VOLUME IV

Standard X-ray Diffraction Powder Patterns

UNITED STATES DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

Standard X-ray Diffraction Powder Patterns

The three previously issued volumes in this series are available from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., as follows:

NBS Circular 539, Volume I, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances)

NBS Circular 539, Volume II, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances)

NBS Circular 539, Volume III, Standard X-ray Diffraction Powder Patterns (Data for 34 inorganic substances)

The price of each volume is 45 cents. Send orders with remittance to: Superintendent of Documents, Government Printing Office, Washington 25, D. C.

Standard X-ray Diffraction Powder Patterns

Howard E. Swanson, Ruth K. Fuyat, and George M. Ugrinic

National Bureau of Standards Circular 539 Volume IV, Issued March 1, 1955

Contents

		Page		Page
1.	Introduction	1	5. Halides and halide hydrates—Continued	
2.	Elements		Strontium chloride, SrCl ₂	40
	Alpha-iron, α -Fe	2	Rubidium chloride, RbCl	41
	Ruthenium, Ru	5	Rubidium iodide, RbI	43
	Barium, Ba	7	Silver chloride (cerargyite), AgCl	44
	Osmium, Os	8	Silver bromide (bromyrire), AgBr	46
	Iridium, Ir	9	Cesium iodide, CsI	47
3.	Sulfides	11	Mercury(I), iodide, HgI	49
	Alpha manganese sulfide (alabandite)		Thallium(I) chloride, TlCl	51
	α-MnS	11	Thallium(I), iodide, TlI (orthorhombic)	53
	Copper (II) sulfide (covellite), CuS	13	Bismuth oxychloride (bismoclite), BiOCl	54
	Cadmium sulfide (greenockite), CdS	15	Ammonium iodide, NH ₄ I	56
	Mercury(II) sulfide (cinnabar), HgS (hex-		Strontium chloride hexahydrate, SrCl ₂ ·6H ₂ O-	58
	agonal)	17	Strontium bromide hexahydrate, SrBr ₂ ·6H ₂ O ₋	60
	Mercury(II), sulfide (metacinnabar), HgS		6. Nitrates and nitrites	61
	(cubic)	21	Silver (II) oxynitrate, Ag ₇ O ₈ NO ₃	61
	Bismuth sulfide (busmuthinite), Bi ₂ S ₃	23	Sodium nitrite, NaNO ₂	62
4.	Oxides	25	7. Phosphates	64
	Alpha gallium oxide, α-Ga ₂ O ₃	25	Ammonium dihydrogen phosphate,	
	Neodymium oxide, Nd ₂ O ₃	26	NH ₄ H ₂ PO ₄	64
	Palladium oxide, PdO	27	8. Sulfates	65
	Tin(II) oxide, SnO		Calcium sulfate (anhydrite), CaSO ₄	65
5.	Halides and halide hydrates	30	9. Silicates	68
	Lithium bromide, LiBr	30	Zirconium silicate (zircon), ZrSiO ₄	68
	Sodium iodide, NaI		10. Intermetallic compounds	72
	Magnesium fluoride (sellaite), MgF ₂		Aluminum antimony, AlSb	
	Copper(I), chloride (nantokite), CuCl		Indium antimony, InSb	
	Copper(I), bromide, CuBr		11. Cumulative index to volumes I, II, III, and IV	74
	Copper(I), iodide (marshite), CuI	38		

ERRATA

Vol. I. Page 51, table 27, Swanson and Tatge pattern. The value for the d-spacing at 1.303 should read 1.503.

Vol. II. Page 33, second sentence in text for uranium dioxide should begin by reading: Chemical analysis at the NBS showed 88.0 percent of uranium.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Vol. IV.—Data for 42 Inorganic Substances

Howard E. Swanson, Ruth K. Fuyat, and George M. Ugrinic

Forty-two standard X-ray diffraction powder patterns are presented in revision of the ninety-five corresponding patterns in the ASTM card file, a system for the identification of unknown crystalline materials based on the three strongest reflections of each material or structurally distinct phase. Patterns for seven compounds not represented in the file are also included. A comparison is made between all powder diffraction data available for each of the substances reported. The patterns were made with a Geiger counter X-ray diffractometer, using samples of exceptionally high purity. The d-spacings were assigned Miller indices determined by comparison with calculated interplanar spacings and from space group considerations. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible.

Included are X-ray data for the following forty-two substances: α-Fe, Ru, Ba, Os, Ir, α-MnS (alabandite). CuS (covellite), CdS (greenockite), HgS (cinnabar), HgS (metacinnabar), Bi_2S_3 , α - Ga_2O_3 , Nd_2O_3 , PdO, SnO, LiBr, NaI, MgF_2 , CuCl, CuBr, CuI, $SrCl_2$, RbCl, RbI, AgCl (cerargyrite), AgBr, CsI, HgI, TlCl, orthorhombic TlI, BiOCl (bismoclite), NH_4I , $SrCl_2 \cdot 6H_2O$, $SrBr_2 \cdot 6H_2O$, $Ag_7O_8NO_3$, $NaNO_2$, $NH_4H_2PO_4$, $CaSO_4$, (anhydrite), $ZrSiO_4$ (zircon), AlSb, and InSb.

1. INTRODUCTION

The National Bureau of Standards program² for revision and evaluation of published X-ray data for the American Society for Testing Materials card file presents in this paper, the fourth in a series 3 of standard powder diffraction patterns, data for 5 elements, 35 inorganic compounds, and 2 intermetallic compounds. These patterns are recommended to replace 95 cards now in the file. Seven compounds, gallium oxide, neodymium oxide, strontium chloride, thallium iodide, silver oxynitrate, aluminum antimony, and indium antimony, not represented in the file, have been added.

Page

41

58 60

61

62

64

64

65

The experimental procedure and general plan of these reports has not been changed from that of the previous volumes of NBS Circuilar 539. However, basic technique is included and discussed in the same order that is followed in presenting the data for each compound in the body of this volume. The data for the various substances are grouped according to their chemical nature as follows: Elements, sulfides, oxides, halides and halide hydrates, nitrates and nitrites, phosphates, sulfates silicates, and intermetallic compounds, and within each group according to increasing atomic number.

ASTM cards. Each section of this Circular, devoted to one substance, contains a table listing old and new file card numbers, the ASTM index lines, the radiation used, and the literature references for each card. The old card numbers refer to the original ASTM card file (1939) and the first supplement (1944). The new card numbers are from the second editions and include the second supplement.

Additional published patterns. Literature references and radiation data for patterns that had not been published as ASTM cards are listed, and the patterns are included in the tables of d-spacings and intensities.

NBS sample. The samples used to make the NBS patterns were special preparations of exceptionally high purity obtained or prepared only in

small quantities.

The purity of each sample was determined by spectroscopic or chemical analysis. A phasepurity check was made on the nonopaque materials during the refractive-index determination. Another excellent check on phase purity was provided by the X-ray pattern itself because it was indexed by comparison with theoretical d-values.

The quality of most of the patterns was greatly improved by appropriate annealing procedures. The majority of the samples that were too coarse for X-ray analysis could be reduced to the proper

¹ Fellow at the National Bureau of Standards sponsored by the Joint Committee on Chemical Analysis by X-ray Diffraction Methods.

2 This project is sponsored by the Joint Committee on Chemical Analysis by X-ray Diffraction Methods. This committee is composed of members from the American Society for Testing Materials, the American Crystallographic Association, and the British Institute of Physics, Financial support is being given by the National Bureau of Standards.

3 The first paper of this Circular is Standard X-ray Diffraction Powder Patterns, Vol. I. Data for 58 Inorganic Substances, by H. E. Swanson and E. Tatge; the second is Standard X-ray Diffraction Powder Patterns, Vol. II. Data for 30 Inorganic Compounds, by H. E. Swanson and R. K. Fuyat; and the third is Standard X-ray Diffraction Powder Patterns, Vol. III. Data for 34 Inorganic Compounds, by H. E. Swanson, R. K. Fuyat, and G. M. Ugrinic.

size and then annealed to remove the strain

caused by grinding or filing.

At least two intensity patterns were prepared to check reproducibility of measured values. The grain sizes of samples used were less than 25 microns. A flat piece of glass was held temporarily over the face of an open cell while the sample was drifted in from the top. The sample holder was then turned face up, and the piece of glass was removed. This surface was used for exposure to the X-ray beam. For a few powder samples that did not flow readily or were prone to orient badly, approximately 50 percent finely ground silica-gel was added as diluent. The intensity values of each pattern were measured as peak height above background and were expressed as percentages of the strongest line.

Separate patterns were prepared for d-spacing measurement by packing into a shallow holder a sample containing approximately 5 weight percent of tungsten powder as an internal standard, whose lattice constant at 25° C is 3.1648 A, as determined by Jette and Foote [1] 4. All of the NBS patterns were made by using copper $K_{\alpha l}$ radiation

having a wavelength of 1.5405 A.

Interplanar spacing and intensity measurements. Interplanar spacing data presented in the tables were converted to angstroms as internationally defined in 1946 [2]. The conversions were from Bragg angle data, from d-spacings in kX units, using the factor 1.00202, or from dspacings with specifically stated wavelengths other than kX. In each case the type of conversion made was indicated. The wavelength values in the tables of d-spacings and intersities are given in angstroms, whereas the values listed under the first section of the reports, ASTM cards, are the original values taken from the literature. The tables of patterns contain data from the original literature except in those instances where there is no reference other than an ASTM card.

Intensities, when not numerically evaluated, were given the following abbreviations: strong, s; medium, m; weak, w; very, v; diffuse, D; and

doublet, db.

In indexing cubic patterns, the number of possible combinations of hkl's for a particular value of the expression $(h^2+k^2+l^2)$ can be very great, particularly when the value becomes large. It has been customary in this Circular to make h>k>land to choose the hkl with the largest h if not limited by the space group. Indexing of the noncubic patterns was accomplished by comparing the NBS d-spacings with theoretical values of all possible Miller indices of a particular cell calculated with the aid of IBM punched card machines.

The unit cells used for these calculations were obtained either through a review of the literature or with an estimated cell based on partial indexing of the NBS pattern. The noncubic indexing as it appears in the tables includes all of the probable indices for any given d-spacing allowed by the space group of that structure. An attempt was made to reconcile these values with published single-crystal work when it was available. However, errors inherent in the indexing of powder data undoubtedly are present in some patterns.

The intensities of the strongest lines are of particular importance, because the ASTM card-file system of identification depends upon comparing the three strongest lines of an unknown X-ray pattern with those on the file cards, which are arranged according to their first, second, and third, strongest lines, respectively. Therefore, a table of the three strongest lines of each pattern is listed for comparison with the NBS values.

Lattice constants. The NBS lattice constants of cubic materials were calculated for all d-spacings, and the average of the last five lines was assumed to be the best value because of greater accuracy of measurement in the large-angle part of the pat-The unit-cell values for each noncubic substance were determined from all of the d-spacings of its pattern, for which there was only one possible Miller index by means of a least-squares calculation made on an IBM-Card Program Calculator.

The conversion of published unit-cell data to angstroms followed the same pattern as that used for the d-spacings. The unit-cell dimensions were converted to 25° or 26° C for comparison with the NBS values if the temperature of measurement and the thermal expansion were known. The coefficient of linear thermal expansion as used is defined as the change in length per unit length per degree Celsius in the room-temperature range, unless otherwise indicated. Thermal-expansion data have been given whenever the data were readily available, even though no temperature conversions were made in the unit-cell table. The limits of errors generally published with unit-cell data have not been included in the table as the number of determinations, and their accuracy and variations were such that a statistical evaluation would be invalid.

The densities calculated from the NBS lattice constants are expressed in grams per cubic centimeter, and the refractive-index measurements were made in white light by grain-immersion methods, using oils standardized in sodium light.

References

E. R. Jette and F. Foote, Precision determination of lattice constants, J. Chem. Phys. 3, 605-16 (1935).
 Anonymous, The conversion factor for kX units to angstrom units, J. Sci. Instr. 24, 27 (1947).

⁴ Figures in brackets indicate the literature references at the end of each section of this paper.

2. ELEMENTS

Alpha-Iron, α-Fe (cubic)

ASTM cards

Card	number	New index Radiation		Source	
Old	New	lines			
3347	3539 $1-1252$ $1-1252$	2. 05 1. 16 1. 43	Tungsten, 0.212 A.	Hull [1] 1917.	
3381	$\begin{array}{c} 3591 \\ 1-1269 \\ 1-1262 \end{array}$	2. 03 1. 17 0. 91	Molybdenum _	Davey [2] 1925.	
	3592 $ 3-1056 $ $ 3-1050$	2. 02 1. 17	Iron, 1.93 A	Jung [3] 1927.	
3399	3590 1–1268 1–1267	2. 01 1. 17 1. 43	Molybdenum _	Hanawalt, Rinn, and Frevel [4] 1938.	

The Hull pattern was made by using tungsten radiation rather than molybdenum as the ASTM card states.

Additional published patterns

sed ere the ent he l is per

Source	Radiation	Wave- length
Wever [5] 1921 Westgren and Lindh [6] 1921 Eisenhut and Kaupp [7] 1928	Iron Iron Molybdenum_	A 1. 932

NBS sample. The iron used for the NBS sample was an exceptionally pure rolled sheet prepared by G. A. Moore of the NBS by a method described in the Journal of Metals [8]. The sample was annealed at 1,100° C for 3 days in a hydrogen atmosphere and slowly cooled in an atmosphere of helium. The impurities reported are less than 0.0013 percent of total foreign metals and about the same order of magnitude of nonmetals, including carbon.

Because the iron pattern contains so few lines, each one was scanned separately at very low speed where 1-degree increments of 2θ were equal to 4 inches of chart paper. The d-spacings for iron were corrected by comparison with a similarly prepared pattern of silver made by using an annealed bar of high purity and the unit cell, 4.08611 A, at 25° C, as determined by Jette and Foote [9].

Interplanar spacings and intensity measurements. The Hull, the Davey, and the Hanawalt, Rinn, and Frevel d-spacings were converted from

kX to angstrom units, the Jung, the Wever, the Westgren, and Lindh, and the Eisenhut and Kaupp d-spacings were calculated from Bragg angle data.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Hull	110 110 110 110 211 110 110 110	211 211 200 211 220 211 211 211	$\begin{bmatrix} 200 \\ 310 \\ 211 \\ 200 \\ 110 \\ 220 \\ \hline \\ 200 \\ \end{bmatrix}$

Lattice constant. The structure was determined by Davey [10] in 1924. The space group is O ⁹₅-Im3m with tungsten-type structure and 2 (Fe)

per unit cell.

A group of unit-cell values containing four or more decimal places were converted from kX to angstrom units and from the temperatures indicated in parentheses to 25° C for comparison with the NBS values. The linear coefficient of expansion in the room-temperature range is 11.7×10⁻⁶ according to Owen and Yates [11]. A large number of less-accurate unit-cell determinations were omitted, as they contributed little in the way of a comparison.

Lattice constants

		A
1925	Blake [12]	2.8661
1929	Mayer [13]	2.86693 at 25° C
	, ,	(22° C)
1931	Van Arkel and Burgers [14]	2.8672
1932	Bradley and Jay [15]	2.8663
1933		2.8669
1933	Owen and Yates [11]	2.86675 at 25° C
		(18° C)
1935	Jette and Foote [9]	2.86626 at 25° C 2.8664 at 25° C
1936	Straumanis and Ieviņš [17]_	
	25 (510]	(22° C) 2.86665 at 25° C
1937	Montoro [18]	(20° C)
1041	W Danger [10]	2.86651
	Van Bergen [19] Lu and Chang [20]	2.8665 at 25° C
1941	Lu and Chang [20]	(20° C)
1948	Thomas [21]	2.86659 at 25° C
1940	Thomas [21]	(20° C)
1949	Kochanovska [22]	2.8667 at 25° C
1010	itoonano .ona [22]	(22° C)
1953	Swanson, Fuyat, and Ug-	2.8664 at 25° C
200011	rinic.	

The density of iron calculated from the NBS lattice constant, assuming the atomic weight of iron to be 55.85, is 7.874 at 25° C.

1-													
	hkl	1917 Hull W, 0.212 A			1926 Davey Mo, 0.709 A			1927 Jung Fe, 1.93597 A			1938 Hanawalt, Rinn, and Frevel Mo, 0.709 A		
			,						10, 1.0001 11			,	
		d	I	a	d	I	a	d	I	а	d	I	a
	110 200 211 220 310	A 2. 05 1. 43 1. 16 1. 007 0. 912	100 46 54 24 18	A 2. 90 2. 86 2. 84 2. 849 2. 884	A 2. 02 1. 432 1. 169 1. 012 0. 906	100 50 80 50 60	A 2. 86 2. 864 2. 865 2. 863 2. 865	A 2. 037 1. 437 1. 174	VS VS VS	A 2. 881 2. 874 2. 876	A 2. 01 1. 431 1. 168 1. 012 0. 906	100 15 38 10 8	A 2. 84 2. 862 2. 861 2. 862 2. 865
	222	. 825 . 759 . 666 . 634	16 22 12 3	2. 857	. 828 . 766 . 715 . 674 . 639	20 60 10 30 20	2. 867				. 827 . 766 . 677	3 10 3	2. 865
		. 601 . 573 . 556 . 523	2 2 10 2		. 609 . 583 	20 20 							
	Average unit-cell vlaue for last five lines 2. 860		2. 860			2. 865			2. 877			2. 863	
			1921		1921			1928			1953		
1		Wever			Westgren and Lindh			Eisenhut and Kaupp			Swanson, Fuyat, and Ugrinic		
	hkl	Fe, 1.93597 A			Fe, 1.93597 A			Mo, 0.709 A			Cu, 1.5405 A, 25° C		
		d	I	a	d	I	a	d	I	a	d	I	a
	110 200 211 220 310	A 2, 016 1, 427 1, 166 1, 011	m w vs s	A 2, 851 2, 854 2, 856 2, 860	A 1. 98 1. 41 1. 16 1. 01	s m s s	A 2. 80 2. 82 2. 84 2. 86	A 2. 042 1. 424 1. 163 1. 007 0. 905	m w mw w	A 2. 888 2. 848 2. 849 2. 848 2. 862	A 2. 0268 1. 4332 1. 1702 1. 0134 0. 9064	100 19 30 9 12	A 2. 8663 2. 8664 2. 8664 2. 8663 2. 8663
	222							. 765	mw 		. 8275 	6	2. 8665
	Average unit-cell value for last five lines 2. 855 2. 83 2. 859 2. 8664									a 2. 8664			

^a An average of six lines.

A. W. Hull, A new method of X-ray crystal analysis, Phys. Rev. 10, 661-96 (1917).

[2] W. P. Davey, Präzisionsmessungen der Gitterkonstan-

ten verbreiteter Metalle, Z. Krist. 63, 316-7 (1926).

[3] A. O. Jung, Die Raumgitterstruktur und Gitterkonstanten des künstlichen und natürlichen Nick-

eleisens, Z. Krist. 65, 309-34 (1927).
[4] J. D. Hanawalt, H. W. Rinn and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).

[5] F. Wever, Die Atomanordnung des Eisens in austenitischen Stahlen, Mitt. Kaiser-Wilhelm-Inst. Eisenforsch. Düsseldorf 3, 45–56 (1921).

[6] A. Westgren and A. E. Lindh, Zum Kristallbau des Eisens und Stahls, Z. physik. Chem. 98, 181–210 (1921).

[7] O. Eisenhut and E. Kaupp, Röntgenographische Untersuchungen über Eisenkatalysatoren für die Ammoniaksynthese, Z. physik. Chem. 133, 456–471

[8] G. A. Moore, Preparation of metallic iron of high

purity, J. Metals 5, 1443-9 (1953).

[9] E. R. Jette and F. Foote, Precision determination of lattice constants, J. Chem. Phys. 3, 605-16 (1935). [10] W. P. Davey, Precision measurements of the lattice

[10] W. P. Davey, Fredision measurements of the lattice constants of pure metals, Phys. Rev. 23, 292 (1924).
[11] E. A. Owen and E. L. Yates, Precision measurements of crystal parameters, Phil. Mag. 15, 472–88 (1933).
[12] F. C. Blake, Precision X-ray measurements by the powder method, Phys. Rev. 26, 60–70 (1925).

[13] G. Mayer, Die Gitterkonstante von reinem α -Eisen,

Z. Krist. 70, 383–384 (1929).
[14] A. E. van Arkel and W. G. Burgers, Eine zur Bestimmung von kleinen Änderungen in der Gitterkonstante des α-Eisens geeignete Röntgenstrahlung, Z.

Metallkunde 23, 149-151 (1931).

[15] A. J. Bradley and A. H. Jay, A method for deducing accurate values of the lattice spacing from X-ray powder photographs taken by the Debye-Scherrer method, Proc. Phys. Soc. (London) 44, 563-79 (1932).

[16] H. Esser and G. Müller, Die Gitterkonstanten von reinem Eisen und Eisen-Kohlenstoff-Legierungen bei Temperaturen bis 1100° C, Arch. Eisenhüttenw. 7, 265-268 (1933).

[17] M. Straumanis and A. Ievinš, Präzisionsaufnahmen nach dem Verfahren von Debye und Scherrer, II,

Z. Physik. 98, 461-75 (1936).
[18] V. Montoro, Misure di precisione della costante reticolare del ferro, Merallurgia ital. 29, 8-11

(1937). [19] H. van Bergen, Präzisionsmessung von Gitterkonstanten mit einer Kompensations-methode II, Ann. Physik 39, 553-72 (1941).

[20] S. S. Lu and Y. L. Chang, The accurate evaluation of lattice spacings from back-reflection powder photographs, Proc. Phys. Soc. (London) 53, 517-28 (1941).

[21] D. E. Thomas, Precision measurements of crystal lattice parameters, J. Sci. Instr. 25, 440-4 (1948).

[22] A. Kochanovska, Investigation of thermal dilatation of cubic metals, Physica 15, 191-6 (1949).

Ruthenium, Ru (hexagonal)

ASTM cards

Old New card numbers bers		New index lines	Radiation	Source
3360	3581 1-1265 1-1256	2. 04 1. 34 1. 21	Molybdenum, 0.712A.	Hull [1] 1921.
II-2909	3585 2–1266 2–1258	2. 04 1. 22 1. 15	Copper	British Museum. Levi and Haardt [2] 1926.
3358	3557 1-1256 1-1253	2. 04 2. 33 2. 13	Molybdenum_	Hanawalt, Rinn and Frevel [3] 1938.

The Levi and Haardt pattern was made with copper radiation. The British Museum pattern was not available and therefore was not included in the table.

NBS sample. The ruthenium used for the NBS pattern was obtained from the Baker Chemical Co. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of boron and palladium; 0.001 to 0.01 percent each of aluminum, magnesium, and silicon; 0.0001 to 0.001 percent each of calcium, copper, iron, and lead; and less than 0.0001 percent of barium.

Interplanar spacings and intensity measurements. The d-spacings for the Levi and Haardt and the Barth and Lunde patterns were calculated from Bragg angle data; the d-spacings for the Hull and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units, and the Hull spacings were converted from Mo radiation of $0.7\overline{1354}$ Å to Mo K_{α_1} radiation, 0.70926 Å.

Additional published patterns

Source	Radiation	Wave- length
Barth and Lunde [4] 1926	Copper	1.539A.

The Levi and Haardt pattern contains d-spacings at 1.227 A and 0.922 A, which are not permissible in the ruthenium structure.

The three strongest lines in each of the patterns are as follows:

	1	2	3
Hull	101	110	103
	101	211	114
	101	100	002
	101	112	203
	101	100	002

Lattice constants. The structure was determined by Barth and Lunde [4] in 1926. The space group is D_{6h}-C6/mmc with magnesium-type structure and 2(Ru) per unit cell.

A group of unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	С
1926 1937	Hull [1]	A 2. 691 2. 685 2. 700 2. 70389 2. 7058	A 4.279 4.270 4.282 4.28168 at 20° C 4.2819 at 27° C

The density of ruthenium calculated from the NBS lattice constants is 12.438 at 27° C.

Ruthenium, Ru (hexagonal)

	1921		19	26	19	38	19	26	198	53
hkl	H	ull		Levi and Haardt		lt, Rinn, evel	Barth Lui		Swanson, Fuyat, and Ugrinic	
	Mo, 0	.709 A	Cu, 1.5	5405 A	Mo, 0.	.709 A	Cu, 1.	5405 A	Cu, 1.5405 A , 27° C	
	d	Ī	d	I	d	I	d	I	d	I
100 002 101 102 110	A 2. 311 2. 156 2. 036 1. 569 1. 341	30 3 100 20 50	A 2. 252 2. 074 1. 979 1. 534 1. 323	28 31 100 31 54	A 2. 33 2. 13 2. 04 1. 57 1. 348	40 30 100 25 25	A 2. 343 2. 142 2. 051 1. 578 1. 348	30 30 100 40 60	A 2. 343 2. 142 2. 056 1. 5808 1. 3530	41 37 100 23 25
103 200 112 201	1. 209 1. 137 1. 121	50 50 40	1. 196 1. 151 1. 125 1. 111	59 13 75 59	1. 215 1. 167 1. 142 1. 130	30 4 30 15	1. 218 1. 169 1. 142 1. 128	70 10 80 70	1, 2189 1, 1715 1, 1434 1, 1299	24 5 26 20
004 202 104 	1. 022 0. 966 	5 10 	1. 055 1. 014 0. 963 . 922 . 898	$14 \\ 20 \\ 21 \\ 11 \\ 59$	1. 071 1. 027 0. 973	3 4 4 10	1. 071 1. 027 0. 974 	10 20 20 	1. 0705 1. 0278 0. 9738	4 7 6
210 211 114 212 105	. 863 . 837 . 815 a. 802	30 20 3 5	. 879 . 861 . 835	25 98 78	. 886 . 869 . 841 . 820 b. 805	2 20 10 4 6	. 884	20	. 8857 . 8673 . 8395 . 8185 . 8043	6 26 18 10 15

Three additional lines were omitted. b Seven additional lines were omitted.

References

- [1] A. W. Hull, X-ray crystal analysis of thirteen common
- metals, Phys. Rev. 17, 571–88 (1921).
 [2] G. R. Levi and R. Haardt, La struttura cristallina del
- rutenio e dell'osmio, Gazz. chim. ital. 56, 369 (1926).
 [3] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457–512 (1938).
- [4] T. Barth and G. Lunde, Die Gitterkonstanten der Platinmetalle, Silber, und Gold, Z. Physik. Chem. 121, 78-102 (1926).
- [5] E. A. Owen and E. W. Roberts, The crystal parameters of osmium and ruthenium at different temperatures, Z. Krist. 96A, 497–498 (1937).

Barium, Ba (cubic)

ASTM cards

Card	number	New	Radiation	Course	
Old	New	lines	radia don	Source	
1363 1382	1318 1-0568 1-0543 1319 1-0569 1-0550	3. 56 2. 05 1. 34 3. 54 2. 04 2. 51	$egin{array}{c} ext{Molybdenum,} & \ ext{K}_{m{lpha}} & \ ext{Molybdenum } \ ext{L} \end{array}$	King and Clark [1] 1929. Hanawalt, Rinn, and Frevel [2] 1938.	

Additional published patterns

Source	Radiation	Wave- length
Ebert and Hartmann [3]	Copper	K_{α}

NBS sample. The barium used for the NBS pattern was obtained from the American Firstoline Corp. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of calcium, magnesium, sodium, silicon, and strontium; 0.001 to 0.01 percent each of aluminum, iron, and manganese; and 0.0001 to 0.001 percent of copper.

Interplanar spacings and intensity measurements. The d-spacings for the Ebert and Hart-

mann pattern were calculated from Bragg angle data; d-spacings for the King and Clark and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
King and Clark	110	211	321
Hanawalt, Rinn, and Frevel	110	211	200
Ebert and Hartmann	321	411	510
Swanson, Fuyat, and Ugrinic	110	211	200

Lattice constant. The structure was determined by Clark, King, and Hyde [4] in 1928. The space group is O_n-Im3m with tungsten-type structure and 2(Ba) per unit cell.

Lattice constants

1929 1941	Ebert and Hartmann [3] King and Clark [1] Klemm and Mika [5] Swanson, Fuyat, and Ugrinic	5. 025 5. 019
--------------	---	------------------

The density of barium calculated from the NBS lattice constant is 3.595 at 26° C.

Barium, Ba (cubic)

							(<u></u>				
hkl	1929 King and C Mo, 0.709				1938 1929 Hanawalt, Rinn, and Frevel Ebert and Hartmann Mo, 0.709A Cu, 1.5405A				1953 , Fuyat, 1.5405A,	and Ugrinie		
	d	I	a	d	I	a	d	I	a	d	I	a
110 200 211 220 310 222 321 411 420 332 422 510 521 530	A 3. 563 2. 515 2. 054 1. 777 1. 587 1. 450 1. 342 1. 183 1. 123 1. 071 1. 025 0. 985 . 917 . 862	100 20 70 30 20 10 40 10 7. 5 10 10 7. 5	A 5. 039 5. 030 5. 031 5. 026 5. 019 5. 023 5. 021 5. 022 5. 023 5. 023 5. 023 5. 023 5. 023 5. 023 5. 023	A 3. 55 2. 52 2. 04 1. 77 1. 58 1. 446 1. 343 1. 183 1. 122 1. 068 1. 024 0. 983 . 917	100 50 100 50 50 50 50 50 3 44 15 5 3 8 3	A 5. 02 5. 04 5. 00 5. 01 5. 00 5. 025 5. 019 5. 018 5. 009 5. 017 5. 012 5. 023	A 3. 56 2. 04 1. 77 1. 58 1. 449 1. 341 1. 181 1. 128 1. 072 1. 025 0. 983	mw ms w m vw vs s w mw ws	A 5. 03 5. 02 5. 04 5. 01 5. 02 5. 02 5. 01 5. 04 5. 03 5. 02 5. 01	A 3. 55 2. 513 2. 051 1. 776 1. 590 1. 451 1. 343 1. 1852 1. 1236 1. 0717 1. 0257 0. 9856 . 9174 . 8615	100 20 40 18 12 5 14 5 4 3	A 5. 02 5. 026 5. 024 5. 023 5. 028 5. 026 5. 025 5. 028 5. 025 5. 027 5. 025 5. 026 5. 025 5. 025 5. 026 5. 023
Averag lines	ge of la	st five	5. 023			5. 016			5. 02			5. 025

[1] A. J. King and G. L. Clark, The crystal structure of barium, J. Am. Chem. Soc. 51, 1709-1711 (1929).

[2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).

[3] F. Ebert and H. Hartmann, Die Kristallstruktur des

Strontiums und Bariums, Z. anorg. u. allgem. Chem.

179, 418-420 (1929).
[4] G. L. Clark, A. J. King, and J. F. Hyde, The crystal structures of the alkaline earth metals, Proc. Nat. Acad. Sci. U. S. 14, 617-8 (1928).
[5] W. Klemm and G. Mika, Über das Verhalten der Erdalkalimetalle zueinander, Z. anorg. u. allgem.

Chem. 248, 155-166 (1941).

Osmium, Os (hexagonal)

ASTM cards

Old card number	New card number	New index lines	Radiation	Source
II-2879 ₋	3540 2-1252 2-1249	2. 06 1. 15 1. 22	Copper	Levi and Haardt [1] 1926.
3324	3473 1-1239 1-1245	2. 07 2. 36 2. 16	Molybdenum_	Hanawalt, Rinn, and Frevel [2] 1938.

Additional published patterns

Source	Radiation	Wavelength
Barth and Lunde [3] 1926	Copper	1.539A

NBS sample. The osmium used for the NBS sample was obtained from the Baker Chemical Co. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent of iridium; 0.001 to 0.01 percent each of iron, magnesium, and silicon; and 0.0001 to 0.001 percent each of silver, aluminum, calcium, and copper.

Interplanar spacings and intensity measurements. The d-spacings for the Levi and Haardt and the Barth and Lunde patterns were calculated from Bragg angle data; the d-spacings for the Hanawalt, Rinn, and Frevel pattern were converted from kX to angstrom units. The Levi and Haardt pattern contains d-spacings at 1.251 A and 0.932 A, which are not possible in the osmium structure.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Levi and Haardt	101	112	211
	211	101	203
	101	100	002
	101	100	002

Lattice constants. The structure was determined by Barth and Lunde [3] in 1926. The space group is D_{6h}-C6/mmc with magnesium-type

structure and 2(Os) per unit cell.
Several unit-cell values were converted from kX to angstrom units for comparison with the NBS values. The Owen and Roberts values were converted from 20° C to 26° C. The coefficient of thermal expansion near 50° C is 5.8×10^{-6} parallel to the c-axis and 4.0×10^{-6} perpendicular to it, according to Owen and Roberts [4].

Lattice constants

	a	С
1921 1926 1926 1926 1937	2. 719 2. 719 2. 730 2. 7353 2. 7341	A 4.33 4.325 4.325 4.323 4.3191 at 26° C 4.3197 at 26° C

The density of osmium calculated from the NBS lattice constants is 22.583 at 26° C.

