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Foreword

This report constitutes the proceedings of the third Text REtrieval Conference (TREC-3) held in Gaithersburg,

Maryland, November 2-4, 1994. The conference was co-sponsored by the National Institute of Standards and Tech-

nology (NIST) and the Advanced Research Projects Agency (ARPA), and was attended by 150 people involved in

the 32 participating groups. The conference was the third in an on-going series of workshops to evaluate new tech-

nologies in text retrieval.

The workshop included plenary sessions, discussion groups and demonstrations. Because the participants in the

workshop drew on their personal experiences, they sometimes cited specific vendors and commercial products. The

inclusion or omission of a particular company or product does not imply either endorsement or criticism by NIST.

The sponsorship of the Software and Intelligent Systems Technology Office of the Advanced Research Projects

Agency is gratefully acknowledged, along with the tremendous work of the program committee.
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Abstract

This report constitutes the proceedings of the third Text REtrieval Conference (TREC-3) held in Gaithersburg,

Maryland, November 2-4, 1994. The conference was co-sponsored by the National Institute of Standards and Tech-

nology (NIST) and the Advanced Research Projects Agency (ARPA), and was attended by 150 people involved in

the 33 participating groups.

The goal of the conference was to bring research groups together to discuss their work on a large test collection.

There was a wide variation of retrieval techniques reported on, including methods using automatic thesauri, sophis-

ticated term weighting, natural language techniques, relevance feedback, and advanced pattern matching. As results

had been run through a common evaluation package, groups were able to compare the effectiveness of different tech-

niques, and discuss how differences between the systems affected performance.

The conference included paper sessions and discussion groups. This proceedings includes papers from most of the

participants (several poster groups did not submit papers), tables of the system results, and brief system descriptions

including timing and storage information.

viii



Overview of the Third Text REtrieval Conference (TREC-3)

Donna Harman

National Institute of Standards and Technology

Gaithersburg, MD. 20899

1. Introduction

In November of 1992 the first Text REtrieval Conference

(TREC-1) was held at NIST [Harman 1993]. The confer-

ence, co-sponsored by ARPA and NIST, brought together

information retrieval researchers to discuss their system

results on a new large test collection (the TIPSTER col-

lection). This conference became the first in a series of

ongoing conferences dedicated to encouraging research in

retrieval from large-scale test collections, and to encour-

aging increased interaction among research groups in in-

dustry and academia. From the beginning there has been

an almost equal number of universities and companies

participating, with an emphasis on exploring many differ-

ent types of approaches to the text retrieval problem.

The research done by the participating groups in the three

TREC conferences has varied, but has followed a general

pattern. TREC-1 required significant system rebuilding

by most groups due to the huge increase in the size of the

document collection (from a traditional test collection of

several megabytes in size to the 2 gigabyte TIPSTER col-

lection). The TREC-1 results should therefore be viewed

as very preliminary due to severe time constraints. The

second TREC conference (TREC-2) occurred in August

of 1993, less than 10 months after the first conference

[Harman 1994a]. Many of the original TREC-1 groups

were able to "complete" their system rebuilding and tun-

ing, and in general the TREC-2 results show significant

improvements over the TREC-1 results. In some senses,

however, the TREC-2 results should be viewed as a base-

line for more complex experimentation.

The TREC-3 results reflect some of that more complex

experimentation. For some groups that meant more ex-

tensive experiments based on their basic system tech-

niques. For other groups it involved trying techniques

from other groups and exploring more hybrid approaches.

Some groups tried approaches that were radically differ-

ent from their original approaches. As should be expect-

ed, those groups new to TREC had the same scaling prob-

lems as seen in TREC-1.

This paper provides an overview of the TREC-3 confer-

ence, including a review of the TREC task, a very brief

description of the test collection being used, and an

overview of the results. The papers from the individual

groups should be referred to for more details on specific

system approaches.

2. The Task and the Participants

The three TREC conferences have all centered around two

tasks based on traditional information retrieval modes: a

"roudng" task and an "adhoc" task. In the routing task it

is assumed that the same questions are always being

asked, but that new data is being searched. This task is

similar to that done by news clipping services or by li-

brary profiling systems. In the adhoc task it is assumed

that new questions are being asked against a static set of

data. This task is similar to how a researcher might use a

library, where the collection is known, but it is unknown

what questions are likely to be asked.

A schematic of those tasks is shown in Figure 1

.

Test

Topics

(151-200)

Q1

Training

Documents

(Disks 1 and 2)

Test

Documents

(Disk 3)

Figure 1 . The TREC Task.
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Table 1: TREC-3 Participants (14 companies, 19 universities)

A 1 1 c lion ^To f 1 o 1 Tin i\ft^fc 1/\usLraiidn iNdLiondi univerauy

i^arncgic ivieiion univcr5>iiy/v-'j-^/\jxiiij.v^ri V^l i IVi, /A.Uc>U alia

v^iiy universiiy, Lonuun v-urncii uiuvcrauy

Dublin City University xinvirunrricni rvcbcdrcfi insiiLuie ui iviiLnigdn

ruicrum (vf*r\vcTf> \A f^ccxn T Tni\/f^rcit\/vJCUlg,"^ iVlaoUll VJiliVCl^lLy

Logicon Operating Systems ividyu ^iiruc/rounudLiun

ivieau Uaia t_-cnirdi iNdiiuudi occuniy r\gCiiLy

New York University iscy- v_orporaiion

Oiieens (~"o]le?e Rutgers University (two groups)

Siemens Corporate Research Inc. Swiss Federal Institute of Technology (ETH)

TRW/Paracel Universitaet Dortmund, Germany

University of California - Berkeley University of Central Florida

University of Massachusetts at Amherst VPI&SU (Virginia Tech)

University of Minnesota University of Toronto

Universite de Neuchatel, Switzerland Verity Inc.

West Publishing Co. Xerox Palo Alto Research Center

In TREC the routing task is represented by using known

topics and known relevant documents for those topics, but

new data for testing. This is shown on the left side of Fig-

ure 1 . The participants are given a set of known (or train-

ing) topics, shown in the top left-hand box, along with a

set of known relevant documents (relevance judgments)

for those topics. The topics consist of natural language

text describing a user's information need (see section 3.3

for more description of the topics). These topics are used

to create a set of queries (the actual input to the retrieval

system) which are then used against the training docu-

ments. This is represented by Ql in the diagram. Many

sets of Ql queries might be built to help adjust systems to

this task, to create better weighting algorithms, and in

general to train the system for testing. The results of this

research are used to create Q2, the final routing queries to

be used against the test documents.

The adhoc task is represented by using known documents,

but new topics with no known relevant documents. This

is shown on the right-hand side of Figure 1 , where the 50

new test topics are used to create Q3 as the adhoc queries

for searching against the training documents. The results

from searches using Q2 and Q3 are the official test results

sent to NIST.

In addition to clearly defining the tasks, other guidelines

are used in TREC. These guidelines deal with the meth-

ods of indexing/knowledge base construction and with the

methods of generating the queries from the supplied top-

ics. In general, they are constructed to reflect an actual

operational environment, and to allow as fair as possible

separation among the diverse query construction

approaches. Three generic categories of query construc-

tion were defined in TREC-3, based on the amount and

kind of manual intervention used.

1. AUTOMATIC (completely automatic query con-

struction)

2. MANUAL (manual query construction)

3. INTERACTIVE (use of interactive techniques to

construct the queries)

There were 33 groups participating in TREC-3 (see Table

1), using a wide variety of retrieval techniques. One of

the participants (Fulcrum) withdrew their results before

the conference and therefore no results from this company

appear in the proceedings. The participants were able to

choose from three levels of participation: Category A,

full participation. Category B, full participation using a

reduced dataset (1/4 of the full document set), and Cate-

gory C for evaluation only (to allow commercial systems

to protect proprietary algorithms). Each participating

group was provided the data and asked to turn in either

one or two sets of results for each topic. When two sets

of results were sent, they could be made using different

methods of creating queries (AUTOMATIC, MANUAL,
or INTERACTIVE), or by using different parameter set-

tings for one query creation method. Groups could

choose to do the routing task, the adhoc task, or both, and

were requested to submit the top 1000 documents

retrieved for each topic for evaluation.

TREC-3 introduced a second language (Spanish) to the

task, with four groups working with a small Spanish col-

lection in addition to their work in English. This collec-

tion, and the results, are discussed in section 5.4.

3. The Test Collection (English)

3.1 Introduction

Like most traditional retrieval collections, there are three



Table 2: Document Statistics

Subset of collection WSJ (disks 1 and 2) AP ZIFF PR (disks 1 and 2) DOE
SJMN (disk 3) PAT (disk 3)

^i7f* pnllpr*tinn

(megabytes)

(disk 1) 270 259 245 262 186

(disk 2) 247 241 178 211

(disk 3) 290 242 349 245

(disk 1) 98,732 84,678 75,180 25,960 226,087

(disk 2) 74,520 79,919 56,920 19,860

(disk 3) 90,257 78,321 161,021 6,711

A/TpHian niimhpr of

(disk 1) 182 353 181 313 82

(disk 2) 218 346 167 315

(disk 3) 279 358 119 2896

Average number of

terms per record

(disk I) 329 375 412 1017 89

(disk 2) 377 370 394 1073

(disk 3) 337 379 263 3543

distinct parts to this collection -- the documents, the ques-

tions or topics, and the relevance judgments or "right

answers." These test collection components are discussed

very briefly in the rest of this section. For a more com-

plete description of the collection, see [Harman 1994b].

3.2 The Documents

The documents were distributed as CD-ROMs with about

1 gigabyte of data each, compressed to fit. The following

shows the actual contents of each disk.

Disk 1

• WSJ - Wall Street Journal (mi, 1988, 1989)

. AP ~ AP Newswire (1989)

• ZIFF — Articles from Computer Select disks (Ziff-

Davis Publishing)

. FR - Federal Register (1989)

• DOE ~ Short abstracts from DOE publications

Disk 2

WSJ - Wall Street Journal (1990, 1991, 1992)

AP - AP Newswire (1988)

ZIFF ~ Articles from Computer Select disks

• FR - Federal Register (1988)

Disk 3

• SJMN - San Jose Mercury News (1991)

' AP - AP Newswire (1990)

• ZIFF — Articles from Computer Select disks

. PAT -U.S. Patents (1993)

Table 2 shows some basic document collection statistics.

Note that although the collection sizes are roughly equiv-

alent in megabytes, there is a range of document lengths

across collections, from very short documents (DOE) to

very long (FR). Also the range of document lengths

within a collection varies. For example, the documents

from AP are similar in length (the median and the average

length are very close), but the WSJ, ZIFF and especially

FR documents have much wider range of lengths within

their collections.

The documents are uniformly formatted into SGML, with

a DTD included for each collection to allow easy parsing.

<DOC>
<DOCNO> WSJ880406-0090 </DOCNO>
<HL> AT&T Unveils Services to Upgrade Phone Net-

works Under Global Plan </HL>

<AUTHOR> Janet Guyon (WSJ Staff) </AUTHOR>
<DATEUNE> NEW YORK </DATEUNE>
<TEXT>

3



American Telephone & Telegraph Co. introduced the

first ofa new generation ofphone sen'ices with broad

</TEXT>

<JDOC>

3.3 The Topics

In designing the TREC task, there was a conscious deci-

sion made to provide "user need" statements rather than

more traditional queries. Two major issues were involved

in this decision. First there was a desire to allow a wide

range of query construction methods by keeping the topic

(the need statement) distinct from the query (the actual

text submitted to the system). The second issue was the

ability to increase the amount of information available

about each topic, in particular to include with each topic a

clear statement of what criteria make a document relevant.

The new topics used in TREC-3 reflect a slight change in

this decision. The topics in TREC-1 and 2 (topics 1-150)

were not only very long, but contained complex struc-

tures. These topics were designed to mimic a real user's

need, and were written by people who are actual users of

a retrieval system. However they were intended to repre-

sent long-standing information needs for which a user

might be willing to create elaborate topics, and therefore

are more suited to the routing task than to the adhoc task,

where users are likely to ask much shorter questions.

The new topics used in TREC-3 (topics 151-200) are not

only much shorter, but missing the complex structure of

the earlier topics. In particular the concepts field has been

removed. This field contained a mini-knowledge base

about a topic such as a real searcher might possess. The

field was removed because it was felt that real adhoc

questions would not contain this field, and because inclu-

sion of the field discouraged research into techniques for

expansion of "too short" user need expressions. Note that

the shorter topics do not create a problem for the routing

task, as experience in TREC-1 and 2 has shown that the

use of the training documents allows a shorter topic (or no

topic at all).

In addition to being shorter, the new topics were written

by the same group of users that did the assessments.

Specifically, each of the new topics (numbers 151-200)

were developed from a genuine need for information

brought in by the assessors. Each assessor constructed

his/her own topics from some initial statements of inter-

est, and performed all the relevance assessments on these

topics (with a few exceptions).

The following is one of the new topics used in TREC-3.

Each topic is formatted in the same standard method to

allow easier automatic construction of queries.

<num> Number: 168

<title> Topic: Financing AMTRAK

<desc> Description:

A document will address the role of the Federal Govern-

ment in financing the operation of the National Railroad

Transportation Corporation (AMTRAK).

<narr> Narrative: A relevant document must provide

information on the government's responsibility to make

AMTRAK an economically viable entity. It could also dis-

cuss the privatization of AMTRAK as an alternative to

continuing government subsidies. Documents comparing

government subsidies given to air and bus transportation

with those provided to AMTRAK would also be relevant.

</top>

3.4 The Relevance Judgments

The relevance judgments are of critical importance to a

test collection. For each topic it is necessary to compile a

list of relevant documents; hopefully as comprehensive a

list as possible. All three TRECs have used the pooling

method [Sparck Jones & van Rijsbergen 1975] to assem-

ble the relevance assessments. In this method a pool of

possible relevant documents is created by taking a sample

of documents selected by the various participating sys-

tems. This sample is then shown to the human assessors.

The particular sampling method used in TREC is to take

the top X documents retrieved by each system for a given

topic and merge them into the pool for assessment. This

is a valid sampling technique since all the systems used

ranked retrieval methods, with those documents most

likely to be relevant returned first.

Evaluation of retrieval results using the assessments from

this sampling method is based on the assumption that the

vast majority of relevant documents have been found and

that documents that have not been judged can be assumed

to be not relevant. A test of this assumption was made

between TREC-2 and TREC-3, using TREC-2 results.

Thirty-six (18 adhoc and 18 routing) topics were selected

for additional relevance assessments, using a pseudo-

random selection based only on the number of original

relevant documents and on selecting equal numbers of

topics from each assessor. For each selected topic, a new

pool of documents was created by taking the top 200 doc-

uments from seven different runs known to achieve good

results and to have little overlap in their document selec-

tion. New judgments were made on this pool, using the

same judges that made the original decisions for each

topic.

Table 3 gives the results of this test. On average, 30 new

relevant documents (16%) were found for each of the top-

4



Table 3: Analysis of Completeness of Relevance Judgments (TREC-2)

Percent No. of Average Average Average Average

New Rel. Topics New Rel. Total Rel. No. Jud. "Hardness"

0% 5 0 46 381 0.3477

1-9% 11 10 173 257 0.4190

10-19% 9 36 277 343 0.2610

20-29% 6 47 185 190 0.3660

30-33% 5 15 24Z 233 0.5212

Average (over all 36 topics) 30 193 282

Median 21 190 220

Average (over the 1 8 routing topics) 18 188 373

Median 8 160 376

Average (over the 1 8 adhoc topics) 42 197 190

Median 28 209 150

Table 4: Overlap of Submitted Results

Adhoc Routing

Possible Actual Relevant Possible Actual Relevant

TREC-1 3300 1279 (39%) 277 (22%) 2200 1067 (49%) 371 (35%)

TREC-2 4000 1106 (28%) 210(19%) 4000 1466 (37%) 210(14%)

TREC-3
at 100

at 200

4800

9600

1005 (21%)

1946 (20%)

146 (15%)

196 (10%)

4900

9800

703 (14%)

1333 (14%)

146 (21%)

187 (14%)

ics, with a median of only 21 (11%) new relevant docu-

ments per topic. The median is much lower than the aver-

age because of the relatively large number of new docu-

ments found for those five topics with over 30% addi-

tional relevant documents found.

Table 3 also shows that there is some correlation between

the number of new relevant documents found and the

original number of relevant documents, particularly in that

topics with few relevant documents initially tended to

have few new ones found. In contrast, there is no correla-

tion between the number of new relevant documents

found and the number of new judgments made, or

between the number of new relevant found for a topic and

the "hardness" of that topic (a measure of average system

performance for that topic). More new relevant docu-

ments were found for the adhoc task than for the routing

task. This may reflect more "available" relevant docu-

ments for the adhoc task (twice the amount of searchable

text) or may be caused by the more complete and accurate

queries used in routing task due to the training data.

A different measure of the effect of pooling can be seen

by examining the overlap of retrieved documents. Table 4

shows the statistics from the merging operations in the

three TREC conferences. For TREC-1 and TREC-2 the

top 100 documents from each run (33 runs in TREC-1 and

40 runs in TREC-2) could have produced a total of 3300

and 4000 documents to be judged (for the adhoc task).

The average number of documents actually judged per

topic (those that were unique) was 1279 (39%) for

TREC-1 and 1106 (28%) for TREC-2. Note that even

though the number of runs has increased by more than

20% (adhoc), the number of unique documents found has

actually dropped. The percentage of relevant documents

found, however, has not changed much. The more accu-

rate results going from TREC-1 to TREC-2 mean that

fewer "noisy" nonrelevant documents are being found by

the systems. This trend continued in TREC-3, even

though the pooling method was changed.

Because of expected constraints in assessor time, only one

run from each TREC-3 group was judged, with the groups

specifying which run. However, due to the increase in

overlap (as shown in Table 4), and more efficient judging,

extra time became available and the decision was made to

judge the top 200 documents for those runs. Table 4 gives

the results of the TREC-3 mergings at both 100 docu-

ments and 200 documents. The percentage of unique doc-

uments found continues to drop compared with TREC-2,

with a major drop for the routing. The total number of

relevant documents found in TREC-1, TREC-2, and

TREC-3 has dropped only somewhat, however, and that

drop has been caused by a deliberate tightening of the top-

ics between TREC-1 and TREC-2. Table 4 also shows
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Table 5: Analysis of Pooling Methodologies (Adhoc)

TREC-2 — Relevant Documents

Found in "Second" Run

Percent No. of Average Average

New Rel. Topics New Rel. No. Rel.

0% 0

1-9% 6 9 123

10-19% 19 26 163

20-29% 19 68 274

30-36% 5 109 296

Average 48 210

Median 30 201

TREC-3 — Relevant Documents

Found above 100

Percent No. of Average Average

New Rel. Topics New Rel. No. Rel.

0% 1 0 85

1-9% 12 3 65

10-19% 7 13 96

20-29% 22 59 237

30-36% 8, 137 381

Average 50 196

Median 30 122

the drop in relevant documents found beyond the 100 doc-

ument cutoff. This not only reflects the ranking done by

the systems, but shows the diminishing numbers of rele-

vant documents to be found even as the judged pool con-

tinues to grow.

The use of a different pooling method in TREC-3 pro-

vided a chance to compare the two methods. Tables 5 and

6 show this comparison. The first method (that used in

TREC-2) took the top 100 documents from two runs,

whereas the second method (that used in TREC-3) took

the top 200 documents from a single run. The "base" for

both methods is the top 100 documents in the single or

"first" run. The additional documents to be compared are

the number of relevant documents in the top 100 for the

"second" run (TREC-2) versus the number of relevant

documents in the second 100 in the single run for

TREC-3.

Table 5 shows that both pooling methods worked equally

well for the adhoc task. About the same numbers of rele-

vant documents were found by each method, with similar

averages, medians, and distributions of "new" relevant

documents across the topics. This verifies the TREC-2
completeness experiments shown in Table 3, in that the

average and median number of "new" documents found

beyond the 100 document cutoff is similar to those found

in TREC-3.

Table 6: Analysis of Pooling Methodologies (Routing)

TREC-2 — Relevant Documents

Found in "Second" Run

Percent No. of Average Average

New Rel. Topics New Rel. No. Rel.

0% 4 0 6

1-9% 8 4 61

10-19% 21 33 220

20-29% 11 88 345

30-36% 6 84 259

Average 44 210

Median 33 163

TREC-3 — Relevant Documents

Found above 100

Percent No. of Average Average

New Rel. Topics New Rel. No. Rel.

0% 7 0 24

1-9% 9 6 106

10-19% 16 19 129

20-29% 16 94 354

30-36% 2 91 249

Average 41 187

Median 13 123

For the routing task, however. Table 6 shows that the first

pooling method (TREC-2) seems to have found more rel-

evant documents (higher median). Whereas this could

reflect something about the different topics used in

TREC-2 and TREC-3, it is more likely a reflection of the

difference between system performance in the adhoc and

routing tasks. Routing runs are generally more accurate

in finding documents and more effective in ranking them,

due to the availability of training data. Therefore the sec-

ond 100 documents are less likely to contain additional

relevant documents for the routing task than for the adhoc

task. Again this verifies the completeness experiments

shown in Table 3, which show far fewer new relevant doc-

uments being found for the routing task after the 100 doc-

ument cutoff.

This analysis suggests a return to the TREC-2 pooling

methodology, and that is what is planned for TREC-4.

Participating groups would also prefer judgments on both

official runs as this allows more exactness in evaluating

run variations.

After pooling, each topic was judged by a single assessor

to insure the best consistency of judgment. Some testing

of this consistency was done after TREC-2, and showed

an average agreement between two judges of about 80%.

More consistency testing will be done in the future.
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4. Evaluation

An important element of TREC is to provide a common
evaluation forum. Standard recall/precision and

recall/fallout figures have been calculated for each TREC
system and are shown in Appendix A, along with some

single evaluation measures for each system. A detailed

explanation of the measures is also included in the

appendix. New for TREC-3 is a histogram for each sys-

tem showing performance on each topic. In general more

emphasis is being placed on a per topic analysis this year

in an effort to get beyond the averages. (Although work

has been done to find statistical differences between the

averages, see paper "A Statistical Analysis of the TREC-3

Data" by Jean Tague-Sutcliffe and James Blustein.)

Additional data about each system was collected that

describes system features and system timing, and allows

some primitive comparison of the amount of effort needed

to produce the results. The individual system descriptions

are given in Appendix B.

5. Results

5.1 Introduction

One of the important goals of the TREC conferences is

that the participating groups freely devise their own

experiments within the TREC task. For some groups this

means doing the routing and/or adhoc task with the goal

of achieving high retrieval effectiveness performance. For

other groups, however, the goals are more diverse and

may mean experiments in efficiency, unusual ways of

using the data, or experiments in how "users" would view

the TREC paradigm.

The overview of the results discusses the effectiveness of

the systems and analyzes some of the similarities and dif-

ferences in the approaches that were taken. Additionally

it points to some of the other experiments run in TREC-3
where results cannot be measured completely using

recall/precision measures.

In all cases, readers are referred to the system papers in

this proceedings for more details.

5.2 Adhoc Results

The adhoc evaluation used the new topics (topics

151-200) against the two disks of training documents

(disks 1 and 2). A dominant feature of the adhoc task in

TREC-3 was the removal of the concepts field in the top-

ics (see more on this in the discussion of the topics, sec-

fion 3.3) Many of the participating groups designed their

experiments around techniques to expand the shorter and

less "rich" topics.

There were 48 sets of results for adhoc evaluation in

TREC-3, with 42 of them based on runs for the lull data

set. Of these, 28 used automatic construction of queries,

12 used manual construction, and 2 used interactive con-

struction.

Figure 2 shows the recall/precision curves for the 6

TREC-3 groups with the highest non-interpolated average

precision using automatic construction of queries. The

runs are ranked by the average precision and only one run

is shown per group (both official Cornell runs would have

qualified for this set).

A short summary of the techniques used in these runs

shows the breadth of the approaches. For more details on

the various runs and procedures, please see the appropri-

ate papers in this proceedings.

cityal - City University, London (see paper "Okapi at

TREC-3" by S.E. Robertson, S. Walker, S. Jones, M.M.
Hancock-Beaulieu and M. Gatford) used a probabilistic

term weighting scheme similar to that used in TREC-2,

but expanded the topics by up to 40 terms (average around

20) automatically selected from the top 30 documents

retrieved. They also used dynamic passage retrieval in

addition to the whole document retrieval in their final

ranking.

INQlOl — University of Massachusetts at Amherst (see

paper "Document Retrieval and Routing Using the

INQUERY System" by John Broglio, James R Callan, W.

Bruce Croft and Daniel W. Nachbar) used a version of

probabilistic weighting that allows easy combining of evi-

dence (an inference net). Their basic term weighting for-

mula (and query processing) was simplified from that

used in TREC-2, and they also used passage retrieval and

whole document information in their ranking. The topics

were expanded by 30 phrases that were automatically

selected from a phrase "thesaurus" that had been previ-

ously built automatically from the entire corpus of docu-

ments.

CrnlEA — Cornell University (see paper "Automatic

Query Expansion Using SMART: TREC-3 by Chris

Buckley, Gerard Salton, James Allan and Amit Singhal)

used the vector-space SMART system, with term weight-

ing similar to that done in TREC-2. The top 30 docu-

ments were used in a Rocchio relevance feedback tech-

nique to massively expand (500 terms + 10 phrases) the

topics. No passage retrieval was done in this run; the sec-

ond Cornell run (CrnlLA) used their local/global weight-

ing schemes (with no topic expansion).

westpl - West Publishing Company (see paper "TREC-3

Ad Hoc Retrieval and Routing Experiments using the

WIN System" by Paul Thompson, Howard Turtle,
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Figure 2. Best Automatic Adhoc Results.
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Bokyung Yang and James Flood) used their commercial

product (WESf) which is based on the same inference

method used in INQIOI. Both passages and whole docu-

ments were used in document ranking, but only minimal

topic expansion was used, with that expansion based on

preconstructed general-purpose synonym classes for

abbreviations and other exact synonyms.

pircsl - Queens College, CUNY (see paper "TREC-2

Ad-Hoc, Routing Retrieval and Thresholding Experiments

using PIRCS" by K.L. Kwok, L. Grunfeld and D.D.

Lewis) used a spreading activation model on subdocu-

ments (550-word chunks). Topic expansion was done by

allowing activation from the top 6 documents in addition

to the terms in the original topic. The highest 30 terms

were chosen, with an average of 11 of those not in the

original topic.

ETH002 — Swiss Federal Institute of Technology (ETH)

(see paper "Improving a Basic Retrieval Method by Links

and Passage Level Evidence" by Daniel Knaus, Elke Mit-

tendorf and Peter Schauble) used a completely new

method in TREC-3 based on combining information from

three very different retrieval techniques. The three tech-

niques are a vector-space system, a passage retrieval

method using a Hidden Markov model, and a "topic

expansion" method based on document links generated

automatically from analysis of common phrases.

The dominant new themes in the automatic adhoc runs are

the use of some type of term expansion beyond the terms

contained in the shorter (TREC-3) topics, and some form

of passage or subdocument retrieval element. Note that

term expansion is mostly a recall device; adding new

terms to a topic increases the chances of matching the

wide variation of terms usually found in relevant docu-

ments. But adding terms also increases the "noise" factor,

so accuracy may need to be improved via a precision

device, and hence the use of passages, subdocuments, or

more local weighting.

Two main types of term expansion were used by these top

groups: term expansion based on a pre-constructed the-

saurus (for example the INQUERY PhraseFinder) and

term expansion based on selected terms from the top X
documents (as done by City, Cornell, and PIRCS). Both

techniques worked well. The top 3 runs (cityal ,
INQlOl,

and CrnlEA) have excellent performance (see Figure 2) in

the "middle" recall range (30 to 80%), with this perfor-

mance likely coming from the query expansion.

The use of the top 30 documents as a source of terms, as

opposed to using the entire corpus, should be sensitive to

the quality of the documents in this initial set. Notably,

for 6 of the 8 topics in which the INQlOl run was supe-

rior (a 20% or more improvement in average precision) to
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the cityal run, the INQlOl run was also superior to the

CrnlEA run. These topics tended to have fewer relevant

documents, but also tended to be topics for which the sys-

tems bringing terms in manually (such as by manually

selecting from a thesaurus or outside sources) did well.

Clearly there are topics in which this technique does not

work well, but it does seem to provide an excellent

focussing effect for many topics. This may not be the

case outside of TREC, where there are fewer relevant doc-

uments. However, this type of expansion should be con-

sidered a worthwhile tool for query modification, espe-

cially for environments where no thesaurus exists.

Another factor in topic expansion is the number of terms

being added to the topics. The average number of terms

in the queries is widely varied, with the City group aver-

aging around 50 terms (20 terms from expansion), the

INQUERY system using around 100 terms on average,

and the Cornell system using 550 terms on average. This

huge variation seemed to have little effect on results,

largely because each group found the level of topic expan-

sion appropriate for their retrieval techniques. The cityal

run tended to "miss" more relevant documents than the

CrnlEA run (7 topics were seriously hurt by this problem),

but was better able to rank relevant documents within the

1000 document cutoff so that more relevant documents

appeared in the top 100 documents. This better ranking

could have happened because of the many fewer terms

that were used, or could be caused by the use of passage

retrieval in the City run.

The use of passages or subdocuments to reduce the noise

effect of large documents has been used for several years

in the PIRCS system. City, INQUERY and Cornell all did

many experiments for TREC-3 to first determine the cor-

rect length of a passage, and then to find the appropriate

use of passages in their ranking schemes. INQUERY and

Cornell use overlapped passages of fixed length (200

words) as compared to City's non-overlapped passages of

4 to 30 paragraphs in length. All three systems use infor-

mation from passages and whole documents retrieved

rather than passage retrieval alone. (Cornell's version of

this is called local/global weighting.) Both INQUERY
and City combined the passage retrieval with query

expansion; Cornell did two separate runs.

Note that the first two groups used passage retrieval to

improve ranking and to regain the precision lost during

the topic expansion. Cornell did not combine these opera-

tions even though they used term expansions on the order

of 500 terms. The vector-space model seems less suscept-

able to "noise", as has been demonstrated in routing tasks.

However in comparing the 2 Cornell runs, there were 16

topics in which the local/global run (CmlLA) was supe-

rior, with 12 of these from better ranking, as opposed to

only 8 topics that were superior in the expanded run (Crn-

lEA), 6 of which came from finding more relevant docu-

ments. A way of combining these runs should help per-

formance, even for Cornell.

The westpl run did not use topic expansion, although a

mixture of passages and whole documents was used in the

final ranking of documents. The performance has suf-

fered for this in the middle recall range. West Publishing

used their production system to see how far it differed

from the research systems and therefore did not want to

use more radical topic expansion methods. Additionally

they used a shortened topic (title + description -i- first sen-

tence of narrative) because it was more similar in length

to the topics submitted by their users. The INQJOJ run

had 18 topics with superior performance to the westpl

run, mostly because of new relevant documents being

retrieved to the top 1000 document set. The 11 topics in

which the westpl was superior to the INQlOl run were

mostly caused by better ranking for those topics.

The pircsl system used both passage retrieval (subdocu-

ments) and topic expansion. This system used far fewer

top documents for expansion (the top 6 as opposed to the

top 30), and this may have hurt performance. There were

22 topics in which the INQlOl run was superior to the

pircsl run, and these were mostly because of missed rele-

vant documents. Even though both systems added about

the same number of expansion terms, using only the top 6

documents as a source of terms for spreading activafion

might have provided too much focussing of the concepts.

The ETHOOl run used both topic expansion and passages,

in addition to a baseline vector-space system. Both the

topic expansion and the passage determination were com-

pletely new (untried) techniques; additionally there are

known difficuUies in combining multiple methods. In

comparison to the Cornell expansion results {CrnlEA), the

main problems appear to be missed relevant documents

for all 17 of the topics where the Cornell results were

superior. The 8 topics with superior ETH results were

mostly because of better ranking. Clearly this is a very

promising approach and more experimentation is needed.

Table 7 shows a breakdown of improvements from expan-

sion and passage retrieval that combines information from

the non-official runs given in the individual papers. In

general groups seem to be getting about 20%
improvement over their own baselines (less for ETH and

PIRCS), with that improvement coming in different per-

centages from passage retrieval or expansion, depending

on the specific retrieval techniques being used.

Figure 3 shows the recall/precision curves for the 6

TREC-3 groups with the highest non-interpolated average

precision using manual construction of queries. A short



Table 7: Comparison of Performance (Average Precision)

for Passage Retrieval and Topic Expansion

base run passages expansion both

City 0.337 0.388 (15%) 0.401 (19%)

INQUERY
(11 pt. average) 0.318 0.368 (16%) 0.348 (9%) 0.381 (20%)

Cornell 0.2842 0.3302 (16%) 0.3419 (20%)

ETH 0.2578 0.2853 (11%) 0.2737 (6%) 0.2916(13%)

PIRCS 0.2764 0.3001 (9%)

summary of the techniques used in these runs follows.

Again, for more details on the various runs and proce-

dures, see the appropriate papers in this proceedings.

INQ102 - University of Massachusetts at Amherst. This

run is a manual modification of the INQlOl run, with

strict rules for the modifications to only allow removal of

words and phrases, modification of weights, and addition

of proximity restrictions.

Brkly? — University of California, Berkeley (see paper

"Experiments in the Probabilistic Retrieval of Full Text

Documents" by William S. Cooper, Aitao Chen and

Fredric C. Gey) is a modification of the Brkly6 run, with

that modification being the manual expansion of the

queries by adding synonyms found from other sources.

The Brkly6 run uses a logistic regression model to com-

bine information from 6 measures of document relevancy

based on term matches and term distribution. The coeffi-

cients were learned from the training data%, a manner

similar to that done in TREC-2, but the specific set of

measures used has been expanded and modified for

TREC-3. No passage retrieval was done.

ASSCTVl — Mead Data Central, Inc (see paper "Query

Expansion/Reduction and its Impact on Retrieval Effec-

tiveness" by X. Allan Lu and Robert B Keefer) is also a

manual expansion of queries using an associative the-

saurus built from the TREC data. The retrieval system

used in ASSCTVl is the SMART system.

VTc2s2 — Virginia Tech (see paper "Combination of Mul-

tiple Searches" by Joseph A. Shaw and Edward A. Fox)

used a combination of multiple types of queries, with 2

types of natural language vector-space queries and 3 types

of manually constructed P-Norm (soft Boolean) queries.

pircs2 — Queens College, CUNY. This run is a modifica-

tion of the base PIRCS system to use manually con-

structed soft Boolean queries.

rutfual — Rutgers University (see paper "Decision Level

Data Fusion for Routing of Documents in the TREC3

Context: A Best Cases Analysis of Worst Case Results"

by Paul B. Kantor) used data fusion methods to combine

the retrieval ranks from three different retrieval schemes

all using the INQUERY system. Two of the schemes used

Boolean queries (one with ranking and one without) and

the third used the same queries without operators.

The three dominant themes in the runs using manually

constructed queries are manual modification of automati-

cally generated queries (INQ102), manual expansion of

queries {Brkly? and ASSCTV]) and combining of multiple

retrieval techniques or queries. Three runs can be com-

pared to a "baseline" run to check the effects of manual

versus automatic query construction.

INQ102, the manually modified version of INQlOl, had a

15% improvement in average precision over INQlOl, and

17 topics that were superior in performance for the man-

ual system (as opposed to only 3 for the automatic sys-

tem). An analysis of those topics shows that many more

relevant documents were in the top 1000 documents and

the top 100 documents, probably caused by manually

eliminafing much of the noise that was producing higher

ranks for nonrelevant documents. This noise elimination

could have happened because many spurious terms had

been manually removed from the queries {INQ102 had an

average of about 30 terms as opposed to nearly 100 terms

in INQlOl), or could have come from the use of the prox-

imity operators.

The Brkly? run, a manually expanded version of BrklyO,

used about the same number of terms as the INQ102 run

(around 36 terms on average), but the terms had been

manually pulled from multiple sources (as opposed to

editing an automatic expansion as done by INQUERY).

The improvement from Brklyd to Brkly? is a 34% gain in

average precision, with 25 topics having superior perfor-

mance in the manually expanded run. Note however that

there was no topic expansion done in the automatic Brkly6

run, so this improvement represents the results of a good

manual topic expansion over no expansion at all.

The INQUERY system outperforms the Berkeley system

by 14% in average precision, with much of that difference

coming in the high recall end of the graph (see Figure 3).
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Figure 3. Best Manual Adhoc Results.

This is consistent with the difference in their topic expan-

sion techniques in that the automatic expansion (even

manually edited) is likely to bring in terms that users

might not select from "non-focussed" sources.

The ASSCTVI run also represents a manual expansion

effort, but using a pre-built thesaurus as opposed to using

textual sources for the expansion. The topics were

expanded to create a query averaging around 135 terms

and then were run using the default Cornell SMART sys-

tem. A comparison of the automatically expanded Crn-

lEA run and the manually expanded ASSCTVI run shows

minimal difference in average precision, but superior per-

formance in 1 8 of the topics for the manual expansion (as

opposed to only 10 of the topics having superior perfor-

mance for the automatic Cornell run). In both cases, the

improvements come from finding more relevant docu-

ments because of the expansions, but different expansion

methods help different topics.

The pircs2 run is a manual query version of the baseline

PIRCS system. A soft Boolean query is created from the

topic, but no topic expansion is done. There is minimal

difference in average precision between the two PIRCS
runs, but more topics show superior performance for the

soft Boolean query pircs2 run (8 superior topics versus 4

superior topics for the topic expansion pircsl run). It is

not clear whether this difference comes from the

increased precision of the soft Boolean approach or from

the relatively poor performance of the PIRCS term expan-

sion results.

In TREC-3, as opposed to TRECs 1 and 2, the manual

query construction methods perform better than their

automatic counterparts. The removal of some of the topic

structure (the concepts) has allowed differences to appear

that could not be seen in earlier TRECs. Since topic

expansion was necessary to produce top scores, the supe-

riority of the manual expansion over no expansion in the

Berkeley runs should not be surprising. Less clear is why

the manual modifications in the INQ102 run showed supe-

rior performance to the automatic run with no modifica-

tions. The likely explanation is that the automatic term

expansion methods are relatively uncontrolled in TREC-3

and manual intervention plays an important role.

The last two groups in the top six systems using manual

query construction used some form of combination of

retrieval techniques. The Virginia Tech group {VTc2s2)

combined the results of up to 5 different types of query

construction (3 P-Norms with different P values and 2

vector-space, one short and one manually expanded) to

create their results. They used a simple combination

method (adding all the similarity values) and tested vari-

ous combinations of query types. Their best result com-

bined only two of the query types, one a P-Norm and one
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Figure 4. Comparison of Adhoc Results for TREC-2 and TREC-3

a vector-space. A series of additional runs (see paper for

details) confirmed that the best method was to combine

the results of the best two query techniques (the "long"

vector-space and the P=2 P-Norm). They concluded that

improvements from combining results only occurred

when the input techniques were sufficiently different.

Although the Rutgers group (ruifuaJ) used more elaborate

combining techniques, they came to the same conclusion.

Combining different retrieval techniques offers

improvements over a single technique (over 30% for the

Virginia Tech group), but the input techniques need to be

more varied to get further improvements. But the more

varied the individual techniques, the more need for elabo-

rate combining methods such as used in the rutfual run.

The automatic ETHOOl run best exemplifies the direction

needed here; first getting "good" performance for three

very different but complementary techniques and then dis-

covering the best ways of combining results.

Several comments should be made with respect to the

overall adhoc recall/precision averages. First, the better

results are very similar and it is unlikely that there is any

statistical difference between them. The Scheffe' tests

run by Jean Tague-Sutcliffe (see paper "A Statistical

Analysis of the TREC-3 Data" by Jean Tague-Sutcliffe

and James Blustein) show that the top 20 category A runs

(manual and automatic mixed) are all statistically

equivalent at the cif=0.05 level. This lack of system differ-

entiation comes from the very wide performance variation

across topics (the cross-topic variance is much greater

than the cross-system variance) and points to the need for

more research into how to statistically characterize the

TREC results.

As a second point, it should be noted that these adhoc

results represent significant improvements over TREC-2.

Figure 4 shows the top three systems in TREC-3 and the

top three systems in TREC-2. This improvement was

unexpected as the removal of the concepts section seemed

likely to cause a considerable performance drop (up to

30% was predicted). Instead the advance of topic expan-

sion techniques caused major improvements in perfor-

mance with less "user" input (the concepts). Because of

the different sets of topics involved, the exact amount of

improvement cannot be computed. However the Cornell

group has run older systems (those used in TREC-1 and

TREC-2) against the TREC-3 topics. This shows an

improvement of 20% for their expansion run (CrnlEA)

over the TREC-2 system, and this is likely to be typical

for many of the systems this year.

5.3 Routing Results

The routing evaluation used a subset of the training topics

(topics 101-150 were used) against the disk of test docu-
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merits (disk 3). Although this disk had been used in

TREC-2, its use in TREC-3 was unexpected as new data

had been promised. The last minute unavailability of this

new data made the reuse of disk 3 necessary, but since

groups had not been training with this disk (and no rele-

vance judgments were available for this disk against top-

ics 101-150), the routing results should not be biased by

the reuse of old material.

The routing task in TREC has remained constant; how-

ever there has been a major evolution in the thrust of the

research for this task. There was minimal training data

for TREC-1, and most groups felt that their results were

even more preliminary than for the adhoc results because

the training data that was available was incomplete and

inconsistent. This means that routing became a particu-

larly interesting challenge in TREC-2 when adequate

training data (the results from TREC-1 adhoc topics)

became available.

The TREC-2 results therefore represent an excellent base-

line of what could be achieved using traditional algo-

rithms with large amounts of relevance information. Most

notable was the effective use of the Rocchio feedback

algorithm in SMART, where up to 500 new terms were

added to the routing topics from the training data.

Equally good results were achieved by a probabilistic sys-

tem from the University of Dortmund, where only 30

terms were added, but very precise term weighting was

learned from the training data. Manual construction of

queries consistently gave poorer performance as the avail-

ability of training data allowed an automatic tuning of the

queries that would be difficult to duplicate manually with-

out extensive analysis.

For TREC-3, many groups made only minor modifica-

tions to their TREC-2 techniques (and concentrated on the

adhoc task). There were a total of 49 sets of results for

routing evaluation, with 46 of them based on runs for the

full data set. Of the 46 systems using the full data set, 24

used automatic construction of queries, 18* used manual

construction, and 4 used interactive query construction.

Figure 5 shows the recall/precision curves for the 12

TREC-3 groups with the highest non-interpolated average

precision for the routing queries. The runs are ranked by

the average precision and only one run per group is shown

(both official runs sometimes would have qualified for this

set). A short summary of the techniques used in these

runs follows. For more details on the various runs and

procedures, please see the appropriate papers in this pro-

ceedings.

cityrl -- City University, London (see paper "Okapi at

TREC-3" by S.E. Robertson, S. Walker, S. Jones, M.M.

Hancock-Beaulieu and M. Gatford) used the same proba-

bilistic techniques as for the adhoc task, but constructed

the query using a very selective set of terms (17 on aver-

age) from the relevant documents.

pircs3 — Queens College, CUNY (see paper "TREC-2

Ad-Hoc, Routing Retrieval and Thresholding Experiments

using PIRCS" by K.L. Kwok, L. Grunfeld and D.D.

Lewis) used a spreading activation model based on the

topic and on terms selected from about 35% of the rele-

vant material.

INQ103 — University of Massachusetts at Amherst (see

paper "Document Retrieval and Routing Using the

INQUERY System" by John Broglio, James R Callan, W.

Bruce Croft and Daniel W. Nachbar) used the inference

net engine (same as for the adhoc task), with topic expan-

sion of about 60 terms selected from the relevant docu-

ments.

dortRl - University of Dortmund (see paper "Routing

and Ad-hoc Retrieval with the TREC-3 Collection in a

Distributed Loosely Federated Environment" by Nikolaus

Walczuch, Norbert Fuhr, Michael PoUmann and Birgit

Sievers) used the SMART retrieval system with a Rocchio

relevance feedback expansion adding 12% new terms and

4% new phrases from the training documents.

Isir2 — Bellcore (see paper "Latent Semantic Indexing

(LSI): TREC-3 Report" by Susan Dumais) used the latent

semantic indexing system to construct a reduced dimen-

sion vector centroid of the relevant documents (no use

was made of the topics).

CrnlRR — Cornell University (see paper "Automatic

Query Expansion Using SMART: TREC-3 by Chris

Buckley, Gerard Salton, James Allan and Amit Singhal)

used the vector-space SMART system and a basic Roc-

chio relevance feedback algorithm adding about 300

terms and 30 phrases to the topic.

BrklyS — University of California, Berkeley (see paper

"Experiments in the Probabilistic Retrieval of Full Text

Documents" by William S. Cooper, Aitao Chen and

Fredric C. Gey) used only the relevant documents to

select a large number of terms (average 1,357 terms/topic)

which were combined and weighted using a logodds for-

mula. A chi-square test was used to select the terms.

1 1 of these runs were abbreviated runs from one group
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Figure 5. Best Routing Results.

westpl — West Publishing Company (see paper "TREC-3

Ad Hoc Retrieval and Routing Experiments using the

WIN System" by Paul Thompson," Howard Turtle,

Bokyung Yang and James Flood) used their commercial

product (WIN), but expanded the topics using up to 50

terms from specially selected parts of relevant documents.

losPAl — Logicon, Inc. (see paper "Research in Auto-

matic Profile Creation and Relevance Ranking with

LMDS" by Julian A. Yochum) constructed profiles based

on the top 10 selected terms from the relevant documents,

with term selection based on binomial probability distri-

butions. The profile was used to select all documents con-

taining any of those terms and the documents were then

ranked using a weighting fonnula.

UCFlOl — University of Central Florida (see paper

"Using Database Schemas to Detect Relevant Informa-

tion" by James Driscoll, Gary Theis and Gene Billings)

manually constructed entity-relationship schemas for each

topic and also manually created synonym lists for each

labelled component in the ER schema. These schemas

and lists were then used to select and rank documents.

nyuirl — New York University (see paper "Natural Lan-

guage Information Retrieval: TREC-3 Report" by Tomek
Strzalkowski, Jose Carballo and Mihnea Marinescu) used

NLP techniques to discover syntactic phrases in the docu-

ments. Both single terms and phrases were indexed and

specially weighted. The nyuirl run used topic expansion

based on the relevant documents.

FDF2 - Paracel, Inc. (see paper "The FDF Query Gener-

ation Workbench" by K.I. Yu, P. Scheibe and F. Nordby)

used a series of tools to generate profiles. These tools

used statistical methods to create several alternative

queries, and automatically evaluated the queries against

the training data to select the best query for each topic.

The recall/precision curves shown in Figure 5 are very

close in performance for the routing, with the Scheffe'

tests done by Jean Tague-Sutcliffe showing that there is

no significant differences between the top 22 runs. It is,

however, useful to look at the results on a per topic basis

to find trends in performance across techniques.

The main issue for the TREC-3 routing runs is how to

best select terms for topic expansion. Note that for the

adhoc task the main issue was how to expand a topic

beyond its original terms, hopefully with as little loss in

precision as possible. For the routing task, however, the

pool of terms for expansion is easily determined (i.e., the

terms in the relevant documents), and the problem is how

to select terms from this very large pool. Correspond-

ingly, the major differences in results between the routing
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runs are not how many relevant documents were "missed"

(as for the adhoc task), but how well the relevant docu-

ments were ranked.

An example of this is a comparison between the two City

runs. The cityrl system used all relevant documents to

select the top T terms, where T varied between 3 and 100

(average 47). Then they used the training material to opti-

mize the queries, selecting only those terms that improved

results. On average only about 17 terms were used in an

optimized query. The unoptimized version of these

queries was used at the cityr2 run (not shown in Figure 5),

which did not work as well. The difference in average

precision between the two runs is only about 12%, but the

optimized cityrl run had 14 superior topics (topics with a

20% or more improvement in average precision), all

caused by better ranking (more relevant documents moved

into the top 100 documents from the top 1000 docu-

ments). A similar comparison can be made between the

cityrl run and the pircs3 run. Even though there were

more relevant documents found by the pircsS technique,

the cityrl run had 15 superior topics (versus 7 superior for

pircs3), all caused by better ranking.

