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Findings and Conclusions

14 specified grades of steel used for the perimeter panels have been recovered. Of the 28 different

strength/gauge combinations for plates composing the perimeter columns in the impact region of both

towers, NIST has recovered representative samples for 14. Of the 14 unrecovered strength/gauge

combinations, 10 combinations had gauges very close to those in the NIST inventory (within 0.0625 in.),

while three were 0.125 in. away, and one combination had a difference of 0.1875 in. Similarly, 7 of the

13 strength/gauge combinations used for the spandrel plates in the impact region were recovered. All six

of these missing strength/gauge combinations of spandrel plate were within 0.0625 in. of those in the

NIST inventoiy.
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Hanging floor slabs at the 82nd and 83rd floors were visible in window openings on the east and north

faces, respectively, and the positions of these slabs changed over time, suggesting a slow collapse

mechanism of certain parts of the flooring in this area of the tower.

At the moment of collapse ofWTC 2, the top portion of the building moved to the west as it tilted to the

southeast. During this tilting, a complex kink developed at the southeast comer of the top portion in the

region of the 106th floor. In addition, the top portion twisted slightly clockwise (as viewed from the top)

as the collapse progressed.

7.6 STRUCTURAL DAMAGE AND FAILURES AS A RESULT OF COLLAPSE

The failure mode of spandrel connections on perimeter panels differed above and below the impact zone.

Spandrel connections on exterior panels at or above the impact zone were more likely to experience bolt

hole tear out as a failure mode. For those exterior panels below the impact zone, there was a higher

propensity for portions of the spandrels to be torn from the panels. There did not appear to be any

difference in failure mode for the spandrel connections whether the exterior panels were exposed to fire or

not.

With the exception of the mechanical floors, the major failure mechanism concerning perimeter panel

column splices was fracture of the bolts. At mechanical floors, where column splices were welded in

addition to being bolted, the majority of the splices did not fail, rather the web and flange plates

composing the columns fractured near the splice.

The damage to truss seats on perimeter panels differed above and below the impact zone. The majority of

perimeter panel floor truss connectors (perimeter seats) below the impact floors were either missing or

bent downward. Above this level, the failure modes were more randomly distributed. This trend was

observed for both towers.

Failure of the perimeter panel floor truss seats typically occurred in the heat-affected zones near welds,

and the fracture location was associated with the weld geometry (i.e., in the component with the lowest

cross-sectional area). These areas with the lowest cross-sectional area were typically the standoff plates.

However, there was no evidence to indicate that the type ofjoining method, materials, or welding

procedures were improper.

Of the 3 1 core floor truss connectors (core truss seats) recovered, 90 percent were still intact though

extensive damage may have occurred. Only two were observed to have been completely torn from the

channel. (This distribution may have resulted from the selection process at the salvage yards).

In the floor trusses, failure of a large majority of the electric resistance welds at the web-to-chord

connections was observed. Failure of the connection between the floor truss and the perimeter panel floor

truss connectors was typically a result of gusset plate (attached to top truss chord) weld and bolt failure.

7.7 STRUCTURAL STEEL IN IMPACT ZONE

Though representative examples of all strength/gauge combinations of steel plate used to fabricate the

exterior panels from the impact regions of the towers have not been recovered, numerous gauges for all
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A method was developed using microscopic observations of paint cracking to determine whether steel

members had experienced temperatures in excess of 250 °C. More than 170 areas were examined on

21 exterior panels. Note that these 21 panels represent only about 3 percent of the panels from fire-

involved floors, and that results on these panels cannot be considered indicative of exposure of other

panels. Only three locations had a positive result indicating that the steel and paint may have reached

temperatures in excess of 250 °C (note that exposure could have occurred pre- or post-collapse). These

areas were:

• WTC 1, east face, floor 98, column 210, inner web;

• WTC 1, east face, floor 92, column 236, spandrel; and

• WTC 1, north face, floor 98, column 143, floor truss connector.

Annealing studies on recovered steels (NIST NCSTAR 1-3E) established the set of time and temperature

conditions necessary to alter the steel microstructure. The microstructures of steels known to have been

exposed to fire, based on the pre-collapse photographic evidence, were characterized. These

microstructures show no evidence of exposure to temperatures above 600 °C for any significant time.

Perimeter columns exposed to pre-collapse fire (determined from pre-collapse photographs) had a great

tendency for local buckling of the inner web; a similar correlation did not exist for fracture in the base

metal near welds.

In the two buildings, there were 329 core columns (each three stories tall) traversing floors involved in

fires. National Institute of Standards and Technology (NIST) has portions of four of these columns, and

on average about half of each column was recovered. While these pieces allow some comparison of metal

and paint condition with the predications of the fire model, the recovered steel represents less than one

percent of all the core columns intersecting floors with fire. Thus, the forensic analysis indicating

moderate temperature excursions in the recovered core columns does not, and cannot, give a picture of

temperatures seen by the vast majority of the core columns.

7.5 TIME-DEPENDENT DEFORMATION OF PERIMETER WALLS DUE TO
FIRE AND LOAD REDISTRIBUTION

Images ofWTC 1 showed gross deformations of an exterior wall prior to final collapse. Images of the

south face of the tower taken approximately 5 min prior to collapse showed inward bowing of the exterior

columns, reaching an observable maximum of 55 in. near column 316 on the 96th floor. The inward

deflection appears to extend over the entire south face of the building at this time and is visible vertically

between the 94th and 100th floors. Photographs taken approximately 30 min prior to this time do not

show any inward bowing of the south face ofWTC 1

.

Images ofWTC 2 revealed some details ofhow the building deformed during the time between aircraft

impact and collapse and revealed how the portion of the building above the impact zone moved relative to

the bottom of the building during initial stages of collapse. Approximately 18 min after the impact of the

aircraft, the east face ofWTC 2 exhibited inward bowing of up to 10 in. in the region of the 79th to

83rd floors. This inward bowing increased to 20 in. at a time 5 min before collapse of the tower.
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behavior, including necking and thinning away from the fracture, indicating that the steel behaved

ductilely under very high strain rates.

Conversely, fractures occurring parallel and directly next to welded joints exhibited few or no ductile

characteristics. The geometry of the joint with respect to the direction of impact, stress concentrations

due to the geometry, diminished properties of the heat-affected zone in the base metal, and the orientation

of the crack propagation with respect to the rolling direction of the plate are expected to have contributed

to the lack of ductility. There was no evidence to indicate that the type ofjoining method, materials, or

welding procedures were improper. The welds appeared to perform as intended.

In general, severing of the perimeter columns hit by the heavier sections of the aircraft occurred at the

internal stiffener plates or diaphragm plates (associated with the spandrel connection to column). There

was a tendency for the columns hit by the plane to fracture along heat-affected zones adjacent to welds.

This behavior was not observed for columns outside the impact zone.

7.2 STRUCTURAL DAMAGE AS A RESULT OF AIRPLANE IMPACT - CORE
COLUMNS

Failure of the limited number (three) of recovered core columns in the impact zone was a result of both

splice connection failures and fracture of the columns themselves. One recovered core column (WTC 2,

column line 801, floors 77 through 80) may have sustained damage as a direct result of the airplane

impact in terms of a flange bent in a direction consistent with the travel of the airplane. However, the

welded splice connection to the column above survived intact.

7.3 DAMAGE TO SPRAYED FIRE-RESISTIVE MATERIAL AS A RESULT OF
AIRPLANE IMPACT

Damage to sprayed fire-resistive material on the perimeter columns was examined in pre-collapse

photographs. As expected, sprayed fire-resistive material was removed from pieces struck by the

incoming aircraft or debris exiting the far side of the buildings. In addition, the impact caused sprayed

fire-resistive material and aluminum facade panels to spall off many perimeter columns, which were not

directly struck nor severed, but apparently suffered strong accelerations and forces otherwise transmitted

through the structure.

A band of white features was apparent on the sprayed fire-resistive material (SFRM) wherever two

aluminum panels met on the exterior columns of the buildings, becoming visible when the panels were

dislodged. This appears to be a coating applied to protect the SFRM from moisture infiltration at the

aluminum panel joints. This coating appears to have prevented the loss of SFRM in a number of

locations where the SFRM was knocked off both above and below this location.

7.4 FIRE EXPOSURE AND TEMPERATURES REACHED BY THE STEEL

The pre-collapse photographic analysis showed that 16 recovered exterior panels were exposed to fire

prior to collapse ofWTC 1. None of the nine recovered panels from within the fire floors ofWTC 2 were

observed to have been directly exposed.
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Findings and Conclusions

Damage assessment and failure analysis of the recovered World Trade Center (WTC) steel resulted in the

following findings and conclusions:

7.1 STRUCTURAL DAMAGE AS A RESULT OF AIRPLANE IMPACT -

PERIMETER PANELS

Analysis of enhanced photographs taken of the impact hole in WTC 1 allowed for the identification of

about 95 percent of the modes of failure for the exterior wall columns damaged in the collision. Gross

deformation behavior observed from the photographs, coupled with analysis of the recovered steel,

included:

• Whole exterior panels pushed inside the envelope of the building as a result of column connection

bolt failures in the area of fuselage impact;

• Individual perimeter columns torn in a tensile mode surrounding the area of fuselage impact;

• Individual perimeter columns sliced through with little disturbance of surrounding material in

areas where engines, heavier sections of the wings, and wing sections containing fuel impacted;

and

• Minor damage to individual perimeter columns where lighter airplane components (e.g., wing

tips) impacted and sieved through the panel openings.

Of the five panels recovered from the impact hole ofWTC 1, four were directly hit by the airplane.

Correlation between pre-collapse photographs and the recovered panels from the impact zone indicates

that two of the four recovered impact-damaged panels (M-2 and M-30) were in a condition similar to that

just prior to building collapse. Some damage can be attributed to the events during and after collapse, but

the shape and appearance of the recovered pieces generally match the damage photographs. There was a

lack of detailed pre-collapse visual evidence of the impact damage sustained by panels M-27 and S 9, and

it was not possible to make such a comparison. The lower portion of panel N-7 did incur some damage;

however, it could not be positively correlated with pre-collapse images.

The number and particularly the resolution of the photographs taken of the damage to WTC 2 were much

less than those available for the analysis ofWTC 1, allowing identification of only 70 percent of the

exterior column failure modes. Gross deformation behavior was similar to that observed for WTC 1. In

addition, failures of exterior columns due to impact by aircraft components and debris that had passed

through the building and exited on the opposite side were characterized.

Of particular interest was the fracture behavior of the plates composing the recovered columns that were

directly impacted by the airplane. Fractures of the outer webs of panels M-30 and S-9 exhibited ductile
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Fire Exposure of Structural Elements

Table 6-3. EDS analysis from samples analyzed in Sec. 3.2.

Sample Point
Color of scale using optical microscopy or

description ofmorphology

EDS Analysis

(Results in order of decreasing peak height)

1 matrix Fe, Mn
gray Fe, Mn

-' light gray Fe, Mn

K-l
4 gray Fe, Mn
5 dark gray Fe, Ca, Mn
6 dark gray Fe, Ca, Mn
7 light gray Fe, Mn
8 light gray Fe, Mn

1 dark gray Fe, CL, S, Mn, Si

<L dark gray Fe, CL S, Si Mn
3 dark gray Fe, CL S, Mn
4 dark gray Fe, CL S, Si, Mn
r.

J dark gray Fe, St Ca, Mn, S

6 gold S, Fe

7 gray Fe, Mn

K-16
8 matrix Fe

9 dark gray Fe, St Ca, Mn
10 gray Fe

11 gold S, Fe

12 dark gray Fe, St Ca, Mn
13 dark gray Fe, S, CL Mn, Si

14 gold Fe, S

15 gold Fe, S, Mn
16 gray Fe, Mn

1 gray Fe

z gold Fe, S

j gray Fe

4 gold Fe, S

5 matrix .around needles Fe, Ni

6 needle phase Fe, Ni

/ "feather/" phase Fe, Ni Cu

8 matrix around needles Fe, Ni

C-115
9 gold Fe, S

10 dark gray Fe, St Ca, Mn
11 gold Fe, S

12 matrix around needles Fe, Ni

13 "feathery" phase Fe, Ni

14 internal precipitate Fe

15 matrix away from corroded area Fe

1(5 "feathery" phase Fe, Ni

17 needle phase Fe, Ni

18 needle phase Fe, Ni
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Fire Exposure of Structural Elements
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SEM Mag: 750x 50miti

Source: NIST.

Figure 6-28. Secondary electron image showing the corrosion scale found on sample
C-115. c) Blue arrows indicate the internal oxidation zone, green arrows indicate the

"feathery" morphology and orange arrows indicated the "needle-like" morphology of

corrosion phases observed. Two percent nital and 4 percent picral etch.
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'
'

'

5

SEM Mag: 500x 100(jm

Source: NIST.

Figure 6-28. Secondary electron image showing the corrosion scale found on sample
C-115. b) yellow arrows indicating the Fe-Ni layer between the penetrating corrosion

product and internal oxidation zone. Two percent nital and 4 percent picral etch (cont.).
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SEM Mag: 330x 1 0OjJin

C115-T-Thin-I: AREA 1

Source: NIST.

Figure 6-28. Secondary electron image showing the corrosion scale found on sample
C-115. a) The location of EDS analysis (results shown in Table 6-3) were indicated.

Two percent nital and 4 percent picral etch.
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Source: NIST.

Figure 6-27. Light optical micrograph showing the structure of corrosion scale formed
on sample C-115. A decarburization zone was not observed. Two percent nital and

4 percent picral etch.
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Source: NIST.

Figure 6-26. Light optical micrographs showing the structure of a typical A 242 truss rod

(sample T1-LR-1). a) Overall structure at 50x, b) Widmanstatten ferrite indicated with

arrows. Two percent nital and 4 percent picral etch.
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Source: NIST.

Figure 6-25. Light optical micrographs showing ferrite-pearlite structure of truss rod

sample C-115. a) 1 in. section, b) reduced section. Two percent nital and 4 percent

picral etch.
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Areas of maximum

Source: NIST.

Figure 6-24. Sample C-115, an unidentified floor truss rod that has thinned down. Red
arrows indicate areas of sample removal for analysis.
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Fire Exposure of Structural Elements

Source: NIST.

Figure 6-23. Photograph showing the location, size, shape, and orientation of sample
removed from panel K-16 prior to its arrival on the NIST campus. Sample was analyzed

in FEMA/BPAT study. Yellow areas indicate flame cut edges.
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Source: NIST

Figure 6-22. Light optical micrographs showing structure of the 50 ksi column labeled

K-16 near the base of the column where the corrosion process did not occur. As-built

location was not known, a) low magnification and b) pearlite has begun to spheroidize.

Two percent nital and 4 percent picral etch.
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I

zM Mag: 350x •100|jm

Source: NIST.

Figure 6-21. c) Secondary electron micrograph showing corrosion scale formation on
panel K-16. As-built location was not known. Sample in the as-polished condition

(cont.).
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Source: NIST.

Figure 6-21. b) Light optical micrograph showing the microstructure near the metal-

scale interface of the 50 ksi column labeled K-16 near where the corrosion process

occurred. As-built location was not known. Two percent nital and 4 percent

picral etch (cont.).
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m

:

^ i

100 um

Source: NIST

Figure 6-21. a) Light optical micrograph showing banded structure of the 50 ksi column
labeled K-16 near where the extreme corrosion process occurred. As-built location was

not known. Two percent nital and 4 percent picral etch.
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Source: NIST.

Figure 6-20. a) Overall image of panel K-16 and b) images showing the deterioration of

the column due to erosion/corrosion mechanisms. Red arrow indicates direction of

photograph seen in Fig. 6-23.
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Source: NIST.

Figure 6-19. Light optical micrographs showing microstructure from flange of

column 210 of panel K-1 (A209: 97-100) from the crumpled area above the 98th floor

spandrel, c) Characteristic scale formation. Two percent nital and 4 percent picral etch.
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Source: NIST

Figure 6-19. Light optical micrographs showing microstructure from flange of column
210 of panel K-1 (A209: 97-100) from the crumpled area above the 98th floor spandrel,

a) Characteristic scale formation, 2 percent nital and 4 percent picral etch, b) same area,

as polished, using polarized light.
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Fire Exposure of Structural Elements

Source: NIST.

Figure 6-18. Light optical micrograph showing a characteristic microstructure taken at

the centerline of a 60 ksi outer web plate. Sample is from panel C-40 (A136: 98-101),

column 136 in the 99th floor region of WTC 1. Two percent nital and 4 percent picral

etch.
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Source: NIST.

Figure 6-17. Light optical micrographs showing microstructure from flange of column
210 of panel K-1 (A209: 97-100) from the flange below the 98th floor spandrel, a) outer

surface of sample and b) center line of plate. Two percent nital and 4 percent picral etch.
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Source: NIST.

Figure 6-16. Light optical micrographs showing the microstructure from flange of

column 210 of panel K-1 (A209: 97-100) from the crumpled area above the 98th floor

spandrel, d) inner surface of plate showing compressed constituents of ferrite and
pearlite. Two percent nital and 4 percent picral etch.
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Source: NIST.

Figure 6-16. Light optical micrographs showing the microstructure from flange of

column 210 of panel K-1 (A209: 97-100) from the crumpled area above the 98th floor

spandrel, c) centerline of plate showing relatively undeformed grains of blocky ferrite

and pearlite colonies. Two percent nital and 4 percent picral etch.
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a)

Source: NIST.

Figure 6-16. Images from a flange of column 210 of panel K-1 (A209: 97-100) from the

crumpled area above the 98th floor spandrel, a) Location of micrographs taken on the

bent sample, b) light optical micrograph of the outer surface of the sample showing
elongated grains. Two percent nital and 4 percent picral etch.
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Source: Original photograph copyright Peter Matthews 2001.

Figure 6-15. Pre-collapse photographs of panel K-1 (A209: 97-100) showing c) fire has
begun to recede from this area. Photograph taken approximately 12 min prior to

collapse.
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Fire Exposure of Structural Elements

Source: Original photograph copyright Mark Stetler 2001.

Figure 6-15. Pre-collapse photographs of panel K-1 (A209: 97-100) showing b) external

flaming of the panel at time 9:55:01 a.m., 34 min before collapse.
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Source: Original photograph copyright Jeroen Morrien 2001.

Figure 6-15. Pre-collapse photographs of panel K-1 on the east face of WTC 1

(A209: 97-100) showing a) aluminum fagade intact minutes after impact. Column 210 was
indicated.
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Source: NIST.

Figure 6-14. Panel K-1 (A209: 97-100). b) and c) crushed section above the 98th floor

and d) relatively undeformed below the 98th floor spandrel. Removal areas of

metallographic samples are shown in c) and d) by colored circles (cont.).
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98
th

floor

210 209 208

Figure 6-14. Panel K-1 from the east face of WTC 1 (A209: 97-100). a) Schematic
showing the damage to the panel when viewed from outside the building looking inward.
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Source: NIST.

Figure 6-12. Light optical micrographs of the microstructure of a perimeter floor truss

seat from the 99th floor of WTC 1, panel N-8 (A142: 97-100). b) penetration of the iron

oxide phase with internal oxidation and decarburization fronts possibly due to elevated

temperature exposure. Two percent nital and 4 percent picral etch (cont.).
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Figure 6-12. Light optical micrographs of the microstructure of a perimeter floor truss

seat from the 99th floor of WTC 1, panel N-8 (A142: 97-100). a) Ferrite-pearlite

microstructure and developed oxide scale. Two percent nital and 4 percent picral etch.
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Source: NIST.

Figure 6-11. Light optical micrograph showing the partially decarburized zone found
near the surface of a perimeter floor truss seat from directly above the airplane impact on

the 99th floor of WTC 1, panel M-2 (A130: 96-99). Two percent nital and 4 percent

picral etch.
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Source: NIST

Figure 6-9. Light optical micrographs showing the microstructures from "fire exposed"

spandrels, a) Ferrite-pearlite structure and developed oxide scale, b) lamellae were

observable in pearlite, carbides (indicated by arrows) decorating ferrite grain boundaries.

Both images taken from the 99th floor spandrel of WTC 1, panel M-2 (A130: 96-99).

Two percent nital and 4 percent picral etch.
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Source: NIST.

Figure 6-8. Iron oxide scale that developed on a 100 ksi quenched-and-tempered flange

plate after isothermal exposure at 625 °C for 2 h. Sample was from panel C-10

(WTC 1, column 451, 88th floor). Two percent nital and 4 percent picral etch.
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Figure 6-5. Portion of the iron-carbon (Fe-C) phase diagram.
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Source: NIST.

Figure 6-4. Truss seat of the 99th floor on column 143 of WTC 1 from panel N-8

(A142: 97-100). Mud cracking was observed only on the truss seat and standoff plates,

a) Top view showing the re-solidified black plastic with imbedded papers, most likely a

binder of some type and b) bottom view showing the drip pattern.
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Source: NIST

Figure 6-3. Spandrel at the 93rd floor of column 236 of WTC 1 from panel K-2

(A236: 92-95). Mud cracking of the paint occurred below the 93rd floor line. No evidence

of mud cracking was observed above the floor line.
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Source: NIST.

Figure 6-2. Crushed portion of column 210 in the area of the 98th floor of WTC 1

(panel K-1, A209: 97-100). Mud cracking of the paint was observed in crushed portion of

this column. The cracking of the paint was a result of either temperature exposure over

250 °C, mechanical deformation, or environmental degradation.
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Source: NIST

Figure 6-1. Photographic images of the primer paint, a) paint in its original condition

and b) mud cracking of paint after exposure at 250 °C for 1 h.
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likely that the piece was in the debris pile at the WTC site when the corrosion products developed, as

external sources for sulfur and nickel were necessary to obtain the corrosion phases observed.

6.4 SUMMARY

Twenty-one exterior panels and four core columns were visually inspected to determine the extent of fire

exposure of the various structural elements. From this analysis, the following were concluded:

• The majority of areas examined using the paint cracking technique had "negative" results,

indicating that temperatures of the elements did not exceed 250 °C, even though photographic

evidence indicated that several locations experienced severe fire exposure, up to 15 min of direct

flaming, prior to collapse.

• There were three "positive" findings from the areas analyzed, indicating that mud cracking of the

paint occurred.

- Panel K-l (A209: 97-100) : Located on the flanges of the crushed portion of column

(note: the spandrel directly below this area was "negative"),

- Panel K-2 (A236: 92-95) : Located on the spandrel just below the floor level (note:

spandrel above the floor level and column plates below spandrel were "negative"),

- Panel N-8 (A142: 97-100) : Located on a seat and its standoff plates, the spandrel was

"negative" both above and below floor levels.

• The selected spandrel steels that were identified to have been exposed to severe fire events prior

to the collapse of the building did not experience material degradation due to the exposure.

• Results indicated that three of the four seats observed to be exposed to severe pre-collapse fire

conditions did not experience significant degradation as a result of the exposure. Results from the

seat taken from panel N-8 indicate that this seat may have been exposed to elevated temperatures.

• From the limited number of recovered structural steel elements, no conclusive evidence was

found to indicate that pre-collapse fires were severe enough to have a significant effect on the

microstructure that would have resulted in weakening of the steel structure.

NIST has documented approximately 3 percent of all perimeter columns and 1 percent of all core columns

intersecting floors with pre-collapse fires. Thus, the preceding forensic analysis does not, and cannot,

give a picture of temperatures seen by the vast majority of perimeter and core columns.
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Figure 6-24 indicates the location of samples removed for analysis. One was taken from the significantly

reduced area (hereafter referred to as "'reduced section") and the other from the opposite end of the rod

where the diameter was slightly greater than 1 in. (hereafter referred to as "1 in. section"). Chemical

analysis of the two sections of rod indicated a slight difference in carbon levels (0.16 weight percent for

the 1 in. section and 0.18 weight percent for the reduced section). The Mn contents were similar

(-0.8 weight percent), with additions ofV also observed (0.038 weight percent for the 1 in. section and

0.028 weight percent for the reduced section). Based upon these results, the rod met chemistry

specifications for A 242 and most likely had an original diameter of 1.14 in. (NIST NCSTAR 1-3A).

Microstructural evaluation of both ends revealed a ferrite-pearlite structure with fairly coarse constituents,

Fig. 6-25. The ferrite grains were relatively equiaxed with no banding of the pearlite. Additionally, there

were no indications that spheroidization of the pearlite had occurred. In contrast, other (undeformed) rods

ofA 242 examined revealed a different structure. Fig. 6-26. In addition to the significantly smaller ferrite

grain size (and size of pearlite colonies), in general, a Widmanstatten morphology was widely observed

throughout the structure. Development of ferrite in this morphology typically occurs when the steel is

austenitized at a relatively high temperature, above the A3 line, and then cools at a relatively fast rate

(Samuels 1980). Some banding of the pearlite was locally observed.

The corrosion product at the surface of the rod from the reduced section was also investigated. There was

some evidence that decarburization did occur near the surface, Fig. 6-27. A close-up of the scale is

shown in Fig. 6-28 with four regions of interest noted. The first was the actual corrosion scale itself.

Numerous gray-colored and gold-colored phases, when viewed light optically, were present in the scale.

Figure 6-28a shows a secondary electron image of this region and the location of EDS analysis.

Table 6-3 displays the results of the EDS analysis. From these results, it appears that a mixture of oxide

and sulfides were present (points 1-4 and 9-11). These scales were similar to those observed on corroded

samples from panel K-16. The second region of interest was the matrix directly surrounding the

advancing corrosion product. Fig. 6-28b. This region appeared to be free of any internal oxidation or

grain boundaries and. according to EDS analysis (points 5, 8, and 12), contained iron with nickel in

solution. Within this region were two other phases; one needle-like and the other with a "feathery"

appearance. These two phases can be seen in Fig. 6—28c. Both of these contained iron and nickel, with

the nickel concentrations higher than that found in the surrounding matrix (points 6, 7, 13, 16-18). The

next region was an internal oxidation region of varying thickness and depth into the sample, also observed

in Fig. 6-28c. The final area was the matrix itself.

Two facts have led to the conclusion that this floor truss rod was heated above the A 3 line: 1) the high

ductility displayed by the material under load and 2) the constituents observed in the microstructure were

significantly larger than observed for other A 242 rods. Exposure to this high a temperature explains how

the extent of deformation observed on the sample was obtained without the concomitant microstructural

indications of deformation (e.g., elongated ferrite grains). At these temperatures, and under the applied

tensile load, the rod was extremely ductile, which allowed it to thin down to the dimensions observed.

Deformation of the microstructure was eliminated through dynamic recrystallization of the austenite

grains and upon cooling, no indication of deformation was observable in the microstructure.

Additionally, it is likely that (1) this rod was not at high temperature for an extended period of time as a

decarburization zone at the surface of the rod was not found or (2) the cooling rate of the rod was such

that the carbon was able to uniformly redistribute after exposure. While review of the evidence does not

give any indication as to when the temperature excursion and subsequent deformation occurred, it is
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7. Two possible explanations for the corrosion events: the result of long-term heating in the

ground following the collapse of the buildings or start of corrosion phenomenon prior to

collapse of the buildings that accelerated the weakening of the steel structure.

The present analysis led to different conclusions regarding items 4, 5, and 7 above, in part, due to the

opportunity to examine the condition of the entire column as a whole instead ofjust an isolated portion.

The FEMA study reported the formation of (Fe,Cu) sulfides in the grain boundaries (Finding #4). These

results were also presented at the International Metallographic Society conference in San Antonio, TX, in

August of 2003, where significantly large copper sulfide phases (on the order of 10s of microns) were

observed in the outer scale (Vander Voort 2003). The outer web plate analyzed had copper additions of

approximately 0.05, based upon the chemical results obtained in this study. Given this low value of

copper in the steel, it would seem unlikely that enough copper could diffuse to form the amount of

(Fe,Cu) sulfides observed in the FEMA/BPAT analysis. In addition, copper containing sulfides were not

found during the present analysis. Therefore, it was more likely that a localized, external source of

copper was available to form these phases in the sample analyzed in the FEMA/BPAT report.

The study further states that temperatures were in the range from 700 °C to 800 °C (Finding #5).

However, very limited supporting evidence was given for this claim. Unlike the analysis of the steel from

WTC 7 (Sample #1 of Appendix C, FEMA/BPAT study) where corrosion phases and morphologies were

able to determine a possible temperature region, no comments were made concerning the microstructure

observed in the corroded regions which may have yielded addition information in which to make the

assertion of the temperature range for Sample #2. The present analysis found, through a microstructural

evaluation, that the temperature excursion was much higher than the range stated.

Finally, as this piece was clearly in a prone position during the corrosive attack and was located no higher

than the 53rd floor of the building, this degradation phenomenon had no bearing on the weakening of the

steel structure or the collapse of the building (Finding #7).

Floor Truss Material C-115 and C-131

There were two unique pieces of truss rod identified as having possibly experienced high temperature

exposure based upon the sort of damage characteristics observed. These were samples C-115 and C-131,

which had portions of truss rods with significantly reduced cross-sections. The as-built location and

exposure history of these two pieces were unknown. Thus, the results of this metallurgical analysis did

not aid in determining possible impact damage to the floor truss sections or help to ascertain possible

collapse mechanisms for the towers.

As both rods appeared to have similar damage characteristics, only one sample (C-115) is discussed

below. Sample C-115 arrived at NIST as shown in Fig. 6-24. The entire length of the sample (roughly

2.5 ft) was non-uniform in thickness. Sections of maximum and minimum thickness are indicated on

Fig. 6-24. There were two areas where the diameter appeared to be a maximum of approximately 1.10 in.

These areas were located at what appears to be a knuckle of the truss design and the opposite end of the

reduced section of the rod; this end was flame cut prior to arriving at NIST. The opposite end of the rod

had a reduced area measuring approximately 0.25 in. This tip was severely deformed, as if it had been

dragged. The entire sample appeared corroded, though the remaining scale was not friable.
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homogenization (heat treated designed to eliminate or minimize compositional segregation) of the

material occurred. If normalization had been completed, the ferrite grain size would be far more uniform

throughout the plate than observed in Fig. 6-2 la. Further, the fact that the pearlite was heavily banded

indicated that homogenization did not occur. This heat treatment requires relatively high temperatures

(typically well above A3 ) for extended periods (tens of hours). In fully achieving this heat treatment, the

alloying elements, such as Mn, Si, or Cr, could diffuse uniformly throughout the structure. As seen by the

present banding in the material, this was not the case. Instead, it appears that at some point in this

sample's history, it reached a relatively high temperature (above the A3 line) in which the original

microstructure was eliminated, but did not remain for an extended period of time in the austenite region in

order to obtain an equilibrium ferrite grain size or to reduce the chemical segregation within the structure.

A final clue to the history was in the heavy banding itself. While the chemical segregation of the

structure did not change from the as-rolled plate to the exposed column, the cooling rate at these two

"stages" of the plate's history must have been different. During processing of the plate, the cooling rate

was sufficiently fast that a nearly homogeneous distribution of pearlite occurred due to the lack of time

for carbon to diffuse. However, in the present structure, it appears that once the elevated temperature was

reached, there was ample time for carbon to diffuse back to the alloy element-rich bands in the

microstructure, and thus, the heavy banding occurred within the material. This latter premise was

reasonable as the steel in the debris pile at the WTC site had a relatively long time to cool down when

compared to typical processing cooling rates.

As a final note concerning K-16, a preliminary metallurgical examination was conducted on a portion of

this column and reported in Appendix C of the FEMA/BPAT study (McAllister 2002). The sample

(specified as Sample #2 in the appendix) consisted of a portion of the flange and outer web in the heavily

corroded eroded area of the column. The image in Fig. 6-23 was taken of column K-16 on the NIST

campus showing that the size, shape, and orientation of the sample was identical to the coupon removed

at the recovery yard by one of the FEMA/BPAT team members. The samples evaluated in the FEMA
study and this investigation originated from the same outer web plate at a distance no further than 0.5 m
apart. In the FEMA study, the following findings were reported:

1 . The steel was a high strength low-alloy (HSLA) steel containing copper.

2. Thinning of the steel occurred by high temperature corrosion as a result of combined

oxidation/sulfidation processes.

3. The rate of corrosion/erosion of the columns, while unknown, was found to be accelerated by

the sulfidation attack via a solid state diffusion mechanism.

4. The high concentration of sulfides in the grain boundaries of the corroded regions of the steel

occurred due to copper diffusing from the HSLA steel combining with Fe and S, thus making

both discrete and continuous sulfides in the steel grain boundaries.

5. Temperatures in the corroded region of the steel were likely to be in the range of 700 °C to

800 °C.

6. No source for the sulfur was identified.
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likely that the degradation process was most likely a complex combination of these three. As sulfur was

not readily available in large amounts in the steel (0.02 weight percent max.), an external source must

have supplied this specie (e.g., plastic, rubber). Viewing the column, this external source was in all

probability burning directly on top of the outer web while the column lay in a prone position. With the

knowledge that there exist many different corrosion paths that could be taken to achieve similar

microstructures, the following hypothesis was presented as a possible explanation for the observed

features in the microstructure. The corrosion process began with sulfur ingression into the material,

diffusing along the grain boundaries, and forming large sulfide phases within the matrix. With continued

lateral and inward growth of the sulfides, probable changes in the local environment may have led to the

oxidation of the outer layers of the sulfide phases, thus freeing up sulfur to travel further into the base

material for continued attack of the steel. The internal sulfide deposits in the grain boundaries were

classical morphologies that identified sulfur penetration via a solid state diffusion mechanism. As a result

of sulfide-oxide phase changes, as well as the initial porous nature of the developed sulfide scales, the

outer oxide scales would be friable and spall, exposing fresh sulfide phases for oxidation. Given the

proper time-temperature-environment conditions, this process would continue until the outer web material

was completely wasted, allowing the corroding material to fall through the hollow column and settle on

the interior web where attack of this plate began. This latter statement was supported by the fact that the

outer web sustained more degradation than the inner web and that pattern of material attrition would be

consistent with corrosion beginning first at the outer web. Again, it was noted that degradation of the

column occurred following the collapse of the building. Therefore, it was unknown what specific items

(e.g., office furniture, office supplies, carpeting) were the sources of the corroding elements found in the

scale, how long this process occurred, or at what temperature.

While analysis of sample K-16 yielded no revelations on the collapse mechanism for the buildings, the

changes in the web material as a result of high temperature corrosion exposure were interesting. The

original 50 ksi plate contained ferrite and pearlite, contained about 0.16 weight percent carbon, and had

an average ASTM International grain size number near 12 (average grain diameter around 6 urn) for the

ferrite. The distribution of the pearlite throughout the plate was varied depending upon the component

(e.g., perimeter column plate was normalized for good pearlite distribution, while spandrel material was

moderately banded). The microstructure observed from the lower portion of the column was closely

representative of the original plate, with the exception of the spheroidization of the cementite phase. The

spheroidization was most likely a result of extended exposure of the steel in this region to temperatures

just below the lower critical temperature (A|, -727 °C).

However, the microstructure for the material in the corroded regions was quite different. With the

knowledge that there exist many different thermal processing paths that could be taken to achieve similar

microstructures, the following hypothesis was presented as a possible explanation for the observed

features in the microstructure. Assuming that the original microstructure in this area was similar to that

found in Fig. 6-22a, the re-distribution of pearlite and larger ferrite grain size would imply significant

changes in the microstructure that could have only been achieved through austenitizing of the steel.

Concomitantly, this would suggest that temperatures were much higher in this portion of the plate than

found at the base of the column. With the average weight percent carbon in the material at 0.16, the plate

temperature would have to exceed 830 °C (above the upper critical temperature [A 3 ]) to enter the fully

austenitic region. In this region, both the original ferrite and pearlite have completely transformed. The

exact excursion above this line and the time within the field were difficult to determine. However, it did

not appear that normalization (heat treatment designed to produce a uniform microstructure) nor
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Three samples were removed from the column, analyzed metallographically and chemically, and tested

for hardness. The samples consisted of one each from the inner and outer webs in the corroded region

and one from the outer web at the base of the column where corrosion did not occur. Both samples

removed from the corroded area had thinned down to a knife edge after initially starting at a thickness of

9/16 in. Corrosion product was observable on the surface, and no paint was available for analysis. The

sample removed from the base of the column did not have a significant amount of corrosion product on

the surface and had maintained the original thickness of the web plate. However, paint was not available

on this section either. All samples were mounted and prepared using standard metallographic practices.

As both corroded samples had similar characteristics, only the description of the outer web material was

detailed. The etched microstructure can be seen in Fig. 6-2 la and 6-2 lb. Compared to other 50 ksi outer

webs not exposed to fire prior to collapse, the ferritic grain and pearlite colony size of these

microstructures were nearly an order of magnitude larger (NIST NCSTAR 1-3E). In addition, strong

banding of the pearlite was observed, with the lamellar features clearly distinguishable. The banding

made it difficult to determine if a decarburized zone was present near the metal-oxide interface.

However, the spacing of the pearlite bands indicated that decarburization of the structure occurred since

pearlite was not observed within nearly 200 um from the metal-scale interface (Fig. 6-2 la and 6-2 lb). In

contrast to the corroded samples, the sample removed from the lower portion of the column was

significantly different (Fig. 6-22a). The grain size and pearlite distribution were more in accordance with

that from other samples of 50 ksi material; however, spheroidization of iron carbide (Fe3C) in the pearlite

that had begun. Fig. 6-22b.

