ARMY REesearcH LABORATORY

Automated Policy-based Asset Cuing Using SQL.ite

by Jesse Kovach and Robert Winkler

]
ARL-TR-5779 November 2011

Approved for public release; distribution unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-5779 November 2011

Automated Policy-based Asset Cuing Using SQL.ite

Jesse Kovach and Robert Winkler
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid

OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
November 2011 Final

3. DATES COVERED (From - To)
January to December 2010

4. TITLE AND SUBTITLE
Automated Policy-based Asset Cuing Using SQL.ite

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Jesse Kovach and Robert Winkler

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CII-B

2800 Powder Mill Road
Adelphi MD 20783-1197

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-5779

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Unattended assets are being employed in ever-increasing numbers to support current military operations. These assets produce
large amounts of data, which is generally handled by presenting it to an operator or analyst for examination. If follow-on
actions are required, these actions must be manually initiated by the operator or analyst. Automated asset cuing systems that
recommend or initiate follow-on actions by applying policies or rules to incoming sensor data can help reduce the workload on
the system operator. This report presents an asset cuing system built around the SQL.ite database engine that uses the Cursor on
Target (CoT) message format to receive sensor data and Structured Query Language (SQL) to express cuing policies. Cuing
policies are stored as triggers in the database schema and invoke user-defined functions written in C# to control sensors, robots,

unmanned aerial vehicles, and other assets directly from SQL.

15. SUBJECT TERMS
Cross cuing, cuing, policy, UGS, SQL, SQL.ite

17. LIMITATION
16. SECURITY CLASSIFICATION OF: OF ABSTRACT
a. REPORT b. ABSTRACT c. THIS PAGE
UNCLASSIFIED | UNCLASSIFIED UNCLASSIFIED uu

18. NUMBER
OF PAGES

46

19a. NAME OF RESPONSIBLE PERSON
Jesse Kovach

19b. TELEPHONE NUMBER (Include area code)
(301) 394-3988

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Contents

List of Figures %
Acknowledgments Vi
1. Introduction 1
2. Requirements 1
2.1 EXAMPIE USE CASEScveeuiiiteeiieiestie ettt te ettt ta et e ste e te e esne e aeeneesbeeteennenres 1

2.2 REQUITEIMENTS ...t ieiiiiiesieeie st ste e tee et e e e re et e eseesseesteeseesse e teaneesseesteaseeareeseaneenneas 2

3. Cuing System Design 3
3.1 Selection of SQL as the POlICY LANQUAGEcveverierierieiieriesiesieeeee e 3

3.2 Other Systems using SQL as a POliCY LangUAQEcccccvevveieiieieiie e seesie e 3

3.3 Selection of SQLite as the Database ENGINEcccooeiiiiiiiinieieeese e 4

3.4 Selection of Cursor on Target (CoT) as the Intermediate Data Format 5

3.5 Database SChEMEa DESIONc.oeiiiiieiiiiiireeee ettt 5
311 ASSEES TADIE ..o 5

TN I Y 1= 1S 1=] [S 7

31,3 CUING RUIES ...ttt e e e e e enes 8

4. Implementation 9
4.1 SUPPOITING SOTIWAIE ..ottt bbbt 9
4.1.1 Communication and Data Managementccceeuereereereneeresiee e eee s 9

4.1.2 Asset MiSSION COMMEANT........cceiueririiireeieiee e e eeesee e e e e e snee e eseeaneesnees 10

4.2.3 Miscellaneous COMPONENTS.......ccueiriieieeie e e see e sneesnees 10

4.3 CUING SYSTEIM ..ttt et sttt b e e et e besbesbesresreeneenenneas 10
4.3.1 AULOCUEDB LIDIarycooieiiiiiiice e 11

A.3.2 AULOCUBSEIVET ...ttt ettt ettt ettt et e e b e e e be e e e e e nnnesnneeneee s 11

4.3.3 AULOCUBCONTIQ 1.ttt nne s 12

4.3.4 Issues encountered During Development..........ccvevveiiieiiesieesie e 15

5. Examples & Field Test Results 16
5.1 Cuing Pan/Tilt Imagers from UGS Tripwire DeteCtions..........cccccvvvvveeiieiiieiiesieesinns 16

5.2 Cuing Pan/Tilt Imagers from Acoustic Detection EVENtS...........cccceevveiieiiic e,
5.3 Cuing Pan/Tilt Imagers from the Compact Radar..............ccccocvevveiieieiie i,

6. Conclusions

7. Future Work
7.1 Distributed OPEIatioNcccoviieiieieie i
7.2 Usability IMPrOVEMENTSciiiiicie ettt re e e
7.3 Data FUSION 1N SQL ..ottt ettt sreeste e e reenae e
7.4 Other Database SYSIEMS........coviiiiiiiieece et re e ans

Appendix A: XML Schema for CoT Sensor Detection Extension
Appendix B. User-Fefined Function Reference

Appendix C: SQLite ORDER BY Optimization Examples
Bibliography

List of Symbols, Abbreviations, and Acronyms

Distribution List

19

19
19
20
20
20

23

25

31

34

36

37

List of Figures

Figure 1. Data definition language (DDL) for the sensors table...........ccccooveiiiiniiininieniecenn 6
Figure 2. DDL for the eVentS table.ccoeiiiiie e 8
Figure 3. Sensor list viewer in AUtOCUECONTIG.c.oiveiiei e 13
Figure 4. Event list viewer in AUtOCUECONTIQ.ocviiieiici e 13
Figure 5. Rules editor in AULOCUBCONTIG.oiuiiiiiieiiiieee e 14
Figure 6. Temporary table definitions editor in AutocueCoNfig.ccoevvriiiiiiiiiiceeen 15
Figure 7. Temporary table definition for tripwire Cuing rule...........cccooveieiiiiiniieeecee 17
Figure 8. THIPWIrE CUING FUIE.ooeiiie ettt reenae e 17
Figure 9. ACOUSEIC SENSOT CUING FUIE......c..iiieiieecie et st 18
Figure 10. Temporary table definition for radar cuing rule.ccccoveveiiei i, 19
Figure 11. Radar CUING FUIE.c.ooiiieieiee bbbt 19

Acknowledgments

The authors wish to thank Steven Choy and William Gollsneider for developing portions of the
software used for this effort.

Vi

1. Introduction

Unattended assets, such as unattended ground sensors (UGS), unmanned aerial vehicles (UAVS),
and unmanned ground vehicles (UGVs), are being employed in ever-increasing numbers to
support modern military operations. The proliferation of these assets has led to a corresponding
increase in the amount of images, video, target detections, and other data generated by them. The
traditional approach to handling this information is to present it to an operator or analyst, who
decides what, if any, action to take in response to the information. If follow-on actions are
desired, such as tasking a UAV to record video at the site of a UGS detection, those actions must
be initiated manually and often require coordination among several different operators. As the
amount of information generated by unattended assets increases, the workload on the operators
and analysts increases as well. Automated systems that process incoming unattended asset data
and recommend or initiate appropriate actions based on the data can help to reduce the workload
on the system operators.

Some degree of automated triggering and cuing capability exists in currently fielded unattended
assets. For example, many UGS systems use a simple activity detection sensor to trigger a
camera to take pictures. More sophisticated UGS systems can correlate reports from multiple
trigger sensors to determine additional information, such as direction of travel. However,
automated processing capabilities in these current systems generally operate only within one
sensor site (sensors at site A cannot cue sensors at site B) and do not support interoperability
between assets from different vendors, limiting the number of useful tasks that can be performed.
To realize the full potential of unattended assets as a force multiplier, an automated cuing system
capable of using different types of assets manufactured by different vendors and located at
different sites is necessary.

In support of the Sensor and Information Fusion for Improved Hostile Fire Situational
Awareness Army Technology Objective (ATO), also known as the Hostile Fire Defeat (HFD)
ATO, the Battlefield Information Processing Branch of the U.S. Army Research Laboratory’s
(ARL) Information Sciences Division developed an automated policy-based asset cuing system.
This report documents the development of that system.

2. Requirements

2.1 Example Use Cases

There are a variety of situations where an automated cuing system would be useful. While
designing the system described in this report, we considered three types of usage scenarios.

The first use case is to cue a pan/tilt surveillance camera to point to the location of detection
from a “tripwire”- type UGS that is not co-located with the surveillance camera. Depending on
the location of the sensor producing the detection, different surveillance cameras may be cued.
The mapping of sensors to remote cameras can be done either by manually associating a sensor
with a camera (sensors A and B cue camera X, sensors C and D cue camera Y) or based on the
geographical location of the target detection (cue the closest camera to the target.) This can be
modeled as a simple “if A occurs, then do B” policy.

