

NSRDS-NBS 43

Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution.

1. Hydrated Electron

QC 100 .U573 no.43 1973 c.2 U.S. DEPARTMENT OF COMMERCE National

Bureau

Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Linac Radiation ² — Nuclear Radiation ² — Applied Radiation ² — Quantum Electronics ³ — Electromagnetics — Time and Frequency ³ — Laboratory Astrophysics — Cryogenics ³.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Reactor Radiation—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards-Weights and Measures-Invention and Innovation—Product Evaluation Technology—Electronic Technology—Technical Analysis-Measurement Engineering-Building Standards and Code Services⁴—Housing Technology⁴—Federal Building Technology⁴—Structures, Materials and Life Safety4—Building Environment4—Technical Evaluation and Application⁴—Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information—Computer Services -Systems Development-Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the

Office of Standard Reference Data—Office of Technical Information and Publications—Library—Office of International Relations.

Washington, D.C. 20234.

Part of the Center for Radiation Research
Located at Boulder, Colorado 80302.

Part of the Center for Building Technology

6 1973 ot acc 2C100 U573 no.43

Selected Specific Rates of Reactions of Transients From Water in Aqueous Solution. 1. Hydrated Electron

Michael Anbar

Stanford Research Institute, Menlo Park, Calif. 94025

and

Mark Bambenek and Alberta B. Ross

Radiation Chemistry Data Center, Radiation Laboratory, University of Notre Dame, Notre Dame, Ind. 46556

U.S. National Bureau of Standards

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued May 1973

Library of Congress Catalog Number: 72-600064

NSRDS-NBS 43

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 43, 67 pages (May 1973)

CODEN: NSRDAP

© 1973 by the Secretary of Commerce on Behalf of the United States Government

Foreword

The National Standard Reference Data System provides access to the quantitative data of physical science, critically evaluated and compiled for convenience and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, and responsibility to administer it was assigned to the National Bureau of Standards.

NSRDS receives advice and planning assistance from a Review Committee of the National Research Council of the National Academy of Sciences-National Academy of Engineering. A number of Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The System now includes a complex of data centers and other activities in academic institutions and other laboratories. Components of the NSRDS produce compilations of critically evaluated data, reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. The centers and projects also establish criteria for evaluation and compilation of data and recommend improvements in experimental techniques. They are normally associated with research in the relevant field.

The technical scope of NSRDS is indicated by the categories of projects active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties.

Reliable data on the properties of matter and materials is a major foundation of scientific and technical progress. Such important activities as basic scientific research, industrial quality control, development of new materials for building and other technologies, measuring and correcting environmental pollution depend on quality reference data. In NSRDS, the Bureau's responsibility to support American science, industry, and commerce is vitally fulfilled.

RICHARD W. ROBERTS, Director

Preface

This report is one of a series of data publications on radiation chemistry; the aim of the series is to compile, evaluate, and present the numerical results on processes occurring in systems which have been subjected to ionizing radiation. Various kinds of data are important in radiation chemistry. The quantities which were measured first were the observed radiation yields or G values (molecules formed or destroyed per 100 eV). Various indirect methods based on G values have been used to determine yields of transient species and relative rates of reactions. The spectral properties (optical, electron spin resonance) of transients have provided a direct method for their identification, and rates of the very fast reactions of transients which occur in irradiated systems have been measured directly by spectroscopic methods. Conductivity and luminescence methods have also provided a means of measuring properties of transients and their kinetics. Some reactions which occur in irradiated systems have also been studied by other methods, such as photochemistry, electric discharge, ultrasonics, chemical initiation, electron impact, etc. The emphasis in these publications is on the data of radiation chemistry, but where other pertinent data exist, they are included.

The data of radiation chemistry are voluminous; thousands of systems have been investigated. As a result there are certain collections, e.g. rate constants of particular types of reactions or certain properties of transients, for which tabulations of the data are considered essential, but for which critical assessment of each value is impossible. On the other hand, certain systems and properties have been studied so extensively that critical examination of these data is desirable and timely. Authors of this series of data publications have been asked to evaluate the extent to which the data can be critically assessed, to describe their criteria for evaluation, and to designate preferred values whenever possible.

Contents

Foreword	
Preface	
Introduction.	
Arrangement of Tables	
Table 1. Properties of the hydrated electron	
Table 2. Reactions of e_{aq} with water and transients from water. (1.1-1.10)	
Table 3. Reactions of e_{qq} with inorganic solutes. (1.11–1.283)	
Table 4. Reactions of $e_{a\bar{q}}$ with organic solutes. (1.284–1.661)	
Chemical structure index	
Formula index	
References	

Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution. I. Hydrated Electron

Michael Anbar

Stanford Research Institute, Menlo Park, Calif. 94025

Mark Bambenek and Alberta B. Ross

Radiation Chemistry Data Center, Radiation Laboratory, *
University of Notre Dame,
Notre Dame, Ind. 46556

Rates of reactions of hydrated electrons with over 700 different organic and inorganic molecules, ions, and transients have been tabulated. Most of the data are derived from pulse radiolysis of aqueous solutions; results from photolysis and from steady-state radiolysis by competition kinetics are also included.

Key words: Aqueous solution; chemical kinetics; data compilation; hydrated electron; radiation chemistry; rates.

Introduction

The hydrated electron is unique not only by its nature and by its chemical properties, but also by the fact that its reactions have been quantitatively investigated with a larger number of different chemical species than any other reagent. A compilation of the rate constants of the reactions of the hydrated electron became a necessity as a result of the accumulation of data on the kinetic behavior of hundreds of different compounds. This was true already in 1965 when a compilation of rate data was first published (Anbar and Neta, 65-0245). Less than two years later two additional compilations were published (Hart, 66-0757, and Anbar and Neta, 67-0103). Three years later a new compilation appeared in Hart and Anbar's monograph, "The Hydrated Electron," 70-0482. The last compilation, which does not claim to be comprehensive, includes about 450 different compounds as compared with 410 in the 1967 compilation. The present tables, which are as comprehensive as possible, include close to 700 compounds and derive the information from about 180 references compared with 32, 59, and about 90 references in the 1966, 1967, and 1970 compilations, respectively. The rate of generation of new data has diminished in recent years, and the time has come for consolidation of the information which may now stimulate more systematic work on the chemistry of the hydrated electron.

Unlike the last two compilations, we have not limited ourselves to rate data obtained by pulse radiolysis, but have also included specific rates obtained by competition kinetics. This has been done primarily when no pulse radiolysis data were available and when a good agreement was found between pulse radiolysis and competition kinetic data. The latter type of data were included primarily in order to point out systems which are not complicated by secondary reactions. It may be stated in general that direct measurement of the decay of eas is by far the most reliable kinetic method whereas any rate constants derived by competition kinetics should be used with caution. Of the different reagents used in competition kinetics, one should avoid small molecules with high electron affinity such as O_2 or N_2O as specific competitors for e_{ag}^- . These reagents can easily abstract an electron from a longlived electron adduct and thus lead to erroneous kinetic data. p-Bromophenol, nitrate ions and sulfur hexafluoride seem to be more reliable competitors,

^{*} The Radiation Laboratory is operated under contract with The Atomic Energy Commission. The work of the Center is supported jointly by The National Bureau of Standards, Office of Standard Reference Data and The Atomic Energy Commission. This is AEC Document COO-38-759.

the latter having the advantage of enhanced analytical sensitivity by producing 6 fluoride ions per electron. Standard values have been chosen and used consistently throughout the tables for normalizing relative rates of the competitors, H⁺, N₂O, O₂, SF₆, NO₃⁻, acetone, p-bromophenol, chloroacetate ion and chloroacetic acid with other solutes.

In selecting the rate data from pulse radiolysis studies, we have included every rate constant reported except for some of those which have been superseded by more reliable measurements by the same author. We have avoided duplication of references in cases where it was obvious that two or more publications report one and the same experimental result.

In several cases unexplained discrepancies between reported values exist; if the solute concentration is greater then $10^{-1}\,M$, the presence of reactive impurities could account for the variation in measured values. In most cases the specific rate included in the tables is the observed rate constant, $k_{\rm obs}$, corrected only for the spontaneous decay of $e_{\rm aq}^-$ in the same solute-free matrix. Wherever a rate constant corrected for salt effects or for dissociation constant of an acid was reported, we introduced it into the specific rate column of the table, putting $k_{\rm obs}$ under Comments.

Wherever not specified, the reported rate constant is the value for ambient temperatures, $15-25^{\circ}$ C. Since the activation energy of e_{aq}^{-} reactions is low, little uncertainty is introduced by the lack of information on the exact temperature of measurement. Unfortunately there are only a few studies in which the energy of activation was measured and even some of these are open to criticism (see for instance Anbar and Hart, 70-0482, Ch. VIIIA). Measured values of E_a have been included under Comments.

The ionic strength evidently has a pronounced effect on the reaction rates of e_{aq}^- with positive and negative ions, and moderate effects are expected even with neutral species. Many kinetic results were reported without specifying the ionic strengths, but wherever such data were available they have been included under Comments. No attempt was made, however, to calculate k_{cor} extrapolated to $\mu=0$ because of the lack of exact information on the changes in activity coefficient of e_{aq}^- and of the other reagents with μ , especially in concentrated solutions. Wherever k_{cor} was calculated by an author, it was cited, leaving k_{obs} for Comments, otherwise k_{obs} was cited and any available information on the ionic strength was reported under Comments.

Arrangement of Tables

Solute and reaction. The reactions may involve electron attachment ($e_{aq}^- + AB \Rightarrow AB^-$) or dissociative electron attachment ($e_{aq}^- + AB \Rightarrow A^- + B$). If products have not been identified, no reaction has been included in the tables. In some cases the products of the electron attachment reaction have been identified and the reaction has been included. In some cases products have been identified after subsequent steps and an overall reaction has been included.

Table 2 contains the reactions of e_{aq}^- with transient species formed in water by irradiation. Arrangement in Table 3 (inorganic ions and molecules) is alphabetical by main element; in Table 4 arrangement of the organic ions and molecules is alphabetical by name. In most cases the IUPAC name has been used, however some complex materials are listed by a common name.

Solute concentrations were usually less than $10^{-3} M$; if a higher concentration was reported it has been Comments. Measurements under commonly made in the presence of a small concentration of an alcohol which acts as an OH scavenger. The absence of such a scavenger has under Comments noted whenever information included the reported experimental details.

Specific rate, k. In some cases the reported numerical values for k have been rounded off to two significant figures. Error limits have been given as reported; we have made no attempt to assess sources of error and assign limits. Values corrected to zero ionic strength have been marked (cor.). Values obtained indirectly from relative rates have been marked (rel.) and the reported rate ratios given under Comments. Values calculated for dissociated or undissociated acids using $k_{\rm obs}$, the pH of the solutions and the pK of the acid have been marked (calcd.)

Method. Abbreviations used in the Method column include:

r. radiolysis

γ-r. gamma-radiolysis

X-r. X-radiolysis

p.r. pulse radiolysis

phot. photoylsis

f. phot. flash photolysis

Further details of the method used have been included in the *Comments* column with the aid of the following abbreviations.

c.k. competition kinetics

d.k. decay kinetics

p.b.k. product buildup kinetics

Unless otherwise noted, measurements by pulse radiolysis or flash photolysis were made by observation of the decay of e_{aq}^- absorption at 540-720 nm.

Activation energy, E_a. The temperature range studied and activation energies measured have been given under *Comments*. Entries in which E_a are included are: 1.1, 1.3, 1.30, 1.55, 1.61, 1.62, 1.143, 1.146, 1.173, 1.175, 1.188, 1.189, 1.240, 1.265, 1.286, 1.299, 1.313, 1.326, 1.327, 1.331, 1.343, 1.348, 1.358, 1.366, 1.376, 1.386, 1.433, 1.499, 1.551, 1.559, 1.577, 1.578, 1.596, 1.650

References. The serial number used in Radiation Chemistry Data Center files has been used for citing references; the first two digits of the number represent year. In the citation the number is preceded by the first four letters of the first author's name followed by a period for additional authors, e.g. Buxt.68-0153 and Bark...70-0243. Four periods denote four or more co-authors.

Indexes. Since alphabetical arrangements were chosen for listing the solutes in the tables, indexes have been included as an aid in locating entries for individual compounds or groups of compounds. The chemical structure index is an aid for locating classes of solutes related by structural features. The formula index is an aid for locating a specific compound or ion. The formulas contain the elements arranged in alphabetical order except for carbon compounds, in and Η precede the alphabetical arrangement. The indexes refer to entry numbers in the tables.

Abbreviations, symbols and units. Formulas for complex ions contain the following ligand abbreviations: EDTA = ethylenediaminetetracetato; en = ethylenediamine; dien = diethylenetriamine; bipy =2,2'-bipyridine; phen = 1,10-phenanthroline; gly = glycine; et₄dien =tetraethyldiethylenetriamine; NTA = nitrilotriacetato; acac =acetylacetone. Abbreviations used in describing Method have been listed above. Other abbreviations and symbols include the following:

_
addition
analysis
aqueous
atmospheres
calculated
compound
concentration
corrected
determined
hydrated electron in D ₂ O

$E_{\mathbf{a}}$	activation energy
elec. condy.	electrical conductivity
equil.	equilibrium
estd.	estimated
g	primary radiation yield; (molecules or
	ions per 100 eV absorbed)
G	radiation yield; (molecules or ions per
	100 eV absorbed)
k	specific rate
μ	ionic strength
mol. wt.	molecular weight
obs.	observed
rel.	relative
s	second
satd.	saturated
soln.	solution
t _{1/2}	half-life
m	

The energy and pressure units in these tables do not conform to proposed international usage (SI units; Système International); therefore, conversion factors are listed below for the purpose of making these tables most generally useful. Concentration (mol/dm^3) has been designated by M for convenience and brevity.

```
1 kcal = 4.184 \text{ kJ}

1 eV = 1.602 \times 10^{-19} \text{ J}

1 atm = 101 \ 325 \ \text{N/m}^2

1 bar = 1 \times 10^5 \ \text{N/m}^2
```

Table 1. Properties of e_{aq}^- at 25 °C ^a

Absorption maximum (nm)	715
Absorption maximum (eV)	1.73
Extinction coefficient, ϵ (715 nm) (dm ³ ·mol ⁻¹ cm ⁻¹ 10 ⁻⁴)	1.85
$dh \nu/dT$ (0 to 100°C) (eV·deg ⁻¹ 10 ³)	-2.9
Half-width (eV)	0.93
Oscillator strength	0.71
ESR g-factor	2.0002
ESR line width (gauss)	< 0.5
Charge	-1
Radius of charge distribution (angstroms or cm·10 ⁸)	2.5 to 3.0
Primary yield, $g(e_{ag})$, pH 7	2.65
Diffusion coefficient (cm ² s ⁻¹ 10 ⁵)	4.90
Equivalent conductivity (mho·cm²)	190
Mobility $(cm^2V^{-1}s^{-1}10^3)$	1.98
ΔF hyd (kcal·mol ⁻¹)	-37.4
ΔS hyd (cal·mol ⁻¹ deg ⁻¹)	-1.9
ΔH hyd (kcal·mol ⁻¹)	-38.1
$E^{\circ} (e_{*q}^{-} + H \gg 1/2 H_{2}) (V)$	2.77

^a Hart, E. J. and Anbar, M., The Hydrated Electron, New York, Wiley, 1970, p. 225.

Table 2. Reactions of e_{aq}^- with water and transients from water

					~ ,	
No.	Solute and Reaction	рН	$k(dm^3 mol^{-1}s^{-1})$	Method	Comments	Ref.
1.1	H_2O $e_{aq}^- + H_2O \gg H + OH^-$	8.3-9.0	$(1.6 \pm 0.1) \times 10^{1}$	p.r.	computer anal.; contains 7 x $10^{-4}~M~{ m H}_2$.	Hart66-0015
	0 aq 1 220 1 22 1 022	8.3	-	p.r.	k detd. at 5-81°C to give $E_{\bullet} = 4.5 \pm 1 \text{ kcal mol}^{-1}.$	Fiel.67-0532
		11,	$(2.2 \pm 0.6) \times 10^{1}$	p.r.	contains Ba(OH) ₂ and 4 x 10 ⁻³ M formate ion; extrapolated to formate concn. = 0.	Swal68-0418
		> 7	2.7 x 10 ¹ (rel.)	γ-г.	c.k., assume $k (e_{aq} + NO_3) = 1.1 \times 10^{10}$, soln. contains $3 \times 10^{-5} M \text{ NaNO}_3$ and $5 \times 10^{-2} M$ glucose; pressures up to 8.85	Hent.70-0056
1.2	D_2O $e_4^- + D_2O \Rightarrow D + OD^-$	9.39	1.25 ± 0.5	p.r.	kbar. computer anal., D ₂ O soln. satd. with D ₂ .	Hart.68-0025
1.3	e _{aq}	_	$(6.5 \pm 1.0) \times 10^9$	p.r.		Dorf.63-0045
	$e_{aq}^{-1} + e_{aq}^{-} \Rightarrow H_2 + 2OH^{-}$	13	5 x 10°	p.r.		Gord63-0050
		10.9	$(4.3 \pm 0.8) \times 10^9$	p.r.		Gord63-0073
		13.3	$(5.5 \pm 0.7) \times 10^9$	p.r.	soln. in equil. with 100 atm. H ₂ .	Math.65-0009
	,	12	$(6.3 \pm 1) \times 10^9$	γ-r.	steady-state method, soln. H_2 -satd., method less reliable, k detd. at $10 - 93$ °C to give $E_4 = 5.2 \pm 0.3$ kcal mol ⁻¹ .	Gott.67-0109
		11	6 x 10°	f.phot.	soln. H ₂ -satd.	Schm.68-7143
		12.7	5.0 x 10 ⁹ (cor.)	p.r.	apparent change in k with pH has been obs.	Brus70-0749 .
1.4	$e_{\overline{d}}^{-}$ $e_{\overline{d}}^{-} + e_{\overline{d}}^{-} \gg D_2 + 2OD^{-}$	13.4	6.0 x 10 ⁹	p.r.	computer anal., D ₂ O soln. contains 5.7 x 10 ⁻³ M D ₂ .	Hart.68-0025
1.5	Н	10.9	$\sim 3 \times 10^{10}$	p.r.		Gord63-0073
	$e_{aq}^- + H \Rightarrow H_2 + OH^-$	10.5	$(2.5 \pm 0.6) \times 10^{10}$	p.r.	soln. is in equil. with 100 atm. H ₂ .	Math.65-0009
1.6	$\begin{array}{c} D \\ e_{d}^{-} + D \gg D_{2} + OD^{-} \end{array}$	9.39	$(2.8 \pm 0.2) \times 10^{10}$	p.r.	soln. contains 4.5×10^{-3} $M D_2$ in D_2O .	Hart.68-0025
1.7	OH	10.5	$(3.0 \pm 0.7) \times 10^{10}$	p.r.	soln. contains only NaOH.	Math.65-0009
	$e_{aq}^- + OH \Rightarrow OH^-$	11	3 x 10 ¹⁰	p.r.		Gord63-00730
1.8	$ \begin{array}{c} OD \\ e_d^- + OD \Rightarrow OD^- \end{array} $	11.15	$(2.8 \pm 0.2) \times 10^{10}$	p.r.	computer anal., D ₂ O soln. of NaOD.	Hart.68-0025
1.9	$ \begin{array}{c} 0^{-} \\ e^{-}_{aq} + 0^{-} \Rightarrow 2 \text{ OH}^{-} \end{array} $	13	$(2.2 \pm 0.6) \times 10^{10}$	p.r.	soln. in equil. with 50 atm. H ₂ , contains NaOH; not very reliable value.	Math.65-0009
1.10	O_{2}^{-} $e_{aq}^{-} + O_{2}^{-} \Rightarrow O_{2}^{2-}$	11.1	1.3 x 10 ¹⁰	p.r.	d.k. at 650 nm(e _{aq}); computer anal.	Grue71-0171

Table 3. Reactions of e_{aq}^- with inorganic solutes

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.11	Ag ⁺	7	$(3.6 \pm 0.4) \times 10^{10}$	p.r.	_	Gord63-0073
	$\begin{vmatrix} Ag^{+} \\ e_{\bullet q}^{-} + Ag^{+} \gg Ag^{\circ} \end{vmatrix}$	7	3.5 x 10 ¹⁰	p.r.	d.k. at 720 nm as well as	Puki68-0431
	.,				at 360 nm (Ag°), counter ion	
					SO_4^{2-} .	
		7	$(4.3 \pm 0.2) \times 10^{10}$	p.r.	counter ion SO_4^{2-} .	Beva68-0436
		7	$(4.5 \pm 0.5) \times 10^{10}$	p.r.	p.b.k. at 365 nm (Ag°),	Beva68-0436
					counter ion SO_4^{2-} .	
1.12	$Ag(NH_3)_2^+$	-	3.2 x 10 ¹⁰	p.r.	d.k. at 720 nm as well as p.b.k.	Puki.68-0435
	$e_{aq}^- + Ag(NH_3)_2^+ \gg$				at 360 nm(Ag°), counter ion	
	$Ag^{\circ} + 2 NH_3$				SO_4^{2-} ; soln. contains 0.1 M NH ₃ .	
1.13	$Ag(CN)_2^-$	10	$(1.5 \pm 0.2) \times 10^9$	p.r.	contains 0.1 M CN, counter ion	Anba.65-0047
					ClO ₄ .	
1.14	Ag(NTA) ²⁻	10.9	$(4.4 \pm 0.9) \times 10^9$	p.r	counter ion SO ₄ ²⁻ ; soln.	Meye.69-0277
					contains 2 x 10 ⁻² M	
	4 mpm 4 3-				nitrilotriacetic acid.	
1.15	$Ag(EDTA)^{3-}$	12	1.6 x 10°	p.r.	$\mu = 0.2.$	Anba.69-0276
1.16	Al_{aq}^{3+}	6.8	$(2.0 \pm 0.3) \times 10^9$	p.r.	counter ion ClO ₄ .	Anba.65-0047
1.17	41/OID-	11.2	$(4.0 \pm 1.0) \times 10^8$	p.r.	counter ions ClO ₄ , Na ⁺ .	Anba.65-0047
1.17	A1(OH) ₄	14	$(5.5 \pm 1.2) \times 10^6$	p.r.	counter ion ClO ₄ .	Anba.65-0047
1.18	Al(gly) ₃	11.1	$\leq 1.8 \times 10^7$	p.r.	counter ion SO ₄ ²⁻ ; soln. contains 10 ⁻¹ M glycine.	Meye.69-0277
1.19	Al(NTA)	10.9	> 1 x 10 ⁸	p.r.	soln. contains 2 x 10 ⁻² M	Meye69-0277
1.19	AI(NTA)	10.9	> 1 X 10	p.r.	nitrilotriacetic acid,	Meye09-0211
					$10^{-2} M \text{ Al}_2(\text{SO}_4)_3.$	
1.20	$Al(NTA)_2^{3-}$	10.9	$\leq 2 \times 10^7$	p.r.	soln. contains $2 \times 10^{-2} M$	Meye.69-0277
1.20	MI(1V 1 /1/2	10.9	≥ 2 × 10	p.1.	nitrilotriacetic acid,	Meye.09 0211
					$10^{-3} M \text{ Al}_2(\text{SO}_4)_3$.	
1.21	Al(EDTA)	12	3.0×10^{7}	p.r.	$\mu = 0.2.$	Anba.69-0276
1.22	AsO ₂	10.6	$5.5 \times 10^8 \text{ (cor.)}$	p.r.	counter ion Na $^+$; $\mu = 0.0075$	Anba.68-0295
1.22	1130 2	10.0	0.0 x 10 (cor.)	p	$M : k_{\text{obs}} = 5.9 \times 10^8$.	111154.00 0270
1.23	$H_2AsO_4^- + HAsO_4^{2-}$	7.2	$(2.1 \pm 0.3) \times 10^8$	p.r.	$\sim 30\% \text{ H}_2\text{AsO}_4^-$	Anba.65-0047
	11211004		(201 – 000) 11 20		thus $k(e_{aq}^- + H_2AsO_4^-) \cong$	111124.00
1				1	$(2.3 \pm 0.3) \times 10^8$ has been	
					calcd.	
	HAsO ₄ ²⁻	11.0	1.9 x 10 ⁸ (cor.)	p.r.	$\mu = 10^{-3} M$; $k_{obs} = 2.0 \times 10^{8}$.	Anba.68-0295
1.24	AsF ₆	7.0	$(9.0 \pm 0.9) \times 10^9$	p.r.		Anba.65-0047
1.25	$Au(CN)_2$	11	$(8.0 \pm 0.5) \times 10^9$	p.r.	p.b.k. at 410 nm	Ghos.68-0302
	$e_{aq}^- + Au(l) \Rightarrow$				$KAu(CN)_2$, $10^{-3} M NaOH$.	
	(Au(I)e,)°	10.6	$3.5 \times 10^{9} (cor.)$	p.r.	counter ion K^+ ; $\mu = 10^{-2} M$;	Anba.68-0295
					$k_{\text{obs}} = 4.2 \times 10^9$.	
1.26	BF ₄	5.8	$< 2.3 \times 10^5 (cor.)$	p.r.	counter ion Na^+ ; $\mu = 0.2$;	Anba.68-0295
					$k_{\text{obs}} = 4.0 \times 10^5$.	
1.27	Br ₂	7	1.3×10^{10}	p.r.	d.k. at 365 nm (Br ₂), computer	Math65-0425
	$e_{aq}^- + Br_2^- \Rightarrow 2Br^-$				anal., soln. contains	
	-				10 ⁻⁴ - 10 ⁻² M KBr; assumed	
					for competing reactions	
					$k(\bar{\mathbf{e}_{aq}} + \mathbf{Br}_2) = k(\bar{\mathbf{e}_{aq}} +$	
					$Br_3 = 1 \times 10^{10}$.	
1.28	BrO -	13	$(1.5 \pm 0.5) \times 10^{10}$	p.r.	counter ion Na^+ ; $\mu = 0.1$;	Buxt66-0184
	$e_{aq}^- + BrO^- \Rightarrow Br^- + O^-$		(cor.)		$k_{\text{obs}} = (2.3 \pm 0.5) \times 10^{10};$	Buxt.68-0153
					see also 68-0152 for	
					c.k. with N_2O giving $k = (1.2-$	
1 00	D 07				2.5) x 10 ¹⁰ at pH 10-14.	
1.29	BrO ₂	13	$(1.1 \pm 0.2) \times 10^{10}$	p.r.	counter ions Na ⁺ , BrO ₃ ⁻ ,	Buxt.68-0153
	$e_{aq}^{-} + BrO_{2}^{-} \Rightarrow$		(cor.)		$Br^{-}; \mu = 0.1; k_{obs} =$	
1 20	$BrO + O^{2-}$				$(1.8 \pm 0.2) \times 10^{10}$.	
1.30	BrO ₃	7	$(2.1 \pm 0.3) \times 10^9$	p.r.	counter ion K ⁺ .	Anba.65-0047
	$e_{aa}^{-} + BrO_{3}^{-} \gg BrO_{3}^{2-}$	11	$(3.7 \pm 0.5) \times 10^9$	p.r.	counter ion K^+ ; $k_{obs} =$	Anba.65-0047

Table 3. Reactions of e_{aq}^- with inorganic solutes — Continued

No.	Solute and Reaction	pH	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
	> BrO₃H⁻ + OH⁻		(cor.)		$(3.8 \pm 0.5) \times 10^9$.	
	$\Rightarrow BrO_2 + OH^-$	14	$(2.4 \pm 0.7) \times 10^9$	p.r.	counter ion K^+ ; $k_{obs} =$	Anba.65-0047
	-		(cor.)	· ·	$(5.8 \pm 0.7) \times 10^9$.	
İ		3 M OH-	$(5.3 \pm 0.6) \times 10^9$	p.r.	counter ions K+; Na+.	Anba.65-0047
		13	$(2.3 \pm 0.2) \times 10^9$	p.r.	counter ion K^+ ; $\mu = 0.1$;	Buxt.68-0153
			(cor.)	P	$k_{\text{obs}} = (4.1 \pm 0.2) \times 10^9$.	Dunition 0100
		_	7.8 x 10°	p.r.	k detd. at 15-80°C;	Cerc69-0567
					$E_{\bullet} = 4.5 \text{ kcal mol}^{-1}$.	
		~ 7	3.4 x 10 ⁹ (cor.)	p.r.	counter ion Na ⁺ ; in the	Pele.70-0242
				P	presence of 0.01, 0.1 and	- 515115
					$1 M \text{ NaClO}_4, k = 4.1, 5 \text{ and}$	
					6.15 x 10 ⁹ , resp.	
1.31	СО	_	1.0 x 10 ⁹	p.r.		Hart64-0048
1.32	CO ₂	7	$(7.7 \pm 1.1) \times 10^9$	p.r.	L	Gord63-0073
1.33	HCO ₃	_	$< 10^6$	p.r.	concn. 10 ⁻³ M, no OH scavenger	Thom64-0046
1.00	11003		10	p.1.	added; see also 67-0218 for	11101111.07 0040
					c.k. with CO_2 giving $k \cong$	
					6 x 10^5 .	
1.34	CO ₃ ²⁻	> 9	< 10 ⁶		concn. 10 ⁻³ M, no OH scavenger	Thom64-0046
1.54	CO ₃	- 9	< 10	p.r.	added.	1 nom04-0040
1 25	CN-	11.0	< 10 ⁶		value inferred from data	Anba.65-0047
1.35	CIA	11.0	< 10	p.r.		Aliba.05-0047
1.26	CNO	11	$\leq 1.3 \times 10^6$		reported in this paper. concn. 2 x 10 ⁻² M	Anba.64-0282
1.36	CNO ⁻	11 7	$\leq 1.3 \times 10$ $< 10^6$	p.r.	concn. 2 x 10 W	
1.37	CNS ⁻ Cd ²⁺		5.8 x 10 ¹⁰	p.r.		Thom64-0046
1.38	Cd	7		p.r.	c.k., Cd^{2+} concn. $10^{-3}-10^{-1} M$;	Baxe63-0187
		3	4.8 x 10 ¹⁰ (rel.)	γ-r.		Baxe.64-0153
					counter ion ClO_4^- ; $k_{1.38}/k$	
					$(e_{aq}^- + H^+) = 2.1$; assumed	
			10		$k(e_{\mathbf{q}}^{-} + \mathbf{H}^{+}) = 2.3 \times 10^{10}.$	
		7	$(6.1 \pm 1.8) \times 10^{10}$	n.r.	counter ion NO ₃ ; indirect; less	Roze.65-0008
					reliable method.	
		7	5.2 x 10 ¹⁰	p.r.		Baxe65-0044
		6.5	$(4.8 \pm 0.6) \times 10^{10}$	p.r.	counter ion SO_{4}^{2-} .	Anba.65-0047
		_	6.4 x 10 10 (cor.)	p.r.	counter ion SO ₄ ²⁻ ; in the	Pele.70-0242
					presence of 0.1 and 1 M	
					Na_2SO_4 , $k = 1.9$ and 0.96 x	
					10 ¹⁰ , resp.	
		-	1.7-3.2 x 10 ¹⁰	p.r.	k decreases with concn.,	Aldr71-0019
					0.1-0.5 M CdCl ₂ , at high	
					concn. soln. may contain	
					CdCl ⁺ and CdCl ₃ (see 1.40).	
		-	3.8-4.3 x 10 ¹⁰	p.r.	k decreases with concn.,	Aldr71-0019
					$0.1-0.5 \ M \ Cd(ClO_4)_2$	
					Cd ₂ OH ³⁺ may be present at	
					high concn.	
1.39	$Cd(NH_3)_4^{2+}$	6.5	$(3.1 \pm 0.3) \times 10^{10}$	p.r.	contains 0.2 M NH ₃ , counter	Anba.65-0047
	374			•	ion SO ₄ ²⁻ .	
1.40	$CdCl(H_2O)_3^+ +$	6.8	$(1.1 \pm 0.1) \times 10^{10}$	p.r.	contains 1.0 M Cl ⁻ , counter	Anba.65-0047
	$CdCl_2(H_2O)_2 +$		(373 = 373, 11 23	F	ion SO ₄ ²⁻ .	
	$CdCl_3(H_2O)^2$					
1.41	CdI_4^{2-}	7.2	$(1.6 \pm 0.2) \times 10^{10}$	p.r.	contains 0.2 M I-, counter	Anba.65-0047
	*		(110 = 012) 11 10	P.2.	ion SO_4^{2-} .	
1.42	$Cd(CN)_4^{2-}$	10	$(1.4 \pm 0.2) \times 10^8$	p.r.	contains 0.1 M CN ⁻ , counter	Anba.65-0047
	(/4		(111 = 012) 11 10	P	ions SO_4^{2-} , K^+ .	
1.43	Cd(gly) ⁺	~ 9	$(1.85 \pm 0.3) \text{ x}$	p.r.	counter ion SO_4^{2-} , $\mu \approx 10^{-4}$.	Meye.69-0277
	- 18-77		1010	P.1.	, m = 10	
	Cd(gly).	~ 10		n r	counter ion SO^{2-} $\mu \approx 10^{-3}$	Meve 69-0277
1.44	$Cd(gly)_2$ $Cd(gly)_3^-$	~ 10 ~ 11	$ \begin{array}{c} 10 \\ (1.4 \pm 0.2) \times 10^{10} \\ 4.8 \times 10^{9} \end{array} $	p.r. p.r.	counter ion SO_4^{2-} , $\mu \approx 10^{-3}$. counter ion SO_4^{2-} , $\mu \approx 10^{-1}$.	Meye.69-0277 Meye.69-0277

TABLE 3. Reactions of eaq with inorganic solutes - Continued

No.	Solute and Reaction	pH	k(dm³ mol-1s-1)	Method	Comments	Ref.
1.46	Cd(NTA) ₂ ⁴⁻	10.9	$\leq 2.3 \times 10^7$	p.r.	counter ion SO_4^{2-} , soln. contains $2 \times 10^{-2} M$ nitrilotriacetic acid.	Meye.69-0277
1.47	Cd(EDTA) ²⁻	12	3.9×10^{8}	p.r.	$\mu = 0.2.$	Anba.69-0276
1.48	Cd(en) ²⁺	~ 9	$(6.3 \pm 0.9) \times 10^{10}$	p.r.	$\mu \approx 10^{-4}$.	Meye.69-0277
1.40	34(611)		(cor.)	P		110,010
1.49	$Cd(en)_{2}^{2+}$	~ 10	$(4.4 \pm 0.7) \times 10^{10}$ (cor.)	p.r.	$\mu \cong 10^{-3}.$	Meye.69-0277
1.50	$Cd(en)_3^{2+}$	~ 11	$(6.8 \pm 1.0) \times 10^{10}$ (cor.)	p.r.	$\mu \cong 10^{-1}.$	Meye.69-0277
1 51	Ce ³⁺		(cor.) < 10 ⁹			Baxe64-0132
1.51		11.5	$< 3.2 \times 10^7$	p.r.	$\mu = 0.2$.	Anba.69-0276
1.52	Ce(EDTA)	11.5	$< 3.2 \times 10$ $< 10^5$	p.r.		
1.53	Cl	10		p.r.	values inferred from	Anba.64-0149
			< 10 ⁴	p.r.	data reported in these papers.	Anba.65-0047
1.54	CIO-	10.2	7.0 x 10 ⁹ (cor.)	p.r.	counter ion Na ⁺ ; $\mu = 10^{-3} M$; $k_{\text{obs}} = 7.2 \times 10^{9}$.	Anba.68-0295
1.55	C10 ₃	~ 10	$< 4 \times 10^6$	p.r.	concn. $10^{-2} M$.	Thom64-0046
		-	3.5 x 10 ⁸	p.r.	_	Baxe65-0044
		9	$< 2 \times 10^6$	p.r.		Meye67-0750
		-	2.2 x 10 ⁸	p.r.	$k \text{ detd. at } 15-80^{\circ}\text{C};$ $E_{a} = 3.2 \text{ keal mol}^{-1}.$	Cerc69-0567
			(Unexplained discr	 : : • h		
1 = 6	C10-	~ 10	< 10 ⁶		concn. $10^{-2} M$.	Thom64-0046
1.56	C1O ₄	~ 10	< 10 ⁶	p.r.	concn. 10 M.	
		_		p.r.	1	Baxe64-0132
		_	< 10 ⁵	p.r.	value inferred from data in this ref.	Anba.65-0001
1.57	Co ²⁺	_	1.35 x 10 ¹⁰	p.r.		Baxe63-0187
		_	1.2 x 10 ¹⁰	p.r.		Baxe65-0044
		_	1.2 x 10 ¹⁰	p.r.		Baxe64-0132
		-	9.5 x 10 ⁹ (cor.)	p.r.	counter ion ClO ₄ ; in the presence of 3 M NaClO ₄ , k =	Pele.70-0242
					3.7×10^9 .	
1.58	$Co(OH)_4^{2-} + Co(OH)_3^{-}$	14	1.6 x 10 ⁹	p.r.		Anba.64-0282
1.59	$C_{o}(CN)_{5}^{3-}$ $e_{eq}^{-} + C_{o}(CN)_{5}^{3-} \Rightarrow$ $C_{o}(CN)_{5}^{4-}$	13	$(1.4 \pm 0.1) \times 10^{10}$	p.r.	k same in D₂O soln.	Vene69-0443
1.59a	Co(NTA)2	10.9	≤ 1.4 x 10 ⁸	p.r.	counter ion SO_4^{2-} ; contains $2 \times 10^{-2} M$ nitrilotriacetic	Meye.69-0277
1 60	0 (55 57 1) 2-		8		acid.	
1.60	Co(EDTA) ²⁻	12	$< 5.2 \times 10^8$	p.r.	$\mu = 0.2.$	Anba.69-0276
1.61	Co(NH ₃) ₆ ³⁺	3	7.6 x 10 ¹⁰ (rel.)	γ-r.	c.k., k calcd. from $k_{1.61}/k$ $(e_{aq}^- + H^+) = 3.3$ assuming $k(e_{aq}^- + H^+) = 2.3 \times 10^{10}$; counter ion ClO ₄ .	Baxe.64-0153
		-	9 x 10 ¹⁰	p.r.	k detd. at $21-77.5^{\circ}$ C to give $E_{\bullet} = 4.2 \pm 0.5 \text{ kcal mol}^{-1}$	Baxe.65-0044
		11.1	$(9.0 \pm 1.3) \times 10^{10}$	p.r.	counter ion ClO ₄ ; soln. contains 0.2 M NH ₃ .	Anba.65-0047
		6.7	8.2 x 10 ¹⁰ (cor.)	p.r.	counter ion ClO_4^- ; $\mu = 6 x$ $10^{-5} M$.	Anba.68-0295
		~ 7	$(8.8 \pm 0.4) \times 10^{10}$	p.r.	counter ion Cl ⁻ ; soln. contains < 10 ⁻³ MH ₂ .	Walt.69-0186
		5-6	8.5 x 10 ¹⁰	p.r.	counter ion ClO ₄ .	Meye.69-0428
1.62	Co(NH ₃) ₅ H ₂ O ³⁺ +	_	6.2×10^{10}	p.r.		Baxe.65-0044
	Co(NH ₃) ₅ OH ²⁺	5.5-6	4.6 x 10 10 (rel.)	γ-r.	c.k., k calcd. assuming $k(e_{aq}^- + p - BrC_6H_4OH) =$	Anba.67-0098
					$K(e_{aq} + p - BRC_6H_4OH) =$ 1.2×10^{10} ; pK of $Co(NH_3)_5H_2O^{3+}$ is 5.4.	

