Our data are consistent with his findings.

The relatively weak performance of the CL composite observed here is also consistent with the findings of Sims and Hist (1981). Their adjusted validity coefficients for ASVAB $\overline{0} / 7$ show the same pattern. Sims and fiat recommended groupings of MOS using a combination of empirical evidence and face validity. They recommended that $C L$ be used in nine MOS included in their sample. In every instance, both the FA and the ST composites had the same or higher validities than CL. Thus, it seems clear, on the basis of training data, that some composite that includes a quantitative component will predict training success in a clerical MOS better than CL .

Our findings regarding the pattern of validities for the Clerical cluster are also consistent with the results of the the investigation of CL composite carried out by Weltin and Popelka (1983). They obtained ASVAB and end-of-course grades for 3,984 new trainees entering the Army for clerical training in FY81 in twelve MOS. They evaluated the current CL composite ($C L=V E+C S+N O$) by comparing its adjusted validity with the adjusted validity of a revised composite suggested by a multiple regression of the ASVAB subtests on the training criterion. Results for the twelve MOS were quite 5 imilar in that all suggested that a quantitative subtest (either MK or AR) consistently accounted for the most variance in the criterion. Also, a revised composite corsisting of unit weighted $A R$ and VE predicted as well or better than the current composite in all twelve MOS. They reported that this composite correlated significantly higher than the operational composite. Thus, a clear message in both our assessment and the Weltin-Popelka analysis is that substituting a math subtest for tine speeded subtests appreciably increases the validity of the CL composite.

Several authors have speculated on the poor performance of the CL composite. The major factors singled out by other workers are:

- The failure to adhere to uniform testing conditions has a greater effect on the speeded tests than the other tests in the $A S V A B$. When the timing of the test is not rigidly enforced, extra items can be marked by examinees. Weltin and Popelka also reported that examinees tested under military conditions have lower scores than those tested under civilian conditions.
- Scores on the speeded tests can be improved appreciably by practice. McCormick, Dunlap, Kennedy, and Jones (1982) found that when applicants were permitted to take the ASVAB repeatedly, scores of the speeded tests showed the greatest improvement. Thus, if these skills are relevant to jot performance in MOS, it may be that they are sufficiently trainable that variance is removed by the time that criterion data are collected.

In general, the results of these analyses indicate that the current $A S V A B$ area composites provide information relevant to the prediction of performance in training and on the job. However, they fall short of the ideal of targeting specific jobs for individuals. There is little evidence that these composites capture skills specific to the MOS with which they are associated.

Development of Alternative Composites

The second major goal of this investigation is to determine whether there are alternatives to the operational composites that would significantly improve the usefulness of the $A S V A B$ as a selection and classification instrument. The data used to validate the operational composites also provides the basis for creating and evaluating alternative combinations of ASVAB subtests.

Theoretically, the ideal composites for the classification of enlistees into MOS would de the combinations of ASVAB subtests that most accurately predict the success of the enlistees in each of the separate MOS. Within the limittations of available criteria, it is possible to identify the best prediction function for each MOS, and each function could be evaluated to determine the differential expectations for success following from alternative assignments. The present investigation, however, aimed at the development of composites that could be used in the context of the current operational selection and classification system. This precludes the evaluation of a large number of complex functions at the time of enlistee selection and classification. The available database also precluded the estimation of stable regression fundlions in a sizeable number of MOS.

Instead, the goal in this effort was the identification of a small number of "area" composites, each of which would be relevant for a large number of MOS and could be calculated from a simple sum of $A S V A B$ subtest scores. The practical limitation to a small number of composites does not, in fact, greatly limit the predictive validity of the resulting composites. There is little practical difference between using a single composite for a set of MOS and using the empirically determined "optimal" composites for each MOS in the set.

The development of alternative area composites thus involved two steps. The first step was to determine the clusters of MOS for which a common composite would be appropriate. The second step was to find the sum of ASVAB subtest scores for each cluster that "best" predicts the expected performance of all soldiers assigned to mOS in the cluster. The main issue in the first step concerns the choice of a criterion for deciding which MOS to group together for purposes of assigning a common composite. The two main issues in the second step concern (1) the choice of trade-offs between simplicity of use and predictive validity and (2) the choice of trade-offs between overall predictive validity, discriminant validity for MOS classification, and cutsural fairness in the evaluation of alternative composites. Finally, an overall issue in the development of composites concerns the combination of results based on different criterion measures.

Identification of MOS Clusters

In the past, the clusters of $140 S$ that use a common composite have been developed primarily on judgmental rather than empirical grounds. MOS which experts judge to require similar cognitive skills in training and subsequent job performance nave been grouped together. As new MOS nave emerged, they
have been assigned to an existing composite function (and hence to the cluster of MOS that use that same function) on the basis of rational judgments, since no empirical data were initially available for these MOS.

In the current investigation, clusters of MOS that require similar combinations of the skills measured by the ASVAB were determined empirically. A prediction function relating ASVAB subtest scores to available criterion measures was ident ified for each MOS in the analys is sample, and the MOS were clustered on the basis of the similarity of these prediction functions. The stability of the resulting clusters of MIS was cross-validated using half-sample anaiyses.

Similarity Measure. The similarity between two MOS is based on the similarity between the prediction functions relating ASVAB and criteria in the individual MOS. To the extent that they are similar, the same prediction function can be assigned to both without loss of predictive validity. The prediction functions that were considered in these analyses were limited to linear relations. An examination of scatter plots indicated neither nonmonotonic functions nor step-functions, and the available eriterion measures did not support the selection among more complex models.

The "optimal" composite for any MOS was operationally defined as the weighted sum of ASVAB subtest scores most highly correlated with the criterion measure. Any aiteriative iinear composite can be divided into two parts - its "projection" onto the optimal composite and an orthogonal residual. Only the "projection" part contributes to the validity of the alternative composite, and the relative size of that projection is given by the correlation cetween the two composites. Thus, the correlation between the "optimal" composites for any pair of MOS offers an ideal measure of similarity because it indicates the validity of the composite of one MOS for predicting the criterion in the other MOS. The correlation was estimated in the applicant population, because this best represents the population for which the ASVAB composites would be used for selection and classification.

Focus on correlations among the optimal composites for predicting performance embodied a decision to ignore variation in the overall predictability of criteria in different MOS. Two sums of ASVAB subtest scores with weights in the same relative proportions are perfectly correlated, even if the weights for one of the sums are uniformly smaller due to lower predictability of the criterion. Such lower predictability indicates eitner lower criterion reli. ability or greater criterion variance in skills not assessed by the ASVAB. The latter case reminds us that two MOS can be quite similar in terms of ASVAB predictions, even though they are quite different in terms of skills not assessed by the ASVAB.

The validity of the procedure for developing alternative composites is limited by the need to rely on sample estimates of the "optimal" weighted sum for each MOS. Mormal practice has been to use ordinary least squares (OLS) regression coefficients as the weights for the optimal composite. OLS estimates provide the maximun correlation between the ASVAB and the criterion in the sample used to estimate these coefficients. There is concern, particularly for MOS with relatively few soldiers, that OLS coefficients capitalize on chance variation so that the restiting multiple correlations are not replicable. Especially witn predictors as highly correlated as the ASVAB sub-
tests, OLS regression coefficients based on small samples may not crossvalidate. In order to improve the relidoility of the results, we decided to use ridge regression to estimate the optimal weighted sums of ASVAB subtest scores (see Oraper Van Nostrand, 1979, formula 3.11). In the language of matrix algebra, the ridge regression estimates for each MOS, Bo,mOS, are computed by the matrix multiplication:

$$
\dot{B}_{R, \text { MOS }}^{\prime}=\operatorname{cov}_{\text {MOS }}\left(y, \underline{x}^{\prime}\right) *\left[\operatorname{cov}_{\text {MOS }}\left(\underline{x}, \underline{x}^{\prime}\right)+\left(k_{\text {MOS }}\right)\right]^{-1}
$$

where y is the criterion, \underline{x} is a vector of p predictors, $\operatorname{covmOS}(\underline{y}, \underline{x})$ is the vector of p covariances of the predictor with the criterion in the MOS, covmos (x, X^{\prime}) is the $p \times p$ matrix of covariances among the predictors in the paricuTar MOS, and $\mathrm{k}_{\mathrm{MOS}}$ is defined by:

$$
k_{\text {MOS }}=p \operatorname{var}_{\text {MOS }}(y)\left(1-\dot{r}_{\text {MOS }}^{2}\right) /\left[\left(n_{\text {MOS }}-p-1\right)\left(\hat{B}_{\text {MOS }}^{1} B_{\text {MOS }}\right)\right]
$$

where the $8_{M O S}$ and rMOS are based on OLS regression.
In essence, the ridge regression procedure adds an emprically determined value, x, to the diagonal elements of the matrix of cross-products among the predictors. If k is taken to be zero, ridge regression specializes to ofs regression. The effect of positive values of k is to shrink the estimated values of the regression coefficients toward zero (in comparision to 0LS regression coefficients).

Our ridge regression coefficients were somewhat smaller and somewhat more stable than the OLS regression coefficients. Ridge regression vectors were computed for each SQT and training cell with at least 100 observations. The ridge regression vectors for 92 training cells, 112 SQT cells, and 98 comoined cells are given in Appendix Tables $A-9, A-10$, and $A-11$.

Using the ridge regression coefficients, similarities between MOS ceils were computed as the correlations of the predicted performance scores based on our sample of 19,027 FY81/82 applicants. The 98 by 98 similarity matrix for the combined criterion cells is shown in Appendix Table A-12. Similar matrices for the SQT and Training criteria were computed. The analyses for the development of alternative composites were carried out separately on the three criteria.

The correlations among the optimal weighted sums were quite high. Roughly inree-fourths were between .90 and 1.00 . This reflected both the high intercorrelations among the ASVAB subtests and the fact that the same subtests tended to be tne best individual predictors for most MOS. The high correlations created problems for the empirical approach to clustering. Clusters would necessarily be based on relatively small differences in these correlations. Quite different configurations of clusters could yield very similar aggregate composite validities. idevertheless, we proceeded initially to evaluate the results of purely empirical clustering of MOS.

Initial Cluster Analyses. As the primary clustering method, we used a leaf-to-stem clustering algorithm developed by this project. In this approach, the cells (i.e., MOS) are initially assigned to separate clusters. They are then joined in a series of iterations that reduced the number of clusters by one at each step. At each step, those cells were combined that would minimize the loss in predictive power of the resulting composites. In effect, at each step the combined regression functions were computed for all potential cell combinations, and the combination which caused the smallest decrement in the average validity of the resulting set of composites was selected. Although this did not ensure that the final clustering would be optimal, it was stepwise optimal.

A variation of this algorithm was also developed that forced the clusters to match a pre-specified set of clusters up to a given point. In particular, it was set to match the nine current area composite clusters in the initial series of combinations. A threshold number of clusters was set, and until the number of clusters had been reduced to that threshold, no combinings were allowed to cross the boundaries of the nine current clusters.

In addition to the primary clustering method, cluster algorithms in three stardard packages were used. Unlike the primary method, SAS PROC VARCLUS is a stem-to-leaf procedure. That is, it started with a single cluster and broke it successively into smaller clusters. The other two packaged procedures were also stem-to-leaf methods. They were the BIMED BMDPIM variable clustering program and the IMSL subroutine, OCLINK.

The results produced by the different clustering algorithms were compared using a series of programs that examined clusters and identified optimal composites for them. While there was some convergence of results between the cluster algorithms, there was divergence of results across data sources. The clusters identified by the primary clustering algorithm from SQT data and from training data differed from each other. Both solutions differed substantially from the current area composite clusters. These findings demonstrated very little agreement among the clusters from the three sources. The lack of convergence between training and SQT data, in particular, strengthened our focus on the combined criterion data file, with its broder coverage of each MOS.

A critical issue in this phase of the research is the dependability of the MOS clusters formed by these procedures. To evaluate this, the results of the clustering were cross-validated by dividing each cell in the analysis file into half-samples and performing the analysis using each half-sample. The results of the cross-validation did not support the further investigation of purely empirically derived clusters. In particular, the comparisons of the similarity matrices based on the two half-samples were disappointing. These two similarity matrices were compared by correlating each row of one with the corresponding row of the other. Because a row of the similarity matrix represents a profile of the similarities of the corresponding MOS to all th: other MOS, the resulting correlations indicated the stability of the profiles of MOS similarity across random replications. As can be seen in Figure 3, there was very little stability in the profile of similarity measures derived from the two half-samples. Overall, the distribution of correlations of the similarity profiles was centered at about. . 20 .

Figure 1. Frequency of Corrolations of MOS Similarity Profiles.

One possiole explanation for the instability of the similarity matrices would De the presence of a few outliers uith nign influence. If this is the case, additional trimming of the oata would improve stability. As a procedure for botn trimming and removing cailing effects, we transformed the criterion data to normal scores and carried out the same half-sample rross-validation. Regrettabiy, the results of this new half-sample cross-vilidation were essentidlly unchanged: the average correlacion of .15 did not indicate sufficient stability to warrant proceeding further on purely empirical clustering. We could not reasonably recommend formation of clusters based parely on empirical data with this level of instability.

Final Cluster Analyses

The results of the cross-validation showed that an empirical approach to clustering was contraindicated. We therefore decided to modify existing cluster; based on the data and $: 0$ identify optimal composites for these alternatives. The leaf-to-stem algorithm was used with the constraint that
until the number of clusters was reduced to a threshold of 20 , no comoinations of MOS across different current composite clusters were permitted. For the final 19 steps, however, the algorithm was freed to form contbinations that minimized the loss function. Except for the CL cluster, there was little correspondence between the current clusters and the empirical clustering.

From this work, it was clear that there was no strong natural clustering in the data. Predictive validity would not be highly sensitive to small variations in the structure of the composites. Therefore, we chose to restrici our search to a set of alternatives that would be more practical than other aiternatives. In particular, alternative clusters were evaluated directly in terms of the predictive validity of their Dest unweighted sum of subtest scores involving four or fewer subtests. Sufficient justification for this was provided by the identification (described below) of a set of four unitweight composites with a root mean square validity of .485, or 97x of the aggregate validity obtainable by use of separate ridge regression vectors for each MOS. The best unit-weight composites for each of tne nine current clusters are shown in Table 14. The mean squared valiuities are shown for composites involving three, four, and five subtests, compared with the maximum possible mean squared validity for the particular set of MOS. Secause these estimates are based on ridge regressions, rather than OLS regressions, and oecause they are based on unit-weight composites, they are not likely to de inflated estimates of true validities.
we restricted our sea: ch to clusters that would not oreak up any of the current composite clusters. An initial four-cluster summary was selected in whicn all current composite clusters were left intact. From that starting point, the clusters were successively recomtined in order to identify a final local maximum aggregate r^{2}, for unit-weight composites with four or fewer sustests. The results are snown in Table 15.

For the proposed set of composites, the aggregate root mean square aosolute validity was .486 . These composites are strikingly more similar to each o:her than to the current composites as well as the MAGE and High School composites. All of the proposed composites use VE and either of the quantitative subtests as a nucleus. The major difference is the weight given to tne Technical factor (AS and MC). For the third and fourth compusites, the only difference is in the choice of which quantitative test is included. This similarity is a consequence of using predictability as our criterion: the most valid subtests were selected for inclusion in all four composites

Tades 16,17 , and 18 present comparisons of the validities of the four alternate composites with the current composites using the combined, SQT, and training criteria. These estimates of validities were computed using the ridge regression vectors, and therefore are generally smaller than the corresponaing OLS estimaces. These tables show appreciable gains in valioity for the $C L$ and $S C$ clusters. For $C L$, the gains appear for both training and SQT criteria; in the case of SC, the effect is confined to the SQT eriterion.

From this four-composite solution, the most effective comoination to create a inree-composite solution was to comoine the CO, FA, GM, EL cluster witn

Table 14
Optimal Unit-Weight Composites for each Current Cluster

Table 15
Local Optima! Four-composite Solution

Composite	Subtests	
Clerica!/Administrative	$A C L$	$(V E+A R+M K)$
Skilled Technical	$A S T$	$(V E+A R+M K+A S)$
Operations	$A O P$	$(V E+A R+M C+A S)$
Combat	$A C O$	$(V E+M K+M C+A S)$

the SC, MM, OF cluster, using the composite for the former. The resulting aggregate absolute validity was .485. An examination of Appendix Table A-13, in which validities are shown for the four alternative composites as well as the nine current composites for each MOS, corroborates this combination, There are very few MOS for which the composite VE+AR+AS+MC is significantly superior to $V E+M K+A S+M C$.

Also, all two-cluster solutions were examined, and the optimum was found to De to assign the CL composite to the ST as well as CL cluster. The resulting aggregate absolute validity was .484. Finally, the best single composite, $V E+M K+i S+M C$, was found to have a weighted average predictive validity of . 480 , for the entire set of 98 MOS.

The issue of predictive bias was not raised within this process of composite identification but assessea after the choice was narrowed to a single alternative to the current composites. In future evaiuations of composites, it snould be possiole to incluce predictive bias assessment as a part of the search process, similar to the way in which overall predictive validity was included.

If the search procedure is to include a combination of criteria: predictive validity, differential validity, and predictive bias; a mechanism is needed to evaluate the trade-offs among these different aspects of validity.

TABLE 16
(We:gheed) average adjusted vatiditiez: combines eriterion

TABLE 17
(Weigheed) AVERAGE RDJUSTED VAL:DITIES: SOT CRITERION

TABLE 18
(Weagares) AUEhaGE ADJUETED VALIDITIES: TFAINI:dS CRITEFICN

160

Predictive Validity of Alternative Composites

The selection of alternative composites was based on comparisons of adjusted validity coefficients. In evaluating a potential composite, the validities of all potential unit-weight composites were generated and the optimum composites identified. The set of alternate composites presented in the previous chapter is built on the VE subtest, two of the technical subtests, and the two subtests measuring quantitative ability. That is, the most predictive subtests appear in all four composites.

The result of focusing on the most valid portion of the ASVAB is that these composites are more highly intercorrelated than other sets. Also, they achieve the primary aim of the effort: they have higher validities. These two facts are apparent in Tables 19 and 20, which present the adjusted validities and the intercorrelations for the four alternative composites. The adjusted validities were obtained by weighting MOS validities by the number of soldiers in the MOS. The correlations were obtained from the sample of FY81/82 applicants. Adjusted validities of the alternative composites based on SQT and Training data separately are shown in Tables 21 and 22.

Table 19
Average Adjusted Validities of the Proposed Composites: Combined Criterion

Table 20
Intercorrelations among Proposed Composites in the Applicant Population

Composite	ACL	AST	ACO	AOP
ACL	1.00			
AST	97	1.00		
ACO	91	97	1.00	
AOP	91	97	98	1.100

The corresponding sample and adjusted validities by MOS are contained in the Appendix Tables A-14 and A-15 together with their standard errors.

The aggregate root mean square predictive validity for the alternative composites for their assigned MOS is .486 . The root mean square validity for the current composites, by comparison, is .454. There were two major findings: first, there are very few MOS for which the current composite has greater validity than the proposed alternative, even though the number of composites is reduced from nine to four. Second, the current composites for Clerical/Administrative and Surveillance/Communications MOS were significantly weaker than the propesed alternative composites for these MOS. The average validity for MOS in the CL cluster could be increased from . 48 to .56, based on the combined criteria, and the average validity for MOS in the SC cluster could be increased from . 45 to .50 . The difference for CL was apparent using both training and SQT criteria, but the the difference for SC was based almost entirely on SQT results.

Based on the combined criteria, the optimal four-composite solution had at least as high absolute validity as the current composite in every cluster. Moreover, for only one of the 98 MOS on which the combined criteria analyses were based (260), was the validity of the current composite as much as . 02 greater than the validity of the proposed composite, and that case could be eliminated by reclassification of 260 to the Skilled Technical cluster. Thus, if savings can be realized by reducing the number of composites from nine to four, there is no indication that this will reduce the absolute predictive validity of the composites for any cluster of MOS. The one negative comparison at the cluster level was for the prediction of training outcomes for the Combat cluster, where the difference of .002 in validity favored the current composite. This difference is not significant.

The four composite solution can be reduced to a three-, and then a twocomposite solution with virtually no loss of absolute validity. First, the third composite, $V E+A R+A S+M C$, can be eliminated and its MOS "reassigned" to the fourth composite, $V E+M K+A S+M C$. The average loss of validity for the reassigned MOS is merely .002, and the overall mean validity for the threecomposite solution is .485, compared to . 486 for the four-composite solution.

Table 21
Average Adjusted Validities of the Proposed Composites: SQT Criterion

Table 22
Average Adjusted Validities of the Proposed Composites: Training Criterion

The only roticeat le difference between the four- and three-composite solustions is that the best three-composite solution is somewhat unbalanced, with 70\% of the assignments based on just one of the three composites. Of 205,000 FY81/82 accessions in the 98 MOS used for the combined criteria analyses, 36,000 were assigned to Clerical/Administrative MOS, 24,000 were assigned to Skilled Technical MOS, and 145,000 were assigned to other MOS.

The optimal two-composite solution further eliminates the second (AST) composite, "reassigning" its MOS to the first (ACL) composite. This has the effect of reducing the overall average validity from . 485 to . 484 . However, the average validity loss for the MOS in the ST cluster is .006, which is statistically significant.

In general, these results do not differentiate between the two-, three-, and four-composite solutions, although they co demonstrate improvements in comparison to the current composites in all cases. The differential validity of the composite sets for classification purposes must be examined in order to make a selection among these alternative solutions.

Comparisons to Other Sets of Composites

It is of interest to compare the performance of these composites to the two other sets of currently used composites mentioned in the introduction. Both sets consist of fewer than nine composites, but differ from the set developed here in that there is less overlap among the composites. The statistics for the MAGE composites and the High School composites appear in Tables 23 and 24, respectively. Corresponding tables of sample and adjusted validities for individual MOS appear as Tables $A-16, A-17, A-18$, and $A-19$ in the Appendix.

The MAGE composites do not offer a solution to the single greatest weakness of the Army's current operational composites-- the low validity of the CL composite. The Administrative composite in MAGE, in fact, is the CL composite. Other than this, however, the MAGE composites perform nearly as well as the proposed set and are comparable to the current set. Differences in the average validity of a composite across all AA clusters are in the range of .02 to .03.

The High School composites perform about as well as the MAGE composites with the exception of their Office and Supply composite. Probably because it does not include both seeded subtests, its validity is appreciably higher than CL .

The comparisons of the current, alternative, MAGE, and High School composites reinforce the claim that there are no great differences in validity among different composites within a given AA cluster. The most valid composites are composed of the most valid subtests.

Table 23
Average Adjusted Validities of the MAGE Composites: Combined Criterion

Table 24
Average Adjusted Validities for the High School Composites: Combined Criterion

MOS Cluster	N	NSA	HST	Composite HSOS	HOS	HSEE	Average	
CL	10368	54	47	54	53	53	52	
CO	14266	42	43	40	44	43	42	
EL	5533	46	47	43	47	47	46	
FA	5602	46	49	44	49	48	47	
GM	2571	44	47	43	47	46	45	
MM	7073	44	49	41	47	46	46	
OF	8704	47	48	43	48	47	47	
SC	3729	47	48	44	49	48	47	
ST	7061	57	54	56	58	57	55	
Average		47	48	45	49	48	47	

Table 25
Intercorrelations among the MAGE Composites
in the Applicant Population

Composite	M	A	G	E	
$M=G S+M C+A S$	1.00				Mechanical
$A=N J+C S+V E$	61	1.00			Administrative
$G=A R+V E$	81	81	1.00		General
$E=A R+M K+G S+E I$	88	73	93	1.00	Electronic

Table 26
Intercorrelations among the High Scnool Composites in the Applicant Population

Composite	HSAA	HSMT	HSOS	HSSS	HSEE	
$H S A A=A R+V E$	1.00					Academic Aptitude
$H S M T=A R+A S+M C+E I$	85	1.00				Mechanical Trades
HSOS $=V E+C S+M K$	89	73	1.00			Dffice and Supply
HSSS $=$ AR $+V E+M C$	97	93	87	1.00		Skilled Services
$H S E E=A R+E I+M K+G S$	93	92	86	94	1.00	Electronics

Differential validity

The overall performance of the Army depends on how well the skills of recruits can be matched to the requirements of the MOS they enter. Therefore, set of composites must be evaluated in terms of its differential validity.

In theory, the differential validity of a set of composites is based on the correlation of the best predictor of differences between mos with the actual differences that one would observe. The practical problem is that, in general, it is infeasible to collect criterion data from the same individual in all jobs. That is, one cannot ordinarily observe the criterion needed for estimating differential validity. Fortunately, Horst (1954) developed a method for measuring the crucial part of the differential validity of a test battery without the necessity of these observations.

Actual use of a set of composites for classification of recruits into MOS is a complex process, however, and an abstract measure of differential validity can only approximate the relative value of one set of composites, compared to another. A more accurate comparison of composites would involve simulation of the assignment process. Work is progressing on the development of the appropriate simulation algorithm. Nevertheless, for the present evaluasion. differential validity was estimated using the procedure outlined by Horst (1954).

The results presented here must therefore be interpreted with caution. One set of composites might be measured as possessing greater differential validity than another, even though the ores set would lead to a more valuable increase in overall performance of enlisted personnel. Four aspects of the practical application of composites for classification of Army recruits are particularly important to consider in interpreting the results.
(1) The constraints on numbers of recruits needed in each MOS severely restrict the assignment process, so that many recruits must be assigned to MOS for which they are not optimally matched.
(2) Recruits are free to make choices and cannot be summarily assigned to the MOS that tine composites identify as optimal.
(3) The appropriate criteria are not expected performance differences but the relative utility of those differences; however, the utility scales are not yet available.
(4) Current practice mixes selection and classification, yet we are addressing the questions of validity for selection and classificacion separately.

Each of these factors would affect the measurement of overall performance of any set of composites, and to the extent that the effects are the same for all composites, the general results can be meaningfully interpreted. Factors that would affect one set of composites more than another, however, will require further investigation. For example, if the source of diffe: ential validity in one set of composites lies primarily in comparisons between "high
payoff" MUS, the real value of that set of composites would be relative, nigher than its measured validity.

As noted above, the starting point for this measurement is the work of Ho: s(1954). Horst demonstrated that one could compute the ordinary least squares (OLS) linear predictor of the difference between two criteria for an individwal without actually having measurements of both criteria for any single individual. is ing this result, he proposed a Classification Efficiency index equal to the average (over all pairs) of the variances of the predictors of the differences. In addition, he showed that this index could be elegantly represented in terms of the variances and covariances of the predictions of single criteria.

The formula for Horst's Classification Efficiency index which we used is:

$$
\begin{align*}
& H^{2}=\text { Average }\left(y_{i k}-y_{j k}\right)^{2} / 2, \tag{1}\\
& \text { where the } y_{i k} \text { and } y_{j k} \text { are the OLS estimates of standardized } \\
& \text { criteria ind } j \text { for individual } k \text {, and the average is over all } i \text {, } \\
& j \text {, and } k \text {, such that } i \text { does not equal } j \text {. }
\end{align*}
$$

horst pointed out the problem in using H as a direct measure of differential validity; namely, that the maximum value it can take on, if the predictors are perfectly accurate, is not unity. The maximum value is 1 minus the average intercorrelations among the criteria. unfortunately, these intercorrelotions cannot de measured without observing multiple criteria for single individuals. However, because the intercorrelations of cr tenia will de the same no matter what the predictors, the values of M for different sets of predictors of the same criteria can be compared.

Brogden (i959) proposed a measure of differential validity similar to the measure derived Dy Horst. Brogden's measure, which we shall call D, is the product of (a) the average absolute predictive valivity of the predictors and (c) the square root of one minus the average of the intercorrelations of the predictors. when these intercom relations are equal, it is related to horst's measure by the following equation:
(2) $K^{2}=D^{2}+(1+g /(p-1)) \times$ Variance validity coefficients),
where the variance is detwee criteria, g is the intersorelatic of the predictors, and D is the number of pred *or

That is, wien all the criteria are equally \mid predicted by the composites, M is equal to D, and in any other case, $H i_{l}$, lades a component of differenttidal validity due to the variation in predictability of the criteria.

A corollary of equation (2) is that a battery can possess differential vail g. ty, as measured by n, even though the predictors are all perfectly corselated with each other. In that case, 0 is equal to zero, but H can de greater incan zerc, if some criteila are more predictade than others. onus,
as pointed out by Mater (1982), examination of the intercorrelations of peredictors is insufficient for estimation of the differential validity of a battery.

Although it seems counter-intuitive at first that a set of perfectly correlated composites could possess differential validity, the following example nates clear that they can. Consider the case of a single composite. Suppose that the composite measures a set of skills that account for much of the variation in performance in MOS A but very little of the variation in performande in MOS B. (Perhaps some unmeasured skill accounts for most of the variance in MOS B.) Then it makes sense to assign individuals with higher values of the composite to MOS A and individuals with lower scores to MOS B. Although the skill measured by the composite is related to performance in both MOS, its relation is much stronger in MOS A. Thus, a single composit has differential validity for classification among MOS.

The present problem is somewhat different from that addressed by Horst. His objective was to measure the performance of an entire battery in predicting differences between criteria, while the objective of the present analyses is to compare the performance of different sets of composites based on the same (ASVAB) battery. As noted by Mater (1982), Horst's derivation is based on the assumption that the predictors are based on the full battery; ie., that they are the multiple regression vectors for predicting the criteria from the ASVAB. Thus, while computation of H for the 98 separate MOS regression vectors provides the maximum achievable differential validity of the $A S V A B$, the computation of the differential validity of a particular set of composites involves more than merely applying Horst's formula to the covariance matrix of the composites.

Each MOS is associated with a single composite, so the comparison of expected performance between two MOS is associated with a pair of composites (although in many cases, they are the same composite). To assess the differential validity of alternative sets of composites, then, we applied the formula in equation (1), where the predictors for each pair were limited to the one or two composites associated with the pair. Specifically, we obtained the least squares predictor of the difference in criteria between each pair of MOS and then averaged the squares of these over all pairs of MOS.

The measure of composite differential validity we used was:

$$
\begin{equation*}
M^{2}=\operatorname{Average}\left(B_{(i j)} C_{i j k}\right)^{2 / 2} \tag{3}
\end{equation*}
$$

where $C_{j j k}$ is the pair of composite values associated with MOS i and j for individual k, B (id) is the regression vector for predicting the \{fference $y_{i k}-y_{j k}$ based on the two composites, and the average is over all i, j, and k, with i and j not equal.

As Horst had noted, Ontic can estimate the required regression coefficients, even though no individual case has more than a single criterion score. Because the estimation for different pairs is based on different sets of composites, however, the elegant solution which orst discovered is not available. Nevertheless, the computations were straightforward, though somewhat expensive in computer time.

The computations were carried out for two separate cases: (1) pairs oi MUS associated with the same composite, and (2) pairs of MOS whose composites were not perfectly correlated. In each case, the critical assumption, which also underlies Horst's derivation, is that the regression of criterion on composite is the same in both the selected and unselected groups. To simplify the derivation, we assumed that all variables were standardized for the group for which they are available.

Case 1: hoth MOS i and MOS j use the same composite

The objective is to select $b_{i j}$ to minimize

$$
\begin{equation*}
\text { Average }\left(y_{i k}-y_{j k}-b(i j)^{c_{k}}\right)^{2} \tag{4}
\end{equation*}
$$

where the average is over all accessions, and c is the common composite for both MOS ${ }_{j}$ and MOS ${ }_{j}$.

The solution can be shown to be

```
b}(ij)=\mp@subsup{b}{i}{}-\mp@subsup{b}{j}{}
```

That is, the result is simply the difference between the regression coefficients for predicting the criteria in the two MOS separately.

Case 2: MOS i and MOS j use different composites

The orjective is to minimize

$$
\begin{equation*}
\text { Average }\left(y_{i k}-y j k-\left(b(i j) i c_{i k}+b(i j) j c_{j k}\right)\right)^{2}, \tag{6}
\end{equation*}
$$

where the average is over all accessions,
$c_{i k}$ and $c{ }^{j k}$ are the two composite values associated with MOS i and j, for individual k, and
$\left.\mathrm{b}_{(} \mathrm{ij}\right) \mathrm{i}$ and $\mathrm{b}_{(\mathrm{ij}) \mathrm{j}}$ are the associated regression coefficients for predicting the difference.

The joint solution for $\underline{B}(i j)^{\prime}=(b(i j) i, O(i j) j)$ turns out to be

$$
\begin{equation*}
\underline{B}(i j)=\underline{B}(i)-\underline{B}(j), \tag{7}
\end{equation*}
$$

where $\frac{B}{}(i)$ and $\frac{B}{T}(j)$ are the regression vectors for predicting Ene available criteria in MOS i and j each using the pair of composites. Note that the values of $\underline{B}(i)$ and B(j) depend on the particular pairing of i and j.
Thus, in both Case 1 and Case 2 we obtain computable estimates of the regression coefficients; and from these it is straightforward to obtain the measure defined in equation (3). The maximum value for this statistic, for any set of linear composites based on the ASVAB, is the value of H^{2} in equation (1).

The failure of a set of composites to possess differential validity, thererore, can be divided into two parts: (1) failure of the ASVAB as a battery to measure skill components that differ between MOS, and (2) failure of the particular set of composites to capture the potential differential validity of the ASVAB. We can assess the extent to which the composites capture the differential validity possessed by the ASVAB as the ratio of M to H.

The measures H and M weight each of the MOS equally in tine estimation of differential validity. Although all of the MOS differences are important for some decisions, it is plauside to assign greater weight to the valid estimation of differences that are involved in the most frequent decisions. Therefore, as a furthar refinement, we also computed a weighted version of H and M, weighting the entry for each pair by the product of the numbers of the accessions in the two MOS.

The results are contained in Tables 27 and 28. For comparison purposes, these tades also include provisional estimates of the differential validity of the MAGE composites. We used G for the $C L$ and $O F$ clusters, E for the EL, SC, and ST clusters, and M for CC, FA, GM, and MM. After dropping the móministrative/Cl composite•and reordering, we renamed this composite set "GEM."

The less of one third of the differential validity of the ASVAB through using only 9 unit-weignt composites instead of 98 separate OLS regression vectors is to be expected. The 98 OLS regression vectors not only captured true variance detween each pair of MOS but also capitalized on any chance variation between pairs of MOS. The 9-composite solution, on the other nand, assigned the same composite to many pairs of MOS; and for these pairs there was no opportunity to capitalize on chance variation.

Generally, the unit-weight composites yield differential validity estimates from 43% to 68% of the potential differential validity in the ASVAB. The solutions with fewer composites, as expected, yielded slightly lower estimates of differential validity, although there was virtually no difference detween the froposed 2,3 , and 4 composite or GEM alternatives. Use of a single composite resulted in noticeably iower differential validity. The weignted differential validity estimates were generally lower than the unweighted estimates, reflecting the general phenomenon of smaller differences detween the larger m05. This may de due either to greater uniqueness of sxills in small MOS or lower stadility of the estimates in those MOS, or Doth.

The comparison between the operational composites and the alternative set of nine composites, in which the Clerical \& Administrative (CL) and Surveillance \& Communications (SC) composites were replaced, yielded no noticeable difference. Thus, the significant increase in overall predictive validity achieved by introduction of these two changes is not at the cost of decrease in differential validity.

Table 27
Differential Validity Estimates for Alternative Sets of Composites (Unweighted)

Composites	Average Squared Difference (H^{2} or M^{2})*	Root Mean Square Difference (H or M)	Relative Efficiency (H or M)/H
Full linear model (98 composites)	. 099	. 314	(100\%)
Current 9 composites	. 041	. 202	64\%
Revised 9 composites (CL and SC changed)	. 036	. 190	60\%
Alternative 4 composites	. 026	. 160	51\%
Alternative 3 composites	. 024	. 154	49\%
Alternative 2 composites	. 023	. 150	48\%
Alternative 1 composite	.019	. 136	43\%
GEM**	. 025	. 159	51\%

* Note: the measure of differential validity is H for the full 98 composite alternative and M for the other alternatives.
** Three of the four "MAGE" composites. G is used for CL and OF clusters of MOS; E is used for EL, SC, and ST clusters of MOS; and M is used for $C O, F A, G M$, and MM clusters of MOS.

Table 28
Differential Validity Estimates for Alternative Sets of Composites (Weighted)

* Note: the measure of differential validity is H for the full 98 composite alternative and M for the other alternatives.
** Three of the four "MAGE" composites. G is used for $C L$ and $O F$ clusters of MOS; E is used for EL, SC, and ST clusters of MOS; and M is used for CC, FA, GM, and MM clusters of MOS.

Assessment of Predictive Bias

Abstract

An important scientific and policy issue is the question of predictive bias of the selection and classification procedures. The primary concern here is whether the use of an alternative set of RSVAB composites would lead to bias in the selection and classification of Army enlisted personnel. This questimon was addressed in three ways: First, the adjusted validities of the subgroups were calculated and compared. The subgroup validities were adjusted to the total applicant population rather than the separate subgroup populations. Second, the differences between the predicted scores for each subgroup were compared in the range of composite score values that contain the operational cutoff points. Third, the common and subgroup regression lines were plotted over this region. The sample regression ines were used as the basis for the latter two sets of comparisons. Unadjusted lines were used because the classical adjustment for restriction of range makes the assumpion that the regression line in the selected group is the same as the regression line in the unselected population.

As noted in the earlier description of the data available for this research, we were limited in the analyses of subgroup differences to comparisons between race (blacks and whites) and between gender. We performed subgroup analyses only on those MOS that contained a sample of at least 100 soldiers of each subgroup. For race, this sample included 35 MOS and for gender it included 19 MOS. After the analyses had been obtained for each MOS, the results were aggregated to the cluster level. We will first discuss the analyses based upon comparisons between black and white soldiers ana then turn to a discussion of analyses investigating differences as a function of gender.

\section*{Analyses of Differences Dy Race}

The sample and adjusted validities of the current operational composites based upon the combined criterion as a function of race are presented in Table 29. (Tables for all subgroup analyses based upon each of the criteria treated separately can be found in the appendices). Similar data based upon the proposed four alternative composites are given in Table 30.

Inspection of these two tables shows that, in general, doth sets of composits predict performance in each of the subgroups well. The smallest adjusted validity in either table is a respectable .25 , while the average adjusted validities are sizeable at .41 and .43 for the current and alternative composites respectively. While the validities in both tad es are high, the validities obtained from the three alternative composites were consistently higher for both subgroups across all of the clusters.

Both tables show small differences between the validities obtained by whites in comparison to blacks. These differences are quite stable across the two different sets of composites. The average difference in adjusted validities between blacks and whites among the current composites was . 08 , while in the case of the alternative composites this value is slightly smaller at . 07 . The only sizeable changes in the black. white validity differences were found in GM and MM clusters, where the subgroup differences were . 04 and .03 smaller for the alternative composites. The stability of these differences,

Table 29
Sample and Adjusted Validities for Blacks ("B") and Whites ("W"):
Current Operational Composites SQT and Training Criteria Combined

Table 30
Sample and Adjusted Validities for Blacks ("B") and whites ("W"):
Four Alternative Composites
SQT and Training Criteria Combined

despite the radical changes in the makeup of the composites between the operational and the alternative sets, suggests that the small differences observed in ASVAB composite validities as a function of race are most likely attributable to the ASVAB subtests themselves or to the criterion measures, rather than to the way they are combined into composites.

Differences between subgroup validities such as those observed in Tables 29 and 30 above do not necessarily mean that either set of composites is culturally biased. Cronbacn (1976) makes the distinction between equality of test validities and fairness in selection policies. The relationship of the subgroup regression lines to each other is the key issue in the analysis of predictive bias.

Clearly, predictive bias would not be an issue if both groups shared the same regression line. If this were true, each recruit would have the same predicted value on the criterion regardless of subgroup membership. Therefore, a natural way of investigating predictive bias is to identify values of the AA composite for which a significant difference in predicted criterion scores exists.

To compare the black and white regression lines, we calculated the predicted criterion scores for the two subgroups for composite scores ranging from 80 to 110 points. This range of values was selected because it contains all of the cutoff scores now in operational use by the Army. The two sets of predicted scores were then subtracted to obtain the difference score, and standard error of the difference was estimated using the formula for the variance of the difference given in Rogosa (1980). The differences between the two regression lines are given in Table 31 for the current operational composites and Table 32 for the proposed four alternative composites.

Inspection of these two tables shows that, in general, for both sets of composites the two subgroup regression lines tend to be close over this range of composite scores. The average differences between the two lines for the current composites are: 3.80 for the CL cluster, 2.76 for the CO cluster, 2.38 for the EL cluster, 4.88 for the FA cluster, 4.23 for the GM cluster, 3.40 for the MM cluster, . 88 for the OF cluster, 5.93 for the SC cluster, and 2.56 for the ST cluster. The average differences for the proposed diternative composites were 1.57 (CL), 2.10 (CO), . 89 (EL), 2.77 (FA), 4.70 (GM), 1.10 (MM), -.90 (OF), .90 (SC) and .87 (ST). While some of these differences and those given in the tables are statistically significant, they tend to be relatively small in comparison to the standard deviation of the combined SQT and training criterion, which had been standardized to a value of 20 for accessions into each MOS. Only for fairly high values of the composite scores (around 110) did the differences in predicted scores for the two subgroups become large. These findings are typical of the comparisons of black and white regression lines found in other educational, employment, and military research (i.e., Hanser \& Grafton, 1983).

Tables 31 and 32 show that the relationships between the black and white regression lines are similar for boin sets of composites. In both tades the differences most often have positive values, indicating that the white regression lines lie above the black regression lines. In other words, the Dlack criterion scores are overpredicted by the regression 'ine based upon the white subgroup. This relationship of average overprediction of the black

Table 31
Predicted Criterion Scores for Blacks ("B") and Whites ("W"): Current Operational Composites

Table 31
Predicted Criterion Scores for Blacks ("B") and whites ("W"): Current: Operational Composites (Continued)

Composite Score	Predicted (Combined	$\underset{B}{C r i t e r i o n ~}$	Score W)	Subgroup Difference (W - B)	Standard Error of the Difference
GM Cluster					
80	95.09	97.24	95.84	-1.40	2.50
85	98.53	98.78	99.26	. 48	2.27
90	101.97	100.32	102.68	2.36	2.35
95	105.41	101.86	106.09	4.23	2.69
100	108.85	103.10	109.51	6.12	3.22
105	112.29	104.93	112.93	8.00*	3.86
110	115.73	106.47	116.35	9.88*	4.56
MM Cluster					
80	91.50	89.84	93.74	3.90*	1.60
85	94.12	92.29	96.02	3.73*	1.48
90	96.74	94.75	98.31	3.56*	1.42
95	99.36	97.20	100.60	3.40*	1.41
100	101.98	99.65	102.88	3.23*	1.45
105	104.60	102.10	105.17	3.06.	1.56
110	107.22	104.56	107.40	2.90	1.70
Of Cluster					
80	93.14	90.73	94.87	4.14*	1.17
85	96.03	94.38	97.43	3.05*	1.11
90	98.91	98.03	100.00	1.97	1.10
95	101.80	101.68	102.56	. 88	1.45
100	104.68	105.32	105.12	-. 20	1.25
105	107.57	108.97	107.69	-1.29	1.39
110	110.45	112.62	110.25	-2.37	1.56
SC Cluster					
80	89.64	86.83	93.82	6.99*	2.09
85	92.25	89.32	95.96	6.64*	1.82
90	94.87	91.81	98.09	6.28*	1.59
95	97.48	94.30	100.22	5.92*	1.41
100	100.09	96.79	102.36	5.57*	1.29
105	102.71	99.28	104.49	5.22*	1.27
110	105.32	101.76	106.62	4.86*	1.34
ST Cluster					
80	85.52	85.78	86.02	. 24	1.30
85	88.54	87.98	89.00	1.02	1.25
90	91.56	90.19	91.98	1.79	1.24
95	94.58	92.40	94.96	2.56*	1.25
100	97.60	94.61	97.95	3.34*	1.29
105	100.62	96.82	100.93	4.12*	1.35
110	103.64	92.02	103.91	4.89*	1.44
* P < . 05					

Table 32
Predicted Criterion Scores for Blacks ("B") and Whites ("W"):
Four Alternative Composite Solutions

Table
32
Predicted Criterion Scores for Blacks (" 8 ") and Whites ("W"): Four Alternative Composite Solution (Continued)

regression line oy the wite regression line across this range of composite scores was true for all of the current composites ano all but one (OF) of the proposed alternative compositas.

The alternative composites differ from the current operational set in two ways. Overall, the differences in predicted criterion scores observed in the alternative composites are smaller than the differences found with the operational composites. The average of the aosolute values of differences from the current composites is 3.42, while the proposed alternative composites show an average absolute value of the differences of 1.76 . Again, both of these values are fairly small when compared to a criterion standard deviation of 20 . Thi other noticeable aspect in which the two sets of composites differ nas already been noted above. When the alternative OF (AOP) composite is used to predict performance for the CF cluster of MOS, the white regression line tends to siigntly underpredict rather than overpredict the diack regression line. Tables 31 and 32 show that the basic pattern of general overprediction of the Dlack regression line by the white regression witn some underprediction for low composite scores is the case for botn the operational and the alternative composites.

Given that the Army does not use separate Dlack and white regression lines to select and classify eniisted personnel, the relationsnip of each subgroup line to tne common regression line becomes important when significant oifferences between the subgroup lines exist. If the criterion scores for a subgroup are substantially underpredicted by the common regression line (e.g., the subgroup line falls above the common linel, tse of the common line to select and ciassify potential personnel would be unfair to that subgroup since its "irue" predicted criterion would be tigher than the value predicted dy the common selection/classification instrument.

Underprediction of any subgroup is a serious problem only when the underpreaiction is for values of the composite near the cutoff point for that mOS. Tnis is true decause an individual is ade to enlist in his or ner HOS of cnoice as long as nis or her composite score is aoove the appropriate cutoff. composite scores well avove the cutof: do not liave any real meaning to the system. For example, if two individuals with composite scores of 95 and lus, respectively, wisned to enter an MOS with a cutoff score of gu, both would de allowed to enlist in the MOS. The ten-point difference in their composite scores would not affect eitner person's selection or classification.

To investigate the relationsnips between the subgroup regressions and the common regression lines, we plotied the dlack, white, and common lines in the region that contains the cutoff scores for the Army MOS. These plots are presented in Figures 2 through 10. These plots show that the predicted values of all three lines tend to have nigher slopes for the alternative composites than for the current composites. This finding is in agreement with the earlier validity data which snowed somewnat nigher criterion predictability witn the use of the alternative composites. In each of the figures, the plots oased upon the alternative composites tend to show the three lines being closer togetner than they are in the plots obtained from the current composites. This is consistent with Table 32, which showed that the alternative composites have the smaller differences among the predicted criterion scores from the two subgroups.

