ARMY REeseArRcH LABORATORY

Performing XML Data Validation in the Global Force
Management Data Initiative

by Frederick S. Brundick

]
ARL-TR-4742 March 2009

Approved for public release; distribution unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005

ARL-TR-4742 March 2009

Performing XML Data Validation in the Global Force
Management Data Initiative

Frederick S. Brundick
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.
]

REPORT DOCUMENTATION PAGE VA

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
March 2009 Final October 2006 to December 2008
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Performing XML Data Validation in the Global Force Management Data

Initiative 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Frederick S. Brundick

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Research Laboratory REPORT NUMBER

ATTN: AMSRD-ARL-CI-IC

Aberdeen Proving Ground, MD 21005 ARL-TR-4742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the validation performed on data produced by the Global Force Management (GFM) Data Initiative (DI)
project. Extensible Markup Language (XML) was chosen for the data exchange protocol because of its popularity and
widespread support. The GFM data model, written in an object-oriented form, not only normalizes data, but also defines
objects with parent/child hierarchical relationships. Since XML is a hierarchical language, the GFM XML schema is able to
perform a more thorough analysis of hierarchical data than the same data presented in relational form. Due to the limitations
of XSD tests, | wrote XML Stylesheet Language: Transformations (XSLT) scripts to perform additional structural and
business rule validations on GFM XML data. This report contains descriptions and sample code from all of the GFM XSD
modules. After an introduction to data validation with XSLT, the tests performed by both scripts are shown and explained. |
present instructions on how to validate GFM XML data, along with sample results, and discuss the strengths and shortcomings
of the validation process.

15. SUBJECT TERMS
XML, XSL, data schema, data validation

17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF OF Frederick S BI’UﬂdiCk
ABSTRACT PAGES
a. REPORT b. ABSTRACT ¢. THIS PAGE UU 82 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified 410-278-8943

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Contents

List of Figures

List of Tables

Acknowledgments

Executive Summary

1.

I ntroduction

2. XML and Schemas

3.

2.1 Background

3.1 Background
3.2 XSLT Validation Overview
3.3 Structura Validation

2.2.1 GFM Simple Data Types

2.2.2 GFM Relational Table Types . . .
2.2.3 GFM Hierarchical TableTypes oo
224 GFM TableElements
225 ManGFM XSD File

Validating Data With Transfor mations

3.3.1 Link Validation

3.3.2 Category Code Vdidation
3.3.3 Vadlidation of Override Pairs. . . .
3.3.4 Vadlidation of Date/Time Groups .

3.3.5 Detection of Mandatory Elements
3.3.6 Type Associated With Proper Item

2.2 The GFM XSD

Vii

viii

Xi

337 ConsistentReferences. 26

3.38 SingleRootNode 27

3.39 PuttingthePartsTogether 28

3.4 Vdidationof BusinessRules 29
341 Introduction 29

3.4.2 Link TypeValidation 30

3.4.3 Person Type Category Code Validation 31

34.4 OrganisationValidation 32

345 BilletVaidation 32

34.6 LinkEndpoint Types 33

347 Required ASSOCIations e 35

3.4.8 AligningPersonTypes 35

349 General Information. L 37

4. Performing Validation Testing 39
4.1 SchemaValidation 39
42 XSLT Vdidation 40

5. Analysis 45
51 XSD and XSLT o o 45

52 XML LImMItations o o e 45
53 Alternatives e 46

6. References 47
Appendix A. Security Markings 49
Appendix B. Validation Constraints 51
Appendix C. Valid Example 55
List of Symbols, Abbreviations, and Acronyms 63
Glossary 64
Distribution List 67

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

Hierarchical dataschema. 2
Canonical (wrapper) dataformat 3
FilescomprisingtheGFM XSD 4
Simpledatatype e 4
Enumerated datatype 5
Complextype. e e e 6
Optional element 6
Objectltemtype e 7
Object Item Group o o 8
Object Item Hierarchy type 8
Root (main)type 9
Simpletabledefinition 9
Hierarchical table definitionwithtests 10
Equivadent SQL referential test 11
Uniquenesstest 12
Objectltemkeys e 12
Object Item Aliaskeyrefs 13
Relational datahierarchy keyrefs 14
Default empty templatefor modemodename 15
Template that checks for invalid OBJITEM_ASSOC links 16
Named template “missing-endpoint” that producesoutput 17

Template that checks for invalid OBJ_TY PE_ESTAB_OBJT _DET links, part 1 . . 19
Template that checks for invalid OBJ_TYPE_ESTAB_OBJT DET links, part2 . . 20

Template that compares CAT_CODE withchildelement 21
Template that findsincorrectly overriddenfields 22
Template that findsinvalidDTGranges 23
Template that finds invalid effective datetimevalues 24

Figure 28. Template that finds Object Types without Establishments 25
Figure 29. Template that finds Object Itemswith incorrect Object Types 26
Figure30. Redundantreference e 27
Figure 31. Template that finds Object Itemswith incorrect Object Types 27
Figure 32. Template that finds multiple Organisationtreeroots 28
Figure33. Main(root)template 29
Figure 34. Counting the number of object-orientedtables 29
Figure 35. Template that matches OTEOD linkswith valid codepairs 30
Figure 36. SQL query that finds OTEOD linkswith valid codepairs 30
Figure 37. Template that matches OTEOD linkswithinvalid codepars 31
Figure 38. Template that checks Person Typecategories 32
Figure 39. Templatethat finds ORGsthat arechildren 32
Figure 40. Template that reports ORGsthat arenot children 32
Figure41. Templatethat finds Billetsthat havechildren 33
Figure 42. Template that checks child of Mat Typeparent 34
Figure 43. Named template that checks the category code of an Object Type Establishment . 34
Figure 44. Template that reports Crew Platform Typesthat do not haveaMat Type 35
Figure 45. Template that reports Person Type roots that do not haveaPTSA of ROS 36
Figure 46. Template that reports Person Type trees that have an incorrect number of nodes . 37
Figure 47. Template that reports MilPostTypes with too few PersTypechildren 38
Figure 48. Template that counts Crew Platform (and Billet) elements. 39
Figure49. Typicd GFM rootelement L. 39
Figure 50. Xerces XML validator detectingoneerror 40
Figure51. Saxon transformation enginetesting XML data 40
Figure 52. Web browser output of XSLT validation 42
Figure 53. Web browser output of validation of relationaldata 43
Figure 54. Web browser output of validationusing businessrules. 44
Figure 55. Sampleforce structure (organisation)tree 46
Figure A-1. GFM XML datawith security attributes 49
Figure A-2. Classification markingsattributegroups 50

Vi

Figure A-3.
Figure C-1.
Figure C-2.
Figure C-3.
Figure C-4.
Figure C-5.
Figure C-6.
Figure C-7.
Figure C-8.
Figure C-9.

Object Item type with security attributegroup 50

OBJ.TYPE dlements, pat 1 of 2(ORG_TYPES) 55
OBJ_TY PE elements, part 2 of 2(MAT_TYPEand PERS.TYPE) 56
OBJTYPEESTABdements 57
GFM_PERS.TYPE SKILL ATTReement 57
OBJ.TYPE_ESTAB_OBJT DET (link)elements 58
OBJLITEM (ORG) €lements oo v v 59
OBJITEM OBJTYPEESTABeements 59
OBJITEM_ASSOCedement 60
Sampledatawithrelationships 60

Vii

List of Tables

Table 1. Object Typeto Object Item associations 25
Table 2. Allowable OTEOD combinations 33
TableB-1. OTEOD category codes 0 i i e e e e e e e e 52
Table B-2. Assoccategory COOES o o i i 53
Table C-1. Link keysforfigureC-9 60

viii

Acknowledgments

| would like to thank Holly Ingham, a fellow member of the Global Force Management Data
Initiative team, and William Tanenbaum, a high school student in the Science and Engineering
Apprentice Program, for reading early drafts of this report. They provided valuable feedback and
kept the technical discussionsfrom being overly esoteric.

INTENTIONALLY LEFT BLANK.

Executive Summary

This report describes the validation performed on data produced by the Global Force
Management (GFM) Data Initiative (DI) project. Extensible Markup Language (XML) was
chosen for the data exchange protocol because of its popularity and widespread support.

It is common practice to compare a set of XML data against an XML Schema definition (XSD)
file, similar to the way that datain arelational database may be verified against the database
schema. While this process will catch gross errors, such as strings that are too long, incorrect date
formats, and the absence of mandatory elements, much more validation may be performed. The
two basic test classes that this report describes are structural and business rule validation.

One reason why XML is popular is because the values are surrounded by their element names,
eliminating confusion caused by changing the order of unlabeled values. However, the GFM data
model was written in an object-oriented form where the data is not only normalized (to use the
database term), but al so defines objects with parent/child hierarchical relationships. XML isa
hierarchical language, and this fact may be used to explicitly structure the data to match the
hierarchical model.

The GFM XML schemais able to perform a more thorough analysis of hierarchical datathan the
same data presented in relational form. Tests are also defined to check the data for referential
integrity; when one object refers to a second object, the latter is checked to make sure that it
exists. Thefinal structural test ensures that top-level identifiers are unique.

There are limitsto the tests that may be conducted by XSD. While the XML Stylesheet
Language: Transformations (XSLT) was written to transform an XML file into another form, such
as Hypertext Markup Language (HTML), it may be used as a programming language to validate
XML data. An XSLT script has been written to perform additional structural validations on GFM
XML data. Unlike XSD, XSLT includes conditional expressions, allowing validation tests such as
“the starting date/time group must be less than the termination date/time group.” A second XSLT
script enforces certain GFM business rules. While the XSD ensures that an particular valueisin
the set of values recognized by the data model, GFM business rules may put additional constraints
on the value.

This report contains descriptions and sample code from all of the GFM XSD modules. After an
introduction to data validation with XSLT, the tests performed by both scripts are shown and
explained. | present instructions on how to validate GFM XML data, along with sample results,
and discuss the strengths and shortcomings of the validation process.

While the intended audience is people with some XML experience, a glossary with acronymsis
provided to define terms in the context of the report. Appendix A contains a description of the
Intelligence Community Information Security Marking (IC-1SM) XSD module, appendix B lists
summaries of the structural and business rules, and appendix C describes a small set of sample
data. Thisiswork in progress that is expected to grow over time.

Xi

INTENTIONALLY LEFT BLANK.

Xii

1. Introduction

The Global Force Management (GFM) Data Initiative (DI) (1) uses Extensible Markup Language
(XML) (2) to exchange data between servers and clients. It isimportant that the data be validated,
not only to prevent retransmissions due to errors, but also to verify that the original datawas
constructed in accordance with the GFM schema, structure, and businessrules. This report
discusses the techniques that are used by GFM to ensure the correctness of the data.

An XML datafileis composed of elements (with attributes) in a hierarchical structure, while the
original (non-XML) schema was written using arelational database model. Database tables
contain records; each record is made up of fields, with one value in each field. The vocabulary in
thisreport isamixture of XML and database terms. It issimpler to call an element a table instead
of using the verbose phrase “the XML element that corresponds to atable in the database
model.”* The intended meaning of aword should be clear within its context.

2. XML and Schemas

2.1 Background

While XML was originally designed to be used in conjunction with Hypertext Markup Language
(HTML) and for document processing, it was quickly adopted as a data markup language (3).
XML Schema Definition (4,5) (commonly known as XML Schema or XSD) was adopted as a
grammar to describe the structure and data types of an XML datafile. It issimilar to atraditional
data dictionary, declaring data elements and their types, but allows the programmer to define his
own data types, the structural relationships between elements, and the logical relationships.

There are two tests that may be performed on an XML datafile. Thefirst is well-formedness,
which ensures that the file is syntactically correct—are elements nested properly, are all elements
terminated, are strings properly delimited, etc.? The second is validation, which compares the file
with an XSD and examines the data contents (6)—are all of the elements defined, does all data
conform to the type restrictions, are mandatory elements present, etc.?

Section 3 presents another methodology to validate data.
2.2 TheGFM XSD

The GFM Information Exchange Data Model (IEDM) is an augmented subset of the Joint
Command, Control and Consultation Information Exchange Data Model (JC3IEDM) devel oped

1See section 2.2.2 for other element mappings.

by the Multilateral Interoperability Programme Data M odelling Working Group (MIP
DMWG) (7). The JC3IEDM is available in both relational and object-oriented XSDs. Note: All
fields and tables added by GFM start with “GFM _".

For readers who are unfamiliar with the GFMIEDM, a short explanation isin order. Every record
of every table has a primary key called an Enterprise-Wide Identifier (EwID) (8). These surrogate
keys are constructed so they are unique not only within a specific table or database, but throughout
all systemsthat produce GFM data. Because the JC3IEDM is an object-oriented model, even
though it isintended to be used by relational database management systems (RDBM Ss), many of
the EwlDs are foreign keysthat refer to records in other tables. The JC3IEDM may be treated as
a highly normalized database where many of the tables have a parent-child relationship. A
hierarchical (object-oriented) portion of the GFMIEDM Entity-Relationship (E-R) diagram,
where links represent “is-a’ relationships, is shownin figure 1.

OBJ_ITEM

abi_item_id: NUMERIC(20)

cat_code: CHAR(E)

name_tct: VARCHAR0O)
afm_obj_itern_display_name_txt: VARCHAR15)
gtm_sym_2525B_cd: CHAR{15)
afm_obj_itemn_s_dtg: CHAR(20)
afm_obj_itern_t_dtg: CHAR{20)

l — l

QRG . MAT . FAC

[org_id: HUMERIC(20) fmat_id: MUMERIC{20) [tac_id: NUMERIC{20)
cat_code: CHAR/(E) cat_code: CHAR(E) cat_code: CHAR(E)
afm_cat_coda: CHAR(E) serial_no_jd_ud: VARCHAR(50) base_identific_code_txt: VARCHAR(15)
gfm_org_short_name_txt: VARCHAR(10) hull_no_txt: VARCHAR(15)

l l l

LINIT GFM_CREW_PLATFORM . GFM_BILLET
(unit_id: NUMERIC(20) {gtm_crew_platform_ic: NUMERIC (20) (‘gtm_billet_ick NUMERIC(20)

formal_abbrd_name_bet: VARCHAR(T00) | gtm_crew_formal_abbrd_name_te; VARCHAR0D) Lgrm_hil let_form_abbrd_name_be: VARCHAR(T00)
identific_te: VARCHARI15) A
,

-

Figure 1. Hierarchical data schema.

Thefield “abovetheline’ is the primary key for each table. In thisexample, obj _item_id isa
unigue key and the other EwlIDs (such as org.id and unit_id) are foreign keys.

The relational XSD uses what the Oracle Corporation refers to as the “canonical XML

format” (9), also called the “wrapper” format. Each database table is an XML element, the rows
in the table correspond to children of the element, and the fields are child elements of the row
element. A typical exampleisshown in figure 2. When hierarchical datais stored in canonical
form, the relationships between the records islost and validation becomes more difficult.

2Intelligence Community Information Security Marking (IC-1SM) attributes are not shown but are described in
appendix A.

<OBJ ITEM ASSOC TBL>
<OBJ ITEM ASSOC>
<SUBJ OBJ ITEM ID>72060755133858488</SUBJ OBJ ITEM ID>
<OBJ _OBJ_ ITEM ID>72060755133863257</0OBJ _OBJ ITEM ID>
<OBJ_TITEM ASSOC_TIX>72060755133858493</0BJ ITEM ASSOC IX>
<CAT_CODE>HSADMI</CAT CODE>
<SUBCAT CODE>ALTFOR</SUBCAT CODE>
<GFM_CAT CODE>NOS</GFM_CAT CODE>
<GFM_SUBCAT CODE>DEFALT</GFM_SUBCAT CODE>
<GFM_OBJ_ITEM ASSOC_S DTG>1990-01-01T00:00:00%Z</GFM OBJ ITEM ASSOC S DTG>
<GFM_OBJ_ ITEM ASSOC T DTG>2999-12-01T00:00:00%</GFM_OBJ ITEM ASSOC T DTG>
</OBJ_ITEM ASSOC>
<OBJ ITEM ASSOC>
<SUBJ OBJ ITEM ID>72060755133858488</SUBJ OBJ ITEM ID>
<OBJ _OBJ_ ITEM ID>72060755133863255</0BJ OBJ ITEM ID>
<OBJ_TITEM ASSOC_TIX>72060755133858494</0BJ ITEM ASSOC IX>
<CAT_CODE>HSADMI</CAT CODE>
<SUBCAT CODE>ALTFOR</SUBCAT CODE>
<GFM_CAT CODE>NOS</GFM_CAT CODE>
<GFM_SUBCAT CODE>DEFALT</GFM_SUBCAT CODE>
<GFM_OBJ_ITEM ASSOC_S DTG>1990-01-01T00:00:00%Z</GFM OBJ ITEM ASSOC S DTG>
<GFM_OBJ_ITEM ASSOC T DTG>2999-12-01T00:00:00%</GFM_OBJ ITEM ASSOC T DTG>
</OBJ_ITEM ASSOC>
<OBJ ITEM ASSOC>
<SUBJ OBJ_ITEM ID>72060755133858485</SUBJ OBJ ITEM ID>
<OBJ OBJ_ ITEM ID>72060755133858483</OBJ OBJ ITEM ID>
<OBJ_TITEM ASSOC_IX>72060755133858495</0BJ ITEM ASSOC IX>
<CAT_CODE>HSADMI</CAT CODE>
<SUBCAT CODE>ALTFOR</SUBCAT CODE>
<GFM_CAT CODE>NOS</GFM_CAT CODE>
<GFM_SUBCAT CODE>DEFALT</GFM_SUBCAT CODE>
<GFM_OBJ_ITEM ASSOC_S DTG>1990-01-01T00:00:00%Z</GFM OBJ ITEM ASSOC S DTG>
<GFM_OBJ_ITEM ASSOC T DTG>2999-12-01T00:00:00%</GFM_OBJ ITEM ASSOC T DTG>
</OBJ_ITEM ASSOC>
</OBJ_ITEM ASSOC TBL>

Figure 2. Canonical (wrapper) dataformat.

Since XML isinherently hierarchical, it isideally suited to handle GFM data. Asfigure 1 shows,
aUNIT is-an ORG is-an OBJ_ITEM. To phrase that another way, a Unit is composed of an
OBJ.ITEM, an ORG, and aUNIT. Theorg.id and unit_id fields are foreign keys that have the
same value as the obj _item_id primary key. It isincorrect to have arecord in one of these tables
without having a corresponding record in each of the other tables. Of course, that isjust one path
through the tree. A UNIT child of an ORG could be replaced by a GFM_CREW _PLATFORM or
aGFM_BILLET, or the OBJ.ITEM child could beaMAT (Materiel) or FAC (Facility). These
requirements—an OBJ_ITEM must have an ORG, MAT, or FAC child, and an ORG must have
one of three children—may be explicitly recorded in the XSD.

Due to the size of the JC3IEDM, there are two separate sets of XSD files. Since the GFM model
is considerably smaller than the JC3 model, the relational and object-oriented schemas were
combined. In order to improve readability and facilitate configuration control, the XSD was split
into multiple files. These files, which are shown in figure 3, are described from the bottom up.

GFMIEDM341.xsd

GFMIEDM 341tables.xsd

GFMIEDM341hierTableTypes.xsd

GFMIEDM 341relatTableTypes.xsd |C-ISM-v2.xsd

GFMIEDM341simpleTypes.xsd

Figure 3. Files comprising the GFM XSD.

