System Builders Manual for Version 2.1.5 of the
NIST DMIS Test Suite
(for DMI1S5.1)

Thomas R. Kramer (thomas.kramer@nist.gov, phone 301-975-3518)
John Horst (john.horst@nist.gov, phone 301-975-3430)

Intelligent Systems Division
National Institute of Standards and Technology
Technology Administration
U.S. Department of Commerce
Gaithersburg, Maryland 20899, USA

NISTIR 7610
August 19, 2009

Builders Manual NIST DMIS Test Suite 2.1.5

Disclaimer
No approval or endorsement of any commercia product by the National Institute of
Standards and Technology isintended or implied.

Acknowledgements

Funding for the work described in this paper was provided to Catholic University by
the National Institute of Standards and Technology under grant Number
7ONANB6HO013.

Builders Manual NIST DMIS Test Suite 2.1.5

Table of Contents

I IntroducCtion. oo 1
Ll OVeIVIBW. . o ottt et e e e e e 1
1.2 Arrangement of this Manual. 1
1.3 Compiling the Tutorials e 1
2 CH++Classes Representing DMIS 2
2.1 OVEIVIBW. . . ottt et e e e e e 2
2.2 Anatomy of the CH++ Classest 4
2.3 AHrIDULE NAMES. ottt e e 8
2.4 ClaSS MAMES . . o o v vttt ettt e e e e e e e e e e e 8
2.5 Using the CHF Classes.o oottt e 9
2.6 The iSA FUNCLIONt e et 12
277 Parse Treeot 13
3 The “makeBound” Tutorial Program 14
3.1 Whatthe Program Does i 14
32 HowtoRunthe Program 15
4 The “Generate” Tutorial Program. i 15
4.1 Whatthe Program Does e 15
4.2 Howto Runthe Program 16
5 The “Analyze” Tutorial Program i 16
5.1 Whatthe Program Does i 16
5.2 HowtoRunthe Program 17
Appendix A Compiling Tutorials from Source Code in Windows 18

Builders Manual NIST DMIS Test Suite 2.1.5

System Builders Manual NIST DMIS Test Suite 2.1.5

1 Introduction

1.1 Overview

Thisis a system builders manual for the NIST DMIS Test Suite, version 2.1.51 The purpose of
this manual is to help system builders use software provided in the test suite for building systems
that implement version 5.1 of DMIS (the Dimensional Measuring Interface Standard).

The test suite and this manual were prepared at the Nationa Ingtitute of Standards and
Technology (NIST). Thereisalso a“Users Manual for Version 2.1.5 of the NIST DMIS Test Suite
(for DMIS 5.1)". The users manual should be read (or scanned, at least) before reading this
system builders manual because this manual assumes the reader understands things like
“prismatic2 conformance class’ and “parser” that are explained in the users manual. Also, the
users manual has information about compiling the libraries and parsers. The test suite, which
includes both manuals, may be downloaded from

http://www.isd.mel.nist.gov/projects/metrology_interoperability/dmis_test_suite.htm

In addition, since the test suite is over 100 megabytes (so that prospective users may want to ook
at the manuals before deciding whether to download it), the manuals may be downloaded
separately from the same site.

This manual includes descriptions of three sets of example source code. The first set,
“makeBound”’, focuses on the core of a DMIS generator implementation. The second set,
“generate”, is a template for a DMIS generator implementation. The third set, “analyze’, is a
template for a DMIS consumer application. The descriptions are given at the level of detall
appropriate for someone who aready knows C++ (including inheritance) and is comfortable
writing C++ programs. The manual contains no exercises or problems for the reader to work.
However, there are instructions for compiling the tutorial programs that could be followed as an
exercise. Also, the reader may find it helpful to experiment by changing the source code of the
tutorials, recompiling them, and running them.

1.2 Arrangement of thisManual
The remaining sections of this manual are:

* Section 2 (C++ Classes Representing DMIS) - describes the C++ classes that represent
DMIS.

* Section 3 (The “makeBound” Tutorial Program) - describes the C++ program named
“makeBound” that shows how to use the C++ classes to generate one line of DMIS code.

» Section 4 (The “Generate” Tutorial Program) - describes the C++ program named
“generate” that shows how to use the C++ classes to build a system that generates DMIS
input files.

» Section 5 (The “Analyze” Tutorial Program) - describes the C++ program named
“analyze” that shows how to use the parser and the C++ classes to build a system that
reads DMIS input files and processes them.

1.3 Compiling the Tutorials
Thetutorial programs may be compiled using any modern C++ compiler. The tutorials are already

1. In the remainder of this manual “the test suite” means the NIST DMIS Test Suite, version 2.1.5.

System Builders Manual NIST DMIS Test Suite 2.1.5

compiled, so it is not necessary to recompile them unless they will not run on your system. If you
want to recompile them on your system, continue reading this section.