TABLE 3. Reactions of e_{aq}^- with inorganic solutes — Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
		5.5-6	5.8 x 10 ¹⁰ (rel.)	γ-r.	c.k., k calcd. assuming	Anba.67-0098
					$k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}; k$	
					detd. by both methods at 20, 45	
					and 70°C. to give $E_a = 3.2$ kcal	
		4.0	0.1 1010		mol ⁻¹ .	4 1 60 0005
		4.9	8.1 x 10 ¹⁰	p.r.	counter ion ClO ₄ ;	Anba.68-0295
			8.0 x 10 ¹⁰		$\mu = 6 \times 10^{-5} M$. unpubl. data cited.	Meye.69-0428
1 62	Co(NH ₃) ₄ (H ₂ O) ₂ ³⁺	-	4.4 x 10 ¹⁰	p.r.	unpubi. data cited.	Baxe65-0044
1.63 1.64	Co(NH ₃) ₄ (H ₂ O) ₂ Co(NH ₃) ₅ OH ²⁺	10.0	$(6.0 \pm 0.9) \times 10^{10}$	p.r.	counter ion ClO ₄ .	Meye.69-0428
1.65	$Co(NH_3)_5OH$ $Co(NH_3)_5F^{2+}$	5-6	$(6.6 \pm 1) \times 10^{10}$	p.r. p.r.	counter ion ClO ₄ .	Meye.69-0428
1.66	Co(NH ₃) ₅ Cl ²⁺	-	5.4×10^{10}	p.r.		Baxe65-0044
1.00	C0(11113)5C1	7.3	6.1 x 10 ¹⁰	p.r.	counter ion ClO ₄ ;	Anba.68-0295
			011 X 10	p	$\mu = 4 \times 10^{-5} M$.	
		5-6	$(7.8 \pm 1.1) \times 10^{10}$	p.r.	counter ion ClO ₄ .	Meye.69-0428
1.67	$C_0(NH_3)_5Br^{2+}$	7.7	6.2×10^{10}	p.r.	counter ion ClO ₄ ;	Anba.68-0295
	3.0			•	$\mu = 4 \times 10^{-5} M.$	
		5-6	$(8.0 \pm 1.2) \times 10^{10}$	p.r.	counter ion ClO ₄ .	Meye.69-0428
1.68	Co(NH ₃) ₅ CN ²⁺	6.1	6.3 x 10 ¹⁰	p.r.	counter ion ClO ₄ ;	Anba.68-0295
					$\mu = 4 \times 10^{-5} M$.	
		5-6	$(7.4 \pm 1.1) \times 10^{10}$	p.r.	counter ion ClO ₄ .	Meye.69-0428
1.69	Co(NH ₃) ₅ NCS ²⁺	5-6	$(7.3 \pm 1.1) \times 10^{10}$	p.r.	counter ion SO_4^{2-} .	Meye.69-0428
1.70	$Co(NH_3)_5N_3^{2+}$	6.3-8.2	6.3 x 10 ¹⁰	p.r.	counter ion ClO ₄ ;	Anba.68-0295
			10		$\mu = 4 \times 10^{-5} M.$	
1.71	$Co(NH_3)_4(CN)H_2O^{2+}$	6.1	5.6 x 10 ¹⁰	p.r.	counter ion ClO4;	Anba.68-0295
	24		10		$\mu = 4 \times 10^{-5} M.$	
1.72	Co(NH ₃) ₅ acetate ²⁺	5-6	$(7.3 \pm 1.1) \times 10^{10}$	p.r.	counter ion ClO ₄ .	Meye.69-0428
1.73	Co(NH ₃) ₅ fumarate ⁺	5-6	$(6.5 \pm 0.9) \times 10^{10}$	p.r.	counter ion ClO ₄ .	Meye.69-0428
1.74	Co(NH ₃) ₅ terephthalate [†]	-	6 x 10 ¹⁰	p.r.		Brow64-0045
1.75	$(NH_3)_5CoO_2Co(NH_3)_5^{5+}$	5.9	8.2 x 10 ¹⁰	p.r.	counter ion Br;	Anba.68-0295
1.76	$C_0(CN)_6^{3-}$	_	2.7 x 10°		$\mu = 5 \times 10^{-5} M.$	Baxe65-0044
1.70	C0(CIV)6	10	$(1.0 \pm 0.2) \times 10^9$	p.r.	contains 0.1 M CN ⁻ ;	Anba.65-0047
		10	$(1.0 \pm 0.2) \times 10$ (cor.)	p.r.	$k_{\text{obs}} = (3.6 \pm 0.4) \times 10^{9}.$	Anba.03-0047
		13	$(5.0 \pm 0.5) \times 10^9$	n r	$\begin{array}{c} \mathbf{k}_{obs} = (3.0 \pm 0.4) \times 10^{\circ}. \\ \text{contains} \sim 0.1 \ M \ H_2. \end{array}$	Vene69-0443
1.77	Co(CN) ₅ Cl ³⁻	13	1.8 x 10 10	p.r. p.r.		Baxe65-0044
1.78	$Co(CN)_5OH^{3-}$	_	1.1 x 10 10	p.r.		Baxe65-0044
1.79	$C_0(CN)_5N_3^{3-}$	_	1.3 x 10 10	p.r.		Baxe65-0044
1.80	$C_0(CN)_5NO_2^{3-}$	_	8.0 x 10 ⁹	p.r.		Baxe65-0044
1.81	$C_0(NO_2)_6^{3-}$	_	5.8 x 10 10	p.r.	_	Baxe65-0044
1.82	$C_0(C_2O_4)_3^{3-}$	_	1.3 x 10 ¹⁰	p.r.	_	Baxe65-0044
1.83	omitted					
1.84	Co(EDTA)	_	2.9 x 10 ¹⁰	p.r.	<u> </u>	Baxe65-0044
		11-12	2.9 x 10 10	p.r.	$\mu = 0.2.$	Anba.69-0276
1.85	Co(en) ₃ ³⁺	6.55	7.3 x 10 ¹⁰	p.r.	counter ion Cl ⁻ .	Szut65-0018
	, ,,	_	8.2 x 10 ¹⁰	p.r.		Baxe65-0044
		5-6	$(8.5 \pm 1.3) \times 10^{10}$	p.r.	counter ion Cl ⁻ .	Meye.69-0428
1.86	cis -Co(en) ₂ F ₂ ⁺	5-6	$(4.9 \pm 0.7) \times 10^{10}$	p.r.		Meye.69-0428
1.87	Co(en) ₂ Cl ₂ ⁺	ļ -	3.2 x 10 ¹⁰	p.r.		Baxe65-0044
	cis -Co(en) ₂ Cl ₂ ⁺	5-6	$(7.3 \pm 1.1) \times 10^{10}$	p.r.	counter ion ClO ₄ .	Meye.69-0428
	trans -Co(en) ₂ Cl ₂ ⁺	5.55	7.1 x 10 ¹⁰	p.r.	counter ion NO ₃ ;	Szut65-0018
					k cor. for NO ₃ .	
		5-6	$(7.7 \pm 1.1) \times 10^{10}$	p.r.	counter ion Cl ⁻ .	Meye.69-0428
1.88	Co(en) ₂ CO ₃ ⁺	7.2	4.9 x 10 ¹⁰	p.r.	counter ion ClO4;	Anba.68-0295
			,,		$\mu = 2 \times 10^{-5} M.$	
1.00	0 (5-6	$(4.8 \pm 0.7) \times 10^{10}$	p.r.	_	Meye.69-0428
1.89	$cis - Co(en)_2 NH_3 Cl^{2+}$	5-6	$(6.6 \pm 1) \times 10^{10}$	p.r.		Meye.69-0428
1.90	$cis - Co(en)_2 NH_3 NO_2^{2+}$	5-6	$(6.6 \pm 1) \times 10^{10}$	p.r.		Meye.69-0428

Table 3. Reactions of e_{aq}^- with inorganic solutes — Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.91	Co(en) ₂ FH ₂ O ²⁺	5-6	$(6.3 \pm 0.9) \times 10^{10}$	p.r.	_	Meye.69-0428
1.92	$cis - Co(en)_2(CNS)_2^+$	6.00	6.9×10^{10}	p.r.	counter ion CNS ⁻ .	Szut.65-0018
	$trans - Co(en)_2(CNS)_2^+$	6.50	5.4 x 10 ¹⁰	p.r.	counter ion Cl ⁻ .	Szut.65-0018
1.93	Co(dien) ₂ ³⁺	~ 7	$(7.6 \pm 0.4) \times 10^{10}$	p.r.	counter ion Cl ⁻ ; soln.	Walt.69-0186
	20(4:0:1)2		(110 = 511) 11 15	P	contains $< 10^{-3} M H_2$.	
1.94	$(en)_2CoO_2(NH_2)Co(en)_2^{4+}$	6.2	9.6 x 10 ¹⁰	p.r.	counter ion Br ⁻ ; $\mu = 10^{-4} M$.	Anba.68-0295
1.95	$(CN)_5C_0O_2C_0(CN)_5^{5-}$	7.0	2.9 x 10 ¹⁰	p.r.	counter ion K^+ ; $\mu = 10^{-4} M$.	Anba.68-0295
1.96	$Co(bipy)_3^{3+}$	~ 7	$(8.3 \pm 0.7) \times 10^{10}$	p.r.	counter ion ClO ₄ ; soln.	Walt.69-0186
	20(2.2)3		(0.0 2 0.1) x 10	P	contains $< 10^{-3} M H_2$.	W 411.05 0100
1.97	Co(phen) ₃ ³⁺	~ 7	$(7.5 \pm 0.5) \times 10^{10}$	p.r.	counter ion ClO ₄ ; soln.	Walt.69-0186
,	- Co(p.i.e.i.)3		(1.0 = 0.0) x 10		contains $< 10^{-3} M H_2$.	Walt.05 0100
1.98	Co(acac)3+	1.8-3.0	4.6 x 10 ¹⁰ (rel.)	r.	c.k., k calcd. from $k_{1.98}/k$	Rao70-0094
,0	30(4040)3	1.0 0.0	1.0 1,10 (101.)		$(e_{ag}^+ + H^+) = 2.0$ assuming	114010 0071
					$k(e_{aq}^- + H^+) = 2.3 \times 10^{10};$	
					$k(H + Co(acac)_{3}^{3+})/k(H +$	
					$iso - C_3H_7OH) = 17, g(H) =$	
					$0.56, g(e_{ag}) = 2.85.$	
		6-7	4.3 x 10 ¹⁰ (rel.)	_	c.k., k calcd. from $k(e_{ag}^- + O_2)$	Rao70-0094
		0-7	4.5 x 10 (rel.)	r.		Nao70-0094
					$/k_{1.98} = 0.44 \text{ assuming}$	
					$k(e_{aq}^- + O_2) = 1.9 \times 10^{10};$	
	Cr ²⁺	6.9	$(4.2 \pm 0.8) \times 10^{10}$		g(OH) = 2.2, g(H) = 0.56.	1 1 65 0047
1.99	Cr			p.r.	Cr ²⁺ soln. produced by	Anba.65-0047
		11.2	$(1.9 \pm 0.5) \times 10^{10}$		electrolytic redn. of	
	a (a)v4-				Cr(ClO ₄) ₃ .	
1.100	$Cr(CN)_6^{4-}$	10.0	3.3 x 10 ⁹ (cor.)	p.r.	counter ion K^+ ; $\mu =$	Anba.68-0295
					$5 \times 10^{-2} M$; $k_{obs} = 1.4 \times 10^{-10}$	
+	4-	5		†	10 ¹⁰ .	
1.101	CrF ₆	8.5	4.1 x 10 ⁹	p.r.	· 	Anba.65-0780
1.102	Cr ³⁺					
	$Cr(H_2O)_5OH^{2+}$	7.1	$(6.0 \pm 0.5) \times 10^{10}$	p.r.	counter ion ClO ₄ ; pK of	Anba.65-0047
					$Cr(H_2O)_6^{3+}$ is 3.75.	
	$CrO_2(H_2O)_n^-$	10.9	$(4.6 \pm 0.5) \times 10^{10}$	p.r.	counter ion ClO ₄ ;	Anba.65-0047
		14	$(2.0 \pm 0.2) \times 10^8$	p.r.	counter ion ClO ₄ ;	Anba.65-0047
	- 7				soln. contains 1 M NaOH.	
1.103	Cr(NH ₃) ₅ Cl ²⁺	6.7	6.2 x 10 ¹⁰	p.r.	counter ion Cl ⁻ ; $\mu = 10^{-4} M$.	Anba.68-0295
1.104	CrF ₆	10	$(1.4 \pm 0.2) \times 10^{10}$	p.r.	soln. contains 0.2 M F.	Anba.65-0047
1.105	$Cr(CN)_6^{3-}$	10	4.2 x 10 ⁹ (cor.)	p.r.	soln. contains 0.1 M CN;	Anba.65-0047
					$k_{\text{obs}} = (1.5 \pm 0.2) \times 10^{10}$.	
1.106	$Cr(en)_3^{3+}$	6.83	5.3 x 10 ¹⁰	p.r.	counter ion Cl ⁻ .	Szut65-0018
		_	7.5 x 10 ¹⁰	p.r.		Baxe65-0044
1.107	$cis - Cr(en)_2Cl_2^+$	5.55	7.1 x 10 ¹⁰	p.r.	counter ion Cl ⁻ .	Szut65-0018
1.108	$cis - Cr(en)_2(CNS)_2^+$	5.65	4.2 x 10 ¹⁰	p.r.	counter ion CNS ⁻ .	Szut65-0018
1.109	Cr(EDTA)	4.9-5.0	2.6 x 10 ¹⁰	p.r.	k cor. for H ⁺ content.	Szut65-0018
		11-12	2.6 x 10 ¹⁰	p.r.	$\mu = 0.2.$	Anba.69-0276
1.110	$Cr(C_2O_4)_3^{3-}$	4.76-	1.8 x 10 ¹⁰	p.r.	counter ion K ⁺ .	Szut65-0018
	. 2 4/3	6.13		Pil		224111100 0010
1.111	$cis - Cr(C_2O_4)_2(H_2O)_2^-$	6.4	1.3 x 10 ¹⁰	p.r.	counter ion K ⁺ .	Szut65-0018
	$trans - Cr(C_2O_4)_2(H_2O)_2^-$	6.18	1.5 x 10 10	p.r.	counter ion K ⁺ .	Szut65-0018
1.112	$\operatorname{CrO}_4^{2-}$		1.8 x 10 ¹⁰	p.r.		Baxe65-0044
		_	1.8 x 10 ¹⁰ (cor.)	p.r.	counter ion Na ⁺ ; in the	Pele.70-02423
			1.0 x 10, (col.)	p.1.	presence of 0.1 and 1 M	1 010.70 02.720
					Na ₂ SO ₄ , $k = 2.7$ and 2.6 x	
					Na_2SO_4 , $k = 2.7$ and 2.0 x 10^{10} , resp.	
1.113	$\operatorname{Cr}_2\operatorname{O}_7^{2-}$	7.0	3.3 x 10 ¹⁰		contains no methanol.	Thom64-004
1.113	C1 ₂ O ₇	7.0	6.0 x 10 ¹⁰	p.r.		
				p.r.	counter ion Na ⁺ ; in the	Pele. 70-02423
			(cor.)		presence of 0.3 M NaClO ₄ , 0.1	
					and 1 M Na ₂ SO ₄ . $k=7.5$, 7 and	
			1		m a 2010	
1.114	Cr(CrO ₄) ³⁻	7	2.1 x 10 ¹⁰	p.r.	5.0 x 10 ¹⁰ , resp. There is an error in the	Hart66-0144

9

TABLE 3. Reactions of eaq with inorganic solutes - Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.115	Cu ²⁺					
	$C_{u}(H_{2}O)_{4}^{2+}$ $e_{*q}^{-} + C_{u}^{2+} \gg C_{u}^{+}$	6	4.0 x 10 ¹⁰ (rel.)	γ−r.	c.k., k calcd. from	Scho63-0057
	$e_{aq}^- + Cu^{2+} \gg Cu^+$				$k_{1.115}/k(e_{aq} + N_2O)$	Scho.64-0095
					$= 4.7 \pm 0.4$ assuming	
	_				$k(e_{aq}^- + N_2O) = 8.7 \times 10^9$.	
		7	$(3.3 \pm 0.3) \times 10^{10}$	p.r.	counter ion SO_4^{2-} .	Gord63-0073
		_	3.0×10^{10}	p.r.		Baxe63-0187
		_	2.9×10^{10}	p.r.		Baxe65-0044
		6.8	$(3.0 \pm 0.3) \times 10^{10}$	p.r.	counter ion ClO ₄ .	Anba.65-0047
		1.5-4.5	3.8 x 10 ¹⁰ (rel.)	γ-r.	c.k., $\mu = 0.15$; k calcd.	Mici.66-0138
				i i	from $k_{1.115}/k(e_{aq}^- + H^+) =$	
					1.64 ± 0.03 assuming	
				ľ	$k(e_{aq}^- + H^+) = 2.3 \times 10^{10}$	
					and $g(H) = 0.55$.	
		_	$4.5 \times 10^{10} (cor.)$	p.r.	counter ion ClO ₄ or SO ₄ ²⁻ ;	Pele.70-0242
			(3324)	P.2.	in the presence of 0.03	
					and 0.3 M NaClO ₄ and	
					$1 M \text{ Na}_2 \text{SO}_4, k = 2.7, 1.7 \text{ and}$	
					0.91×10^{10} , resp.	
1.116	Cu(OH) ₄ ²⁻	14	$(5.8 \pm 0.6) \times 10^9$	p.r.	counter ions ClO ₄ , Na ⁺ .	Anba.65-0047
1.110	Cu(O11)4	3 M OH	$(4.5 \pm 0.5) \times 10^9$	_	counter ions ClO ₄ , Na ⁺ .	Anba.65-0047
		5 M OH	$(3.4 \pm 0.5) \times 10^9$	p.r.	counter ions ClO ₄ , Na .	Anba.65-0047
1.116a	glycine, Cu (II) salt	6.7	$3.5 \times 10^8 \text{ (rel.)}$	p.r.		
1.110a	grycine, Cu (11) sait	0.7	3.3 x 10 (rei.)	γ-r.	c.k., assume $k (e_{aq}^- + ClCH_2COO^-)$ = 1.2 x 10 ⁹ .) Will.67-0310
1 117	6 (1)	1,,,	$(1.4 \pm 0.2) \times 10^{10}$		$= 1.2 \times 10^{\circ}.$ counter ion SO_4^{2-} ; soln.	M (0 0077
1.117	Cu(gly) ₃	11.1	$(1.4 \pm 0.2) \times 10$	p.r.		Meye.69-0277
1 110	C (NIT A)4-	10.0	$(1.0 \pm 0.2) \times 10^{10}$		contains $10^{-1} M$ glycine.	M (0 0000
1.118	Cu(NTA) ₂ ⁴⁻	10.9	$(1.0 \pm 0.2) \times 10$	p.r.	counter ion SO_4^{2-} ; soln.	Meye.69-0277
					contains 2 x 10 ⁻² M	
1 110	0 (DD m) 2-		10		nitrilotriacetic acid.	
1.119	Cu(EDTA) ²⁻	12	1.0 x 10 ¹⁰	p.r.	$\mu = 0.2.$	Anba.69-0276
1.120	$Cu(NH_3)_4^{2+}$	11.1	$(1.8 \pm 0.3) \times 10^{10}$	p.r.	soln. contains 0.2 M NH ₃ .	Anba.65-0047
1.121	$Cu(en)_3^{2+}$	11.2	$(2.0 \pm 0.3) \times 10^{10}$	p.r.	counter ion SO_4^{2-} ; soln.	Meye.69-0277
				:	contains 10 ⁻¹ M ethylene-	
					diamine-diHCl.	•
1.122	$Cu(CN)_4^{2-}$	10	3.0 x 10 ⁸	p.r.	soln. contains 0.1 M CN	Anba.65-0047
1.123	Dy ³⁺	5.90	4.6 x 10 ⁸	p.r.		Thom64-0046
1.124	Dy(EDTA)	12	9.3 x 10 ⁶	p.r.	$\mu = 0.2.$	Anba.69-0276
1.125	Er ³⁺	-	7×10^7	p.r.		Baxe65-0044
1.126	Er(EDTA)	12	1.1×10^{7}	p.r.	$\mu = 0.2.$	Anba.69-0276
1.127	Eu ³⁺	5.55	6.1 x 10 ¹⁰	p.r.		Thom64-0046
1.128	Eu(EDTA)	11.5	5.6 x 10°	p.r.	$\mu = 0.2.$	Anba.69-0276
1.129	F-	7.2	$< 2 \times 10^4$	p.r.	k calcd. from exptl. data	Anba.65-0001
					in this ref.	
1.130	HF	5.02	6 x 10 ⁷ (calcd.)	X-r.	calcd. from $k = 3 \times 10^7$	Anba.67-0099
	$e_{aq}^- + HF \Rightarrow HF^-$				(65-0493), where HF ₂ is 95% of	
	→ H + F ⁻				the acid present, and the pK of	
					HF and HF ₂ differ by 0.6.	
1.131	HF-	5.03	$4.3 \times 10^{7} (cor.)$		c.k., soln. contains 9.6 x 10 ⁻³	Jort62-0021
	$e_{aq}^- + HF_2^- \rightleftharpoons H + F_2^-$, , ,		$M \text{ HF}, 1.6 \times 10^{-2} M \text{ HF}_{2}^{-},$	Raba65-049
	aq 2				and $0 - 10^{-4} M$ acetone;	
					$\mu = 0.46$; k calcd. from	
					$k(e_{ag}^{-} + acetone)/k_{1.131}$	
					$= 80 \pm 20; \text{ assuming}$	
					$k(e_{aq}^2 + acetone) = 6 \times 10^9$.	
		5.03	1.8 x 10 ⁷ (cor.)	phot.	c.k., soln. contains 9 x 10 ⁻³	Jort62-0021,
		0.00	1.0 x 10 (601.)	pilot.	$M \text{ HF}, 4.4 \times 10^{-1} M \text{ F}^-,$	Raba65-0493
					$1.6 \times 10^{-2} M \text{ HF}_2$, 1.5×10^{-1}	Itabado 0470
					$M \Gamma$; $\mu = 0.6$; k calcd. from	
					M 1 , μ = 0.0, κ calcu. Hom	

TABLE 3. Reactions of eaq with inorganic solutes - Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
					$k(e_{aq}^- + H^+)/k_{1.131} = 250$ assuming $k(e_{aq}^- + H^+) = 2.3$ $\times 10^{10}$.	
1.132	Fe ²⁺	-	$\sim 3.5 \times 10^{8}$	p.r.		Baxe64-0132
		5.0	1.2 x 10 ⁸	p.r.		Anba.64-0282
		-	$\sim 1.6 \times 10^8$	p.r.		Baxe65-0044
1.133	Fe(EDTA) ²⁻	12	< 1.0 x 10 ⁹	p.r.	$\mu = 0.2$; value probably high due to partial oxidation.	Anba.69-0276
1.134	Fe(CN) ₆	-	< 10 ⁵	p.r.		Anba.66-0435
1.135	Fe(CN) ₅ NH ₃ ³⁻	8.6	$< 1.0 \times 10^7$	p.r.	counter ion Na ⁺ ; $\mu = 0.005 M$.	Anba.68-0295
1.136	FeF ₆ ³⁻	6.6	2.2 x 10 ⁹ (cor.)	p.r.	counter ion K^+ ; $\mu = 10^{-1} M$; $k_{obs} = 1.1 \times 10^{10}$.	Anba.68-0295
1.137	Fe(CN) ₆ ³⁻	7, 10.3	$(3.0 \pm 0.4) \times 10^9$	p.r.	counter ion K ⁺ ; k detd. at	Gord63-0073 Gord63-0050
			(cor.)		various ionic strengths and extrapolated to $\mu = 0$.	Gord03-0030
1.138	Fe(CN) ₅ NO ²⁻	10.5	2.4 x 10 ¹⁰	p.r.	counter ion Na ⁺ ; $\mu = 10^{-4} M$.	Anba.68-0295
		-	2.2 x 10 ¹⁰	p.r.		Buxt69-0052
1.139	Fe(EDTA)	12	2.3 x 10 ¹⁰	p.r.	$\mu = 0.2.$	Anba.69-0276
1.140	Ga(EDTA)	11	7.8×10^{7}	p.r.	$\mu = 0.2.$	Anba.69-0276
1.141	Gd ³⁺	6.05	5.5 x 10 ⁸	p.r.	_	Thom64-0046
1.142	Gd(EDTA)	12	6.0 x 10 ⁶	p.r.	$\mu = 0.2.$	Anba.69-0276
1.143	H _{aq}		$2.3-2.4 \times 10^{10}$		ies listed have been used to calculat	
	$e_{aq}^- + H_{aq}^+ \gg H$			1	the following reactions from relative	
				l .	51, 1.98, 1.115, 1.131, 1.156, 1.178, 1	
					359, 1.390, 1.399a, 1.520, 1.552, 1.5 571, 1.635.	53, 1.562,
		4.1-4.7	$(2.3 \pm 0.2) \times 10^{10}$	p.r.	soln. contains H ₂ SO ₄ or HClO ₄ .	Dorf.63-0045
		4-5	$(2.4 \pm 0.2) \times 10^{10}$	p.r.		Gord63-0073
		2.1-4.3	$(2.0 \pm 0.2) \times 10^{10}$	p.r.	$k \operatorname{cor.} \operatorname{to} \mu = 0.$	Keen64-0091
		_	2.1 x 10 ¹⁰	p.r.	<u> </u>	Baxe64-0132
		-	2.2 x 10 ¹⁰	p.r.	$k \text{ detd. at } 26-57^{\circ}\text{C}; E_{\bullet} = 3.8 \pm 0.5 \text{ kcal mol}^{-1}.$	Baxe.65-0044
		-	2.2 x 10 ¹⁰	p.r.	$k \text{ detd. at } 15-80^{\circ}\text{C};$ $E_a = 2.5_5 \text{ kcal mol}^{-1}.$	Cerc69-0567, 68-0010
		_	2.0 x 10 ¹⁰ (rel.)	γ-r.	c.k., k calcd. assuming	Hent.70-0056
					$k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10};$ soln. contains $10^{-3} M \text{ NaNO}_3$,	
					5 x 10 ⁻² M glucose and 2.3	
					x 10 ⁻⁴ M HClO ₄ ; pressures up to 8.15 kbar.	
		5-6	$(2.8 \pm 0.2) \times 10^{10}$	p.r.	elec. condy., k detd. at	Bark70-0243
			(2.0 = 0.2) x 10	P	25-50°C to give $E_a = 2.44 \pm 0.20 \text{ kcal mol}^{-1}$.	22.0
		< 2	$(1.2 \pm 0.2) \times 10^{10}$	p.r.	concn. 0.5 – 5 M.	Bron70-0605
1.144	$\begin{bmatrix} D_{aq}^+ \\ e_d^- + D_{aq}^+ > D \end{bmatrix}$	acid	$(1.7 \pm 0.1) \times 10^{10}$	p.r.	D ₂ O soln. contains H ₂ SO ₄ , HCl or HClO ₄ .	Fiel.68-0061
1.145	H,		< 10 ⁷		4.	Hart64-0048
1.146	H ₂ O ₂		1.2 x 10 10	p.r.	ue listed has been used to calculate	
1.140	$\begin{vmatrix} \mathbf{H}_2 \mathbf{O}_2 \\ \mathbf{e}_{aq}^- + \mathbf{H}_2 \mathbf{O}_2 \geqslant \mathbf{OH} + \mathbf{OH}^- \end{vmatrix}$		1.2 x 10	rates of	the following reactions from relative	
		7	$(1.2 \pm 0.1) \times 10^{10}$	1.156, 1. p.r.	<u></u>	Gord63-0050,
		•	(1.2 = 0.1) x 10	p		Gord63-0073
		_	1.4 x 10 ¹⁰	p.r.		Baxe64-0132
			1.4 x 10	p.1.		Keen64-0091
		11	1.3 x 10 ¹⁰	p.r.	soln. H ₂ -satd.	Hart.65-0494
		_	1.1 x 10 ¹⁰	p.r.	k detd. at 15-80°C;	Cerc69-0567
			1.1 × 10	p.1.	$E_{\perp} = 3.6 \text{ kcal mol}^{-1}$.	00.007 0001

Table 3. Reactions of e_{aq}^- with inorganic solutes – Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
					NaOH; $pK(H_2O_2) = 11.75$.	
		-	1.7 x 10 ¹⁰	p.r.	concn. $> 0.1 M$.	Aldr71-0019
.147	D ₂ O ₂	7	$(1.2 \pm 0.1) \times 10^{10}$	p.r.	D ₂ O soln.	Fiel.68-0061
	$e_d^- + D_2O_2 \Rightarrow OD + OD^-$			·	•	
.148	HO ₂	13.0	$(3.5 \pm 0.4) \times 10^9$	p.r.	soln. contains (4-13) x	Feli67-0132
	2		,		$10^{-4} M H_2 O_2$; pK ($H_2 O_2$) =	
					$11.8; H_2O_2 \rightleftharpoons H^+ + HO_2^$	
.149	$Hg(en)_3^{2+}$	11.2	$(1.6 \pm 0.2) \times 10^{10}$	p.r.	counter ion Cl ⁻ ; soln.	Meye.69-0277
	3		(P	contains 2 x 10^{-2} M	
					ethylenediamine-diHCl.	
1.150	$Hg(CN)_4^{2-}$	10	1.9 x 10 ⁸	p.r.		Anba.65-0780
1.151	Hg(gly)3	11.1	$(1.5 \pm 0.2) \times 10^{10}$	p.r.	counter ion Cl ⁻ ; soln.	Meye.69-0277
			(P	contains 10 ⁻¹ M glycine.	
1.152	$Hg(NTA)_2^{4-}$	10.9	$(3.9 \pm 0.6) \times 10^9$	p.r.	counter ion Cl ⁻ ; soln.	Meye.69-0277
	118(1111)2	10.5	(0.7 = 0.0) x 10	p	contains 2 x 10 ⁻² M	Meye.ob 0211
					nitrilotriacetic acid.	
1.153	Hg(EDTA) ²⁻	12	5.1 x 10 ⁹	p.r.	$\mu = 0.2.$	Anba.69-0276
1.154	Ho ³⁺	5.88	2.4×10^9	p.r.	We have no explanation	Thom64-0046
	$e_{ag}^{-} + Ho^{3+} \gg Ho^{2+}$	_	6.6×10^7	p.r.	for this large discrepancy	Baxe65-0044
1.155	Ho(EDTA)	12	9.8×10^6		$\mu = 0.2.$	Anba.69-0276
1.156	I ₂	7	$(5.1 \pm 0.3) \times 10^{10}$	p.r.	$d.k.(e_{ag}^{-})$ as well as p.b.k.	Thom64-0046
1.100	$\begin{vmatrix} \mathbf{r}_2 \\ \mathbf{e}_{\mathbf{q}} + \mathbf{I}_2 \geqslant \mathbf{I}_2 \end{vmatrix}$	•	$(3.1 \pm 0.3) \times 10$	p.r.	(I_2) .	111011104-0040
	Caq , 12 / 12	5.3	5.9 x 10 ¹⁰ (rel.)		c.k., soln. contains 5 x 10 ⁻⁴	Sawa66-0113
		3.3	3.9 x 10 (1el.)	γ-r.	MKI; k calcd. from eq. based	3awa00-0113
					on H ₂ O ₂ yield assuming	
					$k(e_{ag}^- + H^+) = 2.36 \times 10^{10}$	
					$k(e_{aq}^- + H_2O_2) = 1.2 \times 10^{10},$	
			5.1 x 10 ¹⁰ (rel.)		and $g(e_{aq}^-) = 2.8$.	A 60 0150
		_	5.1 x 10 (rel.)	γ-r.	c.k., k calcd. from $k_{1.156}/k$	Asmu.68-0159
					$(e_{aq}^- + SF_6) = 3.08$, assuming	
1 157	1-	7	2 x 10 ¹⁰	1	$k(e_{aq}^- + SF_6) = 1.65 \times 10^{10}$.	D : 65 7017
1.157	$\begin{bmatrix} I_3^- \\ e_{aq}^- + I_3^- \geqslant I^- + I_2^- \end{bmatrix}$	7		phot.	c.k., soln. contains 0.23 M KI,	Dain.65-7017
	e _{aq} + 1 ₃ > 1 + 1 ₂		(rel., cor.)		$(4-48) \times 10^{-4} M I_3$, and	
					$(8-64) \times 10^{-4} M N_2 O; k$	
					calcd. assuming $k(e_{aq}^- + N_2O)$	
1 150	10-	7	(7.7 . 0.0) 109		$= 8.7 \times 10^9$.	4 1 65 0047
I.158	IO ₃	7	$(7.7 \pm 0.9) \times 10^9$	p.r.	counter ion K ⁺ .	Anba.65-0047
		I1	$(8.3 \pm 1.0) \times 10^9$	p.r.	counter ion K+.	Anba.65-0047
		14	$(9.6 \pm 1.2) \times 10^9$	p.r.	counter ion K ⁺ .	Anba.65-0047
		3 M OH	$(8.1 \pm 0.8) \times 10^9$	p.r.	counter ion K ⁺ .	Anba.65-0047
		_	8.5 x 10 ⁹ (cor.)	p.r.	counter ion K ⁺ ; in the	Pele.70-0242
					presence of 0.1 M NaClO ₄ ,	
	10-	_			$k = 1.2 \times 10^{10}$.	4 1 65 0045
1.159	104	7	$(1.1 \pm 0.2) \times 10^{10}$	p.r.	counter ion Na ⁺ .	Anba.65-0047
		11	$(1.9 \pm 0.2) \times 10^{10}$	p.r.	counter ion Na ⁺ .	Anba.65-0047
		14	$(2.1 \pm 0.3) \times 10^{10}$	p.r.	counter ion Na ⁺ .	Anba.65-0047
1.160	In ³⁺	3 M OH	$(1.6 \pm 0.2) \times 10^{10}$	p.r.	counter ion Na ⁺ .	Anba.65-0047
1.160		1	$(5.6 \pm 1.0) \times 10^{10}$	p.r.	counter ion SO_4^{2-} .	Brow.66-0062
1 163	$e_{aq}^{-} + \ln^{3+} \Rightarrow \ln^{2+}$					
1.161	In(EDTA)	12	4.1 x 10 ⁸	p.r.	$\mu = 0.2.$	Anba.69-0276
1.162	IrCl ₆ ³⁻	-	4.7×10^9	p.r.		Dain.67-0063
		10.6	3.0 x 10 ⁹ (cor.)	p.r.	counter ion K^+ ; $\mu = 5 \times 10^{-2}$	Anba.68-0295
	3.4		10		$M, k_{obs} = 9.4 \times 10^9.$	
1.163	$Ir(NH_3)_6^{3+}$	~ 7	$(1.3 \pm 0.1) \times 10^{10}$	p.r.	counter ion Cl ⁻ .	Walt67-0560
1.164	IrCl ₆ ²⁻	-	2.6 x 10 ¹⁰ (rel.)	γ-r.	c.k., $k_{1.164}/k(e_{aq} + N_2O) =$	Dain.67-0063
					(2.96 ± 0.03) , assume k	
					$(e_{aq}^- + N_2O) = 8.7 \times 10^9.$	
		-	2.5×10^{10}	p.r.		Dain.67-0063
		10.2	9.3 x 10 ⁹ (cor.)	p.r.	counter ion K^+ ; $\mu = 5 \times 10^{-2}$	Anba.68-0295

TABLE 3. Reactions of eaq with inorganic solutes - Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
					$M; k_{obs} = 2.0 \times 10^{10}.$	
1.165	K ⁺	-	$< 5 \times 10^{5}$	p.r.		Baxe64-0132
		-	$< 3 \times 10^4$	p.r.	k calcd. from the exptl. data in this ref.	Anba.65-0001
1.166	La ³⁺	6.98	3.4 x 10 ⁸	p.r.		Thom64-0046
1.100	La	_	6.9 x 10 ⁸	p.r.		Baxe65-0044
1 167	L-(EDTA)	12	$< 1.2 \times 10^6$	p.r.	$\mu = 0.2.$	Anba.69-0276
1.167	La(EDTA) Lu ³⁺	6.20	2.5×10^{8}	p.r.		Thom64-0046
1.168		12	1.5×10^7	p.r.	$\mu = 0.2.$	Anba.69-0276
1.169	Lu(EDTA) - Mn ²⁺	12	7.7×10^7	_	μ 0.2.	Baxe64-0132
1.170	Mn	_	3.8×10^7	p.r.		Baxe65-0044
		-		p.r.	counter ion SO_4^{2-} ; soln.	Meye.69-0277
1.171	Mn(gly) ₃	11.1	$\leq 1.7 \times 10^7$	p.r.	contains 10 ⁻¹ M glycine.	
1.172	Mn(NTA) ₂ ⁴⁻	10.9	$\leq 5 \times 10^6$	p.r.	counter ion SO_4^{2-} ; soln. contains 2 x 10^{-2} M	Meye.69-0277
	2_		6		nitrilotriacetic acid.	4 1 67 0000
1.173	Mn(EDTA) ²⁻	11.3	1.5 x 10 ⁶	p.r.	soln. contains 0.05 M EDTA;	Anba.67-0299
					$k \text{ detd. at } 2-62^{\circ}, E_{a} = 4.0 \pm 0.6 \text{ kcal mol}^{-1}.$	
		12	$< 2.2 \times 10^6$	p.r.	$\mu = 0.2.$	Anba.69-0276
1.174	$Mn(CN)_6^{4-}$	_	$(2.5 \pm 0.2) \times 10^{10}$	p.r.		Anba.66-0435
1.1.	1111(311)6	9.0	5.9 x 10° (cor.)	p.r.	counter ion K^+ ; $\mu =$	Anba.68-0295
		7.0		p	5×10^{-2} ; $k_{\text{obs}} = 2.5 \times 10^{10}$.	
1.175	MnO ₄	7.0	2.2×10^{10}	p.r.		Thom64-0046
		13	3.7×10^{10}	p.r.		Thom64-0046
		-	3 x 10 ¹⁰	p.r.		Baxe65-0044
		- 1,	4.4 x 10 ¹⁰	p.r.	$k \text{ detd. at } 15-80^{\circ}\text{C};$ $E_{A} = 3.1 \text{ kcal mol}^{-1}.$	Cerc69-0567
1.176	$Mo(CN)_8^{4-}$	_	7.1 x 10°	p.r.		Vene69-0443
1.177	N ₃ ,	-	2.9 x 10 ⁶ (rel.)	X-r.	c.k., assume $k(e_{aq}^- + acetone)$ = 5.9 x 10 ⁹ .	Kell.61-0019
		11	$< 5.6 \times 10^6$	p.r.	- 3.7 x 10 .	Anba.64-0282
		-	$< 5 \times 10^6$	f. phot.	e_{aq}^{-} decay not influenced by N_3^{-} concn. $10^{-4}-10^{-3}$ M.	Bura70-7004
		~ 7	$\leq 1.5 \times 10^6$	p.r.	concn. 1 M.	Pele71-0007
1.178	NH ⁺	7.8	$2 \times 10^6 \text{ (rel.)}$	_	c.k., soln. contains 0.15 M	Jort62-0021
1.170	$\begin{vmatrix} e_{4q}^{-} + NH_4^{+} > H + NH_3 \end{vmatrix}$	1.0	2 x 10 (rel.)	phot.	I^- , 5 x 10^{-3} – 4.0 M NH ₄ Cl;	Jort02-0021
	$ e_{aq} + Nn_4 > n + Nn_3 $				$k \text{ calcd. from } k(e_{aq}^- + H^+)/$	
					$k_{1.178} = 1.2 \times 10^4$ assuming	
					$k(e_{aq}^{-} + H^{+}) = 2.3 \times 10^{10}$.	
		5.3	1.3 x 10 ⁶		K(C _{aq} + II) = 2.3 x 10 .	Anba.64-0282
1 170	NU	5.5	$< 10^{8}$	p.r.		
1.179 1.180	N_2H_4 $N_2H_5^+$		< 10 $< 3.5 \times 10^{8}$	p.r.		Baxe64-0132 Baxe64-0132
1.100		_		p.r.		
	$e_{aq}^- + N_2H_5^+ \geqslant (N_2H_4 + H)$ $\Rightarrow N_2H_3 + H_2$	6	1.5 x 10 ⁷ (rel.)	γ-r.	c.k., k calcd. assuming $k(e_{ag}^- + H_2O_2) = 1.2 \times 10^{10}$.	Bell.69-0598
1.181	NH ₂ OH	-	$< 2 \times 10^{7}$	p.r.		Baxe64-0132
		~ 5-7	$(6.6 \pm 0.7) \times 10^8$	p.r.	k calcd. from detns. at	Beha70-0197
			(calcd.)	1	pH 5.37, 6.70 and 7.77	
					assuming pK = 5.83 for $NH_3OH^+ \rightleftharpoons NH_2OH + H^+$.	
			(Unexplained discr	enancy in the	•	
1.182	NH ₃ OH ⁺	~ 5-7	$(1 \pm 0.1) \times 10^{10}$	p.r.	see 1.181.	Beha70-0197
			(calcd.)			
1.183	NH ₂ SO ₃	11.7	$< 1.3 \times 10^6$ (cor.)	p.r.	counter ion Na ⁺ ; $\mu = 0.02$; $k_{obs} = < 1.7 \times 10^{6}$.	Anba.68-0295
1.184	$NO(SO_3)_2^{2-}$	6.25	4 x 10 ⁹ (rel.)	3/-r	c.k., k calcd. from $k_{1,184}/k$	More69-0649
1.104	(Fremy's salt)	0.23	4 x 10 (1e1.)	γ-r.	$(e_{aq}^- + H_2PO_4^-) = (5.2 \pm 0.3)$	Wore09 0049
					$\times 10^2$ assuming $k(e_{aq} + H_2PO_4)$	
					$= 7.7 \times 10^6$.	