The ability to assign better ranks to relevant documents is

not strictly tied to being highly selective of terms. A
comparison of the cityrl, pircsS, 1NQ103 and CrnlRR

runs shows that the INQUERY and PIRCS techniques

both used an average of around 100 terms in their queries

and retrieved the largest number of relevant documents in

the top 1000 documents. The cityrl run, with only about

17 terms, missed a few relevant documents, but did a

much better job of ranking the ones they found. However,

even though the CrnlRR run used a massive expansion of

greater than 300 terms, the CrnlRR runs were stronger in

ranking than in finding relevant documents. A compari-

son of the INQ103 run to that of Cornell shows that Cor-

nell had 12 "inferior" topics, mostly due to missed rele-

vant documents, and 9 superior topics, mostly due to bet-

ter ranking. Clearly the appropriate number of terms to

use in a routing query varies across retrieval techniques.

This same result was seen in the adhoc task, where the

appropriate number of expansion terms also varied across

systems.

The top routing results tend to fall into three cate-

gories—those groups that used minimal effort in selecting

terms {CrnlRR, Isirl), those groups that selected terms

based on using only a portion of the relevant material

(pircs3 and westp2), and those groups that used all the

material, but carefully selected terms (cityrl, INQ103,

brklyS and losPAl).

Both the Cornell runs and the LSI runs were repeats of

their TREC-2 techniques. The LSI runs tested using only

the topic to create a query (no expansion) versus using all

the relevant documents (no topic) to create a centroid for

use as the query (the Isirl run). There is a 30%
improvement using the relevant documents only. The

Cornell runs used both the topic and a massive Rocchio

relevance feedback expansion (300+ terms). Both groups

used techniques based on a vector-space model (loosely

based for the LSI technique), and this model appears to be

able to effectively rank documents despite very massive

queries. The strength of the Cornell ranking was men-

tioned before, but the LSI ranking is comparable or even

better (18 superior topics for LSI, 9 for Cornell, all caused

by better ranking).

Two groups (the PIRCS system and the WIN system from

West) experimented with using only portions of the train-

ing data. This is mostly an efficiency issue, but also

serves as a term selection method. The pircs4 run (not

shown in Figure 5) used only short documents, where

short is defined as not more than 160 unique non-stop

stems. This run did somewhat worse than the pircs3 run,

where a combination of these short documents and the top

2400 subdocuments were used. In both runs many fewer

documents were used (12% and 35% of the relevant mate-

rial respectively), yet the results were excellent. The West

group tried multiple experiments using various segments

of the relevant documents (best documents only, best 200

paragraphs, and best top paragraph). Up to 50 terms were

added using a combination of the various approaches,

with selection of approaches done on a per topic basis.

This selective use of material caused some relevant docu-

ments to be missed. A comparison of the westp2 run and

the 1NQ103 run shows that the 12 topics in which the

INQ103 run was superior were mostly caused by new rel-

evant documents being found, whereas the 7 topics in

which the westp2 run was superior were all caused by bet-

ter ranking.

Four groups (cityrl, 1NQ103, brklyS, and LosPAl) used

all the relevant documents, but made careful selection of

the terms to use. The City results have already been dis-

cussed. The INQ103 run used an adaptation of the Roc-

chio algorithm with their inference engine technique. A
statistical formula was used to select the top 32 terms to

use for expansion for each topic, and then 30 additional

terms were selected based on their proximity to those

terms already selected. This technique retrieved a large

number of the relevant documents into the top 1000 slots,

but had more difficulties doing the ranking within that set.

The brklyS run selected an average of over 1 000 terms by

using a chi-square test to indicate which stems were sta-

tistically associated with document relevance to a topic.

These terms were weighted and used as the query. The

losPAl run used a similar technique, calculating a bino-

mial probability to select the top 1000 terms, selecting a

pool of documents using an OR of the top 10 terms,
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Figure 6. Interactive Results.

and then scoring the documents using a weighting algo-

rithm based on occurrances of the 1000 terms in those

documents. If results from these two systems are com-

pared to the more traditional INQ103 method, it seems

that the strengths of these methods are in the ranking,

with some problems in missing relevant documents.

As was the case in earlier TRECs, the manual construc-

tion of routing queries was not very competitive with

automatic query construction. The manual INQ104 run,

consisting of a merge of the INQ103 queries and a manu-

ally edited version of these queries was little different in

results from the INQ103 run. An exception to this was

the reasonable results of the UCFlOl run. This run com-

bined manually constructed detailed entity-relationship

schema with manually constructed synonym lists. These

were run against the documents, producing results that are

comparable with the automatic results.

There is some improvement in overall routing results

compared with those from TREC-2. This is mostly

shown by the comparative position of the CrnlRR run,

which was the "top-ranked" run in TREC-2, and now is

more the "middle of the pack."

5.4 Other Experiments in TREC-3

In addition to the results aimed at producing high

recall/precision performances, several groups did

experiments using the TREC tasks to investigate other

areas.

The largest area of experimentation was in interactive

query construction, with four groups participating. One

of the questions addressed by these groups was how well

humans could perform the routing task, given a "rules-

free" environment and access to the training material.

The larger issue addressed by these experiments, however,

was the entire interaction process in retrieval systems,

since the "batch mode" evaluation of TREC does not

reflect the way that most systems are used.

Figure 6 shows the three sets of results for the category A
interactive runs, plus several baseline runs for compari-

son. A short summary of the systems follows, and readers

are referred to the individual papers for more details.

TOPIC! — Verity, Inc. (see paper "Interactive Document

Retrieval Using TOPIC (A report on the TREC-3 experi-

ment)" by Richard Tong) used 12 Verity staff members

ranging in search experience using TOPIC from novice to

expert to build their queries. The initial queries were the

manual-constructed queries used by Verity in TREC-2,

and the results from these queries are shown in Figure 6

as TOPIC]. The searchers then improved the initial

queries by periodically evaluating their "improved"

queries against the training data. When sufficiently
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improved scores were achieved, the queries were declared

final and used for TREC-3.

rutir], rutirl — Rutgers University (see paper "New Tools

and Old Habits: The Interactive Searching Behavior of

Expert Online Searches using INQUERY" by Jurgen

Koenemann, Richard Quatrain, Colleen Cool and

Nicholas Belkin) used the INQUERY system and had 10

experienced online searchers with no prior experience

using that system build their queries. The entire query

building process was restricted to 20 minutes per topic,

and used the training data both for automatic relevance

feedback (if desired) and for the searchers to check if a

given retrieved document was relevant (as opposed to

periodically evaluating their results). At some point dur-

ing the 20 minute limit the queries were declared finished

by the searchers and the results from these queries are

shown in Figure 6 as rutirl. As a comparison, the experi-

menters also did the task themselves {rutirl).

cityil — City University, London (see paper "Okapi at

TREC-3" by S.E. Robertson, S. Walker, S. Jones, M.M.

Hancock-Beaulieu and M. Gatford) used the OKAPI team

as searchers. The initial query was manually generated

using traditional operations. The retrieved documents (or

a brief summary of them) were then displayed, and

searchers checked the relevance judgments (generally

viewing 10 or 12 relevant documents). Automatic rele-

vance feedback was then applied and the searchers could

choose to modify the resulting query or not (35 of the 50

topics were modified). Multiple iterations could be done

before a decision was made on the final query.

Not shown in Figure 6 is a category B interactive result

from the University of Toronto (see paper "Interactive

Exploration as a Formal Text Retrieval Method: How
Well can Interactivity Compensate for Unsophisticated

Retrieval Algorithms" by Nipon Charoenkitkarn, Mark

Chignell and Gene Golovchinsky). This group developed

their TREC experiments from what was initially a brows-

ing system. Boolean operators and promixity operators

were used to construct the initial query. The queries were

then "loosened" until around 1000 documents were

retrieved. Then the results of these queries were run

against the training data and reviewed, with changes pos-

sibly made to the query based on retrieval results.

As a group, the interactive results were considerably

worse than the automatic routing results. This was some-

what unexpected since in all four cases the queries could

be classified as the best manual queries possible.

Although no definite reasons have been cited for this, the

likely cause is the very strong performance of the auto-

matic systems given the large amounts of training data.

A comparison of the City interactive run (cityil) and the

City automatic run (cityaJ) illustrates the problems. For

BOTH runs, the query lengths were short, an average of

around 17 terms. Only about 20% of these terms were in

common, i.e., the searchers {cityil) and the "computer"

{cityal) picked different sets of terms. The difference in

the results from these queries, however, is very large, as

shown in Figure 6. The automatic run has a 63%
improvement in average precision, and 33 topics with

superior results (a 20% or more improvement in average

precision) versus one topic with inferior results.

Regardless of the poorer performance, all four groups

were able to draw interesting conclusions about their own
interactive experiments. The Verity group found a 24%
improvement in results {TOPICl to TOPIC!) that can be

obtained by humans using the training material over the

(manually created) initial query. Other groups were able

to gain insight into better tools needed by their system or

insight into how online searchers handle the new tech-

niques available. Of particular interest are the reports in

these papers about the detailed human/computer interac-

tions, as this provides insight on how systems might work

in an operational setting.

A second area that drew more attention in TREC-3 was

that of efficiency. Efficiency has always been an issue in

TREC because sufficient efficiency (in both time and stor-

age) is necessary to finish the tasks, and greater efficiency

allows more experiments to be done within the same time

period. Additionally the commercial systems in TREC
must make any new algorithms fit into their already very

efficient methodologies (the TRW/Paracel Fast Data

Finder is a good example of these problems).

Many groups addressed efficiency issues in their TREC-3

papers, but the group from RMIT (see paper "Information

Retrieval Systems for Large Document Collections" by

Alistair Moffat and Justin Zobel) has specialized in effi-

ciency issues in all the TRECs. In TREC-3 they investi-

gated the issue of creating a centralized index in blocks

for more efficient retrieval. They also tested text com-

pression methods for dynamic document databases. Effi-

ciency is likely to continue to be a major issue in TREC,

possibly playing a larger part in the future.

A third area, that of properly handling heterogeneous col-

lections such as the five main "subcollections" in TREC,
was comprehensively addressed by the Siemens group

(see paper "The Collection Fusion Problem" by Ellen

Voorhees, Narendra Gupta and Ben Johnson-Laird). This

group examined two different collection fusion techniques

and was able to obtain results within 10% of the average

precision of a run using a merged collection index. This

type of investigation is important for real-world collec-

tions, and also to allow researchers to take advantage of
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possible variations in retrieval techniques for heteroge-

neous collections.

Several groups ran some experiments in thresholding as

an alternative method of evaluating the routing task. For

details on one of these experiments, see paper "TREC-2

Ad-Hoc, Routing Retrieval and Thresholding Experiments

using PIRCS" by K.L. Kwok, L. Grunfeld and D.D.

Lewis.

The final set of experiments in TREC-3 involved starting

work in a second language. Four groups worked with 25

topics in Spanish, using a document collection consisting

of about 200 megabytes (58,000 records) of a Mexican

newspaper from Monterey (El Norte). Since there was no

training data for testing (similar to the startup problems

for TREC-1), the groups used simple techniques.

CrnlVS, CrnlES — Cornell University (see paper "Auto-

matic Query Expansion Using SMART: TREC-3 by Chris

Buckley, Gerard Salton, James Allan and Amit Singhal)

used a baseline SMART run (CrnlVS) and a SMART run

with massive topic expansion (CrnlES) similar to their

English adhoc run. A simple stemmer and a stoplist of

342 terms were used.

SIN002, SlNOOl - University of Massachusetts at

Amherst (see paper "Document Retrieval and Routing

Using the INQUERY System" by John Broglio, James R
Callan, W. Bruce Croft and Daniel W. Nachbar) used the

INQUERY system, with SlNOOl being a manually modi-

fied version of a basic automatic INQUERY run (SlNOOl)

without topic expansion. A Spanish stemmer produced a

12% improvement in later experiments.

DCUSPl — Dublin City University (see paper "Indexing

Structures Derived from Syntax in TREC-3: System

Description" by Alan Smeaton, Ruairi O'Donnell and Fer-

gus Kelledy) used a trigram retrieval model, with weight-

ing of the trigrams from traditional frequency weighting.

A Spanish stemmer based on the Porter algorithms was

also used.

erimsl — Environmental Research Institute of Michigan

(see paper "Using an N-Gram-Based Document Repre-

sentation with a Vector Processing Retrieval Model" by

William Cavnar) used a quad-gram retrieval model, also

with weighting using some of the traditional weighting

mechanisms. /

The major result from this very preliminary experiment in

a second language was the ease of porting the retrieval

techniques across languages. Cornell reported that only 5

to 6 hours of system changes were necessary (beyond cre-

ation of any stemmers or stopword lists).

6. Summary

The main conclusions that can be drawn from TREC-3 are

as follows:

Automatic construction of routers or filters from

training data is very effective, much more effective

than manual construction of these types of queries.

This holds even if the manual construction is based

ori Unrestricted use of the training data.

• Expansion of the shorter TREC-3 topics was highly

successfi^l, using either automatic topic expansion,

manual topic expansion, or manually modified ver-

sions of automatically expanded topics. Many dif-

ferent techniques were effective, with research just

beginning in this new area.

• The use of passage retrieval, subdocuments, and

local weighting brings consistent performance

improvements, especially in the adhoc task. Exper-

iments this year show continued improvement com-

ing from various methods of using these techniques

to improve ranking.

• Preliminary results suggest that the extension of

basic English retrieval techniques into another lan-

guage (in particular Spanish) does not appear diffi-

cult. TREC-3 represents the first large-scale test of

this portability issue.

Do these conclusions hold in the real world of text

retrieval? Certainly the use of automatic construction of

routers will work in any environment having reasonable

amounts of training material. Of greater question is the

transferability of the adhoc results. Two particular issues

need to be addressed here. First, even though the topics in

TREC-3 are shorter, they are still considerably longer

than most queries used in operational settings. A couple

of sentences is likely to be the maximum a user is willing

to type into a computer, and it is unclear if the TREC
topic expansion methods would work on these shorter

input strings. Shorter topics may also need different tech-

niques of passage retrieval and local weighting. TREC-4
will address this issue by using appropriately shorter top-

ics.

The second mismatch of the TREC-3 results to the real-

world is the emphasis on high recall in TREC. Request-

ing 1000 ranked documents and calculating the results on

these goes well beyond average user needs. Karen Sparck

Jones addresses this issue by looking at retrieval perfor-

mance based only on the top 30 documents retrieved

[Sparck Jones 1995, updated for TREC-3 in Appendix C
to the proceedings]. An improvement of 20% in precision

at this cutoff means that six additional relevant documents

will be returned to the user, and this is likely to be notice-

able by many users. Many of the techniques used in
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TREC produced this difference; additionally some of the

tools being investigated in TREC, such as the topic expan-

sion tools, will make query modification much easier for

the average user.

There will be a fourth TREC conference in 1995, and

most of the systems that participated in TREC-3 will be

back, along with additional groups. The routing and

adhoc tasks will be done again, with different data and

even shorter adhoc topics. In addition special new tasks

(call "tracks") will be created to provide a focus to those

areas of TREC that have been attracting more experimen-

tal interest. Six tracks will be tried.

• Interactive — investigating searching as an interac-

tive task by examining the process as well as the

outcome.

• Multilingual — working with non-English test col-

lections (250 megabytes of Spanish and 25 topics,

plus possibly Chinese and/or Japanese collections).

• NLP — more focussed investigation of NLP in an

IR environment, emphasizing the discovery and use

of phrases for TREC-4.

• Multiple database merging - investigation of tech-

niques for merging results from the various TREC
subcollections.

• Data corruption — examining the effects of cor-

rupted data (such as would come from an OCR
environment) by using corrupted versions of the

TREC data.

• Filtering — evaluating routing systems on the basis

of retrieving an unranked set of documents optimiz-

ing a specific effectiveness measure.
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1 Overview

We employed different processing techniques for the ad

hoc and routing tasks, although both explored the com-

bination of exact and fuzzy predictors.

For the routing task, we used a neural net classifier to

estimate the probability of relevance of a new document

to a given topic description. We experimented with a

variety of document representations, finally settling on

a hybrid feature set that combined a selected number of

discriminating terms with a low dimensional local LSI

[9] for generalization.

In the ad hoc task, we applied some of our content

analysis techniques, in particular, automatic thesaurus

construction and automatic topical segmentation of full-

length texts. Working from the hypothesis that exact

term match can be too restrictive, we used thesaurus

vectors [13] to compute context vectors for full texts

and text segments. We also used thesaurus vectors to

decompose the terms contained in the topic descriptions

into sets of query factors, where each query factor is in-

tended to represent a semantically distinct component

of the topic description. These factors constrain doc-

ument search by imposing Boolean constraints as will

be described below. We used TextTilmg [6] to parti-

tion long documents into semantically motivated multi-

paragraph segments called tiles. We adopted the logistic

regression methodology of Cooper et al. [2] and Fuhr et

al. [5] to model the probability of relevance given mea-

sured attributes of a query-document pair. This allowed

us to combine standard predictors (such as number of

match terms) with various assessments of tile match,

query factor score, and other predictors.

For both tasks we first performed standard prepro-

cessing (document parsing, tokenization, stop-list term

removal) using the TDB system [3]. Our terms con-

sisted of single words and two-word phrases that occur

over five times in the corpus (where phrase is defined as

an adjacent word pair, not including stop words). This

process produced over 2.5 million terms, which were fur-

ther processed as described below.

In the remainder of this report, Section 2 describes

our routing experiments. Section 3 describes our ad hoc

experiments, and Section 4 discusses our results and

possible future experiments.

2 Routing

Figure 1 sketches the system architecture for routing.

Our routing method combines a neural network clas-

sifier and a hybrid representation based on terms and

local Latent Semantic Indexing (LSI) vectors [4, 9].

Routing is a statistical classification problem, al-

though the classifiers that are typically employed have

relatively restricted generalization capacity (e.g., logis-

tic regression [2] and other linear methods). We ex-

plored the use of a more powerful family of classifiers:

neural networks. They support both linear and non-

linear architectures and can model complex functions

(e.g.. Boolean functions of arbitrary complexity).

The input to the classifier consists of two blocks of 100

units, one block for 100 highly discriminating terms, and

one block for a local LSI vector. This representation al-

lows for both exact term match (from the discriminating

terms) as well as a fuzzy similarity measure (from the

local LSI vector). For long documents, the terms and

vectors are computed only for one subpart of the docu-

ment, the segment with the highest vector space score

(see Section 3 for a description of the segmentation pro-

cedure).

The highly discriminating terms were selected using

a chi-square test. We created a subcollection of the

2000 documents closest to the topic description accord-

ing to the vector space score (as computed Buckley

et al. (1994) [1]). The topic description was Rocchio-

expanded before running the selection procedure [1].

Five copies of the (unexpanded) topic were added to

the 2000 documents resulting in a subcollection of 2005

items. Terms that occurred at least five times within
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Figure 1: Architecture for routing.

this subcoUection were ranked, using the chi-square test,

according to how significantly they discriminated rele-

vant from non-relevant documents. The top 100 terms

were chosen as the input terms for the classifier.

We settled on chi-square as a selection criterion after

initial experiments comparing it with terms selection

according to raw frequency of occurrence and according

to the ratio of relevant and non-relevant documents a

term occurs in. These alternative measures were out-

performed by the chi-square test.

Next, the top 1000 terms and the 2000 documents

were used to define a 1 000- x -2000 matrix that was de-

composed using a singular value decomposition. The

first 100 components for each document correspond to

the second block of input units for the classifier.

For both linear and nonlinear networks, a difi"erent

network is built for each topic description, and a single

output unit indicates whether or not a given document

is judged relevant to that network's topic. In the linear

architecture, each input unit is connected to the output

unit with no hidden units. This is roughly equivalent

to logistic regression, although the fitting method dif-

fers (maximum likelihood for logistic regression versus

backpropagation for the neural net). In the non-linear

architecture, the input units are again connected to the

output unit, but there is an additional layer of three

hidden units between the input units and the output

unit. Input units and hidden units are fully connected.

For each topic description, the classifier was trained

with backpropagation [10] on two thirds of the 2000 pre-

selected documents. The remaining third was used as a

validation set. In order to avoid overfitting, the neural

network was trained until the error on the validation set

increased. To ensure that the classifier would be applied

to a test set with a similar distribution as the training

set, we considered only documents with a vector space

score above a cutoff.

Table 1 gives results for the two classifiers and three

input configurations on the TREC 2 data and TREC 3

data, respectively. For both collections, the best perfor-

mance is achieved for a combination of terms and local

LSI vectors. This result indicates that each of the two

modes of representation, terms and local LSI, provides

information about relevance that is not present in the

other mode.

The results in Table 1 are less consistent with respect

to the potential benefit of nonlinearity. The nonlinear

classifier outperforms the linear one only in TREC 2

whereas it shows worse performance in TREC 3. A pos-

sible explanation is that the number of relevant docu-

ments for topics with few relevant documents is smaller

in TREC 3 than in TREC 2. For example, 16 top-

ics have less than 100 relevant documents in TREC 3.

In contrast, there are only 6 such topics in TREC 2. It

seems plausible that the kind of complex generalizations

that a nonlinear classifier can learn will only be sound

if there is enough training material, and this condition

does not seem to hold in TREC 3.

Our routing results can be summarized as follows:

• Of the two document representations, terms and

local LSI vectors, each contributes information that
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TREC 2 TREC 3

input precision input precision

average average at 100

linear classifier linear classifier

terms 0.4253 terms 0.4109 0.473

local LSI 0.3901 local LSI 0.3963 0.473

terms + local LSI 0.4213 terms + local LSI 0.4207 0.484

nonlinear classifier nonlinear classifier

terms 0.4260 terms 0.4095 0.474

local LSI 0.3829 local LSI 0.3981 0.474

terms + local LSI 0.4359 terms + local LSI 0.4145 0.482

Table 1: Routing performance for TREC 2 (topics 51-100, 100 selected terms) and TREC 3 (topics 101-150, 200

selected terms). The term "average" refers to non-interpolated average precision. These results were obtained after

the official NIST submission for TREC 3.

cannot be extracted from the other.

There is evidence that a non-linear classifier per-

forms better than a linear classifier if there is

enough training information.

3 Ad Hoc

Documents are preprocessed for the ad hoc task by

computing thesaurus vectors and segmenting long texts

with TextTiling, topic descriptions are subdivided into

query factors, and the various attributes (or predictors)

are combined using logistic regression. This section de-

scribes this process in more detail. Figure 2 sketches

the architecture for our ad hoc retrieval system.

3.1 Document Preprocessing

3.1.1 Thesaurus Induction

Our automatically constructed thesaurus maps each

term to a vector that represents its pattern of cooc-

currences with other terms throughout the document

collection. The goal is to capture the similarity be-

tween terms as measured by the commonality of their

neighbors. The technique is related to Latent Semantic

Indexing [4], but relies on cooccurrence of terms rather

than occurrence of terms in documents [12].

The thesaurus induction is motivated by a term-by-

term matrix in which each entry of the matrix is a count

of the number of times that the row term and the col-

umn term occur near each other in the corpus (where

near is defined as within the same paragraph). To the

extent that similar local context is a good measure of

topical similarity, closeness in the row (or column) space

of this matrix reflects topical similarity among terms.

Since the full matrix is unworkably large, we approxi-

mate it in a staged computation. First, the matrix for a

small subvocabulary of frequent terms is collected and

the induced term similarity used to cluster these terms

into basis classes. These basis classes are then used to

compute a new matrix for an extended vocabulary. The

process can be iterated until the full vocabulary is cov-

ered. The final matrix is reduced in dimensionality by

the application of a singular value decomposition. For

more details see [13].

Thesaurus vectors induce a similarity between terms

which we use to factor queries. This similarity measure

can be extended to sets of terms, and hence to docu-

ments, by averaging the included terms' vectors to form

context vectors. Context vectors oflFer a fuzzy (or soft)

match criteria forjudging the similarity between a query

and a document.

3.1.2 Motivated Segmentation

The second preprocessing step is concerned with the

treatment of long documents (those comprised of more

than two or three paragraphs). In previous work we

have developed TextTiling, an algorithm for partition-

ing full-length text documents into coherent multi-

paragraph units, called tiles [6]. These units are meant

to represent the subtopic structure of the texts; accord-

ing to evaluations done with human judges, subtopical

discussions often span several paragraphs. TextTiling

uses term frequency analyses to determine the extent of

the tiles. The result of tiling is a representation of the

original document augmented with tile boundary loca-

tions.

3.2 Topic Preprocessing: Factorization

A distinctive feature of our approach to the ad hoc task

is that we overlay a conjunctive Boolean constraint on

top of an additive similarity scoring scheme, which is

intrinsically disjunctive in nature. That is, because the

underlying scoring scheme is additive, there is no guar-

antee that a high scoring document will include a high
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percentage of the terms in the query; it may be suffi-

cient to include only a few with high intensity. This

can be counterproductive if the meaning of the query

requires disjoint sets of terms all to appear simultane-

ously. We explored both manual and automatic means

to recover appropriate Boolean constraints. However, in

the following we concentrate on automatic topic analy-

sis since the manual experiment, described below, was

unsuccessful.

Our automatic method, called topic factorization,

subdivides the topic into a number of orthogonal fac-

tors or groups of words that are associated with inde-

pendent themes of the topic. Factorization bears some

similarity with extended Boolean retrieval [11] in that

it combines Boolean and similarity-based retrieval. In

contrast to [11], we induce the Boolean constraint au-

tomatically instead of relying on the user to define dis-

junctions or conjunctions. The key idea is to exploit

the information about term relations in the thesaurus.

Topics often contain several distinct groups of closely

related terms. A case in point is Topic 51, which is

about subsidies to the European aircraft industry. Two
groups of terms or factors in this topic that are clearly

delineated from each other and from other terms are

terms related to subsidies and terms related to the air-

craft industry. Consider two documents with the same
number of terms matching Topic 51, the first with terms

that are related to only one of these factors, the second

with some terms related to the first factor and others

related to the second factor. Intuitively, we want to give

preference to the document that covers two of the cru-

cial subthemes of the topic. (The importance of relating

the themes of a query to the various subthemes of the

documents being retrieved against are also discussed in

[8].) In these experiments we attempted to achieve this

by giving each document the retrieval status value of

the factor that scores the lowest, thus imposing a con-

junctive constraint on the query.

To find the factors of a topic automatically, words

are represented by their thesaurus vectors and par-

titioned into a pre-determined number of classes via

group-average agglomerative clustering. This step ex-

ploits the semantic information in the thesaurus to ar-

rive at coherent groups of terms. Since topic descrip-

tions in the TREC collection have similar length, we

use a fixed number of four clusters per topic. For exam-

ple, here are the four clusters for topic 51:

1. Industrie airbus;industrie airbus aircraft ;-

consortium european; aircraft construcciones;-

aeronauticas construcciones aerospatiale aeronau-

ticas aeronauticas;s.a. british;aerospace boe-

ing messerschmitt-boelkow-blohm messerschmitt-

boelkow-blohm;gmbh mcdonnell;douglas mcdon-

nell aircraft;producer aerospace;plc s.a. aerospace

aircraft u.s.;aircraft douglas pic producer consor-
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input TREC2 TREC3
precision precision

average at 100 average at 100

documents 0.3018 0.444 0.2458 0.351

best tile 0.3038 0.452 0.2532 0.354

best tile + phrases 0.3154 0.469 0.2647 0.369

best tile + phrases + factors 0.3192 0.475 0.2718 0.379

Table 2: Scores for ad hoc runs on TREC 2 and TREC 3 data. These results v/ere obtained after the official NIST
submission for TREC 3.

tium gmbh

2. government u.s.;government dispute subsidy sanc-

tion federal ;subsidy government; assistance agree-

ment retaliation finance aid;loan aid dispute;trade

loan controversy assistance;aid group

3. trade;dispute european;government trade;tension

trade;controversy gatt european airbus;subsidy u.s.

Spanish ;government trade;policy trade;gatt german

aircraft;code british trade anti-dumping german;-

british french anti-dumping;duty Spanish tension

french;german

4. duty federal assistance objection petition policy

complaint countervail cite countervail;duty duty;-

petition tariff loan;finance document narrative code

Although factor 4 is fairly nondescript, the other clus-

ters do correspond to major themes present in the topic

(which is about government subsidies to Airbus and the

implications for U.S. companies): the aircraft industry

(factor 1), government subsidies (factor 2), and interna-

tional trade (factor 3). The intuition is that a relevant

document should score highly against all selected query

factors simultaneously. This imposes a conjunctive con-

straint that would otherwise not be present.

3.3 Combining Predictors

To combine scoring information for factors and tiles we

adopted a probabilistic retrieval approach that models

the logit of the probability of relevance given the query

as a linear function of the available predictors [2, 5].

The model was fit using topics 51-100 as a training

set and tested on topics 101-150 (the validation set).

Since running the logistic regression on all 750,000- x-

50 document-topic pairs is not feasible, we selected a

subset of privileged tiles: for each topic description, only

those tiles with the 2000 highest vector space scores were

retained. The privileged tiles were used to select docu-

ments (or portions of documents) for further processing

in each of the following ways:

• documents that contain at least one privileged tile

• the best privileged tile of a document

• the aggregate {— concatenation) of all privileged

tiles of a document

Factors were used in the computation of minmax pre-

dictors: the minimum score for the n "best" factors of

a topic. The "goodness" of factors was assessed either

manually or automatically. In the manual method, one

of us simply ranked the factors according to his intu-

ition about how important they were relative to each

other. In the automatic method, factors were ranked

according to "soft" correlation with the center of the

thesaurus space, i.e. according to the correlation of the

context vector of the factor (the sum of the thesaurus

vectors of its terms) and the vector representing the

center of the space occupied by the thesaurus. The less

descriptive a factor, the closer it is to the center of the

thesaurus space. Terms like "outcome" and "attempt"

,

that don't have strong topical characteristics, cluster

near the center of thesaurus space. In other words, the

more distant a factor's terms were from the thesaurus

center, the higher it was ranked. The center of the the-

saurus space was computed as the centroid of the 10,000

most frequent terms.

Given the privileged tiles and the ranked factors, the

following predictors were computed in the experiments.

Except for the first two, each was computed separately

for the document as a whole, for the best tile (where

best is defined according to the vector space score), and

for the aggregate of the best tiles. We also computed

these predictors separately for words and phrases.

1. number of tokens in query

2. number of tiles in aggregate

3. number of tokens (in document, tile or aggregate)

4. number of matches with query

5. sum over all term matches: square root document

frequency (the occurrence count of that term in the

document, tile or aggregate)

6. sum over all term matches: product square root

query frequency (the occurrence count of the term

in the query) and square root document frequency
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Table 3: Predicted and actual probability of relevance. Documents are binned according to number of matches and

predicted probability. For each cell, the empirical probability and the number of documents in the cell are given.

7. sum over all term matches: product square root

document frequency and log collection frequency

(the number of documents the term occurs in)

8. minimum of soft correlations with 3 best factors

(automatic selection)

9. minimum of soft correlations with 3 best factors

(manual selection)

We ran extensive tests to find the optimal combi-

nation of predictors over the validation set. In gen-

eral, it was found that adding predictors to the basic

Cooper-style predictors (5-7) did not improve perfor-

mance. Since many of the predictors are highly corre-

lated (e.g., predictor 5 for tiles and for documents cap-

ture similar information), this result is not surprising

in many cases. For some combinations we were disap-

pointed by the failure of predictors to make a difference.

For example, the manually selected factors did not do

better than the automatically selected ones.

Table 2 displays results for predictors 5-7 for doc-

uments and separately for best tiles. Best tiles per-

form slightly better than documents. We found that

simply adding predictors 5-7 calculated for phrases in-

stead of words did not improve performance. However,

if we fitted models separately for words and phrases and

then combined them in a second-stage regression we did

achieve better results (as quoted in the table). Finally,

if we added predictor 8 to the second-stage regression

mentioned above we achieved another improvement in

performance.

4 Discussion and Future Work
In analyzing the ad hoc results, we consider three av-

enues of investigation:

• What do individual predictors contribute to the es-

timation?

• To what extent does the regression model estimate

the probability of relevance correctly?

• What kind of interaction takes place between query

factors and tiles?

To investigate the first two questions, we have found

it useful to bin the set of documents according to their

value on a particular predictor and according to esti-

mated probability.-^ Table 3 gives an example from the

"best tile" results of Table 2. The estimated probabili-

ties of all 100,000 documents used in training (2000 for

each of the 50 queries), are binned into six bins such

that each bin has the same number of relevant docu-

ments. Similarly, the same procedure is applied to the

number of matches of these documents, i.e. six bins are

constructed such that each bin has the same number of

relevant documents. The cross-product of the two bin-

nings gives us 36 cells for which we can compute the

actual probability of relevance by dividing the number

of relevant documents in the cell by the total number

of documents in the cell. Table 3 gives for each bin the

center of the interval covered by it (probability for rows,

number of matches for columns), and, for each cell, the

empirical probability of relevance and the number of

documents.

Our regression model assumes a linear relationship

between predictor and logit of probability. In the lower

rows of Table 3, this relationship holds to a good degree

of approximation for documents with up to 12 matches.

However, the assumption of linearity is grossly inade-

quate for the "outlier" bin labeled '29.00' (the last col-

umn). Since regression analysis is sensitive to outliers,

^ This method of analysis was suggested to us by John Tukey.
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this is an important problem to investigate. It may be

the case that for this particular predictor, the model

should be modified to include a transformation of the

predictor "number of matches" or a special processing

step for documents that have high match scores.

As for the second question (accuracy of estimation),

the table shows that high probabilities are overesti-

mated (top row) and that low probabilities tend to be

underestimated (rows corresponding to predicted prob-

abilities "11" and "8"). The incorrect estimation of

the high probabilities is especially problematic since the

evaluation measure of average precision depends mainly

on the top part of the document ranking. The reason

the top part of the ranking is less accurately estimated

than the bottom part seems clear: there are many more

non-relevant than relevant documents so that the lo-

gistic regression will concentrate its "capacity" on the

low-probability end. To address this problem we plan

to experiment with cost functions that are more closely

tied to the evaluation measure.

For the third question, we are in the process of using

a new user interface paradigm, called TileBars [7], to

assess in more detail how the terms in the query factors

are distributed in the longer texts. We suspect that the

characteristics of the best subset of tiles to represent a

long document's contents will vary with each query; for

example, for some topic descriptions the best tile will

work well, but for others, the set of tiles with the most

query term overlap might be most appropriate.
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Document Retrieval and Routing

Using the INQUERY System
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The INQUERY retrieval and routing system, which is based on the Bayesian inference

net retrieval model, has been described in a number of papers [5, 4, 10, 11]. In the TREC
experiments this year, a number of new techniques were introduced for both the ad-hoc

retrieval and routing runs. In addition, experiments with Spanish retrieval were carried out.

1 Description of Ad-Hoc Experiments

For the ad-hoc retrieval experiments, the major changes to the system were the incorporation

of passage retrieval, query expansion using PhraseFinder [8], a new estimation technique for

indexing probabilities, and new analysis techniques for the TREC topics.

1.1 Query Processing

The following description of query processing emphasizes the differences to the approach

used in the previous evaluations, which is described in [5, 3].

The text in all parts of the TREC topics (topic, description, narrative) were treated in

the same way. The University of Massachusetts JTAG tagger [12] was used to identify parts

of speech for words in the query. Then sequences of nouns, or sequences of adjectives and

following nouns, were selected for the ^PHRASE operator. (In the past, we had included

prepositional phrases which followed a "bare" headnoun. We eUminated these phrases be-

cause we found they were not useful.)

Analysis of phrase statistics has shown that phrases of length greater than two words

were invariably too restrictive, especially when subphrases of these would have been useful in

retrieval. We therefore used only two-word phrases. Sequences of more than two words were

broken down into two-word subsequences. For example: (crude oil price trend) ^ (crude

oil), (oil price), (price trend). Using this modification of the original phrase extraction

procedures, we were able to eliminate a number of special processing steps, and apply noun-

phrase-extraction processing to all sections.
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We weighted the sections of the query as follows; title = 3n\ description — In, narrative =

1; where n is the number of terms in the section. This was accomplished simply by dupKcating

the title three times, the description once, and by using the ^i^SUM of the narrative terms.

1.2 PhraseFinder

PhraseFinder is a technique for corpus-based query expansion [8]. Phrasal concepts are

identified using a part-of-speech tagger, and the text contexts of these concepts (words in

close proximity) are used to create concept documents. These documents, in turn, are used

to create a concept-based INQUERY database. The query is then processed against this

database to produce a ranked Hst of phrases. Phrases from this list are then added to the

original query, with appropriate weighting. In [8], phrases were treated differently depending

on whether they contained words that were in the original query ("duplicates") or were

entirely new ("non-duplicates"). Previous experiments with TIPSTER/TREC databases

and topics, which produced consistent effectiveness improvements, were used to determine

the number of phrases and the weighting used.

After query processing created a query q from a topic, the query q was used to retrieve 30

associated phrases from a PhraseFinder database. The retrieved phrases were partioned into

a ranked set of phrases already in g, and a ranked set of phrases not in q. Each phrase was

weighted according to its rank in the set. "DupUcate" phrases were weighted by 1 — (r — 1) -^i^,

where r was the phrase's rank. "Non-DupHcate" phrases were weighted by 0.6 — (r — 1) •

Then the phrases and their weights were added to q to form an expanded query q'.

1.3 Passage Retrieval

In [2], we reported experiments that showed significant improvements in retrieval effectiveness

are possible when document rankings based on the entire document text are combined with

rankings based on the best passages in the documents. Overlapping passages of a fixed-length

yielded better results than passages based on document structure (e.g. paragraphs).

In the ad-hoc document retrieval experiments, the expanded query [q' above) was applied

to both documents and passages, as described in [2]. The final form of the query, g", was

#wsum (1.0 2.0 #passage200 {q") 1.0 [q"))

based upon the results reported in [2].^

1.4 Manual Modifications

These queries were generated by simulating some of the modifications a user might be ex-

pected to make to an initial query in an interactive environment. The starting point for this

experiment was a version of the automatically produced queries (INQlOl). These queries in-

cluded phrases added automatically using the PhraseFinder as described above. Changes to

these initial queries were limited to the deletion of spurious (in the user's opinion) words and

phrases, modification of weights based on perceived relative importance, and adding prox-

imity restrictions such as are often used in Boolean systems. The following is an example of

the type of query produced.

"The first 1.0 is a scaling parameter that is used rarely. It was always 1.0 in our experiments.
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! Document-level query

#WSUM (1.0 1.0 #SUM( tobacco #compeuiy advertising

#PHRASE( young people) tobacco target young
#PHRASE( tobacco industry) young youth children
teenagers adolescents #phrase(high school students)

#phrase (college students) )

3.0 #PHRASE( tobacco industry) 1.0 aims

1.0 advertising 1.0 young

3.0 Tobacco 3.0 company 3.0 advertising 1.0 young
3.0 #uwlOO( tobacco advertising #syn(young youth teenagers

adolescents students children))

0.3 #3 ( tobacco industry ) 0.3 #3 ( tobacco company )

0.3 #3 ( tobacco product ) 0.3 #3 ( ad campaign )

0.3 minor 0.3 snuff 0.3 #3 ( tv commercial )

0.3 #3 ( advertising campaign ) 0.3 #3 ( marketing executive )

0.3 teenager 0.3 glamour 0.3 billboard 0.3 allure )

1.5 Estimation

INQUERY, like most statistical systems, reUes on a tf.idf foTmula for estimating the proba-

bihty that a document is about a concept. UnHke many systems, INQUERY starts with a

default probabiUty and then adjusts it based on evidence. The formula used in recent TREC
and TIPSTER experiments to determine the beUef due to the occurrence of query term Q
in a document was:

beU4<5) = d, + {l-d,)^(d,.H + {l-d,)-
^^^^^^

.

\ log[maxJf + 1.0}

where
tf — the frequency of term t in the document,

maxdf = the frequency of the most frequent term in the document,

df = the number of documents in which term t occurs,

C = the number of documents in the collection,

_ / 1-0 if maxAf < 200
H — % 200 ii • 1

dt = minimum term frequency component when a term occurs in a document,

db = minimum beUef component when a term occurs in a document.

In this formula, db is the beHef in a document when there is no evidence ("default behef").

In recent TREC and TIPSTER experiments, db and dt were set to 0.4.

The penalty H was introduced prior to TREC-1 to counter a sUght bias towards long

documents. This penalty was effective, if not pleasing theoretically. It prevented INQUERY
from being biased unduly towards long documents, but stiU allowed them to be retrieved.

(Only four of the TREC-2 systems retrieved more relevant Federal Register documents than

did INQUERY [7].)

This year the document retrieval ("ad-hoc") experiments were conducted using a new
estimation technique. The estimation experiments involved new forms of concept probabihty

(1)
y log(c) ^

^
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calculation. This probability is based on the tf.idf weights used in many systems, and these

experiments incorporated factors such as document length. The penalty H was eliminated,

the default belief [db) was based partly upon document length, and the default tf component

[dt] was based partly upon the frequency of the term. The adjustments to Equation 1 were:

H

dt

db

where L = the length of the document (in words).

Our hypothesis was that the estimation technique should be more tolerant of not observing

a query term in a short document than in a long document. Likewise, it should be more

tolerant of not observing infrequent terms in a document.

These adjustments to the estimation formula were tested against more than just the

TREC document collection. In experiments prior to TREC-3, they were found to yield

small improvements at aU levels of recall on the CACM (2 query sets). West FSupp (2 query

sets), and NPL document collections.

2 Description of the Routing Experiments

The routing experiments incorporated two major changes. These were the inclusion of

proximity-based features and the use of weights based on Rocchio [1]. Both phrase-level

and paragraph-level proximities were considered. This means that significantly co-occurring

words in both 5 word windows and 50 word windows were used as features in the automati-

cally constructed queries. The Rocchio weights are based on averaging the ^/.ic?/ probabilities

in both the relevant and non-relevant documents.

The INQ103 query set was created automatically from the original TIPSTER topics

(100-150) and the relevance judgements from Volumes 1 and 2. The original queries were

expanded using words and phrases from the relevant documents and reweighted.

The new features that were added to the queries were the 32 words with the highest

weights in the relevant set, 10 proximities based on 5 word windows, and 20 proximities

based on 50 word windows. Features were weighted using an approach based on the Rocchio

formula developed for the vector space model [1]. The three primary differences between

these weights and the standard Rocchio weights are:

1. The query is a weighted sum of three components,

#wsum(1.0 2.0 (original query) 4.0 (new word terms)

1.0 (new proximity terms))

2. Since the top level of the query already contains the original query, the Rocchio com-

putation only includes average weight in the relevant and non-relevant documents;

= 1.0 (2)

= 0.3* fl.O - ^1 (3)

^^-imWo if (^< 400, 000)

0.0 otherwise
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3. The term weights are computed using the weight functions INQUERY uses to estimate

beliefs, and the the normalization uses document length statistics instead of the cosine

normalization;

4. Although the entire relevant set is used, only the top-ranked n non-relevant documents

are considered, where n is the number of relevant documents for the query, and the

ranking is done using the original query.

The "manual" routing experiment (INQ104) was done by a weighted combination of the

automatically produced queries with a manually produced set of queries generated for the

ad-hoc experiments in the previous TREC experiments. No manual changes were made by

examining relevant documents. The automatically produced queries were given twice the

weight of the manual queries.

3 Description of the Spanish Experiments

The Spanish retrieval experiments focused on evaluating the effect of morphological process-

ing. Only small modifications were required to apply INQUERY to a collection of Spanish

documents. A stopword Ust was developed manually (1 week), document indexing had to be

adjusted (1 week), a Spanish word stemmer had to be developed (5 weeks), and the graphical

user interface had to be modified (6 weeks).

The word stemming algorithm is a Porter-stemmer in spirit [9]. Each stage of the Spanish

algorithm is somewhat more complex than the English algorithm, because Spanish has more

verb conjugation than does English, and the basic algorithm is augmented with a large table

of exceptions, because Spanish has more irregulax verbs than does English. Decisions about

which verbs to handle with exceptions and which to handle with general rules were based

upon Spanish verb data supplied by New Mexico State University.

The processing of Spanish topics to queries was accomplished by the same software used

for English. Phrase recognition was disabled because we had no Spanish part-of-speech

tagger. The stop-phrase heuristics were not translated to Spanish, so stop-phrases were not

discarded.

4 Ad-Hoc Results and Discussion

Two sets of results, INQlOl and INQ102, were evaluated in the ad-hoc document retrieval

evaluation.

The INQlOl results were based on completely automatic processing of the TREC topic

statement into a query, automatic query expansion, use of passage-level and document-level

evidence, and adjustments to INQUERY's estimation formula.

INQ102 was a semi-automatic experiment in which a user was allowed to edit the INQlOl

query prior to running it. As in the past, the user was restricted to deleting query terms,

grouping query terms with proximity operators, adjusting query term weights, and adding

query terms from the Narrative. No other kind of modification was permitted.
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The ofRcial results for INQlOl and INQ102 are summarized below.

Query Type Average Precision

5 Docs 30 Docs 100 Docs 11-Pt Avg
INQlOl .64 .57 .44 .37

INQ102 .74 (+15.5%) .63 (+11.0%) .49 (+11.5%) .42 (+15.5%)

Limited user modification of INQlOl produced a very significant 15.5% improvement

in average precision. Most of this improvement appears to be due to 1) deleting useless

query terms introduced by query processing or PhraseFinder, and 2) grouping query terms

with proximity operators. Clearly there remains room for improvement in automatic query

processing techniques.

After TREC-3, experiments were done to investigate the effect of the changes made this

year. Our simple query processing improved precision very significantly at almost aU levels

of recall, as shown in the table below. The average precision obtained with query processing

was 84.2% higher than the average precision obtained by using raw words alone.

Recall Precision (50 queries)

Raw RW W/0 Stop SN With FW With

Words & Not Phrases Field Weights #PHRASE op

(RW) (SN) (FW) (PO)

0 45.3 61.8 (+36.3) 78.8 (+74.0) 79.6 (+75.8)

10 28.2 40.1 (+41.9) 50.1 (+77.5) 57.0 (+102.0)

20 24.3 33.1 (+36.2) 40.3 (+66.2) 46.6 (+92.0)

30 21.6 29.7 (+37.3) 33.7 (+55.6) 40.1 (+85.5)

40 18.0 24.9 (+38.7) 28.0 (+55.6) 33.8 (+88.1)

50 15.7 21.3 (+35.7) 23.9 (+52.0) 27.7 (+76.5)

60 13.1 18.0 (+38.0) 20.3 (+55.8) 22.7 (+73.7)

70 10.6 14.7 (+37.8) 17.1 (+60.4) 18.4 (+72.8)

80 7.9 11.3 (+43.8) 13.1 (+66.9) 13.3 (+68.7)

90 4.5 7.2 (+60.3) 9.0 (+101.3) 9.4 (+110.4)

100 0.5 0.8 (+60.9) 0.9 (+99.8) 0.7 (+47.1)

avg 17.2 23.9 (+38.6) 28.7 (+66.3) 31.8 (+84.2)

Query expansion with PhraseFinder proved to be a good idea. As the table below shows,

the inclusion of PhraseFinder terms in the query yielded a 9.6% improvement in average

precision. Passage retrieval was also a good idea. Combining passage-level and document-

level evidence produced a 15.7% improvement in average precision.

Combining PhraseFinder query expansion and passage retrieval led to the best perfor-

mance of all, a 19.8% improvement over the baseUne query processing. The improvement

of the combination over passage retrieval alone was smaller than expected, suggesting that

their are better ways of combining these two sources of evidence.