The second use case is to correlate detections from multiple independent tripwires located along
a roadway or other path to determine the direction of travel of a target, and keep a record of how
many targets were detected traveling in each direction. A more complex version of this use case
involves placing a number of independent sensors at the entrances to an intersection and
determining which way targets turned at the intersection. This is an example of an “if B occurs
within some time period after A, then do C” policy.

The third use case is to process target detection data from a sensor that produces multiple moving
target tracks (such as a radar) and cue one or more remote surveillance cameras to track one of
the detected targets. This involves selecting a single target to follow from the multiple target
tracks, and then sending successive commands to the camera(s) to keep the target in the field of
view.

All three of these use cases can be extended to incorporate UAVs, UGVs, or other types of
unattended or unmanned assets, in addition to ground-based surveillance cameras.

2.2 Requirements

To guide the development of a cuing system capable of supporting the use cases described in the
previous section, we established the following requirements:

« The system must be capable of ingesting sensor detections and asset position and attitude
information from multiple sources.

« The system must convert the incoming detection and asset position data to a common
intermediate format if it is not already in a common format.

» The system must be capable of generating commands based on detection and asset position
events. This implies the need for a policy language, rules engine, or other mechanism to
represent the conditions that will lead to the generation of an action.

« The system must be able to generate commands based on single events, combinations of
events, or sequences of events over time.

» The system must be able to maintain internal state and use or update this state while
processing incoming events.

3. Cuing System Design

3.1 Selection of SQL as the Policy Language

At the start of the cuing system development effort, we decided to avoid defining “yet another
policy language” by seeking to leverage an existing policy language or rules engine. We had
some prior experience with the KAoS policy system developed by the Institute for Human and
Machine Cognition (A. Uszok et al., 2003; A. Uszok et al., 2008; Johnson et al., 2008; Bunch,
Bradshaw, and Young 2008), but decided that the complexity of the use cases driving the design
of the cuing system did not warrant the level of effort required to incorporate KAoS. Web
Ontology Language (OWL) (W3C 2009) and Semantic Web Rule Language (SWRL) (W3C
2004) were also considered and rejected for similar reasons. We also evaluated a simple hard-
coded rules engine that we developed for a previous sensor reporting system, but this engine was
designed for a specific task and was not flexible enough to support a generalized cuing system.

While evaluating these policy engines, we came to the realization that it may be possible to
implement some, if not all, of the cuing conditions for the use cases we were interested in by
representing asset event and position data as rows in a relational database using Structured Query
Language (SQL) queries to represent the cuing rules. SQL is relationally complete and, thus, has
at least the same expressive power as first-order logic. Since we were already comfortable with
databases and SQL, and this approach allowed us to leverage existing database engines and tools
for rapid development, we ultimately decided to pursue SQL as the policy language for the
sensor cuing system.

3.2 Other Systems using SQL as a Policy Language

We then conducted a literature search (mainly as a sanity check) to see if the idea of using SQL
as a policy language had been previously considered by others.

(Cook, 2009) introduces a simple domain-specific policy specification language to express
authorization policies and then converts the policies into SQL as the policy implementation
language. (Didriksen, 1997) took a similar approach for rule-based database access control
(although he did not explicitly identify them as “policies” per se). (Gencay, Kuchlin, and
Schafer, 2007) introduce a simple domain-specific Extensible Markup Language (XML) policy
specification language for Storage Area Network configuration, which uses SQL for specifying
the policy conditions.

(Weth, et al. 2009) selected SQL as the policy language for their Policy-Based Helping
Experiments for practical reasons similar to ours. “First, evaluation is ‘for free’, i.e., we can use
an off-the-shelf database engine as the core of our experiment platform, and, given such a
system, we do not have to design and implement any ‘policy-evaluation engine’ or any

repository for past service decisions ourselves. ... Second, SQL is widely known, and learning
this language is possible in many ways.”

(Barker and Rosenthal, 2002) use stratified logic as a policy specification language for a wide
variety of role-based access control policies and demonstrate how these specifications may be
automatically translated into SQL. (Calo and Lobo, 2006) point out that most Business Rule
Systems are built on an RDBMS framework and use SQL as the policy language. For non-
temporal constraint policies, the integrity constraints available with an RDBMS provide an
efficient implementation. They also demonstrate that for other types of non-temporal policies the
use of the relational calculus provides a reasonable specification language (and consequently,
SQL provides a reasonable implementation language). For temporal policies, they suggest
introducing a fixed set of temporal connective predicates for use within a relational calculus
specification.

As a result of our literature search, we concluded that exploring the use of SQL as a policy
language for an automated sensor cuing system is not unreasonable.

3.3 Selection of SQL.te as the Database Engine

To implement the cuing system, as with any type of database application, we needed to select a
database engine. We had previous experience with two database engines—Microsoft SQL Server
and SQLite. SQL Server! is a widely used, mature, commercial database engine that exists in
desktop, server, and embedded versions, and integrates tightly with the Visual Studio
development environment and C# programming language that we prefer to use for application
development. However, SQL Server has licensing restrictions and is only available on Microsoft
platforms. We anticipate that the cuing system will eventually be ported to an embedded
platform, and we prefer to use Linux for embedded applications.?

SQLite? is a lightweight, public domain, license-free database engine designed for embedded
applications. SQL.ite is provided as part of the base system by most Linux distributions as well as
popular consumer device platforms including Apple iOS and Google Android. While the core
SQLite engine is written in C, System.Data.SQLite*, a public domain third party wrapper,
provides C# support as well as Visual Studio integration. A pure C# implementation of SQL.ite is
also available.> We chose to use SQL.ite as the database engine to facilitate portability to
embedded systems platforms.

1 www.microsoft.com/sqlserver

2 While this preference may initially seem to be at odds with our use of Microsoft’s C# programming language, we have
successfully used Mono (www.mono-project.com) to build and run C# programs on embedded Linux systems for previous
projects.

3 www.sqlite.org

4 http://sqlite.phxsoftware.com

5 http://code.google.com/p/csharp-sglite

http://www.microsoft.com/sqlserver
http://www.mono-project.com/
http://www.sqlite.org/
http://sqlite.phxsoftware.com/
http://code.google.com/p/csharp-sqlite

3.4 Selection of Cursor on Target (CoT) as the Intermediate Data Format

Different types of assets produce data using different, often vendor-specific, message formats
and protocols. The cuing system must convert these formats to a common intermediate
representation. Building on previous projects, we adopted the CoT format as this intermediate
representation. CoT is an XML-based message format originally designed by MITRE for the
U.S. Air Force. Over 100 systems currently support CoT in some form. CoT provides basic data
types for exchanging position, imagery, and tasking information, and is also extensible so that
new message types can be added without breaking backwards compatibility with existing
systems. We are in the process of designing extensions to CoT for sending UGS detection
messages and used a preliminary version of these extensions in the cuing system. For reference,
the XML schema for these preliminary extensions can be found in appendix A.

3.5 Database Schema Design

The database design used for the cuing system uses two main tables: one for asset information
and one for event information. The asset table is used to store information about sensors and
other assets that the cuing system can control. The events table stores information about target
detections. Each asset or event is represented as an individual row in the appropriate table. The
columns in the tables represent a subset of the fields present in the CoT messages that we use for
asset and event data.

Geographic positions are stored as latitude and longitude in WGS84 decimal degrees. Heading
and azimuth are stored in degrees, with 0° representing true north. Elevation angles are stored in
degrees, with 0° being horizontal. Altitude is stored in meters above the WGS84 ellipsoid. If a
particular data item is not available for a particular asset or event, then the corresponding field is
set as NULL in the database.

3.1.1 Assets Table

The table storing asset data is called sensors. The definition for this table is shown in figure 1.
While the table name and the fields within it use the term “sensor” or “snsr” for historical
reasons, this table is used to store data for all types of assets known to the cuing system. This
table contains the following columns:

« snsrID-ahuman-readable unique identifier for the asset

» snsrEnabled — true if reports from this asset should be used to trigger cuing rules
e cueEnabled —true if cuing commands should be sent to this asset

« snsrCurLat — current latitude of the asset

« snsrCurLon — current longitude of the asset

« snsrCurHdg — current heading of the asset

« snsrCurAlt — current altitude of the asset

 snsrLastRptTime — the time that the last message was received from the sensor
« 1isSensor —true if the asset will generate sensor detection messages

e 1isMobile —true if the asset can be commanded to move to a different location

e isTriggerCamera — true if the asset can be commanded to take a picture

« 1isPanTilt —true if the asset has a pan/tilt device that can be commanded to look in
different directions

CREATE TABLE sensors (
snsrID text PRIMARY KEY NOT NULL,
snsrEnabled bool NOT NULL,
cuekEnabled bool NOT NULL,
snsrCurLat double,
snsrCurLon double,
snsrCurHdg real,
snsrCurAlt real,
snsrlLastRptTime datetime,
isSensor bool,
isMobile bool,
isTriggerCamera bool,
isPanTilt bool

)7

Figure 1. Data definition language (DDL) for the sensors table.