CLUSTER=CL VERSION=NEH

Figure 2. Regression lines for Current and Alternative (old and new) Composites for CL MOS, by Race

CLUBTER=CO VERSION=NEN

Figure 3. Regression lines for Current and Alternative (old and new) Composites for CO MOS, by Race

Figure 4. Regression lines for Current and Alternative (old and new) Composites for EL MOS, by Race

CLUSTERIFA VERSION=OLO

CLUSTER FF A VERSION=MEM

Figure 5. Regression lines for Current and Alternative (old and new) Composites for FA MOS, by Race

Figure 6. Regression lines for Current and Alternative (old and new) Composites for MM MOS, by Race

Figure 7. Regression lines for Current and Alter native (old and new) Composites for OF MOS, by Race

Figure 8. Regression lines for Current and Alternative (old and new) Composites for GM MOS, by Race

CLUSTEHASC VERSIOM=0 O

Figure 9. Regression lines for Current and Alternative (old and new) Composites for SC MOS, by Race

Figure 10. Regression lines for Current and Alternative (old and new) Composites for ST MDS, by Race

Figures 2 through 10 also show that the pattern of the relationships between the three regression lines near the possible cutoff values is quite similar for the two sets of composites for most of the nine clusters. Eight of the nine composites show overprediction of performance by blacks rather than the more serious underprediction of performance. The one exception was the of cluster, which revealed overprediction for the lower composite scores and underprediction for the higher values. This pattern among the regression lines of the $O F$ cluster was observed for both the operational and the proposed alternative composites.

To summarize the findings of the investigation of black versus white prediclive dias, it appears that there are small differences in the predictive validities and the regression lines for the two groups for all composites in both their operational and alternative versions. The subgroup regression lines are also not perfectly approximated by a single common regression line, although for both sets this difference results in overprediction rather than underprediction of blacks in the region of the lines where setection and classification takes place. However, since the validity and regression line differences were not very large and the use of the common regression line does not, in general, result in underprediction of performance by blacks, either set of composites could be used without unfairly impacting the enlistment of black soldiers.

Analyses of Differences by Gender

The sample and adjusted validities for gender subgroups of the current AA operational composites based upon the combined SQT and training criterion are presented in Table 33. Similar data but based upon the four proposed alternative composites are found in Table 34. The CO, FA, and GM clusters are not included in either of these tables because no MOS in these clusters met the criterion of at least 100 female soldiers (CO and FA do not contain MOS that are currently open to enlistment for women).

As was the case in the analysis of racial subgroups, doth sets of composites tend to de accurate predictors of performance in each subgroup. Here the mean overall validities were .42 and .45 respectively for the current and alternative composites. The tables iso show that the adjusted valiaities for the alternative composites tended to de higher than the values obtained Dy the current composites for both subgroups and across ali clusters. The one exception to this rule was the validity of te ACO composite when used to predict the performance of men in the EL cluster. In this case the adjusted validities were equal for the current and alternative composite.

Another similarity between the data presented in Tables 33 and 34 and the validity differences discussed earlier for the black and white subgroups is that there was little change in the adjusted validity differences between the groups as a function of the two composite sets. The mean difference ictween male and female adjusted validities was .06 for the operational composits and .05 for the alternative composites. The change in validity afferences between the two tapes is only .01 and for two of the clusters $i C_{i}$ and SC) the difference in subgroup validities was consistent across composit sets. This finding further suggests that differences in the predictive

Table 33

Sample and Adjusted Validities for Males ("M") and Females ("F")
Current Operational Composites
SQT and Training Criteria Combined

Table 34
Sample and Adjusted Valiaities for Males ("M") and Females ("F")
Four Alternative Composites
SQ and Training Criteria Combined

validity of $A S V A B$ composites between gender or racial subgroups is primarily a function of the the ASVAB subtests and not the manner those subtests are combined into composites.

Coth Tables 33 and 34 show that in two clusters (EL and SC), there were fairly large differences in predictive validity between males and females. For the EL cluster this difference was . 25 for the current composite and .22 for the alternative composite. The difference for the SC cluster was consistent at . 19 for both composites. Whether these validity differences impact upon the selection and classification of women into these MOS clueterse will de further discussed in the analysis of the differences between the regression lines and the discussion of the plots of the common and subgroup regression 1 ines.

Table 35 presents the comparisons between the female and male regression lines for the current operational composites, while similar data are given for the four alternative composites in Table 36 . The data in these tables were obtained in the manner that has been previously described in the anallyses of racial subgroups.

Tables 35 and 36 show that, despite the higher predictive validity of the alternative AA composites for both subgroups, the subgroup regression lines based upon the operational composites tend to be closer together than the female - male regression lines oased upon the alternative composites. The mean aosclute value of the differences in predicted criterion scores between the two groups was 1.69 for the operational composites in comparison to 2.79 for the alternative composites. Four clusters (CL, MM, OF, and SC) showed sizeable increases in the absolute value of the differences, but of these the change for my should not present an issue for the assignment of personne l to MOS. It represents an increase in overprediction of the female regression line by the male regression rather than underprediction. A more serious concern is the apparent underprediction of female performance by the proposed alternative AA composites in the CL, OF, and SC clusters. It should de noted, however, that an observed average of about two and a half units of underprediction for these clusters is fairly small in comparison to the comDined criterion standard deviation of 20 . The seriousness of these differences in regression lines also depends on where along the common regression line they are found, and this issue can be best addressed dy examining the plots of the three regression lines for each cluster.

Figures 11 through 17 present the plots of the female, male, and common regression lines across for the range of composite scores that contain the cutoff values, for both the current operational and the proposed alternative composites. A comparison of the figures for these two sets of composites snows inst for one cluster (ST) the pattern among the plotted regression lines is quite similar for the two sets of AA composites. For two other clusters (EL and MM) the alternative composites snow more overprediction of female soldier performance than do the current operational composites. Since in both of these cases the female line is overpredicted by the common line, a switen to the alternative should not hinder the enlistment of women into the MUS that comprise the MM and ST clusters. The plots for the remaining three clusters ($C L$, $O F$, and $S C$) all showed an increase in underprediction of female performance with the alternative composites. For the CL and SC cluetens, the current composites also showed underprediction of the female friterion scores, and the new composites produced a small increase in that underprediction, particularly for nigh composite scores. In the case of the

CUSTER =6: VEASIONzNEM

Figure 11. Regression lines for Current and Alternative (old and new) Composites for CL MOS, by Gender.

CLUSTEAIEL VERSION天NEM

Figure: 12. Regression lines for Current and Alternative ($0^{\circ} \mathrm{d}$ and new) Composites for EL MOS, by Gender.

Figure 13 Regression lines for Current and Alternative (old and new) Composites for MM MOS, by Gender.

Clustefrof versionsold

Figure 14 Regression lines for Current and Alternative (old and new) Composites for OF MOS, by Gender.

Figure 15 Regression lines for Current and Alterative (old and new) Composites for SC MOS, by Gender.

$$
78
$$

Figure 16 Regression lines for Current and Alternative ($01 d$ and new) Composites for ST MOS, by Gender.

78
(100)

Table 35

```
Predicted Criterion Scores for Males ("M") and Females ("F"):
    Current Composites
```


Predicted Criterion Scores for Males ("M") and Females ("F"): Current Composites (Continued)

OF cluster, the three regression lines of the current composite are essentidally equal, while a switen to the alternative composite would result in some uncarprediction along the entire regression line. In general, the degree of underprediction of female scores shown in these three clusters is relatively small. The CL cluster is perhaps the most extreme case and here the common regression line falls only about two points below the female line.

Considering all of the data discussed above, it appears that the alternative AA composites could replace the composites now being used operationally without increasing predictive bias on the basis of gender. The differences in predictive validity of the two sets of composites are quite similar, and the degree of underprediction of female performance by a common regression line is much the same for both composite sets.

Other Analyses of Subgroup Differences

One possible explanation of the lower predictive validities for blacks in Tables 29 and 30 and for females in some clusters of Tables 33 and 34 is that these subgroups showed less variability in their criterion scores than the other two subgroups. The data relevant to this hypothesis can be found

Table 36

```
Predicted Criterion Scores for Females ("F") and Males ("M"):
                Four Alternative Composites
```


Predicted Criterion Stores for Females ("F") and Males ("M"): Four Alternative Composites Solution (Continued)

Composite Score	Predicted (Combined Criterion F		Score $\mathrm{M})$	Subgroup Difference (MF)	Standard Error of
SC Cluster Difference					

in Table 32 for the comparison of racial subgroups and Table 33 for comparsons based upon gender. It should be noted that all of the standard deviatins in these tables are similar, because the criterion measures had been standardized to have a standard deviation of twenty in each MOS.

Examination of Table 37 shows that the small differences observed between black and white composite valitities are not due to any major restriction in the variability of the criterion for black soldiers, relative to white soldies. For seven of the nine clusters the black subgroup showed greater criterion variability than did the white subgroup. The differences in prodictive validity between these groups, therefore, cannot be attributed to differences in criterion variability.

The data in Table 37 do suggest an explanation for the observed overprediction of black soldier performance by the use of a common regression line. For ali nine clusters in this table, the mean criterion score for blacks is slightly smaller than the value for whites. Such a relationship normally leads to common line overprediction of lice subgroup with the lower mean criterion score.

Table 37
Means and Standard Deviations Of the Combined Criterion Scores for Black (B) and White (W) Subgroups

Table 38 shows that lower criterion variances cannot explain the differences in validities between females and males in Tables 33 and 34 . For the cluetens that had shown somewhat lower validities for females than males (CL, $E L, O F$, and ST), only in the CL cluster did the criterion scores from female soldiers have less observed variance than the male criterion scores.

Table 38
Means and Standard Deviations Of the Combined Criterion Scores for Female (F) and Male (M) Subgroups

| Cluster | F Means | M | Standard Deviations
 \mathbf{F} | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CL | 103.63 | 101.00 | 18.12 | 19.89 |
| EL | 102.09 | 105.05 | 19.16 | 18.92 |
| MM | 96.09 | 101.36 | 20.76 | 19.92 |
| OF | 99.34 | 101.78 | 20.23 | 19.77 |
| SC | 98.40 | 104.23 | 20.10 | 19.03 |
| ST | 99.86 | 103.76 | 20.37 | 18.74 |

For all of the comparisons among subgroup predictive validitics and reg;ession lines discussed above, the reporting of analyses has bee. at the cluster rather than the MOS level. In order to aggregate the information to this level, the statistics were first calculated for each MOS. The resulting data were then pooled (weighted by sample size) across the appropriate mos to obtain the analyses for each cluster or composite. While this approach is the most reasonable way to aggregate MOS-level data to the cluster level, it does not inform about MOS-level relationships. This question is particulardy relevant for MOS with different proportions of subgroup populations.

We addressed this question by comparing regression lines for sets of two MOS within each cluster. The particular MOS for these analyses were selected according to the following criteria: First, there had to be at least two MOS within a cluster for which we had data for at least 100 soldiers in each subgroup. Second the two MOS within each cluster were selected by taking the two that showed the greatest difference in the ratio of subgroup sample sizes. For example, in the the analyses of racial differences within the CL cluster, the two MOS examined were 71L and 75D. In the case of 71L the ratio of whites to blacks was 1.07, while in 750 the same ratio was .43. This procedure was followed in order to maximize the probability of uncovering differences in the regression lines as a function of the distribution of subgroups within the MOS. The procedure had the side effect of allowing for the reporting of analyses of MOS with relatively small sample sizes in comparison to the other analyses of this report, but the minimum sample of at least 100 soldiers per subgroup was still large in comparison to past research.

For the MOS meeting these criteria the differences between subgroup regression lines for both racial and gender comparisons are given in Tables 39 and 40 for the current composites and in Tables 41 and 42 for the alternative composites. The comparison of the subgroup regressions to the common regression line are presented in Figures 17 through 30.

Three important findings emerge from these tables and figures. First, these data indicate that a switch to the alternative composites would not result in an increase in predictive bias for either blacks or women. Most (nine out of fourteen; of the MOS show quite similar patterns among the subgroup regression lines drawn from the current and alternative composites. For the comparisons based upon race, only MOS 11 H and $13 F$ showed substantial change with the new composites. For MOS II H, the switch to the new composites would tend to result in overprediction of black soldier performance while the current system produces some underprediction. For MOS 13F, the new composites produce a subgroup regression line that is closer and no longer nearly paralie to the common regression line. Neither of these changes would megalively impact the enlistment of blacks into these MOS.

Likewise, a change to the alternative composites does not present problems for the enlistment of female soldiers even when the pattern among the regression lines appears to change with the composites. In the case of MOS 05C this change results only in the regression lines being closer together, and therefore snowing less underprediction of female performance by the common regression line. For MOS 75C the relative degree of underprediction versus overprediction is fairly constant for the two sets of composites, but inhere each occurs along the common regression line changes as the composition of the composites changes. In this MOS, underprediction tends to occur for

Figure 17 Regression lines for Current and Alternative (did and new) Composites for MOS 11B, by Race

MES OF CRITERION SCORERS VERSIONANEM

Figure 10 Regression lines for Current and Alternative (old and new) Composites for MOS 13B, by Race

$$
\bar{\varepsilon} \overline{0}
$$

GE

MOS OF CRITERION SCOREE38C YERSIOM工OLD

mas of chiterion sconezast versionmien

Figure 19 Regress on lines for Current and Alternative (old and new) Composites fer MOS 36C, by Race

HOS OF CRITERION SCORE =7\%L VERSION=OLD

nOS OF CRITERION SCOKE=TIL VERSIOM=NEM

Figure 20 Regression lines for Current and Alternative (old and new) Composites for MOS TiL, by Race

H ns of CRITEAIOM SCOKEs750 VERSION=0LD

MOS OF CRITERION SCORE =750 YERSIOMENEL

Figure 21 Regression lines for Current and Alternative (old and new) Composites for MOS 75D, by Race

MOS OF CRITERION CCOREzISF VERSIONzOLD

MOS OF CRITERION SCAREIGF VERSION=NEH

Figure 22 Regression lines for Current and Alternative (old and new) Composites for MOS 13F, by Race

NOS OF CRITERION SEJREIIH VERSIONEMEN

Figure 23 Regression lines for Current and Alternative (old and new) Composites for MOS 11H, by Race

HOS OF CRITERION SCORE =31M YERSION:OLD

nos of CRITERION SCORE =3IM YERSIOMANEW

Figure 24 Regression lines for Current and Alternative (old and new) Composites for MOS 31M, by Race

HES OF CRITERION SCORE=OEC YERSIOM=NEN

Figure 25 Regression lines for Current and Alternative (old and new) Composites for MDS O5C, by Gender

NOS OF CRItERION ECOREATE VEREIOM=OLD

HOS OF CRITERION SCORE=TEC VERSIONEMEW

Figure 26 Regression lines for Current and Alternative (old and new) Composites for MOS 75C, by Gender

nos of CRITERIOM SCORE =72E VERSIOM=NEM

Figure 27 Regression lines for Current and Alternative (old and new) Composites for MOS 72E, by Gender

MES OF CRITERION SCOREzTET VERSIOMzOLO

NOS OF CRITERION SCERE工TSY VERSIONFNEM

Figure 28 Regression lines for Current and Alternative (old and new) Composites for MOS 76Y, by Gender
r ix

HOS OF CRITERION SCORE=9IE YEREION二HEW

Figure 29 Regression lines for Current and Alternative (old and new) Composites for MOS 91E, by Gender

Hos of caltenion scone sse ventionaoco

HOS OF CRITERION SCOREFOSE VERSION=NEW

Figure 30. Regression lines for Current and Alternative (old and new) Composites for MOS 95B, by Gender

Table 39
Predicted Score differences (Diff.) ane Standard Errors (SE) of the Difference between Blacks (B) and Whites (W) for

Particular MOS: Current Operational Composites

lower composite scores using the current composite. with the alternative composite, underprediction is observed for higher scores of the AA composite. The other MOS nat snowed a noticeable change among the regression line with the alternative composites was 76y. In this case the alternative composite tends to snow somewhat more uncerprediction of female performance than does the current composite. While the average difference (3.25 points) in underprediction of the alternative versus the current composite for $76 y$ is small relative to the criterion standard deviation, the difference does approach statistical significance. This finding suggests that as new criterion da: a become available further attention and research oe devoted to analyzing the differences between male and female soldiers in MOS 76Y. In most cases, however, as with the comparisons based upon race, the enange to the alternafive composite should not result in substantial underprediction of subgroup performance. The new composites could be used operationally without an increase in predictive ollas in the selection and classification system.

The second finding of these analyses is that, as expected, the large mOS (eg. 118, 138, etc.) show patterns of under- and overprediction that are Gite similar to the summary sta presented earlier at the cluster level. For example, the large MUS in Tables 39 and 41 all snow overprediction or
olack performance for both sets of composites. Such results are also pressented in Tabes 31 and 32 in the subsection discussing differences in the regression lines for the two races the cluster or composite level. in is result is not surprising since the MOS statistics were weighted by sample size when they were pooled to obtain the cluster data.

Table 40
Predicted Score Differences (Diff.) and Standard Errors (SE) of the Difference between Females (F) and Males (M) for Particular MOS: Current Operational Composites

The third finding from these andyses is that within a cluster it appears Enact differences in the subgroup proportions can result in major changes in the pattern among the regression lines. For example, within the st cluster: use of the alternative composites would result in underpredicting female criterion scores in MOS O5C where the ratio of males to females is 6.6. However, in MOS $72 E$ where this ratio is only 1.4 , use of the same compos, sem would result in overprediction of female performance.

This finding suggests that it may de necessary to evaluate predictive aids at the MUS level. Each MOS in the sample could oe analyzed using the Jonnson-Neyman technique (See Rogosa, 1980) to determine whether a significant difference between the subgroup regression lines exists for any value of the composite, If a regic. of significance exists and includes the cutoff score for that MUS, further investigation of that MOS would de warranted. The aggregation of results to the cluster level might best oe done qualicativeiy. For example, the proportion of MOS within ene cluster that snow significant differences around the cutoff score could de reported.

Table 41
Predicted Score Differences (Diff.) and Standard Errors (SE) of the Difference Detween 8lacks (B) and Whites (W) for Particular mOS: Four Alternative Composites

Cluster	B	N W	Cutoff	[iff.	Compos	te 5 Cor Diff	SE	$\begin{array}{r} 105 \\ \text { Diff. } \end{array}$	SE
C. Cluster									
MOS 71 L	1229	1322	95	-1.47	1.35	-1.00	1.01	-. 55	. 77
MOS 750	481	205	95	-1.44	3.14	1.07	2.17	3.57	1.57
CO Cluster									
MOS 11\%	122	769	85	-. 83	1.89	. 99	2.03	2.82	2.30
MOS 118	1140	4174	85	. 79	. 73	2.08	. 71	3.38	. 76
E. Cluster									
MOS 31m	503	1185	95	1.59	1.32	2.03	1.03	2.47	. 97
MOS 300	214	132	9	-2.35	3.51	-1.63	2.37	. 90	2.99
fa cluster									
MOS 13F	125	557	100	45	1.99	3.38	1.67	6.31	1.65
MUS 138	1814	2471	85	1.16	. 79	2.64	. 65	4.13	. 63

[^0]

Table 42

Predicted Score Differences (Diff.) and Standard Errors (SE) of the Difference between Females (F) and Males (M) for Particular MOS: Four Alternative Composites

Alternative Composite Scales and Cutoffs

Composite Scales

For the current composites, the subtest sum scores are converted to scale scores with a mean of 100 and standard deviation of 20 in the 1944 reference population, using a table that gives a somewhat nonlinear mapping. In general, the current conversions compress scores somewhat in the middle range while expanding the more extreme scores. In addition, the current conversions compress a number of different sum scores that are well below guessing rates onto the minimum composite score of 40.

In order for some or all of the new composites to be adopted for operational use, similar conversion tables are needed. Some consideration was given to proposing alternative scalings, in particular a linear adjustment, so as to 5 implify the calculation of the final composites. The final recommendation, however, is to maintain the current procedures insofar as possible. This choice leaves open the Army's option of adopting only some of the new composites while leaving some of the existing composites intact, and it also keeps relatively constant the implicit conversions between composite and percentile scores.

The conversion tables fer the alternative composites were designed to match the distributions of the current composites on a representative sample of 13,319 FY81/82 applicants who were first-time test takers and who completed form 8, 9, or 10 . The overall objective in defining conversion tables for the new composites was to make the distribution of scores on the new composines resemble the distribution of scores on the old composites as closely as possible for any group of ASVAB test-takers. To achieve this end, cumulative frequency distributions were computed for each of the existing 9 composites. Table A-20 in the Appendix shows the resulting distributions. These distributions were then averaged to give a target distribution for equipercentile equating of the alternative composites. Thus, each subtext sum score was mapped onto the target composite score with the same percentile. Table A-2l in the Appendix shows these conversions.

The sample size of 13,319 is sufficient to yield maximum sampling errors of less than .j in percentages estimated from the sample. As shown in Table A-22, the current composite scalings differ from each other by as much as 5 percent in the percentages at or below given score levels. Therefore, the estimated maximum sampling error of .5 percent was judged negligible in comparison.

Cutoff Scores

The cutoff levels reflect two competing concerns. The first is that soldies scoring above the cutoff level on a particular composite must have a "reasonable" level of expected performance for the MOS in question. The second is that the cutoff criteria should scree, out the right proportion of applicants relative to the number of available training slots. It mus: not be so high that a significant number of slots go unfilled, yet nigh enough

So that, where there are more applicants than slots, only the "best" applicants fill these slots. Because previous information on expected performance levels has been relatively weak, supply and demand considerations have presdominated in the setting of composite score cutoff levels.

The setting of a cutoff level for a composite does not presume that soldiers can be sorted into clearly acceptable or unacceptable categories through use of paper-and-pencil tests. In general, the relationship between composite score and subsequent performance level is roughly linear, so that differences at different points on the composite scale reflect similar differences in expected performance. However, Project A has not yet gathered the critical information on the variation in payoff for performance in different MOS. Lacking clear-cut standards for criterion referenced cutoff points, we felt it most appropriate to identify cutoff points that are as consistent as possidle with those currently in use, in order to maintain the current balance between MOS in the distribution of available applicants.

The simplest measure of consistency between new cutoffs and the existing cutoffs would be that the percentage of applicants "passing" the cutoff criterion should be the same. Since we have rescaled the new composites so that the percentage of applicants above or below a given score is the same. for each new composite as for the existing composites, this means that the existing cutoff points could be used "as is". The percentage passing for any given applicant group would be the same as it currently is.

We are concerned, however, that since the new composites are more highly correlated with the overall selection criterion, AFQT, and also with each other, some propels might arise. In particular, the greater correlation among composites implies that the different MOS would be more likely to judge the same applicants as eligible, increasing the competition among the MOS. If cutoffs remained the same, more slots might go unfilled as there would be fewer different individuals to draw on. However, because the new composites are more highly correlated with AFQT, those above a given riterion cutoff will tend to have higher AFQT scores on average with the new composites. This means that the cutoff levels could be lowered slightly and still leave the same distribution of mental categories among the eligibles as is currently the case. In a final set of analyses, we set out to determine the cutoff scores that would leave constant the average AFQT scores for these applicants passing the cutoff.

An "average AFQT" score was assigned for each possible composite score for each old and new composite. This average AFGT score was defined as the average of the AFQT percentile scores for all applicants in the sample of 13,3i9 who scored at cr above the given composite score. Then, for each possible score on each of the new composites, we identified the score on each of the existing composites that had the same "average AFQT" score. Table $A-22$ in the Appendix shows the results of this approach.

Using this table, one ran identify the cutoff on any alternative composite that corresponds to a specified cutoff on a current composite. A complete listing of cutoffs for current composites is given in Table A-23 in the Appendix. For example, if the mean AFOT score of eligible applicants is to remain constant, a cutoff of 90 on the current $C O$ composite translates to a cutoff of 89 . The major differences between the cutoffs for current and proposed compsites is between CL and ACL: the cutoffs for ACL could be roughly 5 points lower than the current cutoffs for CL.

Summary

The purpose of this research was to assess (1) the effectiveness of current ASVAB area composites for cersonnel selection and classification and (2) the potential for establishing improved enlisted personnel selection and classification rules based on the ASVAB. Current composites were compared to empirically identified favorable alternatives in terms of predictive validity, differential validity between MOS, and predictive bias for different population subgroups.

Validation analyses were performed using training and SQT scores for the FY81/82 cohort of accessions. The results of the analyses are limited by the data base and by the accuracy of necessary, yet untestable assumptions made in carrying out the analyses. Data to be collected in Project A will ultimately allow testing of these assumptions, and despite the limitations, substantive results were obtained which lead to particular recommendations.

Limitations

Information on Criterion Quality. The analyses were carried out as if the measured criteria were the sole, and error-free, criteria to be maximized in selecting and classifying enlisted personnel. To the extent that unmeasured criteria are also important, the validation of composites is incomplete. In the worst case, a combination of ASVAB tests might be highly correlated with unmeasured criteria in an MOS but uncorrelated with the criteria used in this set of analyses.

Neither reliability nor validity figures were available for the criterion measures. However, there were many MOS for which both training and SQT measures were available on the same soldiers; and if the correlations between these measures were high, it would indicate the likelihood of redsonady high criterion reliability and validity. Unfortunately, the correlations were low, ranging from -. 12 to .56 , over 81 MOS, with a mean of .22. Although it is possible that this merely indicates that training scores and SQT scores measure different aspects of overall performance in the MOS, the need for (1) more systematic coverage of the performance space for an MOS and (2) criterion reliability and validity information is clear. Empirical results obtained without this information are likely to have major inaccuracies.

Information on utility of Performance. Related to the problem of criterion reliability and validity is the problem of translating results to gains in measurable costs and benefits. The analyses were carried out based on the assumption that the value of a one-standard deviation increase in the performance of a soldier was constant, both across different levels of performance in a single MOS and across different MOS. To the extent that the value of a performance increment varies between MOS, the derived procedures will be inaccurate, and to the extent that utility is a nonlinear function of performance, results of linear regression will ie inaccurate. Of these two problems, the variation betwe m MOS is of greatest concern. because linear approximations to non-linear relations are frequently quite good.

No information was available on the utility of performance increments. Subsequent analyses will evaluate the sensitivity of the validity of composites to deviations from the equi-utility assumption. During 1985, the project will collect utility-of-performance-increments information to provide the basis for subsequent validations to be carried out in the project.

Sample Size. Although these analyses were based on the largest database yet available for ASVAB validation, with criterion data on more than 100 soldiers in each of 98 MOS, and on more than 500 soldiers in 35 of these MOS, the sample was still not sufficiently large for some of the planned analyses. In particular, the patterns of correlations of expected performande across MOS were not replicable in half-samples. As a consequence, completely empirical determination of clusters of MOS for the purpose of assigning composites was impossible, and assessment of predictive bias was limited.

Samples on the order of 2000 per cell are needed for analyses such as these, and these were attainable when we focused on current clusters of MOS rather than individual MOS. While such samples for individual MOS are extremely costly, they can be accumulated over years if there is sufficient stability of predictors and criteria. Moreover. deviations from that stadility can be estimated from a cumulative data base.

Findings
Predictive Validity of Current Composites. The validities for 98 MOS, based on combinations of training and SQT scores, and adjusted to apply to the FY81 and FY82 Army applicants, ranged from . 12 to .74 , with a mean of .45. Grouping MOS by the current composite clusters, the lowest mean validity was .42, for Surveillance and Communications MOS and for General Maintenance MOS, and the highest was .54, for Skilled Technical MOS. In general, there was almost no tendency among MOS for the currently assigned composite to have a higher validity than other current composites.

Identification of Optimal Alternative Composites. Although the data base did not support purely empirical identification of clusters of MOS for which the same composite could be used, it was possible to evaluate alternative combinations of the nine clusters of MOS associated with the current composites. Only unit-weight alternative composites were considered, after it was found that optimal unit-weight composites for four clusters possessed a root mean square validity 97% as great as the root mean square validity of ridge regression vectors computed separately for each of 98 MOS. The loss due to using only four unit-weighted composites was minimal.

Roughly 700 different sets of composites were evaluated in terms of presdictive validity, with a focus on four composite solutions, since four nominal factors of the ASVAB have been identified. The best alternative four-composite solution that we identified, a local optimum that is very likely the actual four-composite optimum, was

Clerical (ACL):	$V E+A R+M K$
Skilled and Technical (AST):	$V E+A R+M K+A S$
Operations (AOP):	$V E+A R+M S+M C$
Combat $(A C O):$	$V E+M K+A S+M C$.

The operations composite combines the current $S C, O F$, and MM clusters; and the combat composite combines the current $C O, F A, G M$, and $E L$ clusters,

Validity of Alternative Composites. The RMS validity of the four-composite set was .486. This compares with an RMS validity of .489 for the best set of nine unit-weight composites. Variations of validity in the third decimal place are neither statistically significant nor of great practical importance, and a variety of alternatives to the four-composite solution were explored.

Of special interest were the three- and two-composite solutions. The loss in validity which would result from using the new "combat" composite (ACO) for both the "combat" and "operations" MOS is negligible (.001), as is the loss in, further, using the new Clerical composite (ACL) for both clerical MOS and skilled and technical MOS. This two-composite solution captures 97% of the predictive power of the ASVAB for the performance criteria used in these andlyses.

Certain of the current composites account for a large part of the difference in validity between current and alternative composites. When compared to validities of optimal composites for the same clusters of MOS, the Clerical composite ($C L$) appeared to De weak, with a validity of .48 versus a potential of .56. One other composite, Surveillance and Communications (SC), was mildly weak, with a vaidity of .45 versus a potential of .50 .

The gain in expected performance if these composites were changed can only be approximated because of the constrained nature of the selection and classification process. If, however, the choice were purely between assignment to an individual MOS and rejection, application of Cronbach's formula yields an expected gain of .05 standard deviations per person in the two clusters of MOS from introduction of these two revisions to the current composites.

Differential Validity of Current and Alternative Composites

The ability of current and alternative composites to identify the best MOS for each enlistee was assessed, using a variant of Horst's Classification Efficiency index. The current composites and five alternative sets of composites all possessed between 45% and 57% of the differential validity of the ASVAB as battery. There was essentially no difference between the composite sets, with the exception that the "single composite" solution did not perform as well as others. In particular, the performance of
the current composite set was virtually identical to the performance of the alternative which merely replaced the CL and SC composites. In general, the differential validity of the ASVAB as a battery was higher for low-frequency MOS, but this effect was less pronounced for the sets of unit-weight composites.

Predictive Bias of the Current Composites. The validities of the composites are slightly higher overall for whites (.45) than blacks (.38), but there is, if anything, a tendency to underpredict performance of whites more than blacks. The validities of the EL and SC composites are greater for males than for females, but overall the average difference in validity only slightly favors males (.47) over females (.43). Underpredictions of performance were split between males and females, with the most noticeable underprediction being roughly .06 stancard deviations for women using the SC composite. In general, the over- and underpredictions were small, especially in the region near the cutoffs.

Predictive Bias of Alternative Composites. In general, the patterns of differential validity and underprediction observed for the current composites also were found for the four alternative composites, ACLL, AST, AOP, and ACO. The overall average validity for whites (.47) was somewhat higher than for blacks (.40), but the underpredictions of performance were suffered primarily by whites. An exception to this was the underprediction of blacks' performance by the alternative skilled technical composite (AST). Blacks' criterion scores in the OF cluster were underpredicted by both the current and alternative composites, and the degree of underprediction was slightly greater using the proposed composite.

The alternative composites had a slightly smaller difference in validities between men and women (. 48 vs. . 42) than the current composites, but again the most noticeable differences were the greater validities for men in the $E L$ and SC clusters. There were also somewhat greater underpredictions of women's performance in the CL, OF, and SC clusters using the alternative composites, although in general the differences were small.

Recommendations

Selection of a Composite Set. First, the statistical results tend to favor the alternative four-composite solution over the current nine composites in terms of overall absolute predictive validity and differential validity for MOS classification. The results for predictive bias are mixed, but the effects are not large in either direction. The average validity of the alternative composites is .48 , vs. . 45 for the current composites, and there was virtually no difference in differential validity between the alternative sets of composites.

The major source of tie relative deficiency of the current composites lay in two of the composites, $C L$ and SC. Depending on the relative costs cf implementation of different levels of change in composites, a more favorable proposal might be merely to replace these two composites with the ACL and $A O P$ composites, respectively, keeping intact the nine-composite structure. The average validity of the revised nine composites would be .47,
while the differential validity as measured by the criterion adapted from Horst (1954) would be virtually unchanged. This solution would also avoid the introduction of AST, with its small increase in underprediction of blacks' performance in skilled technical MOS.

Relative Value of Composites and Cutoffs. The validation analyses, and particularly the differential validity arialises, indicated that the proveduce of assignment to a cluster of MOS on the basis of the highest composit has limited expected payoff. The various composites are highly core.. lated, and therefore yield little unique predictive variance.

The choice of "cutoffs" is a far more potent procedure for increasing the overall average expected performance than is the choice among composites. Variation in the predictive value of even perfectly correlated composites can yield gains in classification with appropriate cutoffs, when compared to random assignment.

The basic rule for assignment is to assign individuals with a great deal of a particular ability to MOS with the greatest payoff for that ability (egg., MOS with the highest measure of association) and to assign individduals lacking the particular ability to MOS not requiring that ability (egg., MOS with minimal measures of association).

If there were clearly valid measures of association between ASVAB scores and payoffs for assigning enlistees to MOS, one would be tempted to recombmend the use of these measures of association in the determination of cutoffs. This is not wise at the present time, however, because of the incompleteness of the coverage of the criterion space dy available medsores and the lack of information on the relations between performance and payoff to the Army (i.e., utility information). The availability of comprehensive, reliable, utility-related criterion measures would make this approach to assigning MOS attractive.

Broadening the Span of Predictors. The current composites, as well as the best alternative composites, account for only about 20 to 25 percent of the variance in the criteria, but they account for over 90% of the variaance in the criteria that is predictable from the ASVAB. The ASVAB meassures four identifiable common factors, but only two eigenvalues are greater than one, and the first principal component accounts for roughly half the variance. Four of the nine subtests, GS, EI, NO, and CS, played no role in the composition of the proposed unit-weight composites.

This level of predictability is clearly not sufficient for accurate dentification of the optimal assignments of enlisted personnel to MOS. While it was impossible to assess the contributions of limitations of the citeria and of the ASVAB separately in these analyses, the adjusted validities were uniformly modest, with only 14 out of 98 greater than . 6 . There is a need for use of a broader set of predictors in the selection and classification process for enlisted personnel.

Increase the Sample size. The present analyses combined the data from two years, FY8 and FY82, with a substantial increase in the possible coverage of MOS over the coverage available from one year's accessions. For many MOS, there are not sufficient numbers in any year to support needed aramever estimation for the purposes of deriving optimal assignment proceduses. However, with a proper control for trends across years, the data base can be built up over a few years to the point where the needed two thousand cases in each MOS are available for analysis.

Although the replication of these analyses two years hence was to focus on the FY83 and FY84 cohorts (with the addition of utility information), the data base for those analyses will actually be the four-year cohort, FY81 through FY84 accessions. This will provide not only the basis for exploring trends but also an adequate data base for a larger set of MOS.

Conclusion

The major practical result of this investigation was the identification of suitable replacements for the two relatively weak ASVAB Area Composites currently in operational use by the Army. Introduction of new composites for the Clerical \& Administrative and Surveillance \& Communications MOS will significantly increase the expected performance levels of enlisted personnel entering these MOS, without affecting differential validity of the composites or introducing significant predictive bias.

In addition, this effort resulted in the development of systematic prosedues for the validation of ASVAB composites, including data editing, range restriction adjustment, ridge regression estimates of optimal composites, differential validity estimation, predictive bias assessment, and setting of cutoff scores. At the same time, the research effort highlighted needs for additional research and development that would solve several methodological problems.. In particular, there are needs for criterion validity and reliability information, performance utility estimates, cumulative additions to sample sizes, further work on range restriction adjustment and differential validity measurement, and a broadening of the coverage of skills required in different MOS. This coverage must be included in both the criterion measures and the predictors.

Throughout the remainder of this project, work will go forward on the development of better predictors and better criteria; and future validatins of enlisted personnel selection and classification procedures can de expected to refine and extend the results presented here.

References

[Army Research Project to Validate the Predictive Value of the Armed Services Vocational Aptitude Battery (ASVAB)] (1981). Unpublished raw data. Washington, DC: Department of the Army, Office of the Deputy Chief of Staff for Operations and Plans.

Brogden, E. H. (1959). Efficiency of classification as function of number of jobs, percent rejected, and the validity and intercorrelation of job performance estimates. Educational and Psychological Measurement, 19, 181-190.

Cronbach, L. J., \& Gleser, G. C. (1965). Psychological tests and personnel decisions (2nd ed.). Urbana: University of Illinois Press.

Diaconis, P., \& Efron, B. (1983) Computer-intensive methods in statistics. Scientific American, 248(5),116-130.

Draper, N. R., \& Van Nostrand, R. C. (1979). Ridge regression and James-Stein estimation: Review and comments. Technometrics, 21(4), 451-466.

Efron, B. (1979). Evotstrap methods: Another look at the jackinife. itie Annals of S. 2 istics, ? (1), 1-26.

Hanser, L.M, \& Grafton, F.C. (1983). Predicting Job Proficiency in the Army: Race, Sex, and Education. Selection and CTassificatio working Paper. Arlington, VK: U.S. Army Research Institute for the Behavioral and Social Sciences.

Hoist, P. (1954). A technique for the development of differential prediction battery. Psychological Monographs: General and Applied, 68, No. 9.

Jaeger, R. M., Linn, R. L., \& Novick, M. R. (1980). A Report to the House Committee on Armed Services: Aptitude Testing of Recruits. Appendix B: A review and analysis of score calioration for the Armed Services Vocational Aptitude Rattery. Washington, $D C$: Office of the Assistant Secretary of Defense for Manpower, Reserve Affairs, and Logistics.

Joreskog, K. G. (1977). Factor analysis by least-squares and maximum likelinood methods. In Einslein, K., Ralston, A., and Wilf, H. (Eds.) Statistical methods for digital computers. New York: Wiley \& Sons.

Kass, R. A., Mitchell, K. J., Grafton, F. C., \& Wing, H. (1983). Factorial validity of the Armed Services Vocational Aptitude Battery ($A S V A B$), Forms 8, 9, and 10: 1981 Army applicant sample. Educational and Psychological Measurement, 43(3), 1077-1087.

Lawley, D. (1943). A note on Karl Pearson's selection formulae. Royal Society of Edinburgh, Proceedings, Section A. 62, 28-30.

Lort, P., \& Novick, M. (1968). Statistical theory of mental test scores. Reading, MA: Addison-Wesley Publishing Company, inc.

Mater, M. H. (1982, December). Issues for defining ASVAB 11/12/13/14 Aptitude composites (A Briefing Presented to the ASVAB working Group) Tienter for Naval Analyses No. 82-3199). Alexandria, VA: Marine Corps Operations Analysis Group.

Mater, M. H., Fuchs, E. F. (1973). Effectiveness of select an and classification testing (Researen Report No. M79). Arlington, VA: U.S. Army Research Institute for the Behavioral and Social sciences.

Mater, M. H., Grafton, F. C. (1981), Aptitude composites for ASVAB B. 9, and 10. (Research Rep. No 1308). Arlington, VA: U.5. Army Research Institute for the Behavioral and Social Sciences.

Mater, M. H., 6 Truss, A. R. (1983). Original scaling of ASVỉ 5/6/7: what went wrong. (Center for Naval Analyses Contribution No. 4j7). Alexandria, Vet: Marine Corps Operations Analysis Group.

Mater M. H., \& Truss, A. R. (1983). Validity of ASVAB Forms 8, 9, and 10 for Marine Corps training courses: Subtests and Current composites. (Center for Naval Analyses Memorandum No. 83-3107). Alexariaria, VA: Marine Corps Operations Analysis Group.

Mitchell, K. J., \& Hanser, L. M. (1984). The 1980 Youth Population forms: Enitstment and occupational classification standards in the Army. Technical Report. Arlington, VA: U. S. Army Research Institute for the Benavioral and Social Sciences.

Mciormick, B., Dunlap, W., Kennedy, R., \& Jones, M. (1982, November). The effects of practice on the Armed Services Vocational Aptitude Battery. Paper presented at the meeting of the Military Testing Association, San Antonio, Ix.

Hosteler, F. \& Tukey, J. W. (1977). Data analysis and regression: a second course in statistics. Reading, MA: Adaison-Wesley Pudiisning Company, Inc.

Rugose, D. R. (1980) Comparing nonparallel regression lines. Psychological Bulletin, 88(2), 307-321.

Sinis, w. H., Hist, C. M. (1981). Validation of the Armed Services Vocational Aptitude Battery (ASVAB) Forms 6 and 7 with Applications to ASvaB Forms 8,9 , and 10 (Center for Naval Analyses Study No. Tho). washington, DL: U.S. Department of the Navy.

US Military Enlistment Processing Command. Counselors Manual for the Armed Services Vocational Aotitude Battery Form 14. US Military Processing Command, FT Sheridan, IL, (in press).
wang. M. (1983, May 26). Editing of training outcome scores-unpublished memorandum. Pablo Alto, CA: American Institutes for Research.

Ward, J. H., Jr. (1958). The counseling assignment problem: Psycnometrika, 23, 55-56.

Welting, M. M. \& Podelka, B. A. (1983, August). Evaluation of the ASv̇B 8/y/10 clerical (CL) composite for predicting training performance. Paper presented at the annual convention of the American Psychological Association, Anaheim. CA.