34



Recall Precision (50 queries)

Query QP With QP With QP and PF
Processing PhraseFinder Passage and PS

(QP) (PF) (PS) (AU)

0 79.6 79.4 (-0.2) 83.8
( +5.2) 80.6 (+1.2)

10 57.0 59.2 (+3.9) 61.7
( +8.1) 61.4 (+7.6)

20 46.6 50.3 (+8.0) 54.9 (+17.7) 54.1 (+16.1)

30 40.1 44.4 (+10.7) 47.2 (+17.6) 48.4 (+20.7)

40 33.8 37.4 (+10.7) 41.3 (+22.0) 43.0 (+27.1)

50 27.7 32.7 (+18.1) 34.0 (+22.8) 37.0 (+33.4)

60 22.7 27.6 (+21.6) 28.4 (+25.4) 31.6 (+39.4)

70 18.4 22.2 (+20.7) 23.2 (+26.5) 26.6 (+44.7)

80 13.3 16.8 (+26.7) 17.1 (+29.0) 20.6 (+55.5)

90 9.4 11.6 (+22.6) 11.6 (+22.7) 13.4 (+42.0)

100 0.7 1.2 (+73.5) 1.2 (+74.2) 1.9 (+177.0)

avg 31.8 34.8 (+9.6) 36.8 (+15.7) 38.1 (+19.8)

The change to the estimation formula, described above, had no significant effect on

INQUERY's performance in the ad-hoc document retrieval evabiation. There was a +1.3%
improvement in average precision over 11 recall points, but most of the improvement occurred

at high (> 40%) recall.

5 Routing Results and Discussion

Two sets of results, INQ103 and INQ104, were evaluated in the document routing evaluation.

The INQ103 results were based on completely automatic processing of the TREC topic

statement and relevance judgements into a query. INQ104 was a combination of the INQ103

query and a query modified manually. The official evaluations are summarized below.

Query Type Average Precision

5 Docs 30 Docs 100 Docs 11-Pt Avg
INQ103 .67 .58 .46 .38

INQ104 .62 (-1.9%) .56 (-2.4%) .45 (-3.0%) .39 (+1.1%)

As in previous TREC experiments, the combination of automatic and manually-modified

query sets was not helpful. This result is not surprising, given the improved weighting in

INQ103 and the mediocre performance of the manually-modified query set in last year's

TREC evaluation.

6 Spanish Results and Discussion

Two sets of results, SINOOl and SIN002, were evaluated in the ad-hoc Spanish document

retrieval evaluation.

The SIN002 results were based on completely automatic processing of the TREC topic

statement into a query. The processing performed was a subset of the processing applied
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to English topics. For example, there was no noun-phrase recognition, and no stop-phrase

removal. The various fields of the topic statement were weighted as in EngHsh.

SINOOl was a semi-automatic experiment in which a user was allowed to edit the SIN002

query prior to running it. As with English, the user was restricted to deleting query terms,

grouping query terms with proximity operators, adjusting query term weights, and adding

query terms from the Narrative. No other kind of modification was permitted.

The official evaluations are summarized below.

Query Type Average Precision

5 Docs 30 Docs 100 Docs 11-Pt Avg
SIN002 .74 .69 .60 .51

SINOOl .78 (+5.4%) .67 (-2.7%) .53 (-11.6%) .42 (-17.5%)

Limited user modification of SIN002 produced improvements at very low recall, but a sig-

nificant 17.5% loss in average precision. The relative inexperience of the user making the

changes may have been a factor.

One concern was whether the Spanish word stemmer, which was developed in about five

weeks, helped or hindered performance. The table below shows that it helped, providing a

9.4% improvement in average precision on the SIN002 query set.

Although the results for Spanish ad-hoc document retrieval appear reasonable, there is

much room for improvement. A Spanish part-of-speech tagger would enable more sophis-

ticated query processing, as would a Spanish stop-phrase recognizer. In principle, there is

no reason why the complete English language query processing and query expansion tech-

niques can't also be applied to Spanish. However, one practical near-term obstacle wiU Ukely

be retrieval of large numbers of unjudged documents, due to the small number of systems

participating in the Spanish evaluation this year.

Recall Precision (25 queries)

SIN002 SIN002

Unstemmed Stemmed
0 86.5 86.9 (+0.4)

10 71.7 75.2 (+4.8)

20 65.3 69.6 (+6.7)

30 59.8 64.8 (+8.2)

40 54.5 60.4 (+10.9)

50 48.1 54.2 (+12.8)

60 42.7 49.1 (+15.0)

70 37.2 42.3 (+13.6)

80 29.2 33.0 (+13.1)

90 16.4 22.7 (+38.7)

100 3.5 5.1 (+44.4)

avg 46.8 51.2 (+9.4)

7 Summary

The themes guiding our work this year remain unchanged from previous years: We believe in

highly structured queries, sophisticated query processing, and in combining multiple sources
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of evidence. The evaluation this year showed continued progress on each of these fronts.

INQUERY's heuristics for processing TIPSTER topics into queries continue to evolve

and improve, providing a relatively high baseline from which to start considering other

improvements. The ad-hoc document retrieval queries have become increasingly structured.

Although no additional structure was introduced into the routing queries, their weights were

improved by a switch to Rocchio weighting.

Two additional sources of evidence were introduced into the ad-hoc document retrieval

queries this year: passage-level evidence, and query expansion using PhraseFinder. These

provided significant improvements over the baseline query processing methods alone, and

probably compensated to some extent for the loss of the "Concepts" field in the TREC
topics.

The value of the Spanish evaluation was in showing how quickly INQUERY can be

applied to new languages. Previous efforts have demonstrated that INQUERY can be used

with Japanese [6] and Finnish, but they required significant effort. The Spanish effort

required about seven weeks of work on the retrieval system, most of it to develop a Spanish

word-stemmer.
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ABSTRACT

In this paper we report on the recent developments in

NYU's natural language information retrieval system,

especially as related to the 3rd Text Retrieval Conference

(TREC-3). The main characteristic of this system is the

use of advanced natural language processing to enhance

the effectiveness of term-based document retrieval. The

system is designed around a traditional statistical back-

bone consisting of the indexer module, which builds

inverted index files from pre-processed documents, and a

retrieval engine which searches and ranks the documents

in response to user queries. Natural language processing

is used to (1) preprocess the documents in order to

extract content-carrying terms, (2) discover inter-term

dependencies and build a conceptual hierarchy specific to

the database domain, and (3) process user's natural

language requests into effective search queries. For the

present TREC-3 effort, the total of 3.3 GBytes of text

articles have been processed (Tipster disks 1 through 3),

including material from the Wall Street Journal, the

Associated Press newswire, the Federal Register, Ziff

Communications 's Computer Library, Department of

Energy abstracts, U.S. Patents and the San Jose Mercury

News, totaling more than 500 million words of English.

Since the TREC-2 conference, many components of the

system have been redesigned to facilitate its scalability to

deal with ever increasing amounts of data. In particular, a

randomized index-splitting mechanism has been installed

which allows the system to create a number of smaller

indexes that can be independently and efficiently

searched.

INTRODUCTION

A typical (full-text) information retrieval (IR) task

is to select documents from a database in response to a

user's query, and rank these documents according to

relevance. This has been usually accomplished using sta-

tistical methods (often coupled with manual encoding)

that (a) select terms (words, phrases, and other units)

from documents that are deemed to best represent their

content, and (b) create an inverted index file (or files)

that provide an easy access to documents containing

these terms. A subsequent search process will attempt to

match preprocessed user queries against term-based

representations of documents in each case determining a

degree of relevance between the two which depends

upon the number and types of matching terms. Although

many sophisticated search and matching methods are

available, the crucial problem remains to be that of an

adequate representation of content for both the docu-

ments and the queries.

In term-based representation, a document (as well

as a query) is transformed into a collection of weighted

terms, derived directly from the document text or

indirectly through thesauri or domain maps. The

representation is anchored on these terms, and thus their

careful selection is critical. Since each unique term can

be thought to add a new dimensionality to the representa-

tion, it is equally critical to weigh them properly against

one another so that the document is placed at the correct

position in the N-dimensional term space. Our goal here

is to have the documents on the same topic placed close

together, while those on different topics placed

sufficiently apart. Unfortunately, we often do not know
how to compute terms weights. The statistical weighting

formulas, based on terms distribution within the data-

base, such as tf.idf, are far from optimal, and the assump-

tions of term independence which are routinely made are

false in most cases. This situation is even worse when
single-word terms are intermixed with phrasal terms and

the term independence becomes harder to justify.

The simplest word-based representations of con-

tent, while relatively better understood, are usually

inadequate since single words are rarely specific enough

for accurate discrimination, and their grouping is often

accidental. A better method is to identify groups of

words that create meaningful phrases, especially if these

phrases denote important concepts in the database

domain. For example, joint venture is an important term

in the Wall Street Journal (WSJ henceforth) database,

while neither joint nor venture is important by itself. In

the retrieval experiments with the training TREC data-

base, we noticed that both joint and venture were

dropped from the list of terms by the system because

their idf {inverted document frequency) weights were too
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low. In large databases, such as TIPSTER, the use of

phrasal terms is not just desirable, it becomes necessary.

An accurate syntactic analysis is an essential prere-

quisite for selection of phrasal terms. Various statistical

methods, e.g., based on word co-occurrences and mutual

information, as well as partial parsing techniques, are

prone to high error rates (sometimes as high as 50%),

•turning out many unwanted associations. Therefore a

good, fast parser is necessary, but it is by no means

sufficient. While syntactic phrases are often better indi-

cators of content than 'statistical phrases' — where

words are grouped solely on the basis of physical prox-

imity (e.g., "college junior" is not the same as "junior

college") — the creation of compound terms makes term

matching process more complex since in addition to the

usual problems of synonymy and subsumption, one must

deal with their structure (e.g., "college junior" is the

same as "junior in college"). In order to deal with struc-

ture, the parser's output needs to be "normalized" or

"regularized" so that complex terms with the same or

closely related meanings would indeed receive matching

representations. This goal has been achieved to a certain

extent in the present work. As it will be discussed in

more detail below, indexing terms were selected from

among head-modifier pairs extracted from predicate-

argument representations of sentences.

Introduction of compound terms also complicates

the task of discovery of various semantic relationships

among them, including synonymy and subsumption. For

example, the term natural language can be considered, in

certain domains at least, to subsume any term denoting a

specific human language, such as English. Therefore, a

query containing the former may be expected to retrieve

documents containing the latter. The same can be said

about language and English, unless language is in fact a

part of the compound term programming language in

which case the association language - Fortran is

appropriate. This is a problem because (a) it is a standard

practice to include both simple and compound terms in

document representation, and (b) term associations have

thus far been computed primarily at word level (includ-

ing fixed phrases) and therefore care must be taken when

such associations are used in term matching. This may
prove particularly troublesome for systems that attempt

term clustering in order to create "meta-terms" to be used

in document representation.

The system presented here computes term associa-

tions from text at word and fixed phrase level and then

uses these associations in query expansion. A fairly

primitive filter is employed to separate synonymy and

subsumption relationships from others including anto-

nymy and complementation, some of which are strongly

domain-dependent. This process has led to an increased

retrieval precision in experiments with both ad-hoc and

routing queries for TREC-1 and TREC-2 experiments.

However, the actual improvement levels can vary sub-

stantially between different databases, types of runs (ad-

hoc vs. routing), as well as the degree of prior processing

of the queries. We continue to study more advanced

clustering methods along with the changes in interpreta-

tion of resulting associations, as signaled in the previous

paragraph. In the remainder of this paper we discuss par-

ticulars of the present system and some of the observa-

tions made while processing TREC-3 data.

OVERALL DESIGN

Our information retrieval system consists of a trad-

itional statistical backbone (NIST's PRISE system; Har-

man and Candela, 1989) augmented with various natural

language processing components that assist the system in

database processing (stemming, indexing, word and

phrase clustering, selectional restrictions), and translate a

user's information request into an effective query. This

design is a careful compromise between purely statistical

non-linguistic approaches and those requiring rather

accomplished (and expensive) semantic analysis of data,

often referred to as 'conceptual retrieval'.

In our system the database text is first processed

with a fast syntactic parser. Subsequently certain types of

phrases are extracted from the parse trees and used as

compound indexing terms in addition to single-word

terms. The extracted phrases are statistically analyzed as

syntactic contexts in order to discover a variety of simi-

larity links between smaller subphrases and words occur-

ring in them. A further filtering process maps these simi-

larity links onto semantic relations (generalization, spe-

cialization, synonymy, etc.) after which they are used to

transform a user's request into a search query.

The user's natural language request is also parsed,

and all indexing terms occurring in it are identified. Cer-

tain highly ambiguous, usually single-word terms may be

dropped, provided that they also occur as elements in

some compound terms. For example, "natural" is deleted

from a query already containing "natural language"

because "natural" occurs in many unrelated contexts:

"natural number", "natural logarithm", "natural

approach", etc. At the same time, other terms may be

added, namely those which are linked to some query

term through admissible similarity relations. For exam-

ple, "unlawful activity" is added to a query (TREC topic

055) containing the compound term "illegal activity" via

a synonymy link between "illegal" and "unlawful". After

the final query is constructed, the database search fol-

lows, and a ranked list of documents is returned.

There are several deviations from the above

scheme in the system that has been actually used in

TREC-3, as well as some important changes from

TREC-2. First and foremost, we have 'graduated' from

the category B (exploratory systems, about 1/4 of text
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data) to the category A (full participation) mostly thanks

to significant efficiency improvements in the NLP
module. In particular, the BBN's part-of-speech tagger,

which we use to preprocess the input before parsing, has

been redesigned in time for TREC-3 so that it now adds

no more than 5% overhead to the parsing time. We have

also installed a new, more efficient version of NIST's

PRISE system which cut the indexing time from days to

hours. In order to keep memory usage within the limits

of our resources, as well as to prepare the system to deal

with practically unlimited amounts of data in the future,

we devised a randomized index splitting mechanism

which creates not one but several balanced sub-indexes.

These sub-indexes can be searched independently and

the results can be merged meaningfully into a single

ranking. Finally, while the query expansion via the

domain map is an important part of our system, it has not

been used in TREC-3 runs. Our analysis of TREC-2
results revealed several problems with the query expan-

sion scheme and we were in process of redesigning it,

however, we were unable to test the revised approach in

time for this evaluation, and thus decided to leave it out

of TREC-3. We plan to have it in place for TREC-4.

Before we proceed to discuss the particulars of our

system we would like to note that all the processing

steps, those performed by the backbone system, and

those performed by the natural language processing com-

ponents, are fully automated, and no human intervention

or manual encoding is required.

FAST PARSING WITH TTP PARSER

TTP (Tagged Text Parser) is based on the Linguis-

tic String Grammar developed by Sager (1981). The

parser currently encompasses some 400 grammar pro-

ductions, but it is by no means complete. The parser's

output is a regularized parse tree representation of each

sentence, that is, a representation that reflects the

sentence's logical predicate-argument structure. For

example, logical subject and logical object are identified

in both passive and active sentences, and noun phrases

are organized around their head elements. The parser is

equipped with a powerful skip-and-fit recovery mechan-

ism that allows it to operate effectively in the face of ill-

formed input or under a severe time pressure. When
parsing the TREC-3 collection of more than 500 million

words, we found that the parser's speed averaged

between 0.17 and 0.26 seconds per sentence, or up to 80

words per second, on a Sun's SparcStationlO. In addi-

tion, TTP has been shown to produce parse structures

which are no worse than those generated by full-scale

linguistic parsers when compared to hand-coded

Treebank parse trees.

TTP is a full grarrmiar parser, and initially, it

attempts to generate a complete analysis for each

sentence. However, unlike an ordinary parser, it has a

built-in timer which regulates the amount of time

allowed for parsing any one sentence. If a parse is not

returned before the allotted time elapses, the parser

enters the skip-and-fit mode in which it will try to "fit"

the parse. While in the skip-and-fit mode, the parser will

attempt to forcibly reduce incomplete constituents, possi-

bly skipping portions of input in order to restart process-

ing at a next unattempted constituent. In other words, the

parser will favor reduction to backtracking while in the

skip-and-fit mode. The result of this strategy is an

approximate parse, partially fitted using top-down pred-

ictions. The fragments skipped in the first pass are not

thrown out, instead they are analyzed by a simple phrasal

parser that looks for noun phrases and relative clauses

and then attaches the recovered material to the main

parse structure. Full details of TTP parser have been

described in the TREC-1 report (Strzalkowski, 1993a), as

well as in other works (Strzalkowski, 1992; Strzalkowski

&Scheyen, 1993).

As may be expected, the skip-and-fit strategy will

only be effective if the input skipping can be performed

with a degree of determinism. This means that most of

the lexical level ambiguity must be removed from the

input text, prior to parsing. We achieve this using a sto-

chastic parts of speech tagger to preprocess the text (see

TREC- 1 report for details).

WORD SUFFIX TRIMMER
Word stemming has been an effective way of

improving document recall since it reduces words to their

common morphological root, thus allowing more suc-

cessful matches. On the other hand, stemming tends to

decrease retrieval precision, if care is not taken to

prevent situations where otherwise unrelated words are

reduced to the same stem. In our system we replaced a

traditional morphological stemmer with a conservative

dictionary-assisted suffix trimmer. ' The suffix trimmer

performs essentially two tasks: (1) it reduces inflected

word forms to their root forms as specified in the diction-

ary, and (2) it converts nominalized verb forms (e.g.,

"implementation", "storage") to the root forms of

corresponding verbs (i.e., "implement", "store"). This is

accomplished by removing a standard suffix, e.g.,

"stor+age", replacing it with a standard root ending

("-i-e"), and checking the newly created word against the

dictionary, i.e., we check whether the new root ("store")

is indeed a legal word. Below is a small example of text

before and after stemming.

' Dealing with prefixes is a more complicated matter, since they

may have quite strong effect upon the meaning of the resulting term,

e.g., un- usually introduces explicit negation.
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While serving in South Vietnam, a number of U.S.

Soldiers were reported as having been exposed to

the defoliant Agent Orange. The issue is veterans

entitlement, or the awarding of monetary compensa-

tion and/or medical assistance for physical damages

caused by Agent Orange.

serve south Vietnam number u.s. soldier expose de-

foliant agent orange veteran entitle award monetary

compensate medical assist physical damage agent

orange

Please note that proper names, such as South Vietnam

and Agent Orange are identified separately through the

name extraction process described below. Note also that

various "stopwords" (e.g., prepositions, conjunctions,

articles, etc.) are removed from text.

HEAD-MODIFIER STRUCTURES

Syntactic phrases extracted from TTP parse trees

are head-modifier pairs. The head in such a pair is a cen-

tral element of a phrase (main verb, main noun, etc.),

while the modifier is one of the adjunct arguments of the

head. In the TREC experiments reported here we
extracted head-modifier word and fixed-phrase pairs

only. While TREC databases are large enough to warrant

generation of larger compounds, we were unable to ver-

ify their effectiveness in indexing, mostly because of the

tight schedule.

Let us consider a specific example from the WSJ
database:

The former Soviet president has been a local hero

ever since a Russian tank invaded Wisconsin.

The tagged sentence is given below, followed by the reg-

ularized parse structure generated by TTP, given in Fig-

ure 1.

The/dt former//)' Soviet//)' president/«n has/vfez

heenJvbn aldt local/)/' hero/«« Q\txlrb since//n iJdt

Russian//) tank/nn invaded/vM Wisconsin//!/? .Iper

It should be noted that the parser's output is a

predicate-argument structure centered around main ele-

ments of various phrases. In Figure 1, BE is the main

predicate (modified by HAVE) with 2 arguments {sub-

ject, object) and 2 adjuncts {adv, sub_ord). INVADE is

the predicate in the subordinate clause with 2 arguments

{subject, object). The subject of BE is a noun phrase

with PRESIDENT as the head element, two modifiers

(FORMER, SOVIET) and a determiner (THE). From this

structure, we extract head-modifier pairs that become
candidates for compound terms. The following types of

pairs are considered: (1) a head noun and its left adjec-

tive or noun adjunct, (2) a head noun and the head of its

right adjunct, (3) the main verb of a clause and the head

of its object phrase, and (4) the head of the subject

[assert

[[perf [HAVE]]

[[verb [BE]]

[subject

[np

[n PRESIDENT]

[t_pos THE]

[adj [FORMER]]

[adj [SOVIET]]]]

[object

[np

[n HERO]

[t_pos A]

[adj [LOCAL]]]]

[adv EVER]

[sub_ord

[SINCE

[[verb [INVADE]]

[subject

[np

[n TANK]

[t_pos A]

[adj [RUSSIAN]]]]

[object

[np

[name [WISCONSIN]]]]]]]]]]

Figure 1. Predicate-argument parse structure.

phrase and the main verb. These types of pairs account

for most of the syntactic variants for relating two words

(or simple phrases) into pairs carrying compatible

semantic content. For example, the pair

retrieve+information will be extracted irom any of the

following fragments: information retrieval system;

retrieval of information from databases; and information

that can be retrieved by a user-controlled interactive

search process. In the example at hand, the following

head-modifier pairs are extracted (pairs containing low-

content elements, such as BE and FORIVIER, or names,

such as WISCONSIN, will be later discarded):

PRESIDENT+BE, PRESIDENT+FORMER, PRESIDENT+SOVIET,

BE+HERO, HERO+LOCAL,

TANK+INVADE, TANK+RUSSIAN, INVADE+WISCONSIN

We may note that the three-word phrase former Soviet

president has been broken into two pairs former

president and Soviet president, both of which denote

things that are potentially quite different from what the

original phrase refers to, and this fact may have poten-

tially negative effect on retrieval precision. This is one

place where a longer phrase appears more appropriate.

The representation of this sentence may therefore contain

the following terms (along with their inverted document

frequency weights):
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PRESIDENT 2.623519

SOVIET 5.416102

PRESIDENT+SOVIET 1 1 .556747

PRESIDENT+FORMER 14.594883

HERO 7.896426

HERO+LOCAL 14.314775

INVADE 8.435012

TANK 6.848128

TANK+INVADE 17.402237

TANK+RUSSIAN 16.030809

RUSSIAN 7.383342

WISCONSIN 7.785689

While generating compound terms we took care to iden-

tify 'negative' terms, that is, those whose denotations

have been expHcitly excluded by negation. Even though

matching of negative terms was not used in retrieval (nor

did we use negative weights), we could easily prevent

matching a negative term in a query against its positive

counterpart in the database by removing known negative

terms from queries. As an example consider the follow-

ing fragment from topic 192:

References to the cost of cleanup and number of

people and equipment involved without mentioning

the method are not relevant.

The corresponding compound terms are:

NOT cost cleanup

NOT number equip

NOT number people

Note that while this statement is negated, the negation is

conditioned with the without mentioning ... phrase. Our

NLP module is not able to represent such fine distinc-

tions at this time.

NOMINAL COMPOUNDS
The notorious ambiguity of nominal compounds

remains a serious difficulty in obtaining head-modifier

pairs of highest accuracy. In order to cope with this, the

pair extractor looks at the distribution statistics of the

compound terms to decide whether the association

between any two words (nouns and adjectives) in a noun

phrase is both syntactically valid and semantically

significant. For example, we may accept

language+natural and processing+language from

natural language processing as correct, however,

case+ trading would make a mediocre term when

extracted from insider trading case. On the other hand, it

is important to extract trading+ insider to be able to

match documents containing phrases insider trading

sanctions act or insider trading activity. Phrasal terms

are extracted in two phases. In the first phase, only unam-

biguous head-modifier pairs are generated, while all

structurally ambiguous noun phrases are passed to the

second phase "as is". In the second phase, the distribu-

tional statistics gathered in the first phase are used to

predict the strength of alternative modifier-modified links

within ambiguous phrases. For example, wc may have

multiple unambiguous occurrences of insider trading,

while very few of trading case. At the same time, there

are numerous phrases such as insider trading case,

insider trading legislation, etc., where the pair insider

trading remains stable while the other elements get

changed, and significantly fewer cases where, say, trad-

ing case is constant and the other words change.

The disambiguation procedure is performed after

the first phrase extraction pass in which all unambiguous

pairs (noun-i-noun and noun+adjective) and all ambigu-

ous noun phrases are extracted. Any nominal string con-

sisting of three or more words of which at least two are

nouns is deemed structurally ambiguous. In the Tipster

corpus, about 80% of all ambiguous nominals were of

length 3 (usually 2 nouns and an adjective), 19% were of

length 4, and only 1% were of length 5 or more. The

algorithm proceeds in three steps, as follows:

(1) Assign scores to each of the candidate pairs Xj+Xj

where i>j from the ambiguous noun phrase

jci x„. The score assigned to a candidate pair

is the sum of the scores for each occurrence of

this pair in any compound nominal within the

training corpus. For each occurrence, the score is

maximum when the words x, and Xj are the only

words in the phrase, i.e., we have unambiguous

nominal XjXj, in which case the score is 1. For

longer phrases, for non-adjacent words, and for

pairs anchored at words toward the left of the

compound, the score decreases proportionately.

(2) For each set Xj=(xi+Xj \ for i>j } of candidate

pairs rank alternative pairs by their scores.

(3) Disambiguate by selecting the top choice from

each set such that its score is above an empiri-

cally established global threshold, it is

significantly higher than the second best choice

from the set, and it is not significantly lower than

the scores of pairs selected from other sets X, .

The effectiveness of this algorithm can be meas-

ured in terms of recall (the proportion of all valid

head+modifier pairs extracted from ambiguous nomi-

nals), and precision (the proportion of valid pairs among

those extracted). The evaluation was done on a small

sample of randomly selected phrases, and the algorithm

performance was compared to manually selected correct

pairs. The following numbers were recorded: recall 66%
to 71%; precision 88% to 91%, depending on the size of

the training sample. In terms of the total number of pairs

extracted unambiguously from the parsed text (i.e., those

obtained by the procedure described in the previous sec-

tion), the disambiguation step recovers an additional 10%
to 15% of pairs, all of which were previously thrown out

as unrecoverable. A sample set of ambiguous phrases

and extracted head-i-modifier pairs is shown in Table 1.
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Ambiguous nominal Extracted pairs

oil import fee oil import

import fee

Croatian wartime cabinet Croatian cabinet

wartime cabinet

national enviromental watchdog group national group

enviromental group

watchdog group

current export subsidy program current program

export subsidy

subsidy program

gas operating and maintaining expenses **gas operating

operating expenses

maintaining expenses

Table 1. Ambiguous nominals and extracted pairs.

EXTRACTING PROPER NAMES
Proper names, of people, places, events, organiza-

tions, etc., are often critical in deciding relevance of a

document. Since names are traditionally capitalized in

English text, spotting them is relatively easy, most of the

time. Many names are composed of more than a single

word, in which case all words that make up the name are

capitalized, except for prepositions and such, e.g.. The

United States of America. It is important that all names

recognized in text, including those made up of multiple

words, e.g.. South Africa or Social Security, are

represented as tokens, and not broken into single words,

e.g.. South and Africa, which may turn out io be different

names altogether by themselves. On the other hand, we
need to make sure that variants of the same name are

indeed recognized as such, e.g., U.S. President Bill Clin-

ton and President Clinton, with a degree of confidence.

One simple method, which we use in our system, is to

represent a compound name dually, as a compound token

and as a set of single-word terms. This way, if a

corresponding full name variant cannot be found in a

document, its component words matches can still add to

the document score. A more accurate, but arguably more
expensive method would be to use a substring com-
parison procedure to recognize variants before matching.

In our system names are identified by the parser,

and then represented as strings, e.g., south+africa. The
name recognition procedure is extremely simple, in fact

little more than the scanning of successive words labeled

as proper names by the tagger {np and nps tags). Single-

word names are processed just like ordinary words,

except for the stemming which is not applied to them.

We also made no effort to assign names to categories,

e.g., people, companies, places, etc., a classification

which is useful for certain types of queries (e.g.. To be

relevant a document must identify a specific generic drug

company). A more advanced recognizer is planned for

TREC-4 evaluation. In the TREC-3 database, compound
names make up about 8% of all terms generated. A
small sample of compound names extracted is listed

below:

right+wing+christian+fundamentalism

u.s+constitution

gun+control+legislation

national+railroad+transportation+corporation

superfund+hazardous+waste+cleanup+programme

u.s+govemment

united+states

exxon+valdez

dow_corning+corporation

chairman+julius+d+winer

new+york

wall+street+joumal

mcdonnell+douglas+corp+brad+beaver

soviet+georgia

rebel+leader+savimbi

plo+leader+arafat

suzuki+samurai+soft_top+4wd

honda+civic

richard+j+rosebery

mr+rosebery

intemational+business+machine+corp

cytomegalovirus+retinitis

ids+financial+service+analyst+g+michael+kennedy

senate+judiciary+committee

first+fidelity+bank+n.a+south+jersey

eastem+u.s

federal+national+mortgage+association

canadian+airline+intemational

TERM CORRELATIONS FROM TEXT

Head-modifier pairs form compound terms used in

database indexing. They also serve as occurrence con-

texts for smaller terms, including single-word terms. If

two terms tend to be modified with a number of common
modifiers and otherwise appear in few distinct contexts,

we assign them a similarity coefficient, a real number
between 0 and 1. The similarity is determined by com-
paring distribution characteristics for both terms within

the corpus: how much information content do they carry,

do their information contribution over contexts vary

greatly, are the common contexts in which these terms

occur specific enough? In general we will credit high-

content terms appearing in identical contexts, especially
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if these contexts are not too commonplace.'^

To cluster terms into similarity classes, we used a

(revised) variant of weighted Jaccard's measure

described in (Grefenstette, 1992):

SIM{x\,X2) =

with

YJ^IN{W{{x,att]),W{[y,att\)
alt

'^AX(W{[x,att]),Wi[y,att])

Wax,y]) = GEW(x)*log(f,^y)

G£W(;c) = 1 + X
* log

log(N)

In the above, f^^y stands for absolute frequency of pair

[x,y ], Hy is the frequency of term y, and is the number

of single-word terms. Sample clusters obtained from

approx. 250 MByte (42 million words) subset of WSJ
(years 1990-1992) are given in Table 2.

In order to generate better similarities, we require

that words and Xi appear in at least M distinct com-

mon contexts, where a common context is a couple of

pairs [x^,y] and [x2,}'], or [y,Xx] and !j,JC2] such that they

each occurred at least three times. Thus, banana and Bal-

tic will not be considered for similarity relation on the

basis of their occurrences in the common context of

republic, no matter how frequent, unless there is another

such common context comparably frequent (there wasn't

any in TREC's WSJ database). For smaller or narrow

domain databases M=2 is usually sufficient. For large

databases covering a rather diverse subject matter, like

WSJ, we used M>5? This, however, turned out not to be

sufficient. We would still generate fairly strong similarity

links between terms such as aerospace and pharmaceuti-

cal where 6 and more common contexts were found. In

the example at hand the following common contexts

were located, all occurring at the head (left) position of a

pair (at right are their global entropy weights (GEW) and

frequencies with aerospace and pharmaceutical, respec-

tively):'^

^ It would not be appropriate to predict similarity between

language and logarithm on the basis of their co-occurrence with natur-

al.

' For example banana and Dominican were found to have two

common contexts: republic and plant, although this second occurred in

apparently different senses in Dominican plant and banana plant.

* Other common contexts, such as company or market, have al-

ready been rejected because they were paired with too many different

words (a high dispersion ratio).

CONTEXT GEW hcqlaerospuce hcqlphurmaceutical

firm 0.58 9 22

industry 0,51 84 56

sector U.D 1
C
J Q

concern 0.50 130 115

analyst 0.62 23 8

division 0,53 36 28

giant 0.62 15 12

Note that while some of these weights are quite low (less

than 0.6 — GEW takes values between 0 and 1), thus

indicating a low importance context, the frequencies with

which these contexts occurred with both terms were high

and balanced on both sides (e.g., concern), thus adding to

the strength of association. We are now considering addi-

tional thresholds to bar low importance contexts from

being used in similarity calculation.

It may be worth pointing out that the similarities

are calculated using term co-occurrences in syntactic

rather than in document-size contexts, the latter being the

usual practice in non-linguistic clustering (e.g., Sparck

Jones and Barber, 1971; Crouch, 1988; Lewis and Croft,

1990). Although the two methods of term clustering may
be considered mutually complementary in certain situa-

tions, we believe that more and stronger associations can

be obtained through syntactic-context clustering, given

sufficient amount of data and a reasonably accurate syn-

tactic parser.^

QUERY EXPANSION

Similarity relations are used to expand user queries

with new terms, in an attempt to make the final search

query more comprehensive (adding synonyms) and/or

more pointed (adding specializations).^ It follows that not

all similarity relations will be equally useful in query

expansion, for instance, complementary and antonymous

relations like the one between Australian and Canadian,

accept and reject, or even generalizations like from

aerospace to industry may actually harm system's per-

formance, since we may end up retrieving many

' Non-syntactic contexts cross sentence boundaries with no fuss,

which is helpful with short, succinct documents (such as CACM
abstracts), but less so with longer texts; see also (Grishman et al., 1986).

* Query expansion (in the sense considered here, though not quite

in the same way) has been used in information retrieval research before

(e.g., Sparck Jones and Tait, 1984; Harman, 1988), usually with mixed

results. An alternative is to use term clusters to create new terms, "meta-

terms", and use them to index the database instead (e.g.. Crouch, 1988;

Lewis and Croft, 1990). We found that the query expansion approach

gives the system more flexibility, for instance, by making room for

hypertext-style topic exploration via user feedback.
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irrelevant documents. On the other hand, database search

is likely to miss relevant documents if we overlook the

fact that vice director can also be deputy director, or that

takeover can also be merge, buy-out, or acquisition. We
noted that an average set of similarities generated from a

text corpus contains about as many "good" relations

(synonymy, specialization) as "bad" relations (antonymy,

complementation, generalization), as seen from the query

expansion viewpoint. Therefore any attempt to separate

these two classes and to increase the proportion of

"good" relations should result in improved retrieval. This

has indeed been confirmed in our experiments where a

relatively crude filter has visibly increased retrieval pre-

cision.

In order to create an appropriate filter, we devised

a global term specificity measure (GTS) which is calcu-

lated for each term across all contexts in which it occurs.

The general philosophy here is that a more specific

word/phrase would have a more limited use, i.e., a more

specific term would appear in fewer distinct contexts. In

this respect, GTS is similar to the standard inverted docu-

ment frequency (idf) measure except that term frequency

is measured over syntactic units rather than document

size units. ^ Terms with higher GTS values are generally

considered more specific, but the specificity comparison

is only meaningful for terms which are already known to

be similar. The new function is calculated according to

the following formula:

GTS(merge) =0.00094518

GTS {buy -out) = 0.00272580

GTS (acquire ) = 0.00057906

GTS(w)='

ICiiw) * ICr(w) if both exist

ICr{w) if only ICr{w) exists

ICi{w) otherwise

where (with n^, d^>Q):

/Q(w) = /C([w,_]) =
d.Mw+dw-'^)

IC„iw) = IC{[_,w]) = -

dw{n„+d^-l)

For any two terms wj and W2, and a constant 5 > 1, if

GTS (w 2) d * GTS (w then W2 is considered more

specific than W] . In addition, if 5/M„orm(^i -^^a) = 06,
where 0 is an empirically established threshold, then W2
can be added to the query containing term W] with

weight o.^ For example, the following were obtained

from the WSJ training database:

GTS (takeover) =0.00145576

' We believe that measuring term specificity over document-size

contexts (e.g., Sparck Jones, 1972) may not be appropriate in this case.

In particular, syntax-based contexts allow for processing texts without

any internal document structure.

* For TREC-2 we used a - 0.2; 5 varied between 10 and 100.

with

SIM (takeover, merge ) =0.1 90444

SIM(takeover,buy~out) =0.157410

SIM (takeover, acquire ) = 0. 1 39497

SIM (merge, buy -out) =0.133800

SIM (merge, acquire) =0.263772

SIM(buy-out,acquire) =0.109106

Therefore both takeover and buy-out can be used to spe-

cialize merge or acquire. With this filter, the relation-

ships between takeover and buy-out and between merge

and acquire are either both discarded or accepted as

synonymous. At this time we are unable to tell

synonymous or near synonymous relationships from

those which are primarily complementary, e.g., man and

woman.

Query expansion is an important part of our system, but

it wasn't used in TREC-3, mostly because we were in

process of redesigning it. Following TREC-2 we found

various problems with both the term clustering procedure

as well as with the way the cluster were used to add new
terms to queries. Details of these finding are discussed in

TREC-2 final report.

CREATING AN INDEX

The limited amount of resources that we had avail-

able for indexing forced us to devise a method that splits

the collection randomly and produces several sub-

indexes. This method would allow us now to index even

larger collections in reasonable times. The preliminary

tests that we carried out in order to compare the perfor-

mance of systems where the collection is split into N
sub-indexes, for different values of N, suggest that a col-

lection can be split into at least 7 sub-indexes without

seeing any degradation in the performance. Given the

results that we obtained from such tests as well as the

fact that the tests were carried out using relatively small

collections (about 150 Megabytes) we intend to perform

more extensive testing as soon as possible.

One of the problems we had to face for TREC-1
and TREC-2 was that we did not have enough real

memory to index the complete collection (category A) in

a reasonable time . Even indexing only the collection for

category B (550 megabytes for the ad-hoc experiments)

used to take 2 weeks, or about 330 hours. This was more

slow than the times that could be obtained by other ver-

sions of the PRISE system that were already available by

that time. We used a slower version because we did not

have then enough main memory to use the faster one.

The faster version grows the word frequency tree in main
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word cluster

takeover merge, buy-out, acquire, bid

benefit compensate, aid, expense

capital cash, fund, money

staff personnel, employee, force

attract lure, draw, woo

sensitive crucial, difficult, critical

speculate rumor, uncertainty, tension

president director, executive, chairman

vice deputy

outlook forecast, prospect, trend

law rule, policy, legislate, bill

earnings profit, revenue, income

portfolio asset, invest, loan

inflate growth, demand, earnings

industry business, company, market

growth increase, rise, gain

firm bank, concern, group, unit

environ climate, condition, situation

debt loan, secure, bond

lawyer attorney

counsel attorney, administrator, secretary

compute machine, software, equipment

competitor rival, competition, buyer

alliance partnership, venture, consortium

big large, major, huge, significant

fight battle, attack, war, challenge

base facile, source, reserve, support

shareholder creditor, customer, client

investor, stockholder

Table 2. Selected clusters obtained from syntactic contexts, derived

from approx. 40 million words of WSJ text, with weighted Tanimoto

formula.

memory, and it is the physical memory that matters here,

not the virtual memory, since a tree larger than the size

of the real memory causes so many page faults that per-

formance becomes unacceptably slow.

The version of the PRISE system that we used for

TREC-3 is much faster than previous versions. Accord-

ing to the on-line documentation provided by NIST the

old system would take about 67 hours to index 276

Megabytes of WSJ material while the new system takes

less than 2 hours to index the same material. Still, we
did not have enough main memory to use the new system

to index the complete collection. Our solution to this

problem was to split the collection into N sets of almost

equal number of documents and create a separate sub-

index for each set. In order to keep the N sub-indexes

balanced with respect to each other (so that the term idfs

are comparable across sub-indexes, for example) we split

the collection randomly into N sets. This is done by

assigning each document to one of the N sets selected at

random. Our goal was to build N sets that would be as

homogeneous as possible. At retrieval time the same

query is submitted to each one of the sub-indexes and a

separate list of ranked documents is obtained for each

index. Since we expect idfs to be comparable across

sub-indexes, it makes sense to compare the scores of

documents belonging to different sub-indexes. The
result of the query is then the set of documents with the

highest scores chosen from the union of all lists of

ranked documents.

In order to evaluate this technique we ran a series

of experiments involving about 50000 records. We split

that collection into N sets for several values of N (from 1

to 7) and made some measurements of parameters that

we expected to be indicators of the degree of homo-

geneity (e.g., standard deviation of the total number of

terms per index, standard deviation of the maximum idf,

standard deviation of the number of unique terms, and

others). As expected, these indicators showed a decreas-

ing level of homogeneity as N grows larger. This infor-

mation is summarized in Table 3.

For each value of N, we evaluated the performance

of the system using a series of queries for which NIST
had provided relevance judgments. For the weighting

scheme we were using, and the small collection used for

these preliminary experiments, we observed that the per-

formance actually peaks at N = 4 (the average precision

when N was 4 was about 7% better than when N was 1).

We thought that these results were promising enough to

justify the use of the technique described in order to

index the complete collection but we intend to perform a

much more careful and complete series of experiments as

soon as the time and the resources are available. Table 4

summarizes the system's performance at various levels

of index split with a subset of AP subcollection.
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No. of Max-Mem Max-idf Uniq.terms Uniq.terms Index Postings Diet. Max-idf Records Uniq.terms

indexes MB %std Mean %std No. MB MB

1 81.9 0.000 921253 0.000 1 128.82 72.91 18.509 186557 2928737

2 61.2 0.424 600869 1.006 2 129.34 72.26 18.492 184460 2909249

3 54.7 0.902 438992 11.678 3 128.99 72.82 18.499 185297 2931791

4 48.2 0.555 373249 3.095 4 128.27 71.26 18.498 185114 2874007

5 46.0 0.986 314986 6.356

6

7

44.1

46.8

1.080

2.432

279261

247606

7.318

16.475

Table 5. Statistics of the 4-way split index created for ad-hoc

database from Tipster Disks 1 and 2 (about 2 GBytes).

Table 3. Statistics of index splitting performed on a subset of

Tipster AP88 subcoUection consisting of 48,770 records (about 230

MBytes).

No. of Avg Prec R-Prec Recall

indexes %change %change %change

1 0.00 0.00 0.00

2 -1-4.04 + 1.85 + 1.11

3 -f-4.63 +0.72 +0.81

4 +7.04 +4.53 +2.59

5 + 1.68 +4.08 +3.92

6 +5.68 +2.75 +4.29

7 +4.18 +4.45 +4.36

Table 4. Performance statistics for split index performed on a subset of

Tipster AP88 subcoUection consisting of 48,770 records (about 230

MBytes).

For TREC-3 we used 4 sub-indexes for the ad-hoc

experiments (2200 Megabytes) and 2 for the routing part

(1100 Megabytes). We chose these numbers because, in

each case, it was the smallest number of sub-indexes that

we could handle given our resources. A nice side-effect

of this technique is that each index can be created in

parallel on a different machine, making the total time

required even shorter. The parameters of the 4-way split

used in indexing the TREC-3 ad-hoc database are listed

in Table 5.

TERM WEIGHTING ISSUES

Finding a proper term weighting scheme is critical

in term-based retrieval since the rank of a document is

determined by the weights of the terms it shares with the

query. One popular term weighting scheme, known as

tf.idf, weights terms proportionately to their inverted

document frequency scores and to their in-document

frequencies (tf). The in-document frequency factor is

usually normalized by the document length, that is, it is

more significant for a term to occur 5 times in a short

20-word document, than to occur 10 times in a 1000-

word article.^

In our official TREC runs we used the normalized

tf.idf weights for all terms alike: single 'ordinary-word'

terms, proper names, as well as phrasal terms consisting

of 2 or more words. Whenever phrases were included in

the term set of a document, the length of this document

was increased accordingly. This had the effect of

decreasing tf factors for 'regular' single word terms.

A standard tf.idf weighting scheme (and we
suspect any other uniform scheme based on frequencies)

is inappropriate for mixed term sets (ordinary concepts,

proper names, phrases) because:

(1) It favors terms that occur fairly frequently in a

document, which supports only general-type

queries (e.g., "all you know about 'star wars'").

Such queries are not typical in TREC.

(2) It attaches low weights to infrequent, highly

specific terms, such as names and phrases, whose

only occurrences in a document often decide of

relevance. Note that such terms cannot be reli-

ably distinguished using their distribution in the

database as the sole factor, and therefore syntac-

tic and lexical information is required.

(3) It does not address the problem of inter-term

dependencies arising when phrasal terms and

their component single-word terms are all

included in a document representation, i.e.,

launch^satellite and satellite are not indepen-

dent, and it is unclear whether they should be

counted as two terms.

' This is not always true, for example when all occurrences of a

term are concentrated in a single section or a paragraph rather than

spread around the article. See the following section for more discussion.

48



In our post-TREC-2 experiments we considered

(1) and (2) only. We changed the weighting scheme so

that the phrases (but not the names which we did not dis-

tinguish in TREC-2) were more heavily weighted by

their idf scores while the in-document frequency scores

were replaced by logarithms multiplied by sufficiently

large constants. In addition, the top N highest-idf match-

ing terms (simple or compound) were counted more

toward the document score than the remaining terms.

This 'hot-spot' retrieval option is discussed in the next

section.

Schematically, these new weights for phrasal and

highly specific terms are obtained using the following

formula, while weights for most of the single-word terms

remain unchanged:

weight {T{)={C, Hog {tf)+C2 *a{N,i)ridf

In the above, a(N,i) is 1 for / <A^ and is 0 otherwise. The

selection of a weighting formula was partly constrained

by the fact that document-length-normalized tf weights

were precomputed at the indexing stage and could not be

altered without re-indexing of the entire database. The

intuitive interpretation of the a{NJ) factor is given in the

following section.

The table below illustrates the problem of weight-

ing phrasal terms using topic 101 and a relevant docu-

ment (WSJ870226-0091).

Topic 101 matches WSJ870226-0091

duplicate terms not shown

TERM TF.IDF NEW WEIGHT

sdi 1750 1750

eris 3175 3175

star 1072 1072

wars 1670 1670

laser 1456 1456

weapon 1639 1639

missile 872 872

space+base 2641 2105

interceptor 2075 2075

exoatmospheric 1879 3480

system+defense 2846 2219

reentry+vehicle 1879 3480

initiative+defense 1646 2032

system+interceptor 2526 3118

DOC RANK 30 10

Changing the weighting scheme for compound terms,

along with other minor improvements (such as expanding

the stopword list for topics, or correcting a few parsing

bugs) has lead to the overall increase of precision of

nearly 20% over our official TREC-2 ad-hoc results. This

weighting scheme was again used in TREC-3 runs.

'HOT SPOT' RETRIEVAL

Another difficulty with frequency-based term

weighting arises when a long document needs to be

retrieved on the basis of a few short relevant passages. If

the bulk of the document is not directly relevant to the

query, then there is a strong possibility that the document

will score low in the final ranking, despite some strongly

relevant material in it. This problem can be dealt with by

subdividing long documents at paragraph breaks, or into

approximately equal length fragments and indexing the

database with respect to these (e.g., Kwok 1993). While

such approaches are effective, they also tend to be costly

because of increased index size and more complicated

access methods.

Efficiency considerations has led us to investigate

an alternative approach to the hot spot retrieval which

would not require re-indexing of the existing database or

any changes in document access. In our approach, the

maximum number of terms on which a query is permitted

to match a document is limited to N highest weight

terms, where N can be the same for all queries of may
vary from one query to another. Note that this is not the

same as simply taking the N top terms from each query.

Rather, for each document for which there are M match-

ing terms with the query, only min(M,N) of them,

namely those which have highest weights, will be con-

sidered when computing the document score. Moreover,

only the global importance weights for terms are con-

sidered (such as idf), while local in-document frequency

(eg., tf) is suppressed by either taking a log or replacing

it with a constant. The effect of this 'hot spot' retrieval is

shown below in the ranking of relevant documents within

the top 1000 retrieved documents for topic 65:

Log{ tf). idf retrieval

DOCUMENT ID RANK SCORE

WSJ870304-0091 4 12228

WSJ891017-0156 7 9771

WSJ920226-0034 14 8921

WSJ870429-0078 26 7570

WSJ870205-0078 33 6972

WSJ8807 12-0033 34 6834

WSJ9201 16-0002 37 6580

WSJ9 10328-001

3

74 4872

WSJ910830-0140 80 4701

WSJ890804-0138 102 4134

WSJ9 11212-0022 104 4065

WSJ870825-0026 113 3922

WSJ880712-0023 135 3654

WSJ871202-0145 153 3519
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Hot-spot idf-dominated with N=20

DOCUMENT ID RANK SCORE

WSJ920226-0034 1 1 1955

WSJ870304-0091 3 11565

WSJ870429-0078 5 9997

WSJ9201 16-0002 7 9997

WSJ910830-0140 11 8792

WSJ870205-0078 20 8402

WSJ910328-0013 29 8402

WSJ8807 12-0033 71 6834

WSJ880712-0023 72 6834

WSJ891017-0156 87 6834

WSJ890804-0138 92 6834

WSJ91 1212-0022 111 6834

WSJ871202-0145 124 6834

The final ranking is obtained by merging the two

rankings by score. While some of the recall may be

sacrificed ('hot spot' retrieval has, understandably, lower

recall than full query retrieval, and this becomes the

lower bound on recall for the combined ranking) the

combined ranking precision has been consistently better

than in either of the original rankings: an average

improvement is 10-12% above the tf.idf run precision

(which is often stronger of the two). The 'hot spot'

weighting is represented with the a factor in the term

weighting formula given in the previous section.