The corrosion scales on the outer web can be observed in all three images of Fig. 6-21. Viewed optically,

the scales were a complex mixture of varying gray-shaded scales, gold-colored phases, and dark grain

boundary precipitates. Table 6-3 shows the results of the EDS probed areas in Fig. 6-2 lc. Again, the

lighter gray phases at the scale-environment interface appeared to be iron oxides. The darker gray phases

in the scale interior appeared to be iron oxides containing high levels of Ca, as well as minor quantities of

CI, Si, and S. The bulk gold-colored phases, as well as the majority of phases in the grain boundaries,

were iron sulfides. The corrosion scale observed on the un-corroded web (Fig. 6-22a) were found to be

all oxides that had a similar morphology to the scales observed on sample K-l (Figs. 6-1 6a and 6-19).

Further, corroding elements (e.g., S, CI), as found in the scale observed in the eroded/corroded regions,

were not detected.

Hardness of the samples was also evaluated using Vickers microhardness testing. Results, shown in

Table 6-2, indicate that both samples were softer than representative 50 ksi flange material of similar

thickness. For the corroded regions, this would be expected as the constituent size was much larger than

that found in typical 50 ksi plate. However, the hardness was also significantly less for the lower portion

of the web where corrosion did not occur, even though the microstructural features were similar. One

possible reason for this drop may be related to the spheroidization of iron carbide (Fe 3C) in the pearlite

that had begun (Fig. 6-22b), thus, reducing the effectiveness of inhibiting dislocation movement through

the structure.

The wasting of the web plates most likely resulted from a high temperature, corrosion process that was

exacerbated by the presence of sulfur. While not enough evidence was available to indicate whether

corrosion occurred through gaseous, liquid, or solid attack (in addition to varied conditions possible in the

rubble pile and lack of information associated with the recovery of this column at the WTC site), it was
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NCSTAR 1-3E, which indicated that temperatures at or lower than 500 °C did not produce

metallographic changes for this material.

Perimeter Panel K-2

This exterior panel was located in the middle of the east face ofWTC 1 at floor levels 92 through 95.

Only the lower 24 ft of column 236 were recovered. Unique to this panel was the observance ofmud
cracking of the paint on the spandrel below the 93rd floor slab, while no mud cracking was found just

above the floor level. As shown in the time-fire exposure map (Fig. 2^48o) of this panel, fires were

observed inside for roughly 1 0 min, discontinuously, on the 92nd floor. No pre-collapse fires were seen

on the 93rd floor.

In order to determine if fire damage of the steel occurred, microstructural examination and hardness

measurements were conducted on spandrel material removed from just below the floor slab (area where

mud cracking was observed), Fig. 6-3. These results were compared with samples of 42 ksi spandrel that

were known not to have been exposed to fire prior to collapse.

Metallographic analysis did not reveal any changes present in the microstructure from the representative

micrographs of Sec. 5.1.2 of NIST NCSTAR 1-3E. No spheroidization of the pearlite was observed, nor

did an oxide scale develop that would be indicative of high temperature exposure.

Hardness measurements were also conducted and displayed in Table 6-2. Comparison with other 42 ksi

spandrel plate known not to have been exposed to fire prior to the collapse of the building showed that

averages were similar.

Based upon this information, it was concluded that the spandrel plate did not experience a temperature

excursion high enough to alter the microstructure. From the heat treatment studies of Sec. 5.4 of

NIST NCSTAR, it was observe that this exposure was most likely less than or equal to 500 °C.

Single Column K-16

The third example of a unique damage feature of a perimeter column was found on sample K-16. (As

discussed below, a piece sectioned from this column prior to arrival at NIST was studied and reported on

in the Federal Emergency Management Agency [FEMAJ/Building Performance Assessment Team

[BPAT] [McAllister 2002] report, Appendix C.) This was a single, unidentified column that experienced

what appeared to be a large amount of material degradation as a consequence of erosion/corrosion

processes, Fig. 6-20. Of all the recovered steel examined, this was the only case where this type of

degradation was observed on a perimeter or core column. The damage consisted of localized thinning in

the outer and inner web plates in this area, leading to significant perforations in the outer and inner webs.

The stampings at the base of the column on the flange indicated that it was a 50 ksi column with column

type 143. The database of all columns showed that columns matching this description were no higher

than the 52nd floor level in WTC 1 and the 53rd floor level in WTC 2. Therefore, it was unlikely that this

column experienced degradation prior to the collapse of the towers. The attrition appearance of the

column, in terms of the two webs experiencing the highest degree of degradation with minimal attack

observed on the flange sections, also indicates that the column was in a horizontal position while the

attack occurred.
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contained a banded microstructure with similar sized microstructural constituents. Widmanstatten ferrite

was observed in addition to the blocky ferrite (Fig. 6-1 7b). However, the edges of the plate had a

relatively uniform distribution of pearlite (Fig. 6-1 7a). Decarburization zones were not observed in either

case (97th or 98th floor locations).

Both microstructures from K-l were compared to microstructures from the centerline of other 60 ksi

plates known not to have been exposed to elevated temperatures prior to the collapse. As no other 60 ksi

flange plates with 0.25 in. thickness were recovered, outer web plates of similar thickness and Fv were

used as comparison as the plates were found to be chemically and microstructurally similar

(N1ST NCSTAR 1-3E). A representative micrograph of 0.25 in. 60 ksi outer web plate is shown in

Fig. 6-18. The microstructural features were similar in appearance.

An oxide scale was also observed on the sample from the 98th floor region (Figs. 6-1 6b and 6-19). This

scale was somewhat dense and continuous, but non-uniform in thicknesses (ranging on the order of 25 um
to 250 um). The latter characteristic was a result of localized scale penetration into the flange material,

resulting in nodular oxide structures when viewed in cross-section (Fig. 6-19). The scales were

composed of gray colored phases of varying shades when examined using a light optical microscope.

Energy dispersive spectroscopy (EDS) concluded that the two lighter gray phases contained Fe with

traces ofMn (oxygen was not detectable with the system utilized). Table 6-3 displays the qualitative

results of the EDS probed areas on Fig. 6-19. In addition to Fe, the darkest gray phase was found to have

relatively high amounts of Ca, though it was unclear from where this elemental component originated.

Another scale observed was orange in color and found to contain Ti, most likely contributed by the primer

paint. When viewed using polarized light, the scale was optically active, resulting in a red-orange

shading throughout the scale (Fig. 6- 19b).

Contrasting the scale development on the plate at the 98th floor level was the absence of scale

development on the sample removed from the lower portion of the column, Fig. 6-17. It was observed

that a majority of the primer paint in this area was still intact and in relatively good shape prior to

removing the specimen. However, optical microscopy revealed that there were localized regions where

isolated scale growth occurred; these areas were optically inactive under polarized light and were few and

far between. The corrosion product may have been there prior to application of the paint.

Hardness measurements were conducted to determine if the intensity and duration of the heat from the

external flaming altered the room temperature properties of the steel in the area where crumpling

occurred. Vickers microhardness testing was performed on the material from the crushed portion of the

column as it was difficult to prepare a flat sample from the highly deformed material for Rockwell testing.

Table 6-2 shows the results and compares them to the average for other 0.25 in. 60 ksi plate material

known not to have been exposed to fire prior to the collapse of the building. The results showed that the

material from the 98th floor region was higher in hardness than steel from both below the 98th floor

spandrel and the average for similar materials. The higher hardness value was attributed to the high

amount of deformation (work hardening) in the material as a result of the "folding" of the flange.

Based upon the information above, it was concluded that the flange plate analyzed from column 210 of

panel K-l did not experience a temperature excursion significant enough to alter the microstructure of the

mechanical properties. Additionally, the oxide scales observed on the "fire affected" flange were similar

in nature to those formed by ambient processes. Therefore, the temperature excursion may not have been

severe enough to develop a high temperature oxide scale. This was in agreement with the results ofNIST
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Pre-collapse images indicated that immediately after the impact, there was no disruption in the aluminum

facade of this panel (column 210 in the 98th floor region), Fig. 6-1 5a. This would suggest that the

sprayed fire-resistive material of this panel, at least the exterior portion, was still intact at this time. The

impact models verified that the sprayed fire-resistive material was most likely intact on this panel (NIST

NCSTAR 1-2A). There was no fire or smoke evident from any of the 98th floor windows at this time,

though there was external flaming of the 97th floor near the panel. Table 6-2 summarizes the time-fire

exposure data obtained from Fig. 2^18m for this area, as well as other essential data related to the analysis

of this sample. Significant external flaming was visually observed in the windows adjacent to column

210 on the 98th floor from 9:46 a.m. to 10:22 a.m. The extent of this external flaming can be observed in

Fig. 6-1 5b. However, after 10:22 a.m., photographic evidence suggests that the fire had retreated to

within the building and appeared to have completely receded from this area closer to the time of collapse.

Smoke inhibits the view of this panel at these later times. However, evidence showed that at 10:17 a.m.,

the fire had already begun to subside in this area (Fig. 6-1 5c) and commenced its movement toward the

southern face of the building. At times shortly thereafter, external flaming was concentrated at the middle

of the west face of the building and toward the southern end of the 98th floor. As stated above, a fair

amount of smoke from other locations of the building obscured the view of the panel near the time of

collapse. However, at the initiation of collapse, external flaming was observed coming out the windows

on the 98th floor near the southeast comer where fire was observed at slightly earlier times. No external

flaming was associated with the northeast corner at the moment of collapse. Evidence shows that

collapse was initiated on or very near the 98th floor level for WTC 1 (NIST NCSTAR 1-6).

In order to determine if fire damage of the steel occurred due to external flaming, microstructural

examination and hardness measurements were conducted on the flange in both the undeformed and

crushed portions of the column. Figure 6-14 shows the location from which the metallographic samples

were removed; red circle in (c) was from the flange plate above the 98th floor spandrel, and blue circle in

(d) was from the same flange plate below this spandrel. These samples were removed at a distance of

approximately 10 ft apart. The sample taken from the lower portion of the column had paint that was in

good condition (i.e., no mud cracking of paint, no sooting), even though it experienced 12 min of

continuous external flaming. There were minor scratches and gouges in the material, but cracking and/or

sooting of the paint was not observed. In contrast, a majority of the paint was missing, with a fair amount

of corrosion product on the surface, from the column located in the 98th floor. However, there were a

few localized areas of remaining paint available that indicated mud cracking did occur, as shown in

Appendix E.

Both samples were mounted and prepared using standard metallographic practices. The etched

microstructure of the bent plate in the 98th floor region was observed to vary across the transverse section

(Fig. 6-16). Figure 6-1 6a indicates the micrograph locations of (b), (c), and (d). As the plate was bent,

the outer surface (which was the outer face of the flange on the column) was in tension while the inner

face was in compression. This fact was visually observed through the appearance of the microstructural

constituents in the two locations. The outer face (in tension) contained elongated grains of ferrite and

pearlite colonies (Fig. 6-1 6b), while these features were distorted in compression at the inner surface

(Fig. 6-1 6d). The ferrite grains at the neutral axis (centerline of the plate) appeared to be relatively coarse

grained with the development of a faint Widmanstatten morphology (Fig. 6-1 6c). Banding of the pearlite

was found primarily at the centerline of the plate, but with the tensile deformation at the outer face of the

plate, the stretching of the ferrite and pearlite lent the appearance that the microstructure was also banded

in this region. Correspondingly, the microstructure at the centerline of the plate located in the 97th floor
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that were not clearly distinguishable, in addition to the overall mottled appearance. Seats for panels C-40,

M-2, and N-12 had a thin, non-uniform, and cracked oxide scale. The fourth seat, from panel N-8, had

two corrosion features that were unique to this sample. The first was a continuous, uniform, and dense

scale of iron oxide (Fig. 6-1 2a), with the second being internal penetration of the iron oxide phase and

decarburization fronts (Fig. 6-1 2b) surrounding an oxidized crack.

Microstructures from comparable non-exposed samples showed specimens both with and without the

decarburized zone. Additionally, they all appeared to contain the mottled pearlite to some degree, and

had a thin, non-uniform oxide scale. Further, coupons from a truss seat were isothermally exposed at

temperatures in the range from 200 °C to 625 °C for up to 2 h (NIST NCSTAR 1-3E). After 15 min of

exposure, the pearlite had begun spheroidization (Fig. 6-13) at 625 °C. Below this temperature, there

was no apparent change in the microstructure via light optical microscopy techniques.

Vickers microhardness results indicated that all four of the seats had lower hardnesses when compared to

other seats of similar size, Table 6-2. However, the results of Rockwell hardness testing B scale (HRB)

were slightly more ambiguous. All of the samples had decreased HRB values relative to other seats of

similar size with the exception of the sample that tested positive for mud cracking (N-8). In this case, it

was determined that using hardness as an analytical tool was unreliable as the results were extremely

variable.

As no major change to the microstructural features was observed in seats from panels C-40, M-2, and

N-12, it is likely that the pre-collapse fire exposure was not severe enough to have a significant effect on

the microstructure. Results from the seat taken from panel N-8 indicate that this seat may have been

exposed to elevated temperatures. While vast changes in the microstructure and hardness were not

observed, the continuous oxide scale seen, as well as the internal oxidation, was believed to have formed

as a result of a high temperature excursion. It was unclear when this exposure may have occurred. These

findings were in agreement with those of Sec. 6.2.

6.3.4 Unique Cases of Damage Possibly Related to Elevated Temperature Exposure

Five samples of the NIST inventory were identified from visual inspection as having unique physical

damage that may have been related to elevated temperature exposure. Three were perimeter columns

(from panels K-l and K-2 and single column K-16), and two were floor truss materials (C-l 15 and

C- 131). As these samples were distinctive among the entire group, an in-depth investigation of their

damage features was conducted with the results discussed in detail below.

Perimeter Panel K-1

This exterior panel was located on the east face near the north corner ofWTC 1, at floor levels 97 through

100. A portion of one column (column 210 in the vicinity of the 98th floor) was crushed, while the lower

portion was relatively undistorted, Fig. 6-1 4a. The crushed segment had roughly concentric axial

alignment with the lower portion of the column. This would suggest that the lower portion of the column

was constrained axially while the 98th floor section collapsed, most likely during the collapse of the

building. Additionally, columns 208 and 209 appear to have been severed at the upper stiffener plate of

the 98th floor spandrel, with portions of the flanges and outer web "peeled down like a banana peel." All

three columns from the panel had 60 ksi flange plates with a 0.25 in. thickness.
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The lack of high temperature exposure evidence for the fire exposed spandrels may be related to the

possible temperature experienced and the duration of the exposure. Tide (1998) reviewed fire research on

the exposure of structural steel to fire conditions and summarized the following points that should be

considered when evaluating possible temperature excursions experienced by steel structures:

• The steel temperature is significantly reduced as the distance from the center of the fire increases.

• Ventilation of a fire compartment greatly reduces the temperature of steel at distances away from

the center of the fire.

• The temperature of fire-protected steel in the vicinity of the fire is significantly less than

unprotected steel at the same location.

Consideration of these points may lead to a possible explanation for a lack of microstructural change.

The longest duration of exposure evaluated was for panel S-10, which was exposed for just over 30 min

(this was the longest exposure time for the recovered perimeter panels [Appendix E]). However, after

1 5 min of exposure to 625 °C, the 42 ksi spandrel exhibited spheroidization of the pearlite. It would be

expected that the 50 ksi plate would behave similarly. If the exposure temperatures were somewhat

below this, then kinetically, it may not have been possible to produce a microstructural change within this

time frame. Additionally, the windows were consistently breaking out as the fire advanced, allowing for

ventilation of the fire compartment to occur. Thus, the temperatures of the spandrel steel may not have

been as high as if there was no ventilation of the floors. Finally, a majority of the perimeter panels that

burned out were most likely undamaged after the impact. The sprayed fire-resistive material applied to

the columns and spandrels may well have been intact and would have provided some protection from the

high temperatures of the fire. Thus, it was plausible to conclude that the maximum temperature the steel

may have attained was below that which would have allowed for microstructural changes, despite severe

fire exposure observed photographically.

6.3.3 Perimeter Floor Truss Seats Exposed to Severe Fire Conditions

In addition to the spandrel plates, portions from four perimeter floor truss seats were also removed for a

similar metallographic analysis. It was believed that these connectors may not have been well protected

during the fires, as the photographs that were obtained of both the original application of sprayed fire-

resistive material (SFRM) and upgrades that took place in the 1990s showed that while fire protection was

indeed applied to the seats, the thickness of the originally applied sprayed fire-resistive material appeared

marginal (NIST NCSTAR 1-6A). The four seats examined supported floors that had severe fire

conditions directly below them (i.e., if fire was observed on floor 97, then the seat supporting floor 98

was analyzed). The seats chosen were all of similar size (type 1212 or 141 1, see Table 3-6). Conclusions

for three of the four seats examined for mud cracking of the paint were either negative or inconclusive.

The fourth seat, which supported the 99th floor of sample N-8, was found to have mud cracking on both

the seat and the standoff plates; the spandrel to which the seat was attached did not have mud cracking of

the paint.

Microstructures of the fire exposed seats showed a partially decarburized zone near the surface with a

depth ranging from 400 urn to 500 um, Fig. 6-11. Spandrel material adjacent to these locations was also

examined, and decarburization zones were not observed. The pearlite within the seat material had plates
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6.3.2 Spandrel Plates Exposed to Severe Fire Conditions

Table 6-2 displays information about the four locations of sample removal for the spandrel material. The

samples were removed from the bottom portion of spandrel plates located at window openings where

severe fire exposure conditions were observed prior to the collapse ofWTC 1 (i.e., if external flaming

was observed on the 97th floor, then the sample was removed from the bottom portion of the 98th floor

spandrel). The minimum duration of exposure ranged from 16 min to 32 min. As reported in Sec. 6.2,

visual observations for mud cracking of the paint were either negative or inconclusive (as paint was not

available for inspection). The samples had a plate thickness of 0.375 in., were relatively undeformed, and

had specified minimum yield strengths of 36, 42, and 50 ksi.

In comparing microstructures from both the "exposed" and "representative" samples of equivalent

strength spandrel material, the following microstructural features were observed to be similar for both

cases:

• Ferrite grain size and pearlite distribution (Fig. 6-9a)

• Absence of a decarburization zone near the surface of the plate (Fig. 6-9a)

• Limited decoration of the ferrite grain boundaries with carbides (Fig. 6-9b)

• Similar appearance of pearlite (typically distinct lamella observed)

• Thin, non-uniform, cracked oxide scales (Fig. 6-9a)

Again, these features were observed on all samples regardless of exposure history or specified minimum

Fy. As reported in NIST NCSTAR 1-3E (2005), a 42 ksi spandrel plate was isothermally exposed at

temperatures ranging from 200 °C to 625 °C for up to 2 h. Figure 6-10 shows the change in

microstructure that occurred with time for the samples exposed to 625 °C; below this temperature, no

apparent change to the microstructure was observed via light optical microscopy. After only 15 min of

exposure at 625 °C, the pearlite showed signs of spheroidization. As this feature was not observed in any

of the four spandrel materials evaluated, it was believed that the spandrels were not exposed to this

temperature or that if they were, it was for significantly less time than 15 min.

In addition to the microstructural results, the hardness evaluation suggested that there was no

deterioration of the mechanical properties of the materials as a result of exposure to pre-collapse fires

(Table 6-2).

Based upon these results, it was concluded that none of the four portions of spandrel material visually

observed in severe pre-collapse fire exposure experienced temperatures severe enough to alter the

microstructure or mechanical properties of the plates when compared to samples of similar Fy
that did not

experience fire conditions. Further, a dense and continuous oxide scale was not observed on these

samples from exposure to post-fabrication elevated temperatures. As shown in Fig. 6-9a, the oxide scale

was non-uniform and relatively porous; thus, it was most likely a result of environment degradation

subsequent to the collapse of the buildings and not a result of exposure to elevated temperatures. These

conclusions agree with the findings of Sec. 6.2.
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Fig. 6-7 for a 100 ksi quenched-and-tempered flange plate. With increased exposure at 625 °C,

the sharpness of the lath boundaries decrease while the carbides become more distinct.

• Decarburization : A decarburization zone in a steel structure is the loss of carbon and associated

C-rich phases (e.g., iron carbide), near the surface layer of a component. This transpires when

carbon at the surface reacts with a medium (typically oxygen) to form a reaction product (in the

case of oxygen, carbon oxidizes to either CO or C0 2 gas). This loss of carbon establishes a

concentration gradient between the surface layer and the unaffected base material that acts as the

driving force for continuing carbon diffusion. This process typically occurs when exposures are

above the A| line (i.e., above 727 °C), as ferrite below the A, line is saturated with carbon so that

the carbon concentration gradient necessary for subsequent diffusion may not be established.

Therefore, decarburization may not occur or may be very slow below these temperatures

(Samuels 1980). The overall depth of the layer is dependent upon time, temperature, and

composition of the steel.

• Development of external corrosion scale : The surface of structural steel is readily reactive with

its conventional environment. The formation of a corrosion scale typically occurs as a result of

( 1 ) high temperature exposure, (2) atmospheric degradation, or (3) a combination of the two

corrosion processes. Many different corrosion products can form (e.g., oxides, sulfides)

depending upon the sort of corrosive species in the vicinity of the surface (e.g., oxygen, sulfur)

with their stoichiometry and morphology dependent upon time, temperature, and environmental

conditions. Iron sulfides are typically formed at elevated temperatures with sulfur present and do

not tend to form continuous scales when significant levels of oxygen are present. Similarly, iron

oxide scales (Fig. 6-8) formed at high temperatures are generally denser and more uniform, with

columnar grains, than those formed by ambient processes. The diffusional kinetics at elevated

temperatures allow for continued and regular growth via transport through the scale. Iron oxides

formed at ambient temperatures (rust) are typically less dense, compositionally layered, and

friable as continued scale growth relies upon exposure of fresh material subsequent to spallation.

• Development of internal corrosion phases : Internal attack of an alloy can also take place as the

corroding species diffuses into the material to form corrosion phases not physically connected to

the externally developed corrosion scale. This usually occurs when the metal has some solubility

for the corrosive species in amounts such that its activity in the alloy is sufficient to form a

compound with the less noble metal (i.e., the metal contains alloying elements with a higher

affinity for the corroding specie than the matrix material). Preferential attack of individual alloy

constituents in the steel by the inward diffusion of the corroding specie is commonly observed as

precipitates ahead of a metal/oxide scale interface.

All these microstructural features may also be a direct result of the processing of the plate or component

itself. It was very possible that a specific combination of rolling schedules and cooling rates can produce

many of the features discussed above. Therefore, it was again important to carefully select the

representative microstructures to be used as comparison against samples believed to have been exposed

to fire.
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There are numerous examples of microstructural features that can be used to indicate if steels experienced

high temperature exposure subsequent to being produced. Detailed comparison between "as-fabricated"

and "exposed" microstructures was required. A few of these examples are briefly described below with

respect to possible observances found during the analysis of the WTC steels. Some microstructural

examples shown were taken from (NIST NCSTAR 1-3E) where plates from various structural

components were furnace exposed to 625 °C for up to 2 h.

• Spheroidizing of the iron carbide (Fe^C, cementite) in ferrite-pearlite steels : If an as-rolled,

plate containing pearlite was exposed to temperatures near the Ai line and held for an extended

period of time, the carbide lamellae could dissolve, and upon cooling, re-precipitate in the form of

spheroidal or globular morphologies of the carbide in the steel. However, the plates do not have

to completely dissolve, but can break up to form spherical carbides in the microstructure. The

extent of spheriodization depends upon time at temperature and both the composition and prior

amount of cold working of the steel. An example of spheroidization is shown for a 60 ksi flange

plate, Fig. 6-6. After 15 min of exposure at 625 °C, spherical carbides can be observed in the

prior pearlite colony in place of the plates. However, steels with different thermo-mechanical

histories behave differently, and thus, there was no general rule relating time-temperature

exposures to degree of spheroidization. If the pearlite distribution was initially banded and then

exposed to temperatures below the A, line, the spheroidized carbide distribution will most likely

be non-uniform as well (Bramfitt and Benscoter 2002). This can be seen in the example shown

for short times where carbides primarily reside in the location of the original pearlite bands. The

same steel exposed for longer times or to temperatures just above the Ai line and then slow

cooled can result in a more uniform distribution of the carbide particles in the structure.

• Formation of carbides in the grain boundaries of ferrite-pearlite steels : Analogous to the

case of non-uniform distribution of spheroidization, carbides could also form in the ferrite grain

boundaries.

• Change in constituent size or morphology of ferrite-pearlite steels : The size and/or

morphology of constituents (ferrite grains or pearlite colonies) could be altered through many

different processes. One example would be to expose a steel with these constituents to

temperatures above the A3 line and then cool at a much slower/faster rate than the original

cooling rate used during fabrication. This could produce a much large/smaller ferrite grain size

and cementite lamellar spacing than the parent material before exposure.

• Post-fabrication tempering of quenched-and-tempered steels : Production of a quenched-and-

tempered structure typically starts with the plate at a temperature above the A 3 line so that the

entire structure consists of austenite. Rapid cooling restricts carbon diffusion and traps the

carbon in solution to form the metastable phase of martensite. The body center tetragonal (bet)

lattice, as a result of trapped carbon in the body center cubic (bec) structure, is highly strained and

results in a material with high hardness and strength levels. Tempering is the process by which

the steel can be softened by reheating to below the Ai line to allow carbon to diffuse out of

solution and form spheroidized carbides in a matrix of ferrite. The repositioning of carbon results

in a decrease in strength but increase in toughness. Tempering of the structure could continue if

the sample was further exposed to temperatures below the Ai line. An example is shown in
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M-2 (Fig. 2-48e of Sec. 2.3). The 98th floor was observed to have external flaming and fires inside for a

minimum of 1 8 cumulative minutes, yet there was no mud cracking of the paint either on the columns

near the window openings of the 98th floor or the spandrel for the 99th floor. Therefore, samples were

chosen from areas where severe fire was observed prior to the collapse of buildings and were analyzed to

determine if these exposures affected the microstructure. In addition to the samples listed in Table 6-2,

examples of unique, heat-related damage to perimeter columns (from panels K-l and K-16) and truss

material (from samples C-l 15 and C- 131) are discussed in a separate section.

This portion of the study had a disadvantage in that the analysis had to rely solely upon the recovered

material for the "representative" microstructures and properties for comparison. The "as-fabricated"

microstructure cannot be assumed based upon a single observation from a component with similar Fy
(yield strength), as physical damage sustained from the impact/collapse and exposure to both pre- and

post-collapse fires may have previously altered the microstructure of the component. In addition,

components with identical specified Fy may exhibit variations in microstructure, even when produced at

the same mill. Therefore, representative, as-fabricated microstructures and properties were selected only

after careful evaluation of all the plates for a given component (e.g., perimeter column flange, web of a

wide-flange section, top chord of a floor truss) with a specified minimum Fy and similar gauge. (For

representative microstructures for all the steels see NIST NCSTAR 1-3E (2005) where over

400 metallographic samples from distinct structural components were evaluated.) Care was taken to

disregard any specimen from a given group that may have had visual evidence indicating that a

microstructure-altering event occurred (e.g., significant deformation of the plate, indications of high

temperature exposure based upon pre-collapse evaluation of fire exposure of the component [Sec. 2.3] or

mud cracking of the primer paint in the area where the sample was removed [Sec. 6.2]). Additionally, the

controlled rolling and cooling rate schedules for the steels could not be obtained as they were proprietary,

and the documents were not presently obtainable. Thus, the as-rolled microstructures for the plates can

not be "hypothetically characterized" and compared with the "representative" microstructures decided

upon.

Material from core columns was not evaluated based upon two reasons. First, the exposure to pre-

collapse fires could not be determined as elements within the core could not be visually assessed prior to

collapse. Second, only 12 core columns with known as-built locations were recovered. This severely

limited the population from which an "as-fabricated" microstructure could be chosen as the size and

shape of the columns recovered for a given Fy varied.

6.3.1 Examples of Microstructural Features Possibly Related to Fire Exposure

Steels in the WTC towers were classified as either hot-rolled or quenched-and-tempered

(NIST NCSTAR 1-3E). To help understand possible phase changes from high temperature exposure, a

portion of the Fe-C phase diagram is shown in Fig. 6-5. It is important to note the two phases of iron,

ferrite (alpha, low temperature bcc phase) and austenite (gamma, high temperature fee phase), the iron

carbide phase (Fe 3C, also known as cementite), and the lines indicating various phase changes at

equilibrium. The Ai line is the temperature, independent of composition, at which austenite begins to

form during heating; it is also known as the lower critical temperature and occurs at 727 °C. The A3 line

is the composition-dependent temperature where the transformation of ferrite to austenite is completed.

Knowledge of this diagram was important through out the rest of this section.
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2. Panel K-2, WTC 1, column 236, 93rd floor spandrel. This area was observed to have fire

exposure for 9 cumulative minutes prior to collapse. A positive reading was made directly

below the floor truss connector while above the connector, in the same location a negative

result was obtained. Fig. 6-3. Metallographic analysis of this sample can be found in

Sec. 6.3.4.

3. Panel N-8, WTC 1, column 143, seat and standoff plates supporting the 99th floor. This seat

(Fig. 6-4) was exposed to fire for a minimum of 1 8 cumulative minutes before collapse. In

viewing the seat, it appears that a plastic note paper binder (based upon melted black plastic

with imbedded papers) settled and melted on the seat. According to the drip pattern of the

binder (Fig. 6-4b), it appears that the panel was in a horizontal position when this occurred.

Mud cracking was not observed on the spandrel plate to which the seat was welded.

Metallographic analysis of this sample can be found in Sec. 6.3.3.

6.2.2 Core Columns Exposed to Fire

Four of the core columns with known as-built locations were examined for mud cracking of the paint.

Appendix E also lists these results. For columns C-88a and C-88b, sufficient paint for analysis was not

available. The loss of paint may be due to one of numerous reasons (pre-or post-collapse exposure to

high temperature excursions, ambient corrosion subsequent to collapse, or mechanical damage) and was

not determined during this investigation.

For columns HH and C-80, very minimal paint was observed (three to five spots per column) with

"negative" conclusions for these areas.

6.3 METALLOGRAPHIC ANALYSIS OF ELEMENTS EXPOSED TO FIRE

Some aspects of the thermo-mechanical history of a structural steel element may be revealed through a

careful assessment of the component's microstructure. Identification of phases, whether stable or

metastable, and their characteristics (e.g., size, morphology, distribution) can help lead to an

understanding of the possible rolling conditions and/or cooling rates used during fabrication. These

factors are directly related to the room temperature mechanical properties of the component. Likewise,

high temperature excursions due to fire can also lead to alterations in the microstructure and the

mechanical properties. Therefore, if knowledge of the "as-fabricated" microstructural characteristics of

the member is available, then a review of the "affected" microstructure may give an indication of the level

of elevated temperature exposure while in service.

As part of the metallographic analysis of the recovered steel, an assessment was made to determine if

information could be compiled on the extent and effect of fire exposure to the perimeter panels that

experienced pre-collapse fires. Chemical analysis and hardness evaluations were used to supplement the

results when appropriate. Samples for analysis were chosen based upon the pre-collapse exposure to fire

that was reported in Sec. 2.3. These included floor truss connectors (seats) and the lower portion of

spandrels where external flaming was observed in the window directly beneath the location of sample

removal, Table 6-2. These results were compared with the paint mapping analysis reported in Sec. 6.2.

Almost all of the areas exposed to pre-collapse fires (from Sec. 2.3) did not display mud cracking

characteristics. An example of this can be seen for the spandrel located at the 99th floor level of sample
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expansion between the paint and the steel. This approach had the singular advantage of requiring no

sample preparation, could be used in the field, and was feasible for mapping exposure on entire structural

sections. The paint coating was not a paint in the traditional sense, but was actually a ceramic coating

(Tnemic) containing no organic binders. Thus, when the coating was exposed to high temperatures, the

coating did not bum as no organic binder exists to combust.

The difference in thermal expansion coefficients between the base metal and the coating creates tensile

stresses that are applied to the coating at high temperatures. This causes the coating to crack, generally

along faint cracks that pre-exist after the original low temperature baking of the paint. The pattern formed

is generally termed "mud cracking." Images of the paint exposed to high temperature and in the

unexposed condition can be seen in Fig. 6-1. The cracking pattern has no directionality, and exhibits a

characteristic length scale of the islands that were quickly identified using a 50X microscope. Laboratory

tests, as explained in Appendix D, have shown that the pattern becomes visible once the painted steel has

reached approximately 250 °C.

The presence of cracking of the paint does not necessarily mean that the base metal reached 250 °C.

Cracking of the paint, which was brittle, can occur due to mechanical damage, such as impact, abrasion,

or deformation of the steel. Also, corrosion can work apart the same pre-existing drying cracks in the

coating and give an appearance similar to that produced by high temperature exposure. In many of these

cases, the cracking pattern exhibited a directionality, as seen in Fig. 3-1 Id of Sec. 3.2.1, and was

dismissed. However, an unambiguous determination as to the source of the cracking was generally not

possible, and the observations herein should be considered "definite negative," i.e., if the mud cracking

pattern was absent, the particular material did not experience a temperature excursion in excess of about

250 °C.

6.2.1 Exterior Panels Exposed to Fire

The analysis locations, time-fire exposure data, and visual inspection results for each individual

component can be found in Appendix E. Over 170 areas associated with the 21 exterior panels were

analyzed with the results shown in Table 6-1. For all panels exposed to fire, whether external flaming,

fires observed inside the window, or spot fires, over 90 percent of the paint results showed a "negative"

conclusion indicating that these areas were not exposed to temperatures excursions above 250 °C. As

shown in Appendix E, seven areas were deemed "no conclusion", as sufficient paint was not available for

the analysis. Five locations had paint available for inspection, but due to such confounding factors as

corrosion products or residual cement, a definitive conclusion could not be made, and thus, these

locations were labeled "inconclusive." Finally, three locations were observed to have a "positive"

finding. The "positive" finding indicated that the original primer paint developed mud cracking. Areas

where mud cracking occurred were:

1. Panel K-l, WTC 1, column 210, flange and inner web of 98th floor region. Prior to the

collapse ofWTC 1, the sample was observed to have experienced varying degrees of fire

exposure for a minimum of 3 1 cumulative minutes. The upper portion of the recovered

column was crushed, while generally maintaining concentric axial alignment with the lower

portion of the column, Fig. 6-2. Metallographic analysis of this sample can be found in

Sec. 6.3.4.
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augmented. For example, the structural elements could not be evaluated in their as-built location, with

surrounding evidence, to determine the extent and duration of fire exposure and document physical

damage as a result of the fires in combination with structural loading conditions. In addition, the

components most likely experienced secondary physical damage during the collapse that could accentuate

or mask the actual damage incurred as a result of the pre-collapse fires. Further, the collapse resulted in

the pieces being exposed to both post collapse fires (some pieces for nearly four months) and many

months of ambient degradation. These events may obscure the origin of the degradation features

observed.

Taking this knowledge in to account, a visual inspection and metallurgical evaluation of the recovered

steel were conducted to determine the extent and effect of fire exposure of the various structural elements.

Four features were analyzed (when appropriate): (1) condition of the primer paint, (2) microstructure,

(3) chemistry, and (4) hardness. To aid in the study, National Institute of Standards and Technology

(NIST) developed a novel approach to evaluating the primer paint for exposure to high temperature

excursions (see Appendix D). This method was relatively easy to implement and robust enough to

examine the entire component in the field. The other three techniques were chosen based upon their

relative ease of implementation and analysis.

Again, it was difficult to separate visual evidence of fire and/or degradation of the microstructure as a

result of fire exposure from the 1 h to 2 h experienced prior to the collapse of the buildings compared to

that caused by the fire exposure in the debris pile at the WTC site (for some samples, possibly up to four

months).

6.2 VISUAL INSPECTION OF RECOVERED STRUCTURAL COMPONENTS

Visual inspection for the fire effects on recovered steel was conducted solely on the perimeter panels and

core columns, as these were the only structural elements that had known as-built locations. For the

perimeter panels, the analysis initiated with the correlation of the time-fire exposure maps (Sec. 2.3) and

mapping of the condition of the primer paint on these samples. (This procedure is described below.) To

summarize, 16 of the 26 exterior panels from WTC 1, and none of the 16 panels from WTC 2, were

observed to be exposed to fire at some point prior to the collapse. However, two samples from WTC 2

(M-lOa and M-lOb) were chosen to be analyzed as they were located within the fire zone floors, and

three other panels were also examined (panel N-9 (A154: 101-104) and C-l 1 and M-14, both

unidentified) based upon an outside contractor's analysis of pieces possibly exposed to pre-collapse fires

(Wiss, Janney, Elstner Associates, Inc. report found in Appendix F). On each of the 21 panels selected,

numerous locations on the inner webs, flanges, spandrels, and floor truss connectors for each floor level

were analyzed, providing that sufficient paint was available for the analysis. Core columns C-80 and HH
were examined from WTC 1, and samples C-88a and C-88b were tested from WTC 2; these columns

resided within the fire floors for their respective buildings. The entire length of each core column was

examined, and evaluations of the primer paint were made when sufficient paint was available for

inspection.

