
PUBLICATIONS

aGGHEMiilM FLOW
IN THE G PROGRAMMING LANGUAGEmmjmmmmmmMm ?h

chm:Aa

foWwffi

oriv/x
^hTTi-h:;

Research Information Center

National Bureau of Standards

Gaithersburg, Maryland 20899

A13SC-

CLCsIOO

, USL,

no. U-114!

14 22

A Scheme for Translating Control Flow in the C Programming Language
to Grafcet with Examples

Bruce Hunter Thomas

This publication was prepared by United States Government employees as part of their

official duties and is, therefore, a work of the U. S. Government and not subject to copyright.

Certain commercial equipment, instruments, or materials are identified in this paper in order

to adequately specify the experimental procedure. Such identification does not imply

recommendation or endorsement by the National Bureau of Standards, nor does it imply that

the materials or equipment identified are necessarily the best available for the purpose.

A Scheme for Translating Control Flow in the C
Programming Language to Grafcet with Examples

Bruce Hunter Thomas

National Bureau of Standards

Gaithersburg, MD

Keywords: Grafcet, C programming language, control flow, programming languages

Abstract:

The purpose of this paper is to show a translation scheme from control flow in the C
programming language to the Grafcet language. Grafcet is a graphical language for

expressing control flow. Grafcet is used to design parallel systems such as in a

manufacturing environment. The control constructs covered in this paper are: conditional

statement, while, do, for, switch, break, continue, goto, label, and null. The Grafcet used in

this paper is the language, as augmented by Savoir. The C programming language is the one

described by Kemighan and Ritchie. This translation is to be used as a reference for

programmers to translate existing C source code into Grafcet.

Introduction:

Grafcet is a powerful graphical language for expressing control flow. Savoir has implemented

a version of Grafcet which uses C source code[l]. Grafcet is an excellent tool for designing,

documenting, and demonstrating the control flow of a system. A system which is already

written in C can be translated into a set of Grafcet programs. This paper shows a translation

scheme from the control flow in a C program to a set of Grafcet programs. The C source code

constructs are those defined by Kemighan and Ritchie [2].

A basic introduction to the portion of the Grafcet language needed for the translations is

given in the paper. A number of the extensions to Grafcet by Savoir, used for translating, are

described. The translation of these C source code control constructs are described:

conditional statement, while, do, for, switch, break, continue, goto, label, and null.

The problem of representing data flow or a definitive method for translating functions into a

Grafcet form from a C program is not directly addressed, but a discussion of the problems of

representing C functions in Grafcet is given. A possible scheme for functions translated to

macro steps is outlined, but a definitive solution is not given.

Background:

For the purposes of this paper we will define our problem as translating a set of C source

code control constructs into a Grafcet system, where a Grafcet system is a hierarchy of

Grafcet programs. A Grafcet program is either a main program or a macro program. There is

only one main program for each Grafcet system and it is at the top of the hierarchy. A macro

program is an expanded Grafcet program from a macro step. Below is a definition of the

Grafcet primitives, the goal of using these primitives, and the features Savoir augmented to

the Grafcet language.

The Grafcet language has three major primitives: regular steps, macro steps, and

transitions. Regular steps allow the user to represent an arbitrary control action in the form

of embedded C source code. The Grafcet places a dot in the regular step’s square to indicate

that C source code is embedded in it, see the example below. Macro steps allow the user to

name embedded Grafcet macro programs as control actions. Transitions act as gates on the

flow of control through the Grafcet program. Associated with each transition is a C
expression which determines if control can pass through this point. If the expression

evaluates to False, the gate stops the control flow. If the expression is True, the gate

allows the control flow to continue. These primitives can be connected to form a control flow

path by attaching a link between two primitives. A link can only be attached between a step

primitive and a transition primitive; that is to say a transition primitive cannot be linked to

another transition primitive. These links are represented by a line from one primitive to

another, sometimes an arrowhead is used to indicate the direction of the control flow.

Examples of what these primitives look like are shown below. In these examples 0 and Ml
are labels supplied by the Grafcet programming environment, and label is a user supplied

name for a step.

Qabel “’Baoel 'K’
,pre“‘°n

(regular step) (macro step) (transition)

It has been shown that all the other C control constructs can be formed from just conditional

and goto statements [3], [4]. Therefore by translating the C conditional and goto

statements first, the rest of the C control constructs will follow.