SUMMARY OF RESULTS

We have processed the total of 3334 MBytes of

text during TREC-3. The first 2162 MBytes were data

from the Tipster/TREC disks 1 and 2 of which 550

Mbytes (Wall Street Journal subcollection) were previ-

ously processed for TREC-2; however, even this portion

had to be partially reprocessed. The entire process (tag-

ging, parsing, phrase and name extraction) took about 45

minutes per Megabyte, or just over 2 months on a Sun's

SparcStations 10 (at times using an additional Sparc-2).

Building a 4-way split index took about 0.6 minutes per

Megabyte, or about 21 hours on the Sparc 10. The final

index size, including postings files and term dictionaries

was 804 MBytes, and included approximately 2.9 million

unique terms in each sub-index (that's single-word terms,

syntactic word pairs and compound names) or nearly 16

(unique) terms per document.

The remaining 1 172 MBytes were documents from

the Tipster/TREC disk 3 of which about 300 Mbytes of

San Jose Mercury articles were previously processed for

TREC-2. This portion of the corpus was used to create

the routing database. Natural language processing of this

part required about 4 weeks on SparcStation 10, and

about 10 hours of indexing time. The final size of the

index was 428 MBytes, split into 2 sub-indexes of about

214 MBytes each. Each sub-index contained about 3.2

million unique terms, or more than 19 unique terms per

record.

Note that in both cases the index size was at 37%
of the initial size of the corpus. Given that the natural

language processing has added an average 30% to the

size of the input (i.e., for each Megabyte of text we
obtained about 1.3 Megabytes of terms), the indexer

compression ratio was actually 29%.'°

Two types of retrieval have been done: (1) new
topics 151-200 were run in the ad-hoc mode against the

Disk-1&2 database, and (2) topics 101-150, previously

used in TREC-2, were run in the routing mode against

the Disk-3 database. In each category 2 official runs were

performed, all fully automatic, with different set up of

system's parameters. These runs were labeled nyuirl and

nyuirl. The second run in the routing category includes

an experimental use an automatic feedback program

which uses the known relevance judgements for topics

101-150 with respect TREC-2 database, to automatically

expand the search queries. Summary statistics for these

runs are shown in Tables 6 and 7. We note that there is a

significant (20%) improvement in precision, as well as a

visible increase in recall over the base statistical run

when phrasal terms are used. The increase is smaller for

routing runs because the routing queries already con-

tained manually prepared concepts fields {<con>). We
also note the robust improvement of routing results when
massive query expansion is performed based on the

known relevance judgements for these queries with

respect to the training database.

An example ad-hoc topic is shown below:

<top>

<num> Number: 189

<title> Topic: Real Motives for Murder

<desc> Description:

Document must identify a murderer's motive for killing a

person or persons in a true case.

<narr> Narrative:

Most relevant would be a description of an intentional

murder with a statement of the murderer's motive. An

unintentional murder, such as in a charge of second-degree

homicide, would be relevant if a motive is stated for an

action which clearly led to the victim's death.

</top>

This may be somewhat misleading, since many of the com-
pound terms added by NLP were singletons which take little index

space. The unprocessed text compression ratio may in fact be closer to

37%.
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The reader familiar with previous TREC evaluations may
notice that this query lacks the manually derived <con>

field which listed important concepts relevant to the

topic, some of which had not even occurred in the actual

query. Performance comparison in database search per-

formed during TREC-2 showed that search queries built

from the concepts fields outperformed the queries based

on narrative sections of the topics by as much as 25% to

30% in precision and up to 10% in recall. Nonetheless, it

was felt that the results obtained with the use of the

<con> field in the queries did not reflect accurately the

capabilities of automatic IR systems in dealing with

unprocessed input, therefore the field was dropped in

TREC-3.

The table below shows the search query obtained

from Topic 189 above with respect to one of the 4 sub-

indexes making up the ad-hoc database. Note that the

terms extracted from <desc> field are weighted doubly.

Query 189

term motive+murder idf = 18.509256 weight = 2

term motive+murder idf = 18.509256 weight

term murder+intentional idf = 18.509256 weight

term state+motive idf = 17.509256 weight

term death+victim idf = 15.509257 weight

term motive+real idf = 15.509257 weight

term motive+real idf = 15.509257 weight

term charge+homicide idf = 14.339332 weight

term unintentional idf = 12.727898 weight

term kill+person idf = 12.033524 weight

term kill+person idf = 12.033524 weight

term second+degree idf = 11.299804 weight

term homicide idf = 10,531977 weight

term intentional idf = 9.724622 weight

term motive idf = 8.484118 weight

term motive idf = 8.484118 weight

term motive idfr: 8.484118 weight

term murder idf = 7.294331 weight

term murder idf = 7.294331 weight

term murder idf = 7.294331 weight

term murder idf = 7.294331 weight

term victim idf = 6.775394 weight

term true idf = 6.400079 weight

term degree idf = 5.974225 weight

term death idf== 5.846589 weight

Note that many 'function' words have been removed

from the query, e.g., must, identify, as well as other

'common words' such as document and relevant (this is

in addition to our regular list of 'stopwords'). Some still

remain, however, e.g., true and degree, because these

could not be uniformly considered as 'common' across

all queries.

Run base nyuirl nyuir2

Name ad-hoc ad-hoc ad-hoc

Queries 50 50 50

Tot number of docs over all queries

Ret 50000 50000 50000

Rel 9805 9805 9805

RelRet 5398 5978 5978

%chg +11.0 +11.0

Recall

0.00 0.6710 0.7653 0.7639

0.10 0.4444 0.5420 0.5429

0.20 0.3784 0.4465 0.4523

0.30 0.3298 0.3763 0.3814

0.40 0.2821 0.3271 0.3281

0.50 0.2274 0.2608 0.2613

0.60 0.1684 0.2031 0.2033

0.70 0.1112 0.1522 0.1519

0.80 0.0699 0.0990 0.0989

0.90 0.0147 0.0339 0.0332

1.00 0.0000 0.0029 0.0029

Average precision over all rel docs

Avg 0.2271 0.2722 0.2735

%chg +20.0 +20.0

Precision at

5 docs 0.5160 0.5960 0.5880

10 docs 0.4680 0.5480 0.5580

1 5 docs 0.4427 0.5280 0.5253

20 docs 0.4280 0.5060 0.5070

30 docs 0.4113 0.4793 0.4827

100 docs 0.3138 0.3650 0.3644

200 docs 0.2489 0.2902 0.2907

500 docs 0.1623 0.1832 0.1832

1000 docs 0.1080 0.1196 0.1196

R-Precision (after RelRet)

Exact 0.2807 0.3232 0.3231

%chg +15.0 +15.0

Table 6. Automatic ad-hoc run statistics for queries 151-200 against

Tipster Disks- 1&2 database: (1) base - statistical terms only; (2) nyuirl

- using syntactic phrases, names, and the new weighting scheme; (3)

nyuirl - same as 2 but different parameters on the weighting scheme.
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Run base nyuirl nyuir2 nyuir2a

Name routing routing routing routing

Queries 50 50 50 50

Tot number of docs over all queries

Ret 50000 50000 50000 5000

Rel 9353 9353 9353 9353

RelRet 6011 6350 7203 7345

%chg +5.6 + 19,8 +21.2

Recall (interp) Precision Averages

0.00 0.7551 0,7401 0,7711 0.7881

0.10 0.4871 0.5003 0.5957 0.6243

0.20 0.4059 0,4255 0.4857 0.5117

0.30 0.3482 0.3719 0.4337 0.4492

0.40 0.2952 0.3330 0,3758 0.4005

0.50 0,2557 0.2723 0.3321 0,3531

0.60 0.2116 0,2327 0.2762 0.2922

0.70 0.1582 0,1765 0,2213 0.2411

0.80 0.0953 0,1094 0,1480 0.1541

0.90 0.0651 0.0691 0,0816 0.0918

1.00 0.0048 0.0077 0.0069 0.0117

Average precision over all rel docs

Avg 0.2578 0,2743 0,3244 0.3422

%chg +6.4 +25,8 +32.7

Precision at

5 docs 0.5080 0.5280 0,6000 0,6080

10 docs 0.4520 0.4800 0,5560 0,5760

1 5 docs 0,4533 0.4600 0.5333 0.5560

20 docs 0.4410 0,4390 0,5200 0.5370

30 docs 0,4273 0,4273 0.4940 0.5133

100 docs 0.3418 0.3584 0,4098 0,4270

200 docs 0,2838 0.3063 0.3380 0.3484

500 docs 0,1874 0,2008 0.2260 0.2310

1000 docs 0,1202 0.1270 0.1441 0,1469

R-Precision (after Rel)

Exact 0.3062 0.3135 0.3510 0,3635

%chg +2,4 + 14.6 + 18,7

Table 7. Automatic routing run statistics for queries 101-150 against

Tipster Disk-3 database: (1) base - statistical terms only; (2) nyuirl -

using syntactic phrases, names, and the new weighting scheme; (3)

nyuirl - same as 2 with the automatic relevance feedback, but some

queries not fully expanded due to an error; (4) nyuiria - nyuir2 rerun

after TREC-3 with full feedback.

CONCLUSIONS

We presented in some detail our natural language

information retrieval system consisting of an advanced

NLP module and a 'pure' statistical core engine. While

many problems remain to be resolved, including the

question of adequacy of term-based representation of

document content, we attempted to demonstrate that the

architecture described here is nonetheless viable. In par-

ticular, we demonstrated that natural language processing

can now be done on a fairly large scale and that its speed

and robustness has improved to the point where it can be

applied to real IR problems. We suggest, with some cau-

tion until more experiments are run, that natural language

processing can be very effective in creating appropriate

search queries out of user's initial specifications which

can be frequendy imprecise or vague.

At the same time it is important to keep in mind

that the NLP techniques that meet our performance

requirements (or at least are believed to be approaching

these requirements) are still fairly unsophisticated in

their ability to handle natural language text. In particular,

advanced processing involving conceptual structuring,

logical forms, etc., is still beyond reach, computationally.

It may be assumed that these advanced techniques will

prove even more effective, since they address the prob-

lem of representation-level limits; however the experi-

mental evidence is sparse and necessarily limited to

rather small scale tests.
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Abstract: This paper describes an approach to

information retrieval based on a syntactic

analysis of the document texts and user queries,

andfrom that analysis, the construction of tree

structures (TSAs) to encode and capture

language ambiguities. TSAs are constructed at

the clause level and thus each document can

yield many TSAs and each query may be

represented by several TSAs. The TSAs from

documents and from queries are then matched

and their degrees of overlap between individual

TSAs are computed and then aggregated to yield

a scorefor each document, which is then used in

ranking the collection. This paper presents the

system description when benchmarking our

retrieval strategy on category B of TREC-3 , i.e.

on C.550 Mbytes of the Wall Street Journal

newspaper texts. The implementation is based

on a two-stage retrieval where a statistically

-

based pre-fetch retrieval retrieves the set of WSJ
articles for the more computationally expensive

language based processing. The results of our

retrieval system in terms ofprecision and recall

are disappointing and an analysis of why is also

included. Part of this analysis includes a direct

comparison between our system and some

mainstream IR approaches. In addition to

performing ad hoc retrieval on texts in English,

we have also performed ad hoc retrieval on texts

in Spanish using a weighted trigram approach,

and this is outlined and performance results

given in an appendix.

1. Introduction and Motivation

Since 1989 the IR group at Dublin City

University has been working on a method to

index and retrieve texts based on a domain-

independent syntactically-based language

analysis. Om- thesis has been that the meaning or

content of a segment of natural language (query

or docimient) can be at least partly represented

by the words used, combined with the structures

underlying the syntax used in the language.

While it is true that syntax and syntactic

structure does not always imply content, and it is

equally true to say that there will be many

instances of syntactic ambiguity after a syntactic

analysis to make imcertain what true content is,

our research has tried to address the question of

whether there is enough content indication from

syntax to overcome these obvious drawbacks to

our approach.

In recent years, several other researchers have

tried to use syntactic level analysis in the

indexing and retrieval of texts. One approach

taken has been to use syntactic structure and

syntactic relationships between words to derive

normalised phrases as indexing terms. Examples

of this approach are the CLARIT work (Evans et

al, 1993) and earlier work of Pagan (Pagan,

1987). Syntax has also been used to identify

head-modifier relationships between words

(Salton et al, 1990) or to identify dependent word

pairs (Strzalkowski and Carbello, 1993). In all

these cases, syntactic ambiguity occurring in

language is either ignored or normalised. An
alternative to this has been to incorporate

syntactic ambiguities into the indexing and
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retrieval operations and to use alternative

interpretations of content, as indicated by

syntactic structure, during retrieval. Alternative

syntactic interpretations of language are usually

best encoded in some kind of structured

representation. The TINA project at Siemens,

Miinich (Schwarz, 1990) and the COP project at

Pittsbiu-gh (Metzler and Haas, 1989) are two

such examples.

In published experimental evaluations of the

effectiveness of document retrieval when using

syntax in the ways mentioned above, the first

approach, deriving normalised representations,

has been the most successful. In fact large-scale

evaluations of approaches which encode syntactic

ambiguities have been non-existent to date. In

our previously published work we have used

syntactic analysis to build structures into which

we have encoded syntactic ambiguities. These

TSAs have been evaluated in phrase to phrase

matching and the results we have obtained show

promise for future work (Sheridan and Smeaton,

1992). Since then we have scaled phrase-phrase

matching up to query-document matching and

here we present our first results.

The remainder of this paper is organised as

follows. In the next section we briefly outline the

language analyser we have used in our work.

Following that we present the structures we
derive from syntax, known as TSAs and we
describe how they are matched individually and

how these matches are combined to compute

document scores. In section 4 we describe our

approach to implementing a document retrieval

algorithm on the WSJ database. Section 5

presents the official TREC-3 results we obtained.

As part of the analysis of these results we re-ran

our retrieval strategy on 3 other document

rankings obtained from 3 mainline ER research

systems and these comparative restilts are also

included here. Section 6 presents some general

comments about the vahdity of our approach to

document indexing and retrieval. Finally, in

addition to performing retrieval on the WSJ we
have also performed retrieval on Spanish texts

and the approach we have taken here is outlined

in an appendix.

2, ENGCG Analysis

The language analyser used in our work was

developed at the Research Unit for

Computational Linguistics at the University of

Helsinki as part of the CEC-fimded SIMPR
project (1989-1992). It is known as ENGCG
and it performs a domain-independent

morphosyntactic analysis or tagging of running

EngUsh text. It has a two-level lexicon and it

based upon a constraint grammar.

ENGCG works in 5 stages as foUows. The first

stage is the assignment of clause and sentence

boundaries. This is followed by lexical and

morphological analysis where each word is

decomposed into all its possible morphological

base forms, suffixes and prefixes. The lexicon

has c.65,000 entries which recognise over

300,000 word forms. The lexicon also contains

about 600 collocations or multi-word terms. As

a result of this analysis, many words will have

more than one tag so the next stage is a context-

sensitive disambiguation to discard all and only

the contextually illegitimate morphological

readings. This is done using a constraint

grammar with c. 1 , 100 rules. In the next stage of

the analysis, all possible syntactic functions are

assigned to each word token and these tokens

describe how a word affects and is affected by

other words around it. These syntactic function

labels are preceded by a '@' character and

modifiers are denoted by a '>' or '<' depending on

the direction of the modification. For example,

the label '@AN>' indicates that the current word

is an adjective (A) modifying a noun (N)

somewhere to its right (>). In the final stage of

the analysis, the syntactic function labels are

disambiguated as much as possible by removing

all and only the contexmaUy illegal readings,

according to a second constraint grammar of

C.300 rules.

In the version we used here, 3% to 6% of words

in general texts would be assigned more than one
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tag after analysis but the WSJ texts contain many

proper nouns so perhaps this figure may be

higher for this data. By default a word not in the

lexicon is treated as a proper noun. There are 32

possible function labels in the analysis output

which we group into 6 categories namely heads,

modifiers, verbs, adverbs, adjective and

stopwords. Examples of stopwords would be

determiners, auxiliaries, conjunctions,

quantifiers, negation, etc.

In order to give some sense of the output of the

ENGCG analyser, a sample of 1 Mbyte of WSJ
text was analysed. This consisted of 153,198

words or 19,423 clauses, which were assigned an

average of 1.138 syntactic labels per word. The

occurrence of labels per category is given at the

end of this paper and illustrates the kind of

distribution to be expected.

Category Freq. % Freq

Modifier 47,098 27.0

Stopword 34,915 20.0

Head 37,590 21.6

Adverb 22,712 13.0

Adjective 9.731 5.6

Verb 22.331 12.8

Total 174,377 100.0

Table 2.1 Distribution of Label Occurrences in

sample 1 Mbytes WSJ text

Further analysis of this sample text was then

performed to determine which types of ambiguity

are actually identified in the ENGCG output.

We computed the occurrences of words assigned

labels from more than one of our 6 categories and

found that in the sample of 153,198 words, 7,344

are identified as either a modifier or a head, or

put another way, of the 37,590 head category

labels assigned, nearly 20% can also be

modifiers. Analysis showed that this is due to the

subject or object of a sentence also acting as a

prepositional compliment. Of the 22,712

adverbs, 6,153 (27%) can also be modifiers

which is due to occurrences of phrasal verbs.

In terms of syntactic rather than lexical

ambiguities, we counted the number of instances

of prepositional phrase attachment ambiguities

and found that among the 19,423 clauses there

were 4,569 instances. We also looked for

ambiguity in complex noun phrases containing a

conjunction whose role is ambiguous, i.e.

conjoining modifiers or heads ("bearing cups and

cones" being @NN> @OBJ @CC @OBJ) and

we could find only 806 such occurrences, a

surprisingly small figiu^e. Even more surprising

was the only 180 instances of conjunction among

modifiers where the first modifier could also be a

head ("hub and bearing components" being

{@NN>,@OBJ} @CC @NN> @OBJ).

An example analysis of some rtmning text, taken

from WSJ870324-001 is given here for the

sentence "Industry sources put the value of the

proposed acquisition at more than 100 million.":

Industry [industry] @NN>
sources [source] @subj

put [put] @+FMAINV
the [the] @DN>
vahie [value] @OBJ
of [of] @<NOM-OF
the [the] @DN>
proposed [propose] @AN>
acquisition [acquisition] @<P
at [at] @NOM @ADV
more=than [more=than] @AD-A>
100 [100] @qn>
million [million] @<P

The example above shows, for each word in the

input sentence, the base form in [] brackets and

the syntactic label(s) assigned. The full ENGCG
analysis also includes much morphological

information on each word which is not shown

above. We can also see multi-word lexical

entries (more=than) and syntactic ambiguity in

this sample.

One of the things which hindered our work was

the processing speed of the parser we used which

is an early deUverable from the SIMPR project

and which runs at 8 to 10 words per second.
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Lingsoft Inc have developed the speed but not the

performance of this parser and taken it to market

with a claimed processing speed of 500 words

per second on a SUN SparcStation 10 model 30.

The version we have is misupported and we had

no funds to upgrade or buy in support. In

addition to speed, we also found some other

problems with the analyser like the fact that it

cannot handle calendar expressions as it does not

use a calendar expression subgrammar, a plural

noun cannot be a noun premodifier (industrial

relations coimcil ?), many ellipses are missed, an

adjective cannot be a prepositional compliment

(the bartender in my father's local ?), conjoined

premodifier separated by commas are not

correctly assigned. These kind of aberrations

would be eliminated in the more recent version of

the parser.

3. TSA Construction and Matching

In our original paper desaibing our TSAs
(Sheridan and Smeaton, 1992) we generated one

TSA per clause. These TSAs were quite

complex in structure and hence in manipulations

on them. We have since decided to reduce the

complexity of TSA sti'uctures in the light of our

findings re fi"equency of occurrence of different

types of ambiguity. In the present format, each

clause generates a hst where each item in the list

is either a verb, adverb, adjective, stopword or

TSA for a noun phrase. For example, the Ml
representation for the sentence given earlier is

shown below and the representation for an entire

docmnent text would be a set of such lists, one

per sentence.

In computing a score between a docimient and a

query there are a large number of factors to be

accounted for. Given that a document will be

represented by a set of lists, one list per clause,

and elements of these lists will be tree-structures,

we must consider scoring a query-document

match at the following levels:

Leaf node level, covering matched base

forms, matching between identical or

related syntactic function labels

Structural level, covering scores for

inexact matches caused by ambiguities

and combining node scores into one

overall TSA score for clause matches,

possibly normalising to account for

clause length

Document level, addressing how clause

TSA scores are combined to produce

docimient scores, possibly normalising

by clause count.

We have made many experimental runs using

TREC-2 queries and relevance assessments and

the algorithm described here has been found to

give best performance, though tho-e is no

guarantee it is optimal.

Overall, the document scoring algorithm works

by matching each document TSA against each

query TSA and adding the score for the best

match to a nmning total. The next document

TSA is then matched against all query TSAs and

the score for the best-matched is added to the

total and so on until all document TSAs have

been processed. This approach presupposes that

fragments of information content as represented

in clauses, can be repeated in docimient texts but

not in queries. In TREC queries a sub-topic of

information need can be repeated within different

fields of the query. For example in topic 101 the

description field asks for "... configuration,

components and technology of the U.S.'s 'star

wars' anti-missile defense system" while the

narrative field asks for "... design and

technology to be used in the anti-missile defense

system advocated by also known as 'star

wars.'". Effectively this same sub-topic is

repeated in the narrative field but in a more

descriptive manner. Our assumption is that

where a sub-topic or clause appears in a

document text it should be matched against one

sub-topic of the query, the one it scores highest

against. In aggregating TSA scores for a

document we are thus treating TSAs as atomic
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units but we have no notion of re-occiurence of

TSAs in queries as tliey are too short. The same

topic or TSA representation of that topic can re-

occur and be re-scored where it occurs in a

document text, where there are on average

approximately 60 TSAs. The total score for the

document is then normalised by dividing by the

number of clauses (hence TSAs) in the

docimient.

Computing the TSA score between two clauses is

rather compUcated and we will illustrate part of

its operation by working through a match

between a query clause "lexical analysis within

IR" and a docimient clause "effective IR

systems which involve lexical and syntactic

analysis of text". The TSAs for these are given

in Appendix B at the end of the paper, in an

abbreviated form. The leaf nodes also hold

morphological information on words and the

numbers in parentheses beside each word are

labels to illustrate the sequence of the matching

algorithm. Asterisk nodes illustrate a

modification relationship with left child

modifying right.

The TSA match starts with node 1 of the query

and we find this is a modification relationship so

we descend to node 3 and search the document

TSA for a base form match which we find at

node 12. We now compute a word-word match

between these nodes. The document frequency of

the baseform analysis is 3136 documents so its

IDF weight is 2.713 and this is further weighted

by a factor of 8 giving 21.9. This factoring

comes from a set of rules determining that an

adverb (@0-ADVL) and an object (@OBJ) are

both significant labels in their respective clauses.

The full set of such rules and weights comes

from research for the TSA phrase to phrase

matching.

We then return to query node 1 and descend to its

left child, node 2 whose baseform is matched

against node 10 in the document. The baseform

frequency of the word lexical in WSJ texts is

only 3 documents, so the IDF weight is 5.762,

again weighted by a factor of 8 giving a word-

word score of 46. 1 as both are playing the same

role (modifiers) within their respective clauses.

The common ancestors of the matching nodes in

respective TSAs are * (node 1) for the query and

* (node 8) for the document, indicating both have

the same modification relationships but in the

residual structure between nodes 10 and 12 of the

text TSA we find a conjunction among modifiers

which is an indicator of ambiguity so the

cumulative score to date (21.9-1-46.1=68.0) is

further incremented by a bonus of only 5 (again

from another rule set).

Moving on to query node 4 we find it has a right

leaf child (5) and we search for ir in the

document TSA and find it matches node 4. Its

document frequency is 4 and its IDF weight is

again multiphed by a factor of 8, the factor

assigned to a match between a prepositional

comphment (@<P, effectively the head of a

prepositional phrase) and a premodifying

adjective (@AN>) giving an additional weight of

45.1. The query term within does not occur in

the document TSA so there is no conuibution to

the score there. Possible reductions in the overall

degree of match caused by syntactic ambiguity

due to propositional phrase attachment or

ambiguities due to conjunctions in complex noun

phrases, for example, would then be applied but

they do not affect the occurrences in the present

document TSA.

Finally, in addition to normalising query-

document TSA scores by a within-document

TSA count as described earlier, we also

normalise TSA-TSA scores by dividing the

word-word and syntactic structure scores by the

number of nodes in the query TSA, 5 in this case,

giving a final score of 23.6.

This worked example illustrates some

inadequacies with our approach. For example,

the term IR is an acronym but these are not

handled in our retrieval. The most obvious

problem with the approach, however, is its

complexity which will obviously affect the

implementation as described in the next section.

A more subtle consequence of the complexity for

retrieval effectiveness might be that the way we
retrieve now is simply too complex and has lost
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sight of the original motivation so the

contribution of "structure from syntax implying

content" may be too diluted in the overall

retrieval.

4. Implementation of Document

Retrieval

Because of the computational overhead of

calculating query-document similarities using

TSA-based matching we took a 2-stage approach

to implementing retrieval. For each TREC query

we used all fields given and we analysed the text

using the ENGCG analyser. Words assigned

only one of the syntactic fimction labels in our

stopword category are discarded as are words

whose baseforms occur in more than 10% of the

documents in the collection. For the remaining

words we calculate their IDF weight using their

baseforms as indexing terms and we score

documents using tf*IDF weighting on these

baseforms. The top 1000 ranked documents are

then used as input into the second stage of the

retrieval process, TSA-based weighting. In

earlier experiments we varied the size of the

document set returned by this pre-search but we

found that quantities above 1000 did not affect

subsequent retrieval to any noticeable degree.

The tf*IDF weighting on baseforms which we

use as a pre-search is implemented by using an

inverted file, storage of the TSA structures was

a bit more problematic however. We looked at

using an OODBMS to store the TSA structures

internally but found that we would have to

decompose them into linear lists with extra fields

as pointers and the storage overheads would then

become too much of a burden. In the end we

decided not to store TSA strucmres internally

within GemStone but to use GemStone to

manage TSA locations within documents. TSAs
are in fact reconstructed on demand from an

encoded representation of the ENGCG analysis,

a process which is reasonably fast and which

allowed us flexibility during our experimental

runs if we decided to modify the TSA format.

A second consequence of the computational and

storage overhead of our implementation is that

we would have been unable to process the entire

TREC-3 collection of 2 Gbytes so we elected to

become category B participants. Our retrieval

was implemented on 550 Mbytes of Wall Street

Journal newspaper stories from 1986 to 1992,

made up of 173,256 documents and c.27,000,000

words. Processing was done on a SUN
SparcServer 690MP.

5. Experimental Results

The Dublin City University team submitted two

official runs to be evaluated as part of TREC-3
ad hoc retrieval. These were given the codes

DCUNLl and DCUNL2 and are repeated from

the proceedings below.

Recall Precision Precision

(DCUNLl) (DCUNLl)

0.00 0.6431 0.5453

0.10 0.3973 0.3362

0.20 0.3383 0.2587

0.30 0.2931 0.2193

0.40 0.2321 0.1799

0.50 0.1907 0.1367

0.60 0.1479 0.1039

0.70 0.0999 0.0651

0.80 0.0610 0.0425

0.90 0.0299 0.0212

1.00 0.0097 0.0061

Avg Precision 0.1966 0.1514

P at 30 docs 0.2933 0.2433

Table 5.1 : Comparison of Results for DCUNLl
and DCUNL2
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Figure 5.1 : Comparison of Results for

DCUNLl and DCUNL2

In comparison to results obtained by other

TREC-3 groups, both category B and A, our

results are disappointing. The most

disappointing aspect of our results, however, is

that our baseline prefetch run (DCUNLl) is

actually better than our TSA-based run

(DCUNL2). This is really quite unexpected. In

experimental runs with TREC-2 queries we

found that the TSA-based re-ranking improved

retrieval slightly at the high precision end of the

scale but averaged out as approximately equal to

the tf*IDF weighting. In essence what we were

finding in our pre-official runs was that our pre-

fetch retrieval (tf*IDF weighting on ENGCG
word baseforms) was not bringing in as many

relevant documents as we wanted and our TSA-

based retrieval was improving precision slightly

and only at the high precision levels. In an

attempt to determine if this was a fault of the

quality of the pre-fetch we used, we contacted

some other TREC-3 groups to see how our TSA-

based retrieval would perform on top of other

pre-fetch methods. One difficulty was that there

are few category B groups in TREC-3 anyway so

after discussion so we elected to use results

provided to us using the following systems which

are very heterogeneous in nature and hence

should retrieve different document sets:

used to provide a benchmark for TREC-
2 category B participants and appeared

in the TREC-2 proceedings (pplO).

Sue Dumais at Bellcore did a special run

of LSI-based retrieval on category B
data and TREC-2 topics (101-150)

where singular valued decomposition

was used to reduce the term space. The

parameter settings used here were

determined from the full category A
dataset.

• Jaime CaUan at UMass provided results

of a run with the INQUERY system on

category A data but with only the

category B WSJ articles extracted from

that ranking. The parameter settings

here were from the official UMass
TREC-2 submission.

In each of these three cases we ran our TSA-

based retrieval on the top 1000 document

rankings and the results we obtained are

presented below:

Recall Precision Precision

Cornell TSA

0.00, 0.8076 0.5736

0.10, 0.6292 0.4347

0.20, 0.5455 0.3461

0.30, 0.4901 0.2821

0.40, 0.4424 0.2478

0.50, 0.3654 0.2097

0.60, 0.3056 0.1788

0.70, 0.2497 0.1405

0.80, 0.1814 0.1052

0.90, 0.0986 0.0577

1.00, 0.0165 0.0051

Table 5.2 : Comparison of Results for TSA and

Cornells

Chris Buckley at Cornell sent us results

he computed for TREC-2 topics (101-

150) on category B data using the

SMART system with official TREC-2
parameter settings. These results were
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Figure 5.2 : Comparison of Results for TSA and

Cornells

Recall Precision Precision

LSI TSA

0 0.7004 0.5721

0.1 0.5124 0.3777

0.2 0.4112 0.3073

0.3 0.3428 0.2612

0.4 0.3003 0.2219

0.5 0.2528 0.1717

0.6 0.2123 0.1319

0.7 0.1672 0.0917

0.8 0.1242 0.0642

0.9 0.0735 0.0339

1
1

a -

0.0062 0.0043

Table 5.3 : Comparison of Results for TSA and

LSI

LSI Vs TSA
0.8 r-

Figure 5.3 : Comparison of Results for TSA and

LSI

Precision Precision

n n ftnn? 0 fiOfifi

n 1 n d.4.R7

VJ.OO

KI.O

n "501 7KJ.CV 1 /

n ?71 s

0.6 0.3463 0.2309

0.7 0.2652 0.1659

0.8 0.171 0.0828

0.9 0.0579 0.0195

1 0.0245 0.0087

Table 5.4 : Comparison of Results for TSA and

Inquery

INQLIERY Vs. TSA
0.9

Figure 5.4 : Comparison of Results for TSA and

Cornells

As can be seen from the results presented above,

we have consistently and significantly managed

to disimprove the results of pre-fetch runs from

other IR approaches. These results conclusively

confirm that the approach of using syntax to

determine structural relationships between words

and to use them in the way we have described as

part of an information retrieval strategy, does not

work.

6. Conclusions

There are a variety of reasons why our results are

so poor, some of which we postulate here. In the
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first place it seems that we score highly, those

documents which have query terms in a syntactic

relationship in documents which is similar to the

relationship in the query, however results suggest

that documents are relevant to queries for some

other reason besides sharing structural syntactic

relationships. A second reason for our poor

performance could be that the version of the

ENGCG language analyser we used is of poor

quality; certainly it is slow ! After

experimentation, we foimd that the score

decrement due to syntactic ambiguity is quite low

which suggests that this ambiguity does not

really matter to retrieval, yet it is a mainstay of

our approach. Finally, it has been suggested that

the type of language used in TREC topic

descriptions is very different to that used in

document texts, interrogative vs descriptive

language, and this suggests that the two language

types should be treated differently, something

which we did not do.

As a result of discussions at TREC it has been

suggested that instead of piggy-backing TSA-

based weighting on top of tf*IDF weighting, we

could have had better results had we developed a

TSA-based retrieval strategy which was totally

independent of any kind of term weighting. It has

been shown by a number of groups in TREC-3
and elsewhere (UMass, ETH, etc) that combining

the results of more than one independent

retrieval strategy into one overall global

document ranking can bootstrap the performance

of the individual retrieval strategies. Our TSA-

based retrieval could have retrieved documents

not retrieved by the term weighting strategy and

thus could have been usefully combined, though

this could be said of any approach to indexing

and retrieval which is independent of any others.

The real contribution of oiu" work, we feel, is the

fact that we have at last tried to use strucmral

aspects of syntactic relationships, as part of

retrieval. The fact that we have failed to improve

retrieval performance and have in fact

considerably disimproved retrieval performance

teUs us that this Une of research is not worth

pursuing further.



Appendix A: Spanish TREC-3

In addition to taking part in ad hoc retrieval for

English texts, the DCU team also took part in ad

hoc retrieval from Spanish texts using a weighted

trigram approach. Trigram-based retrieval has

been tried in TREC-2 by Cavnar (Cavnar, 1993)

in both adhoc and routing and the results which

have been obtained are poor by TREC-2

standards, though Cavnar believes much better

results are obtainable using this approach. After

some variations and cul-de-sacs, the following

are the steps taken in oiu" official, submitted

retrieval runs:

• After ftp-ing and decompressing

Spanish, punctuation and numeric

characters are discarded and the

remaining text is converted to lowercase.

Letters in the Spanish character set

include upper and lowercase versions of

the 26 used in EngUsh (a-z, A-Z) plus

upper and lowercase versions of n, d, e,

i,6,u and the double letter combinations

//, ch which can be treated as single

characters. These extra characters

beyond the 26 a to z are represented in

our system by uppercase A to Z
equivalents (N, A, E, I, O, and U). Other

groups running retrieval on Spanish texts

discarded all accents which, given the

inconsistent use of accents in our TREC-
3 Mexican newspaper texts, may have

been the best approach. Such

inconsistent use of accents is not so

common in Spanish Spanish texts

The stoplist used in Porter's stemming

algorithm was translated into Spanish.

These include multiword stopwords

which were then treated as several single

stopwords. A frequency count of words

from a sample of 10 Mbtes of the text

was generated and presented to our

Spanish colleagues and they added

further entries to our stoplist yielding a

total of 245 entries. Documents were

then stripped of these stopwords and this

reduced the size of the documents by

c.35%.

Trigrams, 3 letter overlapping

substrings, are then generated from the

remaining words which are padded with

one space before and after each word.

For example, the word sueflo (meaning

dream) generates the trigrams _su, sue,

ueN, eNo, No_, where "_" denotes a

space and N denotes fi.

In analysing the text, after stopword

removal, we found a total of 15,861

unique trigram occurrences. The 20

most frequendy occurring of these were

as follows:

res _co ent nte ado

_de _re est iOn -Pr

sta Jn _es _ca _se

con ciO aci _di ica

What is interesting about this is that the

most frequendy occurring frigram (res)

occurred 57,605 times while the 20th

most frequently occurring (ica) occurred

54,856 times, so there was a very "flat"

and non-Zipfian distribution among the

most frequently occurring terms. This

does not auger well for a retrieval

strategy based on highly weighting the

more discriminating terms, or trigrams in

our case.

The same process is then applied to

Spanish queries. In our official run we

used the topic description and narrative

fields and we did not do any processing

to remove any noise text.

An inverted file of trigram occurrences is

generated (which is 160 Mbytes in size)

to speed up subsequent processing and to

determine the frequency of occurrence of

trigrams in the document collection.

A score is calculated for each document

which is based on tf*IDF weighting as
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follows. For each trigram generated

from the query, the document frequency

was calculated and query trigrams

occurring in more than a% of the

documents were discarded. The

remainder were sorted by increasing

docimient frequency and an IDF weight

calculated for each. Document scores

were computed by processing query

trigrams in order of increasing document

frequency Gower IDF weight). Postings

lists per frigram had previously been

sorted by decreasing within-document

frequency and as the algorithm worked

through query trigrams, successively less

of the postings lists were used in

computing document scores thus

effectively eliminating processing those

with lower within-document frequencies.

Finally, in computing document scores

we kept accumulators for only a fixed

number of documents, the first |X

encountered.

Documents are then ranked by these

scores and the top 1000 per query are

returned for evaluation.

Our system is implemented on a SUN
SparcServer and returns a document ranking in

10-15 seconds for a TREC-3 topic description.

In our official submission we chose parameter

settings for a and |i (50% and 6800 respectively)

which worked best for an implementation on

English texts indexed by word stems rather than

Spanish texts indexed by trigrams. This was a

consequence of having no known queries or

relevance assessments with which to work.

After the TREC-3 results and relevance

assessments became known, we re-ran our

experiments a number of times varying a from

5% to 50% in increments of 5% and for each of

these varying \i from 1000 to 7000 in increments

of 1000. At this point these would have been

termed unjudged runs in that the refrieved

documents may or may not have been judged by

relevance assessors but nonetheless we obtained

significant improvements, a consequence of our

bad starting points, not the quality of our

subsequent refrieval performance. The average

precision values for each run show the best

parameter settings for Spanish TREC-3 are 20%
and 4000 accumulators. What is more important

is that we have improved our official results

considerably as the table below shows:

Recall Precision Precision

Official Post- Official

run run

0.00 0.5483 0.5279

0.10 0.1050 0.3590

0.20 0.0509 0.2608

0.30 0.0449 0.2187

0.40 0.0388 0.1768

0.50 0.0256 0.1362

0.60 0.0080 0.1082

0.70 0.0032 0.0853

0.80 0.0032 0.0565

0.90 0 0.0317

1.00 0 0

Avg Precision 0.0411 0.1612

Table : Results for Spanish TREC Official and

Post-Official

The conclusion from our work on Spanish

TREC-3 is that our performance in terms of the

performances of other groups taking part in

Spanish TREC-3 are worse than using weighted

quadgrams which are worse than using any kind

of crude stemming algorithm and term weighting

strategies. This suggests that even though the

character set may be larger than for English,

trigram based retrieval may not be best.

Certainly, trigram based retrieval would probably

be good at handling word-word variants as

would be generated from OCR and spelling

errors but for sfraightforward refrieval,

alternative approaches seem more promising. A
more complete description of our work on

Spanish TREC-3 is available via ftp (email one

of the authors for details).
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Automatic Query Expansion Using SMART : TREC 3

Chris Buckley* Gerard Salton, James Allan, Amit Singhal

Abstract

The Smart information retrieval project emphasizes completely automatic approaches to the understand-

ing and retrieval of large quantities of text. We continue our work in TREC 3, performing runs in the routing,

ad-hoc, and foreign language environments. Our major focus is massive query expansion: adding from 300 to

530 terms to each query. These terms come from known relevant documents in the case of routing, and from

just the top retrieved documents in the case of ad-hoc and Spanish. This approach improves effectiveness

from 7% to 25% in the various experiments.

Other ad-hoc work extends our investigations into combining global similarities, giving an overall indica-

tion of how a document matches a query, with local similarities identifying a smaller part of the document

which matches the query. Using an overlapping text window definition of "local", we achieve a 16% improve-

ment.

Introduction

For over 30 years, the Smart project at Cornell University has been interested in the analysis, search, and

retrieval of heterogeneous text databases, where the vocabulary is allowed to vary widely, and the subject

matter is unrestricted. Such databases may include newspaper articles, newswire dispatches, textbooks,

dictionaries, encyclopedias, manuals, magazine articles, and so on. The usual text analysis and text indexing

approaches that are based on the use of thesauruses and other vocabulary control devices are difficult to

apply in unrestricted text environments, because the word meanings are not stable in such circumstances and

the interpretation varies depending on context. The applicability of more complex text analysis systems that

are based on the construction of knowledge bases covering the detailed structure of particular subject areas,

together with inference rules designed to derive relationships between the relevant concepts, is even more

questionable in such cases. Complete theories of knowledge representation do not exist, and it is unclear

what concepts, concept relationships, and inference rules may be needed to understand particular texts. [13]

Accordingly, a text analysis and retrieval component must necessarily be based primarily on a study of

the available texts themselves. Fortunately very large text databases are now available in machine-readable

form, and a substantial amount of information is automatically derivable about the occurrence properties

of words and expressions in natural-language texts, and about the contexts in which the words are used.

This information can help in determining whether a query and a text are semantically homogeneous, that

is, whether they cover similar subject areas. When that is the case, the text can be retrieved in response to

the query.

Automatic Indexing

In the Smart system, the vector-processing model of retrieval is used to transform both the available infor-

mation requests as well as the stored documents into vectors of the form:

Di = {wii,Wi2,. . .,Wit)

where Di represents a document (or query) text and Wik is the weight of term Tk in document Di . A weight

of zero is used for terms that are absent from a particular document, and positive weights characterize

'Department of Computer Science, Cornell University, Ithaca, NY 14853-7501. This study was supported in part by the

National Science Foundation under grant IRI 93-00124.

I
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terms axtually assigned. The assumption is that t terms in all are available for the representation of the

information.

In choosing a term weighting system, low weights should be assigned to high-frequency terms that occur

in many documents of a collection, and high weights to terms that are important in particular documents

but unimportant in the remainder of the collection. The weight of terms that occur rarely in a collection is

relatively unimportant, because such terms contribute little to the needed similarity computation between

different texts.

A well-known term weighting system following that prescription assigns weight wik to term Tk in query

Qi in proportion to the frequency of occurrence of the term in Qj, and in inverse proportion to 'the number

of documents to which the term is assigned. [14, 12] Such a weighting system is known as a tfxidf (term

frequency times inverse document frequency) weighting system. In practice the query lengths, and hence

the number of non-zero term weights assigned to a query, varies widely. To allow a meaningful final retrieval

similarity, it is convenient to use a length normalization factor as part of the term weighting formula. A
high-quality term weighting formula for Wik, the weight of term Tk in query Qi is

(log(/,fc) + l.Q)*log(iV/n,)
Wik - . = (1)

VE]=i[(log(/v) + l-0)*log(iV/n,)]2

where fik is the occurrence frequency of Tk in Qi, N is the collection size, and the number of docu-

ments with term Tk assigned. The factor \og{N/nk) is an inverse collection frequency ("idf") factor which

decreases as terms are used widely in a collection, and the denominator in expression (1) is used for weight

normalization. This particular form will be called "Itc" weighting within this paper.

The weights assigned to terms in documenis are much the same. In practice, for both effectiveness and

efficiency reasons the idf factor in the documents is dropped. [2, 1]

The terms Tk included in a given vector can in principle represent any entities assigned to a document

for content identification. In the Smart context, such terms are derived by a text transformation of the

following kind: [12]

1. recognize individual text words

2. use a stop list to eliminate unwanted function words

3. perform suffix removal to generate word stems

4. optionally use term grouping methods based on statistical word co-occurrence or word adjacency com-

putations to form term phrases (alternatively syntactic analysis computations can be used)

5. assign term weights to all remaining word stems and/or phrase stems to form the term vector for all

information items.

Once term vectors are available for all information items, all subsequent processing is based on term vector

manipulations.

The fact that the indexing of both documents and queries is completely automatic means that the results

obtained are reasonably collection independent and should be valid across a wide range of collections. No
human expertise in the subject matter is required for either the initial collection creation, or the actual query

formulation.

Phrases

The same phrase strategy (and phrases) used in TREC 1 and TREC 2 ([2, 1]) are used for TREC 3. Any pair

of adjacent non-stopwords is regarded as a potential phrase. The final list of phrases is composed of those

pairs of words occurring in 25 or more documents of the initial TREC 1 document set. Phrase weighting

is again a hybrid scheme where phrases are weighted with the same scheme as single terms, except that

normalization of the entire vector is done by dividing by the length of the single term sub-vector only. In

this way, the similarity contribution of the single terms is independent of the quantity or quality of the

phrases.

70



Text Similarity Computation

When the text of document Di is represented by a vectors of the form {dii,di2, . .
. ,
dn) and query Qj by the

vector {qji,qj2, - j^jt), a similarity (S) computation between the two items can conveniently be obtained

as the inner product between corresponding weighted term vector as follows:

Thus, the similarity between two texts (whether query or document) depends on the weights of coinciding

terms in the two vectors.

One way to improve effectiveness is to better represent the information need by adding useful terms to

the query. The classical example of this is relevance feedback, where terms occurring in known relevant

documents are added to the query.

The relevance feedback process can be divided into two phases: query term selection and query term

weighting. Our basic approach to relevance feedback heavily emphasizes query term weighting. Proper

weighting allows us to massively expand the query by adding any term for which we have any evidence of

usefulness. Experiments show that effectiveness improves linearly as the log of the number of added terms,

up to a point of diminishing improvement [3]. This point of diminishing returns for the TREC environment

seems to be about 300 terms.

How can so many terms be added, when it is known that many of them are poor terms and have no

connection with relevance? One contributing factor is simply that the good terms tend to co-occur non-

randomly within the relevant documents (as opposed to the rest of the collection) and the poor terms tend

to co-occur randomly. Massive expansion establishes a background "noise" similarity due to random poor

term matches. The good documents escape the noise due to several good terms co-occurring within the

document.

Some other expansion methods (eg naive thesaurus lookup) do not share the above property. When
expansion occurs inappropriately, several connected poor words are added. Attempting to expand the word

"bank" for instance, one might add several financial terms, which may reinforce each other and cause financial

documents to be retrieved. This would result in poor retrieval if "bank" were referring to the side of a river.

The poor terms for this query expansion are not co-occurring randomly and have a much greater eff"ect on

the final similarity.

Expansion by hundreds of terms occurring in known relevant documents worked so successfully in routing

of TREC 2, that it was decided to use the same expansion techniques in the ad-hoc portion of TREC 3. In

the ad-hoc environment, there are no known relevant documents. Instead, the top retrieved documents are

all assumed to be relevant for the purposes of expansion and weighting. If many of the top documents are

relevant, then the process achieves the same effect as relevance feedback. If none of the top documents are

relevant, then the expansion is likely to have a very negative effect as the refashioned query will emphasize

the same mistakes that caused the poor initial retrieval. The end result is thus likely to be a mixture of

improvements for many queries, but deterioration of results for others.

The idea of treating the top documents as being relevant in the absence of any real relevance judgements

is not a new one. It has probably been done dozens of times in the past (eg, it wels a standard Cornell

information retrieval class project in the early 1980's). In general, at least in the Cornell experience, it

helped some queries but the negative results predominated on the standard small test collections. What
makes the approach successful in the TREC environment is the combination of better initial retrieval, and

the collection characteristics of TREC. There are many more relevant documents per query within TREC,
and those documents are longer than in the small test collections. So there is more of a chance for terms from

the relevant retrieved documents to meaningfully distinguish themselves from the terms in the non-relevant

documents. Other groups in TREC 2 were able to take advantage of this situation and improve performance,

noticeably UCLA and CMU [6, 7].

(2)

TREC 3 Approaches
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Another focus of our work the past few years, both within TREC and outside it, has been trying to

take advantage of local similarities between a small part of the document and the query. We've shown that

local similarities can be used very effectively to ensure that terms in common between document and query

are being used in the same semantic sense. However, while this semantic disambiguation is important in

other environments [16], the very long and rich TREC queries provide enough global context to disambiguate

without going to a local level. Our efforts to improve effectiveness using local disambiguation using sentences

and short paragraphs did not work in TREC 1 and TREC 2. For TREC 3, we lengthen our local contexts,

and treat the local passage as being a mini-document. Adopting the approach of UMass [17, 4, 5], we define

our local contexts to be a set of overlapping text windows, each of fixed size. This avoids the length and

normalization problems that adversely affected our approach in TREC 2.