Osmium, Os (hexagonal)

hkl	1926 Levi and Haardt Cu, 1.5405 A		1926 Barth and Lunde Cu, 1.5405 A		1938 Hanawalt, Rinn, and Frevel Mo, 0.709 A		1953 Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C	
	d	I	$\frac{1}{d}$	I	$\frac{1}{d}$	I	d	I
100 002 101 102 110	A 2. 31 2. 11 2. 03 1. 569 1. 348	31 38 100 37 64	A 2. 367 2. 163 2. 072 1. 601 1. 364	20 20 90 30 40	A 2. 36 2. 16 2. 07 1. 59 1. 366	20 15 100 10 13	A 2. 367 2. 160 2. 076 1. 595 1. 3668	34 33 100 18 20
103 200 112 201	1. 251 1. 216 1. 171 1. 143 1. 129	7 71 14 84 66	1. 228 1. 182 1. 155 1. 139	40 10 60 50	1. 233 1. 180 1. 160 1. 146	13 3 10 8	1. 2300 1. 1840 1. 1551 1. 1416	20 4 21 17
004 202 104 	1. 071 1. 029 0. 975 . 932 . 908	17 22 23 13 52	1. 080 1. 037 0. 983	10 20 20 20 70	1. 084 1. 041 0. 983	3 3 3 4	1. 0799 1. 0383 0. 9827 . 9145	3 4 4
210 211 114 212 105	. 891 . 871 . 843	19 74 56		30 100 		5 	. 8949 . 8764 . 8474 . 8268 . 8116	3 16 11 6 9

References

- [1] G. R. Levi and R. Haardt, La Struttura cristallina del
- rutenio e dell'osmio, Gazz. chim. ital. 56, 369 (1926).

 [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).

 [3] T. Barth and G. Lunde, Die Gitterkonstanten der

Platinmetalle, Silber und Gold, Z. physik. Chem. 121, 78-102 (1926).

- [4] E. A. Owen and E. W. Roberts, The crystal parameters of osmium and ruthenium at different temperatures, Z. Krist. 69A, 497-498 (1937).
- [5] A. W. Hull, The crystal structures of Ti, Zr, Ce, Th, and Os, Phys. Rev. 18, 88-89 (1921).

Iridium, Ir (cubic)

ASTM cards

Old card number	New card number	New index lines	Radiation	Source
3203	3366 1-1222 1-1216	1. 35	Molybdenum 0.712A.	Hull [1] 1921.
II-2630	3332 2-1164 2-1155	1. 15	Molybdenum -	Wyckoff [2] 1924.
3186	3302 1-1204 1-1212		$Molybdenum_{-}$	Hanawalt, Rinn, and Frevel [3] 1938.

Additional published patterns

Source	Radiation	Wavelength
Barth and Lunde [4] 1925	Copper	1.539A

NBS sample. The iridium used for the NBS pattern was obtained from the Baker Chemical Co. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent of silicon; 0.0001 to 0.001 percent each of aluminum, calcium, and magnesium; and less than 0.0001 percent each of copper and iron.

Interplanar spacing and intensity measurements. The d-spacings for the Barth and Lunde pattern were calculated from Bragg angle data; the Hull, the Wyckoff, and the Hanawalt, Rinn, and Frevel d-spacings were converted from kX to angstrom units, and the Hull d-spacings were converted from Mo radiation at 0.713 A to Mo $K\alpha_1$ radiation at 0.709 A.

The three strongest lines for each of the patterns

are as follows:

	1	2	3
Hull		220 311 200 311 200	311 200 311 200 311

Lattice constant. The structure was determined by Hull [5] in 1920. The space group is O_b-Fm3m with copper-type structure and 4(Ir) per unit cell.

A group of unit-cell values were converted from kX to angstrom units for comparison with the NBS values, and the Owen and Yates value was converted from 18° C to 26° C. The coefficient of expansion in the room-temperature range is 6.5×10^{-6} according to Owen and Yates [6].

Lattice constants

		a
1923 1926 1933	Hull [1]	A 3. 813 3. 831 3. 831 3. 8390 at 26° C 3. 8394 at 26° C

The density of iridium calculated from the NBS lattice constant is 22.661 at 26° C.

Iridium, Ir (cubic)

		1921 Hull		,	1924 Wycko	ff	Hana	1938 walt,	Rinn,	Barth	1926 and	S Lunde	Swanse	1953 on, F	uyat, and
hkl	kl Mo, 0.709 A		9 A	Mo, 0.709 A		and Frevel Mo, 0.709 A		Cu, 1.5405 A		Ugrinic Cu, 1.5405 A, 26° C					
	d	I	a	d	I	a	d	I	a	d	I	a	d	I	a
111 200 220 311 222 400 331 420 422 511 440 600	A 2. 18 1. 90 1. 34 1. 15 1. 09 0. 871 . 846 . 775 . 730	100 50 100 100 25 	A 3. 78 3. 79 3. 80 3. 81 3. 78 3. 80 3. 78 3. 80 3. 79	A 2. 22 1. 92 1. 360 1. 151 1. 108 0. 9545 . 8780 . 8561 . 7804 . 7367 . 6791	100 60 60 80 20 5 30 30 20+ 20+	A 3. 84 3. 84 3. 85 3. 82 3. 84 3. 82 3. 827 3. 829 3. 823 3. 828 3. 842	A 2. 20 1. 91 1. 355 1. 155 1. 106 	100 50 28 36 8 8 4 4	A 3. 81 3. 82 3. 833 3. 831 3. 831 3. 836 3. 842 3. 841 3. 835	A 2. 208 1. 914 1. 353 1. 153 1. 104 0. 957 . 878 . 856	100 90 90 100 50 30 50 50	A 3. 824 3. 827 3. 827 3. 824 3. 824 3. 824 3. 827 3. 826 3. 827	A 2. 2170 1. 9197 1. 3575 1. 1574 1. 1082 0. 9598 . 8808 . 7838	100 50 41 47 15 10 39 39 45	A 3. 8399 3. 8394 3. 8396 3. 8387 3. 8389 3. 8392 3. 8393 3. 8398 3. 8397
valu	ge unit ie for lines	cell last	3. 803			3. 830			3. 848			3. 826			3. 8394

References

[1] A. W. Hull, X-ray crystal analysis of thirteen common

A. W. Hull, X-ray crystal analysis of thirteen common metals, Phys. Rev. 17, 571-88 (1921).
 R. W. G. Wyckoff, Die Kristallstruktur des metallischen Iridiums, Z. Krist. 59, 55-61 (1923).
 J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem.,

Anal. Ed. 10, 457-512 (1938).

[4] T. Barth and G. Lunde, Der Einfluss der Lanthaniden-kontraktion auf die Gitterdimensionen der kubischen Platinmetalle, Z. physik. Chem. 117, 478-490 (1925).

[5] A. W. Hull, Arrangement of the atoms in some common metals, Science 52, 227 (1920).
[6] E. A. Owen and E. L. Yates, Precision measurements of crystal parameters, Phil. Mag. 15, 472-88 (1933).

8. SULFIDES

Alpha-Manganese Sulfide (alabandite), α-MnS (Cubic)

ASTM cards

Card n	umber	New	Radiation	Source				
Old	New	lines						
2724	2906 1-1093 1-1089	2. 61 1. 85 1. 17	Molybdenum_	Hanawalt, Rinn, and Frevel [1] 1938.				
II2103	2909 2-0981 2-0990	2. 60 1. 84 1. 17	Iron	Lyubimtsev and Lyamina [3] 1938. Harcourt [2] 1942.				
	2905 3-0835 3-0833	2. 61 1. 85 1. 50	Copper	Harcourt [2] 1942.				

The following ASTM eard d-spacings labeled alpha-manganese sulfide, and alabandite, are predominantly the beta-eubie form with a small amount of the beta-hexagonal form. The unit cell and the space group given for the alpha-form are therefore incorrect for that pattern. The date of the reference should be 1933 rather than 1932.

3605 1. 98 Iron Schnaase 1933.	[4]
--	-----

The Harcourt and the Lyubimtsev and Lyamina patterns are presented on one ASTM eard, and the same Harcourt pattern appears alone on another. These patterns were made by using eopper and iron rather than molybdenum radiation, as the eard states.

Additional published patterns

Source	Radiation	Wave- length
Weiser and Milligan [5] 1931		

NBS sample. The alabandite used for the NBS pattern was prepared by heating manganese and sulfur in a closed tube at 675° C for about 2 hours. Speetrographic analysis showed the fol-

lowing impurities: 0.01 to 0.1 percent of aluminum; 0.001 to 0.01 percent each of chromium, iron, magnesium, silicon, and tin; 0.0001 to 0.001 percent each of boron, calcium, copper, and nickel; and less than 0.0001 percent of silver. The refractive indices of alabandite are too high to be measured by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The Hanawalt, Rinn, and Frevel, the Lyubimtsev and Lyamina, the Harcourt, and the Weiser and Milligan d-spacings were converted from kX to angstrom units. The d-spacings at 2.84 and 1.999 A, found only in the Harcourt pattern, are possible eopper K_{\theta} lines. The very wide line extending from 1.795 to 1.765 angstrom units in the Lyubimtsev and Lyamina pattern is not possible in the face-eentered alabandite structure.

The three strongest lines for each of the patterns

are as follows:

	1	2	3
Hanawalt, Rinn, and Frevel	200 200 200 200 200 200	220 220 220 220 220 220	420 420 222 420 222

Lattice constant. The structure was determined by Ott [6] in 1926. The space group is O₅-Fm3m with sodium-ehloride-type structure and 4(MnS) per unit eell. A beta-eubie zine-sulfide-type structure and a beta-hexagonal zine-oxide-type structure are also known, according to Wyckoff [7].

Several unit-eell measurements were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a
1926 1931 1933 1938 1939 1953	Ott [6]	A 5.25 5.21 5.223 5.222 5.219 5.2236 at 26° C

The density of alabandite ealeulated from the NBS lattice constants is 4.053 at 26° C.

Alpha-Manganese Sulfide, MnS, (alabandite) (cubic)

hkl	Hanawalt, Rinn, and Frevel Mo, 0.709 A		Lyub:	1938 Lyubimtsev and Lyanina Fe, 1.93597 A			1942 Harcourt Cu, 1.5405 A			1931 Weiser and Milligan			1953 Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C		
	d	I	a	d	I	a	d	I	a	d	I	a	d	I	a
111	A 3. 03	11	A 5. 25	A 3. 025	5	A 5. 239	A 3. 0 b2. 84	4 4	A 5.2	A		A	A 3. 015	13	A 5. 222
200	2. 62	100	5. 24	2. 608	100	5. 216	2. 62 b 1. 999	100	5. 24	2. 605	100	5. 21	2. 612	100	5. 224
220	1. 85	67	5. 23	1. 847	100	5. 224	1. 849	57	5. 230	1. 839	90	5. 20	1. 847	48	5. 224
222 400	1. 58 1. 51 1. 312	20 8	5. 24 5. 23 5. 248	a 1. 795 a 1. 765 1. 637 1. 507 1. 305	10 10 50 40	5. 429 5. 220 5. 220	1. 505 1. 305	14 3	5. 213 5. 220	1. 504 1. 303	30 10	5. 21 5. 21	1. 575 1. 509 1. 306	6 19 8	5. 224 5. 227 5. 224
$\frac{420}{422}$	1. 202 1. 172 1. 072 0. 929 . 875	1 23 11 3 5	5. 239 5. 241 5. 252 5. 255 5. 250	1. 167 1. 065	70 70 	5. 219 5. 217	1. 167 1. 067	7 4	5. 219 5. 227	1. 164 1. 064 1. 919 1. 864	60 50 1 20	5. 21 5. 21 5. 20 5. 18	1. 1682 1. 0662 . 9235 . 8705	19 15 1 7	5. 224 5. 2233 5. 2241 5. 2230
620 622	. 830 . 792 . 729 . 701	3 3 1 3	5. 249 5. 254							. 820	10 	5. 17	. 8260 . 7875	8 3 	5. 2241 5. 2237
value	ge unit e for lines	last	5. 252			5. 220			5. 220			5. 20			5. 2236

a Band edges of wide line.

References

J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
 G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942).
 A. I. Lyubimtsev and A. N. Lyamina, Data for the X-ray determination of minerals, Works of the allunion institute of mineral resources. Trudy Vseson

union institute of mineral resources, Trudy Vseso-yuzn. Inst. Min. Syrya (1938).

[4] H. Schnaase, Kristallstruktur der Manganosulfide und ihrer Mischkristalle mit Zinksulfid und Cadmiumsulfid, Z. physik. Chem. **B20**, 89-117 (1933).

[5] H. B. Weiser and W. O. Milligan, The transformation

[5] H. B. Weiser and W. O. Milligan, The transformation from rose to green manganous sulfide, J. Phys. Chem. 35, 2330-2344 (1931).
[6] H. Ott, Die Strukturen von MnO, MnS, AgF, NiS, SnJ₄, SrCl₂, BaF₂; Präzisionsmessungen einiger Alkalihalogenide, Z. Krist. 63, 222-230 (1926).
[7] R. W. G. Wyckoff, Crystal Structures, vol. I (Interscience Publishers, Inc., New York, N. Y., 1948).

[8] F. Mehmed and H. Haraldsen, Das magnetische Verhalten der allotropen Modifikationen des Mangan (II)-Sulfids, Z. anorg. Chem. 235, 193-200 (1938).

[9] F. A. Kröger, Formation of solid solutions in the system zincsulfide-manganesesulfide, Z. Krist. A100, 543-545 (1939).

b Possible CuKs lines.

Copper (II) Sulfide (covellite), CuS (hexagonal)

ASTM cards

d card New card number		Radiation	Source				
2555	2. 81	Molybdenum_	Roberts and Ksanda [1] 1929.				
2-0818	1. 89	No data	Waldo [2] 1935.				
2-0820 3656	1. 56	Copper	Harcourt [3]				
3-1081 1-1090	2. 82 3. 02	Copport	1942.				
3694	1. 89	Molybdenum_	New Jersey				
1-1284 1-1281	2. 81 1. 56		Zine Co.				
2554 3-0740	2. 83	Copper	British Mu-				
3-0724	3. 03		soum.				
	2555 2-0818 2-0820 3656 3-1081 1-1090 3694 1-1284 1-1281 2554 3-0740	card number lines 2555 2. 81 2-0818 1. 89 2-0820 1. 56 3656 1. 90 3-1081 2. 82 1-1090 3. 02 3694 1. 89 1-1284 2. 81 1-1281 1. 56 2554 2. 83 3-0740 1. 90	card number index lines Radiation 2555 2. 81 Molybdenum_ 2-0818 1. 89 No data 2-0820 1. 56 Gopper 3-1081 2. 82 Copper 1-1090 3. 02 Molybdenum_ 3694 1. 89 Molybdenum_ 1-1284 2. 81 Copper 2554 2. 83 Copper 3-0740 1. 90 Copper				

Additional published patterns

Date	Source	Radiation	Wave- length
1931	Alsén [4]	Iron	

NBS samples. The cupric sulfide used for the NBS pattern was obtained from the Fisher Scientific Co. The CuS was annealed by heating in a closed tube and in an atmosphere of sulfur at 400° C for several hours. It was annealed again at 500° C in a closed tube without additional sulfur.

Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of silicon and zinc; 0.001 to 0.01 percent each of silver, aluminum, calcium, iron, magnesium, and nickel; and 0.0001 to 0.001 percent each of boron, manganese, and lead.

Interplanar spacings and intensity measurements. The d-spacings for the Roberts and Ksanda and the Alsén patterns were calculated from Bragg angle data, and the d-spacings for the Waldo, the Harcourt, the New Jersey Zinc Co., and the British Museum patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Roberts and Ksanda	103	110	203, 116
	103	110	102
	110	103	102
	110	103	203, 116
	103	110	102
	006	110	1 · 0 · 14
	103	110	102

The New Jersey Zinc Co. and the Alsén patterns contain a number of lines not belonging to the cupric-sulfide pattern and not otherwise identifiable.

Lattice constants. The structure was determined by Gossner and Mussgnug [5] in 1927. The space group is D⁴_{6h}-Pb₃/mmc with 6(CuS) per unit cell. Cupric sulfide (covellite) is a prototype for other similar structures.

A group of unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	c
1927 1929 1932 1953	Gossner and Mussgnug [5]_Roberts and Ksanda [1]Oftedal [6]Swanson, Fuyat, and Ugrinic.	A 3. 82 3. 810 3. 76 3. 792	A 16.49 16.46 16.2 16. 344 at 26° C

The density of cupric sulfide calculated from the NBS lattice constants is 4.680 at 26° C.

Copper (II) Sulfide (covellite), CuS (hexagonal)

	192	29	193	35	194	2					193	31	195	3
	Robert Ksar	s and	Wal		Harco	urt	New J Zinc		Brit Mus		Alse		Swanson,	Fuyat,
hkl	Mo, 0.				Cu, 1.54	405 A					Fe, 1.93	3597 A	and Ugrinic Cu, 1.5405 A,	
						<u>-</u>							26°	C ,
	d	I	d	I	d	I	d	I	d	I	d	I	d	I
002	A		A		A		A		A		A		A 8. 18	7
						-	4. 77	2						
						-	4. 48 3. 98	$\frac{2}{4}$						
						-	3. 73	4						
100	3. 247	 m	3. 34 3. 25	vw w	3. 23	$\overline{2}2$	3. 27	$\overline{1}2$	3. 40 3. 22	40 40	3. 281	w-	3. 285	$\overline{14}$
$101 \\ 102$	3. 053	 s	3. 05	 m	3. 03	$\bar{7}8$	3. 04	$\bar{2}0$	3. 04	80	3. 208 3. 046	w- m-	3. 220 3. 048	$\begin{array}{c} 28 \\ 67 \end{array}$
103	2. 881	vvs	2. 82	s	2. 83	89	2. 82	60	2.84	100	2. 806	m+	2. 813	100
006	2. 728	m	2. 73	m	2. 73	67	2. 72	14	2. 73	80	2. 716	s+	2. 724	56
105	2. 326	 w	2. 30	 W	2. 31	-6		-	2. 32	$\bar{20}$	2. 551 2. 314	w- w	2. 317	10
106	2. 111		2. 09			-		_	2. 10	$\frac{1}{40}$	2. 275	w-		
		vw		VVW		-)		-			2. 092	w	2. 097	6
008 107	2. 038	vw	2. 03	vw		-)		-	2. 04	20	2. 036	w	2. 043 1. 902	$\begin{array}{c} 7 \\ 25 \end{array}$
110	1. 896	vs	1. 894	s	1. 90	100	1. 89	100	1. 90	100	1. 888	s+	1. 896	75
108	1. 730	S 	1. 733	m 	1. 739	44	1. 73	10	1. 74	70	1. 722 1. 703	S W	1. 735	34
201											1. 622	w-	1. 634	3
202						_		_	/		1. 600	w+	1. 609	8
203 116	1.559	vs	1. 558	m	1. 563	67	1. 56	30	1. 56	60	$\begin{cases} 1.564 \\ 1.548 \end{cases}$	W S	1. 572 1. 556	15 37
1.0.10	1. 463	vw	1. 468	vw		-		-	}1. 46	20	$\int 1.485$	w+	1. 463	5
						-		-	J		1. 456	m		
118	1. 402	w	1. 385	 vw		-		-	1. 39	$\bar{20}$	1. 402 1. 383	w- w-	1. 390	$\bar{6}$
1.0.11	1. 351	w	1. 350	w	1. 355	-6		_	1. 35	40	1. 348	s-	1. 354	7
$\begin{array}{c} 207 \\ 208 \end{array}$	$1.\bar{2}77$	w	1. 275	w	1. 283	-6	1. 28	4	1. 28	$\bar{2}\bar{0}$	1. 339 1. 274	m-	1. 343 1. 280	5 9
212	1. 232	vw				_		_			1. 209	m+	1, 227	5
213	1. 206	w	1. 212	w		_	1. 21	4	1. 21 1. 16	40B 20	1. 171 1. 165	w+	1. 210	9
$1 \cdot 0 \cdot 14$	1. 157	vw			1. 100	-6	1. 69	-8	1. 10	60	1. 103	m s+	1. 0998	8
300	1. 098	m	1. 095	m		-		-					1. 0946	10
218			1. 058	w	1. 063	6	1. 06	4	1. 06	40	1. 059 1. 033	w w	1. 0607	9
306			1. 016	w		_	1. 01	4	1. 02	$\overline{40}$	1.019	w	1. 0155	$-\bar{7}$
			0. 992	VW W		-		-			0. 993	W		
			. 895	vvw										
			. 849	vvw		-		_						

References

H. S. Roberts and C. J. Ksanda, The crystal structure of covellite, Am. J. Sci. 17, 489-503 (1929).
 A. W. Waldo, Identification of the copper ore minerals

by means of X-ray powder diffraction pattern, Am. Mineralogist 20, 575-597 (1935).
G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942).

[4] N. Alsén, Über die Kristallstrukturen von Covellin (CuS) und Kupferglanz (Cu₂S), Geol. Fören. i Stockholm Förh. 53, 111–120 (1930).

[5] B. Gossner and F. Mussgnug, Über die Kristallstruktur von Zinnober und Covellin, Centralblatt für min-eralogie, geologie und paleontologie, Stuttgart, 1927A, 410–413 (1927).

[6] I. Oftedal, Die Kristallstruktur des Covellins (CuS), Z. Krist. 83, 9–25 (1932).

Cadium Sulfide (greenockite), CdS (hexagonal)

ASTM cards

Old card number	New card num- ber	New index lines	Radiation	Source
1896	1918 1-0797 1-0783	3. 14 2. 06 3. 55	C o p p e r, 1.539 A.	Ulrich and Zachariasen [1] 1925.
II-1193	1802 2-0533 2-0549	3. 15 3. 57 2. 06	No data	Milligan [2 ₁ 1934. General Electric Wembley, England.
II-1231	$\begin{array}{c} 1919 \\ 2-0572 \\ 2-0563 \end{array}$	3. 12 2. 06 1. 89	Copper	Harcourt [3] 1942.
1890	1871 1-0783 1-0780	3. 14 3. 56 2. 07	Molybdenum_	New Jersey Zinc Co.

The Ulrich and Zachariasen ASTM card pattern is not the same pattern as that found in the literature reference given on that card, but closely resembles Milligan's published data in both d-spacings and intensities. The Milligan and the General Electric Co. patterns have been combined on one ASTM card with one line from the Ulrich and Zachariasen pattern. The General Electric Co. pattern, which is not available from the literature, was not included in the comparison table. The Harcourt pattern was made by using copper radiation rather than molybdenum as the ASTM card states.

Additional published patterns. None.

NBS sample. The cadmium sulfide used for the NBS pattern was obtained from the Radio Corporation of America. This material is a mixture of cubic and hexagonal forms of cadmium sulfide. The cubic phase position was eliminated by heating the sample at 400° C for 30 hours in a sulfur atmosphere. Spectrographic analysis at the NBS showed the following impurities: 0.001 to

0.01 percent each of aluminum, boron, iron, magnesium, and silicon; and 0.0001 to 0.001 percent each of calcium and copper. The refractive indices of cadmium sulfide are too high to be measured by the ordinary grain-oil immersion methods.

Interplanar spacings and intensity measurements. The d-spacings for the Ulrich and Zachariasen pattern were calculated from Bragg angle data, and d-spacings for the Milligan, the Harcourt, and the New Jersey Zinc Co. patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Ulrich and Zachariasen Milligan Harcourt New Jersey Zinc Co Swanson, Fuyat, and Ugrinic	215, 312 101 101 101 101 101	213 110 110 100 100	116 100 103 110 002

The d-spacing of 3.04 A in the New Jersey Zinc Co. pattern is not a permissible hexagonal cadmium sulfide line.

Lattice constants. The structure was determined by Bragg [4] in 1920. The space group is C_{5v}^4 - P_{63} mc with zinc-oxide-type structure and 2(CdS) per unit cell.

Several unit cell values were converted from kX to angstrom units for comparison with the NBS pattern.

Lattice constants

		a	С
1925 1940 1953	Ulrich and Zachariasen [1] Kröger [5] Swanson, Fuyat, and Ugrinic.	A 4. 150 4. 139 4. 136	A 6. 738 6. 705 6.713 at 25° C

The density of cadmium sulfide calculated from the NBS lattice constants is 4.824 at 25° C.

(Cadmium Sulfide, CdS hexagonal)

	192	5	19	34	19	42			198	53
	Ulrich Zachari	and	Mill		Haro		New Jer C	sey Zinc	Swanson and U	Fuyat,
hkl	Cu, 1.54	105 A			Cu, 1.	5405 A			Cu, 1.5 25°	405 A, C
	d	I	d	I	\overline{d}	I	d	I	d	I
100 002 101	A 3. 625 3. 371 3. 174	80 40 80	A 3. 56 3. 35 3. 15	90 80 100	A 3. 56 3. 33 3. 13	50 25 100	A 3. 57 3. 36 3. 15	80 48 100	A 3. 583 3. 357 3. 160	75 59 100
102	2. 467	40	2. 43	40	2. 42	25	3. 04 2. 45	$\frac{1}{24}$	2. 450	25
110 103 200 112 210	2. 075 1. 903 1. 798 1. 767 1. 736	80 80 20 80 30	2. 06 1. 892 1. 754	100 80 	2. 06 1. 89 1. 75	75 75 50	2. 07 1. 899 1. 762 1. 727	60 48 44 12	2. 068 1. 898 1. 791 1. 761 1. 731	57 42 17 45 18
004 202 104 203 201	1. 684 1. 588 1. 525 1. 401 1. 357	$ \begin{array}{c} <10\\ 20\\ <10\\ \pm65\\ 30 \end{array} $	1. 671 1. 570 1. 393	10 10 	1. 57 1. 398	8 	1. 579 1. 400 1. 357	2 15 3	1. 679 1. 581 1. 520 1. 398 1. 3536	$egin{array}{c} 4 \\ 7 \\ 2 \\ 15 \\ 6 \end{array}$
$\begin{array}{c} 211 \\ 114 \\ 105 \\ 204 \\ 300 \end{array}$	1. 332 1. 308 1. 260 1. 229 1. 197	$\begin{array}{r} 60 \\ \pm 25 \\ 70 \\ < 20 \\ 50 \end{array}$	1. 323 1. 251 1. 189	10 20 10	1. 325 1. 303 1. 258 1. 192	25 8 25 13	1. 329 1. 304 1. 256 1. 194	7 3 15 5	1. 3271 1. 3032 1. 2572 1. 2247 1. 1940	11 7 11 1 8
213 302 205 214 220	1. 162 1. 128 1. 077 1. 037	$ \begin{array}{r} 90 \\ 50 \\ 50 \\ \hline \pm 45 \end{array} $	1. 152 1. 127 1. 068	10 10 10	1. 157 1. 124 1. 074 1. 034	25 13 13 8	1. 158 1. 124 1. 074 1. 034	14 5 3 2	1. 1585 1. 1249 1. 0743 1. 0540 1. 0340	$ \begin{array}{c} 12 \\ 8 \\ 6 \\ 1 \\ 4 \end{array} $
310 222 116 311 304	0. 9967 	20 	0. 984	10	0. 984	8			0. 9934 . 9881 . 9842 . 9827 . 9729	$\begin{array}{c} 4 \\ 5 \\ 6 \\ 5 \\ 2 \end{array}$
215 312 107 313 400 401	9547 . 9303 . 9109 . 8989 . 8881	100 30 90 20 50			. 954	8			. 9533 . 9265 . 9081 . 8956 . 8878	9 2 7 1 1
224 402 216 403 306 321	. 8833 } . 8646 . 8575	40 70 50			. 817	5			$ \begin{cases} .8804 \\ .8653 \\ .8624 \\ .8315 \\ .8166 \\ .8158 \end{cases} $	$ \begin{array}{c} 3 \\ < 1 \\ < 1 \\ 3 \\ 4 \\ 4 \end{array} $
315									. 7986	7

References

- [1] F. Ulrich and W. Zachariasen, Über die Kristall-
- [1] F. Ohren and W. Zacharlasen, Ober the Kristanstruktur des α- und β-CdS, sowie des Wurtzits, Z. Krist. 62, 260-273 (1925).
 [2] W. O. Milligan, The color and crystal structure of precipitated cadmium sulfide, J. Phys. Chem. 38, 797-800 (1934).
- [3] G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am Mineral-ogist 27, 63-113 (1942).
- [4] W. L. Bragg, The crystalline structure of zinc oxide, Phil. Mag. 39, 647-651 (1920).
- [5] F. A. Kröger, Solid solutions in the ternary system $\rm Z_{DS}\text{-}CdS\text{-}MnS,~Z.~Krist.~\bf 102A,~132\text{-}135~(1940).}$

Mercury (II) Sulfide (cinnabar), HgS (red) (hexagonal)

ASTM cards

Card no	Card numbers Old New		Radiation	Source		
2332	2398 1-0948 1-0951	2. 87 3. 63 2. 38	C o p p e r , 1.5374 A.	Buckley and Vernon [1] 1925.		
	1503 3-0416 3-0424	3. 35 2. 84 3. 13	C o p p e r , 1.53923 A.	Olshausen [2] 1925.		
2361	2403 1-0949 1-0970	2. 85 3. 36 1. 97	Molybdenum	Hanawalt, Rinn, and Frevel [3] 1938.		
II-1013	1570 2-0465 2-0461	3. 34 2. 85 1. 68	Copper	Harcourt [4] 1942. Brit- ish Museum.		

The intensities of the Buckley and Vernon pattern, shown on the old ASTM card, are listed in order of decreasing value, from 1 to 28, and the three strongest lines given are those published in the orginal article. On the new ASTM card the strongest line was given a value of 100 and the two 28's, the weakest lines of the pattern, were taken as second and third strongest lines, thus placing the pattern in the wrong section of the file.

The Harcourt pattern was made by using copper radiation, and the same is probably true of the British Museum pattern. Both are combined on one ASTM card, which incorrectly indicates that molybdenum radiation was used.

Additional published patterns

Source	Radiation	Wave- length
Kolkmeijer, Bijvoet, and Karssen [5] 1924. Ramsdell [6] 1925 De Jong and Willems [7] 1926 Aurivillius [8] 1950	Copper Molybdenum_ Iron Chromium	Κα Κα Κα Κα

NBS sample. The hexagonal mercury sulfide used for the NBS pattern was obtained from the Fisher Scientific Co. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of aluminum, calcium, mag-

nesium, and sodium; 0.001 to 0.01 percent each of iron, manganese, and silicon; and 0.0001 to 0.001 percent each of silver, copper, and lead. The sample was annealed in a closed tube with a sulfur atmosphere at 325° C for 2 hours and cooled slowly. The refractive indices of cinnabar are too high to be determined by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The Olshausen, the Kolkmeijer, Bijvoet and Karssen, the De Jong and Willems, and the Aurivillius d-spacings were calculated from Bragg angle data: the Buckley and Vernon, the Hanawalt. Rinn, and Frevel, the Harcourt, and the Ramsdell d-spacings were converted from kX to angstrom units. The Kolkmeijer, Bijvoet, and Karssen sample and, probably, the Hanawalt, Rinn, and Frevel sample were laboratory preparations, but the others were natural mineral cinnabar. Because the intensities given by Buckley and Vernon were presented only as 28 steps, they were converted to percentages of the strongest line by assuming each step to be equal. The British Museum pattern, combined with Harcourt's pattern on one ASTM card, was not included in the table because it had no original reference and contained the same lines as the Harcourt pattern except for five d-spacings of 3.67, 2.30, 2.18, 1.85, and 1.492 A, none of which is a possible mercury sulfide line. The Ramsdell pattern contained no intensity values.

The three strongest lines for each of the patterns are as follows:

	. 1	2	3
Buckley and Vernon	102	101	110
	101	102	100
	102	101	104
	101	102	105
	101	102	201
	102	101	104
	101	102	003
	101	102	104

Lattice constants. Buckley and Vernon [1] determined the structure in 1925. The space group is D₃⁴-P3₁21 or D₉⁶-P3₂21, according to the rotary sense of the lattice, with 3(HgS) per unit cell. Hexagonal mercury sulfide is a prototype for other similar structures.