As shown in Appendix D, the procedure developed for evaluating the condition of the primer paint on the

structural elements was relatively easy to implement and robust enough to examine the entire component

in order to determine possible fire exposure of the WTC steels. Calibration tests showed that the paint

used on the WTC steels that reached temperatures over 250 °C cracked from the difference in thermal
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Fire Exposure of the Structural Elements

Examination of the structural steel components for indications of fire damage was an important aspect of

this investigation. This chapter of the report attempts to ( 1 ) determine the temperature excursions

experienced by the steel components, (2) determine when the excursion occurred (pre- or post-collapse),

(3) determine if pre-collapse fires significantly affected the mechanical properties of the structural

elements such that the structural integrity (load bearing capabilities) of the component may have been

compromised, and (4) provide this information for input/validation of the fire and thermal models of the

project entitled "Reconstruction of Thermal and Tenability Environment" (NIST NCSTAR 1-5).

Analytical techniques used to meet these tasks involved assessment of the present condition of the primer

paint and metallurgical evaluation of the recovered structural steel elements.

6.1 BACKGROUND OF FIRE EXPOSURE STUDY

In addition to structural damage incurred by the World Trade Center (WTC) towers as a result of the

airplane strikes, fires initiated soon after the impacts and continued up to the collapse of both towers

(103 min for WTC 1 and 56 min for WTC 2). The location of the fires was not contained to the impact

area, as fuel from the airplanes was dispersed inside the buildings, igniting the office contents of

numerous floors. In the project entitled "Reconstruction of Thermal and Tenability Environment"

(NIST NCSTAR 1-5A), a detailed time line for the growth and spread of fires for both buildings was

constructed. Fires were observed on floors 92 through 1 00 and the 1 04th floor ofWTC 1 and floors 78

through 83 ofWTC 2. This information was subsequently used in Sec. 2.3 of this report, where the

recovered perimeter panels were correlated with the pre-collapse environmental conditions. Sixteen

panels recovered from WTC 1 were known to have been exposed to fire prior to collapse, with 1 3 of them

having recovered portions exposed to pre-collapse fires (Table 2-5 and Fig. 2-48). No similar panels

were recovered for WTC 2. As conditions within the building core could not be determined from the

photographic database, it was unknown what environment the recovered core columns may have

experienced. However, all four core columns discussed in Sec. 4.1 (C-80, C-88a, C-88b, and HH) had

as-built locations within the fire affected floors.

In the two buildings, there were 1,950 perimeter columns and 329 core columns traversing floors

involved in pre-collapse fires. NIST has portions of 54 of the perimeter columns and four of the core

columns, which represents about 3 percent and 1 percent, respectively, of the columns intersecting floors

with pre-collapse fires. Thus, while these pieces allow some comparison of metal and paint condition

with the predications of the fire model, the following forensic analysis does not, and cannot, give a picture

of temperatures seen by the vast majority of perimeter and core columns.

A number of methods were available to assess fire exposure and its effects on the steel, ranging from non-

destructive evaluation (e.g., visual observations and measurements of the pieces, surface hardness) to

destructive testing (e.g., residual stress measurements, metal lographic analysis, chemical and physical

analyses). Some of these methods are reviewed in Tide (1998). However, since the building collapsed,

some of these techniques were unemployable, while the availability and importance of others were
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Source: NIST.

Figure 5-2. Recovered floor truss connectors, c) lower support with attached remnant
of viscoelastic damper (as indicated) and d) close-up of remnants of viscoelastic damper

showing intact bolt holes (indicating bolt failure) (cont.).
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Source: NIST.

Figure 5-2. Recovered floor truss connectors from sample C-137f. a) Upper support

and b) remnants of gusset plate (as indicated) welded to top chord of truss during

construction.
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Source: NIST.

Figure 5-1. Examples of recovered floor truss material, a) Small sections of rod and
chord (sample C-53) and b) "balled-up" sections of rod and chord. (C-137f).
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recovery and subsequent handling phases. Thus, there was no determination of when damage occurred.

From the restricted number of samples available, the following general statements were made:

• Failure of the connection between the floor truss and seats was typically a result of bolt failure.

• Failure of a large majority of the compression resistance welds was observed.
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Physical Damage of Floor Truss Material

5.1 RECOVERED TRUSS MATERIAL

This chapter of the report covers the physical damage observed on the recovered, pre-fabricated floor

trusses that spanned the distance between the exterior wall and core columns. Samples received at

National Institute of Standards and Technology (NIST) were either very small sections (less than 3 ft to

4 ft in length) of chord and rod material (Fig. 5-1 a) or large entangled masses in the form seen in

Fig. 5- lb. According to Structural Engineers Association ofNew York (SEAoNY) volunteer members

involved in the recovery effort, it was necessary to "ball up" any truss pieces of significant size to

facilitate removal and subsequent handling in the recovery yards. This was required as the primary and

bridging trusses for a given floor were welded together into huge grids. During the collapse, these

lightweight floor sections were severely damaged and could not be easily removed. Thus, it was

unknown when the observed specific damage features occurred. Further, it was likely that sections of

multiple trusses were "balled" together rather than labeled samples consisting ofjust one pre-fabricated

truss unit.

Attempts were made to identify the truss material, but unlike most of the other major structural elements,

identifying marks could not be found on the trusses to establish their as-built location. Difficulty was also

encountered in trying to measure the length of the truss members to determine if they were of the 35 ft or

60 ft variety. It appears that no whole length sections were recovered. A large majority of the

compressive resistance welds between the chords and rods were observed to have failed. This was

evident from the large amount of chord material recovered without rods attached and vice versa. It was

unknown when these failures occurred and what caused them.

A number of floor truss ends (bolted portion of chord material for attaching the trusses to the seats,

Fig. 1—6b) were recovered for both upper and lower supports, typically intertwined within the balled

sample. The majority of upper chord connectors (Fig. 5-2a) were found to have bolt failures, i.e., the bolt

holes on the connectors were still intact. In addition, portions of the gusset plates, welded to the top truss

chord in the field after the truss was put into its as-built location, remained (Fig. 5-2b). For the lower

chord connections, failure typically involved failure of the bolts associated with the viscoelastic dampers

(Figs. 5-2c and 5-2d). Portions of diagonal bracing straps were also found within the truss material, as

well as separately. These straps were welded in the field and provided horizontal shear transfer between

the floor slab and the exterior wall, as well as out of plane bracing for perimeter columns not directly

supporting floor trusses. Typically these straps were found attached to the upper chords and entangled

within the piles of twisted steel bars and rods that made up the floor truss.

Floor truss material was recovered from the World Trade Center (WTC) towers; however, the as-built

location of the elements could not be determined. In addition, due to their light-weight construction, they

were easily damaged during events associated with the collapse of the building as well as during the

5.2 SUMMARY
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Source: NIST.

Figure 4-9. Failure modes of core channels, a) Fracture through channel as indicated

by arrows, b) failure associated with end connector, and c) seat ripped off at welded
connection to channel.
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Source: NIST.

Figure 4-6. Example of a recovered core channel. Arrows indicate seats used to attach

the floor trusses to the channel (core columns).

Source: NIST.

Figure 4-7. Sample C-124 from the core area, apparently used to support stairs as

brackets for runs and riser were observable.
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;

Source: NIST.

Figure 4-5. Core column HH (605A: 98-101) from the fire floors of WTC 1. a) Failure at

both ends and b) separation between flange and web in the 99th floor region.
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Source: NIST.

Figure 4-4. Damage associated with core column C-88b (801 B: 77-80) from the impact

zone of WTC 2. a) Overall view of fractured end, b) bottoms of "south" flange and both

webs bent toward the east just below the 80th floor level, ends were flame cut prior to

arrival at NIST, and c) "north" flange bent toward the north, majority of plate was
fractured with some flame cutting (prior to arrival at NIST).
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Source: NIST.

Figure 4-3. Damage associated with core column C-88a (801 B: 80-83) from the impact
zone of WTC 2.
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Source: NIST.

Figure 4-2. Overall view of recovered core columns C-88a (801 B: 80-83) and C-88b
(801 B: 77-80) that were located in the impact zone of WTC 2. The north flange of C-88b
may have sustained impact damage. Note that the welded column splice was still intact

though the airplane may have struck a portion of this column.
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Source: NIST.

Figure 4-1. Core column C-80 (603A: 92-95) located in the impact zone for WTC 1.

Damage believed to be due to collapse, a) Overall view of recovered column, b) view of

connection in the 92nd floor region, failure as a result of bolt fracture, and c) torn end of

column near the 94th floor region.
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was not available. Further, 25 pieces of core channel material were recovered; however, none of the

pieces were able to be identified as to their as-built location. Therefore, analysis of these core elements

could only be conducted in their present state without regard to direct visual evidence of damage

occurring as a result of the airplane impacts. From this analysis, the following were concluded:

• Two columns of significance were recovered from WTC 1 ; one was located within the impact

floors (C-80, 603A: 92-95), and the other was located within floors exposed to fire (HH, 605A:

98-101). Evidence suggested that damage observed on these pieces occurred during the building

collapse and not a result of impact.

• Two columns of significance were recovered from WTC 2; they were both located within the

impact floors (C-88a, 801B: 80-83, and C-88b, 801B: 77-80). Evidence suggested that damage

found on C-88a was a result of building collapse. However, C-88b may have been damaged

directly by the airplane impact.

• Failure of core columns occurred both at the splice connections and fracture of the columns

themselves. Of particular note was the unbroken weld splice between core columns C-88a and C-

88b.

• Of the 31 core seats recovered, 90 percent were still intact though some had extensive damage.

Only two were observed to have been completely torn from the channel.

NIST has documented approximately 1 percent of all core columns intersecting floors with damage from

the impact or fire floors. Thus, the preceding forensic analysis does not, and cannot, give a full and

accurate picture of the type and amount of impact damage sustained by the vast majority of core columns.
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high enough (starting within the 98th floor) that it was not damaged during the impact. The failure mode

of each end was different (Fig. 4-5a). Fracture of the plates used in the bolted connection occurred at the

lower portion of the column (98th floor region), while the upper portion was torn through the material

(100th floor region). Additionally, the sample was nearly bent in half (99th floor region) with fracturing

of the wide flange taking place. Figure 4-5b shows that the flanges became separated from the web in the

region of the bend. As the deformation of this column occurred above the impact damage sustained by

the perimeter panels, this separation likely occurred during collapse of the building. This result was

consistent with the aircraft impact damage analysis of the NIST investigation (NIST NCSTAR 1-2A).

4.1.3 Other Identified Core Columns

As none of the remaining columns were within the impact or fire floors, no further analysis was

conducted as damage was assumed to be a result of the collapse and subsequent handling during the

recovery.

4.1.4 Unidentified Core Columns

Due to the unknown location of these columns, and the small overall population of the core columns, no

further analysis was conducted.

4.2 CORE CHANNELS AND SEATS

There were 25 pieces of channel material retrieved from the WTC towers. Twenty-four of these pieces

had truss seats welded directly to the channel and varied in length between 2 ft and 12 ft. An example of

one of these elements can be seen in Fig. 4-6. The other piece, labeled C-124, appears to have been a

support for a stairwell, Fig. 4-7, as brackets for the risers and runs were observable. While some

markings were observed on a limited number of pieces (Fig. 4-8), the code was ambiguous and the as-

built location of the channels could not be determined.

An analysis was conducted to evaluate the failure modes of the channels and the condition of the core

seats. Observations concerning these elements can be found in Table 4-2. Of the 24 channels used to

support the floor trusses, half of the samples were observed to have both ends fail within the channel

itself, Fig. 4-9a, while the other half were observed to have failure at one or both of the end connectors,

Fig. 4-9b. Only 21 pieces of channel were found to have seats or remnants of them. As mentioned

above, sample C-124 appears to have come from a stairwell, while samples C-97, C-99, and C-105 have

no indication that seats were attached to the recovered portions of the channels. From the 21 channels

with seats, a total of 31 seats were available for inspection and can be observed in Appendix C. Over

90 percent of the seats were still intact with the majority of these somewhat deformed. Only two seats

were observed to be ripped completely from the channel at the welded joint between the seat and the

channel, Fig. 4-9c. Half of the retained seats were observed to have both bolt holes still intact, while the

other half had a minimum of one bolt hole ripped out.

4.3 SUMMARY

Unlike the exterior panels, relatively few samples of identified core columns were recovered and

available for inspection. In addition, photographic evidence indicating their condition prior to collapse
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was observed on the plate in the immediate vicinity of the fracture. Again, as perimeter panel damage in

this area occurred in the 95th floor region, damage of this column most likely occurred during collapse of

the building. This result was consistent with the aircraft impact damage analysis of the NIST
investigation (NIST NCSTAR 1-2A).

Core columns C-88a and C-88b, from WTC 2, were unique among the recovered core elements in that the

columns were still connected at the welded column splice, Fig. 4-2. Both columns were 42 ksi built-up

box columns with their shared splice in the 80th floor level. The as-built location of C-88a was above

that of C-88b. The lower 16 ft of C-88a was recovered (floors 80 through 82), whereas the upper 8 ft of

C-88b was still attached (primarily within the 80th floor). The location of the column line, in the middle

of the first row on the south face ofWTC 2 (Fig. 1-8), would place the columns very close to the direct

path of the plane. The failed portion of C-88a shows that the upper part of the column was bent

downward near the 81st floor level, Fig. 4-3. The flanges and webs were bent toward the south-

southwest direction with the plates ending in fractured surfaces. (The south flange was subsequently

separated from the rest of the column during recovery and was labeled "C-88c".) The fracture surfaces

were too corroded for a macroscopic inspection, but they were relatively flat with no noticeable necking.

The damage characteristics of this column suggest that deformation occurred during collapse of the

building. This was based upon (1) the damage (81st floor level) was above the floors of impact in this

region (79th floor level), (2) the columns were bent downward indicating overloading of the column from

above, and (3) the bending direction of the plates was opposite to the direction of the travel of the plane.

This result was consistent with the aircraft impact damage analysis of the NIST investigation (NIST

NCSTAR 1-2A).

The failed portion of C-88b was quite different. Both webs and the "south" flange were severely bent to

the east and had flame cut ends (prior to arrival at NIST), Fig. 4—4. The bends appeared to occur just

below the connector for the channel associated with the 80th floor. The "north" flange had a less

significant bend toward the north, with approximately 80 percent of the failed end of the plate as a

fracture. There was no visible necking of the plate in the area of failure with the remaining portion of the

plate being flame cut (again, prior to arrival at NIST). This flange was fractured roughly 2 ft below the

splice in the 80th floor level. The fracture surfaces were not available for analysis as they were

significantly corroded. As with the upper portion of C-88a, the bending of the south flange and the webs

likely occurred during the collapse of the building as the direction of bending was not consistent with the

travel of the airplane. However, the damage to the north flange may have been a result of impact damage,

as the severity and location of the plate failure was different than the other three plates of the column and

the direction of the bend was consistent with the travel of the airplane. Base case simulations indicated

that impact damage would not have occurred to this column, however, another analysis with parameters

set to represent a more severe case indicated that the column may have sustained damage

(NIST NCSTAR 1-2A).

4.1.2 Core Columns Located in Fire Region

In addition to the three columns discussed above, there was only one other column recovered from within

the fire region. This was sample HH from WTC 1, Fig. 4-5. This was a 42 ksi wide flange positioned

near the middle of the second row of core columns along the north face. The bottom half of the column

was recovered (approximately 16 ft). The location of the column line number in the core would put it

directly in the path of the airplane (Fig. 1-7), however, its elevation within the building may have been
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Physical Damage of Core Elements (Columns and Channels)

This chapter of the report covers the physical damage and failure modes observed on the recovered core

columns and channel elements used to connect the floor trusses to the core. The damage may have been a

result of any one of the extreme loading conditions mentioned above (aircraft impact, the concomitant

fires, the ensuing collapse of the buildings, or the subsequent handling related to the recovery efforts).

While in some cases the origin of damage may be evident, there may be cases in which the event that

caused the damage to occur may be difficult or impossible to resolve.

4.1 CORE COLUMNS

There were 55 wide flange and built-up box beam elements recovered (NIST NCSTAR 1-3B). Of these,

12 columns were unambiguously identified as core columns with their as-built location known, 12 wide

flange sections were found to have markings that were not interpretable, and 3 1 columns were without

any markings at all. Due to the ambiguous nature of the last two groups, only the first group of samples

were analyzed.

Table 4-1 displays the 12 identified core columns, their as-built locations, and the possible conditions to

which they may have been exposed prior to the collapse of the buildings. Due to the small number of

samples, statistical data of the various damage features and failure modes would be irrelevant. Therefore,

in depth descriptions of the four significant pieces (C-80, C-88a, C-88b, and HH) that were located within

the fire zone floors were made. For reference, Figs. 1-7 and 1-8 display the horizontal and vertical

positioning of the recovered core columns within the buildings with respect to the location of the

perimeter panel damage as a result of the impacts for World Trade Center (WTC) 1 and WTC 2,

respectively.

In the two buildings, there were 329 core columns, each three stories tall, traversing floors involved in the

impact and pre-collapse fires. NIST has portions of four of these columns, which represents about

1 percent of all core columns intersecting floors with damage from the impact or fires. Thus, while these

pieces allow for some assessment of damage, the following forensic analysis does not, and cannot, give a

full and accurate picture of the type and amount of damage sustained by the vast majority of core

columns.

4.1.1 Core Columns Located in Impact Region

Sample C-80 (Fig. 4-1 a), from WTC 1, was a 36 ksi wide flange, located in the middle of the second row

of core columns along the north face. Only the lower third of the column was recovered (approximately

13 ft). The location of the column line in the core would place it squarely in the path of the airplane

(Fig. 1-7), however, its elevation within the building (ending just below the 93rd floor) may indicate that

it did not sustain impact damage. Different failure modes were observed for each end (Fig. 4- lb and

4-lc). Bolt fracture occurred at the lower portion of the column (92nd floor region), while the upper

portion was torn through the material (near the 93rd floor region). No visible necking (reduction in area)
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IDA

BD 101

esi

10 Bill

yfli

0 S 0

BID

no

EIE1Q1DII

DIDBIIDDH

EI0DBB0

111

IB

Seat intact, relatively undefeimed

Seat intact, bent up

Seat intact, bent down

Seat intact, bent towards column

Seat gone, atleast one standoff plate remains

Seat and standoff plaits gone

Tab plate intact, relatively und«formed

Tab plate intact, bent tip

Tab plate intact, bent down

Tab plate gone

95th floor level

1911

OB

BOB

BOB

B DB HI

Figure 3-51 b. WTC 1, damage of connectors. At or below the 95th floor, all connectors

are either bent down or missing.
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I Seat ffiiact, relatively undeforme d

| Seat intact, beat up

| Seat intact, bent down

Seat intact, bent towards column

Seat gone, atleast one standoff* plate remains

Seat and standoff plates gone

Tab plate intact, relatively u&deformed

Tab plate tntact, bent up

Tab plate intact, bent down

Tab plate gone

Figure 3-51a. WTC 1, damage diagram overlaid with recovered samples and damage of

connectors.
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Outside of building looking in at panel

Column

Top

C1T
o

Middle

C1M

Bottom

C IB

CD G)

OQ

\

Spandrel

C2T

C3M

C2M

C3B

CI C2 \ C3

C2B

Figure 3-50. Labeling system used by NIST to identify the specific intersections of

columns and spandrels of the exterior wall panels.
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N7-C3T
WTC1
Col 126

Fl 100

Fl 97 Torque direction

Source: NIST.

Figure 3-49. Photographs of recovered end plate connections from sample N-7

(A127: 97-100). Lower connection failed upon airplane impact, upper connection most
likely failed as a result of collapse (cont.).
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N7-C2T
WTC1
Col 127

Fl 100

N7-C2B
WTC1
Col 127

Fl 97

Source: NIST.

Figure 3-49. Photographs of recovered end plate connections from sample N-7

(A127: 97-100). Lower connection failed upon airplane impact, upper connection most
likely failed as a result of collapse (cont.).
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N7-C1T
W TCI
Col 128

F1100

N7-C1B
WTC1
Col 128

Fl 97

Source: NIST.

Figure 3-49. Photographs of recovered end plate connections from sample N-7

(A127: 97-100). Lower connection failed upon airplane impact, upper connection most
likely failed as a result of collapse.

178 NISTNCSTAR 1-3C, WTC Investigation



Physical Damage of Recovered Exterior Wall Panels

M2-C3B
WTC1
Col 129

Fl 96

Source: NIST.

Figure 3-48. Photographs of recovered end plate connections from sample M-2

(A127: 97-100). Lower connection failed upon airplane impact, upper connection failed

as a result of either airplane impact or collapse (cont.).
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No change in bolt

hole shape

M2-C2T
WTC1
Col 130

Fl 99

M2-C2B
WTC1
Col 130

Fl 96

Source: NIST.

Figure 3-48. Photographs of recovered end plate connections from sample M-2

(A127: 97-100). Lower connection failed upon airplane impact, upper connection failed

as a result of either airplane impact or collapse (cont.).
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M2-C1T
WTC1
Col 131

Fl 99

M2-C1B
WTC1
Col 131

Fl 96

Source: NIST.

Figure 3-48. Photographs of recovered end plate connections from sample M-2

(A127: 97-100). Lower connection failed upon airplane impact, upper connection failed

as a result of either airplane impact or collapse.
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M27-C2B
WTC1
Col 130

Fl 93

Source: NIST.

Figure 3-47. Photographs of recovered end plate connections from sample M-27
(A130: 93-96). Probable cause of connection failure was collapse (cont.).
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Endplate is bent, no weld

failures observed

M27-C1B
WTC1
Col 131

Fl 93

Source: NIST.

Figure 3-47. Photographs of recovered end plate connections from sample M-27
(A130: 93-96). Probable cause of connection failure was collapse.
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S9-C3T
WTC1
Col 132

Fl 100

S9-C3B
WTC1
Col 132

Fl 97

Source: NIST.

Figure 3-46. Photographs of recovered end plate connections from sample S-9

(A127: 97-100). Lower connection failed upon airplane impact, upper connection failed

as a result of either airplane impact or collapse (cont.).
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S9-C2T
WTC1
Col 133

Fl 100

No change in bolt

hole shape

S9-C2B
WTC1
Col 133

Fl 97

Source: NIST.

Figure 3-46. Photographs of recovered end plate connections from sample S-9

(A127: 97-100). Lower connection failed upon airplane impact, upper connection failed

as a result of either airplane impact or collapse (cont.).
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S9-C1T
WTC1
Col 134

Fl 100

S9-C1B
WTC1
Col 134

Fl 97

No change in bolt

hole shape

Source: NIST.

Figure 3-46. Photographs of recovered end plate connections from sample S-9

(A127: 97-100). Lower connection failed upon airplane impact, upper connection failed as

a result of either airplane impact or collapse.
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Fl 94 Torque direction

M30-C3B
WTC1
Col 132

Fl 94

Source: NIST.

Figure 3-45. Photographs of recovered end plate connections from sample M-30

(A133: 94-97). Both connection failures were due to airplane impact.
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Source: NIST.

Figure 3-44. Photographic example of Type 3 failure mode for end plate connections, a

welded connection with bolts intact, end plate of above or below adjoining column still

attached. Sample shown is C-24 (B203: 74-77). Damage of this type may be due to any

one of the extreme loading events.
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Source: NIST.

Figure 3-43. Photographic example of Type 2 failure mode for end plate connections,

a) Type 2a, partial failure with end plate still remaining (arrows) from M-28 (B345: 98-101)

and b) Type 2b, full failure with end plate missing from N-9 (A154: 101-104). Damage of

this type may be due to any one of the extreme loading events.
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: I '.

. ; : » ; - l ,

Source: NIST.

Figure 3-42. Photographic example of Type 1 failure mode for end plate connections,
bolt failure. Column on right (M26-C3B) has two failed bolts remaining (arrows). Sample
shown is M-26 (A1 30: 90-93). Damage of this type may be due to any one of the extreme

loading events.
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N7-C3T
Column 126, 100th floor

Spandrel Detail : 101

Failure mode : Type lb

Orientation of image : From inside building looking

out.

Probable cause of damage : Collapse

N7-C3M
Column 126, 99th floor

Spandrel Detail : 101

Failure mode : Type 1c

Orientation of image : From inside building looking

out.

Probable cause of damage : Collapse

N7-C3B
Column 126, 98th floor

Spandrel Detail : 101

Failure mode : Type 3

Orientation of image : From inside building looking

out.

Probable cause of damage : Impact or collapse

Source: NIST.

Figure 3-41. Photographs of recovered spandrel connections from sample N-7

(A1 27: 97-100) (cont.).

NIST NCSTAR 1-3C, WTC Investigation 165



Chapter 3

N7-C1T
Column 128, 100th floor

Spandrel Detail : 101

Failure mode : Type 4a

Orientation of image : From outside building

looking in.

Probable cause of damage : Collapse

N7-C1M
Column 128, 99th floor

Spandrel Detail : 101

Failure mode : Type lc

Orientation of image : From outside building

looking in.

Probable cause of damage : Collapse

N7-C1B
Column 128, 98th floor

Spandrel Detail : 101

Failure mode : Type lb

Orientation of image : From outside building

looking in.

Probable cause of damage : Impact or collapse

Source: NIST.

Figure 3—4 1 . Photographs of recovered spandrel connections from sample N-7 (A127: 97-100).
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M2-C3T
Column 129, 99th floor

Spandrel Detail : 101

Failure mode : Type lb

Orientation of image : From inside building looking

out.

Probable cause of damage : Collapse

M2-C3M
Column 129, 98th floor

Spandrel Detail : 101

Failure mode : Type la

Orientation of image : From inside building looking

out.

Probable cause of damage : Impact or collapse

M2-C3B
Column 129, 97th floor

Spandrel Detail : 101

Failure mode : Type lb

Orientation of image : From intside building

looking out.

Probable cause of damage : Impact

Source: NIST.

Figure 3-40. Photographs of recovered spandrel connections from sample M-2

(A1 30: 96-99) (cont.)
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M2-C1T
Column 131, 99th floor

Spandrel Detail : 101

Failure mode : Type 4a

Orientation of image : From inside building looking

out.

Probable cause of damage
:
Collapse

M2-C1M
Column 131, 98th floor

Spandrel Detail : 101

Failure mode : Type 3, portion of spandrel from

S9-C3B still attached

Orientation of image : From inside building

looking out.

Probable cause of damage : Impact or collapse

M2-C1B
Column 131, 97th floor

Spandrel Detail : 101

Failure mode : Type la

Orientation of image : From inside building looking

out.

Probable cause of damage : Impact

Source: NIST.

Figure 3-40. Photographs of recovered spandrel connections from sample M-2

(A130: 96-99).
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M27-C1M
Column 131, 95th floor

Spandrel Detail : 101

Failure mode : Type 4a

Orientation of image : From inside building

looking out.

Probable cause of damage : Collapse

M27-C1B
Column 131, 94th floor

Spandrel Detail : 102

Failure mode : Type 4a

Orientation of image : From inside building

looking out.

Probable cause of damage : Impact or collapse

Source: NIST.

Figure 3-39. Photographs of recovered spandrel connections from sample M-27
(A130: 93-96).
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S9-C3T
Column 132, 100th floor

Spandrel Detail : 101

Failure mode : Type la

Orientation of image : From inside building

looking out.

Probable cause of damage : Collapse

S9-C3M
Column 132, 99th floor

Spandrel Detail : 101

Failure mode : Type 4b. portion of spandrel from

M2-C1T still attached.

Orientation of image : From outside building

looking in.

Probable cause of damage : Collapse

S9-C3B
Column 132, 98th floor

Spandrel Detail : 101

Failure mode : Type 3

Orientation of image : From outside building

looking in.

Probable cause of damage : Impact or collapse

Source: NIST.

Figure 3-38. Photographs of recovered spandrel connections from sample S-9

(A1 33: 97-100) (cont.)-
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S9-C1T
Column 134, 100th floor

Spandrel Detail : 101

Failure mode : Type 3

Orientation of image : From inside building looking

out.

Probable cause of damage : Collapse

S9-C1M
Column 134, 99th floor

Spandrel Detail : 101

Failure mode : Type 4a

Orientation of image : From inside building

looking out.

Probable cause of damage : Collapse

S9-C1B
Column 134, 98th floor

Spandrel Detail : 101

Failure mode : Type la

Orientation of image : From inside building looking

out.

Probable cause of damage : Impact or Collapse

Source: NIST.

Figure 3-38. Photographs of recovered spandrel connections from sample S-9

(A133: 97-100).
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1E

i L ^
Portion of spandrel from M-27

M30-C3B
Column 132,95th floor

Spandrel Detail : 101

Failure mode : Type 4b, portion of spandrel from

M27-C1M still attached.

Orientation of image : From inside building looking

out.

Probable cause of damage : collapse

Source: NIST.

Figure 3-37. Photographs of the recovered spandrel connections from M-30
(A133: 94-97).
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Source: NIST.

Figure 3-36. Photographic example of

Type 5 failure mode for spandrel

connections, bolt failure resulting in intact

holes in spandrel or splice plate (observed
from outside the building looking in) from

C-89 (B215: 12-15). Damage of this type may
be due to any one of the extreme

loading events.
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Source: NIST.

Figure 3-35. Photographic examples of Type 4 failure mode for spandrel connections, a)

Type 4a, vertical fracture of observed spandrel plate (observed from inside the building

looking out) from M-2 (A130: 96-99) and b) Type 4b, vertical fracture of the neighboring

spandrel plate resulting in the observed spandrel connection retaining both the splice

plate and portion of spandrel from neighboring panel (observed from outside the

building looking in) from C-25 (A206: 89-92). Damage of this type may be due to any one
of the extreme loading events.
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Source: NIST.

Figure 3-34. Photographic examples of Type 3 failure mode for spandrel connections,

mixed mode. Left image orientation was from the inside of the buildings looking out

from N-9 (A154: 101-104), right image orientation was from the outside of the building

looking in from C-89 (B21 5: 1 2-1 5). Damage of this type may be due to any one of the

extreme loading events.
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Figure 3-33. Photographic example of Type 2 failure

mode for spandrel connections, bolt tear out in splice

plate from C-46 (B157: 68-71). Orientation was from
the outside of the building looking in. Damage of this

type may be due to any one of the extreme
loading events.
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Source: NIST.

Figure 3-32. Photographic examples of Type 1 failure mode for spandrel connections,

a) Type 1a, the observed spandrel connection possessed the tear outs (arrows) from N-8

(A142: 97-100), b) Type 1b, the splice plate and all bolts of the observed spandrel

connection remained, thus, tear out occurred in the neighboring spandrel plate to which
it was attached from N-7 (A127: 97-100), and c) Type 1c, the observed spandrel

connection possessed the tear out, with the additional fracture of the spandrel plate in a

horizontal manner from S-10 (A224: 92-95). All orientations are from the inside of the

buildings looking out. Damage of this type may be due to any one of the extreme

loading events.
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Source: NIST

Figure 3-31. Most-likely scenario for fracture associated with weld if second crack of

sample S9-C2B-Weld-1 had continued to propagate through the flange plate. Sample
shown is from N-1 (A218: 82-85). Damage most likely occurred during the collapse of

WTC 1.
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Flange

Figure 3-30. Light optical micrograph showing fracture of the flange plate (as seen in

Fig. 3-29) initiating in the HAZ of the first submerged arc weld and then propagating into

the unaffected base material. Two percent nital and 4 percent picral etch. (A133: 97-100,

column 133)
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HAZ

Source: NIST.

Weld

metal

0.5 mm

Figure 3-28. Light optical micrograph showing fracture of the outer web (from Fig. 3-27)

occurring solely in the HAZ of the plate along the fusion line of the weld. Fracture may
have been a result of airplane impact. Two percent nital and 4 percent picral etch.

(panel S-9, A133: 97-100, column 133)
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S9-C2B-Weld-t

Source: NIST

Figure 3-25. Fracture near a weld on a perimeter panel, sample S9-C2B-Weld-1 (A133:

97-100, column 133), laboratory images a) overall and b) close-up of crack and crack

front propagating through the outer web. Fracture may be a result of airplane impact

(vertical tail assembly) with removal shown in Fig. 3-24.
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Source: NIST.

Figure 3-24. Weld fracture sample S9-C2B-Weld-1 (A133: 97-100, column 133), images
taken a) prior to sample removal and b) after flame cutting. Panel S-9 was struck by the

vertical tail assembly of the airplane.
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Source: NIST

Figure 3-21. Removal of undamaged weld samples, a) Uncut sample labeled S9-C3B-
Weld-1 (A133: 97-100, column 132) of a welded joint between a flange and outer web,
b) cut sample, c) uncut sample labeled M2-C3M-Weld-1 (A130: 96-99, column 129) of a

welded joint between a flange and inner web, and d) cut sample.
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Flange 1 •

.. .

.-• -

. .... ... .

' ''.
. .

'
'

t-

1 0.5 mm I
mm - " Inner Web

Source: NIST.

Figure 3-20. Light optical micrograph showing fracture of the inner web (from Fig. 3-18)

initiating near the fusion line in the HAZ of the plate. Two percent nital and 4 percent

picral etch. (A130: 96-99, column 129).
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c)

M2-C3B-WELD-2
Source: NIST.

Figure 3-18. Example of fracture near weld of a perimeter column, sample
M2-C3B-Weld-2 (A130: 96-99, column 129), images taken a) prior to sample removal,

b) after flame cutting, and c) in the laboratory. Fracture was a result of airplane impact.
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Source: NIST.

Figure 3-17. Light optical micrograph b) at higher magnification (red box in [a])

showing initiation of fracture at the toe of the weld and traveling through the HAZ of the

plate. Two percent nital and 4 percent picral etch. (A130: 96-99, column 129)
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Source: NIST.

Figure 3-17. Light optical micrograph a) showing fracture of the outer web plate as a

result of airplane impact (seen in Fig. 3-14). Fracture initiated at the toe of the weld and
traveled through the HAZ of the plate. Two percent nital and 4 percent picral etch.

(panel M-2, A130: 96-99, column 129)
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b) c)

Source: NIST.

Figure 3-15. Fracture surface for sample M2-C3B-Weld-1 (A130: 96-99, column 129)

shown in Fig. 3-14. Fracture features of outer web have "lamellar tearing" type fracture

characteristics, a) Light micrograph, b) and c) scanning electron micrographs.
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Source: NIST.

Figure 3-14. Example of fracture near weld of a perimeter column as a result of airplane

impact, sample M2-C3B-Weld-1 (A130: 96-99, column 129), images taken a) prior to

sample removal, b) after flame cutting, and c) in the laboratory.
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Source: NIST.

Figure 3-13. Damage images from sample M-2 (A130: 96-99). Panel from WTC 1 was
struck by fuselage of airplane and bent about the 97th floor, a) Large buckles observed

on the flange plates of column 130, b) cracking of the flange plates on column 130,

c) cracking of spandrel at 97th floor level, and d) no cracking near the welds in this area

on column 130.
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Source: NIST.
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Distance from fracture surface (in)

Figure 3-12. Thinning of outer web from column 130 of panel M-2 (A130: 96-99). Tensile

failure of the plate was a result of airplane impact into WTC 1. a) photograph showing
thinning, b) graph indicating plate thinning near fracture surface.
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Distance from fracture surface (in)

Source: NIST.

Figure 3-11. Analysis of fractured plate from sample S-9 (A133: 97-100), outer web of

column 132. c) graph indicating plate thinning near fracture surface, d) image showing
paint cracking as a result of tensile loading of the plate.
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S9-CLM-OW-1

Source: NIST.

Figure 3-11. Analysis of fractured plate from sample S-9 (A133: 97-100), outer web of

column 132. This panel from WTC 1 was struck by the vertical tail assembly, a) Location

of sample removed, b) laboratory image showing sample removed.
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M30-C2B-S-1

(chalk label wrong)

Source: NIST.

Figure 3-10. Fracture surface of sample M-30 (A133: 94-97), spandrel plate of

column 133. Fracture was due to airplane impact of WTC 1. a) Location of sample
removed, b) laboratory image showing sample removed, c) fracture shows chevrons
running along the length of the crack path, and d) red highlighted area showing the

location of small shear lips.
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Source: NIST.

Figure 3-9. Photographic examples of Type 3 damage feature for exterior panel

columns, severing of columns, a) Type 3a, sever associated with stiffener or diaphragm
plate from C-22 (A157: 93-96), b) Type 3b, sever occurred away from stiffener or

diaphragm plate from M-28 (B345: 98-101), c) Type 3c, sever occurred at concrete slab of

floor from M-30 (A133: 94-97), and d) end was flame cut during recovery from N-10

(A115: 89-92).
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Source: NIST.

Figure 3-8. Photographic examples of Type 2 damage feature for exterior panel

columns, fracture in base plate near fillet welds, a) Type 2a, localized fracture from N-7

(A127: 97-100), b) Type 2b, extensive fracture from C-46 (B157: 68-71), and c) Type 2c,

extensive fracture resulting in "splaying" of column from M-27 (A130: 93-96).
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Source: NIST.

Figure 3-7. Photographic examples of Type 1 damage feature for exterior panel

columns, gross physical distortion of flanges and webs, a) Type 1a, crushed columns
from K-2 (A236: 92-95), b) Type 1a, crushed column from N-12 (A206: 92-95), c) Type 1b,

punctured column from N-8 (A142: 97-100), and d) Type 1c, buckling of column from K-2.
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Source: NIST.

Figure 3-6. Overall image of sample N-7 (A127: 97-100). Panel was in relatively good
shape besides being folded inward about an axis parallel to the length of the columns

with the outer web of the columns facing outward. This was believed to have happened
during the collapse or recovery efforts. The three columns were relatively intact with

limited damage.
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Source: NIST.