1.3.1 Linux

For Linux, edit the Makefile in tutorials/linuxSun so that LINCOMPILE and LINLINK are set to
point to your C++ compiler. Then the tutorials can be recompiled from the tutorials/linuxSun
directory with the following commands.

make binLinux/ImakeBound

make binLinuxlanalyze

make binLinux/generate
1.3.2 Sun

For SunOS, edit the Makefile in tutorialg/linuxSun so that SUNCOMPILE and SUNLINK are set
to point to your C++ compiler. Then the tutorials can be recompiled from the tutorial§/linuxSun
directory with the following commands.

make binSun/makeBound

make binSunlanalyze

make binSunlgenerate
1.3.3 Windows

For Windows, the tutorials (and all other C++ code) have been compiled using the Microsoft
Visual C++ 2008 Express Edition, which may be downloaded from http://www.microsoft.com/
express/vc and used with no charge. This compiler must be run using its graphical user interface.

To rebuild an already-built executable:

o Start Visual C++.

 From the File menu, select Open.

* In the Open Project popup window that appears, use the browser to choose the project
you want. Projects have a“.dln” suffix (analyze.sln, for example). Then press the Open
button. The popup will disappear.

* From the Build menu, select Rebuild Solution.

* Select Save All from the File menu, then select Exit from the File menu.

Instructions for compiling the tutorials in Windows starting from source code are given in
Appendix A. If al you want do is change existing source code and then recompile, the
instructions above should work.

2 C++ Classes Representing DM IS

2.1 Overview

There are four sets of C++ classes that represent DMIS in the parserComponents directory of the
test suite, one for full DMIS and one for each of the three prismatic conformance classes. You, the
system builder, should use the set for the conformance class you want to implement?. If you are

1. You can use the C++ classes for full DMISfor any conformance class. If you do that and you are parsing,
however, you will have to add your own code for conformance class checking.

System Builders Manual NIST DMIS Test Suite 2.1.5

building aDMI S generator, you use the classes by populating them in a program which eventually
calls a single printSelf function to generate a file of DMIS code. If you are building a DMIS
consumer, you use the classes in a program that, near the beginning, calls a single parse function
to read in a file of DMIS code. The parsing automatically builds a parse tree consisting of
instances of the C++ classes. Then the rest of your program traverses and processes the parse tree
to do whatever you want with it.

Each set of C++ classesis described in two files: a header file defining the classes and a code file
that implements the functions and methods declared in the header file. For full DMIS these are
named dmisFull.hh and dmisFull.cc. For the prismatic2 conformance class, they are named
dmisPrismatic2.hh and dmisPrismatic2.cc. The names are similar for the other two prismatic
conformance classes. In Windows, the suffixes are changed to .h and .cpp.

In the remainder of this section, the classes for full DMISwill be used. Wherever “full” appearsin
aname, just remember that it could be replaced by “prismaticl”, “prismatic2”, or “prismatic3”.

Also:
* DMIScodeisshownint his font.
» C++ code is shown in this font.
* DEBNF codeisshownint his font.

Section 6.5 of the users manual for the test suite describes DEBNF in detail. Briefly:
» A DEBNFfileisaformal description of part or all of the DMIS language.
» A DEBNFfileisalist of productions.
* A production sets a name to be equivalent to any of alist of definitions.
« Each definition is alist of expressions’.
» An expression is a name (of afixed symbol or a production), or a single character, or an
optional list of expressions (or a couple other things less frequently).

The C++ classes for each DMIS conformance class were built automatically from the DEBNF for
the conformance class. All the C++ names of classes and attributes are derived from names used
in the DEBNF. Section 2.3 gives details on how attributes are named. Section 2.4 gives details of
how classes are named.

The rules for determining whether a class will be defined to represent something are simple.

First, aclassis defined for every production in the DEBNF that does not
* definealist,
* give adummy definition for aterminal, or
* give the spelling of atoken name.

Second, if a DEBNF production has two or more definitions, an additional class is defined for
each definition, and the class for the production is the parent of each additional class.

The DEBNF tends to be in a deep hierarchy with short definitions rather than in a shallow
hierarchy with long definitions. Since the C++ class hierarchy follows the DEBNF hierarchy, it is
deep, too.

1. Informa DEBNF, the expressions are separated by commas. In this manual, the separating commeas are
omitted to make the DEBNF easier to read.

System Builders Manual NIST DMIS Test Suite 2.1.5

2.2 Anatomy of the C++ Classes

Thereisasingle class, dmisFullCppBase, at the root of the class hierarchy. All other classes are
derived directly or indirectly from dmisFullCppBase. It exists in order to introduce the virtual
function printSelf. The dmisFullCppBase classis shown in Figure 1.

class dmisFullCppBase :

{

public:
dmisFullCppBase(); /I constructor with no arguments
~dmisFullCppBase(); /I destructor
void printSelf() = 0; /[virtual printSelf method

I3

Figure 1. dmisFullCppBase Class

When a class is constructed from a production that has more than one definition, it is a parent
class and has the form shown in Figure 2. The prototype of a parent class is shown on the |eft side
of the figure, and an example of the prototype, boundMinor, is shown on the right.

class aClass : class boundMinor :

public parentClass public dmisFullCppBase
{ {
public: public:

aClass(); -«——— constructor with no arguments — boundMinor();

~aClass(); = destructor ——— ~boundMinor();

void printSelf() = 0; -&— virtual printSelf method — void printSelf() = 0;
3 3

PROTOTYPE EXAMPLE
Figure 2. C++ Parent Class

When a class is constructed from a production that has a single definition, the class has the form
shown in Figure 3. A class whose structure follows this prototype, callMacro, is shown in Figure
5. callMacro has three attributes.