Mercury (II) Sulfide (cinnabar), HgS (red) (hexagonal)

	10	25	199	0.5	10	38	194	19	10	24
	1	ey and	Olsha			lt, Rinn,	Hard		1	r, Bijvoet,
hkl		non	O I SALE	, about	and I	Frevel	1141	ourt	and K	arssen
	Cu, 1.	5405 A	Cu, 1.5	5405 A	Mo, 0.7	70926 A	Cu, 1.	5405 A	Cu, 1	5405 A
	d	I	d	I	d	I	d	I	d	I
100	A		A		A		A		A	
100 101	3. 64 3. 375	$\frac{4}{97}$	3. 68 3. 35	m s	3. 37	83	3. 35	100	3. 31	vs
003 102	3. 185 2. 875	36 100	3. 13 2. 84	m s	3. 17 2. 86	27 100	3. 17 2. 86	$\begin{array}{c} 11 \\ 100 \end{array}$	3. 17 2. 87	vw vs
103	2. 388	4	2. 04		2. 35	8	2. 36	6		
110 111	2. 084	93	2. 07	m	2. 06	27	2. 07 2. 02	33 11	2. 05	s
104	1. 994	90	1. 97	m	1. 97	33	1. 984	33	1. 96	ms
$\frac{112}{201}$	1. 917 1. 776	15 68	1. 74	$\overline{\mathrm{mD}}$	1. 89 1. 76	1 11	1. 904 1. 769	$\frac{3}{22}$	1. 74	vs
113	1. 748	75			1. 72	20	1. 739	33		
105 006	1. 688 1. 596	86 36	1. 67 1. 58	$\begin{array}{c} \mathbf{m} \\ \mathbf{w} \mathbf{D} \end{array}$	1. 67 1. 57	27 8B	1. 683 1. 584	$\begin{array}{c} 44 \\ 11 \end{array}$	1. 67 1. 57	s w
203							1. 563	11		
204	1. 438	61	1. 434	W	1. 432	9	1. 438	22	1. 433	mw
$\frac{115}{210}$					1. 398	3	1. 404 1. 363	6 6		
211 212	1. 356	72	1. 340	w	1. 343	11	1. 348	6	1. 347	S
205	1. 315	83	1. 303	m	1. 303	13	1. 308		1. 302	ms
107	1. 270	83	1.070		1.055		1. 271	11	1 055	
$\frac{116}{213}$			1. 256	mD	1. 255	11	1. 261 1. 251	$\begin{array}{c} 11 \\ 6 \end{array}$	1. 255	ms
300 301	1. 215	29						-		
206	}								1 100	
214	1. 191	54	1. 184	W	1. 181	4B	1. 181	6	1. 188	W
302 117	1. 136	29					1. 163			
108 303	1. 129	43	1. 125	w-m	1. 123	5	1. 127 1. 122	$\frac{3}{2}$	1. 128 1. 113	m+ m
					1. 120					
215 207	1. 109 1. 062	43	1. 103	w	1. 102	5 1	1. 107 1. 085	$\begin{array}{c} 11 \\ 6 \end{array}$	1. 085	vw
304	1. 042	$\begin{array}{c} 15 \\ 22 \end{array}$	1. 074	vw	1. 082		1. 071	6		
$\begin{array}{c} 221 \\ 222 \end{array}$	1. 033	22	1. 034	w	1. 029	3	1. 033	11	1. 034	mw
305	1. 019	15					1. 016	3		
311 208	0. 995	68	0. 992	w-m			0. 994	6		
223	,									
312 217	. 962	61	. 977	w			. 977 . 962B	$\frac{6}{6}$		
224 313	}		. 958	w			. 952B	6		
119			. 941	w			. 943	6		
314	} .922	47	. 920	m			. 920	11		
1.0.10 225							. 912	6	1	
209 400	{	P.								
307	902	54					. 900B	3		
$\frac{402}{315}$	}						. 884	6		
403							. 867	6		
							. 842 . 835	$\frac{6}{2}$		
							. 822	2		

Mercury (II) Sulfide (cinnabar), HgS (red) (hexagonal)—Continued

	192 Rams		19: De J		19			1953 Swanson Fuyat and		
hkl	Mo, 0. 7		Fe, 1.93		Auriv		Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C			
		1				Cr, 2.28962 A				
	d	. I	d	I	d	I	d	I		
100 101 003 102 103	3. 36 3. 17 2. 87		A -3. 42 3. 19 2. 89 2. 38	90 30 100 20	A 3. 61 3. 379 3. 177 2. 877 2. 379	W VS S VS VW	A 3. 59 3. 359 3. 165 2. 863 2. 375	5 100 28 94 9		
110 111 104 112 201	2. 08 		2. 08 2. 03 1. 98 1. 90 1. 76	70 20 80 10 60	2. 073 2. 024 1. 978 1. 904 1. 763	s m s m s	2. 074 2. 026 1. 980 1. 900 1. 765	26 12 29 3 21		
113 105 006 203 204	1. 73 1. 680 1. 580 		1. 72 1. 67 1. 58 1. 56 1. 42	70 80 30 20 50	1. 733 1. 661 1. 581 1. 561 1. 432	s s w m s	1. 735 1. 679 1. 583 1. 562 1. 433	27 25 5 6 8		
115 210 211 212	1. 340		1. 39 1. 35 1. 33 1. 30	20 20 50 60	1. 401 1. 358 1. 344 1. 305	VVW W m	1. 401 1. 358 1. 344 1. 305	2 5 12 10		
$\begin{array}{c} 205 \\ 107 \end{array}$	J 1. 512		1. 26	20	1. 269	w	1. 269	4		
116 213			1. 25 1. 24	40 20	1. 257 1. 248	w w	1. 258 1. 248	7 4		
300 301	1		1. 184	10			1. 1975 1. 1883	2 3		
$\begin{array}{c} 206 \\ 214 \end{array}$	\\ \frac{1}{2} \\ \tag{3}		1. 177	20			1. 1787	4		
302 117 108 303			1. 130 1. 121	10 30			1. 1614 1. 1358 1. 1271 1. 1201	3 2 4 4		
			1. 114	20				~		
215 207 304 221 222 305	}		1. 100 1. 080 1. 064	50 30 20			1. 1047 1. 0828 1. 0693 1. 0309 1. 0132	5 2 2 4 2		
311	}						0. 9910	<1		
$208 \\ 223 \\ 312 \\ 217$. 9859 . 9753 . 9599	4 4 3		
217 224 313	}						. 9503	3		
119 314 1·0·10	}						. 9400	3		
225 209 400	}						. 9103 . 8981	<1		
307 402 315	}						. 8821	1		
403							. 8642	<1		

A group of unit-cell data were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1923 1924 1925 1925 1925 1926 1927 1950 1953	Maugin [9] Kolkmeijer, Bijvoet, and Karssen [5] Buckley and Vernon [1] Olshausen [2] Ramsdell [6] De Jong and Willems [7] Gossner and Mussgnug [10]. Aurivillius [8] Swanson, Fuyat, and Ugrinic	A 4. 16 4. 15 4. 168 4. 144 4. 16 4. 13 4. 18 4. 146 4. 149	c A 9. 53 9. 48 9. 559 9. 491 9. 53 9. 45 9. 52 9. 497 9.495 at 26° C
	Ogrinie	4. 149	

The density of hexagonal mercury sulfide calculated from the NBS lattice constants is 8.187 at 26° C.

References

- [1] H. E. Buckley and W. S. Vernon, The crystal-structures of the sulfides of mercury, Mineralog. Mag. 20, 382-392 (1925).
- [2] S. v. Olshausen, Strukturuntersuchungen nach der Debye-Scherrer-Methode, Z. Krist. 61, 463-514
- [1925].
 [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
 [4] G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942).
 [5] N. H. Kolkmeijer, J. M. Bijvoet, and A. Karssen, The crystal structure of mercuric sulfide. Koninkl.
- The crystal structure of mercuric sulfide, Koninkl. Ned. Akad. Wetenschap., Proc. 27, 847–850 (1924). [6] L. S. Ramsdell, The crystal structure of some metallic
- sulfides, Am. Mineralogist 10, 281–304 (1925).
 [7] W. F. de Jong and H. W. V. Willems, Over de Structuur van Cinnaber, Physica 6, 129–136 (1926).
- [8] K. L. Aurivillius, On the crystal structure of cinnabar, Acta Chem. Scand. 4, 1413–36 (1950).
- [9] C. Maugin, L'arrangement des atomes dans les cristaux de cinabre, Compt. rendus, 176, 1483-1486 (1923).
- [10] B. Gossner and F. Mussgnug, Über die Kristall-struktur von Zinnober und Covellin, Centr. Mineral. Geol. 1927A, 410–413 (1927).

Mercury (II) Sulfide (metacinnabar), HgS (black) (cubic)

ASTM cards

Card n	umbers	New	D - 1/-1/	G
Old	New	lines	Radiation	Source
	1453 3-0398 3-0396	3. 41 2. 07 1. 76	Copper	Lehmann [1] 1924.
II-976	$\begin{array}{c c} 1522 \\ 2-0452 \\ 2-0439 \end{array}$	3. 38 2. 07 1. 76	Copper, 1.53923 A.	Olshausen [2] 1925.
1596	1527 1-0649 1-0643	3. 37 2. 06 1. 76	Molybdenum_	Hanawalt, Rinn, and Frevel [3] 1938.
II-996	1521 2-0451 2-0453	3. 36 2. 07 1. 77	Copper	Harcourt [4] 1942.

The Lehmann and Harcourt patterns were made by using copper radiation rather than molybdenum, as the ASTM eard states. The Lehmann card labeled "hexagonal" should read "cubic."

NBS sample. The cubic mereury sulfide used for the NBS pattern was prepared by A. Perloff of the NBS by precipitation from a solution of HgCl₂ in 0.3 N hydrochloric acid with H₂S gas. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of aluminum, calcium, copper, silicon and thallium; 0.001 to 0.01 percent each of silver, magnesium, molybdenum, sodium, lead, and strontium; and 0.0001 to 0.001 percent each of iron, indium, manganese, and tin. The sample was annealed at 300° C for 2 days. The refractive indices could not be determined because cubic mercury sulfide is opaque.

Additional published patterns

Source	Radiation	Wave- length
Kolkmeijer, Bijvoet, and Karssen [5] 1924 Buckey and Vernon [6] 1925	Copper	

Interplanar spacings and intensity measurements. The d-spacings for the Lehmann, the Olshausen, the Kolkmeijer, Bijvoet, and Karssen, and the Buckley and Vernon patterns were eal-culated from Bragg angle data, the d-spacings for the Hanawalt, Rinn, and Frevel and the Hareourt patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Lehmann Olshausen Hanawalt, Rinn, and Frevel Harcourt Kolkmeijer, Bijvoet, and Karssen Buckley and Vernon Swanson, Fuyat, and Ugrinie	111 111 111 111 111 111 111	220 220 220 220 311 311 220	$\begin{array}{c} 311 \\ 311 \\ 311 \\ 311 \\ 220 \\ 220 \\ 311 \end{array}$

Lattice constant. The structure was determined by Lehmann [1] and by Kolkmeijer, Bijvoet, and Karssen [5] in 1924. The space group is T_a^2 - $F\bar{4}$ 3m with zinc sulfide-type structure and 4(HgS) per unit cell.

Several unit-eell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		<i>a</i>
		A
	5.858	
Kolkmeijer, Bijvoet, Kars-	5.86	
	5.861	
Shoji [8]		
Swanson, Fuvat, and	5.8517	at 26° C
	Lehmann [1]	Kolkmeijer, Bijvoet, Karssen [5] Olshausen [2]

The density of cubic mercury sulfide calculated from the NBS lattice constant is 7.711 at 26° C.

Mercury (II) Sulfide (meta-cinnabar), HgS (black) (cubic)

hkl		1924 Lehmani u, 1.5405			1925 Olshause Cu, 1.5405		8	1938 nawalt, I and Frev Io, 0.709	el		1942 Harcou u, 1.540	
	d	I	a	$\frac{1}{d}$	I	a	d	I I	a a	d	I	a a
111 200 220 311 222	A 3. 39 2. 94 2. 07 1. 76 1. 69	vvs s vvs vvs w	A 5. 87 5. 88 5. 85 5. 85 5. 84	A 3. 35 2. 91 2. 06 1. 77 1. 69	s m s s	A 5. 80 5. 81 5. 83 5. 86 5. 84	A 3. 38 2. 93 2. 06 1. 76 1. 69	100 16 30 30 4	A 5. 85 5. 86 5. 83 5. 84 5. 85	A 3. 37 2. 93 2. 07 1. 77 1. 69	100 20 50 50 10	A 5. 84 5. 86 5. 85 5. 87 5. 85
400 331 420 422 511	1. 46 1. 34 1. 30 1. 19 1. 12	w ms m s	5. 84 5. 84 5. 84 5. 84 5. 85	1. 47 1. 34 1. 31 1. 20 1. 13	vd m m m m	5. 88 5. 85 5. 87 5. 85 5. 86	1. 463 1. 343 1. 308 1. 193 1. 126	2 8 6 4 4	5. 852 5. 854 5. 850 5. 844 5. 851	1. 464 1. 34 1. 31 1. 194 1. 127	5 20 5 10 10	5. 856 5. 84 5. 86 5. 849 5. 856
440 531 600 620 533	1. 030 0. 989 . 975 . 925 . 890	w s w m m	5. 83 5. 85 5. 85 5. 85 5. 84	1. 035 0. 992 	w m m	5. 85 5. 87 5. 87				0. 990 927 	5 3	5. 857 5. 863
622 444 711	. 844 . 818	m m	5. 85 5. 84									
	e value of la		5. 85			5. 86			5. 850			5. 857
hkl	Kolkmeije	192 er, Bijvo Cu, 1.54	et, and I	⟨ar ssen				d Vernon Swanson, Fuyat, and Ugrinic				
Çs.	d	I		a	d	I		a	d	I		a
111 200 220 311 222	A 3. 35 2. 98 2. 05 1. 768 1. 686	VS W VS VS	3	A 5. 80 5. 96 5. 81 5. 86 5. 84	A 3. 40 2. 92 2. 07 1. 756 1. 693	100 3 8 100 2	6 6 0	A 5. 89 5. 83 5. 84 5. 82 5. 87	A 3. 378 2. 926 2. 068 1. 7644 1. 6891	100 34 57 44	4 7 5	A 5. 851 5. 852 5. 849 5. 8519 5. 8512
400 331 420 422 511	1. 464 1. 342 1. 307 1. 192 1. 125	vv m mv m	v	5. 86 5. 85 5. 85 5. 84 5. 84	1. 467 1. 341 1. 308 1. 197 1. 131	2: 5: 5: 7: 6:	7 7 8	5. 87 5. 85 5. 85 5. 86 5. 88	1. 4627 1. 3424 1. 3085 1. 1945 1. 1263	10	2	5. 8510 5. 8514 5. 8518 5. 8518 5. 8524
440 531 600 620 533	1. 036 0. 993 . 975	w- s w- 		5. 86 5. 87 5. 85	1. 036 0. 992 . 978 . 931	7: 7: 4:	1 7 3	5. 86 5. 87 5. 87 5. 89	1. 0344 0. 9891 . 9753 . 9252 . 8923			5. 8514 5. 8516 5. 8518 5. 8515 5. 8512
622 444 711									. 8824 . 8447 . 8194			5. 8532 5. 8523 5. 8517
Average	e value of l	ast five li	nes_	5. 85		-		5. 87		-		5. 8517

a Diffuse line omitted in average of last five.

[1] W. Lehmann, Röntgeonographische Untersuchungen an natürlichem und synthetischem Metacinnabarit (HgS), Z. Krist. **60**, 379–413 (1924).

 [2] S. v. Olshausen, Strukturuntersuchungen nach der Debye-Scherrer-Methode, Z. Krist. 61, 463-514 (1925)

[3] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).

[4] G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942).

[5] N. H. Kolkmeijer, J. M. Bijvoet, and A. Karssen, The

crystal structure of mercuric sulphide Koninkl Ned. Akad. Wetenschap., Proc. 27, 390-392 (1924).

[6] H. E. Buckley and W. S. Vernon, The crystal structures of the sulphides of mercury, Mineralog. Mag. 20, 382–392 (1925).

[7] W. Hartwig, Die Kristallstruktur einiger Mineralien der regulären HgS-Reihe, Sitzber. deut. Akad. Wiss., Berlin, 79-80 (1926).

[8] H. Shôji, Geometrische Beziehungen unter den Strukturen der Modifikationen einer Substanz, Z. Krist. 77, 381-410 (1931).

[9] R. Moltzau and J. M. Kolthoff, Mixed crystal formation of ZnS post-precipitated with HgS. The aging of HgS and of ZnS, J. Phys. Chem. 40, 637-643 (1936).

Bismuth Sulfide (bismuthinite), Bi₂S₃ (orthorhombic)

ASTM cards

Card n	Card number		Radiation	Source	
Old	New	lines	readiation	Source	
	1257 $3-0349$ $3-0362$	3. 50 3. 87 3. 06	Copper	British Museum.	
	1258 $3-0350$ $3-0363$			Same as preceding card.	
II-884	1274 2–0373 2–0391	3. 50 3. 08 1. 94	Copper	Harcourt [1] 1942.	

The Harcourt pattern was made using copper radiation rather than molybdenum as stated on the ASTM card.

Additional published patterns

Source	Radiation	Wave- length
Garrido and Feo [2] 1938		

NBS sample. The bismuth sulfide used for the NBS pattern was obtained from the Fisher Scientific Co. The sample was annealed at 500° C for 1 hour in a closed tube with an excess of sulfur. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of gallium, sodium, and silicon; 0.001 to 0.1 percent each of aluminum, calcium, iron, magnesium, and tin; 0.0001 to 0.001 percent of lead; and less than 0.0001 percent each of silver, 327692—55—4

barium, and copper. Refractive indices could not be determined because the material is opaque.

Interplanar spacings and intensity measurements. The d-spacings for the British Museum, the Harcourt, and the Garrido and Feo patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
British Museum	130, 310		230, 211
Harcourt	130, 310		151
Garrido and Feo	130, 310		152
Swanson, Fuyat, and Ugrinic	230, 211		221

The d-spacing of 3.51 A is given as the strongest line in the British Museum, the Harcourt, and the Garrido and Feo patterns because they did not resolve the 130 and the 310 lines, and the sum of the intensities is larger than the intensity of the (230, 211) line, the strongest for NBS pattern.

Lattice constants. The structure was determined by Hofmann [2] in 1933. The space group is D₂₆-Pbnm (Pnma) with antimony sulfide-type structure and 4(Bi₂S₃) per unit cell.

Two sets of unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	b	С
1933 1938 1953	Hofmann [3] Garrido and Feo [2] Swanson, Fuyat, and Ugrinic.	A 11. 15 11. 15 11. 15	$A \\ 11. 29 \\ 11. 29 \\ 11. 300$	A 3. 98 3. 98 3.981 at 26° C

The density of bismuth sulfide calculated from the NBS lattice constants is 6.808 at 26° C.

Bismuth Sulfide (bismuthinite), Bi₂S₃ (orthorhombic)

			194	12	198	38	195	53
,,,	British M	Iuseum	Harc	ourt	Garrido a	and Feo	Swanson, F	uyat, and
hkl	Cu, 1.5	405 A	Cu, 1.5405 A				Ugrinic Cu, 1.5405 A, 26°	
	d	I	d	I	d	I	d	I
020 120 220 101 130 310	A 5. 46 4. 89 3. 88 } 3. 51	50 50 75 	A 5. 56 4. 96 3. 93 3. 51	11 11 22 	A 5. 488 4. 951 3. 897 3. 679 3. 503	w w mw vw	$\begin{array}{c} A \\ 5.65 \\ 5.04 \\ 3.97 \\ 3.75 \\ 3.56 \\ 3.53 \end{array}$	20 19 38 20 94 60
021	,		3. 23	11	3. 198	vw	3. 256	18
$\begin{array}{c} 230 \\ 211 \end{array}$	3. 07	75	3. 09	66	3. 065	ms	3. 118	100
$ \begin{array}{r} 221 \\ 301 \\ 311 \end{array} $	2, 80	50	2. 80 2. 70 2. 62	44 11 11	2, 772 2, 669 2, 597	m W W	2. 811 2. 716 2. 641	$63 \\ 34 \\ 24$
240	2, 49	75	2. 500	33	2, 488	m	2. 520	35 13
$\begin{array}{c} 420 \\ 231 \\ 041 \\ 141 \\ 241 \end{array}$	2. 29 2. 23	50 60	2. 430 2. 28 2. 23	11 11 33	2. 436 2. 272 2. 225	vw mw m	2. 499 2. 456 2. 304 2. 256 2. 129	$15 \\ 15 \\ 24 \\ 36 \\ 9$
421	2. 11	25	2. 11	11	2. 097	w	2. 118	15
$\begin{array}{c} 250 \\ 520 \\ 002 \end{array}$	2. 06	25	2. 06 1. 98	6 11	2. 071 1. 966	w w	2. 096 2. 074 1. 990	11 10 33
$\begin{array}{c c} 431 \\ 151 \\ 530 \\ 060 \\ 251 \end{array}$	1. 94 1. 91 1. 86	75 75 	1. 939 1. 874 1. 844	55 11 11	1. 935 1. 907 1. 872 1. 842	m mw mw vw	1. 953 1. 935 1. 919 1. 884 1. 854	$55 \\ 20 \\ 20 \\ 14 \\ 17$
610 222 620	1. 83 1. 77	50 25			1. 766	m	1. 834 1. 779 1. 765	7 13 5 7
$\frac{351}{312}$	1. 72	75	1. 728	55	1. 721	mw	1. 737 1. 734	35
061 161 360	1. 69 1. 67	50 25	1. 693 1. 673	11 11	1. 693 1. 671	vw vw	1. 703 1. 682 1. 679	10 7
$\begin{array}{c} 600 \\ 611 \\ 412 \\ 242 \end{array}$	1. 63 1. 59	$\frac{25}{25}$	1. 598	2			1. 665 1. 604 1. 562	7 8 2 4 15
$640 \\ 720 \\ 342$	1. 55 1. 52	50 50	1. 553 1. 524	33 6	1. 550 1. 530	mw w	1. 552 1. 533 1. 490	11 8 6
152	1. 47	75	1. 478	22	1. 484	ms	1. 481	11
$\begin{array}{c} 271 \\ 252 \\ 522 \end{array}$	1. 44	50	1 499	99			1. 444	10
$\frac{650}{721}$	1. 43	50	1. 433	22	1. 428	w	1. 436 1. 431	$\frac{9}{12}$
442 470	1. 39	25	1. 393	11	1. 408 1. 394	W	1. 405 1. 397	5 6
$\frac{352}{532}$	1. 39	<u></u> -	1. 393	11	1. 394		1. 386 1. 3816	8 10
$\frac{280}{062}$	}				1. 362	w	1. 3679	7
162 561	1. 35	50	1. 350	22	1. 347	w	1. 3573 1. 3527	$\begin{array}{c} 7 \\ 10 \end{array}$
660 181 410	}	50B	1. 318 ь 1. 305	11 22	1. 320 • 1. 308	w	1. 3216 1. 3100	8 17

<sup>Thirteen additional lines have been omitted.
Nineteen additional lines have been omitted.
Twenty-three additional lines have been omitted.</sup>

 G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942). [2] J. Garrido and R. Feo, Sur les sulfotellurures de Bismuth, Bull. Soc. franc. Mineral. 61, 196-204 (1938).

[3] W. Hofmann, Die Struktur der Minerale der Antimonitgruppe, Z. Krist. 86, 225-245 (1933).

4. OXIDES

Alpha-Gallium Oxide, α-Ga₂O₃ (hexagonal)

ASTM cards. None. Additional published patterns

Source	Radiation	Wave- length
Zachariasen [1] 1928	Iron	

NBS sample. The gallium oxide used for the NBS pattern was prepared by A. Perloff of the NBS by igniting at 425° C gallium hydroxide precipitated from the hydrochloric-acid solution of pure gallium metal. Spectrographic analysis of the oxide at the NBS showed the following impurities: 0.01 to 0.1 percent each of aluminum, calcium, copper, iron, sodium, lead, silicon, and tin; 0.001 to 0.01 percent of barium, magnesium, and manganese; 0.0001 to 0.001 percent each of chromium, indium, and nickel; and less than 0.0001 percent of silver. The sample was too finely divided for determination of the refractive indices.

Interplanar spacings and intensity measurements. The Zachariasen d-spacings were calculated from Bragg angle data.

The three strongest lines for each of the patterns are as follows:

	1	2	3
ZachariasenSwanson, Fuyat, and Ugrinic	116	124	300
	014	110	116

Lattice constants. The structure was determined by Zachariasen [1] in 1928. The space group is $D_{3d}^6 - R\overline{3}c$ with alpha-aluminum-oxide-type structure and 6 (Ga_2O_3) per unit cell.

The unit-cell values determined by Zachariasen were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1928	Zachariasen [1]	<i>a A</i> 4. 99	A 13. 47
1928	Zachariasen [1] Swanson, Fuyat, and Ug- rinic.	4. 99 4. 9793	13. 47 13. 429 at 24° C

The density of gallium oxide calculated from NBS lattice constants is 2.158 at 24° C.

Alpha-Gallium Oxide, Ga₂O₃ (hexagonal)

-					
	hkl	1928 Zachariasen Fe, 1.93597 A		1953 Swanson, Fuyat, and Ugrinie Cu, 1.54050 A, 24° C	
		d	1	d	I I
	102	A 3. 61	30	A 3. 630	26
	014	2, 654	60	2. 651	100
	110	2. 496	60	2. 491	80
	006			2. 238	4
	113	2. 182	10	2. 177	16
	022			2. 052	3
1	204	1. 815	50	1. 814	36
	116	1. 667	100	1. 665	45
	108			1. 565	9
	124	1. 467	80	1. 466	33
	300	1, 441	80	1. 438	30
	028			1. 325	4
	$0 \cdot 1 \cdot 10$	1. 286	40	1. 282	11
	220	1. 247	40	1. 245	9
	306			1. 209	4
	218			1. 1696	4
	$2 \cdot 0 \cdot 10$			1. 1396	6
	314			1. 1266	6 8 6 8
	226			1. 0878	6
	$1 \cdot 2 \cdot 10$			1. 0366	8
	044			1. 0266	3
	138			0. 9738	3 3 7
1	234			. 9487	7

Reference

[1] W. H. Zachariasen, Untersuchungen über die Kristallstruktur von Sesquioxyden und Verbindungen ABO₃, Skrifter Norske Videnskaps-Akad. Oslo, I. Mat.-Naturv. Klasse 1928 No. 4, 165 pages (1928).

Neodymium Oxide, Nd₂O₃ (hexagonal)

ASTM cards. None. Additional published patterns

Source	Radiation	Wave- length
Zachariasen [1] 1926	Copper	

NBS sample. The neodymium oxide used for the NBS pattern was obtained from the Johnson, Matthey, & Co., Ltd. Their spectrographic analysis showed the following impurities: 0.0001 to 0.001 percent each of silicon, copper, indium, magnesium, calcium, sodium, iron, potassium, and lithium. The sample was heated to 1,000° C to insure complete conversion to the hexagonal form. The NBS sample is too finely divided to permit resolution of the refractive indices, but both of them appear to be above 1.915.

Interplanar spacings and intensity measurements. The d-spacings for the Zachariasen pattern were caluclated from Bragg angle data.

The three strongest lines for each of the patterns are as follows:

	1	2	3
ZachariasenSwanson, Fuyat, and Ugrinic	101	112	201
	101	100	110

Lattice constants. The structure was determined by Zachariasen [1] in 1926. The space group is D_3^2 -P321 with lanthanum-oxide-structure type and $1(Nd_2O_3)$ per unit cell. A cubic form of neodymium oxide, also stable at room temperature, can be prepared by heating the oxide at 700° C for 3 hours. It can be converted to the hexagonal form by heating at 1,000° C and then converted back to cubic by heating at 700° C, all according to Löhberg [2].

Zachariasen's unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	c
1926 1953	Zachariasen [11 Swanson, Fuyat, and Ug- rinic.	A 3. 85 3. 831	A 6.02 5.999 at 26° C

The density of neodymium oxide calculated from the NBS lattice constants is 7.327 at 26° C.

Neodymium Oxide, Nd₂O₃ (hexagonal)

	192	6	195	3	
	Zachariasen		Swanson, Fuyat, and Ugrinic		
hkl	Cu, 1.54	105 A	Cu, 1.5 26°	Cu, 1.5405 A, 26° C	
	d	I	d	I	
100 002 101 102 110	A 3. 343 3. 011 2. 915 2. 235 1. 924	40 40 100 40 60	A 3. 319 2. 998 2. 902 2. 225 1. 916	35 32 100 33 35	
103 200 112 201 004	1. 721 1. 666 1. 620 1. 607 1. 505	80 20 100 100 15	1. 713 1. 659 1. 614 1. 599 1. 500	$\begin{array}{c} 31 \\ 6 \\ 27 \\ 20 \\ 4 \end{array}$	
202 104 203 210 211	1. 458 1. 361 1. 281 1. 230	20 20 50 	1. 452 1. 366 1. 276 1. 254 1. 227	$egin{array}{c} 7 \\ 5 \\ 12 \\ 4 \\ 14 \\ \end{array}$	
114 212 105 204 300	1. 183 1. 160 1. 131 1. 109	60 30 50 30	1. 1807 1. 1566 1. 1282 1. 1125 1. 1058	8 5 8 3 5	
213 302 205 214 106	1. 064 1. 040	70 40 	1. 0623 1. 0375 0. 9721 . 9621 . 9574	11 8 7 4 5	
310 222 311 304 116			. 9201 . 9124 . 9097 . 8899 . 8861	2 7 10 7 6	
312 215 313 107 401			. 8794 . 8666 . 8358 . 8296 . 8215	4 9 9 5 4	
224			. 8070	5	

References

- [1] W. Zachariasen, Die Kristallstruktur der A-Modification von den Sesquioxyden der seltenen Erdmetalle. (La₂O₃, Ce₂O₃, Pr₂O₃, Nd₂O₃), Z. physik. Chem. 123, 134-150 (1926).
- [2] K. Löhberg, Über die C-Modifikation der Sesquioxyde von Neodym und Lanthan, Z. physik. Chem. 28B, 402-407 (1935).

Palladium Oxide, PdO (tetragonal)

ASTM cards

Card number		New	Radiation	Source	
Old	New	lines			
11-4000	3904 2-1430 2-1432	1. 30 2. 60 1. 65	Copper and Iron.	Levi and Fontana [1] 1926.	

Levi and Fontana [1] presented two patterns for PdO, one made with copper and the other iron radiation. The ASTM card pattern appears to be the average of the two.

Additional published patterns

Source	Radiation	Wave- length
Zachariasen [2] 1927	Copper	1. 540 A

NBS sample. The powdered palladium metal used in preparation of the NBS sample was obtained from J. Bishop & Co. Palladium oxide was formed by heating the powdered metal at 600° C for 18 hours in an open porcelain crucible. Spectrographic analysis of the oxide at the NBS showed the following impurities: 0.01 to 0.1 percent of platinum; 0.001 to 0.01 percent each of iron and silicon, 0.0001 to 0.001 percent each of silver, aluminum, calcium, copper, magnesium, and lead.

The refractive indices could not be determined

because the sample is opaque.

Interplanar spacings and intensity measurements. The Levi and Fontana and the Zachariasen d-spacings were calculated from Bragg angle data. Of the two patterns published by Levi and Fontana, the shorter pattern, made by using iron radiation, agreed better with other work and was used in the table. The copper pattern differed considerably and was not included.

The three strongest lines for each of the patterns

are as follows:

	1	2	3
Levi and Fontana	202, 211	002, 101	112
Zachariasen	002, 101	202, 211	112
Swanson, Fuyat, and Ugrinic	101	002	112

Lattice constants. The structure was determined by Moore and Pauling [3] in 1941. The space group is D_{4h}-P4₂/mmc with 2(PdO) per unit

cell. This structure was confirmed by Waser, Levy, and Peterson [4] in 1953. Their calculated X-ray intensities were in good agreement with the experimentally determined values for the NBS pattern.

The first three unit-cell values listed below were converted from kX to angstrom units for comparison with the NBS values. The Waser, Levy, and Peterson were given in angstroms.

Lattice constants

		a	c
1927 2 1941 1 1953 V	Levi and Fontana [1] Zachariasen [2] Moore and Pauling [3] Waser, Levy, and Peter- son [4]. Swanson, Fuyat, and Ugri- nic.	A 3. 01 3. 035 3. 03 3. 03 3. 0434	A 5. 21 5. 325 5. 32 5. 33 5. 337 at 26° C

The density of palladium oxide calculated from the NBS lattice constants is 8.242 at 26° C.

Palladium Oxide, PdO (tetragonal)

hkl	Levi Font	1926 Levi and Fontana Fe, 1.93597 A		1927 Zachariasen Cu, 1.5405 A		Fuyat, rinic 05 A,	
	d	I	d	I	d	I	
100 002 101 110 112 103 200 004 202 211 114 213 220 105 204 222 301 310 312 303 215 224 321 116	A }2. 59 2. 12 1. 65 1. 51 }1. 31 1. 13 }1. 08	s ws s ms	A 2. 64 2. 151 1. 673 1. 536 1. 520 1. 319 1. 132 1. 077 1. 003 0. 995 . 960	100 25 60 40 40 	$ \begin{array}{c} A \\ 3.046 \\ 2.667 \\ 2.644 \\ 2.153 \\ 1.674 \\ 1.536 \\ \end{array} $ $ \begin{array}{c} 1.522 \\ 1.335 \\ 1.322 \\ 1.319 \\ 1.1334 \\ 1.0806 \\ 1.0761 \\ \end{array} $ $ \begin{array}{c} 1.0072 \\ 1.0035 \\ 0.9977 \\ .9966 \\ .9623 \\ .9053 \\ .8812 \\ \end{array} $ $ \begin{array}{c} 8400 \\ .8377 \\ .8338 \\ .8219 \\ \end{array} $	3 33 100 20 28 18 11 4 12 22 5 9 3 5 6 6 3 3 6 3 6 5 4 2	

 G. R. Levi and C. Fontana, Ossidi di palladio, Gazz. chim. ital. 56, 388-396 (1926).
 W. Zachariasen, Über die Kristallstruktur des Palladiumoxyds (PdO), Z. physik. Chem. 128, 412-416 (1927) (1927).

[3] W. J. Moore, Jr. and L. Pauling, The crystal structures of the tetragonal monoxides of lead, tin, palladium and platinum, J. Am. Chem. Soc. 63, 1392-4 (1941).

[4] J. Waser, H. A. Levy and S. W. Peterson, The structure

of PdO, Acta Cryst. 6, 661-663 (1953).

Tin (II) Oxide, SnO (tetragonal)

ASTM cards

Card n	umber New	New index lines	Radiation	Source
2198	2260 1-0904 1-0902	2. 96 1. 60 1. 48	No data	Weiser and Milligan [1] 1932.
2180	2261 1-0905 1-0891	2. 97 1. 59 4. 81	Molybdenum	Hanawalt, Rinn, and Frevel [2] 1938.

