DRM:IHF:JRD II-9

DEPARTMENT OF COMMERCE
BUREAU OF STAIDARDS WASHINGTON,

STANDARD THI CKNESSES OF SHEET METAL

CONTENTS

I. Introduction Page
II. Iron and steel sneet and plate 2

1. United States Stiandard Gage 2
A. Act establisning U.S. Standard Gage 3
B. Approximate thicknesses of steel plates and bneets 4
C. Permissiole variations in weight and thicknees 6
2. Galvinized sneet gage 8
III. Copper, brass ard aluminum sneets 9
3. American Wire Gage 9
A. Approximate weignts per suuare foot 9
B. Permissible variations in weignt and thickness 10
IV. Tin and terne plate 14
4. Tin plate gage 14
V. Einc 16
5. Sneet zino gage 16
VI. Monel metal 17
VII. Foreign sheet and plate gages 18
6. Birmingiam Gage, B. G., (British Iegal standard) 18
7. Paris or French Gage 18

I. INTRODUCTION

Common or stock sizes of metal sheets are sometimes based on definite tnicknesses of the sheet, und frecuently on definite weignts per unit area. In some oases the same kina and grade of sheet metal is ande to more than one list of stock sizes or sheet metal gage:. In tais country the same gage is selciom used for a variety of metals fowever. Tais circutar is intended to furnisn information as to the usual practice of finericin mandeacturers ith regara to stock thicknesses of sheets of comion metuls or alloys. This information hus hitnerto been sozttered, und similar compilations previously made are largely collections of series of gage sizes only, tnose dipplyin to wires being oiven the most attention. This circuliar also contains illavaindole information with regard to manfacturing toleiances adoptel by technical societies, manufacturers assciations, or used by leading manufacturers. There is apparently considerable need for unificarion of practice in standard sizes of metal sneets.

The principal gages For cheet metal in use in the United States are: The Unitea States Stadard Gage for Sneet and Plate Iron and Steel, the Galvanized Sneet Gage, tae Anerican Wire Gage (Brown and. Sharpe), the Tin Plate Gige, and the Sheet Zinc Gige. The information and deta inclued in tas circular pertain to tne application of these guges to varicus metals. Trere are ulso included nerein the pincipal foreign gages for sieet retal, namely the Birmingham Gage, $\mathrm{B}_{\mathrm{G}} \mathrm{G}_{*}$, and the Pafis or French Gage.

In the base of thickness gages, the weints per suuare foot given in the tables are based on specific gravities most widely accepted as being correct for rolled sheets at $20^{\circ} \mathrm{C}$ or $68^{\circ} \mathrm{F}$.

II. IRON AND STEEL SHEFT AND PLATE

1. Tae United States Standard Gage for Sheet and Plate Iron and Steel

The United States Standerd Gage for Sneet and Plate Iron and Steel is the legal standard used in determining duties and taxes levied by the United States, and is the reco filized comercial standard for all uncoated sheet and plate iron inj steel. It is a weight gage, having been based upon rei gits jer syuare foot in ounces. The provisions of the Act of Congress, diproved Darch j) 1893, (ay Stut. L., 746), establishing tris giage are as follows:
A. Aï ACT ESTAELISHING A STANDARD GAGE FOR SHEET AND PLATE IRON ANT STEEL

Be it enacted by the Senate and House of Representative of the United States of Ameriva in Congress assernbled, That for the purpose of securing uniformity, the follo:ing is establiched as tre only standard gage for sheet and plate iron and stegl in the United States of America, namely:-

And on and after Juiy first, eighteen hundred and ninety-trree, the same and no otrier shall shail De used in determining duties and taxes levied by the United States of America on sheet and ilate ircn and steel. But this act shall not be construed to increase duties upon any articles which may be imported.

Sec. 2. Thut ine Secretary of the Treasury is authorized 动d required to prepare suit-- vie standards in acsordince herewith.

Sec. 3. That in the practical use and application of the standard gage hereby established a variation of tiro and one-half per cent either way may be allowed.

Approved, llarch 3, 1893.
B. Approximate Tricknesses of Steel Piates and Sneets

The thicknesses given in the liw ds approuriate equivilents were basea upon the density or wrought iron of 0.2778 pounds per cubic inch, or 480 Ounus per cubic foot. Since tine U.B. Standard Gage was established, wrought iron has been almost entirely superseded by steel, for sheets. Tre density of steel is generally agreed oy various authorities to be 0.6533 pounus per cubic inch cr 489.6 ounds per cubic foot. The aproximate thicknesses of both wrought iron and steel sheets are given in Table l, and are based upon the above values, but attention is iirected to the fact tnat the density of commercial not-rolied steel varies consiverably and is usually less than 0.2833 pounds per cubic inci, the density of forged steel. Cold rolled steel sheets are said to nave a greater density than 0.2833 ; however, $t 0$ samples of full pickled full cold-rolled sheets showed an iverage density of 0.2833 pounds per cubic inch. Until a more representative value for hot-rolled sheets can be agreed upon, it is thought advisable to continue the use of the value 0.2830 pounds per cubic inch.