221 GFM Simple Data Types

The file GFMIEDM341simpleTypes.xsd contains all of the data typesthat are defined in the
E-R model, translated into XML terms. The majority of the types were copied from the
JC3IEDM XSD. At over 10,500 lines, this file makes a strong argument for a modular design.
There are 2 main classes of data types:

1. Simple or primitive types, and

2. Enumerated types.

An example of asimpletypeisshown in figure 4 and should be self-explanatory.

<xs:simpleType name="txt mandatory 100">
<xg:annotation>
<xs:documentation>Oracle datatype: VARCHAR(100)</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:maxLength value="100"/>
</xXs:restrictions>
</xs:simpleType>

Figure 4. Simple data type.

The word “mandatory” in the type name is slightly misleading. A type may not be mandatory;
only an element may be mandatory.® Thisis areminder that an element of thistypeis required.
Thistypeis an extension of xs:string and has a maximum length of 100 characters.* The
‘documentation’ element shows the equivalent SQL type.®

An enumerated type is an extension of xs:string with alist of all possible values. The example in
figure 5 was chosen because it has only two values. Most of the enumerations are fairly large, and
some are huge. The documentations and type names are taken from the E-R model. All
JC3IEDM enumerated type names start with “DS’, while GFM types begin with “GF”.

<xs:simpleType name="DS4190 obj type estab cat code">
<xs:annotations>
<xs:documentation>Data type for the wvalidation rule
DS4190 obj type estab cat code</xs:documentations
</xs:annotation>
<xs:restriction base="xs:string">
<xs:enumeration value="CES">
<xs:annotation>
<xs:documentation>Complete equipment schedule: A list of the
associated ancillaries, accessories, tools, literature and
spares which, when scheduled together, form a composite
vehicle, equipment or store.</xs:documentations
</xs:annotations>
</xs:enumerations>
<xs:enumeration value="PCG">
<xs:annotations>
<xs:documentation>Parts catalogue: A list showing the disassembly
build order of an equipment, identifying the assemblies,
sub-assemblies and components which comprise the equipment
(or assemblies and sub-assemblies) .</xs:documentations>
</xXs:annotations>
</Xs:enumerations>
</xs:restriction>
</xs:simpleType>

Figure 5. Enumerated data type.

2.2.2 GFM Relational Table Types

Thefile GFMIEDM341relatTableTypes.xsd includesthe file GFMIEDM341simpleTypes.xsd.
At roughly 1800 lines, it is the second largest file. It defines al of the “records’ and “fields” for
the canonical form. It also importsthe file IC-ISM-v2.xsd (10) and defines the attributes required
for classification markings on data records.® These attributes are discussed in appendix A.

3The definition is identical to the type txt_optional _100.

4All XML Schemaelementsarein the “xs’ namespace and thus start with “xs:”.

5The XSD best practices recommends ‘ documentation’ elements rather than comments because they are inline
elements and therefore part of the schema.

5The ‘include’ element treats all of the declarations as part of a single application, while ‘import’ references
declarations in another namespace.

Figure 6 shows the definition of the CivilianPost Type type. It is a complex type because it
combines several elements together. By default, an *all’ element requires that each child element
appears exactly once (in the datafile). The first element isnamed C1V_POST _TYPE_ID anditis
of typeidentifier 20 (an EwID). Notice that the other two elements have almost the same type
names except for the first two characters. Thiswas done to emphasize that the types are related,
but that the first was defined by the JC3IEDM and the second by GFM.

<xs:complexType name="CivilianPostType">
<xs:annotations>
<xs:documentation>Definition: An ORGANISATION-TYPE with a set of
duties that are intended to be fulfilled by one person in private
sector and non-military government organisations.</xs:documentation>
</xs:annotation>
<xs:all>
<xs:element name="CIV_POST TYPE ID" type="identifier20">
<xs:annotations>
<xs:documentation>Definition: The organisation-type-id of a
specific CIVILIAN-POST-TYPE (a role name for object-type-id).
</xs:documentation>
</xXs:annotations>
</xs:element>
<xs:element name="CAT CODE" type="DS369 civ post type cat code">
<xs:annotation>
<xs:documentation>Definition: The specific value that represents
the class of CIVILIAN-POST-TYPE.</xs:documentations>
</Xs:annotations>
</xs:element>
<xs:element name="GFM CAT CODE" type="GF369 civ post type gfm cat code">
<xs:annotation>
<xs:documentation>Definition: The specific value that represents
the GFM class of CIVILIAN-POST-TYPE.</xs:documentation>
</Xs:annotations>
</xs:element>
</xs:all>
</xs:complexType>

Figure 6. Complex type.

The code fragment in figure 7 shows how to mark afield as optional. The attribute is*minOccurs
and the value 0 means that the element may appear zero times, i.e., it isoptional. Remember that
the word “optional” in the type nameis just areminder to the human reader.

<xs:element name="DESCR TXT" type="txt optional 50" minOccurs="0">
<xXs:annotations
<xs:documentation>Definition: The character string assigned to
represent the specific ORGANISATION-TYPE.</xs:documentation>
</xs:annotation>
</xs:element>

Figure 7. Optional element.

2.2.3 GFM Hierarchical Table Types

The file GFMIEDM341relatTableTypes.xsd could be included to define the schema using the
canonical form; however, better validation may be achieved by taking advantage of the
hierarchical nature of XML and defining hierarchical table typesin thefile
GFMIEDM341hierTableTypes.xsd. To differentiate the force structure tree hierarchical data’
from the data structure hierarchy, the latter isreferred to as the Generalization Hierarchy. Nesting
the elements al so makes the data more understandable to a human reader since related data are
kept together instead of being scattered throughout the GFM XML datafile.

Figure 8 shows part of the definition of Objectltem. Notice that it uses ‘ sequence’ instead of
‘al’. The main difference, which is not relevant in GFM, isthat the data elementsin a sequence
must appear in the specified order, while ‘al’ allows any order to be used. The reason that
‘sequence’ isused isto allow the Objectltem type to be extended to derive a new type. The
italicized element is explained in appendix A.

<xs:complexType name="ObjectItem">
<xs:annotation>
<xs:documentation>Definition: An individually identified object
that has military or civilian significance.</xs:documentations>
</xs:annotation>
<xs:sequence>
<xs:element name="OBJ ITEM ID" type="identifier20">
<xs:annotation>
<xs:documentation>Definition: The unique value, or set of
characters, assigned to represent a specific OBJECT-ITEM and to
distinguish it from all other OBJECT-ITEMs.</xs:documentations>
</xs:annotations>
</xs:element>

</xs:sequence>
<xs:attributeGroup ref="SecurityAttributesGroup"/>
</xs:complexType>

Figure 8. Object Item type.

The simple types shown in figures 4 and 5 are restrictions. They are both based on the xs:string
type, but the first has a maximum length of 100 characters and the second may contain only
specific values.

A specification is needed to state that an Objectltem must have a FAC, MAT, or ORG child
element via an extension of the Objectitem type. If one or more simple types were being added to
the Objectitem type, aformat similar to the one for restricting simple types could be used;
however, a group must be used instead. The group definition is shown in figure 9.

"Force structures are discussed in section 5.2 and appendix B. Otherwise, the word “hierarchy” refers to a data
structure.

<xs:group name="ObjectItemGroup">
<xs:choice>
<Xs:element name="FAC" type="Facility"/>
<Xs:element name="MAT" type="Materiel"/>
<xs:element name="ORG" type="OrganisationHierarchy"/>
</xs:choice>
</xs:group>

Figure 9. Object Item Group.

The ‘choice’ element specifies that exactly one of the elements listed must appear in the data.
Now the parts may be assembled to define the hierarchical version of an Object Item type. This
has been done in figure 10. An ObjectltemHierarchy consists of all of the elementsin an
Objectltem (figure 8) plus the ObjectitemGroup (figure 9).

<xs:complexType name="ObjectItemHierarchy">
<xg:annotation>
<xs:documentation>An ObjectItem which is part of a hierarchy.
</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="ObjectItem">
<XSs:sequence>
<xs:group ref="ObjectItemGroup"/>
</xs:sequence>
</Xs:extension>
</xs:complexContent >
</xs:complexType>

Figure 10. Object Item Hierarchy type.

Figure 9 states that the element ORG is of type OrganisationHierarchy. This hierarchical type
isan extension of the Organisation type plus the OrganisationGroup. Except for the names, these
types and this group are defined the same way as the Object Item example. Thefinal result
matches the hierarchical data schemashownin figure 1.

2.2.4 GFM Table Elements

All of the pieces are now in place to define the “table” elements. Thefile
GFMIEDM341tables.xsd includesthe file GFMIEDM341hierTableTypes.xsd. Next atype for
the root element is defined to allow different main XSD filesto include thisfile. Asexplained in
the next section, validation rules must appear in the scope of the element, so the top element may
not be declared here. The enclosing elements and some table elements are shown in figure 11.

Thefirst thing to note isthat every table is optional. If a GFM XML data file does not contain any
Mi scellaneousEquipmentType data, then it should not have aMISC_EQPT _TYPE_TBL element.®

8A basic tenet of XML datais that empty elements are rarely used.

<xs:complexType name="GFMIEDM34Type">
<xs:annotation>
<xs:documentation xml:lang="en">This element MUST be conveyed as
the root element in any instance document based on this schema
specification.</xs:documentation>
</xs:annotation>
<xs:all>

<xs:element ref="MISC EQPT TYPE TBL" minOccurs="0"/><!--rel-->
<xs:element ref="OBJ ITEM TBL" minOccurs="0"/><!--rel-->
<xs:element ref="OBJ ITEM OO TBL" minOccurs="0"/><!--oo0-->
<xs:element ref="OBJ_ ITEM ADDR TBL" minOccurs="0"/><!--both-->

</xs:all>
</xs:complexType>

Figure 11. Root (main) type.

Similarly, atable may appear no more than once. Also, all of the elementsend with* TBL”, a
convention adopted by the JC3IEDM.

Finally, compare the two highlighted elements. Thefirst isthe relational (canonical) Object Item
table, and the second is the object-oriented (generalization hierarchy) version. Thisfact is
emphasized by the< ! --rel-->and <! --o00--> comments. WithinaGFM XML datafile, a
hierarchical table element ends with “_OO_TBL". The fourth element shown has a
<!--both--> comment to denote that it is not part of any generalization hierarchy, and thusis
the same regardless of the schemabeing used.

The GFM X SD defines 46 tables; 37 are part of generalization hierarchies and 9 are purely
relational. The hierarchical tables are combined into only three XML hierarchies.

Therest of the file defines al of the table elements and states that each element may contain one
or more child elements (records). (A sequence implicitly sets‘minOccurs=1".) A simpletableis
shown in figure 12. All relational tables use this form, changing only the element and type names.

<xs:element name="0OBJ ITEM TBL"><!--rel-->
<xs:annotation><xs:documentation>rel only</xs:documentation></xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="OBJ ITEM" type="ObjectItem"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

Figure 12. Simple table definition.

The hierarchical tables, such asthe onein figure 13, start out like the relational tables. The
element name ends with “ _OO_TBL” instead of “_TBL”, but the “record” name remains the same.
The OBJ_ITEM _TBL contains one or more OBJ_ITEMs, whilethe OBJ_ITEM _OO_TBL
contains one or more top-level OBJ_ITEM S, which have child elements.

What complicates the definition of a hierarchical table are the ‘key’ and ‘keyref’ elements, which
are highlighted in figure 13. Each of these elements has a name, a selector with an X Path®
expression, and afield with a second XPath expression (11). In addition, a keyref contains a
reference to a key.

<xs:element name="OBJ ITEM OO TBL"><!--o0O-->
<xs:annotation><xs:documentation>oo only</xs:documentation></xXs:annotation>
<xs:complexType>
<xXS:sequence>
<xs:element name="OBJ ITEM" type="ObjectItemHierarchy"
maxOccurs="unbounded" />
<xs:annotation><xs:documentation>foreign keys in OBJ ITEM tree must
equal primary key</xs:documentation></xs:annotation>
<xs:key name="ObjItemIDTree">
<xs:selector xpath="0BJ ITEM ID"/>
<xs:field xpath="."/>
</xs:key>
<xs:keyref name="testFacID" refer="ObjItemIDTree">
<xs:selector xpath="FAC"/>
<xs:field xpath="FAC ID"/>
</xs:keyref>
<xs:keyref name="testMatID" refer="ObjItemIDTree">
<xs:selector xpath="MAT"/>
<xs:field xpath="MAT ID"/>
</xs:keyref>
<xs:keyref name="testOrgID" refer="ObjItemIDTree">
<xs:selector xpath="ORG"/>
<xs:field xpath="ORG_ID"/>
</xs:keyref>
<xs:keyref name="testGFMBilletID" refer="0bjItemIDTree">
<xs:selector xpath="ORG/GFM BILLET"/>
<xg:field xpath= "GFM_BILLET_ID" />
</xs:keyref>
<xs:keyref name="testGFMCrewPlatformID" refer="ObjItemIDTree">
<xs:selector xpath="ORG/GFM_ CREW PLATFORM"/>
<xs:field xpath="GFM_CREW_ PLATFORM ID" />
</xs:keyref>
<xs:keyref name="testUnitID" refer="ObjItemIDTree">
<xs:selector xpath="ORG/UNIT"/>
<xs:field xpath="UNIT ID" />
</xs:keyref>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

Figure 13. Hierarchical table definition with tests.

9X Path is astandard XML query language. X SD uses a subset of X Path.

10

The purpose of key/keyref isto test referential integrity. The ‘selector’ and ‘field’ are used to
locate an element whose value is associated with the key’s name. In this example, the selector
specifiesthe OBJ_ITEM _ID. Since we have located the element that we want, thefield is®.”,
which means the current element. A simple way to picture thisis the assignment statement

ObjltemIDTree = value-of (this OBJ.ITEM’s OBJITEM _ID).

The ‘keyref’s that follow specify elements whose values must be the same as akey. The
highlighted keyref has a name that must be unique but otherwiseisignored. The ‘refer’ attribute
supplies the name of the desired key. The ‘selector’ and ‘field’ attributes specify that the
ORG._ID of the ORG child of the current OBJ_ITEM isthe element to compare. The equivalent
comparison statement is

value-of (this OBJITEM’s ORG’'s ORG_ID) == ObjltemIDTree.

These statements may be combined into the desired result, namely, when an OBJ_ITEM has a
child ORG, the ORG’'s ORG_ID must be equal to the OBJITEM’s OBJITEM _ID. Since thistest
isapplied to every OBJ_ITEM inthe OBJ_ITEM _OO_TBL, it roughly the same as the SQL
guery shown in figure 14. The value returned by the query should match the number of recordsin
the ORG table.

SELECT COUNT (=)
FROM OBJ_ ITEM oi, ORG o
WHERE oi.obj item id=o.org id;

Figure 14. Equivalent SQL referential test.

225 Main GFM XSD File

The GFMIEDM341.xsd fileisthe main GFM XSD file and is entirely devoted to validation tests.
If fewer restrictions are desired, such asfor GFM XML data files that are known to be
incomplete, then a different main file could be written. The reason for the declaration of the
GFMIEDM 34Type should now be apparent, since tests must be defined within the scope (body)
of an element.

After including the GFMIEDM341tables.xsd file, the main file defines the document root of a
GFM XML datafile, namely GFMIEDM 34. Thefirst rule is verbose but easy to understand—it
uses the ‘unique’ element to ensure that the primary key in each record (that isnot achildina
generaization hierarchy) isunique. A highly edited version of the uniquenesstest is shownin
figure 15. The selector’s X Path expression, of which only two paths are shown, must be confined
to asingle, long line. The actua test listsall 12 EwlDs that appear in the GFM XSD.

11

<xXs:unigque name="UniqueEwID">
<xs:annotations><xs:documentations>primary EwIDs must be unique
</xs:documentation></xs:annotation>
<xs:selector xpath="
...|*/OBJ_ITEM/OBJ ITEM ID]|
OBJ_ITEM_ADDR_TBL/OBJ_ITEM_ADDR/OBJ_ITEM_ADDR_IX|...”
/>
<xs:field xpath="."/>
</xs:unique>

Figure 15. Uniqueness test.

The pathsin the selector expression are separated by vertical bars, and the field’s XPath is simply
“”. Ignoring the syntactic details, what thistest indicatesisthat all of the fields listed in the
selector must contain unique values. Each path must be long enough to unambiguously specify a
single element. The foreign key element often uses the same name as the primary key element,
requiring the use of long paths to differentiate between the two. The example shows that the path
always starts with the “ _TBL” name and drills down to the EwID element. The first path in the
example starts with awildcard («) because an OBJ_ITEM may be arecord in an
OBJ_ITEM_TBL or an OBJ.ITEM_OO_TBL .1

Therest of the file consists of tests for referential integrity. There are two types of references:
pointers to disparate element types (“horizontal” references) and the relational version of the data
hierarchy (“vertical” references). The keys are defined the same way asin the
GFMIEDM341tables.xsd file. Each key has the same name asitsfield, plus vertical keys have
the prefix “Rel”.

The details are explained with the OBJ_ITEM hierarchy. Figure 16 shows the keysthat are
defined for fieldsin the OBJ_ITEM. Thefirst two selectors start with awildcard, because
horizontal tests apply to both relational and object-oriented tables. The third selector explicitly
names the table element because the key is used only in vertical relational tests.

<!-- ObjItem keys -->

<xs:key name="ObjItemID">
<xs:selector xpath="+/0OBJ ITEM"/>
<xs:field Xpath="OBJ_ITEM_ID"/>

</xs:key>

<xs:key name="OrgID">
<xs:selector xpath="%/0OBJ ITEM/ORG"/>
<xs:field xpath="ORG_ID"/>

</xs:key>

<xs:key name="RelOrgID">
<xs:selector xpath="ORG TBL/ORG"/>
<xs:field xpath="ORG_ID"/>

</xs:key>

Figure 16. Object Item keys.

10Remember that these paths are relative to the GFM | EDM 34 element.

12

The horizontal testsin figure 17 are for the table (OBJITEM _ALIAS) that associates an Object
Item with an Alias. The desired tests are to make sure that the elements that are referenced,
namely the OBJ_ITEM _ID and GFM _OBJ_ALIAS_TYPE, exist inthe GFM XML datafile.
Thefirst keyref ensuresthat the OBJLITEM_ID inan OBJITEM _ALIAS of an
OBJITEM_ALIAS_TBL hasthe same value as an ObjltemID as defined in figure 16. The second
does the same for the Alias end of the link; the key definition is not shown.

<!-- ObjItemAddr -->

<xs:keyref name="ObjItemAliasObjItemRef" refer="ObjItemID">
<xs:selector xpath= "OBJ_ITEM_ALIAS_TBL/OBJ_ITEM_ALIAS "/s
<xs:field xpath="OBJ ITEM ID" />

</xs:keyref>

<xs:keyref name="ObjItemAliasAliasTypeRef" refer="GFMAliasTypeID">
<xs:selector xpath="OBJ ITEM ALIAS TBL/OBJ ITEM ALIAS"/>
<xs:field xpath="GFM_OBJI ALIAS TYPE" />

</xs:keyref>

Figure 17. Object Item Alias keyrefs.