There are three features with which Savoir has augmented the Grafcet language that are

used in translating C source code into Grafcet. The Grafcet transitions use C expressions for

the condition that determines whether or not control can pass through the transition. In an

asynchronous branch a special transition condition of otherwise was added. An
asynchronous branch is a single step followed by two or more transitions. Control can flow

through one or more of the transitions whose conditions are true. Otherwise is defined as a

condition that is true if the conditions of the transitions to its left in a set of asynchronous

branches are false. An example of an asynchronous branch with an otherwise transition is

shown below.

~ 2 ~

Example of an asynchronous branch with an otherwise transition:

(asynchronous branch)

The C programming language was chosen for this translation because Savoir has augmented

Grafcet to support C source code in their "regular step." This translation can be extended to

other languages with similar constructs such as Pascal, Fortran, or Algol 60.

Definitions:

In the examples of Grafcet programs, T is defined as True or:

T != 0

~ 3 ~

Description of Translation:

The translation of these C source code control constructs is described in this section: null,

label, goto, conditional statement, while, do, for, switch, break, and continue. To help

clarify the descriptions of translations a mixture of flowcharts, C statements, or examples

are used. The translated Grafcet statements are fragments which may be linked together to

form a complete Grafcet program.

Null statement: ;

A null statement translates to a regular step with no C source code associated with it. (For

the examples shown here, the null statement regular steps will be labeled null.)

(null in Grafcet)

Labeled statement: identifier

:

The label statement in C is used for a destination location for the goto statement. There is

no explicit translation into Grafcet, but the goto statement is translated.

~ 4 ~

Goto statement: goto identifier ;

As described above, control follows the links in a Grafcet program. Each link acts similar to

a goto from point to point in a Grafcet program. A link must be contained in one Grafcet

macro program. The goto statement is not the most popular construct in the C language;

therefore it is anticipated the C goto construct will not be used often [5].

Example goto statement

:

statement1 ;

if expression goto NEXT;
statement2 ;

NEXT: statement3 ;

(goto in Grafcet)

Conditional statement: if (expression) statement

if (expression) statementl else statement

2

The conditional statement is made with two asynchronous branches. One branch is a

transition with the condition expression , and the other transition has the condition otherwise.

expression

ostatement

--T

~
"otherwise

(if then in Grafcet)

expression '“’otherwise

<nL-—Jstaiementl 1

statement

”"T --T

(if then else in Grafcet)

While statement: while (expression) statement

The logic for the while statement is as follows [6]:

The Grafcet equivalent is:

null

'expression

ostatement

--T

-
'otherwise

False

(while in Grafcet)

Do statement : do statement while (expression)

;

The logic for the do statement is as follows:

False

The Grafcet equivalent is:

statement

‘expression ““otherwise

i

(do in Grafcet)

~ 8 ~

For statement : for (expression

1

; expression

2

; expression) statement

The for statement can be expressed as a while statement; where expressionl and

expression are constructed by placing C source code of the expressions in regular steps.

The C source code using a while loop to represent a for statement is shown:

expressionl ;

while (expression2) {

statement ;

expression ;

}

6expressionl

--T

n1 In. .11

- 'express>on2
" "otherwise

statement

--T

Qxpression3

--T

(for in Grafcet)

Each of the three expressions in the for statement are optional. If the expressions

expression! or expression are not used in a for statement, the unused expression is

replaced by a null statement in the Grafcet program. If the expression expression

2

is not

used in a for statement, the expression in transition replaced by T in the Grafcet program.

The Grafcet for loop shown below demonstrates all of the replacements of the three optional

expressions, even though the Grafcet code functional makes little sense.

for (;;) statement

(for (;;) in Grafcet)

Switch statement : switch (expression) statement

case constant-expression :

default

:

The switch statement can easily be expressed with only conditional and goto statements

[3]. The case label is replaced by an equivalence comparison between the constant-

expression and the expression. The default case is handled by the otherwise condition in

the Grafcet. The translation of the switch statement in Grafcet always produces a default

statement to allow the control flow to continue. If there is no default in the C source code, a

null statement must be inserted after the otherwise condition. The switch statement is

commonly used with break statements, the break statement is defined in the next section.

The first example is a switch statement without the break statements, and the second

example is the switch statement with break statements.