The rows in the table are populated based on received asset status messages and other position
and attitude messages. All entries in this table represent friendly (blue) entities. The boolean
flags, such as snsrEnabled and isMobi le, are provided for use in trigger rules and are not
otherwise checked or enforced by the cuing system (i.e., nothing will prevent a malformed rule
from generating and sending pan commands for a disabled asset that has no pan/tilt capability.)

3.1.2 Events Table

The table storing event data is called events. The definition for this table is shown in figure 2.
This table contains the following columns:

e eventID - aunique identifier for the event

« eventTime — the time when the event occurred

¢ receivedTime — the time when the event message was received by the cuing system
« fusedNum — the number of raw sensor reports that were used to produce this event

+ type —the CoT type of the event, for example, “b-d-a” for an acoustic detection

« how —the CoT code identifying the method by which the data in the event message was
generated, for example, “m-g” indicates a GPS measurement

« snsrID - the unique identifier of the asset that generated the event
« snsrLat — the latitude of the asset that generated the event

« snsrLon — the longitude of the asset that generated the event

« snsrHdg - the heading of the asset that generated the event

« snsrAlt —the altitude of the asset that generated the event

« tgtLat —the latitude of the detected target

« tgtLon —the longitude of the detected target

e tgtAlt —the altitude of the detected target

e tgtHdg —the heading of the detected target

« tgtVvel —the velocity of the detected target in meters per second

* lobAz — the azimuth of the line of bearing (LOB) associated with this event
« 1obE1 —the elevation angle of the LOB associated with this event
« lobRange — the range of the LOB associated with this event

» tagID-—aunique identifier for the target, if available

CREATE TABLE events (
eventID text PRIMARY KEY NOT NULL,
eventTime datetime NOT NULL,
receivedTime datetime NOT NULL,
fusedNum integer,
type text,
how text,
snsrID text,
snsrLat double,
snsrLon double,
snsrHdg real,
snsrAlt real,
tgtlLat double,
tgtLon double,
tgtAlt real,
tgtHdg real,
tgtvel real,
lobAz real,
lobEl real,
lobRange real,
tagID text

)7

Figure 2. DDL for the events table.

The cuing system inserts or updates rows in this table as detection messages are received from
sensors and other assets. All entries in this table represent unknown (yellow) entities. For mobile
sensors, the position stored in this table is the position of the sensor at the time of the event. The
snsrID field serves as a de facto foreign key referencing the sensors table, although this
constraint is not declared in the SQL or enforced by the database engine since we want the cuing
system to be able to process messages from unknown sensors.

3.1.3 Cuing Rules

Cuing rules are represented and stored as SQL triggers within the database schema. Depending
on the type of action being performed, rules may consist of INSERT or UPDATE triggers on
either the sensors or events tables. The triggers can make use of SELECT statements to check the
event that just occurred as well as other events in the database. Triggers send commands to assets
by calling user-defined functions (UDFs) written in C#. The UDFs generate and send the
appropriate command to the appropriate asset based on parameters provided by the caller. This is
a somewhat unorthodox use of database UDFs, as the side effects of the function call are much
more important than the return value. In fact, the return value of these UDFs is generally ignored
for this application.

Triggers representing cuing rules may need to use temporary tables to store intermediate results
or state information. As it is not legal to create tables within a SQLite trigger, the cuing system
implementation must ensure that all necessary temporary tables exist before any rows are
inserted that may cause triggers to fire.

A detailed discussion of the UDFs available to trigger rules can be found in section 4, and some
example trigger rules are shown in section 5.

4. Implementation

The cuing system was implemented as a new application within an existing mission command
system framework that we have developed over the years in support of multiple programs here at
ARL. This framework provides basic communications and message delivery services, discovery
services, asset data distribution and management services, asset control services, and a number of
end-user applications. The framework was designed for operation in dynamic, unreliable
network environments, with clients using a decentralized discovery mechanism to locate servers.
The framework includes support for acquiring data from a number of experimental and
operational UGS systems, along with interfaces to multiple pan/tilt imagers and UGVs. The
cuing system makes use of these preexisting components to interact with live and simulated
assets.

4.1 Supporting Software

This section contains a brief description of the components in our existing mission command
framework that are used by the cuing system. A more detailed description of an earlier version of
this mission command framework can be found in (Gregory, et al. 2007).

4.1.1 Communication and Data Management

Discovery and communication functionality is provided by the ARLNetwork libraries and agent
registry server. The ARLNetwork library, built on top of the IHMC Mockets library (Tortonesi et
al., 2006; Suri et al., 2009; Benvegnu et al., 2009; Benvegnu et al., 2010), provides message-
oriented point-to-point communications services. Unreliable/reliable and inorder/unordered
transport types can be selected on a per-message basis, and messages using different transport
types are sent over the same logical connection. The agent registry server, based on the IHMC
Group Manager (Suri et al., 2006; Suri et al., 2008; Suri et al., 2010), provides distributed
discovery functionality using a yellow pages model. Service consumers broadcast a query for a
particular type of service, identified by a simple string, and any producers of that service will
respond to the request.

Distribution of asset messages is handled by the Tactical Object Services (TOS) and Sensed
Object Services (SOS) servers. These servers receive CoT messages from producers and send
them to all connected clients, while also maintaining a local cache so that newly connected
clients can receive messages that were previously sent. TOS handles asset position data and
fused sensor reports. SOS handles raw sensor reports. Although the type of information sent to
the TOS and SOS servers is different, the low-level functionality provided by the two servers is

identical and both services are provided by a common server process. The distinction is for
historical reasons, as SOS and TOS were separate applications that used different XML message
formats prior to our adoption of CoT.

4.1.2 Asset Mission Command

The cuing system interfaces with two types of assets: assets that produce data relatively
infrequently and are capable of limited remote control, such as UGS, and assets that produce live
streaming data and can be remotely controlled in real time, such as UGVs and surveillance
cameras. We use different sets of software components to interface with these two different
classes of asset.

The interface to UGS and similar assets is provided by the SensorDataProcessor. The
SensorDataProcessor receives raw sensor messages from a variety of UGS assets, parses the
proprietary message formats, and produces CoT messages containing sensor status, detection,
and imagery data. Sensor status data is sent to TOS. Detection data is sent to SOS. Imagery data
is sent to a media server, which is beyond the scope of this document as it is not used by the
cuing system. The SensorDataProcessor also provides support for sending configuration, status
request, and control commands to remote UGS assets.

Interaction with devices like UGVs and surveillance cameras is handled through a suite of
software originally developed for ARL’s small robotics program. The main component of this
software suite is the NewRobotAgent, which provides the low-level interface to a number of
different hardware devices and sends and receives commands and data over the network using a
common binary format. The NewRobotAgent also contains support for controlling pan/tilt
cameras. Additional servers collect GPS position information and send CoT position reports to
TOS. Some mobile assets also run autonomous navigation software. Control of these assets takes
place via point-to-point connections between software running on the asset and the controlling
application.

4.1.3 Miscellaneous Components

There are two additional services that provide miscellaneous functionality used by the cuing
system. The first is the TripwireTracker, which converts raw LOB reports from sensors to
“fused” position reports using simple algorithms. TripwireTracker serves as a placeholder/proof-
of-concept application and is not intended or presented as an advanced fusion algorithm. The
second service is CueCamServer, which keeps track of pan/tilt camera locations and converts
requests to point a camera towards a particular geographic location to lower-level commands to
pan the camera to a particular azimuth and elevation.

4.2 Cuing System

The cuing system consists of two applications: AutocueServer and AutocueConfig. Both are
written in C# using Microsoft Visual Studio and use SQLite 3 with the System.Data.SQL.ite

10

wrappers as a database engine. AutocueServer is the main application that evaluates cuing rules,
interfacing with the previously described components to receive data and send cuing commands.
AutocueConfig is a graphical user interface (GUI) tool used to configure cuing rules and view
sensor data. Both applications use a common library, AutocueDB, to interact with the SQL.ite
database.

4.2.1 AutocueDB Library

AutocueDB is a library that is used by AutocueServer and AutocueConfig to perform all
database operations. AutocueDB contains functions for inserting and updating information in the
database and for creating, updating, and deleting the database triggers that are used to store cuing
rules. The library uses ADO.NET TableAdapter classes generated by the Visual Studio dataset
design tools for inserting and updating rows, but uses the SQLite APIs for manipulating triggers
as the generated classes do not expose this functionality. As all database interaction logic is
contained within AutocueDB, the underlying database engine can be changed by modifying only
AutocueDB while leaving the rest of the system as is.