The keyrefsin figure 18 match the E-R diagram in figure 1. Each EwID in atable must match the
EwID inits parent table. However, there are subtle differences between these tests and the ones
defined in figure 13. For one thing, the scope is entirely different. The other tests are defined
inside of the OBJ_ITEM _OO_TBL, while these keys and keyrefs are in the main GFMIEDM 34
element.

Another difference isthe key that is referenced—the object-oriented keyrefs all refer to the
OBJ_ITEM_ID element. The OBJ_IITEM _OO_TBL element requires that each OBJ.ITEM has
an ORG, MAT, or FAC child, and an ORG has one of three child elements. Since the relational
elements are distinct from each other, this restriction must be imposed by the keyrefs from the
bottom up. A UNIT _ID must match an ORG 1D, while an ORG 1D must match an
OBJ_ITEM_ID. Itisstill possibleto create an ORG without a child, but detecting thisis beyond
the scope of XSD. The techniques described in the next section could perform thistask, but the
emphasis has been on GFM XML data in the object-oriented form.

3. Validating Data With Transformations

3.1 Background

There are limitsto the tests that may be performed by an XSD file. Only a subset of XPath is
recognized, and conditional statements are not allowed. A separate application must be written to
conduct additional validation tests, and that can be quite an undertaking. Rick Jelliffe of the
Academia Sinica devised away to use Extensible Stylesheet L anguage: Transformations

(XSLT) (12) as aclever alternative.

13

<!-- ObjItem tree -->

<xs:keyref name="OrgRef" refer="ObjItemID">
<xs:selector xpath="ORG TBL/ORG"/>
<xs:field xpath="ORG ID"/>

</xs:keyref>

<!-- Org subtree -->

<xs:keyref name="UnitRef" refer="RelOrgID">
<xs:selector xpath="UNIT TBL/UNIT"/>
<xs:field xpath="UNIT ID"/>

</xs:keyref>

<xs:keyref name="CrewPlatformRef" refer="RelOrgID">
<xs:selector xpath= "GFM_CREW_PLATFORM_TBL/GFM_CREW_PLATFORM” />
<xs:field xpath="GFM_CREW_ PLATFORM ID" />

</xs:keyref>

<xs:keyref name="BilletRef" refer="RelOrgID">
<xs:selector xpath= "GFM_BILLET_TBL/GFM_BILLET" />
<xs:field xpath="GFM_BILLET ID" />

</xs:keyref>

<!-- Mat subtree -->

<xs:keyref name="MatRef" refer="ObjItemID">
<xs:selector xpath="MAT TBL/MAT"/>
<xs:field xpath="MAT ID"/>

</xs:keyref>

<!-- Fac subtree -->

<xs:keyref name="FacRef" refer="ObjItemID">
<xs:selector xpath="FAC TBL/FAC"/>
<xs:field xpath="FAC_ID"/>

</xs:keyref>

Figure 18. Relational data hierarchy keyrefs.

XSLT was originally conceived to transform one XML document into another (13). Thefile
GFMIEDM341flatten.xsl isan XSLT script that reads a GFM XML data file that contains
hierarchical data and produces the same data in relational form. The most common use of XSLT
isto indicate to a Web browser how to convert XML datainto XHTML (14) (areformulation of
HTML) to make it more readable by humans.** GFM’s script to do thisisthefile
GFMIEDM341.xsl. Jelliffe describes how to write XSLT templates (rules) to produce error
messages in XHTML based on problems that it detects in the XML data (15).

The GFM package containstwo XSLT scripts. These scripts assume that the data has already
been validated against the GFM XSD. The first, GFMIEDM341validate.xsl, defines structural
restrictions that could not be tested by the XSD. The second, GFMIEDM341businessRules.xsl,
is an attempt to automate business rules that are not formally part of the model. The restrictions
and allowed values are summarized in appendix B. Other scripts may be written to validate data
with special requirements. Providing tools to perform data validation allows the data producers to
test their systems, while data consumers may avoid tedious input checking in their applications.

1Al major Web browsers have a built-in X SLT transformation engine.

14

3.2 XSLT Validation Overview

Thisreport isnot intended to be atutorial on XSLT or XPath. However, XSLT isa declarative
language, not a procedural language like C, Java, and most other popular languages. An overview
is provided to explain Jelliffe’s technique in layman’s terms, followed by actual code from the
GFM XSLT files.

An XSLT file contains templates. Most templates contain a‘match’ attribute, which consists of an
X Path expression.*2 Thisis very similar to the patternsin an XSD key or keyref, except the full
power of XPath isavailable. The *apply-templates element may be used to compare the XML
datatree (or a specified subtree) to all of the templates or just a subset. The code in a matching
template is executed, possibly producing XHTML output.

Without going into too much detail, a match template may have an optional ‘mode’ and/or
‘priority’. By default, al templates have no mode or priority. Each template in the desired mode
is evaluated, comparing its X Path expression against the XML tree (or subtree). The one with the
highest priority “wins’ and its code is evaluated. A default template that matches every element
and prints an element’s contents is automatically provided to make sure that all data gets matched
(and printed) and is never ignored.

The other kind of template is a named template, where a fixed name takes the place of an XPath
expression. Thisis XSLT’s concession to procedural code, alowing parameters to be passed to a
specific template to facilitate code re-use. These are used in the GFM scripts to format error

messages.
The mechanism that makes Jelliffe’s technique possible is the fact that once XSLT matches a data

element against atemplate, other templates are ignored. A template that has no contents “traps’
an element and quietly ignoresit.

The template in figure 19'2 catches all text elements'* when the mode_name mode isin effect and
throws them away. The priority of -1 causes the template to be matched after other templates.

<xsl:template match="text ()" priority="-1" mode="mode name">
<!-- strip characters -->
</xsl:template>

Figure 19. Default empty template for mode mode_name.

Most templates used in GFM validation are “bad” templates. They match data that has an error
and generate XHTML that describes the problem that was found. All elements that are not
matched are processed by a default template like the one in figure 19. The assumptionisthat all
elements that are not bad are either good or they are irrelevant.

The opposite ideais to write a template that matches “good” data and does nothing with it. A
second template, with asimilar ‘match’ expression but alower priority, produces the proper error
message. The default template then catches all data elements that are left and ignores them.

12A match template is analogousto an SQL query statement.
13By convention, XSLT tokens arein the “xsl” namespace and thus start with “xsl:”.
14There are seven types of nodesin the XML Tree Model. All GFM data elements are text elements.

15

A variation on these two approaches is a template that matches a subset of data, then uses
conditional processing to determineif the datais good or bad. The first of theseisthelink test as
described in the next section.

3.3 Structural Validation
3.3.1 Link Validation

The simplest template in the file GFMIEDM34 1validate.xsl, because it is the closest to
procedural code, isthe template that detects Object Item Associations (Assocs) that are missing
either the parent or child node. The actual template is shown in figure 20.°

<!-- locate nodes where an endpoint is not an OBJ ITEM -->
<!-- external OBJ ITEMs are not supported yet -->
<xsl:template priority="2"
match="//gfm:0BJ ITEM ASSOC"
mode="1ink">
<xsl:choose>
<xsl:when test="gfm:SUBJ OBJ ITEM ID=//gfm:0BJ ITEM/gfm:0BJ ITEM ID">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="missing-endpoint">
<xsl:with-param name="class" select="’'OBJ ITEM ASSOC’"/>
<xsl:with-param name="end-name" select="'SUBJ OBJ ITEM ID’'"/>
<xsl:with-param name="end-ewid" select="gfm:SUBJ OBJ ITEM ID"/>
<xsl:with-param name="link-ewid" select="gfm:0BJ ITEM ASSOC_IX"/>
</xsl:call-template>
</xsl:otherwises>
</xsl:choose>
<xsl:choose>
<xsl:when test="gfm:0BJ OBJ ITEM ID=//gfm:0BJ ITEM/gfm:0BJ ITEM ID">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="missing-endpoint">
<xsl:with-param name="class" select="'0BJ ITEM ASSOC’'"/>
<xsl:with-param name="end-name" select="'OBJ OBJ ITEM ID'"/>
<xsl:with-param name="end-ewid" select="gfm:0BJ OBJ ITEM ID"/>
<xsl:with-param name="link-ewid" select="gfm:0BJ ITEM ASSOC_IX"/>
</xsl:call-template>
</xsl:otherwises>
</xsl:choose>
</xsl:template>

Figure 20. Template that checks for invalid OBJITEM _ASSOC links.
The priority is 2 and the mode is 1 ink. The XPath expressionis very ssmple. The code

match="//gfm:0BJ ITEM ASSOC"

SAll elements defined in the GFM X SD arein the “ gfm” namespace.

16

will match all OBJ_ITEM _ASSOC elements at any depth inthe XML datatree. The ‘choose’ is
the outer wrapper for a multi-branch conditional statement. Each ‘when’ element may be thought
of asan“if” or “elseif”. The ‘otherwise’ element isadefault (“else”) that is executed if none of
the ‘when’ testsistrue.

The ‘test’ attributes are X Path expressions. While they may look intimidating, GFM uses basic
patterns. The data element that matches the ‘ match’ expression may be treated as an argument to
the template. All expressionswithin the template are relativeto it. Therefore, the reference to

gfm:SUBJ OBJ ITEM ID

means “the value of the SUBJ_.OBJ_ITEM_ID in the current OBJITEM_ASSOC.”

The second fragment uses an absol ute path
//9fm:0BJ ITEM/gfm:0BJ ITEM ID

and means “the value of the OBJITEM_ID of any OBJ.ITEM” in the data. The “=" means“is
equal to.”

The entire expression may be summed up as “For each OBJITEM _ASSOC, isthere an
OBJITEM whose OBJITEM_ID is equa to the Assoc’'s SUBJ.OBJITEM ID?" If so, do
nothing (the ‘when’ element is empty), otherwise call the named template “ missing-endpoint”
with the listed parameters. The code is shown in figure 21.

<!-- parent or child of link does not exist -->
<xsl:template name="missing-endpoint">
<xsl:param name="class"/>
<xsl:param name="end-name"/>
<xsl:param name="end-ewid"/>
<xsl:param name="link-ewid"/>

<xsl:value-of select="$class"/>
<xsl:text>’'s_</xsl:text>
<xsl:value-of select="$end-name"/>
<xsl:text>_ (</xsl:text>
<xsl:value-of select="$end-ewid"/>
<xsl:text>) does not _exist</xsl:text>

<xsl:value-of select="$link-ewid"/>
</1li>

</xsl:template>
Figure 21. Named template “ missing-endpoint” that produces output.

The named templ ate starts with the parameter names (argument list); the rest is written to the
output file. It usesthe XHTML tags‘li’ and ‘br’. In this case, the ‘value-of’ element writesthe
value of the named parameter. The ‘text’ element writes literals that contain blanks, which are
shown as*® " symbols. Sample output is shown in section 4.2.

17

Going back to the original template, the first two parameters in figure 20 are literal stringsto
facilitate code re-use, while the other two are values taken from the current OBJITEM _ASSOC
data element.

The second ‘choose' element tests for the existence of the child OBJITEM of the link. This
template will detect alink whose parent, child, or both is missing from the GFM XML datafile.
This may not be the case with other templates, which may stop after thefirst error.

The endpoint tests performed by this template could have been done with a key/keyref pair, and in
fact, those tests were originaly in the GFM XSD. Linksto external data stored in other systems
will be added, and these tests will be embellished to check for external indicators.

The links between Object Types are more sophisticated, and their validation tests must be
performed with XSLT. Figure 22 showsthe first part of the template. It ensures that the parent
Object Type and Object Type Establishment both exist in the GFM XML datafile. Again, this
may be a key/keyref in the XSD if external nodes are ignored.

There are three types of Object Type links (OBJ_TY PE_ESTAB_OBJT_DET or OTEOD) in the
GFM model, and they are designated by the GFM _OTEOD _ROLE_IND_CD element. A normal
OTEOD hasaroleof “0”, and currently that’s the only value used in GFM data. A Type 1 Roleis
a placeholder that shows that an Organisation must be created, but the details are unknown. This
type of OTEOD should not have a child node. The third possible value for aroleis“2”, butitis
ignored for now and istreated asif it were a Type 0 Role. These tests, which occur in the second
half of the template, are shown in figure 23.

The outermost ‘ choose’ element checksif the OTEOD isaType 1 Role; if so, the template exits.
Otherwise, the child Object Type and Object Type Establishment are checked to make sure that
they exist. Asit iscurrently written, the only difference between this template and a group of
key/keyrefsisthe test of the role indicator code.

The “text()” template with amode of “link” and a priority of -1 isrequired because of all of the
data elements that are not Assocs or OTEODs. Without this default template, all other data
elements would be printed.

18

<!-- locate nodes where an endpoint is not an OBJ TYPE(_ESTAB) -->
<!-- exception: Type 1 Roles have a parent but not a child -->
<!-- external OBJ TYPEs are not supported yet -->
<xsl:template priority="2"
match="//gfm:0BJ TYPE ESTAB OBJT DET"
mode="1ink">
<xsl:choose>
<xsl:when test="gfm:ESTABD OBJ TYPE ID=//gfm:0BJ TYPE/gfm:0BJ TYPE ID">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="missing-endpoint">
<xsl:with-param name="class" select="'0OBJ_TYPE ESTAB OBJT DET’" />
<xsl:with-param name="end-name" select="'ESTABD OBJ TYPE ID'"/>
<xsl:with-param name="end-ewid" select="gfm:ESTABD OBJ TYPE ID"/>
<xsl:with-param name="link-ewid"
select="gfm:0BJ TYPE ESTAB OBJT DET IX"/>
</xsl:call-template>
</xsl:otherwise>
</xsl:choose>
<xsl:choose>
<xsl:when test="gfm:0BJ TYPE ESTAB IX=
//gfm:0BJ TYPE ESTAB/gfm:0BJ TYPE ESTAB IX">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="missing-endpoint">
<xsl:with-param name="class" select="'0OBJ_TYPE ESTAB OBJT DET’" />
<xsl:with-param name="end-name" select="'0BJ TYPE ESTAB IX'"/>
<xsl:with-param name="end-ewid" select="gfm:0BJ TYPE ESTAB IX"/>
<xsl:with-param name="link-ewid"
select="gfm:0BJ TYPE ESTAB OBJT DET IX"/>
</xsl:call-template>
</xsl:otherwise>
</xsl:choose>

Figure 22. Template that checks for invalid OBJ_TY PE_ESTAB_OBJT _DET links, part 1.

19

<xsl:choose>
<xsl:when test="gfm:GFM OTEOD ROLE IND CD='1’">
</xsl:when>
<xsl:otherwise>
<xsl:choose>
<xsl:when test="gfm:DET OBJ TYPE ID=//gfm:0BJ TYPE/gfm:0BJ TYPE ID">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="missing-endpoint">
<xsl:with-param name="class"
select="'0OBJ_TYPE ESTAB OBJT DET'" />
<xsl:with-param name="end-name" select="'DET OBJ TYPE ID'"/>
<xsl:with-param name="end-ewid" select="gfm:DET OBJ TYPE ID"/>
<xsl:with-param name="link-ewid"
select="gfm:0BJ TYPE ESTAB OBJT DET IX"/>
</xsl:call-template>
</xsl:otherwises>
</xsl:choose>
<xsl:choose>
<xsl:when test="gfm:DET OBJ TYPE ESTAB IX=
//gfm:0BJ TYPE ESTAB/gfm:0BJ TYPE ESTAB IX">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="missing-endpoint">
<xsl:with-param name="class" select="'OBJ TYPE ESTAB OBJT DET'" />
<xsl:with-param name="end-name"
select="'DET_OBJ TYPE ESTAB IX'" />
<xsl:with-param name="end-ewid"
select="gfm:DET OBJ TYPE ESTAB IX"/>
<xsl:with-param name="link-ewid"
select="gfm:0BJ TYPE ESTAB OBJT DET IX"/>
</xsl:call-template>
</xsl:otherwises>
</xsl:choose>
</xsl:otherwises>
</xsl:choose>
</xsl:template>

Figure 23. Template that checks for invalid OBJ_TY PE_ESTAB_OBJT _DET links, part 2.

20

3.3.2 Category Code Validation

Every object in the generalization hierarchy has afield named CAT_CODE, which states the
category of itschild (if any). Thefirst templatein the XSLT file checks every element in the
generalization hierarchy to make sure that the CAT_CODE and child element agree. It does all of
thework in the *match’ attribute instead of using a procedural conditional element. Sinceitis
looking for bad patterns, the template finds elements whose CAT _CODE is not the same as the
child. One of the many templatesis shown in figure 24.

<!-- locate nodes where child exists but catcode is incorrect -->
<xsl:template priority="2"
match="//gfm: OBJ _TYPE [gfm:CAT CODE!='OR’] [gfm:ORG_TYPE]"
mode="tree">
<xsl:call-template name="cc-mismatch">
<xsl:with-param name="class" select:"’OBJ_TYPE’"/>
<xsl:with-param name="catcode" select="gfm:CAT CODE"/>
<xsl:with-param name="subclass" select="'ORG TYPE'"/>
<xsl:with-param name="ewid" select="gfm:0BJ_TYPE ID"/>
<xsl:with-param name="name" select="gfm:NAME TXT"/>
</xsl:call-template>
</xsl:template>

Figure 24. Template that compares CAT _CODE with child element.

The XPath expression matches “an OBJ_TY PE that has an ORG_TY PE child but whose
CAT_CODE element does not have the value OR.” There are atotal of 34 templates that test the
combinations allowed by the model. If an element contains an error, the child elements are not
tested because the transformation engine has already found a match.

3.3.3 Validation of Override Pairs

The GFM model adds enumerated valuesto existing JC3 fields. To facilitate future data
exchanges between GFM- and JC3-based systems, new fields were defined containing the new
enumerated values. The implementation requirement states “1f the GFM field isNOS (no such),
then use the value in the JC3 field, else use the GFM field’'svalue” What this meansin practiceis
that it isinvalid for both fields to have non-NOS values.® The template in figure 25 will be
executed when an ORG is found where neither the CAT _CODE nor the GFM _CAT _CODE is
NOS.

There are some JC3 fields that do not include the NOS value. In these cases, the test uses the first
enumerated JC3 value instead. Thisvalueisrelevant only when the GFM field isNOS, but the
data should be consistent. There are 11 override templates.

16Setting both fields to NOS is perfectly valid and means the desired value is NOS.

21

<!-- locate nodes where each field pair is not NOS -->
<xsl:template priority="2"
match="//gfm:0ORG[gfm:CAT CODE!='NOS’] [gfm:GFM_CAT CODE!='NOS’]"
mode="override">
<xsl:call-template name="no-override">
<xsl:with-param name="class" select="'0ORG'"/>
<xsl:with-param name="jc3-name" select="'CAT CODE’'"/>
<xsl:with-param name="jc3-value" select="gfm:CAT CODE"/>
<xsl:with-param name="gfm-name" select="'GFM _CAT CODE’'"/>
<xsl:with-param name="gfm-value" select="gfm:GFM_CAT CODE"/>
<xsl:with-param name="ewid" select="gfm:0RG_ID"/>
</xsl:call-template>
</xsl:template>

Figure 25. Template that finds incorrectly overridden fields.