System Builders Manual NIST DMIS Test Suite 2.1.5

class aClass :
public parentClass
{
public:
aClass(); /I constructor with no arguments
aClass(/I constructor with arguments
firstType * a_firstTypeln, /[first argument to constructor
lastType * a_lastTypeln); /I last argument to constructor
~aClass(); /l destructor
void printSelf(); /I printSelf method
firstType * get_a_firstType(); /I get function for first attribute
void set_a_firstType(firstType * a_firstTypeln); // set function for first attribute
lastType * get_a_lastType(); /I get function for last attribute
void set_a_lastType(lastType * a_lastTypeln); // set function for last attribute
private:
firstType * a_firstType; // first attribute
lastType * a_lastType; /I last attribute

3
Figure 3. Prototype C++ Class

The printSelf function declared in Figure 3 isimplemented for al such classesin dmisFull.cc (for
Windows, dmisFull.cpp). The printSelf functions print the DMIS code represented by the classes.
The printSelf functions are powerful because the printSelf function for each class, in addition to
printing whatever DMIS is needed for the class itself, cals the printSelf functions for the
attributes of the class. Thus, an entire DMIS file can be printed by a single cal to
inputFile::printSelf(). The “generate” tutorial provides an example of this.

There is only one function that prints DMIS that is not a printSelf function. That is the
printDouble function. It prints a double with the default number of decimal places (six, usually)
but it suppresses trailing zeros. For example, it prints 3.65 rather than 3.650000.

The constructor that takes no arguments sets nothing.

The constructor that takes arguments takes one argument for each attribute, and the type of that
argument is the same type as the type of the attribute. The constructor sets the value of each
attribute to the value given in the arguments.

The destructor does nothing.

The prototype in Figure 3 is shown with two attributes, but in general, there may be zero to many
attributes. For each attribute thereis:

* aprivate attribute,

* apublic get_attribute function,

System Builders Manual NIST DMIS Test Suite 2.1.5

 apublic set_attribute function,
* an argument to the constructor that takes arguments.

If there are no attributes, there is no constructor that takes arguments, and there are no
get_attribute or set_attribute functions.

Only onetype of aggregate is used; that islist. Every list is of the form std::list<something>. All
of the standard C++ list manipulation functions will work with every list.

Except when an attribute of a class is a bool or a non-optional int or double, the value of every
attribute is a pointer of some sort. Where an attribute is optional and its type isint or double, the
value of the attribute is a pointer.

Only those items that can differ between instances of a class are represented as attributes of the
class. Items such as command names and commas that are always the same in every instance of a
class are not represented as attributes of the class. Figure 4 shows the definition of the boundStm
class as given in the dmisFull.hh. As shown in Figure 4, aboundSt mhas the DEBNF definition
BOUND '/’ boundM nor #. Theonly thinginaboundSt mthat varies between instancesis
the boundM nor, so only the boundM nor is represented in the boundStm class. It is
represented by the attribute a_boundMinor, which is a pointer to a boundMinor.

/* boundStm

Thisisaclassfor the single definition of boundStm. It represents the following items:
BOUND '/’ boundM nor #

*/

class boundStm :
public dmisStatement
{

public:

boundStm();

boundStm(

boundMinor * a_boundMinorin);

~boundStm();

void printSelf();

boundMinor * get_a_boundMinor();

void set_a_boundMinor(boundMinor * a_boundMinorin);
private:

boundMinor * a_boundMinor;

¥
Figure 4. boundStm C++ Class

If part of aDMIS command is optional and contains items that can differ between instances of the
command, then there is an attribute (which is a pointer) for each of those items. If an instance of

System Builders Manual NIST DMIS Test Suite 2.1.5

the command does not include the optional part, then in the class instance representing the
command, the pointers for the items in the optional part are NULL pointers.

If part of a DMIS command is optional but contains only items such as keywords and commas
that do not differ between instances of the command that have the optiona part, then there is a
boolean attribute for the optional part.

The callMacro class shown in Figure 5 provides an example of the points in the preceding two
paragraphs. Theoptional [', CHARSTRI NG at the end of the DEBNF text represents a string
consisting of the arguments to the macro being called. If a DMIS CALL command has a comma
andstringsuchas, ' 3, 2.5 attheend, thenthe value of the a_string attribute of the instance
of the callMacro class representing the command will be a pointer to the string “3, 2.5”. If not the
value will be NULL. If the command has EXTERN, DM S, at the beginning, then the value of the
has_EXTERN attribute of the classinstance will be true. If not, the value will be false.