System Description

The Cornell TREC experiments use the SMART Information Retrieval System, Version 11, and are run on

a dedicated Sun Sparc 20/51 with 160 Megabytes of memory and 18 Gigabytes of local disk.

SMART Version 11 is the latest in a long Hne of experimental information retrieval systems, dating

back over 30 years, developed under the guidance of G. Salton. Version 11 is a reasonably complete re-

write of earlier versions, and was designed and implemented primarily by C. Buckley. The new version is

approximately 44,000 lines of C code and documentation.

SMART Version 11 offers a basic framework for investigations of the vector space and related models

of information retrieval. Documents are fully automatically indexed, with each document representation

being a weighted vector of concepts, the weight indicating the importance of a concept to that particular

document (as described above). The document representatives are stored on disk as an inverted file. Natural

language queries undergo the same indexing process. The query representative vector is then compared with

the indexed document representatives to arrive at a similarity (equation (2)), and the documents are then

fully ranked by similarity.

Routing Experiments

Our routing experiments in TREC 3 are only slightly different from those carried out for TREC 2. The basic

routing approach chosen is the feedback approach of Rocchio [11, 15, 1]. Expressed in vector space terms,

the final query vector is the initial query vector moved toward the centroid of the relevant documents, and

away from the centroid of the non-relevant documents.

Qnew — * Qold

+ B * average_wt_in_reLdocs

— C * average_wt.nonreLdocs

Terms that end up with negative weights are dropped (less than 3% of terms were dropped in the most

massive query expansion below).

The parameters of Rocchio's method are the relative importance of the original query, the relevant doc-

uments, and the non-relevant documents {A,B,C above); and then exactly which terms are to be considered

part of the final vector.

The investigations of TREC 2 and elsewhere [3] suggest that the decision of which terms to add is not a

hard decision: just add all terms occurring in relevant documents that can be efficiently handled. We sort

all terms occurring in the relevant documents by the number of relevant documents in which they occur,

with ties being broken by considering the highest average weight in the relevant documents. We then add

the top 300 single terms and top 30 phrases to the original query and reweight according to the Rocchio

formula above with A,B,C parameters being 8,16,4. This forms the queries for our CrnlRR run.

Query-by-Query Variations

While the massive expansion Rocchio approach works well for most queries, examining past individual query

results reveals that for about 15% of the queries, not expanding works better than massive expansion[3].
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Run Best > median < median

CrnIRR
CrnlQR

1 44 5

2 37 11

Table 1: Comparative Routing Results

Run X.Y A.B.C R-prec Total Rel recall-prec

1. no fdbk 0.0 8.0.0 3461 5975 2985

2. no expand 0.0 8.8.4 3698 6342 3163

3. CrnIRR 300.30 8.16.4 4064 7134 3699

4. CrnlQR varies varies 4013 7215 3725

Table 2: Routing evaluation

Our second official run, like our second official run of TREC 2, is an attempt to choose feedback parameters

on a per-query basis to avoid expanding on those queries where no expansion might be appropriate. We also

want to examine other feedback approaches for those queries with no, or little, expansion. In TREC 1 and

TREC 2 it was noticed that the probabilistic approaches, e.g., the classical probabilistic formula [10] and

Dortmund's RPI formula [8, 9], did better than the Rocchio approach if there was little expansion. Perhaps

a choice among feedback methods would improve effectiveness; our TREC 2 results suggested just changing

expansion amounts on a per-query basis would yield only a small improvement.

We examine seven different approaches:

1. : Original query, no expansion or reweighting.

2. : Probabilistic weights, no expansion.

3. : RPI model, no expansion

4. : RPI model, expansion by 30 single terms

5. : Rocchio, expansion by 30 single terms and 10 phrases

6. : Rocchio, expansion by 500 single terms

7. : Rocchio, expansion by 500 single terms and 30 phrases, with A,B,C parameters being 8,32,4

We ran each of these approaches using the 50 queries of the TREC 3 routing task, learning on Dl and

testing on D2. This determined which approach should be used for which queries in the routing task. The

final queries for the CrnlQR run are formed by using the best approach on each query, and learning from

the full D12 set of relevance judgements.

Routing Results

Both CrnIRR and CrnlQR do quite well in comparison with other TREC 3 routing runs (Table 1). These

comparative results are not quite as good as in TREC 2, suggesting that some other groups might have

caught up to us.

Evaluation measures in Table 2 for both the official and some non-official runs show the importance of

query expansion. Run 1 is the base case original query only (Itc weights). Just re-weighting the query terms

without adding any terms according to Rocchio 's algorithm gives a 6% improvement. Both reweighting and

massively expanding gives a 24% improvement.

The run CrnlQR is actually quite disappointing. Like our initial attempts at per-query variations in

TREC 2, we get very little improvement over using massive expansion for all queries. Table 3 shows that
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Approach Expansion Kocchio
ATNum JNum better

bing.phrs A.B.C Queries than CrnlRR

1. Orig. query 0.0 n.a. 3 1

2. Prob 0.0 n.a. 4 0
o
O. rtr 1 u.u n.a. Q QO

4. RPI 30.0 n.a. 2 1

5. Rocchio 30.10 8.16.4 3 1

6. Rocchio 500.0 8.16.4 9 5

7. Rocchio 500.30 8.32.4 20 15

Table 3: Routing Approach Variation

of all the feedback variations tried, the only ones that consistently do better than the CrnlRR Rocchio

expansion by 330 terms, are the queries which use Rocchio and expand by even more terms. The low

expansion approaches did better on their queries when learning on Dl and testing on D2, but tended to do

worse on their queries when learning on D12 and testing on D3. This suggests that there is no inherent

property of the semantics of an individual query that can predict whether massive expansion will work.

Instead, it suggests the effectiveness of massive expansion depends on the properties of the documents, in

both the learning set and the test set.

Ad-hoc Results

The first of Cornell's two ad-hoc runs, CrnlEA, is very similar to the Rocchio routing run, CrnlRR. The initial

query is expanded and reweighted using Rocchio's feedback approach. The major difference is that there are

no known relevant documents from which to draw the expansion terms. Instead, an initial retrieval is done,

and the top 30 documents are all assumed to be relevant for the purposes of expansion and reweighting.

While this is certainly not as good as having real relevance judgements (especially if the initial retrieval

obtains no relevant documents), these terms should still have some connection to relevance.

The initial query is expanded by 500 terms and 10 phrases. In the future, perhaps more phrases should

be chosen. However, in this initial experiment having many phrases would complicate the analysis of what

is actually happening. The A.B.C parameters of the Rocchio equation are set to 8.8.0. These parameters

weight the original query terms higher than in standard relevance feedback, and disregard occurrences among
the non-relevant documents. The parameters were chosen after a small set of trial runs using the first 150

queries on D12.

The second of Cornell's ad-hoc runs, CrnlLA, is this year's local/global run. At retrieval time, each

document is assigned a similarity based upon both the document's global similarity to the query, and upon

the similarities of smaller parts of the document to the query. For this experiment, the parts of the document

are defined to be text windows of 200 words in length. One set of text windows starts at the beginning of

the document, with a new window every 200 words. Another set of text windows on that document starts

100 words into the document, with a new window every 200 words. The two sets of overlapping windows

ensure that every semantically coherent chunk of text of length less than 100 words will be included whole

in at least one text window.

The text of each local window is indexed and weighted with binary term weights (SMART-nomenclature

"bnn" weights). The weights in the text windows do not need to be normalized since the text windows are

almost all of the same length. An "idf" factor does not need to be included in the local document weights

since it will be included in the query weight of any matching term. A pure "tf" factor that gives a weight

proportional to the number of times a term occurs in the text window will over-weight common words. Thus
the "bnn" weighting scheme would seem to be appropriate.

The question of how to combine a global similarity with the local similarity of a document has yet to

be resolved. Work done in preparation for TREC 2 strongly suggested that the result should be some
combination of the global similarity with the best local similarity of the document (as opposed to, say, an

74



Run Best > median < median

CrnlEA
CrnlLA

3 38 9

0 49 1

Table 4: Comparative Ad-hoc results

average of local similarities). Other work showed that the values of both global and local similarities are

query dependent. A good local similarity for one query may be a poor local similarity for another query. This

suggests some sort of query relativization factor may be needed. Several functions were tried in preparation

for TREC 3; the one used for the run CrnlLA is

FinalSim = GlobalSim + 2 * GlobalSim * LocalSim/BestLocalSim (3)

where

• GlobalSim is the global similarity between an "Itc" weighted query, Q, and an "Inc" weighted docu-

ment, D.

• LocalSim is the highest similarity of any "bnn" weighted text window of D with the "Itc" weighted

query Q.

• BestLocalSim is the highest LocalSim for any examined document for this query Q.

The CrnlLA retrieval procedure to return rankings for 1000 documents is to

1. Perform a global search retrieving the top 1750 documents.

2. For each retrieved document,

(a) Fetch the original document,

(b) Break it into text windows,

(c) Index and weight each text window separately

(d) Calculate the similarity of each text window to the query.

(e) Set the document's LocalSim to the highest of these similarities.

3. Set BestLocalSim to the highest LocalSim among the 1750 documents

4. Use Equation 3 to calculate a final similarity for the 1750 documents.

5. Rank the final similarities and return the top 1000.

The expansion run, CrnlEA, and the local/global run, CrnlLA, are very different but each perform well

when compared against other systems. Both approaches perform at or above the median in most queries, as

can be seen in in Table 4.

As could be expected, CrnlEA is somewhat inconsistent, performing extremely well on some queries, but

dipping below the median on several others. Presumably this is related to the quality of the initial search,

though this has not yet been tested. CrnlLA is almost always above the median, but was never the highest

rated run.

Table 5 gives the results of several evaluation measures for CrnlEA, CrnlLA, and a simple "Incite"' vector

run. Each of the TREC 3 approaches gives substantial recall-precision improvement over the pure vector run

(20.3% for CrnlEA, and 16.2% for CrnlLA). However, they get this improvement in very different fashions.
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Run F?prall- Total RpI

Precision Retrieved 5 docs 100 docs

Incite 2842 6531 5530 3780

CrnlEA 3419 7267 5760 4168

CrnlLA 3302 6808 6800 4216

Table 5: Ad-hoc results

CrnlEA is a recall oriented approach. It shows a very mild .023 improvement in precision at 5 documents,

but retrieves a very strong 736 more relevant documents than the vector run. CrnlLA, on the other hand,

is a precision oriented approach. It shows a very strong .1270 improvement in precision at 5 documents,

but then a much weaker increase of 277 relevant documents retrieved. It remains to be seen whether the

strengths of these two very different approaches can be combined in one run.

Spanish

One of the fun side-tracks of TREC 3 is the Spanish experiments. About 200 megabytes of Spanish text

and 25 Spanish queries were made available for runs in the ad-hoc environment. Our claim has always been

that SMART is to a large extent language independent, as long as the language is based upon recognizable

word tokens. TREC 3 Spanish presented a chance to test this claim.

Spanish SMART

Unlike other retrieval systems, SMART uses almost no linguistic knowledge. Enabling SMART to run well

on Spanish text only required 3 subtasks.

1. Make SMART 8-bit clean.

2. Fashion stemming rules for Spanish.

3. Construct a stopword list of common Spanish words.

Extending SMART to handle 8-bit characters (e.g., the accented Spanish characters) instead of 7-bit

ASCII was very simple. About 8 lines of code needed changing, plus a 128 entry table in the tokenizer giving

the class of characters needed to be expanded to 256 entries.

After this was done, the Spanish document set was indexed without any stemming rules or stopwords.

Simple stemming rules were then derived by looking at the sorted dictionary entries and guessing which

lexicographically adjacent entries really represented the same words (guessing since the person doing this

does not speak Spanish!). The final stemming rules were:

• Remove final "as", "es", "os", "a", "o", "e".

• Change final "z" to "c"

.

Initially the stopword list was composed of the 800 most frequently occurring words in the collection.

This was later trimmed to 342 words by asking a native Spanish speaker to prune the list.

The Spanish collection was then re-indexed using the new stemming rules and stopword list, and was

ready for use. It was, however, somewhat disconcerting to type the first query "This is a test", and retrieve

a large set of English documents dealing with standard tests! The explanation turned out to be a partial file

of English documents that had somehow crept into the distributed collection.

The total time to make SMART Spanish ready was about 5-6 person-hours.
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Run Best > median < median

CrnlES

CrnlVS
11 8 4

1 13 9

Table 6: Comparative Spanish Ad-hoc results

Run Recall- Total Rel Precision R-Precision

Precision Retrieved 5 docs

CrnlES 5692 2439 7917 5578

CrnlVS 5301 2402 7500 5328

Table 7: Spanish Ad-hoc results

Spanish Ad-Hoc Runs

The two Cornell Spanish runs are CrnlVS, a simple "Incite" vector run, and CrnlES, a massive expansion

run. Both procedures are described above in the main-line ad-hoc description; aside from the different

database names there is no difference in the scripts which run the experiments.

Table 6 shows the two runs both do very well, though the expanded run is significantly better. CrnlES

has the best results on 11 out of the 23 Spanish queries with relevance documents. (But remember that

many fewer groups submitted Spanish runs, so our "share" of best results is expected to be higher.)

The results of the standard evaluation measures show extremely good retrieval effectiveness in Table 7.

However, many of these values are artificially high. Unlike the mainstream ad-hoc and routing pools of

judged documents, the Spanish pool was very small and narrow, and it's clear that a lower percentage of

relevant documents were judged, thus somewhat inflating the recall figures. Comparative evaluation between

runs should still be valid though, even between judged and unjudged runs. For example, CrnlES is definitely

better than CrnlVS even though CrnlVS was a judged run and CrnlES was not.

After the actual conference, additional relevance judgements on the Spanish TREC runs were made by

NIST. The top 150 documents from every Spanish run were judged (as opposed to the judgement of 100

documents from one run of each participant, which is what Table 7 was based upon.) Table 8 show that the

additional judgements had very little effect on the final results, despite the addition of 50% more relevant

documents to the total judged pool.

Efficiency

Efficiency issues are becoming increasingly important in these TREC experiments as retrieval methods

become more complicated and expensive. Thus it is important to have at least some discussion of efficiency

within a paper like this.

SMART is a reasonably fast system. It indexes documents at a rate of about 600 megabytes per hour.

Simple vector retrieval runs can be quite fast. Calculating the similarities for the CrnlVS run took much
less than 2 seconds for all 25 queries together (keeping track of the top 1000 documents for each query was

Run Recall-Precision

Old Judgements New Judgements

CrnlES

CrnlVS

5692 5697

5301 5013

Table 8: Spanish with New Judgements
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Methodology Run Recall- Improvement over

Precision Previous Year

11 tL-.ll U*^

TREC 2 Incite 2842 38%
TREC 3 CrnlEA 3419 20%
TREC 3 CrnlLA 3302 16%
TREC 4 ??? ???? > 20%?

Table 9: Runs of queries 151-200 on D12

done rather inefficiently and took much longer!). But the more complicated retrieval methods take anywhere

from 9 seconds per query (CrnlRR) to 189 seconds per query (CrnlLA).

Luckily, in actual practice the execution times of the complicated methods can be cut down drastically.

The massive query expansion approaches will benefit greatly from optimization efforts such as those discussed

in our TREC 1 work. Some of the effectiveness increase of the massive query expansion will have to be traded

back in order to get reasonable efficiency, but the results of TREC 1 show the effectiveness cost will not be

prohibitive.

The other very time consuming approach of ours is the local/global matching (CrnlLA). The re-indexing

of the local parts of a document can be done off-line and stored. When this time savings is combined with the

decreased time due to a user asking for a reasonable number of documents (instead of 1000), retrieval time

should be not much more than double an ordinary vector search. This should be quite feasible in practice,

depending on the particular constraints of a site, of course.

Comparison with TREC 1 and TREC 2

It is difficult to determine how much systems are improving from TREC to TREC since the queries and the

documents are changing. For example, in TREC 3 the "Concept" field of the queries was removed. These

terms proved to be very good terms for retrieval effectiveness in TREC 1 and TREC 2; thus the TREC 3

task without them is a harder task. To get a handle on how much SMART has improved in the past two

years. Table 9 presents the results of running our TREC 1 and TREC 2 systems on the TREC 3 ad-hoc task.

SMART has been improving at a rate of over 20% per year so far, and given our work since we submitted

the TREC 3 runs, we would expect that improvement rate to continue at least another year.

Conclusion

Automatic massive query expansion proves to be very effective for routing. Conventional relevance feedback

techniques are used to weight the expanded queries. Once again, however, the option to choose feedback

approaches on a per-query basis doesn't help significantly, where the choice is based on what worked in the

past for this query.

Massive query expansion also works in general for the ad-hoc experiments, where expansion and weighting

are based on the top initially retrieved documents instead of known relevant documents. In the ad-hoc envi-

ronment this approach may hurt performance for some queries (e.g., those without many relevant documents

in the top retrieved set), but overall proves to be worthwhile with an average 20% improvement.

Incorporating both global and local similarity information in the final ranking is useful, with improve-

ments of 16%. Care needs to be taken, though, both in the definition of a local part of a document (making

all parts equal length helps the weighting task enormously), and in the combination of the local and global

similarity.

SMART is very easily adaptable to at least some foreign languages, even without knowledge of the

languages. Performance of SMART appears to be just as good in the foreign language as in English, though

this is tough to judge.
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Abstract

Information systems usually rank whole docu-

ments to identify which are answers. However, it

may in some circumstances be more appropriate

to rank fragments to identify which documents are

answers. We consider methods of fragmenting

and examine the retrieval effectiveness achieved

by each method.

1 Introduction

Document structure can be used to improve re-

trieved effectiveness.^' When retrieving only ti-

tles or abstracts, document size is highly con-

strained, as is the content, so that each docu-

ment is likely to consider only one topic. Thus

the whole of the document is likely to be equally

relevant to the query. In contrast, a longer docu-

ment such as a technical article or news report is

likely to address several topics.

However, the usual description of a document

as a set of weighted terms can lead to the fine

structure of a document being completely lost,

since the presence a highly relevant fragment will

be obscured by other, irrelevant material. It

is therefore preferable to match the fragments

themselves. This leads to two key problems:

what should the fragments be, and how should

relevance of fragments be used to determine the

relevance of whole documents.

In this paper we consider the first of these

questions, and examine several diff'erent strate-

gies for dividing documents into fragments. Our

conclusion is that the best retrieval is achieved

when fragments are constructed to be of simi-

lar length, and that there may be a small advan-

tage to fragments that are part of a logical unit

such as a section. For the purposes of this dis-

cussion, we take the view that if one fragment of

the document is of interest, the whole document

should be identified as an answer. That is, we

have not considered how information about rel-

evance of fragments could be combined to give

relevance information about documents.

2 Document fragmentation

There have been several proposed methods for

forming fragments. Obvious choices are sen-

tences, paragraphs and pages. The minimum and

maximum size of these fragments is emother fac-

tor that can be explored. Salton and colleagues^'

^

have demonstrated that the use of individual sen-

tences can help determine the relevance of whole

documents. In last yeair's TREC experiments, we

demonstrated that pages of 1,000 bytes are use-

ful fragments for retrieval.^ In order to ensure

that poor breaking of a document did not occur,

Callan^ demonstrated that overlapping of frag-

ments can be successful. We have also investi-

gated the explicit structure that can be provided

in documents by SGML markup. Having frag-

mented using this structure, we investigated how
the similarity of these fragments could be com-

bined v/ith the structural information to deter-

mine the relevance of whole documents,^' ^ with

mixed results.

Innovative strategies have been pursued by

other researchers. Hearst and Plaunt^ have

shown how structure can be discovered and has

advocated queries based on content in context.

Mittendorf and Schauble'* showed how hidden

Markov models can be used to discover passages

that can be used as retrieval fragments.

We compare several approaches: retrieved

based on whole documents; retrieval based on

sentences; retrieval based on paragraphs, of a

range of fixed maximum lengths; retrieval based

on pages, that is, sequences of paragraphs of sim-

ilar length; and retrieval based on sections, of a

range of fixed minimum and maximum lengths.
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3 Experimental design

The database used for these experiments was the

set of 45,820 documents that comprise the Fed-

eral Register (fr) subset of the TREC collection.

This set of documents is a good test-bed as it

shows a wide variation in size, and documents

have an explicit structure, marked up in SGML.
The document collection has 70 million words in

total, and so average document length is about

1,500 words.

In all experiments, the documents were

stemmed but not stopped, and were stored and

retrieved using the MG text retrieval system.^

This system implements a cosine similarity mea-

sure and is returns a ranked list with associated

similarities. The similarity measure is given by

with

"^x,t = l0g(/x,t + 1) • (l0g(iV//t) + 1)

where fx,t is the frequency of t in N is the

number of documents in the collection, and ft is

the number of documents containing t.

In the case of retrieving documents using frag-

ments, the frequency information is based on the

number of fragments containing each term, and a

document's similarity is determined by the simi-

larity of the highest ranked fragment.

The query set for these experiments is the sub-

set of 54 of the TREC topics 51-150 that have rele-

vant FR documents. These topics have the SGML
mark-up removed and are stopped and stemmed.

The standard TREC relevance judgements have

been used. After processing, each query had on

average 90 words.

When dividing documents into sentences, we
only considered sentences within the TEXT or

LP fields. A sentence break was registered by any

of ", ", ".\n", "\n\n", "?", or "!". In the case

of a "."
, there was a check to ensure that the pre-

vious character is not uppercase, to stop initials

or acronyms from causing sentence breaks. Using

this definition, there were 3,780,437 sentences.

To break documents up into paragraphs, an

SGML tag or "\n\n" was taken to represent the

end of a paragraph. Pages are defined to be se-

quences of paragraphs such that each sequence

exceeds, but is is as close as possible to, the re-

quired page size. Using a page size of 1,000 bytes,

there were 367,141 pages.

Documents were split into sections based on

the documents' internal markup. The documents

contained several tags that defined internal struc-

ture. We found that that only the T2 and T3 tags

could be reliably used to indicate a new internal

fragment. Section breaks were defined to be a

blank line, or a line containing only markup, fol-

lowed by a T2 or a T3 tag. This led to a database

of 340,287 sections.

Our experiments investigate the interplay be-

tween size and type of fragment. We have pre-

viously determined that 1,000 bytes produces a

good size for page based retrieval. Maximum
paragraph sizes of 100, 500, 1,000, and 5,000

bytes were investigated. Short paragraphs were

formed by splitting. We also conducted a simi-

lar investigation of section size, testing the effect

of imposing minimum sizes and maximum sizes

separately, and then combined. Minimum sizes

ranged from 100 to 5,000 bytes and maximum
sizes from 500 to 10,000 hytes.

4 Results

Our results are shown in Tables 1 to 4. In each

table we have shown average precision for the

54 queries at Vcirious numbers of documents re-

trieved; thus for example the first column of num-
bers in each table is precision at 5 documents.

Note that if a document had several fragments

with high similarity, then only the highest ranked

one was considered, and in general more than 200

fragments must be ranked in order to find the 200

highest ranked documents.

Table 1 describes the effectiveness of retriev-

ing paragraphs of varying maximum size com-

pared with the baseline of retrieving whole docu-

ments. We also compare division into pages and

sentences.

Table 2 describes the eflfectiveness of retrieving

sections, and then imposing a minimum number
of bytes on the sections. Table 3 shows the results

of applying a maximum. Thus in the first case we

agglomerate sections, in the second case we split

sections.

Table 4 shows the best of the methods to date,

as well as describing the consequences of putting

both minimum and maximum constraints on the

size of sections.

It is worth reiterating that these experiments

are designed to investigate appropriate fragmen-

tation methods for retrieval, not to determine an

appropriate retrieval formula. There has been

no attempt to combine evidence, use structural
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Precision at number of documents-= :

rjxperiment 5
1 A10 15 25 30 50

OAA
200

Documents 0.244 0.228 0.196 0.170 0.147 0.120 0.056

Sentences 0.128 0.092 0.075 0.071 0.063 0.054 0.030

Para-max-100 0.170 A 1 o£; 0.114 0.097 0.078 0.060
A A OA
0.030

1 a.rd-mtix-ouu 0.093 0.080 0.070 0.064 0.056 0.047 0.026

Para-max- 1,000 0.075 0.064 0.059 0.053 0.053 0.043 0.026

Para-ma:x-5,000 0.077 0.063 0.058 0.055 0.054 0.042 0.025

Pages 0.300 0.235 0.206 0.182 0.152 0.117 0.052

Table 1: Comparison of informal fragmentation methods

Precision at number of documents

Experiment 5 10 15 25 30 50 200

Sections 0.137 0.113 0.102 0.096 0.078 0.060 0.037

Section-min-100 0.174 0.144 0.131 0.118 0.094 0.078 0.043

Section-min-500 0.233 0.209 0.183 0.159 0.135 0.111 0.053

Section-min- 1 ,000 0.263 0.217 0.200 0.178 0.148 0.117 0.054

Section-min-5,000 0.252 0.233 0.214 0.181 0.157 0.124 0.055

Table 2: Comparison of section fragmentation with minimum size

information, filter documents against minimum
similarity criteria.

5 Analysis and conclusions

The first set of experiments show that pages are

better units of retrieval than either paragraphs

or sentences. Ensuring that paragraphs are not

too large makes little difference. The paging

method performs significantly better than docu-

ment ranking in the case of precision at at 5 doc-

uments retrieved; but otherwise, although paging

has a numerical advantage, these methods cannot

be separated by the Wilcoxon signed pairs test.

Ensuring that sections are not too small is

clearly beneficial. Even imposing a minimum size

of 5,000 bytes—which is quite large—leads to sig-

nificantly better performance at most levels of re-

trieval. Curiously, ensuring that sections are no

bigger than 1,000 bytes also gives improved re-

trieval performance; however, this improvement

is significant only when retrieving 15 documents,

and performance is not as good as with the other

methods discussed above. It is interesting to com-

pare having a maximum size for sections and a

maximum size for paragraphs: the former gives

better retrieval than the latter at almost all num-

bers of documents retrieved.

A comparison of the best methods shows that

there is no significant difference between page-

level retrieval and section-level retrieval with a

minimum size constraint. Document-level re-

trieval also works well. The significance of these

results is that, for the FR collection, there is only

minimal performance gain to be had by fragment-

ing and using a simple document ranking formula.

However, it is interesting to observe that, using

fragments as a basis for retrieved, the longer rel-

evant documents are more likely to be identified

as answers. That is, use of fragments helps elim-

inate bias in the cosine method against long doc-

uments.

Moreover, in this paper we have concentrated

on appropriate fragmenting schemes for ranking.

There is clearly potential to better exploit this

fine structure. Of particular interest to us is that

the section fragmentation now performs as well

as any other fragmentation method, but provides

the opportunity of using type information, as well

as structural information, in order to improve

document retrieval.
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Precision at number of documents

bxpenment 5 10 15 25 30 50 200

Sections 0.137 0.113 0.102 0.096 0.078 0.060 0.037

Section-max-500 0.159 0.143 0.120 0.110 0.093 0.068 0.033
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Table 3: Comparison of section fragmentation with maximum size

Precision at number of documents

Experiment 5 10 15 25 30 50 200

Documents 0.244 0.228 0.196 0.170 0.147 0.120 0.056

Pages 0.300 0.235 0.206 0.182 0.152 0.117 0.052

Section-min- 1 ,000 0.263 0.217 0.200 0.178 0.148 0.117 0.054

Section-max- 1,000 0.177 0.155 0.141 0.123 0.102 0.075 0.039

Section-1,000-5,000 0.285 0.226 0.200 0.180 0.146 0.117 0.053

Table 4: Comparison of best fragmentation methods

ments described here. We would like to acknowl-

edge the valuable environment of the Multimedia

Database Systems group at the Collaborative In-

formation Technology Research Institute. This

work was supported by the Australian Research

Council and the Centre for Intelligent Decision

Systems.

References

[1] J. Allan, C. Buckley, and G. Salton. Au-

tomatic routing and ad-hoc retrieval using

, SMART: TREC 2. In Proc. Text Retrieval

Conference (TREC), Gaithersburg, Mary-

land, 1994. NIST Special Publication 500-215.

[2] P. Callan. Passage-level evidence in docu-

ment retrieval. In Proc. ACM-SIGIR Inter-

national Conference on Research and Devel-

opment in Information Retrieval, pages 302-

309, Dublin, Ireland, 1994.

[3] M.A. Hearst and C. Plaunt. Subtopic struc-

turing for full-length document access. In

Proc. ACM-SIGIR International Conference

on Research and Development in Information

Retrieval, pages 59-68, Pittsburg, 1993.

[4] E. Mittendorf and P. Schauble. Docu-

ment and passage retrieval based on hidden

markov models. In Proc. ACM-SIGIR Inter-

national Conference on Research and Devel-

opment in Information Retrieval, pages 318-

327, Dublin, Ireland, 1994.

[5] G. Salton, J. Allan, and C. Buckley. Ap-

proaches to passage retrieval in full text infor-

mation systems. In Proc. ACM-SIGIR Inter-

national Conference on Research and Devel-

opment in Information Retrieval, pages 49-

58, Pittsburg, 1993.

[6] R. Wilkinson. Effective retrieval of structured

documents. In Proc. ACM-SIGIR Interna-

tional Conference on Research and Develop-

ment in Information Retrieval, pages 311-

317, DubHn, Ireland, 1994.

[7] I.H. Witten, A. Moffat, and T.C. Bell. Man-

aging gigabytes: Compressing and indexing

documents and images. Van Nostrand Rein-

hold, New York, 1994.

[8] J. Zobel, A. Moffat, R. Wilkinson, and

R. Sacks-Davis. Efficient retrieval of partial

documents. Information Processing & Man-

agement. (To appear).

84



Information Retrieval Systems for

Large Document Collections

Alistair Moffat* Justin Zobel^

Abstract

Practical information retrieval systems must

manage large volumes of data, often divided into

several collections that may be held on separate

machines. Techniques for locating matches to

queries must therefore consider identification of

probable collections as well as identification of

documents that are probable answers. Further-

more, the large amounts of data involved moti-

vates the use of compression, but in a dynamic

environment compression is problematic, because

as new text is added the compression model slowly

becomes inappropriate. In this paper we describe

solutions to both of these problems. We show

that use of centralised blocked indexes can reduce

overall query processing costs in a multi- collection

environment, and that careful application of text

compression techniques allow collections to grow

by several orders of magnitude without recompres-

sion becoming necessary.

1 Introduction

Practical information systems are required to

store many gigabytes of data while supporting

rapid query evaluation. It is common for a single

site to be used as a repository for many separate

collections, either centrally managed or stored on

separate machines; as indeed is evidenced by the

diverse collections in the TREC data. In such en-

vironments queries may be posed to the set of

collections as well as to individuals in the set.

Queries to the joint collection could be re-

solved by having a single centralised index of all
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documents. But such an index inevitably dupli-

cates information held in the index of the indi-

vidual collections, and, even with the low space

requirements possible when the index is stored

compressed,^ may become onerously large if there

are many collections. Moreover, if the centralised

index is large, eiccess to it may become a bottle-

neck in query processing.

Another approach is to provide a centralised

index that does no more than identify which col-

lections are likely to contain matches, so that

queries are resolved by dispatching them to the

hosts of likely collections. Such an approach has

the advantage of distributing query processing

costs, but raises the question of how a collection

can be identified as likely to contain answers. A
possible method would be to index the vocabu-

lary of each collection—equivalently, index each

collection as if it were a single document—with

the expectation that a collection with a highly

ranked vocabulary is likely to contain answers.

However our initial experiments indicated that

there was almost no correlation between vocabu-

lary rank and value of a collection. Similar prob-

lems are presented by querying of information

over Internet, for which a comprehensive search

would be prohibitively expensive.^'

Intermediate between these extremes is the

possibility of the centralised index being to blocks

of fixed numbers of documents, with the expecta-

tion that a highly ranked block is more likely to

contain highly ranked documents than is a lowly

ranked block. We explore such blocking in this

paper, with, for the TREC methodology, ^° mixed

results. It does allow reduction in the size of the

centralised index, but only at the cost of identify-

ing large numbers of false blocks (that is, blocks

that rank highly yet contain no highly ranked

documents). But the TREC experiments are de-

signed to be high recall, and to some extent the
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problems arise because we axe attempting to iden-

tify 1,000 highly ranked documents. When only

a few documents are required, as is typically the

case in ad hoc queries, performance improves.

These experiments have led to some interest-

ing observations. One is that there appears to be

no problem with, for a query, combining similar-

ity values from separate collections, even though

the weights for the query terms vary. Another is

that tiny perturbations in weights can substan-

tially perturb rankings, since even the 1,000'th

document in a ranking often has a similarity value

that, numerically, is greater than 50% of the score

achieved by the top ranked document.

The other problem we have investigated in

the last twelve months is the design of efficient

compression methods for the text stored in dy-

namic collections. Although modifications are

not as likely in text databases as they are in tra-

ditional database systems, it is relatively com-

mon for text collections to be continuously ex-

tended by addition of new data. Compression

techniques for static text databases^ use semi-

static models, computed by initial inspection of

the data and thereafter fixed. Semi-static models

are required because queries retrieve documents

randomly from within collections, and decom-

pression is only practical if all documents have

the same model. New text in a dynamic collec-

tion can also be coded with a semi-static model

computed for the previous data, but compression

performance slowly degrades, and if compression

efficiency is to be maintained the model should

be periodically recomputed and the collection re-

compressed. This may only be necessary each

time the database doubles in size, but for a large

collection this might still be an onerous require-

ment.

To reduce the frequency with which recom-

pression must take place the constraint that all

documents have the same model can be slightly

relaxed. It is mandatory that the codes allocated

to words not change. However if space is left

in the model for new codes, to be allocated to

new words as they appear, then existing codes

can be retained. We have experimented with

such a tandem model of document compression,

in which known words are allocated codewords

based upon their frequency in some initial seed

text, and novel words are also stored in the lexi-

con and are allocated ordinal codes. Introduction

of a "recency" technique then allows collections

to expand by a factor of 1,000 before compression

degradation is evident. For example, a collection

of 100 Mb might be safely allowed to grow to

100 Gb before any significant compression degra-

dation occurs. The details of this system are de-

scribed in full elsewhere;^ below we provide an

overview of the technique and summarise the re-

sults obtained.

2 Indexing of multiple collections

Diverse collections of data can be stored by a sin-

gle information retrieval system, and some infor-

mation needs can span multiple collections. This

is exemplified by the TREC data, the first 2 Gb
of which contains nine distinct collections. Some

queries would properly be directed only a single

collection, such as the more recent set of articles

from the Wall Street Journal. But many informa-

tion needs are dealt with in all of the collections,

as is shown by the relevance judgements for the

TREC topics.

We were interested to explore how multi-

collection queries might be processed if the nine

collections were stored separately. The approach

we considered was use of a centralised index that

could be used to dispatch each query to the sub-

collections most likely to contain relevant an-

swers. The returned similarity values would then

be compiled into a single ranked list. The com-

bined ranking would then be used as a basis for

selecting documents for presentation as answers,

which would be requested from the separate col-

lections. Such an approach has obvious applica-

tion to a distributed system, in which it is desir-

able to minimise processing costs, and might also

be appropriate for more anarchic environments

such as collections at separate nodes on Internet.

The experimental regime was as follows. Each

collection had a separate index, listing for each

word the documents containing the word and the

in-document frequencies. The indexes also stored

word frequencies, to allow computation of inverse

document frequencies in each collection. Thus,

for each collection, similarity values were com-

puted only on the information within each collec-
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tion, and global information was not available. It

was therefore quite possible for a query term to

have high weight in one collection and low weight

in another. The ranking measure used was the

cosine measure with logarithmic in-document fre-

quency,^ that is, similarity of query q and docu-

ment d is given by

where w^.t = log(/x,t -f- 1) • log{N/ft + 1), /x,t

is the frequency of t in x, N is the number of

documents in the collection, and ft is the number

of documents containing t.

There was also a centralised index of blocks of

documents, where the number B of documents

per block was fixed. That is, the words of the

A;th document of a collection were recorded as

occurring in block \k/B] of the collection, and

overall word frequencies were based on the num-

ber of blocks containing each word rather than

the number of containing documents. In such a

regime it is quite possible for a block to contain

a combination of words but for no document in

the block to contain that combination, a prob-

lem that becomes more acute as B is increased.

We refer to a block as a false match if it is highly

ranked but contains no highly ranked documents.

Query evaluation with centralised indexes can

proceed as follows. The centralised index is used

to find the blocks that are highly ranked with

respect to the query. If r answers are required, at

least \r/B] blocks must be identified; but almost

certainly highly ranked blocks will contain some

irrelevant documents, so more than \r/B] blocks

should be fetched. Even fetching r blocks does

not guarantee that the top-ranked documents will

be retrieved, particularly when B is large, since

a highly similar record might have its strength

diluted by occurring in the same block as many

records containing no query terms. Exploration

of the number of blocks that should be fetched is

an important theme of these experiments.

Once the blocks have been ranked, the query

is dispatched to each collection with matching

blocks. The whole of each such collection could

be ranked against the query, so that the purpose

of the centralised index is to heuristically select

a subset of the collections for further query eval-

uation. We instead chose to evaluate a mecha-

nism in which only the documents in matching

blocks were considered, to reduce processing ef-

fort. Each collection c has Tc documents in its

matching blocks; of these the top r similarity val-

ues must be returned to the central processor if

< ^c, or Tc similarity values otherwise. At the

central processor the similarity values from each

collection are merged to produce a single ranking

of as many as ^ Tc answers; of these the top r are

then retrieved from the collections, collated into

rank order, and presented to the user. This four-

stage model of query processing is illustrated in

Figure 1.

Consider the behaviour of the centrally in-

dexed system as B is varied. With B = 1,

the central index is ranking documents directly,

but this ranking is not the same as would be

given by querying the individual collections, as

the \og{N/ft + 1) values will vary between collec-

tions. Simply requesting the top r answers may
omit documents that would be ranked highly in

their collection, so fetching r' > r blocks (each of

one document) may yield better retrieval. Even

if r' = r blocks are ranked, the similarity values

returned by the collections will permute the rank-

ing generated by the central index. Hence, this

is already different from our previous approach

to TREC, in which the nine subcoUections were

treated as a single monolithic whole.

Now suppose B is increased, to say 10. The

size of the central index diminishes, as the num-

ber of blocks containing each word decreases as

does the size of the interblock gaps, which in

turn allows better index compression. But the

new size will still be considerably greater than

10% of the old, because the blocks of 10 docu-

ments contains many more distinct terms than

the old blocks of one document each. The in-

crease in B also increases the possibility of false

block matches, but potentially at least the num-

ber of blocks that needs to be fetched to find r

answers falls, since a matching block can contain

more than one answer. Again, varying r', the

number of blocks considered, controls retrieval

performance. However, since the number of sim-

ilcuity values returned from the collections to the

index will be largely unchanged, overall process-

ing costs at the central index should be substan-
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Figure 1: Architecture of a centrally indexed information retrieval system

tially reduced.

As B is increased further central index size and

central processing costs continue to fall, but with

diminishing returns. Larger blocks imply higher

probability of false block match, so that, even if

the number r' of blocks considered is decreased,

the overall number of documents that must be

ranked increases. We would expect that, for suf-

ficiently large B, effectively the whole of each

collection would have to be ranked to produce

good retrieval effectiveness, somewhat defeating

the purpose of a central index.

Following this thought experiment to the limit,

when B is huge each collection is a single block.

In this case the only benefit of the central in-

dex is that some collections might not need to

be considered, if for example the rankings of the

collections are widely separated. But the likeli-

hood of false collection match seems very high,

and we would expect there to be little benefit to

such coarse level indexing.

Note that we have not in any way supposed

that blocks are constructed according to related-

ness of topic. K blocks consisted of similar doc-

uments then retrieval performance for a given r'

should improve.

3 Experimental results

We have experimented with a centralised in-

dex by regarding the trec data as consisting of

nine separate collections, API, Ap2, doe, frI,

fr2, WSJI, wsj2, ziffI, and ziff2. The cen-

tralised index was implemented by using mg^'^^

to index the TREC data, but with document sepa-

rators deleted to mimic aggregation of documents

into blocks. Thus reindexing wcis required for

each value of B tested. Topics 51-150 were trans-

formed into mg input by removal of stopwords and

SGML markup. The output of each query was

a list of block numbers, which were transformed

into lists of TREC document identifiers by Unix

utilities. We had' already precomputed for each

collection a 10,0Q0-document list of similarity val-

ues for each query; and so final lists of answers

were computed by joining the query output to
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Figure 2: Recall-precision at different block sizes, r = 1,000, topics 51-150

these values. That is, the process of selecting an-

swers from collections was simulated, and while

this gives exact values for retrieval effectiveness,

we can only estimate the CPU time required by

this phase of query evaluation.

As a baseline, we aJso indexed the full TREC

collection in the normal way—that is, as one

monolithic collection—and computed retrieval ef-

fectiveness as an 11-point average assuming that

1,000 documents are returned as answers for each

query. The result (queries 51-150) was an effec-

tiveness of 29.4%.

We then experimented with the retrieval effec-

tiveness achieved for retrieval of 1,000 documents

per query and various values of as shown in

Figure 2. The horizontal axis is the number Br'

of documents considered, that is, B times the

number of blocks identified as highly ranked. For

B = 1, the central index is identical to that of

our baseline, and as can be seen performance

is almost independent of the number of docu-

ments fetched. There is a slight peak around

Br' = 2,000, indicating that there may be a small

advantage to ranking documents as members of

individual (presumably homogeneous) collections

compared to ranking them as members of one het-

erogeneous collection. We would expect such an

effect to be more pronounced over larger numbers

of collections, or sets of collections that are more

diverse.

For higher B, false block match rapidly be-

comes a significant problem. For blocks of 10

records, even fetching 1,000 blocks (that is, Br' =

10,000) results in a loss of retrieval effectiveness.

For B = 1,000, the bulk of the collection must be

processed to achieve good performance.

These problems are to some extent due to the

experimental methodology. The TREC procedure

of fetching 1,000 records is used to ensure high

recall, so that there is some degree of certainty

that most of the relevant documents have been

located. But for ad hoc queries a much smaller

number of answers are typically requested. To

test the performance of a central index in this

context, we have rerun the above experiments but

assuming that only 10 answers are returned for

each query. Results are shown in Figure 3. In

this case the vertical axis records average preci-

sion after 10 documents are retrieved. As can be

seen, there is a similar pattern of performance:

a disproportionately large number of documents

must be processed to achieve good performance

when B is large. However in this case the total

amount of effort required is reduced. For exam-

ple, if a B = 100 index is being used, around 100

blocks and 10,000 documents must be ranked to

achieve performance comparable to that attained

by the B = 1 index examining just 10 blocks.

But, if we equate volume of index inspected with

ranking time, in the latter case all of the central

index must be examined, plus 10/742,OOO'ths of

the document indexes; while in the former case.

89



Blocking Index Size

factor B (Mbyte)

1 127.6

10 63.5

100 26.9

1,000 9.7

Table 1: Size of central inverted index

a central index one fifth the size must be exam-

ined, plus 10,000/742,000'ths of the component

indexes, a net saving in index processing time.

Table 1 shows the sizes of the central indexes

used in these experiments. The nine subcollection

indexes totalled 118.4 Mb.

4 The 1994 experiments

This section summarises the two experimental

runs that were submitted for assessment in 1994.

For both of these runs topics 151-200 were

transformed into queries by removal of SGML
tags, removal of stopwords, and removal of all

non-alphabetic characters. Detailed performance

analysis of these two runs appears elsewhere in

these proceedings.

Run citril

This was our control run, and used a blocksize of

B = 1 and extracted the top r = 1,000 documents

according to the central index and then permuted

them in the final ranking according to their sim-

ilarity to the query using the collection weights.

Based upon the performance when used with top-

ics 51-150, we expected this to give almost identi-

cal behaviour to a ranking based solely upon the

central index, using the global term weights.

Run citri2

In this run a blocksize oi B = 100 was used, and

the top 1,000 blocks were expanded in the collec-

tions for each query. Hence, the final ranking was

the top 1,000 documents—according to the sub-

collection weights—out of the 100,000 documents

contained in the 1,000 most highly ranked blocks

according to the central index. If each block con-

tains on average just one good candidate, overall

retrieval performance should be good.

5 Dynamic text compression

It is attractive to compress the contents of an in-

formation retrieval system.^' With an appropri-

ate choice of coding scheme, such as a semi-static

word-based model with Huffman coding,^' ^'^'^

not only can the space required to store the data

be reduced to under 30% of the original, but

the time required to retrieve data can actually

be reduced because of lower data transfer times

and smaller seek distances on disk. The disad-

vantage of this approach is that if the collection

is dynamic and documents are to be appended

the new text must be compressed with the exist-

ing model, so that the model parameters slowly

become inappropriate and compression perfor-

mance degrades.

To allow coding of any new words at all, it is

necessary to leave probability space in the model.

In the case of Huffmein coding this is equivalent

to explicitly reserving a family of codes for new

words. A straightforward approach is to allocate

a single escape code; a new word is then coded as

an escape followed by some simple representation

such as a length followed by ASCII characters.

However, as the stored text grows such an ap-

proach quickly leads to progressively worse com-

pression; for example, in a newspaper database,

appended text represents a chronological progres-

sion of events, in which new words come into fre-

quent use ("Cherynobyl" is an example in the

Wall Street Journal) and the use of others de-

clines ("Reagan", for example, is now relatively

infrequent).

But given that code space has been reserved,

an arbitrary number of new codes can be allo-

cated, so long as each new code in turn leaves

space for further codes to be added, and provided

that, once assigned, no codeword is ever changed.

Thus new words can, without risk of ambiguity,

be inserted into the lexicon of known words and

allocated a new code. In a sense, two channels

of communication from encoder to decoder can

be used. The first is the conventional stream of

encoded text, as for all compression applications.

The second channel is where we benefit from the
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Figure 3: Precision at different block sizes, r = 10, topics 51-150

specialised nature of this application: it is the

lexicon of terms and codewords assigned, and be-

cause no document can be accessed (and hence

decoded) prior to its insertion, the scheme is ro-

bust.

We have had success with a tandem scheme

on the above principles. In this scheme, a pass is

made over all of the text that is initially available,

a word model computed, and canonical Huffman

codes allocated to the words. The code set also

includes an escape code, calculated upon an es-

timate of the rate at which new words can be

expected to appear. Then for new words an aux-

iliary lexicon is used, in which words are listed

in order of first occurrence an assigned ordinal

codes based upon some unambiguous method for

representing infinitely large integers. During the

compression process words in the primary lexi-

con are coded using their pre-calculated Huffman

codes, while words in the auxiliary lexicon are

coded as the escape code followed by their ordi-

nal number in the auxiliary lexicon. Words novel

even to the auxiliary 'exicon are simply assigned

the next ordinal code and installed, and that or-

dinal code then emitted. In particular, there is no

need for novel words to be "spelt out" to the de-

coder as would be the Ccise in a more conventional

one-channel adaptive compression scheme.

Since any fixed code disadvantages words that

are frequent in the appended documents (which

might far outnumber the seed documents) but

rare in the original seed text, we have added a fur-

ther heuristic to allow the list of auxiliary words

to be self-adjusting within any particular docu-

ment. The codeword assignment must, of neces-

sity, be fixed at the commencement of each docu-

ment. However, once an auxiliary word has been

seen once in a document it is likely that it will

appear again a second time in that document.

To exploit this recency effect we adjusted the or-

dering within the auxiliary lexicon after each use

of it, swapping the word used to the next posi-

tion at the front of the lexicon. This gives im-

proved compression because any infinite encod-

ing of the positive integers must assign arbitrar-

ily long codewords to arbitrarily large integers,

and so small integers must be assigned codewords

of bounded length. Hence, novel words that ap-

pear more than once in any document are usually

coded with a shorter codeword at their second

and subsequent appearances than at their first.

The question then becomes one of selecting a

coding scheme for new words. After experiment-

ing with a variety of codes, we used a variable-

length code parameterised by the size of the ini-

tial lexicon. The combination of all of these

components allows the text to grow by a factor

of 1,000 before compression performance signifi-

cantly degrades, as is illustrated in Table 2, which

shows compression performance on the 508 Mb
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Wall Street Journal (collections wsjl and wsj2).