Examples

:

The switch statement without the break statements:

switch (iconstant- expression

)

{

case easel : statementl ;

case case2 : statement2;

case case3 : statements ;

default : statementd;

}

(switch in Grafcet)

~ 11 ~

The switch statement with the break statements:

switch (expression) {

case easel : statement1 ;

break;

case case2 : statement

2

;

break;

case case3 : statement3 ;

break;

default : statementd;

}

““easel == expression

statement!

--T

statement2

T

statements

T

case2 = = expression - “case3 = = expression

statementd

T

(case in Grafcet)

““otherwise

~ 12 ~

The last two constructs, break and continue, can be expressed in the form of goto and label

statements; therefore links in the Grafcet programs can replace them. Examples are given to

help show how to perform these conversions.

Break statement : break;

The break statement is equivalent to a goto statement which passes control to next

statement after the smallest enclosing while, do, for, or switch statement. The break

statement is shown earlier in the discussion of the switch statement. Examples of the

break statement in the while, do, and for statements are shown below. The links in the

examples which are added for the break statements are shown as dashed lines.

Examples : while (expressionl) {

statementl ;

if (expression!) break;

statement!

;

}

^a or
3null

— -expressionl
“ "<

i—Jstatementl

-expression -otherwise

i t_Jstatement2

i

i "T

*
i

t..*

otherwise

(break in a while statement in Grafcet)

~ 13 ~

for (expression

1

; expression

2

; expression3) {

statement1 ;

if (expression) break;

statement!

;

}

6expressionl

--T

null

“ 'expresston2 “-otherwise

statementl

- "expression4 “-otherwise

statement2

expressions

--T

i ...

(break in a for statement in Grafcet)

~ 14

do {

statement1;
if (expression

2

) break;
statement2

;

} while (expression

1

) ;

o

statement

“ ~expression2

d

~ "otherwise

statement

_ “expression! “ -otherwise

v

(break in a do statement in Grafcet)

15

Continue statement : continue ;

The continue statement causes control to pass to the loop-continuation portion of the

smallest enclosing while, do, or for statement. Examples of the continue statement in the

while, do, and for statements are shown below. The links in the examples which are added

for the continue statements are shown as dashed lines.

Examples : while (expression

1

) {

statement1 ;

if (expression2) continue;

statement2

;

}

I o

null

- "express*)nl
- -otherwise

statement 1

L . . J
- -expression2 "“otherwise

statement

“ ~T

(continue in a while statement in Grafcet)

~ 16 -

for (expressionl ; expression

2

; expressions) {

statement1 ;

if (expression) continue;

statement2;

}

>[HL_Jexpressioni

nL—Jnull
~ -expresston2 - -otherwise

statementl

~Texpression4 “p otherwise

3

statement2

t

Oexpressions

--T

(continue in a for statement in Grafcet)

17 -

statement1 ;

if (expression

2

) continue;

statement

2

;

} while (expression

1

)

;

*
ol6statement!

“ "expression2 “ "otherwise

'-ri

t.r

O

statement

“"expression! ““otherwise

(continue in a do statement in Grafcet)

Representing Function Calls as Macro Steps :

This is a discussion of some possible solutions to the problem of translating function calls to

Grafcet macro programs, but this is not to be taken as a definitive translation scheme

between C source code and Grafcet for functions. This section contains a description of the

problems representing C function calls in Grafcet, a possible parameter passing scheme in

Grafcet, and a possible solution to this limitation that a macro program can be used only

once.

There are some problems inherent in the Grafcet language which makes representing

function calls difficult. One problem is that macros do not support parameter passing. A
second matter is that macros do not have return values. A third matter is that Grafcet

programs become cumbersome when they become very large because of their graphical

nature. A fourth matter is that return statements have to be included in the Grafcet macro

programs that are associated with the enter and exit portion of the function. A final problem

is that a Grafcet macro program can only be used once in a Grafcet system.

A possible solution to the problems of parameter passing is to assign the parameters to

variables which are only used locally to a macro program. There are scoping rules in Grafcet

that allow for making local copies of global variables. A return value would have to be

passed as a global variable.

Consider the limitation of a Grafcet macro being called only once in a Grafcet system. If a

function is called more than once in a C program, that function then has to be translated into

multiple Grafcet macro programs. There has to be a copy of the Grafcet macro program each

time the function is called. There also has to a unique name for each copy of the macro

program generated. Another solution is to keep the function in the C programming language

and add the function to a callable library. This in itself can cause problems with timing and

mixing control flow in both the C code and the Grafcet.