[* calMacro

Thisisaclassfor the single definition of callMacro. It represents the following items:
[EXTERN ", DMS ',’'] nLabel [',’ CHARSTRI NG

*/

class callMacro :
public callMinor
{

public:
callMacro();
callMacro(
bool has_ EXTERNIN,
mLabel * a_mLabelln,
char * a_stringln);
~callMacro();
void printSelf();
bool get_has EXTERN();
void set_has EXTERN(bool has_ EXTERNInN);
mLabel * get_a_mLabel();
void set_a_mLabel(mLabel * a_mLabelln);
char * get_a_string();
void set_a_string(char * a_stringIn);
private:
bool has_ EXTERN,;
mLabel * a_mLabel;
char * a_string;

2
Figureb. callMacro C++ Class

System Builders Manual NIST DMIS Test Suite 2.1.5

2.3 Attribute names

The names of most attributes are formed by concatenating the prefix a_ with the type of the data.
For example, in Figure 5, the attribute name a_mLabel is used where the data type is mLabel. If
there are two or more occurrences of the same type of data in a class, the prefix is not used. A
suffix of the form _N is added instead, where N is an integer giving the position of the attribute in
the DEBNF being represented. For example, daLabel ' ,’ daLabel isthe DEBNF for
equat eM nor _1. The attributes of equateMinor_1 are named daLabel_1 and dalLabel 3
since they are the 1st and 3rd itemsin the DEBNF.

If the data type is char *, then the attribute name is a_string, since a_char sounds like a single
char.

In the case of an attribute whose value is alist, the name of the attribute is taken from the name of
thelistin DEBNF, with thea_ prefix or the_N suffix added as described above. In most cases this
means that the name (before the prefix or suffix is added) is made by concatenating the type of
thing listed with List. For example, an attribute of type std::list<dmisltem *> has the name
a_dmisltemList. In some cases, the DEBNF name was not formed by concatenating, so the
attribute name is irregular. For example, a boundFeat has an attribute named a_featureList
which isalist of featureLabel, not alist of feature.

If the data type is bool, then the attribute name is made by concatenating the prefix has_ with the
first name in the optional items being represented. For example, in Figure 5, the attribute that
indicates whether EXTERN, DM S, is used is named has_ EXTERN. If there are two or more
attributes that would have the same name, then the _N suffix is added as described above (and the
has_ prefix is kept).

2.4 Class names

The name of each class corresponding to an entire production is the same as the name of the
production. If the production has only one definition, only one class is defined.

If there are two or more definitions for a production, an additional class is defined for each
definition. If possible, the name for the class for each definition is given the form
productionName_itemName, where itemName is the name of one of the expressions in the
definition.

That form is possible if any of the following three conditions holds.

(1) Every definition has exactly one expression and each of those expressions has a name (not all
expressions have names). In this case, itemName is the name of the expression.

For example, if the DEBNFis
cal | Type = WAIT | CONT | ATTACH ;
then the class names will be callType_WAIT, callType_CONT, and callType_ATTACH.

(2) Every definition starts with a keyword or a nonterminal and no two definitions start with the
same thing. In this case itemName is the name of the first expression in the definition.

For example, if the DEBNFis
panmeasRotaryAngle = rotAbs , ¢, angle | rotlncr , ¢ , angle ;
then the class names will be pameasRotaryAngle rotAbs and pameasRotaryAngle_rotincr.

(3) Every definition isidentical, except for one term that is either a keyword or a nonterminal. In

System Builders Manual NIST DMIS Test Suite 2.1.5

this case itemName is the name of the distinguishing term.

For example, if the DEBNF is
aclratMeas = MESACL , ¢, aclratLinear | MESACL , c , aclratDef ;
then the class names will be aclratMeas_aclratLinear and aclratMeas_aclratDef.

If none of the three conditions above holds, then the class name has the form
productionName_N, where N is 1 for the first definition, 2 for the second definition, etc.

For example, if the DEBNF is
| abel Nane = | abel NaneConst | "(° , '@ , stringvar , ')’ ;
then the class names will be labelName_1 and labelName_2.

2.5 Using the C++ classes

You need to understand C++ and DMIS in order to use the C++ classes that represent DMIS.
Once you understand as much of DMIS as you plan to implement, using the C++ classes is not
difficult. To find the class or classes required to deal with a particular DMIS command, however,
two documents are needed: (1) a copy of the DMIS 5.1 standard (electronic or paper) and (2) an
electronic copy of the header file defining the classes. Since there are alot of classes (1838 for full
DMIS, covering amost 50,000 lines in the header file), looking through the header file manually
will not work.

The quickest way to find the classes needed to deal with a particular DMIS command is to begin
by searching the header file for class commandStm, where command is the name of the
command in lower case letters. For example, if you want to find the classes for the BOUND
command, search for class boundStm. That will get you very quickly to the class for the
command. In a few cases, that is al you need to do. In most cases, however, the class for the
command has attributes that are other classes, and you will need to look at those classes, and they,
in turn, may have attributes, and so on through perhaps five or six levels.