The Weiser and Milligan pattern is not listed in the 1950 edition of the ASTM index.

Additional published patterns

Source	Radiation	Wave- length
Levi [3] 1924	Copper	

NBS sample. The stannous oxide used for the NBS pattern was obtained from the Baker Chemical Co. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of calcium, copper, iron, magnesium, antimony, and silicon; and 0.0001 to 0.001 percent each of aluminum, barium, nickel, and lead. The refractive indices could not be resolved because the sample was too finely divided, but both of them appeared to be above 2.0.

Interplanar spacings and intensity measurements. The d-spacings for the Levi pattern were calculated from Bragg angle data; the d-spacings for the Weiser and Milligan and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns

are as follows:

	1	2	3
Weiser and Milligan	101	211	202
Hanawalt, Rinn, and Frevel	101	211	001
Levi	101	112	211
Swanson, Fuyat, and Ugrinic	101	110	112

Lattice constants. Levi and Natta [4] determined the structure in 1926. The space group is D_{4h}-P4/nmm with red-lead-monoxide-type structure and 2(SnO) per unit cell.

Lattice constants

		a	c
1926 1932 1933 1941 1953	Levi and Natta [4]	A 3. 81 3. 80 3. 801 3. 804 3. 802	A 4. 82 4. 80 4. 843 4. 826 4. 836 at 26° C

The density of tin oxide calculated from the NBS lattice constants is 6.398 at 26° C.

Tin (II) Oxide, SnO (tetragonal)

							I	
1932		19	938	19	24	1953		
		er and		alt, Rinn,	T.,	evi	Swanson, Fuyat,	
, , ,	Mill	ligan	and ?	Frevel	1.0	5V1	and U	grinic
hkl			Mo, 0	0.709 A	Cu, 1.	5405 A	Cu, 1.8 26	5405 A,
	d	I	d	I	d	I	\overline{d}	I
	A		A		A		\overline{A}	
$\frac{001}{101}$	4. 80 2. 97	40 100	4. 82 2. 98	30 100	2, 82		4. 85 2. 989	10
110	2. 69	50	2. 67	25	2. 55	s mw	2. 688	$\frac{100}{37}$
$\begin{array}{c} 002 \\ 102 \end{array}$	2. 40	30	2. 39	5	2. 31	W	2. 418 2. 039	$\begin{vmatrix} 14 \\ < 1 \end{vmatrix}$
$\begin{array}{c} 200 \\ 112 \end{array}$	1. 894 1. 791	$\begin{array}{c} 40 \\ 70 \end{array}$	1. 89 1. 79	15 30	1. 83 1. 75	m s	1. 901 1. 797	$\begin{array}{c} 13 \\ 27 \end{array}$
211	1. 598	90	1. 59	40	1. 56	s	1. 604	25
$\begin{array}{c} 202 \\ 103 \end{array}$	1. 485	80	1. 483	15	1. 45 1. 43	s mw	1. 494 1. 484	$\begin{array}{c c} & 11 \\ & 12 \end{array}$
113	1. 372	10					1. 382	3
220	1. 339	20	1. 335	5	1. 32	w	1. 344	5
$\frac{301}{004}$	1. 222	10	1. 224	5	1. 21	mw	1. 225 1. 209	$\frac{4}{3}$
310	1. 197	10	1. 196	5	1. 19	mw	1. 202	4
222	-2-22-				-1-155-		1. 1747	6
$\frac{213}{104}$	1. 167	30	1. 167	10	1. 155	S	1. 1697 1. 1520	8 1
114	1. 101	10	1 075		1. 093	w	1. 1026	4
312	1. 074	20	1. 075	5	1. 067	ms	1. 0766	6
$\frac{321}{204}$	1. 029 1. 020	20 10	1. 027	5	$\begin{array}{c} 1.022 \\ 1.012 \end{array}$	s W	1. 0303 1. 0201	$\frac{4}{3}$
303	0. 994	10			0. 989	m	0. 9965	1
$\frac{214}{005}$.9852 $.9674$	< 1
$\frac{400}{105}$. 934	10			. 933	 W	. 9507 . 9371	3 3
411	. 902	10			. 903	m	. 9056	4
$\frac{224}{323}$. 881	10			. 894 . 881	mw ms	. 8988 . 8824	4 5
020					. 001	1115	.0021	
314	. 874 . 852	10 10			. 852	ms	. 8524	4
420 215							. 8503	4
332	841	10			. 839	ms	. 8405	6
006					. 803	ms	. 8062	1
422							. 8020	<1
413	. 800 . 751	$\begin{array}{c} 10 \\ 10 \end{array}$. 8002	1
	713	10						

H. B. Weiser and W. O. Milligan, X-ray studies on the hydrous oxides. III. Stannous oxide, J. Phys. Chem. 36, 3039-3045 (1932).
 J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).

[3] G. R. Levi, Isomorfismo degli ossidi stannoso e piomboso, Nuovo Cimento 1, 335-344 (1924).

[4] G. R. Levi and G. Natta, Isomorfismo degli ossidi piomboso e stannoso, Nuovo Cimento 3, 114-134 (1926).

[5] M. Straumanis and C. Strenk, Über das Zinn (2)—Oxyd, Z. anorg. u. allg. Chem. 213, 301–9 (1933).
[6] W. J. Moore, Jr. and L. Pauling, The crystal structures of the tetragonal monoxides of lead, tin, palladium and platinum, J. Am. Chem. Soc. 63, 1392–4 (1941).

5. HALIDES AND HALIDE HYDRATES

Lithium Bromide, LiBr (cubic)

ASTM cards

Card n	umbers	New index	Radiation	Source	
Old	New	lines	Itadiation	Source	
1813	1817 1-0766 1-0751	3. 19 2. 75 1. 65	Molybde- num, 0.712.	Davey [1] 1923.	
1846	1818 1-0767 1-0764	3. 17 2. 74 1. 94	Molybde- num.	Hanawalt, Rinn, and Frevel [2] 1938.	

Additional published patterns

Source	Radiation	Wave- length	
Ott [3] 1923	Copper	К.	

NBS sample. The lithium bromide used for the NBS pattern was obtained from the Fisher Scientific Co. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of calcium and sodium; 0.001 to 0.01 percent each of aluminum, magnesium, and silicon; 0.0001 to 0.001 percent of copper; and less than 0.0001 percent each of silver, barium, and iron. The sample was heated at 425° C to remove water and then on cooling mounted in petrolatum. The NBS sample is too hygroscopic to permit measurement of the refractive indices by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The d-spacings for the Ott pattern were calculated from Bragg angle data; the Hanawalt,

Rinn, and Frevel d-spacings were converted from kX to angstrom units; and the d-spacings for the Davey pattern were converted from molybdenum radiation, 0.712 A, to the weighted K α radiation having a wavelength of 0.7107 A.

The three strongest lines for each of the patterns are as follows:

	1	2	3
DaveyHanawalt, Rinn, and Frevel Ott Swanson, Fuyat, and Ugrinic	111 111 111 111	200 200 200 200	311 220 220 220

Lattice constant. The structure was determined by R. W. G. Wyckoff [4] in 1921. The space group is O_b-Fm3m with sodium-chloride-structure type and 4(LiBr) per unit cell.

Several unit-cell values were converted from kX to angstrom units for comparison with the NBS values. The value determined by Davey was converted from Mo 0.712 to 0.7107 A.

Lattice constants

		a
1923 1923	Wyckoff [4]	5.49 5.480 5.500 5.506 5.5013 at 26° C

The density of lithium bromide calculated from the NBS lattice constant is 3.464 at 26° C.

		1923 Davey	1938 Hanawalt, Rinn an Frevel		nn and	1923 Ott			1953 Swanson, Fuyat and Ugrinic			
hkl	М	o, 0.710 7	7 A	M	[o, 0.709	A	Cu	, 1.5418	A	Cu, 1	.5405 A,	
	d	I	a	d	I	a	d	I	a	d	I	a
111 200 220 311 222	A 3. 18 2. 74 1. 935 1. 651 1. 581	100 100 40 100 20	A 5. 51 5. 48 5. 473 5. 476 5. 477	A 3. 18 2. 75 1. 94 1. 65 1. 58	100 75 75 75 75 25	A 5. 51 5. 50 5. 49 5. 47 5. 47	A 3. 17 2. 76 1. 94 1. 65 1. 58	s s s m	A 5. 49 5. 52 5. 49 5. 49 5. 48	A 3. 177 2. 751 1. 945 1. 659 1. 588	100 78 58 43 17	A 5. 503 5. 502 5. 501 5. 502 5. 501
400 331 420 422 511	1. 370 1. 258 1. 226 1. 122 1. 055	15 40 20 20 20 20	5. 480 5. 483 5. 483 5. 497 5. 482	1. 375 1. 262 1. 229 1. 123 1. 058	13 38 25 13 13	5. 500 5. 501 5. 496 5. 502 5. 498	1. 369 1. 260 1. 231 1. 120 1. 057	VW S S S	5. 48 5. 49 5. 51 5. 49 5. 492	1. 376 1. 262 1. 231 1. 1227 1. 0585	7 17 15 12 10	5. 504 5. 501 5. 505 5. 5001 5. 5001
440 531 600 620 533	0. 926 . 912 . 866	15 15 10	5. 478 5. 472 5. 477				0. 9718 . 9288 . 9162 . 8699 . 8375	m-w s s s s	5. 498 5. 495 5. 497 5. 502 5. 492	0. 9724 . 9298 . 9169 . 8698 . 8390	3 8 6 5 5	5. 5007 5. 5008 5. 5014 5. 5011 5. 5017
622							. 8283	s	5. 495	. 8294	4	5. 5016
Average for last	unit cell t five line		5. 481			5. 499			5. 496			5. 5013

- W. P. Davey, Precision measurements of crystals of the alkali halides, Phys. Rev. 21, 143-61 (1923).
 J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemi-
- cal analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457–512 (1938).
- [3] H. Ott, Die Raumgitter der Lithiumhalogenide, Phys. Z. 24, 209-212 (1923).
 [4] R. W. G. Wyckoff, The crystal structures of the alkali halides, J. Wash. Acad. Sci. 11, 429-434 (1921).
 [5] G. I. Finch and S. Fordham, The effect of crystal size
- on lattice dimensions, Proc. Phys. Soc. (London) 48, 85-94 (1936).

Sodium Iodide, NaI (cubic)

ASTM cards

Old card number	New card number	New index lines	Radiation	Source
1738	1754 1-0740 1-0715	3. 24 2. 29 3. 74	Molybde- num, 0.712.	Davey [1] 1923.
1760	$1700 \\ 1-0715 \\ 1-0724$	3. 22 3. 74 2. 29	$Molybdenum_{\perp}$	Hanawalt, Rinn, and Frevel [2] 1938.

Additional published patterns. None.

NBS sample. The sodium iodide used for the NBS pattern was obtained from the Merck Chemical Co., Inc. Spectrographic analysis at the NBS showed the following impurities: 0.0001 to 0.001 percent each of aluminum, calcium, magnesium, and silicon; and less than 0.0001 percent of copper. The refractive index of the NBS sample is 1.774.

Interplanar spacings and intensity measurements. The d-spacings for the Davey and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Davey	200	220	$111 \\ 220 \\ 220$
Hanawalt, Rinn, and Frevel	200	111	
Swanson, Fuyat, and Ugrinic	200	111	

Lattice constant. The structure was determined by Posnjak and Wyckoff [3] in 1922. The space group is O_h-Fm3m with sodium-chloridestructure type and 4(NaI) per unit cell.

Sodium Iodide, NaI (cubic)

hkl	1923 Davey Mo, 0.709 A			1938 t, Rinn, an Mo, 0.709 A		1953 Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C			
	d	I	a	d	I	a	d	I	a
111 200 220 311 222	A 3. 75 3. 25 2. 29 1. 957 1. 868	67 100 · 83 67 33	A 6. 50 6. 50 6. 48 6. 49 6. 47	A 3. 75 3. 23 2. 29 1. 95 1. 87	83 100 83 58 42	A 6. 50 6. 46 6. 48 6. 47 6. 48	A 3. 74 3. 236 2. 289 1. 951 1. 868	82 100 63 41 23	A 6. 475 6. 472 6. 475 6. 475 6. 472 6. 471
400 331 420 422 511	1. 618 1. 489 1. 451 1. 322 1. 248	25 33 50 41 25	6. 47 6. 49 6. 49 6. 48 6. 48	1. 61 1. 484 1. 448 1. 323 1. 247	17 23 42 23 13	6. 44 6. 47 6. 48 6. 48 6. 48	1. 618 1. 485 1. 447 1. 321 1. 246	14 14 23 19 13	6. 472 6. 471 6. 472 6. 472 6. 473
440 531 600 620 533	1. 147 1. 098 1. 079 1. 024 0. 989	. 16 16 16 16 8	6. 49 6. 50 6. 47 6. 48 6. 48	1. 146 1. 096 1. 081 1. 022	7 7 7 3	6. 48 6. 48 6. 49 6. 46	1. 1444 1. 0941 1. 0788 1. 0233 0. 9872	5 8 10 7 4	6. 4737 6. 4727 . 64728 6. 4719 6. 4735
622 444 711 640 642	. 975 . 907 . 899 . 866	12 8 8 8 8	6. 47 6. 48 6. 48 6. 48	0. 976	3	6. 47	. 9759 . 9343 . 9064 . 8975 . 8650	$\begin{array}{c} 6 \\ 2 \\ 6 \\ 4 \\ 7 \end{array}$	6. 4734 6. 4730 6. 4730 6. 4720 6. 4731
731	. 843 . 784 . 763	8 8 8	6. 48 6. 46 6. 47				. 8427	8	6. 4729
Average	e of last five	lines	6. 48			6. 48			6. 4728

A group of unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice	constants
---------	-----------

		a	
		A	
1922	Posnjak and Wyckoff [3] Davey [1]	6.48	
1948	Mehmel [4]	6.47	
1953	Swanson, Fuyat, and Ugrinic	6.4728 at 26°	С

The density of sodium iodide calculated from the NBS lattice constant is 3.671 at 26° C.

References

- [1] W. P. Davey, Precision measurements of crystals of the
- alkali halides, Phys. Rev. 21, 143–161 (1923).

 [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457–512 (1938).

 [3] E. Posnjak and R. W. G. Wyckoff, The crystal structure.
- tures of the alkali halides, J. Wash. Acad. Sci. 12.
- 248-251 (1922).
 [4] M. Mehmel, Kristallchemische Betrachtungen zur I. und VII. Gruppe des periodischen Systems der Elemente, Optik 3, 41-46 (1948).

Magnesium Fluoride (sellaite), MgF2 (tetragonal)

ASTM cards

the

12.

der

Old card number	New card number	New index lines	Radiation	Source
3792	$ \begin{array}{c c} $	1. 47 1. 00 2. 57	Copper, Kα	Buckley and Vernon [1] 1925.
3141	$3308 \\ 1-1206 \\ 1-1196$	2. 24 1. 72 3. 29	$Molybdenum_{\perp}$	Hanawalt, Rinn, and Frevel [2] 1938.

Additional published patterns

Date	Source	Radiation	Wave- length
1925	Van Arkel [3]	Copper	Κα
1925	Feirari [4]	No data	

NBS sample. The magnesium fluoride used for the NBS pattern was obtained from the Mallinckrodt Chemical Works. The sample was annealed by heating in a hydrothermal bomb at 700° C under a pressure of 16,000 psi for 15 hours.

Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of calcium, sodium, and silicon; 0.001 to 0.01 percent each of aluminum and iron; 0.0001 to 0.001 percent of copper; and less than 0.0001 percent of silver. The refractive indices are too low to be measured by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The d-spacings for the Buckley and Vernon, the Van Arkel, and the Ferrari patterns were calculated from Bragg angle data, and the Hanawalt Rinn, and Frevel d-spacings were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Buckley and Vernon	301	$111 \\ 211 \\ 111 \\ 211 \\ 111 \\ 211 \\ 111$	211
Hanawalt, Rinn, and Frevel	111		110
Van Arkel	110		211
Ferrari	111		301
Swanson, Fuyat, and Ugrinic	110		211

To form a basis for comparison, the Buckley and Vernon intensities, listed in descending order of rank, were converted to percentages, with the strongest line being 100 and the weakest 4, assuming each step between ranks to be of equal size.

The Hanawalt, Rinn, and Frevel, the Van Arkel, and the Ferrari patterns contain extra lines not permissible in the magnesium-fluoride pattern, and not otherwise identified. A pattern published by Bruni and Levi [5] in 1924 was retracted in 1925.

Lattice constants. The structure was determined by Van Arkel [3] and by Buckley and Vernon [1] in 1925. The space group is D_{4h}^{14} — $P4_2/mnm$ with titanium dioxide (rutile) type structure and $2(MgF_2)$ per unit cell.

Two sets of lattice constants were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	c
1925 1925 1953	Ferrari [4] Buckley and Vernon [1] Swanson, Fuyat, and Ugrinic.	A 4. 65 4. 669 4. 623	A 3. 07 3. 084 3. 052 at 27° C

The density of magnesium fluoride calculated from the NBS lattice constants is 3.172 at 27° C.

- [1] H. E. Buckley and W. S. Vernon, The crystal structure of magnesium fluoride, Phil. Mag. **49**, 945-951 (1925).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] A. E. van Arkel, Kristalstructuur van Magnesiumfluoride en andere Verbindingen van Hetzelfde Kristaltype, Physica 5, 162–171 (1925).
- [4] A. Ferrari, I reticoli cristallini dei fluoruri di litio e magnesio e il loro isomorphismo, Atti accad. nazl. Lincei, Rend., Classe Sci. fis. mat. e nat. 1, 664–671 (1925).
- [5] G. Bruni and G. R. Levi, Soluzioni solide fra composti di elementi a valenza diversa, Rend. Accad. Atti accad. nazl. Lincei, Rend., Classe sci. fis. mat. e nat. Lincei 33, 377-384 (1924).

$Magnesium \ Fluoride \ (sellaite), \ MgF_2 \ (tetragonal)$

	1925	5	193	8	192	25	192	5	198	53
	Buckley Verno		Hanawalt and Fr		Van A	rkel	Ferr	ari	Swanson and U	
hkl	Cu, 1.54	05 A	Mo, 0.7	'09 A	Cu, 1.5	405 A			Cu, 1.5405	A, 27° C
	d	I	d	I	d	I	d	I	d	I
110	$A \\ 3.315$	90	A 3. 30	80	A 3. 317	vs	A 3. 218	s	A 3. 265	100
101 200	2. 573	11	3. 15 2. 57	5 20	2. 584	vw	2. 471 2. 289	mw mw	2. 545 2. 310	$\stackrel{22}{<}1$
111	2. 262	97	2. 24	100	2. 254	vs	2. 212	vs	2. 231	96
210	2. 083	86	2. 07 1. 93	$\begin{array}{c} 32 \\ 12 \end{array}$	2. 106	s 	2. 058	m 	2. 067	34
211 220	1. 729 1. 643	97 75	1. 72 1. 64	100 32	1. 745 1. 666	vs s	1. 829 1. 708 1. 640	w vs ms	1. 711 1. 635	73 31
002	1. 541	72	1. 53	20	1. 544	s	1. 486	 S	1. 526	19
310 221	1. 469	4	1. 463 1. 440 1. 411	5 1 1	1. 483	vw	1. 465	w	1. 462 1. 441	6 4
112 301	1. 427 1. 386	36 100	1. 381 1. 343	- <u></u> - 60 1	1. 400 1. 342	VS VW	1. 386	vs	1. 382 1. 375	14 35
311 320	1. 329 1. 284	36 18	1. 322	8	1. 303	vvw	1. 323 1. 28 9	w vw	1. 318 1. 282	7
212 	1. 232 1. 191 1. 164	68 11 25	1. 22 9 1. 157	6 <u>-</u>	1. 247 1. 185	m w s	1. 160		1. 228 1. 1556	6 4
410 410 222	1. 104	- - - 86	1. 137	$-\frac{2}{16}$	1. 138 1. 114	 W	1. 100	w ms	1. 1330 1. 1217 1. 1154	6 10
330 312	1. 097	58	1. 092	5			1. 095	mw	1. 0893 1. 0555	6 4
411 420 103	1. 063 1. 042	58 43	1. 054	6	1. 073 1. 045	m vw	1. 058 1. 039	ms mw	1. 0524 1. 0333 0. 9937	6 2 1
322 421 113	0. 9994 . 9864 . 9773	4 50 18			0. 9952	W	0. 9759	 W	. 9812 . 9790 . 9715	2 3 2
500 430 402	9274	36			. 9228	 m	. 9259	mw	. 9249 . 9216	1 4
213	. 9185	58			. 5220		. 9159	m	. 9128	7
510 412	. 9108	68			. 9011	 m	. 9083	m	. 9068	4 5
332 431	. 8925	$-\overline{79}$. 8866	vs	. 8867	6
501	}								. 8849	8
223 422 303	. 8614 . 8522 . 8433	40 68 25			. 8581 . 8411	w w	. 8659 . 8575 . 8503	vw mw m	. 8634 . 8559 . 8486	<1 4 5
							a. 8371	vw		

^{*} Five additional lines have been omitted.

Copper (I) Chloride (nantokite), CuCl (cubic)

ASTM cards

Card number		New index lines	Radiation	Source
Old	New			
1834	1845 1-0776 1-0759	3. 18 1. 93 1. 65	Molybde- num, 0.712.	Wyckoff and Posnjak [1] 1922.
1912	1931 1-0801 1-0793	3. 12 1. 91 1. 63	Molybde- num.	Hanawalt, Rinn, and Frevel [2] 1938.

Additional published patterns

Source	Radiation	Wave- length
Barth and Lunde [3] 1922	Copper	1. 539A

NBS sample. The cuprous-chloride sample used for the NBS pattern was obtained from the Baker Chemical Co. The sample was washed with glacial acetic acid to remove cupric chloride and dried with ether. Spectrographic analysis at the NBS showed the following impurities: 0.001 to

0.01 percent each of silver, aluminum, calcium, magnesium, silicon, and tin; and 0.0001 to 0.001 percent each of barium, iron, and nickel. The refractive index of the NBS sample is above 1.93, but the exact value could not be resolved.

Interplanar spacings and intensity measurements. The d-spacings for the Wyckoff and Posniak patterns were reduced to angstroms, and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units. The d-spacings for the Barth and Lunde pattern were calculated from Bragg angle data.

The three strongest lines for each of the patterns

are as follows:

	1	2	3
Wyckoff and Posnjak Hanawalt, Rinn, and Frevel Barth and Lunde Swanson, Fuyat, and Ugrinic	111 111 111 111	220 220 220 220 220	311 311 311 311

Lattice constant. Wyckoff and Posnjak [1] determined the structure in 1922. The space group is T_d-F₄3m with zinc-sulfide-type structure and 4(CuCl) per unit cell.

Several unit-cell values were converted from

Copper(I) Chloride (nantokite), CuCl (cubic)

hkl	·	1922 off and P		Frevel		1925 Barth and Lunde Cu, 1.5405 A			Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C			
	d	I	a	d	I	a	d	I	а	d	I	a
111 200 220 311 400 331 422 511 440 531	A 3. 17 1. 92 1. 64 1. 26 1. 14	100 	5. 49 5. 43 5. 44 5. 49 5. 58	A 3. 13 2. 71 1. 91 1. 63 1. 356 1. 243 1. 106 1. 045	100 8 60 30 6 8 6 4	5. 42 5. 42 5. 40 5. 41 5. 424 5. 418 5. 430	A 3. 123 1. 913 1. 628 1. 355 1. 243 1. 104 1. 042 0. 957 . 914	100 100 80 30 40 60 40 20 60	A 5. 409 5. 411 5. 399 5. 420 5. 418 5. 408 5. 414 5. 407	A 3. 127 2. 710 1. 915 1. 633 1. 354 1. 1054 1. 10422 0. 9574 . 9154 . 8564	100 8 555 32 6 9 8 5 2 4	A 5. 416 5. 420 5. 416 5. 416 5. 416 5. 416 5. 415 5. 415 5. 416 5. 416 5. 416
Averag	e of last fi	ve lines_	5. 49			5. 420			5. 412			5. 416

a This line is from a second pattern not containing NaCl standard.

kX to angstrom units for comparison with the NBS values.

Lattice constants

		A
1922	Wyckoff and Posnjak [1]	5.50
1925	Parth and Lunde [3]	5.418
1942	Vegard and Skofteland [4]	5.4166
1953	Swanson, Fuyat, and Ugrinic_	5.416 at 25° C

The thermal expansion in the room-temperature range is approximately 30×10^{-6} , according to Klemm, Tilk, and Müllenheim [5]. The density of cuprous chloride calculated from the NBS lattice constant is 4.138 at 25° C.

References

- R. W. G. Wyckoff and E. Posnjak, The crystal structures of the cuprous halides, J. Am. Chem. Soc. 44, 30–36 (1922).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] T. Barth and G. Lunde, Lattice constants of the cuprous and silver halides, Norsk. Geol. Tidsskr. 8, 281–292 (1925).
- [4] L. Vegard and G. Skoftland, Röntgenometrische Untersuchungen der aus den substanzen CuCl, CuBr, und CuI gebildeten binären Mischkrystallsysteme, Chem. Zentr. 1943 I, 1243–4 (1943) as abstracted from Arch. Math. Naturvidenskab. 45, 163–88 (1942).
- [5] W. Klemm, W. Tilk, and S. V. Müllenheim, Dilatometrische Messung der Wärmeausdehnung zersetzlicher kristallisierter Salze, Z. anorg. u. allgem. Chem. 176, 1–22 (1928).

Copper (I) Bromide, CuBr (cubic)

ASTM cards

Card n	umber	New index	Radiation	Source
Old	New	lines		
1598	1529 1-0651 1-0645	3. 37 2. 04 1. 75	Molybdenum, 0.712A.	Wyckoff and Posnjak [1] 1922.
1680	1671 1-0707 1-0683	3. 29 2. 01 1. 71	$Molybdenum_{\perp}$	Hanawalt, Rinn, and Frevel [2] 1938.

Additional published patterns

Source	Radiation	Wavelength
Barth and Lunde [3] 1925	Copper Κα.	1. 539 A

NBS sample. The cupric bromide used to prepare the NBS sample was obtained from the W. M. Welch Scientific Co. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent of aluminum; 0.001 to

0.01 percent cach of silver, calcium, chromium, iron, and titanium; 0.0001 to 0.001 percent each of barium, magnesium, nickel, and silicon; and less than 0.0001 percent cach of manganese and lead. The cupric bromide was heated at 200° C to produce cuprous bromide. Another sample produced by the action of a water solution of cupric bromide on copper gave an identical diffraction pattern. The refractive index of cuprous bromide is too high to be measured by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The d-spacings for the Barth and Lunde pattern were calculated from Bragg angle data; the d-spacings for the Wyckoff and Posnjak, and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Wyckoff and PosnjakHanawalt, Finn, and Frevel	111 111	$\frac{220}{220}$	311 311
Barth and Lunde Swanson, Fuyat, and Ugrinic	111 111	$\frac{220}{220}$	311 311

Lattice constant. The structure was determined by Davey [4] and by Wyckoff and Posnjak [1] both in 1922. The space group is T_d²-F43m with zinc-sulfide-type structure and 4(CuBr) per unit cell. An investigation of cuprous bromide by Hoshino [5] in 1952 disclosed three phases as follows: The gamma phase discussed in this report, which is stable at room temperature, converted to a hexagonal beta phase at 430° C and a body-centered cubic alpha phase at 480° C.

Several unit-cell values were converted from kX to angstrom units for comparison with the

NBS values.

		a	
1922 1925 1942	Wyckoff and Posnjak [1] Barth and Lunde [3] Vegard and Skofteland [6]	5.83 5.692 5.6921	
1952 1953	Hoshino [5]Swanson, Fuyat, and Ugrinic.	5.6909 5.6905 at	26° C

The density of cuprous bromide calculated from the NBS lattice constant is 5.170 at 26° C.

Copper (I) Bromide, CuBr (cubic)

hkl		1922 Vekoff a Posnjak Io, 0.712		1938 Hanawalt, Rinn, and Frevel Mo, 0.709 A			1925 Barth and Lunde Cu, 1.5405 A			1953 Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C		
	d	I	a	d	I	a	d	I	a	d	I	a
111 200 220 311 222	$\begin{array}{c} A \\ 3.37 \\ \hline 2.04 \\ 1.75 \\ \hline \end{array}$	100 80 60	A 5. 84 5. 77 5. 80	A 3. 30 2. 01 1. 71	100 67 50	A 5. 72 5. 69 5. 67	3. 26 2. 016 1. 719	100 90 70	A 5. 65 5. 701 5. 703	A 3. 285 2. 846 2. 012 1. 716 1. 643	100 3 59 36 1	A 5. 690 5. 692 5. 691 5. 691 5. 692
400 331 420 422 511	1. 31 1. 18	 20 	5. 71 5. 78	1. 423 1. 308 1. 162 1. 096	7 13 	5. 692 5. 701 5. 693 5. 695	1. 428 1. 308 1. 163 1. 096	20 40 50 40	5. 713 5. 702 5. 698 5. 695	1. 423 1. 306 1. 272 1. 1615 1. 0951	7 9 2 10 6	5. 692 5. 693 5. 689 5. 6902 5. 6903
440 531 600 620 533				1. 010 0. 964	3 3 	5. 713 5. 703	1. 009 0. 9626 	20 50 	5. 707 5. 695 5. 700	1. 0059 0. 9619 . 9484 . 8998 . 8678	3 4 2 3 1	5. 6902 5. 6907 5. 6904 5. 6908 5. 6905
622 444 711 640										. 8579 . 8214 . 7968 . 7891		5. 6907 5. 6908 5. 6903 5. 6903
	Average unit cell value for last five lines					5. 701			5. 699			5. 6905

References

R. W. G. Wyckoff and E. Posnjak, The crystal structures of the cuprous halides, J. Am. Chem. Soc. 44, 30–36 (1922).

[2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., April Ed. 10, 457-512 (1938)

Anal. Ed. 10, 457–512 (1938).
[3] T. Barth and G. Lunde, Lattice constants of the cuprous and silver halides, Norsk Geol. Tidsskr. 8, 281–292 (1925).

[4] W. P. Davey, The absolute sizes of certain monovalent and bivalent ions, Phys. Rev. 19, 248-251 (1922).

[5] S. Hoshino, Crystal structure and phase transition of some metallic halides. II. On the phase transition and the crystal structures of cuprous bromide, J. Phys. Soc. Japan 7, 560-4 (1952).

[6] L. Vegard and G. Skofteland, Röntgenometrische Untersuchungen der aus den Substanzen CuCl, CuBr, und CuJ gebildeten binären mischkristallsysteme, Arch. Math. Naturvidenskab. 45, 163–188 (1942).

ASTM cards

Old card num- ber	New card num- ber	New index lines	Radiation	Source		
1405	1315 1-0566 1-0561	3. 52 2. 15 1. 84	Molybdenum, 0.712 A.	Wyckoff and Posnjak [1] 1922.		
II-869	$ \begin{array}{c c} -869 & 1316 \\ 2-0389 \\ 2-0384 \end{array} $		Calculated pattern.	Waldo [2] 1935.		
1449	1384 1-0599 1-0581	3. 49 2. 14 1. 82	Molybdenum_	Hanawalt, Rinn, and Frevel [3] 1938.		

The Waldo pattern was calculated from unit-cell data by Barth and Lunde [4]. No intensities were given in the original reference, although a set of

intensity data appears on the ASTM cards.

Additional published patterns

Date	Source	Radiation	Wavelength
1922	Aminoff [5]	Iron	K _α 1.539 A.
1925	Barth and Lunde [4]	Copper	

NBS sample. The cuprous iodide used for the NBS pattern was obtained from the Fisher Scientific Co. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of aluminum and mercury; 0.001 to 0.01 percent each of barim, calcium, iron, magnesium lead, and silicon; and 0.0001 to 0.001 percent each of silver and tin. The refractive index of cuprous iodide is too high to be measured by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The d-spacings for the Aminoff and the Barth and Lunde patterns were calculated from Bragg angle data, and those for the Wyckoff, the

Waldo, and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units. The d-spacing of 2.001 A in the Aminoff pattern is not possible in the cuprous-iodide structure and does not belong in the pattern.

The three strongest lines for each of the patterns

are as follows:

	1	2	3
Wyckoff and Posnjak Waldo Hanawalt, Rinn, and Frevel Aminoff Barth and Lunde	111 111 220 220	220 220 311 422	311 311 422 531
Swanson, Fuyat, and Ugrinic	111	220	311

Lattice constant. The structure was determined by Wyckoff and Posnjak [1] in 1922. The space group is T_d^2 - $\overline{F43m}$ with sphalerite-type structure and 4(CuI) per unit cell. This gamma form is converted to the hexagonal beta form at 369° C, and to a cubic alpha form at 407° C, according to Miyake, Hoshino, and Takenaka [6].

A group of unit-cell values were converted from kX to angstrom units for comparison with the

NBS values.

Lattice constants

		a
1922 1922 1925 1942 1948 1952	Aminoff [5]	A 6.03 6.07 6.059 6.0549 6.06 6.0527 at 20° C 6.0507 at 26° C

The density of cuprous iodide calculated from the NBS lattice constant is 5.710 at 26° C.