Table 3. Reactions of e_{aq}^- with inorganic solutes — Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.185 1.186	$HON(SO_3)_2^{2-}$ N_2O $e_{aq}^- + N_2O \Rightarrow$ $N_2 + O^- \text{ or } \Rightarrow$ $N_2 + OH^- + OH$	12	$(4 \pm 0.8) \times 10^8$ 8.7 x 10 9	rates of t 1.115, 1.1 1.301, 1.3	counter ion K ⁺ . e listed has been used to calculate s he following reactions from relative 157, 1.164, 1.188, 1.225, 1.234, 1.266 302, 1.333, 1.396, 1.399a(8.9), 1.409a 606, 1.635(8.9).	rates:
		7 - - 11 ~ 7	$(8.7 \pm 0.6) \times 10^9$ $(5.6 \pm 2) \times 10^9$ $(2.4 \pm 0.3) \times 10^9$ 5.6×10^9 9.4×10^9 (rel.)	p.r. p.r. p.r. p.r. p.r. γ-r.	soln. contains 12.4 M KF. soln. H ₂ -satd. c.k., soln. contains 1-2 x $10^{-3}M$ SF ₆ and $10^{-4}-10^{-3}$ M N ₂ O; k calcd. from $k_{1.186}/k(e_{aq}^- + SF_6)$ = 0.57 assuming $k(e_{aq}^- + SF_6)$	Gord63-0073 Keen64-0091 Anba.65-0001 Hart.65-0494 Asmu.68-0159
		> 11	9.1 x 10 ⁹	f. phot.	SF_6) = 1.65 x 10 ¹⁰ . soln. H ₂ -satd., 10 ⁻³ -10 ⁻¹ M NaOH.	Hick.70-7116
1.187	$\begin{array}{c} NO \\ e_{aq}^{-} + NO \gg NO^{-} \gg HNO \end{array}$	7 7	$(3.1 \pm 0.2) \times 10^{10}$ 2.8 x 10 ¹⁰ (rel.)	p.r. γ-r.	c.k., soln. contains $\sim 10^{-3}$ M NO in phosphate buffer with added NO ₂ $\sim 10^{-3}$ – 10^{-1} M; $k_{1.187}/k$ ($e_{aq}^- + NO_2^-$) \cong $7 (\mu = 0)$, assumed $k (e_{aq}^- + NO_2^-) = 4 \times 10^9$.	Gord.63-0073 Knig.67-0231
1.188	NO ₂	7 7.0	$(2.3 \pm 0.4) \times 10^{10}$ $4.3 \times 10^{9} \text{ (rel.)}$	p.r. γ-r.	c.k., $k_{1.188}/k (e_{aq}^- + N_2O) = 0.49 \pm 0.05$, assumed $k (e_{aq}^- + N_2O) = 8.7 \times 10^9$.	Sedd.70-0014 Appl63-0041
		~ 7.0 - 5.5-6	4.6 x 10° 3.5 x 10° 3.4 x 10° (rel.)	p.r. p.r. γ-r.	c.k., assumed $k(e_{\bullet q}^- + p - BrC_6H_4OH) = 1.2 \times 10^{10}$, k detd. at 20, 45, and 70°C,	Thom64-0046 Baxe65-0044 Anba67-0098
		-	3.4 x 10°	p.r.	to give $E_a = 3.4 \text{ kcal mol}^{-1}$. $k \text{ detd. at } 15-80^{\circ}\text{C}$; $E_a = 1.6_5 \text{ kcal mol}^{-1}$.	Cerc69-0567
		-	4.5 x 10 ⁹ 8.0 x 10 ⁹ (see also 1.187 and	p.r. p.r.	counter ion K ⁺ ; H ₂ -satd. concn. 0.1-1.8 M.	Fel'70-0417 Aldr71-0019
1.189	$ \begin{array}{c} NO_{3}^{-} \\ e_{4q}^{-} + NO_{3}^{-} > NO_{3}^{2-} \\ NO_{3}^{2-} + H_{2}O > \\ NO_{2} + 2OH^{-} \\ 2NO_{2} + H_{2}O > \end{array} $		1.1 x 10 10	The valu rates of t 1.1, 1.62	e listed has been used to calculate s the following reactions from relative , 1.143, 1.286, 1.313, 1.326, 1.327, 1 386, 1.391, 1.401, 1.433, 1.577, 1.57	rates:
	$NO_2^- + NO_3^- + 2H^+$	7	$(1.1 \pm 0.1) \times 10^{10}$	p.r.		Gord63-0073 Thom64-0046
		- - 7.0	$(1.9 \pm 0.3) \times 10^9$ 8.2 x 10 ⁹ 7.5 x 10 ⁹ (rel.)	p.r. p.r. γ-r.	soln. contains 12.4 M KF. c.k., counter ion Na ⁺ ; $k_{1.189}/k (e_{aq}^- + O_2) = 2.5$ ± 0.2 , assumed $k (e_{aq}^- + O_2) = 1.9 \times 10^{10}$.	Anba.65-0001 Baxe65-0044 Dani.67-0032
		5.5-6	1.1 x 10 ¹⁰ (rel.)	γ-г.	c.k., assumed $k(e_{aq}^{-} + p - BrC_6H_4OH) = 1.2 \text{ x}$ 10^{10} ; k detd. at 20, 45 and 70° C, $E_{a} = 3.9 \text{ kcal mol}^{-1}$.	Anba.67-0098
		-	9.3 x 10°	p.r.	k detd. at 15-80°C;	Cerc69-0567

Table 3. Reactions of e_{aq}^- with inorganic solutes — Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
					$E_{a} = 2.3 \text{ kcal mol}^{-1}$.	
		-	9 x 10 ⁹	p.r.	counter ion K+; H2-satd.	Fel'70-0417
1		_	1.05 x 10 10 (cor.)	p.r.	counter ion Na ⁺ ; in the	Pele.70-0242
				1	presence of 0.1 and 1 M	
					$NaClO_4$, $k = 1.3$ and 1.6 x	
					10 ¹⁰ , resp.	
		_	2.0 x 10 ¹⁰	p.r.	concn. 0.1-0.7 M.	Aldr71-0019
1.190	Na ⁺	_	< 10 ⁶	p.r.	concii. 0.1 0.1 m.	Baxe64-0132
1.170	114		< 10 ⁵		k calcd. from exptl. data	Anba.65-0001
			~ 10	p.r.	in this ref.	Aliba.05-0001
1.191	Nd ³⁺	1 66	5.9 x 10 ⁸		in this rei.	TI (4 0046
		4.66		p.r.		Thom64-0046
1.192	Nd(EDTA) Ni ²⁺	12	2.8 x 10 ⁶	p.r.	$\mu = 0.2.$	Anba.69-0276
1.193	N1	_	2.3×10^{10}	p.r.		Baxe63-0187
		_	2.2 x 10 ¹⁰ (cor.)	p.r.	counter ion SO ₄ ²⁻ ; in the	Pele.70-0242
					presence of 1 $M \text{ Na}_2 \text{SO}_4$, $k =$	
					1.9 x 10°.	
1.194	NiF(H ₂ O) ₃ ⁺	8.5	$< 1.2 \times 10^{10}$	p.r.	counter ion \mathbf{F}^- , $\mu = 10^{-1} M$,	Anba.68-0295
			(cor.)		$k_{obs} = 7.2 \times 10^9$. The real	
					value for NiF ag is lower as	
					the soln. contained	
					12% Ni ²⁺ .	
1.195	$Ni(CN)_4^{2-}$	11.0	4.1 x 10°	n =	counter ion K^+ ; $\mu = 5 x$	Anba.68-0295
1.170	141(614)4	11.0	(cor.)	p.r.	$10^{-3} M$, $k_{\text{obs}} = 5.5 \times 10^{9}$.	Aliba.00-0253
1 100	N1'(1)		1 ' '		$10 M_{\odot} = 3.3 \times 10$.	M (0 0077
1.196	Ni(gly)	> 8	$(1.6 \pm 0.2) \times 10^{10}$	p.r.	counter ion SO_4^{2-} , $\mu \approx 10^{-4}$.	Meye.69-0277
1.197	Ni(gly) ₂	~ 9	$(2.7 \pm 0.4) \times 10^9$	p.r.	counter ion SO_4^{2-} , $\mu \approx 10^{-3}$.	Meye.69-0277
1.198	$Ni(gly)_3$	~ 10	$\leq 2.5 \times 10^{7} (cor.)$	p.r.	counter ion SO_4^{2-} , $\mu \approx 10^{-1}$.	Meye.69-0277
1.199	Ni(NTA)	~ 8	$(6 \pm 0.9) \times 10^8$	p.r.	counter ion SO_4^{2-} ;	Meye.69-0277
					concn. $\sim 10^{-4} M$.	
1.200	Ni(NTA) ₂	~ 11	$\leq 1.8 \times 10^7$	p.r.	counter ion SO_4^{2-} ; concn. $\sim 10^{-2} M$.	Meye.69-0277
1 201	N. ED T 1 2-	1.0	1.0.108			4 1 60 0076
1.201	Ni(EDTA) ²⁻	12	1.0 x 10 ⁸	p.r.	$\mu = 0.2$.	Anba.69-0276
1.202	$Ni(en)^{2+}$	~ 8	$(2.2 \pm 0.3) \times 10^{10}$	p.r.	counter ion SO_4^{2-} ; $\mu \approx 10^{-4}$.	Meye.69-0277
			(cor.)			
1.203	$Ni(en)_2^{2+}$	~9	$(1.95 \pm 0.3) \text{ x}$	p.r.	counter ion SO_4^{2-} ; $\mu \sim 10^{-4}$.	Meye.69-0277
			10 ¹⁰ (cor.)			
		11	7.5 x 10 ⁹	p.r.	counter ion SO_4^{2-} ; $\mu = 10^{-3}$.	Anba.68-0295
		1 **	1.0 % 10	P	contained some Ni(en) ₃ ²⁺ .	
1 904	$Ni(en)_3^{2+}$	~ 11	$\leq 2 \times 10^7$	n =		Meye.69-0277
		111	1.9×10^{10}	1	e listed has been used to calculate s	'
1.205	0,		1.9 X 10			
	$e_{aq}^- + O_2 \gg O_2^-$				he following reactions from relative	rates:
				1	89, 1.310, 1.391, 1.549, 1.618.	C 1
		7	$(1.9 \pm 0.2) \times 10^{10}$	p.r.		Gord63-0073
		-	$(2.2 \pm 0.2) \times 10^{10}$	p.r.		Keen64-0091
		11	1.9 x 10 ¹⁰	p.r.		Hart.65-0494
		13	$(1.7 \pm 0.2) \times 10^{10}$	p.r.	observed rate depends on O2	Kaba69-0582
					concn. $(2 \times 10^{-6} - 2 \times 10^{-4} M)$,	
					H_2 concn. 7 x $10^{-4} M$.	
1.206	$O_2(in D_2O)$	7	$(1.5 \pm 0.1) \times 10^{10}$	p.r.		Fiel.68-0061
	$e_{d}^{-} + O_{2} \Rightarrow O_{2}^{-}$		(3.1.2 0.1.) X 10	P		
1.207	$Os(CN)_6^{4-}$	10.5	$< 1.0 \times 10^6$	D.F.	counter ion K^+ ; $\mu = 10^{-3} M$.	Anba.68-0295
1.208	$Os(CIV)_6$ $Os(NH_3)_6^{3+}$	~ 7	$(7.2 \pm 0.2) \times 10^{10}$	p.r.	counter ion Br.	Walt67-0560
			$(7.2 \pm 0.2) \times 10$ < 1.0 x 10 ⁵ (cor.)	p.r.		Anba.68-0295
1.209	H ₂ PO ₂	6.8	< 1.0 x 10 (cor.)	p.r.	counter ion Na ⁺ ; $\mu = 10^{-2} M$;	Aliba.00-0295
1 010	11 DO-		16		$k_{\text{obs}} = 1.1 \times 10^5.$	4 1 60 0005
1.210	H ₂ PO ₃	6.7	5.5 x 10 ⁶ (cor.)	p.r.	counter ion K ⁺ ;	Anba.68-0295
					$\mu = 2 \times 10^{-2} M; k_{\text{obs}} =$	
					7.2×10^6 .	
1.211	H ₂ PO ₄	7.1	4.2 x 10 ⁶ (cor.)	p.r.	counter ion K^+ ; $\mu = 0.1$;	Anba.68-0295
	$e_{4q}^{-} + H_2PO_4^{-} >$ $H + HPO_4^{2-}$				$k_{\text{obs}} = 7.7 \times 10^6$; see also	
					1.184 for relative rate.	

Table 3. Reactions of e_{aq}^- with inorganic solutes — Continued

No.	Solute and Reaction	pH	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.212	P ₂ O ₇ ²⁻	7.7	$< 3 \times 10^6$	p.r.	counter ions Na ⁺ , Cl ⁻ ; P ₂ O ₂ ⁻ concn. 10 ⁻² M.	Land.68-0441
1.213	P ₂ O ₈ ⁴⁻	-	1.9 x 10 ¹⁰	p.r.	counter ion Na $^{+}$; soln. contains 0.1 M H ₂ O ₂ , 10 $^{-2}$ M P ₄ O ₈ ⁴ .	Roeb69-0158
1.214	Pb ²⁺	_	3.9 x 10 ¹⁰	p.r.	1408.	Baxe65-0044
1.21 7		7	$(3.9 \pm 0.5) \times 10^{10}$	p.r.	counter ion ClO ₄ .	Anba.65-0047
		11.2	$(1.3 \pm 0.1) \times 10^{10}$	p.r.	counter ions ClO ₄ , Na ⁺ .	Anba.65-0047
1.215	PbO ₂ -	14	$(1.0 \pm 0.1) \times 10^{10}$	p.r.	counter ion ClO ₄ ; soln.	Anba.65-0047
1.210	1 50 2				contains 1 M NaOH.	
		3 <i>M</i> OH	$(9.2 \pm 0.1) \times 10^9$	p.r.	counter ion ClO ₄ .	Anba.65-0047
1.216	Pb(gly) ₃	11.1	$(1.6 \pm 0.2) \times 10^{10}$	p.r.	counter ion Cl ⁻ ; soln. contains 10 ⁻¹ M glycine.	Meye.69-0277
1.217	Pb(NTA) ₂ ⁴⁻	10.9	$(3.2 \pm 0.5) \times 10^9$	p.r.	counter ion Cl ⁻ ; soln. contains 2 x 10 ⁻² M nitrilotriacetic acid.	Meye.69-0277
1.218	Pb(EDTA)	12	3.8 x 10°	p.r.	$\mu = 0.2.$	Anba.69-0276
1.219	$Pb(en)_3^{2+}$	11.2	$(2.3 \pm 0.3) \times 10^{10}$	p.r.	counter ion Cl ⁻ ; soln.	Meye.69-0277
	= = (0/3	1	,		contains $10^{-1} M$ ethylene-	,,,
					diamine – diHCl.	
1.220	PdCl ₄ ²⁻	7.1	$(1.2 \pm 0.15) \times 10^{10}$	p.r.	counter ion K ⁺ ; soln.	Anba.65-0047
11.220				F	contains 0.1 M Cl ⁻ .	
1.221	Pd(CN) ₄ ²⁻	10.6	1.9 x 10 ⁹ (cor.)	p.r.	counter ion K ⁺ ; $\mu = 10^{-2} M$; $k_{obs} = 2.8 \times 10^{9}$.	Anba.68-0295
		10	$(1.0 \pm 0.3) \times 10^9$	p.r.	counter ion K ⁺ ; soln.	Anba.65-0047
			(cor.)	P	contains 0.1 M CN ⁻ , $k_{obs} = (2.0 \pm 0.3) \times 10^{9}$.	
1 000	D.1/ 1: C1 ⁺	~ 7	$(4.4 \pm 0.5) \times 10^{10}$	_	$k_{\text{obs}} = (2.0 \pm 0.3) \times 10$. counter ion Cl ⁻ .	Walt67-0560
1.222	Pd(et ₄ dien)Cl ⁺ Pr ³⁺	6	$(4.4 \pm 0.5) \times 10$ 2.9 x 10 ⁸	p.r.	counter ion Ci.	Thom64-0046
1.223	Pr	0	$\begin{array}{c c} 2.9 \times 10 \\ 1 \times 10^7 \end{array}$	p.r.		Baxe65-0044
		-	(Unexplained discr	p.r.		Daxe05-0044
1.224	Pr(EDTA)	11.5	3.6 x 10 ⁶	1	$\mu = 0.2.$	Anba.69-0276
1.224	PtCl ₄	7-11	1.5 x 10 (rel.)	p.r. γ-r.	$\mu = 0.2.$ c.k., k calcd. from	Dain.67-0063
1.225	11014	1-11	1.5 x 10 (ref.)	y 1.	$k_{1.225}/k (e_{aq}^{-} + N_2 O) =$ 1.76 (cor. to $\mu = 0$) assuming	Dam.01 0000
					$k(e_{aq}^- + N_2O) = 8.7 \times 10^9.$	D (* 0044
		_	9.0 x 10 ⁹	p.r.		Baxe65-0044
		11	$(6.7 \pm 0.9) \times 10^9$	p.r.	counter ion K ⁺ ; contains 0.1 M NaOH.	Dain.67-0063
		6.8	$(1.2 \pm 0.15) \text{ x}$ 10^{10}	p.r.	counter ion K ⁺ ; soln. contains 0.1 M Cl ⁻ .	Anba.65-0047
1.226	$Pt(CN)_4^{2-}$	10	$(1.3 \pm 0.3) \times 10^9$	p.r.	counter ion K ⁺ ; soln.	Anba.65-0047
			(cor.)		contains $0.1 M \text{ CN}^-$; $k_{\text{obs}} = (3.2 \pm 0.4) \times 10^9$.	
		10.6	2.9 x 10 ⁹ (cor.)	p.r.	counter ion K ⁺ ; $\mu = 10^{-2} M$, $k_{\text{obs}} = 3.9 \times 10^{9}$.	Anba.68-0295
1.227	Pt(et4dien)Cl+	~ 7	$(1.2 \pm 0.1) \times 10^{10}$	p.r.	counter ion Cl ⁻ .	Walt67-0560
1.228	PtCl ₆ ²⁻	11	$(3.6 \pm 0.4) \times 10^{10}$	p.r.	counter ions K ⁺ , Na ⁺ .	Dain.67-0063
	,	10	1.4×10^{10} (cor.)	p.r.	counter ion K^+ ; $\mu = 10^{-2} M$;	Anba.68-0295
			, ,		$k_{\text{obs}} = 2.0 \times 10^{10}$.	
1.229	$Rh(NH_3)_6^{3+}$	7	$(7.9 \pm 0.2) \times 10^{10}$	p.r.	counter ion Cl ⁻ .	Walt67-0560
1.230	$Rh(bipy)_3^{3+}$	7	$(8.4 \pm 0.1) \times 10^{10}$	p.r.	counter ion ClO ₄ .	Walt67-0560
1.231	$Ru(CN)_6^{4-}$	10.6	$< 1.0 \times 10^6$	p.r.	counter ion K^+ ; $\mu = 0.01 M$.	Anba.68-0295
1.231a	Ru(NH ₃) ₅ N ₂ ²⁺	~ 7	4.3 x 10°	p.r.		Baxe70-0263
	$e_{aq}^{-} + Ru(NH_3)_5N_2^{2+} \gg Ru(NH_3)_5N_2^{+}$					
1.232	Ru(NH ₃) ₆ ³⁺	~ 7	$(7.4 \pm 0.5) \times 10^{10}$	p.r.	counter ion Cl ⁻ .	Walt67-0560
	$e_{aq}^{-} + Ru(NH_3)_6^{3+} >$	_	$(6.8 \pm 0.1) \times 10^{10}$	p.r.		Baxe70-0178
	Ru(NH ₃) ₆ ²⁺					

Table 3. Reactions of e_{aq}^- with inorganic solutes — Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.233	Ru(NH ₃) ₅ Cl ²⁺	-	$(6.2 \pm 0.4) \times 10^{10}$	p.r.		Baxe70-0178
	$e_{aq}^{-} + Ru(NH_3)_5Cl^{2+}$ $\Rightarrow Ru(NH_3)_5Cl^{+}$					
1.234	H ₂ S	5.5-6	1.6 x 10 ¹⁰ (rel.)	γ-r.	c.k., k calcd. from k 1.234/k	Meis.65-0013
	$e_{aq}^- + H_2S \Rightarrow H + HS^-$ and $\Rightarrow H_2 + S^-$				$(e_{aq}^- + N_2O) = (1.80 \pm 0.1)$ assuming $k(e_{aq}^- + N_2O) = 8.7$	
		5.5-6	$(1.35 \pm 0.1) \text{ x}$		x 10°.	Meis.65-0013
		3.3-0	10 ¹⁰	p.r.		
		-	1.1 x 10 ¹⁰	p.r.		Karm67-0273
1.235	D_2S $e_d^- + D_2S \Rightarrow D + DS^-$ and $\Rightarrow D_2 + S^-$	_	1.35 x 10 ¹⁰	p.r.		Meis.65-0013
1.236	HS^{-1} $e_{aq}^{-} + SH^{-} \gg S^{2-} + H$	11	$< 6 \times 10^{5}$	p.r.		Karm67-0684
1.237	$e_{aq} + SH \Rightarrow S + H$ SF_6		1.65 x 10 10	The value	e listed has been used to calculate sp	cific rates
1.20.	$e_{\bullet a}^- + SF_6 \gg 6F^-$		1.00 x 10		llowing reactions from relative rates:	
	$+ SO_4^{2-} + 7H_3O^+$			1.156, 1.	186, 1.289, 1.367a.	
	(overall)	· –	$(1.65 \pm 0.1) \text{ x}$ 10^{10}	p.r.	soln. air-satd.; overall	Asmu.68-0159
			10		reaction consists of fast steps \Rightarrow SF ₅ + F ⁻ , SF ₅ +	
					$2H_2O \Rightarrow OH + SF_4 + F^- +$	
					H ₃ O ⁺ , followed by slow	
					hydrolysis: $SF_4 + 9H_2O \Rightarrow$	
1.238	SO ₃ ²⁻	10.0	$\leq 1.3 \times 10^6$	n w	$SO_3^{2^-} + 4F^- + 6H_3O^+ (70-0107).$ counter ion Na ⁺ ; $\mu = 10^{-3} M$.	Anba.68-0295
1.239	SO ₄ -	~ 7	$\leq 1.3 \times 10$	p.r.		Baxe64-0132
	•			•		Thom64-0046
1.240	$S_2O_3^{2-}$	11.9	< 10 ₈ .	p.r.		Thom64-0046
		-	7.6 x 10 ⁹	p.r.		Baxe64-0132
		_	6.0 x 10 ⁸	p.r.	$k \text{ detd. at } 15-80^{\circ}\text{C};$ $E_{\bullet} = 3.8 \text{ keal mol}^{-1}.$	Cerc69-0567
		-	9 x 10 ⁸ (cor.)	p.r.	counter ion Na ⁺ ; in the	Pele.70-0242
					presence of 1 M Na ₂ SO ₄ ,	
			(II - 1 : -1 1:		$k = 1.35 \times 10^9$.	
1.241	HSO ₅	_	(Unexplained discr 8.4 x 10 ⁹	epancy in th p.r.	e above data)	Roeb69-0158
1.241	$e_{aq}^{-} + HSO_5^{-} \gg SO_4^{2-} + OH$ or $\gg SO_4^{-} + OH^{-}$		0.4 % 10	p.1.		Rocko
1.242	$S_2O_8^{2-}$	~ 7	1.1 x 10 ¹⁰	p.r.		Thom64-0046
	$e_{aq}^{-} + S_2O_8^{2-} \Rightarrow SO_4^{2-} +$	-	7.6 x 10°	p.r.		Baxe65-0044
1.042	S0 ₄	-	1.1 x 10 ¹⁰	p.r.		Roeb69-0158
1.243	SbO ₃	11.0 11.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p.r. p.r.	counter ion K ⁺ .	Anba.68-0295 Anba.65-0047
1.244	Sc(EDTA)	11.5	3.5×10^7	p.r.	$\mu = 0.2.$	Anba.69-0276
1.245	H ₂ Se	6.0	$(1.1 \pm 0.2) \times 10^{10}$	p.r.	cor. for $e_{aq}^- + H^+$.	Scho69-0564
1.246	$e_{aq}^- + H_2Se \Rightarrow HSe^- + H$ HSe^-	9-12.6	$(4.8 \pm 0.2) \times 10^7$	p.r.	concn. $10^{-3}-10^{-2} M$.	Scho69-0564
	$e_{aq}^- + HSe^- \gg Se^- + H_2 + OH$					
1.247	SeO ₃ ²⁻	10.8	2.3 x 10 ⁶ (cor.)	p.r.	counter ion Na ⁺ ; $\mu = 0.25 M$, $k_{obs} = 1.2 \times 10^{7}$.	Anba.68-0295
1.248	SeO ₄ ²⁻	11.0	1.1 x 10°	p.r.	counter ion Na ⁺ ; $\mu = 10^{-3} M$.	Anba.68-0295
1.249	SiF ₆ ²⁻	5.9	$< 5.5 \times 10^5$	p.r.	counter ion Li ⁺ ; $\mu = 0.15 M$,	Anba.68-0295
1.250	Sm ³⁺	5.96	(cor.) 2.5 x 10 ¹⁰		$k_{\text{obs}} = 1.5 \times 10^6$.	Th 64 0046
1.251	Sm(EDTA)	11.5	2.5×10^{7}	p.r.	$\mu = 0.2$.	Thom64-0046 Anba.69-0276
1.252	$\operatorname{SnO}_{2}^{2-}$	11	$(3.4 \pm 0.3) \times 10^9$	p.r.	counter ions Cl ⁻ , Na ⁺ .	Anba.65-0047
1.253	SnF ₃	10	9.3 x 10 ⁹	p.r.	counter ion K ⁺ .	Anba.64-0282

17

Table 3. Reactions of e_{aq}^- with inorganic solutes — Continued

No.	Solute and Reaction	pН	$k(dm^3 mol^{-1}s^{-1})$	Method	Comments	Ref.
1.254	Sn(NTA) ₂ ⁴⁻	10.9	$(1.7 \pm 0.3) \times 10^9$	p.r.	counter ion Cl ⁻ ; soln. 2 x 10 ⁻² M nitrilotriacetic	Meye.69-0277
					acid.	
1.255	Sn(EDTA)2-	12	1.4 x 10°		$\mu = 0.2.$	Anba.69-0276
.256	$\operatorname{SnO}_3^{2-}$	11.0	6.3×10^{8}	p.r.	counter ion Na ⁺ ; $\mu = 10^{-3} M$.	Anba.68-0295
.257	$\operatorname{SnF}_{6}^{2-}$	6.5	2.9 x 10 ⁹ (cor.)	p.r.		Anba.68-0295
1.231		0.5	2.9 x 10 (cor.)	p.r.	counter ion K ⁺ ; $\mu = 10^{-2} M$; $k_{obs} = 4.1 \times 10^{9}$.	Anba.06-0295
1.258	Tb ³⁺	6.15	3.7×10^{8}	p.r.		Thom64-0046
		-	1.7×10^{7}	p.r.		Baxe65-0044
			(Unexplained discr	epancy in the	above data)	
1.259	Tb(EDTA)	12	5.3 x 10 ⁶	p.r.	$\mu = 0.2.$	Anba.69-0276
1.260	TeO3	7	6 x 10 ⁸	p.r.	counter ion Na ⁺ .	Brow64-0045
		10.9	1.1 x 10 ⁹	p.r.	counter ion Na^+ ; $\mu = 10^{-3} M$.	Anba.68-0295
		12.6	8.7 x 10 ⁸ (rel.)	γ-r.	c.k., $k_{1.260}/k (e_{aq} + N_2O) =$	Dain.65-0073
				,	0.10 at pH 12.6 and 0.53 at	2400 0010
		14	4.6 x 10 ⁹ (rel.)		pH 14, assumed $k(e_{aq} + N_2O) = 8.7 \times 10^9$.	
1.261	TeO ₄ ²⁻	11.0	1.6 x 10 ¹⁰	p.r.	counter ion Na ⁺ , $\mu = 10^{-3} M$.	Anba.68-0295
1.262	Ti(EDTA)	11.0	$< 4 \times 10^{8}$			Anba.66-0825
1.263	TiO ₃ ²⁻	11.5	$< 5 \times 10^6$	p.r.		Anba.64-0282
1.264	TiF ₆ ²⁻	6.6	3.5×10^{9} (cor.)	p.r.	counter ion Na ⁺ ; $\mu = 0.1 M$;	Anba.68-0295
1.204		0.0		p.r.	counter ion iva; $\mu = 0.1 M$; $k_{\text{obs}} = 5.8 \times 10^9$.	Anba.08-0295
.265	Tl _{ag}	-	$\sim 1.1 \times 10^{10}$	p.r.		Baxe64-0132
		7	3.0×10^{10}	p.r.		Baxe65-0044
		8.5	4.0 x 10 ¹⁰ (cor.)	p.r.	counter ion SO_4^{2-} ; $\mu = 10^{-3} M$; $k_{obs} = 3.7 \times 10^{10}$.	Anba.68-0295
		-	2.8 x 10 ¹⁰	p.r.	$k_{\text{obs}} = 3.7 \times 10^{-5}$. $k_{\text{detd. at } 15-80^{\circ}\text{C};$ $E_{\text{a}} = 2.6 \text{ kcal mol}^{-1}.$	Cerc69-0567
1.266	Tm ³⁺	6.05	3 x 10 ⁹	p.r.		Thom64-0046
1.267	Tm(EDTA)	12	1.4×10^{7}	p.r.	$\mu = 0.2.$	Anba.69-0276
.268	UO2+	_	7.4×10^{10}	p.r.	<u> </u>	Baxe65-0044
1.269	VO ₃	11.0	4.9×10^9	p.r.	counter ion NH ₄ , $\mu = 10^{-4} M$.	Anba.68-0295
.270	Y ³⁺	_	2×10^8	p.r.		Baxe65-0044
.271	Y(EDTA)	12	1.1×10^{7}	p.r.	$\mu = 0.2.$	Anba.69-0276
1.272	Yb ³⁺	6.03	4.3×10^{10}	p.r.		Thom64-0046
	1.2	_	3.7×10^{10}	p.r.		Baxe65-0044
1.273	Yb(EDTA)	12	2.0×10^9		$\mu = 0.2.$	Anba.69-0276
	Zn _{aq} ²⁺	-	1.7 x 10°	p.r.	$\mu = 0.2$.	Baxe63-0187
1.274	Znaq	_	1.7 x 10 1.5 x 10 ⁹	p.r.		Baxe65-0044
		1		p.r.		
		6.8	$(1.0 \pm 0.3) \times 10^9$	p.r.	counter ion SO ₄ ²⁻ . counter ions SO ₄ ²⁻ , Na ⁺ ,	Anba.65-0047
		9.7	$(5.6 \pm 0.7) \times 10^8$	p.r.	soln. contains Zn^{2+} and	Anba.65-0047
					$Zn(OH)_{aq}^{\dagger}$ 1:1.	
1.275	$Zn(OH)_{aq}^{+}$	12	$(2.0 \pm 0.3) \times 10^8$	p.r.	counter ions SO ₄ ²⁻ , Na ⁺ .	Anba.65-0047
1.276	$Zn(OH)_4^{2}$	14	$(1.6 \pm 0.3) \times 10^7$	p.r.	counter ions SO ₄ ²⁻ , Na ⁺ .	Anba.65-0047
		3 M OH	$1.7 \times 10^6 \text{ (cor.)}$	p.r.	counter ions SO_4^{2-} , Na^+ ;	Anba.65-0047
		J 111 011		p	$k_{\text{obs}} = (7.5 \pm 1.5) \times 10^6$.	
1.277	$Zn(NH_3)_4^{2+}$	11.1	$(6.5 \pm 0.6) \times 10^8$	p.r.	soln. contains 0.2 M NH ₃ .	Anba.65-0047
1.278	$Zn(en)_3^{2+}$	11.2	$(5.2 \pm 0.8) \times 10^{8}$	p.r.	counter ion SO ₄ ²⁻ ; soln.	Meye.69-0277
1.210	Dir(cir)3	11.2	(0.2 ± 0.0) x 10	p.1.	contains 10 ⁻¹ M ethylene-	110,0102 0211
					diamine di-HCl.	
1.279	$Zn(CN)_4^{2-}$	10	$(7.2 \pm 1.0) 10^7$	p.r.	soln. contains $0.1 M \text{ CN}^-$; $k_{\text{obs}} = (1.8 \pm 0.2) \times 10^8$.	Anba.65-0047
1 000	7-(EDTA)2-	10	(cor.)			Anh. 60, 0276
1.280	Zn(EDTA) ²⁻	12	$< 1.8 \times 10^6$	p.r.	$\mu = 0.2.$	Anba.69-0276
1.281	Zn(NTA)	~ 10	$(7.5 \pm 1.1) \times 10^7$	p.r.	counter ion SO_4^{2-} ; concn. $\sim 10^{-4} M$.	Meye.69-0277
1.282	$Z_n(NTA)_2^{4-}$	~ 11	$\leq 1 \times 10^7$	p.r.	counter ion SO_4^{2-} , concn. $\sim 10^{-2} M$.	Meye.69-0277
1.283	$Zn(gly)_3$	11.1	$(4.8 \pm 0.7) \times 10^7$	p.r.	counter ion SO_4^{2-} ; soln.	Meye.69-0277
1.400						

18

Table 4. Reactions of e_{aq}^- with organic solutes

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.284	acetaldehyde	6.55, 11	3.5 x 10°	p.r.		Gord63-0073,
1.285	acetaldoxime	10.82	7.2×10^{7}	p.r.		Hart67-0298
1.286	acetamide	5.5-6	4 x 10 ⁷ (rel.)	γ-r.	c.k., assumed $k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}$.	Anba.67-0098
			3 x 10 ⁷ (rel.)	γ-r.	c.k., assumed $k(e_{aq}^- + p - BrC_6H_5OH) = 1.2 \times 10^{10}$;	
	,				k detd. at 20, 45 and 70° C to give $E_a = 3.5 \pm 0.5$ kcal mol ⁻¹ .	
		10.9	1.7×10^7	p.r.		Hart67-0298
1.287	acetate ion	~ 10	< 10 ⁶	p.r.	solute concn. 1 M.	Gord63-0073
		9.5-	$\leq (1.2 \pm 0.4) \times 10^6$ (cor.)	p.r.	solute concn. $10^{-1} M$, $k_{\text{obs}} = (2.0 \pm 0.5) \times 10^{6}$.	Anba.65-0015
1.288	acetic acid	5.4	$(1.8 \pm 0.3) \times 10^8$	p.r.	(2.0 ± 0.0) x 10 :	Gord63-0073
1.200	e _{aq} + CH ₃ COOH⇒ CH ₃ COO + H	0.1	(1.0 = 0.0) x 10	p.1.		001403 0073
1 000			5.0 109	m 1		1
1.289	acetone		5.9 x 10°	rates of	e listed has been used to calculate s the following reactions from relative	=
		7	(5.0 + 0.2) - 109		177, 1.391	C -1 62 0072
		7	$(5.9 \pm 0.2) \times 10^9$ $(1.6 \pm 0.2) \times 10^9$	p.r.		Gord63-0073
		-		p.r.	soln. contains 12.4 M KF.	Anba.65-0001
		7	$(5.9 \pm 0.2) \times 10^9$	p.r.		Anba.65-0047
		11	$(5.6 \pm 0.6) \times 10^9$	p.r.	soln. H ₂ -satd.	Anba.65-0047
		14	$(5.2 \pm 0.6) \times 10^9$	p.r.		Anba.65-0047
		3 M OH	$(4.2 \pm 0.5) \times 10^9$	p.r.		Anba.65-0047
		11	6.9 x 10 ⁹	p.r.	soln. H ₂ -satd.	Hart.65-0494
		7	6.4 x 10 ⁹ (rel.)	γ-r .	c.k., $k_{1.289}/k(e_{aq}^- + SF_6) = 0.39$, assumed $k(e_{aq}^- + SF_6) = 1.65 \times 10^{10}$.	Asmu.68-0159
		_	6.4 x 10 ⁹ (rel.)	γ-r.	c.k., D_2O soln. $k_{1.289}/k (e_d^- + SF_6) = 0.39$, assumed $k (e_d^- + SF_6) = 1.65 \times 10^{10}$.	Asmu.69-0242
		-	7.6 x 10°	p.r.	in concd. soln. $(0.1-1.8 M)$, $k = 9.5 \times 10^9$.	Aldr71-0019
1.290	acetone semicarbazone	10.7	3.4×10^{8}	p.r.	_	Hart64-0287
1.291	acetone oxime	7.75	3.0×10^8	p.r.		Hart67-0298
1.292	acetonitrile	7.2	3.0×10^{7}	p.r.		Anba.64-0282
1.293	N-acetylalanine	3	1.3 x 10 ⁸ (rel.)	γ-r.	c.k., assumed $k(e_{aq}^- + ClCH_2COOH) = 6.9 \times 10^9$.	Will.67-0310
1.294	N – acetylalanine	8.6-9.0	1.0×10^{7}	p.r.		Braa65-0390
	(negative ion)	6.7	l.1 x 10 ⁷ (rel.)	γ-r.	c.k., assumed $k(e_{aq}^- + ClCH_2COO^-) = 1.2 \times 10^9$.	Will.67-0310
		7	6.3 x 10 ⁶ (rel.)	γ-r.	c.k., k calcd. from $k(e_{aq}^- + \text{ClCH}_2\text{COO}^-)/k_{1.294} = 1.9 \times 10^2$, assuming $k(e_{aq}^- + \text{ClCH}_2\text{COO}^-) = 1.2 \times 10^9$.	Rodg68-0006
1.295	acetylene	3.3	$(3.5 \pm 0.45) \text{ x}$ 10^{10} (rel.)	γ-r.	c.k., assumed $k(e_{aq}^{-} + H^{+}) = 2.3 \times 10^{10}$	Fiti.68-0502
1.296	N-acetylglycine (negative ion)	5.95	2 x 10 ⁷	p.r.		Braa65-0390
1.297	cis -aconitate ion	11	$(2.1 \pm 0.5) \times 10^8$	0/==	ak keeled from k	Stoc.66-0160
	acontate ion		$(2.1 \pm 0.5) \times 10$ (rel.)	γ-r.	c.k., k calcd. from $k_{1.297}/k$ ($e_{aq}^- + \text{ClCH}_2\text{COO}^-$) = 0.18 ± 0.04 assuming k ($e_{aq}^- + \text{ClCH}_2\text{COO}^-$) = 1.2 x 10 ⁹ .	5100.00-0100
1.298	acridine orange	-	3.2 x 10 ¹⁰	p.r.	Also studied effect of various polyanions on rate.	Bala68-2104
1.298a	acriflavine		$(3.7 \pm 0.4) \times 10^{10}$	p.r.		Prue.70-0241

TABLE 4. Reactions of e-aq with organic solutes - Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ŕef.
		7	$(2.1 \pm 0.4) \times 10^{10}$	p.r.	one detn. from growth of absorption at 275 nm gave $k = (1.8 \pm 0.7) \times 10^{10}$.	Cham67-0171 Cham66-2058
		-	3.3 x 10 10	p.r.	$k \text{ detd. at } 15-80^{\circ}\text{C};$ $E_{\bullet} = 3.9 \text{ kcal mol}^{-1}.$	Cerc69-0567
1.300	adenine	6	3 x 10 ¹⁰	p.r.	soln. buffered with KH_2PO_4 + Na_2SO_4 ; $\mu = 0.1$.	Gree68-0316
1.301	adenosine	12	1.0 x 10 ¹⁰	p.r.		Hart64-0044
11001		_	1.3 x 10 ¹⁰ (rel.)	γ-r.	c.k., k calcd. from k 1.301/k	Scho.64-0094
					$(e_{aq}^- + N_2O) = 1.54 \pm 0.15$	
					assuming $k(e_{aq} + N_2O) = 8.7$	
			10		x 10 ⁹ .	0.1 67 000
1 200	1 .: 5/ 1	5.5	3.1 x 10 ¹⁰ 4.4 x 10 ⁹ (rel.)	p.r.		Scho65-0388
1.302	adenosine-5'-phos- phate	_	4.4 x 10 (rel.)	γ-r.	c.k., k calcd. from $k_{1.302}/k$ $k(e_{aq}^- + N_2O) = 0.52 \pm 0.05$ assuming $k(e_{aq}^- + N_2O) = 8.7 \times 10^9$.	Scho.64-0094
		7	3.8 x 10°	p.r.		Scho65-0388
		5.8	5.2 x 10 ⁹	p.r.	phosphate may be at 3' - or 5'-position.	Braa65-0778
		8.3	4.0 x 10 ⁹	p.r.	soln. contains 10 ⁻¹ M	Land.68-0441
1.303	DI. – alanine (positive ion)	3	8.4 x 10 ⁸ (rel.)	γ-r.	c.k., assumed $k(e_{aq}^- + CICH_2COOH) = 6.9 \times 10^9$.	Will.67-0310
1.304	DL-alanine	6.4	5.9 x 10 ⁶	p.r.	pH is above the isoelectric	Davi65-0389
	(negative ion)	6.8	$\leq 5 \times 10^6$	p.r.	point.	Braa66-0011
1.305	β-alanine	6.85	$\leq 4 \times 10^6$	p.r.		Braa66-0011
1.306	DIalanyl-DL-alanine (negative ion)	6.27	1.3 x 10 ⁸	p.r.	_	Braa67-3005
1.307	DIalanylgylcine (negative ion)	6.22	2.1 x 10 ⁸	p.r.	_	Braa65-0390
1.308	DL-alanyl-DL-leucine (negative ion)	6.46	1.3 x 10 ⁸	p.r.	_	Braa67-3005
1.308a	albumin (egg)	11.53	1.3 x 10 ¹⁰	p.r.		Braa67-3005
1.308b	albumin (human serum)	9.0	$(8.2 \pm 0.1) \times 10^9$	p.r.	contains 10^{-2} M formate ion, 10^{-3} M Na ₂ B ₄ O ₇ ; also studied complex with eosin.	Husa70-0253
		12.0	$(3.3 \pm 0.3) \times 10^9$	p.r.	contains $10^{-2} M$ formate ion, $10^{-2} M$ NaOH.	Husa70-0253
1.309	allyl alcohol	-	< 10 ⁶ (rel.)	γ-r.	solute did not compete with N ₂ O.	Scho.64-0094
1.309a	allylamine	11.3	1.2 x 10 ⁷	p.r.		Geto.70-0371
1.310	p –aminobenzoate ion	~ 11	2.1 x 10°	p.r.		Anba.64-0138
		-	4.2 x 10 ⁹ (rel.)	r.	c.k., k calcd. from $k_{1.310}/k$ $(e_{aq}^- + O_2) = 0.22$ assuming $k(e_{aq}^- + O_2) = 1.9 \times 10^{10}$.	Nakk65-0739
1.311	o –aminobenzonitrile	10	1.1 x 10 ¹⁰	p.r.	_	Anba.64-0282
1.312	4-aminobutyrate ion	6.65	$\leq 9 \times 10^6$	p.r.	_	Braa66-0011
1.313	2-aminopyrimidine	5.5-6	1.4 x 10 ¹⁰ (rel.)	γ-r.	c.k., assume $k (e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}$.	Anba67-0098
			1.3 x 10 ¹⁰ (rel.)	γ−r.	c.k., assume $k (e_{aq}^- + p - BrC_6H_4$ OH) = 1.2 x 10 ¹⁰ ; k detd. at 20, 45 and 70°C to give $E_a = 3.7 \pm 0.5$ kcal mol ⁻¹ (ave. of both methods).	
1.313a	4-aminopyrimidine	6.5-7	$(5.2 \pm 0.4) \times 10^9$	p.r.	no OH scavenger added.	Fiel. 70-0226
1.313b	amylamine	11.8	$< 4 \times 10^{5}$	p.r.	_	Geto. 70-0371
1.314	aniline	11.94	$< 2 \times 10^{7}$	p.r.	_	Hart64-0044
1.315	arabinose	-	< 10 ⁷	p.r.	I —	Hart64-0048