For the BOUND command BOUND/ F(f 1), F(f2), F(f3), for example, a tree of class
instances is shown in Figure 6. In the figure, attribute names and list indexes are in italics. The
tree includes three instances of fLabel.

System Builders Manual NIST DMIS Test Suite 2.1.5

boundStm
a_boundMinor boundFeat
a_fLabel fLabel
a_labelName labelName 1
a_labelNameConst labelNameConst
a_string “f1”
a_featureList std::list<featureLabel *>
1 fLabel
a_labelName labelName_1
a_labelNameConst labelNameConst
a_string “f2”
2 fLabel
a_labelName labelName 1

a_labelNameConst labelNameConst
a_string “f3”

Figure 6. Instance Tree for BOUND/F(f1),F(f2),F(f3)

As shown in Figure 6, instances of six classes are used in constructing this bound statement:
boundStm, boundFeat, fLabel, labelName_1, labelNameConst, and featureLabel (in

std::list<featureLabel *>). The C++ code (from dmisFull.hh) for the first two of these (and
boundMinor) isshownin Figure 7.

10

System Builders Manual NIST DMIS Test Suite 2.1.5

[* boundStm - represents: BOUND '/’ boundM nor # */
class boundStm :

public dmisFreeStatement,

public dmisStatement
{public:

boundStm();

boundStm(

boundMinor * a_boundMinorlin);

~boundStm();

void printSelf();

boundMinor * get_a_boundMinor();

void set_a_boundMinor(boundMinor * a_boundMinorin);
private:

boundMinor * a_boundMinor; };

[* boundMinor - This is a parent class. */
class boundMinor :

public dmisFullCppBase
{public:

boundMinor();

~boundMinor();

void printSelf() = 0; };

/* boundFeat - represents: f Label ', featureList */
class boundFeat :
public boundMinor
{public:
boundFeat();
boundFeat(
fLabel * a_fLabelln,
std::list<featureLabel *> * a_featureListIn);
~boundFeat();
void printSelf();
fLabel * get_a_fLabel();
void set_a_fLabel(fLabel * a_fLabelln);
std::list<featureLabel *> * get_a_featureList();
void set_a_featureList(std::list<featureLabel *> * a_featureListIn);
private:
fLabel * a_fLabel;
std::list<featureLabel *> * a_featureList;};

Figure7. C++ Some Classes for BOUND/F(f1),F(f2),F(f3)

11

System Builders Manual NIST DMIS Test Suite 2.1.5

The boundStm instance has one attribute, a_boundMinor, and its value is an instance of a
boundFeat. The C++ code and the attribute name show that the value of the attribute
a_boundMinor is a boundMinor. boundMinor, however, is a parent type that is not intended to
be instantiated. boundFeat is the child class of boundMinor that matches the DMIS code we
want to build (since BOUND is followed by F(f 1)), so we use an instance of boundFeat.

The boundFeat instance has two attributes, a_fLabel and a_featureList. The value of a_fLabel
isan instance of fLabel. The value of a_featureList is astd::list<featureLabel *> which, in this
case, has two elements, both of which are fLabels.

Continuing the analysis through fLabel, labelName_1, and labelNameConst is left to the
reader.

2.6 TheisA Function

The isA function is provided to get run-time information about the type of an object (i.e., an
instance of a class). Thisis useful for dealing with a parse tree. Frequently, in analyzing a parse
tree, you will know that an object is of some parent type and will need to know what child type it
is. That's where you use isA. The function takes two arguments: an object, and a type, so that a
call hasthe form isA(object, type).

For example, suppose in your application you have an instance of a callRoutine. One of the
attributes is a_callType, which is (of course) a callType. You need to determine whether it isa
callType_WAIT, acallType_CONT, or acallType_ATTACH because your application will take
different actions according to what it is. So you write (completely ordinary) if, else if, ... else
code using the isA function as your test:

if (isA(a_callType, callType_WAIT))
actionl;

else if (isA(a_callType, callType_CONT))
action2;

else if (isA(a_callType, callType_ATTACH))
action3;

The analyzeltems function in the “analyze’ tutorial program provides another example of this
kind of code.

The isA function is not a normal function. It could not be a norma function since one of the
argumentsis atype. Instead, isA is the following compiler macro

#define isA(a,b) dynamic_cast<b *>(a)

This uses C++’sdynamic_cast construct. The dynamic_cast construct is the standard C++ method
of casting an object known to be polymorphic. Normal C style casts do not work on polymorphic
objects. Dynamic_cast does not work on an object that is not polymorphic, but every instance of
one of the C++ classes for DMIS is polymorphic, so dynamic_cast will always work on them.
Dynamic_cast returns a pointer to an object of the type being tested if the object being tested is of
the type being tested and NULL if not.