APPENDIX A

$$
(1371-6
$$

Table A-T
List of MOS in the Army
Current Current
MOS Name
Composite
MOS Name
Composite

> List of MOS in the Army (cont'd)

Current Current
MOS Name
Composite
MOS Name
Composite

3IM. MCHAN COMM EQ OP	EL	41J: office macitine rep	GM
31N: TACTICAL CKT CON	EL	42C: ORTHOTIC SPECIALIST	GM
3is. EIELD GEN COMSEC REP	EL	420: DENTAL LAB SP	GM
317: FIELD SYS COMSEC REP	El	43E: PARACHUTE RIGGER	GY
3IV: TAC COMM SYSOP/MECH	EL	43M: FAJRIC REPAIRER SP	Gi9
320: STA TECH CONTROLLER	EL	448: METAL WORKER	G4
32F: FIXED CIPHONY REP	EL	44E: MACHINIST	GM
32G: FIXED CRYPTO EQ REP	EL	45B: SMALL ARMS REPAIRER	GM
32H: FIXED STA RDO REP	EL	450: SP FA TRT MECH	GM
34B: PCM REPAIRER	EL	45G: FC SYSTEMS REP	GM
34E: NCR 500 COMPUTER REP	EL	45K: TANK TURRET REPAIRER	GM
34F: OSTE REFAIRER	EL	45L: ARTILLERY REPAIRER	GM
34H:•ADMSE REPAIRER	EL	45T: ITV/IFV/CFV TURRET MECH	M
34Y: FA COMPUTER REP	EL	5IB: CARPENTRY \& MASONRY SP	1
35B: ELCT INST REP	EL	SIC: STRUCTJRES SPECIALIST	GM
35E: SP ELEC DEVICES KEP	EL	5IG: MATERIALS QUALITY SP	GM
35F: NUC WPN ELCT SP	EL	SIK: PLUMBER	GM
35a: BIOMES EQ SP BASIC	EL	SIM: FIRE FIGATER	EM
35H: CALIBRATION SPEGIALIST	EL	5IR: INTERICR ELEGTRICIAN	Gris
35k: avionic mechatic	EL	52C: UTIL EQUIP RE?	GM
35i: AVIONIC COMM Sa REP	EL	520: PWR GEN EXUIP REP	Gi
35M: ALIUNIC NAV/FLT CON EQ REp	EL	538: INDUSTRIAL GAS PDN SP	GM
35R: AUIONIC SPECIAL EQ REP	EL	54C: SMOKE OP SP	SM
30C: WIRE SYS INET/OP	EL	558: AMMUNITIC: SPECIALIST	G4
360: ANTENNA INSTALLER SP	EL	550: EOD SPECIALIST	GM
30n: DIAL/MAN CEN OFR R29	EL	55G: NUC WPN MAINT SP	GM
36K: TAC WIRE JP SP	EL	57E: LAUNDRY \& BATH SP	Gin
30L: ELGT SWITCHING SYS REP	EL	STF: GRAVES REG S?	SM
41E: AV EQUIP REP	EL	57H: CARGO SPECIALIST	Gi4
4ib: SURVL PHUTO EQ REP	EL	61F: MARINE HULL PEPAIRER	GM
46N: PERSH ELEC-MECH SUPV	EL	62E: HV CONST EQUIP LP	64
52G: TRANS 6 JISTR SP	EL	62F: LIFTING/LOADING EQ OP	GM
93F: FA MET CRMBR	EL	62G: QUARRYING SPECIALIST 62H: CONC\& SPMALT EQ OP	6M
136: CANNON CREWMAN	FA	62J: GEN SONST EQUIP OP	-
13F: FIFE SUPPORT SP	FA	68J: AIPCRAFT FC REPAIRER	54
15J: MLE.S/LANCE OP/FD SP	FA	68M: AIRCRAFT WEAPON SYS REP	H
418: TOPO INST REP SP	GM	12C: BRIDGE CREWMAN	MM
41C: FC INSTRUMENT REP	GM	33S: EW/INTEP SYS REP	Min

continued on nex: paçe

A-:

List of MOS in the Army (cont'd)

List of MOS in the Army (cont'd)

MOS Name | Current |
| :---: |
| Composite |\quad MOS Name Current

Current
Composite

918: MEDICAL SPECIALIST	ST
916: PRACTICAL NURSE	ST
910: PHYSICAL THERAPY SP	ST
91E: DENTAL SPECIALIST	ST
91F: PSYCHIATRIC SPECIALIST	ST
91G: BEHAVIORAL SCIENCE SP	ST
91H: ORTHOPEDIC SPECIALIST	ST
giJ: PhYSICAL THERAPY SP	ST
91L: OCC ThERAP SP	ST
91N: CAROIAC SPECIALIST	ST
91P: X-RAY SPECIALIST	ST
910: PHARMACY SPECIALIST	ST
91R:- veterinary SpECIALIST	ST
91S: ENVIRON HEALTH SP	ST
91T: ANIMAL Care sp	ST
giu: Ent specticisi	$5 T$
91V: RESPIRATORY SP	ST
91Y: EyE SpECIALIST	ST
928: MEIJCAL LAB SP	ST
92C: PETRULEUM LAB SP	ST
920: CHEMICAL LAS SP	ST
93E: PETERULOGICAL OBSERVER	ST
93H: TTC TUWER OPERATOR	ST
93J: ATC RADAR CONTROLER	$5 T$
95B: MILITARY POLICE	ST
95C: CORRECTIONAL SP	$5 T$
968: intelligence analyst	ST
96C: INTERROGATOR	ST
900: IMAGE INTERFRETER	ST
O2B: CORNET TRUMPET PLAYER	AU
02C: BRTN EUPHMN PLAYER	AU
U20: FRENCH HORN PLATER	AU
U2E: TRUMBONE PLAYĒR	AU
02F: TUBA PLAYER	AU
02G: FLUTE PICCOLO PLAYER	All
O2H: OBOE PLAYER	AU
02J: CLARINET P!.AYER	All
O2K: BASSOON PLAYER	4 l
O2L: SAXOPHOME PLAYER	AU
OLM: PERCUSSION PLAYER	AU
O2N: PIAAO PLAYER	AU

91C: PRACTICAL NURSE

910: PHYSICAL THERAPY SP
91F: PSYCHIATRIC SPECIALIST
91G: BEHAVIORAL SCIENCE SP
91H: ORTHOPEDIC SPECIALIST
PhYSICAL THERAPY SP
gin occ theras sp
91N: CAROIAC SPECIALIST
91P: X-RAY SPECIALIST
91Q: PHARMACY SPECIALIST
gR:- VETERINARY SPECIALIST
ENVIRON hEAL
mal care sp
GiU: ENT SPECLALIST
91V: RESPIRATORY SP
91Y: EyE SPECIALIST
92B: MEITCAL LAB SP
92C: PETROLEUM $-A B$ SP
920: CHEMICAL LAS SP
93E: PETERULOGICAL OBSERVER
g3n. hil tunea corator
93J: ATC RADAR CONTROLLER
pol.ce
96B: inTELLIGENCE ANALYST
960: IMAGE INTERFRETER
O2B: CORNET TRUMPET PLAYER
O2C: BRTN EUPHMN PLAYER
既: PRENCH HORN PLAYER
02F: TUBA PLAYER
02G: FLUTE PICCOLO PLAYER
O2H: OBOE PLAYER
CLARSNET P
C21: SAXOPHOME PLAYER
OLM: PERCUSSION PLAYER
U2N: PIAHO PLAYER

ST
$5 T$
ST
ST
ST
AU
AU
AU
AU
AU
AU
AU
AU
4 A
$A U$
$A U$
AU

025: SPECIAL BANDSPERSUN
U2T: GUITAR PLAYER
AU
OOB: OIVER
OIH: BIOL SCIENCES ASST
IGT: PATRIOT MSL CMER
24J: IH PULSE RDR REP
24T: PATRIOT SYS MECH
26F: AERIAL PHOT SEN REP
27M: MLRS REPAIRER
34C: DAS3 COMPUTER REP
34J: UNTVAC SYS REP
34K: IBM 360 REPAIRER
35C: ATE REPAIRER
35U: BIOMED EQ SP,ADV
36E: CABLE SPLICER
42E: OPTICAL LAB SP
45R: MGUA2 TANK TRT MECi
5IN: WATER TRMT SPEC
52E: PRIME POWER PON SP
55R: AMMO STK CON \& ACT
55X: AMMUNITION INSPECTOR
63G: FUEL \& ELEC SYS REP
63R: MGOAZ TANK SYS MECH
65B: LOCOMOTIVE REFAIRER
65D: RAILbAY CAR REPAIRER
65E: AIRBRAKE REPIIRER
65F: LOCTMOTIVE FLECTRICIAN
65G: RA!LWAY SEC REP
6EH: LOCOWUTIVE OPERATOR
6jJ: TRAIN CREWMEMBER
65K: RAILWAY MOV COORD
57X: heAvY LIFT hel rep
71E: COURT REPORTER
72H: GEN OFC OFN OP
91W: NuCLEAR MED SP
95D: SPECTAL AGENT
97B: CI AGENT
97C: AREA INTELLIGENCE SP
98C: EW/SIGINT ANALYST
98G: EQ/SIGINT VOICE INTEP
98J: EW/SIGINT NC INTECP

Table A-2
MOS with Multiple Tracks for SQT Testing

```
-19E
    TkACX 1-M48A5/M60, M60A1-Series
    TRACK 2 - M60A3
    TRACX 3 - M551/M55IA1
-71L
    TkACK 1
    track 2 - Postal Clerxs
-058
    TNACK }
    TRACK 2 - (Special Forces)
-11C
    TRACK 1 - Blam Mortar, Ground-
                Mounted
TRACK 2-4.2 inch Mortar, Ground-
        Mounted
    TRACK 3 - Soerial forces
    TRACK 4 - 81mm Mortar, Carrier-
                Mounted
TRACK ; - 4.2 incn Mortar, Carrier-
        Mounted
-138
TRACK 1 - M101A1
TRACK 2-M102
TRACK 3-M114A1
TRACK 4/8 - M109/M109A1/155mm Atomic
        Projectile Assemcler
TRACK 5/7 - M107/M110/8-InCh Atomic
        Projectile Assembler
TRACK o - M198
```

- 19 E

TRACK 1 - M48A5/M6U, M60A1-Series
TRACK 2 - M60A3
TRACK 3 - M551/M551A1
-714
TRACK 2 - Postal Clerks
-05i
track 1
TRACK 2 - (Special Forces)

- 116

TRACK 1 - Slam Mortar, GroundMounted
TRACK 2 - 4.2 inch Mortar, GroundMounted
TRACK 3 - Special forces
TRACK 4 - 81 mm Mortar, CarrierMounted
TRACK ; - 4.2 inch Mortar, CarrierMounted
-138
TRACK 1 - MIO1A1
TRACK 2 - M102
TRack 3 - MiA
TRACK 4/8-M109/M109A1/155mm Atomic Projectile Assembler
TRACK 5/7 - M107/M110/8-Inch Atomic Projectile Assembler
TRACK o - M198
$-12 F$
TRACK 1 - APC Driver
TRACK 2 - AVLB Operator
TRACK 3 - CEV Driver/Loader
-11H
TRACK 1 - Tow
TRACK 2 - ITV (Improved Tow Venicle)
$-12 B$
track 1 - APC Driver

- 13R

TRACK 1 - AN/TPQ-36 Operator
TRACK 2 - ANITPQ-37 Operator
TRACK 3 - AN/TPO-35 Meenanic
TRACK 4 - AN/TPQ-37 Mechanic
-190
TRACK 1-M113 Series
TRACK 2 - M151 Series
-17k
TRACK 1 - AN/PPS-4A
TRACK 2 - AN/PPS $=5 / 5 A$
TRACK 3 - AN/PPS-15
TRACK 4 - AN/TPS-33A (RC)
-178
TRACK 1 - AN/MPQ-4A Radar Crew Member
TRACK 2 - AN/TPS-25 Radar Crew Member
TRACK 3 - AN/TPS-5 Radar Crew Member
continued on next page

MOS with Multiple Tracks for SQT Testing (cont'd)

 TRACK 1 - AN/PPS-5
 TRACX 2 - AN/PPS-4A
 TRACK 3-AN/TPS-33A
 TRACK 4 - AN/TRS-2
 TRACK 5 - AN/PPS-15
 -27G
TKACX 1 - Cnaparral
TRACK 2-Redeye
TRAƠK z - र̇edeye
TRALKK 1-Chaparral
TRACK 2-Redeye
-31E
TRACX 1 - hctive Army
TkAZ̈K 2 - Reserve Components
-31,4
TRACX 1-Low Capacity Equipment
(6-12 Channels)
TRACK 2 - Medium Capacity Equipment
(12-24 Channels)
TRACX 3 - Frequency Division Multi-
plex (FDN) Equipment
-3IN
TRACK 1 - SE-611/MRC
TRACK 2 - AN/TSG-75
TRACK 3- 5B-675/MSC
TRACK 4 - AN/TSQ-84

```
```

```
-26C
```

```
```

-26C

```
-31v
TRACK 2 - (Special Forces)
-36C
TRACK 1 - (Operator)
TRACK 2 - (Installer)
-450
TRACK 1 - M109/M109A Howitzer Mechanic
TRACK 2 - MIIO/MIIOA1 OR M107
Howitzer Mechanics
-45L
TRACK 1 - Self-Propelled Artillery Repairer
TRACK 2 - Towed Artillery Repairer
-54C
TRACK 1 - Smoke Fuel Handler Tasks
TRACK 2 - Smoke Generator Operator Tasks
-54E
TRACK 1 - Decontamination Tasks
- TRACK 2 - Reconnaissance Tasks

TRACK 3 - NBC Operations Tasks

MOS with Multiple Tracks for SOT Testing (cont'd)
```