The action of the rolis on hot netal tends to decrease the density of the material, and of two sneets of different thicknesses rolled from the same material, the thicker sheet as always the denser. This effect is not easily explained. A similar reduction in density has been noted in hard drawn steel wire. In this case the reduction has been shown to be smaller, the greater the carbon cortent of tine sample. (Ref. Uner den Einfluss uer Kecnanischen Formgebung aif die Eigensiaften von Eisen and Stanl, by P. Goerens, Stanl und Eisen, Tarch 13, 1912, Vol. 33, No. 11, pases 438-444). Reductions in density as follows were found by Goerens:

In Table 1 the dpproximate thicknesses and weights are given, for practical use, only to the number of decimal places wirranted by the preaision of measurement ordinarily attainable, and the usual variation in density. Also, the sizes dizove No. 38 ure included. wich have become standardised by oustom, but were not included in the Congressional enactment.

Table 1. - United States Standard Gage for Sheet and Plate
Iron and Steel, and Extension

Number of gage	$\begin{gathered} \text { Approximate } \\ \text { thickness } \\ \text { in frac- } \\ \text { tions of an } \\ \text { inch } \end{gathered}$	1-Mought Iron		Steel		Weight per square foot in ounoes avoirdupois	Weignt per square foot in pounds avoitaupois	Iron and Steel		Weight per square meter in pounds avoirdupois
		Approsinatu tnickness in decimal purts of in inch	Appro imate thickness in Millimeters	Approximate thickness in decirncil parts of an inch	Approximate thickness in millimeters			Neight per square foot in kilograms	Weight per square meter in kilograms	
0000000	1/2	0.500	12.70	0.490	12.45	320 300	20.00	9.072	97.65	215.3
000000	15/32	. 469	11.91	.460 .429	11.67 10.90	280	18.75 17.50	8.505 7.983	81.55	201.8
00000	7/16	. 438	11.11	.429 .300	10.12	280	17.50 16.25	7.983	85.44	188.4
0000	13/32	. 406	10.32	.320 .368	9. 34	240	16.25 15.00	7.371	79.35	174.9
000	5/8	. 375	9.52 8.75	. 368	8.56		15.00 13.75	6.804	73.24	161.5
00	11/32	. 344	8.75	. 307	7.78	200	13.75	6.237	67.13	148.0
0	5/16	. 312	7.94	. 306	7.00	180	12.50	5.670	61.03	134.6
1	9/32	. 2912	7.14	58	6. 62	170	11.25	5.103	54.93	121.1
2	17/64	. 2656	6.7.75	- 2604	5. -. 23	160	10.62	4.819	51.88	114.4
3	1/4	. 2500	6.35	. 2451	¢. 5.84	150	10.00	4.536	48.82	107.6
4	15/64	. 2344	5.95	, 2298	5. $=5$	140	9.375	4. 252	45.77	100.9
5	7/32	. 2188	5.56	45	5.06	140	8.750	3.969	42.72	94.18
6	13/64	. 2031	5.16	. 1993	4.67	120	8.125	3.685	39.67	87.45
7	3/16	. 1575	4.76	. 1885	4.28	110	7.500	3.402	36.62	80.72
8	11/64	. 1719	4.37	. 1685	4.28 3.89	110	6.875	3.118	33.57	74.00
9	5/32	. 1562	3.97	1532	3.50	190	6.250	2.855	30.52	67.27
10	9/64	. 1406	3.57	. 12726	3.11	80	5.625	2.552	27.46	60.55
11	1/8	. 1250	3.18	-1226	2. 724	80	5.000	2. 268	24.41	53.82
12	7/64	. 1094	2.778	1072	2.335	60	4.375	1.984	21.36	47.09
13	3/32	. 0938	2.381	. 0919	1.946	50	3.750	1.701	18.31	40.36
14	5/64	. 0781	1.984	. 0766	1.751	45	3.125	1.417	15.26	35.64
15	9/128	. 0703	1.786	. 065 y	1.557	40	2.812	1.276	13.73	30.27
18	1/16	. 0625	1. 588	- 1	1.401	36	2.500	1.134	12. 21	26. 91
17	9/160	. 0562	1.429	. 0452	1.245	32	2.250	1.021	10.99	24.82
18	1/20	. 0500	1×270	. 0498	1.090	28	2.000	0.9072	$9.76{ }^{\circ}$	21.53
19	7/160	. 0438	1.111	. 0268	0.934	24	1.750	. 7988	8.544	18.84
20	3/80	. 0375	0.950	. 05.3	. 856	22	1.500	. 6804	7.324	16.15
22	$11 / 50$	-034	. 794	. 0306	. 778	20	1.375	- 6237	6.713	14.80
			. 714	. 0276	. 700	18	1.125	. 5670	6.103	13.46
	1/40	. 02050	. 635	. 0245	-620	16	1.000	. 5103	5.495	12.11
25	$7 / 320$. 02.19	. 556	. 0214	. 467	14	0.8750	- 3069	4.882	10.76
26	$3 / 160$. 0188	-476	. 0184	. 428	12.	. 7500	. 3402	3.562	8.42
27	11/640	.0173	- 0 ?	. 0150	. 389	11	- 5875	. 3119	3.357	7.40
28	1/64	. 0156	. 397	. 0138	. 350	10	- 0250	. 2835	3.052	6.75
49	8/640	. 0141	. 357	. 0123	. 317.	9	- 5625	. 2551	2.746	6.05
50	1/80	. 0123	. 218	. 0157	, ${ }^{\text {2 }}$	7	- 5000	- 2688	2. 441	5.58
31	7/640	. 0109	-. 278	. 0100	. 253		. 4375	. 1984	2.136	4.71
32	13/1280	. 010	- 438	.0092	- 20	$6-1 / 2$. 4062	. 1843	1.983	4.37
53	$3 / 520$	- 0094	. H . 288	. 0084	. 214		. 3750	. 1701	1.831	4.04
34	11/1280	. 0086	. 118	. 0077	. 194	$5-1 / 2$	- 3438	. 1559	1.678	3.70
35	5/640	. 0078	. 198	. 0069	. 175	5	. 3125	. 1417	1.526	3.36
36 37	9/1280	. 0076	.169	. 0065	. 165	$4-1 / 2$. 2812	. 1276	1.373	3.03
37 38	-17/2560	. .0062	. 159	. 0062	. 156	$4-1 / 4$. 2656	. 1205	1.297	2.87
38 39	- $1 / 12560$. .0059	. 149	.0057	- 146		- 2500	- 1134	1.221	2.69
40	$7 / 1280$. $00-5$. 139	. 0054	.136	3-1/2	-2344	-1063	1.144	2.52
41	27/5120	. 0055	. 134	. .0050	. 126	3-3/8	. 2109	. 0992	1.068	2.35
+ 42	13/5560	. .0051	. 129	. .0048	- 12 a	$3-1 / 4$. 2031	. 0957	1.030 0.9917	2.27
($\begin{aligned} & 43 \\ & 44\end{aligned}$	25/5120	.0049 .0047	.124	. 0046	. 117	$3-1 / 8$. 1953	. 0886	0.9917 .9536	2.19
4	$3 / 040$					3	. 1875	. 0850	. 9155	2.102