In this table, the lefthand column is the factor

by which the text has expanded since the model

was computed and the codes allocated; thus, in

the bottom line, the initial text is only about

32 Kb. The second column is the compressed size

achieved, as a percentage of the original size, us-

ing a fixed Huffman code on characters to "spell"

new words at each of their appearances; while the

third column is the compression attained by the

tandem model advocated here. The base com-

pression, corresponding to an expansion factor of

1, is 28.4%.

Expansion Character Tandem

factor Huffman Huffman

(%) (%)

4 29.9 29.4

64 31.3 29.6

1,024 35.5 29.9

16,384 49.2 31.7

Table 2: Compression performance for the Wall

Street Journal for varying initial text size

Decoding using the improved model is still

fast, and it takes around 3-5 milliseconds to de-

compress the typical TREC document of around

3 Kb. This is only a small component of re-

trieval time, which is still dominated by disk ac-

cess and transfer costs. Indeed, the 70% space

saving brought about by compression means that

not only are transfer times less when the data

is compressed, but also that seek times are less.

Figure 4 shows the time, in milliseconds per an-

swer, to randomly retrieve 10 and 1,000 docu-

ments from a compressed and an uncompressed

WSJ database respectively using the mg software.

In each experiment a random list of ordinal doc-

ument identifiers was generated and the system

asked to fetch and present those documents in

document number order, mimicking the effect of

a Boolean query. Each of the points plotted is the

average over 500,000 document retrievals, run on

an otherwise idle machine and against a retrieval

system stored on local disks. As can be seen, the

CPU time required per answer is greater when the

database is compressed, but the elapsed time

—

which includes disk seek and transfer costs—is

less.

Further details of the compression scheme pro-

posed for dynamic collections axe described in the

full paper.

^

6 Conclusions

We have explored two hypotheses during the last

twelve months. The first is that large agglomer-

ations of data such as the trec corpus can be

usefully regarded as a collection of subcollections

without substantial loss of retrieval performance.

As an extension to this, we have also considered

how the separate collections might be managed in
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a distributed environment. Or results are mixed:

effective information retrieval can be carried out

by using a central index to refer queries on to

the appropriate subcollections, but in the trec

framework only at the expense of inspecting a

non-trivial amount of each subcollection. On the

other hand, ad hoc queries involving a small num-

ber of answers can be efficiently partitioned, with

a net saving in work and a useful distribution of

workload.

The second hypothesis explored in 1994 is that

compression can be effectively applied to the text

of dynamic collections just as well as it can to

static. Our results here show that, seeded with

as little as 0.1% of the final WSJ collection, com-

pression results comparable to those attained for

the complete collection can be attained. That

is, compression can be applied to dynamic col-

lections with little need for periodic subsequent

rebuilding of the database.
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Abstract

This paper examines the feasibility of

merging the results of retrieval runs on

separate, autonomous document collec-

tions into an effective combined result. In

particular, we examine two collection fu-

sion techniques that use the results of past

queries to compute the number of docu-

ments to retrieve from each of a set of

subcollections such that the total number

of retrieved documents is equal to N , the

number of documents to be returned to the

user. The fusion techniques are indepen-

dent of the particular weighting schemes,

similarity measures, and retrieval models

used by the component collections.

Our official TREC-3 runs are fusion

runs in which N = 1000; other runs in-

vestigate the effects of varying N . These

results show that the precision averaged

over the 50 queries is within 10% of the

precision of an effective single collection

run for a wide range of values of A'^.

1 Introduction

Data fusion techniques have been used in

information retrieval to improve the effec-

tiveness of a given query by merging the

results produced by different formulations

of the query in the context of a single

database [1, 2, 3, 7]. In this paper, we look

at a different fusion problem — the collec-

tion fusion problem. The goal of a collec-

tion fusion technique is to combine the re-

trieval results from multiple, independent

collections into a single result such that

the effectiveness of the combination ap-

proximates the effectiveness of searching

the entire set of documents as a single col-

lection. Since the collections are assumed

to be independent, the fusion techniques

must cope with arbitrary similarity mea-

sures and weighting schemes.

The TREC environment is an attractive

vehicle for investigating the collection fu-

sion problem for two reasons:

• The TREC collection is composed of

distinct subcoUections that are differ-

ent sizes, cover diverse topics, and

have different retrieval characteris-

tics.

• Other groups participating in the

TREC workshops treat the set of doc-

uments as a single collection. We
can therefore measure how closely the

results of our fusion strategies ap-

proximate effective single- collection

results.

In another report [9], we used the por-

tions of the TREC collection available af-

ter TREC-2 to develop and evaluate the

collection fusion strategies that are de-

scribed here. We show there that for mod-

est numbers of documents to be retrieved

{N < 100), the effectiveness of the fused

result is usually within 10% of the effec-

tiveness of a run in which the entire set

of documents is treated as one collection

(hereafter called a single collection run).
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In TREC-3, we look at larger values of TV,

and, as a consequence, investigate meth-

ods for producing a total ranking in a

fused result. Our olTicial TR.EC-3 runs,

siemsl and siems2, represent the out-

put from the two fusion techniques when

N = 1000. The runs are completely au-

tomatic, ad hoc runs; Siemens did not do

any routing or interactive runs in TREC-3.

The next section of the paper gives a

formal definition of the collection fusion

problem and describes our fusion strate-

gies. The following section compares the

effectiveness of the fused results to a par-

ticular single collection run. The final sec-

tion summarizes our findings.

2 The Collection Fusion Problem

Consider a set of collections each of which

is accessed through its information server.

For a given query Q, each collection / has

a certain number of relevant documents,

denoted by Uq. We assume when the

server for / is presented with Q, it returns

a list of documents sorted by decreasing

similarity to the query. Clearly, the num-

ber of retrieved relevant documents in-

creases as the number of retrieved docu-

ments increases until all Uq relevant docu-

ments are retrieved. We denote the distri-

bution of the relevant documents in the re-

trieved set (i.e., the ranks at which the rel-

evant documents occur) by Fq{S), a func-

tion of the number of retrieved documents

S. The collection fusion problem can now

be formally stated as follows: Given a

query Q, information servers Ii,l2,...Ic

and TV the total number of documents to

be retrieved, find the values of Ai, A2, ...Ac

such that Y.i=i = N and Y.?=i (^^)

is maximum, i.e. the total number of rel-

evant documents retrieved is maximized.

Of course, in practice Fq is not known and

must be approximated.

There are two simple approaches to ap-

proximating the relevant document distri-

butions. One approach is to assume each

collection has as many relevant documents

as the next and the relevant documents are

identically distributed across the servers'

rankings. In this case, retrieving an equal

number of documents from each collection

maximizes the number of relevant docu-

ments retrieved on average. In practice,

this is a poor approximation because the

different collections have different special-

ties and thus do not have equal numbers of

relevant documents. Tests comparing the

effectiveness of this uniform strategy ver-

sus a single collection run using topics 1-

150 demonstrate that the uniform strategy

degrades the single collection performance

by over 40% [9].

The second approach is to assume the

similarity values across collections are

comparable and to select the cut-off lev-

els such that the documents with the

A'^ greatest similarities across all collec-

tions are retrieved. This approach is vi-

able if the similarity measures are indeed

comparable. However, the incorporation

of collection-dependent frequency counts

in the document or query weights (such

as idf weights) invalidates this assump-

tion. This effect, noted by Dumais in her

TREC work [6], is illustrated by the ex-

ample in Figure 1. The example shows

TREC topic 144 and the rankings pro-

duced by each of the five subcollections.

For this query, the top similarities strategy

retrieves only seven relevant documents

when N = 100 while the uniform strategy

retrieves fourteen. The problem is that

both "United Nations" and "organization"

are rare terms in the DOE sub collection,

and thus irrelevant documents that con-

tain these words have a higher similarity

to the query than do the relevant docu-

ments in the AF subcoUection.

Our approach to approximating the rel-

evant document distributions is to learn

them from the results of past queries.

That is, training queries are used to build
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TREC query 144 (abbreviated):

management effectiveness of the United Nations (UN) and related organiza-

tions

Individual collection retrieval results:

AP DOE PR WSJ ZIPP

# rel in top 100 17 0 0 6 0

# rel in top 20 9 0 0 5 0

greatest similarity .1549 .2032 .1235 .2368 .1637

# docs with sim > .1549 0 7 0 6 4

Text of DOE document with greatest similarity:

The relations of the IAEA with the United Nations , with subsidiary

UN organs, with other UN specialized agencies, with intergovernmental

organizations and with non-governmental organizations are briefly described.

Pigure 1: Example in which retrieving the N documents with highest similarities across

subcoUections is very ineffective.

est neighbors of q). We use the vector

space model to compute the similarities

among the queries. The vector space is

built from the set of training queries, and

the nearest neighbors of q are those train-

ing queries that have the highest cosine

similarity with q.

The average relevant document distri-

bution over k queries is computed by tak-

ing the average of the number of relevant

documents retrieved by the set of queries

after each document retrieved. Once the

average relevant document distribution is

computed for the current query for each

collection, the distributions and the total

number of documents to be retrieved are

passed to a maximization procedure. This

procedure finds the cut-off level, A,, for

each collection that maximizes the number

of relevant documents retrieved (the cur-

rent maximization procedure simply does

an exhaustive search). The computed cut-

off levels are the number of documents se

lected from each collection.

models of both the content and the search

behavior of each collection. Once train-

ing is complete, previously unseen queries

are answered by matching the new query's

content to that of the training queries and

using the associated models to compute

the number of documents to retrieve from

each collection.

2.1 Modeling Relevant Document
Distributions

In the relevant document distribution fu-

sion technique, we use the training queries

to explicitly build a model of the distri-

butions of the relevant documents in the

retrieved set of each information server

/, and use the models in a maximization

procedure to obtain the number of doc-

uments to retrieve from each collection.

We model the relevant document distribu-

tion of a query, g, by averaging the rele-

vant document distributions of the k most

similar training queries (i.e., the k near-

97



The union of the top A, documents of

each collection produces a set of retrieved

documents, but does not impose a total or-

der on those documents. (It does produce

a set of partial orders since, by assump-

tion, all of the documents retrieved from

the same server are ordered relative to one

another.) However, a total ordering is nec-

essary to produce ranked output. We im-

pose a total ordering probabilistically. To

select the document for rank r, a collection

is chosen by rolling a C-faced die that is

biased by the number of documents stiU to

be picked from each of the C collections.

The next document from that collection is

placed at rank r and removed from further

consideration. Rankings produced in this

way are guaranteed to respect the partial

orders and give preference to collections

that are the most likely to contain rele-

vant documents. Figure 2 summarizes the

steps of the relevant document distribu-

tion fusion process.

2.2 Query Clustering

The second fusion strategy does not form

an exphcit model of a collection's relevant

document distribution. Instead, the sys-

tem learns a measure of the quality of a

search for a particular topic area on the

collection. The number of documents re-

trieved from a collection for a new query

is proportional to the value of the quality

measure computed for that query.

As in the relevant document distribu-

tion approach, the query clustering fusion

strategy uses query vectors in the vec-

tor space formed from the set of train-

ing queries. Topic areas are represented

as centroids of query clusters. For each

collection, the set of training queries is

clustered using the number of documents

retrieved in common between two queries

as a similarity measure. The assumption

is that if two queries retrieve many docu-

ments in common they are about the same

topic. The centroid of a query cluster is

created by averaging the vectors of the

queries contained within the cluster. This

centroid is the system's representation of

the topic covered by that query cluster.

The training phase also assigns to a

cluster a weight that reflects how effec-

tive queries in the cluster are on that col-

lection. The weight is computed as the

average number of relevant documents re-

trieved by queries in the cluster, where a

document is "retrieved" if it was among

the first L (a parameter of the method)

documents.

After training, queries are processed as

follows. The cluster whose centroid vec-

tor is most similar to the query vector is

selected for the query and the associated

weight is returned. The set of weights

returned by all the collections are used

to apportion the retrieved set such that

when N documents are to be returned and

is the weight returned by collection i,

=^— * N (rounded appropriately) doc-

uments are retrieved from collection i. For

example, assume the total number of doc-

uments to be retrieved is 100, and there

are five collections. If the weights returned

by the collections are 4, 3, 3, 0, 2, then 33

documents would be retrieved from collec-

tion 1, 25 each from collections 2 and 3,

none from collection 4, and 17 from col-

lection 5. However, if the weights returned

were 4, 8, 4, 0, 0 then 25 documents would

be retrieved from each of collections 1 and

3, and 50 documents would be retrieved

from collection 2. The weight of a cluster

for a single collection in isolation is not

meaningful; it is the relative difference in

weights returned by the set of collections

over which the fusion is to be performed

that is important.

As in the previous method, once the

number of documents to be selected from

each collection is determined, a final rank-

ing of the documents must be created. To

investigate the effects of a different rank-
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1 . Build data structures from training queries.

r^'

a collection of M query vectors

2. Predict the number of documents to retrieve from each collection for a new query

the distribution of relevant documents for

each of the M queries for each collection

\

>J3

compute the average distribution of k

nearest neighbors in each collection
use maximization procedure on N
and average distributions to select

collection cut-off levels

form union of top Xc documents from
each collection and assign ranks by
rolling biased c-faced die

Figure 2: The relevant document distribution fusion strategy.

3. Form ranked result for query

"X?
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1 . Build data structures from training queries.

r-1 r-T^i

2^ /

15

set of query clusters per collection

2. Form ranked retrieved set for new query

3

20

centroid vector and quality weight
per cluster

6 k

20
20

15

find closest centroid in each
collection and return
corresponding weight

apportion retrieved
set according to
weights

assign ranks
using round robin

Figure 3: The query clustering fusion strategy.

ing method, for this fusion strategy we

simply chose the documents round-robin

style from each collection that had docu-

ments not yet inserted into the final rank-

ing. While this total ordering also pre-

serves each of the partial orders, it does

not give preference to collections that are

believed to have more relevant documents.

Figure 3 summarizes the steps of the query

clustering fusion strategy.

3 Retrieval results

The fusion results produced for TREC-3
were created using topics 1-150 as train-

ing topics and testing on topics 151-200.

Queries were produced from the topics us-

ing the standard SMART [4] indexing rou-

tines on aU of the fields except the Def-

inition and Summary fields. The docu-

ment set consisted of the documents on

disk volumes one and two. Each of the five

collections on those disks, AP, DOE, FR,

WSJ, and ZIFF, was indexed separately,

again using the standard SMART indexing

routines. The retrieval runs on the com-

ponent collections (that is, both the re-

trieval runs that were used for training and

the runs that produced the rankings to be

fused) used SMART'S "Inc" weights for

the document collections, "Itc" weights

for the queries, and the inner product as

the similarity measure (this is equal to

the cosine of the vectors given the weights

used) [5].

TREC run siemsl was produced by

the relevant document distribution fusion

method. Four nearest neighbors were used

to produce the average relevant document

distributions. The nearest neighbors were

selected using the cosine similarity metric

on term-frequency weighted vectors.

Run siems2 was produced by the query

clustering fusion method. The training
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queries were clustered using the Ward
clustering method [8] with the reciprocal

of the the number of documents retrieved

in common in the top 100 documents as

the distance metric. Final clusters were

formed by cutting the resulting dendro-

gram at a distance of 1. Cluster cen-

troids were created using term-frequency-

weighted vectors produced from the "Con-

cepts" field only. (Since the "Narra-

tive" section of each topic begins with

A relevant document will contain..., using

the Narrative field to build the centroids

caused clusters about document process-

ing to absorb all the queries that were

dissimilar to the other queries.) The pa-

rameter i, the number of documents used

to create the weights associated with each

cluster, was set to 100.

Table 1 shows how the two official

TREC runs compared to the median of

the other TREC submissions. The fusion

techniques were radically different from

the median values for precision after 100

and 1000 documents once: the relevant

document distribution technique on Topic

151 obtained the worst results (5 rele-

vant documents retrieved after 1000 docu-

ments). This topic concerns how inmates

cope with prison overcrowding and is not

very similar to any of topics 1-150. We
did not control for the common phrasing

used in the Narrative section in the rele-

vant document distribution method, and

as a result the four nearest neighbors of

Topic 151 were Topics 65, 63, 35, and 33

which have to do with document process-

ing, machine translation, information re-

trieval and the like. Using these queries to

compute the number of documents to re-

trieve from each collection, the vast major-

ity of the documents returned were from

the ZIFF collection, which, unfortunately,

has no known relevant documents about

prison overcrowding. We hope to elim.-

inate this effect by incorporating inverse

query frequency weights (weighting terms

inversely proportional to the riuinber of

training queries they appear in) when cal-

culating nearest neighbors.

For comparison purposes, we ran

queries 151-200 against a single collec-

tion consisting of aU of the documents on

disks one and two using Inc-ltc weights

and inner product similarity. The non-

interpolated average precision, the average

precision after 1000 document retrieved,

and the total number of retrieved rele-

vant documents for the single collection

run, siemsl, and siems2 is given in Ta-

ble 2. The percentage difference of these

measures for the fused runs over the sin-

gle collection run is also included in the

table. The number of retrieved relevant

documents (and thus the average of the

precision at 1000 documents) for the fused

runs is comparable to the single collection

run, especially for the query clustering fu-

sion run. The non-interpolated average

precision suffers in comparison to the sin-

gle collection run, however, demonstrating

that the single collection run is retrieving

the relevant documents at smaller 'ranks.

Clearly the round-robin method of impos-

ing a total ordering on the final retrieved

set is not very effective. Run siems2 re-

trieved 600 more relevant documents over

the 50 queries than run siemsl, but has a

smaller average precision.

Users are seldom going to want 1000

documents returned in a single reply, so

to be useful the fusion techniques must

approximate the behavior of a single col-

lection run at small ranks. Table 3 gives

the average precision of the single collec-

tion and fused runs when they are evalu-

ated after 10, 30, 100, and 200 documents.

The relevant document distribution fusion

run (siemsl) is within 11% of the single

collection performance at these ranks, but

the query clustering fusion run (siems2)

is stiU harmed by the poor ranking algo-

rithm.

Finally, earlier tests with the fusion
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Rel ret @ 100 Rel ret @ 1000

#<med #=med #>med #<med #=med #>med

Rel doc dist (siemsl) 25 3 22 25 4 21

Query clust (sieins2) 41 2 7 24 5 21

Table 1: Number of queries whose precision after 100 and 1000 documents retrieved

is less than, equal to, or greater than the median precision averaged over all TREC
submissions.

Non-interpolated

average precision

Average

precision at 1000

Total number

relevant retrieved

Single collection

Rel doc dist (siemsl)

Query clust (sienis2)

.2643 —

.2088 -21%

.1873 -29%

.1218 —

.1076 -12%

.1196 -2%

6088 —
5381 -12%

5981 -2%

Table 2: Effectiveness of fused runs compared to single collection run for 1000 docu-

ments retrieved.

Eval at 10 Eval at 30 Eval at 100 Eval at 200

Single collection

Rel doc dist (siemsl)

Query clust (siems2)

.5320 —

.4720 -11%

.3940 -26%

.4707 —

.4187 -11%

.3467 -26%

.3648 —

.3268 -10%

.2820 -23%

.2885 —

.2607 -10%

.2434 -16%

Table 3: Average precision of official TREC runs evaluated at several small ranks.

Eval at 10 Eval at 30 Eval at 100 Eval at 200

Single collection .5320 — .4707 — .3648 " .2885

Rel doc dist, A^ = 10

Query clust, A^ = 10

.4400 -17%

.4760 -11%

Rel doc dist, A^ =: 30

Query clust, A^ = 30

.4320 -19%

.4560 -14%
.4087 -13%

.4247 -10%

Rel doc dist, A^ = 100

Query clust, A^ = 100

.4800 -10%

.4060 -24%
.4320 -8%

.3940 -16%
.3340 -8%

.3392 -7%

Rel doc dist, A^ = 200

Query clust, A^ = 200

.5080 -5%

.4040 -24%
.4287 -9%

.3640 -23%
.3368 -8%

.3226 -12%
.2650 -8%

.2714 -6%

Table 4: Average precision for varying numbers of requested documents.
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techniques suggest that they are more ef-

fective when smaller numbers of docu-

ments are requested [9]. We repeated

the evaluations in Table 3 while varying

N, the number of documents to be re-

trieved by the fusion algorithms (the of-

ficial TREC runs used N = 1000). These

results are given in Table 4. The diagonal

entries in the table eliminate any ranking

effect, and therefore the relative perfor-

mance of the query clustering fusion tech-

nique is better there. The relevant docu-

ment distribution fusion technique needs

to request a moderate number of docu-

ments (100-200) to eliminate spurious ef-

fects caused by the volatility of the rele-

vant document distributions of the train-

ing queries at very small numbers of docu-

ments retrieved. In general, the results in

Table 4 provide evidence that these fusion

techniques can approximate the effective-

ness of a single collection run at the ranks

that will be of interest to most users.

4 Conclusions

Our goal in TREC-3 was to explore the

feasibility of combining the retrieval re-

sults of searches on independent collec-

tions into a single ranked list such that

the effectiveness of the combined result is

comparable to that of a single collection

run. We have described two collection fu-

sion techniques that are able to produce

effective retrieved sets for the TREC-3 ad

hoc queries. These techniques require only

the ranked lists and relevance assessments

of previous queries to produce the final re-

trieved set, and are applicable for a wide

range of number of documents to be re-

trieved.

A user's perception of the quality of

a result is strongly influenced by how

well the documents are ranked, especially

when large number of documents are re-

turned. From the results presented here,

it appears that the fusion techniques se-

lect enough documents from marginally

relevant collections such that round-robin

ranking (taking all documents ranked first

in their respective collection, then all sec-

ond, etc.) is not effective. Ranking doc-

uments by perceived quality of the collec-

tion from which they were drawn is much

more effective.

While these fusion results are encourag-

ing, it remains to be seen to what extent

these results are applicable in retrieval en-

vironments other than TREC. For exam-

ple, as Figure 4 demonstrates, a fusion

strategy that is better than the single col-

lection retrieval method for the TREC-3
ad hoc topics is simply to retrieve N/2
documents from the AP collection and the

remaining N/2 documents from the Wall

Street Journal collection. This method

works well because there is only one topic.

Topic 190, for which the majority of the

relevant documents are not in the com-

bination of those two collections ^. Fur-

ther experimentation is required to deter-

mine if our fusion methods will generalize

to other environments.
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Combination of Multiple Searches

Joseph A. Shaw and Edward A. Fox

Department of Computer Science

Virginia Tech, Blacksburg, VA 24061-0106

Abstract

The TREC-3 project at Virginia Tech focused on meth-

ods for combining the evidence from multiple retrieval

runs and queries to improve retrieval performance over

any single retrieval method or query. The largest im-

provements result from the combination of retrieval

paradigms rather than from the use of multiple simi-

lar queries.

1 Overview

The primary focus of our experiments at Virginia Tech

involved methods of combining the results from various

divergent search schemes and document collections. In

performing our TREC-3 ad-hoc retrieval experiments

on the provided test collections, the results from both

vector and P-norm [3] queries were considered in esti-

mating the similarity for each document in an individ-

ual collection. The results for each collection were then

merged to create a single final set of documents that

would be presented to the user. Our TREC-3 experi-

ments built upon our TREC-2 experiments and focused

more on determining where the improvements in com-

bination were derived from rather than on evaluating

diff"erent combination methods.

2 Index Creation

This section outlines the indexing done with the doc-

ument collections provided by NIST. Each of the indi-

vidual collections was indexed separately as document

vector files; limitations in disk space prohibited the use

of inverted files and the creation of a single combined

document vector file.

All processing was performed on a DECstation
5000/125 with 40 MB of RAM using the 1985 release

of the SMART Information Retrieval System [2], with

enhancements from previous experiments as well as a

new modification for our TREC-2 experiments.

The index files were created from the source text via

the following process. First, the source document text

provided by NIST was passed through a preparser to

convert the SGML-like format to the proper format for

the 1985 version of SMART. The extraneous sections

of the documents were filtered out at this point. The

TEXT sections of the documents, as well as the various

HEADLINE, TITLE, SUMMARY, and ABSTRACT
sections of the collections were indexed; all of the other

sections were ignored. The subsections of the TEXT
fields, where they existed, were considered as part of

the TEXT field, with the subsection delimiters simply

removed.

The resulting filtered text was tokenized, stop words

were deleted using the standard 418 word stop list pro-

vided with SMART, plural removal stemming wcis per-

formed, and the remaining non-noise words were in-

cluded in the term dictionary along with their occur-

rence frequencies. Each term in the dictionary has a

unique identification number. A document vector file

was created during indexing which contains for each

document its unique ID, and a vector of term IDs and

term weights. The SMART ann weighting scheme,

defined as ierm-weighi = 0 .5 -\-
maa-tf pro'^^^ to

be the most effective in our TREC-2 experiments [5]

and was used to evaluate all the queries in our TREC-
3 results. The dictionary size for each collection was

approximately 16 MB, while the document vector files

ranged from 40 MB to 120MB (see Table 1).

3 Retrieval

3.1 Queries

All of the queries were created by the researcher from

the topic descriptions provided by NIST. Two types

of queries were used, P-norm extended boolean queries

and natural language vector queries. A single set of P-

norm queries was created, but was interpreted multiple

times with diff"erent operator weights (P-values), while

two difi"erent sets of vector queries were created from the

topics. The Title, Description and Narrative sections
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Table 1: Collection statistics summary. Text, Dictio-

nary and Document Vector sizes in Megabytes.

Doc. Total

Collection lext Uict. Vectors Docs

AP-1 266 15.8 116.6 84678

DOE-1 190 15.7 95.3 226087

FR-1 258 15.7 50.9 26207

WSJ-1 295 16.0
1 OA A120.4 no'70 c98735

7TPP 1 ZO i iO.O 1 diOU

Dl 1260 N/A 467.1 510887

AP-2 248 15.7 107.1 79923

FR-2 211 15.5 40.1 20108

WSJ-2 255 15.9 101.7 74520

ZIFF-2 188 15.2 60.5 56920

D2 902 N/A 309.4 231471

Total 2162 N/A 776.5 742358

of the topics were used in the creation of all three sets

of queries, while the P-norm query set and one of the

vector query sets also contained a limited amount of

additional terms added from the general knowledge of

the query author to compensate for obvious omissions

in the topic descriptions. The vector query set that

included the addtional terms is referred to as the long

vector query set, for obvious reasons, while the other is

referred to as the short vector query set.

The P-norm queries were written as complex boolean

expressions using AND and OR operators. Phrases

were simulated using AND operators since the queries

were intended only for soft-boolean evaluation. The
query terms were not specifically weighted; uniform op-

erator weights (P-values) of 1.0, 1.5 and 2.0 were used

on different evaluations of the query set.

The five queries used for TREC-3 are similar in struc-

ture to our TREC-2 ad hoc queries, with the exception

that one our TREC-3 vector queries contained terms

that were not present in the topic descriptions, while

the longer of our two TREC-3 vector queries did.

3.2 Individual Retrieval Runs

The two sets of vector queries were evaluated using the

standard cosine correlation similarity method as imple-

mented by SMART. The same SMART ann weight-

ing scheme used for the P-norm queries was used on

the vector queries to simplify the merging of retrieval

results across the various collections. The resulting

similarity values were not based on collection statis-

tics which would have differed for each collection. The
retrieval results for each of the collections were com-

bined by simply merging the results based solely on

Table 2: Summary of the five individual runs.

litle Query Type Similarity Measure

sv Short vector Cosine similarity

LV Long vector Cosine similarity

Pnl.O P-norm P-norm, P = 1.0

Pnl.5 P-norm P-norm, P = 1.5

Pn2.0 P-norm P-norm, P = 2.0

the combined similarity values. Since the retrieval runs

were based on term weights without collection statis-

tics such as inverse document frequency, the similarity

values were directly comparable across collections. The
P-norm queries were evaluated using three different P-

values, again using the SMART ann weighting scheme

based on specific P-norm experiments described below.

The five individual runs are summarized in Table 2, and

are equivalent to our TREC-2 runs with the exceptions

in query construction noted above.

3.3 Combination Retrieval Runs

In TREC-2, our experiments concentrated on methods

of combining runs based on the similarity values of a

document to each query for each of the runs. Addition-

ally, combining the similarities at retrieval time had the

advantage of extra evidence over combining separate re-

sults files since the similarity of every document for each

run was available instead of just the similarities for the

top 1000 documents for each run. We explored several

methods for combining the individual similarity values

and found that simply combining the similarty values in

a linear fashion- summing the similarity values-worked

better than trying to select a given similarity value.

This method of combination, called Comb-SUM in our

TREC-2 report, [5] was used exclusively in our TREC-3
experiments.

4 TREC-3 Results

The procedure described above was used for our offi-

cial TREC-3 ad-hoc results. We submitted two sets of

results: one run labeled VTc5s which used the Comb-
SUM method to combine all five individual runs, as per

our official TREC-2 results, and one run labeled VTc2s

which combined only the short vector query with the

Pnorm query evaluated using a p-value of 1.5. The of-

ficial results are reported in the last column of Table 3,

in the rows labeled for the two runs.

Note that for all the collections the long vector query

set containing terms not included in the topic performed

better than the short vector query set. On a per-query
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Table 3: Average Precision and Exact R-Precision for the five individual runs (Ad-hoc Topics 151-200).

Average non-interpolated Precision

Disk 1 Disk 2 Both
Run AP DOE FR WSJ ZF AP FR WSJ ZF Disks

sv 0.2611 0.0320 0.0397 0.1957 0.0189 0.2355 0.0290 0.1811 0.0461 0.1340

LV 0.3139 0.0536 0.0547 0.2544 0.0459 0.2815 0.0357 0.2313 0.0588 0.1960

Pnl.O 0.3276 0.0852 0.0956 0.3240 0.0582 0.3038 0.0883 0.2840 0.1019 0.2062

Pnl.5 0.3396 0.0812 0.1048 0.3435 0.0599 0.3201 0.0922 0.2915 0.0974 0.2245

Pn2.0 0.3223 0.0758 0.1028 0.3283 0.0651 0.3120 0.0911 0.2894 0.0970 0.2270

VTc5s 0.3822 0.0855 0.1244 0.3866 0.0734 0.3604 0.1013 0.3322 0.1133 0.2914

Chg/Max 12.5% 0% 18.7% 12.5% 12.7% 12.6% 9.8% 14.0% 11.2% 28.4%

VTc2s 0.3944 0.0853 0.1125 0.3915 0.0732 0.3642 0.1005 0.3411 0.1192 0.3021

Chg/Max 16.1% 5.0% 7.3% 14.0% 22.2% 13.8% 9.0% 17.0% 22.4% 34.6%

Exact R- Precision

Disk 1 Disk 2 Both
Run AP DOE FR WSJ ZF AP FR WSJ ZF Disks

SV 0.2996 0.0292 0.0406 0.2263 0.0225 0.2649 0.0217 0.2199 0.0336 0.2058

LV 0.3440 0.0562 0.0504 0.2833 0.0404 0.2907 0.0287 0.2427 0.0415 0.2607

Pnl.O 0.3500 0.0752 0.0903 0.3428 0.0575 0.3087 0.0751 0.2961 0.0799 0.2748

Pnl.5 0.3528 0.0831 0.0944 0.3591 0.0623 0.3261 0.0753 0.3043 0.0867 0.2855

Pn2.0 0.3453 0.0740 0.0968 0.3451 0.0554 0.3236 0.0760 0.3082 0.0900 0.2895

VTc5s 0.3947 0.0853 0.1181 0.3840 0.0633 0.3650 0.0824 0.3470 0.0938 0.3404

Chg/Max 11.9% 2.6% 22.0% 6.9% 1.6% 11.9% 8.4% 12.6% 4.2% 17.6%

VTc2s 0.4082 0.0875 0.1090 0.3938 0.0651 0.3728 0.0712 0.3487 0.0980 0.3538

Chg/Max 15.7% 5.3% 15.5% 9.7% 4.5% 14.3% -5.4% 14.6% 13.0% 23.9%

basis, this held true for 39 of the 50 queries. Fur-

thermore, the pnorm queries built from the long vector

queries performed better on average than both sets of

vector queries, though the improvement over the long

vector query set was slight.

The VTc5s run shows a significant overall improve-

ment over the five individual runs, and on a per query

basis performed better than the best of the individual

runs for 36 of the 50 topics. This matches the results

obtained in our TREC-2 experiments. However, un-

like our TREC-2 exerpiments, the VTc2s^ run combin-

ing only two of the five runs also performed significantly

better than the best of the individual runs, and in fact

performed better than the combination of all five runs

overall and for several of the collections. On a per query

basis, the VTc2s run performed better than the best of

its two component runs for 42 of the 50 topics. How-

ever, the difference in overall performance between the

two combination runs is not significant.

Further experiments involving all the possible com-

binations of two individual runs, as reported in Table 4

reveals further interesting trends. Combining two of

the same type of runs, either both vector queries or two

of the pnorm queries shows little improvement over the

individual runs, and performs worse than the best of

the two runs in many instances. However, combining

one of the two vector queries with one of the pnorm
queries always shows an improvement. This indicates

that the primary source of improvements seen in the

combination runs submitted for TREC-3 derives from

the combination of retrieval paradigms and not simply

from the use of multiple queries. This may be due to the

similarity inherent in the five queries; combining two

queries composed of two widely different sets of query

terms may well result in significant improvements. But

given a single set of query terms, it is still possible to

achieve significant improvements by combining different

retrieval paradigms.
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Table 4: Average Precision for CombSUM runs combining two or three individual runs compared with combining all

five individual runs. (Ad-hoc Topics 151-200).

Average non-interpolated Precision

Disk 1 Disk 2 Both
Run Air UKJUj E L\> wc; Tvv o»j 7.FIjM: A P vv oJ 7F£11: 13isks

SVkJ V n ofii 1U./Di i u.uozu u.uoy / u. iyo 1 u.uioy v.zooo u.uzyu 0 1811U. ioi i 0 04 ft 1U.U4D1 n 1 "^40u . 1 o^u

T,V±J V u.oioy U.UOOD n 9^44 u.uioy n 981 i^iU.ZolO U.UOO 1
0 99 1 •?U.ZoiO 0 oc;a8U.UOoO n 1Q60W . J. i/UU

Pni n U.OZ / D u.uyoD U.oZ^U U.UUOZ U.uUoO u.uooo 0 9840 n 1 ni Q 0 2062

u.ooyo 0 nsi

9

n 1 n4ftU. ±UriO u.uoyy n ^901 0 0Q74U.uy / 4 0 994^

Pn9 0 U.U ( 00 n 1 098 u.ozoo u.uoox n ^1 on n OQi 1u.uy 1

i

0 98Q4 0 0Q70U.uy 1 u 0 2270

SV-LV U.oi / U U.U4 (

0

U.U04U U.zODo U.Uoow u.Uooi 0 91 1 nU.zolU U.Uo 1 1 0.1865

c:v Pni n0 V - 1 11 1 . u n 1 1 "^fiU . 1 lOU U.OI Ort n 0790U.U 1 zu n ^47Q n 1 n7Q 0 '?9fi4U.0ZDI: 0 1 1 7Qu. i 1 1 y 0 989fiu.zozu

VTc2s u.uooo n 1 1 9'=> n "^Qi Piu.oy 10 n 07^9U.U ( oZ n ^R49 U. iUUO 0 'i41 1 0 1 1 Q9u. i lyz 0 3021

SV-Pn2 0 0.3845 0.0831 0.1158 0.3871 0.0736 0.3608 0.0929 0.3351 0.1192 0 3004

LV-Pnl.O 0.3795 0.0903 0.1161 0.3766 0.0723 0.3516 0.0923 0.3296 0.1177 0.2941

LV-Pnl.5 0.3885 0.0844 0.1181 0.3966 0.0775 0.3654 0.0989 0.3429 0.1188 0.3104

LV-Pn2.0 0.3816 0.0823 0.1194 0.3890 0.0767 0.3634 0.0940 0.3395 0.1188 0.3100

Pnl.O-Pnl.5 0.3393 0.0846 0.0998 0.3405 0.0595 0.3191 0.0929 0.2940 0.0989 0.2183

Pnl.0-Pn2.0 0.3415 0.0823 0.1032 0.3449 0.0578 0.3216 0.0940 0.2909 0.0980 0.2236

Pnl.5-Pn2.0 0.3331 0.0797 0.1025 0.3353 0.0605 0.3194 0.0906 0.2916 0.0969 0.2267

SV-LV-Pnl.O 0.3953 0.0883 0.1155 0.3782 0.0751 0.3600 0.0961 0.3379 0.1207 0.3083

SV-LV-Pnl.5 0.4056 0.0841 0.1253 0.3947 0.0767 0.3704 0.0994 0.3488 0.1079 0.3204

SV-LV-Pn2.0 0.4029 0.0819 0.1241 0.3987 0.0706 0.3722 0.0969 0.3490 0.1090 0.3219

VTc5s 0.3822 0.0855 0.1244 0.3866 0.0734 0.3604 0.1013 0.3322 0.1133 0.2914
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1 Introduction

The sequence of TREC conferences has seen the City

University Okapi IR system evolve in several ways. Be-

fore TREC-1 it was a very traditional probabilistic sys-

tem comprising closely integrated search engine and in-

terface, designed for casual use by searchers of biblio-

graphic reference databases.

City at TREC-1

During the course of TREC-1 the low-level search func-

tions were split off into a separate Basic Search System

(BSS) [2], but retrieval and ranking of documents was

still done using the "classical" probabilistic model of

Robertson and Sparck Jones[7] with no account taken

of document length or term frequency within document

or query. Four runs were submitted to NIST for evalu-

ation: automatic ad hoc, automatic routing, manual ad

hoc and manual ad hoc with feedback. The results were

undistinguished, although not among the worst. Of the

ad hoc runs, the manual was better than the automatic

(in which only the CONCEPTS fields of the topics were

used), and feedback appeared beneficial.^

^ We have only recently not iced that our TREC-1 (and proba-

bly also TREC-2) results would have been considerably worse had

it not been that the system at that time could not handle docu-

ments longer than 64K, and so the longest few hxmdred documents

in the database were truncated. The TREC-1 automatic ad hoc

run redone on the full database (with cutoff at 200 documents)

gives an 11-pt average of 0.10 (0.12), precision at 5 documents

0.37 (0.50); and at 30 documents 0.36 (0.42) (TREC-1 results in

parentheses). This appears to be because the simple weighting

scheme tends to favour long documents, particularly PR, few of

which are relevant.

City at TREC-2

For TREC-2 the simple inverse collection frequency

(ICF) term-weighting scheme was elaborated to embody
within-document frequency and document length com-

ponents, as well as within-query frequency, and a large

number of weighting functions were investigated. Be-

cause of hardware failures few of the runs were ready in

time, and City's official results were very poor. How-

ever, later automatic ad hoc and routing results, re-

ported in [4, 5], were similar to the best official results

from other participants. There were also some inconclu-

sive experiments on adding adjacent pairs from the topic

statements, and on automatic query expansion using

the top-weighted terms extracted from the top-ranked

documents from a trial search. Again, there was an

interactive manual ad hoc run with feedback, but the

results were far less good than City's best (unofficial)

automatic run.

TREC-3

The emphasis in TREC-3 has been on

• further refinement of term-weighting functions

• an investigation of run-time passage determination

and searching

• expansion of ad hoc queries by terms extracted

from the top documents retrieved by a trial search

• new methods for choosing query expansion terms

after relevance feedback, now split into:

— methods of ranking terms prior to selection

- subsequent selection procedures

• and the development of a user interface and search

procedure within the new TREC interactive search

framework.
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The two successes have been in query expansion and

in routing term selection. The modified term-weighting

functions and passage retrieval have had small beneficial

effiects. For TREC-3 there were to be topics without the

CONCEPTS fields, which had proved to be by far the

most useful source of query terms. Query expansion,

passage retrieval and the modified weighting functions,

used together, have gone a long way towards compen-

sating for this loss.

2 The system

Software

The Okapi software used for TREC-3 was similar to

that used in previous TRECs, comprising a low level ba-

sic search system (BSS) and a user interface for the man-

ual search experiments (section 7), together with data

conversion and inversion utilities. There were also vari-

ous scripts and programs for generating query terms,

running batches of trials and performing evaluation.

The main code is written in C, with additional material

in awk and perl. The evaluation program is from Chris

Buckley at Cornell.

Hardware

A single-processor Sun SSIO with 64 MB of core and

about 12 GB of disk was used as the main development

machine and file server. Batch processing was also done

on two other Suns, a 4/330 with 40 MB and an IPX with

16. The SSIO is considerably faster than machines used

for previous TRECs, particularly on disk I/O; this was

important because the search-time passage determina-

tion procedure (section 4) was very greedy. In contrast

to TREC-2, this time there were no very serious hard-

ware problems.

Databases

Two databases were used: disks 1 & 2, and disk 3. In

TRECs 1 and 2 all line and paragraph information was

discarded. This time paragraph information had to be

retained, and both for this reason and to improve read-

ability for users of the interactive system most of the

formatting of the source data was kept. (Some refor-

matting was done on the long lines of disk 1 WSJ.)

A 3-field structure was used, common to all source

datasets. The first field was always the DOCNO and

the third field contained all the searchable text, mainly

the TEXT portions but also headline or title-like mate-

rial for some datasets and documents. The second field

was unindexed (and unsearchable) and so only (possi-

bly) useful for display to users of the interactive system.

It was empty except in the case of SJM, when it con-

tained the DESCRIPT field; and the Ziff JOURNAL,
AUTHOR and DESCRIPTORS fields.

3 Probabilistic model and basic

procedures

3.1 Some notation

A'': Number of items (documents) in the col-

lection

n: Collection frequency: number of items con-

taining a specific term

R: Number of items known to be relevant to a

specific topic

r: Number of these containing the term

if: Frequency of occurrence of the term within

a specific document

qtf: Frequency of occurrence of the term

within a specific query

dl: Document length (arbitrary units)

avdl: Average document length

BMxx: Best-match weighting function imple-

mented in Okapi (see below)

ki,b: Constants used in various BM functions

(see below)

3.2 Weight functions

As in previous TRECs, the weighting functions used are

based on the Robertson-Sparck Jones weight [7]:

w (1) log
{r + 0.5)/iR-r + 0.5)

{n-r + 0.5)/(Ar -n-R+r + 0.5)
, (1)

which reduces to an inverse collection frequency weight

without relevance information (R = r = 0). This is the

BMl function used in TREC-1.
In TREC-2 and the work that followed [4, 5, 6], we

demonstrated the effectiveness of the following two func-

tions:

W — S1S3 X
^/ -„(i) -X ' X

and x nq
[avdl — dl)

{avdl -f- dl)
(BM15)

W — S1S3 X X w(^) X

and k2 x nq
(avdl — dl)

(avdl + dl)
(BMll)

Si are scaling constants related to ki (see [6]). nq is

the number of query terms, and the "and" in front of '

the last component indicates that this document length
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correction factor is "global" : it is added at the end, after

the weights for the individual terms have been summed,
and is independent of which terms match.

In the course of investigating variant functions for

TREC-3, we in effect combined BMll and BM15 into

a single function BM25, which allowed for a number

of variations. The term frequency component is imple-

mented as

+ if ^
'

with K = ki{{l - 6) + 6^). Thus if c = 1, 6 = 1 gives

BMll and 6 = 0 gives BM15; different values of h give

a mix of the two. The basis for BMll was one of two

possible models of document length (the "verbosity" hy-

pothesis, [4]) which might be expected to exaggerate the

document length effect; this is the justification for con-

sidering the mix.

A formula like equation 2, with c > 1, was suggested

in [4], to give an s-shape to the function, as under some

conditions the 2-Poisson model generates such a shape.

Examination of a number of such curves generated by

the 2-Poisson model suggested that c was related to K,

and the formula c — \ -\- inK , m > 0 was used in the

experiments (in the event, m was largely ignored: see

below). A scaling factor si = fci -)- 1 was used, and the

"global" document length correction was included. Also

S3 = ks + 1 was used, and where ^3 is given as 00, the

factor 53 X qtfj{ks -\- qtf) is implemented as qtf on its

own.

BM25 is referred to as BM25(ibi, k2, kz, h). It is always

to be assumed that m — ^ unless stated.

The modified weight function seems able to give

slightly improved results, at the cost of another param-

eter to be guessed. Non-zero m was not helpful. 6 < 1

can give some improvement. Values around 0.75 were

usually used, sometimes with a higher ki than for BMll.
Evaluation results for BM25 with various parameter val-

ues are not explicitly given in this paper.

3.3 Term ordering for feedback

In query expansion after relevance feedback in Okapi,

terms from the relevant items are ranked according to

some selection value which is intended to measure how
useful they would be if added to the query. The for-

mula usually used for this purpose (and in particular,

the one used in TREC-1 and TREC-2) is the Robert-

son Selection Value (RSV), based on the argument in

[8]. The formula given in that reference is w{jp — q)

where w is the weight to be assigned to the term, p is

the probability of the term occurring in a relevant doc-

ument, and q is the probability that it occurs in a non-

relevant document. For RSV, w is interpreted as the

usual Robertson-Sparck Jones relevance weight w^^\ p
is estimated as r/R, and q is assumed to be negligible.

Given that the weighting function is now more com-

plex, it seemed appropriate to consider some alternative

interpretations. In particular, since within-document

term frequency now figures in the weighting function, it

should probably be part of the selection value (a good

term is not just one which tends to occur in relevant doc-

uments, but one which tends to occur more frequently

in relevant than in non-relevant documents). Although

it is no longer obvious how to interpret the iv in the

w{p — q) formula (since there is no longer a single weight

for the term), a possible measure would keep the w as

before, but reward terms that occur frequently in rel-

evant documents by replacing r/R by X^reldocs I

^

rtf/R. This formula is referred to below as RSV2.

RSV2 seems to assume that the weight is a linear

function of if, as it would be with large k^. However,

as we have found that a smaller value of ki gives better

performance, it seems likely that RSV2 is over-valuing

large if values. So we have also tried the (unweighted)

average of RSV and RSV2, referred to as ARSV. Also,

following earlier work by Efthimiadis [9] , we have tried

using r on its own as a selection value (referred to as

the r criterion).

In the event, RSV2 and ARSV have not shown any

advantage over RSV. The r criterion appears less good

than the others.

In the past, this ranking of terms has been used to

select the top n terms, where n is fixed (TREC-1) or

variable between topics (TREC-2) (see section 6). Fur-

ther development of these ideas, together with some re-

sults from early runs for TREC-3, suggested a more

elaborate, stepwise term selection procedure.

3.4 Term selection and optimization

Theoretically, an alternative to term selection based on

a ranking method such as those just described would

be to try every possible combination of terms on train-

ing set, and use some performance evaluation meaisure

to determine which combination is best. This is almost

certainly not a practical proposition, but we have at-

tempted a small step towards such optimization.

The principle was to take the terms in one of the

rank orders indicated, and then to make a select/reject

decision on each term in turn. This decision was based

on one of the standard evaluation measures applied to

the resulting retrieval: that is, a term was selected if its

inclusion improved performance over that achieved at

the previous step.

Although such a procedure is likely to be computa-

tionally heavy, it is not out of the question for a routing

task. Full details of the procedure adopted are given in

section 6.

\
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4 Passage determination and
searching

Some TREC participants have experimented with pas-

sage retrieval (e.g. [10]), with some success. In much

previous passage retrieval work, however, passages are

prespecified. The object of the City experiment de-

scribed here was to investigate search-time determina-

tion of "good" passage(s) in each document by exam-

ining all, or many, of the possible sequences of text

"atoms" (paragraphs, for example, or sentences).

There are at least three ways one could consider using

passage retrieval.

• The retrieval status value of a whole document may
be based on the score(s) of its best subdocument(s).

• In interactive searching the user could be presented

(initially, or on request) with the best portions of

a long document.

• In relevance feedback only the good portions need

be used for feedback.

Only the first of these three uses has been tried in the

present experiments.