-558
TRACK 1 - Ammunition Specialist
TRACK 2 - Ammunition Stock Control
and Accounting Specialist
-j7E
TRACX 1 - Laundry Specialist
TRACK 2 - Batn Specialist
-630
TRACK 1 - M109/M109Al Venicle Mechanic
TRACK 2 - mllOA2 Yehicle Mechanic
-635
TRACx 1 - M123 Vehicle Mechanic
TRACK 2 - M915 Venicle Mecnanic
-16C
TXACX 1 - Director Station
TRACK 2 - Trecking Station
TRACK 3 - AJI HIPAR
-82C
TRACK 1 - Fiftn Order Surveyor
TRACK 2 - Fourtn Order Surveyor
-76x
TRACK 1 * Accounting
TRACK 2 - Stcrage

```
-43M
TRACK 1 - Clothing and Textile Repair
TRACK 2 - Canvas and wed Repair
- 240

TRACK 1 - Fire Control Mechanic
TRACK 2 - Simulator (TI) Mechanic
-118
TRACK 1 - SKLVL 1 Rifleman/Otners
TRACK 1 - SKLVL 2 Fire Team beater (Infantry), Assistant Scout Squad Leader
TRACK 1 - SKLVL 3 Infantry Squad Leader
TRACK 1 - SKLVL 4 platoon SGT Infantry
TRACK 2 - SKLVL 1 M60 macninegunner
TRACK 2 - SKLVL 2 Fire Team Leader (Mechanized)
TRACK 2 - SKiLL 3 Infantry Squad Leaser (Mechanized)
TRACK 2 - SKLVL 4 Platoon SGT (Mechanized)
TRACK 3 - Special Forces
TRACK 4-SKLVL 1 Squad Gunner
TRACK 5-SKLVL 1 Scout (Infantry Only)
TRACK 5-SKLVL 4 Scout (Infantry Only)
TRACK 6 - SKLVL 1 M203 Grenadier
TRACK 7 - SKLVL 1 Dragon Gunner





 -00000000000000
 0900000000000000
 0000000000000000


 0000006 -0 © osoos










 cosocosócosocosó




 000000000000006


 000000000000000







 -006000
 0000000
 0000006
*


훙ㅇㅇㅇㅎㅇㅎㅇㅇㅇ 0000000
 © © 000000
 -0000000
 -0000000
 -0000000
 -0000000
 -0006000



©。"00000

-000000
 0030000



-ocooco

© ó ócoco

88888888


-60000000



0000000000
*
0000000000

- © © © © © © © © © ©

9


98


min


86














6000600000000
-000000000000



ó óóóóóóóooo

000000000000000
of
- ócococooooooo







E


ธ5

 －0000000000000000


 －000000000000000








 0000000000000000










 000000000000000000






 oioooisoociocoododo



 －dóóóóóóo

5otstostotzat icoiocoodod
 oidodoiodoio
 0000000000

ニニニべッジロニスヘ

 －000000000
 oiocoiocoio
 óocooiodoo
 óoiocooioco
 00000000000






 00 －© © © © © 0


 －coosocococ


 －0000000000
 0000000000

88888t888t8


205̊t oio．o
 oióo

ロックズ －000。

5ء5̊ㅇ －o．oc デッロロッ －0．oio
3555＂ －oioc

だロ゙N゙ －000．

5055̃ 0000

シッロッチ oooco

5\％85 co \(00^{\circ}\)

辡䟩 －ocoo

555： －cióo
 00006

5058． oioio

品が気 \(00^{\circ} 00^{\circ}\)

2558． 0000

ガミN゙ 0000

ㄲ̃ㅇ́ㅇ 00000

8ํํํํํ －0000

yuyut

 －000000000000
 －000000000000
 oiocooiocodoco
 －oiocooiocoioo
 oodocoiocoiooo
 ocoiococoóoco 0
 －000000000000
 －0000000000000
 oedooocococoo
 0000000000000
 ooooooioooooó
 ocoiooioiococo
 00000000000000
 oóocoocoioioo


 0000000000000
 －© © © © © © © © © o
 00000000000000
 ooocoooioioioo

ちちちちちゃちゃちちゃちゃち


\(\star\)


68 00

N0 00
© \(\therefore 0\)
 －00000000．
 óóoóocoó
 －00000000
 oóoóooo o
 \(00^{000000000}\)
 óoóododó


 －© © © © © © ©




 －o © © © © © © ©


 © © © © © © © © o
 －©ococosos


 －0．0 © o oco
©



68
\(+5\)
－
\(0 \cdot\)


 －006000000000
 －000000000000
 －0 00000000000000
 －0 000円OOOOOOO00
 0000000000000000





00 0000000000000
 0000000000000000



－©́osoóoocoooo
ジニ゙と



 ócooóóoóoóo
 cosodocoocoooo







adjusted valioities for current composites

\section*{COMBINED CRIterion}





 ococosocococo ósóco


 00000000000000000








 00000000000000000


 －000000 © © © © osocos






 －00000000000000000
 00000000000000．00


 －000000 0000000 000



\(68858080^{\circ}\) óoóóoooóo
 ódodododocio
 ódododododo
 －©óóococo




 －© © © © © © ©
 －0068000000
 －0000000000














 0000000000
 －© © © © © © ©
 －0000000000
シミ：



50850： －óos．
 cóóo
－75が oció
 © © 0 o

Nㅠ윻 \(00000^{\circ}\)
 ócóo

EER゙男： 0.0000

850릉 \(00^{\circ 0} 00^{\circ}\)

二ヶだか 0060

ع8요응 －0e日
＝\(=\) \＃85 \(\dot{\circ} \dot{\circ}+\infty\)

ロッ응 \(-0000\)
 －0 © ©
 －00000

NOEn゙m ocoóo
 －0000
 00000
 －0000

285ing －்்்் ：玉E： पyyyy



 óojóodojododó
 odooóododododo


 óoóooooiodoco
 0000000000000
 0000000000000
 0000000000000
 00000000000000
 óóóoóoóoóoco
 óóoóoooóoóó
 －0000000000000
 －0́óoóóóóodo
 óoóocojóóóo
 ocodooodooiodo
 00000000000000
 00000000000000
 0000000000000
 óóoóoóoóo




Table A - 5
sample correlations for the current composites
training criterion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TCELL & NA & cL & co & EL & FA & GM & M \({ }^{\text {M }}\) & OF & Sc & ST \\
\hline 71NC1551 & CL & 0.36 & 0.36 & 0.38 & 0.42 & 0.33 & 0.30 & 0.32 & 0.37 & 0.35 \\
\hline 73C5R121 & CL & 0.13 & 0.46 & 0.48 & 0.51 & 0.42 & 0.35 & 0.43 & 0.45 & 0.47 \\
\hline 75B5E121 & CL & 0.17 & 0.23 & 0.26 & 0.24 & 0.24 & 0.19 & 0.21 & 0.22 & 0.23 \\
\hline 7505D805 & CL & 0.14 & 0.35 & 0.41 & 0.38 & 0.36 & 0.30 & 0.31 & 0.23 & 0.36 \\
\hline 75E5E805 & CL & 0.40 & 0.46 & 0.49 & 0.49 & 0.46 & 0.41 & 0.46 & 0.48 & 0.47 \\
\hline \(76 \mathrm{CEC101}\) & CL & 0.16 & 0.25 & 0.30 & 0.26 & 0.28 & 0.25 & 0.27 & 0.22 & 0.28 \\
\hline 76P5:101 & CL & 0.26 & 0.34 & 0.40 & 0.14 & 0.31 & 0.23 & 0.27 & 0.26 & 0.38 \\
\hline \(76 \mathrm{VEV101}\) & CL & 0.02 & 0.01 & 0.04 & 0.04 & 0.06 & -0.01 & 0.04 & 0.02 & 0.12 \\
\hline 76mDB101 & CL & 0.20 & 0.20 & 0.08 & 0.13 & 0.10 & 0.22 & 0.18 & 0.25 & 0.03 \\
\hline 76WPW101 & CL & 0.23 & 0.38 & 0.37 & 0.37 & 0.36 & 0.31 & 0.36 & 0.32 & 0.35 \\
\hline 76x5x101 & CL & 0.07 & 0.10 & 0.11 & 0.14 & 0.07 & -0.03 & -0.00 & 0.06 & 0.07 \\
\hline 76YEY101 & CL & 0.21 & 0.25 & 0.25 & 0.30 & 0.21 & 0.17 & 0.19 & 0.22 & 0.24 \\
\hline 76Y5G101 & CL & 0.26 & 0.42 & 0.52 & 0.44 & 0.48 & 0.35 & 0.40 & 0.37 & 0.52 \\
\hline 76Y6Y805 & CL & 0.12 & 0.14 & 0.14 & 0.19 & 0.13 & 0.11 & 0.11 & 0.13 & 0.13 \\
\hline 1101 N 809 & CO & 0.14 & 0.18 & 0.18 & 0.19 & 0.17 & 0.16 & 0.16 & 0.15 & 0.19 \\
\hline 11BIN809 & co & 0.18 & 0.26 & 0.23 & 0.26 & 0.22 & 0.21 & 0.24 & 0.21 & 0.26 \\
\hline \(11 C I N 809\) & CO & 0.24 & 0.30 & 0.26 & 0.27 & 0.28 & 0.30 & 0.30 & 0.29 & 0.28 \\
\hline 11HINB09 & co & 0.17 & 0.24 & 0.24 & 0.23 & 0.23 & 0.23 & 0.24 & 0.21 & 0.23 \\
\hline 12BAB807 & CO & 0.08 & 0.15 & 0.13 & 0.13 & 0.14 & 0.16 & 0.13 & 0.12 & 0.10 \\
\hline 12FAF807 & co & 0.08 & 0.21 & 0.16 & 0.15 & 0.18 & 0.21 & 0.20 & 0.15 & 0.18 \\
\hline 19D9D804 & CO & 0.22 & 0.25 & 0.25 & 0.24 & 0.26 & 0.26 & 0.26 & 0.26 & 0.24 \\
\hline 19E9E804 & co & 0.29 & 0.35 & 0.33 & 0.29 & 0.36 & 0.35 & 0.41 & 0.37 & 0.38 \\
\hline 19F9F804 & CO & 0.24 & 0.40 & 0.37 & 0.32 & 0.39 & 0.39 & 0.40 & 0.33 & 0.37 \\
\hline 17KGA301 & EL & 0.25 & 0.40 & 0.37 & 0.41 & 0.35 & 0.29 & 0.37 & 0.34 & 0.44 \\
\hline 27E7E093 & EL & 0.31 & 0.40 & 0.33 & 0.35 & 0.34 & 0.37 & 0.39 & 0.39 & 0.32 \\
\hline 31M4D113 & EL & 0.19 & 0.25 & 0.25 & 0.27 & 0.20 & 0.19 & 0.23 & 0.22 & 0.25 \\
\hline 31N4C113 & EL & 0.18 & 0.09 & 0.05 & 0.04 & 0.03 & 0.07 & 0.11 & 0.17 & 0.05 \\
\hline \(31 V I V 061\) & EL & 0.25 & 0.37 & 0.36 & 0.38 & 0.34 & 0.35 & 0.34 & 0.31 & 0.31 \\
\hline \(36 C A A 113\) & EL & 0.12 & 0.13 & 0.10 & 0.14 & 0.07 & 0.10 & 0.10 & 0.14 & 0.03 \\
\hline 3688C113 & EL & 0.13 & 0.24 & 0.16 & 0.22 & 0.19 & 0.22 & 0.21 & 0.18 & 0.16 \\
\hline 13838810 & FA & 0.13 & 0.22 & 0.18 & 0.20 & 0.20 & 0.24 & 0.21 & 0.18 & 0.18 \\
\hline 13 F3F810 & FA & 0.40 & 0.53 & 0.50 & 0.53 & 0.48 & 0.45 & 0.49 & 0.48 & 0.51 \\
\hline & G48 & 0.25 & 0.26 & 0.25 & 0.30 & 0.21 & 0.26 & 0.23 & 0.27 & 0.15 \\
\hline 448J1091 & GM & 0.19 & 0.30 & 0.26 & 0.26 & 0.25 & 0.30 & 0.29 & 0.24 & 0.23 \\
\hline 45 KK 8091 & GM & 0.27 & 0.33 & 0.18 & 0.32 & 0.18 & 0.31 & 0.30 & 0.30 & 0.20 \\
\hline 45KK9091 & GM & 0.26 & 0.36 & 0.29 & 0.34 & 0.32 & 0.37 & 0.37 & 0.30 & 0.31 \\
\hline \(51 \mathrm{KBK8} 07\) & GM & 0.17 & 0.22 & 0.25 & 0.23 & 0.26 & 0.24 & 0.22 & 0.22 & 0.17 \\
\hline \(54 C 5 S 031\) & GM & 0.04 & 0.05 & 0.01 & 0.01 & 0.08 & 0.08 & 0.03 & 0.07 & -0.02 \\
\hline 55B5B093 & GM & 0.28 & 0.32 & 0.38 & 0.32 & 0.35 & 0.30 & 0.32 & 0.30 & 0.33 \\
\hline 57EPE101 & CM & 0.15 & 0.29 & 0.03 & 0.31 & 0.02 & 0.08 & 0.10 & 0.16 & 0.06 \\
\hline 57HG1551 & GM & 0.15 & 0.14 & 0.13 & 0.14 & 0.14 & 0.08 & 0.17 & 0.16 & 0.24 \\
\hline 62ECE807 & GM & 0.30 & 0.45 & 0.47 & 0.40 & 0.48 & 0.48 & 0.45 & 0.38 & \(0.4 \pm\) \\
\hline 62PCF807 & GM & 0.16 & 0.29 & 0.27 & 0.25 & 0.30 & 0.38 & 0.34 & 0.24 & 0.25 \\
\hline 68JW6551 & GH & 0.22 & 0.14 & 0.44 & 0.39 & 0.53 & 0.49 & 0.46 & 0.35 & 0.44 \\
\hline 68MN8551 & GM & 0.31 & 0.47 & 0.30 & 0.43 & 0.33 & 0.42 & 0.40 & 0.40 & 0.28 \\
\hline & & & & & & & & & \multicolumn{2}{|l|}{(cont'd)} \\
\hline & & & & \multicolumn{2}{|r|}{A-12} & \multicolumn{3}{|c|}{\[
150
\]} & & \\
\hline
\end{tabular}

SAMPLE CORRELATIONS FOR THE CURRENT COMPOSITES TRAINING CRITERION (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TCELL & MA & CL & CO & EL & FA & GM & MH & Or & 5 C & ST \\
\hline 62BG6551 & M2M & 0.46 & 0.62 & 0.59 & 0.60 & 0.57 & 0.55 & 0.66 & 0.58 & 0.65 \\
\hline 61CH1551 & MM & 0.25 & 0.47 & 0.44 & 0.50 & 0.36 & 0.35 & 0.35 & 0.30 & 0.38 \\
\hline \(62 \mathrm{BCBB07}\) & HM & 0.22 & 0.43 & 0.36 & 0.39 & 0.39 & 0.38 & 0.37 & 0.33 & 0.35 \\
\hline \(63 \mathrm{B3DCO}\) & MM & 0.16 & 0.32 & 0.28 & 0.26 & 0.32 & 0.34 & 0.34 & 0.28 & 0.29 \\
\hline \(6383 \mathrm{B805}\) & KM & -0.01 & 0.58 & 0.17 & 0.11 & 0.21 & 0.19 & 0.15 & 0.09 & 0.14 \\
\hline 63 DSA171 & M M & 0.10 & 0.13 & 0.06 & 0.07 & 0.11 & 0.10 & 0.13 & 0.16 & 0.08 \\
\hline 6 3GM7091 & M04 & 0.01 & 0.21 & 0.09 & 0.10 & 0.11 & 0.18 & 0.16 & 0.10 & 0.07 \\
\hline \(63 \mathrm{HH1092}\) & MM & 0.12 & 0.33 & 0.33 & 0.31 & 0.33 & 0.33 & 0.31 & 0.21 & 0.33 \\
\hline 63 NTS171 & M9 & 0.06 & 0.19 & 0.12 & 0.15 & 0.15 & 0.21 & 0.17 & 0.12 & 0.10 \\
\hline 63 TF1171 & 194 & -0.03 & 0.08 & 0.08 & 0.10 & 0.10 & 0.07 & 0.02 & -0.01 & 0.07 \\
\hline \(63 W W 1091\) & MPS & 0.11 & 0.17 & 0.19 & 0.17 & 0.20 & 0.15 & 0.16 & 0.14 & 0.21 \\
\hline 63 YTV171 & M & 0.07 & 0.11 & 0.10 & 0.11 & 0.13 & 0.14 & 0.13 & 0.10 & 0.11 \\
\hline 67 665011 & M4 & 0.55 & 0.58 & 0.60 & 0.62 & 0.54 & 0.50 & 0.61 & 0.60 & 0.61 \\
\hline 67 TL6551 & 20\% & 0.44 & 0.59 & 0.65 & 0.59 & 0.62 & 0.47 & 0.53 & 0.49 & 0.65 \\
\hline 67UP1551 & MP4 & 0.35 & 0.48 & 0.40 & 0.49 & 0.33 & 0.35 & 0.38 & 0.37 & 0.40 \\
\hline 67 V 18011 & 198 & 0.47 & 0.59 & 0.63 & 0.61 & 0.57 & 0.53 & 0.58 & 0.51 & 0.61 \\
\hline \(67 \mathrm{YS1551}\) & MPs & 0.25 & 0.23 & 0.24 & 0.17 & 0.30 & 0.39 & 0.33 & 0.33 & 0.20 \\
\hline 68DT1551 & Mar & 0.39 & 0.55 & 0.45 & 0.53 & 0.14 & 0.47 & 0.46 & 0.38 & 0.43 \\
\hline 15D5D8 10 & Of & 0.09 & 0.18 & 0.12 & 0.16 & 0.13 & 0.16 & 0.19 & 0.14 & 0.13 \\
\hline 15ESE810 & OF & 0.09 & 0.19 & 0.16 & 0.17 & 0.18 & 0.19 & 0.22 & 0.15 & 0.19 \\
\hline \(1688 A 811\) & OF & 0.10 & 0.30 & 0.31 & 0.26 & 0.31 & 0.29 & 0.27 & 0.21 & 0.27 \\
\hline 16BBC811 & OF & 0.22 & 0.29 & 0.26 & 0.33 & 0.22 & 0.19 & 0.26 & 0.25 & 0.31 \\
\hline 16 CCA 111 & OP & 0.17 & 0.29 & 0.25 & 0.30 & 0.21 & 0.17 & 0.22 & 0.23 & 0.21 \\
\hline 160DB811 & OP & 0.32 & 0.48 & 0.38 & 0.40 & 0.46 & 0.47 & 0.46 & 0.45 & 0.37 \\
\hline \(16 \mathrm{EEB811}\) & OF & -0.17 & -0.10 & 0.03 & -0.11 & 0.04 & -0.04 & -0.08 & -0.14 & -0.01 \\
\hline \(16 \mathrm{HHB8} 11\) & OF & 0.23 & 0.44 & 0.44 & 0.42 & 0.43 & 0.36 & 0.41 & 0.31 & 0.46 \\
\hline 16JJA811 & OF & 0.34 & 0.34 & 0.43 & 0.40 & 0.37 & 0.30 & 0.36 & 0.36 & 0.42 \\
\hline 16 PPAB11 & OF & -0.02 & 0.07 & 0.01 & -0.00 & 0.09 & 0.12 & 0.14 & 0.08 & 0.05 \\
\hline 16 RRAB12 & OF & 0.12 & 0.20 & 0.17 & 0.18 & 0.19 & 0.17 & 0.20 & 0.18 & 0.18 \\
\hline 16SSA811 & OP & 0.11 & 0.30 & 0.30 & 0.27 & 0.32 & 0.31 & 0.30 & 0.21 & 0.29 \\
\hline 64 CEC807 & OF & -0.03 & 0.09 & 0.03 & 0.04 & 0.10 & 0.12 & 0.15 & 0.06 & 0.09 \\
\hline 64C4C803 & OF & 0.05 & 0.14 & 0.14 & 0.11 & 0.16 & 0.12 & 0.13 & 0.11 & 0.14 \\
\hline \(94 \mathrm{BKAlO1}\) & OF & 0.16 & 0.21 & 0.20 & 0.20 & 0.20 & 0.19 & 0. 20 & 0.21 & 0.18 \\
\hline 94848903 & OF & 0.24 & 0.43 & 0.44 & 0.14 & 0.39 & 0.34 & 0.36 & 0.31 & 0.43 \\
\hline 94B48805 & OF & 0.06 & 0.17 & 0.22 & 0.15 & 0.21 & 0.17 & 0.10 & 0.13 & 0.20 \\
\hline 0582A113 & Sc & 0.10 & 0.17 & 0.16 & 0.17 & 0.14 & 0.14 & 0.17 & 0.16 & 0.18 \\
\hline 05C2D113 & SC & 0.15 & 0.26 & 0.31 & 0.31 & 0.27 & 0.23 & 0.21 & 0.22 & 0.27 \\
\hline 17C7C061 & SC & 0.06 & 0.22 & 0.22 & 0.19 & 0.21 & 0.18 & 0.22 & 0.20 & 0.23 \\
\hline 72:36113 & SC & 0.07 & 0.13 & 0.14 & 0.15 & 0.11 & 0.04 & 0.12 & 0.10 & 0.16 \\
\hline 13E3E810 & ST & 0.16 & 0.27 & 0.30 & 0.31 & 0.25 & 0.17 & 0.19 & 0.19 & 0.27 \\
\hline 54ESAO31 & ST & 0.32 & 0.36 & 0.30 & 0.39 & 0.33 & 0.33 & 0.34 & 0.34 & 0.36 \\
\hline \(82 \mathrm{C2C810}\) & ST & 0.37 & 0.47 & 0.48 & 0.51 & 0.43 & 0.43 & 0.60 & 0.41 & 0.39 \\
\hline 91.801929 & ST & 0.09 & 0.13 & 0.09 & 0.11 & 0.10 & 0.10 & 0.11 & 0.11 & 0.10 \\
\hline 91 C02929 & \(5 T\) & 0.37 & 0.38 & 0.39 & 0.38 & 0.35 & 0.34 & 0.36 & 0.41 & 0.35 \\
\hline 91E05929 & ST & 0.26 & 0.33 & 0.38 & 0.41 & 0.30 & 0.22 & 0.26 & 0.28 & 0.37 \\
\hline 92825929 & ST & 0.18 & 0.18 & 0.49 & 0.49 & 0.45 & 0.42 & 0.40 & 0.30 & 0.47 \\
\hline 958SE813 & ST & 0.24 & 0.37 & 0.11 & 0.32 & 0.41 & 0.37 & 0.82 & 0.34 & 0.43 \\
\hline
\end{tabular}

Tabie A－©

\section*{ADJUSTED CORRELATIONS FOR THE CURRENT COMPOSITES training criterion}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TCELL & MA & CL & CO & EL & FA & 94 & M\％ & Or & Sc & ST \\
\hline 71NL1551 & CL & 0.70 & 0.66 & 0.67 & 0.71 & 0.60 & 0.61 & 0.65 & 0.70 & 0.66 \\
\hline 73C5R121 & CL & 0.56 & 0.52 & 0.54 & 0.58 & 0.47 & 0.46 & 0.52 & 0.55 & 0.53 \\
\hline 7585E121 & CL & 0.29 & 0.33 & 0.35 & 0.34 & 0.33 & 0.31 & 0.32 & 0.32 & 0.33 \\
\hline 75D5D805 & CL & 0.26 & 0.38 & 0.44 & 0.41 & 0.40 & 0.34 & 0.35 & 0.31 & 0.40 \\
\hline 75E5E805 & CL & 0.63 & 0.61 & 0.63 & 0.65 & 0.59 & 0.58 & 0.63 & 0.65 & 0.63 \\
\hline 76 CECl 101 & CL． & 0.14 & 0.49 & 0.52 & 0.51 & 0.50 & 0.48 & 0.50 & 0.48 & 0.52 \\
\hline 76P5P101 & CL & 0.55 & 0.57 & 0.62 & 0.65 & 0.55 & 0.50 & 0.55 & 0.55 & 0.62 \\
\hline 76 VEV101 & CL & 0.13 & 0.13 & 0.15 & 0.16 & 0.15 & 0.11 & 0.14 & 0.13 & 0.18 \\
\hline \(76 \mathrm{WDB101}\) & CL & 0.58 & 0.58 & 0.51 & 0.54 & 0.52 & 0.58 & 0.59 & 0.62 & 0.51 \\
\hline 76WPW101 & CL & 0.56 & 0.67 & 0.68 & 0.67 & 0.66 & 0.64 & 0.67 & 0.63 & 0.67 \\
\hline \(76 \times 5 \times 101\) & CL & 0.31 & 0.30 & 0.31 & 0.33 & 0.20 & 0.26 & 0.28 & 0.31 & 0.30 \\
\hline 76 YEY 101 & CL & 0.40 & 0.40 & 0.41 & 0.44 & 0.37 & 0.35 & 0.38 & 0.41 & 0.41 \\
\hline 76Y5G101 & CL & 0.47 & 0.55 & 0.64 & 0.58 & 0.60 & 0.50 & 0.53 & 0.51 & 0.63 \\
\hline 76Y6Y805 & CL & 0.31 & 0.30 & 0.30 & 0.34 & 0.27 & 0.28 & 0.29 & 0.31 & 0.30 \\
\hline 1101N809 & CO & 0.20 & 0.22 & 0.23 & 0.24 & 0.22 & 0.20 & 0.21 & 0.20 & 0.24 \\
\hline 118IN809 & CO & 0.32 & 0.38 & 0.35 & 0.38 & 0.33 & 0.33 & 0.36 & 0.35 & 0.37 \\
\hline 11Cさ＊＊8ご & co & 0.35 & 0.11 & 0.37 & 0.39 & 0.39 & 0.41 & 0.41 & 0.40 & 0.39 \\
\hline 11HIN809 & CO & 0.29 & 0.35 & 0.35 & 0.34 & 0.35 & 0.35 & 0.36 & 0.33 & 0.35 \\
\hline 228AB807 & CO & 0.10 & 0.18 & 0.16 & 0.16 & 0.18 & 0.20 & 0.16 & 0.14 & 0.13 \\
\hline \(12 \mathrm{FAPB07}\) & CO & 0.25 & 0.36 & 0.31 & 0.32 & 0.33 & 0.36 & 0.35 & 0.31 & 0.32 \\
\hline 19D9D804 & co & 0.31 & 0.35 & 0.35 & 0.34 & 0.36 & 0.36 & 0.36 & 0.35 & 0.34 \\
\hline 19E9E804 & CO & 0.57 & 0.58 & 0.54 & 0.54 & 0.55 & 0.57 & 0.62 & 0.61 & 0.59 \\
\hline 29F9F804 & CO & 0.37 & 0.50 & 0.49 & 0.45 & 0.51 & 0.50 & 0.51 & 0.45 & 0.49 \\
\hline 17 KGA 301 & EL & 0.53 & 0.60 & 0.57 & 0.59 & 0.55 & 0.54 & 0.59 & 0.57 & 0.62 \\
\hline 27ETEO93 & EL & 0.49 & 0.57 & 0.53 & 0.53 & 0.54 & 0.55 & 0.56 & 0.55 & 0.52 \\
\hline 3 2M4D113 & EL & 0.43 & 0.48 & 0.49 & 0.49 & 0.46 & 0.45 & 0.47 & 0.46 & 0.49 \\
\hline \(31 N 4 C 113\) & EL & 0.36 & 0.30 & 0.29 & 0.28 & 0.28 & 0.31 & 0.34 & 0.36 & 0.30 \\
\hline 31V1V061 & EL & 0.43 & 0.55 & 0.55 & 0.55 & 0.55 & 0.55 & 0.54 & 0.50 & 0.53 \\
\hline 36 CAA113 & EL & 0.26 & 0.25 & 0.24 & 0.26 & 0.22 & 0.23 & 0.25 & 0.27 & 0.21 \\
\hline 36 KAC113 & EL & 0.23 & 0.32 & 0.28 & 0.30 & 0.30 & 0.31 & 0.30 & 0.28 & 0.28 \\
\hline 1383B810 & FA & 0.18 & 0.29 & 0.25 & 0.25 & 0.27 & 0.30 & 0.27 & 0.23 & 0.24 \\
\hline 13F3F810 & PA & 0.68 & 0.77 & 0.75 & 0.78 & 0.72 & 0.71 & 0.75 & 0.74 & 0.76 \\
\hline 11067091 & GM & 0.34 & 0.38 & 0.36 & 0.39 & 0.33 & 0.37 & 0.35 & 0.36 & 0.31 \\
\hline 448J1091 & GM & 0.33 & 0.41 & 0.39 & 0.38 & 0.38 & 0.41 & 0.41 & 0.38 & 0.37 \\
\hline 45KK8091 & GM & 0.40 & 0.42 & 0.30 & 0.41 & 0.29 & 0.39 & 0.38 & 0.41 & 0.30 \\
\hline 45KK9091 & GH & 0.57 & 0.66 & 0.64 & 0.63 & 0.64 & 0.66 & 0.66 & 0.63 & 0.65 \\
\hline 51KBKB07 & GM & 0.33 & 0.44 & 0.45 & 0.43 & 0.45 & 0.44 & 0.42 & 0.40 & 0.11 \\
\hline 54CSS031 & GM & 0.16 & 0.22 & 0.20 & 0.18 & 0.24 & 0.24 & 0.21 & 0.21 & 0.19 \\
\hline 55358093 & GM & 0.55 & 0.64 & 0.69 & 0.64 & 0.68 & 0.64 & 0.65 & 0.61 & 0.68 \\
\hline 57EPE101 & GM & 0.32 & 0.38 & 0.26 & 0.30 & 0.23 & 0.28 & 0.30 & 0.33 & 0.26 \\
\hline 57HG1552 & GM & 0.38 & 0.41 & 0.12 & 0.42 & 0.42 & 0.39 & 0.43 & 0.41 & 0.46 \\
\hline 62ECE807 & GM & 0.16 & 0.60 & 0.60 & 0.55 & 0.62 & 0.63 & 0.61 & 0.55 & 0.59 \\
\hline 62FCF607 & GW & 0.36 & 0.49 & 0.48 & 0.43 & 0.50 & 0.55 & 0.53 & 0.45 & 0.46 \\
\hline 6eJw5551 & GM & 0.53 & 0.12 & 0.73 & 0.67 & 0.77 & 0.75 & 0.73 & 0.65 & 0.73 \\
\hline 6 EMNA551 & GM & 0.54 & 0.65 & 0.57 & 0.62 & 0.59 & 0.63 & 0.62 & \[
0.61
\] & \[
\begin{aligned}
& 0.57 \\
& 1 t . d)
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TCELL & \(\mathbf{N A}\) & CL & con & EL & FA & GM & MPI & Or & SC & ST \\
\hline 618G6551 & MP & 0.61 & 0.68 & 0.66 & 0.66 & 0.65 & 0.64 & 0.71 & 0.60 & 0.71 \\
\hline 61CH1551 & MM & 0.53 & 0.69 & 0.66 & 0.70 & 0.64 & 0.62 & 0.62 & 0.59 & 0.65 \\
\hline 628 CB 807 & ME9 & 0.37 & 0.55 & 0.48 & 0.49 & 0.52 & 0.52 & 0.50 & 0.47 & 0.46 \\
\hline 53838803 & NM & 0.37 & 0.50 & 0.46 & 0.43 & 0.50 & 0.52 & 0.51 & 0.46 & 0.47 \\
\hline 63838805 & MOM & 0.08 & 0.22 & 0.21 & 0.16 & 0.24 & 0.23 & 0.20 & 0.15 & 0.18 \\
\hline 63 DSA271 & M9 & 0.28 & 0.34 & 0.28 & 0.28 & 0.32 & 0.32 & 0.34 & 0.34 & 0.29 \\
\hline 63697091 & MM & 0.23 & 0.38 & 0.30 & 0.30 & 0.34 & 0.38 & 0.36 & 0.31 & 0.29 \\
\hline 63 HH 1091 & M9 & 0.33 & 0.48 & 0.48 & 0.46 & 0.49 & 0.49 & 0.47 & 0.40 & 0.48 \\
\hline 63 NTS171 & MP4 & 0.18 & 0.33 & 0.28 & 0.28 & 0.32 & 0.35 & 0.32 & 0.26 & 0.27 \\
\hline 63 TPI171 & MM & C. 01 & 0.12 & 0.12 & 0.12 & 0.13 & 0.12 & 0.08 & 0.05 & 0.11 \\
\hline \(63 W W 1091\) & 199 & 0.23 & 0.27 & 0.28 & 0.27 & 0.29 & 0.25 & 0.26 & 0.26 & 0.30 \\
\hline 63 YTV17: & HM & 0.26 & 0.34 & 0.31 & 0.31 & 0.34 & 0.35 & 0.34 & 0.32 & 0.32 \\
\hline 67N65012 & HM & 0.79 & 0.83 & 0.81 & 0.82 & 0.80 & 0.80 & 0.85 & 0.84 & 0.83 \\
\hline 67TL6551 & MM & 0.73 & 0.32 & 0.85 & 0.82 & 0.83 & 0.79 & 0.82 & 0.79 & 0.85 \\
\hline 67 UP1551 & RMM & 0.58 & 0.68 & 0.62 & 0.68 & 1 60 & 0.67 & 0.64 & 0.83 & 0.63 \\
\hline 67 V 18011 & man & 0.68 & 0.78 & 0.80 & 0.78 & 0.77 & 0.76 & 0.78 & 0.75 & 0.78 \\
\hline 67YS1551 & MM & 0.59 & 0.68 & 0.66 & 0.60 & 0.70 & 0.75 & 0.72 & 069 & 0.63 \\
\hline 6eDT155: & 29 & 0.53 & \%.74 & 0.66 & 0.71 & 0.67 & 0.65 & 0.69 & 0.62 & 0.66 \\
\hline 15050810 & OF & 0.31 & 0.39 & 0.34 & 0.36 & 0.36 & 0.38 & 0.39 & 0.97 & 0.36 \\
\hline 15E5EA10 & OF & 0.34 & 0.42 & 0.39 & 0.39 & 0.41 & 0.42 & 0.44 & 0.10 & 0.42 \\
\hline 168BAB11 & OF & 0.31 & 0.45 & 0.45 & 0.41 & 0.45 & 0.44 & 0.42 & 0.38 & 0.42 \\
\hline 16BEC811 & OF & 0.39 & 0.42 & 0.80 & 0.44 & 0.39 & 0.36 & 0.40 & 0.11 & 0.43 \\
\hline 16 CCA 11 & OP & 0.22 & 0.29 & 0.29 & 0.32 & 0.25 & 0.19 & 0.23 & O. 24 & 0.27 \\
\hline 16008812 & OP & 0.46 & 0.62 & 0.56 & 0.54 & 0.60 & 0.61 & \(0.6!\) & 0.57 & 0.5 \\
\hline 16EEBA11 & OP & -0.15 & -0.06 & 0.01 & -0.09 & 0.04 & -0.02 & -0.04 & -0.10 & -0.01 \\
\hline \(16 \mathrm{HHB811}\) & OP & 0.62 & 0.73 & 0.73 & 0.72 & 0.72 & 0.70 & 0.74 & 0.69 & 0.75 \\
\hline 16JJAB11 & OF & 0.56 & 0.57 & 0.61 & 0.60 & 0.58 & 0.54 & 0.59 & 0.59 & 0.62 \\
\hline \(16 P P A 811\) & OF & 0.21 & 0.20 & 0.13 & 0.12 & 0.20 & 0.23 & 0.24 & 0.18 & 0.17 \\
\hline 16RRA811 & OF & 0.30 & 0.36 & 0.33 & 0.34 & n. 35 & 0.34 & 0.37 & 0.35 & 0.35 \\
\hline 16SSA811 & OF & 0.36 & 0.49 & 0.50 & 0.47 & \({ }^{\text {¢ } 2}\) & 0.51 & 0.49 & 0.44 & 0.49 \\
\hline 64 CEC807 & OP & 0.19 & 0.26 & 0.21 & 0.22 & 1.2 & 0.28 & 0.29 & J. 25 & 0.25 \\
\hline \(64 C 4 C 803\) & OP & 0.17 & 0.23 & 0.23 & 0.2 & . 2 & 0.22 & 0.22 & 0.21 & 0.24 \\
\hline \(94 \mathrm{BKA101}\) & OF & 0.35 & 0.39 & 0.38 & 0.38 & . 38 & 0.37 & 0.38 & 0.39 & 0.37 \\
\hline 9484B803 & OP & 0.49 & 0.60 & 0.51 & 0.61 & 8 & 0.54 & 0.56 & 0.54 & 0.61 \\
\hline 94846805 & OP & 0.26 & 0.32 & 0.35 & 0.31 & : & 0.32 & 0.33 & 0.30 & 0.34 \\
\hline 05B2A113 & SC & 0.35 & 0.35 & 0.34 & 0.36 & 0.32 & 0.33 & 0.37 & 0.37 & 0.36 \\
\hline \(05 C 20113\) & SC & 0.35 & 0.38 & 0.42 & 0.41 & 0.38 & 0.37 & 7.37 & 0.37 & 0.39 \\
\hline 17C7C061 & SC & 0.35 & 0.38 & 0.35 & 0.36 & 0.34 & 0.34 & 0.38 & 0.36 & 0.3. \\
\hline 72E36113 & SC & 0.21 & 0.22 & 0.21 & 0.22 & 0.19 & 0.17 & 0.22 & 0.20 & 0.23 \\
\hline 13E3E810 & ST & 0.32 & 0.40 & 0.11 & 0.41 & 0.39 & 0.35 & 0.37 & 0.35 & 0.40 \\
\hline 54ESAO31 & ST & 0.46 & 0.49 & 0.50 & 0.52 & 0.47 & 0.47 & 0.49 & 0.49 & 0.51 \\
\hline 82C2C810 & ST & 0.48 & 0.56 & 0.56 & 0.58 & 0.53 & 0.54 & 0.51 & 0.52 & ن. 52 \\
\hline 91201929 & ST & 0.16 & 0.19 & 0.17 & 0.18 & 0.17 & C. 17 & 0.18 & 0.10 & 0.18 \\
\hline 91 C02929 & ST & 0.55 & 0.58 & 0.57 & 0.57 & 0.55 & 55 & 0.37 & 0.58 & 0.50 \\
\hline 91805929 & ST & 0.57 & 0.63 & 0.65 & 0.66 & 0.61 & -. 57 & 0.61 & 0.60 & 0.65 \\
\hline 92825929 & ST & 0.36 & 0.52 & 0.53 & 0.32 & 0.51 & 0.48 & 0.47 & 0.42 & 0.51 \\
\hline \(9585 B 8 \pm 3\) & ST & 0.63 & 0.71 & 0.73 & 0.68 & 0.73 & 0.70 & 0.74 & C. 70 & 0.76 \\
\hline
\end{tabular}

Table A - 7

\section*{SAMPLE VALIDITIES FOR CURRENT COMPOSITES SQT CRITERION}


\section*{sAMple valisirizs por cutrent composites sot caitenion (Continued)}


Table A-8
anusted validities for evarent composites sot CRITERIOA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline PCELL & \(\boldsymbol{\lambda}\) & CL & Co & EL & 78 & CH & M \({ }^{\text {a }}\) & Or & 3 c & \(5 T\) \\
\hline 7100182 & CL & 0.26 & 0.37 & 0.39 & 0.38 & 0.36 & 0.25 & 0.32 & 0.29 & 0.40 \\
\hline 7121103 & CL & 0.57 & 0.55 & 0.51 & 0.60 & 0.53 & 0.50 & 0.55 & 0.57 & 0.59 \\
\hline 7152183 & CL & 0.43 & 0.42 & 0.47 & 0.69 & 0.41 & 0.38 & 0.42 & 0.42 & 0.47 \\
\hline 7140112 & CL & -0.57 & 0.54 & 0.51 & 0.55 & 0.19 & 0.52 & 0.57 & 0.58 & 0.55 \\
\hline 7360182 & CL & 0.60 & 0.63 & 0.63 & 0.66 & 0.59 & 0.51 & 0.61 & 0.62 & 0.63 \\
\hline \(73 \mathrm{Co183}\) & CL & 0.72 & 0.71 & 0.69 & 0.71 & 0.66 & 0.6s & 0.74 & 0.75 & 0.71 \\
\hline 7580142 & CL & 0.52 & 0.56 & 0.60 & 0.60 & 0.55 & 0.53 & 0.56 & 0.54 & 0.59 \\
\hline 7580183 & CL & 0.59 & 0.62 & 0.64 & 0.65 & 0.59 & 0.58 & 0.61 & 0.61 & 0.63 \\
\hline 75C0112 & \(C 1\) & 0.66 & 0.67 & 0.66 & 0.70 & 0.64 & 0.65 & 0.69 & 0.70 & 0.68 \\
\hline 7590183 & CL & 0.41 & 0.55 & 0.61 & 0.57 & 0.53 & 0.52 & 0.54 & 0.47 & 0.60 \\
\hline 7500182 & CL & 0.33 & 0.38 & 0.42 & 0.39 & 0.40 & 0.38 & 0.37 & 0.36 & 0.40 \\
\hline 7500143 & CL & 0.49 & 0.55 & 0.61 & 0.60 & 0.55 & 0.49 & 0.52 & 0.51 & 0.60 \\
\hline 7520142 & CL & 0.54 & 0.50 & 0.55 & 0.52 & 0.52 & 0.50 & 0.55 & 0.55 & 0.57 \\
\hline 7520183 & CL & 0.43 & 0.51 & 0.54 & 0.54 & 0.49 & 0.48 & 0.50 & 0.46 & 0.53 \\
\hline  & CL & 0.57 & 0.61 & 0.64 & 0.66 & 0.57 & 0.55 & 0.55 & 0.58 & 0.63 \\
\hline 7650183 & CL & 0.42 & 0.47 & 0.52 & 0.45 & 0.4 & 0.46 & 0.41 & 0.45 & 0.49 \\
\hline 76V0183 & CL & 0.47 & 0.49 & 0.52 & 0.50 & 0.49 & 0.44 & 0.48 & 0.49 & 0.53 \\
\hline 76WO182 & CL & 0.11 & 0.34 & 0.31 & 0.28 & 0.34 & 0.30 & 0.27 & 0.21 & 0.28 \\
\hline 76401:3 & c* & 0.45 & 0.59 & 0.63 & 0.38 & 0.62 & 0.57 & 0.54 & 0.53 & 0.62 \\
\hline 118181 & Co & 0.33 & 0.41 & 0.38 & 0.39 & 0.37 & 0.10 & 0.39 & 0.37 & 0.37 \\
\hline 11801 星 & co & 0.40 & 0.51 & 0.55 & 0.50 & 0.54 & 0.50 & 0.53 & 0.16 & 0.56 \\
\hline 1181182 & CO & 0.17 & 0.44 & 0.43 & 0.44 & 0.43 & 0.42 & 0.43 & 0.41 & 0.44 \\
\hline 1182182 & CO & 0.21 & 0.28 & 0.30 & 0.27 & 0.31 & 0.30 & 0.29 & 0.25 & 0.30 \\
\hline 1286182 & co & 0.29 & 0.32 & 0.35 & 0.35 & 0.33 & 0.32 & 0.34 & 0.31 & 0.37 \\
\hline 1187202 & CO & 0.37 & 0.40 & 0.37 & 0.39 & 0.39 & 0.39 & 0.12 & 0.41 & 0.43 \\
\hline 11C 101 & CO & 0.35 & 0.39 & 0.39 & 0.40 & 0.37 & 0.37 & 0.38 & 0.38 & 0.38 \\
\hline 11C0183 & 60 & 0.31 & 0.31 & 0.11 & 0.38 & 0.42 & 0.34 & 0.38 & 0.36 & 0.43 \\
\hline 11C11az & co & c. 35 & 0.46 & 0.46 & 0.45 & 0.44 & 0.45 & 0.47 & 0.40 & 0.48 \\
\hline 11C21Az & co & 0.36 & 0.41 & 0.46 & 0.41 & 0.45 & 0.44 & 0.43 & 0.40 & 0.43 \\
\hline  & CO & 0.34 & C. 37 & 0.37 & 0.37 & 0.35 & 0.31 & 0.36 & 0.37 & 0.36 \\
\hline \(11 \mathrm{C5182}\) & CO & 2.41 & 0.53 & 0.53 & 0.52 & 0.52 & 0.51 & 0.51 & 0.47 & 0.51 \\
\hline 118101 & CO & 0.15 & 0.55 & 0.54 & 0.57 & 0.52 & 0.18 & 0.52 & 0.49 & 0.57 \\
\hline 1181132 & CO & 0.37 & 0.41 & 0.42 & 0.42 & 0.81 & 0.10 & 0.41 & 0.40 & 0.43 \\
\hline 1412182 & 60 & 0.33 & 0.35 & 0.36 & 0.37 & 0.33 & 0.34 & 0.34 & 0.34 & 0.34 \\
\hline 128019 & CO & 0.31 & 0.43 & 0.42 & 0.12 & 0.12 & 0.42 & 0.41 & 0.36 & 0.42 \\
\hline 1281183 & CO & 0.33 & 0.16 & 0.45 & 0.43 & 0.46 & 0.47 & 0.46 & 0.40 & 0.44 \\
\hline 150181 & 60 & -0.09 & 0.05 & 0.07 & 0.08 & 0.10 & 0.01 & 0.00 & -0.03 & 0.05 \\
\hline 19D013 & \(\infty\) & 0.45 & 0.35 & 0.54 & 0.52 & 0.54 & 0.53 & 0.56 & 0.51 & 0.58 \\
\hline 1901182 & co & 0.11 & 0.47 & 0.48 & 0.17 & 0.64 & 3.45 & 0.57 & 0.45 & 0.48 \\
\hline 1981102 & 00 & 0.40 & 0.47 & 0.44 & 0.45 & 0.44 & 0.45 & 0.48 & 0.45 & 0.47 \\
\hline \(19 \mathrm{Cl183}\) & 60 & 0.55 & 0.66 & 0.65 & 0.63 & 0.66 & 0.65 & 0.68 & 0.62 & 0.68 \\
\hline 19E2143 & co & 0.43 & 0.57 & 0.58 & 0.53 & 0.60 & 0.58 & 0.58 & 0.52 & 0.59 \\
\hline 1)E3142 & co & 0.75 & 0.43 & 0.41 & 0.34 & 0.48 & 0.43 & 0.64 & 0.41 & c. 42 \\
\hline C35KLA 3 & EL & 0.50 & 0.66 & 0.54 & 0.65 & 0.64 & 0.66 & 0.67 & 0.66 & 0.63 \\
\hline 17421:2 & EL. & 0.39 & 0.42 & 0.36 & 0.47 & 0.36 & 0.42 & 0.43 & C. 41 & 0.37 \\
\hline 2600183 & EL & 0.42 & 0.47 & 0.54 & 0.49 & 0.53 & 0.16 & 0.47 & 0.46 & 0.52 \\
\hline 2780162 & EL & 0.18 & 0.20 & 0.13 & 0.18 & 0.16 & 0.15 & 0.23 & 0.21 & 0.29 \\
\hline 27E0163 & EL & 0.54 & 0.49 & 0.54 & 0.54 & 0.45 & 0.67 & 0.53 & 0.54 & 0.54 \\
\hline 31.0163 & 46 & 0.46 & 0.58 & 0.51 & 0.59 & 0.55 & 0.51 & 0.55 & 0.51 & 0.62 \\
\hline 31 wole 3 & EL & 0.49 & 0.69 & 0.70 & 0.63 & 0.75 & 0.70 & 0.65 & 0.61 & 0.70 \\
\hline 31R11:2 & EL & 0.36 & 0.13 & 0.17 & 0.44 & 0.44 & 0.12 & 0.43 & 0.39 & 0.47 \\
\hline 3142102 & EL & 0.36 & 0.12 & 0.44 & 0.52 & 0.12 & 0.48 & 0.41 & 0.39 & 0.15 \\
\hline 3180185 & EL & 0.45 & 0.56 & 0.64 & 0.57 & 0.62 & 0.57 & 0.56 & 0.51 & 0.60 \\
\hline 31V1142 & EL & 0.35 & 0.43 & 0.45 & 0.43 & 0.14 & 0.42 & 0.42 & 0.39 & 0.14 \\
\hline 3657162 & EL & 0.18 & 0.10 & 0.23 & 0.17 & 0.13 & 0.26 & 0.15 & 0.19 & 0.14 \\
\hline 36 ccitz & 20 & 0.20 & 0.32 & 0.29 & 0.29 & 0.30 & 0.32 & 0.31 & 0.26 & 030 \\
\hline 36K0183 & KL & 0.40 & 0.56 & 0.57 & 0.53 & 0.58 & 0.55 & 0.56 & 0.49 & 0.58 \\
\hline \multicolumn{11}{|r|}{(cont'd)} \\
\hline
\end{tabular}

ADJUSTED VALIDITIES FOR CURRENT COMPOSITES sot cRITERION (ContInued)


\begin{abstract}
Table A - 9
Ridge Regression Coefficients for Training Criterion
\end{abstract}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TCEL6 & AA & N & 12 & \(\mathbf{R 2 2}\) & 63 & AR & VE & NO & c3 & 15 & MK & MC & EI \\
\hline 158-2A-1:3 & it & 519 & . 04 & . 12 & . 05 & . 16 & . \(2^{1}\) & . 08 & . 07 & . 86 & . 87 & . 11 & -. 05 \\
\hline 056-2D-113 & 9\% & :is & .11 & . 10 & . 86 & . 29 & . 00 & . 13 & . 08 & . 01 & . 31 & . 04 & . 19 \\
\hline 118-IN-809 & \(0^{-}\) & 976 & . 09 & . 88 & . 24 & . 20 & . 03 & -. 01 & . 22 & . 09 & . 10 & . 36 & -. 24 \\
\hline 11C-IN-809 & \(\cdots\) & 578 & . 18 & . 89 & . 11 & . 03 & . 15 & . 17 & . 15 & . 27 & . 14 & .21 & . 05 \\
\hline 11H-IN-809 & CO & 444 & . 08 & . 05 & \(\stackrel{.10}{ }\) & .21 & . 22 & . 06 & -. 03 & . 15 & . 14 & . 12 & . 10 \\
\hline 128-AB-807 & CO & 143 & . 04 & -. 04 & -. 01 & . 03 & -. 07 & . 06 & . 04 & . 13 & . 09 & . 06 & . 10 \\
\hline 12F-AF-807 & CO & 224 & . 05 & . 81 & . 07 & . 96 & . 03 & . 04 & . 04 & . 17 & -. 01 & . 23 & . 08 \\
\hline 13B-38-8 10 & FA & 1080 & . 07 & . 86 & -. 08 & . 06 & -. 17 & . 19 & . 08 & . 16 & -. 00 & . 39 & . 25 \\
\hline 13E-3E-810 & ST & 483 & . 11 & . 09 & . 16 & . 40 & . 02 & -. 19 & . 15 & . 16 & . 31 & . 05 & -. 06 \\
\hline 13F-3F-810 & FA & 679 & .33 & .32 & . 19 & . 55 & .35 & . 05 & . 52 & . 29 & . 38 & . 43 & 01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 150-50-890 & OF & 295 & . 05 & . 01 & . 09 & . 16 & . 03 & . 13 & . 07 & . 27 & . 08 & . 22 & \\
\hline 15E-5E-810 & OF & 283 & . 06 & . 02 & . 84 & . 11 & .11 & . 09 & 22 & . 28 & . 18 & . 25 & . 08 \\
\hline 16B-BA-81! & OF & 165 & . 12 & . 86 & . 14 & . 24 & . 03 & -. 05 & . 86 & . 21 & . 07 & . 14 & 20 \\
\hline 16B-BC-811 & OF & 131 & . 14 & . 06 & . 13 & . 08 & . 10 & . 06 & . 23 & . 17 & . 40 & .21 & -.21 \\
\hline 16C-CA-8: & OF & 198 & . 16 & . 87 & -. 35 & . 49 & . 09 & -. 09 & . 16 & . 29 & . 39 & 13 & . 23 \\
\hline 160-DE-811 & DF & 112 & . 28 & . 21 & . 14 & . 16 & . .02 & . 10 & . 28 & . 71 & . 15 & . 13 & 12 \\
\hline 16E-EB-811 & OF & 137 & . 06 & . 02 & . 14 & . 82 & . 06 & -. 09 & -. 29 & . 04 & . 01 & -. 09 & 38 \\
\hline 16H-HE-811 & OF & 105 & . 25 & . 16 & . 19 & . 32 & . 33 & .01 & . 16 & . 24 & . 31 & 31 & 18 \\
\hline 16J-JA-811 & OF & 119 & . 21 & .13 & . 24 & . 19 & . 24 & .11 & . 18 & . 02 & 35 & . 06 & 14 \\
\hline 16P-PA-811 & OF & 115 & . 12 & . 82 & . 18 & . & -. & . 20 & -. & . 31 & . 03 & 19 & . 30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 16R-R2-8 1 & OF & 407 & 66 & . 83 & 35 & . 88 & . 15 & . 02 & . 08 & . 31 & . 16 & 08 & 11 \\
\hline 165-5A-811 & OF & 596 & .12 & . 11 & . 89 & . 07 & . 85 & -. 01 & . 07 & . 26 & . 26 & . 28 & 31 \\
\hline 17c-76-661 & 56 & 188 & . 08 & . 02 & . 18 & . 21 & . 14 & . 03 & . 05 & . 14 & . 03 & . 04 & -. 08 \\
\hline 17K-6A-301 & EL & 136 & . 25 & . 18 & . 40 & . 16 & . 36 & -. 12 & . 34 & . 82 & . 12 & .31 & -. 18 \\
\hline 190-5n-804 & CO & 215 & . 49 & . 14 & . 06 & . 14 & . 87 & . 13 & . 18 & . 20 & . 19 & . 02 & . 11 \\
\hline 19E-9t-804 & 60 & 171 & .21 & . 15 & . 37 & .11 & . 45 & . 25 & . 18 & . 22 & . 17 & . 29 & -. 05 \\
\hline 15F-9F-804 & CO & 128 & . 19 & . 12 & . 26 & . 22 & . 13 & . 05 & -. 13 & . 27 & -. 03 & . 19 & . 10 \\
\hline 27E-7E-693 & EL & 184 & . 18 & . 13 & . 15 & . 19 & . 05 & . 22 & . 23 & . 42 & . 13 & . 15 & . 98 \\
\hline SIM-4D-113 & EL & 604 & . 89 & . 67 & . 11 & . 27 & . 18 & . 19 & .13 & . 12 & . 24 & . 14 & .00 \\
\hline 3im-4C-113 & EL & 193 & . 88 & . 05 & . 83 & . 19 & . 42 & . 20 & . 13 & . 06 & -.39 & . 05 & . 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3iv-1v-061 & EL & 457 & . 19 & . 17 & .01 & . 24 & -. 13 & .21 & . 86 & . 38 & . 51 & . 23 & . 17 \\
\hline 36C-AA-113 & EL & 376 & . 85 & . 62 & -. 86 & . 32 & -. 44 & . 23 & . 87 & .21 & . 09 & -. 12 & -. 06 \\
\hline 36X-AC-113 & EL & 661 & .87 & . 36 & . 84 & . 16 & -. 18 & . 88 & . 14 & .31 & . 18 & . 28 & -. 03 \\
\hline 416-67-691 & GM & 185 & . 15 & .65 & -. 05 & . 35 & -. 17 & . 35 & .12 & . 17 & . 20 & . 03 & . 09 \\
\hline 44B-J1-091 & 6m & 137 & . 11 & . 14 & .12 & . 28 & . 16 & . 17 & -. 11 & . 17 & . 0 & . 16 & .11 \\
\hline 45x-x8-891 & GM & 101 & . 16 & . 86 & -. 14 & . 12 & -. 19 & .31 & . 40 & . 13 & -. 01 & . 44 & . 04 \\
\hline 45x-x9-091 & \(6{ }_{6}\) & 129 & . 18 & . 11 & . 31 & . 18 & . 89 & .21 & 25 & . 18 & . 09 & 47 & . 19 \\
\hline 51K-8K-807 & GM & 167 & . 11 & . 05 & -. 06 & . 19 & -. 07 & . 19 & . 02 & . 36 & .42 & -. 03 & . 16 \\
\hline j4c-55-031 & GH & 183 & . 05 & 0.02 & -. 09 & -. 11 & -. 09 & -. 03 & . 17 & . 19 & . 04 & -. 07 & . 27 \\
\hline 54E-5A-031 & \$ 1 & 272 & . 17 & . 14 & . 27 & .21 & -. 61 & . 24 & . 16 & . 07 & . 24 & . 22 & -. 03 \\
\hline & & & & & & & & & & \multicolumn{4}{|c|}{(cont'd)} \\
\hline
\end{tabular}

Ridge Regression Coefficients for Training Criterion (Continued)


A-21

-

Ridge Regression Coefficients for Training Criterion (Continued)


Table A - 10
Ridge Regression Coefficients for SQT Criterion



(cont'd)

Ridge Regression Coefficients for SQT Criterion (Continued)




\section*{Ridge Kegression Coefficients for SQT Criterion (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PCELL & AA & N & 22 & R12 & as & AR & VE & no & 63 & AS & MK & MC & \(E 1\) \\
\hline 716/2/1/83 & CL & 167 & . 20 & . 14 & -. 23 & . 33 & . 46 & -. 15 & . 13 & -. 29 & . 50 & .11 & 27 \\
\hline 71 Me/1/82 & \({ }_{6} \mathrm{CL}\) & 182 & .17 & . 12 & .22 & . 88 & . 39 & . 22 & . 17 & -. 00 & . 04 & . 29 & -. 05 \\
\hline 72E/0/1/83 & SC & 564 & . 28 & . 27 & . 06 & . 15 & . 12 & . 00 & -. 01 & . 28 & . 18 & . 33 & . 44 \\
\hline \(736 / 1 / 182\) & CL & 268 & . 34 & . 31 & .10 & . 40 & . 17 & . 15 & . 27 & . 08 & . 39 & . 19 & . 08 \\
\hline 73c/0/1/83 & CL & 415 & . 38 & . 36 & -. 84 & . 32 & . 69 & . 36 & . 32 & . 24 & . 14 & . 22 & . 05 \\
\hline \(740 / 1\) & ST & 132 & . 24 & . 17 & . 19 & . 60 & . 67 & -. 05 & . 36 & . 07 & . 24 & -. 42 & . 04 \\
\hline 751/8/1/82 & CL & 423 & . 27 & . 25 & . 08 & . 59 & . 25 & . 16 & -. 02 & -. 01 & . 35 & . 10 & . 09 \\
\hline 758/0/1/83 & CL & 631 & . 28 & . 27 & . 07 & . 55 & . 29 & . 19 & . 15 & . 02 & . 40 & .11 & . 09 \\
\hline 750/0/1/82 & CL & 118 & . 33 & . 27 & \(=.00\) & . 07 & . 34 & . 37 & . 13 & . 35 & . 78 & . 13 & -. 07 \\
\hline \(7500 / 1 / 83\) & CL & 289 & . 29 & . 27 & .21 & . 45 & . 23 & -. 15 & -. 02 & . 85 & .40 & . 25 & . 13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & c. & 370 & .12 & . 13 & . 87 & . 27 & & -. 02 & & -. 80 & . 12 & 02 & \\
\hline 750/0/1/33 & CL & 454 & . 27 & . 26 & 18 & . 47 & . 42 & 9 & . 24 & -. 45 & 53 & 88 & \\
\hline 75 & C & 175 & . 19 & . 13 & . 29 & .69 & .41 & . 80 & . 02 & -. 83 & . 17 & 04 & \\
\hline 75E/0/1/83 & CL & 279 & . 24 & . 21 & -. 80 & . 42 & . 25 & - & .83 & . 09 & . 27 & 31 & \\
\hline 75F/0/1/83 & CL & 144 & . 35 & . 30 & . 83 & . 51 & . 28 & . 03 & . 16 & 17 & . 42 & . 22 & \\
\hline \(76 \mathrm{c} / 8 / 1 / 83\) & CL & 320 & . 17 & . 14 & -. 82 & . 50 & . 22 & . 21 & -. 18 & . 17 & . 37 & 13 & \\
\hline 76 V /0/1/83 & CL & 216 & .17 & . 13 & . 27 & . 27 & . 44 & -. 25 & . 28 & . 14 & . 08 & 06 & \\
\hline 76W/O/1/82 & CL & 295 & . 13 & . 09 & . 33 & . 39 & . 42 & -. 27 & . 24 & . 47 & . 08 & 17 & \\
\hline 76W/1/83 & CL & 321 & . 23 & . 20 & . 35 & . 34 & . 18 & -. 06 & . 09 & . 21 & . 28 & . 17 & \\
\hline 82C/1/1/82 & \(5 T\) & 209 & . 18 & .14 & . 08 & . 31 & . 8 & . 12 & . 13 & . 14 & . 32 & . 28 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(5 T\) & 133 & . 19 & . 12 & .83 & & & . 22 & . 20 & . 13 & 16 & 3 & \\
\hline 1/82 & ST & 203 & . 11 & . 06 & . 34 & . 82 & . 08 & . 09 & . 10 & -. 18 & 39 & 12 & 29 \\
\hline 19/0/1/82 & \(3 T\) & 159 & . 1 & .45 & . 85 & . 89 & . 82 & . 34 & . 20 & -. 03 & 13 & 18 & 22 \\
\hline \(1 / 82\) & \(3 T\) & 145 & . 19 & .12 & . 22 & . 12 & . 23 & . 21 & .51 & . 30 & 18 & -. 09 & . 02 \\
\hline 928/0/1/82 & \(3 T\) & 310 & . 11 & . 87 & 83 & . 34 & . 32 & .17 & . 87 & . 87 & 32 & 09 & \\
\hline 13H/0/1/82 & 5 S & 114 & . 15 & . 85 & . 8 & . 29 & . 38 & 02 & . 14 & . 1 & 8 & 39 & \\
\hline 10/1/82 & OF & 1543 & . 11 & . 11 & . 25 & . 28 & . 22 & . 89 & . 07 & . 22 & . 02 & 21 & 0 \\
\hline 848/8/1/83 & OF & 2306 & .23 & .23 & . 87 & . 57 & . 41 & -. 20 & . 18 & . 28 & . 07 & 09 & . 2 \\
\hline 158/8/1/82 & ST & 1853 & . 88 & . 07 & . 14 & . 29 & -. 02 & -. 81 & . 11 & . 88 & . 20 & .21 & \\
\hline 158/8/1/83 & 31 & 2580 & . 16 & . 16 & 18 & . 32 & . 37 & . 12 & . 15 & . 0 & . 24 & . 16 & \\
\hline
\end{tabular}
\begin{tabular}{llllllllllllllll}
\(968 / 0 / 1 / 83\) & 51 & 172 & .29 & .24 & .45 & .58 & .69 & -.14 & .16 & -.15 & .23 & -.19 & .22 \\
\(986 / 0 / 1 / 82\) & 51 & 186 & .32 & .28 & -.14 & .53 & .62 & -.23 & .66 & .17 & 1.85 & .25 & -.25
\end{tabular}

Table A \(=11\)
Ridge Regression Coefficients for Combined Criteria

continued on next pace
\(1-1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline mos & AA & N & 12 & RR2 & 03 & AR & VE & NO & C\$ & 45 & MK & MC & EI \\
\hline 518 & OH & 196 & . 14 & . 89 & -. 19 & . 12 & . 25 & .17 & -. 09 & . 41 & . 46 & . 20 & . 12 \\
\hline 51 K & \(6{ }^{6}\) & 167 & .11 & . 85 & -. 86 & . 19 & -. 87 & . 19 & . 82 & . 36 & . 42 & -. 83 & -. 12 \\
\hline \$20 & GH & 178 & .17 & .11 & -. 04 & . 10 & . 13 & .23 & -. 10 & . 22 & . 17 & . 53 & -. 11 \\
\hline \(54 E\) & 51 & 272 & . 17 & . 14 & . 27 & .21 & -. 1 & . 24 & . 16 & .07 & . 24 & . 22 & -. 03 \\
\hline 558 & GM & 466 & . 10 & . 08 & . 12 & . 22 & . 16 & .13 & .11 & . 12 & .31 & . 17 & . 19 \\
\hline 57 E & GM & 126 & . 14 & . 86 & -. 01 & . 27 & -. 23 & . 02 & . 36 & . 22 & . 15 & . 38 & -. 36 \\
\hline 57 H & SM & 224 & . 06 & . 02 & . 28 & .81 & . 29 & .10 & . 11 & . 04 & . 12 & . 16 & . .08 \\
\hline 618 & Mr & 186 & . 67 & . 44 & . 15 & . 37 & . 70 & .11 & . 03 & . 30 & . 15 & . 37 & -. 33 \\
\hline 618 & M4 & 138 & . 27 & .21 & .89 & . 49 & -. 07 & -. 07 & . 36 & . 22 & . 63 & . 41 & . 06 \\
\hline 628 & Mry & 484 & . 21 & . 28 & . 02 & . 18 & .17 & -. 07 & . 26 & . 35 & . 30 & . 24 & . .02 \\
\hline \(62 E\) & 6M & 305 & .21 & . 19 & . 14 & . 87 & . 89 & . 22 & . 67 & . 31 & . 10 & . 36 & . 26 \\
\hline 62F & EM & 266 & . 17 & . 14 & -. 84 & . 82 & . 27 & .30 & -. 00 & . 18 & -. 07 & . 38 & . 54 \\
\hline 638 & Mr & 2026 & . 13 & . 12 & -. 12 & . 20 & . 04 & . 88 & -. 05 & . 49 & . 18 & . 23 & . 22 \\
\hline 630 & M & 342 & . 05 & .01 & . 04 & . 01 & . 19 & -. 01 & . 20 & . 41 & - .18 & -. 05 & -. 03 \\
\hline 636
63 & Hen & 161 & . 6 & . 82 & . 85 & . 3 : & \(\cdots\) & . 07 & . 06 & . 41 & -. 22 & . 24 & -. 02 \\
\hline 63 H
63 H & MM & 1041 & . 14 & . 13 & .03
.016 & . 18 & . 12 & -. 09 & . 86 & . 18 & . 16 & . 37 & . 3 \% \\
\hline 63 W & m & 661 & . 06 & . 04 & . 13 & -. 05 & .15
.19 & .08
. .12 & . 12 & . 37 & . 10 & . 31 & . 29 \\
\hline \(63 \%\) & TM & 283 & . 08 & . 04 & -. 18 & -. 12 & . 20 & . 05 & . 88 & . 43 & . 36 & -10 & . 09 \\
\hline 64 C & 0 F & 3616 & . 12 & . 12 & -. 04 & .32 & .30 & . .05 & . 07 & . 27 & . 04 & . 22 & . 20 \\
\hline 67 N & mir & 549 & . 15 & . 14 & . 13 & . 22 & . 18 & . 84 & . 19 & . 12 & . 25 & . 41 & 23 \\
\hline 679 & M1 & 124 & . 50 & . 45 & . 33 & . 43 & . 54 & -. 07 & . 49 & . 15 & . 37 & . 24 & . 41 \\
\hline 674 & Mat & 417 & . 18 & . 16 & -. 11 & . 42 & . 07 & -. 20 & . 33 & . 35 & . 30 & . 52 & . 07 \\
\hline 67 V & HM & 426 & . 17 & . 15 & . 09 & . 37 & . 23 & . 13 & . 23 & . 18 & . 10 & . 23 & . 21 \\
\hline 679 & M & 338
121 & . 14 & . 11 & . 32 & .17 & . 26 & . 29 & -. 02 & . 50 & -. 08 & .13 & . 39 \\
\hline 680
686 & Mr| & 121 & .36
.20 & .38
.12 & . 25 & . 44 & -. 48 & . 18 & . 32 & . 64 & . 45 & . 78 & -. 20 \\
\hline 68J & \(0 \cdot 1\) & 239 & . 15 & . 11 & . 19 & . 38 & . 27 & -13 & -. 42 & . 16 & . 41 & -. 02 & -. 01 \\
\hline 68 m & an & 134 & . 25 & . 18 & .13 & . 25 & . .17 & . 23 & . 9 & . 42 & . 89 & . 48 & . 14 \\
\hline 710 & 61 & 115 & .23 & . 14 & -. 25 & .29 & .66 & -. 63 & . 32 & -. 21 & .15
.25 & . 38 & . 89 \\
\hline 716 & CL & 2795 & . 23 & . 23 & -. 32 & . 48 & . 66 & . 02 & . 25 & -. 12 & . 39 & & \\
\hline 719 & CL & 182 & . 17 & . 12 & . 22 & . 88 & . 39 & . 22 & . 17 & -. 18 & . 14 & . 29 & -. 05 \\
\hline 710 & 66 & 173 & . 22 & . 17 & . 18 & . 41 & . 32 & . 26 & . 44 & -. 07 & . 39 & . 05 & . 23 \\
\hline \(72 E\) & 56 & 564 & . 28 & . 27 & . 86 & . 15 & . 12 & . 00 & -. 01 & . 26 & . 18 & . 33 & . 44 \\
\hline 736 & CL & 885
132 & . 34 & . 33 & -. 01 & . 44 & . 52 & .30 & .27 & . 15 & . 27 & . 13 & -. 03 \\
\hline 738 & \({ }^{51}\) & 132
1548 & .24
.20 & .17
.19 & . 19 & . 60 & . 17 & -. 05 & . 36 & . 87 & . 24 & -. 02 & . 04 \\
\hline 756 & CL & 407 & . 28 & . 27 & . 15 & . 48 & . 23 & .15 & . 10 & . 88 & . 39 & . 02 & . 06 \\
\hline 750 & CL & 1253 & . 19 & . 19 & . 86 & . 54 & . 27 & . 21 & . 82 & . 13 & . 52 & . 22 & . 16 \\
\hline 75E & CL & 730 & .23 & . 22 & . 6 & . 30 & . 44 & .22
.13 & . 88 & . 12 & . 42 & . 11 & 25
.09 \\
\hline
\end{tabular}

\section*{Ridge Regression Cu fficients for Combined Criteria (Continued)}

\[
\begin{aligned}
A A & =\text { Current Composite } \\
N & =\text { Sample Size } \\
R 2 & =\text { Ordinary Least Square Squared Multiple Correlation } \\
R R 2 & =\text { Ridge Regression Squared Multiple Correlation }
\end{aligned}
\]

Matrix of Correlations of Expected Outcome functions for MOS, Combined Training and SQT Criteria

ax 24
36849




178 id ga in is is 89 g\% 27


















































 \begin{tabular}{llll}
\(76 r\) & 1 \\
\(e\) & \(i r\) & 19 & 96 \\
\hline
\end{tabular}






 T6 if 05 is it is is in in है is il

\(\begin{array}{ll}97 & 91 \\ 98 & 11\end{array}\)
 11217961997169180







\footnotetext{
it il 10 is 14 ye it
}











\section*{Adjusted Validities for Current and Alternative Composites, by Current Cluster and MOS}

continued on next: Dace

Adjusted Validities for Currant and Aiternative Composites，
by Current Cluster and MOS（Continued）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ess & Ht & 48 & 457 & 8 H & A¢0 & 0 & 87 & 8 & W & \(1{ }^{\circ}\) & ct & 81 & \(\cdots\) & 4 & 70trete & FIE＇3 & 7963 \\
\hline 31 & 185 & 0.379 & 0．394 & 0.498 & 0． 44 & 1．339 & 0.359 & 6.374 & 1．319 & 0.397 & 8． 18 ？ & －． 411 & 1．3妾 4 & 0．314 & 189＊ & & \\
\hline 32 & 113 & 0．846 & 0.79 & 0.618 & 0.418 & 0.319 & 0.647 & 1．144 & －． 41 & 1．648 & 0.648 & － 0.68 & 0．64） & 1．664 & 488 & & \\
\hline 3 & 615 & 0.611 & A．61） & 0.142 & O． 095 & 4.304 & 0.649 & 3.354 & 4.372 & 1.948 & 0．69 & 4． 431 & 6． 34 & －．\({ }^{19}\) & 83 & & \\
\hline 34 & 425 & 0.48 & 0.385 & 1．532 & 0.514 & ＋． 816 & 0.345 & 0．4 4 & 0.314 & 0.317 & 0.336 & 0.303 & 0.371 & 0．313 & 1815 & ＋ & 0 \\
\hline 33 & 115 & － 196 & \％．643 & 0.654 & 0.484 & －-317 & 1.614 & 0.114 & 1．485 & 1．440 & 0.441 & 8－319 & 0.65 & 1．429 & 4\％ 7 & ， & 8 \\
\hline 38 & 138 & \％ 611 & 1．24 & 0.204 & 0．248 & 1．1．12 & －． 287 & 0.838 & 0.263 & C－232 & － \(0 \cdot 81\) & 0．214 & －． 246 & 0.214 & 318 & － & 8 \\
\hline 37 & \({ }^{6}{ }^{3}\) & 0.212 & ． 0.284 & 6．28\％ & 1．854 & 3．190 & 0.223 & 6． 227 & 8．173 & 8.283 & 0.874 & 4．223 & 6．254 & 0.288 & 1825 & \％ & \(\bigcirc\) \\
\hline 31 & 13 H & 4．215 & 0．204 & 8.81 & 0.21 & 1．170 & 1．2＋5 & 1．33 & 0.103 & 0.876 & 0.715 & 4． 269 & 0.250 & 4．，35 & 1461 & 1 & 8 \\
\hline 68 & 68 & 0.216 & H．873 & 0.877 & 0.28 & 1．809 & \(0.3{ }^{4}\) & 0.245 & － 0.39 & 0.818 & 0.235 & 1．249 & 0．34 & 0.37 & 1145 & 1 & ？ \\
\hline 41 & 617 & ＋．346 & －．311 & －184 & 6．171 & 0.341 & － 14 & 0.31 & 0． 14 & 0.17 &  & 4．336 & 0．31 & 1．357 & 115 & \％ & \(\theta\) \\
\hline 62 & 67\％ & \％－1s： & 4．348 & C．351 & 6． 313 & 0.151 & 6.187 & C．git & 0.181 & 1． 348 & 8.847 & 0．34 & 1.346 & 6． 347 & 159 & \(\lambda\) & － \\
\hline 65 & 677 & 0.717 & 6．711 & 4．728 & －．78 & 6．sif & 6．798 & 4.742 & －．318 & 8.748 & 8.771 & \(0: 768\) & 0.716 & 1.344 & 496 & & \\
\hline 44 & 67 & 4．79 & C． 34. & H．31 & 7． 357 & 1．4i4 & 9．232 & 4.687 & 0.32 & 0.529 & 0.362 & \(0.24{ }^{4}\) & 0.532 & 1．312 & 515 & \(\downarrow\) & 1 \\
\hline 4 & 177 & 0.383 & 0.944 & 0.544 & 0.341 & 0.402 & ¢． 835 & 0.827 & 0.531 & 0.148 & 0.848 & 4．33\％ & 0.329 & －．361 & 73 & ， & 1 \\
\hline 46 & 67 & 4．44 & －．94\％ & 0.854 & 0.351 & 6．462 & －． 348 & 0.323 & 6.371 & 8．36\％ & \％． 244 & 8.483 & 8.348 & 0.337 & 131 & 1 & 1 \\
\hline 48 & 60 & H．is & C． 198 & 1．16 & 9．64\％ & 6．318 & ¢． 614 & 1．603 & 0.697 & 9．433 & －．631 & \(0.54{ }^{3}\) & 8.339 & 1．198 & 311 & & \\
\hline 4 & 4 & 0．185 & d．648 & 0．38t & 0.617 & 0.275 & c．las & 0.227 & －． 372 & 0.84 & 6.118 & 0.370 & 4.617 & 2．682 & 375 & & \\
\hline 113 & nex & 4 & 157 & 408 & 480 & ［． & 37 & 14 & \(n\) & H & \＃ & Pa & & 4 & F0TP18 & 1； 615 & 7862\％ \\
\hline 69 & 150 & P． 571 & t． 314 & 0.494 & 8．911 & 0.373 & 6． 317 & 0.373 & 6．172 & 4.189 & 3．048 & 0.387 & 0.154 & 0．314 & 136； & ， & \(p\) \\
\hline 74 & 192 & t－231 & 0.318 & 4.319 & 1． 118 & 0.244 & e． 186 & 4．284 & 8.317 & 1.314 & － 318 & 0.359 & －．353 & － 294 & 1221 & 4 & F \\
\hline 71 & 16 & \％．188 & 4．182 & 0.191 & 0.448 & 1．235 & 1．396 & \％．343 & 1.379 & 1．147 & －+118 & 4－183 & 4.245 &  & 38 & & \\
\hline 72 & 145 & 1－151 & 1． 134 & 0.94 & 7． 3 \％ & 8． 835 & 5．32i & － .10 & － \(0^{1}+\) & 1.364 & 4.333 & 0.334 & 1.316 & 0.333 & 397 & & \\
\hline 31 & 144 & 1.81 & 4.367 & 0.978 & 0.378 & 1．434 & －\({ }^{3} 15\) & 0.343 & 0.374 & 0.572 & 0.312 & 0.328 & 4.546 & 4．351 & 348 & & \\
\hline 76 & 1640 & 1．539 & 1．975 & 0.573 & 0.377 & 1.467 & 1．379 & 0.525 & 8.346 & 0.541 & 0.812 & 1.592 & －．544 & 8.85 & 15 & & \\
\hline 37 & 16\％ & 1．t94 & 0．47 & －． 86 & 0.474 & 4．463 & －． 017 & 0.466 & F．444 & 1．44\％ & 1.444 & 0.645 & 3.467 & 1．622 & 182 & & \\
\hline 71 & 14 & 4．384 & 1．394 & －．297 & B． 299 & 0.244 & ＋．28t & 1．2\％ & 0.28 & 4．335 & －． 213 & E． 874 & ＋．24 & t．23 & 6921 & 5 & \％ \\
\hline 77 & 148 & 0．434 & 4．141 & ＋．671 & －67） & 0.341 & 0，464 & 1．44 & 1．44） & 0.658 & 1．44 & 0.659 & 0.177 & ＋．611 & 1994 & \(\pm\) & F \\
\hline 78 & 645 & 1.444 & 1.174 & 4．484 & 0.697 & 1.361 & 1．461 & 0.614 & 0.481 & 0.064 & 4．64 & 1．67i & \％．64 & 4.44 & 7592 & 1 & P \\
\hline 7 & ＊4． & 1.364 & \＄．121 & 6．32\％ & －．\({ }^{2} 2\) & 4.64 & 4.514 & 3.671 & 0.61 & 0.318 & ＊．312 & C． 6.4 & 0.0 it & －．318 & 7664 & & \\
\hline 185 & mas & 19． & 251 & 109 & 9 & － & IT & 145 & 1.1 & \(1{ }^{1}\) & Et & 由4 & － & \(\square\) &  & T\＄Eis & rsees \\
\hline t & 438 & 1． 318 & 3． 313 & 6．304 & 1．394 & 1．332 & 6．391 & 0.359 & 0．149 & 2．319 & 0.114 & 8．34\％ & 0.378 & 1．381 & 2614 & － & 1 \\
\hline 11 & 198 & \％． 465 & \％． \(68 \%\) & 1．482 & \％． 685 & 6．37\％ & 1．43 & 0.34 & 0.857 & 3．64 & 4．611 & 0.04 & 0.674 & －67 & 3331 & 3 & \(\cdots\) \\
\hline 4 & 198 & 4.521 & 0.354 & 0．37 & 0.971 & － \(3 \pm 9\) & 1－117 & 0.35 & 0.365 & 4．54t & － 59 & 0.485 & ¢．13 & 0.13 & 319 &  & \(\cdots\) \\
\hline 48 & 176 & \％．27 & \％． 271 & 9.274 & － 0.27 & －． 222 & 1.274 & 0.278 & － 0 ＋ 18 & 0.358 & 1．26\％ & 1.261 & －．\({ }^{\text {E }} 3\) & 4.276 & 664 & & \\
\hline 4 & 748 & 6．501 & 1．546 & 0.359 & C．EA6 & 6．35 & 8.35 & 1.472 & 0.34 & 6.353 & 0.336 & 4．494 & 0.363 & 0.945 & 1881 & \(\square\) & \％ \\
\hline （t） & ค．\({ }^{3}\) & 42 & AST & 4 & 98 & E & 87 & 18 & \(\cdots\) & 0 & － & P4 & \(\square\) & 4 &  & 13613 & T3623 \\
\hline 5 & A \({ }^{19}\) & 1．840 & 1－b3t & 0.391 & C． 345 & 0.43 & 1．649 & 0.146 & 0.341 & 1．18） & 6． 649 & 0.437 & 1． 304 & 1．357 & 877 & \(F\) & H \\
\hline 4 & 138 & 1.46 & 9.48 & 1．403 & 1.452 & 1.11 & 0.636 & 0.19 & 0.64 & 0.131 & \％．407 & 0．445 & －． 3.38 & E． 6.57 & 1985 & － & \(\cdots\) \\
\hline d） & 348 & 1．446 & 4．64 & 0.134 & 0.137 & H．720 & 1．944 & 1．461 & 0.487 & 4，4as & 0.447 & C．942 & ＋．423 & －．44\％ & 13\％ & \(\bullet\) & 4 \\
\hline 8 &  & －1．\({ }^{1} 18\) & 1.35 & －．981 & 0.976 & 1．149 & 1．346 & 0.378 & － 38 & E．7\％ & －． 374 & 0.94 & 0.356 & 1．393 & 311 & & \\
\hline \％1 & 14 & 1.314 & 0.325 & \％．804 & \％．96 & 6.498 & 1.58 & 1．32 & 9．331 & －． 32 & \％．30 & C．37 & 0.285 & 8.854 & 313 & & \\
\hline 11 & 17 & 1．498 & \％．97 & 0.446 & 0．717 & 0.431 & 1．447 & －154 & ＋．444 & ＋．464 & ＋．144 & －+1.14 & 4．47\％ & 0.617 & 171 & n & 0 \\
\hline 1 & \({ }^{16}\) & 1．74 & 8．91\％ & 6．353 & ¢． 318 & 1．343 & 4.341 & C． 371 & 1.494 & － 3.14 & 0.35 & C． 37 & ＋．123 & \％．\({ }^{4}\) \％ & 71 & \(\boldsymbol{n}\) & － \\
\hline 13 & 91 & 1.469 & 8． 46 & 4．4．\％ & 0.691 & 1．4．3 & ＋． 488 & \％．318 & 0.644 & 0.17 & \(0.67 \%\) & ． .48 & 0.44 & 6． 633 & 293 & & \\
\hline 38 &  & 8.485 & 7． 69 & 4.813 & \(0 \cdot 381\) & \％． 118 & \％． 416 & 1－34\％ & 0．318 & 3.372 & 1． 180 & 0．81 & 0.147 & －48） & 1818 & \(\cdots\) & 7 \\
\hline 4 & P13 & 0．172 & 1．34 & － 93 & \％．3\％ & －． 61 & \％．38 & 8.54 & 5.65 & － .143 & －645 & －．is7 & －\({ }^{14}\) & 4.443 & 1188 & & \\
\hline 11 & 415 & －．128 & 3．310 & 3.85 & 0.674 & ¢．de2 & ＋． 0.16 & 1.347 & C．3if & d．39 & 1．344 & －．374 & －．37 & 6.37 & 178\％ & \％ & 6 \\
\hline ＊ & 虽 & 0.71 & 4．649 & 0.645 & \(1.64{ }^{1}\) & ¢．it 1 & 4．672 & 1．84） & 1.374 & H．Ef & 1.443 & ＋．716 & －． 013 & t．Es） & iis： & － & \(\dagger\) \\
\hline
\end{tabular}

Tabie A-14
Sample Validities for the Proposed Composites Combined Criterion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline m0s & AX & \(N\) & ACL & SE & AST & SE & ACO & \$E & AOP & SE & NORM SE \\
\hline 710 & CL & 114 & 0.38 & 0.09 & 0.36 & 0.08 & 0.36 & 0.07 & 0.35 & 0.08 & 0.09 \\
\hline 711 & C6 & 2782 & 0.47 & 0.02 & 0.44 & 0.02 & 0.41 & 0.02 & 0.40 & 0.02 & 0.02 \\
\hline 71 M & CL & 182 & 0.35 & 0.06 & 0.35 & 0.06 & 0.36 & 0.06 & 0.36 & 0.06 & 0.07 \\
\hline 71 s & C. & 173 & 0.39 & \(0.0 \%\) & 0.37 & 0.07 & 0.33 & 0.07 & 0.33 & 0.07 & 0.08 \\
\hline 73 C & CL & 478 & 0.56 & 0.03 & 0.55 & 0.03 & 0.53 & 0.03 & 0.53 & 0.03 & 0.05 \\
\hline 75B & Ci & 520 & 0.44 & 0.03 & C. 43 & 0.03 & 0.39 & 0.03 & 0.38 & 0.03 & 0.03 \\
\hline 75 C & CL & 317 & c. 52 & 0.04 & 0.52 & 0.04 & 0.50 & 0.05 & 0.49 & 0.05 & 0.06 \\
\hline 75 D & CL & 801 & 0.42 & 0.03 & 0.42 & 0.03 & 0.37 & 0.03 & 0.37 & 0.03 & 0.04 \\
\hline 75 E & CL & 417 & 0.47 & 0.04 & 0.46 & 0.04 & 0.44 & 0.04 & 0.44 & 0.04 & 0.05 \\
\hline 759 & CL & 1:7 & 0.58 & 0.07 & 0.55 & 0.07 & 0.52 & 0.07 & 0.52 & 0.07 & 0.09 \\
\hline 76 C & CL & 1296 & 0.32 & 0.03 & 0.33 & 0.02 & 0.30 & 0.02 & 0.30 & 0.02 & 0.03 \\
\hline 768 & CL & 559 & 0.45 & 0.04 & 0.40 & 0.04 & 0.36 & 0.04 & 0.34 & 0.04 & 0.04 \\
\hline 76 V & CL & 214 & 0.34 & 0.06 & 0.33 & 0.06 & 0.32 & 0.05 & 0.34 & 0.05 & 0.07 \\
\hline 76W & CL & 684 & 0.32 & 0.04 & 0.36 & 0.03 & 0.34 & 0.04 & 0.35 & 0.03 & 0.04 \\
\hline 7 EX & cL & 158 & 0.17 & 0.08 & 0.15 & 0.09 & 0.10 & 0.08 & 0.11 & 0.07 & 0.08 \\
\hline 76Y & CL & 1136 & 0.29 & 0.03 & 0.28 & 0.03 & 0.26 & 0.03 & 0.24 & 0.03 & 0.03 \\
\hline 118 & co & 5761 & 0.31 & 0.01 & 0.32 & 0.01 & 0.32 & 0.01 & 0.32 & 0.01 & 0.01 \\
\hline 11 1- & co & 1482 & 0.32 & 0.02 & 0.34 & 0.02 & 0.34 & 0.02 & 0.34 & 0.02 & 0.03 \\
\hline 11H & co & 948 & 0.26 & 0.03 & 0.26 & 0.03 & 0.26 & 0.03 & 0.26 & 0.03 & 0.03 \\
\hline 128 & co & 2411 & 0.31 & 0.02 & 0.33 & 0.02 & 0.13 & 0.02 & 0.34 & 0.02 & 0.02 \\
\hline 12 F & CO & 224 & 0.12 & 0.06 & 0.16 & 0.06 & 0.19 & 0.07 & 0.20 & 0.06 & 0.07 \\
\hline 190 & Co & 1035 & 0.35 & 0.03 & 0.37 & 0.03 & 0.37 & 0.03 & 0.37 & 0.03 & 0.03 \\
\hline \(19 E\) & co & 2322 & 0.40 & 0.02 & 0.43 & 0.02 & 0.45 & 0.02 & 0.45 & 0.02 & 0.02 \\
\hline 195 & CO & 83 & 0.33 & 0.09 & 0.39 & 0.09 & 0.39 & 0.09 & 0.42 & 0.09 & 0.11 \\
\hline 17K & EL & 179 & 0.29 & 0.06 & 0.29 & 0.06 & 0.31 & 0.06 & 0.32 & 0.05 & 0.07 \\
\hline 258 & EL & 142 & 0.33 & 0.07 & 0.33 & 0.06 & 0.31 & 0.06 & 0.26 & 0.06 & 0.08 \\
\hline 27E & EL & 305 & 0.36 & 0.05 & 0.37 & 0.04 & 0.34 & 0.05 & 0.31 & 0.05 & 0.06 \\
\hline 31 J & EL & 130 & 0.25 & 0.07 & 0.27 & 0.07 & 0.30 & 0.07 & 0.29 & 0.07 & 0.09 \\
\hline 31 M & EL & 2858 & 0.30 & 0.02 & 0.37 & 0.02 & 0.38 & 0.02 & 0.38 & 0.02 & 0.02 \\
\hline \(31 N\) & EL & 193 & 0.06 & 0.06 & 0.06 & 0.06 & 0.03 & 0.07 & 0.09 & 0.07 & 0.07 \\
\hline 315 & EL & 650 & 0.31 & 0.03 & 0.33 & 0.03 & 0.32 & 0.04 & 0.30 & 0.04 & 0.04 \\
\hline 35 K & EL & 121 & 0.42 & 0.07 & 0.48 & 0.06 & 0.46 & 0.06 & 0.46 & 0.06 & 0.09 \\
\hline 36 C & EL & 374 & 0.13 & 0.05 & 0.14 & 0.05 & 0.08 & 0.05 & 0.10 & 0.05 & 0.05 \\
\hline 36 K & EL & 1581 & 0.23 & 0.02 & 0.28 & 0.02 & 0.30 & 0.02 & 0.31 & 0.02 & 0.03 \\
\hline 138 & PA & 1778 & 0.35 & 0.02 & 0.38 & 0.01 & 0.39 & 0.01 & 0.38 & 0.01 & 0.01 \\
\hline 238 & PA & 824 & 0.34 & 0.03 & 0.38 & 0.03 & 0.10 & 0.03 & 0.40 & 0.02 & 0.03 \\
\hline 41 C & GM & 103 & 0.24 & 0.08 & 0.25 & 0.08 & 0.19 & 0.08 & 0.19 & 0.09 & 0.10 \\
\hline 432 & GM & 99 & 0.25 & 0.09 & 0.26 & 0.09 & 0.22 & 0.08 & 0.20 & 0.09 & 0.10 \\
\hline 448 & GM & 137 & 0.25 & 0.08 & 0.28 & 0.08 & 0.26 & 0.09 & 0.30 & 0.09 & 0.09 \\
\hline 45K & GM & 228 & 0.22 & 0.07 & 0.25 & 0.07 & 0.30 & 0.06 & 0.30 & 0.07 & 0.07 \\
\hline 518 & CM & 195 & 0.29 & 0.07 & 0.32 & 0.06 & 0.33 & 0.05 & 0.30 & 0.05 & 0.07 \\
\hline 51 K & 6M & 167 & 0.23 & 0.08 & 0.26 & 0.07 & 0.23 & 0.07 & 0.21 & 0.08 & 0.08 \\
\hline 520 & GM & 176 & 0.29 & 0.06 & 0.31 & 0.06 & 0.36 & 0.06 & 0.35 & 0.07 & 0.08 \\
\hline 558 & GM & 366 & 0.28 & 0.05 & 0.27 & 0.05 & 0.26 & 0.05 & 0.24 & 0.05 & 0.05 \\
\hline 578 & GM & 126 & 0.06 & 0.09 & 0.09 & 0.09 & 0.11 & 0.10 & 0.09 & 0.09 & 0.09 \\
\hline 57H & GM & 224 & 0.18 & 0.05 & 0.17 & 0.06 & 0.20 & 0.06 & 0.17 & 0.06 & 0.07 \\
\hline 628 & GM & 230 & 0.37 & 0.05 & 0.41 & 0.05 & 0.43 & 0.05 & 0.44 & 0.05 & 0.07 \\
\hline \(62 \%\) & GM & 200 & 0.24 & 0.07 & 0.29 & 0.07 & 0.34 & 0.07 & 0.34 & 0.05 & 0.07 \\
\hline 685 & GM & 188 & 0.22 & 0.07 & 0.29 & 0.07 & 0.35 & 0.07 & 0.35 & 0.07 & 0.07 \\
\hline 68M & GM & 132 & 0.29 & 0.05 & 0.35 & 0.05 & 0.37 & 0.05 & 0.37 & 0.05 & 0.09 \\
\hline & & & & & & & & & & \multicolumn{2}{|r|}{(cont \({ }^{\text {c }}\) )} \\
\hline & & & & & \multicolumn{2}{|r|}{A-33} & & \multicolumn{2}{|l|}{\[
i>71
\]} & & \\
\hline
\end{tabular}

Sample validities for the Proposed Composites
Conibined Criterion (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MOS & A & \(N\) & ACL & SE & AST & SE & \(\lambda \mathrm{A} 0\) & SE & AOP & SE & NORM SE \\
\hline 12 C & Ma4 & 355 & 0.26 & 0.05 & 0.28 & 0.05 & 0.29 & 0.05 & 0.29 & 0.05 & 0.05 \\
\hline 618 & M94 & 183 & 0.64 & 0.03 & 0.65 & 0.03 & 0.65 & 0.03 & 0.66 & 0.03 & 0.07 \\
\hline 61 C & M \({ }^{\text {a }}\) & 136 & 0.44 & 0.05 & 0.44 & 0.06 & 0.11 & 0.06 & 0.39 & 0.07 & 0.09 \\
\hline 628 & M04 & 355 & 0.39 & 0.05 & 0.43 & 0.04 & 0.44 & 0.04 & 0.43 & 0.04 & 0.05 \\
\hline 638 & MM & 1818 & 0.28 & 0.02 & 0.32 & 0.02 & 0.33 & 0.02 & 0.33 & 0.02 & 0.02 \\
\hline 63 D & H99 & 342 & 0.07 & 0.06 & 0.11 & 0.06 & 0.12 & 0.06 & 0.12 & 0.06 & 0.05 \\
\hline 636 & MM & 161 & 0.08 & 0.08 & 0.12 & 0.07 & 0.12 & 0.07 & 0.18 & 0.07 & 0.08 \\
\hline 63 H & M ( & 783 & 0.30 & 0.03 & 0.33 & 0.03 & 0.35 & 0.03 & 0.35 & 0.03 & 0.04 \\
\hline 63 N & MAS & 509 & 0.10 & 0.04 & 0.14 & 0.04 & 0.17 & 0.04 & 0.17 & 0.04 & 0.04 \\
\hline 63 W & MM & 527 & 0.19 & 0.05 & 0.20 & 0.05 & 0.22 & 0.04 & 0.21 & 0.04 & 0.04 \\
\hline 63 Y & MPM & 238 & 0.16 & 0.07 & 0.19 & 0.07 & 0.23 & 0.06 & 0.19 & 0.07 & 0.06 \\
\hline 67N & M24 & 471 & 0.34 & 0.04 & 0.35 & 0.04 & 0.36 & 0.04 & 0.35 & 0.04 & 0.05 \\
\hline 675 & MM & 124 & 0.62 & 0.06 & 0.63 & 0.06 & 0.61 & 0.06 & 0.62 & 0.06 & 0.09 \\
\hline 670 & MM & 278 & 0.36 & 0.04 & 0.37 & 0.04 & 0.37 & 0.05 & 0.38 & 0.04 & 0.06 \\
\hline 670 & M94 & 310 & 0.37 & 0.06 & 0.38 & 0.06 & 0.37 & 0.06 & 0.38 & 0.06 & 0.06 \\
\hline 679 & M99 & 241 & 0.22 & 0.06 & 0.26 & 0.06 & 0.28 & 0.06 & 0.29 & 0.07 & 0.06 \\
\hline 68D & MP/ & 121 & 0.43 & 0.06 & 0.47 & 0.06 & 0.49 & 0.06 & 0.48 & 0.06 & 0.09 \\
\hline 68 G & Nat & 121 & 0.37 & 0.08 & 0.38 & 0.08 & 0.35 & 0.09 & 0.33 & 0.10 & 0.09 \\
\hline 150 & OF & 406 & 0.20 & 0.05 & 0.23 & 0.04 & 0.24 & 0.04 & 0.26 & 0.04 & 0.05 \\
\hline \(15 E\) & OF & 280 & 0.16 & 0.05 & 0.19 & 0.05 & 0.22 & 0.05 & 0.20 & 0.05 & 0.06 \\
\hline 16 B & OF & 288 & 0.28 & 0.05 & 0.30 & 0.05 & 0.30 & 0.05 & 0.29 & 0.05 & 0.06 \\
\hline 16 C & OF & 118 & 0.32 & 0.07 & 0.32 & 0.07 & 0.25 & 0.08 & 0.26 & 0.07 & 0.09 \\
\hline 160 & OF & 112 & 0.32 & 0.07 & 0.44 & 0.07 & 0.46 & 0.08 & 0.45 & 0.08 & 0.09 \\
\hline 164 & OF & 104 & 0.43 & 0.09 & 0.47 & 0.09 & 0.47 & 0.08 & 0.46 & 0.08 & 0.10 \\
\hline 16 J & OF & 119 & 0.43 & 0.07 & 0.42 & 0.07 & 0.37 & 0.07 & 0.35 & 0.08 & 0.09 \\
\hline 16R & OP & 404 & 0.18 & 0.04 & 0.21 & 0.04 & 0.21 & 0.04 & 0.20 & 0.04 & 0.05 \\
\hline 165 & OP & 592 & 0.26 & 0.04 & 0.30 & 0.04 & 0.33 & 0.03 & 0.31 & 0.04 & 0.04 \\
\hline 64. & OF & 2959 & 0.28 & 0.02 & 0.32 & 0.02 & 0.32 & 0.01 & 0.34 & 0.01 & 0.02 \\
\hline 94B & OF & 3322 & 0.33 & 0.02 & 0.36 & 0.02 & 0.35 & 0.01 & 0.37 & 0.02 & 0.02 \\
\hline 05B & SC & 890 & 0.27 & 0.04 & 0.29 & 0.04 & 0.28 & 0.03 & 0.28 & 0.03 & 0.03 \\
\hline 05C & SC & 1971 & 0.36 & 0.02 & 0.39 & 0.02 & 0.38 & 0.02 & 0.38 & 0.02 & 0.02 \\
\hline 05G & SC & 119 & 0.23 & 0.09 & 0.31 & 0.08 & 0.36 & 0.08 & 0.38 & 0.08 & 0.09 \\
\hline 17 C & SC & 187 & 0.23 & 0.07 & 0.24 & 0.07 & 0.22 & 0.07 & 0.23 & 0.07 & 0.07 \\
\hline 72 L & SC & 562 & 0.42 & 0.03 & 0.48 & 0.03 & 0.50 & 0.03 & 0.50 & 0.03 & 0.04 \\
\hline 05H & ST & 110 & 0.53 & 0.05 & 0.50 & 0.06 & 0.43 & 0.07 & 0.37 & 0.07 & 0.10 \\
\hline 135 & ST & 678 & 0.33 & 0.03 & 0.33 & 0.03 & 0.30 & 0.03 & 0.28 & 0.04 & 0.04 \\
\hline 545 & ST & 270 & 0.34 & 0.05 & 0.35 & 0.05 & 0.34 & 0.05 & 0.32 & 0.05 & 0.06 \\
\hline 74 D & ST & 98 & 0.44 & 0.09 & 0.42 & 0.09 & 0.33 & 0.09 & 0.33 & 0.09 & 0.10 \\
\hline 82 C & ST & 536 & 0.42 & 0.04 & 0.43 & 0.04 & 0.39 & 0.03 & 0.39 & 0.04 & 0.04 \\
\hline 91 C & ST & 233 & 0.37 & 0.05 & 0.39 & 0.05 & 0.34 & 0.05 & 0.36 & 0.05 & 0.07 \\
\hline 912 & 85 & 301 & 0.31 & 0.05 & 0.29 & 0.05 & 0.26 & 0.04 & 0.23 & 0.05 & 0.06 \\
\hline 91 P & ST & 159 & 0.21 & 0.08 & 0.21 & 0.07 & 0.20 & 0.08 & 0.20 & 0.08 & 0.08 \\
\hline 918 & ST & 145 & 0.27 & 0.07 & 0.29 & 0.06 & 0.23 & 0.07 & 0.22 & 0.07 & 0.08 \\
\hline 928 & ST & 364 & 0.35 & 0.05 & 0.33 & 0.05 & 0.31 & 0.05 & 0.31 & 0.05 & 0.05 \\
\hline 93 H & ST & 114 & 0.30 & 0.09 & 0.28 & 0.09 & 0.28 & 0.08 & 0.21 & 0.08 & 0.09 \\
\hline 958 & ST & 3695 & 0.31 & 0.01 & 0.34 & 0.01 & 0.32 & 0.01 & 0.33 & 0.01 & 0.02 \\
\hline 96 B & ST & 172 & 0.49 & 0.06 & 0.45 & 0.06 & 0.37 & 0.07 & 0.39 & 0.06 & 0.08 \\
\hline 98 C & ST & 186 & 0.50 & 0.06 & 0.43 & 0.06 & 0.36 & 0.06 & 0.31 & 0.06 & 0.07 \\
\hline
\end{tabular}

Tatle A- 15
Adjusted Validities for the Proposed Composites Combined Criterion



Sample Validities for the MAGE Composites Combined Criterion

(contd)

Sample Validities for the MAGE Composites Combined Criterion (Continuea)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline mos & AA & \(\mathbf{N}\) & H & SE & \(\lambda\) & St & G & SE & \(E\) & SE & NORM SE \\
\hline 12 C & MPM & 355 & 0.27 & 0.05 & 0.19 & 0.06 & 0.25 & 0.05 & 0.27 & 0.05 & 0.05 \\
\hline 618 & NOS & 183 & 0.61 & 0.04 & 0.46 & 0.05 & 0.66 & 0.04 & 0.59 & 0.03 & 0.07 \\
\hline 61 C & NPA & 136 & 0.28 & 0.08 & 0.25 & 0.07 & 0.36 & 0.07 & 0.44 & 0.05 & 0.09 \\
\hline 628 & Mr & 355 & 0.41 & 0.04 & 0.25 & 0.04 & 0.38 & 0.05 & 0.39 & 0.04 & 0.05 \\
\hline 638 & MP4 & 1818 & 0.31 & 0.02 & 0.14 & 0.02 & 0.27 & 0.02 & 0.30 & 0.02 & 0.02 \\
\hline 63 D & MOH & 342 & 0.12 & 0.05 & 0.10 & 0.07 & 0.09 & 0.06 & 0.06 & 0.06 & 0.05 \\
\hline 63 G & MOM & 161 & 0.18 & 0.08 & 0.01 & 0.08 & 0.10 & 0.08 & 0.09 & 0.07 & 0.08 \\
\hline 63 H & MH & 783 & 0.33 & 0.03 & 0.14 & 0.04 & 0.30 & 0.03 & 0.33 & 0.03 & 0.04 \\
\hline 63 N & MH & 509 & 0.16 & 0.04 & 0.06 & 0.04 & 0.09 & 0.04 & 0.12 & 0.04 & 0.04 \\
\hline 63 W & 134 & 527 & 0.21 & 0.04 & 0.10 & 0.04 & 0.18 & 0.05 & 0.19 & 0.04 & 0.04 \\
\hline \(63 Y\) & mPM & 238 & 0.17 & 0.06 & 0.09 & c. 06 & 0.12 & 0.07 & 0.14 & 0.07 & 0.06 \\
\hline 67 N & Mr & 471 & 0.30 & 0.04 & 0.22 & 0.05 & 0.13 & 0.04 & 0.36 & 0.04 & 0.05 \\
\hline 675 & MP4 & 124 & 0.54 & 0.06 & 0.14 & 0.06 & 0.62 & 0.06 & 0.65 & 0.05 & 0.09 \\
\hline 67 U & Ma & 278 & 0.29 & 0.05 & 0.20 & 0.05 & 0.34 & 0.04 & 0.35 & 0.05 & 0.06 \\
\hline 670 & M4 & 310 & 0.32 & 0.06 & 0.30 & 0.06 & 0.38 & 0.06 & 0.37 & 0.06 & 0.06 \\
\hline 67 Y & 109 & 241 & 0.31 & 0.06 & 0.17 & 0.06 & 0.24 & 0.07 & 0.27 & 0.06 & 0.06 \\
\hline 680 & H24 & 121 & 0.45 & 0.06 & 0.29 & 0.08 & 0.37 & 0.06 & 0.45 & 0.06 & 0.09 \\
\hline 68 G & HM & 121 & 0.29 & 0.09 & 0.08 & 0.12 & 0.34 & 0.09 & 0.37 & 0.07 & 0.09 \\
\hline 15D & OF & 406 & 0.23 & 0.04 & 0.12 & 0.05 & 0.19 & 0.04 & 0.20 & 0.05 & 0.95 \\
\hline 158 & 0 & 280 & 0.20 & 0.05 & 0.09 & 0.05 & 0.14 & 0.06 & 0.16 & 0.05 & 0.06 \\
\hline 168 & Or & 288 & 0.26 & 0.05 & 0.16 & 0.06 & 0.25 & 0.05 & 0.28 & 0.05 & 0.06 \\
\hline 16 C & OF & 118 & 0.14 & 0.08 & 0.17 & 0.07 & 0.30 & 0.07 & 0.25 & 0.09 & 0.09 \\
\hline 16 D & OP & 112 & 0.46 & 0.09 & 0.32 & 0.09 & 0.29 & 0.07 & 0.38 & 0.07 & 0.09 \\
\hline 16 H & OF & 104 & 0.37 & 0.08 & 0.23 & 0.09 & 0.43 & 0.08 & 0.44 & 0.08 & 0.10 \\
\hline 165 & OF & 119 & 0.27 & 0.08 & 0.34 & 0.08 & 0.40 & 0.08 & 0.43 & 0.06 & 0.09 \\
\hline 168 & 08 & 404 & 0.19 & 0.04 & 0.12 & 0.04 & 0.17 & 0.04 & 0.17 & 0.04 & 0.05 \\
\hline 265 & OP & 592 & 0.31 & 0.03 & 0.11 & 0.04 & 0.24 & 0.04 & 0.30 & 0.03 & 0.04 \\
\hline 64 C & Or & 2959 & 0.30 & 0.02 & 0.13 & 0.02 & 0.30 & 0.02 & 0.30 & 0.02 & 0.02 \\
\hline 948 & CF & 3322 & 0.32 & 0.02 & 0.15 & 0.02 & 0.34 & 0.02 & 0.35 & 0.02 & 0.02 \\
\hline 058 & sc & 890 & 0.25 & 0.03 & 0.09 & 0.04 & 0.28 & 0.04 & 0.26 & 0.03 & 0.03 \\
\hline 05C & Sc & 1971 & 0.35 & 0.02 & 0.10 & 0.02 & 0.36 & 0.02 & 0.38 & 0.02 & 0.02 \\
\hline 056 & Sc & 119 & 0.37 & 0.08 & 0.26 & 0.10 & 0.27 & 0.09 & 0.27 & 0.09 & 0.09 \\
\hline 27 C & SC & 187 & 0.22 & 0.07 & 0.06 & 0.07 & 0.24 & 0.08 & 0.22 & 0.07 & 0.07 \\
\hline 72E & Sc & 562 & 0.49 & 0.03 & 0.12 & 0.04 & 0.41 & 0.03 & 0.49 & 0.03 & 0.04 \\
\hline 05: & ST & 110 & 0.26 & 0.09 & 0.49 & 0.07 & 0.48 & 0.06 & 0.13 & 0.06 & 0.10 \\
\hline 13E & ST & 678 & 0.21 & 0.04 & 0.19 & 0.03 & 0.29 & 0.04 & 0.31 & 0.03 & 0.04 \\
\hline 54E & ST & 270 & 0.30 & 0.05 & 0.32 & 0.05 & 0.30 & 0.05 & 0.36 & 0.05 & 0.06 \\
\hline 740 & ST & 98 & 0.22 & 0.02 & c. 32 & 0.10 & 0.47 & 0.08 & 0.37 & 0.09 & 0.10 \\
\hline 02 C & \$T & 536 & 0.30 & 0.04 & 0.32 & 0.04 & 0.38 & 0.04 & 0.43 & 0.03 & 0.04 \\
\hline 91 C & \(5 T\) & 233 & 0.29 & 0.05 & 0.37 & 0.05 & 0.38 & 0.05 & 0.39 & 0.05 & 0.07 \\
\hline 912 & 5 T & 301 & 0.19 & 0.05 & 0.20 & 0.05 & 0.26 & 0.05 & 0.32 & 0.05 & 0.06 \\
\hline 918 & 5 T & 159 & 0.16 & 0.08 & 0.25 & 0.03 & 0.19 & 0.08 & 0.24 & 0.07 & 0.08 \\
\hline 918 & ST & 145 & 0.16 & 0.08 & 0.30 & 0.07 & 0.27 & 0.06 & 0.26 & 0.67 & 0.08 \\
\hline 928 & 5 T & 364 & 0.25 & 0.05 & 0.15 & 0.04 & 0.34 & 0.05 & 0.34 & 0.05 & 0.05 \\
\hline 93 H & 5 T & 114 & 0.22 & 0.09 & 0.09 & 0.09 & 0.30 & 0.09 & 0.30 & \(0.0 y\) & 0.09 \\
\hline 958 & \(5 \%\) & 3695 & 0.26 & 0.01 & 0.21 & 0.02 & 0.31 & 0.01 & 0.33 & 0.01 & 0.02 \\
\hline 968 & ST & 172 & 0.30 & 0.07 & 0.32 & 0.06 & 0.50 & 0.05 & 0.48 & 0.06 & 0.08 \\
\hline 98 C & ST & 186 & 0.27 & 0.07 & 0.30 & 0.06 & 0.12 & 0.06 & 0.36 & 0.06 & 0.07 \\
\hline
\end{tabular}

Table A - ! ?
Adjusted Validities for the MAGE Composites
Combined Criterion


Adjusted Validities for the MAGE Composites Combined Criterion (Continued)


Table A - 18
Sample Validities for High School Composites
Combined Criterion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MOS & M & N & HSM & St & HSMT & SE & HSOS & 8E & HSSS & 88 & HSEE & SE & NORM SE \\
\hline 710 & CL & 114 & 0.38 & 0.09 & 0.33 & 0.07 & 0.39 & 0.07 & 0.38 & 0.08 & 0.36 & 0.01 & 0.09 \\
\hline 712 & CL & 2782 & 0.46 & 0.02 & 0.36 & 0.02 & 0.45 & 0.02 & 0.43 & 0.02 & 0.43 & 0.00 & 0.02 \\
\hline 71M & CL & 182 & 0.36 & 0.06 & 0.32 & 0.06 & 0.35 & 0.07 & 0.37 & 0.06 & 0.34 & 0.01 & 0.07 \\
\hline 71N & CL & 173 & 0.35 & 0.07 & 0.32 & 0.07 & 0.42 & 0.06 & 0.35 & 0.07 & 0.38 & 0.01 & 0.08 \\
\hline 73 C & CL & 478 & 0.55 & 0.03 & 0.50 & 0.04 & 0.54 & 0.03 & 0.54 & 0.03 & 0.53 & 0.00 & 0.05 \\
\hline 758 & CL & 920 & 0.41 & 0.03 & 0.37 & 0.02 & 0.39 & 0.03 & 0.40 & 0.03 & 0.42 & 0.00 & 0.03 \\
\hline 750 & CL & 317 & 0.48 & 0.04 & 0.47 & 0.05 & 0.46 & 0.05 & 0.50 & 0.04 & 0.51 & 0.00 & 0.06 \\
\hline 750 & CL & 101 & 0.41 & 0.03 & 0.36 & 0.03 & 0.37 & 0.03 & 0.40 & 0.03 & 0.11 & 0.00 & 0.04 \\
\hline 75E & CL & 417 & 0.45 & 0.04 & 0.41 & 0.04 & 0.43 & 0.04 & 0.45 & 0.04 & 0.45 & 0.00 & 0.05 \\
\hline 759 & CL & 137 & 0.55 & 0.07 & 0.50 & 0.08 & 0.54 & 0.08 & 0.56 & 0.07 & 0.55 & 0.01 & 0.09 \\
\hline 76 C & CL & 1296 & 0.29 & 0.02 & 0.29 & 0.02 & 0.26 & 0.03 & 0.30 & 0.02 & 0.32 & 0.00 & 0.03 \\
\hline 76 P & CL & 559 & 0.39 & 0.04 & 0.32 & 0.04 & 0.42 & 0.03 & 0.39 & 0.04 & 0.40 & 0.00 & 0.04 \\
\hline 76 V & CL & 214 & 0.37 & 0.06 & 0.30 & 0.06 & 0.33 & 0.06 & 0.36 & 0.05 & 0.34 & 0.01 & 0.07 \\
\hline 76W & C 6 & 684 & 0.31 & 0.04 & 0.35 & 0.04 & 0.28 & 0.08 & 0.33 & 0.04 & 0.34 & 0.00 & 0.04 \\
\hline 76x & CL & 158 & 0.15 & 0.08 & 0.09 & 0.06 & 0.10 & 0.07 & 0.12 & 0.07 & 0.11 & 0.01 & 0.08 \\
\hline \(76 Y\) & CL & 1136 & 0.25 & 0.03 & 0.23 & 0.03 & 0.30 & 0.03 & 0.25 & 0.03 & 0.28 & 0.00 & 0.03 \\
\hline 118 & CO & 5761 & 0.29 & 0.01 & 0.30 & 0.01 & 0.29 & 0.01 & 0.32 & 0.01 & 0.31 & 0.00 & 0.01 \\
\hline iic & co & 2482 & 0.31 & 0.03 & 0.33 & 0.02 & 0.30 & 0.02 & 0.33 & 0.02 & 0.33 & 0.00 & 0.03 \\
\hline 11H & CO & 948 & 0.25 & 0.03 & 0.25 & 0.03 & 0.25 & 0.03 & 0.27 & 0.03 & 0.27 & 0.00 & 0.03 \\
\hline 12 B & co & 2411 & 0.29 & 0.02 & 0.34 & 0.02 & 0.25 & 0.02 & 0.33 & 0.02 & 0.32 & 0.00 & 0.02 \\
\hline 12F & CO & 224 & 0.14 & 0.06 & 0.21 & 0.06 & 0.10 & 0.08 & 0.18 & 0.06 & 0.16 & 0.01 & 0.07 \\
\hline 190 & CO & 1035 & 0.35 & 0.03 & 0.35 & 0.03 & 0.34 & 0.03 & 0.36 & 0.03 & 0.36 & 0.00 & 0.03 \\
\hline 19 E & co & 2322 & 0.41 & 0.02 & 0.43 & 0.02 & 0.37 & 0.02 & 0.44 & 0.02 & 0.42 & 0.00 & 0.02 \\
\hline 197 & co & 83 & 0.37 & 0.09 & 0.41 & 0.09 & 0.27 & 0.09 & 0.39 & 0.08 & 0.37 & 0.01 & 0.12 \\
\hline 17 K & EL & 179 & 0.29 & 0.06 & 0.29 & 0.07 & 0.28 & 0.06 & 0.34 & 0.06 & 0.28 & 0.01 & 0.07 \\
\hline 269 & EL & 142 & 0.28 & 0.07 & 0.25 & 0.06 & 0.34 & 0.07 & 0.26 & 0.06 & 0.38 & 0.01 & 0.08 \\
\hline 278 & EL & 305 & 0.32 & 0.05 & 0.27 & 0.06 & 0.37 & 0.05 & 0.31 & 0.05 & 0.32 & 0.00 & 0.06 \\
\hline 31 J & EL & 130 & 0.25 & 0.07 & 0.22 & 0.08 & 0.25 & 0.07 & 0.32 & 0.07 & 0.26 & 0.01 & 0.09 \\
\hline 31 H & EL & 1858 & 0.30 & 0.02 & 0.37 & 0.02 & 0.26 & 0.02 & 0.36 & 0.02 & 0.36 & 0.00 & 0.02 \\
\hline 31N & EL & 193 & 0.16 & 0.07 & 0.05 & 0.06 & 0.10 & 0.08 & 0.11 & 0.07 & 0.05 & 0.01 & 0.07 \\
\hline 31 V & EL & 650 & 0.26 & 0.03 & 0.31 & 0.04 & 0.28 & 0.03 & 0.30 & 0.03 & 0.33 & 0.00 & 0.04 \\
\hline 35k & EL & 121 & 0.42 & 0.07 & 0.44 & 0.06 & 0.39 & 0.07 & 0.43 & 0.06 & 0.41 & 0.01 & 0.09 \\
\hline 36 C & EL & 374 & 0.10 & 0.05 & 0.09 & 0.04 & 0.10 & 0.05 & 0.08 & 0.05 & 0.10 & 0.00 & 0.05 \\
\hline 36 K & EL & 1581 & 0.23 & 0.02 & 0.30 & 0.02 & 0.21 & 0.03 & 0.29 & 0.02 & 0.25 & 0.00 & 0.03 \\
\hline 138 & FA & 4778 & 0.34 & 0.01 & 0.38 & 0.01 & 0.32 & 0.01 & 0.37 & 0.01 & 0.37 & 0.00 & 0.0i \\
\hline \(13 \%\) & FA & 824 & 0.35 & 0.03 & 0.39 & 0.03 & 0.34 & 0.03 & 0.40 & 0.02 & 0.36 & 0.00 & 0.03 \\
\hline 415 & CM & 103 & 0.19 & 0.09 & 0.21 & 0.09 & 0.22 & 0.10 & 0.18 & 0.08 & 0.25 & 0.01 & 0.10 \\
\hline 435 & GM & 99 & 0.23 & 0.09 & 0.17 & 0.09 & 0.23 & 0.10 & 0.19 & 0.08 & 0.25 & 0.01 & 0.10 \\
\hline 448 & GM & 137 & 0.28 & 0.08 & 0.30 & 0.09 & 0.16 & 0.07 & 0.29 & 0.09 & 0.26 & 0.01 & 0.09 \\
\hline 45x & TM & 228 & 0.20 & 0.07 & 0.30 & 0.06 & 0.26 & 0.06 & 0.29 & 0.07 & 0.24 & 0.01 & 0.07 \\
\hline 518 & CM & 195 & 0.25 & 0.07 & 0.27 & 0.05 & 0.26 & 0.07 & 0.27 & 0.06 & 0.25 & 0.01 & 0.07 \\
\hline 51 K & CM & 267 & 0.17 & 0.09 & 0.24 & 0.07 & 0.20 & 0.07 & 0.17 & 0.04 & 0.25 & 0.01 & 0.08 \\
\hline 52 D & GM & 176 & 0.26 & 0.07 & 0.33 & 0.06 & 0.25 & 0.07 & 0.34 & 0.06 & 0.27 & 0.01 & 0.08 \\
\hline 553 & GM & 366 & 0.23 & 0.05 & 0.23 & 0.05 & 0.25 & 0.06 & 0.25 & 0.05 & 0.28 & 0.00 & 0.05 \\
\hline 515 & GM & 126 & -0.01 & 0.09 & 0.09 & 0.09 & 0.18 & 0.11 & 0.08 & 0.10 & 0.03 & 0.01 & 0.09 \\
\hline 57H & GM & 224 & 0.18 & 0.06 & 0.09 & 0.06 & 0.19 & 0.07 & 0.19 & 0.06 & 0.13 & 0.01 & 0.07 \\
\hline 628 & GM & 230 & 0.37 & 0.05 & 0.14 & 0.05 & 0.32 & 0.05 & 0.11 & 0.05 & 0.40 & 0.00 & 0.07 \\
\hline 627 & GH & 200 & 0.26 & 0.06 & 0.36 & 0.06 & 0.24 & 0.07 & 0.32 & 0.0., & 0.25 & 0.01 & 0.07 \\
\hline 68.5 & GM & 188 & 0.22 & 0.07 & 0.35 & 0.06 & 0.19 & 0.07 & 0.31 & 0.06 & 0.26 & 0.01 & 0.07 \\
\hline 68M & GM & 132 & 0.28 & 0.06 & 0.39 & 0.05 & 0.32 & 0.07 & 0.34 & 0.05 & 0.30 & 0.01 & 0.09 \\
\hline
\end{tabular}

\title{
Sample Validities for High School Composites Combined Criterion (Continued)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MOS & NA & N & IISAA & SE & HSMI & SE & HSOS & SE & HSSS & SE & HSEE & SE & NORM SE \\
\hline 12 C & NM & 355 & 0.25 & 0.05 & 0.28 & 0.05 & 0.26 & 0.06 & 0.29 & 0.05 & 0.27 & 0.00 & 0.05 \\