Figure 3-5. Panel M-2 (A130: 94-97). This panel was from the north face of WTC 1. The
lower portion of the panel was struck by the fuselage of the airplane. General shape of

panel is due to airplane impact and bending about the 97th floor slab, a) Overall view,

bottom of panel is on the left-hand side of the picture and the outside of the panel is

facing down, b) major bend in panel located at the 97th floor level, and c) splayed

bottoms of columns 129 and 130.
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Source: NIST.

Figure 3-3. a) Overall image of panel S-9 (A133: 97-100) and b) lower portion of panel

showing possible damage from airplane impact, bottoms of columns 133 and 134 shown,
and c) column 132 that sustained a fair amount of damage.
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Source: NIST.

Figure 3-2. a) Overall image of panel M-30 (A133: 94-97), b) severing of column 132 at

the stiffener plate associated with the top of the spandrel, and c) severing of column 133

at a slightly lower elevation associated with the 95th floor level concrete slab.
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Source: Original photograph copyright Roberto Rabanne 2001.

Figure 3-1 . Image showing impact damage to the north face of WTC 1 . The as-built

location of the five recovered panels from the impact zone were highlighted: S-9 (pink),

M-30 (blue), M-2 (orange), M-27 (green), and N-7 (yellow).
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lowest cross-sectional area. As seen in Fig. 3-54a, the fillet weld between the standoff plate and the seat

does not metallurgically join the portion of the standoff plate in contact with the seat. Thus, with the

lowest cross-sectional area with respect to the high loading forces of the collapse, failure here would not

be unanticipated.

3.5.6 Summary

From the observations made on recovered panels concerning the floor truss connectors, the most

significant data was observed when the panels were separated by floor elevation. Of the 28 floor truss

connectors at or below the impact floors for WTC 1, 93 percent were either missing or bent downward;

only 37 percent of the 38 floor truss connectors above the impact floors. Similar results were found for

WTC 2, where 88 percent of the floor truss connectors below the impact floors were bent down or

missing, while only 55 percent of the floor truss connectors above the this region experienced analogous

damage characteristics. This occurrence was most likely a result of the overloading of the lower floors

("pancaking" mechanism) during collapse of the building. When the seats were observed missing, it was

typically a result of fracture near a welded joint associated with the standoff plates. Inspection of the

welded failures associated with the floor truss connectors showed that failure typically occurred in the

location with the lowest cross-sectional area. However, there was no evidence throughout this analysis to

indicate that fracture associated with the welds evaluated was related to: 1 ) inadequate joining materials

(weld strength and ductility appeared appropriate for the application), 2) inappropriate welding

procedures (welds were typically oversized with no visible flaws), or 3) poor performance of the welded

joint (fracture was associated with extreme loading event, i.e., overloading of the floors upon collapse).
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columns were more likely than the identified ones to be significantly damaged or in smaller pieces and

would have had a higher likelihood of having protruding parts like floor seats damaged or torn off.

3.5.5 Weld Failures Associated with the Floor Truss Connectors of the

Perimeter Wall

As part of the investigation of the damage and failure modes of the floor truss connectors of the

WTC towers, an analysis was conducted on the damage features of the arc welds associated with these

connectors. Two example joints were analyzed; the connection between the spandrel plate and standoff

plates and the connection between the standoff plates and the seat (Fig. 3-52). Both undamaged and

damaged welds were investigated and the behavior of the failed joints characterized with respect to the

base metal HAZ, and weld metal.

Welded Joints Between Spandrel and Standoff Plates of Type A Connectors

As stated above, the two standoff plates were fillet welded directly to the spandrel plate with multiple

pass beads observed only on the outer side of the plates. The specific arc welding process was not found

within the design drawings, but due to the short welding length, shielded metal arc welding (SMAW) or

flux cored arc welding (FCAW) was most likely used. Typically, these joints were over-welded, meaning

that a 3 8 in. or 1/2 in. weld may have been deposited where only a 5/16 in. bead was specified.

Figure 3-53a shows one of the undamaged welds in cross-section. The standoff plate was a 42 ksi ferrite-

pearlite steel, and the specific spandrel shown in the images was a 65 ksi plate. The HAZ in the standoff

plate was seen extending through the entire thickness, while a shallower penetration was observed in the

spandrel plate. This difference is related to welding procedures and angle of the heat source with respect

to the two plates. As shown in Table 3-7, nearly one-fourth of the observed Type A connectors outside

of the impact zone had at least one of the standoff plates "ripped" from the spandrel. As these connectors

were probably intact prior to collapse, it was assumed that the plates were detached via a shear

mechanism as the buildings came down. Figure 3-53b shows the cross-section of one of these failed

joints. Failure was observed to occur almost exclusively within the HAZ of the standoff plate. This

would be expected as the fracture path would be shorter in the plate as opposed to traversing through the

stronger weld material. Additionally, the standoff plate had the lowest cross-sectional area with respect to

the high loading forces of the collapse. Thus, failure here would not be unreasonable.

Welded Joint Between Standoff Plates and Type A Connectors

Removal of the seat from the spandrel revealed that a double fillet weld was used to join the seat to the

standoff plates. This clearly indicated that the standoff plate/seat assemblies were first prefabricated and

then welded to the spandrel. Again, SMAW or FCAW were assumed to be the processes used.

Figure 3-54a shows one of the undamaged welds in cross-section. The HAZ from both fillet welds spans

the entire standoff plate. Again, a shallower penetration was observed in the seat angle. As shown in

Table 3-7, it was seen that nearly one-third of the observed Type A connectors outside of the impact zone

had the seats ripped off with at least one of the standoff plates remaining. Similar to the premise used

above for the joint between the spandrel and standoff plate, it was assumed that the plates were detached

via a shear mechanism as the buildings collapsed. Figure 3-54b shows the failed cross-section of one of

these joints. Failure in this case was observed to occur within the weld metal at the weld-seat interface.

While this would seem unexpected, closer inspection of the intact weld revealed these areas have the
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(category 2) or noted with external flaming (category 3). This information was also found in the tables

listed above.

For Type A and Type C connectors, there were negligible changes to the damage patterns for these floor

truss connectors regardless of whether or not the connector may or may not have had fire exposure.

Failure of the gusset plate welded to the top truss chord was almost exclusively observed regardless of

exposure. For Type B and Type D floor truss connectors, the sampling group was too limited to make

any significant conclusions, but the data was shown for completeness.

3.5.3 Panels Separated by Floor

Exterior panels from WTC 1 were analyzed to determine if different failure mechanisms were observed

for those panels above the impact region and those located below. There were 63 observations from the

12 panels at or below the 95th floor and 74 from the remaining 1 1 panels above the 95th floor.

Figure 3-51 spatially displays this information for WTC 1 near the impact region of the north face. Both

pictorially and statistically, below the impact zone, the majority of floor truss connectors were observed

to be either bent down or completely missing. Failure of the gusset plate welded to the top truss chord

was again almost exclusively observed regardless of location. This may be a result of overloading the

lower floors as the floors above were "pan-caking." Again, the data for Type B and Type D floor truss

connectors was too limited to define any sort of pattern.

For WTC 2, there were 30 examples of Type A floor truss connectors and 18 examples of Type C floor

truss connectors. Again, the sample size for Type B and Type D floor truss connectors was limited, but

the data was shown. There were 48 observations from the Type A and C floor truss connectors, with

32 observations from at or above the impact region and 16 below. Similar to WTC 1, the floor truss

connectors had a higher tendency to be bent downward or were missing below the impact floors than

above, with concomitant failure of the gusset plates. This data was not shown spatially, as an image

similar to Fig. 3-51 with a high concentration of samples was not available; recovered panels from

WTC 2 were more randomly distributed through the building.

The number of bolts found remaining in the Type A floor truss connectors differed significantly by floor.

In total, there were 35 bolts remaining for WTC 1 and 8 for WTC 2. All but one bolt was found at or

above the impact floors. This was considered disproportionate, as the number of seats remaining was not

as unequally distributed.

3.5.4 Unidentified Exterior Column Panels

The data for the seat connections on the unidentified panels are presented in Tables 3-7 and 3-8. For the

Type A seats, there appears to be no significant difference in the observed failure modes in the

unidentified columns and those seen on the columns with identified locations on the building. For

Type C seats, there was an observed decrease in the number of plates that remained intact and were bent

down, and an increase in the number of plates that fractured away from the panels at the toe of the weld

on the plate. This can be understood by considering the population of unidentified columns as a whole.

These samples were missing identifying marks on specific parts of the panel due to that panel being torn

off during the building collapse or the subsequent salvage operations. Thus, in general, the unidentified
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slab and exterior wall, as well as out-of-plane bracing for the perimeter columns not directly

supporting the floor trusses.

A final variation of the gusset plate support of this type was found solely on column numbers

100, 200, 300, and 400; these were the columns located in the center of the chamfered corner

wall section. This entailed a structural tee member welded directly to the interior face of the

column. A single diagonal bracing strap was then welded to the horizontal of this support

and attached to the truss.

• Type D : This type of connector was also used as a support for the flooring system and included

seat details in the 5xxx series. These supports were used solely to brace the intermediate

support angles and continuous transverse bridging trusses. Thus, they were located only on

the 200 and 400 series faces of the buildings, within the first 14 columns from each corner, and

on alternating columns without Type B connectors. Two diagonal bracing straps, similar to

those found on Type C floor truss connectors, were completely welded on all sides to the spandrel

and attached to the trusses and angles.

Appendix B displays images of the spandrel/column intersections for all 42 recovered and identified

panels.

3.5.1 WTC 1 Panels Located in Impact Region

Exterior panels from WTC 1 were analyzed to determine if different failure mechanisms were observed

for those that were hit directly by the plane and those outside of this region. There were 33 observations

from the 5 panels in the impact region and 90 from the 18 panels outside. As the impact region ofWTC 1

was located on the north face of the building (100 series columns), there were only Type A and Type C
connectors were found in this region. Damage statistics for Type A seats are found in Table 3-7.

Table 3-8 displays this data for Type C supports. A minor difference between the two areas analyzed for

the Type A seats is that more seats had their middle portions bent towards the columns in the impact zone.

This was a direct result of the impact as the columns were being pushed towards the core before the truss

chords gave or broke loose from the seat. However, failure of the gusset plate welded to the top truss

chord and column was almost exclusively observed regardless of location. Fracture in the toe of the weld

on the plate was the major failure associated with the Type C floor truss connectors for both areas.

3.5.2 WTC 1 Panels Exposed to Fire

Exterior panels from WTC 1 were analyzed to determine if different failure mechanisms were observed

for those panels exposed to fire, regardless of location of fire, and those that were not. There were

82 observations from the 16 panels exposed to fire and 55 from the remaining 10 panels. Damage

statistics for Type A seats are again found in Table 3-7. Table 3-8 displays this data for Type C

supports. Information regarding Type B and Type D connectors is located in Tables 3-9 and 3-10,

respectively. The observations were also correlated with the time-exposure maps (Fig. 2-48) to

determine exactly which connections may have been exposed directly to fire. From this information,

39 observations were available from 13 different panels in which fire was either located in the window
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location of the damping unit. From the recovered panels with known as-built locations, a total of

193 inspections were made with 21 different variations of seat details observed, Table 3-6. For the

samples with unknown as-built locations, the failure statistics were collected irrespective of the specific

detail, as this information was not feasibly attainable.

The floor trusses were connected to the perimeter panels at the interior intersection of the columns and

spandrels. The labeling system used by NIST to identify the specific intersection can be seen in

Fig. 3-50. It should be noted that this view was from the outside of the building looking inward toward

the core. For statistical purposes, the seats were separated into four groups based upon their

characteristics, Table 3-6. They are briefly described here with regard to the examples available for

inspection on the recovered elements. Photographic examples shown in Appendix A.

• Type A : This type of seat detail included those that belonged to the lxxx, 2xxx, 3xxx, 4xxx, and

7xxx series. They were found along all faces of the exterior wall, typically supporting the main

double trusses and continuous traverse bridging trusses. Two standoff plates were welded

directly to the spandrel plate in a vertical manner, with beads observed only on the outer side of

the plates. An angle, hereafter referred to as the seat, was welded to these plates on both sides.

The location of the welds indicated that the standoff plate/seat assemblies were first prefabricated

and then welded to the spandrel. For the 7xxx series seats, the standoff plates were omitted, and

the angle was welded directly to the column. On the seats, there were two slotted holes for

attachment of the trusses. Directly below the bottom of the seat assembly was a gusset plate used

to attach the damper unit from the lower chord of the floor truss to the exterior walls. This plate

was welded to the spandrel on all sides and also contained two bolt holes. Once the truss was

lowered into place and fastened to the seat by two bolts, a gusset plate, with backing bar, was

used to further secure the joint. This was welded in the field to both the top chord of the truss and

the column. The damping unit was then bolted both to the spandrel/gusset plate and truss.

• Type B : This type of connector was specific for seat details 5010 and 5510. These seats were

observed only on the 200 and 400 series faces of the exterior walls for columns x04, x08, xl2,

x48, x52, and x56, where "x" was either 2 or 4. These were the columns that bore the

intermediate deck support angles. This connector consisted of a single, triangular stiffener

plate (3.5 in. right angle, isosceles triangle with 0.375 in. thickness) welded vertically to the

column on all sides. A second plate (8 in. by 5 in. by 0.375 in.) placed on the top edge of the

stiffener was subsequently welded to complete the seat. The single plate was completely welded

on all sides to the spandrel. Like the seats of Type A, there were two slotted holes in the

horizontal plate and a gusset plate with backing bar. Damper units were not specified for this

detail.

• Type C: This type of connector was used primarily as a support for the flooring system and

included seat details in the 5xxx and 6xxx series. These connectors were observed along all four

exterior faces of the buildings and used in conjunction with Type A truss seats almost

exclusively. Typically, a single gusset plate was welded on all sides. The shape of the plate was

found to vary from a full rectangular plate to two separate tabs of 4 in. lengths to a combination

of the two. Regardless of the shape, two flat bars, hereafter referred to as diagonal bracing

straps, with shear studs were welded to the plate and attached to the top chord of the trusses.

These diagonal bracing straps were attached to provide horizontal shear transfer between the floor
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3.4.4 Unidentified Panels

The overwhelming majority of the end connection failures of the unidentified columns (94 percent) were

bolt failures (Table 3-5). One column had a plate attached from an adjacent column, and three total,

including this one, exhibited weld failure. However, it was important to note that the two other weld

failures were of very thick columns, in which case the load bearing area of the weld was much less than

the webs and flanges, and weld failure was to be expected.

In addition to the examination of unidentified pieces in our possession, another source of evidence

available was the extensive collection of photographs taken at both the WTC site during salvage

operations, as well as photographs taken by the Building Performance Assessment Team (BPAT) at the

salvage yards. These images show hundreds of columns and panels that have failed at the bolts during

building collapse. The distribution of panel thicknesses, as well as the number of bolt holes in the end

plates, suggests that the images cover a large distribution of panels from various heights on the buildings.

These images also clearly indicate that the overwhelming failure mode of exterior panel vertical column

connections was bolt fracture.

3.4.5 Summary

From the observations made on recovered panels concerning the end plate connectors, the major failure

mechanism was fracture of the bolts. This was also observed for the unidentified panels. When

considering the 120 connections that were exclusively bolted, there were only six examples where the end

plate was ripped either partially or wholly out from the column, with two of these as a direct result of the

impact. For samples where the connections were welded as well as bolted (mechanical floors), failure

was dominated by fracture of the column plates (flanges/webs) near the weld of the columns.

3.5 EXTERIOR WALL SEATS OR FLOOR TRUSS CONNECTORS

A survey was conducted on the exterior wall seats (or floor truss connectors) of the recovered panels to

identify and inventory the various failure modes associated with impact and collapse of the buildings.

These connectors were not visible in pre-collapse photographs, and thus, the analysis must rely solely on

the observations of the recovered components.

To summarize the samples used in this portion of the analysis, of the 26 panels from WTC 1, all panels

had a minimum of one floor truss connection for inspection, allowing for 137 observations. From

WTC 2, only 13 of the 16 identified panels were used for the analysis. The three panels located at

John F. Kennedy International Airport (B-1024, B-1043, and B-1044) were not fully analyzed during the

visits to the hangar, and thus, their connections were not taken into consideration for the statistical

analysis. Of the remaining 13 panels, 56 observations were possible for inspection. Finally, there was

one panel that was partially identified (C-l 17) and 47 exterior panels not identified as to their as-built

locations. Of these 48 panels, 33 had recovered portions with floor truss connections for inspection,

which yielded an additional 65 observations.

For the seat details, there were 84 specified variations in the design drawings. The differences arose from

the type of connections used (seat versus support), the location and dimensions of the seat, placement of

bolt holes on the seat, dimensions of the stand-off plates, location of stiffener plates inside column, and
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observations of the recovered endplates, Fig. 3-45. The chalk marks indicate deformation of the

original bolt holes. It appears that the bottom of column 133 was rotated to break the bolted

connection. This would be consistent with the photographic evidence showing a "twisting" of the

column about the column line due to the connection to the spandrel at the 95th floor. For column

3, it appears that the top was bent inward into the building as a result of the airplane impact.

• SJ): After the impact, it was observed that S-9 was still in its original position. The panel below

S-9 (sample M-30) had broken away at the end plate connections due to Type 1 failures. This

was correlated with the inspected bottom endplates of S-9, Fig. 3-46. A peculiar feature on this

panel though, was the appearance of more damage to the bolt holes of the upper connections than

those at the lower. The upper end plates have failed in the same manner (Type 1) but with

significantly more deformation to the bolt holes; whether this occurred upon impact or during the

collapse could not be determined. The limited deformation of the bolt holes associated with the

lower connection would be consistent with a brittle failure mode of the bolts upon airplane

impact. The bolts at the top of the panel would have been more slowly loaded in tension as the

panel was pushed into the building, and likely did not immediately fail but deformed the holes as

they stretched.

• M-27 : For M-27, only the lower end plates of two columns were available for inspection. From

pre-collapse photographs, it appears that the connections between M-27 and the panel directly

below it were intact. Therefore, failure occurred upon collapse of the building. From the

deformation of the bolt holes, it appears that the connection was broken through inward collapse

of the top of the columns. The 1 3/8 in. end plate of column 131 was bent along a diagonal axis,

Fig. 3-47; however, failure of the welds was not observed.

• M-2 : M-2 was the panel located directly above M-27. It appears that the state of the recovered

bottom portion of columns 129 and 130 was nearly identical to the condition after the impact, a

Type 2b failure where the end plates were ripped completely out of the column, Fig. 3—48.

Failure was found to be a mixture of fracture in the base metal (portion of the flange/web still

attached to the end plate) and clean separation of the end plate from the flange/web (complete

flange/web recovered with internal weld bead visible). Section 3.2.1 discussed the deformation

of the flange/web plates associated with this failure. Bolt hole deformation for column 131

indicated that the connection was broken by bending inward of the lower column of the

connection. Lastly, while bolt failure was observed for the top of column 129, it was noted that

separation existed between the four components of the column and the endplate.

• N-7 : N-7 was located just above one of the panels that was pushed inside the envelope of the

building upon impact. From photographic evidence, it appears that the panel was still intact.

Reviewing the deformation of the bolt holes on the lower endplates (Fig. 3—49) indicated that

connections of columns 127 and 128 failed in a similar manner, that being, the connection was

pushed in toward the building. Evidence also suggested that the bottom of column 126 broke due

to torquing of the column.
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unknown as-built locations, the failure statistics were tallied irrespective of the end plate splice details, as

this information was not easily obtainable.

3.4.1 Types of Failure Modes

There were three types of failure modes associated with the end plate connectors:

Type 1: Bolt failure (Fig. 3^12).

Type 2: Fracture associated with the weld between column plates and end plate. There were two

variations of this mode:

Type 2a: Partial fracture with end plate still remaining (Fig. 3-43a).

Type 2b: Full fracture with end plate missing (Fig. 3—43b).

Type 3: A welded connection with bolts intact, end plate of above or below adjoining column still

attached (Fig. 3—44), failure occurring in flange/web material.

3.4.2 WTC Tower Panels with Known As-Built Locations

Of the 131 end plates connections inspected for the 42 panels of both buildings, nearly 90 percent had

Type 1 failure where bolt breakage occurred with some deformation to the original bolt hole, Table 3-5.

However, if the 1 1 observations from the mechanical floors, which were welded in addition to being

bolted, are excluded, then 95 percent of the failures occurred via Type 1 failure, with the other 5 percent

being fracture associated with the weld between the end plate and columns sides (six observations). The

latter outcome resulted in the end plate being nearly or completely ripped out of the column. The

breakdown for the buildings on an individual basis was similar when the mechanical floors were excluded

as well.

For mechanical floor panels (ASCE-2, B-1043, B-1044, and C-24), the end plate connections were made

by securing with three bolts and then subsequently welded in the field. (From the mechanical floor panels

recovered and examined, it appeared to be a common practice to secure only three of the four possible

bolts.) For these samples, all but ASCE-2 had failures where the connections remained (intact bolts and

welds) with failure in the column flange and web plates, Type 3. Both ends of the single column

recovered for panel ASCE-2 had failure of both the bolts and welds. It was unknown why these failures

occurred, as both B-1043 and B-1044 were at the same floor level ofWTC 2 as ASCE-2 and may have

experienced similar catastrophic events related to the collapse of the building.

3.4.3 WTC 1 Panels Located in Impact Zone

From the recovered panel sections located in the impact region, there were 22 connections available for

observation. Of these, 20 had bolt failures while the other two, located on sample M-2, had the end plates

ripped completely out of the column base. The following describes each of the five panels separately.

• M-30 : From photographic evidence, it was observed that the panel was fractured around the 96th

floor with the portion of it below this level still visible and attached via the spandrel at the 95th

floor. The failures of the lower connections were of a Type 1 mode, which corresponded with the
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3.3.5 Unidentified Panels

For the 41 unidentified samples with spandrel connections, there were 49 locations where connections

between panels were able to be identified. The spandrel failure modes for the unidentified columns in

Table 3-3 have roughly the same distribution as the identified columns with one notable exception. A
large number of spandrel connections were identified as category 2, with bolt tear out in the splice plate.

These were found exclusively in the columns with large thicknesses, where the weakest load bearing

section of the panel spandrel connection would be the splice plates, and thus, this failure mode for these

columns was as expected.

3.3.6 Summary

From the observations made on recovered panels concerning the spandrel connections, there did not

appear to be a significant difference in failure mode whether the panels were exposed to fire or not. There

was a statistical difference in the failure modes if the location of the individual panel was considered. For

panels at or above the impact zone, bolt hole tear out was a more likely failure mode. For those samples

below the impact zone, there was a higher propensity for the spandrels to be ripped off from the panels.

3.4 EXTERIOR WALL COLUMN SPLICES OR ENDPLATE/BUTT PLATE
CONNECTORS

A survey was conducted on the end plate connectors of the recovered panels to identify and inventory the

various failure modes associated with impact and collapse of the buildings. As most connections

remained intact after the impact and prior to the collapse, only the five samples within the impact region

ofWTC 1 were documented in detail.

To summarize the samples used in this portion of the analysis, there were 42 exterior panels identified,

26 from WTC 1 and 16 from WTC 2. Of those 26 from WTC 1, all panels had a minimum of one end

plate, resulting in 91 observations. From WTC 2, full analysis was completed on 12 of the 16 identified

panels. Two panels located at John F. Kennedy International Airport (B-1043, and B-1044) were not

fully analyzed during the visits to the hangar, but the tops of the columns were removed and shipped to

NIST. Further, B-1024, also located at John F. Kennedy International Airport, was not analyzed at all,

and M-lOa did not have any end plates recovered (NIST NCSTAR 1-3B). In total, there were

40 observations from the 12 samples examined for WTC 2. Finally, there was one panel that was

partially identified (C- 117) and 47 exterior panels not identified as to their as-built locations. Of these 48,

27 panels had recovered portions with end plate connections for inspection, which yielded an additional

49 observations.

For the end plate splice details, there were 38 specified variations in the design drawings. The differences

arose from the dimensions of the butt plate, size of the fillet weld (weld #1 1 between the end plate and

column components), and the size, number, material type, and placing of the bolts. Further, splices

located at mechanical floors were welded in addition to bolting. Bolts were either ASTM A 325 or A 490

with diameters of 0.875 in., 1 in., or 1.125 in. The type of bolt used varied according to the floor location

within the buildings. From the recovered panels with known as-built locations, a total of 131 inspections

were made with 1 1 different variations of end plate details observed, Table ?>-4. For the samples with
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connections, it was seen that the recovered portions were consistent with the failure modes

between the two panels.

• N-7 : As the entire panel ofN-7 was recovered, all six spandrel connections were available for

inspection. Reviewing pre-collapse photographs, the connections located at the 99th and 100th

floors appear to be intact after the impact, thus, suggesting that failures observed were a result of

collapse of the building. The connections located at the 98th floor were obstructed by smoke, and

possible damage caused by impact was unable to be determined. As M-2 and N-7 were

neighboring panels, they shared connections at floors 98 and 99. By reviewing the failure modes

(Fig. 3-41), it was seen that the failure modes compliment each other (corresponding Type 1

failures) for the related connections on each panel.

3.3.3 WTC 1 Panels Exposed to Fire

Exterior panels from WTC 1 were analyzed to determine if different failure mechanisms were observed

for those panels exposed to fire and those that were not. There were 48 observations from the 16 panels

exposed to fire and 34 from the remaining 10 panels. As shown in Table 3-3, Type 1 and Type 4 failure

modes dominate for both sets of samples, with panels exposed to fire slightly more inclined to fracture at

the spandrel flange interface than those not exposed to fire. However, this observation may be a result of

many of these observations being from within the impact zone and not directly related to exposure to pre-

collapse fires.

The observ ations were also correlated with the time-exposure maps (Fig. 2-48) to determine exactly

which individual spandrel connections may have been exposed directly to pre-collapse fires. From this

information, 19 observations were available from 10 different panels in which fire was either located in

the window (category 2) or noted with external flaming (category 3). Similar results were found when the

panels, as a whole, were suspected of being exposed to fire.

3.3.4 Panels Separated by Floor Locations

Exterior panels from WTC 1 were analyzed to determine if different failure mechanisms were observed

for those panels above the impact region and those located below. There were 34 observations from the

12 panels at or below the 95th floor and 47 from the remaining 1 1 panels above the 95th floor. As shown

in Table 3-3, Type 1 and Type 4 failure modes dominate for both sets of samples. However, panels

above the 95th floor were more likely to have bolt hole tear out than those below the impact zone and in

general more likely to have bolt hole tear out when considered versus the building as a whole. For panels

below the impact zone, fracture of the spandrel panel from the column was a more dominant mechanism.

Exterior panels from WTC 2 were analyzed to determine if different failure mechanisms were observed

for those panels above the impact region and those located below. There were 12 observations from the

9 panels at or below the 78th floor and 22 from the remaining 9 panels above the 78th floor. As shown in

Table 3-3, panels above the impact zone behaved similarly to those from WTC 1 in that Type 1 was the

more prevalent mode of failure, with Type 4 also playing a role. While a significant set of observations

was not made for those samples below the impact region, splice plate fracture was found to be the

dominant mode of failure.
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3.3.2 WTC 1 Panels Located in Impact Region

Exterior panels from WTC 1 were analyzed to determine if different failure mechanisms were observed

for those that were hit directly by the plane and those outside of this region. There were 21 observations

from the five panels in the impact region and 61 from the 18 panels outside. As shown in Table 3-3,

Type 1 and Type 4 failure modes dominated for both regions, but there does not appear to be a significant

difference between the two regions. The same can be said when the two sample groups are compared to

the 82 observations from WTC 1 as an individual group.

Figures 3-37 through 3—4 1 show the spandrel connections of the five samples located in the impact zone.

The damage sustained to some of the samples did not allow for unobstructed photographs to be taken for

all connections.

• M-30 : The recovered portion of M-30 had only one spandrel connection, which was located at

the 95th floor and attached to column 132. From pre-collapse photographs, it appears that this

connection was intact with its neighboring recovered panel, M-27, after the impact. Reviewing

the recovered connection revealed that a Type 4b failure occurred (Fig. 3-37) where the spandrel

from the M-27 was still attached via the splice plate connection. This failure likely occurred

upon collapse of the building and not as a result of the impact.

• SJ): As the entire panel of S-9 was recovered, all six spandrel connections were available for

inspection. Pre-collapse photographs yielded little evidence to indicate that failure of the

spandrel connections located at the 99th and 100th floors occurred upon impact, and therefore,

the damage observed on these connections (Fig. 3-38) was likely sustained upon collapse of the

building. The connections located on the 98th floor were obstructed by smoke, and possible

damage due to impact was unable to be determined. The sample labeled M-2 was a neighbor of

S-9.

• M-27 : The recovered portion of M-27 had only two spandrel connections for observation. Both

were located on column 131 at floors 94 and 95. As discussed above for M-30, the connection at

floor 95 was shared between the two samples and appears to have been intact after impact,

indicating that failure occurred upon collapse of the building. From the recovered portion ofM-

27, this specific connection failed via Type 4a mode, where the spandrel was fractured at the

flange/spandrel interface (Fig. 3-39). This corresponded with the findings on sample M-30,

which had a Type 4b failure mode and the remnants of the spandrel from M-27. Reviewing pre-

collapse photographs for the spandrel connection located at floor 94, it also appears to have failed

(Type 4a) during the collapse as there was no indication that failure occurred prior to this point.

• M-2 : As the entire panel of M-2 was recovered, all six spandrel connections were available for

inspection. From pre-collapse photographs, it appears that both connections located on floor 97

failed upon impact of the airplane. Both failures were of Type 1 (Fig. 3-40), with the connection

associated with column 131 having bolt hole tear out (Type lb), and the connection nearest

column 129 still retaining the splice plate without the neighboring spandrel plate (Type la). The

connections associated with floor 99 appeared intact, and failure may have occurred upon

collapse. Those connections located on the 98th floor were obstructed by smoke and, thus, their

status was unable to be determined prior to collapse. The connections on column 131 at floors 98

and 99 were shared with sample S-9. By reviewing the photographs of these two spandrel
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of the "failures," resulting in a total of 34 observations for WTC 2. Finally, there was one panel that was

partially identified (C-117) and 47 exterior panels not identified as to their as-built locations. Of these 48,

41 panels had recovered portions with spandrel connections for inspection, which yielded an addition

47 observations.

For the spandrel connection details, there were 29 specified variations in the design drawings. The

differences arose from the dimensions of the splice plate and the size, number, and positioning (in terms

of rows and spacing) of bolts. All bolts were ASTM International (ASTM) A325 with diameters of either

0.875 in. or 1.125 in. The bolt holes in the spandrel were aligned in a vertical fashion with the first row of

bolts placed 1 .5 in. on center from the outer edge of the plate. If a second row of bolts was indicated, they

were 3 in. further inward from the splice on center from the first row. From the recovered panels with

known as-built locations, 118 observations (including the connection between M-lOa and M-lOb) were

available for inspection, resulting in 1 1 different variations of spandrel details, Table 3-2. The samples

with unknown as-built locations were also inspected resulting in an additional 48 observations. Table 3-2

displays the eight variations found for these samples.

3.3.1 Types of Failure Modes

Observations of the failure modes of the spandrel plate connectors yielded five different modes.

Type 1: Bolt tear out in spandrel plate. There were three variations of this mode.

Type la: The observed spandrel connection possessed the tear outs (Fig. 3-32a).

Type lb: The splice plate and all bolts of the observed spandrel connection remained, thus, tear

out occurred in the neighboring spandrel plate to which it was attached (Fig. 3-32b).

Type lc: The observed spandrel connection possessed the tear out, with the additional fracture of

the spandrel plate in a horizontal manner (Fig. 3-32c).

Type 2: Bolt tear out in splice plate (Fig. 3-33).

Type 3 : Mixed mode (Fig. 3-34) of any of the types.

Type 4: Vertical fracture of the spandrel plate at spandrel/flange intersection. There were two variations

of this mode.

Type 4a: Fracture of observed spandrel plate (Fig. 3-35a).

Type 4b: Fracture of the neighboring spandrel plate resulting in the observed spandrel connection

retaining both the splice plate and portion of spandrel from neighboring panel

(Fig. 3-35b).

Type 5: Bolt failure resulting in intact holes in spandrel or splice plate (Fig. 3-36).

Due to the storage position of the samples, some photographs were taken as if one viewed the spandrel

from outside of the building looking inward toward the core and vice versa. The orientation was noted

for each photograph.
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3.2.5 Unidentified Panels

The statistics of the failure modes for the unidentified columns is presented in Table 3—1. These values

differ significantly from those of the identified columns, but can be explained by the difference in the

overall characteristics of the collection of columns. The unidentified columns include a large number of

single very thick columns, which tended to survive the collapse relatively intact. In addition, the lengths

of the unidentified columns were, on average, much shorter than the identified ones, and thus, there was

also less length that had a chance to accumulate a particular type of damage. For example, crushes and

buckles were more likely in long, slender members like full panels, which were more likely to have the

location with the identifying stamps survive.

3.2.6 Summary

Observations of recovered panels for damage of the exterior panel columns revealed that the five panels

located in the airplane impact zone had a higher tendency for damage features across the board than those

outside of this region. This may be due to the high energy impact of the plane and transfer of this energy

to the structural components of the building. There did not appear to be any difference in failure modes

or damage characteristics whether the panels were exposed to fire or not, with the exception of the

buckling phenomenon. No observations of any significance to the investigation were able to be drawn by

comparing the observed failure modes on the identified and unidentified samples. Fractures of spandrels

and webs were found to exhibit at least some ductile behavior, even in samples that experienced the

highest tensile loading rates. For the limited number of weld fractures microstructurally analyzed, it was

observed that the fracture initiated and propogated in the heat affected zone. During visual observations

of all the recovered exterior panel columns, this was the dominant mode of weld fracture. In one case

examined, the fracture was observed to initiate in the HAZ and subsequently propagated into the

unaffected base material. There were very few examples of this type of failure observed during the visual

observations of all the recovered exterior panel columns.

A survey was conducted on the spandrel connectors of the recovered panels to identify and inventory the

various failure modes associated with impact and collapse of the building. As most connections remained

intact after the impact and prior to the collapse, only the five samples within the impact region ofWTC 1

were documented in detail. The remaining samples were separated and analyzed according to their post

impact, pre-collapse environment and known/unknown as-built location.

To summarize the samples used in this portion of the analysis, there were 42 exterior panels identified,

26 from WTC 1 and 16 from WTC 2. Of the 26 from WTC 1, only 23 panels had recovered portions with

spandrel connections for inspection, yielding 82 individual observations. The remaining three panels

identified that did not have observable spandrel connections were C-55, C-93, and K-2. These samples

consisted of only the lower portion of the middle column of the panel. From WTC 2, only 13 of the

16 identified panels were used for the analysis. The three panels located at John F. Kennedy International

Airport (B-1024, B-1043, and B-1044) were not fully analyzed during the visits to the hangar, and thus,

their connections were not taken into consideration for the statistical analysis. Of the remaining

13 panels, 36 observations were possible for inspection. However, the spandrel connection between

M-lOa and M-lOb located on the 84th floor was still intact, and thus, not tallied in the statistical analysis

3.3 EXTERIOR WALL SPANDREL CONNECTIONS
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fracture surface in cross-section. As observed, the fracture was restricted to the HAZ material. In

addition to the cross-sectional view, the sample was mounted so that propagation of the crack through the

material could be viewed. Fig. 3-27. This "planar" view resulted in the rolling plane of the outer web

parallel to the plane of the paper. It was seen that the crack traversed a path in the HAZ near the fusion

line of the weld, Fig. 3-28. However, it was also noted from both Figs. 3-26 and 3-27 that a second

crack was present. Another cross-section was prepared, with this portion of the sample taken from well in

front of the original crack tip of Fig. 3-26, and analyzed. Macroscopic investigation of the cross-section

revealed that the fracture of the weld occurred within the flange plate, Fig. 3-29. Microscopic analysis

showed that the crack started in the HAZ of the first submerged arc weld in the flange plate and traveled

into the unaffected base material, Fig. 3-30. It was believed that if this crack would have continued to

propagate, it would have resulted in a weld fracture similar to that shown in Fig. 3-3 1

.

3.2.3 Summary

Though decomposition of the perimeter columns into the four individual plates was associated with

fracture through the HAZ, it should be noted that this feature is characteristic of all fusion welds of

carbon steels and should not be considered a flaw in construction of the towers. Further, there was no

ev idence throughout this analysis to indicate that fracture associated with the welds evaluated was related

to: (1) inadequate joining materials (weld strength and ductility appeared appropriate for the application),

(2) inappropriate welding procedures (welds were typically oversized with no visible flaws), or (3) poor

performance of the welded joint (fracture was associated with extreme loading event, i.e., impact of

aircraft).

3.2.4 WTC 1 Panels Exposed to Fire

Exterior panels from WTC 1 were analyzed to determine if different damage features were observed on

column panels exposed to fire and those that were not. There were 36 observations from the 16 panels

exposed to fire and 24 from the remaining 10 panels. From Table 3-1, it was seen that the occurrence of

buckling was greater in those columns exposed to fire. One fact not conveyed in the table was that the

buckling typically occurred on the inner web plate. This was not unexpected as results from other

projects of this investigation indicated that the interior web plate was prone to local buckling under

certain conditions (i.e., structural response to gravity loads and fires) (NIST NCSTAR 1-5B; NIST

NCSTAR 1-6C). A higher observance of punctures was also associated with the impact panels combined

with the other fire exposed columns. For weld fractures, there was a slightly higher tendency for fire

exposed columns to have localized fractures and splayed columns. However, both of these observations

were most likely a result of these columns being located in or near the impact zone and not a direct result

of the pre-collapse fires. Severing of the columns was found to occur at the stiffener plates with a higher

frequency for samples located in fire exposure areas.