Table 4. Reactions of e_{aq}^- with organic solutes – Continued

No.	Solute and Reaction	pН	$k(dm^3 mol^{-1}s^{-1})$	Method	Comments	Ref.
1.316	ı.—arginine	6.10	1.5 x 10 ⁸	p.r.		Braa66-0011
	(positive ion)	8.0	1.2 x 10 ⁸	p.r.	value of k from graph.	Braa66-0011
	(2000)	8.7	1.2 x 10 ⁸	p.r.	value of k from graph.	Braa66-0011
	-	8.9	1.1 x 10 ⁸	-	value of k from graph.	Braa66-0011
217			6.0×10^7	p.r.		
.317	(zwitterion)	9.9	0.0 x 10	p.r.	value of k from graph.	Braa66-0011
220		11.5	62 107			D ((0011
1.318	1arginine	11.5	6.3×10^7	p.r.	isoelectric point of	Braa66-0011
	(negative ion)		8		arginine is 10.76.	
.319	1asparagine	4.7	2 x 10 ⁸	p.r.		Braa65-0778
	(zwitterion)	7.3	1.5 x 10 ⁸	p.r.		Braa66-0011
.320	1.—asparagine	11.7	2.4×10^7	p.r.		Braa66-0011
	(negative ion)					
.321	aspartate ion	7.3	< 10 ⁷	p.r.	$k < 10^7$ was also reported in	Braa66-0011
	(monoanion)				64-0048; pH not specified.	
.322	aspartate ion	10.5	$< 5 \times 10^6$	n r		Braa66-0011
.322		10.5	< 3 x 10	p.r.		Diaa00-0011
	(dianion)		10			
.323	benzamide	~ 11	1.7 x 10 ¹⁰	p.r.		Anba.64-0138
.324	benzene	7	$< 7 \times 10^{6}$	p.r.		Hart64-0044
		~ 11	1.4×10^{7}	p.r.		Anba.64-0138
		11	1.2×10^{7}	p.r.		Mich. 70-0211
.325	benzenesulfonamide	~ 11	1.6 x 10 ¹⁰	p.r.		Anba.64-0138
1.326	benzenesulfonate ion	7	1.2 x 10 ⁹ (rel.)	γ-r.	c.k., assume $k(e_{aq} + NO_3) =$	Anba67-0098
.020	Benzenesunonate ion	•	1.2 x 10 (1ci.)	,	1.1 x 10 ¹⁰ .	71115401 0070
					k detd. at 20, 45 and	
					70°C by c.k. with NO ₃ and	
					also p-bromophenol gives	
					$E_a = 3.5 \pm 0.5 \text{ kcal mol}^{-1}$.	
		~ 11	4.0×10^9	p.r.		Anba.64-0138
1.327	benzoate ion	~ 11	3.1 x 10 ⁹	p.r.		Anba.64-0138
		_	$(1.7 \pm 0.15) \times 10^9$	p.r.	soln. contains 12.4 M KF.	Anba.65-0001
		5.35-	5.4×10^9			Szut65-0018
		5.45	J.4 X 10	p.r.	_	524105
			2.1.109			C . (F: 001)
		7.19-	3.1 x 10°	p.r.		Szut65-0018
		7.74				
		12.3	2.8 x 10 ⁹ (cor.)	p.r.	$k_{\text{obs}} = 3.6 \times 10^9$.	Szut65-0018
		7	$(3.5 \pm 0.4) \times 10^9$	p.r.	_	Anba.65-0047
		11	$(3.1 \pm 0.3) \times 10^9$	p.r.		Anba.65-0047
		14	$(2.9 \pm 0.3) \times 10^9$	p.r.	<u>+</u>	Anba.65-0047
		3 M OH	$(2.4 \pm 0.3) \times 10^9$	p.r.		Anba.65-0047
		11	2.6 x 10° (rel.)	_	c.k., k calcd. from k 1.327/	Stoc.66-0160
		11	2.0 x 10 (rel.)	γ-r.		3100.00-0100
					$k \left(e_{\bullet q} + ClCH_2COO^- \right) = 2.2 \pm$	
					$0.4 \text{ assuming } k(e_{\bullet q}^- +$	
			•		$ClCH_2COO^-) = 1.2 \times 10^9.$	
		7	3.6 x 10 ⁹ (rel.)	γ-r.	c.k., with NO ₃ or p-bromo-	Anba67-0098
					phenol, k detd. by both	
					methods at 20, 45, and 70°C	
					to give $E_{\bullet} = 3.6 \pm 0.5 \text{ kcal}$	
					mol ⁻¹ .	
.327a	benzoic acid	5.4	3.3 x 10 10 (calcd.)			Saut 65 0016
.0218	Delizote aciu	J.4	J.J X IU (Calca.)	p.r.	calcd. from $k_{obs} = 5.4 \times 10^9$	Szut65-0018
000			10		and pK (benzoic acid) = 4.19 .	
.328	benzonitrile	~ 11	1.6 x 10 ¹⁰	p.r.		Anba.64-0138
		7.16	1.9 x 10 ¹⁰	p.r.	soln. contains 5 x 10 ⁻² M	Chut.70-0657
					formate; d.k. at 600 nm;	
					p.b.k. at 315 nm gave k =	
					1.7×10^{10} .	
1.329	benzophenone	7 ± 1	$(3.0 \pm 0.5) \times 10^{10}$	p.r.		Land68-0727
1.330	p-benzoquinone	6.6	1.25 x 10°			Hart64-0044
	p benzoquinone	3.0	2.7 x 10 ¹⁰	p.r.		
		_		p.r.		Land.70-0198
1.331	benzyl alcohol	~ 11	1.3×10^{8}	p.r.	l —	Anba.64-0138

Table 4. Reactions of e_{aq}^- with organic solutes – Continued

No.	Solute and Reaction	pН	$k(dm^3 mol^{-1}s^{-1})$	Method	Comments	Ref.			
		5.5-6	1.9 x 10 ⁸ (rel.)	γ-r.	c.k., assume $k(e_{*q}^{-} + NO_{3}^{-}) = 1.1 \times 10^{10}$.	Anba67-0098			
			1.8 x 10 ⁸ (rel.)	γ-r .	c.k., assume $k(e_{aq}^{-} + p - BrC_6H_4OH) = 1.2 \times 10^{10}$;				
					k detd. at 20, 45 and				
					70°C by both methods to				
					give $E_a = 3.7 \pm 0.5 \text{ kcal}$ mol ⁻¹ .				
1.331a	benzylamine	11.4	3.4×10^7	p.r.	_	Geto.70-0371			
1.331b	benzylammonium ion	8.8	1.45 x 109 (calcd.)	p.r.	_	Geto.70-0371			
1.332	benzyl chloride	~ 10	$(5.5 \pm 0.5) \times 10^9$	p.r.		Anba.65-0015			
1.333	benzyltrimethyl-	~ 11	5.1 x 10 ⁹ 1.2 x 10 ¹⁰ (rel.)	p.r. γ–r.	c.k., assume	Anba.64-0138 Kabi.68-0205			
1.333	ammonium ion		1.2 x 10 (1el.)	у 1.	$k(e_{aq}^- + N_2O) = 8.7 \times 10^9$	Kabi.00-0203			
	$e_{*q}^{-} + C_6H_5CH_2N(CH_3)_3^{+}$				or $k(e_{aq} + H^+) = 2.3 \times 10^{10}$.				
	\Rightarrow C ₆ H ₅ CH ₂ + (CH ₃) ₃ N				or n (oaq - 11) 110 n 15 1				
1.333a	biphenyl-4- carboxylate ion	9.1	9.6 x 10 ⁹	p.r.	_	Eber.70-0411			
1.334	2,2'-bipyridine	6.25-7.2	$(1.8 \pm 0.2) \times 10^{10}$	p.r.	_	Walt67-0560			
		9.2	2.5 x 10 10	p.r.		Eber.70-0411			
1.334a	4,4'-bipyridine	9.3	3.3 x 10 ¹⁰	p.r.		Eber.70-0411			
1.335	bromoacetate ion	~ 10	$(6.2 \pm 0.7) \times 10^9$	p.r.		Anba.65-0015			
1.336	bromobenzene	~ 11	4.3 x 10 ⁹ 7.7 x 10 ⁹	p.r.		Anba.64-0138			
1.337	p-bromobenzoate ion l-bromobutane	~ 11 6.57	1.0 x 10 ¹⁰	p.r.		Anba.64-0138 Szut65-0018			
1.336	$e_{aq}^{-} + C_4H_9Br \Rightarrow$ $C_4H_9 + Br^{-}$	-	1.0 x 10 ¹⁰	p.r. p.r.		Bull.70-0407			
1.339	bromoethane	7.12	1.2 x 10 ¹⁰	p.r.	<u> </u>	Szut65-0018			
1,007	$e_{sq}^- + C_2H_5Br \Rightarrow$ $C_2H_5 + Br^-$	-	1.2 x 10 ¹⁰	p.r.	_	Bull.70-0407			
1.340	2-bromoethanol	~ 10	$(1.6 \pm 0.2) \times 10^9$	p.r.		Anba.65-0015			
1.341	o-bromophenoxide ion	~ 11	1.9 x 10 ⁹	p.r.	_	Anba.64-0138			
1.342	m-bromophenoxide ion	~ 11	2.7 x 10 ⁹	p.r.	_	Anba.64-0138			
1.343	p -bromophenol		1.2 x 10 10	The value	e listed has been used to calculate s	pecific			
					he following reactions from relative r				
			10		1.62, 1.188, 1.189, 1.286, 1.313, 1.326, 1.327, 1.331, 1.358, 1.386, 1.577, 1.578.				
		5.5-6	1.2 x 10 ¹⁰ (rel.)	γ-r.	c.k., k calcd. assuming $k(e_{aq}^{-} + NO_3^{-}) = 1.1 \times 10^{10}$; k detd.	Anba67-0098			
					at 20, 45, and 70°C to give $E_a = \frac{1}{2}$				
			1.2 x 10 ¹⁰		$3.0 \pm 0.5 \text{ kcal mol}^{-1}$.	Cara60_0567			
		_	1.2 X 10	p.r.	$k \text{ detd. at } 15-80^{\circ}\text{C}; E_a = 3.0_8$ $k \text{ cal mol}^{-1}$	Cerc69-0567			
1.344	p-bromophenoxide ion	~ 11	2.9 x 10 ⁹	p.r.		Anba.64-0138			
1.345	1-bromopropane	6.15	8.5 x 10 ⁹	p.r.		Szut65-0018			
1.346	2-bromopropionate ion	~ 10	$(5.3 \pm 0.8) \times 10^9$	p.r.	_	Anba.65-0015			
1.347	3-bromopropionate ion	~ 10	$(2.7 \pm 0.3) \times 10^9$	p.r.		Anba.65-0015			
1.347a	bromotrifluoromethane $e_{aq}^- + CF_3Br \Rightarrow CF_3 + Br^-$	9-10	$(2.35 \pm 0.15) \text{ x}$ 10^{10}	p.r.	_	Bull.70-0407			
1.348	5-bromouracil	-	1.9 x 10 ¹⁰	p.r.	$k \text{ detd. at } 15-80^{\circ}\text{C};$ $E_{a} = 3.9 \text{ kcal mol}^{-1}.$	Cerc69-0567			
		7.0	2.6 x 10 ¹⁰	p.r.		Zimb69-0826			
1.349	butadiene	7	8 x 10 ⁹	p.r.	see also 1.378 for relative	Hart64-0044			
1.350	2,3-butanedione	-	1.0 x 10 ¹⁰	p.r.		Lili68-0249			
1.351	3-butenenitrile	7.0	9.1 x 10 ⁸	p.r.	_	Anba.64-0282			

TABLE 4. Reactions of e-aq with organic solutes - Continued

Ńо.	Solute and Reaction	рН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.352	tert – butyl alcohol	6-12	~ 10 ⁸ (rel.)	γ−r.	c.k., with metal ions, estimated from inhibition of tritium exchange, involves a number of assumptions.	Gold.70-0034
1.352a	tert – butylammonium ion	7.9	1.1 x 10 ⁶	p.r.	_	Geto.70-0371
1.353	tert -butyl mercaptan e¬+ (CH₃)₃CSH > (CH₃)₃C· + SH¬	7	$(3.0 \pm 0.45) \times 10^9$	p.r.		Karm69-0553
1.354	carbon disulfide	7	$(3.1 \pm 0.15) \text{ x}$ 10^{10}	p.r.		Gord63-0073
		7.7	3.1 x 10 ¹⁰	p.r.		Hart64-0044
1.355	carbon tetrachloride	7	3.1 x 10 ¹⁰	p.r.		Gord63-0073
		7	3.0×10^{10}	p.r.		Hart64-0044
1.356	catalase	> 7	3.7 x 10°	p.r.	mol. wt. 2.5 x 10 ⁵	Heng66-0499
1.357	Omitted			•		
1.358	chloroacetate ion		1.2 x 10 °	The valu	ne listed has been used to calculate sp	pecific
21000					the following reactions from relative r	
					1.294, 1.297, 1.327, 1.416, 1.476, 1.50	
						, 1.010,
		~ 10	$(1.2 \pm 0.15) \times 10^9$.568, 1.573, 1.584, 1.607, 1.614.	A 1 65 0015
		~ 10	$1.1 \times 10^9 \text{ (rel.)}$	p.r.	-1-4-1-1	Anba.65-0015
		•	1.1 x 10 (rel.)	γ-r.	c.k., k calcd. assuming	Anba67-0098
					$k(e_{aq}^{-} + p - BrC_6H_4OH) = 1.2 x$	
					10 ¹⁰ ; k detd. at 20, 45, and	
					70°C. to give $E_a = 3.8 \pm 0.5$ kcal mol ⁻¹ .	
		11	8.9 x 10 ⁸	p.r.	k detd. at $2-62^{\circ}$ C to give $E_{\bullet} = 3.2 \pm 0.4.$	Anba.67-0299
		8.5	2.5 x 10 ⁹	p.r.	concn. $> 0.1 M$.	Aldr71-0019
1.359	chloroacetic acid		6.9 x 10 °	The valu	ie listed has been used to calculate s	pecific
	e_{Aq}^{-} + ClCH ₂ COOH \Rightarrow			rates of	the following reactions from relative i	rates:
	Cl2 + ·CH2COOH	-		1.293, 1.	.303, 1.414, 1.417, 1.443, 1.450, 1.453	•
		1.0-1.5	6.9 x 10 ⁹ (rel.)	γ−r.	c.k., k calcd. from $k_{1.359}/k$ $(e_{aq}^- + H^+) = 3.34-3.49$	Hayo.61-0025
					assuming $k(e_{aq}^- + H^+) = 2.3$ $\times 10^{10}$.	
1.360	chiorobenzene	~ 11	5.0×10^{8}	p.r.		Anba.64-0138
1.361	o -chlorobenzoate ion	~ 11	1.2 x 10°	p.r.	_	Anba.64-0138
1.362	m -chlorobenzoate ion	~ 11	5.5 x 10°			Anba.64-0138
1.363	p-chlorobenzoate ion	~ 11	6.0 x 10°	p.r.		Anba.64-0138
1.364	l-chlorobutane	7.28	4.5×10^{8}	p.r.		Szut65-0018
1.501	$e_{4g}^{-} + C_4H_9Cl \Rightarrow$	~ 10	$(3.2 \pm 0.4) \times 10^{8}$	p.r. p.r.		Anba.65-0015
	$C_4H_9 + Cl^-$	_ 10	4.5×10^{8}	-		Bull.70-0407
1.365	2-chlorobutane	6.64	5.1×10^8	p.r.		Szut65-0918
1.000	2 chlorobutane	~ 10	$\begin{array}{c} 3.1 \times 10 \\ (5.1 \pm 0.8) \times 10^{8} \end{array}$	p.r.		Anba.65-0015
1 266	2 ablassab			p.r.		
1.366	2-chloroethanol	~ 10 11	$ \begin{array}{c} (4.1 \pm 0.6) \times 10^8 \\ 3.3 \times 10^8 \end{array} $	p.r. p.r.	k detd. at 2-62°C to give	Anba.65-0015 Anba.67-0299
		_	10		$E_a = 3.1 \pm 0.6 \text{ kcal mol}^{-1}$.	
1.367	chloroform	7	3.0×10^{10}	p.r.		Hart64-0044
1.367a	chloromethane e _{aq} + CH ₃ Cl →	-	1.1 x 10 ⁹ (rel.)	γ-r.	c.k., CH ₃ Cl concn. 1.2 x 10 ⁻² M; k calcd. assuming	Balk70-0225
	·CH ₃ + Cl ⁻				$k(e_{\bullet q}^- + SF_6) = 1.65 \times 10^{10}$.	
		10	~ 8 x 10 ⁸	p.r.	lower limit only because of volatility losses.	Balk70-0225
1.368	1-chloro-2-methyl-	5.82	5.1 x 10 ⁸	n r		Szut65-0018
1.500	propane (isobutyl	0.02	0.1 X 10	p.r.		
1.369	chloride) o-chlorophenoxide ion	~ 11	2.0 x 10 ⁸	p.r.		Anba.64-0138

Table 4. Reactions of e_{aq}^- with organic solutes – Continued

					<u> </u>	
No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.371	p-chlorophenoxide ion	~ 11	6.4 x 10 ⁸	p.r.		Anba.64-0138
1.372	l-chloropropane	6.27	6.9 x 10 ⁸	p.r.		Szut65-0018
-1.5	$e_{aq}^- + C_3H_7Cl >$	_	6.9 x 10 ⁸	p.r.		Bull.70-0407
	$C_3H_7 + Cl^-$			P		22000
1.373	2-chloropropionamide	-	$(5.8 \pm 0.5) \times 10^9$	p.r.	soln. satd. with ethylene.	Cham70-0052
1.374	3-chloropropionamide	-	$(1.8 \pm 0.2) \times 10^9$	p.r.	soln. satd. with ethylene.	Cham70-0052
1.375	2-chloropropionate	~ 10	$(1.4 \pm 0.2) \times 10^9$	p.r.	_	Anba.65-0015
	ion					
1.376	3-chloropropionate	~ 10	$(4.0 \pm 0.4) \times 10^8$	p.r.	_	Anba.65-0015
	ion	11	4.4×10^{8}	p.r.	k detd. at 2-62°C to give	Anba.67-0299
					$E_{\bullet} = 3.6 \pm 0.4 \text{ kcal mol}^{-1}$.	
1.377	p-chlorotoluene	~ 11	4.5 x 10 ⁸	p.r.	_	Anba.64-0138
1.378	chlorotrifluoro-	11	$(1.0 \pm 0.2) \times 10^{10}$	p.r.	_	Anba.64-0282
	methane	9-10	$(4.4 \pm 0.4) \times 10^9$	p.r.	_	Bull.70-0407
	$e_{aq}^- + CF_3Cl \Rightarrow$	9-10	$(4.6 \pm 0.7) \times 10^9$	γ-r.	c.k., $k(e_{aq}^- + butadiene)/$	Bull.70-0407
	CF ₃ + Cl ⁻		(rel.)		$k_{1.378} = 1.75 \pm 0.3$, assume	
					$k(e_{aq}^{-} + butadiene) = 8 \times 10^{9}$.	
1.379	cinnamate ion	7.22	6.8 x 10°	p.r.		Szut65-0018
		12.45	7.2 x 10 ⁹ (cor.)	p.r.	$k_{\text{obs.}} = 9.7 \times 10^9$.	Szut65-0018
1.380	citrate ion	_	< 10 ⁵	p.r.	10 ⁻¹ M soln. unreactive.	Thom64-0046
1.381	creatine	7.0	2.7×10^{7}	p.r.	_	Davi65-0389
•	(N-amidinosarcosine)					
1.382	cyanoacetate ion	~ 11	4×10^7	p.r.	_	Anba.65-0047
1.383	p-cyanobenzoate ion	~ 11	1.0 x 10 ¹⁰	p.r.		Anba.64-0138
1.384	1,3-cyclohexadiene	11	1 x 109	p.r.	_	Mich.70-0211
1.385	1,4-cyclohexadiene	11	$< 6.5 \times 10^5$	p.r.		Mich. 70-0211
1.386	cyclohexanone	5.5-6	8 x 10 ⁹ (rel.)	γ-r.	c.k., assume $k(e_{aq} + NO_3) =$	Anba67-0098
			` ′		1.1 x 10 ¹⁰ .	
			7.8 x 10 ⁹ (rel.)	γ-r.	c.k., assume $k(e_{ag}^{-} +$	
			, ,		$p - BrC_6H_4OH) = 1.2 \times 10^{10};$	
		!		ŧ	k detd. at 20, 45, and	
					70°C by both methods.	
					$E_{A} = 3.6 \pm 0.5 \text{ kcal mol}^{-1}$.	
1.387	cyclohexene	11	$< 2 \times 10^6$	p.r.		Mich.70-0211
1.387a	cyclohexylamine	11.8	1.7 x 10 ⁶	p.r.	_	Geto.70-0371
1.388	cystamine	7.3	4 x 10 ¹⁰	p.r.	-	Braa66-0011
	e_{Ag}^{-} + $(NH_2CH_2CH_2S)_2$	4-9	$\sim 4 \times 10^{10}$	p.r.	p.b.k. at 410 nm, estimated	Adam67-0554
	\Rightarrow RSSR \leq NH ₂ CH ₂ CH	1,S			value.	
	+ NH ₂ CH ₂ CH ₂ S ·	[
1.389	cysteamine (2-amino-	6.9	2 x 10 ¹⁰	p.r.		Braa66-0011
11007	ethanethiol)		2 20			
1.390	cysteine	1	3 x 10 ¹⁰ (rel.)	y-r.	c.k., assume	Al-T68-0540
1.020	(positive ion)	_	0 x 10 (1011)	/	$k(e_{ag}^- + H^+) = 2.3 \times 10^{10}$.	111 100 0010
1.391	cysteine	6.3	8.7 x 10 ⁹	p.r.		Braa66-0011
1.071	(zwitterion)	5.5	1.1 x 10 ¹⁰ (rel.)	γ-r.	c.k., $k_{1.391}/k(e_{aq}^- + acetone)$	Wilk68-0002
	e_{a}^{-} + SHCH ₂ CH(NH ₃)CO		111 x 10 (10x)	'	$= 1.95, \text{ assume } k(e_{\bullet q} +$	***************************************
	\Rightarrow ·CH ₂ CH(NH ₃)COO	Ĭ			acetone) = 5.9×10^9 or	
	+ SH ⁻				$k_{1.391}/k (e_{aq} + NO_3) = 1.03$	
					assuming $k(e_{aq} + NO_{3}) = 1.1 x$	
					10 ¹⁰ .	
		7	$\sim 8 \times 10^9 \text{ (rel.)}$	γ−r.	c.k., exptl. details not given.	Al-T68-0540,
			1 10 (101)		,,	Trum67-0477
		7	4.9 x 10 ⁹ (rel.)	γ-r.	c.k., $k(e_{aq}^- + O_2)/k_{1.391} =$	Pack.70-0015
					3.8, assume $k(e_{aq}^- + O_2) =$	
					1.9 x 10^{10} and $g(e_{ag}) = 2.8$.	
1.392	cysteine (negative	11.6	7.5×10^7	p.r.		Braa66-0011
	ion)			p		
1.393	cystine (zwitterion)	6.1	1.3 x 10 ¹⁰	p.r.		Braa66-0011
	(2	1 0.1	,	h.r.		

TABLE 4. Reactions of e-aq with organic solutes - Continued

No.	Solute and Reaction	pН	k(dm³ mol-1s-1)	Method	Comments	Ref.
1.394	cystine (negative	10.7	2.5 x 10°	p.r.	_	Braa66-0011
	ion)	12.0	3.4 x 10°	p.r.		Hart64-0044
.395	cytidine	12.0	1.2 x 10 ¹⁰	p.r.		Hart64-0044
.395a	cytochrome-C (ferri)	7.0	$(1.3 \pm 0.1) \times 10^{11}$	p.r.	d.k. at 550 nm (e _{aq}) or 370	Pech.71-0018
1.0704	.,,				nm (ferricytochrome-C) as well	
					as p.b.k. at 425 nm	
					(ferrocytochrome-C); concn.	
					$1-3 \times 10^{-6} M$, contains	
					$5 \times 10^{-4} M \text{ NaCl.}$	
1.396	cytosine	6	$\sim 7-8 \times 10^9$	p.r.		Hart64-0048
	cytosine	_	$\sim 1 \times 10^{10} (rel.)$	γ-r.	c.k., $k_{1.396}/k(e_{aq} + N_2O) =$	Scho.64-0094
			1 x 10 (101.)	' '	1.26 ± 0.15 , assume $k(e_{aq} + e_{aq} + e_{a$	Scho.07 0077
					$N_2O) = 8.7 \times 10^9$.	
.396a	dichloroacetate ion	11	4.2 x 10°		14 ₂ O) = 6.7 x 10 .	Aldr71-0019
.390a	dicilioroacetate ion	7.5	1.0 x 10 10	p.r.	concn. > 0.1 M.	
207	. 1:11 1	l l	4.7 x 10 ⁹	p.r.	conen. > 0.1 M.	Aldr71-0019
.397	o -dichlorobenzene	~ 11		p.r.	_	Anba.64-0138
.398	m -dichlorobenzene	~ 11	5.2 x 10°	p.r.	I —	Anba.64-0138
1.399	p-dichlorobenzene	~ 11	5.0 x 10 ⁹	p.r.		Anba.64-0138
1.399a	dichlorodifluoro-	~ 6	1.4 x 10 ¹⁰ (rel.)	γ-r.	c.k., assume $k(e_{aq} + N_2O) =$	Balk71-0026
	methane				$8.9 \times 10^{9} \text{ or } k(e_{aq} + H^{+}) =$	
	$e_{q} + CF_{2}Cl_{2} \Rightarrow$				2.4×10^{10} .	
	$CF_2Cl + Cl^-$		10			
1.399b	1,1-dichloroethylene	-	2.3×10^{10}	p.r.		Koes.71-0030
.399c	1,2-dichloroethylene	-	7.5 x 10°	p.r.	-	Koes.71-0030
1.400	2,4-diethoxypyrimidine	7-11	3.0 x 10°	p.r.	$\mu = 0.1.$	Gree68-0316
1.401	diethylthallium ion	-	3.5 x 10 ¹⁰ (rel.)	γ-r.	c.k., $k_{1.401}/k(e_{aq} + NO_3) =$	Sarr66-0629
	$e_{aq}^- + (C_2H_5)_2Tl^+ >$				3.19, assume $k(e_{aq} + NO_3) =$	
	Tl+ organic prod.				1.1×10^{10} .	
1.402	3-(3,4-dihydroxy-	6.95	1.6 x 10 ⁸	p.r.	-	Braa66-0011
	phenyl)-L-alanine					
1.403	N, N-dimethylform-	-	$(5.2 \pm 1.3) \times 10^7$	p.r.	conen. 10 ⁻² M.	Fel'67-0054
	amide					
1.404	dimethylsulfide	-	2.0×10^7	p.r.		Meis67-0186
1.405	dimethylsulfoxide	-	1.7 x 10 ⁶	p.r.	_	Meis67-0186
1.406	1,3-dimethyluracil	7	1.65×10^{10}	p.r.	$\mu = 0.1.$	Gree68-0316
.407	1,6-dimethyluracil	6.5-7	$(7.9 \pm 0.7) \times 10^9$	p.r.	no OH scavenger added.	Fiel.70-0226
1.408	3,6-dimethyluracil	6.5-7	$(6.0 \pm 0.7) \times 10^9$	p.r.	no OH scavenger added.	Fiel.70-0226
.408a	o,o'-diphenate ion	9.1	3.2 x 10°	p.r.		Eber.70-0411
.408b	p,p'-diphenate ion	9.1	1.2 x 10 ¹⁰	p.r.		Eber.70-0411
1.408c	dipyridylamine	9.1	1.4×10^{10}	p.r.		Eber. 70-0411
.409	djenkolate ion	11	108	p.r.		Braa66-0011
	3,3'-methylenedithio-			F		Biaaoo ooii
	bis(2-aminopropionate					
	ion)					
l.409a	DNA	8	> 10 ¹²	p.r.	mol. wt. 5 x 10 ⁶ .	Scho65-0388
		_	10 ¹³ (rel.)	γ-r.	c.k., assume $k(e_{aq} + N_2O) =$	Scho65-0038
			10 (101.)	, 1.	8.7 x 10 ⁹ .	201003-0030
l.409b	dodecyl sodium	_	$< 2.3 \times 10^5$	p.r.	concn. $5 \times 10^{-2} M$.	Fend.70-0271
	sulfate		2.0 % 10	p.1.	Concil. 0 x 10 171.	1 chd. 70 0271
1.410	eosin(dianion)	11	1.5 x 10 ¹⁰	p.r.		Hart.66-0818
		9.0	$(2.2 \pm 0.4) \times 10^{10}$	_	contains formate ion.	Gros68-0309
		12.0	$(1.9 \pm 0.1) \times 10^{10}$	p.r.	contains 10 ⁻² M formate ion.	Husa70-0253
		12.0	$(1.9 \pm 0.1) \times 10$ $(1.0 \pm 0.2) \times 10^{10}$	p.r.	p.b.k. at 405 nm, also	
		12.0	(1.0 ± 0.2) x 10	p.r.		Husa70-0253
					studied complex with human	
					serum albumin.	

Table 4. Reactions of e_{aq}^- with organic solutes – Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.411	ethanol $e_{aq}^{-} + C_2H_5OH \Rightarrow$ $C_2H_5O^{-} + H$	12	< 10 ⁵ < 400	p.r. f. phot.	solute concn. $0.2-1.0~M$. concn. $\sim 1-9~M$, H_2- satd., $\sim 10^{-3}~M$ NaOH; assumed $k(e_{Aq}^- + H_2O) = 16$ and cor. for $k(H + OH^-)$ and $k(H + C_2H_5OH)$.	Dorf.63-0045 Hick.70-7116
1.412	4-ethoxy-l-methyl- uracil	6.5-7	$(1.4 \pm 0.2) \times 10^{10}$	p.r.	no OH scavenger added.	Fiel.70-0226
1.413 1.414	4-ethoxyuracil N-ethylacetamide	6.5-7 3-6.7	$(1.7 \pm 0.2) \times 10^{10}$ $1.6 \times 10^{7} \text{ (rel.)}$	p.r. γ-r.	no OH scavenger added. c.k., assume $k(e_{aq}^- + CICH_2COOH) = 6.9 \times 10^9$.	Fiel.70-0226 Will.67-0310
1.415	ethyl acetate ethyl 2-aminoacetate (glycine, ethyl	6.53 6.7	5.9 x 10 ⁷ 1.0 x 10 ⁹ (rel.)	p.r. γ-r.	c.k., assume $k(e_{aq}^- + ClCH_2COO^-) = 1.2 \times 10^9$.	Hart67-0298 Will.67-0310
1.417	ester) ethylammonium ion	3	~ 10 ⁶ (rel.)	γ-r.	c.k., assume $k(e_{\bullet q}^{-} + CICH_2COOH) = 6.9 \times 10^9$,	Will.67-0310
		7.8	2.4 x 10 ⁶ (calcd.)	p.r.	cor. for $e_{aq}^- + H^+$. $k_{obs} = 2.7 \times 10^6$.	Geto.70-0371
1.418	ethyl cyanoacetate	10.92	3.2 x 10 ⁸	p.r.		Hart67-0298
1.419	ethylene ethylenediamine— tetraacetate ion	7 8-11	$< 2.5 \times 10^6$ $< 1.5 \times 10^6$	p.r. p.r.		Cull65.0053 Anba.64-0282
1.421	ethyl ether	_	< 10 ⁷	p.r.	<u>→</u>	Hart64-0048
1.421a	N – ethylmaleimide	-	3.2 x 10 ¹⁰	p.r.		Ward69-0562
1.422	fluorescein (anion)	9.2	$(1.4 \pm 0.2) \times 10^{10}$	p.r.	soln. contains $10^{-2} M$ formate ion.	Cord.68-0172
1.423	fluoroacetate ion	~ 10	$< (1.2 \pm 0.5)$ x 10^6 (cor.)	p.r.	$k_{\text{obs}} < (2.0 \pm 0.5) \times 10^6.$	Anba.65-0015
1.424	fluoroacetone	6.7-	9.8 x 10 ⁸	p.r.		Hart67-0298
1.425	fluorobenzene	~ 11	6.0 x 10 ⁷	p.r.	_	Anba.64-0138
1.426	o –fluorobenzoate ion	~ 11	7.0×10^{7} 3.1×10^{9}	p.r.		Koes.71-0030 Anba.64-0138
1.427	m -fluorobenzoate ion	~ 11	6.7 x 10°	p.r.		Anba.64-0138
1.428	p -fluorobenzoate ion	~ 11	3.8 x 10°	p.r.		Anba.64-0138
1.429	o-fluorophenoxide ion	~ 11	3.4×10^{8}	p.r.		Anba.64-0138
1.430	m -fluorophenoxide ion	~ 11	2.0×10^{8}	p.r.		Anba.64-0138
1.431	p -fluorophenoxide ion	~ 11	1.2 x 10 ⁸	p.r.		Anba.64-0138
1.432	formaldehyde	7	$\begin{array}{c c} 1.2 \times 10 \\ < 10^7 \end{array}$	p.r.		Gord63-007
1.433	formanide	_	< 10 ⁶	p.r.	solute concn. $10^{-2} M$.	
1.433	formamide			p.r.	solute concn. 10 M. solute concn. 10 ⁻³ M.	Fel'67-0054 Hart67-0298
		5.5-6	4.2 x 10 ⁷ 3.8 x 10 ⁷ (rel.)	p.r. γ-r.	solute concn. 10 M . c.k., assume $k(e_{aq} + NO_3) = 1.1 \times 10^{10}$;	Anba67-0098
					k detd. at 20, 45 and 70° C, $E_A = 3.2 \pm 0.5 \text{ kcal mol}^{-1}$.	
1.434	formate ion	~ 9	$\leq 1.4 \times 10^4 (cor.)$	p.r.	concn. $10^{-1} M$; counter ion Na ⁺ ; $k_{obs} = \le 2.5 \times 10^4$.	Keen65-0396
		~ 11	$\leq 1 \times 10^4 (cor.)$	p.r.	solute concn. $\leq 0.2 M$; $k_{obs} = 2.4 \times 10^4$; counter ions Na ⁺ , Ba ²⁺ .	Swal68-0418
1.435	formic acid	5.0	$(1.4 \pm 0.1) \times 10^8$	nr	ions iva , Da .	Gord63-007
1.436	fumarate ion	13	7.5×10^9	p.r.		Hart64-0044
				p.r.		
1.437	furan	7.94	3.0×10^6	p.r.		Szut65-0018
1.437a	gelatin	5.85	6.1 x 10 ¹⁰	p.r.		Braa67-3005
		6.2	5.0 x 10 ¹⁰	p.r.		Braa67-3005
		6.22	4.9×10^{10}	p.r.		Braa67-3005
		5.97	6.4 x 10 ¹⁰	p.r.	I —	Braa67-3005

Table 4. Reactions of e_{aq}^- with organic solutes – Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
		10.39	3.0 x 10 ¹⁰	p.r.		Braa67-3005
		11.12	2.6 x 10 ¹⁰	p.r.		Braa67-3005
1.438	glucosamine	7.7	3.5×10^{7}	p.r.	_	Braa66-0011
1.439	D-glucose	-	$\sim 3 \times 10^5$	p.r.	solute concn. 5 x 10 ⁻⁴ -	Davi65-0391,
					$5 \times 10^{-2} M$.	Phil66-0211
1.439a	p-glucuronate ion	_	≤ 10 ⁶	p.r.	concn. 10 ⁻¹ M.	Phil.70-0509
1.440	1glutamate ion	7	< 10 ⁷	p.r.		Hart64-0048
	(monoanion)	10.2	5 x 10 ⁶	p.r.	at this pH solute is	Braa65-0778
					mixture of monoanion and	
					dianion; estd. value for	
					the dianion: $k < 1 \times 10^6$.	
		5.7	$\approx 2 \times 10^7$	p.r.	_	Braa66-0011
1.441	glutathione(reduced	6.4	3.2 x 10 ⁹	p.r.		Braa66-0011
	form)		0	J		
1.442	glutathione	8.25	4.6 x 10 ⁹	p.r.	_	Braa66-0011
	(oxidized form;					
	disulfide)		1 - 108 - 1			William colo
1.443	glycine	3	4.7 x 10 ⁸ (rel.)	γ-r.	c.k., assume k(e,q+	Will.67-0310
	(positive ion)				$ClCH2COOH) = 6.9 \times 10^{9}.$	D 1 45 0000
1.444	glycine (zwitterion)	6.4	8.3 x 10 ⁶	p.r.	solute concn. $5 \times 10^{-2} M$.	Davi65-0389
		8.5	5.5 x 10 ⁶	p.r.	solute concn. $3 \times 10^{-2} M$.	Davi65-0389
1.445	glycine (negative	11	1.8 x 10 ⁶	p.r.	solute concn. 3 x $10^{-2} M$.	Davi.65-0389
1 446	ion)	Ì				
1.446	omitted	6.00	2.9 x 10 ⁸			P65 0200
1.447	glycyl-DL-alanine	6.22	2.9 X 10	p.r.	_	Braa65-0390, 67-3005
1.448	(negative ion)	5.33	5.4 x 10 ⁸			Braa67-3005
1.449	glycyl-L-asparagine	11.41	8 x 10 ⁷	p.r.		Braa67-3005
1.449	glycyl-L-asparagine (negative ion)	11.41	0 X 10	p.r.		D14407-3003
1.450	glycylglycine	3	9.3 x 10 ⁸ (rel.)	2/-2	c.k., assume $k(e_{aq}^- +$	Will.67-0310
1.450	(positive ion)	3	9.5 x 10 (1e1.)	γ-r.	$CICH_2COOH$) = 6.9 x 10 ⁹ .	wm.07 0510
1.451	glycylglycine	6.38	2.5 x 10 ⁸	p.r.		Braa65-0390,
	(zwitterion)	0.00	2.0 % 10			67-3005
1.452	glycylglycine	11.75	5 x 10 ⁷	p.r.	_	Braa65-0390,
	(negative ion)		,			67-3005
1.453	glycylglycylglycine	3	3.1 x 10 ⁹ (rel.)	γ-r.	c.k., assume $k(e_{aq}^- +$	Will.67-0310
	(positive ion)		(,	'	$ClCH_2COOH) = 6.9 \times 10^9$.	
1.454	glycylglycylclycine	6.0	9.0 x 10 ⁸	p.r.	′	Braa65-0390,
	(zwitterion)			1		67-3005
1.455	glycylglycylglycine	11.1	9 x 10 ⁷	p.r.		Braa65-0390,
	(negative ion)					67-3005
1.456	glycyl-1leucine	5.9	1.5 x 10 ⁸	p.r.		Davi65-0389
	(zwitterion)	6.46	2.8 x 10 ⁸	p.r.		Braa67-3005
		8.74	7 x 10 ⁷	p.r.		Braa67-3005
1.457	glycyl-1leucine	8.94	6.5×10^7	p.r.		Braa67-3005
	(negative ion)					
1.458	glycyl-1phenyl-	6.7	1.6 x 10 ⁸	p.r.	_	Davi65-0389
	alanine					
1.459	glycyl-1proline	6.66	1.1 x 10 ⁹	p.r.	_	Braa65-0390,
						67-3005
1.460	glycyl-1tryptophan	6.37	4.5 x 10 ⁸	p.r.		Braa65-0390,
						67-3005
1.461	glycyl-1tyrosine	6.13	4.1 x 10 ⁸	p.r.		Braa65-0390,
1			0 4 4 8			67-3005
1.462	glycyl-DL-valine	5.97	2.6 x 10 ⁸	p.r.		Braa65-0390,
1.460	.,,		0.5.108		1	67-3005
1.463	guanidine	6.1	2.5 x 10 ⁸	p.r.	values for k from graph.	Braa66-0011