Copper (I) Iodide (marshite), CuI (cubic)

	hkl	Wy Po	osnj	and ak	V	1935 Vald	0	Ha Ri	1938 naw nn, a	alt, and el		1922 Amino	off	Bar I	1925 rth and Junde	aı	nd U	, Fuyat, grinic
		Mo,	0.7	12 A		cula atter		Mo,	0.70	09 A	Fe,	1.935	97 A	Cu,	1.5405 A	Cu 	, 1.5 26°	405 A,
		d	I	a	d	I	a	d	I	a	d	I	a	d	$I \mid a$	d	I	a
	111 200 220	A 3. 51 2. 14			A 3. 50 3. 03 2. 14			A 3. 50 3. 02 2. 14	6	6.04	A 3. 431 2. 128	s	A 5. 94 6. 02	A 3. 506 (a) 2. 139	50 6. 073 10 100 6. 050	3.025	100 12 56	A 6. 050 6. 050 6. 050
1	311	1. 83	80	6. 10	1. 828		6.063	1. 82	$\bar{60}$	$\bar{6}.\ \bar{04}^{-}$	2. 001 1. 817		6. 03	1. 827	90 6. 059	1. 824	$\bar{3}\bar{2}$	6. 050
	$\begin{array}{c} 222 \\ 400 \\ 331 \\ 420 \\ 422 \end{array}$		20	6. 02	1. 750 1. 515 1. 385 1. 356 1. 236		6.037 6.064	1. 51 1. 389 1. 353 1. 235	$\frac{20}{4}$	6. 04 6. 055 6. 051 6. 050	1. 387 1. 354	ms W	6. 03 6. 046 6. 055 6. 045	1. 390	10 30 6. 044 50 6. 059 30 100 6. 050	1. 5127 1. 3881 1. 3529	11 4	6. 052 6. 051 6. 0505 6. 0504 6. 0507
	511 440 531 600 620				1. 166 1. 071 1. 024 1. 010 0. 959		6. 058 6. 058 6. 060	1. 164 1. 072 1. 022 0. 958	8	6. 048 6. 064 6. 046 6. 059	1. 068 1. 021	s s			80 6. 048 50 6. 047 100 6. 046 46 6. 054 80 6. 051	1. 0696 1. 0228 1. 0084	$\begin{array}{c} 3 \\ 6 \\ 1 \end{array}$	6. 0504 6. 0506 6. 0510 6. 0504 6. 0513
	533 622 444 711 640				-		6. 066 6. 063	. 923	 2	6. 063					60 6. 053 30 6. 051		<1 $\frac{1}{3}$	6. 0512 6. 0502 6. 0504 6. 0509 6. 0508
-	642			-				. 811 . 789		6. 0 69							4	6. 0510
	Average of five line			6. 07			6. 062			6. 058			6. 045		6. 051			6. 0507

a These lines covered by NaCl standards.

References

181its. ern ind

rns

311

422 531 311

aed ace. ure l is C. to

the

- [1] R. W. G. Wyckoff and E. Posnjak, The crystal structures of the cuprous halides, J. Am. Chem. Soc. 44, 30-36 (1922)
- [2] A. W. Waldo Identification of the copper ore minerals
- by means of X-ray powder diffraction patterns, Am. Mineralogist 20, 590 (1935).

 [3] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [4] T. Barth and G. Lunde, Lattice constants of the cuprous and silver halides, Norsk Geol. Tidsskr. 8, 281–292 (1925).
- [5] G. Aminoff, Über die Kristallstruktur von Jodsilber, Marshit (CuJ) und Miersit (4AgJ-CuJ), Geol. Fören, i Stockholm Förh. 41, 444-481 (1922).
- [6] S. Miyake, S. Hoshino, and T. Takenaka, On the phase transition in cuprous iodide, J. Phys. Soc. Japan 7, 19–24 (1952).
- [7] L. Vegard and G. Skoftland, Röntgenometric investigation of the series of binary solid solutions formed from the substances CuCl, CuBr, and CuI, Arch. Math. Naturvidenskab. 45, 163–88 (1942).
- [8] M. Mehmel, Kristallchemische Betrachtungen zur I. und VII. Gruppe des periodischen Systems der Elemente, Optik 3, 41-6 (1948).

ASTM cards. None.

Additional published patterns

Source	Radiation	Wave- length
Mark and Tolksdorf [1] 1925	Copper	Κα

NBS sample. The strontium chloride used for the NBS pattern was obtained from the Fisher Scientific Co. as the hexahydrate. Spectrographic analysis of the hexahydrate at the NBS showed the following impurities: 0.01 to 0.1 percent of calcium; 0.001 to 0.01 percent of magnesium; 0.0001 to 0.001 percent each of aluminum, barium. manganese, and silicon; and less than 0.0001 percent each of silver, copper, and iron.

The anhydrous salt, prepared by dehydrating the hexahydrate at 300° C, hydrated so readily that it was necessary to make the pattern in two sections, using a freshly dehydrated sample mounted in petrolatum for each part. The refractive index of the NBS sample was not determined because of this rapid hydration.

Interplanar spacings and intensity measurements. The d-spacings for the Mark and Tolksdorf pattern were calculated from Bragg angle data.

The three strongest lines for each of the patterns are as follows:

	1	2 .	3
Mark and TolksdorfSwanson, Fuyat, and Ugrinic	$\frac{220}{220}$	642 111	822 311

The Mark and Tolksdorf pattern contains a d-spacing of 2.260 angstrom units, which is not permissible in the strontium-chloride structure. Two d-spacings of 3.466 and 2.054 angstrom units are possible in the structure but are not present in the NBS pattern.

Lattice constant. The structure was determined by Mark and Tolksdorf [1] in 1925. The space group is O 5-Fm3m with calcium-fluoride-type structure and 4(SrCl₂) per unit cell.

Two unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a
1925 1926 1953	Mark and Tolksdorf [1] Ott [2] Swanson, Fuyat, and Ugrinic	A 7.01 6.979 at 20° C. 6.9767 at 26° C

The density of strontium chloride calculated from the NBS lattice constant is 3.101 at 26° C.

Strontium Chloride, SrCl₂ (cubic)

T					1						
			1925			1953					
			ark an olksdor			Swanson, Fuyat, and Ugrinic					
	hkl	Cu,	1.5418	3 A	Cu,	1.540 26° (05 A,				
		d	I	a	d	I	a				
į	111	A 4. 1	W	A 7. 1	$\begin{array}{c} A \\ 4. \ 03 \end{array}$	59	A 6. 98				
1	$\bar{2}\bar{2}\bar{0}$	3. 47 2. 39	VW S	6.75	2. 467	$1\bar{0}\bar{0}$	6. 978				
ł	$\bar{3}\bar{1}\bar{1}$	2. 26 2. 15	vvw w	7. 12	2. 104	44	6. 978				
	$ \begin{array}{r} $	2. 05 1. 72 1. 57 1. 41 1. 32	w ms ms ms	6. 87 6. 84 6. 91 6. 88	1. 745 1. 600 1. 424 1. 343	$ \begin{array}{c} \bar{20} \\ 17 \\ 28 \\ 12 \end{array} $	6. 980 6. 974 6. 976 6. 978				
l	440 531 620 533 444	1. 22 1. 17 1. 09	ms w ms	6. 92 6. 92 6. 91	1. 233 1. 1794 1. 1032 1. 0640 1. 0070	10 11 12 4 4	6. 975 6. 9774 6. 9772 6. 9771 6. 9767				
	711 642 731 800 733	0. 978 . 932 . 911 . 845	w s ms	6. 98 6. 97 6. 99 	0. 9769 . 9323 . 9083 . 8721 . 8523	7 14 7 3 2	6. 9765 6. 9767 6. 9768 6. 9768 6. 9764				
1	822 751	. 824	S 	6. 99	. 8222 . 8056	10 6	6. 9766 6. 9767				
		age of las	t five	6. 97			6. 9767				

References

 H. Mark and S. Tolksdorf, Über das Beugungsvermögen der Atome für Röntgenstrahlen, Z. Physik. 33, 681–687 (1925).

[2] H. Ott, Die Strukturen von MnO, MnS, AgF, NiS, SnJ₄, SrCl₂, BaF₂; Präzisionsmessungen einiger Alkalihalogenide, Z. Krist. 63, 222–230 (1926)

Rubidium Chloride, RbCl (cubic)

ASTM cards

Card n	umber	New	Radiation	Source		
Old	New	lines	Radiation	Source		
1721	1622 1-0684 1-0707	3. 25 3. 77 2. 29	Molybdenum, 0. 712 A.	Davey [1] 1923.		
	1660 3-0476 3-0458	3. 29 2. 34 3. 69	Copper, 1. 53923A	Olhausen [2] 1925.		
1677	1662 1-0702 1-0681	3. 29 2. 32 3. 80	Molybdenum	Hanawalt, Rinn, and Frevel [3] 1938.		

The following pattern made at -190° C is the same sodium-chloride-type structure as the room-temperature patterns listed above, but differs considerably due to contraction of the lattice.

Additional published patterns

Source	Radiation	Wave- length
Ott [5] 1924 Wasastjerna [6] 1944	Copper Copper	Α Κα

NBS sample. The rubidium chloride used for the NBS pattern was obtained from the Fairmount Chemical Co. Spectrographic analysis at the NBS showed the following impurities: 0.1 to 1.0 percent of potassium; 0.01 to 0.1 percent of calcium; 0.001 to 0.01 percent each of barium, cesium, sodium, and silicon; 0.0001 to 0.001 percent each of aluminum, chromium, copper, magnesium, molybdenum, and strontium; and less

than 0.0001 percent each of silver and iron. The refractive index of the NBS sample is 1.494.

Interplanar spacings and intensity measurements. The d-spacings for the Davey and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units; the d-spacings for the Olshausen, the Ott, and the Wasastjerna patterns were calculated from Bragg angle data.

The three strongest lines in each of the patterns are as follows:

	1	2	3
Davey	200 200	111 220	220
OlshausenHanawalt, Rinn, and Frevel	200	$\frac{220}{220}$	$\frac{111}{111}$
OttSwanson, Fuyat, and Ugrinic		$\frac{220}{220}$	111

The Wasastjerna pattern did not include intensity data.

Lattice constant. The structure was determined by Wyckoff [7] in 1921. The space group is O_h⁵-Fm3m with sodium-chloride-type structure and 4(RbCl) per unit cell.

Several unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

- 7		а
1921	Wyckoff [7]	A 6.61
1923 1923	Davey [1]	6.548 6.591
1924	Havighurst, Mack, and Blake [9].	6.584
1925 1926 1953	Olshausen [2] Ott [10] Swanson, Fuyat, and Ugrinic	6.587 6.548 at 20° C 6.5810 at 27° C

The density of rubidium chloride calculated from the NBS lattice constant is 2.818 at 27° C

Rubidium Chloride, RbCl (cubic)

		1923		01	1925 shaus		Hana	1938			1924 Ott			44 stjerna	Swans	19.	
hkl	1	Davey	Y	Oi	snaus	en		d Fre			Oii		wasas	stjerna		Ugr	
nnı	Mo,	0.70	9 A	Cu,	1.540	05 A	Mo	. 0.70	9 A	Cu,	1.54	05 A	Cu, 1.	5405 A	Cu, 1.	5405	A, 27
	d	I	a	d	I	a	d	I	a	d	I	a	d	a	d	I	a
	A		A	A		A	A		A	A		A	A	A	A		A
111	3. 76	67		3. 68	md	6. 37	3. 81		6. 60				3. 80	6. 58	3. 80	29	6. 58
200	3. 24	100		3. 29	s		3. 30		6. 60	3. 292		6. 584	3. 29		3. 291	100	
220	2. 28	67		2. 334			2. 32		6. 56	2. 325		6. 576			2. 327	65	6. 58
311	1. 967	17		1. 982			1. 98		6. 57	2. 000		6. 633		6. 577	1. 984	13	6. 58
222	1. 886	33	6. 53	1. 904	m	6, 60	1. 89	17	6. 55	1. 900	s	6. 582	1. 898	6. 575	1. 900	20	6. 58
400	1, 630	25	6 59	1. 644	md	6 50	1. 64	1.1	6, 56	1, 636	m	6. 544	1 644	6. 576	1. 645	9	6. 58
331	1. 494	17		1. 503			1. 50		6. 54	1. 000	111	0. 944	1. 509	6, 578	1. 510	4	
420	1. 460			1. 474			1. 471			1. 469	·s	6. 570		6. 578	1. 472	20	
422	1. 330			1. 341			1. 343			1. 342		6. 574			1. 343	14	
511		20		1. 263		6 56	1. 545	11	0. 575	1. 265		6, 573			1. 266	4	
011				1, 200		0. 00				1, 200	۵	0. 515	1, 200	0. 010	1. 200	-	0. 01
440				1, 161	w	6 57				1. 160	s	6 562	1 1624	6. 5755	1 1637	3	6. 58
531				1, 112		6. 58				1. 100		0. 002		6, 5763			6. 58
600							1. 097	6	6. 582	1, 095	s	6. 570		6, 5760			
620										1. 038				6. 5757			6, 58
533													1. 0028	6. 5758	1. 0034	1	
	1	7															
622				0.992	m	6, 58				0. 989	s	6. 560	0.9913	6. 5755	0.9920	3	6. 58
444]				6, 60								6. 5749		2	6, 58
711				. 918	m	6. 55								6. 5751	. 9215	1	6. 58
640										. 911				6. 5751	. 9126		6. 58
642				. 885	m	6. 62				. 878	s	6. 570	. 8787	6. 5756	. 8794	5	6. 58
															0		0
731														6. 5766			6. 58
800														6. 5760	. 8227	2	6, 58
733															. 8040		6. 58
820															. 7980	4	6. 58
				-													
	of the																
five li	nes		6, 52			6. 59			6.568			6. 567		6. 5757			6, 58

- [1] W. P. Davey, Precision measurements of crystals of
- the alkali halides, Phys. Rev. 21, 143-161 (1923). [2] S. v. Olshausen, Strukturuntersuchungen nach der Debye-Scherrer-Methode, Z. Krist. 61, 463-514
- Debye-Scherrer-Methode, Z. Krist. 61, 463-514 (1925).
 [3] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
 [4] G. Wagner and L. Lippert, Über polymorphe Umwandlungen bei einfachen Ionengittern. I. Versuche zur Umwandlung; NaCl→CsCl→Gitter, Z. physik. Chem. B33, 297-303 (1936)
 [5] H. Ott, Über eine Verwendung der Pulvermethode zur röntgenometrischen Präzisionsbestimmung von
- zur röntgenometrischen Präzisionsbestimmung von Gitterkonstanten, Sitzungsberichte der mathe-matisch-physikalischen Klasse der Bayerischen

- Akademie der Wissenschaften zu München 31-37
- (1924). [6] J. A. Wasastjerna, Eine röntgenometrische Untersuchung von Kaliumbromid und Rubidiumchlorid,
- Acta Soc. Sci. Fennicae n. s. A, 3, no. 6 (1944).

 [7] R. W. G. Wyckoff, The crystal structures of the alkali halides, J. Wash. Acad. Sci. 11, 429–434 (1921).
- [18] K. Spangenberg, Dichte und Lichtbrechung der Alkalihalogenide Z. Krist. 57, 494-534 (1923).
- [9] R. J. Havighurst, E. Mack, and F. C. Blake, Precision crystal measurements on some alkali and ammonium halides, J. Am. Chem. Soc. 46, 2368-2374 (1924).
- [10] H. Ott, Die Strukturen von MnO, MnS, AgF, NiS, SnJ₄, SrCl₂, BaF₂; Präzisionsmessungen einiger Alkalihalogenide, Z. Krist. 63, 222-230 (1926).

Rubidium Iodide, RbI (cubic)

ASTM cards

31-37

9-434

=	Card n	umber	New Index	Radiation	Source
	Old	New	lines	Radiación	Bource
	1272	1211 1-0521 1-0513	3. 66 2. 58 1. 63	Molybdenum_	Hanawalt Rinn, and Frevel [1] 1938.

Additional published patterns

Source	Radiation	Wave- length
Davey [2] 1923	Molyb- denum	0. 712A

NBS sample. The rubidium iodide used for the NBS pattern was obtained from the Fairmount Chemical Co. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of calcium, potassium, sodium, and phosphorous; 0.001 to 0.01 percent each of barium, cesium, magnesium, and silicon; 0.0001 to 0.001 percent each of silver, aluminum, and strontium; and less than 0.0001 percent each of beryllium, chromium, copper, iron, manganese, and lead. The refractive index of the NBS sample could not be measured because the rubidium iodide reacted with the index liquids.

Interplanar spacings and intensity measurements. The d-spacings for the Hanawalt, Rinn. and Frevel and the Davey patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Hanawalt, Rinn, and Frevel	200	220	$420 \\ 111 \\ 222$
Davey	200	220	
Swanson, Fuyat, and Ugrinic	200	220	

Lattice constant. The structure was determined by Wyckoff [3] in 1921. The space group is O5-Fm3m with sodium-chloride-type structure and 4(RbI) per unit cell.

Several unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

	Pattice constants	
		a
1921	Wwolcoff [2]	A 7. 37
1923	Wyckoff [3]	7. 324 7. 348
1924	Havighurst, Mack, and Blake [5].	7. 340
1953		7. 342 at 27° C

The density of rubidium iodide calculated from the NBS lattice constant is 3.564 at 27° C.

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
 W. P. Davey, Precision measurements of crystals of the chemical analysis of crystals.
- the alkali halides, Phys. Rev. 21, 143-161 (1923).

 [3] R. W. G. Wyckoff, The crystal structures of the alkali halides, J. Wash. Acad. Sci. 11, 429-434 (1921).
- [4] K. Spangenberg, Dichte und Lichtbrechung der Alkalihalogenide, Z. Krist. 57, 494-534 (1923).
 [5] R. J. Havighurst, E. Mack, and F. C. Blake, Precision
- crystal measurements on some alkali and ammonium halides, J. Am. Chem. Soc. 46, 2368-2374 (1924).

Rubidium Iodide, RbI (cubic)

hkl		1938 t, Rinn, ar Io, 0.709		I	1923 Davey Mo, 0.709	A	1953 Swanson, Fuyat and Ugrinic Cu, 1.5405 A, 27° C		
	d	I	a	d	I	a	d	I	a
	A		A	A		A	A		A
111	4. 25	4	7. 36	4. 22	14	7. 31	4. 24	8	7. 34
200	3. 67	100	7. 34	3. 68	100	7. 36	3. 67	100	7. 34
220	2, 58	80	7. 30	2. 58	$\frac{28}{7}$	7. 30	2. 595	60	7. 34
311	2. 20	4	7. 30	2. 20	7	7. 30	2. 214	4	7. 343
222	2. 11	20	7. 31	2. 11	14	7. 31	2. 119	19	7. 340
400	1. 83	15	7. 32	1. 821	7	7. 284	1. 835	9	7. 340
331							1. 684	2	7. 34
420	1. 63	32	7. 29	1. 629	14	7. 285	1. 642	18	7. 343
422	1. 496	16	7. 329	1. 487	14	7. 285	1. 498	11	7. 33
440	1. 294	4	7. 320	1. 287	7	7. 280	1. 298	4	7. 34:
600	1, 222	8	7. 332	1. 213	7	7. 278	1, 224	6	7. 34
620	1. 159	4	7. 330	1. 151	7	7. 280	1. 1610	5	7. 343
622	1. 105	4	7. 330	1. 097	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7. 277	1. 1068	3	7. 343
640				1. 010	7	7. 283	1. 0181	2	7. 343
642				0. 972	7	7. 274	0. 9808	2	7. 340
820				i			. 8903	3	7. 34
Average	e of last five I	ines	7. 328			7. 278			7, 34

Silver Chloride (cerargyrite), AgCl (cubic)

ASTM cards

Old card num- ber	New card num- ber	New index lines	Radiation	Source
2487	2644 1-1021 1-1013	2. 77 1. 96 3. 20	Molybdenum_	Hanawalt, Rinn and Frevel [1] 1938.
11–1777	2641 2-0855 2-0848	2. 77 1. 97 3. 20	Copper	Harcourt [2] 1942.

The Harcourt pattern was made by using copper radiation rather than molybdenum, as the ASTM card states.

Additional published patterns

Source	Radiation	Wave- length
Barth and Lunde [3] 1926	Copper	1.539 A

NBS sample. The silver chloride was prepared at the NBS by precipitation from a solution of silver nitrate by the addition of potassium chloride. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of aluminum and iron; 0.001 to 0.01 percent each of magnesium and silicon; 0.0001 to 0.001 percent each of calcium, copper, and lead; and less than 0.0001 percent of manganese. The refractive index is too high to be measured by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The *d*-spacings for the Barth and Lunde pattern were calculated from Bragg angle data; the Hanawalt, Rinn, and Frevel, and the Harcourt *d*-spacings were converted from kX to angstrom units. The Harcourt pattern contains a *d*-spacing at 2.81 A, which is not possible in the silver-chloride structure.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Hanawalt, Rinn, and Frevel Harcourt Barth and Lunde Swanson, Fuyat, and Ugrinic	200 200 200	220 200 600 220	111 220 220 111

Lattice constant. The structure was investigated by Davey [4] in 1922. The space group is O₅-Fm3m with sodium-chloride-type structure and 4(AgCl) per unit cell.

A group of unit-cell values were converted from kX to angstrom units for comparison with the NBS value.

-		
		a
1922	Davey [4]	5.53
	Wilsey [5]	5.551
	Broomé [6]	5.545
	Barth and Lunde [3]	5.556
1940	Wilman [7] (electron diffraction data).	5.558
1953	Swanson, Fuyat, and Ugrinic _	5.5491 at 26° C

The coefficient of expansion in the room-temperature range is 31.0×10^{-6} , according to Sharma [8].

The density of silver chloride calculated from the NBS lattice constant is 5.571 at 26° C.

Silver Chloride (cerargyrite), AgCl (cubic)

hkl	1938 Hanawalt, Finn, and Frevel Mo, 0.709 A			1942 Harcourt Cu, 1.5405 A			1926 Barth and Lunde Cu, 1.5405 A			1953 Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C		
	d	I	a	d	I	a	d	I	a	d	I	а
111	A 3. 21	40	A 5. 56	A 3. 21 2. 81	40 100	A 5. 56	A 3. 22	20	A 5. 58	A 3. 203	49	A 5. 548
200 220 311	2. 78 1. 96 1. 67	$ \begin{array}{r} \hline 100 \\ 75 \\ 20 \end{array} $	5. 56 5. 54 5. 54	2. 76 1. 97 1. 67	100 100 70 30	5. 52 5. 57 5. 54	2. 78 1. 95 1. 67	100 80 60	5. 57 5. 55 5. 54	2. 774 1. 962 1. 673	100 50 15	5. 548 5. 549 5. 549
$\begin{array}{c} 222 \\ 400 \\ 331 \\ 420 \\ 422 \end{array}$	1. 60 1. 388 1. 273 1. 243 1. 133	25 9 6 20 13	5. 54 5. 552 5. 549 5. 559 5. 551	1. 61 1. 398 1. 277 1. 248	40 20 20 40	5. 58 5. 59 5. 57 5. 58	1. 60 1. 389 1. 270 1. 243 1. 133	60 60 20 80 70	5. 55 5. 56 5. 54 5. 56 5. 55	1. 602 1. 387 1. 273 1. 241 1. 1326	$\begin{array}{c} 15 \\ 6 \\ 3 \\ 11 \\ 7 \end{array}$	5. 549 5. 548 5. 549 5. 550 5. 548
511 440 531 600 620	1. 067 0. 982 . 939 . 926 . 879	1 1 1 4 1	5. 544 5. 555 5. 555 5. 556 5. 559	0. 989 . 932 . 885	$ \begin{array}{c c} & 20 \\ & 20 \\ & 20 \\ & 20 \end{array} $	5. 60 5. 51 5. 60	1. 068 0. 982 . 938 . 926 . 878	40 40 40 100	5. 549 5. 555 5. 553 5. 558 5. 556	1. 0680 0. 9810 . 9380 . 9248 . 8774	3 2 2 3 3	5. 549 5. 549 5. 549 5. 548 5. 549
$\frac{533}{622}$. 838	<u>î</u>	5. 559	. 845	20	5. 54				. 8462 . 8366	2 3	5. 548 5. 549
	unit cell five lines		5. 544			5. 56			5. 554			5. 549

References

ure. mde

ains

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942).
- [3] T. Barth and G. Lunde, Beiträge zur Kenntnis der Mischkristalle, Z. physik. Chem. 122, 293–334 (1926).
- [4] W. P. Davey, The absolute sizes of certain monovalent and bivalent ions, Phys. Rev. 19, 248–251 (1922).
- [5] R. B. Wilsey, The crystalline structures of silver iodide, Phil. Mag. 46, 487–496 (1923).
- [6] B. H. Broomé, Röntgenographische Untersuchung einiger Mischkristalle der Systeme (Na, Ag) Cl und K(Cl, Br), Z. auorg. u. allgem. Chem. 143, 60-75 (1925).
- [7] H. Wilman, The structure and orientation of silver halides, Proc. Phys. Soc. (London) 52, 323–347 (1940).
- [8] S. S. Sharma, Thermal expansion of crystals; IV, Silver chloride, lithium fluoride, and magnesium oxide, Proc. Indian Acad. Sci. 32A, 268-274 (1950).

Silver Bromide (bromyrite), AgBr (cubic)

ASTM cards

Old card num- bers	New card num- bers	New index lines	Radiation	Source		
II-2970	3583 2-1265 2-1269	2. 00 1. 28 1. 17	Iron	Natta and Vecchia [1] 1933.		
2315	2455 1-0972 1-0950	2. 88 2. 03 1. 66	Molybdenum_	Hanawalt, Rinn, and Frevel [2] 1938.		

Additional published patterns

Source	Radiation	Wave- length
Barth and Lunde [3] 1925	Copper	1.539A

NBS sample. The silver bromide was prepared at the NBS by precipitation from a solution of silver nitrate by the addition of potassium bromide. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of aluminum and silicon; 0.001 to 0.01 percent each of iron, indium, and zirconium; and 0.0001 to 0.001 percent each of calcium, copper, and magnesium. The refractive index of silver bromide is too high to be measured by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The d-spacings for the Natta and Vecchia and the Barth and Lunde patterns were calculated from Bragg angle data; the Hanawalt, Rinn, and Frevel d-spacings were converted from kX to angstrom units. The first three lines of the Natta and Vecchia pattern are in poor agreement with the calculated pattern and could cause confusion in the identification of an unknown.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Natta and Vecchia Hanawalt, Rinn, and Frevel Barth and Lunde Swanson, Fuyat, and Ugrinic	220 200 200 200 200	420 220 220 220 220	422 222 420 222

Lattice constants. The structure was determined by Wilsey [4] in 1923. The space group is O_b-Fm3m with sodium-chloride-type structure. 4(AgBr) per unit cell.

Several unit-cell values were converted from kX to angstrom units for comparison with the NBS

value.

Lattice constants

		a
		A
1922	Davey [5]	5.79
1923	Wilsey [4]	5.780
1925	Barth and Lunde [3]	5.767
1940	Wilman [6] (electron diffraction data).	5.776
1951	Berry [7]	5.7745 at 25° C
1953		5.7745 at 26° C

The density of silver bromide calculated from the NBS lattice constant is 6.477 at 26° C.

- [1] G. Natta and O. Vecchia, Struttura e polimorfismo del cianuro di argento, Gazz. chim. ital. 63, 439-448
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
 [3] T. Barth and G. Lunde, Lattice constants of the Chemical Analysis helical Number Conference of the Chemical Conference of the Chemic
- cuprous and silver halides, Norsk Geol. Tidsskr. 8,
- 281 (1925). [4] R. B. Wilsey, The crystalline structures of silver bromide, Phil. Mag. 46, 487-96 (1923).
- [5] W. P. Davey, The absolute sizes of certain monovalent and bivalent ions, Phys. Rev. 19, 248-51 (1922)
- [6] H. Wilman, The structure and orientation of silver halides, Proc. Phys. Soc. (London) 52, 323 (1940). [7] C. R. Berry, Lattice defects in silver bromide, Phys. Rev. 82, 422-3 (1951).

Silver Bromide (bromyrite), AgBr (cubic)

	hkl	1933 Natta and Vecchia Fe, 1.93597 A		Natta and Vecchia Hanawalt, Rinn, and Frevel		1925 Barth and Lunde Cu, 1.5405 A			1953 Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C				
		d	I	a	d	I	a	d	I	a	d	I	a
	111 200 220 311 222 400 331 420 422 440 600 6620 622 441 640	A 2. 80 2. 20 2. 00	ms m vs vs vs ms	5. 60 6. 62 5. 68 5. 71 5. 72 5. 74 5. 76	A 2. 89 2. 03 1. 66 1. 444 1. 323 1. 292 1. 180 1. 021 0. 965 . 915 . 873	100 	5. 78 5. 75 5. 776 5. 767 5. 778 5. 778 5. 778 5. 781 5. 790 5. 787 5. 791	A 2. 875 2. 041 1. 661 1. 440 1. 290 1. 176 1. 019 0. 961 . 912 . 870	100 100 <10 50 30 70 60 20 60 50	A 5. 751 5. 755 5. 761 5. 770 5. 761 5. 764 5. 765 5. 765 5. 767 5. 769	A 3. 333 2. 886 2. 041 1. 742 1. 667 1. 444 1. 325 1. 291 1. 1787 1. 0207 0. 9624 9131 8705 8336 8007	7 100 56 2 15 7 7 7 13 9 3 4 4 3 3 2	A 5. 773 5. 772 5. 773 5. 778 5. 775 5. 776 5. 776 5. 774 5. 7744 5. 7744 5. 7750 5. 7742 5. 7742 5. 7740 5. 7742 5. 7750
A		e unit cel st five lir		a 5. 74			5. 785			5. 765			5. 7745

a Average of last three lines.

Cesium Iodide, CsI (cubic)

ASTM cards

oup ure,

Card n	umber	New	Radiation	Source		
Old	New	lines	Radiation			
1753	1768 1-0743 1-0722	3. 23 1. 86 2. 28	Molybde- num 0.712.	Davey [1]		
1768	1769 1–0744 1–0730	3. 22 1. 86 2. 27	Molybde- num.	Hanawalt, Rinn and Frevel [2] 1938.		

Additional published patterns

Source	Radiation	Wave- length
Wasastjerna [3] 1944	Copper	K_{α}

NBS sample. The cesium iodide used for the NBS pattern was obtained from the Harshaw Chemical Co. Chemical analysis at the NBS showed the following impurities: 0.0025 percent of potassium; 0.001 percent each of sodium, bromine, and chlorine; and less than 0.001 percent each of calcium and magnesium. The refractive index of the NBS sample could not be measured because the cesium iodide reacted with the index liquids.

Interplanar spacings and intensity measurements. The d-spacings for the Davey and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units; the Wasastjerna pattern was calculated from Bragg angle data.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Davey	110	211	200
Hanawalt, Rinn, and Frevel	110	211	200
Swanson, Fuyat, and Ugrinic	110	211	200

Lattice constant. The structure was determined by Wyckoff [4] in 1921. The space group is O¹-Pm3m with cesium chloride-type structure and 1(CsI) per unit cell.

Several unit-cell values were converted from kX to angstrom units, and the Rymer and Hambling value published in angstroms was converted from 20° to 26° C for comparison with the NBS values, using their value for the coefficient of expansion, 4.86×10^{-5} [5].

		а
1921 1923 1923 1923 1951 1953	Wyckoff [4]	A 4.56 4.571 4.567 4.532 4.5680 4.5679 at 26° C

The density of cesium iodide calculated from the NBS lattice constant is 4.525 at 26° C.

Cesium Iodide, CsI (cubic)

hkl	1923 Davey hkl Mo, 0.709		A	1938 Hanawalt, Rinn, and Frevel Mo, 0.709 A		1944 Wasastjerna Cu, 1.5418 A			1953 Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C			
	d	I	a	d	I	a	d	I	a	d	I	a
110 200 211 220 310	A 3. 22 2. 27 1. 857 1. 609 1. 439	100 40 80 25 30	A 4. 55 4. 54 4. 549 4. 551 4. 551	A 3. 23 2. 27 1. 86 1. 61 1. 438	100 15 38 10 13	A 4. 57 4. 54 4. 56 4. 55 4. 547	A 3. 23 2. 29 1. 86 1. 62 1. 44	 	A 4. 57 4. 58 4. 56 4. 58 4. 55	A 3. 230 2. 284 1. 865 1. 615 1. 445	100 20 33 18 8	A 4. 568 4. 568 4. 568 4. 569 4. 569
$\begin{array}{c} 222 \\ 321 \\ 400 \\ 411 \\ 420 \end{array}$	1. 314 1. 216 1. 137 1. 073 1. 016	$\begin{array}{c} 6 \\ 25 \\ 3 \\ 6 \\ 4 \end{array}$	4. 552 4. 550 4. 548 4. 552 4. 544	1. 220 1. 076	10 4	4. 565	1. 32 1. 22 1. 14 1. 08 1. 02		4. 57 4. 56 4. 56 4. 58 4. 56	1. 319 1. 221 1. 1421 1. 0766 1. 0215	$egin{array}{c} 4 \\ 10 \\ 2 \\ 6 \\ 3 \\ \end{array}$	4. 568 4. 568 4. 5684 4. 5676 4. 5683
332 422 510 521 440	0. 969 . 928 . 892 . 828	4 3 6 3	4. 545 4. 546 4. 548 4. 535				0. 975 . 933 . 896 . 834		4. 573 4. 571 4. 569 4. 568	0. 9740 . 9323 . 8957 . 8340 . 8075	$\begin{array}{c} 2 \\ 2 \\ 4 \\ 2 \\ 1 \end{array}$	4. 5685 4. 5675 4. 5674 4. 5679 4. 5679
530 611	. 778 . 737	$\frac{3}{2}$	4. 536 4. 543									
	Average of last five lines4.542					a 4. 559			4. 568			4. 5679

a Average of last three lines.