3.3.4 Validation of Date/Time Groups

Many tables contain a pair of elements that define the start and termination date/time group
(DTG) of the object; the start DTG must be before (less than) the termination DTG. Thiswould
normally not be a difficult test, but XSLT cannot convert the string into an actual date.*” The trick
isto delete extraneous characters, convert each string into a number, and compare the values. This
may be safely done because the DTGs have been validated against the X SD, and the type has a
strict pattern that must be adhered to, which includes leading zeroes where needed.

The function tranglate is used to replace a set of characters with an empty string. Thisstring is
then converted into a number with the number function. To give an example, atypical DTG is
“1990-01-01T00:00:00Z” . Removing the dashes, colons, “T”, and “Z” gives*19900101000000".
Because the date is stored in year-month-day form, the numerical values may be compared. The
template for a start and termination pair is shown in figure 26.

Thisis another example of atemplate that matches a set of elements, then uses a conditional (in
this case, an ‘if’ element) to check for an invalid condition. There are 12 templatesthat test DTG
ranges.

There are two fields whose values must be within the start and termination DTG range. The valid
expressioniss_dtg < date_time < t_dtg. Unfortunately, XPath 1.0 does not have a“ <" operator,
so the first part of the test must be rewritten as“not (s_dtg > date_time)”. The*>" and“<” and
symbols are not alowed in a‘when’ element and have been replaced by “> ;” and “&1t ;”,
respectively. The template that tests both the start and termination DTG range and the effective
datetimeis shown in figure 27.

1"There may be extensions that do this, and newer versions of XML and XSLT may have this capability, but GFM
has been restricted to the original versions because they are widely available.

22

<!-- locate objects where an S DTG is not less than the T DTG -->
<xsl:template priority="2"
match="//gfm:0BJ TYPE"
mode="dtg">
<xsl:if
test="number (translate (gfm:GFM OBJ TYPE S DTG, ’'-T:Z2’', '’')) >=
number (translate (gfm:GFM OBJ TYPE T DTG, ’'-T:Z2’, '’))">
<xsl:call-template name="bad-dtg-range">
<xsl:with-param name="class" select:"’OBJ_TYPE’"/>
<xsl:with-param name="s-dtg" select="gfm:GFM OBJ TYPE S DTG"/>
<xsl:with-param name="t-dtg" select="gfm:GFM OBJ TYPE T DTG"/>
<xsl:with-param name="ewid" select="gfm:0BJ TYPE ID"/>
<xsl:with-param name="name" select="gfm:NAME TXT"/>
</xsl:call-template>
</xsl:1if>
</xsl:template>

Figure 26. Template that findsinvalid DTG ranges.

The comment block at the top of the figure summarizes the actions performed. The
EFFCTV_DTTM element is optional, and errors will be falsely reported if it is absent from the
datafile. Theexpression test="gfm: EFFCTV.DTTM" istrueif the EFFCTV_DTTM element
has avalue. The format for EFFCTV_DTTM is purely numeric, with no internal separators
between the fields, so no tranglation is needed. The other value that must be within the start and
termination DTG rangeis GFM _ORG_ORGT _M DTG and its template is not shown because of
its complexity. It is based on figure 27.

3.3.5 Detection of Mandatory Elements

Many of the tests that have been discussed thus far have checked referential integrity, e.g., do both
endpoints of alink exist? There is another requirement that says certain elements must contain a
reference to another element. The next pair of tests ensure that the referring element exists. The
“must-have-ote” template, shown in figure 28, finds all OBJ_TY PE elements where the
OBJ_TYPE_ID isnot equal to an OBJ_TYPE_ESTAB'SESTABD_OBJ_TYPE_ID. In other
words, each Object Type must have an Object Type Establishment.

A similar template, using the “must-have-oiote” mode, tests the requirement that every Object
Item must be linked to an Object Type with an Object Item Object Type Establishment
(OBJITEM_OBJ_TYPE_ESTAB or OIOTE). Thistemplate is not shown.

3.3.6 TypeAssociated With Proper Item

The “must-have-oiote” template ensures that every Object Item is associated with an Object Type.
It isaso important to verify that the Item and Type are compatible. For example, a

GFM _CREW _PLATFORM must be associated witha GFM _CREW PLATFORM _TYPE.
The Object Type to Object Item mappings are shown in table 1. Notice that a
GOVT_ORG_TYPE may be aleaf nodein the data hierarchy only if it has a category code of
INTCIV, INTCMI, Or NATCIV.

23

<!--

Pseudocode to explain this template.

if (S DTG >= T DTG)
report bad-dtg-range error
else if not null (EFFCTV_DTTM)
{
if (not (S_DTG > EFFCTV_DTTM) and
do nothing
else
report date-outside-range error
}

-->
<xsl:template priority="2"
match="//gfm:0BJ TYPE ESTAB"
mode="dtg">
<xsl:choose>
<xsl:when

(EFFCTV_DTTM < T DTG))

test="number (translate (gfm:GFM_OBJ TYPE ESTAB S DTG, '-T:Z', '')) »>=
number (translate (gfm:GFM_OBJ TYPE ESTAB T DTG, '-T:Z', '’))">
<xsl:call-template name="bad-dtg-range">

</xsl:call-template>
</xsl:when>
<xsl:when test="gfm:EFFCTV_DTTM">
<xsl:choose>
<xsl:when

test="not (number (translate (gfm:GFM OBJ TYPE ESTAB S DTG, ’'-T:Z’', '')) >
number (gfm: EFFCTV_DTTM)) and
number (gfm: EFFCTV_DTTM) <
number (translate (gfm:GFM _OBJ TYPE ESTAB T DTG, ’'-T:Z2’, '’'))">

</xsl:when>
<xsl:otherwise>

<xsl:call-template name="date-outside-range">
<xsl:with-param name="class" select="'0OBJ TYPE ESTAB'"/>
<xsl:with-param name="field-name" select="’'EFFCTV_DTTM'"/>
<xsl:with-param name="field-value" select="gfm:EFFCTV_DTTM"/>
<xsl:with-param name="s-dtg"
select="gfm:GFM OBJ TYPE ESTAB S DTG"/>
<xsl:with-param name="t-dtg"
select="gfm:GFM_OBJ TYPE ESTAB T DTG"/>
<xsl:with-param name="ewid" select="gfm:0BJ TYPE ESTAB IX"/>
<xsl:with-param name="name" select=""""/>

</xsl:call-template>
</xsl:otherwises>
</xsl:choose>
</xsl:when>
</xsl:choose>
</xsl:template>

Figure 27. Template that finds invalid effective datetime values.

24

<!-- find OBJ TYPE that does not have an OBJ TYPE ESTAB -->
<xsl:template priority="2"
match="//gfm:0BJ TYPE"
mode="must-have-ote">
<xsl:choose>
<xsl:when test="gfm:0BJ TYPE ID=
//gfm:0BJ TYPE ESTAB/gfm:ESTABD OBJ TYPE ID">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="missing-obj">

<xsl:with-param name="class" select="'0BJ_TYPE'"/>
<xsl:with-param name="miss-class" select="'0OBJ TYPE ESTAB’'"/>
<xsl:with-param name="ewid" select="gfm:0BJ_TYPE ID"/>
<xsl:with-param name="name" select="gfm:NAME TXT"/>

</xsl:call-template>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

Figure 28. Template that finds Object Types without Establishments.

Table 1. Object Type to Object Item associations.

Object Type Object Item
Unit Crew Platform Billet

Exctv Mil Org Type | X
Unit Type X
Task Frmtn Type X
Crew Platform Type X
Civ Post Type X
Mil Post Type X
Prv Sctr Org Type X
Group Org Type X
Govt Org Type

INTCIV X

INTCMI X

NATCIV X

A portion of the “item-matches-type” template is shown in figure 29. The outer conditional
determines the type of the Object Item, and each inner test verifiesthat Object Typeisan
allowable type. The code for the Crew Platform is shown because it is the simplest.

25

<!-- find OBJ_ITEM that does not link to proper type of OBJ TYPE -->
<xsl:template priority="2"

match="//gfm:0BJ ITEM OBJ TYPE ESTAB"

mode="item-matches-type">

<xsl:variable name="item-ewid" select="gfm:0BJ ITEM ID"/>

<xsl:choose>
<xsl:when
test="gfm:0BJ ITEM ID=//gfm:GFM CREW PLATFORM/gfm:GFM CREW PLATFORM ID">
<xsl:choose>
<xsl:when
test="gfm:ESTABD OBJ TYPE ID=
//gfm:GFM_CREW PLATFORM TYPE/gfm:GFM CREW PLATFORM TYPE ID">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="item-type-mismatch">
<xsl:with-param name="item-name"
select=
"//gfm: OBJ_ ITEM[gfm:0BJ ITEM ID=Sitem-ewid] /gfm: NAME TXT" />
<xsl:with-param name="item-ewid"
select="Sitem-ewid" />
<xsl:with-param name="item-class"
select="' GFM_CREW_PLATFORM TYPE'™" />
<xsl:with-param name="oiote-ewid"
select="gfm:0BJ ITEM OBJ TYPE ESTAB IX"/>
</xsl:call-template>
</xsl:otherwises>
</xsl:choose>
</xsl:when>

</xsl:choose>
</xsl:template>

Figure 29. Template that finds Object Items with incorrect Object Types.

3.3.7 Consistent References

In the JC3 model, an OBJ_TYPE_ESTAB isanindex to an OBJ_TY PE, and together they make
up acompound key. Each Establishment may be thought of as a numbered variant on an Object
Type. All references are required to provide both the OBJ_TYPE_ID and the
OBJ_TYPE_ESTAB._I X to uniquely identify the Object Type Establishment.

GFM replaces the integer index with an EwID. The compound keys still function correctly, but
redundancy has been introduced to the references as shown in figure 30. In this example, the
OBJ_ITEM_OBJ_TYPE_ESTAB directly references the OBJ_TY PE and indirectly viathe
OBJ_TYPE_ESTAB. The template with the mode “ objtype-matches-estab” ensures that the
OBJ_TYPE in areference has the same value asthe OBJ_TY PE in the referenced
OBJ_TYPE_ESTAB. One of the templates for mode “ objtype-matches-estab” is shown in
figure 31.

26

o x|

B o o I x|
obj_itern_obj_type_estab_ix b _.t:i
obj_itern_id B kW oG [Er
estabd_obj_type_id I obj_type_id
obj_type_estab_ix — _ cat_code
effctv_dttmn r_ ___’ﬁ decoy_ind_code
gfm_org_orgt_m_dtg T S narme_txt
afr_obji_objt_estab_s_dtg obi_type_estab_ix gfrmm_obj_tyvpe_display_nare_txt
afrn_obji_objt_estab_t_dtg estabd_obi_type_id afrn_sym_2525B_cd

cat_code gfrm_obj_tvpe_s_dtg
effcty_dttm ofm_obj_type_t_dtg
name_txt
afrn_obj_type_estab_s_dtg
gfm_obj_tvpe_estab_t_dtq

Figure 30. Redundant reference.

<!-- OBJ_TYPE/ESTAB references must match the OTE’s OBJ _TYPE -->

<!-- check OIOTEs because they have dual references

<xsl:template priority="2"
match="//gfm:0BJ ITEM OBJ TYPE ESTAB"

mode="objtype-matches-

estab">

<xsl:variable name="estab-ewid"
select="gfm:0BJ TYPE ESTAB IX"/>

<xsl:choose>
<xsl:when

test="gfm:ESTABD OBJ TYPE ID=//gfm:0BJ TYPE ESTAB

-->

[gfm:0BJ TYPE ESTAB IX=$estab-ewid]/gfm:ESTABD OBJ TYPE ID">

</xsl:when>
<xsl:otherwise>

<xsl:call-template name="objtype-estab-mismatch">

<xsl:with-param
<xsl:with-param
<xsl:with-param
<xsl:with-param
</xsl:otherwises>

</xsl:choose>
</xsl:template>

name="1link-class"

select="'0OBJ ITEM OBJ TYPE ESTAB ’"/>

name="1link-ewid"

select="gfm:0BJ ITEM OBJ TYPE ESTAB IX"/>

name="esgtab-ewid"
select="$estab-ewid"/>
name="objtype-ewid"

select= "gfm:ESTABD OBJ TYPE ID"/>
</xsl:call-template>

Figure 31. Template that finds Object Items with incorrect Object Types.

3.3.8 SingleRoot Node

Each file is expected to contain an Organisation tree root node and, optionally, an OrgType tree
root node. Whileit ispossible for an XML dump of a GFM database to contain multiple roots

27

with different date/time intervals, thisis unlikely. The template with the mode “roots’ for
Organisation trees is shown in figure 32.

<!-- count Org roots -->
<xsl:template priority="2"
match="//gfm:0BJ ITEM ASSOC_ TBL"
mode="roots">
<xsl:variable name="root-assocs"
select="gfm:0BJ ITEM ASSOC[gfm:SUBJ OBJ ITEM ID=gfm:0BJ OBJ ITEM ID]"/>
<xsl:if test="count($root-assocs) > 1">
<xsl:call-template name="too-many-roots">
<xsl:with-param name="class-name" select="'0Org’"/>
<xsl:with-param name="1link-1list" select="S$Sroot-assocs"/>
</xsl:call-template>
</xsl:1if>
</xsl:template>

Figure 32. Template that finds multiple Organisation tree roots.

Thistemplate stores al of the Assocs where the parent and child node are the same, completely
ignoring the date/time interval. If the number of Assocsis greater than one, the list is passed to
the output template for printing.

3.3.9 Putting the Parts Together

A template near the top of the XSLT file isthe main driver.*® It writes the HTML wrapper for the
output file and applies all of the match templates with their modes. It is shown in figure 33 with
most of the tests removed.

The contents of the ‘title’ and ‘h1l’ tags areidentical. They display text describing the output and
show thefile's*TITLE' attribute (assuming that one exists). The ‘choose’ conditional appliesthe
“tree” templates only if the file contains object-oriented data elements. The second mode (“link™)
shows the form used by the rest of the template sets.

The code to determine if the file contains object-oriented data elements counts the number of
“O0_TBL” elementsfound, as shown in figure 34. The variable hier Count is assigned avalue
from 0-3; azero means thefileisin relational form.

Partitioning the templates by assigning them to different modes hel ps to prevent unwanted
overlapsin the templates. It also allows the user to remove the ‘ apply-templates element of any
unwanted test that may be deemed too time-consuming.

18The order of the templatesin the fileisirrelevant and was chosen for readability.

28

<!-- root writes general HTML wrapper and processes all data -->
<xsl:template match="/">
<html>
<head>
<title>Results of Validation (using XSLT)
<xsl:value-of select="//gfm:GFMIEDM34/@TITLE"/>
</title>
</head>
<body>
<hl>Results of Validation (using XSLT)
<xsl:value-of select="//gfm:GFMIEDM34/@TITLE"/>
</hl>
<h2>Improper category/child element</h2>
<!-- perform test only for hierarchical data -->
<xsl:choose>
<xsl:when test="$hierCount > 0">

<xsl:apply-templates mode="tree"/>

</xsl:when>
<xsl:otherwise>
<xsl:text>Tests may not be performed on relational data</xsl:text>
</xsl:otherwises>
</xsl:choose>
<h2>Links with missing endpoint (s)</h2>

<xsl:apply-templates mode="1link"/>

</body>
</html>
</xsl:template>

Figure 33. Main (root) template.

<!-- count the number of hierarchical tables (0-3) -->
<xsl:variable name="hierCount"

select="count (//gfm:GFMIEDM34/gfm:0BJ_TYPE OO TBL)

count (//gfm:GFMIEDM34 /gfm:0BJ_ITEM OO_TBL)

count (//gfm:GFMIEDM34 /gfm:ADDR 0O TBL)"/>

N
N
Figure 34. Counting the number of object-oriented tables.

3.4 Validation of Business Rules
3.4.1 Introduction
Thefile GFMIEDM341businessRules.xsl checks a GFM XML datafile for conformance with

rules formulated by the GFM user community. While a particular enumerated value may be in the
JC3 schema, it may not be permitted by the GFM rules. Other templates test for compliance with

29

higher level constraints, such asthe fact that a Billet may not have a child in the Organisation tree.
Because of the complexity of the tests, most of the templates contain procedural code. Thefile
implements seven modes, the first of which is named “link”.

3.4.2 Link TypeValidation

The GFM X SD ensures that the values assigned to CAT _CODE and SUBCAT _CODE elements
are allowable enumerated values. The “link” templatesin thisfile further restrict the valuesto
pairs that conform to the business rules. Because of the complexity of the code, “good” templates
were defined. One of these is shown in figure 35, with the equivalent SQL code in figure 36.

<!-- ignore nodes where cat code/subcat code pair is allowed -->
<!-- ORG_TYPE to ORG TYPE links -->
<!-- we only need to check the child’s object type -->

<xsl:template priority="3"
match="//gfm:0BJ TYPE ESTAB OBJT DET
[gfm:GFM_OTEOD CAT CODE='HSADMI’ and
gfm:GFM_OTEOD GFM_SUBCAT CODE='DEFALT’ and
gfm:DET_OBJ TYPE ID=//gfm:0RG TYPE/gfm:ORG TYPE ID]"
mode="1ink">
</xsl:template>

Figure 35. Template that matches OTEOD links with valid code pairs.

SELECT COUNT ()
FROM OBJ TYPE ESTAB OBJT DET oteod,
ORG_TYPE ot
WHERE oteod.GFM_OTEOD CAT CODE='HSADMI’ AND
oteod.GFM_OTEOD GFM SUBCAT CODE='DEFALT’ AND
oteod.DET OBJ TYPE ID=ot.ORG TYPE ID;

Figure 36. SQL query that finds OTEOD links with valid code pairs.

Thistemplate enforces the rule “all OTEOD links between two Org Types must use the codes
“HSADMI /DEFALT.” Only the type of the child is checked under the assumption that Org Types
aways have an Org Type parent (see section 3.4.6). Other templates test the remaining allowable
code pairs.

Notice that the priority of the template has been raised to 3, and the template has no contents. All
OTEOD links that have acceptable codes will be matched and processed, producing no output.
The remaining OTEOD links will match the templatein figure 37.

The latter template is complicated because it must determine which codes are invalid based on the
override policy. There are 8 templates that match good OTEODs and Assocs, and 2 templates that
catch the remaining OTEODs and Assocs and produce error messages. Asin the other XSLT file,
atemplate with a priority of -1 catches all text elementsthat are not OTEODs or Assocs and
ignores them.

30

<!-- locate nodes where cat code/subcat code pair is not allowed -->
<!-- all good nodes have already been matched -->
<!-- templates are complicated because of override rules -->
<xsl:template priority="2"
match="//gfm:0BJ TYPE ESTAB OBJT DET"
mode="1ink">
<xsl:choose>
<xsl:when test="gfm:GFM OTEOD GFM CAT CODE='NOS’ and
gfm:GFM_OTEOD GFM SUBCAT CODE=’NOS’">
<xsl:call-template name="illegal-link">
<xsl:with-param name="class"
select="'0OBJ_TYPE ESTAB OBJT DET’" />
<xsl:with-param name="catcode"
select="gfm:GFM_OTEOD CAT CODE"/>
<xsl:with-param name="subcatcode"
select="gfm:GFM_OTEOD_SUBCAT CODE" />
<xsl:with-param name="ewid"
select="gfm:0BJ TYPE ESTAB OBJT DET IX"/>
<xsl:with-param name="label" select="gfm:GFM OTEOD LABEL TXT"/>
</xsl:call-template>
</xsl:when>
<xsl:when test="gfm:GFM OTEOD GFM CAT CODE='NOS’ and
gfm:GFM_OTEOD GFM SUBCAT CODE!=’NOS’">
<xsl:call-template name="illegal-link">
</xsl:call-template>
</xsl:when>
<xsl:when test="gfm:GFM OTEOD GFM CAT CODE!='NOS’ and
gfm:GFM_OTEOD GFM SUBCAT CODE=’NOS’">
<xsl:call-template name="illegal-1link">
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="illegal-link">
</xsl:call-template>
</xsl:otherwises>
</xsl:choose>
</xsl:template>

Figure 37. Template that matches OTEOD links with invalid code pairs.