Often, once you have determined that an object is of a particular type, you will want to cast it into
that type. To do that, call dynamic_cast explicitly:

12

System Builders Manual NIST DMIS Test Suite 2.1.5

int foo(callType * callTypel)
{
callType_WAIT * callType2;
if (isA(callTypel, callType_WAIT))

callType2 = dynamic_cast<callType_WAIT *>(callTypel);
doSomething(callType2);
}
}

You can, of course, combine the assignment and the test, in which case you do not useisA at all.
As shown below, thisis shorter but alittle obscure.

int foo(callType * callTypel)

{
callType_WAIT * callType2;

if ((callType2 = dynamic_cast<callType_WAIT *>(callTypel);))

{
doSomething(callType?2);

}
}

2.7 Parse Tree

When the yyparse function runsin the parser, it parses a DMISfile and builds a parse tree named
tree that represents the file. In C++ terms, the parse tree is an inputFile. An inputFile has three
attributes, as follows:

dmisFirstStatement * a_dmisFirstStatement;
std::list<dmisltem *> * a_dmisltemList;
endfilStm * a_endfilStm;

Thelist of dmisltemsin the middle of the parse tree can be conveniently examined one at atime
by afor loop that iterates using a standard list iterator in a function of the following sort:

void doltems(std::list<dmisltem *> * items)

{

std::list<dmisltem *>::iterator iter;
for (iter = items->begin(); iter != items->end(); iter++)

{
if (IsA((*iter), typel))

else if (isA(("iter), type2))

}
}

The same sort of iterator and for loop can be used to examine any list. Just change the type of
thing listed.

The “analyze” tutorial described in Section 5 uses an iterator and a for loop of the sort shown

13

System Builders Manual NIST DMIS Test Suite 2.1.5

above.
3 The*“makeBound” Tutorial Program

3.1 What the Program Does

The makeBound tutorial program shown in Figure 8 generates and prints the instance of the
boundStm class shown in Figure 6. The code may aso be found in tutorials/linuxSun/source/
makeBound.cc and tutorial s/'windows/source/makeBound.cpp. This tutorial is written for the full
DMIS conformance class.

#include "dmisFull.hh"

boundStm * makeBound2(
char * boundLabel,
char * featLabell,
char * featLabel2)

std::list<featureLabel *> * featureLabels;

featureLabels = new std::list<featureLabel *>;
featureLabels->push_back(new fLabel
(new labelName_1
(new labelNameConst(featLabell))));
featureLabels->push_back(new fLabel
(new labelName_1
(new labelNameConst(featLabel2))));
return new boundStm
(new boundFeat
(new fLabel
(new labelName_1
(new labelNameConst(boundLabel))),
featureLabels));

}

int main()

{
makeBound2("f1", "f2", "f3")->printSelf();

return O;

Figure 8. C++ Program to Make BOUND/F(f1),F(f2),F(f3)

The program defines amakeBound2 function that returns a pointer to aboundStm and defines a
main function that calls makeBound2. When the program is run, it prints

14

System Builders Manual NIST DMIS Test Suite 2.1.5

BOUNDY F(f1), F(f2), F(f3). The general approach of the function is to make a tree of
constructors with the same hierarchy as shown in Figure 6. There is no constructor for a populated
list, however, so thelist is built and populated (using push_back) before the boundStm is built.

For Linux and Sun, the files dmisFull.hh and dmisFull.a are used in compiling the program. For
Windows, the files dmisFull.h and dmisFull.lib are used.

3.2 How to Run the Program
3.2.1 Linux
In aLinux terminal window, get into the tutorials/linuxSun directory, and give the command:

binLinuxImakeBound
3.2.2 Sun

In a Sun terminal window, get into the tutorials/linuxSun directory, and give the command:

binSun/makeBound
3.2.3 Windows

In a Windows command window, get into the tutorial s\windows\makeBound directory, and give
the command:

Debug\makeBound
4 The“ Generate” Tutorial Program

4.1 What the Program Does

The “generate” tutorial program builds a specific DMIS input file (the one in systemTestFiles/
prismatic2/oklnM otionP2/simplelp2.dmi, but without comments). It is written for the prismatic2
conformance class. The source code for the program is in tutorial §/linuxSun/source/generate.cc
and in tutorials\windows\source\generate.cpp. The “generate” tutorial program illustrates how to
use the C++ classes in a program that generates DMIS input files. The generate.cc file contains
good in-line documentation.

The general approach is:
* Define helper functions for building instances of frequently used classes and classes with
alot of substructure.
» Call the helper functions or constructors repeatedly to build alist of DMIS statements.
» Sandwich thelist of DMIS statements between admismnStm and an endfilStm to make
an inputFile named theFile.
* Call theFile->printSelf() to print the DMIS input file.

The helper functions are similar to the makeBound?2 function in Figure 8. They are:
» makeCartPtmeas - takes six doubles representing a point and a surface normal and
returns a pointer to a ptmeasStm with those values.
» makelLabel - takes a string containing the name for a label and returns a pointer to a
labelName_1 with that name.
» makePtGoto - takes three doubles representing a point and returns a pointer to a
gotoStm saying to go to that point.