- [1] W. P. Davey, Precision measurements of crystals of
- the alkali halides, Phys. Rev. 21, 143-161 (1923).

 [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] J. A. Wasastjerna, Eine röntgenometrische Untersuchung von Natriumfluorid, Kaliumjodid und Caesiumiodid, Acta Soc. Sci. Fennicae n. s. A, 3, no. 7 (1944).
- [4] R. W. G. Wyckoff, The crystal structures of the alkali halides, J. Wash. Acad. Sci. 11, 429-434 (1921).
- [5] T. B. Rymer and P. G. Hambling, The lattice constant of cesium iodide, Acta Cryst. 4, 565 (1951).
- [6] G. L. Clark and W. Duane, A new method of crystal analysis and the reflection of characteristic X-rays, J. Opt. Soc. Amer. 7, 455-482 (1923).
- [7] K. Spangenberg, Dichte und Lichtbrechung der Alkalihalogenide, Z. Krist. 57, 494-534 (1923).

Mercury (I) Iodide, HgI (tetragonal)

ASTM cards

	Card number		New index Radiation		Source		
Ĭ	Old	New	lines	Tradiation	Source		
	1450	1380 1-0597 1-0591	3. 48 2. 23 2. 90	Molybdenum, 0. 710 A.	Havighurst [1] 1925.		
1		1395 3-0383 3-0376	3. 48 1. 11 2. 22	Iron, 1.9323 A.	Hylleraas [2] 1926.		
	1447	1381 1-0598 1-0580	3. 49 2. 23 2. 90	Molybdenum_	Hanawalt, Rinn, and Frevel [3] 1938.		

Additional published patterns. None.

NBS sample. The mercurous iodide used for the NBS pattern was obtained from the Fisher Scientific Co. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of aluminum, calcium, and sodium; and 0.0001 to 0.0001 percent each of silver, copper, iron, magnesium, lead, silicon, and tin. The refractive indices of mercurous iodide are too high to be determined by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The d-spacings for the Hylleraas pattern were calculated from Bragg angle data; d-spacings for the Havighurst pattern were converted from Mo K_{α} , 0.710 A, to Mo $K_{\alpha 1}$, 0.709 A; and the d-spacings for the Hanawalt, Rinn, and Frevel

pattern were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
HavighurstHylleraasHanawalt, Rinn, and Frevel Swanson, Fuyat, and Ugrinic	110 110 110 110	114 219 114 114	004 114 004 200

Lattice constants. The structure was first investigated by Hylleraas [2] in 1925. The space group is D_{4h}^{17} -14/mmm with mercurous-chloride-type structure and 4(HgI) per unit cell.

A group of unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1925 1925 1927 1953	Havighurst [1]	A 4. 93 4. 92 4. 93 4. 933	A 11. 63 11. 59 11. 66 11. 633 at
1953	Swanson, Fuyat, and Ugrinic.	4. 933	11. 633 at 26° C

The density of mercurous iodide calculated from the NBS lattice constants is 7.683 at 26°C.

Mercury (I) Iodide, HgI (tetragonal)

	199		199		19		195	
	Havig	hurst	$Hyll\epsilon$	Hylleraas		lt, Rinn revel	Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C	
hkl	Mo, 0.	709 A	Fe, 1.9373 A		Mo, 0	.709 A		
	d	I	d	I	d	1	d	I
101	A 4. 561	15	A		A 4, 55	20	4. 54	23
110	3. 480	100	3. 479	100	3. 50	100	3. 489	100
$\frac{103}{004}$	2. 901	30	2. 899	30	2. 91	25	3. 048 2. 909	$\frac{1}{28}$
200	2. 464	25	2. 459	60	2. 46	25	2. 467	30
114	2. 230	55	2. 225	80	2. 23	50	2. 234	45
$\begin{array}{c} 211 \\ 105 \end{array}$	2. 158 2. 098	6 30	2. 156 2. 100	10 50	2. 10	20	2. 168 2. 104	$\begin{array}{c} 5 \\ 20 \end{array}$
$\frac{204}{220}$	1. 876	30 20	1. 872	50 30	1.88	20 12	1. 881	20
	1. 736		1. 738		1. 74		1. 744	9
$\frac{215}{310}$	1. 592 1. 557	$\frac{20}{15}$	1. 596 1. 558	50 40	1. 60 1. 56	$\frac{12}{6}$	1. 600 1. 560	$\begin{array}{c} 12 \\ 7 \end{array}$
224 008	1. 491	20	1. 493	40	1. 493	10	1. 495	8
314	1. 449 1. 370	$\frac{4}{20}$	1. 373	60	$\overline{1.376}$	6	1. 454 1. 374	$<_{9}^{1}$
118	1. 336	10	1. 340	40	1. 336	4	1. 342	5
$\frac{217}{109}$	1. 251	20	1. 250	80	1, 250	10	1. 327 1. 250	$\frac{2}{5}$
400			1. 228	30	1. 200		1. 233	1
325	1. 178	7	1. 1786	30			1. 1794	2
$\frac{330}{404}$	1. 158 1. 136	4 4	1. 1610	20			1. 1624 1. 1351	1 1
219	1. 113	15	1. 1155	100	1. 116	6	1. 1152	6
$\frac{420}{334}$	1. 077	4					1. 1029 1. 0794	$\frac{2}{1}$
318	1. 062	4					1, 0636	2
309	1. 012	6					1. 0163	2
$\frac{329}{1 \cdot 0 \cdot 13}$							0. 9398 . 8804	$\frac{2}{1}$
419							. 8781	<1
2.1.13							. 8291	5

References

R. J. Havighurst, Crystal structure of the mercurous halides, Am. J. Sci. 10, 15-28 (1925).
 E. Hylleraas, Die Anordnung der Atome in den tetragonalen Kristallen der einwertigen Quecksilberhalogenide Hg₂Cl₂, Hg₂Br₂, Hg₂I₂. Berechnung der optischen Doppelbrechung von Hg₂Cl₂, Z. Physik. 36, 859-897 (1926).
 J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemi-

cal analysis by X-ray diffraction, Ind. Eng., Chem., Anal. Ed. ${\bf 10,\ 457-512}$ (1938).

[4] E. Hylleraas, Die Anordnung der Atome in den tetragonalen Kristallen Hg₂Cl₂, Hg₂Br₂, Hg₂I₂ und Berechnung der optischen Doppelbrechung von Hg₂Cl₂, Physik. Z. 26, 811 (1925).

[5] M. L. Huggins and P. L. Magill, The crystal structures of mercuric and mercurous iodides, J. Am. Chem.

Soc. 49, 2357-2367 (1927).

Thallium Chloride, TlCl (cubic)

ASTM cards

Card n	umber	New	Radiation	Source		
Old	New	lines	Radiation	Source		
2577	2677 1-1030 1-1046	2. 71 3. 82 1. 56	Molybdenum	Hanawalt, Rinn and Frevel [1] 1938.		

The following two indexed patterns made at -190° and 380° C are the same simple-cubic, cesium-chloride-type structure as the room-temperature form presented in this report, but differ considerably because of contraction and expansion of the lattices.

4-0709 4-0709	Iron, 1.9373A.	Wagner Lippert 1936.	and [2]
4-0729 4-0729	Copper, 1.5418A.	Wagner Lippert 1936.	and [2]

Additional published patterns

Source	Radiation	Wave- length
Lunde [3] 1925	Copper $K\alpha$	1.539 A

NBS sample. The thallium chloride was obtained from the Fairmount Chemical Co. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent of aluminum; 0.001 to 0.01 percent each of barium, calcium, magnesium, sodium, and silicon; 0.0001 to 0.001 percent each of copper, iron, and strontium; and less than 0.0001 percent each of silver, manganese, lead, and tin. The refractive index of thallium

chloride is too high to be measured by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The d-spacings for the Hanawalt, Rinn, and Frevel pattern were converted from kX to angstrom units; the d-spacings for the Lunde pattern were calculated from Bragg angle data.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Hannawalt, Rinn, and Frevel	110	100	211
Lunde	211	310	321
Swanson, Fuyat, and Ugrinic	110	100	211

Lattice constant. The structure was determined by Davey and Wick [4] in 1921. The space group is 0_h^1 -Pm3m with cesium-chloride-type structure and 1(TlCl) per unit cell.

Several unit-cell values were converted from kX to angstrom units and to 26° C, from the temperatures indicated in parentheses, for comparison with the NBS values. The coefficient of expansion in this temperature range, is 54.57×10⁻⁶, according to Straumanis, Ievins, and Karlsons [5].

Lattice constants

		a
1921	Davey and Wick [4]	A 3.86
1925 1937	Lunde [3]	3.847 (18° C) 3.8419 (25° C)
1939	Straumanis, Ievins, and Karlsons [5]	3.84256 (25° C)
1953 1953	Hambling [7] Swanson, Fuyat, and Ugrinic_	3.84270 3.8421 at 26° C
	, , , ,	

The density of thallium chloride calculated from the NBS lattice constant is 7.021 at 26° C.

Thallium Chloride, TlCl (cubic)

hkl	Hanawal	1938 t, Rinn, ar Mo, 0.709		(1925 Lunde Cu, 1.5405	A		d Ugrinic 26° C	
	d	I	a	d	I	a	d	I .	a
100 110 111 200 210	A 3. 83 2. 72 2. 21 1. 91 1. 71	40 100 20 20 20 20	A 3. 83 3. 85 3. 83 3. 82 3. 82	A 3. 84 2. 714 2. 225 1. 924 1. 721	m vs w s	A 3. 84 3. 84 3. 853 3. 847 3. 849	A 3. 84 2. 717 2. 218 1. 921 1. 718	60 100 22 18 25	A 3. \$4 3. 842 3. 842 3. 842 3. 842 3. 841
211 220 300 310 311	1. 56 1. 358	30 20 	3. 82 3. 841	1. 569 1. 364 1. 282 1. 217 1. 161	vvs vs vs vvs m	3. 844 3. 858 3. 846 3. 848 3. 851	1, 568 1, 358 1, 281 1, 215 1, 1583	$\begin{array}{c} 35 \\ 9 \\ 9 \\ 12 \\ 7 \end{array}$	3. 841 3. 841 3. 843 3. 842 3. 8416
$\begin{array}{c} 222 \\ 320 \\ 321 \\ 400 \\ 410 \end{array}$				1. 111 1. 065 1. 028 0. 962 . 932	w w vvs vw m	3. 850 3. 841 3. 847 3. 851 3. 844	1. 1091 1. 0656 1. 0268 0. 9606 . 9318	$\begin{bmatrix} 5\\ 3\\ 12\\ < 1\\ 5 \end{bmatrix}$	3. 8420 3. 8421 3. 8419 3. 8424 3. 8419
411 331 420 421 332				. 906	VS W	3. 845 3. 849	. 9056 . 8814 . 8591 . 8384 . 8192	6 3 4 3 3	3. 8420 3. 8419 3. 8420 3. 8420 3. 8424
422							. 7843	4	3. 8423
Averag	ge of last fiv	e lines	3. 83			3. 847			3. 8421

- [1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457–512 (1938).
- [2] G. Wagner and L. Lippert, Über polymorphe Umwandlung bei einfachen Ionengittern. I. Versuche zur Umwandlung von CsCl- in NaCl-Gitter durch Erhitzen, Z. physik. Chem B31, 263-274 (1936).
- [3] G. Lunde, Bemerkungen über die Kristallstruktur von Thalliumchlorür und Thalliumbromür, Z. physik. Chem. 117, 51-56 (1925); Norsk Geol. Tidsskr. 8, 217-219 (1925).
- [4] W. P. Davey and F. G. Wick, The crystal structure of two rare halogen salts, Phys. Rev. 17, 403-404 (1921).
- [5] M. Straumanis, A. Ievinš, and K. Karlsons, Hängt die EGitterkonstante von der Wellenlänge ab? Präzisions-bestimmungen von Gitterkonstanten des LiF, NaF, As₂O₃, TlCl, und TlBr, Z. physik. Chem. B42, 143-152 (1939).
- [6] K. Moeller, Über Präzisionsbestimmungen von Gitterkonstanten nach der Methode von Debye-Scherrer, Z. Krist. A97, 170-196 (1937).
- [7] P. G. Hambling, The lattice constants and expansion coefficients of some halides, Acta Cryst. 6, 98 (1953).

Thallium Iodide, TlI (orthorhombic)

ASTM cards. None. Additional published patterns

Source	Radiation	Wave- length
Barth and Lunde [1] 1926	Copper	

NBS sample. The thallium iodide used for the NBS pattern was prepared by F. P. Phelps of the NBS by precipitation from solutions of thallium sulfate and potassium iodide. Spectrographic analysis at the NBS of the thallium sulfate used is as follows: 0.0001 to 0.001 percent each of calcium, silicon, and tin, and less than 0.0001 percent each of magnesium and lead. The precipitate was washed until free of sulfate, and all of the impurities except silicon should have been removed. The refractive indices of thallium iodide are too high to be measured by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The Barth and Lunde data were converted from Bragg angles to d-spacings in angstroms.

The three strongest lines for each of the patterns are as follows:

1	1	2	3
Barth and Lunde	313 111	311 113	004

Lattice constants. The structure was determined by Helmholz [2] in 1936. The space group is D₃₇-Amma (Cmcm) with 4(TII) per unit cell,

B42,

The Helmholz unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

	a	b	c
Helmholz [2] Swanson, Fuyat, and Ugrinic.		A 4. 58 4. 582	A 12.95 12.92 at 25° C

The density of thallium iodide calculated from the NBS lattice constants is 7.078 at 25° C.

Thallium Iodide, TlI (orthorhombic)

	192	6	1	.953	
	Barth Lune		Swanson, Fuyat, and Ugrinic		
hkl	Cu, 1.5	405A	Cu, 1.5405A, 2 5° C		
	d	I	d	I	
002 011	A		A 6. 45 4. 32	2 11	
102 111 004	3. 559 3. 152	$\begin{array}{c} -\overline{40} \\ 20 \end{array}$	4. 07 3. 332 3. 228	$\begin{array}{c} 9 \\ 100 \\ 52 \end{array}$	
104 113 200 020 015	2. 719 2. 647 2. 308 2. 264	50 10 30 20	2. 749 2. 692 2. 624 2. 291 2. 248	13 73 28 17 8	
006 115 204 122 024	2. 077 2. 051 1. 876	-1- -10 50 -1- 30	2. 153 2. 069 2. 036 1. 998 1. 869	2 17 33 2 17	
124 220 215 117 311	1. 718 1. 690 1. 624	50 10 80	1. 7602 1. 7259 1. 7083 1. 6271 1. 6218	$\begin{array}{c} 4 \\ 12 \\ 7 \\ 20 \\ 10 \end{array}$	
008 108 313 224 131	1. 527 1. 463	100 50	1. 6148 1. 5431 1. 5285 1. 5221 1. 4574	19 5 12 18 7	
217 133 315 208	1. 431 1. 390 1. 376 1. 316	$ \begin{array}{r} 10 \\ 40 \\ \hline 10 \\ 40 \\ \end{array} $	1. 4341 1. 3886 1. 3817 1. 3753	2 8 5 4	
	1. 291 1. 219 1. 180 1. 148 1. 115	40 50 40 60 40			
	1. 078 1. 055 1. 020 0. 997	60 60 30 50			

- T. Barth and G. Lunde, Beiträge zur Kenntnis der Mischkristalle, Z. Physik. Chem. 122, 293-334 (1926).
 L. Helmholz, The crystal structure of the low tempera-
- [2] L. Helmholz, The crystal structure of the low temperature modification of thallous iodide, Z. Krist. 95A, 129-137 (1936).

Bismuth Oxychloride 5 (bismoclite), BiOCl (tetragonal)

ASTM cards

Card number Old New		New index lines	Radiation	Source
	3782 3-1125 3-1126	1. 66 2. 67 2. 46	Iron	British Museum.
	3768 3-1123 3-1125	1. 66 7. 2. 67	Copper	British Museum.
1486	1371 1-0595 1-0600	3. 45 2. 67 7. 4	Molybdenum_	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The bismuth oxychloride was obtained from the Fisher Scientific Co. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of lead and silicon; 0.0001 to 0.001 percent each of aluminum, calcium, iron, and magnesium; and less than 0.0001 percent each of silver and barium. The refractive indices of the NBS sample are too high to be measured by the usual grain-oil immersion methods.

Interplanar spacing and intensity measurements. The d-spacing for the three ASTM card patterns were converted from kX to angstrom units. The British Museum pattern obtained from bismoclite, contains a d-spacing at 2.96 A, which is not in accord with the bismuth oxychloride structure.

The three strongest lines for each of the patterns are as follows:

	1	2	3
British Museum	104	102	003
	104	001	102
	101	102	001
	101	102	110

Lattice constants. The structure was determined by Bannister and Hey [2] in 1934. The space-group is D_{4h}-P4/nmm with lead-fluochloride-type structure and 2(BiOCl) per unit cell.

Two groups of unit-cell values were converted from kX to angstrom units for comparison with NBS values.

Lattice constants

		a	с
1935 1941 1953	Bannister and Hey [3] Sillén [4] Swanson, Fuyat, and Ugrinic.	3. 90 3. 891 3. 891	7. 38 7. 362 7. 369 at 26° C

The density of bismuth oxychloride calculated from the NBS lattice constants is 7.752 at 26° C.

- [1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemi-
- [1] J. D. Hanawart, H. W. Khill, and E. K. Frever, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
 [2] F. A. Bannister and M. H. Hey, The crystal structure of BiOCl, BiOBr and BiOI, Nature 134, 856 (1934).
 [3] F. A. Bannister and M. H. Hey, The crystal structure of the bismuth oxyhalides, Mineralog. Mag. 24, 56 (1937).
- 49-58 (1935). [4] L. G. Sillén, X-ray studies on BiOCl, BiOBr and BiOI, Svensk Kem. Tidskr. 53, 39-43 (1941).

⁵ Bismoclite, as defined by the Dana System of Mineralogy, 5th Ed., is bismuth oxychloride or any member of the bismuth oxychloride-oxyhydroxide solid-solution series containing more than 50 percent of bismuth oxychloride. The bismoclite of this report is the end member, BiOCl.

Bismuth Oxychloride (bismoclite), BiOCl (tetragonal)

						038	198	
,,,	British	Museum	British	Museum		lt, Rinn, Frevel	Swanson and U	
hkl	Fe, 1.9	93597 A	Cu, 1.	.5405 A	Mo, 0	.709 A	Cu, 1.5405	A, 26° C
	d	I	d	I	d	I	d	I
001 002 101	A 7. 2 3. 68 3. 44 2. 96	40 60 60 20	A 7. 3. 74 3. 42	80 70 60	A 7. 4 3. 72 3. 46	70 8 100	A 7. 38 3. 69 3. 442	38 16 100
110	2. 76	40	2. 76	50	2. 76	40	2. 753	76
102 111 003 112 103	2. 68 2. 46 2. 20 2. 02	80 80 40 20	2. 68 2. 45 2. 18	80 80 40	2. 68 2. 45 2. 20	80 8 24	2. 677 2. 577 2. 457 2. 205 2. 076	$97 \\ 10 \\ 12 \\ 28 \\ 1$
$200 \\ 201 \\ 113 \\ 202 \\ 211$	1. 94 1. 83 1. 69	60 80 	1. 94 1. 88 1. 83 1. 72 1. 69	40 20 70 20 40	1. 94 1. 87 1. 83	$egin{array}{c} 24 \\ 4 \\ 24 \\ \\ 24 \\ \end{array}$	1. 946 1. 881 1. 833 1. 720 1. 694	34 9 25 8 25
104 212 203 005 220	1. 66 1. 57 1. 53 1. 48 1. 38	100 60 50 80 60	1. 66 1. 57 1. 53 1. 48 1. 38	100 60 60 60 80	1. 66 1. 57 1. 52	16 36 16 	1. 665 1. 574 1. 528 1. 473 1. 376	$ \begin{array}{c} 17 \\ 31 \\ 11 \\ 2 \\ 12 \end{array} $
221 204 115 222 301	1. 36	40	1. 34 1. 30	20 40			1. 352 1. 338 1. 299 1. 289 1. 278	3 2 3 3 6
214 310 302 311 223	1. 27 1. 23 1. 20	60 80D 40	1. 27 1. 23 1. 20	70 80 20	1. 266 1. 227 1. 202	$ \begin{array}{c} 16 \\$	1. 266 1. 231 1. 224 1. 214 1. 200	14 8 7 2 5
205 312 215 116 313	1. 18 1. 17 1. 15 1. 13 1. 10	40 40 20 80 60	1. 18 1. 17 1. 13 1. 10	40 20 80 50	1. 167 1. 123 1. 097	8 	1. 1745 1. 1672 1. 1246 1. 1218 1. 1001	3 6 5 7 9
321 304 206 322 314	1. 07 1. 06 1. 04 1. 03 1. 02	60 60 80 40 60	1. 07 1. 06 1. 04 1. 02	40 40 80 70	1. 067 1. 038	8 	1. 0678 1. 0606 1. 0384 1. 0358 1. 0232	$\begin{array}{c} 7 \\ 4 \\ 6 \\ 11 \\ 3 \end{array}$
107 400 401 315 411							1. 0158 0. 9728 . 9639 . 9446 . 9361	${{<}^3_5\atop{<}^5_1\atop{3\atop5}}$
324						-	. 9311	7

ASTM cards

Card n	umber	New	D. 11.41.	G
Old	New	index lines	Radiation	Source
2820	3020 1-1112 1-1107	2. 53 2. 17 1. 65	Molybdenum 0.712 A.	Bartlett and Langmuir [1] 1921.
927	0952 1-0424 1-0416	4. 18 3. 62 2. 56	Molybdenum 0.710 A.	Havighurst, Mack, and Blake [2] 1924.
931	0950 1-0423 1-0415	4. 18 3. 62 2. 56	Molybdenum_	Hanawalt, Rinn, and Frevel [3] 1938.

Additional published patterns. None.

NBS sample. The ammonium iodide was obtained from the Baker Chemical Co. The sample was sublimed in an evacuated tube at 150° C before being used for the NBS pattern. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of calcium, magnesium, and zinc; 0.0001 to 0.001 percent each of aluminum, chromium, copper, iron, and silicon; and less than 0.0001 percent of silver.
The refractive index of the NBS sample is 1.703.
Interplanar spacings and intensity measure-

ments. The d-spacings for the Havighurst, Mack, and Blake pattern were calculated from Bragg angle data; the d-spacings for the Bartlett and Langmuir were reduced to angstrom units and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

2 3 1 311 220 331 220200111 220 200 111 220 Swanson, Fuyat, and Ugrinic_____ 200

The structure was deter-Lattice constant. mined by Bartlett and Langmuir [1] in 1921. The space group is O_h-Fm3m with sodium-chloridetype structure and 4(NH₄I) per unit cell. are two low-temperature forms of ammonium iodide, a cesium-chloride-type structure (simple cubic) at -17° C, according to Simon and Simson [4] and a phosphonium-iodide-type structure (tetragonal) at -100° C, according to Ketelaar

[5]. Several unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

T	
Lattice	constants

			a	
1921 1924	Vegard [6]Bartlett and Langmuir [1]Havighurst, Mack, and Blake [2]. Swanson, Fuyat, and Ugrinic.	7.2438	A at 26°	C

The density of ammonium iodide calculated from the NBS lattice constant is 2.514 at 26° C.

- [1] G. Bartlett and I. Langmuir, The crystal structures of the ammonium halides above and below the transition temperatures, J. Am. Chem. Soc. 43, 84-91 (1921).
- [2] R. J. Havighurst, E. Mack, and F. C. Blake, Precision crystal measurements on some alkali and ammonium halides, J. Am. Chem. Soc. 46, 2368-2374 (1924).
- [3] J. D. Hanawalt, H. W. Rinn, and L. K. Fervel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457–512 (1938).
 [4] F. Simon and C. V. Simson, Ein Umwandlungspunkt der Ammoniumsalze zwischen —30 and —40 Grad,
- Naturwissenschaften 14, 880 (1926)
- [5] J. A. Ketelaar, Crystal structure of the low temperature modification of ammonium bromide, Nature 134, 250 (1934)
- [6] L. Vegard, Results of crystal analysis IV, Phil. Mag. 33, 395-428 (1917).

Ammonium Iodide, NH4I (cubic)

hkl	1921 Bartlett and Langmuir Mo, 0.709 A		a	1924 ghurst, I and Blak	e	a	1938 awalt, F nd Frev	el	1	1953 anson, F and Ugri 1.5405 A	nic	
	d	I	a	d	I	а	d	I	a	d	I	a
111 200 220 311 222	A 2. 53 2. 17 2. 09	100 100 30	A 7. 16 7. 19 7. 23	A 4. 18 3. 62 2. 566 2. 187 2. 092	100 90 80 50 18	A 7. 24 7. 24 7. 258 7. 253 7. 247	A 4. 18 3. 62 2. 56 2. 18 2. 08	100 100 80 48 20	A 7. 24 7. 24 7. 24 7. 24 7. 23 7. 21	A 4. 19 3. 63 2. 568 2. 190 2. 098	100 93 70 44 20	A 7. 26 7. 26 7. 263 7. 263 7. 268
400 331 420 422 511	1. 80 1. 65 1. 61 1. 47 1. 38	20 80 80 50 40	7. 19 7. 20 7. 19 7. 21 7. 20	1. 813 1. 664 1. 480 1. 395	8 15 20 8	7. 252 7. 253 7. 251 7. 248	1. 81 1. 66 1. 62 1. 476 1. 391	10 16 30 13 13	7. 24 7. 24 7. 24 7. 231 7. 228	1. 816 1. 666 1. 624 1. 482 1. 397	10 18 19 12 10	7. 264 7. 262 7. 263 7. 260 7. 259
$440 \\ 531 \\ 600 \\ 620 \\ 533$	1. 27 1. 22 1. 20 1. 14 1. 10	20 40 40 20 15	7. 17 7. 24 7. 21 7. 22 7. 18	1. 284 1. 226 1. 208 1. 106	$\begin{array}{c} 2 \\ 5 \\ 2 \\\frac{1}{1} \end{array}$	7. 263 7. 253 7. 247 7. 253	1. 278 1. 223 1. 208 1. 144	3 4 4 3	7. 229 7. 235 7. 248 7. 235	1. 283 1. 227 1. 210 1. 1481 1. 1076	$\begin{array}{c} 3 \\ 7 \\ 5 \\ 4 \\ 2 \end{array}$	7. 258 7. 259 7. 260 7. 261 7. 2630
$622 \\ 444 \\ 711 \\ 640 \\ 642$	1. 08 1. 04 1. 01 0. 966	15 5 15 10	7. 18 7. 21 7. 21 7. 23	1. 092 1. 015 0. 968	2 4 3	7. 244 7. 246 7. 246	1. 012	 2 	7. 227	1. 0946 1. 0478 1. 0170 1. 0069 0. 9704		7. 2607 7. 2594 7. 2628 7. 2608 7. 2618
731	. 936	10	7. 19							. 9454	4	7. 2617
Averag	e of last fi	ve lines_	7. 20			7. 247			7. 235			7. 2613

Strontium Chloride Hexahydrate, SrCl₂·6H₂O (hexagonal)

ASTM cards

Card number		New Index Lines	Radiation	Source
Old	New	Lines		
II-660	1080 2-0306 2-0302	3. 88 3. 44 2. 61	Copper, K_{α}	Herrmann [1] 1931.
200	0325 1–0131 1–0114	6. 9 2. 64 2. 20	Molybdenum_	Hanawalt, Rinn, and Frevel [2] 1938.
	1287 3-0357 3-0349	3. 54 2. 64 2. 20	Iron	Jensen [3] 1940.

From the original literature it seems clear that the Jensen ASTM card is a combination of powder-pattern intensities and calculated Bragg angle data. Many d-spacings, not listed on the ASTM card of the original article, have an observed intensity of zero and are not included in the table.

Additional published patterns. None.

NBS sample. The strontium-chloride hexahydrate used for the NBS pattern was obtained from the Fisher Scientific Co. The water content, determined by heating the sample at 300° C, was 99.6 percent of the theoretical loss for the hexahydrate. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent of calcium; 0.001 to 0.01 percent of nagnesium; 0.0001 to 0.001 percent each of aluminum, barium, manganese, and silicon; and less than 0.0001 percent each of silver, copper, and iron. The refractive indices of the NBS sample are as follows: ϵ =1.487 and ω =1.536, with negative optical sign.

Interplanar spacings and intensity measurements. The d-spacings for the Herrmann and the Jensen patterns were calculated from Bragg angle data; the d-spacings for the Hanawalt, Rinn, and Frevel pattern were converted from kX to

angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Herrmann	110	101	201
Hanawalt, Rinn, and Frevel	100	201	211
Jensen	101	201	211
Swanson, Fuyat, and Ugrinic	100	101	110

The Herrmann and the Hanawalt, Rinn, and Fievel patterns contain a d-spacing of 1.44 angstrom units, which is not possible in the structure.

Lattice constants. The most recent structure determination was made by Jensen [3] in 1940. The space group is D₃²-P321 with 1(SrCl₂·6H₂O) per unit cell. This compound is a prototype for other similar structures.

Two sets of unit-cell data were converted from kX to angstrom units for comparison with the

NBS values.

Lattice constants

		a	c
1930 1940 1953	Herrmann [4] Jensen [3] Swanson, Fuyat, and Ugrinic.	A 7. 922 7. 956 7. 963	A 4.08 4.116 4.125 at 26° C

The density of strontium chloride hexahydrate calculated from the NBS lattice constants is 1.954 at 26° C.

- Z. Herrmann, Über die Strukturen der Bariumjodidund Calciumjodid-hexahydrate. Vollständige struktur der Erdalkalihalogenid-hexahydrate: Typus SrCl₂ 6H₂O, Z. anorg. u. allgem. Chem. 197, 339-349 (1931).
- [2] J. D. Hangwalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] A. Tovbarg Jensen, On the structure of SrCl₂·6H₂O, Kgl. Danske Videnskab selskab. Mat. fys. Medd. 17, no. 9, 27 pp. (1940).
- [4] Z. Herrmann, Über die Struktur des Strontium chlorid-Hexahydrates, Z. anorg. u. allgem. Chem. 187, 231-236 (1930).

Strontium Chloride Hexahydrate, SrCl₂· 6H₂O (hexagonal)

	19	931	19	938	19	040	19	53
	Herr	mann		lt, Rinn, Frevel	Jen	isen	Swanson and U	
hkl	Cu, 1.	5418 A	Mo, 0.709 A		Fe, 1.9	3597 A	Cu, 1.540	5 A, 26° (
	d	I	d	I	d	I	d	I
100 110 101 200 111	A 3. 89 3. 448 2. 826	s s	A 6. 9 3. 98 3. 55	100 88 88 88	A 6. 90 3. 98 3. 536 	ms ms s	A 6. 89 3. 98 3. 539 3. 446 2. 865	100 87 89 5 31
201 210 300 211 002	2. 611 2. 274 2. 189	s m s	2. 65 2. 29 2. 20 2. 06	100 75 100 20	2. 642 2. 604 2. 297 2. 201 2. 058	s vw ms s mw	2. 647 2. 606 2. 298 2. 204 2. 062	70 10 50 78 12
301 220 102 310 112 202	} 1. 971 1. 910 1. 818	m w s	1. 98 1. 91 1. 83	40 10 20	$ \begin{cases} 2.006 \\ 1.990 \\ 1.973 \\ 1.912 \\ 1.828 \\ 1.767 \end{cases} $	w w mw w w mw	2. 008 1. 992 1. 976 1. 912 1. 831 1. 770	7 12 15 6 9 5
$ \begin{array}{r} 311 \\ 212 \\ 401 \\ 302 \\ 410 \end{array} $	1. 728 1. 621	w m	1. 73 1. 62 1. 59 1. 53 1. 50	45 20 15 20 20	1. 734 1. 615 1. 589 1. 533 1. 504	m mw w m m	1. 735 1. 617 1. 590 1. 535 1. 505	21 8 5 14 11
321 222 312 103	1. 497 1. 444 1. 431 1. 376	S m W W	1. 478 1. 445 1. 431 1. 408	20 5 5 10	1. 476 1. 430 1. 401 1. 346	m w mw w	1. 477 1. 432 1. 403 1. 349	13 5 7 4
330 402 501 113 203	1. 301	m	1. 328 1. 275	10	1. 326 1. 321 1. 307	w w vw	1. 327 1. 323 1. 308 1. 299 1. 277	$\begin{array}{c} 6 \\ 6 \\ 1 \\ 4 \\ 4 \end{array}$
331 322 421 213 412	1. 247 } 1. 217	m m			1. 262 1. 254 1. 242	vw vw mw	1. 263 1. 255 1. 242 1. 216	1 5 8 11
511	1. 181	m					1. 1854	6
502 223 313	}						1. 1467 1. 1308 1. 1161	3 1 5
$ \begin{array}{r} 332 \\ 520 \\ 431 \end{array} $							1. 1038 1. 0927	$\frac{2}{7}$
403 521 512							1. 0744 1. 0659 1. 0612	$\begin{array}{c}2\\1\\1\end{array}$
$\frac{104}{611}$	}						1. 0190	2

Strontium Bromide Hexahydrate, SrBr₂· 6H₂O (hexagonal)

ASTM cards

Card number New index Radiation Source lines Old New 4.01 II - 6200986 Copper, Ka Herrmann [1] 2 - 02813. 53 1931. 2 - 02882.66 0953 964 4. 11 Molybdenum Hangwalt, Rinn 3.60 gnd Frevel [2] 1 - 04251 - 04272.70 1938.