Table 4. Reactions of e-aq with organic solutes-Continued

	Solute and Reaction	pН	$k(dm^3 mol^{-1}s^{-1})$	Method	Comments	Ref.
1.464	guanidine	11.1	1.9 x 10 ⁸	p.r.	values for k from graph.	Braa66-0011
		11.9	1.6 x 10 ⁸	p.r.	values for k from graph.	Braa66-0011
l.464a	hemin	_	6.0 x 10°	p.r.		Davi65-0781
1.465	hemoglobin	_	2.6 x 10 ¹⁰	p.r.		Davi65-0781
1.465a	hexadecyltrimethyl-	_	$< 9.2 \times 10^5$	p.r.	conen. 5 x 10 ⁻² M.	Fend. 70-0271
.4054	ammonium bromide		7.2 x 10	p	concil. o x 10 M.	7 Clid. 70 0271
1.465b	hexadecylpyridin-	-	2.6 x 10 ¹⁰	p.r.	also studied effect of	Bala68-2104
	ium chloride				heparin on rate.	
		_	5 x 10 ¹⁰	p.r.	also studied effect of	Moor67-074
					chondroitin 4-sulfate on rate.	
1.465c	hexafluorobenzene	_	2.0 x 10 ¹⁰	p.r.		Koes.71-0030
1.466	DL-histidine	< 5	7 x 10°	p.r.	at pH 5.96 $k_{obs} = 3.87 \text{ x}$	Braa66-0011
100	(positive ion)		1 7 70	P.T.	10^9 ; at pH 6.70 $k_{obs} =$	Diagoo ooii
	(positive ion)				1.41 x 10°.	
1467	Line II	~ 7	6 x 10 ⁷			P66 0011
1.467	DL-histidine	~ /	0 X 10	p.r.	at pH 8.58, $k_{obs} = 4.5 \text{ x}$ 10^7 .	Braa66-0011
	(zwitterion)		207			D ((
1.468	DIhistidine	< 11	~ 10 ⁷	p.r.	at pH 11.14 $k_{obs} = 1.2 \text{ x}$	Braa66-0011
	(negative ion)	P.			10 ⁷ .	
1.469	histidylhistidine	5.51	7.9 x 10 ⁹	p.r.	_	Braa65-0390,
		6.83	2.4 x 10°	p.r.		67-3005
		7.3	1.3 x 10 ⁹	p.r.		
		8.37	2.85 x 10 ⁸	p.r.		
		11.0	5.1×10^7	p.r.		
1.470	homocystine	6.90	9 x 10 ⁹	p.r.		Braa66-0011
1.471	hydrocinnamate ion	5.43	4.9×10^{7}	p.r.	At pH 5.4 the solute is	Szut65-001
	nydroemnamate ion	0.40	7.7 % 10	p.1.	~ 10% in the acid form.	52di65 001
		12.14	1.1 x 10 ⁷		10% in the acid form.	65 0011
170	1 1 2 2 21		4 x 10 ⁸ (calcd.)	p.r.	1 1 6 1 6	Szut65-0018
1.472	hydrocinnamic acid	5.43	4 x 10 (calcd.)	p.r.	calcd. from k obe for	Szut65-0018
					mixture with hydrocinnamate	
			10		ion, see above.	
1.472a	hydroorotate ion	7	1.6 x 10 ¹⁰	p.r.	-	Gree70-0567
1.473	hydroquinone ion	13	< 10 ⁷	p.r.	_	Hart64-0044
	(p-hydroxyphenoxide					
	ion)					
1.473a	hydrothymine	7	5 x 10 ⁹	p.r.	_	Phil69-0012
1.474	hydrouracil	7	4.5 x 10°	p.r.	$\mu = 0.1.$	Gree68-0316
		7	1.0 x 10 ¹⁰	p.r.		Phil69-0012
1.475	m -hydroxybenzoate ion	~ 11	1.1 x 10°	p.r.		Anba.64-0138
1.476	p -hydroxybenzoate ion	~ 11	4.0×10^{8}			Anba.64-0138
1.470	p - hydroxybelizoate ion	11	2.5 x 10 ⁸ (rel.)	p.r.	c.k., k calcd. from	Stoc.66-0160
		11	2.5 x 10 (rel.)	γ -r.		Stoc.00-0100
					$k_{1.476}/k(e_{aq} + ClCH_2COO^- =$	
					$0.21 \pm 20\%$ assuming $k(e_{aq}^- +$	
					$CICH_2COO^-) = 1.2 \times 10^9.$	
1.477	o-hydroxybenzonitrile	~ 11	8.2 x 10 ⁹	p.r.		Anba.64-0138
1.478	m -hydroxybenzonitrile	~ 11	4.8 x 10 ⁹	p.r.		Anba.64-0138
1.479	p – hydroxybenzonitrile	~ 11	2.0 x 10 ⁹	p.r.		Anba.64-0138
1.480	3-hydroxy-2-butanone	-	6.0 x 10 ⁹	p.r.		Lili68-0249
	(acetoin)					
1.481	p-hydroxyphenylpro-	11.0	$\leq (1.7 \pm 0.4)$	p.r.		Chry68-0062
	pionate ion		x 10 ⁷			
1.482	ı, – hydroxyproline	10.8	1.1 x 10 ⁷	p.r.		Braa66-0011
1.483	hypoxanthine	6.6	1.7×10^{10}			Hart64-0044
1.400		0.0	$ (1.7 \times 10) < 1.3 \times 10^6 $	p.r.	$\frac{\text{concn. 5 x } 10^{-2} M.$	
1 402	Igepal CO-730		1.5 x 10	p.r.	conen. 5 x 10 M.	Fend. 70-0271
1.483a						
1.483a	(nonylphenylpoly-	1				1
	oxyethylene: 15)		1.0			
1.483a		6.3	4.3 x 10 ⁹ 3.4 x 10 ⁹	p.r. ·	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Braa66-0011 Gree68-0316

Table 4. Reactions of e_{aq}^- with organic solutes – Continued

No.	Solute and Reaction	pН	$k(dm^3 mol^{-1}s^{-1})$	Method	Comments	Ref.
	·	11.5	2.4 x 10 ⁷	p.r.		Braa66-0011
1.486	indigotetrasul-	6	6.8 x 10 ⁹ (rel.)	γ-r.	c.k., assume $k(e_{aq} + N_2O) =$	Raki68-0059
	fonate ion				8.7×10^9 ; counter ion K ⁺ .	
1.487	indole	_	$\sim 7 \times 10^8$	p.r.		Baxe64-013
		7.7	$(1.9 \pm 0.2) \times 10^8$	p.r.		Arms.69-0459
1.487a	indole-2-carboxylate	10.5	3.8 x 10 ⁹	p.r.		Eber. 70-0411
1.40.4	ion	10.0	0.0 x 10	p		Liber. 10 OFF
1.487ь	indole-3-carboxylate	10.5	1.6 x 10 ⁹	p.r.	_	Eber. 70-0411
1.487c	ion indole–5–carboxylate	9.2	2.0 x 10°	p.r.		Eber.70-0411
	ion					
1.488	iodoacetate ion	~ 10	$(1.2 \pm 0.1) \times 10^{10}$	p.r.		Anba.65-0015
1.489	iodobenzene	~ 11	1.2 x 10 ¹⁰	p.r.		Anba.64-0138
1.490	o-iodobenzoate ion	~ 11	4.6 x 10 ⁹	p.r.		Anba.64-0138
1.491	m -iodobenzoate ion	~ 11	1.3×10^{10}	p.r.		Anba.64-0138
1.492	p-iodobenzoate ion	~ 11	9.1 x 10 ⁹	p.r.		Anba.64-0138
1.493	l-iodobutane	7.60	1.2 x 10 ¹⁰	p.r.		Szut65-0018
1.494	iodoethane	6.04-	1.5 x 10 ¹⁰	p.r.		Szut65-0018
1.171	$e_{ag}^{-} + C_2H_5I \Rightarrow$	6.75	1.0 % 10	p.1.		024100 0010
	$C_2H_5 + I^-$	0.10	1.5 x 10 ¹⁰			Bull.70-0407
1.495	iodomethane	6.85	1.7 x 10 ¹⁰	p.r.		Szut65-0018
1.493	$e_{aq}^{-} + CH_3I \Rightarrow CH_3 + I^{-}$	0.65	$(1.7 \pm 0.3) \times 10^{10}$	p.r.	<u> </u>	
	$e_{aq} + CH_3I \Rightarrow CH_3 + I$	_	$(1.7 \pm 0.3) \times 10$	p.r.	d.k. at 600 nm as well as	Thom67-0041
					p.b.k. at 230 nm (I ⁻), soln.	
					contains 10 ⁻³ M ethylene.	
		_	1.65 x 10 ¹⁰	p.r.		Bull.70-0407
1.496	l-iodopropane	6.21	1.3 x 10 ¹⁰	p.r.		Szut65-0018
1.497	2-iodopropionate ion	~ 10	$(6.6 \pm 0.9) \times 10^9$	p.r.	_	Anba.65-0015
1.498	<i>p</i> –iodotoluene	~ 11	1.3 x 10 ¹⁰	p.r.	_	Anba.64-0138
1.499	iodouracil	-	1.7 x 10 ¹⁰	p.r.	$k \text{ detd. at } 15-80^{\circ}\text{C};$ $E_{\bullet} = 2.3 \text{ kcal mol}^{-1}.$	Cerc69-0567
1.499a	isoamylamine	11.8	$< 1.0 \times 10^6$	p.r.	_	Geto.70-0371
1.500	isocitrate ion	111	$(2.4 \pm 0.5) \times 10^7$	γ-r.	c.k., k calcd. from	Stoc.66-0160
			(rel.)	·	$k_{1.500}/k (e_{aq}^{-} + ClCH_{2}COO^{-}) = (2 \pm 0.4) \times 10^{2} \text{ assuming}$	
					$k(e_{aq}^{-} + ClCH_2COO^{-}) =$	
					1.2 x 10 ⁹ .	
1.500a	isonicotinamide	9.0	3.2 x 10 ¹⁰	p.r.		Eber.70-0411
	isonicotinate ion		2.4 x 10 10	1		Eber. 70-0411
1.500 ь 1.500 с	isoorotate ion	7	1.1 x 10 ¹⁰	p.r.	<u> </u>	Gree70-0567
1.500d		12.3	$< 1.5 \times 10^6$	p.r.		Geto.70-0371
	isopropylamine	9	$ <1.3 \times 10 $ $<10^{7}$	p.r.		Hart64-0048
1.501	lactate ion		≤ 10 $\leq 2 \times 10^6$	p.r.		Anba.64-0282
, 500	,	11	$ \leq 2 \times 10$ $< 10^7$	p.r.	10-2 14	
1.502	ıleucine	6.5	1	p.r.	solute concn. $10^{-2} M$.	Braa66-0011
1.503	ıleucyl-ıalanine	6.1	1.65 x 10 ⁸	p.r.		Braa67-3005
1.504	DIleucylglycine	6.09	1.1 x 10 ⁸	p.r.		Braa67-3005
1.505	leucylglycylglycine	6.0	2.0 x 10 ⁸	p.r.		Davi65-0389
		6.93	2.8 x 10 ⁸	p.r.		Braa67-3005
		9.5	5 x 10 ⁷	p.r.	_	Braa67-3005
1.506	1leucyl-1leucine	5.97	9 x 10 ⁷	p.r.	_	Braa67-3005
1.507	lipoate ion	7	1.5 x 10 ¹⁰	p.r.		Will70-0560
1.508	lysine	7, 7.8	$\sim 2 \times 10^7$	p.r.		Braa65-0390,
	(positive ion)	'				66-0011
1.509	lysozyme	6.2	7.5 x 10 ¹⁰	p.r.		Eber.65-3013
	-, -, -, -, -, -, -, -, -, -, -, -, -, -	6.2	7.5×10^{10}		mol. wt. 15,000.	Braa67-3005
		10.1	2.7×10^{10}	p.r.	Moi. wt. 13,000.	Braa67-3005
		1	1.8 x 10 ¹⁰	p.r.		
		10.7	8.3 x 10	p.r.		Braa67-3005
		111.8	1 8.5 X IU	p.r.		Braa67-3005

Table 4. Reactions of e_{aq}^- with organic solutes—Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
		7.4	3.1 x 10 ¹⁰	p.r.	conen. 0.8 mg/ml.	Adam69-3039
1.510	malate ion	11	6 x 10 ⁷ (rel.)	γ-r.	c.k., k calcd. from $k_{1.510}/k$ $k(e_{aq}^- + \text{ClCH}_2\text{COO}^-) = (5 \pm 1)$ $\times 10^{-2}$ assuming $k(e_{aq}^- + \text{ClCH}_2\text{COO}^-) = 1.2 \times 10^9$.	Stoc.66-0160
1.511	maleate ion (monoanion)	6.5	3.9 x 10 ¹⁰ (calcd.)	p.r.	k calcd. from $k_{obs} = 1.2$ $\times 10^{10}$ assuming that $k(e_{aq}^- + dianion = 1.7 \times 10^9$ and that soln. contains 28% monanion.	Hart64-0044
1.512	maleate ion (dianion)	8.45 12.7	1.7 x 10 ⁹ 1.7 x 10 ⁹ (cor.)	p.r. p.r.	$\phantom{00000000000000000000000000000000000$	Hart64-0044 Hart64-0044
1.513	malonate ion (monoanion)	6.0	2.4 x 10 ⁸	p.r.	——————————————————————————————————————	Hart66-0819
1.514	2-mercaptoethanol e-+ SHCH ₂ CH ₂ OH	10	$(1.0 \pm 0.15) \text{ x}$ 10^{10}	p.r.		Karm69-0553
	\Rightarrow ·CH ₂ CH ₂ OH + SH ⁻ (I)	5.7-9.0	1.2 x 10 10	p.r.		Jays71-0175
	$or \Rightarrow \cdot SCH_2CH_2OH + H_2 + OH^-(II)$	5.5	-	X-r.	$k_1/k_{11} \cong 1 \text{ from H}_2S \text{ yields};$ concn. $10^{-2} M$.	Jays71-0175
1.515	mercaptoethylguanidine	6.74	2 x 10 ¹⁰	p.r.		Braa66-0011
1.516	mercaptoethylguanidine (oxidized); bis-	7.4	2 x 10 ¹⁰	p.r.	_	Braa66-0011
	(2-guanidinoethyl)- disulfide)		0			
1.517	3-mercaptovaline (penincillamine)	6.5	5.1 x 10°	p.r.	_	Braa66-0011
1.518	methacrylate ion	10.1	8.4 x 10°	p.r.	counter ion Na ⁺ .	Hart64-0044
1.519	methane		< 107	p.r.	-	Hart64-0048
1.520	methanethiol e _{4q} + CH ₃ SH ⇒ ·CH ₃ + SH ⁻	0-6	$(1.8 \pm 0.2) \times 10^{10}$ (rel.)	γ-r.	c.k., k calcd. from $k_{1.520}/(e_{aq}^- + H^+) = 0.8 \pm 0.3$ assuming $k(e_{aq}^- + H^+) = 2.3 \times 10^{10}$.	Arms.64-0151
		7	$(7.5 \pm 1.1) \times 10^9$	p.r.	_	Karm69-0553
1.521	methanol	_	< 10 ⁴	p.r.	addn. of 10-20% methanol	Anba.64-0138,
	$e_{aq}^- + CH_3OH \Rightarrow$ $CH_3O^- + H$				did not alter the half-life of e in aq. solns. of	Anba.64-0282
		-	≤ 400	f. phot.	aromatic compds. concn. $\sim 1-8 M$, H_2 -satd., $10^{-3} M \text{ NaOH}$; assumed $k (e_{aq}^- + H_2 O) = 16$ and cor. for impurities.	Hick.70-7116
1.522	DL-methionine	6.0	3.5×10^7	p.r.		Braa66-0011
1.523	methyl 2-aminoacetate (glycine, methyl ester)	10.66	2.9 x 10 ⁸	p.r.	_	Hart67-0298
1.524	methylammonium ion	4.9	$\sim 2 \times 10^6$	p.r.		Ries.65-0188
	$e_{aq}^- + CH_3NH_3^+ \Rightarrow$	7.6	1.8 x 10 ⁶	p.r.		Braa66-0011
1.525	H + CH ₃ NH ₂ Omitted	7.8	1.9 x 10 ⁶	p.r.		Geto.70-0371
1.526	methyl cyanoacetate	10.9	3.2×10^8	p.r.	_	Hart66-0819
1.527	5-methylcytosine	7.72	1.0×10^{10}	p.r.		Hart64-0044
1.528	methylene blue	7.8	$(2.5 \pm 0.3) \times 10^{10}$	p.r.	d.k. at 520 nm (e_{aq}^-) as well as d.k. at 580 nm (dye) and p.b.k. at 425 nm (semiquinone), soln. contains $10^{-1} M$ formate	Keen65-0396
			2.5 1010		ion.	Fhor 65 2012
		-	2.5×10^{10}	p.r.		Eber.65-3013
	J	_	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p.r.	counter ion Cl ⁻ .	Moor67-0742

Table 4. Reactions of e_{aq}^- with organic solutes—Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
		-	2.4 x 10 ¹⁰	p.r.	soln. contains $10^{-2} M$ glucose; also studied effect of various polyanions on rate.	Bala68-0238 68-2104
1.529	methyl fluoroacetate	6.7	$(1.0 \pm 0.1) \times 10^9$	p.r.		Hart67-0298
		10.86	$(8.8 \pm 0.9) \times 10^8$	p.r.		Hart67-0298
1.530	N-methylformamide	_	$(1.5 \pm 1.0) \times 10^7$	p.r.	solute concn. $10^{-2} M$.	Fel'67-0054
1.531	methyl green	-	4.3 x 10 ¹⁰	p.r.	also studied effect of heparin on rate.	Bala68-2104
1.532	methyl 2-hydroxy- acetate	10.65	4.8 x 10 ⁸	p.r.	_	Hart67-0298
1.533	2-methylindole	7.1	$(6 \pm 3) \times 10^7$	p.r.	_	Arms.69-0459
1.534	3-methylindole	8.2	$(2.6 \pm 0.3) \times 10^8$	p.r		Arms.69-0459
1.535	l-methylnicotinamide	8.5	4.1 x 10 ¹⁰	p.r.	soln. contains $10^{-1} M$ sodium formate.	Land.68-0441
1.536	methyl propionate	6.81	9.0×10^7	p.r.		Hart67-0298
1.537	methyl trifluoro- acetate	10.62	1.9 x 10°	p.r.	_	Hart67-0298
1.538	methyl trimethyl- acetate	5.91	2.3 x 10 ⁷	p.r.	_	Hart67-0298
1.539	6-methyluracil	6.5-7	$(1.3 \pm 0.3) \times 10^{10}$	p.r.	no OH scavenger added.	Fiel.70-0226
1.540	naphthalene	~ 11	5.4 x 10 ⁹	p.r.		Anba.64-0138
1.541	l-naphthoate ion	~ 11	6.1 x 10°	p.r.		Anba.64-0138
		9.1	1.0 x 10 ¹⁰	p.r.		Eber.70-0411
1.542	2-naphthoate ion	~ 11	9.5 x 10 ⁹	p.r.		Anba.64-0138
1.543	1-naphthyloxide ion	~ 11	9.6 x 10 ⁸	p.r.		Anba.64-0138
1.544	2-naphthyloxide ion	11	1.8 x 10 ⁹	p.r.		Hart64-0044
	- map many results for	~ 11	1.2 x 10°	p.r.		Anba.64-0138
1.545	1-naphthonitrile	~ 11	2.1 x 10 ¹⁰	p.r.		Anba.64-0138
1.546	2-naphthonitrile	~ 11	2.1×10^{10}	p.r.		Anba.64-0138
1.546a	nicotinamide	7.5	2.4×10^{10}	p.r.		Eber.70-0411
1.547	nicotinamide-adenine dinucleotide (NAD ⁺)	6.4	2.5×10^{10}	p.r.	soln. contains $10^{-1} M$ sodium formate.	Land.68-0441
1.548	nicotinamide-adenine dinucleotide (enzy- matically reduced) (NADH)	7 ± 1	5.2 x 10°	p.r.	soln. N ₂ O-satd.	Land.68-0441
1.549	nicotinate ion	-	1.9 x 10 ⁹ (rel.)	r.	c.k., $k_{1.549}/k(e_{aq}^- + O_2) = 10^{-1}$, assume $k(e_{aq}^- + O_2) = 1.9 \times 10^{10}$.	Nakk65-0739
		10.5	1.0 x 10 ¹⁰	p.r.	_	Eber.70-0411
1.549a	nicotinuric acid	9.2	2.1 x 10 ¹⁰	p.r.		Eber. 70-0411
1.550	nitrilotriacetate ion	10	4 x 10 ⁶	p.r.	_	Anba.64-0282
1.551	nitrobenzene	7	3.0 x 10 ¹⁰	p.r.		Hart64-0044
	$e_{\bullet q}^- + C_6 H_5 NO_2 \gg$	~ 11	3.0 x 10 ¹⁰	p.r.		Anba.64-0138
	$C_6H_5NO_2^-(+H^+) \rightleftharpoons$	7	2.9×10^{10}	p.r.	d.k. at 720 nm as well as	Wigg67-0688
	C ₆ H ₅ NO ₂ H			•	p.b.k. at 290 nm (nitrobenzene anion).	
		-	2.8 x 10 ¹⁰	p.r.	$k \text{ detd. at } 15-80^{\circ}\text{C};$ $E_{a} = 2.1_{8} \text{ kcal mol}^{-1}.$	Cerc69-0567
1.552	nitroethane	0-6	$(2.7 \pm 0.1) \times 10^{10}$ (rel.)	γ-r.	c.k., $k_{1.552}/k (e_{aq}^- + H_3O^+)$ = 1.17 ± 0.02,	Sutt.67-0180
					assume $k(e_{aq}^- + H_3O^+) = 2.3$ $\times 10^{10}$.	
1.553	nitromethane	-	2.1 x 10 ¹⁰	p.r.	_	Asmu66-0800
		0-6	(2.9 ± 0.1) x 10^{10} (rel.)	γ-r.	c.k., $k_{1.553}/k(e_{aq}^- + H_3O^+) = 1.22 \pm 0.02$, assume $k(e_{aq}^- + H_3O^+) = 2.3 \times 10^{10}$.	Sutt.67-0180

TABLE 4. Reactions of e_{aq} with organic solutes - Continued

No.	Solute and Reaction	pН	$k(dm^3 mol^{-1}s^{-1})$	Method	Comments	Ref.
1.554	aci-nitromethane (negative ion) e _{aq} + CH ₂ NO ₂ >> CH ₃ NO ₂ + OH	12	6.6 x 10°	p.r.		Asmu66-0080
1.555	2-nitro-2-methyl- 1,3-propanediol	10	1.3 x 10 ¹⁰	p.r.		Anba.64-0282
1.556	2-nitro-2-methyl- 1-propanol	10	2.1 x 10 ¹⁰	p.r.		Anba.64-0282
1.557	o-nitrophenoxide ion	~ 11	2.0 x 10 ¹⁰	p.r.		Anba.64-0138
1.558	m – nitrophenoxide ion	~ 11	2.5 x 10 ¹⁰	p.r.		Anba.64-0138
1.330	iii intoprenozide ion	11	1.7 x 10 ¹⁰ (rel.)	γ-r.	c.k., $k_{1.558}/k(e_{aq}^- + ClCH_2COO^-) = 14 \pm 2.8$, assume $k(e_{aq}^- + ClCH_2COO^-) = 1.2 \times 10^9$.	Stoc.66-0160
1.559	p – nitrophenol	7	$(3.5 \pm 0.6) \text{ x}$ 10^{10}	p.r.	d.k. at 650 nm or p.b.k. at 290 nm (radical anion), pK of solute is 7.15.	Cerc.68-0303
		-	3.6 x 10 ¹⁰	p.r.	$k \text{ detd. at } 15-80 \text{ °C};$ $E_{\bullet} = 2.5_{\bullet} \text{ kcal mol}^{-1}.$	Cerc69-0567
1.560	p-nitrophenoxide ion	~ 11	2.5 x 10 ¹⁰	p.r.	_	Anba.64-0138
1.561	p-nitrophenylacetate ion	7-11	$(1.85 \pm 0.2) \text{ x}$ 10^{10}	p.r.	_	Anba.65-0047
		3 M OH	$(1.7 \pm 0.2) \times 10^{10}$	p.r.	_	Anba.65-0047
1.562	l – nitropropane	0-6	$(2.7 \pm 0.1) \times 10^{10}$ (rel.)	γ-r.	c.k., $k_{1.562}/k (e_{aq}^- + H_3 O^+) = 1.18 \pm 0.04$, assume $k (e_{aq}^- + H_3 O^+) = 2.3 \times 10^{10}$.	Sutt.67-0180
1.563	nitrosobenzene	7	4.3 x 10 ¹⁰	p.r.	1130) = 2.0 x 10 .	Asmu66-0433
1.564	p-nitrosodimethyl-	_	$(3.4 \pm 0.2) \times 10^{10}$	p.r.		Dain.68-0066
1.304	aniline	-	$(2.6 \pm 0.4) \times 10^{10}$ (rel.)	γ-r.	c.k., with N ₂ O, assumed values not given.	Dain68-0066
1.565	p – nitrotoluene	~ 11	1.9 x 10 ¹⁰	p.r.	values not given.	Anba.64-0138
1.566	norleucine		3.3 x 10 ⁶	p.r.		Davi65-0389
1.567	orotate ion	6.56	1.5 x 10 ¹⁰	p.r.		Hart64-0044
	0.00000	7.7	1.4 x 10 ¹⁰	p.r.	d.k. at 600 nm as well as p.b.k. at 320 nm (e ⁻ adduct).	Gree70-0567
1.567a	orotate ion (dianion)	~ 12	~ 8 x 10°	p.r.	d.k. at 600 nm as well as p.b.k. at 320 nm (e adduct).	Gree70-0567
1.567b	orotidine	7	9 x 10°	p.r.	d.k. at 600 nm as well as p.b.k. at 320 nm (e ⁻ adduct).	Gree70-0567
1.568	oxalacetate ion	11	4.3 x 10 ⁹ (rel.)	γ-r.	c.k., $k_{1.568}/k$ (e_{aq}^- + ClCH ₂ COO ⁻) = 3.6 ± 0.7, assume k (e_{aq}^- + ClCH ₂ COO ⁻) = 1.2 x 10 ⁹ .	Stoc.66-0160
1.569	oxalate ion	10	< 10 ⁷	p.r.		Hart64-0048
	(dianion)	_	< 10 ⁸	p.r.		Baxe64-0132
		7.0-7.7	4.8 x 10 ⁷ (rel.)	γ-r.	c.k., assume $k(e_{\bullet q} + NO_2) = 4.58 \times 10^9$, soln. air-satd.; counter ion K ⁺ .	Mici.69-0646
		-	$(1.7 \pm 0.5) \times 10^7$	p.r.	k detd. at pH 5 and 9; assumed p $K_1 = 1.25$ and p $K_2 = 4.28$ for oxalic acid dissoc. and cor. for $e_{aq}^- + H_3O^+$; see 1.570.	Geto71-0041
1.570	oxalate ion (monanion)	2.8-4.0	$(3.4 \pm 0.7) \times 10^9$ (rel., cor.)	γ-r.	c.k., assume $k(e_{aq}^- + H^+) = 2.36 \times 10^{10}$, counter ions Na ⁺ , ClO ₄ ; k cor. to $\mu = 0$.	Mici.69-0646
		_	$(3.2 \pm 0.6) \times 10^9$	p.r.	see 1.569.	Geto71-0041

Table 4. Reactions of e-aq with organic solutes - Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
1.571	oxalic acid	1.3	(2.5 ± 0.9) x 10 ¹⁰ (rel., cor.)	γ-r.	c.k., assume $k(e_{aq}^- + H^+) = 2.36 \times 10^{10}$; counter ions Na ⁺ , ClO ₄ ; k cor. to $\mu = 0$.	Mici.69-0646
1.550		~ 11	$(4.0 \pm 0.4) \times 10^9$		counter ion Na ⁺ .	Hart67-0298
1.572	oxamate ion		$(4.0 \pm 0.4) \times 10$ $(7 \pm 2) \times 10^9$	p.r.	c.k., $k_{1.573}/k$ (e _{*q} +	Stoc.66-0160
1.573	2-oxoglutarate ion	13	(rel.)	γ-r.	CICH ₂ COO ⁻) = 6.1 ± 1.2, assume $k(e_{aq}^- + ClCH_2COO^-) = 1.2 \times 10^9$; counter ion Na ⁺ .	
1.573a	pentafluorobenzene	_	2.6 x 10 ¹⁰			Koes.71-0030
1.574	1,10-phenanthroline	7.2	$(2.1 \pm 0.1) \times 10^{10}$	p.r.		Walt67-0560
1.574a	phenethylamine	11.8	2.0 x 10 ⁷	p.r.		Geto.70-0371
1.575	phenol	6.3-6.8	$(1.8 \pm 0.2) \times 10^7$	p.r.		Land.67-0122
1.576	phenoxide ion	~ 11	4.0×10^6	p.r.		Anba.64-0138
1.577	phenylacetate ion	5.43	5.1×10^7	p.r.		Szut65-0018
		7	$3.1-3.3 \times 10^7$	γ−r.	c.k., k calcd. assuming	Anba67-0098
			(rel.)		$k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10} \text{ or}$	
	•				$k(e_{aq}^{-} + p - BrC_6H_4OH) = 1.2$	
					$\times 10^{10}$; k detd. at 20, 45, and 70°C to give $E_a = 3.4$ kcal	
					mol ⁻¹ .	
1.578	DL-phenylalanine	6.7	1.5 x 10 ⁸	p.r.		Davi65-0389
	(zwitterion)	6.28	1.1 x 10 ⁸	p.r.		Braa66-0011
		7.0	1.5 x 10 ⁸	p.r.		Braa66-0011
		8.65	8.8 x 10 ⁷	p.r.		Braa66-0011
		7	1.6 x 10 ⁸ (rel.)	γ-r.	c.k., assume $k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}$.	Anba67-0098
	-		1.35 x 10 ⁸ (rel.)	γ-r.	c.k., assume $k(e_{aq}^{-} + BrC_6H_4OH) = 1.2 \times 10^{10}$;	
					$k \text{ detd. at } 20, 45, \text{ and } 70 ^{\circ}\text{C}$ to give $E_{\bullet} = 3.4 \text{ kcal mol}^{-1}$	
					as ave. of both methods.	
1.579	DL-phenylalanine	11	< 10 ⁷	p.r.	_	Hart64-0044
	(negative ion)	11.2	1.35 x 10 ⁷ (cor.)	p.r.	$k_{\text{obs}} = 1.7 \times 10^7$.	Braa66-0011
		11	$\leq (1.6 \pm 0.3) \text{ x}$ 10^7	p.r.		Chry68-0062
1.580	լ-phenylalanyl-լ phenylalanine	5.66	4.5 x 10 ⁸	p.r.	_	Braa67-3005
1.581	phenylarsonate ion	10	1.5 x 10 ⁸	p.r.		Anba.64-0282
1.582	phenylhydroxylamine	_	1.8 x 10°	p.r.		Wigg67-0191
		13.5	1.4 x 10°	p.r.	reactant is C ₆ H ₅ NHO ⁻ .	Wigg67-0191
1.583	o-phthalate ion	5.6	1.1 x 10 ¹⁰	p.r.	k calcd. from k obs =	Szut65-0018
	(monoanion)		(calcd.)		6.2 x 10 ⁹ assuming solute	
					is 1:1 mixture of mono- and dianion.	
1.584	o-phthalate ion	13	1.8 x 10 ⁹	p.r.		Gord64-0043
	(dianion)	12.8	2.0 x 10 ⁹	p.r.		Hart64-0044
		6.78	1.2 x 10°	p.r.		Szut65-0018
		12.7	1.9 x 10 ⁹	p.r.	_	Szut65-0018
		11-13	1.7 x 10 ⁹ (rel.)	γ-r.	c.k., $k_{1.584}/k(e_{aq}^{-} + CICH_2COO^{-}) = 1.4 \pm 0.3,$	Stoc.66-0160
					assume $k (e_{aq}^- + ClCH_2COO^-) = 1.2 \times 10^9$.	
1.585	m-phthalate ion	13	3.0 x 10 ⁹	p.r.	_	Gord64-0043
1.586	p-phthalate ion	13	7.3 x 10 ⁹	p.r.	_	Gord64-0043
1.586a	picolinate ion	9.1	1.1 x 10 ¹⁰	p.r.	_	Eber.70-0411
1.587	picrate ion	5.36	3.9 x 10 ¹⁰	p.r.		Hart64-0044
		13	3.5 x 10 ¹⁰	p.r.	_	Hart64-0044
1.588	pivalic acid	5.0	9.7×10^7	p.r.		Hart67-0298

TABLE 4. Reactions of e_{aq} with organic solutes - Continued

1.590 bro 1.590 1.591 1.592 pro 1.593 pro 1.594 pro 1.595 pur 1.596 pyr 1.598 pyr 1.598 pyr 1.599 pyr 1.600 pyr 1.602 pyr	opionamide opionitrile opylammonium ion otamine sulfate rine ridine rrole rrole r + C ₄ H ₈ NH >	- 6.7 7-8 10.1 - 10.9 7.8 - 7.2 6.9-7.3 5.5-6	5.0 x 10° 2 x 10° < 10° < 10° (calcd.) (3.9 ± 0.5) x 10° 1.5 x 10° 3.2 x 10° (calcd.) 5.5 x 10° 1.7 x 10° 1.0 x 10° 3.0 x 10° (rel.) 3.7 x 10°	p.r. also studied effect of heparin and DNA on rate. isoelectric point of proline is 6.3 k calcd. from $k_{obs} \approx 5 \times 10^6$ assuming solute contains 22% negative ion at this pH. soln. satd. with ethylene. $k_{obs} = 3.7 \times 10^6$. also studied effect of heparin and DNA on rate. $k_{obs} = 3.7 \times 10^6$. also studied effect of heparin and DNA on rate. $k_{obs} = 3.7 \times 10^6$.	Bala68-2104 Braa66-0011 Hart64-0048 Braa66-0011 Cham70-0052 Anba.64-0282 Geto.70-0371 Bala68-2104 Hart64-0044 Hart64-0044 Anba67-0098	
1.591 (zw 1.591 1 ion 1.592 proleman 1.593 proleman 1.594 proleman 1.594 proleman 1.595 pure 1.596 pyre 1.598 pyre 1.598 pyre 1.600 pyre 1.600 pyre 1.601 pyre 1.602 pyre 1.602a que care 1.602a que 1.602a que	rrole 7-8 10.1 - 10.9 7.8 - 7.2 6.9-7.3 5.5-6	< 10 ⁷ < 10 ⁶ (calcd.) (3.9 ± 0.5) x 10 ⁷ 1.5 x 10 ⁸ 3.2 x 10 ⁶ (calcd.) 5.5 x 10 ⁹ 1.7 x 10 ¹⁰ 1.0 x 10 ⁹ 3.0 x 10 ⁹ (rel.)	p.r. p.r. p.r. p.r. p.r. p.r. p.r.	proline is 6.3 k calcd. from $k_{obs} \cong 5 \times 10^6$ assuming solute contains 22% negative ion at this pH. soln. satd. with ethylene. $k_{obs} = 3.7 \times 10^6$. also studied effect of heparin and DNA on rate. $k_{obs} = 3.7 \times 10^6$. c.k., assume $k(e_{aq} + NO_3) = 1.1 \times 10^{10}$; $k = 1.1 \times 10^{10}$;	Hart64-0048 Braa66-0011 Cham70-0052 Anba.64-0282 Geto.70-0371 Bala68-2104 Hart64-0044 Hart64-0044	
1.592 pro 1.593 pro 1.593 pro 1.594 pro 1.595 pu 1.596 py 1.598 py 1.598 py 1.599 py 1.600 py 1.600 py 1.602 py 1.602 qu can	opionamide opionitrile opylammonium ion otamine sulfate rine ridine rrole rrole r + C ₄ H ₈ NH >	7.2 6.9–7.3 5.5–6	<pre>< 10⁶ (calcd.) (3.9 ± 0.5) x 10⁷ 1.5 x 10⁸ 3.2 x 10⁶ (calcd.) 5.5 x 10⁹ 1.7 x 10¹⁰ 1.0 x 10⁹ 3.0 x 10⁹ (rel.)</pre>	p.r. p.r. p.r. p.r. p.r. p.r. p.r. p.r.	assuming solute contains 22% negative ion at this pH. soln. satd. with ethylene. $k_{obs} = 3.7 \times 10^6$. also studied effect of heparin and DNA on rate. c.k., assume $k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}$; k detd. at 20, 45 and 70 °C to give $E_a = 10^{-10}$	Braa66-0011 Cham70-0052 Anba.64-0282 Geto.70-0371 Bala68-2104 Hart64-0044 Hart64-0044
1.592 pro 1.593 pro 1.593 pro 1.594 pro 1.595 pu 1.596 py 1.598 py 1.598 py 1.599 py 1.600 py 1.600 py 1.602 py 1.602 qu can	opionamide opionitrile opylammonium ion otamine sulfate rine ridine rrole rrole r + C ₄ H ₈ NH >	- 10.9 7.8 - 7.2 6.9-7.3 5.5-6	(3.9 ± 0.5) x 10 ⁷ 1.5 x 10 ⁸ 3.2 x 10 ⁶ (calcd.) 5.5 x 10 ⁹ 1.7 x 10 ¹⁰ 1.0 x 10 ⁹ 3.0 x 10 ⁹ (rel.)	p.r. p.r. p.r. p.r. p.r. p.r. p.r. p.r.	assuming solute contains 22% negative ion at this pH. soln. satd. with ethylene. $k_{obs} = 3.7 \times 10^6$. also studied effect of heparin and DNA on rate. c.k., assume $k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}$; k detd. at 20, 45 and 70 °C to give $E_a = 10^{-10}$	Cham70-0052 Anba.64-0282 Geto.70-0371 Bala68-2104 Hart64-0044 Hart64-0044
1.593 pro 1.593 pro 1.594 pro 1.595 pu 1.596 py 1.597 py 1.598 py 1.598 py 1.600 py 1.600 py 1.602 py 1.602 qu can	oppionitrile opylammonium ion otamine sulfate rine ridine rrole rrolidine a + C ₄ H ₈ NH >	7.8 - 7.2 6.9-7.3 5.5-6	1.5 x 10 ⁸ 3.2 x 10 ⁶ (calcd.) 5.5 x 10 ⁹ 1.7 x 10 ¹⁰ 1.0 x 10 ⁹ 3.0 x 10 ⁹ (rel.)	p.r. p.r. p.r. p.r. p.r. γ-r.	soln. satd. with ethylene. $k_{obs} = 3.7 \times 10^6$. also studied effect of heparin and DNA on rate. c.k., assume $k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}$; k detd. at 20, 45 and 70 °C to give $E_a = 10^{-10}$	Anba.64-0282 Geto.70-0371 Bala68-2104 Hart64-0044 Hart64-0044
1.593 pro 1.593 pro 1.594 pro 1.595 pu 1.596 py 1.597 py 1.598 py 1.598 py 1.600 py 1.600 py 1.602 py 1.602 qu can	oppionitrile opylammonium ion otamine sulfate rine ridine rrole rrolidine a + C ₄ H ₈ NH >	7.8 - 7.2 6.9-7.3 5.5-6	1.5 x 10 ⁸ 3.2 x 10 ⁶ (calcd.) 5.5 x 10 ⁹ 1.7 x 10 ¹⁰ 1.0 x 10 ⁹ 3.0 x 10 ⁹ (rel.)	p.r. p.r. p.r. p.r. p.r. γ-r.	$k_{obs} = 3.7 \times 10^6$. also studied effect of heparin and DNA on rate. c.k., assume $k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}$; k detd. at 20, 45 and 70 °C to give $E_a = 10^{10}$	Geto.70-0371 Bala68-2104 Hart64-0044 Hart64-0044
1.593a pro 1.594 pro 1.595 pu 1.596 py 1.597 py 1.598 py 1.599 py 1.600 py 1.600 py 1.602 py 1.602 qu 1.602 qu 1.602 qu	opylammonium ion otamine sulfate rine ridine rrole rrolidine 4 + C ₄ H ₈ NH >	7.2 6.9–7.3 5.5–6	3.2 x 10 ⁶ (calcd.) 5.5 x 10 ⁹ 1.7 x 10 ¹⁰ 1.0 x 10 ⁹ 3.0 x 10 ⁹ (rel.)	p.r. p.r. p.r. p.r. γ-r.	also studied effect of heparin and DNA on rate. c.k., assume $k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}$; k detd. at 20, 45 and 70 °C to give $E_a = 10^{10}$	Geto.70-0371 Bala68-2104 Hart64-0044 Hart64-0044
1.594 pro 1.595 pu 1.596 py 1.597 py 1.598 py 1.599 py 1.600 py 1.600 py 1.602 py 1.602 qu can	otamine sulfate rine ridine rrole rrolidine ₄ + C ₄ H ₈ NH →	7.2 6.9–7.3 5.5–6	1.7 x 10 ¹⁰ 1.0 x 10 ⁹ 3.0 x 10 ⁹ (rel.)	p.r. p.r. p.r. γ-r.	also studied effect of heparin and DNA on rate. c.k., assume $k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}$; k detd. at 20, 45 and 70 °C to give $E_a = 10^{10}$	Hart64-0044 Hart64-0044
1.596 pyn 1.597 pyn 1.598 pyn c_a C_4 1.599 pyn (po e_a + 1 1.600 2 1.601 pyn 1.602 pyn 1.602a qu can	ridine rrole rrolidine ₄ + C ₄ H ₈ NH →	6.9-7.3 5.5-6	1.0 x 10° 3.0 x 10° (rel.)	p.r. γ-r.	c.k., assume $k(e_{aq}^- + NO_3^-) = 1.1 \times 10^{10}$; $k \text{ detd. at } 20$, 45 and 70 °C to give $E_a =$	Hart64-0044
1.596 pyn 1.597 pyn 1.598 pyn c_a C_4 1.599 pyn (po e_a + 1 1.600 2 1.601 pyn 1.602 pyn 1.602a qu can	ridine rrole rrolidine ₄ + C ₄ H ₈ NH →	6.9-7.3 5.5-6	1.0 x 10° 3.0 x 10° (rel.)	p.r. γ-r.	1.1 x 10 ¹⁰ ; k detd. at 20, 45 and 70 °C to give E _a =	Hart64-0044
1.597 py 1.598 py e _a . C ₄ 1.599 py (po e _a . + 1 1.600 2- 1.601 py 1.602 py 1.602a qu can	rrole rrolidine ₁ + C₄H ₈ NH <i>></i>	5.5-6	3.0 x 10 ⁹ (rel.)	γ-r.	1.1 x 10 ¹⁰ ; k detd. at 20, 45 and 70 °C to give E _a =	
1.598 pyy e ₄ . C ₄ 1.599 pyy (po e ₄ . + 1 1.600 2- 1.601 pyy 1.602 qu can	rrolidine _a + C₄H ₈ NH →	10.29	3.7 x 10°		J.9 KCai moi .	
1.598 pyy e ₄ . C ₄ 1.599 pyy (po e ₄ . + 1 1.600 2- 1.601 pyy 1.602 qu can	rrolidine _a + C₄H ₈ NH →	10.29		p.r.	$k \text{ detd at } 15-80^{\circ}\text{C};$ $E_{\bullet} = 4.5 \text{ kcal mol}^{-1}.$	Cerc69-0567
1.599 pyy (po ea.+1 1.600 2- 1.601 pyy 1.602 qu can	$_{4} + C_{4}H_{8}NH >$		6.0 x 10 ⁵	p.r.	<u> </u>	Szut65-0018
1.599 pyr (po ear + 1 1.600 2- 1.601 pyr 1.602 qu car	$_{4} + C_{4}H_{8}NH >$	12.08	4.2×10^6	p.r.		Szut65-0018
1.600 2- 1.601 py: 1.602 qu car	$H_8N \cdot + H_2 + OH_{aq}^-$	12.3	$(1.1 \pm 0.5) \times 10^6$ (calcd.)	p.r.	k calcd. from $k_{obe} =$ (2.4 ± 0.3) x 10^6 assuming pyrrolidine is 20% protonated; concn. 10^{-1} M .	Geto.70-0006
1.600 2— 1.601 pyr 1.602 pyr 1.602a qu	rrolidine ositive ion) 1_+ C ₄ H ₈ NH ₂ +> C ₄ H ₈ N	< 8	$(7.5 \pm 1.5) \times 10^6$	p.r.	concn. $10^{-1} M$; counter ion SO_4^{2-} .	Geto.70-0006
1.601 pyr 1.602 pyr 1.602a qu car	•		7			
1.602 py: 1.602a qu car	pyrrolidone	7.82	1.3 x 10 ⁷	p.r.		Szut65-0018
1.602a qu	ruvate ion	12.7	6.8 x 10°	p.r.	_	Hart64-0044, 67-0298
can	ruvonitrile	7.15	3.0 x 10 ⁷	p.r.		Hart67-0298
1.603 rib	inoline–2– rboxylate ion	9.1	1.4 x 10 ¹⁰	p.r.	_	Eber.70-0411
	oflavin	5.9	2.3 x 10 ¹⁰	p.r.	soln. contains 10 ⁻¹ M Na formate.	Land.69-0283
		basic	1.7 x 10 ¹⁰	p.r.	soln. contains $10^{-1} M$ Na formate and $3 \times 10^{-3} M$ NaOH.	Land.69-0283
1.604 rib	onuclease	5.5	$2.9 \times 10^{10} (cor.)$	p.r.		Braa67-3005
		6.8	1.3 x 10 ¹⁰ (cor.)	p.r.	_	Braa67-3005, Eber.65-3013
		8.4	6 x 10 ⁹ (cor.)	p.r.	_	`Braa67-3005
		10.7	1.7 x 10° (cor.)	p.r.		Braa67-3005
		6.2	6 x 10°	p.r.	soln. contains phosphate buffer and 10 ⁻² M KCl.	Braa.68-3007
1.605 rib	ose	-	< 10 ⁷	p.r.	_	Hart64-0048
	franine T	6	4.7 x 10 ¹⁰ (rel.)	γ-r.	c.k., assume $k(e_{aq}^- + N_2O) = 8.7 \times 10^9$.	Raki68-0059
1.607 sal	licylate ion	~ 11	3.2 x 10°	p.r.	solute consists of ~ 33% dianion at this pH.	Anba.64-0138
		11	3.4 x 10 ⁹ (rel.)	γ-r.	c.k., $k_{1.607}/k (e_{aq}^- + ClCH_2COO^-) = 2.8 \pm 0.6$, assume $k (e_{aq}^- + ClCH_2COO^-) =$	Stoc.66-0160