15

System Builders Manual NIST DMIS Test Suite 2.1.5

For Linux and Sun, the files dmisPrismatic2.hh and dmisPrismatic2.a are used in compiling the
program. For Windows, the files dmisPrismatic2.h and dmisPrismatic2.lib are used.

4.2 How to Run the Program
4.2.1 Linux
In aLinux terminal window, get into the tutorials/linuxSun directory, and give the command:

binLinux/generate
4.2.2 Sun

In a Sun terminal window, get into the tutorials/linuxSun directory, and give the command:

binSunligenerate
4.2.3 Windows

In a Windows command window, get into the tutorials\windows\generate directory, and give the
command:

Debug\generate
5The*Analyze” Tutorial Program

5.1 What the Program Does

The “analyze” tutoria program shows how the parser and the C++ classes for DMIS can be used
in asystem that consumes DMIS input files.

The “analyze”’ program counts the total number of times each kind of nominal feature is defined
in aset of DMIS input files. Thisis one of the ssmplest things a DMIS consumer could do. The
kind of DMIS consumer program that is most interesting and useful would be a DMIS executor,
but even the simplest executor istoo complex for atutorial.

The source code for the program is in tutorids/linuxSun/source/analyze.cc and in
tutorial s\windows\source\analyze.cpp. The source code for the “analyze” program has only five
functions, but the program also calls three functions defined in dmisPrismatic2YACC.cc.

1. The main function calls analyzeManyFiles to count the number of instances of each feature
type used in aset of DMIS input files, and then calls reportResults to print the results.

2. The analyzeManyFiles function takes a string argument, fileNameFile, and expects it to be
the name of afile that contains the names of a number of DMIS input files. For each file listed in
the fileNameFile, analyzeManyFiles calls analyzeOneFile.

3. The analyzeOneFile function:
* preprocesses the file whose name is fileName.
* opens the preprocessed file and sets yyin to the opened file.
* exitsif the preprocessed file did not open.
» calsyyparse; this parses the preprocessed file and builds a parse tree.
* closes yyin.
* deletes the preprocessed file.
* reports the number of errors and warnings.
» callsanalyzeltems if there were no errors or warnings and there are items to analyze.

16

System Builders Manual NIST DMIS Test Suite 2.1.5

* resets the parser so it is ready to parse another file.

Almost every DMIS consumer program that uses the parser and C++ classes would include al the
stepsin the analyzeOneFile function, except that the analyzeltems function would be replaced.

4. The analyzeltems function looks through the dmisitemList which was built when a DMIS
input file was parsed and adds 1 to the number of instances of atype of feature whenever that type
of feature is found among the dmisltems being analyzed.

5. ThereportResults function prints the total number of times each feature type was found in the
DMIS input files that were examined.

This tutorial program uses files for the prismatic2 conformance class, but any other conformance
class (including full DMIS) could be used equally well. The features the program looks for would
need to be changed to be the ones in the conformance class. For Linux and Sun, the files
dmisPrismatic2.hh and dmisPrismatic2.a are used in compiling the program. For windows, the
files dmisPrismatic2.h and dmisPrismatic2.lib are used.

5.2 How to Run the Program

The “runAllPrismatic2” file contains a list of the names of DMIS input files, so
“runAllPrismatic2” may be used as a command argument with the “analyze” program. You can
substitute the name of some other list of DMIS input file names, but be sure the files names are
complete relative or absolute path names.

5.2.1 Linux
In aLinux termina window, get into the tutorial/linuxSun directory, and give the command:

binLinuxl/analyze runAllPrismatic2
5.2.2 Sun

In a Sun terminal window, get into the tutorial s/linuxSun directory, and give the command:

binSunlanalyze runAllPrismatic2
5.2.3 Windows

In a Windows command window, get into the tutorials\windows\analyze directory, and give the
command:

Debug\analyze runAllPrismatic2

17

System Builders Manual NIST DMIS Test Suite 2.1.5

Appendix A Compiling Tutorials from Source Code in Windows

This appendix gives instructions for making the executable “analyze’ from source code using the
Microsoft Visual C++ 2008 Express Edition. If you are using some other version of Visual C++,
these exact instructions are not likely to work, but they may be helpful hints.

The easy way to compile the executable “analyze” is described in Section 1.3.3. The instructions
in this appendix are intended to be used only if the easy way does not work. These instructions
assume that the “analyze” subdirectory of the tutorials\windows directory does not yet exist. So, if
you want to try these instructions, first delete or rename the “analyze” subdirectory of
tutorial s\windows.

These instructions also work for the executable “ generate”. Just substitute
* “generate” for “anayze’.

These instructions also work for the executable “makeBound” . Just substitute:
* “makeBound” for “analyze”
o “full” for “prismatic2’
e “dmiskull” for “dmisPrismatic2”

1. Start Visual C++. If it isaready running, shut it down and restart it.

2. From the File menu, select New and then Project. This brings up a popup with two large
boxes on top, and three long thin boxes on the bottom, with a check box after the last one.