Since the number of passages is nearly proportional to

the square of the number A of text atoms in a document

(and the total time to weight all passages is of order

unless the code is very carefully optimized^), it is not

practical to use atoms which are too short in compari-

son with the length of a document. It was decided that

the TREC atom should be a paragraph.^ The Okapi

database model Wcis modified to incorporate paragraph

and sentence information, and the TREC source disks

reconverted in conformity with the new model. Para-

graph identification was algorithmic, using indentation

and/or blank lines in the source. Some of the more elab-

orate text structures, some of the FR documents for ex-

ample, were not very accurately parsed; also, one-line

paragraphs tended to become joined to the succeeding

paragraph. Paragraph information for a document in-

cluded length and offset, and the number of sentences

in each paragraph. The mean length of a paragraph

turned out to be not much more than 230 characters,

with about 11 paragraphs in an average document and

mean document length 2600 for both databases.

With this information it becomes possible to search

any passage or sub-document which consists of an in-

tegral number of consecutive paragraphs. The system

was set up so that the following could be varied:

• minimum number of atoms (paragraphs) in a pas-

sage (default 1)

^If a maximum passage length is set this becomes
''The document with the most paragraphs is probably

FR89119-0111, with about 8700. This can make about 3.9 X lO''

passages 'of mean length 4350 paragraphs.

• maximum number of atoms in a passage (default

20)

• number of atoms to "step" between passages (de-

fault 1).

• the weight functions depend on a notional "average

document length" avdl\ the true avdl (about 2600)

is far too high for true weighting of short passages,

so this parameter was sometimes reduced for the

weighting of proper subdocuments only.

So as to avoid "passaging" documents with little chance

of attaining a best passage weight in the top 1000, the

first passage considered was the whole document. If this

failed to come up to a certain threshold weight no fur-

ther processing was done. By experiment, it was found

that this threshold could be set to the weight of the

10000th whole document, where this was known, with-

out losing more than a very small number of long docu-

ments with a good passage embedded somewhere. This

reduced the number of documents considered by a factor

of ten or more at the cost of a preliminary "straight"

search for each topic. Finally, as a safety measure, it

was also possible to set a maximum number of passages

to be considered for a document. This was sometimes

used, and it may have affected the final weights of up

to about a dozen documents for some topics and condi-

tions.

Results

A very large number of trials were done using topics

101-150 on the complete disk 1 & 2 database, first on

single topics, then on topics 101-110, and finally on 101-

150. Looking at individual documents suggested that

the procedure behaved sensibly, but it proved difficult

to obtain more than a small improvement over whole-

document searching. Table 1 summarizes some results;

see also table 3 for the effect of passage searching in

combination with query expansion and table 7 for rout-

ing results. A minimum passage length of four para-

graphs was a good compromise between speed and per-

formance. Neither unlimited maximum passage length

nor a fine granularity or large overlap gave more than a

minimal improvement.^

In conjunction with query expansion, however, the

improvement was considerably greater (see Section 5

and Table 3); it is not at all obvious why this should be

so. For all the passage retrieval results given, the doc-

ument weight was taken as the maximum of the weight

of the best proper subdocument and the weight of the

whole document.^ We also tried linear combinations of

^In interactive searching it is unlikely that users would benefit

from being offered passages longer than two or three screens.

^ Where a maximum passage length has been set the whole

docimientmay not have been considered in the passage weighting.
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Table 1: Automatic ad hoc results, passage retrieval, unexpanded queries: topics 151-200 TND only, disks 1 & 2

Passage

min step max aval Aver r 0 i oU T> 1 AA
1 iUU rt-r rec Kcl

1

1 1
o
8 loUU u.o4y fx 'Ton

U. ( zU n c ov A HOT0.437
r\ o no0.398

r\ vA 1U.7Ui

4 I
A
4 ioUU U.o4d n Ton

U. ( zU A O CU.OOD A y1 0 A0.439 A 0 A 10.391 A AOU.d9z

4 2 4 oonn n Q /I c;U.o40 U. ( zU A COOU.ooz A AO O A OAO0.392 A ^AC

A
4 4 4 1 afinioUU U.o44 U. ( z4 A COO A AO'70.437 A O O ^3 A ^ A 1U.d91
A
4 0 12 1 onnIoUU U.o4o n von

U. ( zU A C 0 C A A AdU.44U A 0AOU.oyz A ^JAOU.byz

4 2 20 1800 0.345 0.716 0.585 0.440 u.oyz u.uyz

4 2 24 1800 0.344 0.716 0.584 0.440 u.oyz u.uyz

8 4 24 1800 0.342 0.728 0.589 0.434 0.387 0.687

8 4 8 1800 0.342 0.728 0.590 0.434 0.387 0.688

Non-passage result for comparison (official ci tya2)

none 0.337 0.732 0.590 0.431 0.382 0.681

All runs BM25(2.0, 0.0, oo, 0.75)

best passage weight and document weight (as reported

also in [10]); the best results from this were similar to

those in Table 1, but achieved with different parameters.

5 Query expansion without rel-

evance information

One of the experiments we did for the Tllli)C-2 ad hoc

was to attempt query expansion or modification with-

out precise relevance information [4]. Query modifica-

tion was done by reweighting the original query terms

extracted from the topic statement on the basis of their

distribution in the top-ranked documents retrieved in

a trial search. There were no positive results from

reweighting. For query expansion, the top documents

from the trial search were used as the sole source of

terms. Terms were selected in RSV sequence, with a

limit on the number of non-topic terms. Any selected

topic terms which occurred more than once in the topic

statement were given a query term frequency compo-

nent, with a value of 8 for ^3 (section 3.2).

A possibly-similar procedure appears to have been

used with some success by at least one other TREC
participant [11], but our best TREC-2 results showed

only marginal and probably not significant improvement

over the best from unmodified queries. Nevertheless,

spurred by the relatively poor ad hoc results from topics

with no CONCEPTS field, we decided to give it another

try for TREC-3. This was unexpectedly successful.

Even if it has been considered, it may have been weighted with

an avdl less than the true average document length, so the weight

of the whole document considered as a passage may be less than

its weight considered as a document.

Trial search and term selection

For all runs the trial search used the TITLE, NAR-
RATIVE and DESCRIPTION fields of the topics with

BM25(2.0, 0,00, 0.75). The top R documents were out-

put and all terms other than stop and semi-stop terms

extracted. These were F4-weighted on the basis of their

occurrence in r of the R documents and the query term

frequency adjustment applied. The resulting weight was

multiplied by r/R to give an RSV value. The top T
terms were then selected from the RSV-ordered list, sub-

ject to RSV > 0 and r > 5. Table 2 shows an example.

(Table 4 illustrates a routing query for the same topic.)

Query expansion results

Table 3 gives a selection of ad hoc results. The offi-

cial citya2 run is included for comparison: this used the

same weighting method as cityal but without expansion

or passage-searching. Cityal did better than citya2 on

35 of the topics. The results are fairly flat around 20-

30 feedback documents and maxima of 20-40 additional

terms. Passage searching impi'oves results noticeably.

6 Automatic routing

Query term sources and weights

As in previous TRECs, for the official runs we used all

the known relevant documents in the training collec-

tion (disks 1 &; 2) as the sole source of query terms,

ignoring the topic statements. After the official runs

we repeated some runs restricting the term source to

the subset of the officially relevant documents which

appeared in the top 1000 documents retrieved by an

ad hoc search. There have also been some experiments

in which terms extracted from relevant documents have
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Table 2: Topic 120
,
query expansion without relevance information: top 20 terms, R = 30, k3 — 8

term source n r wt RSV
terror tit 6 8375 28 386 360

intern tit 4 103519 25 144 120

privat nar 3 37425 14 98 46

bomb doc u 9dd4 15 62 31

government. .

.

nar i 111616 z3 40 O 1
31

threat doc
r\

u 15433 15 56 28

attacK doc A
U /D044 lb A n 25

state doc
n
U

1 O O O C 1138351 35 26

militari doc 0 ooolU 16 46 25

countri doc U / zUoD ly A C\ z5

act nar 1 73037 19 40 25

offici doc 0 117653 21 36 25

group doc 0 124078 21 35 25

america. .

.

doc 0 102703 20 36 24

consequ nar 3 14062 7 98 23

libya doc 0 1760 9 75 23

counterterror doc 0 148 6 104 21

sponsor doc 0 12950 12 53 21

iran. .

.

doc 0 13455 12 52 21

econom tit 3 64882 10 59 20

Doc" means term does not occur in the topic statement.

Table 3: Automatic ad hoc results, query expansion without relevance information: topics 151-200, disks 1 &; 2

Feedback Mean
docs max terms r passages terms AveP P5 P30 PlOO R-Prec Rcl

30 40 > 4 Igth 1-8 51 0.401 0.752 0.617 0.478 0.421 0.741

30 40 > 4 Igth 4-24 by 1 51 0.401 0.740 0.625 0.476 0.422 0.739

(the above row is the official cityal)

20 40 > 4 none 47 0.389 0.768 0.620 0.473 0.418 0.723

30 40 > 4 none 51 0.388 0.752 0.615 0.471 0.410 0.725

20 .20 > 4 none 32 0.381 0.760 0.606 0.464 0.409 0.720

100 50 > 4 none 67 0.361 0.680 0.575 0.453 0.389 0.706

100 50 > 9 none 63 0.359 0.676 0.569 0.452 0.387 0.705

Unexpanded run for comparison (official citya2)

0 0 none 34 0.337 0.732 0.590 0.431 0.382 0.681

All runs BM25(2.0,0.0,8,0.75).
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been given additional weight if they occurred twice or

more in the topic statement.

All non-stop and non-semi-stop terms were ex-

tracted, and given the normal w^^^ weights (equation

1). Where a bonus was given for terms which occurred

more than once in the topic statement this was done

by multiplying the w^^^ weight by {ks -\- ^) i-X^qtf
(^^^

section 3).

Term ordering

Potential terms were first ordered according to some cri-

terion based on their occurrence in relevant and nonrel-

evant documents and in the collection as a whole. The
four criteria tried are described in section 3.3.

Obviously, for most topics there was a very large num-
ber of potential query terms. In previous TRECs we

tried two methods for term selection from the ordered

termlists. Both involved selecting the top T terms; ei-

ther T was the same for all topics, or a value was chosen

for each topic. Retrospective runs were done in which

T was varied, from 3 upwards. Not surprisingly it was

found that better results were obtained by choosing the

best value for each topic, rather than the single value

which gave the best average precision (for example) over

all topics (see Table 4 in [4]). The former method (T

optimized for each topic) was used for the cityr2 run in

TREC-3 (Table 6), where T is between 3 and 100.

Table 4 illustrates the observation that, for a given

topic, performance generally does not vary smoothly

with the number of terms. This is part of the motivation

for trying to discover more effective term ordering crite-

ria. But the figures in Table 5 suggest that there is not

much to choose between the criteria, at least when the

same number of terms is used for each query. Further,

when the same number of terms is used for each topic,

there is very little difference in the averaged results as

T increases from about 15 to 100 or more.

Table 6 shows that retrospective results can be im-

proved by "individualizing" the number of terms se-

lected for each topic.

"Optimizing" the queries

Since none of the term ordering criteria seems partic-

ularly effective, being swamped by the vagaries of in-

dividual terms in individual topics, it was decided to

try some approach to the optimization of the term set

for each topic with respect to some retrospective eval-

uation statistic, specifically a stepwise select-or-reject

procedure as discussed in section 3.4. The procedure

evolved after a number of informal trials (specifically to

ensure that it would run in reasonable time, say an hour

or two per topic) was as follows:

• termweights were not varied

• the top three terms were used, unconditionally, to

start building the termset

• terms were considered one at a time, with no back-

tracking, in the sequence given by one of the order-

ing criteria

• after the first three terms, each successive term was

added to the query and the query run (with a cut-

off of 1000 documents) and evaluated against the

training set; if the evaluation result satisfied some
acceptance criterion relative to the result of the pre-

vious iteration the new term was retained, other-

wise it was rejected

• the procedure ran until some stopping rule was sat-

isfied (see below).

The stopping rule was triggered when one of the follow-

ing conditions was satisfied:

• the number of terms in the set reached maxterms

• maxbad successive terms had been rejected

• the lasttermth term had been considered

• elapsed time exceeded maxtime

Acceptance criteria tried were increeises in average pre-

cision or r-precision or recall. The most successful runs

used average precision, with ties resolved on r-precision.

Recall gave much more variability between topics, do-

ing well on some and spectacularly badly on others.

maxterms was initially set at 20, but since a majority

of queries came out with the full 20 terms some later

runs were done using a value of 30. Maxbad was al-

ways 8. lastterm was set so high (150) that it never

caused the stopping rule to be triggered. Maxtime de-

pended on the machine (and the time available), usually

one or two hours per topic, although some runs with

maxterms — 30 were given a higher value.

Automatic routing results

The "optimized" queries are much better than the other

two types. Predictive and a few retrospective results

for optimized queries are shown in Table 7. The pro-

cedure is computationally very demanding, sometimes

taking several hours to produce a query on a Sun SSIO

(excluding the time to extract and weight terms from

the relevant documnets). At the time of writing work

is in progress on a more efficient and perhaps sounder

method of optimization, but no experiments have been

done yet. The figures also suggest that there may be lit-

tle difference in effectiveness between three of the four

term-ordering criteria, but that the r criterion is less

good.
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Table 4: Topic 120, query terms extracted from relevant documents: effect of adding successive terms in ARSV order

Terms wt ARSV AveP P5 P30 P 100 R- Free Rcl

terror 140 381

a 1 r J iTipCLii. llllC 55 139

secure 37 134 n 068 0 .200 n 1
'\'\ 0 .120 0 .126 n .ouo

46 81 n 102 0 .400 n 0 .160 0 168 568

travel 48 71 0 126 0 .600 0 .267 0 .200 0 210 0 .632

intern 44 67 0 152 0 .600 0 300 0 .190 0 200 0 .674

air 32 66 n 1 SO 0 .400 n 333 0 200 0 200 n 579

iran. .

.

54 65 n 1 '^9 0 .600 0 '^67OU t 0 230 0 242 0u 649

forei fn 37 65 n 0 .400 n ouu 0 220 0 232 n

america. 35 65 n 0 .400 n 333 0 230 0 242 nu

libya 74 64

bomb 59 56 0 125 0 400 0 233 0 190 0 190 0 653

flight 53 54

faa 50 53

passeng 58 53 0 102 0 400 0 233 0 230 0 232 0 611

pan 65 51

airport. .

.

51 48

aviat 50 46 0 067 0 400 0 167 0 160 0 168 0 505

libyan 77 44

europ. .

.

39 42 0 088 0 400 0 200 0 180 0 179 0 579

(25 terms) 0 087 0 400 0 200 0 170 0 179 0 579

(30 terms) 0 088 0 400 0 133 0 190 0 200 0 579

(40 terms) 0 104 0 200 0 233 0 240 0 242 0 547

(50 terms) 0 117 0 400 0 267 0 220 0 232 0 600

(60 terms) 0 141 0 400 0 367 0 260 0 274 0 547

(75 terms) 0 121 0 600 0 300 0 210 0 221 0 537

(100 terms) 0 112 0 600 0 300 0 190 0 190 0 516

(125 terms) 0 129 0 600 0 300 0 220 0 210 0 526

(150 terms) 0 010 0 000 0 033 0 030 0 032 0 305
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Table 5: Best routing results (retrospective) with same number of query terms for all topics

# terms Criterion AveP P5 P30 PlOO R-Prec Rcl

18 RSV2 0.347 0.740 0.643 0.498 0.393 0.684

20 RSV2 0.351 0.724 0.656 0.497 0.398 0.681

30 RSV2 0.347 0.776 0.647 0.496 0.399 0.669

40 RSV2 0.353 0.756 0.653 0.510 0.400 0.674

50 RSV2 0.355 0.756 0.652 0.515 0.402 0.670

60 RSV2 0.356 0.764 0.655 0.516 0.400 0.667

75 RSV2 0.354 0.788 0.652 0.514 0.400 0.661

100 RSV2 0.346 0.788 0.651 0.509 0.394 0.652

40 RSV 0.351 0.780 0.655 0.511 0.396 0.669

50 RSV 0.356 0.784 0.667 0.516 0.397 0.668

60 RSV 0.354 0.800 0.654 0.513 0.395 0.664

75 RSV 0.350 0.824 0.663 0.510 0.393 0.657

15 ARSV 0.352 0.772 0.641 0.499 0.392 0.697

18 ARSV 0.346 0.724 0.630 0.497 0.398 0.684

20 ARSV 0.349 0.732 0.642 0.498 0.399 0.684

30 ARSV 0.346 0.756 0.655 0.498 0.397 0.666

40 ARSV 0.355 0.760 0.658 0.513 0.403 0.672

50 ARSV 0.354 0.752 0.649 0.513 0.397 0.670

60 ARSV 0.355 0.780 0.660 0.515 0.401 0.666

75 ARSV 0.355 0.800 0.659 0.511 0.399 0.660

Table 6: Best routing results using top T terms, T chosen to maximize AveP for a topic

Criterion AveP P5 P30 PlOO R-Prec Rcl

Predictive

ARSV 0.371 0.660 0.584 0.457 0.393 0.752

RSV2 0.363 0.704 0.578 0.447 0.388 0.744

RSV 0.362 0.648 0.553 0.451 0.392 0.747

(the above row is the official cityr2 run)

Retrospective

RSV2 0.414 0.848 0.719 0.560 0.445 0.724

ARSV 0.410 0.840 0.715 0.561 0.442 0.723

RSV 0.409 0.856 0.707 0.562 0.441 0.719
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Maxterms - 30 gives better results than maxterms =
20, and possibly a further small improvement might

be obtained by setting maxterms still higher. A
small topic term weight bonus (^3 > 0) appears

to be beneficial. There was little difference between

the weighting functions 5M25(2.0, 0.0, -, 0.75) and

5M25(0.8,-1.0,-,1.0) (=5M11) (not shown in the

table). Passage searching improves the results still fur-

ther. Perhaps more interestingly, reducing the amount

of training information by about 25% by using only the

relevant records retrieved by one of the better ad hoc

methods does not affect the results as much as might

be expected; looking at individual topics, a few do sub-

stantially worse but some actually produce better re-

sults than with the full relevant set. (These are the

rows marked "own rels" in table 7.)

7 Interactive routing

In comparison with TREC 1 and 2 where interactive

searching was undertaken for ad hoc queries, TREC-3
routing queries constituted quite a different task and re-

quired different experimental conditions. The searchers

were members of the City Okapi research team, who

played the role of intermediaries. The official relevance

judgements for the training document set served to sim-

ulate end-user relevance judgements in a realistic rout-

ing task.

The Appendix gives a factual description of the inter-

active system itself, the experimental conditions and the

search process, as an addendum to the official system

description provided elsewhere in these proceedings.^

7.1 The task and interactive process

The aim of the exercise was to generate an optimal

query based on (a) information given with the top-

ics (i.e. narrative, concepts and descriptions), and

(b) terms extracted from relevant documents. The
searchers made their own relevance judgements whilst

interacting with the system using knowledge about the

official relevance judgements. The interface was de-

signed to facilitate query formulation rather than the

creation of a set of relevant documents and searchers

made use of the different information presented dur-

ing the interaction to meet that end. One major im-

provement was that they no longer felt inhibited about

examining documents at any stage in the search pro-

cess, as they had previously under the 'frozen ranks'

regime. A second was the ability to treat phrases as

search terms, which were weighted as single terms and

retained throughout the search, provided the relative

®The weighting function used in the interactive system was

BMll, as this was the best available at the time that system was
implemented.

weights were high enough. Thirdly, searchers were able

to remove terms from term sets produced by automatic

query expansion in order to eliminate 'noise' in the sys-

tem generated term sets, e.g. numbers, proper names

or other rare terms, which might be considered to have

a disproportionately high weight.

Initial query formulation

Search sessions consisted of three iterative phases.

Firstly, in the initial query formulation phase the

searcher could define different aspects of the topic with

separate term sets and then join the sets to generate

an initial query, from which a document set would be

retrieved. The different commands and operators (de-

fine, join, adj) provided fine control over the elements

of the search and to some extent enabled the searcher

to structure the query. The 'adj' operator was used ex-

tensively to generate phrases: 232 times compared with

the default operator BMll (153 times).

Viewing results

The second phase, viewing results, involved the dis-

play of brief and full records. The brief record dis-

play gave a breakdown of the occurrence of query terms

in the individual records and indicated the document

source. The information on term occurrence was use-

ful for multi-faceted queries, where the co-occurrence of

two or more terms might be deemed important. How-
ever in most cases it simply provided a summary view

since relevant terms could be combined in so many dif-

ferent ways. Likewise the document source served as

background information but did not generally influence

which full records were chosen for display.

In 75% of the searches the display of both the brief

and full records was confined to the top 50 documents

generated by the query; in only one instance did the

scan go down to the 300-1- level. As might be expected,

the searchers' main objective was to achieve a reason-

able precision amongst the top documents, rather than

a high recall overall. However on occasions searchers did

jump further down the ranking to check for more rele-

vant documents, if the total number of officially judged

relevant documents was known to be high.

Relevance judgements

Relevance judgements were made after viewing the full

record, at which point the official relevance judgements

were made available. However no distinction was made
between documents not seen by the assessors and those

definitely judged as not relevant, consequently docu-

ments tended to be read thoroughly even if marked with

a 'no'.
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Table 7: Some routing results with "optimized" queries

Conditions AveP P5 P30 PlOO R-Prec Rcl

Predictive (topics 10] -150 on disk 3)

maxterms = 30, = 2, passages (Igth 1—8) 0.430 0.728 0.615 0.480 0.449 0.791

maxierms = ZO, = 2, passages (Igth 1—8), own rels 0.419 0.716 0.606 0.473 0.434 0.784

maxterms = 30, k^ = 2, passages (Igth 4, o'lap 2) 0.426 0.724 0.611 0.480 0.449 0.788

maxterms = 30, ks = 2 0.425 0.724 0.603 0.483 0.447 0.788

maxterms — 30, k^ = 2, own rels 0.417 0.716 0.610 0.475 0.436 0.775

A;3 = 2 0.412 0.692 0.605 0.474 0.436 0.779

maxterms = 30 0.414 0.744 0.621 0.482 C.443 0.762

maxierms — 30, own rels 0.405 0.696 0.602 0.467 0.428 0.754

passages (Igth 1-20) 0.415 0.716 0.621 0.477 0.439 0.779

0.407 0.716 0.612 0.475 0.435 0.765

(the above row is the official cityrl run)

own rels 0.401 0.684 0.598 0.467 0.425 0.753

ARSV 0.406 0.692 0.599 0.476 0.438 0.770

RSV2 0.401 0.696 0.604 0.466 0.425 0.748

r 0.366 0.676 0.582 0.453 0.401 0.738

Retrospective (topics 101-150 on disks 1 Sz, 2)

passages (Igth 1-20) 0.500 0.944 0.789 0.618 0.502 0.794

0.492 0.956 0.795 0.609 0.495 0.772

ARSV 0.481 0.928 0.769 0.609 0.490 0.768

RSV2 0.478 0.916 0.773 0.600 0.487 0.761

r 0.448 0.908 0.745 0.584 0.465 0.745

Ordering criterion RSV, kz = ^ and maxterms = 20 unless stated

All relevant documents used (mean 239 per topic) except where "own rels" stated (176 per topic).

Since official judgements were available, searchers

were required to concentrate on selection of documents

hkely to be useful for term extraction. This reduced the

conflicts experienced under TREC-2. The differences

between official and searcher judgements are shown in

Table 8.

Much of this difference can be accounted for by the

fact that judgements were being made for a different

purpose, but there were instances where the assessors

appeared to have missed documents containing relevant

sections interspersed with other material, or to have

judged on the basis of simple term occurrence rather

than query relevance.

Final query

In the third phase, usually after identification of 10 to

12 relevant documents, a new set of terms was gener-

ated by the system from the relevance feedback infor-

mation. In most cases this constituted the final optimal

expanded query, although the extracted term sets for

35 out of the 50 queries were modified by the searchers.

After two or more iterations it became difficult to de-

cide between similar term-sets. For 18 out of 50 topics,

the last term set extracted was not the one chosen to

form the final query. In two cases (topics 132 and 140)

the initial user generated query produced satisfactory

results without the need for term extraction and on at

least one occasion the initial query was chosen as the

final query in preference to the extracted term set.

7.2 Human intervention and the proba-

bilistic models

In this round of TREC two features were introduced to

provide more flexibility for interactive searching. The

first allowed searchers to define phrases as query terms,

which were treated as single terms in the term extrac-

tion process. The second provided searchers with the fa-

cility to delete candidate terms from an extracted term

set. What effect this type of human intervention has on

the probabilistic models is unknown. Some words oc-

curred in derived term sets both as phrase components

and as single terms, without any weight adjustment. In

some instances searchers removed the single terms. Al-

though searchers intuitively appeared to prefer to use

phrases in formulating queries, the implications for the

weighting functions need further consideration.

Similarly searchers were not aware of the full con-

sequences of the deletion of individual terms from an

extracted term set. One effect of extraction was to

bring out more specific terms, including proper names.

Searchers were sometimes doubtful about the potential
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Table 8: Official vs Searcher Relevance Judgements

Official Y N ? Total

Y
N

Not Seen

573 78 0

154 446 2

48 86 0

651

602

134

Total 775 610 2 1387

value of such terms in routing queries, and tended to

delete them in favour of more general ones. This high-

lights the artificiality of the task and the conflict of at-

tempting to generate an optimal routing query which

would be effective in another database and the very

specific, often topical nature of some of the queries.

Searchers were uncertain about whether to retain time-

dependent names, events, and places which had been

successful in a current context.

Another aspect of the weighting function which in-

fluenced human/system interaction relates to document

length. The algorithm used this time brought short doc-

uments to the top of the list, with AP and WSJ sources

being the most common. Such documents tended to be

more homogeneous than those from other sources. This

appeared to be a helpful property for both relevance

judgement and term extraction.

7.3 Results

Output from the interactive system were queries like

those shown in table 9.

Table 10 shows the results of applying these searches

predictively and retrospectively. The predictive result

should not be compared with the routing results (Ta-

ble 7) because the routing queries were derived using a

very large amount of relevance information, whereas the

interactive queries had the benefit only of those few rel-

evant documents found by the searchers. It is probably

more fruitful to compare the result of applying the in-

teractive searches retrospectively (i.e. the output which

the searches would have obtained had they executed the

final searches) with automatic ad hoc results. Since the

searchers had access to complete topic statements the

best comparison is with an automatic run using all topic

fields.

8 Conclusions

8.1 Overview

In the course of participating in three rounds of TREC,
the Okapi team has made very substantial progress. In-

ternally, the system has been developed from an interac-

tive search program into a sophisticated distributed tool

for a wide variety of experiments. In terms of generally

applicable research results, we have shown the benefits

of continuing to work within the framework of the classi-

cal probabilistic model of Robertson and Sparck Jones.

While the field of information retrieval continues to be

strongly empirically driven (a tendency reinforced by

the entire TREC programme), and any practical sys-

tem has to make use of methods and techniques based

on very diff'erent theories, arguments or observations,

it remains possible for an eff"ective system design to be

guided by a single theoretical framework. Furthermore,

even without such developments as regression analysis,

the classical approach is capable of achieving perfor-

mance levels comparable with the best systems in the

world today.

8.2 Main conclusions from TREC-3 ex-

periments

Term-weighting functions

The basic "rough model" methods developed for

TREC-2, whose benefits were not apparent in the offi-

cial results submitted to TREC-2 but emerged in subse-

quent experiments, have now been shown to be effective

under the full rigour of the official TREC procedures.

These methods allow the inclusion of within-document

and within-query term frequency and document length

into the Robertson-Sparck Jones relevance weighting

model, and are applicable either with or without rel-

evance feedback.

However, attempts at somewhat less rough models

have shown only small benefit.

Passages

Run-time passage determination is feasible, if compu-

tationally expensive. In common with other investi-

gators, we have shown some benefits for document re-

trieval, though not very large ones, from considering

best-matching passages. It is likely that the most im-

portant uses of passage determination will be in interac-

tive systems and in connection with feedback for query

expansion.
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Table 9: Topic 120 query from interactive search after relevance feedback

Term(s) op weight

guerilla izo

thailand

Iraq. .

.

DO

holidai 00

Iran. .

.

00

econom consequ adj 113

intern terror adj 112

trade restrict adj 110

travel 51

trade polici adj 98

econom effect adj 98

properti damag sames 93

russia. .

.

45

europ. .

.

41

econom impact adj 70

busi 23

Table 10: Interactive results

Conditions AveP P5 P30 PlOO R-Prec Rcl

BMll
(the a

BMll
bes

BMll, TCND topic fds

BMll, TND topic fds

Predictive

0.250 0.560 0.445 0.345 0.302 0.648

bove row is the official cityil)

Retrospective

0.283 0.704 0.569 0.438 0.337 0.620

i automatic for comparison

0.366 0.660 0.577 0.492 0.411 0.754

0.294 0.600 0.517 0.435 0.350 0.659
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Query expansion without relevance information

Somewhat to our surprise, query expansion based on

the top ranked documents from an initial search, irre-

spective of relevance, proved to be of benefit with the

shorter queries now in use. Furthermore, this technique

combined effectively with passage retrieval.

Ordering and selection of expansion terms

We have not managed to improve on the term-ordering

measures used in previous experiments. However, the

stepwise selection or rejection of terms from the ranked

list, although computationally expensive, proved very

effective. This represents a return to our old friend,

term dependencies.

Interactive searching

The reconciliation of the demands of interactive search-

ing with the kind of controlled experiment represented

by TREC has a long way to go. Although we have

made a serious attempt at evaluating an interactive

method within TREC rules, we do not believe that it

is yet appropriate to try to compare interactive with

non-interactive procedures.

8.3 Futures

The automatic methods developed for Okapi for TREC-
3 depart somewhat from the principles on which Okapi

was originally based, in that they involved some compu-

tationally heavy procedures (specifically those involved

in query expansion for routing and in passage retrieval)

which may not be feasible, as they stand, in a live-

use system. One future line of work (within or outside

TREC) will be to try to achieve similar levels of perfor-

mance with simpler methods.

The scope for further performance improvements is

debatable. It is possible that we and other TREC par-

ticipants are approaching some limit of performance,

or at least a point of diminishing returns. However,

the real progress made over three years of TREC (af-

ter thirty years and more of research in information re-

trieval) does encourage the view that not all ideas have

yet been exhausted. We have every expectation of fur-

ther improvements in successive rounds of TREC and
elsewhere.

In common with most other TREC participants, we
have done much too little work on analysing individ-

ual or selected groups of instances (topics, documents,

terms), to try to understand in more detail the circum-

stances under which our methods work or do not work.

The time pressures ofTREC participation and the scale

of the operation do tend to discourage such analysis; at

the same time, the TREC material provides a very great

deal of scope for it, and there could be considerable ben-

efits from it.

In many ways the most interesting and currently puz-

zling area is that of interactive searching. The apparent

huge performance advantage of automatic over interac-

tive methods may in various ways be an artifact of the

methodology, but it most certainly deserves substantial

further investigation. Given that most IR system use in

the world today is interactive, the importance of achiev-

ing a better understanding of the phenomenon is hard

to exaggerate.
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Appendix: Addendum to System De-
scription for Interactive Experiments

A System Description

A.l Summary

Figure 1 (attached) shows a screen dump from a run-

ning system. The most important new functions in the

TREC-3 interface were those for:

• User-controlled definition and manipulation of

term-sets, reflecting the fact that our objective was

to generate routing queries rather than sets of doc-

uments,

• Display of brief records giving an overview of a

document-set and relevance judgements upon it, al-

lowing searchers to assess the performance of the

current query,

• Automatic retention and re-use of user-defined

phrases, following new term extraction from rele-

vant documents.

A. 2 Interface style

The basic interaction was command-driven, but the in-

terface was designed to run in an X-windows environ-

ment. One window was used for entering commands
and receiving summary responses, another to show lists

of brief records comprising a document set, and another

to display a complete document. Brief record lists, and

complete document displays, were piped through the

Unix less utility, enabling repeated scrolling and rudi-

mentary within-document searching. In displays of re-

trieved documents, any query terms are capitalized and

surrounded by asterisks.

A.3 Usable features of the interface

The most important commands are described below, in

roughly their expected order of use during a search ses-

sion.

A.3.1 Define

Define a term-set using one or more key-words and op-

erators. The default operator is standard Okapi BMll.
Two other useful operators are:

• ADJ: adjacency, used to generate phrases. The
presence of intervening stop-words is ignored.

• SAMES: words must occur in the same sentence.

Boolean operators AND, OR and NOT are avail-

able, but unlikely to be useful in the current context.

The "define" command causes a numbered term-set to

be created, whose details are retained by the interface

client software. It reports back on the number of docu-

ments matched by the term-set, but does not generate

a permanent document-set.

A. 3.2 Join

Join two or more term-sets. This enables the creation of

complex queries, comprising, for instance, two or more
ADJ expressions. Again, no permanent document-set is

created.

A. 3.3 Docset

Generate a document-set by submitting a term-set as

a query to the Okapi search engine. Information about

this set is retained by the server.

A. 3.4 Brief

Show brief records from a document-set. For each

record, the following information is displayed:

• Document set-number,

• Sequence number of record in set (used by subse-

quent requests for full-record displays)

,

• Source (e.g. ZF, AP, FR, etc.),

• Weight (u;(^)),

• Summary of query terms occurring in the docu-

ment,

• Both the "official" and the searcher's previous rel-

evance judgements. N.B. These appear only after

a full display of the relevant record has been re-

quested.

A. 3.5 Show

Show a full record. The text is piped through the unix

less utility, enabling the user to scroll and search the

document. Following this command, the system re-

quires a relevance judgement—in the current context
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this should reflect the searcher's estimate as to whether

the document contains terms which will be useful at the

query expansion phase. A running total is kept of the

number of relevant and non-relevant records seen, to

assist searchers in deciding when to attempt new term

extraction.

A. 3.6 Extract

Create a new term-set by extracting terms with a high

frequency of occurrence in relevant documents. The

top 50 such terms are identified; the top 20 are dis-

played in weight order. Existing user-defined phrases

are submitted to the term extraction process and in-

cluded in system-generated sets, if their occurrence in

relevant documents warrants it.

A. 3. 7 Remove

Remove terms from a term-set. This operation can be

applied to any term-set, but is most likely to be used on

one generated by automatic query expansion. Its main

purpose is to allow removal of "noise" terms from gen-

erated sets, e.g. numbers, typos, and other peculiarities

which have a high weight because of their low frequency.

Following term removal, the remaining terms are pro-

moted upwards by one place and the top 20 are again

displayed. It is possible to remove a range of terms, in-

cluding all those not currently displayed, so that a final

query formulation is confined to terms actually seen by

the searcher.

A. 3. 8 Results

Produce the final search output, i.e. the term-set which

is to serve as the final query formulation.

B Experimental Conditions

B. l Searcher Characteristics

The five (female) participants comprised two members
of academic staff", one member of the research staff, and

two postgraduate students. Their ages ranged from

mid-20s to early 50s. Each searcher was allocated a

batch often contiguous queries from the overall list, en-

abling some comparisons to be made about their search

behaviour.

None of the searchers had any prior familiarity with

the retrieval topics. They saw themselves as intermedi-

aries, carrying out searches on behalf of end-users who
were in the position to deliver relevance judgements.

Three had existing experience of Boolean searching; one

had a very detailed knowledge of the statistical princi-

ples underlying the okapi probabilistic search algorithm.

B. 2 Task description / training

All but one of the searchers had participated in

TREC-2 and were familiar with the objectives of the

experiment—in fact the new interface for TREC-3 was

based largely upon their proposals. In preparation for

their task, they were given a demonstration of the inter-

face, and undertook some dry runs with previous queries

which were not part of the official training set. The sys-

tem description (see section A) above was treated as a

basic user guide, and on-line help was available to give

the full syntax of the command language.

C Search process

C. l Clock time

The figures given below are for on-line clock times only.

On average about 5 minutes was spent off"-line in think-

ing about the initial query; most work was done (as

it should be in an interactive situation) by examining

the effect of using search terms and functions with the

database.
Mean Median Variance Range
39.32 39.00 468.47 8-84

C.2 Number of documents viewed

In this context "Viewing" a document means displaying

and reading its full text using the show command, and

making a relevance judgement on it. Since brief record

entries were listed 50 at a time, it was not practical to

count them individually.

Mean Median Variance Range
27.78 23.00 184.42 10-72

C.3 Number of iterations

At the start of the exercise, two possible forms of search

"iteration" were identified:

• A major iteration was considered to involve all

stages of the search from initial to final query for-

mulation. A straightforward search was expected

to require only one such iteration, where the initial

query yielded enough relevant records for use by

the later processes. A second or third major iter-

ation would be counted when it was necessary to

go back and reformulate the query in the light of

documents examined.

• A minor iteration would involve a sub-series of ac-

tions, i.e. create a document-set, make relevance

judgements, extract new terms from relevant doc-

uments, and create a new document set from the

expanded query. A search might include two or

three such iterations — repeated until the searcher
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was satisfied that the current query was finding a

good proportion of relevant documents.

BcLsed on these original criteria, 11 searches consisted

of two or more major iterations, in that new definitions

were entered after term-extraction from relevant docu-

ments. In practice, however, new definitions involved

addition of a few extra terms to existing queries rather

than complete re-starts, so it is probably more accurate

to say that there were no major iterations.

For reporting purposes, the use of the extract function

was treated as the boundary between one minor itera-

tion and another. Summary figures for the use of this

command are as follows:

Mean Median Variance Range

1.5 1.0 0.62 0-3

Following is a more detailed breakdown of number of

queries by number of term extractions. In two cases,

(topics 132 and 140), the initial query was considered

to produce satisfactory results without the need for any

extraction at all.

Queries Extractions

2 0

28 1

14 2

6 3

C.4 Number of terms used

In this context the "initial query" is considered to be

the term-set used by the first docset command; the "fi-

nal query" is the one output following a results com-

mand. Note that overall 262 "terms" defined by users

were in fact phrases specified with adjacency operators.

System-derived terms were all single words, except for

a few ad hoc phrases in the Okapi GSL.

Mean Median Variance Range

initial 8.06 7 16.47 2-20

final 16.86 20 34.37 3-28

C.5 Use of system features

table

summary

Command Mean Median Variance Range

Define 8.58 7.00 13.84 4-18

Join 3.22 2.00 7.03 1-13

Docset 4.00 3.00 7.47 1-15

Brief 4.74 4.00 14.65 0-16

Show 27.78 23.00 184.42 10-72

Extract 1.50 1.00 0.62 0-3

Remove 3.22 2.00 16.01 0-15

C.6 Number of user errors

No data were collected under this heading.

C.7 Search narrative for query 122

Two attempts were made on this topic because a sys-

tem failure occurred half way through the first one. On
the second occasion the searcher entered fewer terms

initially before creating and examining document sets,

having found that some of her original candidates (e.g.

evaluation, marketing) were taking the search in the

wrong direction. However it is unlikely that the second

attempt was any more successful than the first would

have been.

The initial query term consisted of the words: can-

cer drug develop test which were all required to occur in

the same sentence. Of the 12 top documents examined

from this search, only 3 were officially judged relevant,

although the searcher included 2 others as potentially

useful for term extraction. As the following quotation il-

lustrates, all the right terms may co-occur in a sentence,

without really matching the query:

"The Food and Drug Administration has approved

a test that can detect the sexually transmitted virus

believed to be linked to the development of cervical

cancer, a Baltimore newspaper reported Saturday."

The second query term consisted of the words anti

cancer laboratory, which once again were required to

be in the same sentence. This yielded 3 more officially

relevant documents, and 2 others deemed useful for term

extraction. The search went through two extraction /

retrieval cycles, during which one further term leukemia

was entered.

Extracted terms output for the final query were:

patients, tumors, cells, therapy, immune, agent,

chemotherapy, surgery, Kaposi's, transplant, treatment,

bacteria, approved, research. Some extracted terms

deleted by the searcher were: area. New York, food,

Kettering, aid, architecture, protein, infected. One of

the difficulties when examining documents was to sift

out those mainly concerned with cancer from, those

mainly concerned with Aids, since these topics were of-

ten closely intermixed.

The logged search took just under 24 minutes, al-

though another 10 minutes should probably be added

to the overall time to account for the abortive first at-

tempt. Altogether 48 documents were examined, of

which only 9 were officially relevant but 23 were se-

lected for term extraction by the searcher. Relevant

documents which were found referred to the laboratory

stage of anti-cancer drug development: evaluation and

marketing were barely touched on, as reflected by the

terms output for the final query. This was a disappoint-

ing result, which contrasted with others which appeared

to be more successful. Looking back over the log, the

searcher could see many points at which her strategy

could have been improved.

Following is a breakdown of command usage on this

search:

Define Join Docset Brief Show Extract Remove
5 2 2 1 48 2 13
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ABSTRACT

The experiments described here constitute a con-

tinuation of a research program whose object is to

find probabilistically sound, yet simple and powerful,

ways of combining search clues in full-text retrieval.

The methodology investigated for ad hoc retrieval is

that of logistic regression, in which the retrieval rule

takes tbe form of a regression equation fitted to

learning data. Most of the variables used in the

regression take the form of means rather than the

more customary sums, and it is argued that this is

logically preferable. Radical manual reformulations

of the topics were tried out and found to boost

retrieval effectiveness. For routing retrieval, an

approach based on the Assumption of Linked Depen-

dence, involving the extraction of relevance-

associated stems from feedback documents, is investi-

gated. One characteristic of this approach is that

only a very minimal use is made of the original topic

formulation.

Introduction

The problem of full text retrieval system design

can be thought of as a problem in the combination of

statistical clues. The design objective is to achieve as

high a level of retrieval effectiveness as possible, con-

sistent with reasonable theoretical and computational

simplicity. As its contribution to TREC-3, the Berkeley

group has continued its efforts to develop a simple, sta-

tistically sound probabilistic basis for text retrieval.

Because the emphasis is on finding a good logic

of combination, the statistical clues used are all based

on simple conventional frequency counts. This is not

because we have objections to thesauri, parsing, phrase

discovery, disambiguation, and other natural language

processing or Al-like approaches. To the contrary, we

feel that it is a virtue of the regression procedures

explored here that they are more hospitable than most to

the incorporation of additional clues. However, our

experience and that of others suggests that an astute use

of simple stem and document frequency information

immediately lifts one to a high plateau of effectiveness.

Further measures to attain slightly higher levels can then

be incorporated if they are deemed worth the trouble.

Three experiments were performed for TREC-3 by

the Berkeley group. Two of these were experiments in

retrospective ('ad hoc') retrieval in which the group

continued its earlier explorations of logistic regression

as a simple but powerful tool for combining statistical

evidence. Specifically, the advantages of separating the

'quantitative' from the 'qualitative' variables in the

regression are examined in the experiments to be

described. In its single routing retrieval experiment, the

group has extended its earlier approach of estimating

directly the crucial probabilistic quantities. A possibly

novel aspect of the approach taken is that the search

topic -- that is, the original natural language question

itself ~ is essentially ignored in the formulation of the

internal search request used by the retrieval algorithm.

Instead of the usual 'query expansion', we practiced vir-
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tual 'query defenestration', in which only the already-

judged documents were used to formulate the internal

search specification.

The Ad Hoc Retrieval Rule

Our first experiment in ad hoc retrieval for

TREC-3 (coded Brkly6) used fiiUy automatic query for-

mulation, in which the natural language topics were sto-

plisted and stemmed but not otherwise changed except

for doubling of title stems. The computational rule used

to assign a probabiUty of relevance to each document in

the collection ~ and thereby to impose a search order on

the collection for the user ~ is easily stated. The

logodds of relevance of any given document to any

given query is estimated by the equation

logO(^l!2,D) = Co+ic.X, (1)

i=l

where /? is the event that the document is in fact

relevant to the query, 0(R \QJD) is the odds that the

event of relevance has occurred, and

1
^

Xj = —V logQAF, , the logged absolute fire-

^ j=i
'

quency of occurrence in the topic Q of the match

stems, averaged over all match stems. Thus if

there are M stems in common between the topic

and the document, Xj is calculated by noting how

many times each such stem tj occurs in the query,

taking the log of each of these M quantities, sum-

ming the logs, and dividing by M ;

X2 = ^^QL i.e. the square root of the total number

of all (non-stopword) stem occurrences in the

topic;

I
M

X3 = —Y logDAF,. the logged absolute fire-

^ j=\
'

quency of occurrence in the document of the

match stems tj, averaged over all match stems.

X4 = VDL , the square root of the document length

(analogous to X2);

X5 = -—Y loglDF, the logged inverse document

frequency (IDF) of the match stems tj, averaged

over all match stems;

X6 = logM, i.e. the logarithm of the number of

match stems; . ;>IA> i*^

and where the values of the coefficients in the equation

are Co = 0.679, C4 = -0.0674, cj = 0.223, and Cg = 2.01.

The logodds-of-relevance figures estimated by this for-

mula and used to rank the output documents are of

course easily transformed into probabiUty-of-relevance

estimates to be displayed with the output documents for

the guidance of the user.

The values of the coefficients cq, . . . ,C(,in Equa-

tion (1) were obtained by fitting the equation to the

empirical data by means of a logistic regression analysis

(Hosmer & Lemeshow 1989). The empirical data used

as the basis of this analysis consisted of the values of

Xi through Xg, and a human judgement of relevance or

nonrelevance, for each topic-document pair in the TREC

corpus of relevance judgements. Upon supplying this

matrix of data to a standard statistical package capable

of performing logistic regression (BLSS), the regression

equation (1) was obtained.

Actually, so many relevance judgements were

available that only a subset of the available data were

used. This subsample was constructed by applying, for

each topic, a crude preliminary retrieval rule to rank the

set of all documents whose relevance to the topic had

been judged. The top 433 judged documents were then

selected for each topic as the documents whose associ-

ated data would be used in the regression analysis. It

was felt that by choosing high-ranking documents for

the analysis, the resulting regression equation could be

made more sensitive to the appropriate ordering of the

documents near the top of the output ranking where the

output order matters most. The number 433 was chosen

arbitrarily as the number that would yield the maximum

number of data points (433x150=65000) that the statisti-

cal package could handle.

Retrieval based on Equation (1) is readily accom-

plished by storing stem-specific partial sums from the

right side of Eq. (1) as indexing weights on the query

stems and document stems. Then, at retrieval time,

each match stem's query weight is added to its docu-

ment weight, the mean of Uiese sums over all match

stems is calculated, and X^ is added in. The pro-

cedure is roughly comparable in computational

efficiency to the operations required for simple vector

processing retrieval models, and the system used for our

128



experiments was in fact a modified version of the

SMART system.

Separating Quality from Quantity

In past regression experiments the Berkeley group,

and so far as we know all other IR experimenters

attempting a regression ^proach (e.g. Fuhr & Buckley

1993), have taken as their regression variables various

statistics totaled over all match stems. For instance, the

regression variable used to represent the inverse docu-

ment frequency information about a topic-document pair

might be the sum of the Oogged) inverse document fre-

quencies of the match terms. Although this seems to

have worked well, we have come to believe that it is

not the soimdest choice of variable form, and that it

might be possible to do better.

To see the problem with the use of totals, suppose

that a retrieval clue has been scaled (linearly

transformed) in such a way that zero and negative

values of it can occur. For instance, if it has been

transformed into a standardized statistical variable, zero

might represent its mean value. Now, how a variable

has been scaled should not matter, but under a policy of

totaling over match terms it does. Suppose that for a

given quay, docimient A has just one match stem and

its value for that variable is zero, while document B has

several match stems and their values for the variable are

also all zero. The total contribution for the variable is

ZCTO for both documents, yet B is likelier to be relevant

to the topic than A simply because it has more match

terms. In other words, information about number of

match terms can be lost or distorted when totals are

used

The underlying difficulty is that use of totals con-

founds match stem quality with the number of match

stems or match stem quantity. The corrective measure

that has been taken by the Berkeley group is to calculate

the values of the variables, not as totals, but as means,

of their values for the different match terms. Then, to

incorporate the information about the number of match

terms, a separate new variable is introduced that deals

with nothing but the match term count This policy

overcwnes difficulties of the sort just indicated when

zero and negative values of clues are allowed, and

lessens distortions even when they are not It can be

viewed as a policy of separation of quality variables

from quantity variables. For instance, in Eq. (1) the

quality variables are Xi through Xs, while the quantity

variable is X^.