3.4.3 Person Type Category Code Validation

The templates that validate Person Type codes are simple. They test the requirement that
“military Person Types must have a subcategory of NOS, while civilian Person Types must have a
subcategory of GOVEMP or NONGVE.” There are two “bad” templates like the one shownin
figure 38. The explanation for how this code works is described with figure 24.

31

<!-- Person Types must have proper cat_codes -->

<xsl:template priority="2"
match="//gfm:PERS_TYPE [gfm:CAT CODE='MILTRY’] [gfm:SUBCAT CODE!='NOS’]"
mode="person" >
<xsl:call-template name="mil-civ">

<xsl:with-param name="type" select="'Military’"/>
<xsl:with-param name="correct" select="'MILTRY/NOS’'"/>
<xsl:with-param name="catcode" select="gfm:CAT CODE"/>
<xsl:with-param name="subcatcode" select="gfm:SUBCAT CODE"/>
<xsl:with-param name="ewid" select="gfm:PERS _TYPE ID"/>

<xsl:with-param name="skill-code" select="gfm:GFM_PERS TYPE SKILL CD"/>
</xsl:call-template>
</xsl:template>

Figure 38. Template that checks Person Type categories.

3.4.4 Organisation Validation

Every Organisation (ORG) must appear in the Organisation tree. Any Organisation that does not
have a parent (i.e., is an orphan) is assumed to be a mistake and should be reported. The template
in figure 39 finds and discards all ORGs that are children of Assoc links. The remaining ORGs
match the template in figure 40 and an error message is generated.

<!-- ignore Orgs which are children -->

<xsl:template priority="3"
match="//gfm:ORG [gfm:ORG_ID=//gfm:0BJ ITEM ASSOC/gfm:0BJ OBJ ITEM ID]"
mode="assoc">

</xsl:template>

Figure 39. Template that finds ORGs that are children.

<!-- every Org must be a child -->
<xsl:template priority="2"
match="//gfm:ORG"
mode="assoc" >
<xsl:call-template name="never-child"s
<xsl:with-param name="ewid" select="gfm:0RG ID"/>
<xsl:with-param name="name" select="gfm:GFM_ORG SHORT NAME TXT"/>
</xsl:call-template>
</xsl:template>

Figure 40. Template that reports ORGs that are not children.

3.45 Billet Validation

Thisbusinessruleis amost the opposite of the previous one. A Billet may never be a parent node
in the Organisation tree. Figure 41 finds all ORGs that break thisrule.

32

<!-- find billets which are parents -->
<xsl:template priority="2"
match="//gfm:0RG [gfm:ORG ID=//gfm:0BJ ITEM ASSOC/gfm:SUBJ OBJ ITEM ID]
[gfm:ORG_ID=//gfm:GFM_BILLET/gfm:GFM_BILLET ID]"
mode="billet">
<xgl:call-template name="billet-parent">
<xsl:with-param name="ewid" select="gfm:0RG ID"/>
<xsl:with-param name="name" select="gfm:GFM_ORG SHORT NAME TXT"/>
</xsl:call-template>
</xsl:template>

Figure 41. Template that finds Billets that have children.

Thefirst part of the XPath expression matches all ORGs that are in the parent
(OBJ_OBJ_ITEM_ID) element of an OBJ_ITEM _ASSOC. The second half requires that the
same ORGisaGFM BILLET. An ORG that meets both of these criteriaistherefore a Billet that
isa parent of another Object Item.

3.4.6 Link Endpoint Types

The force structure tree for organisation types consists of Org Type parents and children. The
links are contained in the OBJ_TYPE_ESTAB_OBJT _DET _TBL element along with other kinds
of links. Materiel, Person, and Facility Types may be aligned with an Org Type viaan OTEOD
link, while Materiel and Person Types may be clustered using OTEODSs. The allowable endpoint
type combinations are shown in table 2.

Table 2. Allowable OTEOD combinations.

Child
Org Type Mat Type PersType Fac Type
Org Type X X X X
Parent Mat Type X
Pers Type X

Because an Org Type may have any type of child, explicit testing is not needed; other link tests
will catch any errors. However, links with Mat Type and Person Type parents must be checked. In
addition, the establishments of the latter two parent Object Types are required to have a category
code of “PCG” (Parts Catalogue). The template for locating and testing Mat Type parentsis
shown in figure 42. The Person Type template is identical with element names changed as
appropriate.®

19Additional templates should be written to thoroughly test Person Type clusters.

33

<!-- find all OTEODs with a MatType parent, then check the OTEOD’s child -->
<xsl:template priority="2"
match="//gfm:0BJ TYPE ESTAB OBJT DET[gfm:ESTABD OBJ TYPE ID=
//gfm:MAT TYPE/gfm:MAT TYPE ID]"
mode="oteod">
<xsl:choose>
<xsl:when test="gfm:DET OBJ TYPE ID=//gfm:MAT TYPE/gfm:MAT TYPE ID">
<xsl:call-template name="check-for-PCG">
<xsl:with-param name="ote-ewid" select="gfm:0BJ TYPE ESTAB IX"/>
</xsl:call-template>
</xsl:whens>
<xsl:otherwise>
<xsl:call-template name="same-parent-child"s
<xsl:with-param name="link-ewid"
select="gfm:0BJ TYPE ESTAB OBJT DET IX"/>
<xsl:with-param name="label" select="gfm:GFM _OTEOD LABEL TXT"/>
<xsl:with-param name="class" select="'MAT TYPE'"/>
<xsl:with-param name="parent-ewid" select="gfm:ESTABD OBJ TYPE ID"/>
<xsl:with-param name="child-ewid" select="gfm:DET OBJ TYPE ID"/>
</xsl:call-template>
</xsl:otherwises>
</xsl:choose>
</xsl:template>

Figure 42. Template that checks child of Mat Type parent.

The XPath expression matches all OTEODs where the parent (ESTAB_OBJ_TYPE_ID) isaMat
Type. If the OTEOD’s child (DET_OBJ_TYPE_ID) isaso aMat Type, then the named template
“check-for-PCG” is called, passing the EwID of the parent Object Type Establishment
(OBJ_TYPE_ESTAB._IX) as a parameter. Any other type of child produces an error message.

The named template is procedural code and is shown in figure 43. It begins by finding the Object
Type Establishment that has the desired EwID and storing the value of its category code in the
variable catcode. If the variable does not have the value PCG, then an error is generated.

<xsl:template name="check-for-PCG">
<xsl:param name="ote-ewid"/>
<xsl:variable name="catcode"
select="//gfm:0BJ TYPE ESTAB[gfm:0BJ TYPE ESTAB IX=
$ote-ewid] /gfm:CAT CODE"/>
<xsl:if test="$catcode!='PCG’'">
<xsl:call-template name="parent-ote-not-pcg">
<xsl:with-param name="ote-ewid" select="S$ote-ewid"/>
<xsl:with-param name="catcode" select="$catcode"/>
</xsl:call-template>
</xsl:1if>
</xsl:template>

Figure 43. Named template that checks the category code of an Object Type Establishment.

3.4.7 Required Associations

The next three tests have similar requirements, and therefore the templates are identical except for
changesin element names. The first template, whose mode is “crewtype”, determinesif every
CREW_PLATFORM _TYPE (CPT) has aMat Type aligned with it.?*° The template collects all
of the CPTs, then locates at |east one link where each CPT isthe parent and a Mat Typeisthe
child. The template is shown in figure 44.

<!-- find all CPTs, then look for an OTEOD with a MatType child -->
<xsl:template priority="2"
match="//gfm: GFM CREW PLATFORM TYPE"
mode="crewtype">
<xsl:variable name="cpt-ewid" select="gfm:GFM_CREW PLATFORM TYPE ID"/>
<xsl:choose>
<xsl:when
test="//gfm:0BJ TYPE ESTAB OBJT DET
[gfm:ESTABD OBJ TYPE ID=$cpt-ewid]
[gfm:DET OBJ TYPE ID=//gfm:MAT TYPE/gfm:MAT TYPE ID]">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="sometype-does-not-have-sometype">
<xsl:with-param name="ewid" select="Scpt-ewid"/>
<xsl:with-param name="type" select="'MatType’"/>
</xsl:call-template>
</xsl:otherwises>
</xsl:choose>
</xsl:template>

Figure 44. Template that reports Crew Platform Types that do not have a Mat Type.

The related pair of templates, using the mode “posttype’, perform the same logic with
CIV_POST _TYPE and MIL _POST _TY PE objects and an assigned mandatory PERS_TY PE
object. They are not shown. By passing part of the diagnostic message as a parameter, the same
named output template may be used by all three templates.

3.4.8 Aligning Person Types

The required Person Type objects may be aligned with each MIL _POST _TYPE and
CIV_POST _TYPE object in one of two different ways:

1. Each PersType may be aligned directly to a PostType with an OTEOD, or
2. A set of PersTypes may be clustered into a PersTypetree (PTT).

The second has the advantage of allowing commonly used sets of qualifications, such as a Radio
Operator, to be defined once and then linked to the appropriate MilPostTypes with asingle
OTEOD.

2The Post Types subordinate to this object are carried by the Mat Type, which should be a vehicle of some type.
This latter test is not performed by the code.

35

There are specific requirementsfor aPTT. Thefirst isthe root PersType of the PTT must
reference a Person Type Skill Attribute (PTSA) with atype code of ROS, which stands for “Root
Occupational Specialty”. The template, which has amode of “ros’, is shown in figure 45.

<!-- find all PersTypes that are parents and make sure PTSA is ROS. -->
<xsl:template priority="2"
match="//gfm: PERS TYPE [gfm:PERS TYPE ID=
//gfm:0BJ TYPE ESTAB OBJT DET/gfm:ESTABD OBJ TYPE ID]"
mode="ros">
<xsl:variable name="ptsa-ewid" select="gfm:GFM PERS TYPE SKILL ATTS"/>
<xsl:variable name="catcode"
select="//gfm:GFM PERS TYPE SKILL ATTR[gfm:GFM PERST SKILL ATTR ID=
$ptsa-ewid] /gfm:GFM PERST SKILL ATTR TYPE CD"/>
<xsl:if test="$catcode!='ROS’'">
<xsl:variable name="pt-ewid" select="gfm:PERS TYPE ID"/>
<xsl:call-template name="not-ros">
<xsl:with-param name="catcode" select="%catcode"/>
<xsl:with-param name="ewid" select="gfm:PERS_TYPE ID"/>
<xsl:with-param name="name"
select="//gfm:0BJ TYPE [gfm:0BJ TYPE ID=$pt-ewid]/gfm:NAME TXT"/>
</xsl:call-template>
</xsl:1if>
</xsl:template>

Figure 45. Template that reports Person Type roots that do not have a PTSA of ROS.

Variables are used to circumvent restrictionsimposed by X Path.?! The template matches all
PersTypes that appear as the parent of an OTEOD. The PTSA of the PersTypeisstoredin a
variable, then the variable is used in an expression to fetch the type code of that PTSA. Thisvaue
isexamined to seeif it isnot ROS, in which case an error message is generated.

The second PTT requirement is the number of PersTypes that must be included in a PersType tree.
The template shown in figure 46, with the mode “cluster”, counts the number of PTT nodes and
reports errors.

The template begins by finding all PTSAs that have atype code of ROS. The code loops through
each PersType that references that PTSA, counting the number of child PersTypes and storing the
valuein avariable. Military PTTs must have 5 children, while civilian trees are required to have 3
child PersTypes. If the number isincorrect, an appropriate message is produced.

Thistemplate overlaps other tests. It assumes that the children are al PersTypes (see
section 3.4.6) and that PersType roots are always ROS. If those conditions are not met, this test
may give incorrect results. Either way, mistakeswill be detected and reported.

The test with mode=" count-perstypes’ in figure 47 check the number of Person Typesthat are
directly aligned with a MilPostType.?? Thisis the most complex of the GFM tests, using multiple
variables defined with expressions.

2lThisis equivalent to a3-way joinin SQL.
2 similar test checks CivPostTypes.

36

<!-- find all PTSAs with TYPE CD='ROS’. -->
<!-- for each PersType that uses that PTSA, count the children. -->
<xsl:template priority="2"
match="//gfm:GFM PERS TYPE SKILL ATTRI[
gfm:GFM PERST SKILL ATTR TYPE CD='ROS’]"
mode="cluster">
<xsl:variable name="ptsa-ewid" select="gfm:GFM PERST SKILL ATTR ID"/>
<xsl:for-each
select="//gfm:PERS TYPE [gfm:GFM_ PERS TYPE SKILL ATTS=$ptsa-ewid]">
<xsl:variable name="ros-ewid" select="gfm:PERS TYPE ID"/>
<xsl:variable name="type" select="gfm:CAT CODE"/>
<xsl:variable name="num-children"
select="count (//gfm:0BJ TYPE ESTAB OBJT DET|
gfm:ESTABD OBJ TYPE ID=$ros-ewid])"/>
<xsl:if test="(($type="MILTRY’) and ($num-children!=5)) or
(($type!="MILTRY’) and ($num-children!=3))">
<xsl:call-template name="bad-perstype-tree">
<xsl:with-param name="type" select="gfm:CAT CODE"/>
<xsl:with-param name="ros-ewid" select="S$Sros-ewid"/>
<xsl:with-param name="name"
select="//gfm:0BJ TYPE [gfm:0BJ TYPE ID=$ros-ewid]/gfm:NAME TXT"/>
<xsl:with-param name="num-children" select="$num-children"/>
</xsl:call-template>
</xsl:1if>
</xsl:for-each>
</xsl:template>

Figure 46. Template that reports Person Type trees that have an incorrect number of nodes.

The template begins by matching all MilPostType elements and storing the ID of each one. The
list of OTEOD links where the parent is the current MilPostType is stored in a second variable.
The next variable contains atemporary tree containing ‘child’” el ements; the name chosen is
irrelevant. A loop iterates through all of the PersTypes that are children of the OTEQOD links, and
a‘child’ element is created for each PersType. The contents of the child are empty or contain a
PTSA. Thelast variable looks for a child element that is not empty. If such an element isfound, it
means that the PostType linksto a PTT, and the value 5 is stored. Otherwise, the number of links
is counted and stored.

The final step checks the number of children that were found. If fewer than 5 PersType children
were found, an error message is generated. A PostType that has no child PersTypesisignored
because that case is tested with the mode “posttype” as described in section 3.4.7.

3.49 General Information

A simpletest verifies that an XML datafile contains at least one Crew Platform and at least one
Billet.?® The templatein figure 48 counts all GFM_CREW_PLATFORM elementsin the XML
file. If no Crew Platforms are found, a special message is produced, otherwise, the actual number

2These are general suggestions and may not always be applicable.

37

found is displayed. The second half of the test, which counts Billets, is identical except for the
field name and generated text.

<!-- MilPostType must have 5 simple PersTypes -->
<!-- for each MPT, find all OTEODs where the child is a PersType -->
<xsl:template priority="2"
match:"//gfm:MIL_POST_TYPE"
mode="count-perstypes">
<xsl:variable name="mpt-ewid" select="gfm:MIL POST TYPE ID"/>
<xsl:variable name="oteods"
select="//gfm:0BJ TYPE ESTAB OBJT DET [gfm:ESTABD OBJ TYPE ID=
$mpt-ewid] [gfm:DET_OBJ TYPE ID=//gfm:PERS TYPE/gfm:PERS TYPE ID]"/>
<!-- is any child an ROS? -->
<xsl:variable name="found-ros">
<xsl:for-each
select="//gfm:PERS TYPE [gfm:PERS TYPE ID=S$oteods/gfm:DET OBJ TYPE ID]">
<xsl:variable name="ptsa-ewid" select="gfm:GFM_PERS TYPE SKILL ATTS"/>
<child>
<xsl:value-of
select="//gfm:GFM_PERS TYPE SKILL ATTR[gfm:GFM PERST SKILL ATTR ID=
S$ptsa-ewid] [gfm:GFM_PERST SKILL ATTR TYPE CD='ROS’]"/>
</child>
</xsl:for-each>
</xsl:variables>
<!-- compute or store number of children -->
<xsl:variable name="num-children">
<xsl:choose>
<xsl:when test="S$found-ros[child!=""]">
5
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="count (Soteods)"/>
</xsl:otherwises>
</xsl:choose>
</xsl:variables>
<!-- required number of PersType children found? -->
<xsl:if test="$num-children > 0 and $num-children < 5">
<xsl:call-template name="wrong-number-perstypes">
<xsl:with-param name="title" select="'MIL POST TYPE '"/>
<xsl:with-param name="type" select="'MILTRY’'"/>
<xsl:with-param name="ros-ewid" select="Smpt-ewid"/>
<xsl:with-param name="name"
select="//gfm:0BJ TYPE [gfm:0BJ TYPE ID=$mpt-ewid]/gfm:NAME TXT"/>
<xsl:with-param name="desc" select="'alignments’"/>
<xsl:with-param name="num-children" select="$num-children"/>
</xsl:call-template>
</xsl:1if>
</xsl:template>

Figure 47. Template that reports MilPostTypes with too few PersType children.

Thistest has inspired the creation of yet another XSLT file for GFM. The file GFMIEDM341.xsl
counts all of the major elementsin an XML file and displays them at the top of the XHTML file

38

of the pretty-printed data, while the | Chart application produces a more detailed breakout in its
log file. A fairly smple XSLT file has been written (but not released at thistime) that produces a
summary of the datain an XML file to help validate the data.

<!-- Count number of CrewPlatforms (and Billets) -->
<xsl:template priority="2" match="x"
mode="count">
<xsl:variable name="num-crews" select="count(//gfm:GFM CREW PLATFORM)"/>

<xsl:choose>
<xsl:when test="$num-crews=0">
<xsl:text>There should be at least 1 Crew Platform</xsl:texts>
</xsl:when>
<xsl:otherwise>
<xsl:text>Found </xsl:text>
<xsl:value-of select="$num-crews"/>
<xsl:text> Crew Platform</xsl:texts>
<xsl:if test="$num-crews > 1">
<xsl:text>s</xsl:texts>
</xsl:1if>
</xsl:otherwise>
</xsl:choose>
</1li>
</xsl:template>

Figure 48. Template that counts Crew Platform (and Billet) elements.

4. Performing Validation Testing

4.1 Schema Validation

Every XML datafile should have areference to the physical file that contains the XSD. The root
element used by GFM XML filesis shown in figure 49.

<GFMIEDM34 TITLE="optional description of data"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ism="urn:us:gov:ic:ism:v2"
xmlns="http://gfm.arl.army.mil/GFMIEDM34"
xsi:schemalocation="http://gfm.arl.army.mil/GFMIEDM34
GFMIEDM341l.xsd">
... data elements.. ..
</GFMIEDM34 >

Figure 49. Typical GFM root element.