\hline 618 & M \({ }^{\text {H }}\) & 183 & 0.66 & 0.04 & 0.58 & 0.04 & 0.59 & 0.04 & 0.67 & 0.04 & 0.59 & 0.00 & 0.07 \\
\hline 62 C & M \({ }^{\text {H }}\) & 136 & 0.36 & 0.07 & 0.35 & 0.07 & 0.40 & 0.06 & 0.40 & 0.07 & 0.44 & 0.01 & 0.09 \\
\hline 628 & MH & 355 & 0.38 & 0.05 & 0.42 & 0.04 & 0.37 & 0.05 & 0.42 & 0.05 & 0.39 & 0.00 & 0.05 \\
\hline 638 & M \({ }^{\text {H }}\) & 1818 & 0.27 & 0.02 & 0.34 & 0.02 & 0.22 & 0.02 & 0.30 & 0.02 & 0.30 & 0.00 & 0.02 \\
\hline 63 D & MM & 342 & 0.09 & 0.06 & 0.10 & 0.05 & 0.12 & 0.07 & 0.08 & 0.06 & 0.06 & 0.01 & 0.05 \\
\hline 636 & M4 & 161 & 0.10 & 0.08 & 0.20 & 0.07 & 0.00 & 0.07 & 0.14 & \(0.0 \%\) & 0.09 & 0.01 & 0.08 \\
\hline 6311 & MM & 783 & 0.30 & 0.03 & 0.36 & 0.03 & 0.26 & 0.03 & 0.34 & 0.03 & 0.33 & 0.00 & 0.04 \\
\hline \(63 N\) & MM & 509 & 0.09 & 0.04 & 0.21 & 0.04 & 0.07 & 0.04 & 0.14 & 0.04 & 0.12 & 0.00 & 0.04 \\
\hline 63 W & MM & 527 & 0.12 & 0.05 & 0.19 & 0.04 & 0.19 & 0.04 & 0.19 & 0.04 & 0.19 & 0.00 & 0.04 \\
\hline \(63 Y\) & M4 & 238 & 0.12 & 0.07 & 0.18 & 0.07 & 0.17 & 0.07 & 0.16 & 0.07 & 0.14 & 0.01 & 0.06 \\
\hline 67 N & MH & 471 & 0.313 & 0.04 & 0.34 & 0.04 & 0.32 & 0.05 & 0.36 & 0.04 & 0.36 & 0.00 & 0.05 \\
\hline 675 & MM & 121 & 0.62 & 0.06 & 0.57 & 0.07 & 0.61 & 0.05 & 0.62 & 0.07 & 0.65 & 0.01 & 0.09 \\
\hline 67 U & MM & 278 & 0.34 & 0.04 & 0.38 & 0.05 & 0.34 & 0.04 & 0.38 & 0.04 & 0.35 & 0.00 & 0.06 \\
\hline 67 V & MM & 310 & 0.38 & 0.06 & 0.36 & 0.06 & 0.35 & 0.06 & 0.39 & 0.06 & 0.17 & 0.01 & 0.06 \\
\hline 67 Y & NPM & 241 & 0.24 & 0.07 & 0.30 & 0.07 & 0.20 & 0.06 & 0.25 & \(0.0 \%\) & 0.27 & 0.01 & 0.06 \\
\hline 680 & HM & 121 & 0.37 & 0.06 & 0.48 & 0.06 & 0.40 & 0.07 & 0.45 & 0.06 & 0.45 & 0.01 & 0.09 \\
\hline 686 & H24 & 121 & 0.34 & 0.09 & 0.30 & 0.09 & 0.24 & 0.10 & 0.33 & 0.10 & \(0.3 \%\) & 0.01 & 0.09 \\
\hline 15D & OF & 406 & 0. 29 & 0.04 & 0.24 & 0.04 & 0.18 & 0.05 & 0.23 & 0.04 & 0.20 & 0.00 & 0.05 \\
\hline 15 E & OF & 280 & 0.14 & 0.06 & 0.18 & 0.05 & 0.15 & 0.05 & 0.18 & 0.05 & 0.16 & 0.00 & 0.06 \\
\hline 168 & OF & 288 & 0.25 & 0.05 & 0.28 & 0.05 & 0.25 & 0.06 & 0.28 & c. 05 & 0.28 & 0.01 & 0.06 \\
\hline 16 C & OF & 118 & 0.30 & 0.07 & 0.21 & 0.09 & 0.26 & 0.06 & 0.25 & 0.08 & 0.25 & 0.01 & 0.09 \\
\hline 16 D & OF & 112 & 0.29 & 0.07 & 0.46 & 0.09 & 0.35 & 0.08 & 0.36 & 0.08 & 0.38 & 0.01 & 0.09 \\
\hline 164 & OF & 104 & 0.43 & 0.08 & 0.12 & 0.08 & 0.39 & 0.10 & 0.47 & 0.08 & 0.44 & 0.01 & 0.10 \\
\hline 163 & OF & 119 & 0.40 & 0.08 & 0.31 & 0.07 & 0.43 & 0.07 & 0.38 & 0.08 & 0.43 & 0.01 & 0.09 \\
\hline 16 R & OP & 404 & 0.17 & 0.04 & 0.18 & 0.04 & 0.18 & 0.04 & 0.18 & 0.04 & 0.17 & 0.00 & 0.05 \\
\hline 165 & OF & 592 & 0.24 & 0.04 & 0.33 & 0.04 & 0.23 & 0.04 & 0.28 & 0.04 & 0.30 & 0.00 & 0.04 \\
\hline 64 C & OF & 2959 & 0.30 & 0.02 & 0.33 & 0.02 & 0.23 & 0.02 & 0.32 & 0.02 & 0.30 & 0.00 & 0.02 \\
\hline 94 B & OF & 3322 & 0.34 & 0.02 & 0.34 & 0.02 & 0.27 & 0.02 & 0.35 & 0.02 & 0.35 & 0.00 & 0.02 \\
\hline OSB & SC & 890 & 0.28 & 0.04 & 0.26 & 0.03 & 0.22 & 0.04 & 0.29 & 0.04 & 0.26 & 0.00 & 0.03 \\
\hline 05C & SC & 1971 & 0.36 & 0.07 & 0.38 & 0.02 & 0.29 & 0.02 & 0.38 & 0.02 & 0.38 & 0.00 & 0.02 \\
\hline 056 & 5 C & 119 & 0.27 & 0.09 & 0.34 & 0.08 & \(0.2 \%\) & 0.09 & 0.36 & 0.09 & 0.27 & 0.01 & 0.09 \\
\hline 170 & SC & 187 & 0.24 & 0.08 & 0.21 & 0.07 & 0.16 & 0.06 & 0.23 & 0.07 & 0.22 & 0.01 & 0.07 \\
\hline 72E & 5 C & 562 & 0.41 & 0.03 & 0.52 & 0.02 & 0.31 & 0.04 & 0.47 & 0.03 & 0.49 & 0.00 & 0.04 \\
\hline O5H & ST & 110 & 0.48 & 0.06 & 0.30 & 0.08 & 0.57 & 0.05 & 0.11 & 0.06 & 0.43 & 0.01 & 0.10 \\
\hline 13 E & ST & 678 & 0.29 & 0.04 & 0.26 & 0.03 & 0.31 & 0.03 & 0.29 & 0.04 & 0.31 & 0.00 & 0.04 \\
\hline S4E & \(5 T\) & 270 & 0.30 & 0.05 & 0.32 & 0.05 & 0.34 & 0.05 & 0.33 & 0.05 & 0.36 & 0.00 & 0.06 \\
\hline 740 & \(5 T\) & 98 & 0.47 & 0.08 & 0.26 & 0.08 & 0.41 & 0.10 & 0.39 & 0.09 & 0.37 & 0.01 & 0.10 \\
\hline 82 C & ST & 536 & 0.38 & 0.04 & 0.40 & 0.03 & 0.38 & 0.04 & 0.40 & 0.04 & 0.43 & 0.00 & 0.04 \\
\hline 91 C & ST & 233 & 0.38 & C. 0.05 & 0.34 & 0.05 & 0.38 & 0.05 & 0.37 & 0.05 & 0.39 & 0.00 & 0.07 \\
\hline 918 & ST & 301 & 0.26 & 0.05 & 0.22 & 0.05 & 0.30 & 0.05 & 0.27 & 0.05 & 0.32 & 0.00 & 0.06 \\
\hline 91P & 87 & 159 & 0.19 & 0.08 & 0.21 & 0.08 & 0.23 & 0.09 & 0.22 & 0.07 & 0.24 & 0.01 & 0.08 \\
\hline 918 & ST & 145 & 0.27 & 0.06 & 0.18 & 0.07 & 0.37 & 0.07 & 0.22 & 0.07 & 0.26 & 0.01 & 0.08 \\
\hline 928 & 8 T & 364 & 0.34 & 0.05 & 0.30 & 0.05 & 0.10 & 0.04 & 0.33 & 0.05 & 0.34 & 0.01 & 0.05 \\
\hline 9311 & ST & 114 & 0.30 & 0.09 & 0.28 & 0.08 & 0.22 & c. 09 & 0.33 & 0.09 & 0.30 & 0.01 & 0.09 \\
\hline 958 & ST & 3655 & 0.31 & 0.02 & 0.30 & 0.01 & 0.27 & 0.01 & 0.33 & 0.01 & 0.33 & 0.00 & 0.02 \\
\hline 96 B & ST & 172 & 0.50 & 0.05 & 0.34 & 0.06 & 0.43 & 0.06 & 0.43 & 0.06 & 0.48 & 0.01 & 0.08 \\
\hline 98 C & ST & 186 & 0.42 & 0.06 & 0.22 & 0.06 & 0.51 & 0.05 & 0.39 & 0.06 & 0.36 & 0.01 & \(0.0 \%\) \\
\hline
\end{tabular}

Tabie A- 19
Adjustea Validities for High School Composites
Combined Criterion
OS AA N HSAA SE HSMT SE HSOS SP HSSS SE HSEE SE NORM SE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 710 & CL & 114 & 0.43 & 0.18 & 0.38 & 0.14 & 0.39 & 0.22 & 0.43 & 0.18 & 0.39 & 0.02 & 0.09 \\
\hline 716 & CL & 278? & 0.61 & 0.02 & 0.50 & 0.02 & 0.61 & 0.02 & 0.59 & 0.02 & 0.58 & 0.00 & 0.02 \\
\hline 71 M & CL & 182 & 0.55 & 0.08 & 0.48 & 0.06 & 0.57 & 4.09 & 0.56 & 0.07 & 0.51 & 0.01 & 0.07 \\
\hline 71N & CL & 173 & 0.69 & 0.05 & 0.58 & 0.05 & 0.73 & 0.05 & 0.66 & 0.05 & 0.67 & 0.01 & 0.08 \\
\hline 73 C & CL & 478 & 0.68 & 0.03 & 0.59 & 0.03 & 0.68 & 0.03 & 0.67 & 0.03 & 0.65 & 0.00 & 0.05 \\
\hline 75 B & CL & 920 & 0.55 & 0.03 & 0.49 & 0.03 & 0.54 & 0.04 & 0.54 & 0.03 & 0.55 & 0.00 & 0.03 \\
\hline 75 C & CL & 317 & 0.61 & 0.07 & 0.58 & 0.06 & 0.59 & 0.08 & 0.62 & 0.05 & 0.63 & 0.01 & 0.06 \\
\hline 750 & CL & 801 & 0.52 & 0.06 & 0.46 & 0.05 & 0.49 & 0.06 & 0.51 & 0.05 & 0.53 & 0.01 & 0.04 \\
\hline \(75 E\) & CL & 417 & 0.59 & 0.06 & 0.52 & 0.06 & 0.58 & 0.08 & 0.58 & 0.06 & 0.58 & 0.01 & 0.05 \\
\hline 75 F & C.L & 137 & 0.65 & 0.11 & 0.57 & 059 & 0.64 & 0.14 & 0.65 & 0.10 & 0.64 & 0.01 & 0.09 \\
\hline 76 C & CL & 1296 & 0.51 & 0.24 & 0.48 & 0.03 & 0.49 & 0.04 & 0.51 & 0.03 & 0.52 & 0.00 & 0.03 \\
\hline 768 & CL & 559 & 0.62 & 0.04 & 0.52 & 0.04 & 0.64 & 0.04 & 0.62 & 0.04 & 0.62 & 0.00 & 0.04 \\
\hline 76 V & CL & 214 & 0.54 & 0.04 & 0.46 & 0.07 & 0.53 & 0.09 & 0.53 & 0.08 & 0.52 & c.01 & 0.07 \\
\hline 76W & CL & 684 & 0.55 & 0.01 & 0.58 & 0.05 & 0.51 & 0.08 & 0.57 & 0.06 & 0.58 & 0.01 & 0.04 \\
\hline 76X & CL & 158 & 0.33 & 0.23 & 0.27 & 0.21 & 0.35 & 0.25 & 0.31 & 0.23 & 0.31 & 0.02 & 0.08 \\
\hline \(76 Y\) & CL & 1136 & 0.42 & 0.05 & 0.37 & 0.04 & 0.45 & 0.06 & 0.41 & 0.05 & 0.43 & 0.00 & 0.03 \\
\hline 11 B & CO & 5761 & 0.10 & 0.02 & 0.40 & 0.02 & 0.39 & 0.02 & 0.42 & 0.02 & 0.41 & 0.00 & 0.01 \\
\hline 11 C & co & 1482 & 0.42 & 0.03 & 0.43 & 0.03 & 0.40 & 0.03 & 0.44 & 0.03 & 0.43 & 0.00 & 0.03 \\
\hline 113 & co & 948 & 0.37 & 0.04 & 0.35 & 0.04 & 0.36 & 0.04 & 0.38 & 0.04 & 0.38 & 0.00 & 0.03 \\
\hline 128 & co & 2411 & 0.40 & 0.02 & 0.45 & 0.02 & 0.36 & 0.02 & 0.44 & 0.02 & 0.43 & 0.00 & 0.02 \\
\hline 12F & CO & 224 & 0.29 & 0.09 & 0.36 & 0.09 & 0.27 & 0.10 & 0.34 & 0.09 & 0.31 & 0.01 & 0.07 \\
\hline 19 D & co & 1035 & 0.47 & 0.03 & 0.46 & 0.04 & 0.45 & 0.03 & 0.48 & 0.04 & 0.17 & 0.00 & 0.03 \\
\hline 19 E & co & 2322 & 0.53 & 0.02 & 0.55 & 0.02 & 0.50 & 0.02 & 0.56 & 0.02 & 0.54 & 0.00 & 0.02 \\
\hline 19 F & co & 83 & 0.48 & 0.12 & 0.52 & 0.12 & 0.40 & 0.14 & 0.50 & 0.12 & 0.49 & 0.01 & 0.11 \\
\hline -7K & EL & 179 & 0.50 & 0.08 & 5.48 & 0.10 & 0.50 & 0.09 & 0.53 & 0.08 & 0.49 & 0.01 & 0.07 \\
\hline 269 & Et, & 142 & 0.49 & 0.10 & 0.47 & 0.08 & 0.50 & 0.09 & 0.48 & 0.09 & 0.54 & 0.01 & 0.08 \\
\hline \(27 E\) & EL & 305 & 0.53 & 0.06 & 0.48 & 0.06 & 0.56 & 0.06 & 0.53 & 0.06 & 0.52 & 0.01 & 0.06 \\
\hline 313 & EL & 130 & 0.53 & 0.13 & 0.55 & 0.12 & 0.55 & 0.12 & 0.61 & 0.12 & 0.58 & 0.01 & 0.09 \\
\hline 31 M & EL & 1858 & 0.56 & 0.03 & 0.59 & 0.02 & 0.52 & 0.02 & 0.59 & 0.02 & 0.60 & 0.00 & 0.02 \\
\hline 31 N & EL & 193 & 0.35 & 0.12 & 0.29 & 0.11 & 0.32 & 0.11 & 0.33 & 0.12 & 0.29 & 0.01 & 0.07 \\
\hline 310 & EL & 650 & 0.50 & 0.04 & 0.53 & 0.04 & 0.48 & 0.04 & 0.52 & 0.04 & 0.54 & 0.00 & 0.04 \\
\hline 35K & EL & 121 & 0.65 & 0.09 & 0.64 & 0.07 & 0.64 & 0.08 & 0.65 & 0.08 & 0.64 & 0.01 & 0.09 \\
\hline 36 C & E* & 374 & 0.25 & 0.10 & 0.22 & 0.09 & 0.24 & 0.09 & 0.23 & 0.09 & 0.24 & 0.01 & 0.05 \\
\hline 36 K & EL & 1581 & 0.39 & 0.04 & 0.14 & 0.04 & 0.35 & 0.04 & 0.43 & 0.04 & 0.11 & 0.00 & 0.03 \\
\hline 13 B & FA & 4778 & 0.43 & 0.02 & 0.46 & 0.01 & 0.40 & 0.02 & 0.45 & 0.02 & 0.45 & 0.00 & 0.01 \\
\hline 13 F & FA & 824 & 0.62 & 0.03 & 0.64 & 0.02 & 0.62 & 0.03 & 0.66 & 0.03 & 0.63 & 0.00 & 0.03 \\
\hline 41 C & GM & 103 & 0.33 & 0.17 & 0.35 & 0.15 & 0.33 & 0.19 & 0.33 & 0.16 & 0.36 & 0.02 & 0.10 \\
\hline 43 E & GM & 99 & 0.37 & 0.15 & 0.35 & 0.15 & 0.38 & 0.16 & 0.35 & 0.15 & 0.41 & 0.01 & 0.10 \\
\hline 448 & GM & 137 & 0.39 & 0.15 & 0.41 & 0.15 & 0.34 & 0.14 & 0.11 & 0.15 & 0.39 & 0.01 & 0.09 \\
\hline 45K & GM & 228 & 0.17 & 0.09 & 0.52 & 0.08 & 0.50 & 0.08 & 0.52 & 0.09 & 0.51 & 0.01 & 0.07 \\
\hline 51 B & GM & 195 & 0.35 & 0.08 & 0.38 & 0.08 & 0.33 & 0.09 & 0.37 & 0.08 & 0.35 & 0.01 & 0.07 \\
\hline 51 K & GM & 167 & 0.39 & 0.12 & 0.44 & 0.11 & 0.39 & 0.12 & 0.41 & 0.12 & 0.45 & 0.01 & 0.08 \\
\hline 52 D & GM & 176 & 0.38 & 0.09 & 0.42 & 0.09 & 0.34 & 0.09 & 0.43 & 0.09 & 0.38 & 0.01 & 0.08 \\
\hline 558 & GM & 366 & 0.56 & 0.06 & 0.56 & 0.07 & 0.55 & 0.06 & 0.57 & 0.06 & 0.60 & 0.01 & 0.05 \\
\hline 57E & GM & 126 & 0.26 & 0.28 & 0.27 & 0.25 & 0.33 & \(0.2 \%\) & 0.29 & 0.29 & 0.26 & 0.03 & 0.09 \\
\hline 57\% & GM & 224 & 0.43 & 0.13 & 0.39 & 0.15 & 0.43 & 0.14 & 0.44 & 0.14 & 0.42 & 2.0\% & 0.07 \\
\hline 62 E & GM & 230 & 0.55 & 0.05 & 0.61 & 0.05 & 0.52 & 0.06 & 0.59 & 0.05 & 0.58 & 0.01 & 0.07 \\
\hline 627 & GM & 200 & 0.50 & 0.09 & 0.56 & 0.08 & 0.46 & 0.10 & 0.54 & 0.09 & 0.52 & 0.01 & 0.07 \\
\hline 68.5 & GM & 188 & 0.54 & 0.09 & 0.62 & 0.08 & 0.50 & 0.09 & 0.59 & 0.09 & 0.57 & 0.01 & 0.07 \\
\hline 68M & GM & 132 & 0.53 & 0.08 & 0.60 & 0.08 & 0.56 & 0.08 & 0.58 & 0.08 & 0.57 & 0.01 & 0.09 \\
\hline
\end{tabular}
(Cort'd)

Adjusted Yalidities for High Srhool Composites Combined Criterion (Continued)
MOS AA I HSAA SE HSNT SE HSOS SE HSSS GE HSEE SE NORM SE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 12C & MP4 & 355 & 0.41 & 0.06 & 0.44 & 0.06 & 0.41 & 0.07 & 0.45 & 0.06 & 0.42 & 0.01 & 0.05 \\
\hline 618 & M94 & 183 & 0.72 & 0.04 & 0.65 & 0.05 & 0.66 & 0.04 & 0.72 & 0.04 & 0.66 & 0.00 & 0.07 \\
\hline 615 & 194 & 136 & 0.62 & 0.07 & 0.65 & 0.10 & 0.63 & 0.06 & 0.66 & 0.08 & 0.66 & 0.01 & 0.09 \\
\hline 628 & MP1 & 355 & 0.49 & 0.05 & 0.55 & 0.04 & 0.48 & 0.05 & 0.52 & 0.05 & 0.51 & 0.00 & 0.05 \\
\hline 638 & MH & 1818 & 0.40 & 0.03 & 0.48 & 0.02 & 0.36 & 0.03 & 0.44 & 0.02 & 0.43 & 0.00 & 0.02 \\
\hline 63 D & M \({ }^{\text {H }}\) & 342 & 0.29 & 0.11 & 0.32 & 0.11 & 0.29 & 0.12 & 0.30 & 0.11 & 0.28 & 0.01 & 0.05 \\
\hline 63 G & MM & 161 & 0.28 & 0.13 & 0.35 & 0.13 & 0.23 & 0.12 & 0.33 & 0.13 & 0.30 & 0.01 & 0.08 \\
\hline 63 H & MM & 783 & 0.45 & 0.04 & 0.51 & 0.03 & 0.41 & 0.04 & 0.49 & 0.04 & 0.48 & 0.00 & 0.04 \\
\hline 63 N & MM & 509 & 0.23 & 0.07 & 0.35 & 0.07 & 0.21 & 0.07 & 0.28 & 0.07 & 0.28 & 0.01 & 0.04 \\
\hline 63 W & MM & 527 & 0.28 & 0.07 & 0.29 & 0.08 & 0.28 & 0.07 & 0.29 & 0.07 & 0.29 & 0.01 & 0.04 \\
\hline \(63 Y\) & MM & 238 & 0.42 & 0.13 & 0.50 & 0.14 & 0.42 & 0.13 & 0.16 & 0.13 & 0.44 & 0.01 & 0.06 \\
\hline 67 N & MM & 471 & 0.58 & 0.05 & 0.60 & 0.05 & 0.56 & 0.05 & 0.61 & 0.05 & 0.60 & 0.00 & 0.05 \\
\hline 677 & HM & 124 & 0.83 & 0.03 & 0.80 & 0.04 & 0.81 & 0.02 & 0.84 & 0.03 & 0.85 & 0.00 & 0.09 \\
\hline 675 & H04 & 278 & 0.54 & 0.07 & 0.60 & 0.08 & 0.52 & 0.06 & 0.59 & 0.07 & 0.56 & 0.01 & 0.06 \\
\hline 67 V & 109 & 310 & 0.60 & 0.06 & 0.60 & 0.07 & 0.58 & 0.06 & 0.62 & 0.07 & 0.60 & 0.01 & 0.06 \\
\hline \(67 Y\) & MM & 241 & 0.60 & 0.08 & 0.66 & 0.08 & 0.54 & 0.08 & 0.63 & 0.08 & 0.63 & 0.01 & 0.06 \\
\hline 68 D & HM & 121 & 0.60 & 0.07 & 0.70 & 0.07 & 0.59 & 0.08 & 0.67 & 0.07 & 0.66 & 0.01 & 0.09 \\
\hline 63 G & MM & 121 & 0.46 & 0.17 & 0.47 & 0.18 & 0.36 & 0.17 & 0.45 & 0.18 & 0.48 & 0.02 & 0.09 \\
\hline 150 & OF & 406 & 0.43 & 0.07 & 0.16 & 0.07 & 0.41 & 0.07 & 0.46 & 0.07 & 0.44 & 0.01 & 0.05 \\
\hline 15E & OF & 280 & 0.38 & 0.09 & 0.42 & 0.09 & 0.37 & 0.08 & 0.42 & 0.09 & 0.39 & 0.01 & 0.06 \\
\hline 168 & OF & 288 & 0.43 & 0.08 & 0.45 & 0.08 & 0.42 & 0.08 & 0.45 & 0.08 & 0.46 & 0.01 & 0.06 \\
\hline 16 C & OF & 118 & 0.31 & 0.15 & 0.24 & 0.15 & 0.31 & 0.14 & 0.28 & 0.15 & 0.29 & 0.01 & 0.09 \\
\hline 16 D & OP & 112 & 0.52 & 0.12 & 0.61 & 0.09 & 0.50 & 0.11 & 0.55 & 0.10 & 0.56 & 0.01 & 0.09 \\
\hline 16 H & OP & 104 & 0.73 & 0.10 & 0.72 & 0.09 & 0.69 & 0.10 & 0.75 & 0.10 & 0.73 & 0.01 & 0.10 \\
\hline \(16 J\) & OF & 119 & 0.61 & 0.12 & 0.54 & 0.12 & 0.62 & 0.11 & 0.60 & 0.13 & 0.61 & 0.01 & 0.09 \\
\hline 16 R & OF & 404 & 0.34 & 0.06 & 0.34 & 0.05 & 0.33 & 0.06 & 0.35 & 0.06 & 0.33 & 0.01 & 0.05 \\
\hline 265 & Or & 592 & 0.45 & 0.06 & 0.52 & 0.05 & 0.43 & 0.06 & 0.49 & 0.05 & 0.50 & 0.01 & 0.04 \\
\hline 64 C & OF & 2959 & 0.46 & 0.02 & 0.49 & 0.02 & 0.42 & 0.02 & 0.48 & 0.02 & 0.47 & 0.00 & 0.02 \\
\hline 94 B & OF & 3322 & 0.52 & 0.02 & 0.52 & 0.02 & 0.47 & 0.02 & 0.53 & 0.02 & 0.52 & 0.00 & 0.02 \\
\hline 058 & Sc & 896 & 0.44 & 0.06 & 0.41 & 0.05 & 0.41 & 0.06 & 0.44 & 0.06 & 0.42 & 0.01 & 0.03 \\
\hline 05C & SC & 1971 & 0.47 & 0.03 & 0.48 & 0.03 & 0.44 & 0.03 & 0.49 & 0.03 & 0.49 & 0.00 & 0.02 \\
\hline 056 & SC & 119 & 0.64 & 0.12 & 0.64 & 0.09 & 0.66 & 0.12 & 0.69 & 0.11 & 0.61 & 0.01 & 0.09 \\
\hline 17 C & SC & 87 & 0.38 & 0.11 & 0.34 & 0.10 & 0.36 & 0.12 & 0.38 & 0.11 & 0.35 & 0.01 & 0.07 \\
\hline 72 E & SC & 562 & 0.52 & 0.05 & 0.59 & 0.04 & 0.47 & 0.06 & 0.56 & 0.05 & 0.56 & 0.00 & 0.04 \\
\hline 05H & ST & 110 & 0.76 & 0.08 & 0.64 & 0.06 & 0.80 & 0.06 & 0.73 & 0.07 & 0.70 & 0.01 & 0.10 \\
\hline 13 E & ST & 678 & 0.46 & 0.05 & 0.44 & 0.04 & 0.46 & 0.04 & 0.47 & 0.05 & 0.47 & 0.00 & 0.04 \\
\hline 54 E & ST & 270 & 0.48 & 0.09 & 0.45 & 0.07 & 0.49 & 0.08 & 0.50 & 0.08 & 0.50 & 0.01 & 0.06 \\
\hline 74D & ST & 98 & 0.76 & 0.10 & 0.65 & 0.09 & 0.72 & 0.10 & 0.74 & 0.10 & 0.71 & 0.01 & 0.10 \\
\hline 82 C & ST & 536 & 0.53 & 0.06 & 0.54 & 0.05 & 0.52 & 0.06 & 0.55 & 0.06 & 0.56 & 0.01 & 0.04 \\
\hline 915 & ST & 233 & 0.58 & 0.05 & 0.54 & 0.05 & 0.57 & 0.05 & 0.57 & 0.06 & 0.57 & 0.00 & 0.07 \\
\hline \(91 \pm\) & ST & 301 & 0.54 & 0.07 & 0.50 & 0.06 & 0.56 & 0.06 & 0.55 & 0.06 & 0.57 & 0.01 & 0.06 \\
\hline 91 P & ST & 159 & 0.36 & 0.13 & 0.36 & 0.11 & 0.11 & 0.14 & 0.38 & 0.13 & 0.39 & 0.01 & 0.08 \\
\hline 91 R & 85 & 145 & 0.58 & 0.11 & 0.51 & 0.10 & 0.63 & 0.10 & 0.57 & 0.11 & 0.56 & 0.01 & 0.08 \\
\hline 92B & ST & 364 & 0.45 & 0.07 & 0.42 & 0.07 & 0.42 & 0.07 & 0.44 & 0.07 & 0.45 & 0.01 & 0.05 \\
\hline 9311 & 57 & 114 & 0.63 & 0.12 & 0.57 & 0.10 & 0.60 & 0.12 & 0.64 & 0.12 & 0.60 & 0.01 & 0.09 \\
\hline 958 & ST & 3695 & 0.58 & 0.02 & 0.57 & 0.02 & 0.55 & 0.02 & 0.59 & 0.02 & 0.59 & 0.00 & 0.02 \\
\hline 96 B & ST & 172 & 0.73 & 0.06 & 0.61 & 0.06 & 0.68 & 0.06 & 0.70 & 0.06 & 0.70 & 0.01 & 0.00 \\
\hline 98 C & ST & 186 & 0.76 & 0.09 & 0.65 & 0.08 & 0.79 & 0.07 & 0.75 & 0.09 & 0.73 & 0.01 & 0.07 \\
\hline
\end{tabular}

Cumulative Distributions for the Current Composites Based on a 2\% Sample of all FY81/82 Applicunts
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SCDRE & PTH1 & PTEO & PCTEL & PCTFA & PCTCH & PCTMA & Pctof & PCTI6 & PCTST \\
\hline 40 & 0.2 & 0.1 & 0.0 & 0.1 & 0.1 & 0.2 & 0.1 & 0.2 & 0.1 \\
\hline 41 & 0.8 & 0.5 & 0.4 & 0.3 & 0.6 & 0.7 & 0.9 & 0.8 & 0.6 \\
\hline 42 & 0.8 & 0.5 & 0.4 & 0.3 & 0.6 & 0.7 & 1.0 & 0.8 & 0.6 \\
\hline 43 & 0.9 & 0.5 & 0.5 & 0.3 & 0.6 & 0.8 & 1.0 & 0.8 & 0.7 \\
\hline 44 & 0.9 & 0.5 & 0.5 & 0.4 & 0.7 & 0.8 & 1.0 & 0.8 & 0.7 \\
\hline 45 & 1.0 & 0.6 & 0.6 & 0.4 & 0.7 & 0.9 & 1.1 & 0.9 & 0.8 \\
\hline 46 & 1.0 & 0.6 & 0.6 & 0.4 & 0.7 & 0.9 & 1.1 & 0.9 & 0.8 \\
\hline 47 & 1.1 & 0.6 & 0.6 & 0.5 & 0.9 & 0.9 & 1.2 & 1.0 & 1.0 \\
\hline 48 & 1.2 & 0.8 & 0.7 & 0.5 & 0.9 & 1.0 & 1.2 & 1.1 & 1.0 \\
\hline 49 & 1.2 & 0.8 & 0.7 & 0.5 & 0.9 & 1.0 & 1.3 & 1.2 & 1.1 \\
\hline 50 & 1.3 & 0.9 & 0.8 & 0.6 & 1.1 & 1.1 & 1.5 & 1.3 & 1.3 \\
\hline 51 & 1.5 & 0.9 & 1.0 & 0.7 & 1.3 & 1.2 & 1.5 & 1.4 & 1.5 \\
\hline 52 & 1.7 & 1.0 & 1.1 & 0.7 & 1.3 & 1.4 & 1.6 & 1.6 & 1.8 \\
\hline 53 & 1.9 & 1.1 & 1.4 & 0.9 & 1.5 & 1.6 & 1.8 & 1.7 & 2.1 \\
\hline 54 & 2.0 & 1.3 & 1.7 & 1.0 & 2.0 & 2.0 & 2.3 & 2.0 & 2.1 \\
\hline 55 & 2.2 & 8.4 & 2.0 & 1.1 & 2.3 & 2.3 & 2.5 & 2.3 & 2.4 \\
\hline 56 & 2.6 & 1.7 & 2.3 & 1.5 & 2.7 & 2.7 & 3.0 & 2.7 & 3.1 \\
\hline 57 & 3.1 & 2.2 & 3.1 & 2.0 & 3.4 & 3.2 & 3.5 & 3.1 & 4.0 \\
\hline 58 & 3.6 & 2.4 & 3.6 & 2.3 & 3.8 & 3.8 & 4.0 & 3.5 & 4.6 \\
\hline 59 & 4.2 & 2.9 & 4.8 & 3.1 & 4.3 & 4.4 & 4.8 & 4.2 & 5.1 \\
\hline 60 & 4.5 & 3.2 & 5.4 & 3.5 & 5.4 & 4.7 & 5.6 & 4.7 & 5.5 \\
\hline 61 & 5.3 & 4.0 & 6.0 & 3.9 & 6.7 & 5.6 & 6.3 & 5.2 & 6.8 \\
\hline 62 & 6.1 & 5.2 & 1.3 & 4.3 & 8.0 & 6.5 & 7.2 & 5.8 & 8.0 \\
\hline 63 & 6.5 & 5.7 & 8.1 & 5.2 & 8.6 & 7.4 & 8.1 & 6.4 & 8.6 \\
\hline 64 & 7.5 & 6.2 & 3.9 & 5.7 & 9.4 & 8.5 & 8.9 & 7.3 & 10.1 \\
\hline 65 & 8.4 & 7.3 & 10.5 & 6.8 & 10.9 & 9.6 & 10.5 & 8.4 & 11.5 \\
\hline 66 & 9.3 & 8.5 & 11.4 & 7.9 & 11.8 & 10.9 & 11.1 & 9.7 & 13.3 \\
\hline 67 & 10.6 & 9.2 & 12.2 & 3.5 & 12.7 & 11.5 & 12.4 & 10.5 & 13.8 \\
\hline 68 & 11.2 & 10.6 & 13.1 & 9.3 & 14.5 & 12.8 & 13.5 & 11.7 & 14.5 \\
\hline 69 & 11.9 & 12.0 & 14.1 & 10.1 & 15.2 & 14.3 & 14.7 & 12.9 & 16.5 \\
\hline 70 & 13.4 & 13.6 & 16.2 & 11.6 & 17.1 & 15.8 & 16.0 & 18.8 & 18.4 \\
\hline 11 & 15.1 & 15.0 & 11.1 & 12.4 & 19.0 & 17.5 & 17.5 & 15.1 & 20.: \\
\hline 12 & 15.9 & 16.0 & 18.! & 13.1 & 20.0 & 18.2 & 19.0 & 16.4 & 21.1 \\
\hline 73 & 17.5 & 17.0 & 20.2 & 14.1 & 20.9 & 19.9 & 20.9 & 17.9 & 23.2 \\
\hline 14 & 19.3 & 18.9 & 22.2 & 16.0 & 23.0 & 21.9 & 22.5 & 19.3 & 25.1 \\
\hline 75 & 20.9 & 21.1 & 24.6 & 18.3 & 25.2 & 23.8 & 24.4 & 21.6 & 27.3 \\
\hline 76 & 23.0 & 23.3 & 27.0 & 20.7 & 27.4 & 25.8 & 27.3 & 24.2 & 29.2 \\
\hline 77 & 24.0 & 25.6 & 28.1 & 72.1 & 27.4 & 28.2 & 29.1 & 26.0 & 31.4 \\
\hline 18 & 26.2 & 25.7 & 30.4 & 24.4 & 29.5 & 29.2 & 31.5 & 23.0 & 32.3 \\
\hline 99 & 27.4 & 29.9 & 31.4 & 27.2 & 31.7 & 31.5 & 12.4 & 29.7 & 34.\% \\
\hline 8 & 29.9 & 31.2 & 33.9 & 28.3 & 33.9 & 33.6 & 34.4 & 31.9 & 36.8 \\
\hline 81 & 31.2 & 32.5 & 36.3 & 29.6 & 36.0 & 36.1 & 36.7 & 32.7 & 38.9 \\
\hline 82 & 32.3 & 44.8 & 77.5 & 31.0 & 39.1 & 37.2 & 39.0 & 34.9 & 39.9 \\
\hline 81 & 33.7 & 36.6 & 38.3 & 32.2 & 40.3 & 18.3 & 40.1 & 36.2 & 41.0 \\
\hline 84 & 34.9 & 37.1 & 40.0 & 34.8 & 42.5 & 0.7 & 41.1 & 38.6 & 43.1 \\
\hline 85 & 37.7 & 39.8 & 42.3 & 36.2 & 43.5 & 43.2 & 43.4 & 40.7 & 45.2 \\
\hline 86 & 39.2 & 40.9 & 43.3 & 37.6 & 45.6 & 4.4 & 45.8 & 41.8 & 46.1 \\
\hline 87. & 40.7 & 43.3 & 44.5 & 40.2 & 46.9 & 66.7 & 46.3 & 43.0 & 47.2 \\
\hline 88 & 42.2 & 44.6 & 46.9 & 41.5 & 49.1 & 47.8 & 47.9 & 45.3 & 49.3 \\
\hline 89 & 43.9 & 47.0 & 47.9 & 42.9 & 50.1 & 49.0 & 49.9 & 46.5 & 50.2 \\
\hline 90 & 45.3 & 48.2 & 48.3 & 45.3 & 52.2 & 51.4 & 52.1 & 47.8 & 51.1 \\
\hline 91 & 46.8 & 49.5 & 51.1 & +6.5 & 54.2 & 53.5 & 54.3 & -9.1 & 53.1 \\
\hline 92 & 49.6 & 51.8 & 53.3 & 49.2 & 56.1 & 55.9 & 66.5 & 51.8 & 53.2 \\
\hline 93
48 & 51.3 & 54.1 & 55.2 & 50.5 & 58.0 & 58.0 & 58.7 & 54.5 & 57.3 \\
\hline 94 & 52.9 & 56.2 & 57.3 & 53.1 & 59.8 & 50.1 & 59.7 & 57.1 & 59.2 \\
\hline 95 & 59.1 & 58.3 & 59.3 & 55.5 & 60.3 & 52.3 & 61.6 & 58.4 & 60.9 \\
\hline 96 & 57.7 & 63.5 & 60.2 & 57.5 & 62.8 & 64.3 & 53.3 & 50.7 & 52.9 \\
\hline 97 & 59.2 & 61.6 & 61.1 & 58.3 & 63.3 & 65.3 & 4.9 & 52.1 & 63.7 \\
\hline
\end{tabular}


Conversions from Sum Scores to Composite Scores

continued on next page

Conversions from Sum Scores to Composite Scores (Continued)


Table A - 22
New and Current Composite Scores
Maintaining Constant aFOT Matas for Eltgibles Based on 4 2\% Sample of FY81/82 Applicants


New and Current Composite Scores
Maintaining Constant AFQT Means for Eligibles Based on a 2\% Sample of FY81/82 Applicants (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline muagot & 0 & CO & \(\varepsilon\). & FA & 0 & M \({ }^{\text {m }}\) & or & SC & ST & NEWSCORE \\
\hline 62.8 & 98 & 96 & 95 & 97 & 96 & 97 & 93 & 95 & 94 & 93 \\
\hline 63.6 & 99 & 97 & 95 & 98 & 97 & 98 & 94 & 96 & 94 & 94 \\
\hline 65.1 & 100 & 99 & 98 & 99 & 99 & 99 & 96 & 97 & 96 & 95 \\
\hline 65.8 & 101 & 100 & 99 & 100 & 100 & 100 & 97 & 98 & 97 & 96 \\
\hline 65.6 & 101 & 101 & 99 & 100 & 100 & 101 & 98 & 99 & 98 & 97 \\
\hline 68.1 & 103 & 102 & 101 & 102 & 102 & 103 & 99 & 100 & 99 & 98 \\
\hline 68.7 & 104 & 103 & 101 & 102 & 103 & 104 & 100 & 101 & 100 & 99 \\
\hline 70.1 & 106 & 104 & 103 & 104 & 104 & 105 & 101 & 103 & 101 & 100 \\
\hline 71.3 & 107 & 105 & 104 & 105 & 105 & 106 & 103 & 104 & 103 & 101 \\
\hline 71.9 & 108 & 108 & 104 & 105 & 106 & 107 & 103 & 104 & 104 & 102 \\
\hline 73.2 & 109 & 107 & 106 & 107 & 108 & 108 & 105 & 105 & 105 & 103 \\
\hline 74.5 & 111 & 109 & 107 & 108 & 109 & 111 & 106 & 107 & 107 & 104 \\
\hline 75.2 & 112 & 110 & 108 & 109 & 110 & 111 & 107 & 107 & 107 & 105 \\
\hline 76.4 & 113 & 111 & 109 & 110 & 113 & 113 & 109 & 108 & 109 & 106 \\
\hline 77.0 & 114 & 112 & 110 & 111 & 113 & 174 & 110 & 109 & 110 & 107 \\
\hline 78.2 & 115 & 114 & 111 & 112 & 115 & 115 & 111 & 111 & 112 & 108 \\
\hline 78.7 & 115 & 114 & 112 & 113 & 115 & 116 & 112 & 112 & 113 & 109 \\
\hline 19.3 & 116 & 115 & 112 & 113 & 116 & 117 & 113 & 113 & 113 & 110 \\
\hline 80.5 & 118 & 116 & 114 & 115 & 118 & 118 & 114 & 114 & 115 & 111 \\
\hline 81.0 & 118 & 117 & 114 & 115 & 118 & 119 & 115 & 115 & 115 & 112 \\
\hline 82.2 & 120 & 118 & 116 & 116 & 119 & 121 & 116 & 117 & 116 & 113 \\
\hline 83.0 & 121 & 119 & 117 & 117 & 120 & 122 & 117 & 118 & 117 & 114 \\
\hline 83.9 & 122 & 121 & 118 & 119 & 121 & 123 & 119 & 119 & 119 & 115 \\
\hline 84.4 & 123 & 122 & 119 & 119 & 122 & 123 & 120 & 120. & 119 & 116 \\
\hline 84.9 & 123 & 122 & 119 & 120 & 123 & 124 & 121 & 121 & 120 & 117 \\
\hline 85.9 & 124 & 123 & 121 & 121 & 123 & 125 & 122 & 122 & 121 & 118 \\
\hline 86.9 & 126 & 124 & 122 & 122 & 125 & 125 & 123 & 123 & 122 & 119 \\
\hline 87.5 & 127 & 125 & 123 & 123 & 126 & 125 & 124 & 124 & 123 & 120 \\
\hline 88.2 & 128 & 126 & 124 & 123 & 128 & 127 & 124 & 124 & 124 & 121 \\
\hline 89.2 & 130 & 127 & 125 & 124 & 130 & 128 & 125 & 125 & 125 & 122 \\
\hline 90.0 & 132 & 128 & 127 & 128 & 132 & 130 & 125 & 127 & 127 & 123 \\
\hline 90.6 & 133 & 128 & 128 & 126 & 137 & 133 & 127 & 128 & 128 & 124 \\
\hline 91.5 & 136 & 130 & 131 & 128 & 138 & 140 & 128 & 129 & 131 & 125 \\
\hline 91.8 & 137 & 131 & 132 & 128 & 140 & 142 & 129 & i29 & 132 & 126 \\
\hline 92.5 & 137 & 133 & 155 & 129 & 142 & 144 & 131 & 130 & 136 & 127 \\
\hline 93.0 & 143 & 135 & 155 & 130 & 155 & 144 & 133 & 133 & 145 & 128 \\
\hline 93.7 & 148 & 138 & 155 & 134 & 155 & 145 & 135 & 134 & 155 & 129 \\
\hline 94.3 & 148 & 152 & 155 & 144 & 155 & 145 & 137 & 135 & 155 & 131 \\
\hline 94.5 & 149 & 152 & 155 & 145 & 155 & 145 & 137 & 149 & 155 & 135 \\
\hline 94.8 & 149 & 153 & 155 & 147 & 155 & 148 & 137 & 144 & 155 & 142 \\
\hline 95.0 & 149 & 153 & 155 & 148 & 155 & 149 & 140 & 144 & 155 & 151 \\
\hline 94.1 & 149 & 153 & 155 & 148 & 155 & 149 & 140 & 144 & 155 & 155 \\
\hline
\end{tabular}

New and Current Composite Scores
Maintaining Constant AFQT Means for Eligibles Based on a 2\% Sample of FY81/82 Applicants (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline mmafut & \(C\) & CO & \(\varepsilon\) & FA & EM & MM & Of & SC & ST & HESSCORE \\
\hline 39.4 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 \\
\hline 39.5 & 12 & 43 & 43 & 46 & 44 & 42 & 41 & 42 & 43 & 41 \\
\hline 39.6 & 43 & 47 & 47 & 50 & 44 & 43 & 42 & 43 & 43 & 42 \\
\hline 39.6 & 43 & 49 & 50 & 52 & 47 & 43 & 42 & 43 & 45 & 46 \\
\hline 39.7 & 43 & 51 & 51 & 53 & 50 & 47 & 42 & 43 & 48 & 48 \\
\hline 39.7 & 45 & 53 & 52 & 54 & 50 & 50 & 42 & 46 & 49 & 50 \\
\hline 39.8 & 48 & 54 & 53 & 56 & 52 & 51 & 47 & 49 & 30 & 51 \\
\hline 39.9 & 50 & 55 & 54 & 57 & 54 & 52 & 49 & 50 & 51 & 53 \\
\hline 40.0 & 52 & 57 & 55 & 57 & 55 & 54 & 52 & 53 & 52 & 55 \\
\hline 40.1 & 54 & 58 & 56 & 58 & 55 & 55 & 54 & 55 & 55 & 56 \\
\hline 40.3 & 57 & 60 & 58 & 59 & 57 & 57 & 56 & 57 & 56 & 57 \\
\hline 40.5 & 58 & 61 & 58 & 60 & 58 & 58 & 57 & 58 & 57 & 58 \\
\hline 40.6 & 59 & 61 & 59 & 61 & 59 & 58 & 58 & 59 & 57 & 59 \\
\hline 40.8 & 59 & 62 & 59 & 62 & 60 & 59 & 59 & 59 & 58 & 60 \\
\hline 41.2 & 62 & 63 & 61 & 64 & 61 & 62 & 60 & 62 & 69 & \(6!\) \\
\hline 41.4 & 62 & 64 & 62 & 65 & 62 & 62 & 61 & 63 & 61 & 62 \\
\hline 41.6 & 63 & 65 & 62 & 66 & 62 & 63 & 62 & 64 & 62 & 63 \\
\hline 41.9 & 64 & 60 & 63 & 66 & 63 & 64 & 63 & 65 & 62 & 64 \\
\hline 42.4 & 66 & 68 & 65 & 68 & 65 & 65 & 64 & 66 & 64 & 65 \\
\hline 42.7 & 67 & 68 & 66 & 70 & 60 & 60 & 65 & 67 & 65 & 66 \\
\hline 43.1 & 68 & 69 & 66 & 70 & 66 & 67 & 66 & 68 & 65 & 67 \\
\hline 43.6 & 70 & 70 & 68 & 72 & 63 & 69 & 67 & 69 & 66 & 68 \\
\hline 43.9 & 71 & 71 & 69 & 73 & 69 & 69 & 68 & 70 & 67 & 69 \\
\hline 44.2 & 71 & 72 & 70 & 74 & 69 & 70 & 69 & 71 & ¢8 & 70 \\
\hline 44.9 & 72 & 73 & 71 & 75 & 71 & 71 & 70 & 72 & 70 & 71 \\
\hline 45.3 & 73 & 74 & 72 & 75 & 71 & 72 & 71 & 73 & 70 & 72 \\
\hline 45.6 & 74 & 75 & 73 & 76 & 72 & 73 & 72 & 74 & 71 & 73 \\
\hline 46.5 & 75 & 76 & 74 & 77 & 74 & 74 & 73 & 75 & 72 & 74 \\
\hline 47.3 & 76 & 17 & 75 & 78 & 75 & 76 & 75 & 76 & 73 & 75 \\
\hline 48.1 & 78 & 78 & 76 & 79 & 77 & 77 & 76 & 77 & 75 & 76 \\
\hline 49.0 & 79 & 30 & 77 & 50 & 79 & 78 & 77 & 78 & 76 & 77 \\
\hline 49.4 & 80 & 80 & 78 & 81 & 19 & 79 & 77 & 79 & 76 & 78 \\
\hline 50.4 & 81 & 81 & 79 & 83 & 80 & 80 & 78 & 80 & 77 & 79 \\
\hline 50.9 & 82 & 82 & 80 & 84 & 81 & 81 & 79 & 81 & 78 & 80 \\
\hline 51.9 & 84 & 83 & 81 & 85 & 82 & 82 & 80 & 82 & 79 & 81 \\
\hline 52.9 & 85 & 85 & 82 & 86 & 83 & 84 & 82 & 84 & 81 & 82 \\
\hline 53.4 & 86 & 86 & 83 & 87 & 84 & 85 & 82 & 84 & 81 & 83 \\
\hline 53.9 & 87 & 86 & 84 & 88 & 85 & 85 & 83 & 85 & 82 & 84 \\
\hline 55.0 & 89 & 88 & 85 & 89 & 86 & 87 & 85 & 86 & 84 & 85 \\
\hline 55.6 & 89 & 89 & 86 & 90 & 67 & 88 & 85 & 87 & 84 & 80 \\
\hline 56.7 & 3: & 90 & 88 & 91 & 89 & 90 & 86 & 88 & 86 & 87 \\
\hline 57.2 & 92 & 91 & 89 & 92 & 89 & 91 & 87 & 89 & 86 & 88 \\
\hline 58.3 & 93 & 92 & 90 & 93 & 91 & 92 & 89 & 91 & 88 & 89 \\
\hline 58.8 & 93 & 93 & 91 & 93 & 91 & 92 & 90 & 92 & 89 & 90 \\
\hline 59.9 & 95 & 94 & 92 & 94 & 92 & 94 & 91 & 93 & 91 & 91 \\
\hline 61.1 & 96 & 95 & 93 & 95 & 94 & 95 & 92 & 94 & 92 & 92 \\
\hline 62.1 & 97 & 96 & 94 & 96 & 95 & 96 & 93 & 94 & 93 & 93 \\
\hline
\end{tabular}

New and Current Composite Scores
Maintaining Constant AFQT Means for Eligibles Based on a 2\% Sample of FY81/82 Applicants (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline MMAFQT & Cl & CO & EL & FA & Gir & M 1 & Of & S6 & ST & NEWSCORE \\
\hline 63.2 & 98 & 97 & 95 & 97 & 96 & 97 & 94 & 95 & 94 & 94 \\
\hline 64.2 & 99 & 98 & 96 & 98 & 98 & 99 & 95 & 96 & 95 & 95 \\
\hline 65.3 & 100 & 99 & 58 & 99 & 99 & 100 & 96 & 98 & 96 & 96 \\
\hline 60.5 & 101 & 101 & 99 & 100 & 100 & 101 & 98 & 99 & 97 & 97 \\
\hline 67.0 & 102 & 101 & 100 & 100 & 101 & 101 & 98 & 100 & 98 & 98 \\
\hline 68.5 & 104 & 103 & 101 & 102 & 102 & 104 & 99 & 101 & 100 & 99 \\
\hline 69.6 & 105 & 104 & 102 & 103 & 104 & 105 & 100 & 102 & 101 & 100 \\
\hline 70.6 & 106 & 105 & 103 & 104 & 105 & 106 & 102 & 103 & 102 & 101 \\
\hline 11.1 & 107 & 105 & 104 & 105 & 105 & 106 & 103 & 104 & 103 & 102 \\
\hline 72.1 & 108 & 106 & 105 & 105 & 106 & 107 & 104 & 104 & 104 & 103 \\
\hline 73.5 & 110 & 108 & 106 & 107 & 108 & 109 & 105 & 105 & 105 & 104 \\
\hline 74.5 & 111 & 109 & 107 & 108 & 109 & 111 & 106 & 107 & 107 & 105 \\
\hline 75.5 & 112 & 110 & 108 & 109 & 111 & 112 & 108 & 108 & 108 & 106 \\
\hline 76.5 & 113 & 112 & 110 & 110 & 113 & 113 & 109 & 108 & 169 & 107 \\
\hline 17.0 & 114 & 112 & 110 & 111 & 113 & 114 & 110 & 109 & 110 & 108 \\
\hline 77.9 & 114 & 113 & 111 & 112 & 114 & 115 & 111 & 111 & 111 & 109 \\
\hline 78.8 & 115 & 114 & 112 & 113 & 116 & 116 & 112 & 112 & 113 & 110 \\
\hline 79.3 & 116 & 115 & 112 & 113 & 116 & 117 & 113 & 113 & 113 & 111 \\
\hline 80.2 & 117 & 116 & 113 & 114 & 117 & 118 & 114 & 114 & 114 & 112 \\
\hline 81.1 & 118 & 117 & 114 & 115 & 118 & 119 & 115 & 115 & 115 & 113 \\
\hline 82.3 & 120 & 118 & 116 & 117 & 119 & 121 & 117 & 117 & 117 & 114 \\
\hline 83.1 & 121 & 119 & 117 & 118 & 120 & 122 & 117 & 116 & 118 & 115 \\
\hline 83.7 & 122 & 121 & 118 & 118 & 121 & 123 & \(1{ }^{18}\) & 119 & 118 & 116 \\
\hline 84.1 & 122 & 121 & 118 & 119 & 122 & 123 & 119 & 119 & 119 & 117 \\
\hline 85.3 & 124 & 123 & 120 & 120 & 123 & 124 & 121 & 121 & 120 & 118 \\
\hline 85.7 & 124 & 123 & 120 & 121 & 123 & 124 & 122 & 122 & 121 & 119 \\
\hline 86.6 & 125 & 124 & 121 & 122 & 124 & 125 & 122 & 122 & 122 & 120 \\
\hline 87.2 & 127 & 124 & 122 & 122 & 125 & 126 & 123 & 123 & 123 & 121 \\
\hline 88.1 & 128 & 125 & 124 & 123 & 128 & 127 & 124 & 124 & 124 & 122 \\
\hline 89.2 & 130 & 127 & 125 & 125 & 130 & 128 & 125 & 125 & 125 & 123 \\
\hline 89.8 & 132 & 128 & 126 & 125 & 132 & 129 & 126 & 126 & 127 & 124 \\
\hline 90.2 & 132 & 128 & 127 & 126 & 133 & 130 & 126 & 127 & 127 & 125 \\
\hline 90.6 & 133 & 128 & 128 & 126 & 137 & 132 & 126 & 128 & 128 & 126 \\
\hline 91.3 & 135 & 130 & 129 & 128 & 138 & 138 & 128 & 129 & 130 & 127 \\
\hline 91.8 & 137 & 131 & 132 & 128 & 140 & 142 & 129 & 129 & 132 & 123 \\
\hline 92.1 & 137 & 132 & 137 & 129 & 141 & 143 & 129 & 130 & 133 & 129 \\
\hline 92.6 & 138 & 133 & 155 & 129 & 143 & 144 & 131 & 131 & 144 & 130 \\
\hline 92.9 & 138 & 135 & 155 & 130 & 155 & 144 & 133 & 133 & 145 & 131 \\
\hline 93.3 & 143 & 136 & 155 & 131 & 155 & 144 & 134 & 133 & 150 & 134 \\
\hline 93.6 & 144 & 138 & 155 & i 13.3 & 155 & 145 & 135 & 134 & 155 & 135 \\
\hline 93.4 & 14 & 138 & 155 & 133 & 155 & 145 & 135 & 134 & 155 & 137 \\
\hline 93.5 & 144 & 138 & 155 & 133 & 155 & 145 & 135 & 134 & 155 & 143 \\
\hline 93.7 & 148 & 138 & 155 & 134 & 155 & 145 & 135 & 134 & 155 & 145 \\
\hline 94.3 & 148 & 152 & 155 & 144 & 155 & 145 & 137 & 135 & 155 & 149 \\
\hline 95.1 & 151 & 153 & 155 & 149 & 155 & 149 & 140 & 149 & 155 & 152 \\
\hline 94.0 & 151 & 153 & 155 & 149 & 155 & 149 & 140 & 144 & 155 & 155 \\
\hline
\end{tabular}

New and Current Composite Scores Maintaining Constant AFQT Means for Eligibles
Based on a \(2 \%\) Sample of FY81/82 Applicants (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline MUAFQT & Cl & CD & EL & FA & \(G\) & c.mm & OF & Sc & ST & NSHSCDRE \\
\hline 39.4 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 \\
\hline 39.5 & 42 & 43 & 43 & 46 & 4 & 42 & 41 & 42 & 43 & 41 \\
\hline 39.6 & 43 & 48 & 48 & 50 & 46 & 43 & 42 & 43 & 43 & 43 \\
\hline 39.6 & 43 & 49 & 50 & 52 & 47 & 43 & 42 & 43 & 45 & 46 \\
\hline 39.7 & 43 & 52 & 51 & 54 & 50 & 47 & 42 & 43 & 48 & 48 \\
\hline 39.7 & 46 & 53 & 52 & 55 & 50 & 50 & 44 & 47 & 49 & 50 \\
\hline 39.8 & 48 & 54 & 53 & 56 & 53 & 51 & 47 & 49 & 50 & 52 \\
\hline 39.9 & 50 & 56 & 54 & 57 & 54 & 53 & 50 & 51 & 51 & 53 \\
\hline 40.0 & 52 & 57 & 55 & 57 & 55 & 54 & 53 & 53 & 52 & 54 \\
\hline 40.1 & 54 & 58 & 56 & 58 & 55 & 55 & 54 & 55 & 55 & 55 \\
\hline 40.2 & 56 & 58 & 57 & 59 & 56 & 56 & 55 & 56 & 55 & 56 \\
\hline 40.3 & 57 & 59 & 57 & 59 & 57 & 57 & 55 & 56 & 56 & 57 \\
\hline 40.4 & 57 & 60 & 58 & 60 & 58 & 57 & 57 & 57 & 57 & 58 \\
\hline 40.7 & 59 & 62 & 59 & 62 & 59 & 59 & 58 & 59 & 58 & 59 \\
\hline 40.9 & 60 & 62 & 60 & 63 & 60 & 60 & 59 & 60 & 59 & 60 \\
\hline 41.1 & 61 & 63 & 60 & 63 & 61 & 61 & 60 & 61 & 59 & 61 \\
\hline 41. \({ }^{\text {d }}\) & 62 & 65 & 62 & 65 & 62 & 62 & 61 & 63 & 61 & 62 \\
\hline 41.6 & 63 & 65 & 62 & 6a & 62 & 63 & 62 & 64 & 62 & 63 \\
\hline 41.8 & 64 & 66 & 63 & 66 & 63 & 64 & 63 & 64 & 62 & 64 \\
\hline 42.3 & 60 & 67 & 65 & 68 & 64 & 65 & 64 & 56 & 64 & 65 \\
\hline 42.6 & 67 & 68 & 65 & 69 & 65 & 66 & 65 & 66 & 64 & 66 \\
\hline 43.1 & 08 & 69 & 66 & 71 & 67 & 67 & 66 & 68 & 65 & 67 \\
\hline 43.3 & 69 & 70 & 67 & 71 & 67 & 68 & 67 & 68 & 66 & 68 \\
\hline 43.9 & 71 & 71 & 69 & 73 & 69 & 69 & 68 & 70 & 67 & 69 \\
\hline 44.2 & 71 & 71 & 70 & 74 & 69 & 70 & 69 & 71 & 68 & 70 \\
\hline 44.7 & 72 & 73 & 71 & 75 & 71 & 71 & 70 & 72 & 69 & 71 \\
\hline 45.3 & 73 & 74 & 72 & 76 & 72 & 72 & 71 & 73 & 70 & 72 \\
\hline 45.7 & 74 & 75 & 73 & 76 & 72 & 73 & 72 & 74 & 71 & 13 \\
\hline 46.4 & 75 & 76 & 74 & 77 & 74 & 74 & 73 & 75 & 72 & 74 \\
\hline 47.1 & 76 & 77 & 75 & 78 & 75 & 75 & 74 & 76 & 73 & is \\
\hline 47.7 & 77 & 77 & 76 & 79 & 76 & 76 & 75 & 76 & 74 & 76 \\
\hline 48.5 & 78 & 19 & 76 & 80 & 78 & 37 & 76 & 77 & 75 & 77 \\
\hline 49.2 & 80 & 80 & 77 & 81 & 79 & 79 & 77 & 75 & 76 & 78 \\
\hline 50.0 & 81 & 81 & 79 & 82 & 80 & 80 & 78 & 79 & 77 & 79 \\
\hline 50.8 & 82 & 82 & 80 & 84 & 81 & 81 & 79 & 80 & 78 & 80 \\
\hline 51.6 & 84 & 83 & 81 & 85 & 82 & 82 & 80 & 82 & 79 & 81 \\
\hline 52.0 & 84 & 84 & 81 & 85 & 82 & 82 & 80 & 82 & 80 & 82 \\
\hline 52.9 & 85 & 85 & 82 & 86 & 83 & 84 & 82 & 84 & 81 & 83 \\
\hline 53.4 & 86 & 86 & 83 & 87 & 84 & 85 & 82 & 84 & 81 & 84 \\
\hline 54.2 & 87 & 97 & 84 & 88 & 85 & 85 & 83 & 85 & 82 & 85 \\
\hline 55.1 & 39 & 88 & 86 & 89 & 86 & 87 & 85 & 86 & 84 & 86 \\
\hline 55.6 & 89 & 89 & 86 & 90 & 87 & 88 & 85 & 87 & 85 & 87 \\
\hline 50.5 & 91 & 90 & 88 & 91 & 38 & 90 & 86 & 88 & 85 & 88 \\
\hline 57.4 & 92 & 91 & 89 & , 2 & 90 & 91 & 87 & 89 & 87 & 89 \\
\hline 57.9 & 92 & 92 & 89 & 92 & 90 & 91 & 88 & 90 & 88 & 90 \\
\hline 50.8 & 93 & 93 & 91 & 93 & 91 & 92 & 90 & 91 & 89 & 91 \\
\hline 59.7 & 94 & 94 & 92 & 94 & 92 & 93 & 90 & 92 & 90 & 92 \\
\hline & & & & & & & \multicolumn{4}{|l|}{continued on next paçe} \\
\hline
\end{tabular}

New and Curren: Composite Scores Maintaining Constant AFQT Means for Eligibles Based on a 2\% Sample of FY81/82 Applicalits (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline MUFPT & CL & 60 & EL & FA & \(G M\) & M \({ }^{\text {M }}\) & OF & SC & ST & MEMSCORE \\
\hline 60.6 & 95 & 94 & 93 & 95 & 93 & 94 & 91 & 93 & 92 & 93 \\
\hline 61.6 & 90 & 95 & 94 & 96 & 94 & 95 & 92 & 94 & 93 & 94 \\
\hline 62.8 & 98 & 96 & 95 & 97 & 96 & 97 & 93 & 95 & 94 & 95 \\
\hline 63.8 & 99 & 98 & 96 & 98 & 97 & 98 & 95 & 96 & 95 & 96 \\
\hline 64.8 & 100 & 99 & 97 & 99 & 99 & 99 & 96 & 97 & 96 & 97 \\
\hline 65.2 & 100 & 99 & 98 & 99 & 99 & 100 & 96 & 97 & 96 & 98 \\
\hline 66.1 & 101 & 101 & 99 & 100 & 100 & 100 & 97 & 99 & 97 & 99 \\
\hline 67.5 & 102 & 102 & 100 & 101 & 101 & 102 & 99 & 100 & 99 & 100 \\
\hline 68.5 & 104 & 103 & 101 & 102 & 103 & 104 & 99 & 101 & 100 & 101 \\
\hline 69.0 & 104 & 103 & 102 & 103 & 103 & 104 & 100 & 101. & 100 & 102 \\
\hline 70.0 & 106 & 104 & 102 & 104 & 104 & 105 & 101 & 102 & 101 & 103 \\
\hline 71.4 & 107 & 105 & 104 & 105 & 105 & 106 & 103 & 164 & 103 & 104 \\
\hline 72.4 & 108 & 106 & 105 & 106 & 106 & 108 & 104 & 104 & 104 & 105 \\
\hline 72.9 & 109 & 107 & 105 & 106 & 107 & 108 & 104 & 105 & 105 & 106 \\
\hline 73.8 & 110 & 108 & 106 & 107 & 109 & 110 & 105 & 106 & 106 & 107 \\
\hline 74.9 & 112 & 110 & 107 & 108 & 110 & 111 & 107 & 107 & 107 & 108 \\
\hline 75.2 & 112 & 110 & 108 & 109 & 110 & 112 & 107 & 107 & 108 & 109 \\
\hline 75.6 & 112 & 110 & 108 & 109 & 111 & 112 & 108 & 108 & 108 & 110 \\
\hline 76.6 & 113 & 112 & 110 & 110 & 113 & 113 & 109 & 109 & 109 & 111 \\
\hline 17.1 & 114 & 112 & 110 & 111 & 114 & 114 & 110 & 109 & 110 & 112 \\
\hline 18.1 & 114 & 114 & 111 & 112 & 115 & 115 & 111 & 111 & 112 & 113 \\
\hline 19.2 & 116 & 114 & 112 & 113 & \(116{ }^{\circ}\) & 117 & 113 & 113 & 113 & 114 \\
\hline 19.8 & 117 & 115 & 113 & 114 & 117 & 117 & 113 & 113 & 114 & 115 \\
\hline 80.3 & 117 & 116 & 113 & 114 & 117 & 118 & 114 & 114 & 114 & 116 \\
\hline 81.6 & 119 & 117 & 115 & 116 & 119 & 119 & 116 & 116 & 116 & 117 \\
\hline 82.5 & 120 & 118 & 116 & 117 & 120 & 121 & 117 & 117 & 117 & 118 \\
\hline 82.9 & 121 & 119 & 117 & 117 & 120 & 122 & 117 & 118 & 117 & 119 \\
\hline 84.1 & 122 & 121 & 118 & 119 & 122 & 123 & 119 & 119 & 119 & 120 \\
\hline 84.5 & 123 & 122 & 119 & 119 & 122 & 124 & 120 & 120 & 119 & 121 \\
\hline 85,4 & 124 & 123 & 120 & 121 & 123 & 124 & 121 & 121 & 120 & 122 \\
\hline 86.1 & 124 & 124 & 121 & 121 & 124 & 125 & 122 & 122 & 121 & 123 \\
\hline 86.9 & 126 & 124 & 122 & 122 & 125 & 125 & 123 & 123 & 122 & 124 \\
\hline 87.7 & 127 & 125 & 123 & 123 & 126 & 127 & 124 & :24 & 124 & 125 \\
\hline 88.9 & 130 & 127 & 125 & 124 & 130 & 128 & 125 & 125 & 125 & 125 \\
\hline 89.3 & 130 & 127 & 125 & 125 & 130 & 128 & 125 & 125 & 126 & 127 \\
\hline 90.2 & 132 & 128 & 127 & 126 & 133 & 130 & 126 & 127 & 127 & 128 \\
\hline 90.5 & 133 & 128 & 128 & 126 & 137 & 131 & 126 & 129 & 128 & 129 \\
\hline 90.4 & 133 & 128 & 128 & 126 & 137 & 131 & 126 & 128 & 128 & 130 \\
\hline 90.5 & 133 & 128 & 128 & 126 & 137 & 132 & 127 & 128 & 128 & 133 \\
\hline 91.0 & 134 & 139 & 129 & 127 & 137 & 137 & 127 & 128 & 129 & 135 \\
\hline 91.8 & 136 & 130 & 132 & 128 & 140 & 142 & 129 & 129 & 132 & 137 \\
\hline 92.5 & 137 & 133 & 155 & 129 & 142 & 144 & 131 & 130 & 136 & 142 \\
\hline 92.7 & 138 & 134 & 155 & 130 & 143 & 144 & 132 & \(1: 2\) & 144 & 143 \\
\hline 94.0 & 148 & 139 & 155 & 135 & 155 & 145 & 136 & 134 & 155 & \(1: 9\) \\
\hline 44.4 & 149 & 152 & 155 & 145 & 155 & 145 & 137 & 143 & 155 & 154 \\
\hline 90.3 & 149 & 152 & 155 & 145 & 155 & 145 & 137 & 143 & 155 & 155 \\
\hline
\end{tabular}

Hew and Current Composite Scores Maintaining Constant AFQT Means for Eliqibles Based on a \(2 \%\) Sample of FY81/82 Appircants (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline muafor & a & \(\infty\) & \(E L\) & FA & 0 & M & OF & SC & \(5 T\) & Mewscore \\
\hline 39.4 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 \\
\hline 39.5 & 42 & 43 & 43 & 44 & 43 & 42 & 41 & 42 & 42 & 41 \\
\hline 39.6 & 43 & 47 & 47 & 50 & 4 & 43 & 42 & 43 & 43 & 43 \\
\hline 39.6 & 43 & 49 & 50 & 52 & 47 & 43 & 42 & 43 & 45 & 45 \\
\hline 39.7 & 43 & 50 & 51 & 53 & 49 & 45 & 42 & 43 & 47 & 48 \\
\hline 39.7 & 45 & 53 & 52 & 54 & 50 & 50 & 42 & 46 & 49 & 50 \\
\hline 39.8 & 47 & 54 & 53 & 56 & 52 & 51 & 47 & 48 & 50 & 52 \\
\hline 39.8 & 50 & 55 & 54 & 56 & 53 & 52 & 49 & 50 & 51 & 53 \\
\hline 39.9 & 51 & 56 & 54 & 57 & 54 & 53 & 51 & 52 & 52 & 54 \\
\hline 40.0 & 53 & 57 & 55 & 58 & 55 & 54 & 53 & 54 & 53 & 55 \\
\hline 40.1 & 55 & 58 & 56 & 58 & 56 & 55 & 54 & 55 & 55 & 56 \\
\hline 40.4 & 57 & 60 & 58 & 60 & 57 & 57 & 56 & 57 & 56 & 57 \\
\hline 40.5 & 58 & 61 & 58 & 60 & 58 & 58 & 57 & 58 & 57 & 58 \\
\hline 40.6 & 58 & 61 & 59 & 61 & 59 & 58 & 58 & 59 & 57 & 59 \\
\hline 49.8 & 59 & 62 & SO & 62 & 59 & 59 & 59 & 50 & 58 & 60 \\
\hline 41.1 & 61 & 63 & 60 & 63 & 60 & 61 & 59 & 60 & 59 & 61 \\
\hline 41.3 & 52 & 64 & 62 & 65 & 61 & 62 & 61 & 62 & 61 & 62 \\
\hline 41.7 & 64 & 66 & 63 & 66 & 62 & 63 & 62 & 64 & 52 & 63 \\
\hline 42.0 & 65 & 66 & 63 & 67 & 63 & 64 & 63 & 65 & 62 & 64 \\
\hline 42.4 & 66 & 67 & 65 & 68 & 65 & 65 & 64 & 65 & 64 & 65 \\
\hline 42.6 & 67 & 68 & 65 & 69 & 65 & 66 & 65 & 65 & 64 & 66 \\
\hline 43.2 & 68 & 69 & 67 & 71 & 67 & 67 & 66 & 68 & 65 & 67 \\
\hline 43.4 & 69 & 70 & 67 & 11 & 67. & 68 & 67 & 69 & 66 & 68 \\
\hline 43.7 & 70 & 70 & 68 & 72 & 68. & 69 & 68 & 69 & 65 & 69 \\
\hline 44.3 & 81 & 72 & 70 & 74 & 69 & 70 & 69 & 71 & 63 & 70 \\
\hline 44.6 & 72 & 72 & 70 & 75 & 70 & 71 & 70 & 71 & 69 & 71 \\
\hline 45.2 & 73 & 74 & 72 & 75 & 71 & 72 & 71 & 73 & 70 & 72 \\
\hline 45.6 & 74 & 75 & 73 & 76 & 72 & 73 & 72 & 74 & 71 & 73 \\
\hline 46.3 & 75 & 76 & 74 & 77 & 74 & 74 & 73 & 75 & 72 & 74 \\
\hline 47.0 & 76 & 17 & 75 & 78 & 75 & 75 & 74 & 76 & 73 & 75 \\
\hline 47.7 & 77 & 77 & 76 & 79 & 76 & 76 & 75 & 76 & 74 & 76 \\
\hline 48.5 & 9 & 79 & 76 & 80 & 78 & 77 & 76 & 77 & 75 & 78 \\
\hline 48.9 & 79 & 79 & 77 & 80 & 78 & 78 & 77 & 78 & 76 & 78 \\
\hline 49.7 & 80 & 80 & 78 & 82 & 79 & 80 & 11 & 79 & 77 & 79 \\
\hline 50.5 & 81 & 81 & 79 & 83 & 80 & 81 & 78 & 60 & 77 & 80 \\
\hline 51.4 & 83 & 83 & 81 & 84 & B2 & 82 & 79 & 81 & 79 & 81 \\
\hline 51.8 & 84 & 83 & 81 & 85 & 82 & 82 & 80 & 92 & 79 & 82 \\
\hline 32.8 & 85 & 85 & 82 & 86 & 83 & 84 & 81 & 83 & 30 & 83 \\
\hline 53.2 & 86 & 86 & 83 & 87 & 84 & 85 & 82 & 84 & 81 & 84 \\
\hline 54.2 & 87 & 87 & 84 & 88 & 85 & 86 & 83 & 85 & 82 & 85 \\
\hline 54.6 & 88 & 87 & 85 & 88 & 86 & 86 & 84 & 85 & 83 & 86 \\
\hline 35.5 & 88 & 89 & 86 & 90 & 87 & 88 & es & 87 & 84 & 87 \\
\hline 56.1 & 90 & 89 & 81 & 90 & 88 & 89 & 36 & 88 & 85 & 88 \\
\hline 57.0 & 91 & 90 & 88 & 91 & 89 & 90 & 67 & 89 & 86 & 89 \\
\hline 57.5 & 92 & 91 & 89 & 92 & 90 & 91 & 87 & 89 & 87 & 90 \\
\hline 59.5 & 93 & 92 & 91 & 93 & 91 & 92 & 89 & 91 & 88 & 91 \\
\hline 59.6 & 9 & 93 & 92 & 94 & 92 & 93 & 90 & 92 & 90 & 92 \\
\hline 50.5 & 95 & 94 & 93 & 95 & 93 & 94 & 91 & 93 & 91 & 93 \\
\hline 61.4 & 96 & 95 & 93 & 96 & 94 & 95 & 92 & 94 & 92 & 94 \\
\hline
\end{tabular}

> New and Current Composite Scores Maintaining Constant AFQT Means for Eligibles Based on a \(2 \%\) Sample of FY81/82 Applicants (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline MNAFQT & CL & CO & \(E L\) & FA & G4 & MM & OF & SC & ST & NEWSCORE \\
\hline 62.4 & 97 & 96 & 94 & 96 & 96 & 96 & 93 & 94 & 93 & \\
\hline 63.4 & 98 & 97 & 95 & 97 & 97 & 97 & 94 & 94 & 93
94 & 95
96 \\
\hline 64.4 & 99 & 98 & 96 & 98 & 98 & 99 & 95 & 97 & 95 & 97 \\
\hline 64.8 & 100 & 99 & 97 & 99 & 99 & 99 & 96 & 97 & 96 & 98 \\
\hline 65.8 & 100 & 100 & 98 & 99 & 100 & 100 & 97 & 98 & 96 & 99 \\
\hline 67.1 & 102 & 101 & 100 & 101 & 101 & 101 & 98 & 100 & 98 & 100 \\
\hline 68.0 & 103 & 102 & 101 & 102 & 102 & 103 & 99 & 100 & 99 & 101 \\
\hline 68.6 & 104 & 103 & 101 & 102 & 103 & 104 & 100 & 101 & 100 & 102 \\
\hline 69.6 & 105 & 104 & 102 & 103 & 104 & 105 & 100 & 102 & 101 & 103 \\
\hline 70.8 & 107 & 105 & 103 & 104 & 105 & 106 & 102 & 103 & 102 & 104 \\
\hline 72.0
72.5 & 108 & 106 & 104 & 105 & 106 & 107 & 103 & 104 & 104 & 105 \\
\hline 72.5 & 109 & 106 & 105 & 106 & 107 & 108 & 104 & 104 & 104 & 105 \\
\hline 73.6 & 110 & 108 & 106 & 107 & 108 & . 109 & 105 & 105 & 105 & 107 \\
\hline 74.6 & 111 & 109 & 107 & - 108 & 109 & 111 & 106 & 107 & 107 & 108 \\
\hline 75.0 & 112 & 110 & 107 & 108 & 110 & 111 & 107 & 107 & 107 & 109 \\
\hline 75.8
76.3 & 113 & 111 & 109 & 109 & 111 & 112 & 108 & 108 & 108 & 110 \\
\hline 76.3 & 113 & 111 & 109 & 110 & 112 & 113 & 109 & 108 & 109 & 111 \\
\hline 77.3 & 114 & 113 & 110 & 111 & 114 & 114 & 110 & 110 & 110 & 112 \\
\hline 77.7 & 114 & 113 & 111 & 112 & 114 & 115 & 111 & 110 & 111 & 113 \\
\hline 78.8
-9.8 & 115 & 114
115 & 112 & 113 & 116 & 116 & 117 & 112 & 113 & 114 \\
\hline 79.8
0.4 & 1i\% & 115
116 & 113 & 114 & 117 & 117 & \(11 \%\) & -13 & 117 & 115 \\
\hline 917
310 & i14 & 116 & 114 & 115 & 117 & 118 & 114 & \(\cdots 14\) & 112 & 116 \\
\hline \(8 \mathrm{3i-0}\) & 119
120 & 117
118 & 115 & 115 & 119 & 119 & 113 & 115 & 116 & 117 \\
\hline 82.0
82.8 & 120
121 & 118
119 & 116 & 116 & 119 & 120 & 115 & 116 & 116 & 118 \\
\hline 82.8
83.8 & 121
122 & 119 & 117 & 117 & 120 & 121 & 117 & 118 & 117 & 119 \\
\hline 84.7 & 123 & 121
122 & 118
119 & 119 & 121 & 123 & 119 & 119 & 118 & 120 \\
\hline 85.3 & 124 & 123 & 120 & 121 & 123 & 124 & 120 & 120 & 119 & 121 \\
\hline 86.2 & 125 & 124 & 121 & 121 & 124 & 125 & 122 & 122 & 120
121 & 122 \\
\hline 87.3 & 127 & 124 & 122 & 122 & 125 & 126 & 123 & 123 & 123 & 124 \\
\hline 88.0 & 128 & 125 & 124 & 123 & 127 & 127 & 124 & 124 & 124 & 125 \\
\hline 88.5 & 129 & 126 & 124 & 124 & 129 & 127 & 124 & 124 & 124 & 126 \\
\hline 89.1 & 130 & 127 & 125 & 124 & 130 & 128 & 125 & 125 & 125 & 127 \\
\hline 89.7
90.2 & 131
132 & 127 & 123 & 125 & 131 & 129 & 125 & 125 & 126 & 128 \\
\hline 90.2
90.6 & 132
133 & 128
128 & 127 & 126 & 133 & 130 & 126 & 127 & 127 & 129 \\
\hline 90.6
91.1 & 133
134 & 128
129 & 128 & 126 & 137 & 132 & 127 & 128 & 128 & 130 \\
\hline 91.7 & 134 & 129 & 129 & 127 & 137 & 138 & 127 & 128 & 129 & 131 \\
\hline 91.7 & 136 & 130 & 131 & 128 & 138
138 & 142 & 128 & 129 & 131 & 134 \\
\hline 92.2 & 137 & 132 & 137 & 128
129 & 138 & 142 & 128 & 129 & 131 & 135 \\
\hline 92.7 & 138 & 134 & 155 & 129 & 14 4 & 143 & 130
138 & 130 & 133 & 137 \\
\hline 53.0 & 1441 & 136 & 155 & 131 & 155 & 144 & 134 & 133 & 174 & 140
142 \\
\hline 93.3 & 144 & 136 & 155 & 131 & 155 & 144 & 134 & 133 & 150 & 142 \\
\hline 93.0 & 144 & 136 & 155 & 131 & 155 & 144 & 134 & 133 & 150 & 149 \\
\hline 92.3 & 144 & 136 & 155 & 131 & 155 & 144 & 134 & 133 & 150 & 149
.153 \\
\hline 92.3 & 144 & 136 & 155 & 131 & 155 & 144 & 134 & 133 & 150 & -154 \\
\hline 94.0 & 148 & 139 & 155 & 135 & 155 & 145 & 136 & 134 & 155 & 155 \\
\hline
\end{tabular}

Table A - 23

\section*{Aptitude Area Composite Cutoffs by MOS}


Table A-24

ASVAB Subtest Means by Training Criterion Cell
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TCELL} & \multicolumn{10}{|c|}{Subtest} \\
\hline & \(N\) & GS & AR & ve & NO & CS & AS & MK & MC & EI \\
\hline 0582A113 & 520 & 48.65 & 50.34 & 51.39 & 54.43 & 55.37 & 49.75 & 49.25 & \(\cdots 7.88\) & 48.74 \\
\hline 05C20113 & 516 & 50.40 & 52.30 & 53.22 & 55.30 & 55.66 & 51.28 & 50.96 & 49.64 & 50.42 \\
\hline \(11 \mathrm{BIN809}\) & 978 & 50.15 & 51.44 & 50.59 & 50.86 & 51.49 & 52.14 & 49.53 & 59.92 & 50.51 \\
\hline l1CIN809 & 579 & 50.75 & 52.49 & 51.08 & 51.68 & 52.39 & 52.29 & 50.53 & 51.97 & 50.97 \\
\hline 11 HiN809 & 446 & 51.28 & 52.29 & 52.04 & 51.73 & 52.08 & 53.02 & 50.56 & 51.32 & 51.92 \\
\hline 1101N809 & 325 & 50.08 & 52.10 & 50.30 & 52.41 & 52.54 & 51.15 & 49.64 & 50.89 & 50.26 \\
\hline 12848807 & 143 & 47.69 & 50.34 & 49.13 & 48.83 & 50.71 & 52.71 & 47.97 & 49.73 & 49.64 \\
\hline \(12 F A F 807\) & 225 & 44.08 & 47.86 & 44.37 & 47.79 & 50.56 & 49.23 & 45.44 & 47.95 & 47.02 \\
\hline 13838810 & 1080 & 43.69 & 48.70 & 45.13 & 49.83 & 50.70 & 43.18 & 48.52 & 45.77 & 44.88 \\
\hline \(13 \mathrm{SE810}\) & 487 & 54.58 & 56.21 & 54.94 & 52.91 & 53.01 & 53.26 & 55.87 & 54.29 & 53.63 \\
\hline 13F3F810 & 679 & 51.39 & 56.03 & 52.13 & 53.22 & 53.97 & 52.84 & 53.90 & 54.14 & 52.36 \\
\hline 15050810 & 295 & 52.44 & 52.89 & 53.39 & 52.90 & 51.92 & 54.71 & 51.24 & 53.30 & 52.54 \\
\hline 15E5E810 & 283 & 52.48 & 52.44 & 52.81 & 53.31 & 51.57 & 54.84 & 51.27 & 53.82 & 53.11 \\
\hline \(168 B 4811\) & 166 & 46.56 & 46.95 & 48.74 & 50.04 & 48.23 & 48.30 & 46.12 & 46.63 & 47.56 \\
\hline \(16 \mathrm{BBC811}\) & 131 & 56.54 & 58.11 & 55.82 & 53.98 & 52.74 & 55.32 & 56.75 & 54.89 & 56.19 \\
\hline \(16 \mathrm{CCA811}\) & 118 & 52.64 & 52.04 & 53.30 & 52.61 & 52.76 & 54.63 & 51.14 & 53.42 & 53.15 \\
\hline 16008811 & 112 & 56.24 & 57.25 & 55.33 & 53.39 & 53.02 & 54.31 & 55.76 & 54.63 & 56.61 \\
\hline \(16 E E B 811\) & 139 & 56.22 & 58.67 & 55.55 & 53.04 & 53.19 & 55.37 & 58.33 & 55.53 & 56.99 \\
\hline \(16 \mathrm{HHB811}\) & 105 & 53.86 & 56.35 & 55.30 & 54.67 & 53.73 & 54.46 & 55.03 & 54.50 & 55.46 \\
\hline \(16 \mathrm{JJa811}\) & 119 & 52.35 & 52.68 & 53.57 & 51.70 & 49.69 & 53.76 & 50.71 & 53.98 & 52.98 \\
\hline \(16 \mathrm{PPA811}\) & 115 & 46.51 & 47.23 & 48.80 & 52.16 & 48.81 & 47.78 & 46.26 & 47.00 & 48.41 \\
\hline 16RRA811 & 420 & 47.24 & 46.96 & 48.29 & 50.11 & 47.21 & 49.31 & 46.11 & 47.89 & 48.05 \\
\hline \(1655 A 811\) & 597 & 46.45 & 47.09 & 47.49 & 50.53 & 48.72 & 49.58 & 46.42 & 48.48 & 47.74 \\
\hline 17C7C061 & 188 & 45.35 & 48.36 & 49.31 & 56.20 & 59.83 & 45.71 & 48.73 & 44.52 & 45.60 \\
\hline 17KGA301 & 136 & 52.96 & 52.94 & 52.96 & 53.55 & 53.94 & 54.15 & 50.89 & 52.13 & 52.49 \\
\hline 19090804 & 215 & 49.77 & 51.40 & 50.20 & 50.77 & 51.83 & 51.95 & 49.40 & 50.67 & 49.87 \\
\hline 19E9E804 & 171 & 49.58 & 51.23 & 49.97 & 50.61 & 51.03 & 51.71 & 48.12 & 50.80 & 50.65 \\
\hline 19F9F804 & 129 & 49.17 & 50.70 & 49.79 & 50.95 & 50.93 & 51.68 & 47.96 & 50.39 & 50.29 \\
\hline 27E7E093 & 185 & 52.26 & 53.79 & 50.99 & 50.38 & 50.26 & 50.83 & 51.94 & 50.21 & 52.48 \\
\hline 31 M4D113 & 604 & 51.64 & 53.30 & 51.67 & 50.95 & 51.36 & 48.29 & 51.87 & 48.97 & 51.10 \\
\hline \(31 N 4 C 113\) & 195 & 51.86 & 53.19 & 51.51 & 50.99 & 51.27 & 48.81 & 51.60 & 49.36 & 51.72 \\
\hline 3iviv06I & 458 & 52.24 & 53.62 & 51.26 & 49.94 & 50.31 & 51.39 & 52.04 & 51.79 & 53.41 \\
\hline \(36 C A A 113\) & 377 & 47.00 & 48.91 & 46.34 & 48.73 & 48.19 & 43.63 & 48.35 & 44.91 & 47.72 \\
\hline 36 KACl 13 & 664 & 46.08 & 48.02 & 45.21 & 47.55 & 46.84 & 44.43 & 47.54 & 44.41 & 47.32 \\
\hline \(416 G 7091\) & 106 & 47.56 & 45.70 & 45.77 & 46.32 & 46.50 & 47.70 & 46.67 & 45.42 & 48.65 \\
\hline 448J1091 & 137 & 50.28 & 49.58 & 49.09 & 49.31 & 49.07 & 51.57 & 48.20 & 50.24 & 50.96 \\
\hline \(45 \mathrm{KK8091}\) & 101 & 51.47 & 49.90 & 50.09 & 47.83 & 49.11 & 56.01 & 49.45 & 51.33 & 53.75 \\
\hline 45Kk9091 & 130 & 53.01 & 50.98 & 52.11 & 48.26 & 48.85 & 55.48 & 49.42 & 52.44 & 53.11 \\
\hline \(51 \mathrm{KBK80}\) ? & 168 & 46.58 & 44.75 & 45.51 & 45.20 & 46.44 & 47.83 & 45.43 & 44.57 & 48.02 \\
\hline 54CSSO31 & 183 & 52.57 & 50.72 & 51.63 & 48.71 & 48.72 & 54.34 & 49.70 & 50.77 & 53.63 \\
\hline 54 SSAO 31 & 272 & 51.33 & 50.91 & 52.66 & 49.46 & 49.68 & 47.15 & 50.77 & 48.85 & 48.76 \\
\hline 55858093 & 236 & 47.28 & 43.85 & 47.34 & 44.56 & 46.45 & 45.97 & 45.75 & 42.70 & 47.39 \\
\hline 57EPE101 & 126 & 43.37 & 41.98 & 44.34 & 45.45 & 45.93 & 40.29 & 44.68 & 40.00 & 44.02 \\
\hline 57HG1551 & 224 & 46.58 & 44.05 & 45.92 & 45.40 & 46.84 & 45.20 & 45.83 & 42.56 & 47.17 \\
\hline
\end{tabular}


Table A -

\section*{ASVAB Means by SQT Criterion Cell}

Subtest
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ELL & \(N\) & 65 & AR & VE & NO & CS & AS & MK & MC & EI \\
\hline C35KL83 & 13 & 53.60 & 55.24 & 53.54 & 52.72 & 52.05 & 52.44 & 54.81 & 52.54 & 55. \\
\hline C740823 & 132 & 56.29 & 58.80 & 56.93 & 55.82 & 56.76 & 50.13 & 60.09 & 54.20 & 52.17 \\
\hline 0581182 & 617 & 48.83 & 50.41 & 51.19 & 54.04 & 54.51 & 49.87 & 49.96 & 48.00 & 49.04 \\
\hline 05 CO 182 & 1203 & 50.07 & 52.30 & 52.45 & 55.86 & 56.02 & 50.63 & 51.39 & 49.07 & 49.86 \\
\hline 05C0183 & 1160 & 50.17 & 52.63 & 52.64 & 56.18 & 56.11 & 50.60 & 51.87 & 49.15 & 50.30 \\
\hline 0560183 & 119 & 54.32 & 57.83 & 56.33 & 57.22 & 58.26 & 53.39 & 59.36 & 54.64 & 53.18 \\
\hline 05H1183 & 110 & 55.54 & 56.93 & 57.15 & 54.75 & 57.03 & 49.56 & 56.93 & 52.00 & 51.41 \\
\hline 118181 & 608 & 49.75 & 51.58 & 50.28 & 51.18 & 51.93 & 51.67 & 49.46 & 50.72 & 50.54 \\
\hline 1180183 & 426 & 48.91 & 50.83 & 49.53 & 50.45 & 51.67 & 50.68 & 48.96 & 50.31 & 49.46 \\
\hline 1181182 & 3912 & 49.30 & 51.36 & 49.84 & 50.99 & 52.08 & 51.50 & 49.46 & 50.53 & 50.0 \\
\hline 1182182 & 614 & 49.40 & 51.05 & 50.04 & 50.15 & 51.44 & 51.23 & 49.22 & 50.57 & 49.83 \\
\hline 1186182 & 422 & 49.15 & 50.97 & 49.64 & 51.45 & 52.29 & 50.49 & 49.51 & 50.32 & 49.45 \\
\hline 1187182 & 229 & 51.00 & 51.85 & 50.59 & 51.69 & 52.06 & 52.09 & 49.93 & 51.31 & 50 \\
\hline 11 C 181 & 171 & 49.02 & 50.91 & 49.94 & 50.51 & 50.90 & 51.31 & 48.65 & 50.27 & 49.66 \\
\hline 11 CO 183 & 112 & 50.45 & 52.30 & 50.94 & 51.80 & 52.21 & 52.24 & 50.28 & 51.41 & 51.20 \\
\hline 11C1182 & 559 & 50.62 & 52.80 & 51.36 & 51.96 & 52.60 & 52.18 & 51.02 & 52.10 & 50.86 \\
\hline \(11 \mathrm{C2182}\) & 187 & 50.26 & 51.78 & 50.50 & 50.57 & 52.30 & 51.33 & 50.28 & 50.66 & 50.51 \\
\hline 1164182 & 247 & 50.89 & 53.04 & 51.23 & 51.77 & 52.46 & 51.41 & 50.98 & 51.19 & 50.67 \\
\hline 1165182 & 217 & 50.31 & 52.00 & 50.47 & 52.17 & 52.86 & 5i.25 & 50.62 & 50.65 & 50.31 \\
\hline 11 H 181 & 124 & 52.60 & 53.34 & 52.71 & 51.40 & 51.40 & 55.53 & 51.48 & 53.26 & 53.62 \\
\hline 11H1182 & 443 & 52.36 & 53.18 & 52.56 & 51.98 & 52.25 & 53.88 & 51.69 & 52.27 & 52.63 \\
\hline 11 h 2182 & 321 & 51.52 & 52.01 & 51.80 & 51.28 & 52.05 & 53.24 & 50.98 & 51.57 & 51.97 \\
\hline 1280183 & 1985 & 49.22 & 51.91 & 49.76 & 51.30 & 51.90 & 52.41 & 49.85 & 51.11 & 50.34 \\
\hline 1281182 & 1112 & 49.32 & 51.36 & 49.63 & 50.76 & 51.45 & 52.03 & 49.03 & 50.56 & 50.22 \\
\hline 12C0182 & 176 & 45.98 & 49.43 & 46.38 & 50.00 & 49.98 & 51.75 & 47.11 & 49.97 & 49.22 \\
\hline 12 O 0183 & 272 & 47.54 & 50.14 & 47.86 & 50.11 & 51.07 & 53.07 & 47.85 & 50.89 & 50.29 \\
\hline 138181 & 130 & 45.15 & 48.55 & 46.83 & 49.75 & 50.91 & 47.13 & 48.43 & 45.95 & 46.72 \\
\hline 1380183 & 3907 & 46.85 & 50.80 & 47.88 & 51.38 & 51.43 & 47.03 & 50.01 & 48.38 & 47.92 \\
\hline 1381182 & 110 & 48.25 & 50.79 & 48.39 & 51.63 & 52.05 & 47.19 & 50.00 & 48.91 & 48.55 \\
\hline 1382182 & 264 & 48.84 & 52.88 & 49.36 & 51.70 & 51.90 & 50.02 & 51.63 & 50.72 & 50.05 \\
\hline 1383182 & 156 & 45.90 & 50.42 & 47.23 & 50.33 & 51.96 & 46.67 & 48.85 & 48.54 & 47.46 \\
\hline 1384182 & 1189 & 44.63 & 49.41 & 45.87 & 50.76 & 50.68 & 45.11 & 48.76 & 46.96 & 46.33 \\
\hline 1385182 & 629 & 45.34 & 49.86 & 46.31 & 51.10 & 51.24 & 45.44 & 49.32 & 47.18 & 46.76 \\
\hline 1350182 & 417 & 54.88 & 56.54 & 55.34 & 53.22 & 53.41 & 53.32 & 56.47 & 53.98 & 53.79 \\
\hline \(13 \mathrm{EO183}\) & 194 & 54.84 & 56.71 & 54.93 & 53.87 & 53.85 & 53.10 & 56.08 & 54.44 & 53.69 \\
\hline \(13 F 0182\) & 596 & 51.59 & 56.39 & 52.17 & 53.76 & 54.31 & 53.06 & 54.46 & 54.13 & 52.57 \\
\hline 1500182 & 259 & 52.23 & 52.22 & 52.91 & 53.09 & 52.41 & 54.00 & 51.05 & 53.17 & 52.23 \\
\hline 17K2182 & 110 & 52.59 & 54.45 & 53.25 & 54.53 & 54.14 & 53.75 & 52.09 & 52.72 & 52.54 \\
\hline 190181 & 104 & 47.72 & 50.88 & 49.27 & 50.59 & 51.18 & 51.11 & 48.93 & 50.65 & 50.11 \\
\hline 1900183 & 336 & 51.96 & 53.69 & 52.23 & 52.18 & 52.26 & 53.86 & 51.69 & 52.89 & 52.48 \\
\hline 1901182 & 746 & 50.55 & 52.24 & 51.07 & 51.19 & 52.18 & 52.02 & 50.70 & 51.83 & 50.95 \\
\hline E118 & 68 & 49. & 51.60 & 49.74 & 50.92 & 51.96 & 51.76 & 49.41 & 50 & 40 \\
\hline
\end{tabular}

A-00


ASVAB Means by SQT Criterion Cell (Continued)


ASVAB Means by SQT Criterion Gell (Continued)


\section*{APPENDIX B}
\(212 \cdots\)

IO: Gloria Guth (ce: DBrandt, DMchaughlin, WYoung, LLVise, PRossmeisal)
FROM: Ming-nei Wang
sUBJECT: Editing of Tralning Cutcome Scores

In an effort to make sense out of the perfomance scores in the training data file and to transform these scores into data that can facilitate the upconing validation analyses, I have worked out the following rules for editing the three variables presently named TISCORE, TIRANK, and T1RANK2. (A variable TINRANR also exists in GGI's TRNBIV3D, and I will make use of it in the editing). The developant of these editing rules is based on existing information extracted from Mike Runsey's summery, ARI's project document, and a series of frequency and crosstab runs aade by GGI at ay request. They should be spplied to TRNBIV3D in order to complete the editing of ARI's training data.

\section*{Defining Score Types}

Pitst, two aew variabies (TISTYFEl and IISTYPs2; 1 character code) are created to indicate what kinds of performance tcores are available for each yOS at a given school/arC. A third variable (TlSTYPE3; l character code) is also created to preserve the additional information on MOS OSB, \(05 C\), and 110. In YOS \(0^{\circ} B\) and OSC, a saall number of trainees received International Morse Code training and will be identified by TISTYPE3 = 'M'.

For training . US 110 , the specific training assignment (e.z., 11B, 11C, 11H) for the students was originally recorded in colum 46 and entered into the existing sas file as the second byte of TlRaNK2. Ihis information will also be kept as IISTYPE3 in the edited training file (see a later section for further explanation). In an earlier editing run, T1MOSAWD = 110 was changed, where appropriate, to specific codes 11B, 11C, 1iH, or 11 X on the basis of this information. At the same time, IlRANK2 for these trainees in . 0 O 110 was recoded to \(G\) (guaranteed), S (selected), GS (guaranteed and selected), 32 (selected for 11BC2), and A (attgited). This run creared an internediate edited file TRN81V3D which will be the base file for the current editing.

The definition of the three sore-type variables (T1STYPE1, T1STYPE2, and IISTYPE3) are given in the attactment to this aeno. The values of ILSIYPEI and TISTYPE2 are explicitly defined for each MOS/school in that attachment. The value of IISIYPE3 for MOS 053, 05C, and 110 can be obelaed from ILHOSAND and IIRANK2 (as found in IRN8IV3D) usiag the follouting table:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Variabler In [RNBIV3D} & Mew Variable \\
\hline TIMOSAND & TIRANK2 & T1STYPE3 \\
\hline 058 & '26' & \(\cdots\) \\
\hline 05C & '26' & M \\
\hline 118 & 'G \({ }^{\circ}\) & \(A\) \\
\hline 11 C & 'G' & B \\
\hline 114 & 'G' & c \\
\hline 118 & 'Gs' & D \\
\hline 113 & 's' & \(\varepsilon\) \\
\hline 110 & 's' & F \\
\hline 11H & 's' & G \\
\hline 118 & 's2' & H \\
\hline 11 X & 'A' & 1 \\
\hline 110 & & blank \\
\hline all others & not relevant & blank \\
\hline
\end{tabular}

I would suggest that a score-type file containing Tlyosawd, rischool, IISTYPEI, and TISTYPE2 be setup using the definitions given in the attachment. This score-type file can then be merged with TRN3IV3D by TLYOSAND and TISCHOOL to create the first two score-type variables for each record.

\section*{Special Notes for Iraining mos 110}

Training moS 110 (at school 809) represents a aixture of yos codes within the il series. These students can be divided into subgroups according to their specific training assigneents:
- Students who entered the school with MOS 118, 11C, or 11月 guaranteed and recaived training in the respective MOS.
- Studente who arrived with moS 118 guaranteed but were subsequently selected for craining as 118C2 (Dragon gunner).
- Students who arrived with MOS code ilx and were subsequently assigned to training as 11B, 11C, 11H, or 11BC2.
- Students who were attrited prior to assignment for training in a specific MOS.
\[
\underset{\sim}{\sim}
\]
- Studence for who there vas no information on their specizic trifing assignaenta in the school. (There are 569 such cases in the current trining file, including multiple record counte.)

For the first three groups of students, TMOSAWD has been changed to correspond to the specific yOS code in which the student received sraining. Becauge only three characters are uged for TMOSAWD, MOS code 11BC2 is also recorded as 11s. The variable T1STYPE3 any be used to differentiate between trainees for 118 CL and those for 118. (Those with TISTYPE3 - A or E received training as 118 whereas those with IISTYPE3 = D or H recelved training as llaC2.) TlifOSAWD was recoded as 11X for the fourth group, whlle no recoding was made for the fifth group (1.e., ILAOSAND - 110 for this group).

Additionally, it should also be noted that risOSAND = 11 X indicates that the students arrived at the shool to be trained in CaF 11 , but were attriced prior to the aseignment for training in apecific Mos code. This aeaning of 11 X for TLMOSAWD should not be confused with the 11 X for AIPRMOOS, AITRNMOS, and AITNGYOS in the accessions file. I assume that MOS 11X in the accessions data indicates that the soldiers were generally assigned to training and subsequently to the first-tour service in CFF 11. The exact meaning of \(11 \times\) (which represents about 4.74, approximately 6300, of FY81 accessions) is not clear at this cime. When we have learned what it really represents in the accessions file, we may have to change 11X for IlyoSAin to sone other code such as 112 (which as far as I know joes not exist in the accessions data).

The training scores for studeats in this \(40 S\) also require special editing. In an earlier editing run to plit IlmoSAdD 110 in:o \(11 \mathrm{~B}, 11 \mathrm{C}\), \(11 \mathrm{H}, 11 \mathrm{X}\) and 110 , the third byte of the second perforaance scores for these trainees was lost when the variable Tlihurk2 was redefined. A subsequent rerun was ade to restore this information and create a temporary variable TINRANK (which is a numeric equivalent of a character variable forsed by concatenatiag Tirank and the first byte of IlRANK). Note that TlRANK and TlRANR2 are arbitrary variables designated to store the information in colums 43-44 and 45-46, respectively, when the first SAS training file uas created. It has been verified that al: the lost information originally contained in Tlpavk2 has been recaptured with TINRANK. Thus in the editing specifications belov, TiMrank uill be used to define a second performance score for this HOS where appropriate.

\section*{Editing the Pirst Performance Score (TlSCOREl)}
1. Por TISTYPE1 \(=1,2,3,4,5,6,7,8, D, P\), or \(Q:\)
- If TISCORE LE 0 , set IISCORE to aissing.
- If IlsCORE GT 100, list the data. Then if it appears that values exceed 100 because of fallure to round the ecores to integers, set T1SCONE - ROUND (IISCORE/10); otherwise, set TISCORE to alising.
- Rename tISCORE to TISCORE1.
2. For TlSTYPE1 - A, B, or C:
- Concatenate TISCORE and TIRANK in character form, then convert the resulting character variable to numeric form (with format 5.2).
- Name the new variable TISCOREl.
- If TISCOREI LE 0 , set TISCOREl to missing.
- Obtain frequency distribution of TISCOREI by T1MOSAWD and TISCHOOL to determine needs for further editing of unusual and/or out-of-range scores. (Except for a few obviously unreasonable values, I recommend that most of the scores be retained to allow the analysts choices of various methods to treat outliers, such as trimming, at the time of analysis.)
3. For IlsTYPEI = E:
- If TISCORE LE O, set TISCORE to missing.
- Set TlSCORe = TISCORE/10.
- Rename TISCORE to TISCOREl.
(Note that TISCOREl is either 23 or 36 for 76 V , and all equal to 16 for Course EY of MOS \(76 Y\) in school 101.)
4. FOT TISTYPE1 = X:

Obtain a frequency distribution of TISCORE by TIMOSAWD, and rename TISCORE to TISCORE1. Our current information indicates that there are very few records (only 2 as far as we know) for MOS 12B in school 061. The scores for these cases are left unedited as it is unlikely that they will be useful in our analysis. (Note that we have now found that school 061 does not provide training for 12B and both records have thus been edited on the basis of other information, such as TICOURSE.) For TIMOSAWD = 09J, we have found that all such cases are data entry errors and accordingly have been eliminated from the edited file.

Editing the Second Performance Score (T1SCORE2)
A new variable TISCORE2 will be created to contain this second performance score. Upon completion of this editing step, drop TIRANK, TIRANK2, and TINRANK from the data file.
1. For TISTYPE2 = 1 (progression index):
- Convert TIRANK to numeric and name the resulting variable TISCORE2.
- If TISCORE2 LE 0 , set TISCORE2 to missing.
- Obtain frequency distribution of TISCORE2 by TIMOSAWD and TISCHOCL to determine if further editing of unusual scores is required. (Note that inspection of the score distributions by ThMCSAWD suggests that the scores may not be meaningful progression indices with a standard of 1 as the schools reported.)
2. For TLSIYPE2 - 2:
- If TIDISP = A, B, or C, convert TLRANK to numeric and rage the resulting variable TlSCORE2; otherwise, set TlSCORE2 to 0 .
- Obtain frequency distribution of TISCORE2 by TMMOSNDD to determine if further editing of unusual values is required. (in general, the ecores do not appear to require additional editing.)
3. For T1STYPE2 \(=C\), set TISCORE2 to missing.
4. For TISTYPE2 = D:
- Convert ILRANK to numeric and name the resulting variable TISCORE2. If TISCORE2 LE 0 , set TISCORE2 to missing.
- Obtain frequency distribution of IISCORE2 to make sure that all acorns fail within the specified range (1-12 for mos 918; 1-13 for MOS 94F. Vote that all scores have been verified to be within the range.)
5. For IISTYPE2 - E:
- Convert TlRARK to numeric and mane the resulting variable IISCORE2.
- If TISCORE2 LE 0 . et TISCORE2 to missing.
- Obtain frequency distribution to determine if further editing of unexpected values is required. (Note that TISCORE2 ranges frow 23 to 41 for 760 , and from 16 to 23 for \(765^{\circ}\), )
6. For IISTYPE2 \(=P\) :
- Concatenate TlRaNK and the first byte of TlRANX2 ans convert the resulting character variable to a numeric variable named IISCORE2.
- If IISCORE2 LE 0 , set TISCORE2 to missing.
- If TISCORE2 CT 100 , list the data. Then if it appears that values exceed 100 because of failure to round the scores to integers, ser TISCORE2 \(=\) ROUND (IISCORE2/10); otherwise, set TISCORE2 to missing.
7. For TISTYPZ2 \(=Q:\)
- Convert TlRANK co a numeric variable IISCORE2.
- If TISCORE2 LE 0 , set IISCORE2 to massing.
8. For TISTYPE2 - \(X\) and the first two bytes of TlyOSAdD F? 'll':
- Let IISCORE2 - TINRANK.
- If TISCORE2 LE 0 , set TlSCORE2 to missing.
- If IISCORE2 GT 100, list data. Then if it appears that values exceed 100 because of failures to round the scores to integers, set IISCORE2 to ROUND(T1SCORE2/10); otherwise, set T1SCORE2 so EAsing.


For all other cases with TISTYPE2 - X, set TISCORE2 to missing unless other information becomes available later to allow sensible editing of the data.
9. For TISTYPE2 \(=Y\) or 2 , set TISCORE2 to missing.

Additional Editing for MoS 110 (school 809)
If TIMCSAWD EQ '110' or '11X' (as found In TRN81V3D), obtain crosstabs of TISCOREl (recoded to missing versus nonmissing after editing of rlSCOREl as specified earlier in this memo) and TIDISP by TIMOSAWD in order to determine needs for further editing. (Note that TISCOREl was found to be all missing for \(11 X\), and for about \(11 \%, 62\) cases, for 110; while TlSCORE2 was known to be missing for all cases in 11 X and 110.)

\section*{ATTACHMENT}

Definitions of Score Types for the ARI Training Outcome Data

\section*{TISTYPE1 (For 176 MOS/School)}

Thin variable indicia es the score type for the first training performance measure (TISCORE1, i the edited file.

1 = Course GPA derived from averaging percents of "first-time GO's" attained by students on each test; ( \(\operatorname{Col} .40-42\) in the raw data file)

School 061 : 13C, 13R, 17C
School 101 : 76X
School 113 : 05B, OC, 31J, 31N, 31S, 31T, 32G, 35L, 36C, 36K, 72E
School 121 : 71D, 75B, 75C
School 161 : 71M
School 171 : 45N, 45T, 63D, 63N, 63T, 63Y
School 301 : 17R, 968, 96D,
School 441 : 24C
School 804 : 19D, 19E, 19F
School 807 : 12F, 51B, 51C, 51K, 51M, 51N, SlR, 62B, 62E. 62F. 62G,
62H, 62J, 63B, 64C
School 810 : 13E, 15E
Total : \(49 \mathrm{MOS} / \mathrm{School}\)

2 = percent of "first-tine \(60^{\prime} s\) " achieved on End of Course Comprehensive Test (8OCCI); (COL. 40-42 in the raw data file)

School 062 : 15J, 17B, 26B, 93F*
School 551 : 67U
School 803 : 63B
School 805 : 63B, 76Y, 94B
School 807 : 12B, 12C
School 809 : 110 (also 11B, 11C, 11H, 11 X as in the edited file)
School 810 : 13B, 15D, 82C
School 811 : 16P, \(16 S\)
> (* We have two conflicting Inforations on the scores for 93F: Mike lumsey' document sumary indicates that the scores are percent of "firat-tive GO's" on BOCCI; but the original ARI document indicates that they are initial percentage score on EOCCT. Inspection of the score distribution does not reveal evidence for choosing one type over the other.. Assuming that Runsey's information is more up-to date, we decided to classify these sores under TISTYPEl - 2. If further information becomes available later or oidence from subsequent data analysis support classification of these scores under cher types, we will revise this document accordingly.)

Total : 17 Mos/School (not counting 11B, 11C, 11H, 11 X )
```