4.2.2 AutocueServer

AutocueServer performs three main functions: ingesting detections and position reports from
SOS and TOS; processing the cuing rules; and sending commands to cameras, robots, and other
assets. The data ingest functionality is handled by SOS and TOS client classes that receive CoT
messages from the servers, extract the relevant fields, and call AutocueDB to insert rows for new
detections or update rows for existing detections or reports. The TOS client examines the type
field in the CoT message to determine whether the report is for a friendly unit. Friendly unit
reports are placed into the sensors table, while all other reports are placed into the events
table. All reports received from the SOS client are placed into the events table. As a result, the
events table contains both raw sensor data and fused detections. These two classes of data can be
identified using the contents of the fusedNum and type fields.

The actual processing of cuing rules is handled entirely by SQLite. Rules are represented as
triggers stored within the SQL.ite database schema, and are automatically executed by the
database engine as messages are received and rows inserted and updated in the database. The
trigger rules call UDFs to send commands to assets and perform calculations on geographic
coordinates.

Sending commands to assets is less straightforward. The UDFs used to control assets take an
asset identifier as a parameter, along with other arguments specific to the command being called.
Mapping this identifier to an actual asset within our framework presents a challenge. As
previously mentioned, real-time control within our framework is accomplished using point-to-
point connections between the controlling application and the controlled asset. Discovery of
these assets, as with any other type of service in the framework, occurs in a distributed manner—
there is no central facility that can provide an authoritative list of assets. This design avoids

11

single points of failure, but places a higher burden on individual control applications as they
must maintain their own list of assets and update this list as assets enter and leave the network.
For pan/tilt cameras, maintenance of this asset list is handled by the CueCamServer, and the
pan/tilt control UDFs simply send camera pointing requests to this server. For UGVs, the asset
list is maintained by client classes within AutocueServer, and the UGV-control UDFs interact
with these classes to send commands directly to assets. The code that maintains the asset lists
also updates the sensors table to ensure it remains synchronized with the actual list of
available assets.

AutocueServer contains a number of additional functions. A background thread updates a row in
the events table once a second, which can be used as a trigger for UDFs that implement time-
based or periodic behaviors. AutocueServer also contains a command line interface that can be
used to run queries on the database for testing and debugging purposes. Finally, AutocueServer
provides UDFs that print output to the console and generate Windows message boxes for use
when debugging rules.

Detailed reference information for the UDFs provided by the cuing system can be found in
appendix B.

4.2.3 AutocueConfig

The AutocueConfig application provides a simple GUI for viewing the current contents of the
database and for creating and editing cuing rules and temporary table definitions. AutocueConfig
accesses the database files directly and can run either by itself or concurrently with
AutocueServer. The SQL.ite libraries manage concurrent access to the on-disk database file.

Figures 3 and 4 show the sensor and event list views in AutocueConfig. These contain standard
.NET DataGridView controls that allow the user to view and edit information about assets and
events stored in the database and to clear the contents of the asset and event tables.

12

["sensors | sensor Groups | Events | Triggers | TempDefs | Testng | imporyExport

snsrD cueEnabled snsrEnabled snsrLastRptTin snsrCurlat snsrCurLon snsrCurAlt isSensor
b ARL RoofCamSE 15-Dec-1010.... | 39.02926 -76.963976

ARLIR4578 ¥l 15-Dec-109:5... [39.028992 |-76.964028
ARLIR4963 15-Dec-109:5... |39.03467 -76.95356

ARLIR4928 15-Dec-109:5... |39.03396 -76.95579

<

’ Save H Refresh H Clear All]

Figure 3. Sensor list viewer in AutocueConfig.

|Sensm5 | Sensoleups| Events | Tliggersl TempDefs | Teslingl Imporl;-'Exporl|

eventD eventTime receivedTime fused type how snsrD snsrLat snsrLon

w1&Dec—1OE:% PM | 15-Dec-105:0.. 129 |Event.. [test 0 0
ARLIR4528_010.. |15-Dec-10958PM | 15-Dec-105:0... ARLIR45928 |39.03396 |-76.95579
ARLIR4978_010.. |15-Dec-10957PM | 15-Dec-105:0... ARLIR4978 |39.028992 |-76.964028
ARLIR4576_010.. |15-Dec-10959PM | 15-Dec-105:0... ARLIR4578 |39.028992 |-76.964028
ARLIR4576_010.. |15-Dec-1010:00 PM | 15-Dec-10 5:0... ARLIR4978 |39.028992 |-76.964028
ARLIR4963_010.. |15-Dec-1010:00 PM | 15-Dec-10 5:0... ARLIR4963 |39.03467 |-76.95356
ARLIR4563_010.. |15-Dec-1010:00 PM | 15-Dec-10 5:0... ARLIR4563 |39.03467 |-76.95356
ARLIR4963_010.. |15-Dec-1010:00 PM | 15-Dec-10 5:0... ARLIR4963 |39.03467 |-76.95356
ARLIR4963_010.. |15-Dec-1010:01 PM | 15-Dec-10 5:0... ARLIR4963 |39.03467 |-76.95356
ARLIR4963_2574 |15-Dec-1010:05 PM | 15-Dec-105:0...

< i |

[Save][Refresh][Clear All]

Figure 4. Event list viewer in AutocueConfig.

Figure 5 shows the rules editor in AutocueConfig. This screen allows the user to enter, edit, and
delete cuing rules, which are represented as triggers stored in the SQL.ite database. Essentially
this screen presents a GUI frontend for editing SQL.ite triggers. The user can create and edit
triggers for inserts or updates on either the events or sensors tables.

13

a-' Central Resource Allocation Platfol =k

| Sensors | Sensor Groups | Even empDefs | Testing | Import,.fExport|

CueClosestCamera | 3 4 (] » Event Insert hd [new] [delete] l save] lcancel l

DELETE FROM tmpDist,

INSERT INTO tmpDist
SELECT sensors.snsrlD, GeoDist(sensors.snsrCurlat, sensors.snsrCurLon, new tgtlat, new tgtLon) AS dist
FROM sensors
WHERE new.tgtLat NOT MULL AND new.tgtLon NOT NULL AND sensors.snsrCurLat NOT NULL
AMND sensors.snsrCurLon MOT MULL
AMND sensors.isPanTilt == 1 AND sensors.cueEnabled == 1
ORDER BY dist ASC:

SELECT WriteLine("Closest available cameras are:") FROM tmpDist;
SELECT WriteLine(id || " (|| dist|| ")") FROM tmpDist;

SELECT WriteLine("SQL Cuing " | id || "to " || new.tgtLat | "." || new.tgtLon).
CueOneCameral(id, new.tgtLat, newtgtlon, 0, 1)
FROM
(SELECT stripdot{id) AS id FROM tmpDist LIMIT 1);

Figure 5. Rules editor in AutocueConfig.

As seen in figure 5, cuing rules are entered directly as SQL. This allows the user to make full use
of the SQL language to define complex rules and behaviors, but requires that the user have
general knowledge of SQL as well as specific knowledge of the cuing system database design.
To make the system useful to users who are not also database developers, it will be necessary to
develop or incorporate a graphical rule builder tool.

Figure 6 shows the temporary table definition editor in AutocueConfig. Queries entered in this
screen are stored as text in the database, and are read and executed by AutocueServer upon
startup. This feature can be used to create or initialize any tables that are used by triggers to store
state or intermediate results since it is not legal to create or delete tables within a SQLite trigger.

AutocueConfig contains features for importing and exporting policy sets as XML documents.
This allows policies to be backed up, archived, and loaded into other instances of the cuing
system. Additionally, AutocueConfig contains an option to manually generate random sensor
events for test purposes.

14

a- Central Resource Allocation Platform =k

Testing | Import,.fExport|

| Sensors | Sensor Groups | Events | Triggers |

TD_chw o <« [[new H delete H save ” cancel l

CREATE TABLE IF NOT EXISTS tmpDist{id string. dist double);
CREATE TABLE IF NOT EXISTS tmpCrTrack({num int, tgild string};
CREATE TABLE IF NOT EXISTS tmpCr{tgtld string, howLong double);

delete from tmpCrTrack;
insertinto tmpCrTrack values(0, ")

Figure 6. Temporary table definitions editor in AutocueConfig.

4.2.4 Issues Encountered During Development

We encountered two major issues during the cuing system development effort, one related to
performance and the other due to query optimizations performed by SQL.ite. The performance
issue was relatively straightforward. Whenever the cuing system receives a CoT message, it
generates an insert or update query on the database. The original implementation did not
explicitly use transactions when executing these queries, which results in SQLite running each
query as a separate transaction. A transaction commit in SQL.ite is a very expensive operation
that involves multiple file creations, deletes, and disk cache flushes to ensure the database file is
always in a consistent state. In our experience, SQL.ite can process individual queries within a
transaction very quickly but can only commit a few transactions per second. This caused
message traffic to “back up” in network receive buffers when the incoming message rate was too
high.