TABLE 4. Reactions of e-q with organic solutes - Continued

No.	Solute and Reaction	pН	$k(\mathrm{dm^3\ mol^{-1}s^{-1}})$	Method	Comments	Ref.
		7	$\sim 1 \times 10^{10}$	p.r.		Amph68-0305
1.608	sarcosine '	6.5	1.9×10^7	p.r.	solute concn. $10^{-2} \dot{M}$.	Davi65-0389
		7.6	1.4×10^{7}	p.r.		Braa66-0011
1.609	selenourea	6.5	4.0 x 10°	p.r.	k independent of pH 6-11.	Badi.70-0240
1.610	DL-serine	7.1	1.5×10^7	p.r.	solute concn. $10^{-2} M$.	Davi65-0389
1.010	DL serine	6.1	$< 3 \times 10^7$	p.r.	solute concil. 10 M.	Braa66-0011
1.611	sorbitol	-	$< 10^5$	_		Davi65-0391
1.612	styrene	7	1.5 x 10 ¹⁰	p.r.		Hart64-0044
1.012	styrene	12.7	1.1 x 10 ¹⁰	p.r.		Hart64-0044
1.613	succinate ion	6.0	$(3.4 \pm 1.0) \times 10^8$	p.r.	k calcd. from $k_{obs} = 1.2 \text{ x}$	Hart67-0298
1.013	(monoanion)	0.0	(calcd.)	p.r.	10 ⁸ at this pH.	1141101 0290
1.614	succinate ion	11	$2.4 \times 10^{7} \text{ (rel.)}$	y-r.	c.k., $k_{1.614}/k(e_{aq}^- +$	Stoc.66-0160
1.014	(dianion)	**	2.4 x 10 (1cl.)	, 1.	$CICH_2COO^-$) = $(2 \pm 0.4) \times 10^{-2}$,	5100.00 0100
	(diamon)				assume $k(e_{ag} + ClCH_2COO^-) =$	
					1.2 x 10 ⁹ .	
		10.0	3.1×10^7	n =	1.2 x 10 .	Hart67-0298
1.615	succinimide	8.04	7.2 x 10°	p.r.	·	Szut65-0018
1.615a	sulfacetamide (Na)	0.04	4.1×10^{10}	p.r.		Phil71-0128
1.615b	sulfanilamide	_	1.5 x 10 ¹⁰	p.r.		Phil71-0128
1.616	sulfanilate ion	~ 11	4.6×10^8	p.r.		Anba.64-0138
	sulfanilic acid	~ 11	5.9 x 10 ⁹	p.r.		
1.616a		7	1.5 x 10 ¹⁰	p.r.		Phil71-0128
1.617	tetracyanoethylene	7	$(6.0 \pm 0.5) \times 10^{10}$	p.r.		Hart64-0044
1.618	tetranitromethane	1 '	$(6.0 \pm 0.5) \times 10$	p.r.		Asmu64-0133
	$e_{aq}^- + C(NO_2)_4 \Rightarrow$		4.6 x 10 ¹⁰		11 . 570	Asmu.64-0136
	$C(NO_2)_3 + NO_2$	6	4.6 x 10	p.r.	d.k. at 578 nm as well as	Raba65-0183
					p.b.k. at 360 nm	
			1010		(nitroform anion).	D 1 (5 0100
		5.5-6.0	4.4 x 10 ¹⁰ (rel.)	p.r.	c.k., p.b.k. at 366 nm	Raba65-0183
					(nitroform anion),	
			,		$k_{1.618}/k(e_{aq} + O_2) =$	
					2.3 ± 0.7 , assume $k(e_{aq}^- +$	
					O_2) = 1.9 x 10 ¹⁰ .	
1.619	thiazole	6.59	2.5 x 10 ⁹	p.r.		Szut65-0018
1.620	thiobarbituric acid	-	$\sim 6 \times 10^7$	p.r.		Hart64-0048
1.621	thioglycolate ion	10	8.2×10^{7}	p.r.		Anba.64-0282
1.622	thiophene	6.73	6.5×10^{7}	p.r.	_	Szut65-0018
1.623	thiophenoxide ion	~ 11	4.7×10^7	p.r.		Anba.64-0138
1.624	thiourea	6.41	2.9 x 10 ⁹	p.r.		Hart64-0044
		7.6-9.0	$3.1 \times 10^{9} \text{ (ave.)}$	p.r.	_	Char65-0392
1.625	DI.—threonine	7	2.0×10^{7}	p.r.		Davi65-0389
	(negative ion)	6.2	≤ 10 ⁷	p.r.		Braa66-0011
		9.5	$\leq 5 \times 10^6$	p.r.	_	Braa66-0011
1.626	thymidylic acid	6.7	1.5 x 10°	p.r.		Scho65-0388
1.627	thymine	6.0	1.7 x 10 10	p.r.	1	Hart64-0044
		12	2.7 x 10 ⁹	p.r.		Hart64-0044
		5.5	1.8 x 10 ¹⁰	p.r.		Scho65-0388
		11	4.0 x 10°	p.r.	soln. H ₂ -satd.	Hart.65-0494
1.628	o-toluate ion	~ 11	2.7 x 10 ⁸	p.r.		Anba.64-0138
1.629	m -toluate ion	~ 11	2.6 x 10°	p.r.	· '	Anba.64-0138
1.630	p –toluate ion	~ 11	3.6 x 10°	p.r.		Anba.64-0138
1.631	toluene	~ 11	1.2×10^{7}	p.r.		Anba.64-0138
1.632	p —toluenesulfonate ion	~ 11	1.7 x 10°	p.r.	_	Anba.64-0138
1.633	p –tolunitrile	~ 11	1.4 x 10 ¹⁰	nr		Anba.64-0138
	_	11	1.3 x 10 ¹⁰	p.r.		Koes.71-0030
1.633a	tetrachloroethylene		1 1 3 v 10 ···	p.r.		Knes / I-0030

Table 4. Reactions of e-aq with organic solutes-Continued

No.	Solute and Reaction	pH	k(dm³ mol-1s-1)	Method	Comments	Ref.
1.634	trichloroacetate ion	~ 10	6.2 x 10°	p.r.		Hart64-0044
		~ 10	$(8.5 \pm 1.0) \times 10^9$	p.r.	_	Anba.65-0015
		6.6	2.1 x 10 ¹⁰	p.r.	concn. $> 0.1 M$.	Aldr71-0019
1.634a	1,1,2-trichloroethylene	_	1.9 x 10 ¹⁰	p.r.	_	Koes.71-0030
1.635	trichlorofluoromethane	~ 6	1.6 x 10 ¹⁰ (rel.)	γ-r.	c.k., elec. condy., assume	Balk71-0026
					$k(e_{aq}^- + N_2O) = 8.9 \times 10^9 \text{ or}$	
					$k(e_{AB}^{-1} + H^{+}) = 2.4 \times 10^{10}$.	
1.636	α, α, α -trichlorotoluene	~ 10	$(8.3 \pm 0.9) \times 10^9$	p.r.		Anba.65-0015
1.637	trifluoroacetate ion	~ 10	$\leq (1.4 \pm 0.4) \times 10^6$	p.r.	$k_{\text{obs}} \le (2.6 \pm 0.6) \times 10^6$.	Anba.65-0015
			(cor.)			
1.638	1,1,1-trifluoro-	5.19	6.6×10^7	p.r.		Hart67-0298
	acetone					
1.638a	trifluoroiodo-	9-10	$(1.3 \pm 0.1) \times 10^{10}$	p.r.		Bull.70-0407
	methane					
	$e_{aa}^- + CF_3I \Rightarrow$					
	$CF_3 + I^-$					
1.639	α,α,α-trifluorotoluene	~ 11	1.8 x 10°	p.r.	_	Anba.64-0138
1.640	trimesate ion	5.74	3.5 x 10 ⁹	p.r.	k calcd. for the dianion	Szut65-0018
	(trianion)			•	is $(1.0 \pm 0.15) \times 10^{10}$.	
		6.96	2.5 x 10°	p.r.		Szut65-0018
		8.84	3.0 x 10°	p.r.		Szut65-0018
		12.39	2.8 x 10°	p.r.	$k_{\rm obs} = 4.2 \times 10^9$.	Szut65-0018
			(cor.)	•	ops	
1.641	1,3,5-trimethyluracil	6.5-7	$(4.8 \pm 0.6) \times 10^9$	p.r.	no OH scavenger added.	Fiel.70-0226
1.642	trinitromethyl ion	7	3.0×10^{10}	p.r.	counter ion K ⁺ .	Raba65-0183
	(nitroform anion)		310 11 10	p.c.		
1.643	tryptophan	7.3	2.6 x 10 ⁸	p.r.	<u> </u>	Davi65-0389
	, p	6.76	4.0 x 10 ⁸	p.r.		Braa66-0011
		6.9	4.6 x 10 ⁸	p.r.	solute is 1,-tryptophan.	Braa66-0011
		8.92	3.1 x 10 ⁸	p.r.		Braa66-0011
		7.8	$(3.0 \pm 0.3) \times 10^8$	p.r.	solute is L-tryptophan.	Arms.69-0459
1.644	tryptophan	11.5	1.3 x 10 ⁸	p.r.		Braa66-0011
	(negative ion)	1110	110 11 10	P		
1.645	tyrosine (zwitterion)	5.8	1.6 x 10 ⁸	p.r.	solute is 1tyrosine.	Braa66-0011
1.010	tyrosme (zwitterion)	7.8	4.0×10^{8}	p.r.		Davi65-0389
1.646	tyrosine (negative	11.0	$\leq (1.7 \pm 0.4) \text{ x}$	p.r.	solute is 1tyrosine;	Chry68-0062
1.010	ion)	11.0	$\frac{10^7}{10^7}$	p.1.	20% monoanion.	din 700 0002
1.647	uracil	6.4	7.7 x 10°	p.r.		Hart64-0044
	uruen	7	9.3 x 10° (cor.)	p.r.	$\mu = 0.1, k_{\text{obs}} = 1.5 \times 10^{10}.$	Gree68-0316
		6.5-7	$(1.6 \pm 0.3) \times 10^{10}$	p.r.	no OH scavenger added.	Fiel. 70-0226
1.648	uracil (monoanion)	12.2	2.3×10^9	p.r.		Hart64-0044
1.010	druen (monoumon)	11	1.9 x 10 ⁹ (cor.)	p.r.	$\mu = 0.1, k_{\text{obs}} = 3 \times 10^9.$	Gree68-0316
		13	1.6 x 10° (cor.)	p.r.	$\mu = 0.1, k_{\text{obs}} = 2.5 \times 10^{9}.$	Gree68-0316
1.649	uracil polynucleotides	7	2.5 x 10°	p.r.	$\mu = 0.1.$	Gree68-0316
1.042	urach polynacieotides	12	8 x 10 ⁸	-	$\mu = 0.1.$	Gree68-0316
1.650	urea	5.5-6	$2.7 \times 10^{5} \text{ (rel.)}$	p.r. γ–r.	$c.k.$, assume $k(e_{aq} + NO_3) =$	Anba67-0098
1.030	urea	3.3-0	2.7 x 10 (1el.)	y-1.		Aliba07 0090
					1.1 x 10 ¹⁰ ; k detd. at 20,	,
					45 and 70 °C to give E =	
					3.4 kcal mol ⁻¹ .	
		7	3.0×10^{5}	p.r.		Hart67-0298
1.651	uric acid	5	$\sim 6 \times 10^{9}$	p.r.		Hart64-0048
1.652	uridine	6	1.4 x 10 ¹⁰	p.r.	$\mu = 0.1.$	Gree68-0316
1.653	uridine (monoanion)	11.8	2 x 10 ⁹ (cor.)	p.r.	$\mu = 0.1, k_{obs} = 3 \times 10^{9}.$	Gree68-0316
1.654	uridine monophosphate	7	2.2 x 10 ⁹ (cor.)	p.r.	$\mu = 0.1, k_{\text{obs}} = 5 \times 10^9.$	Gree68-0316
	(dianion) (UMP ²⁻)					
1.655	uridine	13	1.9 x 10 ⁸ (cor.)	p.r.	$\mu = 0.1, k_{\text{obs}} = 6.5 \times 10^8.$	Gree68-0316
	monophosphate					
	(trianion) (UMP ³⁻)					

Table 4. Reactions of e_{aq}^- with organic solutes—Continued

No.	Solute and Reaction	pН	$k(dm^3 mol^{-1}s^{-1})$	Method	Comments	Ref.
1.656	uridine monophosphate (2',3'-cyclic, dianion)	6	4.5 x 10 ⁹ (cor.)	p.r.	$\mu = 0.1, k_{\text{obs}} = 1 \times 10^{10}.$	Gree68-0316
1.657	valine (zwitterion)	6.4	5.2×10^6 $\leq 5 \times 10^6$	p.r. p.r.	solute concn. $10^{-1} M$.	Davi65-0389 Braa66-0011
1.658	DL-valine (negative ion)	9.5	< 2 x 10 ⁶ (calcd.)	p.r.	k calcd. from k obs = < 5 x 10 ⁶ at pH 9.5 assuming solute is 50% negative ion, 50% zwitterion.	Braa66-0011
1.658a	vinyl chloride	-	2.5 x 10 ⁸	p.r.		Koes.71-0030
1.659	vinylpyridine	_	1.4 x 10 ¹⁰	-	unpubl. data cited.	Swal68-0678
1.660	vinylpyridinium ion	_	3 x 10 ¹⁰	-	unpubl. data cited.	Swal68-0678
1.661	xylose		≤ 10 ⁶	p.r.		Davi65-0391

```
1.510 - 1.523, 1.518, 1.549 - 1.550, 1.567 - 1.570, 1.572 - 1.573, 1.577, 1.583 - 1.586,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.375-1.376, 1.379, 1.380, 1.423, 1.426-1.428, 1.434-1.436, 1.488, 1.497,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.287, 1.297, 1.310, 1.327, 1.335, 1.337, 1.346, 1.347, 1.358, 1.361-1.363,
                                                                                                                                                                  biological materials (See also amino acids, peptides, nucleosides, nucleotides,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.332, 1.355, 1.358-1.378, 1.397-1.399c, 1.633a-1.636, 1.658a
                                                                                                                                                                                                                                                                                                                                                                                    bromine compounds, organic (See also alkyl and aryl halides)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       chlorine compounds, organic (See also alkyl and aryl halides)
                                                                                                                                                                                                                                                      1.308a-b, 1.409a, 1.437a, 1.464a, 1.465, 1.594, 1.603.
                                                                                                                        1.326, 1.360, 1.177, 1.397-1.399, 1.425, 1.489, 1.498
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.607, 1.614, 1.621, 1.628-1.630, 1.634, 1.637.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.2, 1.4, 1.6, 1.8, 1.144, 1.147, 1.206, 1.235
                                                                              aryl halides (and dihalides and trihalides)
                                                                                                                                                                                                            enzymes, purines, pyrimidines, sugars)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 cyanides, organic (See nitriles)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  carbohydrates (See sugars)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  deuterium compounds
                                       1.23-1.24, 1.581
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             chromium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    chromium (VI) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             bromine oxyanions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               chromium (II) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              chlorine oxyanions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              cadmium (II) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.102-1.111
                                                                                                                                                                                                                                                                                                                                                                                                                              1.335 - 1.348
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    carboxylate ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      cerium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.112 - 1.114
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.115 - 1.122
                                                                                                                                                                                                                                                                                             boron (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.99 - 1.101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      cobalt (III) ions
arsenic (V) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          copper (II) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.27 - 1.30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.51, 1.52.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.38 - 1.50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  carbonate ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.31 - 1.32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.53 - 1.56
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        cobalt (II) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.61 - 1.98
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.32 - 1.34
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.57 - 1.60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   carbon oxides
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           cycloalkenes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.387
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       amines (cyclic amines See heterocyclic nitrogen compounds; salts See ammonium ions)
                                       1.287-1.288, 1.297, 1.312, 1.335, 1.346-1.347, 1.358-1.359, 1.396a, 1.375-1.376,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.178, 1.333, 1.352a, 1.417, 1.465a, 1.465b, 1.484, 1.524, 1.593a, 1.599, 1.660.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.373 - 1.374, 1.403, 1.414, 1.433, 1.463 - 1.464, 1.515 - 1.516, 1.530, 1.535,
                                                                                                                                                                                                                                                                                                                                                                                                                           1.330, 1.340, 1.352, 1.366, 1.411, 1.480, 1.514, 1.521, 1.555-1.556, 1.611.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.293-1.294, 1.296, 1.303-1.305, 1.316-1.322, 1.381, 1.390-1.394, 1.402,
                                                                                                                           1.507, 1.510-1.513, 1.518, 1.550, 1.568-1.571, 1.588, 1.601, 1.613-1.614,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.310-1.311, 1.313b, 1.314, 1.331a, 1.387a-1.389, 1.408c, 1.438, 1.499a,
                                                                                                                                                                                                                                                                                          1.426-1.428, 1.471-1.472, 1.475-1.476, 1.481, 1.487a-c, 1.490-1.492,
                                                                                                                                                                                                                                                                                                                                       1.541-1.542, 1.549, 1.577, 1.583-1.586a, 1.602a, 1.607, 1.628-1.630.
                                                                                   1.379, 1.380, 1.423, 1.434-1.436, 1.439a, 1.488, 1.497, 1.500-1.501,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.332, 1.338-1.339, 1.345, 1.364-1.365, 1.368, 1.372, 1.493-1.496,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.409, 1.420, 1.440-1.446, 1.466-1.468, 1.470, 1.482, 1.502, 1.508,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.517, 1.522, 1.566, 1.578-1.579, 1.589-1.591, 1.608, 1.610, 1.625,
                                                                                                                                                                                                                                                           1.310, 1.327, 1.333a, 1.337, 1.361-1.363, 1.379, 1.383, 1.408a,b,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 alkenes (See also dienes, unsaturated compounds)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.500a, 1.564, 1.574a, 1.615a-b, 1.616.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      amides, aromatic (See also sulfonamides)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.572, 1.592, 1.609, 1.624, 1.650
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        amides, aliphatic (See also imides)
                                                                                                                                                                       1.621, 1.634, 1.637, 1.640.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.643-1.646, 1.657-1.658.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.324, 1.540, 1.612, 1.631
                                                                                                                                                                                                                       acids, aromatic (and anions)
  acids, aliphatic (and anions)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.635-1.636, 1.639
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     amino acids (and ions)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 antimony (V) oxyanions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  aromatic hydrocarbons
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    aminosulfonate ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.183 - 1.185
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.284, 1.432
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.165, 1.190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.419, 1.387
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   arsenic (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 alkali metal ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ammonium ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      aluminum ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.16 - 1.21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       alkyl halides
```

1.349, 1.384-1.385

1.295

alkynes

1.519

alkanes

aldehydes

```
1.22-1.23, 1.28-1.30, 1.33-1.34, 1.54-1.56, 1.58, 1.112-1.114, 1.158-1.159,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.175, 1.188-1.189, 1.209-1.213, 1.215, 1.238-1.243, 1.247-1.248, 1.252,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.306 - 1.308, \ 1.447 - 1.452, \ 1.456 - 1.462, \ 1.469, \ 1.503 - 1.504, \ 1.506, \ 1.580
                                                                                                                                                                                                                                                                                                                                                    1.353, 1.389-1.392, 1.441, 1.514-1.515, 1.517, 1.520, 1.620-1.621, 1.623
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.292, 1.311, 1.328, 1.351, 1.382-1.383, 1.418, 1.477-1.479, 1.526,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.545-1.546, 1.550, 1.593, 1.602, 1.617, 1.633
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.256, 1.260-1.261, 1.263, 1.268-1.269
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.551-1.562, 1.565, 1.587, 1.618, 1.642
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.302, 1.547-1.548, 1.649, 1.654-1.656
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.441, 1.442, 1.453-1.455, 1.505
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.184, 1.563, 1.564
                                                                                                                                                                                                                                                                                                                                                                                                                                                  molybdenum (IV) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   neodymium (III) ions
                                                                                                                                                                                                                                                      manganese (VI) ions
lanthanum (III) ions
                                                                                                                                                                                           manganese (11) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         palladium (II) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              nitroso compounds
                                                                                                                         lutecium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         osmium (III) ions
                                                                                                                                                         1.168 - 1.169
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.220 - 1.222
                                                                                                                                                                                                                         1.170 - 1.174
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.191 - 1.192
                               1.166 - 1.167
                                                                                             1.214 - 1.219
                                                                                                                                                                                                                                                                                                                                                                                      mercury (11) ions
                                                                                                                                                                                                                                                                                                                                                                                                                      1.149 - 1.153
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.193 - 1.204
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.186, 1.187
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            osmium (II) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.285, 1.291
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 nitro compounds
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.301, 1.653
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              nitrogen oxides
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 nickel (II) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    peptides, tri-
                                                             lead (II) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        peptides, di-
                                                                                                                                                                                                                                                                                                                          mercaptans
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            nucleosides
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              nucleotides
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.176
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           oxyanions
                                                                                                                                                                                                                                                                                        1.175
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.208
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   nitriles
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                oximes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  hydrocarbons (See alkanes, alkenes, alkynes, aromatic hydrocarbons, cycloalkanes, dienes.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     heterocyclic nitrogen compounds (See also pyrimidines, purines, dyes, nucleotides)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.298, 1.298a, 1.334, 1.334a, 1.408c, 1.465b, 1.466-1.469, 1.482, 1.487a-c,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.347a, 1.378, 1.399a, 1.423-1.431, 1.465c, 1.529, 1.537, 1.573a, 1.633b,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.500a-b, 1.549, 1.574, 1.586a, 1.590-1.591, 1.596-1.600,1.602a, 1.603,
                                                                                                                                                                                                                                                                                        1.415-1.416, 1.418, 1.523, 1.526, 1.529, 1.532, 1.536-1.538
                               1.298, 1.298a, 1.410, 1.422, 1.486, 1.528, 1.531, 1.606
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               iodine compounds, organic (See also alkyl halides)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.615, 1.619, 1.643-1.644, 1.659-1.660.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       heterocyclic oxygen compounds
                                                                                                                                                           1.356, 1.395a, 1.509, 1.604
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  heterocyclic sulfur compounds
                                                                                                                                                                                                                                                                                                                                                                                                                                                        fluorine compounds, organic
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.488-1.499, 1.638a
                                                                                                                                                                                                                                                                                                                                                          1.400, 1.421, 1.483a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.635, 1.637-1.639
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.507, 1.619, 1.622
                                                                 dysprosium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   gadolinium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                      europium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  holmium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.421a, 1.615
                                                                                                 1.123 - 1.124
                                                                                                                                                                                           erbium (III) ions
                                                                                                                                                                                                                           1.125 - 1.126
                                                                                                                                                                                                                                                                                                                                                                                                                        1.127-1.128
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.141 - 1.142
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 gallium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.154 - 1.155
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             indium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           iridium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.137-1.139
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.160 - 1.161
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.162 - 1.163
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         iridium (IV) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.132 - 1.136
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     gold (III) blog
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        iron (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           iron (II) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.164
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.140
                                                                                                                                   enzymes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ketones
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    imides
                                                                                                                                                                                                                                                                                                                               ethers
```

1.289, 1.329, 1.350, 1.386, 1.424, 1.480, 1.568, 1.573, 1.600-1.602, 1.638

```
unsaturated compounds (See also cycloalkenes, alkenes, alkynes, dienes, vinyl compounds)
                                                                                                                                                                                                                                   1.234-1.236, 1.354, 1.388, 1.393-1.394, 1.404, 1.409, 1.442, 1.470, 1.507, 1.516
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.351, 1.379, 1.399b, 1.399c, 1.436, 1.511-1.512, 1.617, 1.633a, 1.634a
                                                                                                                            1.315, 1.438-1.439a, 1.605, 1.611, 1.661
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.299, 1.309, 1.518, 1.612, 1.658a-1.660
                                                                                                                                                                                                                                                                                                                                        1.183-1.185, 1.405, 1.486, 1.616, 1.632
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.409a, 1.465a, 1.465b, 1.483a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     vanadium (V) oxyanions
                                                                                                                                                                                                           sulfides (and disulfides)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    uranium (VI) oxyanions
                                                                                                                                                                                                                                                                                        1.325, 1.615a-b.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          surface active agents
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               tellurium oxyanions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ytterbium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            titanium (IV) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               titanium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           terbium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.258 - 1.259
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     thulium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            vinyl compounds
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               yttrium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                1.238 - 1.242
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.260 - 1.261
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.265, 1.401
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.252 - 1.255
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.256 - 1.257
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.263 - 1.264
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.272 - 1.273
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.270 - 1.271
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.274 - 1.283
                                                                                                                                                                                                                                                                                                                                                                                                                        sulfur oxyanions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.266 - 1.267
                                                                            1.11 - 1.15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  thallium ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  zinc (II) ions
                                                                                                                                                                                                                                                              sulfonamides
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          tin (IV) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       tin (II) ions
   silicon ions
                                                                                                                                                         sulfamates
                                                      silver ions
                                                                                                                                                                                 1.183
                                                                                                                                                                                                                                                                                                                  sulfonates
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.268
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.269
                           1.249
                                                                                                                                                                                                                                                                                                                                                                     sulfoxides
                                                                                                                                                                                                                                                                                                                                                                                              1.405
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.262
                                                                                                             sugars
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.313, 1.348, 1.395-1.396, 1.400, 1.406-1.408, 1.412-1.413, 1.472a, 1.473a,
                                                                           1.341-1.344, 1.369-1.371, 1.402, 1.429-1.431, 1.473, 1.475-1.479,
                                                                                                   1.481, 1.543-1.544, 1.557-1.560, 1.575-1.576, 1.607, 1.587, 1.623,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.474, 1.499, 1.500c, 1.527, 1.539, 1.567, 1.567a, 1.567b, 1.620,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               quaternary ammonium ions (See ammonium ions)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             proteins (See enzymes, biological materials)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.626-1.627, 1.641, 1.647-1.648.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            selenium compounds, organic
                                                    phenols (and phenoxide ions)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.300, 1.483, 1.595, 1.651
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          praesodymium (III) ions
                                                                                                                                                                                                        phosphorus (III) ions
                                                                                                                                                                                                                                                                                                            phosphorus (V1) ions
                                                                                                                                                                                                                                                             phosphorus (V) ions
                                                                                                                                                        phosphorus (I) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ruthenium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               selenium oxyanions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    samarium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    scandium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ruthenium (II) ions
                                                                                                                                                                                                                                                                                                                                                                                                                   platinum (IV) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          rhodium (III) ions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.232 - 1.233a
                                                                                                                                                                                                                                                                                                                                                                 platinum (II) ions
                           1.146 - 1.148
                                                                                                                                1.645 - 1.646
                                                                                                                                                                                                                                                                                                                                        1.212-1.213
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.250 - 1.251
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.223 - 1.224
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.229 - 1.230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.247 - 1.248
                                                                                                                                                                                                                                                                                                                                                                                             1.225 - 1.227
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.245 - 1.246
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.589, 1.594
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 semicarbazones
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        pyrimidines
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          polycations
                                                                                                                                                                                                                                                                                                                                                                                                                                              1.228
                                                                                                                                                                                   1.209
                                                                                                                                                                                                                                     1.210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.244
peroxides
                                                                                                                                                                                                                                                                                        1.211
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.231
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       selenides
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            quinones
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          purines
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     40
```