Definitions of Score Types for the
ARI Training Outcome Data (Cont.)

```

\section*{T1STYPE1}

3 = Course GPA derived from averaging initial percentage scores attained by students on each test; ( \(\operatorname{Col} 40-42\) in the raw data file)
```

School 011 : 67N, 67V. 71P, 93H, 93J
Schou1 093 : 21L, 24X, 27E, 27F, 27G, 55B, 55G
School 101 : 43E, 43M, 57E, 76W, 92C, 94B
School 113 : 26L, 26Q, 26V, 31E, 31M, 32D, 32H, 35R, 35M, 36H
School 121 : 7iC, 73C, 73D
School 441 : 24E, 24G, 24M, 24Q, 24U
School 551 : 61B, 61C, 67G, 67T, 68D, 68F, 68J, 68M, 71N
School 805 : 63S, 75D, 75E
School 810 : 13F
School 906 : OSD, 05G, 05H, 33S, 98C, 98J

```
Total : \(55 \mathrm{MOS} / \mathrm{school}\)

4 = Initial percentage score achieved on End of Course Comprehensive Test (EOCCT); (Col. 40-42 in the raw data file)

School 061 : 31V, 45D
School 101 : 76C, 76P, 76Y (for course '5G' only)
School 121 : 74D, 74F
School 803 : 94B
School 811 : 16B, 16C, 16D, 16E, 16H, 16J, 16R
Total : 14 MOS/8chool

5 = Second percentage score achieved on End of Course Comprehensive Test (OCT); (Col. 40-42 in the raw data file)

School 803 : 64C

6 - Average of percent of "first-tiae GO's" achieved on End of Course Comprehensive Test (BOCCT) and time progression index (standard of 1 ), each with 50\% weight; (Col. 40-42 in the raw data file)

School 551 : 67Y
```