C. Permissible Variations in Weight and Thickness

Manufacturers have found considerable difficuity in keeping within the tolerance of plus or minus $2-1 / 2$ per cent specified in the law establishing the U.S. Standard Gage for Sheet and PJate Iron and Steel, particularly on the heavier sheets. As the lav does not make this tolerance mandatory for commercial purposer the Association of American Steel Manufacturers have adopted the following specifications regarding permissible variations in weight anc gà ge:
(a) The sectional area or weight of each structural shape, and . of euch rolled-edge plate up to and including 36 in in width, shall not vary more than 2.5 per cent from theoretical or specified amounts.
(b) The thickness or weight of each universal plate over 36 in. in widh, and of each sneared plate, shall conform to the schedules of permissible variations for sneared plates, Ranufacturers.' Standard Practice, giver in Tables 2 and 3 . One cuvic incn of rolled steel is assumed to weich 0.2833 lb .
(c) When ordered to WEIGET per square foot, the weight of eacn lot in each snipment shill not very from the weight ordered more than the amount given in Table 2.
(d) When ordered to THICKNESS, the thickness of each plate shall not vary more than 0.01 in. under that ordered. The overweight of each lot in each shiprent shall not exceed the amount given in Table 3.

Tables of permissible rolling variations in weight and thickness of sheared plates were adopted by the Association of American Steel Manufadurers in 1896. Tnese tubles were revised from time to time the latest revision as to percentages of over-ineight being made in 1916. The 1916 revision was adopted by the American Society for Testing laterials, and the tubles appear in the following of its specifications:

Standard Seecifications for Structural Steel for Briages, 1916;

$" 11$	$"$	$" 1$
$" 11$	$"$	$" 1$
$" 11$	$" 1$	
$" 11$	$" 1$	$" 1$
$"$	$" 1$	$" 1$

Nickel Steel, 1916;
Steel for Buildings, 1916; " " Locomotives, 1916;
" " Cars, 1916;
" " Snips, 1916;
" " " " Boiler and Firebox Steel

Tentative
1

11

II
for Locomotives (rable 3 only), 1918; Steal. Plates for Forge Felaing, 192l:
" Boiler and Firebox Steel for Stationary Service (Tabie 3 oniy), 1918.

In 1921 and 1922, the Association of Amerian Secel Finuficturers adopted the following rodifications dind adaitions to the tables. Which have not been aciojeu by the Anerican Society for Testing Materials, although some of them are under consideration:
(Turn to page 8).

Tavle 2. Permissiole Variations of Dlates Oruered to rieight

I.le tem: "Iot" wallien to wilis table eans ail of tne hlates of eacn かrou. iiut. ara orouj tnickness.
（e）Tre rewii Ω_{E} for the lunt mith groug of tacles á and z̈ is changed to read－＂is2 incree to 144 incree exciucive＂．
（f）Taslec 2 and 3 zre to diply to rectanizuar platea only．
（e）Taclea 2 is rot to be used ．ner a Minimum tricknese et edece ie re．zire．1．