39

The actud file name is highlighted. The five files that make up the GFM XSD plusthe IC-1ISM
XSD file (see figure 3) must al be in the same folder. If the XML datafileisin adifferent folder,
then the path to the X SD file must be added to the highlighted file name in figure 49.

The validation may be performed with the Xerces-J (16) Java Archive (JAR) files. Figure 50
shows the command line (in two parts for readability) to validate a sample file that contains one
error.

java -classpath xerces.jar;xercesSamples.jar
sax.SAXCount -s -v -f -an somefile.xml

[Error] somefile.xml:1183:17: Key with value [ID Value: 7205759403792784] not
found for identity constraint of element "OBJ ITEM".
somefile.xml: 1112 ms (1155 elems, 182 attrs, 7205 spaces, 11102 chars)

Figure 50. Xerces XML validator detecting one error.

The public Java application SAXCount was written to count objectsin an XML file. One
available option isto also validate the dataif an X SD is available. In this example?®*, an error was
found on line 1183, column 17. While the error message may appear to be cryptic, an
examination of the OBJITEM showsthat thevalue 7205759403792784 ismissing atrailing
zero. The error report isfollowed by aline of summary information.

Other toolsinclude XML Spy®) (17), acommercia product that graphically edits and validates
XML files. The nice feature of XML Spy isthat it actually highlightsthe element that contains an
error; the bad thing isit stops at the first error that it finds.?® Saxon (18) isan XSLT
transformation engine that is run from the command line, and the commercial version also
performs X SD validation.?® ARL's IChart (19) application aways tests GFM XML data files for
well-formedness, and it will optionally test files for validity using Xerces-J.

4.2 XSLT Validation

Unlike XSD, XSLT was not designed to perform validation, so the processis slightly more
involved. Either Saxon or XML Spy may be used as the transformation engine. The command line
for Saxon is shown in figure 51.

java -jar saxon9.jar somefile.xml GFMIEDM34lvalidate.xsl serr.html

Warning: at xsl:stylesheet on line 107 of file:GFMIEDM34lvalidate.xsl:
Running an XSLT 1.0 stylesheet with an XSLT 2.0 processor

Figure 51. Saxon transformation engine testing XML data.

24| used X erces-Jversion 1.4.4. With appropriate changesto figure 50, X erces-Jversion 2.9.1 givesidentical results.
25X erces attempts to find all of the errors at one time.
26| have not used the commercial version.

40

The warning message is areminder that there is a mismatch between the transformation engine
and the XSLT file. Saxon supportsthe new XSLT 2.0 and XPath 2.0 specifications, while the
GFM XSLT filewasintentionally limited to 1.0 features to ensure portability.

The output of the transformation has been stored in the file err.html (or whatever file name the
user supplied). A normal text file could have been generated, but this leverages off of the
formatting performed by XHTML. The next step isto load err.html into a Web browser.

Several GFM XML data files have been created to test the XSLT validation files. They are
available to the user community for anyone who wants to confirm that their own validation tool is
working correctly. The files GFMIEDM34linvalidTestsSetl.xml and
GFMIEDM341invalidTestsSet2.xml contain hierarchical datato test
GFMIEDM341validate.xsl, while GFMIEDM34linvalidSampleRelat.xml issimilar datain
relational form. All three files contain errors that are described in section 3.3; however, category
code errors from section 3.3.2 may be detected only in the hierarchical sample XML file.

To ensure that every template reports an error, many intentional mistakes were made in the
sample files. The correct data was tested first to avoid false positives, then the errors were
introduced. There are 34 category code errors (only in the first file) and 57 other errors (in both
files). An abridged snapshot of the Web browser output is shown in figure 52. The last line of
each item contains the EwID of the offending object and identifying text (where it is available).

It isnot possible for XSLT to report when no errors are found in a GFM XML datafile. If no
output is produced, then the assumption is that there are no errors. The conditional in the top half
of figure 33 explicitly states when the “tree” tests may not be performed because the GFM XML
datafile contains only relational data. Figure 53 shows examples of both of these conditions using
aversion of the GFMIEDM34linvalidSampleRelat.xml file that contains only two errors.

XML Spy, because of its graphical interface, iseasier to use. Load a GFM XML datafile, assign
an XSLT filetoit, and command XML Spy to perform the transformation. The formatted
XHTML output will be displayed in another tab panel.

A third method, which is not recommended but is included for completeness, isto let the Web
browser’'s XSLT transformation engine do al of the work. The top of every GFM XML datafile
should contain the line

<?xml-stylesheet type="text/xsl" href="GFMIEDM341l.xsl"?>

which causes the browser to transform the data into a more readable form. Replace the
highlighted file name with the desired validation XSLT file name, then load the datafile into the
browser. Eventually you will see the error text. Thisisnot practical for large datafiles, butitisa
handy trick if you do not have Saxon or XML Spy at hand.

The XSLT file that tests GFM business rules is under development as new datasets inspire new
rules. The businessrule test file of GFM XML datais GFMIEDM34linvalidBusiness.xml.
Output produced from the current (as of thiswriting) version of the
GFMIEDM341businessRules.xsl file and the test XML file is shown in figure 54. The link
labels and Person Type names, e.g., “bad CAT,” were defined in the data to state the error that
should be reported and are not generated by the XSLT script.

41

Results of Validation (using XSLT) Sample Hierarchical Data

Improper category/child element
1. OBJ TYPE’'s CAT _CODE (MA) must match child ORG_TYPE
72057594037927960 = Some Civilian
Links with missing endpoint (s)
1. OBJ_TYPE ESTAB OBJT DET’s ESTABD OBJ TYPE ID (2057594037927950)
does not exist
18446744073709551013
Improper override of GFM vs JC3 fields
1. CIV_POST_TYPE's GFM_CAT CODE (VOLUNT) does not properly override
CAT CODE (MAYOR)
72057594037927860
Objects with bad DTG ranges or bad starting dates
1. Bad DTG range in GFM_PERS TYPE SKILL ATTR
1990-01-01T00:00:00Z is not before 1005-01-01T00:00:00Z
18446744073709551005 = skill attr name
2. OBJ_TYPE ESTAB’'s EFFCTV_DTTM
19500101000000.000 is not within DTG range of
1990-01-01T00:00:00Z to 2010-01-01T00:00:00Z
18446744073709551027 =
Missing Obj Type Estabs
1. OBJ_TYPE does have an OBJ TYPE ESTAB
72057594037927967 = Supply Department
Missing Obj Item/Obj Type Estabs
1. OBJ ITEM does have an OBJ ITEM OBJ TYPE ESTAB
72057594037927944 = Platform
Obj Items linked to incorrect Obj Types
1. Item 72337338142818342 = small crew
does not link to a GFM_CREW_ PLATFORM TYPE
in OBJ ITEM OBJ TYPE ESTAB 72337338142818343
References to Obj Type Estabs do not match Obj Types
1. OBJ_TYPE ESTAB OBJT DET 72337338142818310
references ObjTypeEstab 72337338142818306
and ObjType 72337338142818311
but ObjTypeEstab 72337338142818306
references ObjType 72337338142818305
Multiple Roots
1. found multiple Org tree roots
Assoc = 72337338142818348 Org = sample excmil
Assoc 72337338142818370 Org international civilian

Figure 52. Web browser output of XSLT validation.

42

Results of Validation (using XSLT) Sample Relational Data

Improper category/child element
Tests may not be performed on relational data
Links with missing endpoint (s)
Improper override of GFM vs JC3 fields
Objects with bad DTG ranges or bad starting dates
Missing Obj Type Estabs
1. OBJ _TYPE does have an OBJ TYPE ESTAB
72057594037927967 = Supply Department
Missing Obj Item/Obj Type Estabs
1. OBJ_ITEM does have an OBJ_ITEM OBJ TYPE ESTAB
72057594037927944 = Platform
Obj Items linked to incorrect Obj Types
References to Obj Type Estabs do not match Obj Types
Multiple Roots

Figure 53. Web browser output of validation of relational data.

43

Results of Validation (using XSLT)

Improper link types
1. OBJ _TYPE ESTAB OBJT DET has illegal link type combination
ADMINS/DEFALT
72060759428875092 = bad CAT
2. OBJ_TYPE ESTAB OBJT DET has illegal link type combination
HSADMI/TACCOM
72060759428875093 = bad SUBCAT
Improper Person Type codes
1. Military PERS_TYPE must be MILTRY/NOS
Found MILTRY/PILOT
72059647032295510 = bad mil codes
2. Civilian PERS_TYPE must be CIV/GOVEMP or CIV/NONGVE
Found CIV/JRNLST
72060755133882801 = bad civ codes
3. PERS_TYPE root must be ROS, found SKLLVL
72060793789194799 = EXECUTIVE OFFICER
Orgs which are not in tree
1. ORG is never in Org Tree
72060755133858478 = OSD-orphan
Billets which have children
1. Billet is a parent, which is not allowed
72060755133860793 = parent org
OTEODs which have improper parent/child type
1. OBJ_TYPE ESTAB OBJT DET does not have matching parent/child types
72060759428875121 = MT parent, not MT child
MAT TYPE RIFLE 5.56 MM: M16A2 (72057594037927970) may not be parent of
Head of State (72060759428875115)
2. OBJ _TYPE ESTAB OBJT DET does not have matching parent/child types
72059647032302985 = PT parent, not PT child
PERS _TYPE JAG, O-5 (72059647032297826) may not be parent of
WORLD (72060755133857960)
3. Parent OTE should have CAT CODE = PCG
27A00 O-6 (72059647032297830) has CAT_CODE = CES
CrewPlatformTypes which do not have an aligned MatType
1. 72337338142818314 = small crew
does not have a MatType
PostTypes which do not have an aligned PersType
1. 72060755133858003 = Mayor
does not have a PersType
PersType Tree Counts
1. MILTRY PersType tree 72060793789068864 = DETACHMENT LEADER
should have 5 PersType children but has 4
Non-clustered PersType Counts
1. CIV_POST TYPE 72060759428875115 = Head of State
should have 3 PersType alignments but has 2
2. MIL_POST _TYPE 72060793789280990 = COMMANDER
should have 5 PersType alignments but has 2

Figure 54. Web browser output of validation using businessrules.

5. Analysis

51 XSD and XSLT

The use of XML Schemato validate an XML datafile isacommon practice. Defining rulesto
test referential integrity isalogical extension and is within the capabilities of XSD. Going beyond
the canonical form to describe the hierarchical data schema as a hierarchical XML schema
provides XSD with the ability to perform additional validations.

A drawback is the amount of time required to validate data (20). While no benchmarking has
been performed, because optimization of the XSD is beyond the scope of the project, very large
files take a considerable amount of time to be validated. | intend to write a modified version of
GFMIEDM341.xsd that ignores uniqueness and referential integrity.?” The new XSD will be
limited to basic schema tests such as verifying the element type and value. Once a GFM XML
datafile has been validated to ensure that e ement names are spelled correctly, no mandatory
fields are missing, etc., the more thorough XSD validation file may be used.

The same reasoning applies to the XSLT scripts. XSLT transformation engines load the entire
data file into memory at once, and thisis not feasible for huge data files. The scripts make
multiple passes through the XML data tree (not the file), once for each test. This should not have
amajor impact on the time required because the data is cached; however, if certain tests take too
long to run, they may be removed from the main template near the top of the script.

Thefirst validation script should not be run until a given GFM XML data file has been validated
against the XSD. Likewise, the second (business rules) script should be run only after all issues
discovered by thefirst script are resolved. Additional scripts may be written to enforce business
rules that are not shared by all users of the GFM data.

5.2 XML Limitations

GFM datais complex because it is both temporal and dependent on other data elements. A
complete GFM data set may contain multiple force structure trees based on time and link type.
The date/time groups that are tested in section 3.3.4 are used to designate when each object is
active. A simple example is shown in figure 55.

If node A’s active period of time does not overlap the timeinterval for node B, thenitis
impossiblefor A to ever be the parent of B. The naive rule used by the GFM validation, described
in section 3.3.1, completely ignores the DTG elements. The template would see that the link’s
endpoints, namely A and B, exist, and decide that the link isvalid.

2’This file may also allow fragmentary data to be validated.

45

E F G H

Figure 55. Sample force structure (organisation) tree.

The heuristics of the code required to definitively validate the link may be too complex to
implement in any language. If the nodes and link define three different DTG intervals that
partially overlap, isthe link valid? The matter may require human judgment to confirm that the
intervals properly define the actual data being modeled.

The validation of atree based on link types may be performed only if the treeis traversed from
the top down. The force structure tree that is produced from a given set of data—ignoring the
timeintervals for the moment—depends on the desired set of link types. When DTG intervals are
included, the construction of the tree becomes much more complex. In figure 55, if the A-B link
is broken, either because of the DTG or link type, then not only does node B disappear, but so do
nodesE and F.

To summarize, GFM validation is performed at the link level and disregards DTG intervals
(except as described in section 3.3.4). It does not perform tree validation.

5.3 Alternatives

Two big advantages of XSD and XSLT are that they are portable, and tools that may perform
validations are readily available. GFM XML data may be validated on a server beforeitis
distributed to a client that has requested the data. However, due to language limitations and
inefficiency, it may be more practical to write one or more custom applications.

An alternative shortcut isto use SQL. Many commercia implementations of SQL include tests
for referential integrity. It isadeclarative language, asis XSLT, and the GFM XSLT scripts could
easily be trandated into SQL. Instead of parsing the GFM XML datainto an XML datatreein
memory, the file would be incrementally parsed and its data stored in an SQL database. The
nature of the tests requires that the data be scanned repeatedly, such asin the validation test “ For
each OBJ_TYPE, find an OBJ.TY PE_ESTAB with the same value for its OBJ_ TYPE_ID,” and
repeated scans of the data cache may be extremely inefficient. Performing queries on SQL datain
adatabase is analogous to matching XSLT templatesto an XML datatree. Duein part of the
maturity of SQL, such queries may be highly optimized.

46

References

10.
11.

12.

13.

14.

15.

. Chamberlain, S. C.; Boller, M.; Sprung, G.; Badami, V. Establishing a Community of

Interest (COI) for Globa Force Management. In Proceedings of the 10th International
Command and Control Research and Technology Symposium; McLean, VA, 2005.

Extensible Markup Language (XML) 1.0. 2006 [ONLINE] Available
http://www.w3.0rg/TR/2006/REC-xml-20060816/.

Deutsch, A.; Fernandez, M. F; Florescu, D.; Levy, A.Y.; Maier, D.; Suciu, D. Querying

XML Data. |EEE Data Engineering Bulletin 1999, 22 (3), 10-18.

. XML Schema Part 1: Structures. 2004 [ONLINE] Available

http://www.w3.0rg/TR/2004/REC-xml schema-1-20041028/.

XML Schema Part 2: Datatypes. 2004 [ONLINE] Available
http://www.w3.0rg/TR/2004/REC-xml schema-2-20041028/.

Harold, E. R.; Means, S. W. XML in a Nutshell, Third Edition; O’ Reilly Media, Inc.:
Sebastopol, CA, 2004.

. JC3IEDM Browse Representation. 2007 [ONLINE] Available

http://www.mip-site.org/publicsite/04-Baseline_3.0/JC3IEDM-
Joint_C3_Information_Exchange_Data M odel/HTML -Browser/index.html.

Chamberlain, S. C. Enterprise Identifiers for Global Naming Across the C4l-Simulation
Boundary. In Proceedings of the 2001 Soring Smulation Interoperabiltiy Workshop;
Orlando, FL, 2001.

Dillon, S. XML to Relational: Bridging the gap. Oracle Magazine 2005, X/ X (5).
IC-ISM-v2. 2004 [ONLINE] Available http://www.niem.gov/IC-ISM-v2.xsd.

XML Path Language (XPath) Version 1.0. 1999 [ONLINE] Available
http://www.w3.0rg/TR/1999/REC-xpath-19991116/.

XSL Transformations (XSLT) Version 1.0. 1999 [ONLINE] Available
http://www.w3.0rg/TR/1999/REC-xslt-19991116/.

Kay, M. XS.T 2.0 Programmer’s Reference (Programmer to Programmer); Wrox:
Hoboken, NJ, 2004.

XHTML™1.0 The Extensible HyperText Markup Language. 2002 [ONLINE] Available
http://www.w3.0rg/TR/2002/REC-xhtml 1-20020801/.

Jelliffe, R. Using XSL as a Validation Language. 1999 [ONLINE] Available
http://xml.ascc.net/en/utf-8/X SLvalidation.html.

47

16.
17.

18.
19.

20.

Xerces Java Parser Readme. 2005 [ONLINE] Available http://xerces.apache.org/xerces-j/.

XML Spy®), 2008 [ONLINE] Available
http://www.altova.com/products/xmlspy/xml editor.html.

Kay, M. Saxon-B 9.0.0.4J, 2008 [ONLINE] Available http://www.saxonica.com/.

Brundick, F. S.; Hartwig, Jr., G. W.; Chamberlain, S. C. IChart: A Graphical Tool To
View and Manipulate Force Management Sructure Databases; ARL-TR-4610; U.S. Army
Research Laboratory: Aberdeen Proving Ground, MD, September 2008.

Nicola, M.; John, J. XML Parsing: A Threat to Database Performance. In Proceedings of
ACM International Conference on Information and Knowledge Management; 2003.

48

Appendix A. Security Markings

The GFM X SD uses the security marking attributes defined in the Intelligence Community
Information Security Marking (IC-1ISM) XSD file. Datais classified at the “record” level; the
classification of the record isthe highest classification of its“field” elements.

The file GFMIEDM341relatTableTypes.xsd importsthe file IC-ISM.xsd. The ‘import’ element
is the mechanism that X SD uses to alow schemas to be shared and reused. The namespace for
IC-ISM is“ism” and sample datais shown in figure A-1.

<OBJ ITEM ASSOC TBL>
<OBJ_ITEM ASSOC ism:classification="U" ism:ownerProducer="USA"
ism:disseminationControls="FOUO">
<SUBJ_OBJ_ITEM ID>72060755133858488</SUBJ OBJ ITEM ID>
<OBJ_OBJ_ITEM ID>72060755133863257</0BJ_OBJ_ ITEM ID>
<OBJ_ITEM ASSOC IX>72060755133858493</0OBJ ITEM ASSOC IX>
<CAT CODE>HSADMI</CAT CODE>
<SUBCAT_CODE>ALTFOR</SUBCAT CODE>
<GFM_CAT CODE>NOS</GFM_CAT CODE>
<GFM_SUBCAT_CODE>DEFALT</GFM_SUBCAT_ CODE>
<GFM_OBJ_ITEM ASSOC_S DTG>1990-01-01T00:00:00Z</GFM_OBJ ITEM ASSOC_S DTG>
<GFM_OBJ_ITEM ASSOC_T DTG>2999-12-01T00:00:00Z</GFM_OBJ ITEM ASSOC T DTG>
</OBJ_ITEM ASSOC>
<OBJ_ITEM ASSOC ism:classification="U" ism:ownerProducer="USA"
ism:disseminationControls="FOUO">
<SUBJ _OBJ _ITEM ID>72060755133858488</SUBJ OBJ ITEM ID»>
<OBJ_OBJ_ITEM ID>72060755133863255</0BJ_OBJ_ ITEM ID>
<OBJ_ITEM ASSOC IX>72060755133858494</0BJ ITEM ASSOC IX>
<CAT CODE>HSADMI</CAT CODE>
<SUBCAT_CODE>ALTFOR</SUBCAT CODE>
<GFM_CAT CODE>NOS</GFM CAT CODE>
<GFM_SUBCAT_CODE>DEFALT</GFM_SUBCAT_ CODE>
<GFM_OBJ_ITEM ASSOC_S DTG>1990-01-01T00:00:00Z</GFM_OBJ ITEM ASSOC_S DTG>
<GFM_OBJ ITEM ASSOC T DTG>2999-12-01T00:00:00%</GFM_OBJ_ ITEM ASSOC T DTG>
</OBJ_ITEM ASSOC>
</OBJ_ITEM ASSOC TBL>

Figure A-1. GFM XML data with security attributes.