To work around this issue, we modified the cuing system to use a background thread to process
incoming messages. These messages are inserted into a queue instead of being sent directly to
the database. The background thread runs in a loop, first removing all messages from the queue
as a group and then posting this group of messages to the database as a single transaction.
Essentially, all messages received during the commit of a previous transaction are grouped and
processed as a single transaction. This keeps incoming message latency down to, at most, the
amount of time required to commit two transactions.

The issue we encountered with SQL.ite query optimizations is more fundamental. As previosuly
mentioned, the cuing system uses UDFs in an unorthodox manner. A typical UDF in a database
performs a calculation on the supplied values and returns a result which is used elsewhere in the

15

query or returned to the database application. In the cuing system, calling some UDFs will send
commands to external systems. These “side effects” of calling the UDF are much more important
than the actual return value of the UDF, which is almost always ignored in cuing rules. The
SQL.ite query planner does not account for UDFs having side effects and will often generate
optimized queries that result in more UDF calls than one would expect. We encountered this
problem when using nested queries in cuing rules, as the query planner will flatten these queries
in order to make better use of indexes. This issue cannot be “fixed” without modifiying the core
SQLite code. However, it can be circumvented by splitting up the nested query into multiple
queries that store intermediate results in a table or by writing queries that the query planner
cannot flatten. More details regarding this issue, along with an illustrative example, can be found
in appendix C.

5. Examples & Field Test Results

The cuing system was tested as an element of the HFD ATO Capstone Experiment at Aberdeen
Proving Ground (APG) in September 2010. This experiment brought together sensors, images,
and other assets from multiple vendors. Many of these vendors made their asset data available as
CoT messages. In addition, ARL provided cameras, UGVs, and other controllable assets that
could be cued by the cuing system. This provided an ideal environment for testing the cuing
system with live, real-world data and assets. More information regarding the HFD ATO can be
found in (Scanlon and Ludwig, 2010).

We demonstrated several cuing behaviors at the HFD experiment. A description of each
behavior, as well as the actual cuing rules used to implement each behavior, follows.

5.1 Cuing Pan/Tilt Imagers from UGS Tripwire Detections

The first behavior demonstrated was to cue ARL-provided pan/tilt imagers (Sony SNC-RZ30N
IP surveillance cameras) based on detection events reported from ARL-provided tripwire
sensors. When a tripwire sensor detects motion, it sends a message to SensorDataProcessor,
which generates a CoT event indicating activity at the location of the sensor. The cuing system
finds the closest camera to the location of the event and then cues that camera to look towards
this location.

This rule is written as three queries (shown in figure 8) and makes use of a temporary table
(defined as shown in figure 7) to store intermediate results. The first query clears the temporary
table. The second query computes the distance from each pan/tilt camera to the location of the
new event using the GeoDist UDF and stores the results in the temporary table in sorted order
with the closest camera first. The third query cues the closest camera to look towards the
detection as a side effect of the CueOneCamera UDF. These three queries can be combined, but
this can cause problems with the SQLite query planner’s optimizations as described earlier. It is

16

possible to write a combined query that does not cause problems with optimizations, but we did
not discover this until after the experiment.

CREATE TEMPORARY TABLE IF NOT EXISTS tmpDist (id string,
dist double);

Figure 7. Temporary table definition for tripwire cuing rule.

DELETE FROM tmpDist;

INSERT INTO tmpDist
SELECT sensors.snsrlID, GeoDist (sensors.snsrCurlat,
sensors.snsrCurlLon, new.tgtlLat, new.tgtLon) AS dist
FROM sensors
WHERE new.tgtLat NOT NULL AND new.tgtLon NOT NULL
AND sensors.snsrCurLat NOT NULL
AND sensors.snsrCurLon NOT NULL
AND sensors.isPanTilt == 1 AND sensors.cueEnabled ==
ORDER BY dist ASC;

SELECT CueOneCamera (id, new.tgtLat, new.tgtLon, 0, 1)
FROM
(SELECT stripdot(id) AS id FROM tmpDist LIMIT 1);

Figure 8. Tripwire cuing rule.

5.2 Cuing Pan/Tilt Imagers from Acoustic Detection Events

The second behavior demonstrated was to cue an ARL-provided pan/tilt imager based on
gunshot detections from acoustic sensors provided by multiple vendors. When an acoustic sensor
detects gunfire, it sends a report that is ultimately converted to a CoT event containing the
location of the sensor along with the azimuth and elevation for a LOB indicating the direction to
the shooter. These LOB messages are received by the TripwireTracker application, which
computes an estimate of the shooter location (based on the averaged intersection points of the
LOBs from each sensor) and publishes this estimate as a new CoT event. Some sensor systems
additionally compute and publish their own estimated shooter locations. The cuing system
receives these fused events and cues cameras to look in the direction of the shooter. At the HFD
experiment, TripwireTracker successfully processed CoT-formatted LOB messages from the
Unattended Transient Acoustic MASINT Sensor (UTAMS) system provided by the ARL
Sensors and Electron Devices Directorate (SEDD), the PDCue system provided by AAI
Corporation, and various experimental acoustic sensors provided by the ARL Computational and
Information Sciences Directorate (CISD). The cuing system successfully processed estimated
shooter locations from UTAMS as well as TripwireTracker.

This rule was written as two relatively straightforward queries (shown in figure 9). The first
query cues imager RSN101 based on detections received from the UTAMS system (as a side

17

effect of the CueOneCamera UDF), which have IDs beginning with “ARL.UTAMS”. The
second query cues imager RSN103 based on detections received from TripwireTracker, which
have IDs beginning with “ARL.CROSSPOINT”. We also tested a rule similar to the one shown
in figure 8 that cued only the closest camera based on detections from either source.

SELECT CueOneCamera (id, new.tgtLat, new.tgtLon, 0, 1)
FROM (SELECT "RSN101l" AS id)
WHERE new.eventID LIKE "ARL.UTAMSS"
AND new.tgtLat NOT NULL AND new.tgtLon NOT NULL;

SELECT CueOneCamera (id, new.tgtlLat, new.tgtLon, 0, 1)
FROM (SELECT "RSN103"™ AS id)
WHERE new.eventID LIKE "ARL.CROSSS%"
AND new.tgtLat NOT NULL AND new.tgtLon NOT NULL;

Figure 9. Acoustic sensor cuing rule.

5.3 Cuing Pan/Tilt Imagers from the Compact Radar

The third demonstrated behavior was to cue a pan/tilt imager to track a target detected by the
ARL Compact Radar sensor. The Compact Radar detects moving targets and tracks them over
time. This ultimately generates a CoT event for each target, which is updated as the target

moves. The cuing system receives these events, selects a single target to follow, and commands a
pan/tilt imager to follow the selected target. This behavior uses a very simple algorithm to select
the target to track. The system will select the first target that it sees and will continue to track that
target until it has not been seen for 10 s. The system will then select the next target it sees.

This capability was conceived and implemented in the field and required changes to the
AutocueServer code. The original implementation of AutocueServer assumed that each sensor
would only send discrete events and, therefore, only supported triggers on database INSERTS.
This assumption is valid for gunshot detectors and tripwires, but not for the Compact Radar as it
tracks targets over time and updates existing CoT events. To accommodate this, we modified
AutocueServer and AutocueConfig to allow triggers to be set on database UPDATES as well as
INSERTS. These modifications were not difficult.

This rule is written as two queries (shown in figure 11) and uses a temporary table (defined as
shown in figure 10) to maintain state information (in this case, the ID of the target currently
being tracked) between calls to the trigger. The first query filters out events that did not come
from the Compact Radar and selects the target to track. The nested query determines whether
the target currently being tracked, which is stored in the tmpCrTrack table, has been seen in the
last 10 s. If this target has not been seen, the target being tracked will be changed to the target in
the event that is currently being processed. The second query cues the camera to the new location
of the tracked target if the current event is for that target, ignoring all other events.

18

CREATE TEMPORARY TABLE tmpCrTrack (num int, tgtId string);

INSERT INTO tmpCrTrack VALUES (0, "");

Figure 10. Temporary table definition for radar cuing rule.

UPDATE tmpCrTrack SET tgtId = new.eventID WHERE
(SELECT count (*) FROM events

WHERE events.eventTime > new.eventTime - (10/86400.0)
AND events.eventlID =
(SELECT tgtId FROM tmpCrTrack WHERE num = 0)) = 0

AND new.eventID LIKE "ARL.CR4966%"
AND new.eventID NOT LIKE "ARL.CR4966_OOO].%"
AND tmpCrTrack.num = 0;

SELECT CueOneCamera ("RSN102", new.tgtLat, new.tgtLon, 0, 1)
FROM tmpCrTrack WHERE num = 0
AND tgtId = new.eventlD;

Figure 11. Radar cuing rule.