3. Inthetop left (Project types) box, select Win32.
4. In the top right (Templates) box, select Win32 Console Application.

5. In the bottom boxes puit:
Name - analyze

Location - <NDT S>\tutorial s\windows\
where <NDTS> isthe full path to the test suite, for example:
R:\proj\dmis\kramer\NistDmisTestSuite2.1.5

Solution Name - analyze

Create directory for solution - |eave checked

Then press OK.
6. In the popup that appears, press Next (not Finish).

7. This brings up a popup |abeled Application Settings.

Under Application Type, select Console Application.

Under Additional Options, first uncheck Precompiled Header, then check Empty Project.
Then press Finish.

This puts control back into the main Visual C++ window.

8. To get the project to use the source code, in the Project menu of the main window, select
Add Existing Item. This brings up afile browser window. It may be necessary to select Add
Existing Item twice, since only one item at atime can be added.

18

System Builders Manual NIST DMIS Test Suite 2.1.5

From the <NDTS>\parserComponents\windows\prismatic2\source directory, select the
following source code files, and then press Add:

dmisPrismatic2.h

From the <NDTS>\tutorials\windows\source directory, select the following source code
files, and then press Add:

anayze.cpp

Visual C++ will appear to put the files in a location shown in the Solution Explorer
hierarchy window on the left of the main window. Thisis a project hierarchy, not adirectory
hierarchy (although it looks like a directory hierarchy). If the source code is put in the
wrong place, it can be dragged up or down the hierarchy into the right place. Header files go
in the fake HeaderFiles directory, and.cpp files go in the fake SourceFiles directory.

9. To get the project to use the dmisPrismatic2 library, in the Project menu of the main
window, select Add Existing Item. This brings up afile browser window.

From the <NDT S>\parserComponents\windows\prismatic2\dmisPrismatic2Classes\Debug
directory, select dmisPrismatic2.lib and then press Add.

When you add dmisPrismatic2.lib, Visual C++ will display a popup window asking if you
want to create a rule for making dmisPrismatic2.lib.

Press the No button.

In the Solution Explorer window, dmisPrismatic2.lib goes directly into dmisFullParser, not
in any fake directory.

10. Even through Visual C++ knows exactly where the dmisPrismatic2.h file is (and will
display it if you double click on it in the Solution Explorer window), Visual C++ does not
find dmisPrismatic2.h (which is #included by analyze.cpp) when it is compiling
analyze.cpp unless you do the following.

From the Project menu of the main window, select Properties.

This will bring up a popup window with a box on the left side containing a hierarchy of
properties. Expand Configuration Properties. Then expand C/C++. Then select Command
Line. A box labeled Additional options will appear at the lower right of the popup. In that
box, enter:

/I'.\.\..\..\parserComponents\windows\prismatic2\source
Then click on OK.

The /I means to use the directory as an include directory. The four sets of double dots are
necessary because, apparently, the compilation is attempted from the
<NDTS>\tutorial s\windows\analyze\analyze directory.

11. To make the executable analyze, select Build Solution from the Build menu. The
executable will appear in the file <NDT S>\tutorials\windows\analyze\Debug\anal yze.exe.

12. Select Save All from the File menu, then select Exit from the File menu.

19

	System Builders Manual for Version 2.1.5 of the NIST DMIS Test Suite (for DMIS 5.1)
	1 Introduction
	1.1 Overview
	1.2 Arrangement of this Manual
	1.3 Compiling the Tutorials
	1.3.1 Linux
	1.3.2 Sun
	1.3.3 Windows

	2 C++ Classes Representing DMIS
	2.1 Overview
	2.2 Anatomy of the C++ Classes
	Figure 1. dmisFullCppBase Class
	Figure 2. C++ Parent Class
	Figure 3. Prototype C++ Class
	Figure 4. boundStm C++ Class
	Figure 5. callMacro C++ Class

	2.3 Attribute names
	2.4 Class names
	2.5 Using the C++ classes
	Figure 6. Instance Tree for BOUND/F(f1),F(f2),F(f3)
	Figure 7. C++ Some Classes for BOUND/F(f1),F(f2),F(f3)

	2.6 The isA Function
	2.7 Parse Tree

	3 The “makeBound” Tutorial Program
	3.1 What the Program Does
	Figure 8. C++ Program to Make BOUND/F(f1),F(f2),F(f3)

	3.2 How to Run the Program
	3.2.1 Linux
	3.2.2 Sun
	3.2.3 Windows

	4 The “Generate” Tutorial Program
	4.1 What the Program Does
	4.2 How to Run the Program
	4.2.1 Linux
	4.2.2 Sun
	4.2.3 Windows

	5 The “Analyze” Tutorial Program
	5.1 What the Program Does
	5.2 How to Run the Program
	5.2.1 Linux
	5.2.2 Sun
	5.2.3 Windows

	Appendix A Compiling Tutorials from Source Code in Windows

		Superintendent of Documents
	2022-04-13T09:56:34-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