2. Gisloanzed Siseet lazae

The Ginymized Bneet Gabe，iven ir Twjle 4，io bansa unon the

 ád siant of coztine．Tne む玉 ニーI／

III. COPPER, BRASS, AND AJTHINUN SHEETS

1. American fire Gage

Tne American Wire Gzige is extensively used in the United States for nearly all non-ferrous sieets, particularly copper, brass, aluminum and nickel-silver (German silver) sheets, as well as for wire of the sume materiais. It was devised by J, R. Brown and Lucian Sharpe, founders of the Brown and Snarpe Mantacturing Conpany, in 1856 and was dapted by the Asscoiation of Brass Manufacturers in February 1857, eight of the leading brass manufacturers signing the resolutions. Its gage numbers, like those of the United States Standard Gage and many other gages are retrogressive, d larger number denoting a smaller size. The gige is based on a simple mathematical law of geometricai progression, which may be expressed in eitner of three following manners:-
(a) The ratio of any size to the neyt smaller is a constant number, namely the 39 th root of $\frac{460}{.005}=1.1229322$.
(b) The differerce bet:zeen any two successive sizes is a constant percentage of the smaller of the two sizes, namely. laz9322.
(c) The difference between any t:ro successive sizes is a constant ratio times the next sraller difference between two surcessive sizes, namely 1.1229222.

When the gage was developed the size No. 0000 Was defined as 0.4600 , and 0 F No. 36 as 0.006 inch, and it was specified that there should be 38 sizes between the tion wich should advance by geometrical progression. The sixth power of the ratio l. 1229322 is 6.0050, so that the thickness and consequently the weight per unit area of a sheet six timesiheavier, is approximately twice as great.
A. Approximate Veights per Square Foot,

In Table 5, the size numbers and thiokness of the Ameriodn Tire Guge are oiven, togetaer with the approxinate weights per square foot of rolled copper, brass and aluminum sheets. The rei hts of copper sheets given in this tible are basea on the specific gravity 5.89 grams per cubic centimeter, or 355 panus per civic foct, since that is the value adopted as standard by the American Institute of Electifcil. Engineers and by the Internationai Electro-Technioal Comission; also ackop tee by the Anericun Society for Testing Materials for hara aretin copper wire and annealed ooper. The weignts given in the twole are, therefore, for cold rolled and annealed copper sneets. Hot rolled copper plates having a taickness of
 gravity being 8.94 g ver co. or 558 lbs, per cubic foot, ecocrding to A.S.T.M. Standua Sjecificuticns for Locomotive Fireboxes, 1918.

The weights of orass sheets are bused on the specific eravity 8.56 grams per cubic centimeter, or 554 pouncis per clivic ioot, rinicn is the value for rollea yellou orass giver in the Smiunsonian TEbles, 1920. The veignts of aluminum sheets are based on tire sjevific gravity 2.70 grams per cubic centimeter, or 158.6 pounds per cubic foot.

Copper sheets are frequently made in definite weignts per suuare foot. This ractice is quite common in tre neavier flat sheets. Toble 6 snows the corresponding approximate thicknesses, wich are based on d aensity of 8.89 grams per cubic centimeter or $55 j \mathrm{ibs}$. per cuioic foot.

Coper sheets can ilso be ootained in fractional inch sizes varying by sixtecnths of an inch from $1 / 16$ to 2 inches. Also the Birmingnam or Stubs wire gage has oeen usea in designating sizes of copper sneets.
B. Permissible Variations in Thickness and Weight

Tne uvailable data as to tolerancesaplied to copper, brass, und aluminum sneets are given in Tables 7, 8 and 9. These tables were taken from speaifications of the American Society for Testing liaterial, and of the Aluninum Company of America.

Table 5. - American Wire Gage, - Weights of Copper, Brass and Aluminun Sheets and Plates

1	2	3	4	5	6
$\begin{gathered} \text { Number } \\ \text { of } \end{gathered}$	Thickness in decimal parts of	Thickness in	Approximate weight per square foot in pouncis avoirdupois		
gage	an inch	millimeters	Copper	Brass	Aluminum
0000	0.4600	11.68	21.27	20.48	6.461
000	. 4096	10.40	18.95	18.24	5.754
00	. 3648	9.266	16.87	16.25	5.124
0	. 3248	8.252	15.02	14.47	4.563
1	. 2893	7.348	13.38	12.88	4.064
2	. 2576	6.544	11.92	11.47	3.619
3	. 2294	5.827	10.61	10.22	3.223
4	. 2043	5.189	9.449	9.098	2.870
5	. 1819	4.621	3.415	8.102	2.556
6.	. 1620	4.115	7.493	7.2 .15	2.276
7	. 1443	3.665	6. $6^{\prime} 13$	6.425	2.027
8	. 1285	3.264	5.943	5.722	1.805
9	. 1144	2.905	5.292	5.096	1.607
10	. 1019	2.588	4.112	4.537	1.431
11	. 0907	2.305	4.197	4.041	1.275
12	. 0808	2.053	3.73%	3.599	1.135
13	. 0720	1.828	3.328	3.205	1.011
14	. 0641	1.628	2.964	2.854	0.9001
15	. 0571	1.450	2.639	2.541	. 8016
16	. 0508	1.291	2.350	2.263	. 7138
17	. 0453	1.150	2.093	2.015	. 635 ?
18	. 0403	1.024	1.864	1.795	. 5661
19	. 0359	0.9116	1.660	1.598	. 5041
20	. 0320	. 8113	1.478	1.423	. 4489
21	. 0285	. 72.30	1.316	1.267	. 3998
22	. 0253	. 6438	1. J.\%2	1.129	. 3560
23	. 0226	. 51733	1.044	1.005	. 3170
24	. 0201	. 5106	0.9296	0.8851	. 2823
25	. 0179	. 4547	. 8278	. 7971	. 2514
26	. 0159	. 4.049	. 7372	. 7098	. 2238
27	. 0142	. 3606	. 6565	. 6321	. 1994
28	. 0126	. 3211	. 5846	. 5629	. 1776
29	. 0113	. 2859	. 5206	. 501.3	. 1581
30	. 0100	. 2546	. 4636	. 4464	. 1408
31	. 00893	. 2268	. 4129	. 39 '76	. 1254
32	. 00795	. 2019	. 3677	. 3540	. 1117
33	. 00708	1798	. 3274	. 3153	. 09945
34	. 00630	. 1601	. 2916	. 8807	. 08855
35	. 00561	. 1426	. 2596	. 2500	. 07886
36	. 00500	. 1270	. 2312	. 2227	. 07023
37	. 00445	. 1131	. 3059	. 1983	. 06255
38	. 00396	. 1007	. 18.34	. 1766	. 05569
39	. 00353	. 0897	. 1633	. 1572	. 04360
40	. 0314	. 0799	1454	1400	. 04416