The observations were also correlated with the time-exposure maps (Fig. 2-^18) to determine exactly

which columns may have been exposed directly to fire. From this information, 30 observations were

available in which fire was either located in the window (category 2) or noted with external flaming

(category 3) next to the column examined. Similar results were found when the panels, as a whole, were

suspected of being exposed to fire, Table 3—1.
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end near the same lower stiffener plate of the 97th floor level spandrel. Unlike the fracture between the

outer web and flange, the inner web fracture surface was relatively flat with no readily observable

features to the naked eye, Fig. 3-1 8c. Again, significant corrosion product had consumed the fracture

surface; thus, further analysis would prove to be unproductive.

Macroscopic investigation of the cross-section revealed that fracture did occur in the inner web plate,

Fig. 3-19. The flange and single-pass submerged arc weld were also seen. However, a few, small steps

were noticeable on the fracture surface in cross-section (lower left image of Fig. 3-19). Similar to the

first case discussed above, the direction of high rate impact with the joint geometry dictated that the

initiation site for fracture of the inner web was associated with the stress concentrator in this area where

the flange and web meet but were not metallurgically joined. It appears that the tearing initiated at the

location where the weld bead intersected the surface of the inner web and then propagated through the

HAZ. Microscopic investigation revealed that tearing of the inner web occurred at the juncture between

the weld bead and the surface of the inner web and was restricted to the HAZ of the plate, Fig. 3-20.

Once again, the fracture associated with this WTC weld joint was not attributed to either poor material

quality of the inner web or the weld joint configuration. Instead, the direction of the high impact loading

of the plate in combination with the diminished properties of the HAZ of a rolled plate was believed to

have led to this type of fracture. There was a differences between the two macroscopic angles of fracture;

the first case having a "woody" appearance and the second case having a "flatter' fracture surface. This

was most likely related to the geometry of the HAZ of the weld itself. To clarify this point, two

additional cross-sections were prepared of welds that had not experienced fracture, Fig. 3-21. The first

example was taken of a joint between the flange and outer web. Figure 3-22 shows the geometry of the

HAZ in the outer web plate. The HAZ was angled similarly to the fracture surface observed in the first

weld fracture sample. Likewise, Fig. 3-23 shows the HAZ geometry from the second example, that

between a flange and an inner web. Similar to the fracture surface of the second weld fracture examined,

the angle of the HAZ front had a significantly higher slope with respect to the rolling plane of the inner

web. Clearly, the macroscopic angle of fracture of both plates was a result of diminished properties in the

HAZ near the weld, with the difference between the HAZ geometries most likely a combination of the

welding parameters and the joint geometry. Further, no microscopic information could again be obtained

to define the microscopic mode of fracture.

Planar View Analysis

A third fractured weld sample was removed for investigation of crack propagation through the material.

This sample was from the 96th floor level of column 133 (specified minimum yield strength of 55 ksi) on

panel S-9. This panel was struck directly by the plane, in particular, the tail section. The lower portion of

column 133 was found to be intact and in relatively good condition near the splice connection; however,

just below the 97th floor spandrel, the column had a similarly splayed appearance as that observed for

panel M-2 (Fig. 3-24a). The removal of the sample was such that the crack tip could be investigated,

Fig. 3-24b. Inspection with the naked eye revealed that the crack propagated in the outer web plate along

the weld bead, Fig. 3-25.

Macroscopic investigation of the cross-section revealed that fracture did occur in the outer web plate

similar to the first case examined above, Fig. 3-26. This portion of the sample was taken from well

behind the crack tip. Again, the flange and double-pass submerged arc welds were seen with a stepped
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metallurgical bonding (melting) of the two work pieces, regardless of the weld being autogeneous or

made with filler material.

While the fracture features of this example had a "woody" appearance, the failure was not associated with

lamellar tearing of the steel. When associated with welding, this fracture mode (lamellar tearing)

typically occurs due to low ductility in the through-thickness (short-transverse) direction of the parent

material in combination with employment of an improper weld joint geometry with respect to the poor

through thickness properties of the plate (Kou 1987; Ludwigson et al. 1982; Sommella 1979;

Porter 1976). However, the failure was not a material-related issue, as a concerted effort was made to

deoxidize the steel to a relatively high degree for plates with Fy of 55 ksi or greater

(MST NCSTAR 1-3E). This was noted by the elevated levels of silicon and aluminum, with significantly

low levels of phosphorous and sulfur. Additionally, the volume fraction of nonmetallic MnS inclusions

was, on a qualitative basis, very low, and the inclusions were thin and well dispersed throughout the plate.

Further, the banding characteristics, in terms of the pearlite constituent, of the structure were very low,

particularly at the surfaces of the plate, for the 55 ksi material. Rather, the location and appearance of the

fracture associated with this weld joint was most likely a result of two factors: (1) the direction of the high

impact loading of fabricated columns composed of welded plates and (2) the diminished HAZ properties

of a rolled plate with moderate anisotropic mechanical properties.

The weld geometry employed in manufacturing the perimeter box columns was appropriate for the

building construction; sustaining a high velocity impact perpendicular to the weld bead was not

considered when choosing joint geometry. However, the "geometry" of the weld, in combination with the

direction of impact, did dictate where fracture would occur, that being, in the area of lowest cross-section.

The plate thickness of the outer web (0.25 in.) was thinner than both the weld cross-section and flange

plates. Additionally, the strength/ductility of the weld appears to be more than adequate as fracture of the

weld material did not occur; this was observed throughout the majority of near-weld fractures found on

perimeter columns. Location of crack initiation was found at the root of the weld observed on the outer

web as this provided a stress concentrator.

Additionally, the HAZ of the material was found to have a higher hardness than the base metal and the

weld (NIST NCSTAR 1-3E). This was due to microstructural changes in the base metal. As the hardness

of the material increased, a concomitant decrease in the ductility of the material in the HAZ would also be

implied. As a result, the macroscopic "angle" observed for fracture was related to the shape of the heat

affected zone in the web plate as the crack propagated through this region of lower ductility. The stepped

appearance of the fracture surface may be related to moderate anisotropic properties of the rolled plate.

However, the ductile or brittle microscopic mechanism of plate failure could not be determined as

corrosion of the fracture surfaces excluded definitive identification of microscopic features on the fracture

surface.

The second sample removed was a fracture taken between the flange and the inner web of the same

column and roughly in the same location, Fig. 3-18. The damage characteristics were quite different

from the first case examined. From observations made in the field, it appeared that fracture occurred in

the inner web plate near the weld bead. Initial fracture was again assumed to start near the lower end

plate of the column upon impact (when end plate was ripped out) and then ran vertically "up" the column

toward the 97th floor level spandrel. The inner web was then severed at the lower stiffener plate of the

97th floor level spandrel. The vertical fracture in question between the inner web and flange was found to
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partially missing and completely detached. As the panel below N-7 was pushed inside the

building as a result of the plane impact, bolt failure between the panels occurred.

Weld Failure Analysis Associated with the Perimeter Columns

As part of the damage and failure modes of the exterior panel columns, an analysis was conducted on the

damage features of the submerged arc welds found on the perimeter columns of the WTC towers. Special

emphasis was placed on those panels directly hit by the airplane. Behavior of the welded joints was

characterized, and the role of failure in the base metal, heat affected zone (HAZ), and weld metal were

discussed.

Cross-Sectional Analysis

Panel M-2 (A130: 96-99) was struck directly by the airplane. From both pre-collapse photos and the

recovered element, the lower portion of columns 129 and 130 (96th floor splice) were found to have their

lower end plates ripped. The majority of welds between the flanges and webs in this area had fractures in

the vicinity of the welded joints resulting in the splayed appearance. Two typical fractures associated

with welds were taken from the lower portion of column 129. This column had a specified minimum

yield strength of 55 ksi.

The first example was a fracture taken between the flange and the outer web, Fig. 3-14. From

observations made in the field, the fracture appeared to have occurred in the outer web plate near the weld

bead. It was assumed that fracture was initiated near the lower end plate of the column upon impact

(when end plate was ripped out) and then ran vertically "up" the column toward the 97th floor level

spandrel. The outer web was still connected to the column, but was pushed inward towards the center of

the building; the inner web had been severed near the lower stiffener plate of the 97th floor level spandrel.

The vertical fracture in question between the outer web and flange was found to stop short of the same

lower stiffener plate of the 97th floor level spandrel. Viewing the fracture surface of the outer web plate

with the naked eye, it was observed to have a fibrous and/or "woody" appearance, Fig. 3-1 5a. Closer

examination showed that the fracture surface was stepped, Fig. 3-1 5b and 3-1 5c. Due to prior exposure

to the elements of weather, the fracture surface was corroded to the point that no further information

could be obtained from it.

Macroscopic investigation of the cross-section revealed that fracture did occur in the outer web plate; a

portion of this plate was still visible after metallographic preparation and etching procedures, Fig. 3-16.

The flange and double-pass submerged arc welds were also seen. The weld was sound with no visible

flaws observed. Typically, these joints were over-welded, meaning that a 3/8 in. or 1/2 in. weld may have

been deposited where only a 5/16 in. bead was specified. A slight gap existed between the plates for the

outer web and flange; this was not uncommon for most weld cross-sections evaluated between these two

column components. The outer face of the fracture surface was associated with the toe or root of the

weld. The cross-section of the failed plate revealed a jagged, stepped fracture surface with the steps

parallel and perpendicular to the rolling plane of the plate. Microscopic investigation further revealed that

tearing of the outer web initiated at the toe of the weld and that the crack propagated through the HAZ of

the plate, Fig. 3-17. The HAZ is a common weld feature consisting of microstructurally altered,

unmelted base metal adjacent to the weld bead. It is a direct result of the heat input required for
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• S^9: Column 132 sustained the most damage at and just above the 98th floor spandrel (Fig. 3-2c).

The column was bent nearly 180 degrees just above the 98th floor spandrel, with the spandrel

plate completely detached from the column. The portion of the column near the spandrel had

fracture near all four welds associated with the box column, thus, resulting in a splayed

appearance. Additionally, the outer web was completely severed and slightly bent inward. As

this may have been a result of the airplane impact, the sample was removed for analysis (Fig. 3-

11a and 3-1 lb). The fracture surface was badly corroded and exhibited evidence of being

damaged by contact with other steel samples or pavement at some point. However, it was

possible to observe some macroscopic fracture details. The fracture surface was oriented at 45

degrees with respect to the surface of the plate and oscillated between plus and minus 45 degrees

at several points as the crack propagated across the plate. The edge of the fracture surface at one

time was quite sharp, and significant thinning of the plate was observed within 0.5 in. of the

fracture surface (Fig. 3-1 lc) indicating significant ductility during crack propagation. In

addition, more than 10 in. from the fracture surface, the paint coating was fractured in a particular

way as to indicate tensile loading of the surface

(Fig. 3-1 Id). Although this might have been caused by localized bending, the plate at this point

was nearly flat, and it was quite possible that these cracks indicate elastic/plastic stretch below a

level that was measurable at these locations. This would indicate considerable energy absorption

during failure of these plates as well. The additional massive damage to the remainder of the

panel not observed prior to the collapse may be related to events occurring during the collapse of

the building or as a result of the recovery efforts. Analysis of a weld fracture from column 133

can be found below in Sec. 3.2.3.

• M-27 : As mentioned above, this panel was hit directly by the fuselage of the plane, which

resulted in massive damage to the structural elements. Only columns 130 and 131 were

recovered; the top portion had been severed at the lower stiffener plate for the 96th floor spandrel.

The majority of welds between the flanges and webs have fractures in the vicinity of the welded

joints, resulting in the splayed appearance and general disarray of the columns (Fig. 3-8c). The

flange and web plates experienced a significant amount of deformation.

• M-2 : Damage of lower columns was clearly associated with impact, which led to the missing

endplates for columns 129 and 130. As a result, the inner and outer web plates of both columns

appear to have thinned in this area (Fig. 3- 12a). Similar to the behavior observed on panel S-9,

the crack propagated across the inner and outer web plates as a 45 degree slant crack, oscillating

between positive and negative 45 degrees with respect to the normal of the plate. The degree of

necking observed in M-2 was slightly larger than that observed on S-9, as seen in the plot of the

measured neck profile in the outer web, Fig. 3-1 2b. Large buckles were observed on both

flanges for columns 129 and 130 (Fig. 3-1 3a) with some splitting occurring in the base material

of the flanges (Fig. 3-1 3b) and spandrels (Fig. 3-1 3c). However, the welds found near this

bending point remained intact (Fig. 3-1 3d). Analysis of fractures near welded joints from this

panel associated with impact damage can be found below in Sec. 3.2.3.

• N^: As the airplane did not directly impact this panel, no damage was attributed to this event.

Regardless, the columns were in relatively good shape with localized fracture near the welds in

some areas. As previously mentioned, the 98th floor spandrel between columns 126 and 127 was
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the impact or if it was an artifact of the smaller sampling size. Regardless, the majority of columns

directly hit by the airplane experienced all three types of gross deformation. The higher occurrence of the

columns being crushed and/or punctured in this region may be related to the high rate of impact of the

plane with the concomitant transfer of energy/momentum of the high density aircraft components to the

structural elements in this region. This transfer of energy can also be translated to the weld fractures, as a

higher frequency of columns experienced fracture in the vicinity of the welded joints. Severing of the

column was typically related to the stiffener or diaphragm plate associated with the spandrel connection.

InNIST NCSTAR 1-3B, National Institute of Standards and Technology (NIST) labeled samples M-2,

M-27, M-30, N-7, and S-9 were observed located in the impact region, with all but N-7 being directly hit

by the plane. As these pieces were located in the impact area, detailed analysis of the columns may yield

insights into the behavior of the material and/or components of the panel upon impact.

• M-30 : As described above, the two columns recovered for sample M-30 were severed at different

locations. Column 132 was severed at the stiffener plate associated with the top of the 95th floor

spandrel plate (Fig. 3- lb). Both the outer web and spandrel plate were fractured very near the

top edge of the stiffener plate, while the flanges were fractured just above. Given the constraint

afforded by the stiffener plate and the concrete floor, and the fact that the column was relatively

undistorted, these plates likely failed in some complicated combination of shear and tension.

Column 133 appears to have been severed at a slightly lower elevation associated with the 95th

floor level concrete slab (Fig. 3-1 c). Portions of the outer web and spandrel plate were bent

inward, nearly 90 degrees, with fractures occurring in the plates perpendicular to the rolling

direction of the plate. The flanges were found to fracture at a slightly lower elevation than the

web and spandrel plates. The outer web and spandrel plate of column 133 were particularly

important pieces in terms of failure mode, because the combination of their proximity to the

aircraft impact and the configuration of their geometry and location close to a concrete floor

means that they likely experienced the highest strain rate in relatively pure tension of any of the

exterior columns. Examinations were made of these fractures to determine if any brittle behavior

could be found, which would indicate a transition from ductile to brittle fracture, and would have

an effect on the energy balances being calculated for the impact interactions between aircraft and

building. The outer web of column 133 was nominally 0.25 in. in thickness, while the spandrel

plate was 0.375 in. thick. The fracture surfaces were removed from the column (Fig. 3-10) and

chemically treated in an attempt to remove the rust and observe the fractography beneath. In both

cases, evidence of a microscopic fracture mechanism (cleavage facets or dimpling) were

obliterated by a corrosion process. However, the macrofracture features on the surface were still

observable. An image of the fracture surface of the spandrel plate of column 133 is shown in

Fig. 3- 10c, while an overlaid schematic shows some of the details that are hard to see on another

related plan view image in Fig. 3-1 Od. The fracture shows chevrons running along the length of

the crack path, indicating crack direction and the fact that this plate failed largely in tension

through the motion of a mostly mode I crack. There was a very small amount of thinning in the

region of the fracture surface, and there was a small shear lip present ( 1 0 percent of the surface

width), shown in the schematic illustration. From these observations, it was determined that the

fracture, though certainly lower energy than would have been seen at a normal rate test, still had

some ductility (formation of small shear lips). There was no evidence that this steel sample had

broken in a purely brittle manner, though it was certainly low energy ductile in character. The

lower portions of the columns residing in the 94th floor region were relatively undeformed.
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3.2.1 Types of Failure Modes

Recovered exterior columns were observed to have numerous damage features and failure modes. While

the columns that had heavier flange sections experienced similar damage, those columns with lighter

gauges were observed to experience more severe characteristics. These damage features/modes of failure

were grouped into the following categories for statistical purposes.

Type 1: Gross physical distortion of flange/web material.

Type la: Crushed sections (Fig. 3-7a and 3-7b): not limited to, but typically a result of handling

during the recovery effort.

Type lb: Punctured flanges and/or webs (Fig. 3-7c).

Type lc: Buckling of flange and/or webs (Fig. 3-7d): no distinction was made for possible pre-

collapse environments, i.e., whether or not exposure to fire may have occurred.

Type 2: Fracture near fillet welds.

(As discussed below in Sec. 3.2.2.1, fractures typically occurred in the heat affected zone of the

base metal; fracture in the actual weld material itself was an infrequent occurrence).

Type 2a: Localized fracture associated with welded joints (Fig. 3-8a): inches to a few feet of

crack growth near one weld.

Type 2b: Extensive fracture associated with welded joints (Fig. 3-8b): few feet to yards of crack

growth near one or more welds.

Type 2c: Columns that were splayed open (Fig. 3-8c): the fracture associated with all four welds

of perimeter column in the same vicinity.

Type 3: Severing of columns.

Type 3a: Severing associated with internal stiffener/diaphragm plate (Fig. 3-9a).

Type 3b: Severing away from internal stiffener/diaphragm plate (Fig. 3-9b).

Type 3c: Severing at floor level (Fig. 3-9c).

Type 3d: Flame cut ends during recovery (Fig. 3-9d), though not a true "failure mode", was

necessary to classify a fair number of columns.

While these damage features were observed and recorded for each individual column, no effort was made

to quantify the frequency with which the modes occurred for each column, particularly for Type 1 and

Type 2 modes.

3.2.2 WTC 1 Panels in Impact Region

Exterior panels from WTC 1 were analyzed to determine if different damage features were observed for

those columns located within the impact region and those outside of this region. There were

1 3 observations from the 5 panels in the impact region and 47 from the 1 8 panels outside. From

Table 3-1 , for the majority of damage features or failure modes observed, those in the impact zone had a

higher frequency of damage observations. It was unknown whether this was due to the violent nature of
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undeformed. From the pre-collapse images, the lower portion of this column was also bent

inward just below the 97th floor spandrel, however, it had been bent back out. The former was

associated with the impact, with the latter occurring sometime during or after the collapse.

• N-7 : From photographic images, it appears that N-7 was not struck directly by the plane and

experienced relatively minor damage by having the panel below it pushed into the building.

While smoke obscures most of the images, the aluminum facade on column 124 at floor 97

appears to be disturbed. No other comments can made concerning pre-collapse damage. The

recovered panel consists of three, relatively intact columns that sustained limited damage (Fig. 3—

6). The 98th floor spandrel between columns 126 and 127 is partially missing and completely

detached between columns 126 and 127. It was not possible to determine when this damage

occurred. The entire panel itself was folded inward about an axis parallel to the length of the

columns with the outer web of the columns facing outward. This was believed to have happened

during or after the recovery efforts.

3.1.3 Summary

From observing the pre-collapse photographs and the five recovered panels from the impact zone, two of

the four directly impacted panels (M-2 and M-30) appear to be in a similar condition to that which they

were in as a result of the impact. Some of the extraneous damage was attributed to the events during and

after the collapse, but the general shape and appearance of the recovered pieces agree with the damage

photographs. There was a lack of detailed pre-collapse visual evidence of impact damage sustained by

panels M-27 and S-9, and it is not possible to make a similar statement. Finally, the lower portion ofN-7

did incur some damage; however, it could not be positively correlated with pre-collapse images.

3.2 DAMAGE AND FAILURE MODES OF EXTERIOR WALL COLUMNS

A survey was conducted on the individual exterior wall columns of the recovered panels to identify and

inventory the various failure modes associated with impact and collapse of the building. As most

columns were not damaged by the impact, only the five samples within the impact region ofWTC 1, and

other special cases, were documented in detail. Other samples were separated and analyzed according to

their post impact, pre-collapse environment and known/unknown as-built location.

To summarize the samples used in this portion of the analysis, there were 42 exterior panels identified,

26 from WTC 1 and 16 from WTC 2. There were 60 individual columns for observation from WTC 1.

From WTC 2, only 13 of the 16 identified panels were used for the analysis. The three panels located at

John F. Kennedy International Airport (B-1024, B-1043, and B-1044) were not fully analyzed during the

visits to the hangar, and thus, the condition of their columns was not taken into consideration for the

statistical analysis. Of the remaining 12 panels, 29 individual columns were available for inspection.

Section 2.1.3 describes in detail the strength/gauge combinations for the recovered columns. Finally,

there was one panel that was partially identified (C-l 17) and 47 exterior panels not identified as to their

as-built locations. From these 48 samples, an additional 55 columns for observations were available.

NISTNCSTAR 1-3C, WTC Investigation 99



Chapter 3

• M-30 : Photographic images indicate that panel M-30 was directly hit by the wing and fuselage of

the airplane, with a majority of the panel pushed into the envelope of the building. The recovered

panel (Fig. 3-2a) consists of the lower portions of columns 132 and 133 at and below the 95th

floor level spandrel. The columns were severed at different locations. Column 132 was severed

at the stiffener plate associated with the top of the spandrel,

Fig. 3-2b, while column 133 appears to have been severed at a slightly lower elevation associated

with the 95th floor level concrete slab. Fig. 3-2c. This damage pattern was indicative of the

inclination of the airplane impact. With the exception of the spandrel plate, the remaining portion

of the recovered panel, portion of columns located in the upper 94th floor level, was relatively

undeformed.

• SJ): This panel was located directly above M-30. From photographic evidence, it seems that the

vertical tail section of the plane hit the lower portion of the columns, damaging the aluminum

facade. It is unknown how much damage occurred to the underlying columns themselves as

smoke obscured most views of the panel. However, the aluminum facade above the 98th floor

level did not appear disrupted, indicating that the panel may not have been significantly displaced

upon impact. The recovered panel (Fig. 3-3a) contained all three columns, though the panel was

badly damaged (Fig. 3-3b). The columns below the 98th floor spandrel were bent in various

directions. Column 132 sustained the most damage at and just above the 98th floor spandrel.

The column was bent nearly 180 degrees just above the 98th floor spandrel with the spandrel

completely detached from the column (Fig. 3-3c). The portion of the column near the spandrel

had a "splayed" appearance as the four individual plates comprising the box column were no

longer joined. Additionally, the outer web was completely severed and slightly bent inward.

This damage may have been a result of the aircraft impact. Some damage was also noted on the

lower portions of columns 133 and 134, though it is unknown whether this was caused by the

impact.

• M-27 : This panel was hit directly by the nose and fuselage of the plane. The photographic

evidence shows that the portion below the 95th floor spandrel still appeared to be intact while the

portion above this had been bent inward. The top portions of the two recovered columns (Fig. 3-

4), numbers 130 and 131, were in general disarray, with portions above the 96th floor level

missing. These columns also had a splayed appearance with the four individual plates making up

each column deformed along their entire length. The only connection between the two columns

was located at the 95th floor level as the 94th floor spandrel, while still joined to column 131, was

detached from column 130.

• M-2 : This panel, directly above M-27, was struck by the upper part of the fuselage and the

vertical stabilizer of the tail. From the photographic images, it appears that the condition of this

panel after recovery was remarkably similar to its condition prior to the collapse,

Fig. 3-5a. Therefore, the damage observed was assumed to be a result of the impact. Inward

bending of the columns was observed at numerous locations on the panel. A lower bend was

directly associated with the concrete slab of the 97th floor level, Fig. 3-5b. The floor appears to

have acted as a fulcrum point over which the columns and lower portion of the spandrel were

bent inside the building envelope. Also, for columns 129 and 130, the lower end plates were

found to be ripped off with the two columns having the splayed appearance, Fig. 3-5c. The end

plate for column 131 was still intact and the lower portion of the column was relatively
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Physical Damage of Recovered Exterior Wall Panels

This chapter of the report covers the physical damage and failure modes observed on the recovered, pre-

fabricated exterior column panels. As reported in Sec. 2.1.3, there were 42 distinct panel sections that

were unambiguously identified, i.e., their precise, as-built location was known, and one partially

identified from the 90 panel samples recovered. Table 2-5 summarizes the identified pieces as well as

comments on their pre-collapse environmental exposure.

Also reported in Sec. 2.5, the panels were divided into four groups. This chapter discusses the analysis of

the samples with respect to these four categories (dictated by their as-built location in relation to the

impact regions and pre-collapse exposure to fires).

While the following sections describe in detail the damage that was observed on these pieces, it should

again be emphasized that the damage and failure mechanisms observed were reported in their present

condition. The damage may have been a result of any one of the extreme loading conditions mentioned

above (aircraft impact, the concomitant fires, the collapse of the buildings and ensuing fires, or the

subsequent handling related to the recovery efforts). While in some cases the origin of damage may be

evident, there are other cases in which the event that caused the damage is difficult or impossible to

determine.

3.1 overall damage patterns of exterior wall panel sections

Only five of the recovered panels from World Trade Center (WTC) 1 were either directly hit by the

airplane or sustained damage as a result of the impact, and no impact-damaged panels were retrieved for

WTC 2. Therefore, physical damage incurred for a majority of the recovered exterior panel sections was

a result of events that occurred during or after the collapse of the buildings. The major portion of this

section focused on those five samples recovered that were from the airplane impact zone. Limited

comments concerning the damage of the panels outside the impact region are also made.

3.1.1 WTC Panels Outside of Impact Region

All damage found on the panels located outside of the impact zone was ascribed to events occurring

during and after the collapse, therefore, in-depth descriptions were not reported. However, one general

note concerning the exterior column panels themselves was the size of the individual recovered pieces.

More often, the pieces from WTC 1 were larger than those from WTC 2, and in later sections describing

specific damage features or failure modes, more observations were found for elements from WTC 1 than

WTC 2 for a given feature. No explanation was found for this occurrence.

3.1.2 WTC 1 Panels in Impact Region

The following five recovered panels were located in the impact region for WTC 1, Fig. 3-1. When

referring to photographic images of pre-collapse damage, please see Sec. 2.2.
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Table 2-5. Recovered exterior panel sections with known as-built locations, separated
by ore-collapse location anc environmental conditions.

Panel Description Bldg NIST Name Brief Description
Center Story at Splice Location of fire

Relevant region

of componet

recovered
Column # Lower Upper observations

Exterior panel sections WTC 1 N-7 or M-3 Full panel 127 97 100 97th and 98th Y
within impact region WTC 1 M-27 2 columns, lower 3/4ths 130

....... .

96 95th N
WTC 1 M-2 Full panel 130 96 99 98th y
WTC 1 M-30 2 columns, lower l/3rd 133 94 97~ 96th N
WTC 1 S-9 or C-63 Full panel 133 97 100 98th Y

: None

Exterior panels withm WTC 1 N-ic ii M-if 2 columns, lower 2/3rds 115 89 92 92nd N

fire exposure floors
WTC 1 M-20 2 columns, lower l/3rd

121 99 102

No fire evident'unable to

be determined

WTC 1 M-26 Full panel 130 90 93 92nd

WTC 1 N-13 orM-14 3 columns, lower l/3rd
130 99 102

No fire evident'unable to

be determined

WTC 1 N-101 orM-21 Full panel
133 100 103

No fire evident'unable to

be determined

WTC 1 C-40 2 columns, lower 2/3rds 136 98 101 98th Y
WTC 3 N-8 or M-7 Full panel 142 97 100 97th and 98th Y

WTC 1 N-99 or M-16
Almost full panel missing

lower l/3rd of 1 column 148 99 102

No fire evident'unable to

be determined

WTC I .

89th floor and above

WTC 1 N-9 or M-8
Almost full panel, missing

lower l/3rd of 1 column 154 101 104

No fire evident/unable to

be determined

WTC 1 C-22 3 columns, lower 1/2 157 93 96 93rd, 94th, 96th Y

WTC 1 C-25 1 column, lower 1/2
206 89 92

No fire evident'unable to

be determined

WTC I N-12orM-13 2 full columns 206

_

92 95 93rd and 94th Y
WTC 1 C-55 1 column, lower l/3rd 209 94 97 94th, 95th, 96th, 97th Y
WTC 1 K-l orK-13 3 columns, lower l/3rd 209 97 100 97th and 98th Y
WTC 1 S-10orC-17 2 columns, lower 1/2 224 92 95 92nd and 94th Y
WTC 1 K-2 or K-40 1 column, lower 2/3rds 236 92 95 92nd, 94th, 95th Y
WTC 1 C-93 1 column, lower l/3rd 339 99 102 99th Y

WTC 2 C-92 Partial of single column
130 93 96

No fire evident'unable to

be determined

WTC 2
C-13 orS-11

C-13aorS-19

Single rectangular column

Partial of single column
200— 90 92

No fire evident/unable to

be determined

WTC 2 M-lOb 3 columns, lower 1/2
206 83 86

No fire evident'unable to

be determined

WTC 2 M-lOa 3 columns, lower l/3rd
209 82 85

No fire evident/unable to

be determined

WTC 2:

77th floor and above
WTC 2 S-14 or C-20 Full panel

218 91 9±

No fire evident/unable to

be determined

WTC 2 C-18 3 columns, bottom 2/3rds
230 93 96

No fire evident'unable to

be determined

WTC 2 C-14 or S-18 1 column, lower l/3rd
300 85 87

No fire evident/unable to

be determined

WTC 2 M-28 3 columns, lower l/4th
345 98 101

No fire evident/unable to

be determined

WTC 2 C-48 or S-5 Nearly 2 full columns
442 91 94

No fire evident'unable to

be determined

Exterior panels outside WTC 1 CC 2 full columns 124 70 73 Outside of area analyzed

of area analyzed for WTC 1 N-l 2 full columns 218 82 85 Outside of area analyzed

fire exposure WTC 1 S-l or EE 2 columns, lower l/3rd 433 _ 79 82 Outside of area analyzed

WTC 1 C-10 Full panel 451 85 88 Outside of area analyzed

WTC 2 E-1024 Full panel 154 21 24 Outside of area analyzed

WTC 2 C-46
Almost full panel missing

lower l/3rd of 1 column 157 68 71
Outside of area analyzed

WTC 2 C-24 3 columns, upper 1/2 203 74 77 Outside of area analyzed

WTC 2 C-89 2 full columns 215 12 15 Outside of area analyzed

WTC 2 ASCE-2 1 full column 330 40 43 Outside of area analyzed

WTC

2

B-1043 Mechanical floor, full panel 406 40 43 Outside of area analyzed

WTC 2 B-1044 Mechanical floor, full panel 409" 40 43 Outside of area analyzed
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Table 2-3. Strength/gauge combinations of spandrels that may have experienced
damage as a result of airplane impact for both WTC 1 and WTC 2. Also shown are similar

data for 1 he spandrels recovered by NIST.

Spandrel Fy

(ksi)

Spandrel gauge

(in)

Spandrels in airplane

impact region

NnTYihpi" nf1 i UJ.ll.PJ C J. Ul

spandrels

recovered by NIST

Match for

impact?
WTC 1 WTC 2

36 3/8 23 16 Y
36 7/16 1 N

36 9/16 3

36 1-1/4 3

36 1-3/8 3

42 3/8 51 24 Y
42 7/16 18 N
45 3/8 7 2 7 Y
45 7/16 14 N
46 3/8 1 4 Y
50 3/8 5

50 7/16 1 2 Y
50 15/16 2

JJ 3/8 2 2 v
I

55 7/16 2 M
60 3/8 z 6 Y
60 7/16 1 N
60 15/16 1

65 3/8 1——

—

65 7/16 4 N

65 9/16 1

65 5/8 2

ol 15/16 1

70 3/8 2

75 3/8 1

80 9/16 1

94 NISTNCSTAR 1-3C, WTC Investigation



Pre-Collapse Damage and Fire Exposure of Structural Elements

Table 2-2. Strength/gauge combinations of columns that may have experienced damage
as a result of airline impact for both WTC 1 and WTC 2. Also shown are similar data for

the columns recovered by NIST.

Flange F
y

(ksi)

Flange gauge

(in)

Columns in airplane

impact region

Nmnhai' nf rnlumtif

recovered and IEJed

\ 1 - i 1 1- t > nohnoonIvlalLII UlMWtrtrll

possible and

WTC 1 WTC 2 by NIST recovered

45 1 - 3/4 1

50 1/2 2 2 Y
50 9/16 1 2 Y
50 5/8 1 o N
50

-

1-1/16 2

50
*

1-13/16 1

50
*

2-1/16 1

50 2-1/8 1

50
r

2-1/4 1

50
r

2-1/2 1

50
p

2-5/8 1

55 1/4 12

55 5/16 2 5 y
55 3/8 10 u y
55 7/16 15 1 3 Y
55 1/2 7 o N
55 9/16 7 Y
j j 5/8 n Nii
55

r

1-3/8

55 1-11/16 1

n[l 1/4 3 5 Y
60 5/16 y
60 3/8 7 1 Y

'

60 7/16 5 3 o N
60 1/2 4 3 1 Y
fin 9/16 5 nu in

1/4
*7

65 5/16 1 N
65 3/8 7 1 Y

7/16 4 9 nu N
65 1/2

")
g o N

9/16 4 nu IN

u_> 13/16 1
1

70 1/4 7

7TI 3/8 I
nu N

70 7/16 2 2 Y
7fl/ u 3/4 1

75 1/4

75 3/8 1 o N
7/16 1 Y

ou 1/4

80 3/8 N
80 5/8 1

80 1-3/16 1

85-100 1/4 12 Y
85-100 5/16 4 0 M

85-100 3/8 i 0 N
85-100 9/16

7
J

85-100 1-1/8 2

85-100 1-3/16 3
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8:46 am impact
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B i EES
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Collapse 10:29 am

NIST Name: C-93

Panel ID: A339: 99-102

Panel location: WTC 1, South face

Window lines: 37-40

Un-recovered portion of panel

Bottom of floor: 102nd

Floor: 101st

Floor: 100th

Top of floor: 99th

Column line: 340 339 338

External flaming

Fire inside 2

Spot fire 1

No fire evident \ 0

No determination 9

Unrecovered portion of panel - #
|

Figure 2-48. Time sequence map for WTC 1 recovered panels, p) A339: 99-102 of the

south face.
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ollapse 10:29 am

NIST Name: K-2
Panel ID: A236: 92-95

Panel location: WTC 1, East face

Window lines: 34-37

Un-recovered portion of panel

Bottom of floor: 95th

Column line: 237 236 235

External flaming

Fire inside 2

Spot fire 1

No fire evident 0

No determination 9

Unrecovered portion of panel

Figure 2-48. Time sequence map for WTC 1 recovered panels, o) A236: 92-95 of the

east face (cont.).
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Panel ID: A236: 92-95

Panel location: WTC 1 , East face

Window lines: 34-37

Un-recovered portion of panel

Bottom of floor: 95th
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Floor: 93rd

in Top of floor: 92nd

Column line: 237 236 235
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Fire inside
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Figure 2-48. Time sequence map for WTC 1 recovered panels, o) A236: 92-95 of the

east face.
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Panel location: WTC 1, East face

Window lines: 22-25
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Bottom of floor: 95th

Floor: 94th
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^Top of floor: 92nd

Column line: 225 224 223

External flaming

Fire inside 2

Spot fire 1

No fire evident 0

No determination 9
;
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Figure 2-48. Time sequence map for WTC 1 recovered panels, n) A224: 92-95 of the

east face (cont.).
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Window lines: 22-25
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Figure 2-48. Time sequence map for WTC 1 recovered panels, n) A224: 92-95 of the

east face.