The Herrmann pattern was made by using copper radiation rather than molybdenum, as stated on the ASTM card.

Additional published patterns. None.

NBS sample.—The strontium-bromide hexahydrate used for the NBS pattern was obtained from the Mallinckrodt Chemical Works. The water content, determined by heating the sample at 200° C for 3 days, was 100.5 percent of the theoretical loss for the hexahydrate. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of calcium and sodium; 0.001 to 0.01 percent of barium; 0.0001 to 0.001 percent each of aluminum, iron, magnesium, and silicon; and less than 0.0001 percent of copper. The refractive indices of the NBS sample are as follows: $\epsilon = 1.540$ and $\omega = 1.576$, with negative optical sign.

Interplanar spacings and intensity measurements. The d-spacings for the Herrmann pattern were calculated from Bragg angle data to copper $K\alpha$, 1.5418 A. The d-spacings for the Hanawalt, Rinn, and Frevel pattern were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Herrmann	110	101	201
Hangwalt, Rinn, and Frevel	110	101	201
Swanson, Fuyat, and Ugrinic	110	101	211

Strontium Bromide Hexahydrate, SrBr₂·6H₂0 (hexagonal)

(nexagonal)							
hlal	1931 Herrmann		Hanav Rinn, Frev	walt, and	Swanson and U	, Fuyat,	
70.00	Cu, 1.5	Cu, 1.5418 A		709 A	Cu, 1.5 26°	405 A,	
	d	I	d	I	d	I	
100 001 110 101 111	A 4. 01 3. 54 2. 87	 s s m	A 4. 12 3. 61 2. 92	100 57 17	A 7. 13 4. 16 4. 12 3. 60 2. 928	14 30 100 84 31	
201 300 211 002 220	2. 66 2. 34 2. 24 2. 05	s m s	2. 71 3. 36 2. 25 2. 04	46 34 46 	2. 707 2. 377 2. 263 2. 082 2. 058	57 48 66 13 19	
102 112 202 311 212	1. 971 1. 838 1. 768	m s m	1. 85	11 23	1. 999 1. 858 1. 797 1. 785 1. 647	$\begin{array}{c} 8 \\ 15 \\ 6 \\ 22 \\ 6 \end{array}$	
$401 \\ 302 \\ 410 \\ 321 \\ 222$	1. 636 1. 548 1. 512 1. 451	m s m w	1. 63 1. 56 1. 51 1. 487	6 23 11 6	1. 637 1. 566 1. 555 1. 522 1. 4633	$ \begin{array}{c} 6 \\ 13 \\ 14 \\ 11 \\ 6 \end{array} $	
411 312 330 103 113	1. 421 1. 350	w m	1. 465	6	1, 4570 1, 4334 1, 3710 1, 3620 1, 3152	2 3 5 3 2	
421 412 213 511 600	1. 276 }1. 239 1. 225	m m m			1, 2811 1, 2454 1, 2335 1, 2230 1, 1875	6 7 5 5 2	
332 520 313 431 403	1. 168 1. 137 1. 127	w w s			1. 1450 1. 1410 1. 1357 1. 1275 1. 0953	3 3 4 2	
512 323 611 602 522	1. 087 1. 050	w			1. 0902 1. 0580 1. 0516 1. 0316 1. 0005	1 1 3 2 3	
531 701	}			}	0. 9890	2	

Lattice constants. The most recent structure determination made on the group of isomorphous compounds, including strontium-bromide hexahydrate, was made on strontium-chloride hexahydrate by Jensen [3] in 1940. Therefore, the space group should be D₃-P321 with 1 (SrBr₂·6H₂O) per unit cell.

Two sets of unit-cell values were converted from kX to angstrom units for comparison with the

NBS values.

Lattice constants

		a	c
1931 1940 1953	Herrmann [4] Jensen [3] Swanson, Fuyat, and Ugrinic	A 8. 229 8. 222 8. 228	A 4. 154 4. 154 4. 164

The density of strontium bromide hexahydrate calculated from the NBS lattice constants is 2.418 at 26° C.

References

- [1] Z. Herrmann, Über die Strukturen der Strontiumjodid-, Calciumchlorid-, und Calciumbromid-Hexahydrats, Z. anorg. u. allgem. Chem. 197, 223-218 (1931).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] A. T. Jensen, On the structure of SrCl₂·6H₂O, Kgl. Danske Videnskab. Selskab. Mat.-fys. Medd. 17, No. 9 (1940).
- [4] Z. Herrmann, Über die Struktur des Strontiumbromid-Hexahydrats, Z. anorg. u. allgem. Chem. Chem. 196, 79-84 (1931).

6. NITRATES AND NITRITES

Silver (II) oxynitrate⁶, Ag₇O₈NO₃ (cubic)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The argentic oxynitrate ⁶ used for the NBS pattern was prepared by R. E. Wood at the NBS by the electrolysis of silver nitrate between platinum electrodes. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of aluminum, magnesium, and silicon; and 0.0001 to 0.001 percent each of calcium, copper, and iron. The refractive index of the NBS sample could not be determined because the sample is opaque.

Interplanar spacings and intensity measurements. The three strongest lines for the NBS

pattern are as follows:

	1	2	3
Swanson, Fuyat, and Ugrinic	222	400	440

Lattice constant. The existence of this compound, resulting from the electrolytic oxidation of argentous silver dissolved in dilute acid, was known early in the nineteenth century. Investi-

gations by Poggendorf [1] confirmed this, and Sulc [2] and Mulder and Heringa [3] found the structural formula to be Ag₇O₈NO₃. A more recent investigation by Noyes, DeVault, Coryell, and Deahl [4] also showed the oxynitrate character of the structure and found that it could be produced by the equilibration of argentic oxide, AgO, with dilute nitric acid containing silver nitrate, as well as by electrolysis. Their empirical formula, AgO_{1.148}(NO₃)_{0.153}, compares favorably with the AgO_{1.143}(NO₃)_{0.142} or Ag₇O₈NO₃ given earlier found by Sulc.

Bräkken [5] established the cubic symmetry and determined the unit-cell size by means of single-crystal rotation photographs. The structure appears to be facc-centered with 4(Ag₇O₈NO₃)

per unit cell.

The unit-cell value was converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		A	
Bräkken [5] Swanson, Fuyat, and Ugrinic	9.89 9.893 at	26°	C

The density of argentic oxynitrate calculated from the NBS lattice constant is 6.483 at 26° C.

⁶ Argentic oxynitrate is the name given to this compound by Noyes, DeVault, Coryell, and Deahl [4].

Silver (II) Oxynitrate, Ag₇O₈NO₃ (cubic)

hkl	1953 Swanson, Fuyat, and Ugrinic Cu, 1.5405 A, 26° C		hkl	and Cu,	Ug	Fuyat, rinic 05 A,	
	d	I	a		d	I	a
111 200 220 311 222 400 331 420 422 511 440 531 600 620 533 622 444 711 640 642	A 5. 73 4. 96 3. 498 2. 980 2. 856 2. 474 2. 270 2. 213 1. 903 1. 749 1. 672 1. 564 1. 508 1. 491 1. 428 1. 385 1. 385 1. 322	6 4 2 100 45 12 4 3 2 4 4 4 1 1 37 15 2 2	A 9. 92 9. 92 9. 894 9. 884 9. 893 9. 896 9. 895 9. 891 9. 888 9. 894 9. 892 9. 892 9. 892 9. 893 9. 893 9. 894 9. 893	840 733 751 662 840 911 842 664 844	. 9186 . 8744 . 8644 . 8361	$ \begin{vmatrix} 7 & 2 & 1 \\ 1 & 1 & 4 \end{vmatrix} $ $ \begin{vmatrix} 9 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 5 & 2 & 1 \end{vmatrix} $	 9. 892 9. 893 9. 892

References

- J. C. Poggendorff, Ueber die angeblichen Hydrüre des Silbers und einiger anderen Metalle, Ann. Physik. 75, 337–350 (1848).
 [2] O. Sulc, Über das sogenannte elektrolytische Silber-

- superoxyd, Z. anorg. Chem. 12, 89 (1896).

 [3] E. Mulder and J. Heringa, Sur un peroxy-azotate d'argent, Rec. trav. chim. 15, 1, 235 (1896).

 [4] A. A. Noyes, D. DeVault, C. D. Coryell and T. J. Deahl, Argentic salts in acid solution. V. Oxidation potentials, equilibria with higher silver oxides, and formation of nitrate complexes, J. Am. Chem. Soc., 59, 1326-1337 (1937).
- [5] K. Bräkken, Zur Krystallstruktur des Silberperoxyds, Ag₂O₃, Norske Vidensk. Selskabs, Forh. **7**, 143–6 (1935) as abstracted in Chem. Zentr. **106**, 1, 3634 (1935).

Sodium Nitrite, NaNO₂ (orthorhombic)

ASTM cards

Card number		New	Radiation	Source
Old	New	lines		
	2193 3-0628 3-0628	2. 97 2. 79 2. 04	Molybdenum_	Ziegler [1] 1931.
2169	2195 1–0886 1–0883	2. 97 2. 78 2. 02	Molybdenum_	Hanawalt, Rinn and Frevel [2] 1938.

The powder pattern that appears in Ziegler's paper was used there primarily to compare observed and calculated intensities as part of a crystal-structure determination and apparently consisted of a combination of data from singlecrystal and powder patterns. The absence of brackets around unresolved lines apparently led the compiler of the ASTM card to believe that each d-spacing should be treated singly and, therefore, dashes were filled in for a number of intensities. It appears, however, that the author intended to bracket the d-spacings as follows: 3.00 (110) and 2.97 (101) with I of 100, 1.41 (132), 1.39 (040), and 1.39 (123) with I of 20, 1.23 (042), 1.23 (213), and 1.23 (114) with I of 33, and 1.16 (310) and 1.16 (301) with I of 13.

Additional published patterns. None.

NBS sample. The sodium nitrite used for the NBS pattern was obtained from the Fisher Scientific Co. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of aluminum and calcium; and less than 0.0001 percent each of silver, barium, copper, and magnesium. The sample was heated at 120° C to remove water. The grain size of the NBS sample was too small for a refractive-index

determination.

Interplanar spacings and intensity measurements. Ziegler's Bragg angle data was converted to d-spacings and the Hanawalt, Rinn, and Frevel d-spacings were converted from kX to angstrom units.

The three strongest lines for each of the patterns

are as follows:

	1	2	3
Ziegler	110, 101	020	121
Hanawalt, Rinn, and Frevel	110, 101	020	121
Swanson, Fuyat, and Ugrinic	101	020	121

The Ziegler pattern contains d-spacings at 1.619 and 1.227 angstroms, which are possible in the sodium-nitrite structure, but which were not present in the NBS pattern. Ziegler assigned indices 040 and 123 to the d-spacings at 1.391 A, and 310 and 301 to those at 1.159 A, as shown on the ASTM card. Only one value for each of these reflections has been included in the comparison table because identical d-spacings would obviously coincide on a powder pattern. The total intensity of the pair was given in each case.

total intensity of the pair was given in each case.

Lattice constants. The structure was determined by Ziegler [1] in 1931. The space group is C_{2v}²⁰-Im2m (Imm2) with 2(NaNO₂) per unit cell. Sodium nitrite is a prototype for other

similar structures.

Ziegler's unit-cell values were converted from kX to angstrom units for comparison with the

NBS values.

of led hat ere nsi in 100

1.20

the ther the

81d

Lattice constants

		a	b	c
1931 1952 1953	Ziegler [1] Carpenter [3] Swanson, Fuyat, and Ugrinic.	A 3. 56 3. 55 3. 570	A 5. 57 5. 56 5. 578	A 5.39 5.38 5.390 at 26° C

The density of sodium nitrite calculated from the NBS lattice constants is 2.135 at 26° C.

Sodium Nitrite, NaNO2 (orthorhombic)

1-							
		193	1	193		195	
	2.7.7	Ziegl	er	Hanaw Rinn, Frev	and	Swan Fuyat Ugri	, and
	hkl	Mo, 0.7	709 A	Mo, 0.7	09 A	Cu, 1.54 26°	405 A,
		d	I	d	I	d	I
	011 110 101 020 002	A 3. 89 3. 004 2. 982 2. 791 2. 685	${7 \atop 100} \atop {47 \atop 7}$	2. 98 2. 79	100	$\begin{array}{c} A \\ 3.88 \\ \{3.006 \\ 2.976 \\ 2.789 \\ 2.695 \end{array}$	$\begin{array}{c} 2\\ 32\\ 100\\ 56\\ 5 \end{array}$
	121 112 022 200 031	2. 038 2. 003 1. 939 1. 782 1. 756	47 40 27 33 7	2. 02 2. 00 1. 93 1. 78	40 23 11 12	2. 035 2. 007 1. 938 1. 784 1. 757	$\begin{array}{c} 37 \\ 29 \\ 13 \\ 14 \\ 3 \end{array}$
	013 130 103 220	1. 704 1. 642 1. 619 1. 604 1. 503	27 20 0 0 0 27	1. 70 1. 64 1. 500	8 3 5	1. 710 1. 650 1. 605 1. 504	$\begin{array}{c} 8\\4\\-\overline{<}\overline{1}\\7\end{array}$
	202 132 123 004 222 033	1. 484 1. 407 1. 391 1. 348 1. 309 1. 290	$ \left. \begin{array}{c} 0 \\ 20 \\ 7 \\ 20 \\ 7 \end{array} \right. $	$\begin{cases} 1. & 401 \\ 1. & 392 \\ 1. & 346 \\ 1. & 313 \\ 1. & 293 \end{cases}$	$\begin{bmatrix}\frac{1}{4} \\ \frac{4}{2} \\ \frac{2}{1} \end{bmatrix}$	1. 488 1. 406 1. 391 1. 348 1. 313 1. 292	
	141 231 042 213 024 301	1. 262 1. 249 1. 236 1. 231 1. 227 1. 214 1. 159	$ \begin{array}{c} 13 \\ 0 \\ \hline 33 \\ 7 \\ 13 \end{array} $	$ \begin{cases} 1. 261 \\ \\ 1. 235 \\ \\ 1. 213 \\ 1. 162 \end{cases} $	1 4 1 1	1. 263 1. 253 1. 238 1. 235 1. 213 1. 1623	
	321 312 143 233 105			1. 068 1. 050 1. 032	<u>î</u> 1 1 <u>î</u>	1. 0728 1. 0687 1. 0525 1. 0466 1. 0321	$ \begin{array}{c c} 2 \\ 2 \\ 3 \\ < 1 \\ 1 \end{array} $
	$\begin{array}{c c} 242 \\ 224 \\ 330 \\ 044 \\ 125 \\ 332 \\ \end{array}$	}		1. 017	1 	1. 0175 1. 0027 0. 9689 . 9676 . 9392	1 1 2 1 <1
	323					. 9345	<1

- G. E. Ziegler, The crystal structure of sodium nitrite, NaNO₂, Phys. Rev. 38, 1040-1047 (1931).
- [2] J. D. Hanawalt, H. W. Rinn and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] G. B. Carpenter, The crystal structure of sodium nitrite, Acta Cryst. 5, 132-135 (1952).

7. PHOSPHATES

Ammonium Dihydrogen Phosphate, (NH₄)H₂PO₄ (tetragonal)

ASTM cards

Card	number	New index	Radiation	Source
Old	New	lines	Radiation	Source
1979	1953 1–0807 1–0817	3. 07 5. 3 3. 76	Molybdenum	Hanawalt, Rinn and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The ammonium dihydrogen-phosphate used for the NBS pattern was obtained from F. P. Phelps of the NBS. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of aluminum and silicon; 0.001 to 0.01 percent each of barium and calcium; 0.0001 to 0.001 percent each of magnesium and nickel; and less than 0.0001 percent each of silver, copper, and lead. The refractive indices of the NBS sample are as follows: $\epsilon = 1.480$ and $\omega = 1.529$, with negative optical sign.

Interplanar spacings and intensity measurements. The d-spacings for the Hanawalt, Rinn, and Frevel pattern were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Hanawalt, Rinn, and Frevel	112, 211	101	200
Swanson, Fuyat, and Ugrinic	101	112	211

Lattice constants. The structure was determined by Hassel [2] in 1925. The space group is D_{2d}-I42d with potassium dihydrogen phosphatetype structure and 4((NH₄)H₂PO₄) per unit cell.

Several unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

	a	c
Hassel [2] Hendricks [3] Ueda [4] Swanson, Fuyat, and Ugrinic.	A 7. 50 7. 53 7. 494 7. 499	A 7. 58 7. 55 7. 531 7. 548 at 26° C

The density of ammonium dihydrogen phosphate calculated from the NBS lattice constants is 1.800 at 26° C.

Ammonium Dihydrogen Phosphate, (NH₄)H₂PO₄ (tetragonal)

	193		195	53
	Hanawalt and Fi	, Rinn, evel	Swanson and U	, Fuyat, grinic
hkl	Mo, 0.7	709 A	Cu, 1.5	405 A,
	d	I	d	I
101 200 112	A 5. 3 3. 77 3. 08	83 53 100	A 5. 32 3. 75 ∫ 3. 075	100 64 89
211 202	2. 66	9	3. 065 2. 659	75 18
220 301 312 321 303	$ \begin{cases} $	<u>-</u> 5 27 3	2. 651 2. 373 2. 009 2. 004 1. 773	15 8 29 22 5
204 420 332 224 413	1. 68 1. 60 1. 54	3 · · · · · · · · · · · · · · · · · · ·	1. 686 1. 677 1. 602 1. 537 1. 473	5 4 9 4 4
431 501 510	1. 476	4	1. 470	5
215 512	1. 376	3	1. 376	$\frac{3}{4}$
521 404	1. 331	4	1. 330	5
433 503	1. 294	1	. 1. 289	3
424 116 532	1. 257 1. 222 1. 190	3 3 	1. 254 1. 224 1. 218 1. 1857	$egin{array}{c} 3 \\ 3 \\ 4 \\ 2 \end{array}$
620 415	1. 163	1	1. 1613	1
316 613 631 543 604	1. 110	1	1. 1113 1. 1078 1. 1062 1. 0620 1. 0416	2 1 2 2 <1
217			1. 0264	2

- J. D. Hanawalt, H. W. Rinn and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- Anal. Ed. 10, 457-512 (1938).

 [2] O. Hassel, Über die Kristallstruktur des primären Kaliumphosphats KH₂PO₄ und isomorpher salze, Z. Elektrochem. 31, 523-529 (1925).

 [3] S. B. Hendricks, The crystal structure of potassium dihydrogen-phosphate, Am. J. Sci. 14, 269-287 (1927).

 [4] R. Ueda, The crystal structure of ammonium dihydrogen phosphate, NH, H.PO. 1, Phys. Soc. Japan 3.
- gen phosphate, $NH_4H_2PO_4$, J. Phys. Soc. Japan 3, 328-333 (1948).

8. SULFATES

Calcium Sulfate (anhydrite), CaSO₄ (orthorhombic)

ASTM cards

-	d num- ber	New index	Radiation	Source
Old	New	lines		
	0675 3-0164 3-0162	4. 63 3. 86 3. 48	Molybde- num Kα.	Dickson and Binks [1] 1926.
	0676 3-0165 3-0163			A continuation of the preceding card.
	$ \begin{array}{r} 1365 \\ 3-0372 \\ 3-0368 \end{array} $	3. 49 2. 79 1. 85	Copper Ka	Hill and Hendricks [2] 1936.
1444	$\begin{array}{c} 1362 \\ 1-0591 \\ 1-0578 \end{array}$	3. 49 2. 85 2. 32	Molybde- num.	Hanawalt, Rinn, and Frevel [3] 1938.
	1396 3-0384 3-0377	3. 48 1. 10 3. 87	Copper	British Museum.

The intensities listed on the ASTM card for the Dickson and Binks pattern do not represent the authors' observed intensities, but, rather, the result of a series of calculations made by using the observed intensities. Therefore, the three strongest lines on this ASTM card are not those indicated by the authors. The date of the reference for the Hill and Hendricks ASTM card should be 1936 rather than 1938, and the pattern should be described as orthorhombic rather than monoclinic as indicated.

Additional published patterns

Source	Radiation	Wave- length
Wasastjerna [4] 1925 Jung [5] 1925	Copper Copper	Γα.

NBS sample. The calcium sulfate used for the NBS pattern was prepared at the NBS by the reaction between potassium-sulfate and calcium-chloride solutions. The product was heated at 700° C for 16 hours. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of bismuth, strontium, and titanium; 0.001 to 0.01 percent each of silver, aluminum, iron, magnesium, nickel, and tin; 0.0001 to 0.001 percent each of barium, chromium, copper, and lead; and less than 0.0001 percent of manganese. The refractive indices of the NBS sample are as

follows: $\alpha = 1.570$, $\beta = 1.575$, $\gamma = 1.614$ with 2V of 40° and positive optical sign.

Interplanar; spacings and intensity measurements. The d-spacings for the Dickson and Binks. the Wasastierna, and the Jung patterns were calculated from Bragg angle data; the d-spacings for the Hanawalt, Rinn, and Frevel and the British Museum patterns were converted from kX to angstrom units. The Hill and Hendricks d-spacing data were calculated from lattice constants determined from single crystals. The Dickson and Binks pattern was made with an ionization spectrometer, using single crystals. Reflections were measured from faces ground to correspond to the desired hkl's accounting for those d-spacings that The intensities, fall extremely close together. listed in the table as percentages of the strongest line, are those observed for the reflections from each crystal face. The intensities shown on the ASTM card, which decrease in order from 100 to 1, were the result of applying several rather specialized corrections for the purpose of testing the corrections of the authors' postulated structure and are quite useless for identification purposes.

The British Museum pattern contains a d-spacing at 4.25 A, and the Hanawalt, Rinn, and Frevel pattern, a d-spacing at 2.26 A, neither of which are permissible in the calcium-sulfate structure. The Wasastjerna pattern contains a d-spacing at 4.60 A, which is a permissible anhydrite line, but which is not present in the NBS pattern. The Dickson and Binks pattern contains a d-spacing at 1.157 A, which might be an anhydrite line, but which is not present in the NBS pattern.

The three strongest lines in each of the patterns are as follows:

	1	2	3
Hanawalt, Rinn, and Frevel British Museum	002, 020	$egin{array}{ccc} 210 \\ 210 \\ 424, 442 \\ 210 \\ 103 \\ \end{array}$	230 $202, 220$

Lattice constants. The structure was determined simultaneously by Rinne, Hentschel and Schiebold [6], by Wasastjerna [4], and by Mark, Basche, and Pohland [7] in 1925. The space group is D_{2h}-Bbmm (Cmcm) with 4(CaSO₄) per unit cell. Calcium sulfate is a prototype for other similar structures.

Calcium Sulfate (anhydrite), CaSO₄ (orthorhombic)

	1926		19		193				19	25	195	25	195	
	Dickson Bink		Hill Hend		Hanav Rinn, Frev	and	Brit Muse		Wasas	tjerna	$ m J_{u1}$	ng	Swans Fuyat Ugrii	and
hkl	Mo, 0.7	09 A	Cu, 1.	5405 A	Mo, 0.7	709 A	Cu, 1.5	405 A	Cu, 1.	5405 A	Cu, 1.5	5405 A	Cu, 1.54	
	a d	I	$\begin{pmatrix} d \\ (cale.) \end{pmatrix}$	I	d	I	d	I	d	I	d	I	d	I
	A 4. 62	2	A		A	-~-	A 4. 25	25	A 4. 60	w	A		A	
$\frac{111}{002}$	3. 854	$\frac{2}{100}$	3. 84	w vs	3. 89 3. 50	3 100	3. 88	75 100	3. 90 3. 51	mw vs	3. 416	vs	3. 87 3. 498	6 100
$020 \\ 200 \\ 210$	3. 104 2. 833	10 61	3. 13 2. 80	m ms	3. 12 2. 86	3 67	3. 17 2. 84	50 75	3. 14 2. 85	w			3. 118 2. 849	3 33
121	2. 776	3	==			=	====		====		2. 783	w-ms	2. 797	4
$022 \\ 202$	2. 454 2. 315	12 4	2.47 2.33	w m	2. 46 2. 32	33	2. 46 2. 32	50 75	2. 45 2. 31	w s	2. 304	ms	2. 473 2. 328	$\begin{bmatrix} 8 \\ 22 \end{bmatrix}$
220	2. 313	36			2. 26	1								
212			2. 20	m	2. 20	33	2. 19	75	2. 20	s	0.188		2. 208	20
103 113			2. 08	mw	2. 08	11	2. 07	50	$\bar{2}.\bar{07}$	mw	2. 177	S	2. 183 2. 086	8 9
$\begin{array}{c} 301 \\ 222 \end{array}$	1. 926	5	1. 99 1. 92	w w	1. 99 1. 93	11 4	2. 01 1. 93	$\frac{25}{25}$	1. 99 1. 93	w w	1. 998	vw	1. 993 1. 938	$\begin{array}{c c} 6 \\ 4 \end{array}$
230			1. 85	ms	1. 86	27	1. 86	75	1. 86	m			1. 869	15
123 004	}1. 737	32	1. 74	m	1. 74	20	1. 75	75	1. 74		1. 847 1. 734	S	1. 852 §1. 749	11
$040 \\ 232$,				1. 64	27	1. 64	75	1. 64	m	1. 642	S	1. 748 1. 648	10 14
133	1. 552	3			1. 59	3			1. 59	vw			1. 594	3
$\begin{array}{c} 024 \\ 042 \end{array}$	1. 543				1. 56	5	1. 57	50			1. 566	w	1. 564	5
$\frac{204}{240}$	}				1. 52	7	1. 52	50					1. 525	4
313 331	}										1. 519	w	1. 515	1
$\begin{array}{c c} 214 \\ 402 \end{array}$	1				1. 490 1. 423	8	1. 49	50 50			1. 478 1. 425	ms w	1. 490 1. 424	5 3
420	}				1. 420		1. 42	30			1. 420	. "	1. 121	
323	${1.417} \\ {1.416}$	6	}										1. 418	1
242 412	1. 388	3			1. 398	7	1. 40	50					1. 398 1. 396	3 2
143 422					1. 363 1. 321	1 9		-50			1. 314		1. 365 1. 319	1 4
430	1. 285	2			1. 299	3							1. 296	2
234 044	1. 227				1. 278	9	1. 28	25			1. 271	S	1. 277 1. 237	$\frac{5}{2}$
$\begin{array}{c c} 432 \\ 252 \end{array}$					1. 217 1. 199	5	1. 22 1. 20	50 25					1. 216 1. 1993	$\frac{4}{2}$
135													1. 1781	<1
006 060	1. 158 1. 1576	19 3	}		1. 165	7	1. 17	75			1. 163	s	${1.1663} \\ {1.1651}$	4
$\bar{4}\bar{1}\bar{4}$	1. 157	8											1. 1483	<u>-</u>
026													1. 1062	5
424 442	}1. 098	10			1. 105	9	1. 10	85			1. 100	s	1. 1044	4
216	1				l	l	1. 08	25			1. 076	ms	1. 0785	2

Calcium Sulfate (anhydrite), CaSO₄ (orthorhombic)—Continued

	192			36	193				19)25	19	25	195	
	Dickson Binl			and dricks	Hanav Rinn, Erev	and	Brit Mus		Wasas	stjerna	Ju	ng	Swan Fuyat Ugri	and
hkl	Mo, 0.7	09 A	Cu, 1.	5405 A	Mo, 0.	709 A	Cu, 1.5	5405 A	Cu, 1.	5405 A	Cu, 1.5	5405 A	Cu, 1.54	105 A,
	a d	I	$\begin{pmatrix} d \\ (calc.) \end{pmatrix}$	I	d	I	d	I	d	I	d	I	d	I
000	A		A		A		A		A		A		A	
226 434	1. 034	-11					1. 04	50			1. 041	ms	1. 0429 1. 0414	2 3
254 602							1. 03	25					1. 0312	2
620 236	}										0. 9964	W S	0. 9968	3
046 064	0. 965	9 3									. 9680	s	. 9701 . 9695	3 2
622 270 246 416	. 945 . 9259 . 9255												. 9585 . 9521 . 9264 . 9252	$\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}$
272													. 9187	
426 454													. 9024	<1
604 317 640	}								-		. 8937	W	. 8937	1
614 165 008	}				-						. 8763	 W	. 8863 . 8747	<1 <1
080 436	. 8685	<u>-</u> 5											. 8737 . 8665	$< \frac{1}{2}$
624 642 256	}				-						. 8659 (°)	s	. 8659 . 8607	$\frac{2}{1}$
200	(")										(=)		. 8007	1

a Single crystal reflections measured on an ionization spectrometer. b Eleven additional lines have been omitted. Three additional lines have been omitted.

Several unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1925 Wasastjerna [4] 6. 25 6. 99 6. 99 1926 Dickson and Binks [1]. 6. 20 6. 95 6. 95. 1926 Basche and Mark [8] 6. 21 6. 95 6. 98. 1953 Swanson, Fuyat, and Ugrinic. 6. 238 6. 991 6. 996 at 26° C
--

The density of calcium sulfate calculated from the NBS lattice constants is 2.963 at 26° C.

- E. C. S. Dickson and W. Binks, The crystalline structure of anhydrite, Phil. Mag. 2, 114-128 (1926).
 W. L. Hill and S. B. Hendricks, Composition and properties of superphosphate. Calcium phosphate and calcium sulfate constituents as shown by chemical and X-ray diffraction analysis, Ind. Eng. Chem.
- 28, 441–447 (1936).
 [3] J. D. Hanawalt, H. W. Rinn and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [4] J. A. Wasastjerna, Die Struktur des Anhydrits. Der Bau der Sulfatgruppe, Soc. Sci. Fennica, Commentationes Phys.-Math. 2, 26 (1925).
- [5] H. Jung, Röntgenographische Untersuchungen an den Entwässerungsprodukten des Gipses, Z. anorg. u. allgem. Chem. 142, 73-79 (1925).
- [6] F. Rinne, H. Hentschel, and E. Schiebold, Zum Feinbau von Anhydrit und Schwerspat, Z. Krist. 61, 164-176 (1925)
- [7] H. Mark, W. Basche and E. Pohland, Über die Ermittlung der Struktur einiger einfacher anorganischer Körper, Z. Elektrochem. 31, 523 (1925).
 [8] W. Basche and H. Mark, Über die Struktur von Verbindungen des Typus MeXO₄, Z. Krist. 64, 1-70 (1926).
- (1926).

9. SILICATES

Zirconium Silicate (zircon), ZrSiO₄ (tetragonal)

ASTM cards

Old eard num- ber	New eard num- ber	New index lines	Radiation	Souree
AND AND AND AND BEST AND	1681 3-0482 3-0459	3. 29 1. 71 2. 52	Copper	Binks [1] 1926.
	1682 3-0483 3-0460			A continuation of the preceding card.
	1599 3-0451 3-0443	3. 32 1. 72 2. 53	Molybdenum_	Wyekoff and Hendrieks [2] 1927.
	2244 3-0640 3-0630	2. 97 1. 81 1. 55	Copper	Stackelberg and Chudoba [3] 1937.
1675	1657 1-0698 1-0679	3. 29 2. 51 1. 71	${ m Molybdenum}_{\scriptscriptstyle -}$	Hanawalt, Rinn, and Frevel [4] 1938.
II-1044	$\begin{array}{c} 1586 \\ 2-0469 \\ 2-0474 \end{array}$	3. 30 2. 52 1. 71	Iron	Kovalev [5] 1938.
	1600 3-0452 3-0456	3. 30 1. 71 2. 52	Copper, 1.5418 A.	United Steel Companies, Sheffield, England.
	$\begin{array}{c} 1601 \\ 3-0453 \\ 3-0457 \end{array}$			A continuation of the preceding eard.
II-1123	$\begin{array}{c} 1771 \\ 2-0524 \\ 2-0517 \end{array}$	3. 21 1. 70 1. 37	Copper	British Museum.

The Stackelberg and Chudoba ASTM card pattern listed below carrying the title "Zirconium silicate, Zircon" is largely $\text{Zr}O_2$ in an amorphous matrix according to the note on the card. Except for the three largest d-spacings, it gives a pattern similar to true zirconium silicate. It was not included in the table and should be removed from the file or retained only with a more descriptive

title such as "Low density zirconium silicate" or "Zirconium silicate and zirconium oxide."

An earlier Chudoba and Stackelberg pattern made from normal-density zircon is included in the table.

The Binks pattern was obtained by using molybdenum, rather than copper, radiation, and the Kovalev pattern was made by using iron, not molybdenum, radiation, as their ASTM cards indicate.

Additional published patterns

Date	Souree	Radiation	Wave- length
1936 1926	Chudoba and Stackel- berg [6] Vegard [7]	Copper	Κ _α

NBS sample. The zirconium silicate used for the NBS pattern was a natural mineral sample obtained from the U. S. Geological Survey, Naval Gun Factory. Spectrographic analysis at the NBS showed the following impurities: 1.0 to 3.0 percent of hafnium; 0.1 to 1.0 percent of aluminum; 0.001 to 0.01 percent each of calcium, iron, and magnesium; 0.0001 to 0.001 percent of manganese; and less than 0.0001 percent of copper. The NBS sample is optically positive with the following refractive indices: $\omega=1.923$ and $\epsilon=1.963$.