Table 6. - Copper Sheets Furnished in Weights per Square Foot.

1	2	1	2
Weight per square foot	Approximate thickness	Weight per square foot	Anproximate thickness
Ounces	Inch	Founds	inch
2	0.002^{7}	5	0.1081
4	. 0054	$51 / 2$. 1189
6	0081	6	1297
7	. 0095	6 1/2	. 1405
8	. 0108	7	. 1514
9	. 0122	$71 / 2$. 1622
10	. 0135	8	. 1730
11	. 1449	8 1/2	. 1838
12	. 0162	9	. 1946
13	.0176	9 1/2	. 2054
14	. 0189	10	. 2162
15	. 0203	11	. 2378
16	. 0216	12	. 2595
18	. 0243	13	. 2811
20	.0270	14	. 3027
24	. 0334	15	. 3243
26	. 0351	16	. 3460
28	. 0378		
32	.0432		
36	. 0486		
40	. 0541		
44	. 0595		
46	. 0622		
48	. 0649		
52	.0703		
56	. 0757		
64	. 0865		
72	.0973		
76	. 1027		

Table 7. - Permissible Overveights of Copper Plates for Locomotive Fireboxes, Ordered to Thickness.
Standard Specifications, American Society for Testing Materials, 1918

Ordered Thickness,	Weight, lb.per sq.ft.	Permissible Excess in Average Weights por Square Foot of Plates for Widths Given Expressed, in Percentages of Nominal Weights			
		$\begin{gathered} \text { Under } 75 \\ \text { in. } \end{gathered}$	$\begin{aligned} & 75 \text { to } 100 \\ & \text { in. excl. } \end{aligned}$	$\begin{aligned} & 100 \text { to } 115 \\ & \text { in, excl. } \end{aligned}$	$\begin{gathered} 115 \text { in. } 01 \\ \text { over } \end{gathered}$
Inches 5/ 16.	14.53	8	12	16	
3/8...	17.44	7	10	13	i7
$7 / 16$	20.34	6	8	10	13
1/2.	23.25	5	7	9	13
9/16	26.16	5	6.5	8.5	11
5/8.	29.06	5	6	8	10
Over5/8.		5	5	6.5	8

The thickness of each plate shall not vary more than 0.04 in. urdor that ordered.

Table 8. - Permissible Variations in Thickness, High Sheet Bras. Tentative Specifications, American Society for

Testing Materials, 1920

		Width, -in			
Thickness. American Wire Gage No.	Thickness,in.	$\begin{aligned} & \text { Up to } 5 \\ & \text { incl. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Over } 5 \\ & \text { to } 8 \text { incl. } \end{aligned}$	Over 8 to 11, incl.	$\begin{aligned} & \text { Over } 11+i \\ & 14, \text { incl. } \end{aligned}$
0000 to 0, incl.	0.4600 to 0.33548	± 0.0044	± 0.0048	± 0.0051	± 0.0055
Below 0 to 4, incl.	$0.3248 \sim 0.2043$	± 0.0039	± 0.0043	± 0.0046	± 0.0050
" 4 " 8, ${ }^{\text {n }}$	0.2643 " 0.1284	± 0.0034	± 0.0038	± 0.0041	± 0.0045
8 '14,	0.1284 " 0.0646	± 0.0029	± 0.0033	± 0.0036	± 0.0040
14 '18,	0.0640 " 0.0403	± 0.0025	± 0.0029	± 0.0033	± 0.0037
18 "24, "	0.0403 " 0.0201	± 0.0020.	± 0.0024	± 0.0028	± 0.0032
$26{ }^{6}$ "28,	$0.0201{ }^{\prime \prime} 0.0126$	± 0.0016	± 0.0020	± 0.0024	± 0.0028
28 "32,	0.0126 n 0.0079	± 0.0013	± 0.0017	± 0.0020	\pm
32 n 35,	0.0079 " 0.0056	± 0.0010	± 0.0014	± 0.0017 +0.0015	± 0.0022 ± 0.0019
35 "38,	0.0056 " 0.0039	± 0.0008	± 0.0012	± 0.0015	± 0.0019

The standard method of specifying thickness shall be in terms of the American Wire Gage (Brown and Sharpe). When the thickness is speolfied in either common or decimal fractions of an inon, the tolerances shall be those of the corresponding group of American Wire Gage sizes in this table.