NISTNCSTAR 1-3C, WTC Investigation 87



Chapter 2

9:58 B B B B
t

9shoo
99

98

97

10:18

10:26

10:28
Collapse 10:29 am

MST Name: K-l

Panel ID: A209 97-100

Panel location: WTC 1 , East face

Window lines: 7-10
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Figure 2-48. Time sequence map for WTC 1 recovered panels, m) A209: 97-100 of the

east face (cont.).
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Figure 2-48. Time sequence map for WTC 1 recovered panels, m) A209: 97-100 of the

east face.
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Figure 2-48. Time sequence map for WTC 1 recovered panels. I) A209: 94-97 of the east

face (cont.).
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Figure 2-48. Time sequence map for WTC 1 recovered panels. I) A209: 94-97 of the

east face.
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Figure 2-48. Time sequence map for WTC 1 recovered panels, k) A206: 92-95 of the

east face (cont.).
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Figure 2-48. Time sequence map for WTC 1 recovered panels, k) A206: 92-95 of the

east face.
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Figure 2-48. Time sequence map for WTC 1 recovered panels, j) A157: 93-96 of the

north face.
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Figure 2-48. Time sequence map for WTC 1 recovered panels, i) A142: 97-100 of the
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Figure 2-48. Time sequence map for WTC 1 recovered panels, i) A142: 97-100 of the
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Figure 2-48. Time sequence map for WTC 1 recovered panels, h) A136: 98-101 of the

north face.
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Figure 2-48. Time sequence map for WTC 1 recovered panels, g) A133: 97-100 of the

north face.
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Figure 2-48. Time sequence map for WTC 1 recovered panels, c) A130: 90-93 of the
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Figure 2-46. Image of the NE corner of WTC 2, several seconds before collapse. The
corner shows no distortion of the type in the previous figure. This would imply that the

distortion accompanied the collapse and did not precede it. The region in the upper right

is enhanced for visibility.
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Figure 2-44. An enhanced close-up of the kink area in the previous figure (SE corner,

WTC 2), with overlaid lines to highlight the details of the kink geometry. The edge of the

building (1) bends an angle to another direction (2), then bends back somewhat toward

the original direction (3).
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Figure 2-37. East face of WTC 2 at time 9:53:04 showing a larger amount of pull in. The
vertical black lines were drawn to establish the original line of the exterior wall columns,
and the shorter line segments were drawn at the same angle as the nearest observable

joint in the exterior aluminum panels to establish the inward bowing distance. For actual

column numbers, add a "3" to the front of the two-digit designations in the image.
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Figure 2-30. Image from Fig. 2-29 with black lines showing the location of bolted vertical

column connections between panels.
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Figure 2-29. Image from Fig. 2-28 with indications of location and type of localized

damage. Red designates cut metal components, blue indicates broken vertical column
connection bolts, green indicates locations of failure of longitudinal welds in the box

columns, and yellow shows regions that could not be identified from any
photographic evidence.
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Figure 2-27. Un-enhanced frame from "Sorensen 4 at 1-44-21.jpg" showing the impact

hole in the south face of WTC 2.

Figure 2-28. Image from Fig. 2-27 computer image enhanced for maximum visibility of

damage to exterior wall panels.
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Figure 2-25. Image of pull in of south face of WTC 1 at 1 0:23 a.m. showing considerable

displacements of the outer columns into the building. The faint white vertical features

are the aluminum facade of the exterior. Maximum visible inward displacement of the

columns is 55 +/- 6 in. Poor resolution of the image leads to large uncertainties in the

measurements, and a large fraction of the south face of the building is obscured

by smoke.
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244 245 246 247 248 249 250 251 252

Figure 2-24. Image of inward bowing of south face (at right, with dark lines overdrawn)
of WTC 1. This image was taken at 10:23 a.m. from a NYPD helicopter.
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Figure 2-21. Diagram showing how the exterior

aluminum panels were attached to the window frames.
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Source: Original photograph copyright Lyle Owerko 2001.

Figure 2-20. Image showing how the sprayed fire-

resistive material was actually applied to the exterior

columns. The depression formed by the outer web
and the flange tips is completely filled in with sprayed

fire-resistive material at the arrow. North face of

WTC 2.
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Source: Feld 1971.

Figure 2-19. Diagram showing how the sprayed fire-resistive material was to be applied

to the exterior columns.
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Figure 2-17. Close-up of pre-collapse condition of panel M-2 (A130: 96-99).

Figure 2-18. Close-up of pre-collapse condition of panel N-7 (A127: 97-100).

NISTNCSTAR 1-3C, WTC Investigation 41



C 20O1 Roberto

ure 2-15. Close-up of pre-collapse condition of panel S-9 (A133: 97-100).

ure 2-16. Close-up of pre-collapse condition of panel M-27 (A130: 93-96).
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Figure 2-13. Image from Fig. 2-12 with shaded regions showing the locations of

identified panels in NIST's possession from around the impact hole in WTC 1.

Figure 2-14. Close-up of pre-collapse condition of panel M-30 (A133: 94-97).
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Figure 2-11. Image from Fig. 2-10 with indications of location and type of localized

damage. Red designates cut metal components; blue, broken vertical column
connection bolts; green, locations of failure of longitudinal welds in the box columns;
and yellow shows regions that could not be identified from any photographic evidence.

Figure 2-12. Image from Fig. 2-11 with black lines showing the location of bolted vertical

column connections between panels.
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Figure 2-9. Image from Fig. 2-8 with overlay of the outline of a Boeing 767 as it appears
at rest.

Figure 2-10. Image from Fig. 2-8 with overlay of the outline of a Boeing 767 that has
been manually distorted in the computer to get a best approximate fit with damage

toWTCL
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Figure 2-7. Unenhanced image Corbis_NRM161282 showing the impact hole in the north

face of WTC 1.

Figure 2-8. Image from Fig. 2-7 with addition of a small piece of image "7_1.jpg"

(original photograph copyright Roberto Rabanne 2001), then computer image enhanced
for maximum visibility of damage to exterior wall panels.
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Figure 2-6. Pictorial display showing the required minimum yield strength of the

spandrels on the south face of WTC 2 around the airplane impact region.
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Damage in shaded area cannot be accurately determined.

Figure 2-5a. Pictorial display showing the panels possibly damaged on the south face of

WTC 2 around the airplane impact region.

34 NISTNCSTAR 1-3C, WTC Investigation



Pre-Collapse Damage and Fire Exposure of Structural Elements

Damage in shaded area cannot be accurately determined.

Figure 2-4. Estimated amount of damage to the south face of WTC 2, as determined

by NIST.
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Figure 2-2b. The specified minimum yield strength of the exterior columns for WTC 1

shown in (a).
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Figure 2-3. Pictorial display showing the required minimum yield strength of the

spandrels on the north face of WTC 1 around the airplane impact region.
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Figure 2-2a. Pictorial display showing the panels damaged on the north face of WTC 1

around the airplane impact region.
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Figure 2-1 . Estimated amount of damage to the north face of WTC 1 , as determined

by NIST.
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southeast corner of the top portion in the region of the 106th floor. In addition, the top portion

twisted slightly clockwise (as viewed from the top) as the collapse progressed.

From this analysis, the following 42 recovered exterior panel sections were grouped into one of four

categories:

1 . Unambiguously identified exterior panels with probable impact damaged

WTC 1 : N-7, M-27, M-2, M-30, S-9

WTC 2: No panels recovered

2. Unambiguously identified exterior panels with exposure to pre-collapse fires

WTC 1: N-10, M-26, C-40, N-8, C-22, N-12, C-55, K-l, S-10, K-2, C-93

(The panels N-7, M-27, M-2, M-30, S-9 are also considered part of this group but

were handled separately in the first category)

WTC 2: No panels recovered

3. Unambiguously identified exterior panels not part of the first two groups

WTC 1: M-20, N-13, N-101, N-99, N-9, C-25, CC, N-l, S-l, C-10

WTC 2: ASCE-2, C-92, C-13/C-13a, M-lOb, M-lOa, S-14, C-18, C-14, M-28, C-48,

B-1024, C-46, C-24, C-89, B-1043, B-1044

4. All other panels not identified.

Additionally, four core columns were identified as having importance to the investigation due to their as-

built location with respect to the impact and fire floors:

• WTC 1 : C-80 and HH

• WTC 2: C-88a and C-88b

The results of this work provided input for validation of the models from Projects 2, 5, and 6.
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the 13 strength/gauge combinations in the impact region were recovered. All six of the missing

strength/gauge combinations were within 0.0625 in. of recovered strength/gauge combinations.

• Considering both towers, 7 of the 13 strength/gauge combinations in the impact regions were

recovered. As seen with the column material, all six of these missing strength/gauge

combinations were only 0.0625 in. from recovered strength/gauge combinations; thus, sufficient

samples were available for the investigation. Computer image analysis of photographs taken of

the impact hole in WTC 1 allowed for the identification of 95 percent of the modes of failure for

the exterior wall columns damaged in the collision. The condition of five recovered and

identified panels located around the hole before the building collapsed were largely determined.

• The number and particularly the resolution of the photos taken of the damage to WTC 2 were

much less than those available for the analysis ofWTC 1, allowing for identification of only

70 percent of the exterior column failure modes. Correlation to specific failure mechanisms on

the panels was not possible, as none of the recovered identifiable exterior panels in NIST's

possession were from the impact region ofWTC 2.

• Sixteen exterior panels exposed to fire before the collapse were recovered from WTC 1; none

were recovered from WTC 2. These panels were used to assess possible temperature excursions

experienced by the material due to fire exposure, as well as to determine the extent of fire

damage, or if fire affected the structural integrity of the structural steel component.

• Four core columns were recovered from the WTC towers; two were from each building. While

pre-collapse damage could not be ascertained from photographic evidence, computer simulations

indicated that impact damage may be found on the columns.

• Damage to sprayed fire-resistive material on the perimeter columns was examined in pre-collapse

photographs. As expected, sprayed fire-resistive material was removed from pieces struck by the

incoming aircraft or pieces exiting the far side of the building. In addition, the impact caused

sprayed fire-resistive material and aluminum facade to spall off many perimeter columns which

were not directly struck, but apparently suffered strong accelerations and forces otherwise

transmitted through the building structure.

• Images ofWTC 2 revealed some details of how the building deformed during the time between

aircraft impact and collapse, and revealed how the portion of the building above the impact zone

moved relative to the bottom of the building during initial stages of collapse. Approximately 18

min after the impact of the aircraft, the east face ofWTC 2 exhibited inward bowing of up to 10

in. in the region of the 79th to 83rd floors. This inward bowing increased to 20 in. at a time 5 min

before collapse of the tower.

• Hanging floor slabs at the 82nd and 83rd floors ofWTC 2 were visible in window openings on

the east and north faces, respectively, and the positions of these slabs changed over time,

suggesting a slow progressive collapse mechanism of certain parts of the flooring in this area of

the tower.

• At the moment of collapse ofWTC 2, the top portion of the building was found to have moved to

the west as it tilted to the southeast. During this tilting, a complex kink developed at the
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from floors 78 through 83. No visual evidence of fire was observed (all windows were either category 0

or 9) near any of the recovered panels prior to the collapse ofWTC 2.

2.4 CORE MATERIAL

Four core columns were identified as having as-built locations in the vicinity of the impacts. As seen in

Fig. 1-7, two columns were from WTC 1, C-80 (603A: 92-95) and HH (605A: 98-101), and from

Fig. 1-8, two were from WTC 2, C-88a (801B: 80-83) and C-88b (801B: 77-80). As stated above, the

internal damage caused by the impact and subsequent travel of the higher density airframe components

through the buildings could not be visually established prior to the collapse. Therefore, determination of

which event caused the observed damage also was not firmly resolved from the available evidence. The

following section presents computer model results of impact damage of these four core columns.

2.4.1 Computer Simulated Impact Damage of Core Columns

Computer simulation of impact damage determined that the recovered portion of the two core columns

from WTC 1 (C-80 and HH) were not in the path of the aircraft debris (NIST NCSTAR 1-2B). This

result was consistent with the physical location of the core columns with respect to the impact damage of

the exterior panels (Fig. 1-7) as one column was above the external damage of the north face ofWTC 1

and the other was below this region. Thus, damage observed on the core columns was assumed to be

associated with events occurring during and after the collapse.

For the two core columns from WTC 2, the base case for aircraft impact damage indicated that the core

columns were not damaged as a result of the impact. However, another analysis with parameters set to

provide a more severe damage estimate indicated that the lower column sustained damage. From

Fig. 1-8, the as-built location of the recovered core columns, particularly, the lower portion of C-88b

(80 IB: 77-80), with respect to the external damage of the south face may support the latter evaluation.

Therefore, impact damage may be present on this recovered core column.

2.5 SUMMARY

In correlating the post-impact, pre-collapse photographic and video images with the recovered structural

elements, the following conclusions were made:

• Five exterior panels were recovered from the impact region ofWTC 1; none were recovered from

WTC 2. These panels were used to visually assess the amount of damage imposed on the

structural elements as a direct result of the impact and evaluate the performance and/or behavior

of the structural materials due to impact of the plane.

• Though representative examples of all strength/gauge combinations of steel plate used to

fabricate the exterior panels from the impact regions of the towers have not been recovered,

numerous gauges for all 12 grades of steel used for the perimeter panels have been recovered.

Out of the 28 different strength/gauge combinations for perimeter columns in the impact region of

both towers, NIST has recovered representative samples for 14. Of the 14 un-recovered

strength/gauge combinations, 10 combinations were within 0.0625 in. of recovered pieces, while

three were within 0.125 in., and one combination had a difference of 0.1875 in. Similarly, 7 of
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Cross-referencing this information with the recovered exterior panels, direct visual observations were

made on samples to determine the extent of fire damage or if fire affected the structural integrity of the

component.

Figure 2-47 displays a generic illustration of the combined data used in this portion of the analysis. On
the right-hand side is a schematic of the recovered exterior panel along with the identification of its as-

built location. The panel was drawn as if viewed from outside of the building, with the floors and column

lines labeled. Portions of 16 different windows (labeled a through p on the schematic) were associated

with each panel. These window locations correspond with areas located on the time-fire exposure

sequence to the left of the panel schematic. Segments of the panel may be "grayed-ouf indicating that

this portion of the panel was not recovered. (The amount of recovered panel for each identified sample

was documented in NIST NCSTAR 1-3B.) On the left-hand side of the illustration, the time line analysis

for exposure to fire can be observed for that given panel, along with the color-coded, numerical key. The

location of each window for a given time was consistent with the recovered panel diagram (windows

labeled a through p for the 8:47 a.m. time frame). Similar to the "graying-out" of the panel schematic, the

corresponding windows may be "grayed-out" in the time sequence; however, the numeric key was still

visible. Only those panels in which fire was observed in at least one window (category 1, 2, or 3) were

presented, regardless of whether that portion of the panel was recovered or not. All other panels not

displayed were considered to have observations of category 0 (an absence of fire observations) or

category 9 (the results were undeterminable). Observations for fire exposure were made from

photographic and video images at roughly 2 min to 4 min intervals from the time of initial impact to

collapse of the building. Thus, nearly 50 time frame observations were made for WTC 1 and 30 for

WTC 2. For conciseness, only those time frames directly before, during, and directly after a visual

confirmation of fire exposure in a window were shown (arrows between time frames indicate omitted

observations due to lack of fire exposure during these times). The recovered panels found to have been

exposed to fire were visually inspected and are discussed in Chapter 6.

2.3.1 WTC 1

Floors analyzed for exposure to fire in WTC 1 were from the 89th floor through the 1 10th floor.

Figure 1-7 indicates the location of the fire floors with respect to the impact damage. These included all

the floors above the impact zone and five stories below this zone. From the 26 recovered panels

identified from WTC 1, 22 panels fall within this range, including the five from the impact region,

Table 2-5. In general, fire was observed on floors 92 through 100, as well as the 104th floor. Correlating

this data with the as-built location of the recovered samples, 16 panels were observed to have been

exposed to fire sometime during the 1 h and 43 min that WTC 1 stood after the impact. Table 2-5 lists

the specific floors where fire was observed, and Fig. 2^48 displays the time-fire exposure maps for these

panels. Of these 16, 13 have recovered portions of the panel where fire exposure occurred. For the other

three panels, the area where fire was observed prior to the collapse was not recovered.

2.3.2 WTC 2

WTC 2, from the 77th floor through the 1 10th floor, was analyzed for visual observations of fire.

Figure 1-8 indicates the location of the fire floors with respect to the impact damage. Nine of the

16 panels recovered from WTC 2 resided within this region, Table 2-5. In general, fire was observed
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sun glare, shows a displaced floor slab on the east face ofWTC 2 through the windows bounded by

columns 315 and 343 on the 82nd floor.

A number of photographs of the north face ofWTC 2 in the region of the 80th floor appeared to show

floor slabs that had fallen from their original positions. The thickness and color of the feature indicated

by arrows in the images were consistent with that of the concrete slab of the floor assembly

(NIST NCSTAR 1-6C). The floor slab in Fig. 2-41 appeared in the windows bounded by columns 241

and 248 on the 80th floor, and in Fig. 2^12 bounded by columns 245 and 248 on the 80th floor. The

timestamps for these two images were (pending) and (pending) respectively, so the floor slabs appear to

have moved over time.

The details and implications of the presence and locations of these floor slabs are discussed in greater

detail in McAllister et al. (2005).

2.2.8 Photographic Evidence of Details of Collapse of WTC 2

Some details of the early stages of collapse ofWTC 2 were found in the photographic record and

provided for validation of the models of collapse. The image in Fig. 2—43 was taken about one second

after the tower began to collapse and shows the east face of the building. A noticeable kink was visible

along the edge of the building in the region of the 106th floor at the SE corner (arrow).

A more detailed analysis of the geometry has been made of this distortion, shown in Fig. 2-44. The kink

was in fact a double-kink, and the directions of the axes of bending are shown in the figure. It is likely

that this distortion formed by the sideways shift of loads transmitted via the hat truss and rigid, beam-

framed floors of floors 107 to 110, and a more detailed structural analysis can be found in

McAllister et al. (2005). Examination of the right side of the image, after considerable image processing,

shows that the edge of the building has bent, but shows no sharp discontinuity. Thus, the sharp kink had

not propagated across the face of the building (Fig. 2-45). An image taken approximately 2 s before

collapse (Fig. 2—46) shows no bending, so the kink must have developed at either the moment of collapse

initiation or during the earliest moments of the collapse process.

2.3 PHOTOGRAPHIC ANALYSIS OF PRE-COLLAPSE EXPOSURE OF
EXTERIOR PANELS TO FIRE

In the fire modeling project (NIST NCSTAR 1-5A), photographic images, video images, and other

relevant information were utilized to develop detailed time lines for the spread and growth of fires at the

peripheries ofWTC 1 and WTC 2. From this information, it was determined if fire was present on a floor

or near a specific exterior panel at a given time. In the analysis, the windows were numbered for a given

floor, and the determination was made from the resources as to which category each individual window

fell into for the given time frame. The categories were labeled as:

0: No fire was visible

1 : Spot fire or small isolated fire

2: Fire visible inside

3: External flaming

9: Unable to be determined (typically as a result of smoke obscuring the window).
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flanges, as evidenced by the exposed red Tnemec paint on the columns. It was not possible to make an

unambiguous determination as to whether the insulation on the exteriors of the spandrels was damaged in

any of the photographs. This photo also reveals details about the loss of the SFRM. The blue arrow in

Fig. 2-34 points to an example of a band of white features that occurred wherever two aluminum panels

met on the exterior of the building, the white feature becoming visible when the panels were dislodged.

This may be a coating applied to protect the SFRM from moisture infiltration at the aluminum panel

joints. This coating appears to have prevented the loss of SFRM in a great many locations where the

SFRM was knocked off both above and below this location.

East Face of WTC 2

The interior of the east face of the tower was not impacted as directly as the north face, but experienced

damage to both aluminum exterior panels and SFRM. However, the damage was more scattered across a

larger fraction of the face on the 79th through 82nd floors (Fig. 2-35). Clearly, there were areas where

the SFRM had been damaged or removed to the level of the paint (red arrows). Loss of SFRM was not

found south of column 3 16 on this face ofWTC 2, but since dislodged SFRM can only be seen if the

aluminum panels were also dislodged, and the panels south of column 316 were intact, this does not mean

that the insulation necessarily was intact.

2.2.6 Photographic Evidence of Pre-Collapse Distortion of Exterior Walls: East Face
of WTC 2

Several high-resolution photographs taken of the east face ofWTC 2 in the region of the 80th floor show

an inward bowing of the exterior columns. The timestamps of these photos ranged from 9:21 :29 a.m.

until just before collapse. Three photographs were of sufficiently high resolution to enable measurement

of the inward bowing over the surface of the face of the building. The estimated error in each

measurement, given all the sources of error detailed previously in the discussion of the methodology

(Sec. 2.2.3), was approximately 1 in. to 2 in. for these measurements. One image was taken at

9:2 1 :29 a.m., or 18.5 min after impact (Fig. 2-36), and the other two images were taken by the same

photographer at nearly the same location 10 s apart beginning at 9:52:54 a.m., or roughly 6 min before

collapse ofWTC 2 (Fig. 2-37 shows one of these images). These images were analyzed extensively to

spatially map the inward bowing of the exterior columns across the face of the building to provide insight

into when this bowing formed and how it changed with time. (Additional figures with much lower

resolution were examined to determine the amount of deflection as close to the moment of collapse as

possible. However, due to the low resolution and obscuration, these did not produce any usable results.)

The resulting data are plotted in Figs. 2-38 and 2-39. (The results from the two images that went into

Fig. 2-39 were combined since they were taken from the same location with the same camera only 10 s

apart, and it was assumed that the inward bowing of the columns did not change appreciably in that time).

It was clear that only 18.5 min after the impact of the plane, there was significant inward bowing of the

east face of the building. After an additional 3 1 .5 min, the deflections nearly doubled in most locations.

2.2.7 Photographic Evidence of Damage to the Flooring System of WTC 2

An image showing what appears to be a hanging floor slab in the windows on the east face ofWTC 2 is

shown in Fig. 2^10. This image, which was of relatively low resolution and suffers from considerable
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Several images taken from different angles and with different smoke and lighting configurations were

examined to characterize the damage. Fig. 2-31 is a view of the northeast comer ofWTC 2 centered on

approximately the 82nd floor. The 81st floor, where the engine exited, was piled full of burning debris.

The comers of the buildings were designed such that every other floor had a column in this space, an

example of which can be seen above the hole, indicated by the arrow. The plans of the building show that

the 81st floor was one without a column, consistent with the image, so that the exiting engine did not

remove one as it exited the hole. Also, examination of this and two other images showed that the

columns that border the hole to the left and right appear undamaged, so that the engine appears to have

not damaged the building structurally as it exited.

On the right side of the image in Fig. 2-31 is the north face ofWTC 2. It was believed that a large

component of a landing gear exited the building on this face near the northeast comer in the region of the

80th floor. On Fig. 2-32, the arrows indicate where the columns have been cut (regions of missing

column denoted by blue arrows) or where a bolted connection has broken and bent the column ends

outward slightly (green arrows). The bolted connections were broken at the 81st floor in columns 257

and 258. The entire column was cut through at columns number 254 and 255, also at the 81st floor.

Once these exterior columns had been severed, they were no longer load bearing.

In addition to the missing piece of column, column 254 exhibited an intact outer web (red arrows). This

piece had fractured free of the rest of the column over a distance of slightly more than two floors. Since

the flange tips can be seen on either side of the outer web, the fractures occurred within the flange plate.

2.2.5 Damage to Sprayed Fire-Resistive Material in WTC 2

North Face Near Northeast Corner

The north face ofWTC 2 contained the exit holes for some of the debris from the collision of the aircraft.

This debris consisted of aircraft components, building contents, and possibly structural parts of the

building damaged during the event. This debris impacted the interior of the north wall, blowing out

windows, damaging exterior columns, and removing aluminum exterior panels and SFRM from the

columns.

A region of the north face ofWTC 2 spanning columns 230 through 259 and the 79th through 82nd floors

had the exterior aluminum panels and SFRM damaged or removed due to debris impact from within the

building. In particular, a rectangular region consisting of columns 239 through 249 on floors 79 through

81 were found to be completely free of aluminum panels, and the best observations of SFRM damage

were in this region as well. Figure 2-33 shows the region of interest. Red arrows indicate where the

SFRM was dislodged from the outer web between the protruding tips of the flanges. This determination

was made using this image and other higher resolution images (see forthcoming figures). The appearance

of white linear features on the edge of the columns, at this angle of solar illumination, shows the absence

of at least some, if not most, SFRM from the center region of the outer web of the column. In contrast,

column 246 (green arrow) shows bright contrast across the entire face, and this and other photos confirm

that the SFRM was nearly intact along this column for the entire exposed three floors, despite the fact that

the aluminum facade had been dislodged.

Additional images taken of the region at higher resolution (Fig. 2-34) showed more subtle details about

the SFRM damage. The arrows indicate where the SFRM has been dislodged completely from the

NIST NCSTAR 1-3C, WTC Investigation 23



Chapter 2

Figure. 2-27 shows a clear view of the damaged south face. The image was adjusted for contrast, and the

levels were changed to bring out the most features and to correct for the general blue cast (Fig. 2-28).

Small local regions were adjusted in a manner similar to Fig. 2-8, but the resolution of the image was too

low for any new features to be revealed using this method. Fitting of an outline of a 767 to this image

was found to be extremely difficult, as the angle of impact of the aircraft with the wall and the angle from

which the image was taken with respect to the building face were not well known, and distorting the

outline of the plane to match the damage did not produce acceptable results.

In the next image (Fig. 2-29), colored rectangles were added to identify any observable failure modes in

the exterior columns, whether at the ends or at some location along their length. The specific failure

modes identified are described in the figure caption. Blue rectangles indicate where the bolted

connections between two vertically adjacent exterior wall panels have failed. In many instances, this was

indicated by a trio of truncated columns at the same vertical location that corresponded with a known

column connection. Rectangles shaded red indicate where there was a high likelihood of failure of the

steel of the columns via tearing or cracking, not located at a vertical column connection. The number of

longitudinal weld splits, designated by green rectangles, that could be seen was very limited due to image

resolution. There were several broken exterior column connection failures that could not be definitely

identified, and these are colored in yellow. In addition, the region encompassing the starboard wing tip

damage area, outlined roughly in yellow, was unobservable in all available photographs and video

footage, due to the large and persistent volume of smoke being emitted from those floors.

Several general observations were made about the spatial distribution of failure modes around the impact

hole ofWTC 2, though the patterns of damage were less well-defined than those in WTC 1. The region to

the far left, where the wing impacted, shows a higher concentration of columns that may have failed by

cutting or splitting of the steel of the columns, but the images do not provide a clear determination for

most columns. It was evident that the damage was very localized at the point of impact and that the

columns were not pushed into the interior of the building as seen for WTC 1 . Where the fuselage went

through, there was a somewhat higher concentration of failures at the bolted vertical connections between

the exterior panel sections.but contrary to the observations on WTC 1 where the columns were bent

inward into the building envelope, there were also a number of columns that were cut by the impact of the

main body of the aircraft observed for WTC 2. This may be due to the fact that the fuselage did not enter

the building at the roughly right angle that was the case for WTC I, but at a more side-sliding acute angle

for WTC 2. Thus, at any given point around what would be considered the fuselage entry point,

components of the main body, wing, and perhaps even engine may have impacted a given exterior wall

panel during the event. For visualization purposes, Fig. 2-30 shows the location of these bolted joints in

the exterior wall.

No identified panels in NIST's possession correspond to any panels around the impact hole in WTC 2, so

detailed post-collapse analysis of the failures was not possible.

Parts of the aircraft that impacted the south face ofWTC 2 exited the building on the north face and

landed some distance from the building. In particular, it was believed that an engine exited the NE corner

of the building from the 81st floor, and a landing gear strut component cut through the wall on the north

face near the northeast corner of the same floor. Images were examined to determine what damage was

caused by these pieces in order to feed this information back to both the impact damage model and the

stability models.
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1 percent over a vertical distance of three floors or sideways up to four columns in either direction, so

establishing this length not exactly at the location did not introduce much error. A measurement was then

made at the same angle as the seam from the upper left comer of the window (or window opening) to the

previously drawn true line. The correction for barrel distortion was calculated and subtracted from this

value. This established the amount of inward bending of the column. A ratio of this length to the seam

length was calculated and multiplied by 1 1 in. to estimate inward bowing in in. This measurement was

made at every location where the aluminum facade panels were intact, straight, and still attached to the

building.

This measurement was performed on an image taken from a NYPD helicopter at approximately

10:23 a.m., several minutes before the collapse ofWTC 1. The image is shown in nearly its entirety in

Fig. 2-24, and the analysis is shown in Fig. 2-25. Due to the limited resolution of the digital camera that

took the image, as well as artifacts introduced into the image by the JPEG compression routine, the

resolution of these measurements are estimated to be +/- 6 in. This resolution limitation and the presence

of such a large region obscured by smoke required that the aforementioned measurement procedure be

modified slightly. Instead of establishing the vertical true lines using undeformed sections above and

below the region of interest, the large area visible below this area was utilized by establishing the true line

along 20 floors below the damaged region. This was extended along the same line through the smoke

filled region. In addition, as the seam of the aluminum facade panels was not visible, the distance the

columns were deformed into the building perpendicular to the south face was established by measuring

angles and distances on the west face at the southwest comer of the building (see Fig. 2-25, lower left).

This established the angle (167 degrees from right horizontal) and base magnitude (120 ft per 88 pixels)

of the inward bowing vector. The foreshortening of the south face due to perspective was calculated and

applied to the distances measured on the south face, and increased the measurements by a maximum of

approximately 15 percent over the physical distance measured on the image. Note that later analysis of

the inward bowing of the east face ofWTC 2 did not require this correction, due to a more normal

orientation of the photographer's view of the building.

The region over which the exterior columns ofWTC 1 appear to bow inward spans nearly the entire face,

and extends vertically over at least 4 floors, if we assume continuity between the inwardly bowed sections

on the east and west sides of the south face. The maximum inward bowing at this time (10:23 a.m.) is

55 +/- 6 in. near column 3 16 on the 97th floor. Note that this is the maximum that is visible, but a large

portion of the south face is obscured by smoke. Figure 2-26 shows an image taken at 9:25 a.m., or

58 min after aircraft impact. This image shows that the columns shown to be inwardly bowed in

Fig. 2-25 are straight at this time, indicating that the inward bowing developed quite some time after

impact, and was not due to initial impact damage.

2.2.4 Structural Damage to WTC 2

As mentioned previously, the availability of images showing details of the impact hole in WTC 2 was

much more limited than the number of images available for WTC 1 , and many of the images were taken

from a much greater distance than those ofWTC 1. Also, many photographers tended to frame their

fields of view to encompass a shot showing both towers being on fire and damaged, so that the portion of

the image showing the WTC 2 impact hole, even if very high resolution, was very small. Most of the

useful images for the analysis came from videotape shot by staff from the New York City Fire

Department (FDNY) very near the site, but these frame grabs suffer from limited resolution.

NISTNCSTAR 1-3C, WTC Investigation 21



Chapter 2

There was extensive photographic evidence of SFRM damage around the impact hole on the north face of

WTC 1 . This was not surprising, considering the energy of the impact. However, some of the damage

was a considerable distance from the impact site. Since damage to the SFRM can only be detected at

locations where the exterior aluminum panels have been dislodged, this analysis is not to be considered a

comprehensive map of the damage to the SFRM on the north face ofWTC 1

.

Figure 2-22 shows the east side of the impact hole in the north face ofWTC 1. Arrows indicate where

the SFRM was damaged, and in several locations the underlying paint showed through. Examining these

images further, it was possible to view the trusses on the underside of the floors that collapsed into the

impact hole (Fig. 2-23). In the two instances indicated on the figure, the details of the structure and the

paint color of the lower chord of the trusses were quite visible, indicating that most if not all of the SFRM
had been dislodged.

2.2.3 Photographic Evidence of Pre-Collapse Distortion of Exterior Wall: South Face
of WTC 1

In several photographs it was possible to see an inward bowing of the exterior walls of each tower at

different times. The following methodology and assumptions were used to measure the positions of the

exterior columns and their deviation from straight and vertical. The aluminum facade panels were 1 1 in.

in depth in the installed position, measured from the window frame outward. They were also 19 in. wide

across the exposed face. The aluminum panels were joined at seams that lay at right angles to the long

axis of the external columns, and which were generally located at the top edge of a window opening of a

particular floor. Each aluminum panel extended one full floor, measuring 12 ft in length.

The governing assumption of this analysis was that the bending of the columns inward preserved the

direction and length of the seam across the 1 1 in. wide face of the facade pieces. The wall bowed inward

parallel to the line of this seam. A line was drawn along the undeformed column sections that were

visible far above and below the bent columns to establish the original profile of the column. Since the

lens of the camera that took the pictures suffered from a considerable barrel distortion (lines at the outer

region of the image are not parallel to the centerline, but rather curved slightly), this was corrected in the

data to avoid introducing artificial distortion of the columns. A line parallel to the columns was

established on each side of the image, with each line being the same distance from the edge of the photo.

This established two lines equidistant from the center of the lens. These outer columns were determined

to be straight in other images. The distortion of the columns adjacent to these lines from straight was

established at each floor level at the line of the top of the windows. A linear interpolation function for the

barrel distortion was calculated for the image at each floor level. It was assumed to vary from a rightward

distortion of the image on the right hand side through perfect alignment in the center to a leftward

distortion on the left hand side.

For each column, a vertical line was drawn to establish the original alignment of the column, wherever

possible. This was done by tracing from unbowed sections far above and below the section that was

bowed inward. Most commonly, if a line could not be drawn, it was because the columns above the

inward bowing were not visible due to smoke. At each measurement site, when possible, the length of the

1 1 in. long seam, as well as its deviation angle from horizontal, was measured on the photo as a

calibration. If the seam was not visible precisely at the measurement location, the length and angle were

measured at as close a location as possible. It was found that this length did not vary by more than
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• M-27 : (location A 130: 93-96) This panel, hit by the nose of the aircraft, was directly below panel

M-2, and the upper part was observed bent over at roughly a 90 degree angle into the building

after the collapse (Fig. 2-6). Column 130 appears to be sliced off at the 95th floor, while column

131 was bent over and lying on the 95th floor. It appears that the spandrel connection at the 95th

floor level of column 131 was still attached, while the connection associated with column 129

was broken.

• M-2 : (location A 133: 96-99) Panel M-2 was originally immediately above panel M-27, (Fig. 2-

17). The lower end was hit directly by the fuselage of the aircraft. The bottom of each of the box

columns of the panel showed failure of the vertical column connection bolts, as well as extensive

splitting of the longitudinal welds of the box from the end plate to the first spandrel. The bottom

end of the panel was pushed several feet into the building. The right end of the lower spandrel

remained, and its length implied failure of the middle of the connection with the adjoining panel.

The left end of this spandrel was not visible. In all photographs, smoke obscured the bolted

vertical connection at the top of the panel.

• N-7 : (location A 127: 97-100) This panel (Fig. 2-18) was above the impact hole, to the right of

and above panel M-2. The vertical column connections in the 97th floor level of columns 126,

127, and 128 broke at the bolts. The panel appeared otherwise relatively undamaged after the

plane impact.

2.2.2 Damage to Sprayed Fire-Resistive Material in WTC 1

According to construction documents (Feld 1971), the SFRM (i.e. sprayed fire-resistive material) applied

to the exterior of the outer columns within the impact regions of both towers was the same material and

application process used for insulating both the core columns and the floor trusses. One of the parameters

in the impact and fire analysis was the condition of the SFRM, so the available photographs were

examined for evidence of its condition after impact.

Areas of particular interest were around the impact holes in each tower, as well as regions where the

exterior walls were impacted from the inside by debris, causing the exterior facade to be damaged. The

photos were enhanced digitally as necessary to reveal the condition of the SFRM. The image processing

techniques involve changing the range of displayed levels, changing the effective gamma, the application

of filters such as unsharp mask and edge sharpening, and subtracting filtered images from the original to

highlight specific features. For an explanation of these image processing techniques, the reader is

referred to Russ (1995).

Figure 2-19 shows a diagram indicating how the SFRM was to be applied to the exterior columns, with a

relatively evenly thick coating to all exterior portions of the column. In practice, as evidenced by the

photographs to follow, it appears the SFRM was sprayed on so as to fill the depression formed by the

outer web of the column and the protrusions of the two column flanges, so that the outer face of the

column appeared flat (Fig. 2-20). Figure 2-21 shows details of the architectural aluminum panel

attachment to the window frames, suggesting how the blowout of windows and frames could possibly

pull off the aluminum panels as well.
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truncated columns at the same vertical location that corresponded with a known column connection. In

other instances, notably seven columns from the leftmost damaged column, bolted connection failures

were visible as a small horizontal dark line on the column. The fact that the junction indeed had broken

was verified by examining other photographs taken at oblique angles from the ground, showing that one

or the other of the column ends making up the joint was pushed in or out of the plane of the exterior

building face. Rectangles shaded red indicate where there was a high likelihood of failure of the steel of

the columns via tearing or cracking, not located at a bolted column connection. At many locations it

could be seen in the various photographs that the longitudinal welds used to form the box columns from

four plates of steel have failed, and these are indicated in green. Finally, there were several broken

exterior column connection failures that could not be definitely identified, and these are colored in

yellow.

Several general observations were made about the spatial distribution of failure modes around the impact

hole ofWTC 1 . The regions to the left and right, where the wings impacted, showed a higher

concentration of columns that failed by cutting or splitting of the steel of the columns, rather than at

connections. The far ends of the wings did not sever the columns, however; the wing apparently sieved

through the columns. Where the fuselage went through, there were higher concentrations of failures at

the bolted column connections between the exterior panel sections. For visualization purposes, Fig. 2-12

shows the location of these bolted joints in the exterior wall. Failures farther removed from the impact

holes tended to be in the bolted vertical connections, as panels cut loose at one end bent into the interior

of the building, loading the other end in tension and breaking the bolts. In most instances, the column

failures that could not be identified were obscured by what remains of the decorative aluminum facade on

the exterior of the building. Figure 2-13 shows the as-built locations and remaining portions of the

recovered and identified panels in NIST's possession as they existed in the impact region. Comparison of

these photographs to the current state of the recovered panels allowed for the identification of impact

damage and the location of fracture surfaces and other failures caused by the plane collision, as discussed

in Sec. 3.0.

Five exterior wall panels were recovered and identified as having been directly impacted by the aircraft.