Definitions of Score Types for the
ARI Training Outcome Data (Cont.)
T1STYPE1
7 = Average of Course GPA and tive progression index, each uith 50%
weight. Course GPA is derived from averaging iaitial percentage scores
attained by student on each test. Time progression index has a
standard of l (100%); (CO1 40-42 in the raw data file)
School 551 : 68B, 68G
B = percent of total points achieved on the first tiae tested (not
phased); (Col. 40-42 1n the raw data file)
School 929: 35G, 42D, 71G, 76J, 91E, 91G, 91Q, 91R, 91S, 92B
Total : 10 MOS/school
A = Course GPA derived from averaging the number of tries required to pass
each exam. The score is recorded with implicit decimal point after the
third digit (009.99) with the standard being 1.00 (one try per exam).
As such, this performance measure is expressed in a reversed direction,
1.e., iower values represent betcer performances. Our preliminary
analysis reveals negative correlations with ASVAB subtest scores. We
suggest that the reciprocal of this score be used as the criterion
measure in the validation.; (Col 40-44 in the raw data file)
School 091:34G, 41C, 44B, 44E, 45B, 45K, 45L, 53G, 63H, 63J, 63W

```

Total : 11 MOS/achool

B = Initial or second percentage score achieved on End of Course Comprehensive Test (EOCCT), recorded with two implicit decimal places (999.99); (Col. 40-44 in the raw data file)

School 813 : 95B, 95C
```