C₂H₅NO Acetaldoxime, 1.285; Acetamide, 1.286; N-Methylformamide, 1.530 C₃H₄BrO₂ ⁻ 2-Bromopropionate ion, 1,346; 3-Bromopropionate ion, 1,347 C₂H₂Cl₂ 1,1-Dichloroethylene, 1.399b; 1,2-Dichloroethylene, 1.399e C,H,OS Dimethylsulfoxide, 1.405; 2-Mercaptoethanol, 1.514 C2H5NO2 Glycine, 1.443-1.445; Glycine, copper salt, 1.116a C₂H₁₈CoN₅O₂²⁺ Acetatopentaamminecobalt(III) ion, 1.72 C₂H₈CdN₂²⁺ Ethylcnediaminecadmium(II) ion, 1.48 C₂H₈N₂Ni²⁺ Ethylenediaminenickel(II) ion, 1.202 C₂H₇NS Cysteamine(2-aminoethanethiol), 1.389 C2H4CdNO2 + Glycinatocadmium(II) ion, 1.43 C2H4NNiO2 + Glycinatonickel(II) ion, 1.196 C₃H₃F₃O \alpha,\alpha,\alpha-Trifluoroacetone, 1.638 C3H3F3O2 Methyl trifluoroacetate, 1.537 C2HCl3 1,1,2-Trichloroethylene, 1.634a C2HCl2O2 Dichloroacetate ion, 1.396a C2Cl3O2 Trichloroacetate ion, 1.634 C₂H₂ClO₂ Chloroacetate ion, 1.358 C₂H₂BrO₂ Bromoacetate ion, 1.335 C2H10Tl+ Diethylthallium ion, 1.401 C2H8N + Ethylammonium ion, 1.417 C2AuN2 Dicyanoaurate(I) ion, 1.25 C2H2FO2 Fluoroacetate ion, 1.423 C₃H₂NO₂ Cyanoacetate ion, 1.382 C2H3ClO2 Chloroacetic acid, 1.359 C2H3O2S Thioglycolate ion, 1.621 C2F3O2 Trifluoroacetate ion, 1.637 C,Cl4 Tetrachloroethylenc, 1.633a C, Hs BrO 2-Bromoethanol, 1.340 C2H5ClO 2-Chloroethanol, 1.366 C₂H₂IO₂ lodoacetate ion, 1.488 C2H2NO3 Oxamate ion, 1.572 C2H5Br 1-Bromoethanc, 1.339 C2H3Cl Vinyl chloride, 1.658a C2H6S Dimethylsulfide, 1.404 C3H3O4 Malonate ion, 1.513 C3H3O3 Pyruvate ion, 1.601 C₂H₄O Acetaldehyde, 1.284 C2H3O2 Acetate ion, 1.287 C2HO4 Oxalate ion, 1.570 C₂II₂O₄ Oxalic acid, 1.571 C₂H₄O₂ Acetic acid, 1.288 C₂H₃N Acetonitrile, 1.292 C,042- Oxalate ion, 1.569 C₃H₃NS Thiazole, 1.619 C,Hs I Iodoethane, 1.494 C2H2 Acetylenc, 1.295 C2H6O Ethanol, 1.411 C2H4 Ethylene, 1.419 CH₁₅CoN₆S²⁺ Thiocyanatopentaamminecobalt(III) ion, 1.69 CH14CoN5O2+ Cyanoaquotetraamminecobalt(III) ion, 1.71 BrCoH₁₅N₅²⁺ Bromopentaamminecobalt(III) ion, 1.67 CH₁₅CoN₆²⁺ Cyanopentaamminecobalt(III) ion, 1.68 CCl2F2 Dichlorodifluoromethane, 1.399a C₂AgN₂ Dieyanoargentate(1) ion, 1.13 AsF₆ Hexafluoroarsenate(V) ion, 1.24 CBrF₃ Bromotrifluoromethanc, 1.347a CCl₃F Trichlorofluoromethane, 1.635 CCIF₃ Chlorotrifluoromethane, 1.378 AgH, N2 + Diamminesilver(I) ion, 1.12 CIII3NO2 Nitromethane, 1.553, 1.554 CH,N Methylammonium ion, 1.524 CF₃I Trifluoroiodomethane, 1.638a CN₃O₆ Trinitromethyl ion, 1.642 CCl, Carbon tetrachloride, 1.355 CN₄O₈ Tetranitromethane, 1.618 BF4 Tetrafluoroborate ion, 1.26 Br2 Bromine molecule ion, 1.27 CH₅N₃ Guanidine, 1.463, 1.464 Cll3Cl Chloromethane, 1.367a CHO3 Bicarbonate ion, 1.33 Alll,O, Aluminate ion, 1.17 AsHO₄²⁻ Arsenate ion, 1.23 BrO Hypobromite ion, 1.28 Cll₄N₂Se Selenourea, 1.609 CNS Thiocyanate ion, 1.37 CS2 Carbon disulfide, 1.354 CII, O Formaldehyde, 1.432 CO Carbon monoxide, 1.31 CH₃NO Formamide, 1.433 CHO2 Formate ion, 1.434 CH4S Methanethiol, 1.520 CO32- Carbonate ion, 1.34 CH2O, Formic acid, 1.435 CH₃l Iodomethane, 1.495 CO2 Carbon dioxide, 1.32 CHCl₃ Chloroform, 1.367 AsO, Arsenite ion, 1.22 CNO Cyanate ion, 1.36 BrO3 Bromate ion, 1.30 Cll₄N₂S Thiourea, 1.624 BrO2 Bromite ion, 1.29 CH4O Methanol, 1.521 CN Cyanide ion, 1.35 CII4N2O Urea, 1.650 CII, Methane, 1.519 Al3+, 1.16

```
C4H 18 CICoNs 2+ Chloroamminebis(ethylenediamine)cobalt(III) ion, 1.89
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C4H 16Cl2CrN4 Dichlorobis(ethylenediamine)chromium(III) ion, 1.107
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C<sub>4</sub>H<sub>18</sub>CoN<sub>6</sub>O<sub>2</sub><sup>2+</sup> Nitroamminebis(ethylenediamine)cobalt(III) ion, 1.90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4H 18CoFN 402+ Fluoroaquobis(ethylenediamine)cobalt(III) ion, 1.91
3-Hydroxy-2-butanone, 1.480;
                                                                                                                                                                  C4H<sub>9</sub>Cl 1-Chlorobutane, 1.364; 2-Chlorobutane, 1.365; 1-Chloro-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C4H 16Cl2CoN4 Dichlorobis(ethylenediamine)cobalt(III) ion, 1.87
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C4H 16CoF2N4 Difluorobis(ethylenediamine)cobalt(III) ion, 1.86
                                                                                                                                                                                                                                                                                                                                                                                                                                C4H9NO2 Ethyl 2-aminoacetate, 1.416; Threonine, 1.625
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C,H18CoN,O, Fumaratopentamminecobalt(III) ion, 1.73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C<sub>5</sub>HCoN<sub>5</sub>O<sup>3-</sup> Hydroxypentacyanocobaltate(III) ion, 1.78
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C<sub>4</sub>H<sub>12</sub>N<sub>2</sub>S<sub>2</sub> Cystamine, 1.388
C<sub>4</sub>H<sub>16</sub>CdN<sub>4</sub> <sup>2*</sup> Bis(ethylenediamine)cadmium(II) ion 1.49
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C4H 16N4Ni2+ Bis(ethylenediamine)nickel(II) ion, 1.203
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C4H9NO42-Methyl-2-nitro-1,3-propanediol, 1.555
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C<sub>5</sub>H<sub>5</sub>N<sub>2</sub>O<sub>4</sub> Isoorotate ion, 1.500c; Orotate ion, 1.567
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C<sub>s</sub>CICoN<sub>s</sub> <sup>3-</sup> Chloropentacyanocobaltate(III) ion, 1.77 C<sub>s</sub>CoN<sub>s</sub> <sup>3-</sup> Pentacyanocobaltate(II) ion, 1.59
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4H10O terr - Butyl alcohol, 1.352; Ethyl ether, 1.421
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C.FeN, O 2- Pentacyanonitrosylferrate(III) ion, 1.138
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C<sub>5</sub>CoN<sub>6</sub>O<sub>2</sub><sup>3-</sup> Nitropentacyanocobaltate(III) ion, 1.80
C<sub>5</sub>CoN<sub>8</sub><sup>3-</sup> Azidopentacyanocobaltate(III) ion, 1.79
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C<sub>5</sub>H<sub>3</sub>FeN<sub>6</sub> <sup>3-</sup> Pentacyanoammineferrate(II) ion, 1.35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C<sub>s</sub>H<sub>6</sub>N<sub>2</sub>O<sub>2</sub> 6-Methyluracil, 1.539; Thymine, 1.627
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C4H9NO32-Methyl-2-nitro-1-propanol, 1.556
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C4HgN42- Tetracyanomercurate(II) ion, 1.150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CANANi2- Tetracyanonickelate(II) ion, 1.195
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CANAPd2- Tetracyanopalladate(II) ion, 1.221
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CAN, Pt 2- Tetracyanoplatinate(II) ion, 1.226
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C4H12N+ tert-Butylammonium ion, 1.352a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C,N,Zn2- Tetracyanozincate(II) ion, 1.279
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>4</sub>H<sub>9</sub>N<sub>3</sub>O Acetone semicarbazone, 1.290
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>4</sub>H<sub>10</sub>S tert - Butyl mercaptan, 1.353
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C<sub>5</sub>H<sub>5</sub>N<sub>2</sub>O<sub>4</sub> Hydroorotate ion, 1.472a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C<sub>s</sub>H<sub>4</sub>O<sub>s</sub><sup>2-</sup> 2-Oxoglutarate ion, 1.573
                                                                                                                                                                                                                                                                                                                                                                           C.H., NO N-Ethylacetamide, 1.414
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C<sub>5</sub>H<sub>7</sub>NO<sub>2</sub> Ethylcyanoacetate, 1.418
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CsH<sub>7</sub>N<sub>3</sub>O 5-Methylcytosine, 1.527
C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> Ethyl acetate, 1.415;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C4H 10N + Pyrrolidinium ion, 1.599
                                                        Methyl propionate, 1.536
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C<sub>5</sub>H<sub>8</sub>NO<sub>4</sub> Glutamate ion, 1.440
                                                                                                                                                                                                                       2-methylpropane, I.368
                                                                                                                                                                                                                                                                                                                      C4H9N Pyrrolidine, 1.598, 1.599
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C,H,NO2S Homocystine, 1.470
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C<sub>5</sub>H<sub>4</sub>N<sub>4</sub>O Hypoxanthine, 1.483
                                                                                                             C<sub>4</sub>H<sub>9</sub>Br 1-Bromobutane, 1.338
                                                                                                                                                                                                                                                                     C4Hol 1-Iodobutane, 1.493
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C<sub>s</sub>H<sub>4</sub>N<sub>4</sub>O<sub>3</sub> Uric acid, 1.651
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C4H9N3O2 Creatine, 1.381
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CsHsNs Adenine, 1.300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CsHsN Pyridine, 1.596
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CsH4N4 Purine, 1.595
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C<sub>3</sub>H<sub>7</sub>NO<sub>2</sub> Alanine, 1.303-1.304; β-Alanine, 1.305; Methyl 2-aminoacetate, 1.523; Sarcosine, 1.608
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C<sub>3</sub>H<sub>7</sub>NO Acetone oxime, 1.291; N, N-Dimethylformamide, 1.403; Propionamide, 1.592
       C<sub>3</sub>H<sub>4</sub>ClO<sub>2</sub><sup>-</sup>2-Chloropropionate ion, 1.375; 3-Chloropropionate ion, 1.376
                                                                                                                                                                                                                                                                                                                                                                                      C3H6CINO 2-Chloropropionamide, 1.373; 3-Chloropropionamide, 1.374
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C, H<sub>8</sub>N<sub>2</sub>O<sub>3</sub> Asparagine, 1.319, 1.320; Glycylglycine, 1.450-1.452
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C4H5NO2 Methyl cyanoacetate, 1.526; Succinimide, 1.615
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C4H4CrO 10 Dioxalatodiaquochromate(III) ion, 1.111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C4H2O42-Fumarate ion, 1.436; Maleate ion, 1.512
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C4HsN 3-Butenenitrile, 1.351; Pyrrole, 1.597
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C4HBCdN2O4 Bis(glycinato)cadmium(II), 1.44
                                                                                                                                                                                                                                                                                                                                                                                                                                           C<sub>3</sub>H<sub>6</sub>O Acetone, 1.289; Allyl alcohol, 1.309
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C4CdN42- Tetracyanocadmate(II) ion, 1.42
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C4H8N2NiO4 Bis(glycinato)nickel(II), 1.197
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C3H9N3S Mercaptoethylguanidine, 1.515
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C<sub>3</sub>H<sub>6</sub>O<sub>3</sub> Methyl 2-hydroxyacetate, 1.532
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C4H8NO2 4-Aminobutyrate ion, 1.312
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C<sub>3</sub>H<sub>10</sub>N<sup>+</sup> Propylammonium ion, 1.593a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C4H4N2O2S Thiobarbituric acid, 1.620
                                                            C3H4IO2 2-lodopropionate ion, 1.497
                                                                                                                                                                                                                          C3H5FO2 Methyl fluoroacetate, 1.529
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C,H3BrN2O25-Bromouracil, 1.348
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4H5N32-Aminopyrimidine, 1.313
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>3</sub>H<sub>7</sub>NO<sub>2</sub>S Cysteine, 1.390-1.392
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4H7NO3 N-Acetylglycine, 1.296
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C4H5O2 Methacrylate ion, 1.518
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CaH, Br 1-Bromopropane, 1.345
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C<sub>3</sub>H<sub>7</sub>Cl 1-Chloropropane, 1.372
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C4H602 2,3-Butanedione, 1.350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C4H3O5 Oxalacetate ion, 1.568
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C4H5NO42- Aspartate ion, 1.322
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C,H,NO, Aspartate ion, 1.321
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4H4N2O2 Uracil, 1.647, 1.648
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C<sub>3</sub>H<sub>9</sub>N Isopropylamine, 1.500a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C4H7NO 2-Pyrrolidone, 1.600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C<sub>4</sub>H<sub>4</sub>O<sub>4</sub><sup>2</sup>-Succinate ion, 1.614
C<sub>4</sub>H<sub>4</sub>O<sub>5</sub><sup>2</sup>-Malate ion, 1.510
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C4H5O4 Succinate ion, 1.613
                                                                                                                                                                     C<sub>3</sub>H<sub>5</sub>FO Fluoroacetone, 1.424
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C,H6N2O, Hydrouracil, 1.474
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C<sub>3</sub>H<sub>7</sub>I 1-lodopropane, 1.496
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4H3IN2O2 Iodouracil, 1.499
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C4H3O4 Maleate ion, 1.510
                                                                                                                                                                                                                                                                                                                                 C<sub>3</sub>H<sub>s</sub>NO Acrylamide, 1.299
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C<sub>3</sub>H<sub>5</sub>O<sub>3</sub> Lactate ion; 1.501
                                                                                                                                                                                                                                                                            C<sub>3</sub>H<sub>s</sub>N Propionitrile, 1.593
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C4H5N3O Cytosine, 1.396
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C4H4S Thiophene, 1.622
                                                                                                                    C<sub>3</sub>H<sub>4</sub>N<sub>2</sub> lmidazole, 1.484
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C<sub>3</sub>H<sub>7</sub>NO<sub>3</sub> Serine, 1.610
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4H6 Butadiene, 1.349
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C4H40 Furan, 1.437
```

```
C<sub>6</sub>H<sub>16</sub>CrN<sub>2</sub>S<sub>2</sub><sup>+</sup> Dithiocyanatobis(ethylenediamine)chromium(III) ion, 1.108
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>1</sub>H<sub>4</sub>ClO<sub>2</sub> o-Chlorobenzoate ion, 1.361; m-Chlorobenzoate ion, 1.362;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C,H4FO2 o-Fluorobenzoate ion, 1.426; m-Fluorobenzoate ion, 1.427;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CeH16CoN6S2 + Dithiocyanatobis(ethylenediamine)cobalt(III) ion, 1.92
                                                                                                                                                                                                                                                                                                                                                        C<sub>6</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub> 1,3-Dimethyluracil, 1.406; 1,6-Dimethyluracil, 1.407;
                                                                                                                                                                                                                                                                                                C<sub>6</sub>H<sub>8</sub> 1,3-Cyclohexadiene, 1.384; 1,4-Cyclohexadiene, 1.385
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>6</sub>H<sub>24</sub>CrN<sub>6</sub><sup>2+</sup> Tris(ethylenediamine)chromium(III) ion, 1.106
C<sub>6</sub>H<sub>24</sub>CuN<sub>6</sub><sup>2+</sup> Tris(ethylenediamine)copper(II) ion, 1.121
C<sub>6</sub>H<sub>24</sub>HgN<sub>6</sub><sup>2+</sup> Tris(ethylenediamine)mercury(II) ion, 1.149
                                                                                                                                                                                                                                                                                                                                                                                                                3,6-Dimethyluracil, 1.408; 4-Ethoxyuracil, 1.413
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C<sub>6</sub>H<sub>16</sub>N<sub>6</sub>S<sub>2</sub>Bis(2-guanidinoethyl)disulfide, 1.516
C<sub>6</sub>H<sub>24</sub>CdN<sub>6</sub><sup>2+</sup>Tris(ethylenediamine)cadmium(II) ion, 1.50
C<sub>6</sub>H<sub>24</sub>CoN<sub>6</sub><sup>3+</sup>Tris(ethylenediamine)cobalt(III) ion, 1.85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>6</sub>H<sub>12</sub>CdN<sub>3</sub>O<sub>6</sub> Tris(glycinato)cadmate(II) ion, 1.45
C<sub>6</sub>H<sub>12</sub>CuN<sub>3</sub>O<sub>6</sub> Tris(glycinato)cuprate(II) ion, 1.117
C<sub>6</sub>H<sub>12</sub>HgN<sub>3</sub>O<sub>6</sub> Tris(glycinato)mercurate(II) ion, 1.151
C<sub>6</sub>H<sub>12</sub>M<sub>1N</sub>N<sub>3</sub>O<sub>6</sub> Tris(glycinato)manganate(II) ion, 1.171
C<sub>6</sub>H<sub>12</sub>N<sub>2</sub>O<sub>3</sub> Alanylalanine, 1.306
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CoH24NoN12+ Tris(ethylenediamine)nickel(II) ion, 1.204
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C<sub>6</sub>H<sub>24</sub>N<sub>6</sub>Pb<sup>2+</sup> Tris(ethylenediamine)lead(II) ion, 1.219
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CeH12N3O,Pb Tris(glycinato)plumbate(II) ion, 1.216
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CoH24NoZn2+ Tris(ethylenediamine)zinc(II) ion, 1.278
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CeH12N3NiOe Tris(glycinato)nickelate(II) ion, 1.198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C<sub>6</sub>H<sub>12</sub>N<sub>3</sub>O<sub>6</sub>Zn<sup>-</sup>Tris(glycinato)zincate(11) ion, 1.283
                                                                                                                                                                                                                                        C<sub>6</sub>H<sub>7</sub>O<sub>7</sub> Citrate ion, 1.380; Isocitrate ion, 1.500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C<sub>6</sub>H<sub>12</sub>AlN<sub>3</sub>O<sub>6</sub> Tris(glycinato)aluminum(III), 1.18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CoMnNo - Hexacyanomanganate(II) ion, 1.174
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CeH13NO2 Leucine, 1.502; Norleucine, 1.566
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CoN. Ru + Hexacyanoruthenate(II) ion, 1.231
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CoH 10N3O, Glycylasparagine, 1.448, 1.449
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CoN, Os + Hexacyanoosmate(II) ion, 1.207
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C<sub>7</sub>H<sub>4</sub>BrO<sub>2</sub> p - Bromobenzoate ion, 1.337
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C<sub>6</sub>H<sub>12</sub>O<sub>2</sub> Methyl trimethylacetate, 1.538
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        p-Chlorobenzoate ion, 1.363
                                                                                                            CoH1NO2S Benzenesulfonamide, 1.325
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CeH 11N3O4 Glycylglycylglycine, 1.453
CoH 1NO Phenylhydroxylamine, 1.582
                                                        C<sub>6</sub>H<sub>7</sub>NO<sub>2</sub> N-Ethylmaleimide, 1.421a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CoH 1107 D-Glucuronate ion, 1.439a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CeH 12N2O4S2 Cystine, 1.393,1.394
                                                                                                                                                                            C,H7NO3S Sulfanilic acid, 1.616a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C,H,N,O, Arginine, 1.316-1.318
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C6H9N3O2 Histidine, 1.466-1.468
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C<sub>6</sub>H<sub>13</sub>N Cyclohexylamine, 1.387a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CoN, Tetracyanoethylene, 1.617
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>6</sub>H<sub>13</sub>NO<sub>5</sub> Glucosamine, 1.438
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CoH 10O Cyclohexanone, 1.386
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CoH 10 Cyclohexene, 1.387
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C.H., N.O. Lysine, 1.508
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C,H 12O, Glucose, 1.439
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C,H ,O, Sorbitol, 1.611
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> o - Dichlorobenzene, 1.397; m - Dichlorobenzene, 1.398; p - Dichlorobenzene, 1.399
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CoH,NO2 Isonicotinate ion, 1.500b; Nicotinate ion, 1.549; Picolinate ion, 1.586a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CoH, BrO o-Bromophenoxide ion, 1.341; m-Bromophenoxide ion, 1.342;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>6</sub>H<sub>4</sub>C10 o - Chlorophenoxide ion, 1.369; m - Chlorophenoxide ion, 1.370;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>6</sub>H<sub>4</sub>FO o-Fluorophenoxide ion, 1.429; m-Fluorophenoxide ion, 1.430;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>6</sub>H<sub>4</sub>NO<sub>3</sub> o-Nitrophenoxide ion, 1.557; m-Nitrophenoxide ion, 1.558;
                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>5</sub>H<sub>11</sub>NO<sub>2</sub>S 3-Mercaptovaline (Penicillamine), 1.517; Methionine, 1.522
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C<sub>5</sub>H<sub>16</sub>CoN<sub>4</sub>O<sub>3</sub> + Carbonatobis(ethylenediamine)cobalt(III) ion, 1.88
                                                                                                                        C<sub>5</sub>H<sub>9</sub>NO<sub>3</sub> N-Acetylalanine, 1.293, 1.294; Hydroxyproline, 1.482
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CoHoN2O Isonicotinamide, 1.500a; Nicotinamide, 1.546a
                                                                                                                                                                                                                                                                                                    C<sub>5</sub>H<sub>10</sub>O<sub>5</sub> Arabinose, 1.315; Ribose, 1.605; Xylose, 1.661
                                                                                                                                                                                    C<sub>5</sub>H<sub>10</sub>N<sub>2</sub>O<sub>3</sub> Alanylglycine, 1.307; Glycylalanine, 1.447
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C<sub>5</sub>H<sub>13</sub>N Amylamine, 1.313b; Isoamylamine, 1.499a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C<sub>6</sub>CON<sub>2</sub><sup>3-</sup> Hexacyanocobaltate(III) ion, 1.76
C<sub>6</sub>COO<sub>12</sub><sup>3-</sup> Trioxalatocobaltate(III) ion, 1.82
C<sub>6</sub>CrN<sub>6</sub><sup>3-</sup> Hexacyanochromate(III) ion, 1.105
C<sub>6</sub>CrN<sub>6</sub><sup>4-</sup> Hexacyanochromate(II) ion, 1.100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C<sub>6</sub>FeN<sub>5</sub> Hexacyanoferrate(III) ion, 1.137
C<sub>6</sub>FeN<sub>6</sub> Hexacyanoferrate(II) ion, 1.134
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C<sub>6</sub>H<sub>5</sub>O<sub>2</sub> p-Hydroxyphenoxide ion, 1.473
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CoHoAsO3 Phenylarsonate(V) ion, 1.581
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            p-Fluorophenoxide ion, 1.431
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        p-Chlorophenoxide ion, 1.371
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        p-Nitrophenoxide ion, 1.560
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C<sub>6</sub>H<sub>5</sub>O<sub>3</sub>S Benzenesulfonate ion, 1.326
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CoHOO,N3- Nitrilotriacetate ion, 1.550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    p-Bromophenoxide, 1.344
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CoH2F4 Tetrafluorobenzene, 1.633b
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C<sub>6</sub>H<sub>2</sub>N<sub>3</sub>O<sub>7</sub> Picrate ion, 1.587
C<sub>6</sub>H<sub>3</sub>O<sub>8</sub> - cis - Aconitate ion, 1.297
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CoHFs Pentafluorobenzene, 1.573a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CoHoNO3S Sulfanilate ion, 1.616
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C,HsBrO p-Bromophenol, 1.343
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CoH,S Thiophenoxide ion, 1.623
        C<sub>5</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub> Hydrothymine, 1.473a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C,F, Hexafluorobenzene, 1.465c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CoHO2 p-Benzoquinone, 1.330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C,HsNO Nitrosobenzene, 1.563
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CeHsNO3 p-Nitrophenol, 1.559
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C,HsCl Chlorobenzene, 1.360_
                                                                                                                                                                                                                                                                                                                                                                CsH 11NO2 Valine, 1.657, 1.658
                                                                    CsH,NO2 Proline, 1.590, 1.591
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CoHsNO2 Nitrobenzene, 1.551
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CoH5O Phenoxide ion, 1.576
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CoHsBr Bromobenzene, 1.336
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C,HsF Fluorobenzene, 1.425
                                                                                                                                                                                                                                        C<sub>s</sub>H<sub>10</sub>O<sub>2</sub> Pivalic acid, 1.588
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C<sub>6</sub>H<sub>5</sub>l lodobenzene, 1.489
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CoHo Benzene, 1.324
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C,H,O Phenol, 1.575
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CoH,N Aniline, 1.314
```

p-Fluorobenzoate ion. 1.428

_ `**43**

2, H6NO2 Indole-2-carboxylate ion, 1.487a; Indole-3-carboxylate ion, 1.487b; Indole-5-carboxylate ion, 1.487c CoH 11NO2 Phenylalanine, 1.578, 1.579 CoHoO, Hydrocinnamate ion, 1.471 C9H10O2 Hydrocinnamic acid, 1.472 CoH ... NO. Tyrosine, 1.645, 1.646 C, H₁₂N₂O₇ Uridine, 1.620, 1.621 C₁₀H₉N₃ Dipyridylamine, 1.408c C₉H₇O₂ Cinnamate ion, 1.379 C₁₀H₁₁N₂O₈ Orotidine, 1.567b CoH13N3Os Cytidine, 1.395 C₁₀H₈ Naphthalene, 1.540 C₈H₃₄Co₂N₉O₂⁴⁺ Tetrakis(ethylenediamine)-\(\mu\)-amidoperoxodicobalt(III) ion, 1.94 C₈H₇O₂ o - Toluate ion, 1.628; m - Toluate ion, 1.629; p - Toluate ion, 1.630 $C_7 H_5 O_3^- m$ -Hydroxybenzoate ion, 1.475; p -Hydroxybenzoate ion, 1.476; C₇H₁₀N₂O₂4-Ethoxy-1-methyluracil, 1.412; 1,3,5-Trimethyluracil, 1.641 C₂H_sNO o-Hydroxybenzonitrile, 1.477; m-Hydroxybenzonitrile, 1.478; υημ₄10₂ o-lodobenzoate ion, 1.490; m-lodobenzoate ion, 1.491; $C_8H_4NO_2^-$ p-Cyanobenzoate ion, 1.383 $C_8H_4O_4^{2-}$ o-Phthalate ion, 1.583; 1.584; m-Phthalate ion, 1.585; C₈H₁₉CoN₅O₄ ⁺ Terephthalatopentaamminecobalt(III) ion, 1.74 C₈H₁₆N₂O₃ Glycylleucine, 1.456, 1.457; Leucylglycine, 1.504 C₈H₂₆CoN₆ 3+ Bis(diethylenetriamine)cobalt(III) ion, 1.93 C,H,Cl Benzyl chloride, 1.332; p-Chlorotoluene, 1.377 C,H,NNiO, Nitrilotriacetatonickelate(II) ion, 1.199 C, H, NO, Zn Nitrilotriacetatozincate(II) ion, 1.281 C₁H₆AINO₆ Nitrilotria cetato aluminum (III), 1.19 C₈N₁₀N₈ ⁴ Octacyanomolybdate(IV) ion, 1.176 C₉H₃O₆ ³ Trimesate ion, 1.640 C₈H₆NO₄ p-Nitrophenylacetate ion, 1.561 C₈H₁₀N₂O p-Nitrosodimethylaniline, 1.564 C₈H₇N Indole, 1.487; p-Tolunitrile, 1.633 C₈H₁₂N₂O₂ 2,4-Diethoxypyrimidine, 1.400 C,H,O3S p-Toluenesulfonate ion, 1.632 C,H,NO2 p-Aminobenzoate ion, 1.310 p-Hydroxybenzonitrile, 1.479 C,H,Cl, a,a,a-Trichlorotoluene, 1.636 C,H,N,O 1-Methylnicotinamide, 1.535 C,HsF3 a,a,a-Trifluorotoluene, 1.639 p-lodobenzoate ion, 1.492 C,H6N, o-Aminobenzonitrile, 1.311 C₈H₈N₂O₃ Nicotinuric acid, 1.549a C₈H₁₀N₂O₃S Sulfacetamide, 1.615a C₇H₁₄N₂O₄S₂ Djenkolic acid, 1.409 C, H, N + Vinylpyridinium ion, 1.660 C₈H₇O₂ Phenylacetate ion, 1.577 p-Phthalate ion, 1.586 C₈H₁₁N Phenethylamine, 1.574a C,H,NO, p-Nitrotoluene, 1.565 C₇H₁₂N₂O₃ Glycylproline, 1.459 C₈H₁₃O₂S₂ Lipoate ion, 1.507 C7H14N2O3 Glycylvaline, 1.462 C,H5O2 Benzoate ion, 1.327 Salicylate ion, 1.607 C,H,O Benzyl alcohol, 1.330 C,H,I p-Iodotoluene, 1.498 C,H,N Benzylamine, 1.331a C,H,N Vinylpyridine, 1.659 C,H,NO Benzamide, 1.323 C,HsN Benzonitrile, 1.328 C,H, Toluene, 1.631 C₈H₈ Styrene, 1.612

C₁₀H₁₂N₂O₈Pr Ethylenediaminetetraacetatopraseodymate(III) ion, 1.224 C₁₀H₁₂N₂NdO₈ Ethylenediaminetetraacetatoneodymate(III) ion, 1.192 C₁₀H₁₂N₂NiO₈ Ethylenediaminetetraacetatonickelate(II) ion, 1.201 C₁₀H₁₂MnN₂O₈²⁻ Ethylenediaminetetraacetatomanganate(II) ion, 1.173 C10H12DyN2O8 Ethylenediaminetetraacetatodysprosate(III) ion, 1.124 ³ Ethylenediaminetetraacetatogadolinate(III) ion, 1.142 $C_{10}H_{12}GdN_2O_8^{-2}$ Ethylenediaminetetraacetatogadolinate(III) ion, 1.142 $C_{10}H_{12}HgN_2O_8^{-2}$ Ethylenediaminetetraacetatomercurate(II) ion, 1.153 C₁₀H₁₂LaN₂O₈ Ethylenediaminetetraacetatolanthanate(III) ion, 1.167 C₁₀H₁₂CoN₂O₈²⁻ Ethylenediaminetetraacetatocobaltate(II) ion, 1.60 G₁₀H₁₂CrN₂O₈- Ethylenediaminetetraacetatochromate(III) ion, 1.109 C₁₀H₁₂CuN₂O₈- Ethylenediaminetetraacetatocuprate(II) ion, 1.119 C₁₀H₁₂N₂O₈Pb²⁻ Ethylenediaminetetraacetatoplumbate(II) ion, 1.218 C₁₀H₁₂EuN₂O₈ Ethylenediaminetetraacetatoeuropate(III) ion, 1.128 C₁₀H₁₂FeN₂O₈ Ethylenediaminetetraacetatoferrate(II) ion, 1.133 C₁₀H₁₂HoN₂O₈ Ethylenediaminetetraacetatoholmate(III) ion, 1.155 C₁₀H₁₂AgN₂O₈³⁻ Ethylenediaminetetraacetatoargentate(I) ion, 1.15 C₁₀H₁₂AlN₂O₈²⁻ Ethylenediaminetetraacetatoaluminate(III) ion, 1.21 C₁₀H₁₂CdN₂O₈²⁻ Ethylenediaminetetraacetatocadmate(II) ion, 1.47 C₁₀H₁₂CoN₂O₈ Ethylenediaminetetraacetatocobaltate(III) ion, 1.84 C₁₀H₁₂LuN₂O₈ Ethylenediaminetetraacetatolutetate(III) ibn, 1.169 C₁₀H₁₂GaN₂O₈ Ethylenediaminetetraacetatogallate(III) ion, 1.140 C₁₀H₁₂N₂O₈Sc⁻Ethylenediametetraacetatoscandate(III) ion, 1.244 C₁₀H₂O⁻1-Naphthyloxide ion, 1.543; 2-Naphthyloxide ion, 1.544 C₁₀H₁₂ErN₂O₈ Ethylenediaminetetraacetatoerbate(III) ion, 1.126 C₁₀H₁₂FeN₂O₈ Ethylenediaminetetraacetatoferrate(III) ion, 1.139 C₁₀H₁₂CeN₂O₈ Ethylenediaminetetraacetatocerate(III) ion, 1.52 C₁₀H₁₂InN₂O₈ Ethylenediaminetetraacetatoindate(III) ion, 1.161 C10Co2N10O2 5- Decacyano- u-peroxodicobaltate(III) ion, 1.95 Uridine monophosphate(2',3'-cyclic UMP2-), 1.656 C₁₀H₈N₂ 2,2'-Bipyridine, 1.334; 4,4'-Bipyridine, 1.334a C₉H₈N₂O ₁₀P²⁻ Uridine monophosphate(UMP²⁻), 1.654; C₉H₁₈N₂O₃ Alanylleucine, 1.308; Leucylalanine, 1.503 C₉H₇N₂O₁₀P³⁻ Uridine monophosphate(UMP³⁻), 1.655 C₁₀H₁₂N₂O₈ ⁴⁻ Ethylenediaminetetraacetate ion, 1.420 CoHoN 2-Methylindole, 1.533; 3-Methylindole, 1.534 CoH 11 NO 4 3-(3,4-Dihydroxyphenyl)alanine, 1.402 C9H9O3 p-Hydroxyphenylpropionate ion, 1.481 C10H6NO2Quinoline-2-carboxylate ion, 1.602a

C21 H28 N70 10P2 Nicotinamide-adenine dinucleotide, 1.547, 1.548 Co₂H₃₀N₁₀O₂ 5+ Decaammine-\(mu\)-dioxodicobalt(III) ion, 1.75 C36H24CoN, 3+ Tris(1,10-phenanthroline)cobalt(III) ion 1.97 CIH₁₅N₅Ru²⁺ Chlorapentaammineruthenium(III) ion, 1.233 CICoH₁₅N₅²⁺ Chloropentaamminecobalt(III) ion, 1.66 CICrH₁₅N₅²⁺ Chloropentaamminechromium(III) ion, 1.103 C30H24NoRh3+ Tris(2,2'-bipyridine)rhodium(III) ion, 1.230 C30H24CoN63+ Tris(2,2'-bipyridine)cobalt(III) ion, 1.96 CoH₁₆N₄O₂³⁺ Diaquotetraamminecobalt(III) ion, 1.63 CoH₁₆N₅O²⁺ Hydroxopentaamminecobalt(III) ion, 1.64 C₂₀H₃₂N₆O₁₂S₂ Glutathione, oxidized(disulfide), 1.442 CoFH₁₅N₅^{2*} Fluoropentaamminecobalt(III) ion, 1.65 CoH₁₅N₈^{2*} Azidopentaamminecobalt(III) ion, 1.70 CoH₁₇N₅O³⁺ Aquopentaamminecobalt(III) ion, 1.62 C21H38CIN Hexadecylpyridinium chloride, 1.465b CdH₁₂N₄²⁺ Tetraamminecadmium(II) ion, 1.39 3- Trichromatochromate(III) ion, 1.114 CuH₁₂N₄²⁺ Tetraamminecopper(II) ion, 1.120 CuH4042 Tetrahydroxocuprate(II) ion, 1.116 CdH6103 Todotriaquocadmium(II) ion, 1.41 CoH₁₈N₆³⁺ Hexaamminecobalt(III) ion, 1.61 CoN₆O₁₂³⁻ Hexanitrocobaltate(III) ion, 1.81 Cl₄Pd²⁻ Tetrachloropalladate(II) ion, 1.220 ClaPt2- Hexachloroplatinate(1V) ion, 1.228 Cl₄Pt²⁻ Tetrachloroplatinate(II) ion, 1.225 CrF₆ 3- Hexafluorochromate(III) ion, 1.104 4- Hexafluorochromate(II) ion, 1.101 Clolr3- Hexachloroiridate(III) ion, 1.162 Clelr2- Hexachloroiridate(IV) ion, 1.164 Cr2O,2- Dichromate(VI) ion, 1.113 CrF. 4- Hexalluorocan. D₂O₂ Deuterium peroxide, 1.147 CoO22- Cobaltate(II) ion, 1.58 D₂S Deuterium sulfide, 1.235 ClO - Hypochlorite ion, 1.54 ClO4 Perchlorate ion, 1.56 D₂O Deuterium oxide, 1.2 ClO3 Chlorate ion, 1.55 Cr₄O₁₂³⁻ Tricl Cu²⁺, 1.115 Er³⁺, 1.125 Eu³⁺, 1.127 Dy3+, 1.123 $^{+}$, 1.102 , 1.51 Co2+, 1.57 Cr2+, 1.99 D⁺, 1.144 Cl⁻, 1.53 DO, 1.8 D, 1.6 C₁₂H₃₃CIN₃Pd⁺ Chloro-1,1,7,7-tetraethyldiethylenetriaminepalladium(II) ion, 1.222 C₁₂H₃₃ClN₃Pt⁺ Chloro-1,1,7,7-tetraethyldiethylenetriamineplatinum(II) ion, 1.227 C₁₄H₈O₄²⁻ o, o'-Diphenate ion, 1.408a; p, p'-Diphenate ion, 1.408b C₁₀H₁₂N₂O₈Yb Ethylenediaminetetraacetatoytterbate(III) ion, 1.273 C₁₀H₁₂N₂O₈Sm - Ethylenediaminetetraacetatosamarate(III) ion, 1.25 C₁₀H₁₂N₂O₈Sn²⁻ Ethylenediaminetetraacetatostannate(II) ion, 1.255 C₁₀H₁₂N₂O₈Tb - Ethylenediaminetetraacetatoterbate(III) ion, 1.259 C₁₀H₁₂N₂O₈Ti⁻Ethylenediaminetetraacetatotitanate(III) ion, 1.262 C₁₀H₁₂N₂O₈Zn²⁻Ethylenediaminetetraacetatozincate(II) ion, 1.280 C₁₀H₈N₂O₈Tm Ethylenediaminetetraacetatothulate(III) ion, 1.267 C₁₀H₁₂N₂O₈Y Ethylenediaminetetraacetatoyttrate(III) ion, 1.271 C₁₄H ₁₂HgN₂O₁₂⁴ Bis(nitrilotriacetato)mercente(II) ion, 1.172 C H MnN₂O₁₉⁴ Bis(nitrilotriacetato)manganate(II) ion, 1.172 C11H7O2 1-Naphthoate ion, 1.541; 2-Naphthoate ion, 1.542 C₁₄H₁₂AgN₂O₁₂⁵-Bis(nitrilotriacetato)argentate(1) ion, 1.14 C₁₄H₁₂AlN₂O₁₂³-Bis(nitrilotriacetato)aluminate(111) ion, 1.20 C₁₄H ₁₂M nN₂O₁₂⁴ Bis(nitrilotriacetate)mc...₅ Grant 1.200 Grant N.NiO₁₉ Bis(nitrilotriacetate)nickelate(II) ion, 1.200 Grant N.NiO₁₉ Bis(nitrilotriacetate) C14H12N2O12Pb4- Bis(nitrilotriacetato)plumbate(II) ion, 1.217 C₁₉H₄₂BrN Hexadecyltrimethylammonium bromide, 1.465a C₁₄H₁₂N₂O₁₂Zn⁴-Bis(nitrilotriacetato)zincate(II) ion, 1.282 C₁₅H₂₄CoO₆ 3+ Tris(acetylacetonato)cobalt(III) ion, 1.98 C10H16N+ Benzyltrimethylammonium ion, 1.333 C₁₆H₆N₂O₁₄S₄⁴⁻ Indigotetrasulfonate ion, 1.486 C13H9O2 Biphenyl-4-carboxylate ion, 1.333a C10H4N5O7P Adenosine-5'-phosphate, 1.302 C₁₈H₂₀N₂O₃ Phenylalanylphenylalanine, 1.580 C₁₀H₁₉N₃O₄ Leucylglycylglycine, 1.505, 1.506 C₁₂H₂₅NaO₄S Dodecyl sodium sulfate, 1.409a C₁₁H₁₄N₂O₃ Glycylphenylalanine, 1.458 C11 H12 N2 O2 Tryptophan, 1.643, 1.644 C₁₀H₁₅N₂O₈P Thymidylic acid, 1.626 C₁₂H₈N₂ **b**,10-Phenanthroline, 1.574 C₁₃H₁₅N₃O₃ Glycyltryptophan, 1.460 C₁₁H₇N Naphthonitrile, 1.520, 1.521 C₁₆H₁₈ClN₃S Methylene blue, 1.528 C₁₂H₁₂N₂O₂S Sulfanilamide, 1.615b C₁₂H₁₆N₆O₃ Histidylhistidine, 1.469 C20H11Os Fluoroscein(anion), 1.422 C20H6Br4O5 - Eosin(dianion), 1.410 C17H20CIN3 Acridine orange, 1.298 C₁₁H₁₄N₂O₄ Glycyltyrosine, 1.461 C₁₂H₂₄N₂O₃ Leucylleucine, 1.506 C₁₀H₁₇N₃O₆S Glutathione, 1.441 C20H19CIN4 Safranine T, 1.577 C₁₀H₁₃N₅O₄ Adenosine, 1.301 C₁₃H₁₀O Benzophenone, 1.329 C₁₄H₁₄ClN₃ Acriflavin, 1.298a C15H20N4O, Riboflavin, 1.603

NO,5,2- Nitrosyldisulfonate ion, 1.184 O₇P₂²- Pyrophosphate ion, 1.212 O₈P₂⁴- Peroxyphosphate ion, 1.213 O₈S₂²- Peroxydisulfate ion, 1.442 Pb^{2*}, 1.214 MnO, Permanganate ion, 1.175 0₃S₂⁻ Thiosulfate ion, 1.240 0₃Sb Antimonate(V) ion, 1,243 O2Pb2-Plumbate(II) ion, 1.215 O₃Sn²⁻ Stannate(IV) ion, 1.256 O3Te2- Tellurate(IV) ion, 1.260 O₄Te²⁻ Tellurate(VI) ion, 1.261 O,Se²⁻ Selenate(VI) ion, 1.248 O2Sn2- Stannate(II) ion, 1.252 03Se2- Selenite(IV) ion, 1.247 O₃Ti²⁻ Titanate(IV) ion, 1.263 O₃V⁻Vanadate(V) ion, 1.269 O2U2+ Uranyl(VI) ion, 1.268 N20 Nitrous oxide, 1.186 O4S2- Sulfate ion, 1.239 03S2- Sulfite ion, 1.238 NO Nitric oxide, 1.187 NO2 Nitrite ion, 1.188 NO3 Nitrate ion, 1.189 N₃-Azide ion, 1.177 Na⁺, 1.190 02, 1.205, 1.206 Tm³⁺, 1.266 , 1.168 . 1.170 Nd3+, 1.191 , 1.250 La³⁺, 1.166 Ni2+, 1.193 Tb3+, 1.258 , 1.272 Pr3+, 1.223 1.274 K⁺, 1.165 $0^{-}, 1.9$ $0_{2}^{-}, 1.10$ Mn 2+ Sm3+ Yb3+, Lu3+ H₁₅N₇Ru²⁺ Pentaamminenitrogenruthenium(II) ion, 1.231a H₁₈N₆Ru³⁺ Hexaammineruthenium(III) ion, 1.232 H₁₈N₆Rh³⁺ Hexaamminerhodium(III) ion, 1.229 HNO,52 Hydroxylaminedisulfonate ion, 1.185 H₁₈N₆Os³⁺ Hexaammineosmium(III) ion, 1.208 H₁₈IrN₆ 3+ Hexaammineiridium(III) ion, 1.163 H404Zn2- Tetrahydroxozincate(II) ion, 1.276 FH, NiO3 + Fluorotriaquonickel(II) ion, 1.194 H₁₂N₄Zn²⁺ Tetraamminezinc(II) ion, 1.277 F₆Sn²- Hexafluorostannate(IV) ion, 1.257 Faria- Hexasluorotitanate(IV) ion, 1.264 F_eFe 3- Hexafluoroferrate(III) ion, 1.136 Fosi2- Hexafluorosilicate(IV) ion, 1.249 H₂O₂P Hypophosphite(III) ion, 1.209 F₃Sn⁻ Trifluorostannate(II) ion, 1.253 HOZn+ Hydroxozinc(II) ion, 1.275 HO₅S⁻ Peroxysulfate ion, 1.241 H₂Se Hydrogen selenide, 1.245 H₂O₂ Hydrogen peroxide 1,146 F,S Sulfur hexafluoride, 1.237 HSe Hydroselenide ion, 1.246 HO2 Hydroperoxide ion, 1.148 H2NO3S Sulfamate ion, 1.183 H_sN₂ + Hydrazinium ion, 1.180 H2O3P Phosphite ion, 1.210 H2O4P Phosphate ion, 1.211 H₃NO Hydroxylamine, 1.181 H2S Hydrogen sulfide, 1.234 FH Hydrofluoric acid, 1.130 HS Hydrosulfide ion, 1.236 H4N + Ammonium ion, 1.178 HO Hydroxyl radical, 1.7 104 Periodate ion, 1.159 H₄N₂ Hydrazine, 1.179 103 lodate ion, 1.158 H20 Water, 1.1 F2H-, 1.131 Ho2+, 1.154 Fe²⁺, 1.132 Gd3+, 1.141 H⁺, 1.143 H₂, 1.145 3, 1.157 l₂, 1.156

action of x-rays (200 kv) on deaerated aqueous solutions of sodium azide in the presence of different organic solutes. The radiation chemistry of azide solutions. Part II. The Kelly, P.; Smith, M. 61-0019

J. CHEM. SOC: 1487-94 (1961) Hayon, E.; Allen, A.O. 61 - 0025 Evidence for two kinds of "H atoms" in the radiation chemistry of water.

Jortner, J.; Ottolenghi, M.; Rabani, J.; Stein, G. I. PHYS. CHEM. 65: 2181-5 (1961) 62 - 0021

Conversion of solvated electrons into hydrogen atoms in the photoand radiation chemistry of aqueous solutions.

J. CHEM. PHYS. 37(10): 2488-95 (1962) 63 - 0041

Reactivities of the primary reducing species formed in the Appleby, A.; Scholes, G.; Simic, M. radiolysis of aqueous solutions.

J. AM. CHEM. SOC. 85: 3891-2 (1963)

Pulse radiolysis studies. III. Elementary reactions in aqueous Dorfman, L.M.; Taub, 1.A. 63 - 0045

I. AM. CHEM. SOC. 85: 2370-4 (1963) ethanol solution.

Gordon, S.; Hart, E.J.; Matheson, M.S.; Rabani, J.; Thomas, J.K. 63-0050

Reaction constants of the hydrated electron. J. AM. CHEM. SOC. 85: 1375-7 (1963)

Nature and reactivity of the primary reducing species in the Scholes, G.; Simic, M.; Weiss, J.J. 63 - 0057

radiolysis of aqueous solutions.

Gordon, S.; Hart, E.J.; Matheson, M.S.; Rabani, J.; Thomas, J.K. DISCUSSIONS FARADAY SOC. 36: 214-22 (1963) 63 - 0073

Reactions of the hydrated electron.

DISCUSSIONS FARADAY SOC. 36: 193-205 (1963) Baxendale, J.H.; Fielden, E.M.; Keene, J.P. 63 - 0187

Absolute rate constants for the reactions of some metal ions with the hydrated electron.