A more complex rule could use an alternate method to pick the target. For example, a rule could
track the fastest moving target or the closest target to a location.

6. Conclusions

We have shown that SQL is a viable policy language for unattended asset cuing applications
through a successful practical demonstration at the HFD capstone experiment. In addition, we
demonstrated the flexibility that SQL provides in these applications by quickly defining and
adding new types of cuing capabilities during the experiment. We also demonstrated the viability
and utility of multivendor cross-cuing by successfully cuing assets based on data from both
ARL-developed and vendor-provided sensors.

7. Future Work

The current implementation of the cuing system is intended as a proof-of-concept demonstration.
As a result, it has several architectural issues and limitations. We are currently working on
enhancing the system to address some of these issues.

7.1 Distributed Operation

The current cuing system uses a centralized architecture where a single server receives all asset
reports, processes all cuing rules, and sends out commands to all assets. This creates a single

19

point of failure. Additionally, we have found that centralized architectures do not perform well in
mobile ad-hoc networks commonly used in tactical environments (Suri, Benvegnu, et al. 2009).
To address this issue, we plan to redesign the cuing system to support distributed operation.

One possible distributed implementation would run a separate cuing server on each asset and use
a broadcast or multicast mechanism to send asset detection, position, and attitude messages to the
cuing servers. Each instance of the cuing server would have its own copy of the cuing rules and
be responsible for cuing only its local asset. When a multicast message is received, the cuing
server on each asset will use the database engine to evaluate the cuing rules, but will ignore any
commands generated for non-local assets. Assets will essentially be cuing themselves. If one
asset drops off the network, other assets will continue to function. With this design, each instance
of the cuing server will maintain its own state information (sensors and events tables). This
information may not be correct or consistent with other server instances running on other assets.
This will require a different approach to writing rules when compared to the current centralized
system, especially with rules that make decisions based on the state of multiple assets.

7.2 Usability Improvements

The current cuing system requires that rules be entered as SQL statements. Therefore, a working
knowledge of SQL is required in order to construct cuing rules. Many potential end-users of the
cuing system will not have this knowledge. An alternate mechanism for defining cuing rules,
such as a graphical rule builder, would help improve the usability of the system. However,
creating an interface that is simple enough for an untrained user to understand but powerful
enough to create useful and complex cuing rules will be difficult. VVarious existing query-by-
example and programming-by-flowchart tools attempt to perform these types of tasks, but in
practice are still not usable without experience or training. A possible compromise may be to
provide rule templates for the most common use cases that could be set up and configured using
a graphical interface, while still providing advanced users the ability to enter custom rules as
SQL.

7.3 Data Fusion in SQL

Asset cuing is only one component of a full-scale sensor exploitation system. It may be possible
to use a SQL-based approach for other sensor exploitation tasks, such as data fusion. As an initial
exploration in this area, we have performed some LOB intersection calculations on test data by
using SQL queries that call cuing system UDFs to perform coordinate math. Further
investigation is required to evaluate the performance of this approach compared to traditional
approaches and to determine whether it is feasible to perform other types of sensor fusion
computations in a similar manner.

7.4 Other Database Systems

SQLite is intended as an embedded database engine and does not provide support for stored
procedures or a stored procedure language. Stored procedure languages (such as Microsoft’s T-

20

SQL) provide looping, branching, and other control structures that may allow for the
development of more complex cuing rules than can be represented using the simple trigger
syntax supported by SQLite. This would be especially useful when trying to do data fusion
within the database. This capability can be provided by extending the cuing system to use a full-
featured database engine like Firebird or Microsoft SQL Server. However, doing so would also
increase the footprint and decrease the portability of the system.

21

INTENTIONALLY LEFT BLANK.

22

Appendix A. XML Schema for CoT Sensor Detection Extension

The CoT message format, as defined by MITRE, does not provide fields for some of the data
items generated by the UGS systems we use. To accommodate this data, we defined
experimental extensions to CoT for UGS detections. These extensions were rapidly designed to
support specific experiments and demonstrations and do not accommodate all types of UGS
messages. We are currently redesigning these extensions to be more universal in nature. The
final version of these extensions will be published in a future report.

The XML schema for a preliminary version of these CoT extensions, used at the Sensor and
Information Fusion for Improved Hostile Fire Situational Awareness ATO Capstone Experiment
and Empire Challenge 2010 demonstration, is included here for reference.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="detection">
<xs:complexType>
<!-- ID for the sensor. Must be unique -->
<xs:attribute name="sensorID" type="xs:string" use="required"/>

<!-- Azimuth in degrees. 0 = true north (NOT magnetic north.)

90 = due east. -->
<xs:attribute name="azimuth" type ="xs:decimal" use="optional"/>
<!-- Azimuth error +/- in degrees-->

<xs:attribute name="azimuthErr" type="xs:decimal" use="optional" />

<!-- Elevation in degrees. 0 = horizontal. 90 = straight up. -->
<xs:attribute name="elevation" type="xs:decimal" use="optional" />

<!-- Elevation error +/- in degrees -->
<xs:attribute name="elevationErr" type="xs:decimal" use="optional" />

<!-- Range TO TARGET in meters, if available. -->
<xs:attribute name="range" type ="xs:decimal" use="optional" />
<!-- Range error +/- in meters -->

<xs:attribute name="rangeErr" type="xs:decimal" use="optional" />

<!-- Maximum effective detection range of the sensor. Used to put
an upper bound for length on the LOBs when doing
intersection calculations (i.e. how far out will
we look for intersection points) -->
<xs:attribute name="rangeMax" type="xs:decimal" use="optional" />

<!-- Timestamp of the detection -->
<xs:attribute name="detectiontime" type="xs:dateTime" use="optional" />

23

<!-- Detection identifier from the sensor if available.
(used if sensor generates multiple messages for the same
event -->
<xs:attribute name="DetectionID" type="xs:string" use="optional" />

<!-- RFID tag from the target, if available (or equivalent value
for other sensors) —-->
<xs:attribute name="TAGID" type="xs:string" use="optional" />

<!-- Quality factor. Higher is better -->
<xs:attribute name="quality" type="xs:decimal" use="optional" />

</xs:complexType>

</xs:element>
</xs:schema>

24

Appendix B. User-defined Function Reference

Unless otherwise specified, all latitude and longitude values are in decimal degrees, all distance
values are in meters, all bearing values are in degrees with 0 representing true north and 90
representing true east, and all altitude values are in meters above the WGS84 ellipsoid.

Coordinate Math
double GeoDist(double latl, double lonl, double lat2, double lon2)
This function returns the distance between two points on the Earth’s surface.

- latl: the latitude of the origin point

- lon1: the longitude of the origin point

- lat2: the latitude of the destination point

- lon2: the longitude of the destination point

double GeoBearing(double lat1, double lon1, double lat2, double lon2)
This function returns the bearing from one point to another point on the Earth’s surface.
- latl: the latitude of the origin point
- lon1: the longitude of the origin point
- lat2: the latitude of the destination point
- lon2: the longitude of the destination point
string Linelntersect(double latl, double lonl, double az1, double lat2, double lon2, double az2)

This function returns the intersection point of two LOBs. Each line is specified as an origin
point and a compass direction. The return value is a string containing the latitude of the
intersection point, a space, and the longitude of the intersection point. If the lines do not
intersect, the return value is the empty string. The latitude and longitude can be extracted
from this string using IntersectGetLat() and IntersectGetLon().

- lat1: the latitude of the origin point of the first LOB

- lon1: the longitude of the origin point of the first LOB
- az1: the bearing of the first LOB

- lat2: the latitude of the origin point of the second LOB

- lon2: the longitude of the origin point of the second LOB

25

- az2: the bearing of the second LOB
double IntersectGetLat(string str)
This function returns the latitude component of a result string from Linelntersect.
- str: a result string from Linelntersect()
double IntersectGetLon(string str)
This function returns the longitude component of a result string from Linelntersect.
- str: a result string from Linelntersect()
Robot Cuing
bool MoveRobot(string robotID, double latl, double lonl, [double lat2, double lon2, ...])

This function sends a waypoint list to a robot. If the robot supports autonomous navigation,
it will attempt to navigate to each point in the waypoint list. This function returns true if the
waypoint list was successfully sent to the robot and false otherwise. This function takes a
variable number of arguments. The robot ID and first waypoint must always be specified.

- robotID: the ID of the robot to move. This is generally the platform name of the robot in
the ARL C2 framework.