Table 9. - Permissible Variations in Thickness of Aluminum Sheet

1	2	3	4	5
		Flat	heet	Coiled sheet
$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Thickness	A.S.T.M.Tentative Specifications. 181.9	$\begin{aligned} & \text { Aliminum Co. } \\ & \text { of America, } \\ & 1922 \end{aligned}$	Alurai mum Co. of Aizerica, 1922
	Inches	Inches	Inches	Inches
1/4 in. to 4	0.25 to 0.204z		± 0.010	
5 \% 9	.1819" .1144		$\pm .006$	
10 " 3	.1019" .0720	± 0.003	$\pm .003$	± 0.003
14 " 27	.0641" .0453	$\pm .003$	$\pm .0025$	$\pm .003$
18 " 21	.0403" .0285	$\pm .002$	$\pm .0025$	$\pm .002$
22 " 24	.0253" .0202	$\pm .002$	$\pm .002$	$\pm .002$
25 \& 26	.0179" .015	$\pm .002$	$\pm .0015$	$\pm .002$
27 \& 28	.0142" .0126		$\pm .0015$	$\pm .0015$
29 \& thinner	. 0113 \& less		$\pm .0015$	$\pm .001$

IV. TYN AND TERNE PLATE

1. Tin Plate Gage

Tin plates, which consist of soft sheet steel coated with tin and Terne plates in which the coating is approximately 25% tin and 75% lead, are measured in a unit of area known as the base box. This is an olc English unit amounting to 31.360 square inches and is indenenden'i of thicksess (which is always thown on the packing box). Tin plates are customarily rade in sizes of 10×14 inches and multiples thereof, the most commonly userd sizes being 14×20 and 20×28 inches. The base box corresponcs to 112 plates, 14×20 inches.

In Table 10 are given the essential dimensions and trade symbols of the Tin Plate Gage as published in the Reference Book of the American Sheet and rin Plate Company. This gage is established by long custom and the symbols noted in the table are inherited from the British industry. It should be borne in mind that the corrosion resisting qualities of both tin and terne plateo depend on the thickness of the coating rather than on the total thickness of the plate. tlin plate comes in a number of grades usually designated by "A", "AAA", "AAAA" and so forth, the greater the number of A's in the symol, the greater the coating. AAA tin plate has approximately 3 lbs of tinn coating per box. Terne plate used extensively as roofing tin comes in cozts of from 8 to 40 pounds per box.

Table 10. - Tin Plate Gage

Trade Sumion	$\begin{gathered} \text { Pounds } \\ \text { per } \\ \text { base box } \end{gathered}$	Pounds per square foot	*Apnroximate thickness
			Inches
55-pounds	55	0.253	0.0063
	60	. 276	. 0069
65- "	65	. 298	. $00 \% 5$
70-	70	. 321	. 0080
75- ${ }^{\text {² }}$	75	. 344	. 0086
80-	80	. 367	. 0092
85-"	85	. 390	. 0098
90-"	90	. 413	. 0103
95-"	95	. 436	. 0109
I C L	100	. 459	. 0115
I C	107	. 491	. 0123
112-pounds	112	. 514	. 0129
118-"	118	. 542	. 0135
I X L	128	. 588	. 014 ?
I X	135	. 620	. 0155
D C	139	. 638	. 0160
2 X L	148	. 680	. 0170
2 X	155	. 712	. 0178
3 X L	168	. 771	. 0193
3 X	175	. 804	. 0201
D X	180	. 827	. 0207
4 X L	188	. 863	. 0216
4 X	195	. 895	. 0224
5 X L	208	. 955	. 0239
D 2 X	210	. 964	. 0241
5 X	215	. 987	. 0247
6 X L	228	1.047	. 0262
6 X	235	1.079	. 0270
D 3 X	240	1.102	. 0275
7 XL	248	1.139	. 0285
7 X	255	1.171	. 0293
8 XL	268	1.231	. 0308
D 48	270	1.240	. 0310
8 X	275	1.263	. 0316

*Assuming that tin plate weighs 480 2bs. per cu. ft.

V. Zinc

1. Sneet Zinc Gage

The Sheet Zinc Gage, commonly used by manufacturers of zinc sheet in the United States, is given in Table A. The weights per square foot for the thicknesses given are based on a specific gravity of 7.19 grams per oubic centimeter or 448.9 pounds per cubic foot.

Table 11. - Sheet Zinc Gage

1	2	3
Gage No.	Thi okness	Wejght
	Inches	pounds
1	0.002	per ${ }_{0.07}$
2	. 004	. 15
3	. 006	. 22
4	. 008	. 30
5	. 010	. 37
6	. 012	. 45
7	. 014	. 52
8	. 016	. 60
9	. 018	. 67
10	. 020	. 75
11	. 024	. 90
12	. 028	2.05
13	. 032	1.20
14	. 036	1.35
15	. 040	1.50
16	. 045	1.68
17	. 050	I. 87
18	. 055	2.06
19	. 060	2.24
20	. 070	2.62
21	. 080	2.99
22	. 090	3.37
23	. 100	3.74
24	. 125	4.68
25	. 250	9.35
26	. 375	14.03
27	. 500	18.70
28	1.000	37.40