PROC. CHEM. SOC. 242-3 (1963)

The ultraviolet spectra of transients produced in the radiolysis Gordon, S.; Hart, E.J.; Thomas, J.K. of aqueous solutions. 64 - 0043

J. PHYS. CHEM. 68: 1262-4 (1964) 64 - 0044

Rate constants of hydrated electron reactions with organic compounds. Hart, E.J.; Gordon, S.; Thomas, J.K. J. PHYS. CHEM. 68: 1271-4 (1964)

Solute isotope and pH effects on the primary species produced in Brown, D.M.; Dainton, F.S.; Keene, J.P.; Walker, D.C. PROC. CHEM. SOC.: 266-7 (1964) the pulse radiolysis of water. 64 - 0045

64-0046 Thomas, J.K.; Gordon, S.; Hart, E.J.

The rates of reaction of the hydrated electron in aqueous inorganic solutions.

Hart, E.J.; Thomas, J.K.; Gordon, S. J. PHYS. CHEM. 68: 1524-7 (1964) 64-0048

A review of the radiation chemistry of single-carbon compounds and some reactions of the hydrated electron in aqueous solution.

RADIATION RES. SUPPL. 4: 74-88 (1964)

Keene, J.P. 64 - 0091

The absorption spectrum and some reaction constants of the hydrated electron.

RADIATION RES. 22: 1-13 (1964)

Scholes, G.; Simic, M. 64 - 0094

Action of y-rays on aqueous solutions of nitrous oxide and the effects of added solutes.

J. PHYS. CHEM. 68: 1731-7 (1964)

Scholes, C.; Simic, M. 64 - 0095

J. PHYS. CHEM. 68: 1738-43 (1964) aqueous systems.

Reactivity of the hydrogen atoms produced in the radiolysis of

Baxendale, J.H.; Fielden, E.M.; Capellos, C.; Francis, J.M.; Davies, J.V.; Ebert, M.; Gilbert, C.W.; Keene, J.P.; Land, E.J.; Swallow, A.J.; Nosworthy, J.M. NATURE 201: 468-70 (1964) 64 - 0132

hydratisierten Elektronen, freien Radikalen und Ionen mit Pulsradiolytische Untersuchung schneller Reaktionen von Asmus, K.-D.; Henglein, A.; Ebert, M.; Keene, J.P. 64 - 0133

BER. BUNSENCES. PHYSIK. CHEM. 68: 657-63 (1964) Tetranitromethan in waessriger Loesung.

Asmus, K.-D.; Henglein, A. 64 - 0136

Die Reaktion des Tetranitromethans mit hydratisierten Elektronen aus der y-Radiolyse des Wassers. BER. BUNSENGES. PHYSIK. CHEM. 68: 348-52 (1964)

The reactivity of aromatic compounds toward hydrated electrons. Anbar, M.; Hart, E.J. 64 - 0138

I. AM. CHEM. SOC. 86: 5633-7 (1964)

Pulse radiolysis studies of aqueous sodium chloride solutions J. PHYS. CHEM. 68: 3829-35 (1964) Anbar, M.; Thomas, J.K. 64 - 0149

Armstrong, D.A.; Wilkening, V.C. 64 - 0151

Effects of pH in the y-radiolysis of aqueous solutions of CAN. J. CHEM. 42: 2631-5 (1964) cysteine and methyl mercaptan.

Reactions of the reducing species in the radiolysis of aqueous Baxendale, J.H.; Dixon, R.S. methanol solutions. 64 - 0153

Z. PHYSIK. CHEM. (FRANKFURT) 43: 161-76 (1964)

Pulse Radiolysis, Ebert, M.; Keene, J.P.; Swallow, A.J.; Baxendale, J.H. (eds.). Academic Press, New York, 1965, p.151-64. (Proc of the Internat. Symposium Reactions of the hydrated electron with amino acids, peptides and proteins. Charlesby, A.; Fydelor, P.J.; Kopp, P.M.; Keene, J.P.; Swallow, A.J. Tables of bimolecular rate constants of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds. INTERN. J. APPL. RADIATION ISOTOPES 16: 227-42 (1965) Reactions of the hydrated electron with glycine and other amino Pulse radiolysis studies of aqueous solutions of nucleic acid and Reactions of the hydrated electron with substances of biological Pulse radiolysis studies of aqueous polymer-thiourea systems. on Pulse Radiolysis, Manchester, Eng., April 21-3, 1965) Submicromolar analysis of hydrated electron scavengers. CURR. TOPICS RADIATION RES. 1: 49-92 (1965) Pulse radiolysis of aqueous carbohydrate solutions. Scholes, G.; Shaw, P.; Willson, R.L.; Ebert, M. The radiolysis of aqueous methylammonium ion. UNPUBLISHED DATA (quoted in 67-0103) UNPUBLISHED DATA (quoted in 67-0103) UNPUBLISHED DATA (quoted in 67-0103) A pulse radiolysis study of methylene blue. ADVAN. CHEM. SER. 50: 253-62 (1965) Davies, J.V.; Griffiths, W.; Phillips, G.O. ADVAN. CHEM. SER. 50: 242-52 (1965) ADVAN. CHEM. SER. 50: 289-96 (1965) Radical scavengers and radioprotection. Keene, J.P.; Land, E.J.; Swallow, A.J. Davies, J.V.; Ebert, M.; Swallow, A.J. Davies, J.V.; Ebert, M.; Swallow, A.J. The interconvertibility of ear and H. RADIATION RES. 26: 1-11 (1965) Hart, E.J.; Fielden, E.M. Ebert, M.; Swallow, A.J. Anbar, M.; Hart, E.J. Riesz, P.; Morris, T. Anbar, M.; Neta, P. acids and peptides. related substances. Ibid., p.193-201 Ibid., p.165-70 Ibid., p.171-80 Ibid., p.227-45 Ibid., p.181-91 Nakken, K.F. Braams, R. Braams, R. Rabani, J. 65 - 038965-0739 65 - 018865-0245 65 - 039065-0778 65 - 038865 - 039165-0493 65 - 049465-0780 65-3013 65 - 039265-0396 65-0781 The effect of solvent and of solutes on the absorption spectrum of The reactivity of metal ions and some oxy anions toward hydrated Rate constants of hydrated electron reactions with some aromatic The reaction of haloaliphatic compounds with hydrated electrons. Influence de certains sels chimiquement inertes sur la radiolyse Studies of radiation-induced reactions of ethylene in aqueous constants for reaction of eac with itself and other transients. Die Reaktionen des Schwefelwasserstoffs mit hydratisierten PROC. ROY. SOC. (LONDON) SER. A 287: 444-56 (1965) PROC. ROY. SOC. (LONDON) SER. A 286: 320-36 (1965) The pulse radiolysis of aqueous solutions of some inorganic The pulse radiolysis of aqueous tetranitromethane. I. Rate PROC. ROY. SOC. (LONDON) SER. A 287: 15-26 (1965) acids, alkyl halides, heterocyclic compounds, and Werner Radical and molecular yields in the γ -radiolysis of water. Pulse radiolysis of aqueous hydrogen solutions. 1. Rate BER. BUNSENGES. PHYSIK. CHEM. 69: 3-7 (1965) constants and the extinction coefficient of eag. II. Elektronen und freien Wasserstoffatomen und die Szutka, A.; Thomas, J.K.; Gordon, S.; Hart, E.J. solution. I. Reactions in the absence of oxygen. III. The nitrous oxide-sodium tellurite system. Solvatationsenergie des Elektrons im Wasser. Baxendale, J.H.; Fielden, E.M.; Keene, J.P. JNPUBLISHED DATA (quoted in 67-0103) UNPUBLISHED DATA (quoted in 67-0103) Cullis, C.F.; Francis, J.M.; Swallow, A.J. Rabani, J.; Mulac, W.A.; Matheson, M.S. II. The interconvertibility of eag and H. J. PHYS. CHEM. 69: 1324-35 (1965) J. PHYS. CHEM. 69: 1244-7 (1965) J. PHYS. CHEM. 69: 289-92 (1965) J. PHYS. CHEM. 69: 973-7 (1965) J. PHYS. CHEM. 69: 271-4 (1965) J. PHYS. CHEM. 69: 53-70 (1965) J. CHIM. PHYS. 62: 217-8 (1965) Matheson, M.S.; Rabani, J. Dainton, F.S.; Rumfeldt, R. Meissner, G.; Henglein, A. Rozenberg, J.; Dolle, L. Anbar, M.; Hart, E.J. Anbar, M.; Hart, E.J. Anbar, M.; Hart, E.J. Oxygenated solutions. Anbar, M.; Hart, E.J solvated electrons. compounds. Hart, E.J. electrons. de l'eau. 64 - 028265 - 001364 - 028765 - 000165 - 000865 - 000965-0015 65-0018 65 - 004465-0047 65-0053 65-0073 65 - 0183

On the reactivity of transition-metal complex ions toward hydrated Primary processes in the photolysis of the iodide ion in aqueous by direct measurements of Cu intermediates during irradiation The significance of the hydrated electron in radiation chemistry Rate constants of hydrated electron reactions with amino acids. A study of some free-radical reactions in aqueous γ radiolysis Pulsradiolytische Untersuchung der Oxydation und Reduktion Relative reaction rates of hydrated electrons with Krebs cycle The pulse radiolysis of deaerated aqueous bromide solutions. BER. BUNSENCES. PHYSIK. CHEM. 70(6): 869-74 (1966) PROC. ROY. SOC. (LONDON) SER. A 287: 281-94 (1965) Matrix isolation of unstable lower valency states of metal The radiolysis of aqueous solutions of potassium iodide. Matheson, M.S.; Mulac, W.A.; Weeks, J.L.; Rabani, J. Asmus, K.-D.; Beck, G.; Henglein, A.; Wigger, A. The contribution of OH radicals to the radiolysis of BULL. CHEM. SOC. JAPAN 39(5): 951-5 (1966) TRANS. FARADAY SOC. 62(5): 1139-50 (1966) Reaction of the hydrated electron with water. J. AM. CHEM. SOC. 88(13): 2907-10 (1966) Radiation Chemistry of carbohydrates. XVI. Buxton, G.V.; Dainton, F.S.; Wilkinson, F. des Nitrosobenzols in waessriger Loesung. Phillips, G.O.; Griffiths, W.; Davies, J.V. Sawai, T.; Shinozaki, Y.; Meshitsuka, G. J. PHYS. CHEM. 70(7): 2212-19 (1966) J. PHYS. CHEM. 70(7): 2092-9 (1966) J. CHEM. SOC. PT. B 194-200 (1966) CHEM. COMMUN. (11): 320-1 (1966) HEALTH PHYS. 12(3): 641-51 (1966) RADIATION RES. 27: 319-29 (1966) Hart, E.J.; Cordon, S.; Fielden, E.M. The BrO radical in aqueous solution. J. PHYS. CHEM. 70: 150-6 (1966) Stockdale, J.A.D.; Sangster, D.F. Brown, D.M.; Dainton, F.S. Dainton, F.S.; Logan, S.R. Micic, O.; Draganic, I. aqueous solutions. and other anions. Braams, R. Anbar, M. Hart, E.J. 66 - 021165-7017 66 - 042566 - 043366 - 043566 - 001566-0062 66 - 011366 - 013866 - 01440910 - 9966 - 018466 - 0011

bromide. The reactions of iodine atoms and methyl radicals in water. Actions Chimiques et Biologiques des Radiations. Dixieme Serie., solution. IV. Nitrous oxide solutions containing hexachloro-anions Proc. of the Second Tihany Symposium on Radiation Chemistry, Pulse radiolysis of aqueous solutions of methyl iodide and methyl Pulsradiolytische Untersuchung der Reaktion des hydratisierten Pulsradiolytische Untersuchungen ueber die Reaktivitaet der Radicals and radical anions in addition polymerization, their BER. BUNSENGES. PHYSIK. CHEM. 70(4): 459-66 (1966) PROC. ROY. SOC. (LONDON) SER. A 298: 239-54 (1967) Haissinsky, M. (ed.), Masson et Cie Editeurs, p.1-88, 1966 Katalase gegenueber hydratisierten Elektronen und freien Radical and molecular yields in the radiolysis of aqueous Hydrated electron reactions in view of their temperature Chambers, K.; Collinson, E.; Dainton, F.S.; Seddon, W. Translated from: Khim. Vys. Energ. 1(2): 154-60 (1967) On the reactivity of diethyl thallium ions with hydrated Dobo, J., Hedvig, P. (eds.), Publishing House of the Hungarian Acad. of Sci., Budapest, 1967, p.197-201 Radiation chemistry of the aqueous nitrate system. Anbar, M.; Alfassi, Z.B.; Bregman-Reisler, H. UNPUBLISHED DATA (quoted in 67-0103) UNPUBLISHED DATA (quoted in 67-0103) UNPUBLISHED DATA (quoted in 67-0103) HIGH ENERGY CHEM. 1(2): 132-8 (1967) J. PHYS. CHEM. 71(6): 1919-1925 (1967) MAKROMOL. CHEM. 92: 105-113 (1966) Fel', N.S.; Dolin, P.1.; Zolotarevskii, V.1. Asmus, K.-D.; Henglein, A.; Beck, G. I. PHYS. CHEM. 71(4): 1024-33 (1967) J. AM. CHEM. SOC. 89: 1263-4 (1967) CHEM. COMMUN. (15): 498-9 (1967) Hart, E.J.; Fielden, E.M.; Anbar, M. I. γ Radiolysis of dilute solutions. Pulsed radiolysis of formamides. Dainton, F.S.; Rumfeldt, R. Elektrons mit Nitromethan. Anbar, M.; Meyerstein, D. Hart, E.J.; Fielden, E.M. Daniels, M.; Wigg, E.E. of iridium and platinum. The hydrated electron. OH-Radikalen. Thomas, J.K. Sarrach, D. Hart, E.J. 66 - 081967 - 005467 - 00630080 - 9966 - 081866 - 082566 - 205867 - 003267 - 00418600-29 66 - 075766 - 0629

Henglein, A.; Karmann, W.; Roebke, W.; Beck, G.

66 - 0499

CHEM. COMMUN.: 416 (1966)

 γ Radiolysis of liquids at high pressures. III. Aqueous solutions of radicals with inorganic and organic compounds in aqueous solution. Reaction of fluoride ions with hydrogen atoms in aqueous solution. INTERN. J. APPL. RADIATION ISOTOPES 18: 493-523 (1967) hydrated electron and on its bimolecular recombination reaction. Pulsradiolyse des Schwefelwasserstoffs in waessriger Loesung Pulse radiolysis: Adducts of vinyl compounds and simple free reactions of hydrated electrons, hydrogen atoms and hydroxyl Pulse radiolysis studies of aqueous phenol. Water elimination Pulsradiolytische Untersuchung von Dimethylthioaether und The effect of temperature on the absorption spectrum of the Pulse radiolysis studies. 1X. Reactions of the ozonide ion in BER. BUNSENGES. PHYSIK. CHEM. 71(5): 513-6 (1967) A compilation of specific bimolecular rate constants for the from dihydroxycyclohexadienyl radicals to form phenoxyl. Pulsradiolytische Untersuchung der Oxydation des Hentz, R.R.; Farhataziz; Milner, D.J.; Burton, M. Vitesses de reaction de trois nitroparaffines avec les atomes d'hydrogene et les electrons solvates TRANS. FARADAY SOC. 63: 1699-1711 (1967) TRANS. FARADAY SOC. 63(529): 141-6 (1967) Chambers, K.W.; Collinson, E.; Dainton, F.S.; Radiolysis of aqueous solutions of nitric oxide. TRANS. FARADAY SOC. 63: 2628-39 (1967) Z. NATURFORSCH. PT. B 22: 273-82 (1967) Z. NATURFORSCH. PT. B 22(1): 13-9 (1967) TRANS. FARADAY SOC. 63: 1181-90 (1967) Phenylhydroxylamins in waessriger Loesung. Karmann, W.; Meissner, G.; Henglein, A. Wigger, A.; Henglein, A.; Asmus, K.-D. Dimethylsulfoxyd in waessriger Loesung. Felix, W.D.; Gall, B.L.; Dorfman, L.M. J. PHYS. CHEM. 71(7): 2102-6 (1967) J. PHYS. CHEM. 71(2): 384-92 (1967) J. CHIM. PHYS. 64(4): 688-90 (1967) Meissner, G.; Henglein, A.; Beck, G. J. CHEM. PHYS. 47: 374-7 (1967) Seddon, W.A.; Wilkinson, F. Gottschall, W.C.; Hart, E.J. Knight, R.J.; Sutton, H.C. Sutton, J.; Tran Dinh Son sodium bicarbonate. Land, E.J.; Ebert, M. Anbar, M.; Neta, P. Anbar, M.; Neta, P. en milieu aqueux. aqueous solution. 67-0273 67 - 023167-0218 67 - 019167 - 018667-0132 67 - 017167 - 01806600-29 67 - 0103610-19 67 - 0122

Activation energy of the hydrated electron water reaction and the Rate constants of hydrated electron reactions with peptides and Also see corrigendum TRANS. FARADAY SOC. 64: 3158 (1968) Pulsradiolyse des Schwefelwasserstoffs in Wasser, waessrigen Chemistry of the hydrated electron in oxygen-free solutions of The Chemistry of Ionization and Excitation, Johnson, G.R.A. The cobalt-60 y radiolysis of cysteine in deaerated aqueous A pulse radiolysis study of some transition metal complexes. Interactions of connective tissue and other polyanions with Nitrobenzol zu Phenylhydroxylamin in waessriger Loesung. Reactions of carbonylic compounds with hydrated electrons. ultra-violet absorption spectrum of the hydrated electron. Wilkening, V.G.; Lal, M.; Arends, M.; Armstrong, D.A. Moore, J.S.; Phillips, G.O.; Dodgson, K.S.; Davies, J.V. Die pulsradiolytische Untersuchung der Reduktion von Ph.D., Thesis, Technische Univ., Berlin, 1967, 81p. Ph.D., Thesis, Technische Univ., Berlin, 1967, 85p. The activation energy of hydrated electron reactions. The pulse radiolysis of sulphur compounds. Part I. TRANS. FARADAY SOC. 63(12): 2975-82 (1967) Adams, G.E.; McNaughton, G.S.; Michael, B.D. Ph.D. Thesis, Northwestern Univ., 1967, 206p. Studies in chemical radiation protection agents. amino acids, peptides, and related compounds. UNPUBLISHED DATA (quoted in 67-0103) alkoholischen Loesungen und in Methanol. and Scholes, G. (eds.), Taylor and Francis solutions at pH values between 5 and 6. J. PHYS. CHEM. 72(1): 185-90 (1968) J. PHYS. CHEM. 71(12): 3993-8 (1967) J. PHYS. CHEM. 71(11): 3700-2 (1967) RADIATION RES. 32: 452-62 (1967) RADIATION RES. 31: 8-26 (1967) NYO-3383-06, 13p., Feb. 14, 1967 DISS. ABSTR. 28(6): 2383 (1967) BIOCHEM. J. 104(2): 18P (1967) Willix, R.L.S.; Garrison, W.M. NUC. SCI. ABSTR 21: 25873 Ltd, London, 1967, p.281-93 Cysteamine and cystamine. Fielden, E.M.; Hart, E.J. cationic counter ions. Anbar, M.; Hart, E.J. Trumbore, C.N. Meyerstein, D. Karmann, W. Waltz, W.L. Braams, R. Wigger, A. proteins. 67-0750 67 - 300568 - 000267-0742 67-0688 67-0560 67 - 068467-0532 67 - 055467 - 031067-0477 67-0299

67-0298 Hart, E.J.; Fielden, E.M.; Anbar, M.

Anbar, M.; Hart, E.J. On the reactivity of hydrated electrons toward inorganic compounds. ADVAN. CHEM. SER. 81: 79-94 (1968) Ghosh-Mazumdar, A.S.; Hart, E.J. A pulse radiolysis study of bivalent and zerovalent gold in aqueous solutions. ADVAN. CHEM. SER. 81: 193-209 (1968)	Cercek, B.; Ebert, M. Radiolytic transients from p-nitrophenol and their inter- and intramolecular reactions. ADVAN. CHEM. SER. 81: 210-21 (1968) Amphlett, C.B.; Adams, G.E.; Michael, B.D. Pulse radiolysis studies of deaerated aqueous salicylate solutions.		ADVAN. CHEM. SER. 81: 397-417 (1968) Swallow, A.J. Recent studies from pulse radiolysis. PHOTOCHEM. PHOTOBIOL. 7: 683-94 (1968) Pukies, J.; Roebke, W.; Henglein, A. Pulsradiolytische Untersuchung einiger Elementarprozesse der Silberreduktion. BER. BUNSENGES. PHYSIK. CHEM. 72(7): 842-7 (1968) Pukies, J.; Roebke, W.	Pulsradiolytische Ur Ag*-Ions in ammon BER. BUNSENGES Bevan, P.L.T. Radiolysis studies ir Ph.D., Thesis, Univ Land, E.J.; Swallow One-electron reacti	pulse radiolysis I. Nicotinamide—adenine dinucleotide and related compounds. BIOCHIM. BIOPHYS. ACTA 162: 327–37 (1968) Fel', N.S.; Zolotarevskii, V.I.; Zakatova, N.V.; Sharpatyi, V.A. On the interaction of HON(SO ₃ K) ₂ with e _{aq} . KHIM. VYS. ENERG. 2(4): 376–7 (1968) (for translation see High Energy Chemistry) Fiti, M.; Sutton, J. UNPUBLISHED DATA
68-0295 68-0302	68-0303	68-0309 68-0316	68-0418 68-0431 68-0435	68-0436	68-0460 68-0502
 Rodgers, M.A.J.; Sokol, H.A.; Carrison, W.M. The radiation-induced hydrolysis of the peptide bond. J. AM. CHEM. SOC. 90(3): 795-6 (1968) Cercek, B.; Ebert, M. Activation energies for reactions of the hydrated electron. J. PHYS. CHEM. 72(2): 766 (1968) Bart, E.J.; Fielden, E.M. Reaction of the deuterated electron, c_d, with e_d, D, 	OD, and D ₂ O. J. PHYS. CHEM. 72(2): 577-83 (1968) Rakintzis, N.Th. Geschwindigkeitskonstanten der Reaktion e HO ₂ -Radikalen und hydratisierten Elektron ⁶⁰ Co-γ-Radiolyse von waessrigen Loesung Z. PHYSIK. CHEM. (FRANKFURT) 57: 99		TRANS. FARADAY SOC. 64(3): 694–705 (1968) 152 Buxton, G.V.; Dainton, F.S. Radical and molecular yields in the y-radiolysis of water. V. The sodium hypobromite system. PROC. ROY. SOC. (LONDON) SER. A 304: 441–7 (1968) 153 Buxton, G.V.; Dainton, F.S. The radiolysis of aqueous solutions of oxybromine compounds; the spectra and reactions of BrO and BrO ₂ . PROC. ROY. SOC. (LONDON) SER. A 304: 427–39 (1968)		
68-0006		68-0061	68-0152	68-0172 68-0205	68-0238
			51		

Michael, B.D.; Hart, E.J. The rate constants of hydrated electron, hydrogen atom, and	hydroxyl radical reactions with benzene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, and cyclohexene. J. PHYS. CHEM. 74(15): 2878-84 (1970) Balkas, T.I.; Fendler, J.H.; Schuler, R.H. Radiolysis of aqueous solutions of methyl chloride. The concentration dependence for scavenging electrons within spurs. J. PHYS. CHEM. 74(26): 4497-505 (1970)	Fielden, E.M.; Stevens, G.C. UNPUBLISHED DATA Badiello, R.; Fielden, E.M. Pulse radiolysis of selenium containing radioprotectors. I. Selenourea.	Pruetz, W.A.; Land, E.J. Chemiluminescent reactions after pulse radiolysis of aqueous solutions of acriffavin. Effects of halides and pseudo halides. J. PHYS. CHEM. 74(10): 2107-14 (1970)	Studies on the molecular hydrogen formation in the radiation chemistry of aqueous solutions.	J. PHYS. CHEM. 74(15): 2903-11 (1970) Barker, G.C.; Fowles, F.;Sammon, D.C.; Stringer, B. Pulse radiolytic induced transient electrical conductance in liquid solutions. Part 1. Technique and the radiolysis of water. TRANS. FARADAY SOC. 66(6): 1498-508 (1970)	Husain, A.; Ovadia, J.; Grossweiner, L.I. Pulse radiolysis of the eosin-human serum albumin complex. TRANS. FARADAY SOC. 66(6): 1472-84 (1970) Baxendale, J.H. The pulse radiolysis of coordination complexes in aqueous solution.	QUAD. RIC. SCI. 68: 43-61 (1970) Fendler, J.H.; Patterson, L.K. Micellar effects on the reactivity of the hydrated electron with benzene. J. PHYS. CHEM. 74(26): 4608-9 (1970) Getoff, N.; Schwoerer, F.	Pulsradiolytische Bestimmung von Geschwindigkeitskonstanten der Reaktionen einiger Amine mit OH und e.q. INTERN. J. RADIAT. PHYS. CHEM. 2(2): 81-9 (1970) Bullock, G.; Cooper, R. Reactions of anneons triffuoromethyl radicals.	TRANS. FARADAY SOC. 66(572): 2055-64 (1970) Ebert, M.; Simic, M. UNPUBLISHED DATA Fel', N.S. Determination of the rate constant of the reaction of e _a with an acceptor in neutral water by a pulsed method. HIGH ENERGY CHEM. 4(2): 155-6 (1970) (translated from KHIM. VYS. ENERG.)
70-0211	70-0225	70-0226	70-0241	7470-07	70-0243	70-0253	70-0271	70-0407	70-0411
6 Zimbrick, J.D.; Ward, J.F.; Myers, L.S.Jr. Studies on the chemical basis of cellular radiosensitization by		6 Cetoff, N.; Schwoerer, F. Pulse radiolysis of pyrrolidine. RADIATION RES. 41: 1-14 (1970) 4 Seddon, W.A.; Young, M.J.				TRANS. FARADAY SOC. 66: 142-62 (1970) 6 Hentz, R.R.; Knight, R.J. γ Radiolysis of liquids at high pressures. VIII. Primary yields at 8.7 kbar and reactions of the hydrated electron with H ₂ O and H ₂ O *.			
69-0826	69-3039	70-0006	70-0015	70-0034	70-0052	70-0056	70-0094	70-0107	70-0197

Announcement of New Publications on Standard Reference Data

Superintendent of Documents. Government Printing Office, Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series - National Bureau of Standards.

Name			
Company			
Address			
City	State	Zip Code	

(Notification Key N337)

Publications in the National Standard Reference Data Series National Bureau of Standards

You may use this listing as your order form by checking the proper box of the publication(s) you desire or by providing the full identification of the publication you wish to purchase. The full letter symbols with each publication number and full title of the publication and author must be given in your order, e.g. NSRDS-NBS-21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O'Neal.

Pay for publications by check, money order, or Superintendent of Documents coupons or deposit account. Make checks and money orders payable to Superintendent of Documents. Foreign remittances should be

- □ NSRDS-NBS 1, National Standard Reference
 Data System—Plan of Operation, by E. L.
 Brady and M. B. Wallenstein, 1964 (15 cents), SD
 Catalog No. C13.48:1.
- □ NSRDS-NBS 2, Thermal Properties of Aqueous Uni-univalent Electrolytes, by V. B. Parker, 1965 (45 cents), SD Catalog No. C13.48:2.
- □ NSRDS-NBS 3, Sec. 1, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si II, Si III, Si IV, by C. E. Moore, 1965 (35 cents), SD Catalog No. C13.48:3/Sec.1.
- □ NSRDS-NBS 3, Sec. 2, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si I, by C. E. Moore, 1967 (20 cents), SD Catalog No. C13.48:3/Sec.2.
- □ NSRDS-NBS 3, Sec. 3, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, C I, C II, C III, C IV, C V, C VI, by C. E. Moore, 1970 (\$1), SD Catalog No. C13.48:3/Sec.3.
- ☐ NSRDS-NBS 3, Sec. 4, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Nav, Nav, Navi, Navi, by

made either by international money order or draft on an American bank. Postage stamps are not acceptable.

No charge is made for postage to destinations in the United States and possessions, Canada, Mexico, and certain Central and South American countries. To other countries, payments for documents must cover postage. Therefore, one-fourth of the price of the publication should be added for postage.

Send your order together with remittance to Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

- C. E. Moore, 1971 (55 cents), SD Catalog No. C13.48:3/Sec.4.
- □ NSRDS-NBS 3, Sec. 6, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, HI, D, T, by C. E. Moore, 1971 (In press), SD Catalog No. C13.48:3/Sec. 6.
- □ NSRDS-NBS 4, Atomic Transition Probabilities, Vol. I, Hydrogen Through Neon, by W. L. Wiese, M. W. Smith, and B. M. Glennon, 1966 (\$2.50), SD Catalog No. C13.48:4/Vol. I.
- □ NSRDS-NBS 5, The Band Spectrum of Carbon Monoxide, by P. H. Krupenie, 1966 (70 cents), SD Catalog No. C13.48:5.
- □ NSRDS-NBS 6, Tables of Molecular Vibrational Frequencies, Part 1, by T. Shimanouchi, 1967 (40 cents), SD Catalog No. C13.48:6/Pt.1. Superseded by NSRDS-NBS 39.
- □ NSRDS-NBS 7, High Temperature Properties and Decomposition of Inorganic Salts, Part 1. Sulfates, by K. H. Stern and E. L. Weise, 1966 (35 cents), SD Catalog No. C13.48:7/Pt.1.
- □ NSRDS-NBS 8, Thermal Conductivity of Selected Materials, by R. W. Powell, C. Y. Ho,

and P. E. Liley, 1966 (\$3). PB189698*	Johnston, 1968 (45 cents), SD Catalog No.
□ NSRDS-NBS 9, Tables of Bimolecular Gas	C13.48:20.
Reactions, by A. F. Trotman-Dickenson and	□ NSRDS-NBS 21, Kinetic Data on Gas Phase
G. S. Milne, 1967 (\$2), SD Catalog No. C13.48:9.	Unimolecular Reactions, by S. W. Benson
□ NSRDS-NBS 10, Selected Values of Electric	and H. E. O'Neal, 1970 (\$7), SD Catalog No.
Dipole Moments for Molecules in the Gas	C13.48:21.
Phase, by R. D. Nelson, Jr., D. R. Lide, Jr., and	□ NSRDS-NBS 22, Atomic Transition Proba-
A. A. Maryott, 1967 (40 cents), SD Catalog No.	bilities, Vol. II, Sodium Through Calcium,
C13.48:10.	A Critical Data Compilation, by W. L. Wiese,
□ NSRDS-NBS 11, Tables of Molecular Vibra-	M. W. Smith, and B. M. Miles, 1969 (\$4.50), SD
tional Frequencies, Part 2, by T.	Catalog No. C13.48:22/Vol.II.
Shimanouchi, 1967 (30 cents), SD Catalog No.	☐ NSRDS-NBS 23, Partial Grotrian Diagrams
C13.48:11/Pt.2. Superseded by NSRDS-NBS 39.	of Astrophysical Interest, by C. E. Moore and
□ NSRDS-NBS 12, Tables for the Rigid Asym-	P. W. Merrill, 1968 (55 cents), SD Catalog No.
metric Rotor: Transformation Coefficients	C13.48:23.
from Symmetric to Asymmetric Bases and	□ NSRDS-NBS 24, Theoretical Mean Activity
Expectation Values of P_z^2 , P_z^4 , and P_z^6 , by	Coefficients of Strong Electrolytes in Aque-
R. H. Schwendeman, 1968 (60 cents), SD Cata-	ous Solutions from 0 to 100 °C, by Walter J.
log No. C13.48:12.	Hamer, 1968 (\$4.25), SD Catalog No. C13.48:24.
☐ NSRDS-NBS 13, Hydrogenation of Ethylene	☐ NSRDS-NBS 25, Electron Impact Excitation
on Metallic Catalysts, by J. Horiuti and K.	of Atoms, by B. L. Moiseiwitsch and S. J. Smith
Miyahara, 1968 (\$1), SD Catalog No. C13.48:13.	1968 (\$2), SD Catalog No. C13.48:25.
☐ NSRDS-NBS 14, X-Ray Wavelengths and X-	☐ NSRDS-NBS 26, Ionization Potentials, Ap
Ray Atomic Energy Levels, by J. A. Bearden,	pearance Potentials, and Heats of Forma-
1967 (40 cents), SD Catalog No. C13.48:14.	tion of Gaseous Positive Ions, by J. L
□ NSRDS-NBS 15, Molten Salts: Vol. 1, Electri-	Franklin, J. G. Dillard, H. M. Rosenstock, J. T
cal Conductance, Density, and Viscosity	Herron, K. Draxl, and F. H. Field, 1969 (\$4), SD
Data, by G. J. Janz, F. W. Dampier, G. R. Laksh-	Catalog No. C13.48:26.
minarayanan, P. K. Lorenz, and R. P. T. Tom-	☐ NSRDS-NBS 27, Thermodynamic Properties
kins, 1968 (\$3), SD Catalog No. C13.48:15/Vol.1.	of Argon from the Triple Point to 300 K at
□ NSRDS-NBS 16, Thermal Conductivity of	Pressures to 1000 Atmospheres, by A. L
Selected Materials, Part 2, by C. Y. Ho, R. W.	Gosman, R. D. McCarty, and J. G. Hust, 1969
Powell, and P. E. Liley, 1968 (\$2), SD Catalog No.	(\$1.25), SD Catalog No. C13.48:27.
C13.48:16/Pt.2.	□ NSRDS-NBS 28, Molten Salts: Vol. 2, Section
☐ NSRDS-NBS 17, Tables of Molecular Vibra-	1. Electrochemistry of Molten Salts: Gibbs
tional Frequencies, Part 3, by T.	Free Energies and Excess Free Energies
Shimanouchi, 1968 (30 cents), SD Catalog No.	from Equilibrium-Type Cells, by G. J. Janz
C13.48:17/Pt.3. Superseded by NSRDS-NBS 39.	and C. G. M. Dijkhuis; Section 2. Surface Ten-
☐ NSRDS-NBS 18, Critical Analysis of the Heat-	sion Data, by G. J. Janz, G. R. Laksh
Capacity Data of the Literature and Evalua-	minarayanan, R. P. T. Tomkins, and J. Wong
tion of Thermodynamic Properties of	1969 (\$2.75), SD Catalog No. C13.48:28/Vol.2.
Copper, Silver, and Gold from 0 to 300 K,	□ NSRDS-NBS 29, Photon Cross Sections, At-
by G. T. Furukawa, W. G. Saba, and M. L. Reilly,	tenuation Coefficients, and Energy Absorp-
1968 (40 cents), SD Catalog No. C13.48:18.	tion Coefficients from 10 keV to 100 GeV,
□ NSRDS-NBS 19, Thermodynamic Properties	by J. H. Hubbell, 1969 (75 cents), SD Catalog No.
of Ammonia as an Ideal Gas, by L. Haar, 1968	C13.48:29.
(20 cents), SD Catalog No. C13.48:19.	□ NSRDS-NBS 30, High Temperature Proper-
□ NSRDS-NBS 20, Gas Phase Reaction	ties and Decomposition of Inorganic Salts,
Kinetics of Neutral Oxygen Species, by H. S.	Part 2. Carbonates, by K. H. Stern and E. L.
	Weise, 1969 (45 cents), SD Catalog No.
*Available from National Technical Information Service, Spring-	C13.48:30/Pt.2.
field, Virginia 22151.	☐ NSRDS-NBS 31, Bond Dissociation Energies

□ NSRDS-NBS 38, Critical Review of Ulin Simple Molecules, by B. deB. Darwent, 1970 (55 cents), SD Catalog No. C13.48:31. traviolet Photoabsorption Cross Sections ☐ NSRDS-NBS 32, Phase Behavior in Binary Molecules of Astrophysical and Multicomponent Systems at Elevated Aeronomic Interest, by R. D. Hudson, 1971 Pressures: n-Pentane and Methane-n-Pen-(\$1), SD Catalog No. C13.48:38. ☐ NSRDS-NBS 39, Tables of Molecular Vibratane, by V. M. Berry and B. H. Sage, 1970 (70 tional Frequencies, Consolidated Tables, cents), SD Catalog No. C13.48:32. ☐ NSRDS-NBS 33, Electrolytic Conductance by T. Shimanouchi, 1972 (In press), SD Catalog and the Conductances of the Halogen Acids No. C13.48:39. in Water, by W. J. Hamer and H. J. DeWane, ☐ NSRDS-NBS 40, A Multiplet Table of Astro-1970 (50 cents), SD Catalog No. C13.48:33. physical Interest (Reprint of 1945 Edition), by NSRDS-NBS 34, Ionization Potentials and C. E. Moore, 1972 (\$2), SD Catalog No. C13.48:40. Limits Derived from □ NSRDS-NBS 41, Crystal Structure Trans-Ionization Analyses of Optical Spectra, by C. E. Moore, formations in Binary Halides, by C. N. R. Rao, 1972 (In press), SD Catalog No. C13.48:41. 1970 (75 cents), SD Catalog No. C13.48:34. ☐ NSRDS-NBS 35, Atomic Energy Levels as ☐ NSRDS-NBS 42, Selected Specific Rates of Derived from the Analyses of Optical Spec-Reactions of the Solvated Electron in tra, Vol. I, ¹H to ²³V; Vol. II, ²⁴Cr to ⁴¹Nb; Alcohols, by E. Watson, Jr., and S. Roy, 1972 Vol. III, 42Mo to 57La, 72Hf to 89Ac, by C. E. (In press), SD Catalog No. C13.48:42. Moore, 1971 (Vol. I, \$5; Vol. II, \$4.25; Vol. III, □ NSRDS-NBS 43, Selected Specific Rates of \$4.50), SD Catalog No. C13.48:35/Vols. I, II, Reactions of Transients from Water in and III. Aqueous Solution, by M. Anbar, M. Bambenek, □ NSRDS-NBS 36, Critical Micelle Concentraand A. B. Ross, 1972 (In press), SD Catalog No. tions of Aqueous Surfactant Systems, by P. C13.48:43. Mukerjee and K. J. Mysels, 1971 (\$3.75), SD Catalog No. C13.48:36. □ NSRDS-NBS 37, JANAF Thermochemical Tables, 2d Edition, by D. R. Stull, H. Prophet,

et al., 1971 (\$9.75), SD Catalog No. C13.48:37.

ORM NBS-114A (1-71)	1. PUBLICATION OR REPORT NO.	2. Gov't Accession	13 Pacinica	t's Accession No.	
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	NSRDS-NBS-43	No.	J. Recipien	ts accession No.	
4. TITLE AND SUBTITLE			5. Publication Date May 1973		
Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution. I. Hydrated Electron				g Organization Code	
7. AUTHOR(S) Michael Anbar, Mark Bambenek and Alberta B. Ross				8. Performing Organization	
9. PERFORMING ORGANIZATION NAME AND ADDRESS			10. Project.	Task/Work Unit No.	
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234				11. Contract/Grant No.	
2. Sponsoring Organization Na	me and Address		13. Type of	Report & Period	
Atomic Energy Commission and National Bureau of Standards			NA		
			14. Sponsor	ing Agency Code	
5. SUPPLEMENTARY NOTES					
TOTAL SEMENTIAL HOLES					
 ABSTRACT (A 200-word or bibliography or literature su 	less factual summary of most significant	information. If docume	nt includes a	significant	
photolysis and frincluded.	rom steady-state radiolysis	by competition	kinetics .	are also	
7. KEY WORDS (Alphabetical Aqueous solution radiation chemis	order, separated by semicolons); chemical kinetics; data co	ompilation; hydra	ated elec	tron;	
18. AVAILABILITY STATEME	NT	19. SECURIT	Y CLASS	21. NO. OF PAGES	
IVV .		(THIS RE	PORT)	67	
XX UNLIMITED.		UNCL AS	SIFIED		
FOR OFFICIAL D	ISTRIBUTION. DO NOT RELEASE	20. SECURIT (THIS PA	Y CLASS GE)	22. Price 90 cents	
		TINGL 10	CIPIPD	domestic	

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued.

Published in two sections, available separately:

Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a vear. Annual subscription: Domestic. \$17.00; Foreign, \$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$9.00; Foreign, \$11.25.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, thysicists, research managers, product-development managers, and company executives. Includes listing of all NBS papers as issued. Annual subscription: Domestic, \$6.50; Foreign, \$8.25.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other-agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

'ryogenic Data Center Current Awareness Service Publications and Reports of Interest in Cryogenics'.

A i rature survey issued weekly. Annual subscription: Domestic, \$20.00; foreign, \$25.00.

Liquefied Natural Gas. A literature survey issued quarterly Annual subscription: \$20.00.

Superconducting Devices and Materials. A literature survey issued quarterly Annual subscription: \$20.00. Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department of Commerce, National Technical Information Service, Springfield, Va. 22151.

Electromagnetic Metrology Current Awareness Service Abstracts of Selected Articles on Measurement Techniques and Standards of Electromagnetic Quantities from D-C to Millimeter-Wave Frequencies . Issued monthly Annual subscription \$100.00 Special rates for multi-subscriptions. Send subscription order and remittance to the Electromagnetic Metrology Information Center, Electromagnetics Division, National Bureau of Standards, Boulder, Colo. 80302.

Order NBS publications except Bibliographic Subscription Services from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

U.S. DEPARTMENT OF COMMERCE

WM- 215