Definitions of Score Types for the
ARI Training Outcome Data (Cont.)

```

\section*{T1STYPE1}

C - Course GPA derived from averaging initial percentage scores achieved on each test, recorded with two implicit decimal places; (Col. 40-44 in the raw data file)

School 031 : 54C, 54E*
School 551 : 57E
(* inferred on the basis of the data.)
\(D=f i r s t\) time pass rate ( 0 to 100\%) on performance tests (for lock-itep modules); (Col. 40-42 in the raw data file)

School 929 : 918, 94F
\(£=\) Humber of tests given in the course. This score by itself is not a meaningful performance indicator. It should be used in conjunction with a second measure (TISCORE2, see later description for TISCORE2 - E) to define an appropriate performance measure, such as TISCORE2/TISCOREL representing the average number of tries required to pass each test; ( \(\operatorname{Col} 40-41\) in the raw data file)

School 101 : 76V, 76 Y (for course 'EY' only)
(The number of tests is either 23 or 36 for MOS 76V; and 16 for course EY of MOS 76Y.)
\(P=\) Percent of total points achieved on the first time tested in Phase \(I\) of the course; (Col. 40-42 in the raw data file)

School 929: 91C, 91D, 91F, 91P
(The training courses for these MoSs are divided into two phases: Phase I consists of \(4,6,6\), and 13 weeks for 91C, 91D, 91F, and 91P respectively.)
\(Q\) - Course GPA derived from averaging initial percentage scores attained by stursat on each test for Part A of the course; (Col. 40-42 in the raw data file)

School 906 : 05x
(The training course for chis HOS consists of two parts, each scored the sase ray; see also T1STYPE2 - Q.)
```

Definttions of Score Types for the
ARI Training Outcone Data (Cont.)

```

\section*{T1STYPE1}
\(X=\) Uncertain (not documented)
School 061 : 12B
School 803 : 09J
(Note that all records with TMOSAND \(=09 \mathrm{~J}\) have been found to be data entry errors and therefore have been eliminated from the current file. It has also been determined that school 061 does not provide training for 12B and thus the two cases with TIMOSAWD \(=12 B\) in this school are data entry errors and have been edited on the basis of other information, 1.e. TICOURSE.)

Definitions of Score Types for the ARI Training Outcome Data (Cont.)

\section*{TISTYPE2}
```

1 - Progression Index. This index is defined as the ratio of the time spent
to coaplete the (self-paced) course to the expected tise for
completion, or the reciprocal of this ratio. (Std. 1, with an implicif
decimal place); (Col. 43-44 in the raw data file)
School 113 : 058, 05C
School 811 : 16P, 16S
(Note that inspection of the score dissribution suggests that these
scores may not conform to the given definition. Be cautious when
using these scores in the analysis.)
2 = Number of weeks repeated or recycled in the course (nostly 00,
indicating zraduation without repeat or recycle); (Col. 43-44 in the
rav dota file)
School 113 : 26Q, 26Y*, 31M*, 31S, 31T*, 32D, 32G, 32H, 35K*, 35M*,
36C*, 36K, 72E*
(* = all 00 in the training data file)
C = No second performance score: Col. 43-44 in the rav cata file have been
used in combination with col. 40-42 to record a single performance
score with format P5.2 (see T1STYPE1 = A, B, or C)
School 031 : 54C, 54L (IISTYPE1 = C)
School 091 : 34G, 41C, 44B, 44E, 45B, 45K, 45L, 63G, 63H, 63J, 63W
(TISTYPEI = A)
School 551 : 57\# (TlSTYPE1 (C)
School 813 : 958, 95C (TlSTYPE1 = B)

```
```

Definitions of Score Types for the

```
ARI Training Cutcoae Date (Cont.)

\section*{T1STYPE2}

D = Number of tests successfully passed (or number of self-paced tasks completed) on the first trial; (Col. \(43-44\) in the raw data file)

School 929 : 91E, 94 F
(The number ranges from 1 to 12 for 918 , and 1 to 13 for 94F; see also TISTYPE1 = D.)
\(E=\) Total number of tries required to pass all exams given in the course;
(Col. 43-44 in the raw data file)
School 101: 76V, 76Y (for course 'EY' only)
(The number ranges from 23 to 41 for 76 V , and 16 co 23 for course \(E Y\) of MOS Toy: See TISTYPE1 * E for suggestion of appropriate use of this index as a performance indicator.)
\(P=\) Percentage of total points achieved in Phase II of the course; (Col. 43-45 in the raw data file)

School 929 : 91C, 910, 91P, 91P
(Note that the training courses for these MOSs are divided into two phases. Phase II consists of 12 weeks for 91C, and 6 weeks for 91D, 91F, and 91P. See also T1STYPEl = P.)

Q * Course GPA derived from averaging initial percentage scores attained by student on each test for Part \(B\) of the course (same as Part A, see T1STYPE1 - Q); (Col. 43-44 in the raw data file)

School 906 : 05K
```

Definitions of Score Types for the
ARI Tralning Outcome Deta (Cont.)

```

\section*{T1STYPE2}
\(\mathbf{L}=\) Uncertain (data do not agree with documents and discrepancies cannot be resolved at this point, need further checking)

School 061 : 128 (no longer exists in the edited file; see TISTYPE1 \(X\) for explanation) 13C (should be ' 00 ', but there are nonzero tatties)
School 803 : 09J (invalid MOS, no longer exists in the edited file)
School 805 : 76 Y (should be ' ', but there are a large no. of noablank entries)
School 809 : 110 (COl. 43-45 any be ' 000 ' or initial percentage score on the HOS unique test; Because of sone unplanned earlier editing which overrides data in Col. 45, special editing of the second performance score for this mos has been a de to recover the information. See page 5 of the editing memo.)

School 906 : 98 C (should be' ', but there are miscellaneous nonzero entries in the data file, we mould ignore the scores here.)
(Note that except for TlMOSAWD \(=110\) in school 809 , we have decided to leave TISCORE2 unedited for IISTYPE2 = X. Current information suggests that these data have little analytical values.)

Y u Three zeros; ( Col. 43-45)
School 929 : 35G, 71G, 76J, 91E, 91G, 91Q, 91R, 91S, 92R

\section*{Definitions of Score Types for the ARI Truining Outcome Data (Cont.)}

\section*{T1STYPE2}

2 - Two zeros: (Col. 43-44)
School 093 : 27E, 27F, 27G, 55B, 556
School 101 : 43E, 43M, 57E, 76C, 76P, 76W, 76X, 92C, 94B
School 113 : 26L, 31E, 31J, 31N, 35L, 36H
School 121: 71C, 71D, 73C, 73D, 74D, 74F, 75B, 75C
School 171 : 45N, 45T, 63D, 63N, 63T, 53Y
School 441 : 24C*, 24G, 24M, 24Q, 24U
School 551 : 67U, 67Y, 68B, 68G
School 803 : 948**
School 805 : 948
School 811 : 16B, 16C, 16D, 16E, 16H, 16J, 16R
School 929 : 42D
(* - Progression index indicated in the document, but data are all zeros;
** = document indicates tiat this field contains course coapletion time, but our data show all zeros)

Total : 53 Mos/school
```

'' = blanks; (Col. 43-46)

```

```

 School 061 : 13R, 15J, 17B, 17C, 26B, 31V, 45D, 93F
 School 093 : 21L, 24K
 School 161 : 71M
 School 301 : 17K, 96B, 96D
 School 441 : 24E
 School 551 : 61B, 61C, 67G, 67T, 68D, 68F, 68J, 684, 71N
 School 803 : 638*, 64C*
 School 804 : 19D, 19E, 19F
 School 805 : 638, 63S, 75D, 75E
School 807 : 12B, 12C, 12P, 51B, 51C, 51K, 51M, 51N, 51R, 62B, 62E,
62F, 62G, 62H, 62J, 63B, 64C
Scbool 810 : 13E, 13E, 13F, 15D, 15E, 82C
School 906 : 05D, 05G, 05H, 335, 98J
(* - Progression index indicated in document, but a:: zeros in data
file)

```

Total 66 MOS/School

Definitions of Score Types for the ARI Training Outcome Data (Cont.)

\section*{T1STYPE3}
\(M=\) Took International Morse Code training; (Col. 45-46= \({ }^{\prime} \mathbf{2 G}{ }^{\prime}\) )
School 113 : 05B, 05C

Special Codes for TMMOSAWD \(=\) '110' (school 809)


These codes are originally recorded either in column 45 or 46 and will be kept ag IISTYPE3 in the edited training data file.

For all other MOS/school, T1STYPE3 will be blank.

\section*{APPENDIX C}
\[
210 \quad 2=2
\]

CONVERSION OF SUM OF SUBTEST STANDARD SCORES TO ARMY STANDARD SCORES ADJUSTED CO COMPOSITE
\[
(C O=C S+A R+M C+A S)
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SSSS & ARHY 55 & SSSS & ARMY SS & SSSS & ARMY SS & SSSS & ARMY SS \\
\hline & & & & 182 & 89 & 233 & 121 \\
\hline 80 & 40 & 131
132 & 57 & 183 & 89 & 234 & 121 \\
\hline 61 & 40
40 & 132
133 & 58 & 184 & 90 & 235 & 122 \\
\hline 82 & 40 & 133 & 59 & 185 & 91 & 236 & 123 \\
\hline E 3 & 40 & 134
135 & 59 & 186 & 91 & 237 & 123 \\
\hline Es & 60 & 135
136 & 59
60 & 187 & 92 & 238 & 124 \\
\hline E 5 & 40 & 136
137 & 60 & 188 & 93 & 239 & 125 \\
\hline 85 & 40 & 137 & 60 & 188 & 93 & 240 & 125 \\
\hline ¢: & 40 & 138 & 61 & 190 & 94 & 241 & 126 \\
\hline 69 & 40 & 139 & 62 & 190 & 94 & 242 & 126 \\
\hline E 7 & 40 & 140 & 62 & 191 & 95 & 243 & 127 \\
\hline 43 & 40 & 141 & 63 & 192 & 96 & 244 & 128 \\
\hline 5 i & 40 & 142 & 64 & 194 & 96 & 245 & 128 \\
\hline 52 & 60 & 143 & 64 & 194 & 97 & 246 & 129 \\
\hline 53 & 40 & 144 & 65 & 195 & 98 & 247 & 130 \\
\hline -2 & 40 & 145 & 65 & 196 & 98 & 248 & 130 \\
\hline ce, & \(\div 3\) & 146 & 66 & 197 & 99 & 249 & 131 \\
\hline \(\bigcirc\) & 40 & 147 & 67 & 198 & 99 & 250 & 132 \\
\hline \(5{ }^{-}\) & 40 & 148 & 67 & 200 & 100 & 251 & 132 \\
\hline \(¢\) & 40 & 149 & 68 & 201 & 101 & 252 & 133 \\
\hline 90 & 40 & 150 & 69 & 202 & 101 & 253 & 133 \\
\hline 120 & 40 & 151 & 69 & 202 & 102 & 254 & 134 \\
\hline 1.1 & 40 & 152 & 70 & 204 & 103 & 255 & 135 \\
\hline 152 & 49 & 153 & 70 & 205 & 103 & 256 & 135 \\
\hline 1.? & 60 & 1.54 & 71 & 206 & 104 & 257 & 136 \\
\hline 1 1: & 40 & 155 & 72 & 207 & 104 & 258 & 137 \\
\hline 1.5 & 40 & 156 & 72 & 208 & 105 & 259 & 137 \\
\hline I'm & : & \(15 \%\) & 73 & 209 & 106 & 260 & 138 \\
\hline 1: & に & 158 & 74 & 210 & 106 & 261 & 138 \\
\hline 1. 3 & 42 & 159 & 76 & 211 & 107 & 262 & 139 \\
\hline 15.9 & 43 & 160 & 75 & 212 & 108 & 263 & 140 \\
\hline 1:3 & 43 & 161 & 76 & 212 & 108 & 264 & 140 \\
\hline 1.1 & 66 & 162 & 76 & 213
214 & 109 & 265 & 141 \\
\hline 1:2 & 43 & 163 & 77 & 214
215 & 109 & 266 & 142 \\
\hline 1:3 & 45 & 164 & 77 & 216 & 110 & 26 ; & 142 \\
\hline 1:4 & 45 & 165 & 78 & 216 & 111 & 268 & 143 \\
\hline J:5 & 47 & 166 & 79 & 218 & 111 & 269 & 143 \\
\hline 1:6 & 4? & 167 & 79 & 218 & 112 & 270 & 144 \\
\hline \(1: 7\) & 68 & 168 & 90 & 219
220 & 113 & 271 & 145 \\
\hline 1: & 68 & 169 & 81 & 221 & 113 & 272 & 145 \\
\hline 119 & 69 & 170 & 81 & 221 & 114 & 273 & 146 \\
\hline 1:0 & 50 & 171 & 82 & 222 & 115 & 274 & 147 \\
\hline 121 & 50 & 172 & 82 & 223 & 115 & 275 & 147 \\
\hline \(1: 2\) & 51 & 173 & 83 & 224 & 116 & 276 & 148 \\
\hline \(1: 3\) & 52 & 174 & 84 & 225 & 116 & 277 & 148 \\
\hline 1.4 & 52 & 175 & 84 & 226 & 117 & 278 & 149 \\
\hline 1:5 & 53 & 1:6 & 85 & 227 & 118 & 279 & 150 \\
\hline 1:5 & 53 & 177 & 86 & 228 & 118 & 280 & 150 \\
\hline \(1: 7\) & 54 & 178 & 86 & 229 & 119 & 281 & 151 \\
\hline \(1: 9\) & 55 & 179 & 87 & 230 & 119
170 & \(28:\) & 152 \\
\hline \(1: 9\) & \% 5 & 180 & 87 & 231 & 120 & 2 H & 132 \\
\hline 10 & 36 & 181 & A8 & 232
302 & 160 & 311 & 150 \\
\hline \(2 \overline{4}\) & 133 & 343 & 159 & 303 & 160 & 312 & 160 \\
\hline - \({ }^{\text {P }}\) & 10 & 244 & 159 & 304 & 160 & 313 & 160 \\
\hline \(2 \cdot .6\) & 184 & 205 & 160 & 305 & 160 & 314 & 160 \\
\hline 2:7 & 135 & 246 & 140 & 3016 & 160 & 315 & 160 \\
\hline 2-A & 135 & 297 & 160 & 301 & 160 & 316 & 160 \\
\hline 2-9 & 136 & 298 & 160 & 308 & 160 & 317 & 160 \\
\hline 20 & 157 & 294 & 160 & 309 & 160 & 318 & 16.0 \\
\hline \(2+1\) & 157 & 300 & 160 & 310 & 160 & 319 & 1 to \\
\hline 292 & 158 & 301 & 160 & & & 320 & 160 \\
\hline
\end{tabular}

\section*{CONVERSION OF SUM OF SUBTEST STANDARD SCORES to ariy standard scores atjusted el composite}
\[
(E L=A R+E I+M K+G S)
\]


CONVERSION OF SUM OF SUBTEST STANDARD SCORES TO ARMY STANDARD SCORE: ADJUSTED GM COMPOSITE
\[
(G M=M K+E I+G S+A S)
\]


CONVERSION OF SUM OF SUBTEST STANDARD SCORES TO ARMY STANDARC SCOIES ADJUSTED ST COMPOSITE \((S T=V E+M K+M C+G S)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline S555 & ARMY SS & S5S & ARHI SS & \$555 & ARHI SS & \$55S & AROX 5S \\
\hline 80 & 40 & 131 & 60 & 182 & 90 & 233 &  \\
\hline 81 & 40 & 132 & 61 & 183 & 90 & 234 & 120 \\
\hline 82 & 40 & 133 & 62 & 184 & 91 & 235 & 1:0 \\
\hline 83 & 40 & 134 & 62 & 185 & 91 & 236 & \(1: 1\) \\
\hline 84 & 40 & 135 & 63 & 186 & 92 & 237 & 1:1 \\
\hline 65 & 40 & 136 & 63 & 187 & 93 & 235 & 1:5 \\
\hline 86 & 40 & 137 & 64 & 188 & 93 & 239 & 1:2 \\
\hline 67 & 40 & 138 & 64 & 189 & 94 & 240 & \(1: 3\) \\
\hline 88 & 40 & 139 & 65 & 190 & 94 & 141 & 1:5 \\
\hline 89 & 40 & 140 & 65 & 191 & 95 & 242 & 150 \\
\hline 90 & 40 & 141 & 66 & 192 & 95 & 243 & 1:5 \\
\hline 91 & 40 & 142 & 67 & 193 & 96 & 244 & 175 \\
\hline 92 & 40 & 143 & 67 & 194 & 97 & 245 & \(1{ }^{4} 5\) \\
\hline 93 & 40 & 144 & 68 & 195 & 97 & 246 & 1:\% \\
\hline 94 & 40 & 145 & 68 & 196 & 98 & 247 & 1:* \\
\hline 95 & 40 & 146 & 69 & 197 & 98 & 248 & 1: \\
\hline 96 & 40 & 147 & 70 & 199 & 99 & 249 & \(17 ?\) \\
\hline 97 & 41 & 148 & 70 & 199 & 99 & 250 & 156 \\
\hline 98 & 42 & 149 & 71 & 200 & 100 & 251 & 175 \\
\hline 99 & 42 & 150 & 71 & 201 & 101 & 252 & 130 \\
\hline 100 & 43 & 151 & 72 & 202 & 101 & 253 & 121 \\
\hline 101 & \(4 ?\) & 152 & 73 & 203 & 102 & & \(13:\) \\
\hline 102 & 44 & 153 & 73 & 294 & 102 & & 122 \\
\hline 103 & 44 & 154 & 76 & 205 & 103 & - & 152 \\
\hline 104 & - 5 & 155 & 74 & 206 & 164 & 45 & 153 \\
\hline 105 & 6 & 156 & -5 & 207 & 10.i & 25: & 133 \\
\hline 106 & -6 & 157 & : 5 & 208 & 105 & 259 & 130 \\
\hline 107 & 47 & 158 & 76 & 209 & 105 & 263 & \(1: 5\) \\
\hline 105 & 47 & 157 & 7 & 210 & 105 & 251 & 175 \\
\hline 109 & 48 & 163 & 77 & 211 & 106 & 242 & 136 \\
\hline 119 & 48 & 161 & 78 & 212 & \(10 \%\) & 263 & 135 \\
\hline 111 & 69 & 162 & 78 & 213 & 105 & 264 & \(13 \%\) \\
\hline 112 & 50 & 163 & 79 & 214 & 108 & 205 & 137 \\
\hline \(1: 3\) & 59 & 164 & 79 & 215 & 109 & 266 & 1:5 \\
\hline 11. & 51 & 165 & 80 & 216 & 109 & 267 & 110 \\
\hline \(1: 5\) & 51 & 146 & 81 & 217 & 110 & 268 & 139 \\
\hline 110 & 52 & 161 & 81 & 218 & 110 & 269 & 1-0 \\
\hline 117 & 52 & 168 & 82 & 215 & 111 & 770 & 1:0 \\
\hline 119 & 53 & 169 & 82 & \(\therefore 20\) & 112 & 271 & 1-i \\
\hline 119 & 56 & 170 & 63 & 2:1 & 11: & 272 & 141 \\
\hline 1.0 & 54 & 171 & 13 & 222 & 113 & 273 & 142 \\
\hline \(1: 1\) & 55 & 172 & 84 & 223 & 113 & 776 & 143 \\
\hline 1:2 & 35 & 173 & E 5 & \% 24 & ii4 & 275 & 165 \\
\hline 1:3 & 56 & 174 & E 5 & 225 & 114 & 276 & 144 \\
\hline \(1=6\) & 56 & 175 & 86 & 226 & 115 & 277 & 164 \\
\hline 125 & 51 & 176 & 86 & 227 & 116 & 278 & 1:5 \\
\hline 126 & 58 & 177 & 87 & 2:8 & 116 & 279 & 1-5 \\
\hline 1.7 & 58 & 179 & 67 & 2:9 & 117 & 280 & 106 \\
\hline 1.5 & 50 & 179 & 68 & 230 & 117 & 281 & 1-7 \\
\hline 179 & 59 & 180 & B9 & 231 & 118 & 262 & 14\% \\
\hline 130 & 60 & 161 & 89 & 232 & 118 & 2 B 3 & 168 \\
\hline 2 \(\mathrm{H} /\) & 148 & 291 & 153 & 302 & 159 & 311 & 160 \\
\hline 2A3 & 149 & 294 & 15\% & 303 & 157 & 312 & 140 \\
\hline 286 & 169 & 295 & 155 & 304 & 160 & 313 & 180 \\
\hline 287 & 150 & 296 & 155 & 305 & 160 & 314 & 160 \\
\hline 285 & 151 & 297 & 156 & 306 & 160 & . 315 & 160 \\
\hline 489 & 151 & 298 & 156 & 307 & 160 & 316 & 16 C \\
\hline \(2^{\circ} 0\) & 1.2 & 299 & 157 & 308 & 100 & 317 & 160 \\
\hline 791 & 152 & 300 & 157 & 300 & 143 & 318 & 140 \\
\hline 75: & 15) & 301 & 159 & 310 & 160 & 319 & \(1 \% 3\) \\
\hline & & & & & & 320 & 160 \\
\hline
\end{tabular}

C-4
rey

CONVERSION OF SUM OF SUBTEST STANDARO SCORES TO ARMY STANDARD SCORES ADJUSTED FA COMFOSITE
\[
(F A=A R+C S+M C+M K)
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \$555 & ARHY SS & 5555 & AMSY 55 & 5555 & APEA 55 & SSSS & Alvi 55 \\
\hline 83 & 40 & 13: & 58 & 182 & 6 & 233 & 120 \\
\hline 81 & 40 & 132 & 59 & 183 & 9 & 234 & 121 \\
\hline 82 & 40 & 133 & 60 & 184 & 90 & 275 & 121 \\
\hline 83 & 40 & 134 & 60 & 185 & 51 & 236 & 122 \\
\hline 84 & 40 & 135 & 61 & 185 & 95 & 237 & 122 \\
\hline 85 & 40 & 136 & 61 & 187 & 9. & 238 & 123 \\
\hline E6 & 10 & 137 & 62 & 188 & 95 & \(\leq 39\) & \(12 \%\) \\
\hline \% & 40 & 138 & 63 & 189 & 93 & 240 & 124 \\
\hline 68 & 40 & 139 & 63 & 190 & 92 & 241 & 125 \\
\hline 69 & 40 & 140 & 64 & 191 & 45 & 242 & 125 \\
\hline 90 & 40 & 141 & 64 & 192 & 93 & 243 & 126 \\
\hline 91 & 40 & 142 & 65 & 193 & 96 & 244 & 127 \\
\hline 97 & 40 & 143 & 66 & 194 & 96 & 245 & 127 \\
\hline 93 & 40 & 144 & 66 & 195 & 97 & 246 & 128 \\
\hline ¢ & 40 & 145 & 67 & 196 & 98 & 2:7 & 128 \\
\hline 95 & 40 & 146 & 67 & 197 & 96 & 248 & 129 \\
\hline 96 & 40 & 147 & 68 & 108 & 94 & 249 & 130 \\
\hline 97 & 40 & 148 & 69 & 199 & 97 & 250 & 130 \\
\hline 98 & 40 & 149 & 69 & 200 & 10\% & 251 & 121 \\
\hline c9 & 40 & 150 & 70 & 201 & 10: & 252 & 131 \\
\hline 100 & 40 & 151 & 70 & 202 & \(16:\) & \(2 \leq 3\) & 132 \\
\hline 103 & 40 & 152 & 71 & 203 & 195 & 25: & 129 \\
\hline 102 & 41 & 453 & 72 & 204 & 10: & 255 & 133 \\
\hline 103 & \(4:\) & 154 & 72 & 205 & 16? & 236 & 154 \\
\hline 10 & 42 & 155 & 73 & 206 & 10. & 25: & 134 \\
\hline 15.5 & 43 & 156 & 73 & 207 & 16: & 298 & 135 \\
\hline 106 & 43 & 157 & 74 & 208 & 10: & 259 & 136 \\
\hline 10: & 4 & 158 & 75 & 209 & 10s & 265 & 136 \\
\hline 10 F & 45 & 159 & 75 & 210 & 19: & \(2 \in 1\) & 137 \\
\hline 109 & 45 & 160 & 76 & 211 & \(10^{\circ}\) & 26: & 137 \\
\hline 1:0 & 46 & 161 & 77 & 212 & 20\% & 263 & 138 \\
\hline 11: & 46 & 162 & 77 & 213 & 105 & 264 & 129 \\
\hline 1:2 & 4 ? & 163 & 78 & 714 & 102 & 265 & \(1 \div 0\) \\
\hline 1:3 & 48 & 164 & 78 & 215 & 105 & 266 & 1-0 \\
\hline 114 & 68 & 165 & 79 & 216 & 110 & 267 & 140 \\
\hline 1:5 & 49 & 166 & 80 & 217 & 115 & \(2 \in 3\) & \(1-1\) \\
\hline 11.6 & 49 & 167 & 50 & 218 & 111 & 2f 0 & 122 \\
\hline 1:7 & 50 & 168 & 81 & 219 & 111 & 2:0 & 142 \\
\hline 1: & 51 & 169 & 81 & 220 & 112 & 271 & 1-3 \\
\hline 1:9 & 51 & 170 & 82 & 221 & 113 & 2:2 & 1-3 \\
\hline 1:0 & 52 & 171 & 83 & 222 & 113 & 2:3 & :- \\
\hline 1:1 & 52 & 172 & 83 & 223 & 114 & 274 & 145 \\
\hline \(1: 2\) & 53 & 173 & E- & 244 & 115 & 275 & 145 \\
\hline 1:3 & 54 & 174 & 84 & 225 & 115 & 276 & 146 \\
\hline \(1: 4\) & 54 & 275 & 85 & 226 & 116 & \(27 \%\) & 146 \\
\hline 125 & 55 & 176 & 86 & 227 & 116 & 278 & 147 \\
\hline 1:5 & 35 & 177 & 86 & 228 & 117 & 279 & 145 \\
\hline 127 & 56 & 178 & 87 & 229 & 110 & 260 & 148 \\
\hline 178 & 57 & 179 & 87 & 230 & 115 & 791 & 1-0 \\
\hline 120 & 57 & 160 & 88 & 231 & 119 & \%8: & 1-9 \\
\hline \(13 \dot{4}\) & 58 & 181 & 89 & 232 & 110 & 2* 3 & 138 \\
\hline \(25:\) & 151 & 293 & 156 & 302 & 160 & 3:1 & 1.7. \\
\hline 205 & 151 & 294 & 15* & 303 & 160 & 312 & 16.0 \\
\hline 766 & 152 & 293 & 157 & 304 & 160 & 313 & 160 \\
\hline 287 & 152 & 296 & 158 & 305 & 160 & 314 & 160 \\
\hline 259 & 153 & 297 & 159 & 306 & 160 & 315 & 160 \\
\hline 250 & 154 & 298 & 139 & 307 & 160 & 316 & 160 \\
\hline ? 20 & 144 & 299 & 160 & 308 & 160 & 317 & 110 \\
\hline \(\therefore 1\) & 155 & 300 & 110 & 309 & 160 & 3:8 & 110 \\
\hline 192 & 156 & 301 & 160 & 310 & 160 & 319 & 160 \\
\hline & & & & & & 3:0 & 140 \\
\hline
\end{tabular}

C-5


CONVERSION OF SUM OB SUBTEST STANDARD SCORES to army standard scores adjusted of composite
\[
(O F=N O+A S+M C+V E)
\]


CONVERSION OF SUM OF SUBTEST STANDARD SCORES tu army standard scores adjusted sc composite
\[
(S C=V E+A R+A S+M C)
\]


C-7
\[
227
\]

CONVERSION OF SUM OF SUBTEST SIANDARD SCORES
-O ARMY STANDARD SCORES ADJUSTED MM COMPOSITE
\((M M=N O+A S+M C+E I)\)


\title{
CONVERSION OF SUM OF SUBTEST STANDARD SCORES TO ARMY STANDARD SCORES ADJUSTED CL COMPOSITE \\ \[
(C L=V E+A R+M K)
\]
}

\(\mathrm{C}-9 \mathrm{a} \quad \therefore \quad \because\)

CONVERSION OF SUM OF SUBTEST STANDARD SCORES TO ARMY STANDARD SCORES ADJUSTED GT COMPOSITE \((G T=V E+A R)\)


CONVERSION OF SUM OF SUBTEST STANDARD SCORES TO ARMY STANDARD SCORES ADJUSTED OF COMPOSITE
( \(O F=N O+A S+M C+V E)\)



CONYERSION OF SUM OF SURTEST STAKDARAD SCORF.5 TO ARMY STANDARD SCORES ADIUSTED SC COHPOSITE \((S C=V E+A R+A S+M C)\)

\[
\therefore \quad \therefore \quad-\quad=
\]

CONVERSION OF SUM OF SUBTEST STANDARD SCORES TO ARHY STANDARD SCORES ADJUSTED SC COMPOSITE \((S C=V E+A R+A S+M C)\)
\begin{tabular}{rccccccc} 
SSSS & ARYY SS & SSSS & ARMY SS & SSSS & ARMY SS & SSSS & ARYY SS \\
284 & 149 & 293 & 155 & 302 & 160 & 311 & 160 \\
285 & 150 & 294 & 155 & 303 & 160 & 312 & 160 \\
286 & 151 & 295 & 156 & 304 & 160 & 313 & 160 \\
287 & 152 & 296 & 156 & 305 & 160 & 314 & 160 \\
288 & 152 & 297 & 157 & 306 & 160 & 315 & 160 \\
289 & 153 & 298 & 158 & 307 & 160 & 316 & 160 \\
290 & 154 & 299 & 158 & 308 & 160 & 317 & 160 \\
291 & 154 & 300 & 159 & 309 & 160 & 318 & 160 \\
292 & & 301 & 159 & 310 & 160 & 319 & 160 \\
& & & & & & 320 & 160
\end{tabular}

CONVERSION OF SUHF OF SUETEST STANDARD SCORES TO ARMY STARDARO SCORES ADJISTED MA COMPOSITE \((M H=N O+A S+M C+E I)\)


> CONVERSION OF SUM OF SUUTEST STANDARD SCORES TO ARMY STANDARD SCORES ADJUSTED MM COMPOSITE (MM = NO + AS \& HC + EI)
\begin{tabular}{cccccccc} 
SSSS & ARMY SS & SSSS & ARMY SS & SSSS & ARMY SS & SSSS & ARMY SS \\
284 & 151 & & & & & & \\
285 & 152 & 293 & 157 & 302 & 160 & 311 & 160 \\
286 & 152 & 295 & 157 & 158 & 303 & 160 & 312 \\
287 & 153 & 296 & 159 & 304 & 160 & 313 & 160 \\
289 & 154 & 297 & 159 & 306 & 160 & 314 & 160 \\
289 & 154 & 298 & 160 & 307 & 160 & 315 & 160 \\
290 & 155 & 299 & 160 & 308 & 160 & 316 & 160 \\
291 & 156 & 309 & 160 & 309 & 160 & 317 & 160 \\
292 & 156 & 301 & 160 & 310 & 160 & 318 & 160 \\
& & & & & & 320 & 160 \\
& & & & & & &
\end{tabular}


CONYEPSION OF SUM CF SURTESE STANDARE SCORES TO ARR: STANDARD SCORES ADJUSTED CL COMPOSITE \((C L=V E+A R+M K)\)


\section*{CONVERSION OF SLM OF SUBTEST STANDARD SCORES TO RRHY STANDARD SCORES ADJUSTED CL COMPOSITE (CL. = VE + AR + MR)}
\begin{tabular}{|c|c|c|c|}
\hline SSS5 & ARMY SS & ESSS & ARMY S \\
\hline 158 & 106 & 199 & :36 \\
\hline 159 & 107 & 200 & 137 \\
\hline 160 & 107 & 201 & 137 \\
\hline : 11 & 108 & 202 & 138 \\
\hline 162 & 109 & 203 & 139 \\
\hline 163 & 110 & 204 & 140 \\
\hline 164 & 110 & 205 & 140 \\
\hline 165 & 111 & 206 & 141 \\
\hline 166 & 112 & 207 & 142 \\
\hline 167 & 113 & 20.3 & 143 \\
\hline :68 & 113 & 209 & 143 \\
\hline 169 & 114 & 210 & 144 \\
\hline 170 & 115 & 211 & 145 \\
\hline 171 & 115 & 212 & 145 \\
\hline 172 & 116 & 213 & 146 \\
\hline 173 & 11 ? & 214 & 147 \\
\hline 174 & 118 & 215 & 148 \\
\hline 175 & 118 & 216 & 148 \\
\hline 176 & 119 & 217 & 149 \\
\hline 177 & 120 & 218 & 150 \\
\hline 178 & 121 & 219 & 151 \\
\hline 179 & 121 & 220 & 151 \\
\hline 180 & 122 & 221 & 152 \\
\hline 181 & 123 & 222 & 153 \\
\hline 182 & 124 & 223 & 154 \\
\hline 193 & 124 & 224 & 154 \\
\hline 184 & 125 & 225 & 155 \\
\hline 185 & 126 & 226 & 156 \\
\hline 186 & 126 & 227 & 156 \\
\hline 187 & 127 & 228 & 157 \\
\hline 188 & 128 & 229 & 158 \\
\hline 189 & 120 & 230 & 159 \\
\hline 190 & 129 & 231 & 159 \\
\hline 191 & 130 & 232 & 160 \\
\hline 192 & 131 & 233 & 160 \\
\hline 193 & 132 & 234 & 160 \\
\hline 194 & 132 & 235 & 160 \\
\hline 195 & 133 & 236 & 160 \\
\hline 195 & 134 & 237 & 160 \\
\hline 197 & 134 & 238 & 160 \\
\hline 198 & 135 & 239 & 160 \\
\hline & & 240 & 160 \\
\hline
\end{tabular}
\(\mathrm{C}-1 \mathrm{P}\)

CONVERSION OF SUM OF SUBTEST STANDARD SCORES TO ARMY STANDARD SCORES ADJUSTED GT COMPOSITE
\((G T=V E+A R)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline SSSS & ARMY SS & SSSS & ARMY SS & SSSS & ARMY SS \\
\hline 40 & 40 & 91 & 90 & 142 & 145 \\
\hline 41 & 40 & 92 & 91 & 143 & 146 \\
\hline 42 & 40 & 93 & 93 & 144 & 148 \\
\hline 43 & 40 & 94 & 94 & 145 & 149 \\
\hline 44 & 40 & 95 & 95 & 146 & 150 \\
\hline 45 & 41 & 96 & 96 & 147 & 151 \\
\hline 46 & 42 & 97 & 97 & 148 & 152 \\
\hline 47 & 43 & 98 & 98 & 149 & 153 \\
\hline 48 & 44 & 99 & 99 & 150 & 154 \\
\hline 49 & 45 & 100 & 100 & 151 & 155 \\
\hline 50 & 46 & 101 & 101 & 152 & 156 \\
\hline 51 & 47 & 102 & 102 & 153 & 157 \\
\hline 52 & 48 & 103 & 103 & 154 & 158 \\
\hline 53 & 49 & 104 & 104 & 155 & 159 \\
\hline 54 & 50 & 105 & 105 & 156 & 160 \\
\hline 55 & 52 & 106 & 107 & 157 & 160 \\
\hline 56 & 53 & 107 & 108 & 158 & 160 \\
\hline 57 & 54 & 108 & 109 & 159 & 160 \\
\hline 58 & 55 & 109 & 110 & 160 & 160 \\
\hline 59 & 56 & 110 & 111 & & \\
\hline 60 & 57 & 111 & 112 & & \\
\hline 61 & 58 & 112 & 113 & & \\
\hline 62 & 59 & 113 & 114 & & \\
\hline 63 & 60 & 114 & 115 & & \\
\hline 64 & 61 & 115 & 116 & & \\
\hline 65 & 62 & 116 & 117 & & \\
\hline 66 & 63 & 117 & 118 & & \\
\hline 67 & 64 & 118 & 120 & & \\
\hline 68 & 66 & 119 & 121 & & \\
\hline 69 & 67 & 120 & 122 & & \\
\hline 70 & 68 & 121 & 123 & & \\
\hline 71 & 69 & 122 & 124 & & \\
\hline 72 & 70 & 123 & 125 & & \\
\hline 73 & 71 & 124 & 126 & & \\
\hline 74 & 72 & 125 & 127 & & \\
\hline 75 & 73 & 126 & 128 & & \\
\hline 76 & 74 & 127 & 129 & & \\
\hline 77 & 75 & 128 & 130 & & \\
\hline 78 & 76 & 129 & \(13 i\) & & \\
\hline 79 & 77 & 130 & 132 & & \\
\hline 80 & 78 & 131 & 134 & & \\
\hline 81 & 80 & 132 & 135 & & \\
\hline 82 & 81 & 133 & 136 & & \\
\hline 83 & 82 & 134 & 137 & & \\
\hline 84 & 83 & 135 & 138 & & \\
\hline 85 & 84 & 136 & 139 & & \\
\hline 86 & 85 & 137 & 140 & & \\
\hline 87 & 86 & 138 & 141 & & \\
\hline 88 & 87 & 139 & 142 & & \\
\hline 89 & 88 & 140 & 143 & & \\
\hline 90 & 89 & 141 & 144 & & \\
\hline
\end{tabular}

\section*{Alternative Validity Estimation Procedures}

The procedure used to estimate the validities of the current composites are described on pages 21 and 22, and this procedure was repeated in estimating the yalidities of alternative composites. Briefly, this procedure involved (1) computing composites by table look-up for sums of ASVAB subtest standard scores, (2) computing correlations between the scaled composites and the criteria in each MOS, (3) adjusting these correlations for restriction of range, and (4) combining across MOS to estimate on average for all MOS using a given composite, weighting the adjusted validities for each MOS by the number of FYB1/82 accessions for the MOS. The validities presented in Tables 8, 10, \(11,12,13,19,21\), and 22 reflect this approach. Tie validities of MAGE and HS composites, presented in Tables 23 and 24, differ only in that simple sums of subtext standard scores were used, rather than table look-ups, in step 1.

In searching for optimal alternative composites and in comparing the differential vaidities of alternative composite sets, a slightly streamlined prosedue was used, to allow both efficient and reliable estimation of validities for a large number of alternatives. The computation of composite-criterion correlations was changed in two ways, and these changes were applied uniformly to Doth current and alternative composites whenever comparisons were made.

First, both current and alternative composites were computed as simple sums of suotest stindardscores, because of the computational cost in creating a rescaling of the "sum-of-subtest-standard" scores to make them exactly comparable to the scalings of the current composites. The current procedures for computing composite scores involve reference to conversion tables that give slightiy nonlinear translations of the "sum-of-subtest-standard" scores in obtaining the operational composite scores. It should be noted that all analyses in this report were carried out using traditional conversion tables developed using test scores for military personnel who served in World War II. New conversion tables have now been adopted for operational use, based on a new 1980 reference population (see Appendix C).

Second, ridge regressions were used in the process of estimating validities. The composite-criterion validity for an MOS can be estimated as the product of (1) the correlation of the composite with the "best linear predictor" of the criterion using the ASVAB subtest scores and (2) the correlation of that "best linear predictor" with the criterion. Traditionally, the "best linear predictor" is taken to de the ordinary least squares regression function. In carrying out these calculations, however, ridge regression functions, as described on page 31 of the report, were used to estimate the "best linear predictor" rather than the ordinary least squares regression functions. The ridge regression functions have been found to hold up better in crossvalidation analyses in comparison to ordinary least squares functions, marticularly for smaller samples. The result is that the validities presented

in Ta oles 16, 17, and 18 , for both current and alternative composites, tend to de slightly smaller in comparison to validities computed directly. The differential validity estimates presented in Tables 27 and 28 were also computed in this way.

\section*{Alternative Composite Scales and Cutoffs}

After alternative composites were identified, conversion tables were developed that yielded applicant distributions for the new composites that were as similar as possible to the applicant distributions averaged across the existing composites. Further, the new composites were equated to their existing counterparts on the bus; s of average AFQT levels so that alternative cutoff points could be identified on these new scales (holding constant the mist level of selected applicants). The procedures used in developing these conversion ana equating tables are described in detail in pages 103-104 of the report.

As these analyses were being completed, ARI was independently preparing a new set of conversion tables based on the NORC 1980 reference population rather than on the current wwII norm group. These new conversion tables involve a simple stanaarsization rather than a nonlinear conversion, except for troncation at tare e standard deviations. The conversion tables resulting from this effort are presented in Appendix C. These will become the official conversion tables at the beginning of fy85. The conversion tables derived as part of this report and presented in Appendix \(\dot{A}\) do not reflect the switch to a new norm population. They were included here for comparison to the current, soon-to-de-odsolete conversion tad es. The development of the new norms presented in mpenoix \(C\) is described in Mitchell and Hansen (i984).

\section*{Mernoas of Combining Criteria}

Separate valications were performed using training scores as criteria and SQT scores as criteria. In addition, as described on pages 17 and 20 of the report, a third set of validations was based on a combined file, using both SQT and training scores as criteria. Two different methods were used for combining criteria. To understand these methods, one must first realize that an initial step in the validation analyses was to standardize the criterion scores in each "cell" to a mean of 100 and standard deviation of 20. A "cell" was defined, on pages 13 and 16, as a group of soldiers in the same MOS who either were in the same training course, for training criteria, or took the same Sit form (year and track), for SQT criteria. For reasons stated in the report, an individual soldier was included in only one training cell, even though he or she may have had scores from more than one course, while he or she could have been included in more than one SQT cell.

The combined criterion analyses used the scores from the cells included in the separate training and SQT analyses, combining all cells in the same MOS. For analyses that relied only on the predictor-criterion covariance matrices (all analyses except the estimation of differential validity and the bootstrap estimation of standard errors), the method of combination was to compute the
weighted average of the covariance matrices; that is, to compute the pooled wition-cell covariance matrix for each MOS. The weights used were the sample sizes for the individual cells.

For those analyses for which the covariance matrix was not sufficient, a file of individual cases was constructed, one record per individual. For soldiers represented more than once in the data base, this entailed selecting among multiple records, each with a different criterion. The selection was arbtrarily set tc be the record with the highest criterion score, based on the assumption that the soldier would spend a greater portion of his or her career in the MOS, track, and duty position where his or her performance was best.```


[^0]:    Sumary
    The current ano proposed alternative AA composites were investigated for possiole subgroup dias in a number of ways, incluaing analyses of predictive valicizies, comparisons of sudgroup regression lines, and plotting the reiationsnip of the subgroup regressions and the common regression line. All suogroups were found to be well predicted by the composites. Both sets of composites were found to show some small difierences in predictive valiaity as a function of raciai dackground and gender. The comparisons of regression lines indicate that the use of eitner set of composite; to select and classify enlisted personnel for the Army snould not result in unfair practires against olacks or women.