- lat1: the latitude of the first waypoint.
- lon1: the longitude of the first waypoint.
- lat2: optional latitude of the second waypoint.
- lon2: optional longitude of the second waypoint.
- ...: optional additional waypoints.
Camera Cuing
bool CueOneCamera(string cameralD, double lat, double lon, float alt, byte ignoreCueState)

This function commands a camera to look at a point on or above the Earth’s surface. This
function returns true if the command was successfully sent to the camera and false
otherwise.

- cameralD: the ID of the camera to move.
- lat: the latitude of the target point.
- lon: the longitude of the target point.

- alt: the altitude of the target point.

26

- ignoreCueState: if true, the camera will be moved regardless of whether camera cuing for
this camera has been disabled in CueCamServer.

bool PanTiltOneCamera(string cameralD, double az, double el, bool isWorld)

This function commands a camera to look in a given direction. This function returns true if
the command was successfully sent to the camera and false otherwise.

- cameralD: the ID of the camera to move.
- az: the commanded pan angle (azimuth.)
- el: the commanded tilt angle (elevation.)

- isWorld: if this is true, the pan and tilt angles are handled as global coordinates (zero
azimuth is true north, and zero elevation is horizontal, with positive elevation angles
looking up.) If false, the pan and tilt angles are sent directly to the pantilt device as local
coordinates.

Video Capture
bool GrabVideo(string platform)

This function commands all video servers on a platform to capture an image and send it to
the media server.

- platform: the platform to use.
bool GrabVideo(string platform, string server)

This function commands a single video server to capture an image and send it to the media
server.

- platform: the platform that is hosting the video server.
- server: the service name of the video server that will grab the image.
bool GrabVideoDelay(int msecDelay, string platform)

This function will command all video servers on a platform to capture an image after a
specified delay has passed and send the image to the media server. This can be used to wait
for a pan/tilt command to complete before capturing an image.

- msecDelay: the amount of time to wait before grabbing the image. The function will
return immediately, regardless of the value of the setting, and the command will be sent in
the background.

- platform: the platform to use.

bool GrabVideoDelay(int msecDelay, string platform, string server)

27

This function commands a single video server to capture an image after a specified delay
has passed and send the image to the media server for display to end users.

- msecDelay: the amount of time to wait before grabbing the image. The function will
return immediately regardless of the value of the setting. The command will be sent in the
background.

- platform: the platform that is hosting the video server.

- server: the service name of the video server that will grab the image.
Miscellaneous
string StripDot(string arg)

This function will look for a dot in the supplied string and will return the portion of the
string that follows the dot. This is mainly intended to convert CoT names, such as
“ARL.robot1”, to their corresponding ARL asset name, such as “robot1”.

- arg: the string to process.

bool CreateToslcon(string uid, string type, string how, double lat, double lon, double alt, double
lifetimeSecs)

This function will create a CoT event in TOS with the specified parameters. This function
will return true if the event was successfully created and false otherwise.

- uid: the CoT UID for the new event.

- type: the CoT type string for the new event (see the CoT type tree.)
- how: the CoT how string for the new event (see the CoT type tree.)
- lat: the latitude for the new event.

- lon: the longitude for the new event.

- alt: the altitude for the new event.

- lifetimeSecs: the lifetime of the new event, in seconds. The CoT stale time for the new
event will be set to the current time plus this.

28

Debugging
string WriteLine(string arg)

This function prints a message to the console. The message will be printed only if debug
messages have been turned on in the autocue server. This function returns the argument
that was passed in.

- arg: the message to print to the console.
string ForceWriteLine(string arg)

This function prints a message to the console. The message will be printed regarldess of
whether debug messages have been turned on. This function returns the argument that was
passed in.

- arg: the message to print to the console.
string MsgBox(string arg)

This function pops up a Windows message box containing a specified message. The
message box will run in the thread that called the UDF, which will likely cause the cuing
server to stop processing further data until the user closes the message box. This function
returns the argument that was passed in.

- arg: the message to put in the message box.
string MsgBoxThreaded(string arg)

This function pops up a Windows message box containing a specified message. The
message box will be created in a new thread. The cuing server will continue to process data
while the message box is on the screen. Repeated calls to this function will pop up
additional message boxes regardless of whether the original message box has been closed.
This function returns the argument that was passed in.

- arg: the message to put in the message box.

29

INTENTIONALLY LEFT BLANK.

30

Appendix C. SQL.ite Order by Optimization Examples

Typical UDFs in database applications perform a calculation on the parameters supplied to the
UDF and return a value. The cuing system makes use of UDFs that generate and send commands
to external systems as side effects. The query optimizer in SQLite does not account for UDFs
having these types of side effects, and will often generate queries that call a UDF more times
than one would expect. Within the cuing system, this optimization can cause unexpected results
as illustrated below.

These examples are all run using the debugging interface in AutocueServer and make use of the
WriteLine() UDF available within AutocueServer, which prints a message to the console along
with a timestamp. WriteLine also returns the value passed to it.

First, we define a test table, foo, with two columns a and b. a contains integers, b contains text
strings.

sgl> CREATE TABLE foo (a INTEGER, b TEXT);
Now we insert some data into the test table and then verify that the data has been inserted. For
illustrative purposes, we will make sure the values are not already in sorted order.

sgl> INSERT INTO foo VALUES (
sgl> INSERT INTO foo VALUES (
sgl> INSERT INTO foo VALUES (
sgl> INSERT INTO foo VALUES (

5, "five");

3, "three");

1, "one");

8, "four plus four");

sgl> SELECT * FROM foo;
a, b

5, five

, three

, one

, four plus four

O = W

31

SQL.ite allows you to use most standard SQL commands, so we can get values in sorted order
using an ORDER BY clause and limit the number of returned values with a LIMIT clause. (In
the cuing system, a similar query can be used to find the closest camera to a location of interest.)

sgl> SELECT * FROM foo ORDER BY a;
a, b

1, one

, three

five

, four plus four

~

3
5
8

sgl> SELECT * FROM foo ORDER BY a LIMIT 1;
a, b
1, one

If we want to take the result of this query and pass it to a UDF, the obvious way to do so is to
incorporate it as a subquery within an outer query that calls the UDF. However, if we use this
approach the optimizer will alter the query, resulting in unexpected behavior.

sgl> SELECT a, WriteLine ("UDF called for " || a) FROM
(SELECT * FROM foo ORDER BY a LIMIT 1);

[11:30:10] UDF called for 5

[11:30:10] UDF called for 3

[11:30:10] UDF called for 1

[11:30:10] UDF called for 8

a, WriteLine ("UDF called for " || a)

1, UDF called for 1

Notice that while the return value of the outer query is correct, the UDF is actually called four
times, once for each row in the database in unsorted order. The ORDER BY and LIMIT clauses
are not being processed with the nested query. What is happening here is that the SQL.ite query
planner is flattening the query in order to avoid using a temporary table, as temporary tables do
not have indexes and can exhibit poor performance. (SQLite n.d.) Basically, it is executing the
query as

SELECT a, WriteLine ("UDF called for " || a) FROM foo ORDER BY a
LIMIT 1;

(This can be verified by running EXPLAIN on the modified query and then running EXPLAIN
on the original query. The sequence of operations in the query plans is the same.) The altered
query returns the same result as the original query. However, in the cuing system, we are not
interested in the result of the query—we are interested in the actions that are taken when the

32

UDF is called. If the UDF is called too many times, we do not get the expected results. If we
want to find the closest camera to a location and then send a command to only that camera, we
will actually end up sending the command to all the cameras.

A query must meet a certain set of conditions in order to be flattened by the SQL.ite query
planner. One of those conditions is that the inner and outer queries cannot both have ORDER BY
clauses. If we add an ORDER BY clause to the outer query, then the query is not flattened and
the UDF is called the expected number of times.

sql> SELECT a, WriteLine ("UDF called for " || a) FROM
(SELECT * FROM foo ORDER BY a LIMIT 1)
ORDER BY a;

[11:30:38] UDF called for 1

a, WritelLine ("UDF called for " || a)

1, UDF called for 1

In addition to causing unintended behavior in applications that make use of UDF side effects,
this optimization can cause performance issues in applications that call computationally intensive
UDFs. In this case, when constructing a query, it will be necessary to evaluate the tradeoff
between potential performance gains from the use of indexes on the flattened query against the
performance loss from unnecessary calls to the computationally intensive UDF.

33

Bibliography

Barker, S.; Rosthenal, A. Flexible Security Policies in SQL. Proceedings of the Fifteenth
Annual Working Conference on Databse and Application Security, Kluwer, 2002, 167-180.

Benvegnu, E.; Suri, N.; Hanna, J.; Combs, V.; Winkler, R.; Kovach, J. Improving Timeliness
and Reliability of Data Delivery in Tactical Wireless Environments with Mockets
Communication Library. IEEE Military Communications Conference (MILCOM), IEEE,
2009.