The IC-1ISM XSD defines severa attributes, the details of which are not pertinent to this
discussion. Two attribute groups, which are similar to the element group shown in figure 9, are
defined to allow the X SD writer to refer to an entire set of attributes. The
SecurityAttributesGroup group states that the first two attributes are mandatory and the rest are
optional, while SecurityAttributesOptionGroup declares each attribute to be optional.

The GFM X SD designers wanted to maintain compatibility with data that had been created before
security markings were introduced in the schema. A pair of new attribute groups are defined in

49

the GFM namespace with each containing a different IC-1SM attribute group. The complete code
isshowninfigure A-2.

<!-- This group has mandatory attributes. -->
<xs:attributeGroup name="SecurityAttributesGroup">
<xs:annotation>
<xs:documentation xml:lang="en">
The group of Information Security Marking attributes in which
the use of attributes ’classification’ and ’ownerProducer’ is
required. This group is to be contrasted with group
"SecurityAttributesOptionGroup’ in which use of those attributes
is optional.
</xs:documentations
</xXs:annotations>
<xs:attributeGroup ref="ism:SecurityAttributesGroup"/>
</xs:attributeGroup>

<!-- All attributes are optional in the second group. -->
<xs:attributeGroup name="xxxSecurityAttributesGroup">
<xs:annotation>
<xs:documentation xml:lang="en">
The group of Information Security Marking attributes in which
the use of all attributes is optional.
</xs:documentations
</Xs:annotations>
<xs:attributeGroup ref="ism:SecurityAttributesOptionGroup"/>
</xs:attributeGroup>

Figure A-2. Classification markings attribute groups.

Notice that the group names are amost identical; the second has an “xxx” prefix. The reason is
that security markings are not part of the GFMIEDM but were added to the GFM XSD. The user
may edit the GFMIEDM341relatTableTypes.xsd file and move the “xxx” prefix from the
second group name to the first. Since the attribute group name of SecurityAttributesGroup is
used throughout this XSD file, thiswill have the effect of declaring the security attributes to be
optional. The relevant part of figure 8 is shown in figure A-3 with the attribute group highlighted.

<xs:complexType name="ObjectItem">
<xs:annotation>
<xs:documentation>Definition: An individually identified object
that has military or civilian significance.</xs:documentations>
</xs:annotation>
<Xs:sequence>

</xs:sequence>
<xs:attributeGroup ref="SecurityAttributesGroup"/>
</xs:complexType>

Figure A-3. Object Item type with security attribute group.

50

Appendix B. Validation Constraints

B.1 Structural Validation

The file GFMIEDM34 1validate.xsl performs the following structural tests:

1. Inthe generalization hierarchy, an element’s CAT _CODE must match the type of its child
element. Thistest is performed only for elements which are children of elements whose
name endswith*_ OO_TBL'.

2. Both endpoints of alink must exist. The exceptionisan OBJ_TY PE_ESTAB _OBJT _DET
whose GFM_OTEOD_ROLE_IND_CD hasthe value 1; it never has achild.

3. When apair of elements have both JC3 and GFM enumerated values, the GFM values are
extensions of the JC3 set. The implementation ruleis“If the GFM field isNOS (no such),
then use the value in the JC3 field, else use the GFM field’svalue” In practice, this means
that at least one of the two fields must have the value NOS or the first enumerated value if
NOS isnot an enumerated value.

4. A starting date/time group (DTG) must be before the corresponding termination DTG.

o

An effective date/time or modernization date/time must be within the time span in item 4.
Expressed mathematicaly, s dtg < date_time < t_dtg.

Every OBJ_TY PE must have an OBJ_TY PE_ESTAB.
Every OBJITEM must appear asthe OBJITEM_ID inan OBJITEM _OBJ.TYPE_ESTAB.
Every OBJ_TY PE must be associated with the proper OBJITEM type.

© © N 9

When an element references an OBJ_TY PE and OBJ_TY PE_ESTAB, the
OBJ_TYPE_ESTAB must refer to the same OBJ_TY PE.

10. Each tree may have at most one root node.

B.2 BusinessRules

Thefile GFMIEDM341businessRules.xs| tests GFM XML datafor conformance with these
business rules, which are subject to future changes and extensions.

1. Thevauesfor the CAT_CODE and SUBCAT_CODE elements of alink depend on the class
of the parent and child objects. Only certain combinations of parent and child objects are
permitted. The allowable values are shown in tables B-1 and B-2.

51

10.
11.

12.

When a PERS_TY PE hasa CAT_CODE of MILTRY, the SUBCAT_CODE must be NOS.

When aPERS_TY PE has a CAT_CODE of Cc1V, the SUBCAT_CODE must be GOVEMP or
NONGVE.

Every ORG must appear in the Organisation tree, under the assumption that every object
that is created should be used (unlessit isreference data). In other words, it must be the

OBJ.OBJITEM_ID of an OBJITEM_ASSOC.

A GFM _BILLET must never have a child in the Organisation tree. It may never be the
SUBJ. OBJ.ITEM_ID of an OBJITEM_ASSOC.

The OBJ.TYPE_ESTAB of aMAT_TY PE or PERS_TY PE that has child objects must have

a CAT_CODE of pPCG.

Because a CREW_PLATFORM_TY PE carries people, there must be at least one
MAT _TY PE aligned with each one.

Each CIV_POST_TYPE and MIL_POST_TY PE must have at least one PERS_TY PE
aligned withiit.

When aPERS_TY PE isthe root of atree, it must reference a GFM_PERS_TY PE-
_SKILL_ATTR with atype code of ROS.

Each Military Person Type tree must have 5 nodes, while a Civilian tree has 3 nodes.

When clustering is not used, each MIL _POST _TY PE must have 5 Person Types aligned
with it, whilea CIV _POST _TY PE must have 3 Person Types.

There should normally be GFM _CREW_PLATFORMs and GFM _BILLETsinan XML file.

Table B-1. OTEQOD category codes.

Parent Child CAT SUBCAT | GFM_CAT GFM_SUBCAT
ORG_.TYPE | ORG_TYPE | HSADMI ALTFOR | NOS DEFALT
ORG.TYPE | ORG_.TYPE | NOS ALTFOR | COCOM ASSIGN
ORG.TYPE | ORG_.TYPE | NOS ALTFOR | COCOM UNASGN
ORG_.TYPE | ORG_TYPE | CMDCTL ALTFOR | NOS DEFALT
ORG_.TYPE | ORG_TYPE | CMDCTL OPCON | NOS NOS
ORG.TYPE | MAT_.TYPE | ISAUTO ALTFOR | NOS DEFALT
ORG.TYPE | PERS.TYPE | ISAUTO ALTFOR | NOS DEFALT
MAT_TYPE | MAT_TYPE | ISPART ALTFOR | NOS DEFALT
PERS.TYPE | PERS.TYPE | ISPART ALTFOR | NOS DEFALT

52

Table B-2. Assoc category codes.

Parent | Child CAT SUBCAT | GFM_CAT GFM_SUBCAT
ORG | ORG | HSADMI ALTFOR | NOS DEFALT

ORG | ORG | NOS ALTFOR | COCOM ASSIGN

ORG | ORG | NOS ALTFOR | COCOM UNASGN

ORG | ORG | CMDCTL ALTFOR | NOS DEFALT

ORG | ORG | CMDCTL OPCON | NOS NOS

53

INTENTIONALLY LEFT BLANK.

Appendix C. Valid Example

The sample GFM XML data file shown in this set of figures demonstrates most of the structural
and businessrules. In order to save space, al mandatory elements that are not germane to the
validation have been deleted. The file uses the standard XML wrapper as shown in figure 49.
Primary FM1DSs are shown and foreign keysarein italics. Category codesand
matching child elements are shown inbold. A summary of the data elementsis after the figures.

<OBJ_TYPE_OO_TBL>
<OBJ_TYPE ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUQO">
<OBJ_TYPE_ID>|72337338142818314|</OBJ_TYPE_ID>
<CAT_CODE>OR</CAT_CODE>
<GFM_OBJ_TYPE_S DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_S DTG>
<GFM_OBJ_TYPE_T DTG>2999-12-01T00:00:002</GFM_OBJ TYPE T DTG>
<ORG_TYPE>
<ORG_TYPE_ID>72337338142818314</ORG_TYPE ID>
<CAT_CODE>GVTORG</CAT CODE>
<GOVT_ORG_TYPE>
<GOVT ORG_TYPE ID>72337338142818314</GOVT_ORG_TYPE ID>
<CAT_CODE>MILORG</CAT CODE>
<MIL ORG_TYPE>
<MIL_ORG_TYPE ID>72337338142818314</MIL_ORG_TYPE_ID>
<CAT_CODE>NOS</CAT CODE>
<GFM_CAT_ CODE>CREW</GFM_CAT CODE>
<GFM_CREW_PLATFORM TYPE>
<GFM_CREW_PLATFORM TYPE ID>72337338142818314</GFM_CREW_PLATFORM TYPE_ ID>
</GFM_CREW_PLATFORM_TYPE>
</MIL_ORG_TYPE>
</GOVT_ORG_TYPE>
</ORG_TYPE>
</OBJ_TYPE>

<OBJ_TYPE ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<OBJ_TYPE_ID>|72337338142818317|</OBJ_TYPE_ID>
<CAT_CODE>OR</CAT_CODE>
<GFM_OBJ_TYPE_S DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_S DTG>
<GFM_OBJ_TYPE_T DTG>2999-12-01T00:00:002</GFM_OBJ TYPE T DTG>
<ORG_TYPE>
<ORG_TYPE_ID>72337338142818317</ORG_TYPE ID>
<CAT_CODE>GVTORG</CAT CODE>
<GOVT_ORG_TYPE>
<GOVT ORG_TYPE_ ID>72337338142818317</GOVT_ORG_TYPE_ ID>
<CAT_CODE>MILORG</CAT CODE>
<MIL ORG_TYPE>
<MIL_ORG_TYPE ID>72337338142818317</MIL_ORG_TYPE_ID>
<CAT CODE>MILPST</CAT CODE>
<GFM_CAT CODE>NOS</GFM_CAT_ CODE>
<MIL_POST_ TYPE>
<MIL_POST TYPE ID>72337338142818317</MIL_POST TYPE ID>
</MIL_POST TYPE>
</MIL_ORG_TYPE>
</GOVT_ORG_TYPE>
</ORG_TYPE>
</OBJ_TYPE>

Figure C-1. OBJ.TY PE elements, part 1 of 2 (ORG_TY PES).

55

<OBJ_TYPE ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<OBJ_TYPE_ID>|72057594037927968 |</OBJ_TYPE_ID>
<CAT_CODE>MA</CAT_CODE>
<GFM_OBJ_TYPE_S_DTG>1990—Ol—OlTOO:OO:OOZ</GFM_OBJ_TYPE_S_DTG>
<GFM_OBJ_TYPE_T DTG>2999-12-01T00:00:00%</GFM_OBJ_TYPE T DTG>
<MAT TYPE>
<MAT_TYPE_ID>72057594037927968</MAT TYPE ID>
<CAT_CODE>EQ</CAT_CODE>
<EQPT TYPE>
<EQPT_TYPE_ID>72057594037927968</EQPT_TYPE_ID>
<CAT_CODE>VEHCLE</CAT_CODE>
<VEHICLE TYPE>
<VEHICLE_TYPE_ID>72057594037927968</VEHICLE_TYPE_ID>
</VEHICLE TYPE>
</EQPT_TYPE>
</MAT_TYPE>
</OBJ_TYPE>

<OBJ_TYPE ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUQO">
<OBJ_TYPE_ID>|72059647032297831|</OBJ_TYPE_ID>
<CAT_CODE>PE</CAT_CODE>
<GFM_OBJ_TYPE_S DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_S DTG>
<GFM_OBJ_TYPE_T DTG>2999-12-01T00:00:002</GFM_OBJ TYPE T DTG>
<PERS_TYPE>
<PERS_TYPE ID>72059647032297831</PERS_TYPE_ID>
<CAT_CODE>MILTRY</CAT CODE>
<SUBCAT_CODE>NOS</SUBCAT CODE>
<GFM_PERS_TYPE SKILL ATTS>72059647032297828</GFM_PERS TYPE_ SKILL ATTS>
</PERS_TYPE>
</OBJ_TYPE>
</OBJ_TYPE_OO_TBL>

Figure C-2. OBJ.TY PE elements, part 2 of 2 (MAT_TYPE and PERS_TY PE).

56

<OBJ_TYPE_ESTAB_TBL>

<OBJ_TYPE ESTAB ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">

<ESTABD OBJ TYPE ID>72337338142818314</ESTABD OBJ TYPE ID>

<OBJ_TYPE_ESTAB_IX>|72337338142818315 |</OBJ_TYPE_ESTAB_IX>

<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>

<GFM_OBJ_TYPE ESTAB S DTG>1990-01-01T00:00:00%Z</GFM OBJ TYPE ESTAB S DTG>

<GFM_OBJ_TYPE ESTAB T DTG>2999-12-01T00:00:00%Z</GFM OBJ TYPE ESTAB T DTG>
</OBJ_TYPE ESTAB>

<OBJ_TYPE ESTAB ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUQO">

<ESTABD OBJ TYPE ID>72337338142818317</ESTABD OBJ TYPE ID>

<OBJ_TYPE_ESTAB_IX>|72337338142818318 |</OBJ_TYPE_ESTAB_IX>

<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>

<GFM_OBJ_TYPE_ESTAB S DTG>1990-01-01T00:00:00%</GFM_OBJ_TYPE_ESTAB_S DTG>

<GFM_OBJ_TYPE ESTAB T DTG>2999-12-01T00:00:00%Z</GFM OBJ TYPE ESTAB T DTG>
</OBJ_TYPE_ESTAB>

<OBJ_TYPE ESTAB ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">

<ESTABD OBJ TYPE ID>72057594037927968</ESTABD OBJ TYPE ID>

<OBJ_TYPE_ESTAB_IX>|72057594037928968 |</OBJ_TYPE_ESTAB_IX>

<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>

<GFM_OBJ_TYPE ESTAB S DTG>1990-01-01T00:00:00%Z</GFM OBJ TYPE ESTAB S DTG>

<GFM_OBJ_TYPE ESTAB T DTG>2999-12-01T00:00:00%Z</GFM OBJ TYPE ESTAB T DTG>
</OBJ_TYPE ESTAB>

<OBJ_TYPE ESTAB ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">

<ESTABD OBJ TYPE ID>72059647032297831</ESTARBD OBJ TYPE ID>
<OBJ_TYPE_ESTAB_IX>|72059647032297832|</OBJ_TYPE_ESTAB_IX>
<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>
<CAT_CODE>PCG</CAT_ CODE>
<GFM_OBJ_TYPE ESTAB S DTG>1990-01-01T00:00:00%Z</GFM OBJ TYPE ESTAB S DTG>
<GFM_OBJ_TYPE_ESTAB T_DTG>2999-12-01T00:00:00%</GFM_OBJ_TYPE_ESTAB T DTG>
</OBJ_TYPE ESTAB>
</OBJ_TYPE_ESTAB TBL>

Figure C-3. OBJ.TYPE_ESTAB elements.

<GFM_PERS_TYPE SKILL ATTR_TBL>

<GFM_PERS_TYPE SKILL ATTR ism:classification="U" ism:ownerProducer="USA" ...>
<GFM_PERST_SKILL_ATTR_ID> 72059647032297828| /GFM PERST SKILL ATTR_ID>
<GFM_PERST SKILL ATTR _NAME TXT>ROOT OCCUPATIONAL SPECIALTY</GFM PERST SKILL ATTR NAME TXT>
<GFM_PERST SKILL ATTR TYPE CD>ROS</GFM_PERST SKILL ATTR TYPE CD>
<GFM_PERST_SKILL ATTR_OWNER_ CD>USA</GFM_PERST SKILL_ATTR_OWNER_CD>
<GFM_PERST SKILL ATTR CAT>OFFICER</GFM PERST SKILL ATTR CAT>
<GFM_PERST_SKILL_ATTR_S_DTG>1990—Ol—OlTOO:OO:OOZ</GFM_PERST_SKILL_ATTR_S_DTG>
<GFM_PERST SKILL ATTR T DTG>2999-12-01T00:00:00Z</GFM_PERST SKILL ATTR T DTG>

</GFM_PERS_TYPE_SKILL ATTR>

</GFM_PERS_TYPE SKILL ATTR TBL>

Figure C-4. GFM_PERS_TY PE_SKILL_ATTR element.