As seen in Fig. 2-13, these are the panels labeled M-30, S-9, M-27, M-2, and N-7. The available

photographs were examined, and portions of the best views of each of these panels have been extracted

and shown in Figs. 2-14 through 2-18. These were described in detail below.

• M-30 : (location A133: 94-97) This panel was observed to have been displaced and pushed inside

the envelope of the building while still being attached by the 95th floor spandrel to M-27; thus, its

orientation was diagonal as shown in Fig. 2-14. The bolted column splice connections at the 94th

floor level of columns 132 and 133 have broken at the bolts.

• Sjj): (location A133: 97-100) Panel S-9 was above the impact hole and to the left of panel M-2

(Fig. 2-15). This panel was hit by the vertical tail assembly. Damage to the aluminum exterior

panels of the building was evident, though this region was obscured by smoke in all photographs

available. The panel appears relatively straight after impact; however, substantial local damage

to column 134 may be present below the damaged aluminum facade.
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2.2 PHOTOGRAPHIC ANALYSIS OF PRE-COLLAPSE DAMAGE TO
EXTERIOR WALL PANELS

As part of the investigation, the investigative team put out requests to news organizations and the public

for any photographs or video footage taken of the impact damage to either tower prior to collapse

(NIST NCSTAR 1-5A). These images were analyzed to produce preliminary damage assessments and

maps of the progression of fires and window damage between the times of airplane impact and collapse

for each tower (NIST NCSTAR 1-5A). The present analysis goes into more detail into the pre-collapse

damage, focusing on structural issues and damage to sprayed fire-resistive material (SFRM).

A large number of images of the impact area in the north face ofWTC 1 were obtained. However, the

number of images of the damage to the south face ofWTC 2 was limited and spatially incomplete. This

was largely due to the fact that the damaged face was on the south side, and close-up photographs were

not taken, as the area south of the WTC complex was evacuated, and most images taken from farther

away proved to be of insufficient resolution to allow extraction of failure mode information.

Extensive image processing in the form of filtering, contrast enhancement, and montaging was used on

the available images to provide as many details as possible. In all cases where image processing was

used, this was indicated in either the figures or described in the figure captions. The processing

techniques were limited to enhancement, and not re-touching or changing the content of the image.

Arrows and other notations were added as needed to enhance clarity for reporting purposes.

2.2.1 Structural Damage to WTC 1

Eleven photos had sufficiently high resolution to be of use in this part of the investigation. Figure 2-7

shows one important photograph in its original state. The damage to the building caused by the outermost

tip of the starboard wing was not shown in this image, so a small portion of another photograph was color

adjusted, rotated, and pasted onto the image of Fig. 2-7 to complete the damage zone. The image was

then adjusted for contrast, and the levels were expanded so as to bring out important features hidden in

the darker regions (Fig. 2-8). This was done in a piecewise manner within 27 individual regions. In this

manner, it was possible to bring out the maximum number of details over the entire image.

Superimposed onto this figure is an outline of a Boeing 767 aircraft as it would appear sitting on the

runway (Boeing 2004), scaled to correct dimensions with regard to the image of the building (Fig. 2-9).

However, as the plane was traveling at a high rate of speed and was experiencing a turn at the time of

impact, the shape of the hole does not correspond to the outline of the plane at rest. In the next image

(Fig. 2-10), the outline of the plane was distorted to approximately match the outline of the hole in the

building. Note that this outline was not based on any calculations, but merely an approximate fit to the

image. It was seen that all of the major features of the hole in the building were accounted for by some

part of the aircraft, from holes formed by the engines to the damage from the wingtips and the top of the

tail.

In Fig. 2—11, colored rectangles have been added to identify observable failure modes in the exterior

columns, whether at the ends or at some location along their length. The specific failure modes identified

are described in the figure caption. Blue rectangles indicate where the bolted connections between two

vertically adjacent exterior wall panels have failed. In many instances, this was indicated by a trio of
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experienced varying degrees of impact damage. A listing of these panels, with the dimensions of the

columns and spandrels and grades of steel for WTC 2 can be found in Table 2-4. The exterior columns

located in this region had specified minimum yield strengths between 50 ksi and 100 ksi with varying

gauges between 0.25 in. and 0.625 in. Of the 54 columns experiencing damage, there were

18 strength gauge combinations. The breakdown of this data can be found in Table 2-2 for WTC 2, with

Fig. 2-5b pictorially displaying the specified minimum yield strength for the individual columns overlaid

on the damage diagram. Table 2-4 also lists the spandrel strengths associated with these panels. Unlike

WTC I, the strengths and gauges were more varied in WTC 2 with 1 1 different combinations. The

minimum yield strength values ranged between 36 ksi and 65 ksi with gauges of either 0.375 in. or

0.4375 in. Table 2-3 shows these combinations, and Fig. 2-6 shows the location of the strengths with

respect to the impact of the airplane.

2.1.3 Correlation of Pre-Collapse Images with Recovered Exterior Panel Sections

The panel identifications in Tables 2-1 and 2-4 were cross-referenced with 42 recovered exterior panels

with known as-built locations (Table 1-1). Of the 42 panels, there were five recovered from WTC 1 that

had been either directly impacted by the airplane or had possible damage as a result of the impact,

Table 2-5 and Fig. 1-7. No corresponding panels were recovered for the impact region ofWTC 2. From

these five samples from WTC 1 , damage features to and failure modes of the panels and individual

components of the panels were visually observed and documented for possible insights into the behavior

of the material component s) upon impact of the airplane. See Chapter 3.

Ninety-seven individual columns were specifically identified as to their strength/gauge combination from

the 42 recovered panel sections with known as-built locations. There were an additional nine columns

from unidentified panel sections where the column type and minimum strength values could be

deciphered from the stampings located on the base of the columns (NIST NCSTAR 1-3B), yielding a total

of 106 recovered columns of known strength and gauge. From these recovered columns, there were 36

different strength gauge combinations (Table 2-2). Out of the 28 different strength/gauge combinations

for columns in the impact region of both towers, NIST has recovered representative samples for 14.

Though representative examples of all the strength/gauge combinations have not been recovered from the

impact regions of the towers, numerous gauges for all 12 specified grades of steel used for the perimeter

panels have been recovered (NIST NCSTAR 1-3B). Most of the missing strength/gauge combinations for

the impact regions were due to small variations in the thickness of the flange section of the column. Of

the 14 un-recovered strength/gauge combinations, 10 combinations had differences of 0.0625 in. to their

nearest recovered strength/gauge combination, while three were 0.125 in. away, and one combination had

a difference of 0. 1 875 in.

Similar to the column material, the recovered spandrel material consisted of various strengths and gauges

(Table 2-3). There were 87 distinct portions of spandrel plate recovered with 20 different strength/gauge

combinations. Considering both towers, 7 of the 13 strength/gauge combinations in the impact region

were recovered. As seen with the column material, all six of the missing strength/gauge combinations

were only 0.0625 in. from their nearest recovered strength/gauge combination, thus, sufficient samples

were available for the investigation.
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Pre-Collapse Damage and Fire Exposure of
Structural Elements

This chapter of the report covers observable impact damage, failure modes, and possible exposure to fire

of the pre-fabricated, exterior column panels of the World Trade Center (WTC) towers prior to their

collapse. This analysis was based upon photographic images, video images, engineering drawings, and

other relevant resources. From this information, the recovered panels (Table 1-1) were assigned to the

four categories listed above in Sec. 1.2.

It was not possible to view the internal damage caused by the impact and subsequent travel of the higher

density airframe components (e.g., landing gear, engines) through the buildings. However, structural

damage due to aircraft impact computed in the aircraft impact damage analysis (NIST NCSTAR 1-2B)

was discussed. General information on the types/shapes and strengths of the core columns located in and

around the impact zones can be found in (NIST NCSTAR 1-3A).

2.1 DESCRIPTION OF IMPACT DAMAGED PANELS

2.1.1 WTC 1

As determined by National Institute of Standards and Technology (NIST), the estimated amount of

missing/damaged sections of full panels/individual perimeter columns for WTC 1 is shown in Fig. 2-1.

The impact damage occurred in the center of the north face between the 94th and 99th floors, bounded by

column lines 1 1 1 and 152. (Superficial damage to the aluminum facade for the 93rd floor in the area of

the left wing tip was observed visually, but it was believed that structural damage did not occur.) Two
exterior panels appear to be pushed inside the envelope of the building, while 25 additional panels

experienced varying degrees of damage. A listing of these panels, with the dimensions of the columns

and spandrels and grades of steel for WTC 1 can be found in Table 2—1. The impacted exterior columns

had required minimum yield strengths between 50 ksi and 65 ksi with gauges from 0.25 in. to 0.5625 in.

Of the 81 damaged columns, there were 16 strength/gauge combinations. The breakdown of this data can

be found in Table 2-2 for WTC 1, with Fig. 2-2b pictorially displaying the required minimum yield

strength for the individual columns overlaid on the damage diagram. The spandrels were also an integral

strengthening component of the exterior walls. As shown in Table 2—1, all spandrels located in the

impact region had a gauge of 0.375 in. with minimum yield strengths of 36 ksi, 42 ksi, or 45 ksi.

Figure 2-3 shows the location of these spandrels, with the breakdown of this data found in Table 2-3.

2.1.2 WTC 2

The impact damage to WTC 2 occurred off-center on the south face toward the eastern side of the

building between the 77th and 85th floors, Fig. 2^1. While the damage appears to be bordered by column

lines 41 1 and 440, columns closer to the south-east corner of the building may also have been affected.

However, smoke continually obscured this region and few images were obtained where portions of the

damaged area to the south face ofWTC 2 could be observed. It appears that up to 18 panels may have
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Table 1-2. Core columns with identified, as-built locations.

NIST Name Type Description Bldg Column Floors
F

y

(ksi)

B-1011 RB FLectangular box column WTC 1 508 51 - 54 36

B-6152-1 RB Rectangular box column WTC 1 c< U 3 15 - 18 36

B-6152-2 RB Rectangular box column WTC 1 504 33 - 36 36

C-88a RB FLectangular box column WTC 2 801 80 - 83 42

C-88b RB Rectangular box column WTC 2 801 77 - 80 42

C-90 RB FLectangular box column WTC 2 701 12 - 15 36

C-30 or 12 W WlUC LI-dTlJ^C SCULlUIl W 1 u z 1 uuo 1 1 ri6
1 UH — 1 uu

U-iD 01 o-o w "WTl n P rl Qri rrp c p rfl fifiV v 1L4U LL 'dJ. 1
;
=.

(

C ..• C L LLU11 9fl4 86 - 89LP U U .7 36

C-71 w Wide flange section WTC 1 904 77 - 80 36

C-80 w Wide flange section WTC 1 603 92-95 36

C-155 w Wide flange section WTC 1 904 83 - 86 36

HH or S-2 w Wide flange section WTC 1 605 98 - 101 i 42

Source: NIST NCSTAR 1-3B.
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ble 1-1. Exterior panel sections with identified , as-buill locatior

IN IIS 1 label Description Bldg Column Floors

ASCE-2 1 full column WTC 2 329 40 - 43

B-1024 Full panel WTC 2 154 21 - 24

B-1043 Full panel WTC 2 4 On 40 - 4 3

E-1044 Full panel WTC 2 409 40 - 43

C-10 Full panel WTC 1 451 85 - 88

C-13 Rectangular column with spandrel WTC 2 200 90 - 92

C-13a Partial of single column WTC 2 159 90 - 92

C-14 1 column, lower l/3i WTC 2 300 85 - 87

C-18 3 columns, bottom 2/3
rds WTC 2 230 93 - 96

C-22 3 columns, lower WTC 1 157 93 - 96

C-24 3 columns, upper l.'if^ WTC 2 203 74 - 77

C-2? 1 c olumn, lower Vz WTC 1 206 89 - 92

C-40 2 columns, lower 2f1i WTC 1 136 98 - 101

C-46 Nearly full panel WTC 2 157 68 - 71

C-48 Nearly 2 full c olumns WTC 2 442 91 - 94

C-55 1 column lower 1/j WTC 1 209 94 - 97

C-89 2 full columns WTC 2 215 12- 15

C-92 1 column, lower 1/2^ WTC 2 130 93 - 96

:-?3
1 column, lower 1/2^ WTC 1 339 99 - 102

cc 2 full columns WTC 1 124 70 - 73

K-l 3 columns, lower 1/3T WTC 1 209 97 - 100

K-2 1 column, lower 2/3*^ WTC 1 236 92 - 95

M-2 Full panel WTC 1 130 96 - 99

M-lOa 3 columns, middle section 1/j WTC 2 209 82 - 85

M-lOb 3 columns, lower & WTC 2 206 83 - 86

M-20 2 columns, lower l/3
rd WTC 1 121 99 - 102

M-26 Full panel WTC 1 130 90 - 93

M-27 2 c olumns, lower 3/4
tl 'i WTC 1 1 30 93 - 96

M-28 3 columns, lower 1/4 WTC 2 345 98 - 101

M-30 2 columns, lower 1/3^ WTC 1 133 94 - 97

M-l 2 full columns WTC 1 218 82 - 85

H-7 FuU panel WTC 1 127 97 - 100

M-rj Full panel WTC 1 142 97 - 100

N-9 Nearly full panel WTC 1 154 101 - 104

M-10 2 columns, lower 2/3^ WTC 1 115 89 - 92

H-12 2 full columns WTC 1 206 92 - 95

H-13 3 columns, lower \/2f
d WTC 1 130 99 - 102

M-99 Nearly full panel WTC 1 148 99 - 102

N-101 Full panel WTC 1 133 100 - 103

S-l 2 columns, lower l/3
rd WTC 1 433 79 - 82

S-9 Full panel WTC 1 133 97 - 100

S-10 2 columns, lower 1/2 WTC 1 224 92 - 95

S- 14 Full panel WTC 2 218 91 - 94

Source: NIST NCSTAR 1-3B.
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Figure 1-8. Impact damage location and recovered structural elements from WTC 2.

Visual evidence of pre-collapse fires was observed on floors highlighted in red.
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Figure 1-7. Impact damage location and recovered structural elements from WTC 1.

Visual evidence of pre-collapse fires was observed on floors highlighted in red.
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Figure 1-6. b) Schematic showing the attachment of the floor truss to the exterior wall

and interior core columns.
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Figure 1-5. Typical welded box members and rolled wide flange shapes used for core

columns between the 83rd and 86th floors (to scale).

Source: unknown.

Figure 1-6. a) Construction photograph of a composite floor truss.
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Source: unknown.

Figure 1-3. Construction photographs showing the exterior column panel consisting of

three full columns connected by three spandrels (left image). Floor trusses and seats

used to connect the floor trusses to the exterior wall can also be seen (right image).
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Figure 1-4. Partial elevation of exterior bearing-wall frame showing exterior wall module
construction. Highlighted panel is three stories tall (36 ft) and spans 4 floors. Distance

between panels has been exaggerated.
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Figure 1-1. Tubular construction for WTC 1 and WTC 2 consisting of a rectangular

service core and exterior perimeter columns.
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• Seven coupons from WTC 5 were removed in the field and sent to NIST.

• No pieces could be unambiguously identified as being from WTC 7.

Figures 1-7 and 1-8 display the exterior wall impact damage along with nearby structural elements

recovered from WTC 1 and WTC 2, respectively. The floors where pre-collapse fires were observed are

also shown in these images.

In the design drawings for WTC 1 and WTC 2, 14 different grades (or strengths) of steel for the exterior

panels, four different grades for the core columns, and two grades for the floor trusses were specified.

From the recovered and identified columns, whether perimeter or core, a one to one correlation was

observed between the minimum yield strength specified by the design drawings and the observed

stampings and/or stencilings on the samples, with the exception of the 85 ksi and 90 ksi material that was

substituted with 100 ksi plate, leading to only 12 grades of steel in the perimeter columns in the as-built

structures (NIST NCSTAR 1-3A). To date, the recovered structural elements have yielded representative

samples for the following:

• All 12 grades of exterior panel material,

• Two grades of the core column material (representing 99 percent, by total number, of the

columns),

• Both grades for the floor truss material.

From these samples observations were made on the damage characteristics, failure modes, and possible

fire-related damage of the structural elements.
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truss seats located at the interior intersection of the columns and spandrels, Fig. 1-3. Gusset plates with

diagonal bracing straps were used to provide horizontal shear transfer between the floor slab and exterior

wall, as well as out-of-plane bracing for the perimeter columns not directly supporting the floor trusses.

To reduce wind-induced building motion, viscoelastic damper units tied the lower chords of the truss to

the outer wall by a gusset plate below each truss seat, Detail A of Fig. 1—6b. Seats, welded to channels

running along the perimeter of the building core, were also used to connect the trusses to the inner core

columns, as in Detail B of Fig. 1—6b.

1.3.2 Summary of Recovered Structural Steel Elements

Structural steel components recovered from the WTC towers included partial and complete exterior

column panels, core columns, floor truss members, channels used to attach the floor trusses to the core

columns, and other smaller structural components (e.g., bolts, diagonal bracing straps, aluminum facade,

etc.) (NIST NCSTAR 1-3B). These pieces were collected from four recovery yards where debris,

including the steel, was taken during the clean-up effort. Once identified for recovery in the yard, the

samples were marked as "SAVE" and given an alphanumeric code designating the recovery yard and an

accession number. The samples were tested for asbestos and abated, if necessary, and then shipped to

NIST. Upon arrival at NIST, the samples were catalogued, documented, and when possible, identified as

to their precise, as-built location within the buildings. The vast majority of the recovered structural

components obtained by NIST were from WTC 1 and WTC 2. It was estimated that roughly 0.25 percent

to 0.5 percent of the 200,000 tons of steel used in the construction of the two towers was recovered. The

following lists the recovered structural steel elements:

• Portions of 90 exterior panels were recovered with the as-built location of 42 distinct sections

unambiguously identified within WTC 1 and WTC 2 (Table 1-1):

- 26 panels from WTC 1 : 22 from near the impact floors, 4 hit directly by the airplane and

an additional panel that may have experienced impact damage;

1 6 panels from WTC 2: 4 from near the impact floors.

• Portions of 55 wide flange sections and built-up box sections were recovered with 12 core

columns positively identified from WTC 1 and WTC 2 (Table 1-2):

- two columns from the fire floors ofWTC 1

;

- two columns from the impact zone ofWTC 2.

• 23 pieces of floor truss material from WTC 1 and WTC 2 were recovered; however, the as-built

location of the trusses within the buildings could not be identified. The sizes of the recovered

portions were significantly smaller than their as-fabricated dimensions due to a combination of

their lightweight design and the excessive loads experienced during the collapse.

• 25 pieces of channel material that connected the floor trusses to the core columns in WTC 1 and

WTC 2 were recovered; however, the as-built location of the channels within the buildings could

not be identified.
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1.3 RECOVERED STRUCTURAL ELEMENTS FROM WTC 1 AND WTC 2

As a result of the recovery efforts of the Structural Engineers Association ofNew York (SEAoNY),

Federal Emergency Management Agency (FEMA)/American Society of Civil Engineers (ASCE), and the

investigation team, NIST possesses 236 structural steel elements from the WTC buildings. The report

entitled 'inventory and Identification of Steels Recovered from WTC Buildings" (NIST NCSTAR 1-3B)

contains a catalog of the recovered components and describes the process of collecting and cataloging the

physical evidence (structural steel components and connections) and other available data, such as the as-

built location of the steel pieces within the buildings and the specified steel properties. The primary

location of most of these samples was the NIST Gaithersburg, MD, campus; some samples were located

at an additional site, John F. Kennedy International Airport.

1 .3.1 Review of the WTC Tower Design

In order to help understand damage observed on the recovered components, a brief review of the general

building design for the towers is given. (Another report, NIST NCSTAR 1 -1 , discusses the design in

detail.) Both WTC 1 and WTC 2 had similar framed-tube construction consisting of outer perimeter

columns, a rectangular service core, and a floor truss system tying these two components together,

Fig. 1—1. With a square footprint of approximately 207 ft on a side and chamfered corners, each floor

contained roughly 3 1 ,000 ft
2
of unobstructed office space. There were 1 10 floors, starting at the plaza

level, with a six-story subterranean structure beneath a large portion of the main WTC plaza and WTC 1

,

2, 3, and 6.

The perimeter wall was designed to carry 40 percent of the gravitational loads, as well as all wind loads

imposed on the building. From the 9th floor to 107th floor, the majority of the perimeter walls were

composed of closely spaced, built-up box columns with approximate dimensions of 14 in. square sections

by 36 ft long. Fifty-nine of these columns, each distinctly numbered (Fig. 1-2), were spaced at 3 ft 4 in.

on center along each face of the building. Adjacent perimeter columns were interconnected at each floor

level by deep spandrels, typically 52 in. in depth. In general, three full columns were connected to form

exterior column "panels," Fig. 1-3, which were prefabricated and shipped to the construction site. These

panel assemblies were raised into position and attached by bolting the end plates of the columns and

splice plates of the spandrels. Each panel was typically three stories tall and spanned four floors in the

building, as shown in Fig. 1-4. Therefore, each panel contained the upper half of one floor, two full

floors, and the lower portion of a fourth. Figure 1-4 also shows that the panels were staggered so that

only one third of the units were spliced at a given floor level. Panels spanning mechanical floors and sky

lobbies, as well as at the corners of the building, were similar in nature, but had varying dimensions.

Additionally, the panels were not staggered at these floors.

The core of the towers was designed to carry 60 percent of the gravitational load as well as provide room

for building services (i.e., elevator shafts, stairwells, utility hardware). Core columns consisted of

two types; box beam columns were typically used in the lower floors with a transition to rolled wide-

flange sections at the upper floors. Some examples are shown in Fig. 1-5; a wide range of dimensions

can be found for both types of core columns.

The floor outside of the core area was composed of deep, composite floor trusses (Fig. l-6a) that spanned

between the core and outer wall. Spaced at 6 ft 8 in., the trusses were attached to the exterior walls by
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environment (NIST NCSTAR 1-5), and the structural fire response and collapse analysis

(NIST NCSTAR 1-6).

To accomplish this task, two sets of observations were made. Post-impact, pre-collapse analysis

concentrated on impact damage sustained by the exterior panel sections, including the spandrel and

endplate connections between individual panels. The panels were the only structural components

observ able during this time frame, with assessment based solely upon photographic and video images.

Further, the pre-collapse images were used to locate areas on the panels with pre-collapse fire exposure.

The second analysis focused on observations of the recovered steel elements. The exterior panels and

connections, as well the connectors or seat assemblies used to attach the floor trusses to the exterior

column panels, the inner core columns, and the seat assemblies attached to the channels of the core

columns were again evaluated. Of particular importance were the samples located near the airplane

impacts (north face ofWTC 1 and south face ofWTC 2) and those where fire was known to exist before

the collapse of the buildings, as the findings were important input in modeling the possible collapse

mechanism(s) of the towers.

For this report, only those samples with known as-built iocations were documented to the fullest extent.

For samples without identifications, the information regarding damage and failure mechanisms were

collected for statistical purposes only.

Throughout this report, it should be recognized that while the physical damage and failure mechanisms

observed were reported in their present condition, in most cases it was difficult or impossible to conclude

which extreme loading event may have led to the damage. In other words, the damage may have been a

result of the aircraft impact, the subsequent fires, the ensuing collapse of the buildings, or the subsequent

handling related to the recovery efforts. It should also be recognized that in many cases it was difficult or

impossible to conclude when fire exposure occurred, that is, whether the fire exposure transpired prior to

collapse or during the time period that the piece was in the debris pile at the WTC site (for some samples,

possibly up to 4 months).

WTC 7 steel was not evaluated in this study of damage to the tower.

1.2 DIVISION OF STRUCTURAL ELEMENTS BY BUILDING AND LOCATION

The recovered structural elements were divided into categories depending upon their as-built location

within the towers and the post-impact, pre-collapse environmental conditions they may have experienced

in order to determine the extreme loading conditions that resulted in the damage and the time frame in

which fire exposure occurred. The samples were separated into the following categories:

(1) unambiguously identified samples with possible impact damage, (2) unambiguously identified

samples with exposure to pre-collapse fires (as determined by NIST), (3) unambiguously identified

samples not part of the previous two groups, and (4) those samples for which identification of the as-built

location was not possible. Section 2.0 defines the parameters used to assign the samples to the

appropriate category.
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Introduction

The purpose of the mechanical and metallurgical analysis of structural steel of the National Institute of

Standards and Technology (NIST) World Trade Center (WTC) Investigation was to analyze structural

steel available from WTC 1, 2, and 7 to determine the metallurgical and mechanical properties and quality

of the metal, weldments, and connections, and to provide these data to other investigation projects. The

properties determined under this project were used in two ways: ( 1 ) properties were correlated with the

design requirements of the buildings to determine if the specified steel was in place in the towers, and

(2) properties were supplied for other projects in the investigation as input for or validation of models of

building performance.

1.1 SCOPE OF REPORT

This report describes damage characteristics, failure modes, and fire-related degradation of the recovered

structural components from WTC 1 and WTC 2. Knowledge of damage to the steel elements plays an

important role in the investigation in the following roles:

1. Ascertaining the response of the structural steel of the towers to the impact of the planes;

2. Providing information on perimeter column damage for correlations with impact damage

modeled in the baseline structural performance and aircraft impact damage analysis;

3. Providing information on thermal excursions experienced by the structural steel for use in the

reconstruction of the thermal environment. It should be noted, however, that the model of the

fire was not intended to match the actual fire on a column by column basis, and thus, the

observations on thermal excursions of the steel are not expected to match the model in detail;

and

4. Providing input to the structural fire response and collapse analysis covering observations of

missing sprayed fire-resistive material on the perimeter columns due to impact. This

information is vital as sprayed fire-resistive material was the primary factor determining

whether fire-exposed steel reached temperatures where there was significant strength loss. In

addition, NIST used the detailed characterization of damage observations as a basis for

modeling the damaged towers and the subsequent collapse of the buildings.

This report details the information available on structural elements prior to the collapse of the buildings

and on the recovered steel components considered significant to the investigation. In particular,

information from this analysis was used for validation of the modeling efforts in the baseline structural

performance and aircraft impact damage analysis (NIST NCSTAR 1-2
1

), the reconstruction of the thermal

This reference is to one of the companion documents from this Investigation. A list of these documents appears in the Preface

to this report.
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E.7 STRUCTURAL DAMAGE AND FAILURES AS A RESULT OF COLLAPSE

The failure mode of spandrel connections on perimeter panels differed above and below the impact zone.

Spandrel connections on exterior panels at or above the impact zone were more likely to experience bolt

hole tear out as a failure mode. For those exterior panels below the impact zone, there was a higher

propensity for portions of the spandrels to be torn from the panels. There did not appear to be any

difference in failure mode for the spandrel connections whether the exterior panels were exposed to fire

or not.

With the exception of the mechanical floors, the major failure mechanism concerning perimeter panel

column splices was fracture of the bolts. At mechanical floors, where column splices were welded in

addition to being bolted, the majority of the splices did not fail, rather the web and flange plates

composing the columns fractured near the splice.

The damage to truss seats on perimeter panels differed above and below the impact zone. The majority of

perimeter panel floor truss connectors (perimeter seats) below the impact floors were either missing or

bent downward. Above this level, the failure modes were more randomly distributed. This trend was

observed for both towers.

Failure of the perimeter panel floor truss seats typically occurred in the heat-affected zones near welds,

and the fracture location was associated with the weld geometry (i.e., in the component with the lowest

cross-sectional area). These areas with the lowest cross-sectional area were typically the standoff plates.

However, there was no evidence to indicate that the type ofjoining method, materials, or welding

procedures were improper.

Of the 3 1 core floor truss connectors (core truss seats) recovered, 90 percent were still intact though

extensive damage may have occurred. Only two were observed to have been completely torn from the

channel. (This distribution may have resulted from the selection process at the salvage yards).

In the floor trusses, failure of a large majority of the electric resistance welds at the web-to-chord

connections was observed. Failure of the connection between the floor truss and the perimeter panel floor

truss connectors was typically a result of gusset plate (attached to top truss chord) weld and bolt failure.

E.8 STRUCTURAL STEEL IN IMPACT ZONE

Though representative examples of all strength/gauge combinations of steel plate used to fabricate the

exterior panels from the impact regions of the towers have not been recovered, numerous gauges for all

12 specified grades of steel used for the perimeter panels have been recovered. Of the 28 different

strength/gauge combinations for plates composing the perimeter columns in the impact region of both

towers, NIST has recovered representative samples for 14. Of the 14 unrecovered strength/gauge

combinations, 10 combinations had gauges very close to those in the NIST inventory (within 0.0625 in.),

while three were 0.125 in. away, and one combination had a difference of 0.1875 in. Similarly, seven of

the thirteen strength/gauge combinations used for the spandrel plates in the impact region were recovered.

All six of these missing strength/gauge combinations of spandrel plate were within 0.0625 in. of those in

the NIST inventory.
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Annealing studies on recovered steels (from NIST NCSTAR 1-3E
1

) established the set of time and

temperature conditions necessary to alter the steel microstructure. The microstructures of steels known to

have been exposed to fire, based on the pre-collapse photographic evidence, were characterized. These

microstructures show no evidence of exposure to temperatures above 600 °C for any significant time.

Perimeter columns exposed to pre-collapse fire (determined from pre-collapse photographs) had a greater

tendency for local buckling of the inner web; a similar correlation did not exist for fracture in the base

metal near welds.

In the two buildings, there were 329 core columns (each three stories tall) traversing floors involved in

fires. NIST has portions of four of these columns, and on average about half of each column was

recovered. While these pieces allow some comparison of metal and paint condition with the predications

of the fire model, the recovered steel represents less than one percent of all the core columns intersecting

floors with fire. Thus, the forensic analysis indicating moderate temperature excursions in the recovered

core columns does not, and cannot, give a picture of temperatures seen by the vast majority of the core

columns.

E.6 TIME-DEPENDENT DEFORMATION OF PERIMETER WALLS DUE TO
FIRE AND LOAD REDISTRIBUTION

Images ofWTC 1 showed gross deformations of an exterior wall prior to final collapse. Images of the

south face of the tower taken approximately 5 min prior to collapse showed inward bowing of the exterior

columns, reaching an observable maximum of 55 in. near column 316 on the 96th floor. The inward

deflection appears to extend over the entire south face of the building at this time and is visible vertically

between the 94th and 100th floors. Photographs taken approximately 30 min prior to this time do not

show any inward bowing of the south face of WTC 1

.

Images ofWTC 2 revealed some details of how the building deformed during the time between aircraft

impact and collapse and revealed how the portion of the building above the impact zone moved relative to

the bottom of the building during initial stages of collapse. Approximately 18 min after the impact of the

aircraft, the east face ofWTC 2 exhibited inward bowing of up to 10 in. in the region of the 79th to

83rd floors. This inward bowing increased to 20 in. at a time 5 min before collapse of the tower.

Hanging floor slabs at the 82nd and 83rd floors were visible in window openings on the east and north

faces, respectively, and the positions of these slabs changed over time, suggesting a slow collapse

mechanism of certain parts of the flooring in this area of the tower.

At the moment of collapse ofWTC 2, the top portion of the building moved to the west as it tilted to the

southeast. During this tilting, a complex kink developed at the southeast corner of the top portion in the

region of the 106th floor. In addition, the top portion twisted slightly clockwise (as viewed from the top)

as the collapse progressed.

This reference is to one of the companion documents from this Investigation. A list of these documents appears in the Preface

to this report.
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E.3 STRUCTURAL DAMAGE AS A RESULT OF AIRPLANE IMPACT - CORE
COLUMNS

Failure of the limited number (three) of recovered core columns in the impact zone was a result of both

splice connection failures and fracture of the columns themselves. One recovered core column (WTC 2,

column line 801, floors 77 through 80) may have sustained damage as a direct result of the airplane

impact in terms of a flange bent in a direction consistent with the travel of the airplane. However, the

welded splice connection to the column above survived intact.

E.4 DAMAGE TO SPRAYED FIRE-RESISTIVE MATERIAL AS A RESULT OF
AIRPLANE IMPACT

Damage to sprayed fire-resistive material on the perimeter columns was examined in pre-collapse

photographs. As expected, sprayed fire-resistive material was removed from pieces struck by the

incoming aircraft or debris exiting the far side of the buildings. In addition, the impact caused sprayed

fire-resistive material and aluminum facade panels to spall off many perimeter columns, which were not

directly struck nor severed, but apparently suffered strong accelerations and forces otherwise transmitted

through the structure.

A band of white features was apparent on the sprayed fire-resistive material wherever two aluminum

panels met on the exterior columns of the buildings, becoming visible when the panels were dislodged.

This appears to be a coating applied to protect the SFRM from moisture infiltration at the aluminum panel

joints. This coating appears to have prevented the loss of SFRM in a number of locations where the

SFRM was knocked off both above and below this location.

E.5 FIRE EXPOSURE AND TEMPERATURES REACHED BY THE STEEL

The pre-collapse photographic analysis showed that 16 recovered exterior panels were exposed to fire

prior to collapse ofWTC 1. None of the nine recovered panels from within the fire floors ofWTC 2 were

observed to have been directly exposed.

A method was developed using microscopic observations of paint cracking to determine whether steel

members had experienced temperatures in excess of 250 °C. More than 170 areas were examined on

21 exterior panels. Note that these 21 panels represent only about 3 percent of the panels from fire-

involved floors, and that results on these panels cannot be considered indicative of exposure of other

panels. Only three locations had a positive result indicating that the steel and paint may have reached

temperatures in excess of 250 °C (note that exposure could have occurred pre- or post-collapse). These

areas were:

• WTC 1 , east face, floor 98, column 210, inner web;

• WTC 1, east face, floor 92, column 236, spandrel; and

• WTC 1, north face, floor 98, column 143, floor truss connector.
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deformation behavior observ ed from the photographs, coupled with analysis of the recovered steel,

included:

• Whole exterior panels pushed inside the envelope of the building as a result of column connection

bolt failures in the area of fuselage impact;

• Individual perimeter columns torn in a tensile mode surrounding the area of fuselage impact;

• Individual perimeter columns sliced through with little disturbance of surrounding material in

areas where engines, heavier sections of the wings, and wing sections containing fuel impacted;

and

• Minor damage to individual perimeter columns where lighter airplane components (e.g., wing

tips) impacted and sieved through the panel openings.

Of the five panels recovered from the impact zone ofWTC 1, four were directly hit by the airplane.

Correlation between pre-collapse photographs and the recovered panels from the impact zone indicates

that two of the four recovered impact-damaged panels (M-2 and M-30) were in a condition similar to that

just prior to building collapse. Some damage can be attributed to the events during and after collapse, but

the shape and appearance of the recovered pieces generally match the damage photographs. There was a

lack of detailed pre-collapse visual evidence of the impact damage sustained by panels M-27 and S-9, and

it was not possible to make such a comparison. The lower portion of panel N-7 did incur some damage;

however, it could not be positively correlated with pre-collapse images.

The number and particularly the resolution of the photos taken of the damage to WTC 2 were much less

than those available for the analysis ofWTC 1. allowing identification of only 70 percent of the exterior

column failure modes. Gross deformation behavior was similar to that observed for WTC 1 . In addition,

failures of exterior columns due to impact by aircraft components and debris that had passed through the

building and exited on the opposite side were characterized.

Of particular interest was the fracture behavior of the plates composing the recovered columns that were

directly impacted by the airplane. Fractures of the outer webs of panels M-30 and S-9 exhibited ductile

behavior, including necking and thinning away from the fracture, indicating that the steel behaved

ductilely under very high strain rates.

Conversely, fractures occurring parallel and directly next to welded joints exhibited few or no ductile

characteristics. The geometry of the joint with respect to the direction of impact, stress concentrations

due to the geometry, diminished properties of the heat-affected zone in the base metal, and the orientation

of the crack propagation with respect to the rolling direction of the plate are expected to have contributed

to the lack of ductility. There was no evidence to indicate that the type ofjoining method, materials, or

welding procedures were improper. The welds appeared to perform as intended.

In general, severing of the perimeter columns hit by the heavier sections of the aircraft occurred at the

internal stiffener plates or diaphragm plates (associated with the spandrel connection to column). There

was a tendency for the columns hit by the plane to fracture along heat-affected zones adjacent to welds.

This behavior was not observed for columns outside the impact zone.
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E.1 INTRODUCTION

This report describes damage characteristics, failure modes, and fire-related degradation of the recovered

structural components from the World Trade Center (WTC) towers. Knowledge of damage sustained by

the steel elements plays an important role in the investigation by:

1 . Helping ascertain the response of the structural steel of the towers to the impact of the

aircrafts, and

2. Providing guidance and validation for models in the investigation involving impact damage,

dynamics of the fires in the towers, and the thermal response and collapse of the towers.

Analysis of the structural elements was divided into two sections. Pre-collapse analysis concentrated on

impact damage sustained by the exterior panel sections, with assessment based solely upon photographic

and video images. These images were also used to locate areas on the recovered and identified (i.e.,

known as-built location) panels with pre-collapse fire exposure. The second analysis focused on direct

visual examination of the recovered steel elements. Of particular importance were the samples located

near the airplane impacts (north face ofWTC 1 and south face ofWTC 2) and those where fire was

known to exist prior to collapse of the buildings. Metallographic analysis of components with specific or

unique damage patterns was conducted. Sprayed fire-resistive material and building response to fire were

analyzed

In support of this task, Wiss, Janney, Elstner Associates, Inc. (WJE) was retained to perform two tasks:

( 1 ) provide independent identification of recovered steel of particular interest to the furtherance of other

tasks under this project; and (2) through unaided visual examination, identify and describe the various

failure mechanisms and damage types observed on the recovered structural steel members. WJE team

members surveyed and documented possible local failure mechanisms from a structural engineering

perspective on exterior panels, core columns, floor trusses, and structural connections (spandrel splice

plates, floor truss seat connectors). The complete report can be found in Appendix F with a summary of

the main observations and NIST review of the contractor report in Appendix G.