Monel metal is a non-corrodivle, natuial alloy, comarable with the better grades of steel in strength, tomenness and duetility. Its composition is aporeximaijely 6% nivkej, 28% conoen and 5% of other elements. Monel metal sheets are rol.jed. in thicknesses corresponding to the thickness sizes of the U.S. Standard Gage for sheet and Plate Iron and Steel. 'lhe ooszesponning weights per unit area are given in Table 12. Inasmuch as the U.S. shect metal gage is striotly a weight gage, this practice with regard to sizes of monel motal sheets represents a deviation from the standard practice. Monel metal sheets are usually used to replace sheet medal, or steel sheets coated with zinc, which come in sheet metal gage sizes. If monel mesal sheets were rolled to the same weight per unit area as the sheet metal gage, the resulving thicknesaes miliad be gidte difuexent from standard cteel shee thormenses, because of the large difference in dersity of the two metals. This is the reason given for the practice.

The tolerancen on thickness given in Table l2 ase the practice of the Internationa? Nickel Company, man rolled to weight, their tolerances correspond to shee: stoel practice.

Table 12.-Monel Motal Sheeis

1	2	3	4	- ${ }^{\text {a }}$	6
		hinickness		* Moxntipe\%	Quare 100 t
Number of gage	In fractions of an inch	$\begin{aligned} & \text { In decimal } \\ & \text { parts of } \\ & \text { an inch } \end{aligned}$	Tolerances	Ir curaces	In pounds
2	17-64	0.2656		$19 \Delta_{4}-1 / 2$	12.211
3	1-4	. 25	± 0.008	183	11. 4.93
4	15-64	. 2344	$\pm .008$	1\%1-3/4	10.774
5	7-32	. 2188	$\pm .007$	260-1/4	20.056
6	13-64	. 203	$\pm .007$	1.20-3/4	9.338
7	3-16	1375	$\pm .005$	3.37-1/2	8,619
8	11-61	. 1.71 .9	$\pm .004$	126	7.901
9	5-32	. 1.562	$\pm .004$	12.4-1/2	7.183
10	9-64	. 1405	$\pm .004$	$10 ?$	6.465
11	1-8	. 125	$\pm .003$	92-7:2	5.746
12	7-64	. 1004	$\pm .003$	80)-3.14	5.028
13	3-32	. 09.38	$\pm .003$	68-314	4.310
14	5-54:	. 01783	$\pm .003$	57-1/4	3.531
15	9-128	. 0703	$\pm .003$	51-1/2	3.232
16	1-16	. 0625	$\pm .002$	4.5-3/4	2.873
17	9-160	. 0562	$\pm .003$	4.1	2. 586
18	1-20	. 05	工.002	36-1/2	2.300
19	7-160	. 04.38	$\pm .002$	32	2.01.1
60	3-80	. 0.375	$\pm .001$	27-1/2	1. 724
21	11-320	.0344	$\pm .001$	25	1.580
22	1-32	. 03.3	$\pm .001$	22-3/4	1. 4.37
23	9-320	. 0281	$\pm .001$	20-1;2	1.29.3
24	1-40	. 025	$\pm .001$	28-1/4	1.140
25	7-320	. 0219	$\pm .001$	16	1.005
26	3-160	. 01.83	$\pm .001$	13-3/4	0.882
27	11-640	. 0172		123..1!2	. 7801
28	1-64.	. 0156		12-1:	. 7183

[^0]
VI. FOREIGN SHEET AND PLATE GAGES

1. Birmingham Gage, B.G. (British Legal Standard)

The Board of Trade, Standards Department, England, passed an Order in Council, on July 16, 1914, giving legal sanction to the Birmingham Gage, B.G., for iron and steel sheets, hoops, etc. The enumeration and sizes of the B.G. gage was first issued by the South Staffordshire Ironmaster's Association March 1, 1884, and came into more or less general use in the British sheet steel and hoop iron trade. By 1914 the B.G. series of sizes was recognized by most of the sheet steel rollers and galvanizers, and tin plate and hoop iron manufacturers in Ergland; and upon petition of various Chambers of Comerce in the United Kingdom, the Board of Trade proceeded to have the gage legalized. See Table 13.

2. Paris or French ©age.

The "Jauge de Paris", given in Table 8, is a gage for sheet metal and wire, which has' been in use in France since 1857. It is a thickness gage established by custom. The weights of sheet iron given in Table 8 are computed on the basis of 480 pourds per cu. ft.