57

<OBJ_TYPE ESTAB OBJT DET TBL>
<OBJ_TYPE_ESTAB_OBJT DET ism:classification="U" ism:ownerProducer="USA" ...>
<ESTABD OBJ TYPE ID>72337338142818314</ESTABD OBJ TYPE ID>
<OBJ_TYPE ESTAB IX>72337338142818315</0BJ TYPE ESTAB IX>
<OBJ_TYPE_ESTAB_OBJT_DET_IX>|72337338142818321];/OBJ_TYPE_ESTAB_OBJT_DET_IX>
<DET OBJ_TYPE ID>72337338142818317</DET_OBJ_TYPE ID>
<DET_OBJ_TYPE ESTAB_IX>72337338142818318</DET_OBJ_TYPE_ ESTAB IX>
<GFM_OTEOD CAT CODE>HSADMI</GFM OTEOD CAT CODE>
<GFM_OTEOD_SUBCAT CODE>ALTFOR</GFM_OTEOD_ SUBCAT CODE>
<GFM_OTEOD GFM_CAT CODE>NOS</GFM OTEOD GFM CAT CODE>
<GFM_OTEOD_GFM_SUBCAT CODE>DEFALT</GFM_OTEOD GFM_SUBCAT CODE>
<GFM_OBJT_ ESTAB_OBJT DET S DTG>1990-01-01T00:00:00%Z</GFM_OBJT_ESTAB OBJT DET S DTG>
<GFM_OBJT ESTAB OBJT DET T DTG>2999-12-01T00:00:00Z</GFM_OBJT ESTAB OBJT DET T DTG>
</OBJ_TYPE_ESTAB_OBJT_ DET>

<OBJ_TYPE_ESTAB_OBJT DET ism:classification="U" ism:ownerProducer="USA" ...>

<ESTABD OBJ TYPE ID>72337338142818314</ESTABD OBJ TYPE ID>

<OBJ_TYPE_ESTAB_ IX>72337338142818315</0OBJ TYPE ESTAB IX>

<OBJ_TYPE_ESTAB_OBJT_DET_IX>|72337338142818376]Z/OBJ_TYPE_ESTAB_OBJT_DET_IX>

<DET OBJ_TYPE ID>72057594037927968</DET_OBJ_ TYPE ID>

<DET_OBJ_TYPE ESTAB_IX>72057594037928968</DET_OBJ_ TYPE_ ESTAB IX>

<GFM_OTEOD CAT CODE>ISAUTO</GFM OTEOD CAT CODE>

<GFM_OTEOD_SUBCAT CODE>ALTFOR</GFM_OTEOD SUBCAT CODE>

<GFM_OTEOD GFM_CAT CODE>NOS</GFM OTEOD GFM CAT CODE>

<GFM_OTEOD_GFM_SUBCAT CODE>DEFALT</GFM_OTEOD GFM_SUBCAT CODE>

<GFM_OBJT ESTAB OBJT DET S DTG>1990-01-01T00:00:00Z</GFM_OBJT ESTAB OBJT DET S DTG>

<GFM_OBJT_ ESTAB_OBJT DET T DTG>2999-12-01T00:00:00%Z</GFM_OBJT_ ESTAB OBJT DET T DTG>
</OBJ_TYPE_ESTAB_OBJT_ DET>

<OBJ_TYPE_ESTAB_OBJT DET ism:classification="U" ism:ownerProducer="USA" ...>
<ESTABD OBJ TYPE ID>72337338142818317</ESTABD OBJ TYPE ID>
<OBJ_TYPE_ESTAB_ IX>72337338142818318</0OBJ TYPE ESTAB IX>
<OBJ_TYPE_ESTAB_OBJT_DET_IX>|72337338142818380]Z/OBJ_TYPE_ESTAB_OBJT_DET_IX>
<DET_OBJ_TYPE ID>72059647032297831</DET_OBJ_TYPE_ID>
<DET_OBJ_TYPE ESTAB_IX>72059647032297832</DET_OBJ_TYPE_ESTAB IX>
<GFM_OTEOD CAT CODE>ISAUTO</GFM OTEOD CAT CODE>
<GFM_OTEOD_SUBCAT CODE>ALTFOR</GFM_OTEOD_ SUBCAT CODE>
<GFM_OTEOD GFM CAT CODE>NOS</GFM OTEOD GFM CAT CODE>
<GFM_OTEOD_GFM_SUBCAT CODE>DEFALT</GFM_OTEOD GFM_SUBCAT CODE>
<GFM_OBJT ESTAB OBJT DET S DTG>1990-01-01T00:00:00Z</GFM_OBJT ESTAB OBJT DET S DTG>
<GFM_OBJT_ ESTAB_OBJT DET T DTG>2999-12-01T00:00:00%Z</GFM_OBJT_ESTAB OBJT DET T DTG>
</OBJ_TYPE_ESTAB OBJT DET>
</OBJ_TYPE_ESTAB OBJT DET TBL>

Figure C-5. OBJ.TYPE_ESTAB_OBJT _DET (link) elements.

58

<OBJ_ITEM OO TBL>
<OBJ_ITEM ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<OBJ_ITEM_ID>|72337338142818342|</0OBJ_ITEM_ID>
<CAT_CODE>OR</CAT_CODE>
<GFM_OBJ_ITEM_S_DTG>1990—Ol—OlTOO:OO:OOZ</GFM_OBJ_ITEM_S_DTG>
<GFM_OBJ_ITEM T DTG>2999-12-01T00:00:002</GFM_OBJ ITEM T DTG>
<ORG>
<ORG_ID>72337338142818342</0ORG_ID>
<CAT_CODE>NOS</CAT_CODE>
<GFM_CAT CODE>CR</GFM_CAT CODE>
<GFM_CREW_PLATFORM>
<GFM_CREW_PLATFORM_ID>72337338142818342</GFM_CREW_PLATFORM_ID>
</GFM_CREW_PLATFORM>
</ORG>
</OBJ_ITEM>

<OBJ_ITEM ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<OBJ_ITEM_ID>|72337338142818344|</OBJ_ITEM_ID>
<CAT_CODE>OR</CAT_CODE>
<GFM_OBJ_ITEM_ S _DTG>1990-01-01T00:00:00%</GFM_OBJ ITEM S DTG>
<GFM_OBJ_ITEM_T_DTG>2999—12—OlTOO:OO:OOZ</GFM_OBJ_ITEM_T_DTG>
<ORG>
<ORG_ID>72337338142818344</ORG_ID>
<CAT_ CODE>NOS</CAT_CODE>
<GFM_CAT_CODE>BL</GFM_CAT_CODE>
<GFM_BILLET>
<GFM_BILLET_ID>72337338142818344</GFM_BILLET_ID>
</GFM_BILLET>
</ORG>
</OBJ_ITEM>
</OBJ_ITEM OO TBL>

Figure C-6. OBJ.ITEM (ORG) elements.

<OBJ_ITEM OBJ TYPE ESTAB TBL>
<OBJ_ITEM_OBJ_TYPE_ESTAB ism:classification="U" ism:ownerProducer="USA" ...>
<OBJ_ITEM ID>72337338142818342</0OBJ_ITEM ID>
<ESTABD OBJ TYPE ID>72337338142818314</ESTABD OBJ_TYPE ID>
<OBJ_TYPE_ESTAB IX>72337338142818315</0BJ TYPE ESTAB IX>
<OBJ_ITEM_OBJ_TYPE_ESTAB_IX>|72337338142818343];/OBJ_ITEM_OBJ_TYPE_ESTAB_IX>
<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>
<GFM_ORG_ORGT_M DTG>1990-01-01T00:00:00%Z</GFM_ORG_ORGT M DTG>
<GFM_OBJI_OBJT ESTAB S DTG>1990-01-01T00:00:00Z</GFM_OBJI_OBJT ESTAB S DTG>
<GFM_OBJI_OBJT ESTAB T DTG>2999-12-01T00:00:00%Z</GFM_OBJI OBJT ESTAB T DTG>
</OBJ_ITEM OBJ_TYPE_ESTAB>

<OBJ_ITEM_OBJ_TYPE_ESTAB ism:classification="U" ism:ownerProducer="USA" ...>
<OBJ_ITEM ID>72337338142818344</0OBJ_ITEM ID>
<ESTABD OBJ TYPE ID>72337338142818317</ESTABD OBJ TYPE ID>
<OBJ_TYPE_ESTAB_ IX>72337338142818318</0OBJ TYPE ESTAB IX>
<OBJ_ITEM_OBJ_TYPE_ESTAB_IX>|72337338142818345]Z/OBJ_ITEM_OBJ_TYPE_ESTAB_IX>
<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>
<GFM_ORG_ORGT_M DTG>1990-01-01T00:00:00%Z</GFM_ORG_ORGT M DTG>
<GFM_OBJI_OBJT ESTAB S DTG>1990-01-01T00:00:00Z</GFM_OBJI_OBJT ESTAB S DTG>
<GFM_OBJI_OBJT ESTAB T DTG>2999-12-01T00:00:00Z</GFM_OBJI_OBJT ESTAB T DTG>
</OBJ_ITEM OBJ_TYPE_ESTAB>
</OBJ_ITEM_OBJ_TYPE_ESTAB TBL>

Figure C-7. OBJITEM_OBJ.TYPE_ESTAB elements.

59

<OBJ_ITEM ASSOC TBL>

<OBJ_ITEM ASSOC ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<SUBJ_OBJ_ITEM ID>72337338142818342</SUBJ_OBJ ITEM ID>
<OBJ_OBJ_ITEM ID>72337338142818344</OBJ OBJ ITEM ID>

<OBJ_ITEM_ASSOC_IX>|72337338142818352|</OBJ_ITEM_ASSOC_IX>

<CAT_CODE>HSADMI</CAT CODE>

<SUBCAT CODE>ALTFOR</SUBCAT CODE>

<GFM_CAT CODE>NOS</GFM_CAT CODE>
<GFM_SUBCAT CODE>DEFALT</GFM_SUBCAT CODE>
<GFM_OBJ ITEM ASSOC S DTG>1990-01-01T00:00:00%</GFM OBJ ITEM ASSOC S DTG>
<GFM_OBJ_ITEM ASSOC T DTG>2999-12-01T00:00:00%Z</GFM OBJ ITEM ASSOC T DTG>

</OBJ_ITEM_ ASSOC>
</OBJ_ITEM ASSOC TBL>

Figure C-8. OBJ.ITEM_ASSOC element.

MAT_TYPE B GFM_CREW_PLATFORM_TYPE [{ GFM_CREW_PLATFORM
(72057594037927968) @ (72337338142818314) @ (72337338142818342)
OBJ_TYPE_ESTAB 1 OBJ_TYPE_ESTAB 1
(72057594037928968) (72337338142818315)
; ;
| PERS_TYPE < @ MIL_POST_TYPE @ GFM_BILLET
(720559647032297831) (72337338142818317) (72337338142818344)
OBJ_TYPE_ESTAB OBJ_TYPE_ESTAB
(720559647032297832) | (72337338142818318) |
L] GFM_PTSA
(72059647032297828)
Figure C-9. Sample data with relationships.
Table C-1. Link keysfor figure C-9.
Category Symbol EwlID
OBJ_TYPE_ESTAB_OBJT_DET o 72337338142818321
I6] 72337338142818376
v 72337338142818380
OBJITEM_OBJ_.TYPE_ESTAB) 72337338142818343
€ 72337338142818345
OBJITEM_ASSOC ¢ 72337338142818352

60

Figure C-9 and table C-1 graphically show the relationships between the data elementsin figures
C-1-8. The objectsin the center of figure C-9 comprise the Org Type tree, while the boxes
beneath them are the establishments of the object types. Thefirst OBJ.TYPE isa

GFM _CREW_PLAT- FORM _TY PE, and its subordinate OBJ.TYPE isaMIL_POST_TYPE. The
OBJ.TYPE_ESTAB_- OBJT_DET (OTEOD) labeled « isthe link that connects the OBJ_TY PEs
inthetree.

Theright third of the diagram represents the Organisation tree. There are two OBJ_ITEMs that
are connected by the { OBJLITEM_ASSOC link. Every OBJ.ITEM must be an instantiation of an
OBJ.TYPE. The OBJITEM_OBJ.TYPE_ESTAB objects (¢ and ¢) associate each OBJ_ITEM
with its respective OBJ_TY PE.

Reference data is shown in the leftmost third of the diagram. A MAT _TY PE and its establishment
are aligned with the GFM _CREW_PLATFORM _TY PE, and a PERS_TY PE and establishment are
aligned with the MIL _POST _TY PE object. These are examples where OTEODs do double-duty,
since the objects 3 and v are both OTEQOD links. In addition, the PERS_TY PE refers to the
GFM_PERS_TYPE_SKILL_ATTR (GFM_PTSA) to indicate what skill attribute the PERS_TY PE
implements.

The sample shows a one-to-one rel ationship between OBJ_TY PEsand OBJ_TY PE_ESTABSs. This
isnot arequirement for GFM, although the I Chart application generally assumes that thisisthe
case. ORG_TYPE to ORG_TYPE links, such aslink «, are used to construct the optional Org
Type tree. The GFM business rules require that an ORG to point to an ORG_TYPE and its
establishment, but the ORG_TY PE does not need to be a node in the Org Type tree.

61

INTENTIONALLY LEFT BLANK.

62

List of Symbols, Abbreviations, and Acronyms

CPT CREW_PLATFORM_TYPE

DI Data Initiative

DMWG Data Modelling Working Group

DTG date/time group

E-R Entity-Relationship

EwID Enterprise-Wide Identifier

GFM Global Force Management

HTML Hypertext Markup Language

IC-ISM Intelligence Community Information Security Marking
|IEDM Information Exchange Data M odel

JC3 Joint Command, Control and Consultation

JC3IEDM Joint Command, Control and Consultation Information Exchange Data Model
MIP Multilateral Interoperability Programme

ORG Organisation

OTEOD OBJ.TYPE_ESTAB_OBJT_DET

PCG Parts Catalogue
PTSA Person Type Skill Attribute
PTT PersType Tree

RDBMSs relational database management systems

XML Extensible Markup Language
XSD XML Schema Definition
XSLT XML Stylesheet Language: Transformations

63

Glossary

attribute An XML element may have attributes which are of the form name=" value” . The GFM
XSD uses attributes for classification marking of data elements.

complex type An XML element that contains attributes and/or child elements. In SQL terms, a
field isasimpletype, while arecord is a complex type because it contains multiple fields.

DTG A date/time group in GFM isan instant in time specified by both a date and atime. The
format used by the GFM XSD is*“yyyy-mm-ddThh:mm:ssZ”. (The EFFCTV DTTM field
isaDTTM and not aDTG and uses a different format.)

declarative language A high-level programming language that describes a problem rather than
defining asolution. XSLT and SQL are declarative languages.

element The basic building block of an XML datafile. Data values are contained within
matching start and end elements.

E-R Diagram An Entity-Relationship Diagram is a graphical way of showing the
interrel ationshi ps between entities in a database.

EwlID An Enterprise-Wide Identifier is a surrogate key that is globally unique within the GFM
community. They are used as primary and foreign keysin the GFM XSD.

force structure tree The command and control hierarchy that contains elements of the same
type. In thistree, a child element is subordinate to its parent element.

Generalization Hierarchy GFM term used to refer to data elements that have a parent/child
relationship in the object-oriented sense.

GFM Global Force Management is a Joint Staff and Office of the Secretary of Defense initiative
designed to standardize force structure representation, making it visible, accessible, and
understandable across the Department of Defense.

JC3IEDM The Joint Command, Control and Consultation Information Exchange Data Model is
the message exchange mechanism for the Multilateral |nteroperability Programme (MIP).

key An XSLT element that is assigned the value of the element specified by an XPath expression.

keyref An XSLT element that compares the value of the element specified by an XPath
expression with the value of a specified key. A key/keyref pair is used to test referential

integrity.

match template An XSLT template that isinvoked when its X Path expression matches an
element (or attribute) in an XML datafile. It may be controlled by assigning a numerical
priority and/or a named mode.

64

named template An XSLT template that isinvoked by using its name like in a procedural
language.

namespace The context for related elements and attributes to group components of asingle
XML application together. This also disambiguates multiple elements with the same name
but different meanings.

procedural language A high-level programming language that describes a series of
computational stepsto be carried out. The majority of popular languages, including C and
Java, are procedural languages.

referential integrity Consistency between coupled tables which is usually enforced by the
combination of aprimary key and aforeign key. The keys are EwIDs in the GFM model.

simpletype An XML type that does not have child elements or attributes. Other languages call
thisascalar type. Examples are strings and numbers.

template The basic element in an XSLT script.

validation Every XML datafile must reference a schemadefinition file (XSD). The datafileis
valid if al of its e ements and attributes are declared in the XSD and it conformsto the
rules defined in the XSD.

well-formedness The basic syntax which all XML documents or data files must follow. Rules
specify constraints such as “Every start element must have a matching end element.”

XHTML Extensible Hypertext Markup Language is a markup language that is a reformulation
of HTML but aso conformsto XML syntax.

XML Extensible Markup Language is the syntax used when exchanging GFM data between
systems. Many of the specifications devel oped by the World Wide Web Consortium (W3C)
arewrittenin XML.

XML datatree An XML datafileis processed by an XML parser (reader) and stored in memory
in the form of atree. Operations, such as template matching in XSLT, are performed on this
memory-resident tree.

XPath A language for identifying particular parts of an XML document or datafile. It istightly
coupled with XSLT but is not writtenin XML.

XSD An XML Schema Definition defines elements, their types, their relationshipsto other types,
and simple constraints. It iswrittenin XML and is similar to adata dictionary.

XSLT XML Stylesheet Language: Transformationsisan XML-based language to convert an
XML fileinto another form. A transformation engine reads the data file and applies the
templates defined in the XSLT file. (XSLT used to be called simply XSL until it was split
into two parts.)

65

INTENTIONALLY LEFT BLANK.

66

No. of
Copies

ELEC

1CD

1CD

No. of
Organization Copies
ADMNSTR 1
DEFNS TECHL INFO CTR
ATTN DTIC OCP
8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

DARPA 1
ATTN IXO S WELBY

3701 N FAIRFAX DR

ARLINGTON VA 22203-1714

OFC OF THE SECY OF DEFNS 1
ATTN ODDRE (R&AT)

THE PENTAGON

WASHINGTON DC 20301-3080

US ARMY RSRCH DEV AND

ENGRG CMND

ARMAMENT RSRCH DEV AND 7
ENGRG CTR

ARMAMENT ENGRG AND

TECHNLGY CTR

ATTN AMSRD AAR AEF T J MATTS

BLDG 305

ABERDEEN PROVING GROUND MD

21005-5001

JOINT STAFF J-8 MASO
ATTN G SPRUNG

ROOM 2C646

JOINT STAFF PENTAGON
WASHINGTON DC 20318-8000

PM TIMS, PROFILER (MMS-P)
AN/TMQ-52

ATTN B GRIFFIES
BUILDING 563

FT MONMOUTH NJ 07703

US ARMY INFO SYS ENGRG CMND 1
ATTN AMSEL IETD F JENIA
FT HUACHUCA AZ 85613-5300

COMMANDER

US ARMY RDECOM

ATTN AMSRD AMR

W C MCCORKLE

5400 FOWLER RD

REDSTONE ARSENAL AL 35898-5000

67

Organization

US GOVERNMENT PRINT OFF
DEPOSITORY RECEIVING SECTION
ATTN MAIL STOP IDAD J TATE
732 NORTH CAPITOL ST NW
WASHINGTON DC 20402

CFLCC PARC
ATTN B PARRISH
BLDG 505

FPO AE 09306

U.S. ARMY RSRCH LAB

ATTN AMSRD ARL CI IC

M MITTRICK

BLDG 321

ABERDEEN PROVING GROUND MD
21005

US ARMY RSRCH LAB

ATTN AMSRD ARL CI'IC

F S BRUNDICK (6 COPIES)

ATTN AMSRD ARL CIIC G MOSS
BLDG 321

ABERDEEN PROVING GROUND MD
21005

US ARMY RSRCH LAB

ATTN AMSRD ARL CI'IC M THOMAS
BLDG 321 RM 1B

ABERDEEN PROVING GROUND MD
21005

US ARMY RSRCH LAB

ATTN AMSRD ARL CI IC

S CHAMBERLAIN

BLDG 321

ABERDEEN PROVING GROUND MD
21005

US ARMY RSRCH LAB

ATTN AMSRD ARL CI OK TP
TECHL LIB T LANDFRIED

BLDG 4600

ABERDEEN PROVING GROUND MD
21005-5066

No. of
Copies

Organization

DIRECTOR

US ARMY RSRCH LAB

ATTN AMSRD ARL RO EV

WD BACH

PO BOX 12211

RESEARCH TRIANGLE PARK NC
27709

US ARMY RSRCH LAB

ATTN AMSRD ARL CI'I B BROOME
ATTN AMSRD ARL CI J GOWENS
ATTN AMSRD ARL CI OK PE
TECHL PUB

ATTN AMSRD ARL CIOK TL
TECHL LIB

ATTN IMNE ALC HR

MAIL & RECORDS MGMT

ADELPHI MD 20783-1197

TOTAL: 27 (1 ELEC, 2 CDS, 24 HCS)

68

		Superintendent of Documents
	2025-06-30T03:36:52-0400
	Government Publishing Office, Washington, DC 20401
	U.S. Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