Conclusion:

The paper provides a scheme for translating control flow in C source code into Grafcet. The

control constructs are easily translated from C source code to Grafcet, but control flow

through the use of C functions is difficult to translate. It might be appropriate to augment

Grafcet in some way to allow for parameter passing, return values, and macros which can be

called multiple times.

Grafcet is being used for designing and documenting Cell Controllers in the Automated

Manufacturing Research Facility (AMRF) at the National Bureau of Standards. A major

language used for writing these controllers is C and this translation scheme was used to

translate the high level logic of the Cell Controller [6]. Grafcet has provided an excellent

means of visualizing the control structure of these large systems.

References:

[1] Savoir [1986] "Savoir Grafcet" Savoir, Oakland, CA.

- 19 -

[2] Kemighan, B. W., and Ritchie D. M. [1978] The C Programming Language

,

Prentice-

Hall, Inc.

[3] Knuth, D. E. [1974] "Structured Programming with go to Statements", Computer

Surveys , 6, 4, 261-277.

[4] Wirth N. [1974] "On the Composition of Well-Structured Programs", Computer Surveys,

6, 4, 247-259.

[5] Dijkstra, E. W. [1968] "Go To Statement Considered Harmful", Comm . ACM, 11, 3,

147-148.

[6] Pratt T. W. [1975] Programming Languages: Design and Implementation, Prentice-Hall,

Inc.

[7] Thomas B. H., and McLean C. [1988] "Using Grafcet to Design Generic Controllers"

First International Conference on Computer Intergrated Manufacturing (to be presented).

~ 20 ~

Appendix:

This section shows some examples of translations of C source code to Grafcet. The function

"atoi", converts of an ASCII string to an interger number. In the example, the first section is

the C source code and the second section is the Grafcet programs with associated C source

code embedded in the regular steps.

Example

:

atoi (s , return_int)
/* convert s to integer */

char s []

/

int *return_int;

{

int i f n , sign;

/* skip white space */

i = 0;

while (s [i] ==' ' || s[i]=='\n' || s[i]=='\t')
i++;

/* set sign */

sign = 1;

if (s [i] == II s[i] ==

sign = (s [i++] ==' +'
) ? 1 : -1;

/* read_number */

for (n=0 ; s[i] >= '0' && s[i] <= '9'; i++)

n = 10 * n + s[i] - 'O';

/* set return */

*return_int = sign * n;

}

IN

(atoi Grafcet program)

(skip_white_space Grafcet program)

(set_sign Grafcet program)

iv-

(read_number Grafcet program)

These blocks of code are associated with labeled regular steps in the Grafcet programs asso-

ciated with the function atoi.

set i:

i = 0;

inci:

i++/

initsign:

sign = 1;

setsign:

sign = (s [i ++] ==' +'

)

? 1 : -1;

setfon

n = 0 ;

setjn:

n = 10 * n + s [i] - ' O' ;

setreturn:

return_int = sign * n;

~vi~

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
SHEET (See instructions)

REPORT NO.
NBSIR 88t3-7 41 >1ARCH 19 88

4. TITLE AND SUBTITLE

A Scheme for Translating Control Flow in the C Programming Language to Grafcet
With Example

5. AUTHOR(S)

Bruce H. Thomas

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Grant No.

national bureau of standards
DEPARTMENT OF COMMERCE t. Type of Report & Period Covered

WASHINGTON, D.C. 20234

_

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City . Stole, ZIP)
10.

SUPPLEMENTARY NOTES

| |
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

The purpose of this paper is to show a translation scheme from control flow in the C

programming language to the Grafcet language. Grafcet is a graphical language for
expressing control flow. Grafcet is used to design parallel systems such as in a

manufacturing environment. The control constructs covered in this paper are:

conditional statement, while, do, for, switch, break, continue, goto, label, and null.
The Grafcet used in this paper is the language, as augmented by Savoir. The C

programming language is the one described by Kernighan and Ritchie. This translation
is to be used as a reference for programmers to translate existing C source code into
Grafcet.

12.

KEY WORDS (Six to twelve entries ; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Grafcet, C programming language, control flow, programming languages

13.

AVAILABILITY

.^Unlimited

I |
For Official Distribution. Do Not Release to NTIS

1
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

ED Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

29

IS. Price

$.11 ..95

U SCOMM-DC e049-P»0

		Superintendent of Documents
	2022-04-13T06:28:49-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