Interplanar spacings and intensity measurements. The d-spacings for the Binks, the Stackelberg and Chudoba, the Chudoba and Stackelberg, and the Vegard patterns were calculated from their Bragg angle data; the d-spacings for the Wyckoff and Hendricks, the Hanawalt, Rinn, and Frevel, the Boldyrev, the United Steel, and the British Museum patterns were converted from

kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Binks	200 200 200 200	312 312 321 112 112 312 312 200 200 101	112 112 411 312 312 112 332 112 332 112

A number of cubic and monoclinic zirconium oxide lines are present in the Stackelberg and Chudoba, the Hanawalt, Rinn, and Frevel, and the British Museum patterns, as indicated in the table. The index satisfying the d-spacing of 6.61 A in the British Museum pattern is not allowed by the space group, and like the 0.902 A spacing of the United Steel pattern, is not present in the NBS pattern.

sing

Lattice constants. The structure was determined by Vegard [8] in 1916. The space group is D_{4h}-I₄₁/amd 4(ZrSiO₄) per unit cell. Zirconium silicate is a prototype for other similar structures.

A group of unit-cell values were converted from kX to angstrom units for comparison with the NBS values. The Binks and the Vegard values for a, based on the larger cell caused by a 45° rotation of the a-axis about c, have been converted to the smaller cell for comparison with the other values.

		a	c
1926 1926 1926 1927 1953	Vegard [7] Binks [1] Hassel [9]. Wyckoff and Hendricks [2]. Swanson, Fuyat, and Ug- rinic.	A 6. 67 6. 59 6. 59 6. 61 6. 604	A 6. 02 5. 94 5. 94 5. 89 5. 979 at 25° C

The density of zirconium silicate calculated from the NBS lattice constants is 4.668 at 25° C.

References

- W. Binks, The crystalline structure of zircon, Mineralog. Mag. 21, 176-87 (1926).
 R. W. G. Wyckoff and S. B. Hendricks, Die Kristall-
- struktur von Zirkon und die Kriterien für spezielle Lagen in tetragonalen Raumgruppen, Z. Krist. 66, 73-102 (1927).
- [3] M. v. Stackelberg and K. Chudoba, Dichte und Struktur des Zirkons II, Z. Krist. 97, 252-262 (1937)
- [4] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. **10**, 457–512 (1938).
- [5] J. A. Kovalev, Debye diffraction diagrams of some oxide and borate minerals, Materiali Tsentr. Nauchno-Issl. Geol.-Razv. Inst. Geokhimiya 1938 as taken from A. K. Boldyrev, X-ray determinative tobles for minerals. Appales de l'Institut des Minès as taken from A. K. Boldyrev, X-ray determinative tables for minerals, Annales de l'Institut des Minès à Léningrad, Vol. XI, liv. 1 (1938).

 [6] K. Chudoba and M. V. Stackelberg, Dichte und Struktur des Zirkons, Z. Krist. 95, 230–246 (1936).

 [7] L. Vegard, Results of crystal analysis, Phil. Mag. 1, 1151–93 (1926).

 [8] L. Vegard, Results of crystal analysis, Phil. Mag. 32, 65–96 (1916).

- 65-96 (1916). [9] O. Hassel, Die Kristallstruktur einiger Verbindungen von der Zusammensetzung MRO4, I. Zirkon ZrSiO4, Z. Krist. 63, 247-254 (1926).

Zirconium Silicate, ZrSiO₄ (tetragonal)

	199	26	19	97	199	27	198	00	193	0
	Bin			off and	Stackelb		Hanawal		Boldy	
hkl			Hend	lricks	Chu	loba	and F	revel		
	Cu, 1.5		Mo, 0		Cu, 1.5	1	Mo, 0.		Fe, 1.93	1
	$\frac{d}{d}$	I	d	I	- d	I	d	I	d	
	A		A		A		A		A	
101	4. 41	33	4. 438	25			4. 44	50	4. 448	40
200	3. 292	100	3. 323	100+	3. 30 a2. 967	mw vs	3. 30	100	3. 305	100
211	2. 632	8					2. 65	4		
$\frac{112}{220}$	2. 517 2. 339	58 13	2. 531 2. 338	70 5+	2. 549	ms	2. 52 2. 33	$\frac{100}{13}$	2. 530 2. 343	80 40
202	2, 207	8	2. 213	4+			2. 21	15	2. 292 2. 223	10 20
301	2. 070	21	2. 213	30	2. 076	vw	2. 05	30	2. 067	60
103	1. 913	17	1. 906	20			1. 90	25		
321	1. 750	8			1. 811	VS	1. 74	15	1. 754	-40
312 400	1. 711 1. 645	83 33	1. 718 1. 652	100 30	1. 721 1. 653	vw vvw	1. 71 1. 64	$\begin{array}{c} 75 \\ 25 \end{array}$	1. 716 1. 658	80 60
411	1. 549	8			1. 551	vs	1. 54	3		
$\begin{vmatrix} 004 \\ 420 \end{vmatrix}$	1. 473	25	1. 480	20	1. 484	 W	1. 482	15	1. 479	
332	1. 378	25	1. 377	40	1. 382	vvw	1. 383	20	1. 386	40
204 431	1. 366	17	1 00=		4 004		1. 363	15	1.000	40
501	1. 288	8	1. 287	5	1. 281	W	1. 288	6	1. 298	40
224 413	1. 258	17	1. 257	15			1. 258	20	1. 268	20
410							b 1. 212	2		
512 440	1. 185 1. 166	21 8	1. 187	15	1. 177 1. 151	m w	1. 187 1. 163	18 3	1. 196	40
404	1. 105	17			1. 101	vvw	1. 100	15		
600 611	1. 098	12								
532	1. 056	21					1. 059	8		
424 523	1. 050	21					1. 048	13		
620 325	1. 043	8			1. 047	ms	1. 001	4		
116	1. 000				0. 9838	m	1. 001			
631	0. 9682	8					0. 974	10		
415 613	. 9517	4								
701 444										
543	} . 9156	17								
640	3 . 9150	14								
316	. 8945	17			. 9073	m				
552 712	8898	21								
604	. 8826	8								
525 624	8552	21			. 8646	s				
703 732	. 8344 . 8310	$\begin{array}{c} 12 \\ 21 \end{array}$								
723	}									
800 741	1									
811	}									
L										

^a Cubic zirconium-oxide line. ^b Monoclinic zirconium-oxide (baddeleyite) line.

		4								
					1930	3	1920	6	193	33
	Unite	d Steel	British I	Museum	Chudob	a and	Vega	rd	Swanson	Fuyat,
	Comp	panies			Stackel	berg			and U	grinic
hkl	Cu. 1.	5405 A	Cu, 1.5	5405 A	Cu, 1.54	105 A	Cu, 1.54	105 A	Cu, 1.5405	A. 25° C
		1		1		I				
	d	I	d	I	d	I	d	I	d	I
	A		A		A		A		A	
	11		6, 61	20B	41				A	
101	4. 45	70	4. 33	70	4. 405	m		1	4. 434	45
200	3. 31	100	3. 22	100	3. 295	S	3. 278	70	3. 302	100
			ь 2. 76	50					======	
211	2. 66	50	2, 63	20					2. 650	7
112	2. 53	85	2. 50	70	2. 519	s	2. 524	50	2. 518	45
220	2. 34	60	2. 31	50	2. 330	mw	2. 339	10	2. 336	10
202	2. 22	50	2. 19	20	2. 212		2. 217	5	2. 217	8
301	2. 07	70	2. 19	70	2. 212	ms	2. 217	30	2. 066	$\frac{\delta}{20}$
	1. 91			70			i	30		
103	1. 91	60	1. 892 a 1. 815	20	1. 897	mw	1. 919	30	1. 908	14
321	1. 75	70	1. 738	50	1. 744	m	1. 756	20	1. 751	11
312	1. 71	100	1. 704	100	1. 701	vs	1. 720	100	1. 712	40
400	1. 65	70	1. 641	70	1. 641	ms	1. 658	40	1. 651	14
411	1. 55	50	1. 534	20	1. 538	w	1, 553	10	1. 547	4
004	1. 51	30							1. 495	$\hat{3}$
420	1. 48	70	1. 471	70	1. 468	m	1, 485	35	1. 477	8
332	1. 38	70	1. 375	90	1. 375	ms	1. 390	60	1. 381	10
204	1. 36	60	1. 359	70	1. 357	m	1. 373	30	1. 362	7
431	} 1. 29	60	1. 305	20	1. 285	m	1. 290	15	1. 290	5
501	J 1. 23				1, 200	111	1. 250	10	1. 230	
	1 06		a 1. 285	50	1 051		1 000		1 050	
224 413	1. 26 1. 25	60 30	1. 257 1. 250	50 20	1. 254 1. 247	m vw	1. 266	20	1. 259 1. 248	8 3
410	1. 20		b 1. 217	20D	1. 247				1. 240	9
512	1. 19				1 109	1		25	1. 1883	11
440	1. 19	70 50	1. 184 1. 161	60 50	1. 183 1. 163	ms W	1. 198 1. 177	$\begin{vmatrix} 25\\10 \end{vmatrix}$	1, 1672	
404	i. ii	60	1. 101	70	1. 106	m	1. 115	30	1. 1079	5
600	1, 10	60	1. 096	70	1. 097	ms	1. 108	40	1. 1006	2 5 5
611	1. 07	30					1. 068	50	1. 0682	1
532	1, 06	60	1, 058	70	1, 059	ms	1. 060	50	1. 0590	7
424	1. 05	60	1. 050	70	1. 048	ms	1. 051	40	1. 0506	7
523	} 1. 04	60	1. 039	70	1. 043	ms			1. 0442	5
620	IJ		1. 059	10	1					
325	1. 00	30			1. 014	vw	0.0011		1. 0015	1
116	0. 977	50			0. 9976	w	0. 9811	30	0. 9745	5
631	. 974	50					. 9621	10	. 9713	5
415 613	. 956	50							. 9582 . 9532	1 1
701	. 934	30					. 9378	20	. 9332	1
444	923	50					9217	30	. 9201	$\frac{1}{2}$
543	3 . 918	60					1		. 9157	4
640	} . 516	00							. 3137	4
	. 902	50								
316	. 899	20					. 9057	25	. 8994	5
552	} . 894	60					. 8972	50	. 8915	5
712	1)									
604	. 889	50					. 8943	20	. 8863	7
525) 050						6400		0701	
624	859	70					. 8620	50	. 8561	5
703	. 842	30							. 8527	2
732	. 835	70					. 8378	60	. 8329	4
723	} . 828	60							. 8256	1
800	K									
741 811	814	60							. 8116	3
	902	60		1						
	. 803	60 70								
	. 783	85								
	. 781	70								
11		· · · · · · · · · · · · · · · · · · ·								

10. INTERMETALLIC COMPOUNDS

Aluminum Antimony, AlSb (cubic)

ASTM cards. None. Additional published patterns

Source	Radiation	Wave- length
Owen and Preston [1] 1924	Molybdenum	

NBS sample. The AlSb used for the NBS pattern was prepared by W. R. Hosler of the NBS. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of bismuth, gallium, indium, and silicon; 0.001 to 0.01 percent of silver; and 0.0001 to 0.001 percent each of calcium, copper, iron, magnesium, and manganese. The refractive indices could not be determined because the material is opaque. The compound was found to be unstable on exposure to the atmosphere over a period of months.

Interplanar spacings and intensity measurements. The Owen and Preston pattern was calculated from Bragg angle data.

The three strongest lines for each of the patterns are as follows:

	1	2	3
Owen and PrestonSwanson, Fuyat, and Ugrinie	111	311	220
	111	220	200

Lattice constant. The structure was determined by Owen and Preston [1] in 1924. The space group is $T_d^2-\overline{F43m}$ with zinc-sulfide-structure type and 4(AlSb) per unit cell.

Two unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a
1924	Owen and Preston [1]	A 6.138
1927	Goldschmidt [2] Swanson, Fuyat, and Ugrinic	6.103

The density of AlSb calculated from the NBS lattice constant is 4.279 at 26° C.

Aluminum Antimony, AlSb (cubic)

		1924			1953		
hkl	Owen	Owen and Preston			Swanson, Fuyat, and Ugrinic		
nĸt	Мо	, 0.709	Α	Cu, 1.5	405	A, 26° C	
	d	I	a	d	I	a	
111 200 220 311 222	A 3. 54 3. 08 2. 13 1. 85 1. 75	100 34 56 68 36	A 6. 13 6. 16 6. 02 6. 14 6. 06	A 3. 54 3. 067 2. 169 1. 850 1. 771	100 34 74 31 5	A 6. 13 6. 134 6. 135 6. 136 6. 135	
400 331 420 422 511	1. 53 1. 40 1. 36 1. 24 1. 17	23 48 18 26 34	6. 12 6. 10 6. 08 6. 07 6. 08	1. 534 1. 407 1. 372 1. 252 1. 1808	5 15 10 21 10	6. 136 6. 133 6. 136 6. 134 6. 1356	
440 531 600 620 533	1. 08 1. 04 1. 02 0. 959	15 36 11 12	6. 11 6. 15 6. 12 6. 07	1. 0845 1. 0371 1. 0226 0. 9700 . 9355	3 14 7 9 3	6. 1349 6. 1356 6. 1356 6. 1348 6. 1345	
622 444 711 640 642	. 927 . 879	29 15 	6. 15 6. 09	. 9248 . 8855 . 8590 . 8507 . 8198	2 3 11 3 16	6. 1344 6. 1349 6. 1345 6. 1345 6. 1348	
731				. 7987	20	6. 1349	
val	Average unit cell value for last five lines					6. 1347	

References

- [1] E. A. Owen and G. D. Preston, The atomic structure of two intermetallic compounds, Proc. Phys. Soc. (London) 36, 341-348 (1924).
- [2] V. M. Goldschmidt, Geochemische Verteilungsgesetze VIII, Skrifter Norske Videnskaps-Akad. Oslo, I. Mat.-Naturv. Kl. 1927.

Indium Antimony, InSb (cubic)

ASTM cards. None. Additional published patterns

Date	Source	Radiation	Wave- length
1941	Iandelli [1]	Copper	K_{α}

NBS sample. The InSb sample used for the NBS pattern was prepared by J. Becker at the NBS. Spectrographic analysis at the NBS showed the following impurities: Approximately 0.1 percent each of aluminum and hafnium; 0.01 to 0.1 percent each of arsenic, calcium, iron, magnesium, sodium, lead, silicon, thallium, tungsten, and zirconium; 0.001 to 0.01 percent each of silver, cobalt, copper, manganese, nickel, tin, and zinc; and 0.0001 to 0.001 percent of chromium.

Interplanar spacings and intensity measurements. The d-spacings for the Iandelli pattern were calculated from Bragg angle data.

The three strongest lines for each of the patterns are as follows:

	1	2	3
IandelliSwanson, Fuyat, and Ugrinic	111	642	731
	111	220	311

Lattice constant. The structure was investigated by Goldschmidt [2] in 1926. The space group is T_d^2 - $\overline{F43m}$ with sphalerite-type structure and 4(InSb) per unit cell.

Lattice constants

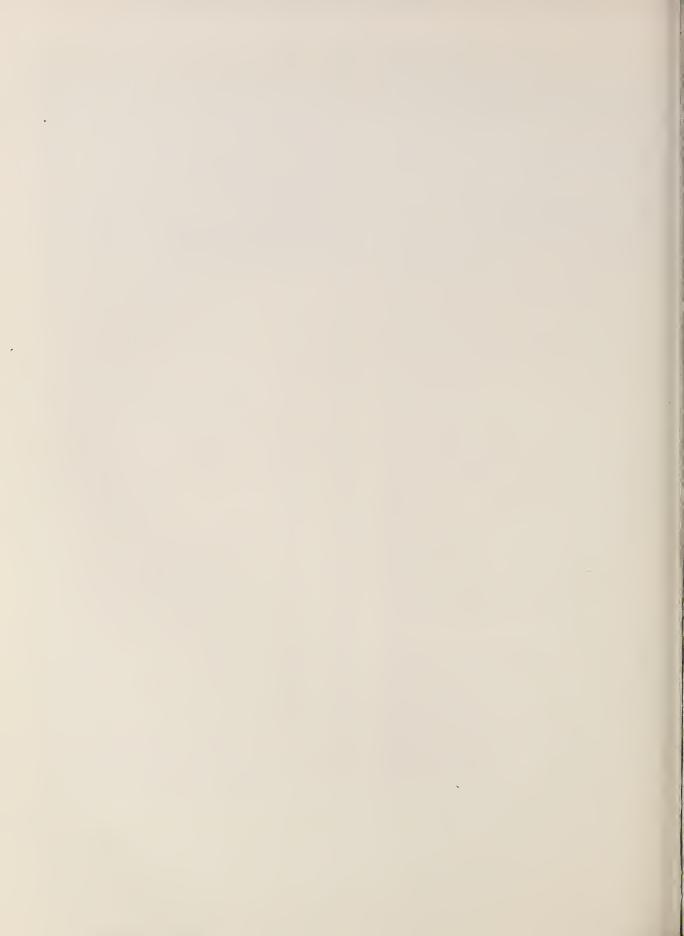
		a
1951	Iandelli [1] Liu and Peretti [3] Swanson, Fuyat, and Ugrinic	A 6.474 6.4760 at 25° C 6.4782 at 25° C

The density of InSb calculated from the NBS lattice constant is 5.777 at 25° C.

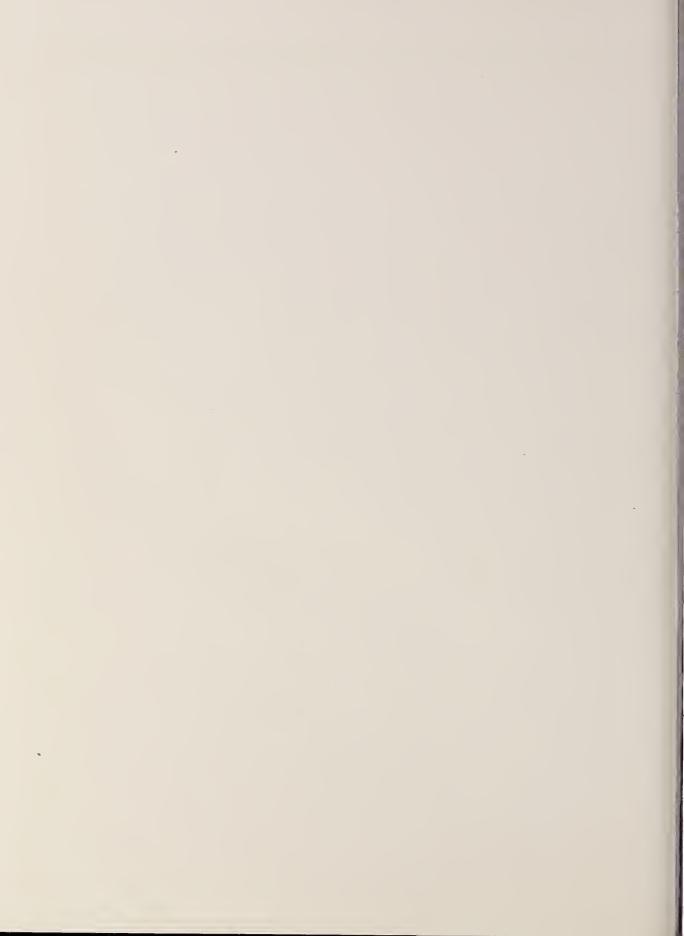
Indium Antimony, InSb (cubic)

hkl	1941 Iandelli Cu, 1.5405A			1953 Swanson, Fuyat, and Ugrinic Cu, 1.5405Å, 25° C		
	d	I	a	d	I	a
111 220 311 400 331 422 511 440 531 620 533 444 711 642 731	A 3. 779 2. 287 1. 951 1. 619 1. 485 1. 322 1. 246 1. 146 1. 095 1. 024 0. 9873 . 9338 . 9063 . 8653 . 8427	es a vs s m ms vs ms ms vs s ms m vs vs vvs v	A 6. 546 6. 468 6. 469 6. 477 6. 474 6. 474 6. 482 6. 477 6. 475 6. 474 6. 469 6. 472 6. 473	A 3. 74 2. 290 1. 953 1. 620 1. 486 1. 323 1. 247 1. 1453 1. 0950 1. 0243 0. 9880 9349 9071 . 8657 . 8434 . 8098	100 80 55 15 22 25 12 9 12 9 12 9 12 9	A 6. 477 6. 477 6. 477 6. 479 6. 479 6. 4788 6. 4781 6. 4782 6. 4787 6. 4783 6. 4783 6. 4783 6. 4784
711 642 731 800 Avera	. 9063 . 8653	vs vvs vvs	6. 472 6. 475	. 9071 . 8657 . 8434	8 12 9	

a Extremely strong (strgonste).


References


- A. Iandelli, Sulla struttura dei composti InP, InAs e InSb, Gazz. Chim. Ital. 71, 58-62 (1941).
- [2] V. M. Goldschmidt, Die Gesetze der Krystallochemie, Skrifter Norske Videnskaps-Akad. Oslo I. Mat.-Naturv. Klasse 1926 No. 2 (1926), Naturwissenschaften 14, 477 (1926).
- [3] T. S. Liu and E. A. Peretti, Lattice parameter of InSb, J. Metals 3, No. 9, Trans. 791 (1951).


11. CUMULATIVE INDEX TO VOLUMES I, II, III, AND IV 7

	Volume	Page		Volume	Page
Aluminum, Al-	I	11	Lead chloride (cotunnite), PbCl ₂		45
Aluminum antimony, AlSb	IV	72	Lead fluochloride (matlockite) PbFCl		76
Aluminum oxide, alpha (corundum),		0.0	Lead monoxide (litharge), PbO (red)	ĪĪ	30
Al_2O_3	II	20	Lead monoxide (massicot), PbO (yellow)	II	32
Aluminum oxide monohydrate, alpha	111	90	Lead sulfate (anglesite), PbSO ₄	III	67
(böhmite), Al ₂ O ₃ ·H ₂ O	III	38	Lead sulfide (galena), PbS	II	18
Aluminum oxide monohydrate, beta (dia-	111	41	Lithium bromide, LiBr	IV	30
spore), Al ₂ O ₃ ·H ₂ O	III	41	Lithium chloride, LiCl	Į	62
Ammonium bromide, NH ₄ Br	II	49	Lithium fluoride, LiF	I	61
Ammonium bromoosmate, (NH ₄) ₂ OsBr ₆ ₋	III	71	Magnesium, Mg' Magnesium aluminate (spinel), MgAl ₂ O ₄₋ _	I	10
Ammonium chloride (sal-ammoniac),	I	59	Magnesium fluorida (sollaita), MgR	$_{ m IV}^{ m II}$	35 33
NH ₄ ClAmmonium dihydrogen phosphate,	,	99	Magnesium fluoride (sellaite), MgF ₂ Magnesium oxide (perielase), MgO	I	37
NH ₄ H ₂ PO ₄	IV	64	Magnesium silicate (forsterite), Mg ₂ SiO ₄	Ì	83
Ammonium iodide, NH ₄ I	ÍV	56	Magnesium tungstate, MgWO ₄	İ	84
Antimony Sh	ΪΪ	14	Manganese sulfide, alpha (alabandite),	1	04
Antimony, Sb	III	31	α -MnS	IV	11
Arsenic, As	III	6	Mercury(I) chloride (calomel), Hg ₂ Cl ₂		72
Arsenic trioxde (arsenolite), As ₂ O ₃	Î	51	Mercury(II) chloride, HgCl ₂	Î	73
Barium, Ba		7	Mercury (I) iodide, HgI		49
Barium carbonate (witherite), BaCO ₃	II	54	Mercury(II) iodide, HgI ₂		$\overline{74}$
Barium Fluoride, BaF ₂	Ĩ	70	Mercury(II) oxide (montroydite), HgO	ΙΙÎ	35
Barium nitrate (nitrobarite), Ba(NO ₃) ₂	Ĩ	81	Mercury (II) sulfide (cinnabar), HgS (hex-		00
Barium sulfate (barite), BaSO ₄		65	agonal)	IV	17
Barium titanate, BaTiO ₃	III	45	agonal) Mercury(II) sulfide (metacinnabar), HgS		
Beryllium oxide (bromellite), BeO	I	36	(CUD1C)	Ι ν	21
Bismuth, Bi	III	20	Molybdenum, Mo	I	20
Bismuth oxychloride (bismoclite), BiOCl-	IV	54	Molybdenum trioxide (molybdite), MoO ₃	III	30
Bismuth sulfide (bismuthinite), Bi ₂ S ₃	IV	23	Neodymium oxide, Nd ₂ O ₃		26
Cadmium, Cd	III	10	Nickel Ni	T	13
Cadmium oxide, CdO	II	27	Nickel(II) oxide (bunsenite), NiO	I	47
Cadmium sulfide (greenockite), CdS	IV	15	Osmium, Os	IV	8
Calcium carbonate (aragonite), CaCO ₃	III	53	Palladium, Pd	I	21
Calcium carbonate (calcite), CaCO ₃	II	51	Palladium oxide, PdO	IV	27
Calcium fluoride (fluorite), CaF ₂	I	69	Platinum, Pt.	I	31
Calcium hydroxide (portlandite),			Potassium bromide, KBrPotassium chloride (sylvite), KCl	I	66
$Ca(OH)_{2}$	Ī	58	Potassium chloride (sylvite), KCl	Ī	65
Calcium oxide, CaO	I	43	Potassium cyanide, KCN		77
Calcium sulfate (anhydrite), CaSO ₄	IV	65	Potassium fluoride, KF	I	64
Carbon (diamond), C	ΙĨ	5	Potassium dihydrogen phosphate, KH ₂ PO ₄ -	IIĨ	69
Cerium(III) oxide, CeO ₂	I	56	Potassium iodide, KI	I	68
Cesium bromide, CsBr	III	49	Potassium nitrate (niter), KNO ₃	III	58
Cesium chloride, CsCl	II	44	Potassium sulfate (arcanite), K ₂ SO ₄	III	62
Cesium dichloroiodide, CsICl ₂	III	50	Rhenium, ReRhodium, Rh	II	13
Cesium iodide, CsI	$_{ m I}^{ m IV}$	$\begin{array}{c} 47 \\ 15 \end{array}$	Rubidium chloride, RbCl	III IV	$\begin{array}{c} 9 \\ 41 \end{array}$
Copper, CuCopper(I) bromide, CuBr	ΙV	$\frac{15}{36}$	Rubidium iodide, RbI	IV	43
Copper(I) bromide, CubrCubrCopper(I) chloride (nantokite), CuCl	IV	35	Ruthenium, Ru	ĬV	5
Copper(I) iodide (marshite), CuI	IV	38	Scandium oxide, Sc_2O_3	ΪΪ	27
Copper(I) oxide (cuprite), Cu ₂ O	II	$\frac{33}{23}$	Selenium diovide (selenolite) SeO.	Ï	53
Copper(II) oxide (tenorite), CuO	Ï	49	Selenium dioxide (selenolite), SeO ₂ Silicon, Si	Ιİ	6
Copper(II) sulfide (covellite), CuS	ΙV	13	Silicon dioxide (alpha or low quartz), SiO ₂ -	III	24
Gallium, Ga	ΪÌ	9	Silicon dioxide (alpha or low cristobalite),		21
Gallium oxide, alpha, Ga ₂ O ₃		25	SiO	I	39
Germanium, Ge	Ì	18	Silicon dioxide (beta or high cristobalite),	•	00
Germanium, Ge Germanium oxide, GeO ₂	Î	51	SiO	I	42
Gold, Au.	Î	33	Silver, Ag	Î	$\overline{23}$
Hafnium, Hf	ΙΙÎ	18	Silver bromide (bromyrite), AgBr	ΙŶ	46
Indium, In	ÎÏĪ	12	Silver chloride (cerargyrite), AgCl	ĪV	44
Indium antimony, InSb	IV	73	Silver(II) oxynitrate, Ag ₇ O ₈ NO ₃	IV	61
Iodine, I ₂	III	16	Sodium bromide, NaBr	III	47
Iridium, Ir.	IV	9	Sodium chlorate, NaClO ₃	III	51
Iron alpha Fe	ĨV	$\tilde{2}$	Sodium chloride (halite), NaCl	II	41
Lanthanum oxide, La ₂ O ₃	III	33	Sodium cyanide, NaCN, (cubic)Sodium cyanide, NaCN, (orthorhombic)	I	78
Lead. Ph	I	34	Sodium cyanide, NaCN, (orthorhombic)	I	79
Lead bromide, PbBr ₂	II	47	Sodium fluoride (villiaumite), NaF	I	63
Lead bromide, PbBr ₂ Lead carbonate (cerussite), PbCO ₃	II	56	Sodium iodide, NaI	IV	31
	t to ontici	noted that	Sodium nitrite. NaNO ₂	ΙV	62
⁷ Further work on this program is in progress, and i additional volumes will he issued. Therefore, the accu is not necessarily the concluding index for the project.	mulative i	ndex here	Sodium sulfate (thenardite), Na ₂ SO ₄	II	59
is not necessarily the concluding index for the project.			Sodium sulfite, Na ₂ SO ₃	III	60

	Volume	Page		Volume	Page
Strontium bromide hexahydrate,	,		Tin(IV) oxide (cassiterite), SnO ₂	. I	54
SrBr ₂ ·6H ₂ O	. IV	60	Titanium, Ti		1
Strontium carbonate (strontianite) SrCO ₃ .	_ III	56	Titanium dioxide (anatase), TiO ₂	. I	46
Strontium chloride, SrCl2	IV	40	Titanium dioxide (rutile), TiO ₂	. I	44
Strontium chloride hexahydrate, SrCl2			Tungsten, W		28.
$6\mathrm{H}_2\mathrm{O}$. IV	58	Uranium dioxide, UO2	. II	33
Strontium nitrate, Sr(NO ₃) ₂	. I	80	Yttrium, oxide, \hat{Y}_2O_3	III	28
Strontium sulfate (celestite), SrSO ₄	. II	61	Zine, Zn		16
Strontium titanate, SrTiO ₃	III	44	Zinc aluminate (gahnite), ZnAl ₂ O ₄	. II	38
Tantalum, Ta	. I	29	Zinc borate, ZnB ₂ O ₄	. I	83
Tellurium, Te	. I	26	Zinc oxide (zincite), ZnO	. II	25
Thallium(I) chloride, TlCl		51	Zinc pyrosilicate hydrate (hemimorphite),	,	
Thallium(I) iodide, TII, (orthorhombic)		53	$\operatorname{Zn_4(OH)_2Si_2O_7 \cdot H_2O}$	II	62
Thallium (III) oxide, Tl ₂ O ₃		28	Zinc selenide, ZnSe	. III	23
Thorium oxide (thorianite), ThO ₂	. I	57	Zinc sulfide, alpha (wurtzite), ZnS	. II	14
Tin, alpha, Sn.		12	Zinc sulfide, beta (sphalerite), ZnS		16
Tin, beta, Sn	. I	24	Zirconium, alpha, Zr		11
Tin(II) oxide, SnO	IV	2 8	Zirconium silicate (zircon), ZrSiO ₄	. IV	68

PERIODICALS OF THE NATIONAL BUREAU OF STANDARDS

(Published monthly)

The National Bureau of Standards is engaged in fundamental and applied research in physics, chemistry, mathematics, and engineering. Projects are conducted in fifteen fields: electricity and electronics, optics and metrology, heat and power, atomic and radiation physics, chemistry, mechanics, organic and fibrous materials, metallurgy, mineral products, building technology, applied mathematics, data processing systems, cryogenic engineering, radio propagation, and radio standards. The Bureau has custody of the national standards of measurement and conducts research leading to the improvement of scientific and engineering standards and of techniques and methods of measurement. Testing methods and instruments are developed; physical constants and properties of materials are determined; and technical processes are investigated.

JOURNAL OF RESEARCH

The Journal presents research papers by authorities in the specialized fields of physics, mathematics, chemistry, and engineering. Complete details of the work are presented, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Annual subscription: domestic, \$4.00; foreign, \$5.25.

TECHNICAL NEWS BULLETIN

Summaries of current research at the National Bureau of Standards are published each month in the Technical News Bulletin. The articles are brief, with emphasis on the results of research, chosen on the basis of their scientific or technologic importance. Lists of all Bureau publications during the preceding month are given, including Research Papers, Handbooks, Applied Mathematics Series, Building Materials and Structures Reports, Miscellaneous Publications, and Circulars. Each issue contains 12 or more two-column pages; illustrated. Annual subscription: domestic, \$1.00; foreign, \$1.35.

BASIC RADIO PROPAGATION PREDICTIONS

The Predictions provide the information necessary for calculating the best frequencies for communication between any two points in the world at any time during the given month. The data are important to all users of long-range radio communications and navigation, including broadcasting, airline, steamship, and wireless services, as well as to investigators of radio propagation and ionosphere. Each issue, covering a period of one month, is released three months in advance and contains 16 large pages, including pertinent charts, drawings, and tables. Annual subscription: domestic, \$1.00; foreign, \$1.25.

Order all publications from the Superintendent of Documents U. S. Government Printing Office, Washington 25, D. C.