Table 13. - British Sheet and Hoop Iron Standard Gage

1	2	1	$\dot{2}$	1	2
Descriptive Number	Equivalents in decimal parts of an inch	$\begin{aligned} & \text { Descriptive } \\ & \text { Number } \end{aligned}$	Equivalents in decimal parts of an inch	Descriptive Number	Equivalents in decimal parts of an inch
No.	Inches	No.	Inches	No.	Inches
15/0 B.G.	1.000	8 B.G.	0.1570	30 B.G.	0.0123
14/O B.G.	0.9583	9 B.G.	. 1398	31 B.G.	0110
13/0 B.G.	. 9167	$10 \mathrm{~B} . \mathrm{G}$.	. 1250	32 B.G.	0098
12/0 B.G.	. 8750	11 B.G.	. 1113	33 B.G.	. 0087
11/O B.G.	. 8333	$12 \mathrm{~B}, \mathrm{G}$.	. 0991	34 B.G.	. 0077
10/0 B.G.	. 7917	13 B.G.	. 0882	35 B.G.	. 0069
9/0 B.G.	. 7500	14 B.G.	. 0785	36 B.G.	. 0061
8/0 B.G.	. 7083	15 B.G.	. 0699	37 B.G.	. 0054
7/O B.G.	. 6666	$16 \mathrm{~B} . \mathrm{G}$.	. 0625	38 B.G.	. 0048
6/0 B.G.	. 6250	$17 \mathrm{B.G}$.	. 0556	39 B.G.	. 0043
5/0 B.G.	. 5883	$18 \mathrm{~B} . \mathrm{G}$.	. 0495	$40 \mathrm{~B} . \mathrm{G}$.	. 00386
$4 / 0 \mathrm{B.G}$.	. 5416	19 B.G.	. 0440	41 B.G.	. 00343
3/0 B.G.	. 5000	20 B.G.	. 0392	42 B.G.	. 00306
2/0 B.G.	. 4452	21 B.G.	. 0349	43 B.G.	. 00272
1/O B.G.	. 3964	22 B.G.	. 03125	44 B.G.	. 00242
1 B.G.	. 3532	23 B.G.	. 02782	45 B.G.	. 00215
$2 \mathrm{~B} . \mathrm{G}$.	. 3147	24 B.G.	. 02476	$46 \mathrm{~B} . \mathrm{G}$.	. 00192
3 B.G.	. 2804	25 B.G.	. 02204	47 B.G.	. 00170
4 B.G.	. 2500	26 B.G.	. 01961	48 B.G.	. 00152
5 B.G.	. 2225	$27 \mathrm{B.G}$.	. 01745	49 B.G.	. 00135
6 B.G.	. 1981	28 B.G.	. 015625	$50 \mathrm{B.G}$.	00120
7 B.G.	. 1764	29 B.G.	. 0139	51 B.G.	. 00107

N.B. It is important that in all transactions in sheet and hoop iron the initial letters B.G. should appear to distinguish the Sheet and Hoop Iron Standard Gage from other gages.

Table/4.- Paris or French Gage for Sheets and Wires.

1	2	3	4	5
Number of gage	Thickness in millimeters	Approximate thickness in inches	Weight per square meter in kilograms, sheet iron	Weight per squace meter in pounds avoirdupois, shet iron
P15	0.15	0.0059	1.1533	2.5426
Pl4	. 16	. 0063	1.2302	2.7122
P13	. 17	. 0067	1.3071	2.8817
P12	. 18	. 0071	1.3840	3.0512
Pll	. 20	. 0079	1.5378	3.3902
P10	. 22	1.0087	1.6915	3.7292
P 9	. 23	'. 0091	1.8453	3.8987
P 8	. 25	. 0098	1.9222	4.2377
P 7	. 27	. 0106	2.0760	4.5768
P 6	. 28	. 0110	2.1529	4.7463
P 5	. 30	.0118	2.3066	5.0853
P 4	. 34	. 0134	2.6142	5.7633
P 3	. 37	. 0146	2.8449	6.2718
P 2	. 42	. 0165	3.2293	7.1194
P 1	. 46	. 0181	3.5369	7.7974
P 0	. 50	. 0197	3.8444	8.4755
1	. 6	. 0236	4.6133	10.1706
2	. 7	. 0276	5.3822	11.8657
3	. 8	. 0315	6.1511	13.5608
4	1.9	. 0354	6.9199	15.2558
5	1.0	. 0394	7.6888	16.9509
6	1.1	. 0433	8.4577	18.6460
7	1.2	. 0472	9.2266	20.3411

1	2	3	4	5
Number of をage	Thickness in millimeters	Aprroximate thickness in inches	Weight per square meter in rilograms, sheet iron	Weight per square meter in pounds. avoirdupois, sheet iron
8	1.3	0.0512	9.9955	22.0362
9	1.4	. 0551	10.7643	23.7313
10	J. 5	. 0591	11.5332	25.4264
11	1.6	. 0630	12.3021	27.1215
12	1.8	. 0709	23.8399	30.5117
13	2.0	. 01787	15,3776	33.9019
14	2.2	. 0366	16.31.54	37.2921
15	2.4	. 0345	26.4532	40.6823
16	2.7	. 1063	20.7598	45.7675
17	3.0	. 1181	28.0364	50.8528
18	3.4	. 1.339	36.1420	57.6332
19	3.9	(.1535	25.9864	66.1087
20	4.4	. 1732	33.8308	'74.5841
21	4.9	. 1923	37.675%	83.0596
22	5.4	. 2126	41.5196	91.5351
23	5.9	. .2323	45.3634	100.0106
24	6.4	. 2520	49.2084	108.4860
25	7.0	-. 27.58	5\%.8217	118.6566
26	1.6	. . 2992	50.4350	128, 82\%2
27	8.2	- .3228	63.04 .83	$138.99{ }^{77}$
28	8.8	. 3465	6'i. 6616	149.1683
29	3.4	. 3 ? 01	73.2749	159.3388
30	10.0	. 3337	98.8882	169.5094

[^0]: *Based on a density of 8.85 grams per cubic ceriuméver or approximately 552 lbs. per cubic foot.