Benvegnu, E.; Suri, N.; Tortonesi, M.; Esterrich, T. I1l. Seamless Network Migration using the
Mockets Communications Middleware. IEEE Military Communications Conference
(MILCOM), IEEE, 2010. 1604-1609.

Bunch, L.; Bradshaw, J. M.; Young, C. O. Policy-governed Information Exchange in a U.S.
Army Operational Scenario. IEEE Workshop on Policy-governed Information Exchange in
a U.S. Army Operational Scenario. IEEE, 2008, 243-244.

Calo, S.; Lobo, J. A Basis for Comparing Characteristics of Policy Systems. IEEE International
Workshop on Policies for Distriubted Systems and Networks, 2006, 183-194.

Cook, W. Policy-based Authorization. Austin: University of Texas, 2009.

Didriksen, T. Rule Based Database Access Control - A Practical Approach. ACM Workshop on
Role-based Access Control. ACM, 1997, 143-151.

Gencay, B.; Kuchlin, W.; Schafer, T. SANchk: An SQL-Based Validation System for SAN
Confiuration. IFIP/IEEE International Symposium on Integrated Network Management,
2007, 333-342.

Gregory, T.; Kovach, J.; Winkler, R.; Winslow, C. UGS, UGV, and MAV in the 2007 C4ISR
OTM Experiment; ARL-TR-4419; U.S. Army Research Laboratory: Adelphi, MD, 2008.

Johnson, M.; Bradshaw, J. M.; Jung, H.; Suri, N.; Carvalho, M. Policy Management Across
Multiple Platforms and Application Domains. IEEE Workshop on Policies for Distributed
Systems and Networks. IEEE 2008, 199-202.

Scanlon, M.; Ludwig, W. Sensor and Information Fusion for Improved Hostile Fire Situational
Awareness. Unattended Ground, Sea, and Air Sensor Technologies and Applications XII.
Orlando: SPIE, 2010.

SQLite. The SQLite Query Planner. SQL.ite. n.d. http://www.sglite.org/optoverview.html.

34

Suri, N.; Benvegnu, E.; Toronesi, M.; Stefanelli, C.; Kovach, J.; Hanna, J. Communications
Middleware for Tactical Environments: Observations, Experiences, and Lessons Learned.
IEEE Communications Magazine October 2009, 56-63.

Suri, N., etal. An Adaptive and Efficient Peer-to-Peer Service-oriented Architecture for
MANET Environments with Agile Computing. IEEE Workshop on Autonomic Comptuing
and Network Management. IEEE 2008, 364-371.

Suri, N., et al. Peer-to-peer Communications for Tactical Environments: Observations,
Requirements, and Experiences. IEEE Communications Magazine, October 2010: 60—69.

Suri, N.; Rebeschini, M.; Breedy, M.; Carvalho, M.; Arguedas, M. Resource and Service
Discovery in Wireless AD-HOC Networks with Agile Computing. IEEE Military
Communications Conference (MILCOM). IEEE, 2006, 1-7.

Tortonesi, M.; Stefanelli, C.; Suri, N.; Arguedas, M.; Breedy, M. Mockets: A Novel Message-
oriented Communications Middleware for the Wireless Internet. International Conference
on Wireless Information Networks and Systems (WINSYS), 2006.

Uszok, A., et al. KAoS Policy and Domain Services: Toward a Description-logic Approach to
Policy Representation, Deconfliction, and Enforcement. IEEE 4th International Workshop
on Policies for Distributed Systems and Networks. IEEE, 2003, 93-96.

Uszok, A., et al. New Developments in Ontology-based Policy Management: Increasing the
Practicality and Comprehensiveness of KAoS. IEEE Workshop on Policies for Distributed
Systems and Networks. IEEE, 2008, 145-152.

W3C. OWL 2 Web Ontology Language . October 27, 2009. http://www.w3.0rg/TR/owIl2-
overview/.

W3C. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. May 21, 2004.
http://www.w3.0rg/Submission/SWRL/.

Weth, C.; Bohm, K.; Burghardt, T.; Hutter, C.; Yue, Jing Zhi. Indirect Reciprocity in Policy-
based Helping Experiments. IEEE European Conference on Web Services. 2009, 171-180.

35

List of Symbols, Abbreviations, and Acronyms

ARL U.S. Army Research Laboratory

APG Aberdeen Proving Ground

ATO Army Technology Objective

CISD Computational and Information Sciences Directorate
COoT cursor on target

DDL data definition language

GUI graphical user interface

HFD Hostile Fire Defeat

LOB line of bearing

OWL Web Ontolugy Loanguage

SEDD Sensors and Electron Devices Directorate
SOS Sensed Object Services

SQL Structured Query Language

SWRL Semantic Web Rule Language

TOS Tactical Object Services

UAV unmanned aerial vehicle
UDF user-defined function
UGS unattended ground sensor
uGv unmanned ground vehicle

UTAMS Unattended Transient Acoustic MASINT Sensor

XML Extensible Markup Language

36

NO. OF

COPIES ORGANIZATION

1
ELECT

1CD

ADMNSTR

DEFNS TECHL INFO CTR

ATTN DTIC OCP

8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

OFC OF THE SECY OF DEFNS
ATTN ODDRE (R&AT)

THE PENTAGON
WASHINGTON DC 20301-3080

US ARMY RSRCH DEV AND ENGRG
CMND

ARMAMENT RSRCH DEV & ENGRG
CTR

ARMAMENT ENGRG & TECHNLGY
CTR

ATTN AMSRD AAR AEF T

J MATTS

BLDG 305

ABERDEEN PROVING GROUND MD
21005-5001

PM TIMS, PROFILER (MMS-P)
AN/TMQ-52

ATTN B GRIFFIES
BUILDING 563

FT MONMOUTH NJ 07703

US ARMY INFO SYS ENGRG CMND
ATTN AMSEL IETD A RIVERA
FT HUACHUCA AZ 85613-5300

COMMANDER

US ARMY RDECOM

ATTN AMSRD AMR

W C MCCORKLE

5400 FOWLER RD

REDSTONE ARSENAL AL 35898-5000

US GOVERNMENT PRINT OFF
DEPOSITORY RECEIVING SECTION
ATTN MAIL STOP IDAD J TATE
732 NORTH CAPITOL ST NW
WASHINGTON DC 20402

FLORIDA INSTIT FOR HUMAN &
MACHINE COGNITION

ATTN N SURI

40 S ALCANIZ STREET
PENSACOLA FL 32502

37

NO. OF

COPIES ORGANIZATION

1

23

NAVAL AIR WARFARE CTR
AIRCRAFT DIVISION

ATTN A PONTZER

17673 WEBSTER FIELD RD
ST INIGOES MD 20684

PROGRAM MANAGER ACOUSTIC
SYSTEMS

AAl CORPORATION

ATTN T WITTE

124 INDUSTRY LN

HUNT VALLEY MD 21030

THE MITRE CORPORATION

ATTN M/SE030 PG GONSALVES
202 BURLINGTON RD

BEDFORD MA 20879

VIRGINIA CONTRACTING
ACTIVITY

ATTN C CROSS

1030 SOUTH HIGHWAY AlA,
BLDG 989

PATRICK AFB FL 32925

DIRECTOR

US ARMY RSRCH LAB

ATTN RDRL ROEV W D BACH
PO BOX 12211

RESEARCH TRIANGLE PARK NC
27709

US ARMY RSRCH LAB
ATTN IMNE ALC HRR MAIL &
RECORDS MGMT

ATTN RDRL CIl A D BARAN

ATTN RDRL CIl A SH YOUNG
ATTN RDRL CIl B C WINSLOW
ATTN RDRL CIl B J KOVACH

(4 COPIES)

ATTN RDRL CIl B L TOKARCIK
ATTN RDRL ClI B R WINKLER

(4 COPIES)

ATTN RDRL Cll B W GOLLSNEIDER
ATTN RDRL CIO LL TECHL LIB
ATTN RDRL CIO MT TECHL PUB
ATTN RDRL SEL B GOLLSNEIDER
ATTN RDRL SESA G STOLOVY
ATTN RDRL SES A J HOUSER
ATTN RDRL SESA L KAPLAN
ATTN RDRL SESA N SROUR

NO. OF
COPIES ORGANIZATION

ATTN RDRLSESP M SCANLON
ATTN RDRLSESS D WARD
ADELPHI MD 20783-1197

TOTAL: 36 (34 HCS, 1 CD, 1 ELECT)

38

		Superintendent of Documents
	2025-06-29T08:28:43-0400
	Government Publishing Office, Washington, DC 20401
	U.S. Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