WTC 7 steel was not evaluated in this study of the tower damage and failure modes.

Analysis of enhanced photographs taken of the impact hole in WTC 1 allowed for the identification of

about 95 percent of the modes of failure for the exterior wall columns damaged in the collision. Gross

E.2 STRUCTURAL DAMAGE AS A RESULT OF AIRPLANE IMPACT -

PERIMETER PANELS
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Table P-2. Public meetings and briefings of the WTC Investigation.

Date I npotinn Pr"Snf*ir**a1 A ct f>n r\ qI I HHILIill /\^CIIU4

June 24, 2002 New York City, NY Public meeting: Public comments on the Draft Plan for the

npnHiTio W/Tf"" Invp^ticatinn
J

't 1 i U ) J 1 L. VV 1 V_ ill V L .t I 1 t i I 1 V 1
1 1 .

August 21, 2002 Gaithersburg, MD Media briefing announcing the formal start of the Investigation.

December y, luvl Washington, DC Media briefing on release of the Public Update and N1ST request

for nnntnoTanVw anH vicIpoq

April 8, 2003 New York City, NY Joint public forum with Columbia University on first-person

llltL 1 V1CW5,

April 29-30, 2003 Gaithersburg, MD NCST Advisory Committee meeting on plan for and progress on

w i v_ investigation wiin a puonc commeni session.

May 7, 2003 New York City, NY Media briefing on release of May 2003 Progress Report.

August 26-27, 2003 Gaithersburg, MD NCST Advisory Committee meeting on status or the WTC
investigation with a public comment session.

September 17, 2003 New York City, NY Media and public briefing on initiation of first-person data

collection projects.

December 2-3, 2003 Gaithersburg, MD NCST Advisory Committee meeting on status and initial results

and release of the Public Update with a public comment session.

February 12, 2004 New York City, NY Public meeting on progress and preliminary findings with public <

comments on issues to be considered in formulating rinal

recommendations.

June 1 8, 2004 New York City, NY Media/public briefing on release ofJune 2004 Progress Report.

June 22-23, 2004 Gaithersburg, MD NCST Advisory Committee meeting on the status of and

preliminary findings irom the WTC Investigation with a public

comment session.

August 24, 2004 Northbrook, 1L Public viewing of standard fire resistance test ofWTC floor

system at Underwriters Laboratories. Inc.

October 19-20, 2004 Gaithersburg, MD NCST Advisory Committee meeting on status and near complete

set of preliminary findings with a public comment session.

November 22, 2004 Gaithersburg, MD NCST Advisory Committee discussion on draft annual report to

Congress, a public comment session, and a closed session to

discuss pre-draft recommendations for WTC Investigation.

April 5, 2005 New York City, NY Media and public briefing on release of the probable collapse

sequence for the WTC towers and draft reports for the projects on

codes and practices, evacuation, and emergency response.

June 23, 2005 New York City, NY Media and public briefing on release of all draft reports for the

WTC towers and draft recommendations for public comment.

September 12-13,

2005

Gaithersburg, MD NCST Advisory Committee meeting on disposition of public

comments and update to draft reports for the WTC towers.

September 13-15,

2005

Gaithersburg, MD WTC Technical Conference for stakeholders and technical

community for dissemination of findings and recommendations

and opportunity for public to make technical comments.

• A dissemination and technical assistance program (DTAP) to (a) engage leaders of the

construction and building community in ensuring timely adoption and widespread use of

proposed changes to practices, standards, and codes resulting from the WTC Investigation

and the R&D program, and (b) provide practical guidance and tools to better prepare facility

owners, contractors, architects, engineers, emergency responders, and regulatory authorities

to respond to future disasters.

The desired outcomes are to make buildings, occupants, and first responders safer in future disaster

events.
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• Robert Hanson. Professor Emeritus, University of Michigan

• Charles Thornton, Co-Chairman and Managing Principal, The Thoraton-Tomasetti Group,

Inc.

• Kathleen Tierney, Director, Natural Hazards Research and Applications Information Center,

University of Colorado at Boulder

• Forman Williams. Director, Center for Energy Research, University of California at San

Diego

This National Construction Safety Team Advisory Committee provided technical advice during the

Investigation and commentary on drafts of the Investigation reports prior to their public release. NIST

has benefited from the work of many people in the preparation of these reports, including the National

Construction Safety Team Advisory Committee. The content of the reports and recommendations,

however, are solely the responsibility of NIST.

Public Outreach

During the course of this Investigation, NIST held public briefings and meetings (listed in Table P-2) to

solicit input from the public, present preliminary findings, and obtain comments on the direction and

progress of the Investigation from the public and the Advisory Committee. .

NIST maintained a publicly accessible Web site during this Investigation at http://wtc.nist.gov. The site

contained extensive information on the background and progress of the Investigation.

NIST's WTC Public-Private Response Plan

The collapse of the WTC buildings has led to broad reexamination of how tall buildings are designed,

constructed, maintained, and used, especially with regard to major events such as fires, natural disasters,

and terrorist attacks. Reflecting the enhanced interest in effecting necessary change, NIST, with support

from Congress and the Administration, has put in place a program, the goal of which is to develop and

implement the standards, technology, and practices needed for cost-effective improvements to the safety

and security of buildings and building occupants, including evacuation, emergency response procedures,

and threat mitigation.

The strategy to meet this goal is a three-part NIST-led public-private response program that includes:

• A federal building and fire safety investigation to study the most probable factors that

contributed to post-aircraft impact collapse of the WTC towers and the 47-story WTC 7

building, and the associated evacuation and emergency response experience.

• A research and development (R&D) program to (a) facilitate the implementation of

recommendations resulting from the WTC Investigation, and (b) provide the technical basis

for cost-effective improvements to national building and fire codes, standards, and practices

that enhance the safety of buildings, their occupants, and emergency responders.
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NIST WTC Investigation Projects

Figure P-1. The eight projects in the federal building and fire safety

investigation of the WTC disaster.

National Construction Safety Team Advisory Committee

The NIST Director also established an advisory committee as mandated under the National Construction

Safety Team Act. The initial members of the committee were appointed following a public solicitation.

These were:

• Paul Fitzgerald, Executive Vice President (retired) FM Global, National Construction Safety

Team Advisory Committee Chair

• John Barsom, President, Barsom Consulting, Ltd.

• John Bryan, Professor Emeritus, University of Maryland

• David Collins, President, The Preview Group, Inc.

• Glenn Corbett, Professor, John Jay College of Criminal Justice

• Philip DiNenno, President, Hughes Associates, Inc.
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NIST is a nonregulatory agency of the U.S. Department of Commerce's Technology Administration. The

purpose of NIST investigations is to improve the safety and structural integrity of buildings in the United

States, and the focus is on fact finding. NIST investigative teams are authorized to assess building

performance and emergency response and evacuation procedures in the wake of any building failure that

has resulted in substantial loss of life or that posed significant potential of substantial loss of life. NIST

does not have the statutory authority to make findings of fault nor negligence by individuals or

organizations. Further, no part of any report resulting from a NIST investigation into a building failure or

from an investigation under the National Construction Safety Team Act may be used in any suit or action

for damages arising out of any matter mentioned in such report (15 USC 281a, as amended by Public

Law 107-231).

Organization of the Investigation

The National Construction Safety Team for this Investigation, appointed by the then NIST Director,

Dr. Arden L. Bement. Jr.. was led by Dr. S. Shyam Sunder. Dr. William L. Grosshandler served as

Associate Lead Investigator, Mr. Stephen A. Cauffman served as Program Manager for Administration,

and Mr. Harold E. Nelson served on the team as a private sector expert. The Investigation included eight

interdependent projects whose leaders comprised the remainder of the team. A detailed description of

each of these eight projects is available at http://wtc.nist.gov. The purpose of each project is summarized

in Table P-l, and the key interdependencies among the projects are illustrated in Fig. P-l.

Table P-1. Federal building and fire safety investigation of the WTC disaster.

Technical Area and Project Leader Project Purpose

Analysis of Building and Fire Codes and

Practices: Project Leaders: Dr. H. S. Lew
and Mr. Richard W. Bukowski

Document and analyze the code provisions, procedures, and

practices used in the design, construction, operation, and

maintenance of the structural, passive fire protection, and

emergency access and evacuation systems ofWTC 1, 2. and 7.

Baseline Structural Performance and

Aircraft Impact Damage Analysis: Project

Leader: Dr. Fahim H. Sadek

Analyze the baseline performance ofWTC 1 and WTC 2 under

design, service, and abnormal loads, and aircraft impact damage on

the structural, fire protection, and egress systems.

Mechanical and Metallurgical Analysis of

Structural Steel: Project Leader: Dr. Frank

W. Gayle

Determine and analyze the mechanical and metallurgical properties

and quality of steel, weldments, and connections from steel

recovered from WTC 1, 2. and 7.

Investigation of Active Fire Protection

Systems: Project Leader: Dr. David

D. Evans; Dr. William Grosshandler

Investigate the performance of the active fire protection systems in

WTC 1, 2, and 7 and their role in fire control, emergency response,

and fate of occupants and responders.

Reconstruction of Thermal and Tenability

Environment; Project Leader: Dr. Richard

G. Gann

Reconstruct the time-evolving temperature, thermal environment,

and smoke movement in WTC 1 , 2, and 7 for use in evaluating the

structural performance of the buildings and behavior and fate of

occupants and responders.

Structural Fire Response and Collapse

Analysis: Project Leaders: Dr. John

L. Gross and Dr. Therese P. McAllister

Analyze the response of the WTC towers to fires with and without

aircraft damage, the response ofWTC 7 in fires, the performance

of composite steel-trussed floor systems, and determine the most

probable structural collapse sequence for WTC 1, 2. and 7.

Occupant Behavior. Egress, and Emergency

Communications; Project Leader: Mr. Jason

D. Averill

Analyze the behavior and fate of occupants and responders, both

those who survived and those who did not, and the performance of

the evacuation system.

Emergency Response Technologies and

Guidelines; Project Leader: Mr. J. Randall

Lawson

Document the activities of the emergency responders from the time

of the terrorist attacks on WTC 1 and WTC 2 until the collapse of

WTC 7, including practices followed and technologies used.
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Preface

Genesis of This Investigation

Immediately following the terrorist attack on the World Trade Center (WTC) on September 11, 2001, the

Federal Emergency Management Agency (FEMA) and the American Society of Civil Engineers began

planning a building performance study of the disaster. The week of October 7, as soon as the rescue and

search efforts ceased, the Building Performance Study Team went to the site and began its assessment.

This was to be a brief effort, as the study team consisted of experts who largely volunteered their time

away from their other professional commitments. The Building Performance Study Team issued its

report in May 2002, fulfilling its goal "to determine probable failure mechanisms and to identify areas of

future investigation that could lead to practical measures for improving the damage resistance of buildings

against such unforeseen events."

On August 21, 2002, with funding from the U.S. Congress through FEMA, the National Institute of

Standards and Technology (NIST) announced its building and fire safety investigation of the WTC
disaster. On October 1, 2002, the National Construction Safety Team Act (Public Law 107-231), was

signed into law. The NIST WTC Investigation was conducted under the authority of the National

Construction Safety Team Act.

The goals of the investigation of the WTC disaster were:

• To investigate the building construction, the materials used, and the technical conditions that

contributed to the outcome of the WTC disaster.

• To serve as the basis for:

- Improvements in the way buildings are designed, constructed, maintained, and used;

- Improved tools and guidance for industry and safety officials;

- Recommended revisions to current codes, standards, and practices; and

- Improved public safety.

The specific objectives were:

1 . Determine why and how WTC 1 and WTC 2 collapsed following the initial impacts of the

aircraft and why and how WTC 7 collapsed;

2. Determine why the injuries and fatalities were so high or low depending on location,

including all technical aspects of fire protection, occupant behavior, evacuation, and

emergency response;

3. Determine what procedures and practices were used in the design, construction, operation,

and maintenance ofWTC 1, 2, and 7; and

4. Identify, as specifically as possible, areas in current building and fire codes, standards, and

practices that warrant revision.
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Metric Conversion Table

To convert from

TEMPERATURE

degree Celsius (°C)

degree centigrade

degree Fahrenheit (°F)

degree Fahrenheit (°F)

kelvin (K)

TEMPERATURE INTERVAL

degree Celsius (°C)

degree centigrade

degree Fahrenheit (°F)

degree Fahrenheit (°F)

degree Rankine (°R)

VELOCITY (includes SPEED)

foot per second (ft/s)

inch per second (in/s)

kilometer per hour (km/h)

mile per hour (mi/h)

mile per minute (mi/min)

VOLUME (includes CAPACITY)

cubic foot (fit )

cubic inch (in )

cubic yard (yd"

)

gallon (U.S.) (gal)

gallon (U.S.) (gal)

liter (L)

ounce (U.S. fluid) (fl oz)

ounce (U.S. fluid) (fl oz)

to

kelvin (K)

degree Celsius (°C)

degree Celsius (°C)

kelvin (K)

degree Celsius (°C)

kelvin (K)

gree Celsius (°C)

degree Celsius (°C)

lvin (K)

lvin (K)

ter per second (m/s)

ter per second (m/s)

ter per second (m/s)

lometer per hour (km/h)

ter per second (m/s)

bic meter (m )

cubic meter (m )

cubic meter (m
3

)

cubic meter (m )

liter (L)

cubic meter (m
3

)

cubic meter (m )

milliliter (mL)

Multiply by

T/K = t/°C + 273.15

XI °C = t /deg. cent.

XI °C = (t/ °F 2 32)/1.8

T/K = (t/ °F + 459.67)/1.8

t/°C = T/K- 273.15

1.0

1 .0 E+00

555 556

.555 556 E-01

.555 556 E-01

3.048 E-01

2.54 E-02

2.777 778 E-01

1 .609 344

.682 24 E+01

.831 685 E-02

1.638 706 E-05

7.645 549 E-01

3.785 412 E-03

3.785 412

1000

2.957 353 E-05

2.957 353 E+01
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Metric Conversion Table

To convert from to Multiply by

LENGTH

foot (ft) l UK. IK. 1 \l 1 1 }
t, 048 F-01J.vT^O \J 1

inch (in.) meter (m) 2.54 E-02

inch (in.) centimeter (cm) 2.54 E+00

micron (m) meter (m) 1 .0 E-06

yard (yd) meter (m) 9.144 E-01

MASS and MOMENT OF INERTIA

kilogram-force second squared

per meter (kgf s"/m) kilogram (kg) 9.806 65 E+00

pound foot squared (lb ft") kilogram meter squared (kg m") 4.214 01 1 E-02

pound inch squared (lb • in") kilogram meter squared (kg • m") 2.926 397 E-04

ton, metric (t) kilogram (kg) 1 .0 E+03

ton, short (2000 lb) kilogram (kg) 9.071 847E+02

MASS DIVIDED BY AREA

pound per square foot ( lb/ft") kilogram per square meter (kg/m") 4.882 428 E+00

pound per square inch

(not pound force) (lb/in") kilogram per square meter (kg/m") 7.030 696 E+02

MASS DIVIDED BY LENGTH

pound per foot (lb/ft) kilogram per meter (kg/m) 1.488 164 E+00

pound per inch (lb/in.) kilogram per meter (kg/m) 1.785 797 E+01

pound per yard (Ib'yd) kilogram per meter (kg/m) 4.960 546 E-01

PRESSURE or STRESS (FORCE DIVIDED BY AREA)

kilogram-force per square centimeter (kgf/cm") pascal (Pa) 9.806 65 E+04

kilogram-force per square meter (kgf/m") pascal (Pa) 9.806 65 E+00

kilogram-force per square millimeter (kgf/mm
2

) pascal (Pa) 9.806 65 E+06

kip per square inch (ksi) (kip/in. ~) pascal (P) 6.894 757 E+06

kip per square inch (ksi) (kip/in.
2

) kilopascal (kPa) 6.894 757 E+03

pound-force per square foot (lbf/fr) pascal (Pa) 4.788 026 E+01

pound-force per square inch (psi) (lbf/in.") pascal (Pa) f> 804 7S7 F+fn

pound-force per square inch (psi) (lbf/in.
2

)
kilopascal (kPa) 6.894 757 E+00

psi (pound-force per square inch) (lbf/in.
2

)
pascal (Pa) 6.894 757 E+03

psi (pound-force per square inch) (lbf/in.
2

) kilopascal (kPa) 6.894 757 E+00
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Metric Conversion Table

To convert from to Multiply by

AREA AND SECOND MOMENT OF AREA

square foot (ft")

square inch (in.")

square inch (in.")

square yard (yd")

ENERGY (includes WORK)

kilowatt hour (kW h)

quad (1015 BtuIT)

therm (U.S.)

ton of TNT (energy equivalent)

watt hour (W • h)

watt second (W s)

square meter (m")

square meter (m")

square centimeter (cm")

square meter (m")

joule (J)

joule (J)

joule (J)

joule (J)

joule (J)

joule (J)

9.290 304 E-02

6.4516 E-04

6.4516 E+00

8.361 274E-01

3.6E+06

1.055 056E+18

1.054 804 E+08

4.184 E+09

3.6E+03

1 .0 E+00

FORCE

dyne (dyn)

kilogram-force (kgf)

kilopond (kilogram-force) (kp)

kip(l kip=1000 Ibf)

kip (1 kip= 1000 lbf)

pound-force (lbf)

newton (N)

newton (N)

newton (N)

newton (N)

kilonewton (kN)

newton (N)

1 .0 E-05

9.806 65 E+00

9.806 65 E+00

4.448 222 E+03

4.448 222 E+00

4.448 222 E+00

FORCE DIVIDED BY LENGTH

pound-force per foot (Ibf/ft)

pound-force per inch (lbf/in)

newton per meter (N/m)

newton per meter (N/m)

1.459 390 E+01

1.751 268 E+02

HEAT FLOW RATE

calorieth per minute (calth/min)

calorieth per second (calth/s)

kilocalorieth per minute (kcalth/min)

kilocalorieth per second (kcalth/s)

watt (W)

watt (W)

watt (W)

watt (W)

6.973 333 E-02

4.184 E+00

6.973 333 E+01

4.184 E+03
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List of Acronyms and Abbreviations
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List of Acronyms and Abbreviations

lb pound

m meter

2
rrf square meter

mm millimeter

Mn magnesium

m/s meters per second

min minute

MJ megajoule

MPa megapascal

mph miles per hour

ms millisecond

Msi millions of pounds per square inch

MW megawatt

N newton

Pa pascal

pcf pounds per cubic foot

plf pounds per linear foot

psf pounds per square foot

psi pounds-force per square inch

s second

yd yard
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List ofAcronyms and Abbreviations

WJE Wiss, Janney, Elstner Associates, Inc.

WTC World Trade Center

WTC 1 World Trade Center 1 (North Tower)

WTC 2 World Trade Center 2 (South Tower)

WTC 7 World Trade Center 7

Abbreviations

°c degrees Celsius

op degrees Fahrenheit

(am micrometer

2D two dimensional

3D three dimensional

cm centimeter

ft foot

ft
2

square feet

Fe iron

Fy yield strength (AISC usage)

g acceleration (gravity)

g gram

gal gallon

h hour

in. inch

kg kilogram

kip a force equal to 1,000 pounds

kJ kilojoule

kN kilonewton

kPa kilopascal

klb 1,000 pounds

ksi 1 ,000 pounds per square inch

kW kilowatt

kW/m :
kilowatts per square meter

L liter
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List of Acronyms and Abbreviations

Acronyms

AISC American Institute of Steel Construction

AISI American Iron and Steel Institute

ASCE American Society of Civil Engineers

ASTM ASTM International

AWS American Welding Society

BPAT Building Performance Assessment Team

BPS Building Performance Study

DTA differential thermal analyzer

EDM Electrical Discharge Machining

EDS Energy Dispersive Spectroscopy

FCAW Flux Cored Arc Welding

FDNY New York City Fire Department

FEMA Federal Emergency Management Agency

HAZ heat affected zone

HLSA High-strength, low alloy

JIS Japan Industrial Standard

LEPvA Leslie E. Robertson Associates

NIST National Institute of Standards and Technology

NYPD New York Police Department

PANYNJ Port Authority ofNew York and New Jersey

PC&F Pacific Car and Foundry

PONYA Port ofNew York Authority

SEAoNY Structural Engineers Association ofNew York

SFRM sprayed fire-resistive material

SHCR Skilling, Helle, Christiansen, & Robertson

SMAW Shielded Metal Arc Welding

use United States Code

WF wide flange (a type of structural steel shape now usually called a W-shape)
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partial failure with end plate still remaining (arrows) from M-28 (B345: 98-101) and

b) Type 2b, full failure with end plate missing from N-9 (A154: 101-104). Damage
of this type may be due to any one of the extreme loading events 167

Figure 3-44. Photographic example of Type 3 failure mode for end plate connections, a welded

connection with bolts intact, end plate of above or below adjoining column still

attached. Sample shown is C-24 (B203: 74-77). Damage of this type may be due to

any one of the extreme loading events 1 68

Figure 3—45. Photographs of recovered end plate connections from sample M-30 (A133: 94-97).

Both connection failures were due to airplane impact 169

Figure 3—46. Photographs of recovered end plate connections from sample S-9 (A127: 97-100).

Lower connection failed upon airplane impact, upper connection failed as a result of

either airplane impact or collapse 170

Figure 3-47. Photographs of recovered end plate connections from sample M-27 (A130: 93-96).

Probable cause of connection failure was collapse 1 73

Figure 3-48. Photographs of recovered end plate connections from sample M-2 (A127: 97-100).

Lower connection failed upon airplane impact, upper connection failed as a result of

either airplane impact or collapse 175
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Figure 3-25. Fracture near a weld on a perimeter panel, sample S9-C2B-Weld-1 (A133: 97-100,

column 133), laboratory images a) overall and b) close-up of crack and crack front

propagating through the outer web. Fracture may be a result of airplane impact

(vertical tail assembly) with removal shown in Fig. 3-24 146

Figure 3-26. Polished and etched cross-section of fracture near weld between outer web and

flange (as seen in Fig. 3-24). Sample was from panel S-9 that was directly hit by

the vertical tail assembly of the plane. Yellow arrow indicates viewing direction of

"planar" sample seen in Fig. 3-27. Two percent nital and 4 percent picral etch.

(A133: 97-100, column 133) 147

Figure 3-27. Polished and etched "planar" view of fracture near weld between outer web and

flange (as seen in Fig. 3-24). The rolling plane of the outer web is parallel to the

plane of the paper. Sample was from panel S-9 that was directly hit by the vertical

tail assembly of the plane. Two percent nital and 4 percent picral etch. (A133: 97-

100, column 133) 148

Figure 3-28. Light optical micrograph showing fracture of the outer web (from Fig. 3-27)

occurring solely in the HAZ of the plate along the fusion line of the weld. Fracture

may have been a result of airplane impact. Two percent nital and 4 percent picral

etch, (panel S-9, A133: 97-100, column 133) 149

Figure 3-29. Polished and etched cross-section of fracture near weld between outer web and

flange. Sample was the same as Fig. 3-25, but from well ahead of the original crack

tip and mounted 1 80 degrees reversed so that viewed from the opposite direction as

Fig. 3-26. Note that the crack started in the HAZ of the weld, but traveled into the

flange plate. Two percent nital and 4 percent picral etch. (A133: 97-100, column

133) : 150

Figure 3-30. Light optical micrograph showing fracture of the flange plate (as seen in Fig. 3-29)

initiating in the HAZ of the first submerged arc weld and then propagating into the

unaffected base material. Two percent nital and 4 percent picral etch. (A133: 97-

100, column 133) 151

Figure 3-31. Most-likely scenario for fracture associated with weld if second crack of sample S9-

C2B-Weld-1 had continued to propagate through the flange plate. Sample shown is

from N-l (A218: 82-85). Damage most likely occurred during the collapse of

WTC 1 152

Figure 3-32. Photographic examples of Type 1 failure mode for spandrel connections.

a) Type la, the observed spandrel connection possessed the tear outs (arrows) from

N-8 (A 142: 97-100), b) Type lb, the splice plate and all bolts of the observed

spandrel connection remained, thus, tear out occurred in the neighboring spandrel

plate to which it was attached from N-7 (A127: 97-100), and c) Type lc, the

observed spandrel connection possessed the tear out, with the additional fracture of

the spandrel plate in a horizontal manner from S-10 (A224: 92-95). All orientations

are from the inside of the buildings looking out. Damage of this type may be due to

any one of the extreme loading events 153

Figure 3-33. Photographic example of Type 2 failure mode for spandrel connections, bolt tear out

in splice plate from C-46 (B157: 68-71). Orientation was from the outside of the

building looking in. Damage of this type may be due to any one of the extreme

loading events 154
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Figure 3-13. Damage images from sample M-2 (A 130: 96-99). Panel from WTC 1 was struck by
fuselage of airplane and bent about the 97th floor, a) Large buckles observed on the

flange plates of column 130, b) cracking of the flange plates on column 130,

c) cracking of spandrel at 97th floor level, and d) no cracking near the welds in this

area on column 130 133

Figure 3-14. Example of fracture near weld of a perimeter column as a result of airplane impact,

sample M2-C3B-Weld-1 (A130: 96-99, column 129), images taken a) prior to

sample removal b) after flame cutting, and c) in the laboratory 134

Figure 3-15. Fracture surface for sample M2-C3B-Weld-1 (A130: 96-99, column 129) shown in

Fig. 3-14. Fracture features of outer web have "lamellar tearing
,
* type fracture

characteristics, a) Light micrograph, b) and c) scanning electron micrographs 135

Figure 3-16. Polished and etched cross-section of fracture near weld between outer web and

flange as seen in Fig. 3-14. Sample was from panel M-2 (A130: 96-99, column

129) that was directly hit by the plane. Fracture occurred in web plate; weld was

intact. Two percent nital and 4 percent picral etch 136

Figure 3-17. Light optical micrograph a) showing fracture of the outer web plate as a result of

airplane impact (seen in Fig. 3-14). Fracture initiated at the toe of the weld and

traveled through the HAZ of the plate. Two percent nital and 4 percent picral etch,

(panel M-2, A130: 96-99. column 129) 137

Figure 3-18. Example of fracture near weld of a perimeter column, sample M2-C3B-Weld-2

(A130: 96-99, column 129), images taken a) prior to sample removal, b) after flame

cutting, and c) in the laboratory. Fracture was a result of airplane impact 139

Figure 3-19. Polished and etched cross-section of fracture near weld between inner web and

flange as seen in Fig. 3-18. Sample was from panel M-2 (ABO: 96-99, column

129) that was directly hit by the plane. Fracture occurred in inner web plate; weld

was intact. Two percent nital and 4 percent picral etch 140

Figure 3-20. Light optical micrograph showing fracture of the inner web (from Fig. 3-18)

initiating near the fusion line in the HAZ of the plate. Two percent nital and

4 percent picral etch. (A130: 96-99, column 129) 141

Figure 3-21. Removal of undamaged weld samples, a) Uncut sample labeled S9-C3B-Weld-1

(A133: 97-100, column 132) of a welded joint between a flange and outer web,

b) cut sample, c) uncut sample labeled M2-C3M-Weld-1 (A130: 96-99, column 129)

of a welded joint between a flange and inner web, and d) cut sample 142

Figure 3-22. Polished and etched cross-section of intact weld between outer web and flange

(same as shown in Fig. 3-21a and 3—2 lb). The sample was removed from an

undamaged portion of column of panel S-9 (A133: 97-100, column 132) that was

directly hit by the plane. Note the geometry of the HAZ in the outer web base plate.

Two percent nital and 4 percent picral etch 143

Figure 3-23. Polished and etched cross-section of intact weld between inner web and flange

(same as shown in Fig. 3-2 lc and 3-2 Id). The sample was removed from an

undamaged portion of column of panel M-2 (A 130: 96-99, column 129) that was

directly hit by the plane. Note the geometry of the HAZ in the inner web base plate.

Two percent nital and 4 percent picral etch 144

Figure 3-24. Weld fracture sample S9-C2B-Weld-1 (A133: 97-100, column 133), images taken a)

prior to sample removal and b) after flame cutting. Panel S-9 was struck by the

vertical tail assembly of the airplane 145
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Figure 3-2. a) Overall image of panel M-30 (A133: 94-97), b) severing of column 132 at the

stiffener plate associated with the top of the spandrel, and c) severing of column 133

at a slightly lower elevation associated with the 95th floor level concrete slab 121

Figure 3-3. a) Overall image of panel S-9 (A133: 97-100) and b) lower portion of panel showing

possible damage from airplane impact, bottoms of columns 133 and 134 shown, and

c) column 132 that sustained a fair amount of damage 122

Figure 3^1. Overall view of panel M-27 (A130: 93-96). This panel was from the north face of

WTC 1 and struck directly by the nose and fuselage of the plane 123

Figure 3-5. Panel M-2 (A130: 94-97). This panel was from the north face ofWTC 1. The lower

portion of the panel was struck by the fuselage of the airplane. General shape of

panel is due to airplane impact and bending about the 97th floor slab, a) Overall

view, bottom of panel is on the left-hand side of the picture and the outside of the

panel is facing down, b) major bend in panel located at the 97th floor level, and c)

splayed bottoms of columns 129 and 130 124

Figure 3-6. Overall image of sample N-7 (A127: 97-100). Panel was in relatively good shape

besides being folded inward about an axis parallel to the length of the columns with

the outer web of the columns facing outward. This was believed to have happened

during the collapse or recovery efforts. The three columns were relatively intact

with limited damage 125

Figure 3-7. Photographic examples of Type 1 damage feature for exterior panel columns, gross

physical distortion of flanges and webs, a) Type la, crushed columns from K-2

(A236: 92-95), b) Type la, crushed column from N-12 (A206: 92-95), c) Type lb,

punctured column from N-8 (A142: 97-100), and d) Type lc, buckling of column

from K-2 126

Figure 3-8. Photographic examples of Type 2 damage feature for exterior panel columns,

fracture in base plate near fillet welds, a) Type 2a, localized fracture from N-7

(A127: 97-100), b) Type 2b, extensive fracture from C-46 (B157: 68-71), and c)

Type 2c, extensive fracture resulting in "splaying" of column from M-27 (A130: 93-

96) 127

Figure 3-9. Photographic examples of Type 3 damage feature for exterior panel columns,

severing of columns, a) Type 3a, sever associated with stiffener or diaphragm plate

from C-22 (A157: 93-96), b) Type 3b, sever occurred away from stiffener or

diaphragm plate from M-2 8 (B345: 98-101), c) Type 3c, sever occurred at concrete

slab of floor from M-30 (A133: 94-97), and d) end was flame cut during recovery

from N- 10 (Al 15: 89-92) 128

Figure 3-10. Fracture surface of sample M-30 (A133: 94-97), spandrel plate of column 133.

Fracture was due to airplane impact ofWTC 1 . a) Location of sample removed,

b) laboratory image showing sample removed, c) fracture shows chevrons running

along the length of the crack path, and d) red highlighted area showing the location

of small shear lips 129

Figure 3—11. Analysis of fractured plate from sample S-9 (A133: 97-100), outer web of column

132. This panel from WTC 1 was struck by the vertical tail assembly, a) Location

of sample removed, b) laboratory image showing sample removed 130

Figure 3-12. Thinning of outer web from column 130 of panel M-2 (A 130: 96-99). Tensile

failure of the plate was a result of airplane impact into WTC 1 . a) photograph

showing thinning, b) graph indicating plate thinning near fracture surface 132
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Figure 2-37. East face ofWTC 2 at time 9:53:04 showing a larger amount of pull in. The vertical

black lines were drawn to establish the original line of the exterior wall columns,

and the shorter line segments were drawn at the same angle as the nearest observable

joint in the exterior aluminum panels to establish the inward bowing distance. For

actual column numbers, add a "3" to the front of the two-digit designations in the

image 59

Figure 2-38. Map of inward displacements of the east outer face ofWTC 2 inward at time

9:21:29 a.m. Each measurement refers to the upper left comer of the window within

which the number resides. Measurements are in inches. The colors refer to groups

of 5 inch displacements (0-5: black, 6-10: blue) for easier visualization 60

Figure 2-39. Map of pull in displacements of the east outer face ofWTC 2 inward shortly before

collapse. Each measurement refers to the upper left corner of the window within

which the number resides. Measurements are in inches. The colors refer to groups

of 5 inch displacements (0-5: black, 6-10: blue, 11-15: orange, 16-20: red) for easier

visualization. This data was combined from two images taken by the same

photographer at nearly the same location 10 s apart, and it is assumed that the inward

deflection did not change appreciably during this time 61

Figure 2-40. Image of dropped floor on east face ofWTC 2. The slab of the 83rd floor has

partially collapsed onto the 82nd floor 62

Figure 2^1. Image of dropped floors on north face ofWTC 2 63

Figure 2-42. Image of dropped floor on north face ofWTC 2. The slab of the 81st floor has

dropped into the office space of the 80th floor 64

Figure 2-43. Image showing initial seconds of collapse ofWTC 2 viewed from the ENE, and kink

in the SE edge of the building near the 106th floor (arrow) 65

Figure 2^4. An enhanced close-up of the kink area in the previous figure (SE corner, WTC 2),

with overlaid lines to highlight the details of the kink geometry. The edge of the

building (1) bends an angle to another direction (2), then bends back somewhat

toward the original direction (3) 66

Figure 2-45. Close-up view of the northeast corner ofWTC 2 during the first seconds of collapse.
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region that exhibits a kink at the SE corner 67

Figure 2-46. Image of the NE corner ofWTC 2, several seconds before collapse. The corner

shows no distortion of the type in the previous figure. This would imply that the
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right is enhanced for visibility 68
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Figure 3-1 . Image showing impact damage to the north face ofWTC 1. The as-built location of

the five recovered panels from the impact zone were highlighted: S-9 (pink), M-30

(blue), M-2 (orange), M-27 (green), and N-7 (yellow) 120
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columns, and yellow shows regions that could not be identified from any
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Abstract

This report describes damage characteristics, failure modes, and fire-related degradation of the recovered

structural components from the World Trade Center (WTC) 1 and WTC 2. Assessment of the structural

components was divided into pre- and post-collapse analysis. Pre-collapse analysis concentrated on

impact damage sustained by the exterior panel sections, with assessment based solely upon photographic

and video images. These images were also used to locate areas on the recovered and identified (i.e.,

known as-built location) panels with pre-collapse fire exposure. The second portion of the analysis

focused on direct visual examination of the recovered steel elements. Of particular importance were the

samples located near the airplane impacts (north face ofWTC 1 and south face ofWTC 2) and those

where fire was known to exist prior to collapse of the buildings. Metallographic analysis of components

with specific or unique damage patterns was also conducted. The findings of this report were used for

validation of the modeling efforts in the baseline structural performance and aircraft impact damage

analysis, the reconstruction of the thermal environment, and the structural fire response and collapse

analysis. WTC 7 steel was not evaluated in this study of the tower damage and failure modes.

Keywords: Damage characteristics, failure analysis, failure modes, fire-related damage, steel, World

Trade Center.
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Disclaimer No. 1

Certain commercial entities, equipment, products, or materials are identified in this document in order to describe a

procedure or concept adequately or to trace the history of the procedures and practices used. Such identification is

not intended to imply recommendation, endorsement, or implication that the entities, products, materials, or

equipment are necessarily the best available for the purpose. Nor does such identification imply a finding of fault or

negligence by the National Institute of Standards and Technology.

Disclaimer No. 2

The policy of NIST is to use the International System of Units (metric units) in all publications. In this document,
however, units are presented in metric units or the inch-pound system, whichever is prevalent in the discipline.

Disclaimer No. 3

Pursuant to section 7 of the National Construction Safety Team Act, the NIST Director has determined that certain

evidence received by NIST in the course of this Investigation is "voluntarily provided safety-related information" that is

"not directly related to the building failure being investigated" and that "disclosure of that information would inhibit the

voluntary provision of that type of information" (15 USC 7306c).

In addition, a substantial portion of the evidence collected by NIST in the course of the Investigation has been
provided to NIST under nondisclosure agreements.

Disclaimer No. 4

NIST takes no position as to whether the design or construction of a WTC building was compliant with any code

since, due to the destruction of the WTC buildings, NIST could not verify the actual (or as-built) construction, the

properties and condition of the materials used, or changes to the original construction made over the life of the

buildings. In addition, NIST could not verify the interpretations of codes used by applicable authorities in determining

compliance when implementing building codes. Where an Investigation report states whether a system was
designed or installed as required by a code provision, NIST has documentary or anecdotal evidence indicating

whether the requirement was met, or NIST has independently conducted tests or analyses indicating whether the

requirement was met.

Use in Legal Proceedings

No part of any report resulting from a NIST investigation into a structural failure or from an investigation under the

National Construction Safety Team Act may be used in any suit or action for damages arising out of any matter

mentioned in such report (15 USC 281a; as amended by P.L. 107-231).
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