It can also be argued that separating quantity from

quality tends to make the resulting regression equation

more robust - that is, less sensitive to systematic errors

or changes in the data and more amenable to transfer

into different collections or changed conditions. To see

this, consider the effect on retrieval of multiplying all

IDF values (before logging) by a factor of ten (perhaps

because of a systematically misplaced decimal point).

With a little study it can be seen that the output order-

ing of the documents imposed by Eq. (1) will remain

unchanged. This is very different from the effect under

the conventional totaling procedure, in which the tenfold

increase would cause the influence of the IDF variable

to overwhelm that of the other variables, and would

gieatly affect the ordering. Changes by an additive con-

stant (before logging) also cause less disruption of the

output ordering when the quality/quantity dichotomy is

maintained. Thus there is a lessened sensitivity to any

(linear) rescaling of the data from whatever cause.

Manual Query Modification

There has been interest recently in the question of

whether it is possible to improve retrieval results

significantly by means of expert manual modification of

the original natural language query submitted by the

user. The Berkeley group's second ad hoc retrieval

experiment (Brkly7) attempted to cast some further light

on this issue. The second experiment was identical to

the first in all respects, including the use of Eq. (1)

without modification, with the sole exception that the

natural language topics were transformed by human

intermediaries into new word Usts before being submit-

ted for stoplisting and stemming.

The human intermediaries were instructed to work

intuitively to include in the list any words likely to

appear in documents relevant to the topic at hand. They

were encouraged to consider including, for a start, any

content words and phrases that appeared in the original

topic, though there was no compulsion to include those

that seemed unhelpful. To expand the list further, they

were instructed to add to these any synonyms, broader

or narrower terms, or indeed any other words they could

think of that might enhance the retrieval.

The intermediaries were allowed to exploit any

personal knowledge of the topic they might happen to
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possess. For instance, for the topic on oil spills, a

knowledgeable intermediary might add to the list

'Exxon' and 'Valdez'. As a further source of indicative

words and phrases, the intermediaries were encouraged

to make crude Boolean searches in other data bases and,

when obviously relevant documents were found, to scan

them for potentially useful new terms. The Newspaper

Articles Database, freely searchable via the University

of California's MELVYL catalog system, was used for

this purpose. Most of the searches were made in its

New York Times database, though a few were made in

its Los Angeles Times or Washington Post files. Care

was taken not to do any searching in sources, such as

the Wall Street Journal, which were also included in the

TREC corpus, as this would have contravened the

TREC guidelines. The WordNet thesaurus was made

available to the intermediaries but for the most part they

declined to use it, finding the Boolean searches in the

auxiliary collections to be a more fertile source of help-

ful terms. Finally, the intermediaries were encouraged

to write into their lists double or multiple instances of

any terms that they considered especially vital to the

satisfaction of the information need.

Except for the first two topics, on which the inter-

mediaries spent a long time getting used to the process,

about twenty to thirty minutes were spent modifying

each topic. This was thought to be an amount of time

that a zealous librarian or other intermediary might be

willing to spend on occasion to try to improve an

important search request The idea was to make the

hypothetical conditions as favorable to modification as

possible, to see if manual intervention is of any avail

even under especially advantageous circumstances.

To illustrate the results of this process of topic

modification, here is the reconstructed form of topic

154, which concerns oil spills:

oil spills oil spills oil spills oil spills oil spills oil

spills oil spills oil spills oil spills oil spills oil

spills oil spills major offshore drilling holding

tank spills light crude tons gallons slick Exxon

Valdez Prince William Hazelwood Unocal Gua-

dalupe Shetlands San Juan Puerto Rico Rubis

Lyria Mobil Shell Francisco Ashland Newport

Hudson Latouche Delaware Narraganselt Rhode

Huntington

In the first ad hoc retrieval experiment, which

involved no manual query modification, the average pre-

cision over all relevant documents for all fifty routing

topics was 27.8%. In the second ad hoc experiment,

which differed only in the manual query modifications,

it rose to 37.1%. This substantial increase suggests that

extensive reworking of natural language requests by

intermediaries can indeed, under favorable cir-

cumstances at least, considerably enhance a system's

retrieval effectiveness.

Topic-Free Routing Retrieval

For its third TREC-3 experiment (BrklyS) the

Berkeley group designed a routing retrieval algorithm

along the following, we suspect novel, lines. It is usual

to base all document retrieval, including routing

retrieval, on some sort of search specification derived

from the original natural language topic. In many rout-

ing systems such a search specification is then expanded

in some way by the inclusion of terms taken from docu-

ments known from past user feedback to be relevant to

the topic. However, under the present Berkeley

approach the original topic wording can be ignored

completely, provided enough feedback is available.

The unusual character of this procedure is

apparent fix)m the fact that if the original natural

language topic were written in a language different from

the language of the collection, it would not matter,

because the method is not dependent upon finding

matches between topic stems and document stems.

Rather, the internal search request vocabulary is drawn

entirely from previously judged documents. It is not

essential that the method be applied in this radical,

absolutely topic-free form; and in fact the Berkeley

experiment did make one slight gesture in the direction

of exploiting the original topic wording, as will be

explained. However, the essence of the method is that

the search specification be constructed independently of

the original topic expression to the extent allowed by

the amount of available feedback.

As the first step in the construction of the internal

search request for a topic, every stem that occurred in at

least one document in the set of judged documents for

the topic was tested to see whether it was statistically

related to the property of relevance to the topic. This

was done by constructing a four-cell table for each such

stem and conducting a chi-square test on it The two

rows of each stem's table corresponded to the presence

or absence of the stem in a document, while the two
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columns corresponded to relevance or nonrelevance to

the topic of a document. Thus the upper left cell con-

tained the number of documents that (i) contained at

least one occurrence of the stem and (ii) had been

judged relevant to the topic. The sum of the quantities

in all four cells was the total number of available judged

documents for the topic.

The chi-square test showed which stems had the

property that their presence in a document was statisti-

cally associated (either positively or negatively) with the

relevance of the document to the topic. All stems for

which the hypothesis of independence (i.e. lack of asso-

ciation) could be rejected at the 0.05 level of statistical

significance under the test were collected and used in

the search specification for the topic; all others were dis-

carded. The stem sets so collected ranged in size from

300 stems for Topic 131 to 4,114 stems for Topic 109.

The mean stem set size was 1,357.

Next, for each topic, a weight was calculated for

each stem that had siuA'ived the chi-square screening for

that topic. This weight was an estimate of the surplus

logodds (i.e. the logodds over and above the prior

logodds) that a document under consideration is relevant

to the topic, given that the stem is absent from the

documrat The motivation for using such estimates as

weights will be explained in the next section; for the

moment we merely state the formula used to calculate

the weight. It is:

weight, = log ———
- - log—

+ n I {n + r) n
(2)

where r, is the number of documents in which the stem

is absent that have been judged relevant to the topic,

is the number of documents in which the stem is absent

that have been judged nonrelevant to the topic, r is the

total number of documents that have been judged

relevant to the topic, and n is the total number of docu-

ments that have been judged nonrelevant to the topic.

For stems occurring in the original topic, weights

were calculated in accordance with the foregoing for-

mula whether the stems passed the chi-square screening

test or not. In cases where these weights turned out to

be negative, their magnitudes were arbitrarily increased

by a factor of five. This was the only concession in the

direction of using the original topic wording. It was

made because it was found to improve the retrieval

effectiveness of the scheme slightly. However, the tiny

size of the gain suggested that this refinement is unim-

portant when sufficient relevance data are available.

To illustrate the form of the internal search

requests, here is a small segment of the list of weighted

stems constructed for Topic 102, which is about U.S.

strategic defense:

decid 0.236631

declin 0.103601

decoy -0.162831

defend -5.052930

deform -0.014523

defray -0.014523

degree 0.083949

deliv 0.140666

delt -0.072431

demand 0.144963

A negative weight on a stem indicates that the stem's

absence from the document reduces the chances that the

document is relevant Thus a stem with a negative

weight is really a positive clue. For instance, the excel-

lent clue 'defend' has a negative weight ~ a large nega-

tive weight, in fact, because it occurs in the topic word-

ing and hence had its weight multiplied by five.

The in-principle retrieval rule for estimating the

logodds of relevance of a document to a topic is simply

to add up the weights of all stems in the stem list for

the topic that are absent from the document. In prac-

tice, however, it is quicker and produces the same result

to add up the weights of aU the stems in the list that are

present in the document, and subtract this sum from the

prestored grand total of all the weights in the stem list

for the topic.

While the BrklyS routing entry produced respect-

able recall and precision, there remains some question

that the size of the expanded queries may be chosen as

too large. The Comell group has conducted experiments

(Buckley, Salton, Allan 1994) on massive query expan-

sion and concluded that the point of diminishing returns

was an expansion by about 300 terms. Since the Berke-

ley tests show performance enhancement for terms

chosen up to the 0.1 probability level of the Chi square

test on the training set, and the 0.05 level was chosen

for realistic computational times, we see evidence that

evaluation on a training set may lead to the phenomenon

of overtraining when the expansion is applied to the

new test document set
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Theoretical Motivation of the Routing Rule

The foregoing retrieval rule is based on a statisti-

cal simplifying assumption called the 'Assumption of

Linked Dependence' (Cooper 1991). Intuitively, it

states that in the universe of all query-document pairs,

the degree of statistical dependency that exists between

properties of pairs in the subset of all relevance-related

pairs is linked in a certain way with the degree of

dependency that exists between the same pair-properties

in the subset of all nonrelevance-related pairs. For N
pair-properties Aj, . . . the mathematical statement

of the assumption is as follows.

ASSUMPTION OF LINKED DEPENDENCE:

P(Ai An\R) PiAi\R) PiAN\R)— X • • • X
P(Ai An\R) P(Ai\R) P{An\R)

If one thinks of a query and document drawn at random,

i? is the event that the document is relevant to the

query, while each clue A, is some property of the

topic-document pair, for example some property of the

document that makes it either more or less likely to be

relevant to the topic.

From the Assumption of Linked Dependence the

following probabilistic modelling equation can be

derived:

log 0(7? Ml Af,) = log 0(R)+ (3)

^ [log OiR \Ai) -log 0{R)]

where for any events E and E' the odds 0(E / E') is

P(E / £")
by definition —^^-= -. Using this equation, the evi-

PiElE^ 6 4.
dence of N separate clues can be combined as shown in

the right side to yield the logodds of relevance based on

all clues, shown on the left. Query-document pairs can

be ranked by this logodds estimate, and a ranking of

documents for a particular query by logodds is of course

a probability ranking in the IR sense. For further dis-

cussion of the linked dependence assumption and a for-

mal derivation of Eq. (1) from it, see Cooper (1991) and

Cooper, Dabney & Gey (1992).

The properties A, in the modelling equation can in

general be any clues; for instance the occurrence in a

document of a particular stem could serve as such a

clue, as could its nonoccurrence. In the experiment just

described, each property A, of interest is the absence

from the document of some particular stem from the

constructed internal stem-list for the topic at hand. The

weighting formula (2) estimates, for any given stem-

absence, the corresponding quantity in square brackets

on the right side of the modelUng equation (3). The

expressions r / (n + r) and n / (n + r) added into the

numerator and denominator of the first fraction prevent

either from taking on a value of zero. The retrieval rule

stated in the preceding section is simply the computation

of the summation indicated in the right side of (3). The

initial term log 0(R) appearing after die equal sign in

(3) is omitted from the computation because it was

found to affect the result only insignificantly in practice.

Either the presence of a stem in a document or its

absence may be used as a retrieval clue. For TREC-2,

as well as in preliminary TREC-3 experiments, the

Berkeley group used both types of clues in tandem.

Under that approach, for each stem there were two

weights in the search query, one to be added into the

retrieval score in case the stem was present in the docu-

ment, and the other to be added in in case the stem was

absent. However, subsequent experimentation showed

that the two sets of weights were largely redundant, in

the sense that use of just one type produced almost as

effective retrieval as use of both. Stem-absence worked

somewhat better than stem presence, and was virtually

as effective by itself as when used in tandem with stem

presence clues. So, to simplify the procedure, the

stem-present weights were eliminated.

The Assumption of Linked Dependence, like all

simplifying assumptions, introduces errors into the

logodds computations. When the number of properties

involved is large, as is the case in the present applica-

tion, this distortion can become severe, taking the form

of grossly exaggerated estimates for the logodds of

relevance of documents near the top of the output rank-

ings. This exaggeration does not affect the ordering of

the ouq)ut, but it makes the probabilities of relevance

displayed for the user unrealistic. To counter this ten-

dency, each sum calculated by the retrieval rule was

divided by the square root of the number of stems in the

query list for the topic of the search. This crude remedy

suggested itself because of its success in compensating

for similar distortions in an ad hoc experiment per-

formed by the Berkeley group for TREC-2.
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Table I: BrklyS Routing Entry

Comparison between estimated and actual relevant/non-relevant

recall num actual actual actual estimated expected expected

level docs relevant non-rel probability probability relevant non-rel

U.l OOJ 5/1 U.o4oU 0.7725 Ol A O 1014.21 T2<1 TO2Jy. /o

0.2
1 r\no ooi 41!) U.oZzU 0.6547 718.96 OTA AQ

U.J 1 K1
1 Jjl OOJ OOO U.jUjD U.jUoI

/TOT 0 1 oo/.lo

U.4 lOOJ ACT 1nmlUUZ U.4UJJ U.41 /o /U4. 14
QQA QC

U.J 0 1 OQ OOJ 1 jUj U.jl/1 no A cn
/o4.j /

1 A Al /I "1

i4Uj.4J

U.o 1 OQ1 MlOOJ 1iUU C\ 1AAA f\ '^C 1 A0.2610 51 /.55
1 A^C A C14oj.4j

0.7 1952 683 1269 0.3499 0.2290 447.04 1504.96

0.8 2609 683 1926 0.2618 0.1882 491.08 2117.91

0.9 4330 683 3647 0.1577 0.1276 552.55 3777.45

1.0 6940 681 6259 0.0981 0.0344 238.92 6701.08

Evaluation of Probability Estimates

As in TREC2, the Berkeley text retrieval research

group is concerned with the accuracy of probability esti-

mates obtained through its methods. If one can, with

confidence, display these estimates to the user, along

with the ranking of documents presumed relevant to the

topics, the user has the added flexibility of choosing

where to stop the search. For example, if the probabil-

ity estimate is 0.1, and the estimate has been shown to

be realistic, the user can reaUze that, on average, (s)he

will have to examine ten documents to find the next

relevant one.

One way to test the calibration of probabiUty esti-

mates is to take the entry of 50,000 query-document

pairs and sort them in descending order of magnitude of

probability estimate. Using the results of the judged set

of documents from the TREC3 relevance judges, one

can attach relevance judgments for those pairs which

have been judged. Of the 50,000 pairs submitted for

Brkly8, 25,190 pairs were in the judgment set. This list

can then be divided into deciles of recall, and the mean

estimated probability of relevance for each level of

recall can be computed. Since we know the actual

number of relevant for each decile, the actual probabil-

ity of relevance for that decile can be computed as well.

From the estimated probabiUties, expected numbers of

relevant and non-relevant documents can also be com-

puted. Table I shows the results for the ten levels of

recall for Brkly8.

In evaluation of logistic regression models, Hos-

mer and Lemeshow (1989) have shown that the two sets

of 10 pairs of actual relevant/non-relevant and estimated

relevant/non-relevant documents in each decile of recall

can be used to assess the fit of the model. In particular,

the fit is demonstrated to follow a distribution with 8

degrees of freedom. Computing this statistic for Table

1, we have

= 1327.69

and a probability value of less than 0.0001. Similar

computations for Brkly6 and Brkly7 result in the follow-

ing statistics:

X^= 861.99 (Brkly6)

X^= 758.10 (Brklyl)

also with probability values of less than 0.0001. For

further details on the actual formulae to compute the

statistics, the reader is referred to Gey (1993).

These results would lead us to reject the null

hypodiesis that the models correctly fit the data, and

perhaps lead us to conclude that further refinement of

these models is in order.

Summary

The Berkeley entries to TREC3 have built upon

previous research using logistic regression and the prin-

ciple of linked dependence for combination of evidence.

For ad hoc retrieval, we suggest that a separation of

quality and quantity variables is appropriate in a

regression-based methodology, with the quahty variables

being combined by taking means rather than sums. The
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Brkly? entry demonstrates that judicious manual inter-

vention to reconstruct queries can, under favorable cir-

cumstances, increase retrieval effectiveness considerably.

Specifically, the inclusion of proper noim particulariza-

tion of examples of relevant real-world objects (com-

panies, persons, geographic place names) seems to move

the query closer to the relevant set.

For routing retrieval, the BrklyS entry shows that,

given a history of relevance judgments, internal requests

can be constructed virtually without reference to the ori-

ginal topic wording and that query terms can be com-

bined by a simple retrieval rule based on the Principle

of Linked Dependence. A test on degree of depen-

dence of the term to relevance is used to rigorously

define the query expansion term set. However results

seem to suggest that an "overtraining effect" may come

in to play when moving from the training judgment set

to the test collection.

Finally, preliminary tests to assess the

effectiveness of the probability estimates generated by

these methods indicate that additional refinement of the

models will be necessary before the probabilistic system

can, with confidence, display these estimates to the user.
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Abstract

In this paper, we investigate retrieval methods for loosely coupled

IR systems. In such an environment, each IR system operates inde-

pendently on its own document collection. For query processing, an

agent takes the query and sends it to the different IR systems. From
the answers received from theses servers, it forms a single ranking and

sends it back to the user. In the work presented here, we examine dif-

ferent retrieval methods for performing routing and ad-hoc-queries in

such an environment. For experiments, we use the TREC-3 collection

and the SMART retrieval system.

1 Introduction

In the past, IR systems have been considered as running on a large, fairly

static document collection held on a single machine. However, there is a

growing need for the development of IR systems that operate in a distributed

environment:

• Document collections for similar subject fields are set up at different

locations with different systems and retrieval methods. In retrieval, a

user would like to query all relevant databases at once, without both-

ering about the underlying differences.

• With the improvements of local computing power and network access,

the coupling of local and non-local IR data bases becomes possible.

*0n leave from: Universidad de los Andes, Merida, Venezuela
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So far, little research has been performed that focuses on retrieval in

a distributed environment. More precisely, we must distinguish between

different types of distribution. We use the term "distributed IR systems" in

the same way as in the field of databases: On the logical level, such a system

behaves in the same way as a non-distributed systems, the differences are only

at the physical level (e.g. distributed storage, replication and partitioning

of data, special query processing methods and communication protocols).

In contrast, loosely coupled systems also behave differently on the logical

level. This approach offers the advantage that it is possible to couple existing

systems, without the need to change the software. A simple example for

loosely-coupled IR systems is the design of the WAIS system (see [Kahle

et al. 93]). The underlying protocol Z39.50 allows a client to do parallel

searches in IR systems.

In this paper, we only consider the latter type of system, although some

of the methods investigated also may be feasible for distributed IR systems.

We call the different IR systems "servers". A user submits a query to a client,

which in turn connects to an "agent". The agent's task is to communicate

with the different servers. It sends the query to the servers, receives the

different answers and then forms a single ranking and sends it back to the

user. Some of the servers contacted may in fact also be agents, which in turn

know further servers or agents that help processing the query. An example

structure of this type is depicted in figure 1.

An example for such a structure is the SFgate system described in [Pfeifer

et al. 95] which implements a WAIS gateway for WWW clients and acts as

an agent in that it can access several servers in parallel. In the original WAIS
system, there are only clients and servers, where the client also must perform

the agent's task.

For performing retrieval in such an envioronment, a number of problems

have to be solved:

• How do agents and servers communicate?

• What information should the agent have about the different servers

that it can access?

• How can the agent select servers that provide relevant documents for

the current query?

• Which retrieval methods should be provided by the servers in order to

give optimum support for retrieval in loosely coupled IR data bases?

• How should the information agent merge incoming ranking results from

different sources (with possibly unknown quality)?
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Figure 1: Retrieval with loosely coupled IR systems

• What retrieval quality can be archieved in such an environment, or

what is the loss in retrieval quality in contrast to retrieval on a single

large data base?

As the TREC collection originally consists of five different document col-

lections, it is quite natural to use this collection for experiments with a dis-

tributed environment. In contrast to the very general case, we only consider

a single agent contacting five servers, each running on one of the subcollec-

tions. As experimental system, the SMART retrieval system was used for

simulating retrieval methods in this environment. So we did not really imple-

ment a distributed environment, since our focus here is on the investigation

of retrieval methods for such an environment. Once good retrieval methods

have been devised, an architecture for federated IR systems supporting these

methods can be developed.
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In the remainder of this paper, we first describe the basic concepts of the

retrieval methods investigated, followed by the description of the experiments

performed. The results are discussed in Section 4, and finally, we come to

the conclusions and give an outlook on further work.

2 Basic concepts

2.1 Distributed routing retrieval

For the routing task, we have queries and a set of documents with relevance

judgements. As new documents arrive, the system has to assign relevance

status values (RSVs) to these documents, by considering these documents

one by one.

Since there is relevance feedback data available, learning methods can be

applied in order to improve the representation of queries. As a result, the

weights of the query terms are modified. Furthermore, we can apply query

expansion methods in order to add terms to the original query.

In a distributed environment, the agent collects relevance feedback data

and performs the learning process, possibly in cooperation with the servers.

Having improved the query representation this way, it sends it to the servers.

Each server processes this query against its incoming documents, and sends

the requested number of documents (or all documents with a RSV exceeding

a predefined threshold) back to the agent. The agent combines the streams

from the different servers into one single output stream and sends it to the

client.

In our experiments, we assume that we can compute overall document

frequencies, thus being able to compute query term weights in the same way

as in a single collection environment. This can be achieved by additional

communication overhead, where the agent collects the collection frequencies

of the query terms from all servers in the learning phase. On the other

hand, document indexing weights are independent of the overall document

frequencies of terms.

2.2 A Concept for distributed ad-hoc retrieval

For ad-hoc queries, only the query formulation, but no relevance feedback

data is given for the current query.

After receiving a new query from a client, the agent forwards the query

to the servers (possibly after preselecting the servers relevant for this query).

Each server processes this query on its database and sends the prespecified

number of answer documents to the agent. Now the agent merges these
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results into one single ranked output list. For performing this task, there are

at least three different possibilities:

1. The agent takes the RSVs computed by the servers as absolute values

and forms the output by merging the input lists according to decreasing

RSVs.

2. The agent collects all the documents received for a query and creates

a new ranking for this set of documents, e.g. by treating this set as a

small document collection.

3. If the server receives additional collection information from the servers,

a better ranking can be produced: Assume that each server also sends

its document frequencies for all query terms. Then the agent can com-

pute the overall document frequencies and use them as improved query

term weights for ranking the set of documents received.

In our experiments, we investigated the last two possibilities.

3 Experiments

For the description of the document and query indexing methods given below,

we use the following notations:

qk query

dm document

ti term

tfim within-document-frequency (wdf) of ti in dm

m&xtfm maximum wdf tfmi of all terms in dm-

idfi inverse document frequency of ti

Based on these parameters, standard SMART indexing routines were ap-

plied ([Salton & Buckley 88]): The augmented term frequency atfim is com-

puted as

atf,m = 0.5 (l + -%7-l ,

\^ max tfm J

and the logarithmic term frequency Itfim is defined as

^tfim — 1 "I" ^^tfim-

Furthermore, we always use cosine normalization for document indexing, i.e.

the weights are normalized such that the sum of squares of the indexing

weights in a document is 1.
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3.1 Distributed Routing

As pointed out in 2.1, we can use the same method of query term weighting

as in a single collection environment. On the other hand, document indexing

cannot be based on overall document frequencies. For this reason, we choose

to use no collection frequency information at all for document indexing. This

method is also suited very well for highly dynamic collections.

For experimental setting, the following steps were performed:

1. The training data set Dl first was indexed with the "anc" method

using only augmented term frequency and cosine normalization. Alter-

natively, we also applied the "Itc" method based on logarithmic term

frequency in combination with cosine normalization.

2. The query set Q3 (queries 101 to 150) was weighted with the "ate"

method using the product of augmented term frequency and inverted

document frequency .

3. For internal verification of our methods, data set D2 was used by ap-

plying the same document indexing method as for Dl.

4. Since the document indexing weights are independent of any specific

collection, we were able to use a single database containing the whole

TREC collection for our simulation experiments.

5. For learning from feedback data, we produced statistics of terms and

phrases only from the relevant documents of Dl for the queries of Q3.

6. Using this statistics, we ran query expansion of Q3 using the standard

Rocchio method (see e.g. [Salton k, Buckley 90]). Let q the original

query vector, r the centroid of the relevant document vectors and n

the centroid of the nonrelevant ones, then we computed a improved

document vector according to the formula

= 8 • ^-f- 16 • r — 4 • n.

For query expansion, only a certain number of terms finally was con-

sidered in the computation of q' . For this purpose, we used "percent

expansion" with different parameters for words and phrases. That is,

from all terms occurring at least once within a relevant document, only

a certain percentage was considered in the final query; for this purpose,

terms were ranked according to the number of relevant documents in

which they occurred.

7. By using only relevant documents of Dl for expansion statistics we
tried to avoid influence of terms from non-retrieved but nonrelevant

documents in the occurrence statistic and in the expansion process.
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Table 1 shows the experimental results for query set Q3 and document

set D2. Obviously, document indexing method "Inc" gives better results

than "anc". We also varied the weighting factors for phrases in order to

optimize retrieval quality. For query expansion, percent expansion with dif-

ferent parameters was tested and compared with the case of a fixed number

of expansion terms.

The parameter combination of the last line in table 1 was used for the

official run. For computing the query term weights, the combination of the

document sets Dl and D2 was used. Running these queries on the test data

set D3 produced the official run dortRl.

3.2 Distributed ad-hoc retrieval

For simulating distributed retrieval, we tested the cases 2 and 3 from above.

For this purpose, document sets Dl and D2 were split according to the 5

different sources, thus forming 5 separate databases. The documents in each

database were indexed with the method "Itc", i.e. the product of logistic term

frequency and inverse document frequency, followed by cosine normalization.

The idf weight was computed from the local collection frequency only. Then,

for each query from the set Q4, the following steps were performed:

1. For each database, the query was indexed with the "Itc" method (using

local collection frequency only). With this query, the top ranking 1000

documents were selected from each database.

2. With the 5 results, a new temporary document collection was formed.

In a distributed environment, this document base would be constructed

by the agent.

3. For testing the case 2 from above, the temporary collection was rein-

dexed with the "Inc" method, and the query with Q4 with "Itc" (based

on frequency information from the temporary collection only). Re-

trieval with this combination produced the results for the official run

dortD2.

4. For case 3, we assumed that we had collection frequency information

for each query term from all servers. Thus, we could apply the "Itc"

indexing method for both documents and queries based on frequency

information from the whole collection. This way, the official run dortDl

was produced.
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index. word phrase word phrase lip-
IT

method exp. exp. wt. wt. average

anc 20% 8% 1.0 0.5 0.4051

anc 16% 8% 1.0 0.5 0.4098

anc 14% 7% 1.0 0.5 0.4121

anc 13% 6% 1.0 0.5 0.4125

anc 14% 6% 1.0 0.5 0.4127

anc 300 50 1.0 0.5 0.4130

anc 350 50 1.0 0.5 0.4141

anc 14% 7% 1.0 0.7 0.4147

anc 14% 6% 1.0 0.7 0.4149

anc 14% 5% 1.0 0.7 0.4150

anc 14% 4% 1.0 0.7 0.4155

anc 14% 3% 1.0 0.7 0.4155

anc 13% 6% 1.0 0.7 0.4157

anc 14% 6% 1.0 0.8 0.4146

anc 14% 7% 1.0 1.0 0.4120

Inc 14% 4% 1.0 0.5 0.4275

Inc 350 50 1.0 0.5 0.4275

Inc 13% 4% 1.0 0.5 0.4278

Inc 12% 4% 1.0 0.5 0.4279

Inc 11% 4% 1.0 0.5 0.4283

Inc 14% 7% 1.0 0.7 0.4259

Inc 14% 6% 1.0 0.7 0.4268

Inc 16% 3% 1.0 0.7 0.4274

Inc 15% 4% 1.0 0.7 0.4274

Inc 13% 6% 1.0 0.7 0.4274

Inc 350 50 1.0 0.7 0.4277

Inc 15% 3% 1.0 0.7 0.4278

Inc 14% 5% 1.0 0.7 0.4278

Inc 300 50 1.0 0.7 0.4280

Inc 14% 4% 1.0 0.7 0.4282

Inc 14% 3% 1.0 0.7 0.4284

Inc 13% 4% 1.0 0.7 0.4284

Inc 12% 4% 1.0 0.7 0.4291

Table 1: Results of learning runs for routing (learning with Dl, testing with

D2)
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4 Results

4.1 Routing results

The results of the official runs show that our routing run is clearly above the

average of all runs. Thus, we can conclude that our approach — although it

is very simple — works and yields good results.

4.2 Ad-hoc results

Both ad-hoc runs produced results of average quality. Considering the con-

straints underlying our approach, and that no tuning or learning was per-

formed, this is a positive result. Comparing the two approaches, there seems

to be no significant difference. Thus, we can conclude that it does not matter

whether or not the ranking performed in the agent can use global or local

term frequency information only. So the overhead in transmitting this fre-

quency information to the agent can be saved. It seems that the retrieval

quality is affected mainly by the indexing functions used in the servers.

5 Conclusions and Outlook

The results of our experiments show that retrieval in distributed environ-

ments can be performed without loosing too much in terms of retrieval qual-

ity.

Here we only have considered very simple weighting schemes. By using

more sophisticated schemes, and especially by applying appropriate learning

methods, much better results can be expected.

With the increase of network connectivity and the growing number of

document bases accessible, the development of retrieval methods for even

large numbers of loosely coupled IR systems is becoming a major research

issue.
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Abstract
We present data that describe the interactive searching

behavior of ten searchers using the INQUERY retrieval

engine in the context of the TREC-3 routing task. We dis-

cuss how these searchers with a strong background in the

use of traditional online retrieval mechanisms adapted,

after very limited training, to the use of a best-match,

ranked- output, full-text retrieval mechanism.

1 Introduction

The development of IR system technology from slow,

batch-mode, query submission to online query sub-

mission with rapid response generation by the IR

system now allows for a highly interactive, itera-

tive query development process. From experimen-

tal studies, it has been known for some time that

best-match, ranked-output retrieval techniques are

in general superior to exact-match systems in terms

of recall and precision performance measures (e.g.

[Belkin & Croftl987]). Furthermore, it seems that

systems which allow queries to be put in unstructured

form allow easier query formulation than those which

require boolean structure, and are, at least for end-

users, more effective [Frei k Qiul993, Turtlel994].

Finally, it is quite clear that automatic relevance feed-

back, using term weighting and query expansion, ei-

* Department of Psychology
* to whom all correspondance should be addressed

ther singly or in combination, significantly improves

retrieval performance [Salton & Buckley 1990].

The first users of these new retrieval mechanisms

are likely to be those that have had access to and

experience with traditional, boolean, set-based sys-

tems. We are interested in how these users will adapt

to the new retrieval mechanisms. On the one hand,

these users, typically professional online searchers,

will have acquired an extensive repertoire of search-

ing strategies. For example, searchers may be able to

transfer their knowledge about the effects of adding

terms to boolean queries in the form of conjunctions

or disjunctions to a situation where they add terms

within or outside the scope of proximity operators.

On the other hand, these searchers are novices with

respect to the retrieval mechanism and some of its

interactive features. Furthermore, whereas some ex-

periences with information retrieval mechanisms may
be helpful because they can be directly transferred

to the new situation, others may be not applicable

or not effective in the new situation. We were inter-

ested to see the degree to which searchers attempted

to transfer their existing search strategies such as a

component-approach or use of boolean operators to

the new environment and to what degree they would

experiment with new tools such as relevance feedback

made available to them.

We used the TREC-3 routing task context as a

testbed to investigate these questions. We provided
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ten experienced online searchers with a training man-

ual that guided them through a sequence of hands-

on exercises that familiarized them with the various

features of the interface. After searchers completed

the first part of the manual they performed one rout-

ing task (that is not included in our analysis). Dur-

ing the training phase, we provided some additional

help when serious misconceptions persisted or when

searchers experienced breakdowns from which they

could not recover on their own. Each searcher then

performed interactive searches for five TREC-3 top-

ics (each lasting up to 20 minutes) without further

help.

This paper focuses on the analysis of these expert

online searchers with no prior INQUERY searching

experience (the results reported as rutirl in this vol-

ume). The comparative analysis of their performance

and behavior with the experimenters' performance on

the same task (reported as rutir2 in this volume) will

be the focus of a forthcoming report.

The remainder of the paper is organized as fol-

lows. We first provide details on the searchers, exper-

imental materials, the interface and retrieval mecha-

nism, and the experimental procedure. Next we dis-

cuss summary performance and interaction data that

demonstrate common trends among searchers. We
continue with a discussion of some particular interac-

tive searches that highlight some of the successes and

failures users experienced. We conclude with some

observations on the ways in which our searchers used

the interactive facilities which were made available to

them, and with some discussion of problems of eval-

uation of highly interactive IR systems.

2 A Case Study

2.1 Searchers

We recruited 10 professional searchers to participate

in our study. The searchers had between 1 and 15

years experience with online search with traditional,

boolean, set-based information retrieval mechanisms

{X = 6.1 years) and their current position required

the large majority to perform online searches at least

a couple of times each week. All searchers had a

Master's degree in Library Science and used comput-

ers and graphical user interfaces on a regular basis.

Searchers had at best some experience with full-text

search but almost no experience with ranked-output

retrieval mechanisms (8 out 10 had no experience at

all). Two out of ten searchers had previously seen a

cursory, ten-minute demonstration of the INQUERY
system with an interface similar to the one used in

this study in the context of a classroom demonstra-

tion. None of the searchers had any prior hands-on

experience with the INQUERY retrieval engine nor

with the specific interface employed. Searchers vol-

unteered their time and were not compensated for

their eff'orts.

2.2 Materials

The Retrieval Mechanism We used the IN-

QUERY retrieval engine (version 1.6.3), developed at

the University of Massachusetts [Callan et al.l992].

The underlying mechanism of INQUERY is a

Bayesian probabilistic inference network [Pearll988]

which provides strict rules for the computation of

probabilistic belief values for each document in which

the degree of belief that a document is relevant is

based on the terms that are shared by the query

and the document and the operators in the query

formulation used to combine these terms. For a

detailed description of the INQUERY system see

[Callan et al.l992]. The standard stop-word and

stemming algorithms were used. We restricted the

query language to the use of the two proximity oper-

ators #uw and #n and the synonym operator #syn,

i.e. none of the soft or strict boolean operators of

INQUERY were available to the searchers. See the

System Description and Timing of the system for a

detailed description.

The Interface The interface to INQUERY was

a modified version of the INQUERY TK user

interface developed at the University of Mas-

sachusetts [Callan et al.l992] implemented in Tcl/Tk

[Ousterhoutl994] a widget-style interface develop-

ment language for the X windowing system running

under the UNIX operating system. INQUERY and

the interface ran on a remote SUN workstation; we
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used a networked SPARC 4 with greyscale monitor,

mouse, and keyboard for the searcher's interaction.

See the appendix for a detailed description of the in-

terface and all its features.

2.3 Procedure

The 50 TREC-3 routing topics (101-150) were

categorized by hardness (median R-precision from

TREC-2 results) into five groups. We created ten

topic sets consisting of five topics each with about

equal overall hardness by randomly selecting one

topic from each hardness pool for each of the ten sets.

Given these ten topic sets, we randomly assigned each

searcher to one of the ten sets. The final queries gen-

erated by our ten searchers together constitute our

rutirl submission for TREC-3.

Searchers were given a short general description

of the TREC project and were given a consent form

that outlined the experiment and the data collection.

Upon signing of the form they were led to a screened-

off area that was set up with the computer equipment

and a video recording device. The experimenter gave

a 2-minute introduction to INQUERY by listing its

major features, namely ranked output (rather than

set based retrieval), full text search (rather than ti-

tle, abstract, or keyword search), the availability of

automatic relevance feedback functionality, and the

ability to process free form, unstructured queries.

Searchers were next given a 14 page, ring-bound tu-

torial, used for a hands-on training session of about

90 minutes. The tutorial concluded with an example

of their searching task for the experiment (see ap-

pendix for a detailed description of the tutorial and

the searching task).

After a short break each of the ten searchers per-

formed a series of five searches. The topics were

determined by the random selection procedure de-

scribed above and within one topic set topics were

sorted by increasing hardness. That is, participants

searched easier topics first and topics became harder

with each search. Even though this fixed order for all

searchers conflated hardness with learning, we nev-

ertheless felt that searchers had to perform easier

routing tasks first to enable at least some initial re-

trieval successes that motivated participants to con-

tinue with the experiment.

At the beginning of each search participants were

handed the TREC topic description and a description

of the routing task (see appendix). They were free to

start interaction with the system at any time. Dur-

ing searches participants were allowed to refer back

to the tutorial if they desired to do so but experi-

menters provided no further help during the trials ex-

cept for restarting the system if a system failure had

occurred. A search was completed when the searcher

was satisfied with the result and saved a query as

"final" . If searchers had not completed their search

after about 16 minutes they were reminded that each

search was restricted to 20 minutes. After twenty

minutes searchers were asked to complete the cur-

rent iteration and to save what they felt was their

best query as the final query.

Each search was followed by a short break during

which the searcher filled out a short questionnaire

regarding the particular search that had been com-

pleted (their familiarity with the topic, the ease of

query construction, their confidence in the quality of

the final query, and their rating of the severity of the

20 minute time constraint for this search). Searchers

did not receive any feedback from the experimenter

regarding the quality of the queries or regarding the

strategies they employed except for the general en-

couragement that they were doing fine (independent

of their actual performance).

After the last search and search questionnaire

searchers filled out a background questionnaire and

were debriefed about the goals of the study.

3 Results and Discussion

This section contains the major results from our

study. We provide a quantitative and qualitative

analysis of the data and present some explanations

for the observed behavior. We first discuss the per-

formance of searchers with respect to the TREC-3
routing task. The next section captures the structure

and content of all queries issued throughout the inter-

action. The third section focuses on the interactive

process itself and describes how searchers interacted

with the various features of INQUERY and the in-
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terface and how they iteratively developed their final

queries.

3.1 Performance

This section describes the performance of our

searchers using the standard performance measures of

precision at 100 retrieved documents and R-precision.

We also looked at other performance measures like

precision at 20 documents, precision at 1000 docu-

ments, and average 11-point precision. All measures

are highly correlated and using any of them would

not change our findings. We first present data on the

performance of searchers on the training collection,

followed by data on the performance on the TREC-3
test collection. We compare these performances to

each other and compare the test results to the best,

median, and worst results of TREC-3.

Training Collection Searchers performed their 5

searches each on the TREC disks 1&:2 (the TREC-
2 "ad hoc" database). During the interaction,

searchers were given the relevance rating for each dis-

played document title (obtained from TREC-2). Al-

though searchers were instructed to perform a routing

task, most searchers focused on developing a good

adhoc query for the training collection under the

(implicit) assumption that good performance of the

query on the training collection was not a sufficient

but a necessary condition for a successful routing

query. Thus, it makes sense to analyze the perfor-

mance of searchers on the training collection.

The mean R-precision was just under 30% (X =
0.2905, S£, = .1661). The overall precision at 100

documents retrieved was X = .3828 with a stan-

dard deviation of sd — .2719. The single worst

performance was on topic 101 for which the final

query retrieved no documents at all because of an

error in the query formulation and topic 124 for

which the R-precision was .0114 (prec.@100=.02).

The best R-precision results were obtained for top-

ics 134 (R-prec.=.6596, prec.@100=.8500) and 148

(R-prec.=.6443, prec.@100=.7900), the best preci-

sion at 100 retrieved documents was obtained for top-

ics 130 (R-prec.=.6216, prec.@100=.90) and 135 (R-

prec.=.5478, prec.@100=.93).

Precision on Training Collection

avg. R-prec avg. prec. @100

n=5
X SD X SD

SOI

SO?

S03

S04

S05

S06

S07

S08

809

810

U. lUUT

0.1365

0.3070

0.3815

0.2396

0.3393

0.3848

0.3067

0.3100

n 1 (^QoU. lool

n 1 ^7"^U. J-U 1 o

0.1159

0.1137

0.2702

0.1532

0.1485

0.1560

0.1354

0.1434

U.40ZU

n 9ifinu . ^ouu

0.2180

0.3800

0.4500

0.3540

0.4600

0.4720

0.3260

0.4800

u.zoyy

0.1934

0.2411

0.3522

0.2753

0.2941

0.2958

0.2280

0.3648

All 0.2905 0.1661 0.3828 0.2719

Table 1: Searcher differences for precision of final

queries on training collection. Given are the average

R-precision and average precision at 100 documents

for each searcher.

There was considerable variation among searchers

and topics. The average R-precision for searchers (see

table 1) ranged from .1365 for searcher 803 to .3848

for searcher 808. R-precision correlated highly with

precision at 100 retrieved documents, r = .8926,6?/ =
48,p< .001.

There was a moderate but not significant negative

correlation between years of online search experience

and average R-precision, r = —A4,df = 8,n.s., that

is, searchers with more experience in traditional on-

line searching tended to perform worse.

As described, topics were grouped by hardness

(based on the median TREC-2 performance) and

searchers searched for topics in increasing order of

hardness. There was a significant trial effect for

R-precision, F(4, 36) = 15.52, p < .001, as well as

for precision at 100 documents retrieved F(4, 36) =
32.47, p< .001. Performance decreased with increas-

ing hardness (see table 2).

This trend is difficult to interpret since the order of

topic hardness was not systematically varied. Thus,

possibly learning eff'ects and other factors such as fa-

tigue may have contributed to the result. However,

learning seems not to be occurring since it should re-
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Precision on Training Collection

avg. R-prec avg. prec. @100

n=10

Trial X SD X SD

1 0.4293 0.1601 0.7120 0.2044

2 0.4105 0.1232 0.5880 0.1561

3 0.2758 0.1519 0.3250 0.1613

4 0.1966 0.0711 0.1730 0.0672

5 0.1401 0.0919 0.1160 0.0829

All 0.2915 0.1661 0.3828 0.2719

Table 2: Trial differences for precision of final queries

on training collection. Given are the average R-

precision and average precision at 100 documents for

each trial (Hardness TREC-2 category)

suit in better not in worse performance. One may
argue that without learning results would have been

even worse for harder topics. The data for other

TREC-3 participants (see below) and our own ru-

tir2 results suggest that indeed hardness is the major

factor since there was no inter-trial learning involved

in these systems and orders presumably varied from

the one we employed; nevertheless the same pattern

of decreasing performance can be found.

Test Collection The performance of final queries

on the TREC-3 test collection (TREC disk 3) is the

official performance evaluation criterion for TREC-
3. It evaluates whether the queries developed by

searchers in the context of the training collection were

indeed suitable routing queries that produced rele-

vant documents when applied to a different albeit

similarly structured collection. In summary, the re-

sults from the training collection were replicated for

test collection with somewhat lower overall results as

one would expect.

The mean R-precision was X = 0.2549 with a stan-

dard deviation of sd = 0.1880. The mean precision

at 100 documents retrieved was X = .2898 with a

standard deviation of sd — .2597. Again, the single

worst performance was on topic 101 for which the fi-

nal query retrieved no documents at all because of a

query error. Topics 104, 105, 106, and 116 also re-

trieved zero relevant documents. Similar results were

Precision on Test Collection

avg. R-prec avg. prec. @100
n=5

X Sd X Sd

SOI

S02

S04

S05

S06

S07

SOS

S09

SIO

0.3052

0.1304

0.1211

0.1549

0.4007

0.1723

0.3213

0.3825

0.2904

0.2699

0.1812

0.0979

0.1560

0.1525

0.2609

0.1802

0.1835

0.1827

0.1876

0.1410

0.3340

0.1160

0.1740

0.1860

0.3340

0.2300

0.4080

0.4420

0.3120

0.3620

0.3217

0.1124

0.2825

0.2066

0.2723

0.2230

0.2491

0.3072

0.2419

0.3430

All 0.2549 0.1880 0.2898 0.2597

Table 3: Subject differences for precision of final

queries on the test collection (TREC disk 3). Given

are the average R-precision and average precision at

100 documents for each searcher

obtained using precision at 100 retrieved documents

as a measure of performance: in addition to the above

topics, queries performed very poorly on topics 102,

103, 116, 127, 131, 144, and 149 (all with prec.@100

<.04. With the exception of topics 127 and 149 all

these topics were characterized by a very small num-

ber of relevant documents. In evaluating these low

numbers one needs to take into account that the the-

oretical maximum performance on these topics was

very low as well since 5 topics had under 10 relevant

documents in the collection and 23 topics had under

100 relevant documents.

The best R-precision results were obtained for top-

ics 148 (R-prec.=.6952, prec.@100=. 7700) and topic

135 (R-prec.=.5961, prec.@100:=.84), the best pre-

cision at 100 retrieved documents was obtained for

topics 150 (R-prec.=:.4119, prec.@100=.88) and topic

135.

There was considerable variation among searchers

and topics. The average R-precision for searchers (see

table 3) ranged from .1211 for searcher S03 to .4007

for searcher S05. R-precision correlated highly with

precision at 100 retrieved documents, r = .826, 4f =

48,p< .0001.
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Precision on Test Collection

avg. R-prec avg. prec. @100

n=10

Trial X X
1 0.4503 0.1784 0.6460 0.2504

2 0.3579 0.1211 0.3530 0.1870

3 0.2015 0.1855 0.2410 0.1727

4 0.1409 0.1124 0.0940 0.0885

5 0.1238 0.0895 0.1150 0.0848

All 0.2549 0.1880 0.2898 0.2597

Table 4: Trial differences for precision of final queries

on test collection (TREC disk 3). Given are the av-

erage R-precision and average precision at 100 docu-

ments for each trial (Hardness TREC-2 category)

There was a significant effect of trial (hardness

based on Trec-2 median R-Precision) on R-precision,

F(4,36) = 17.008,p < .001, as well as for aver-

age precision at 100 retrieved documents, F(4, 36) =
23.975,p< .001.

Differences between Training and Test Collec-

tion The routing task required searchers to develop

a routing query in the retrieval context of a training

collection (TREC disks ISz 2) but for an unknown
test collection (TREC disk 3). It is, thus, interesting

to compare the performance on the test collection

to the performance on the training collection. The
average R-precision dropped from .2905 to .2549 (a

difference of .0356, Sij = .0996). This drop was signif-

icant, F(l,49) = 6.379, p < .05. The same holds for

average precision at 100 retrieved documents: per-

formance dropped significantly from .3828 to .2898

(diff= .093, SD = .171), F(l,49) = 14.75,p< .001.

The correlation between precision at 100 retrieved

documents for the test and the training collection was

significant, r = .794, p < .001. The correlation for the

R-precision measure was r = .849, p< .001.

The by far worst drop for R-precision (-.468) oc-

curred for topic 104 (to 0.0), a topic with only 3

relevant documents in the test collection, whereas

the best case was an improvement in R-precision by

0.1457 for topic 110 (from .4442 to .5899) probably

due to the large number of relevant documents in

n Training (dislis 1 & 2)

Searcher

Figure 1: Searcher Averages

the test collection (534). Overall, the performance

dropped for 32 topics, remained the same for 1 topic,

and increased for 17 topics. For 40 out of the 50

topics the difference was less than .1.

The worst precision drop at 100 retrieved docu-

ments (-.71) was for topic 134 (from .85 to .14) due

to a small number (19) of relevant documents in the

test collection, whereas the best case was an improve-

ment in precision at 100 retrieved documents by 0.3

for topic 142 (from .37 to .67
)
probably due to the

large number of relevant documents in the test collec-

tion (638). Overall, the performance dropped for 33

topics, remained the same for 1 topic, and increased

for 16 topics. For 21 out of the 50 topics the differ-

ence was less than .1.

Figure 1 shows the average precision at 100 re-

trieved documents for each of the ten searchers on the

training as well as the test collection. One searcher's

queries (S09) did only minimally worse (.014 pre-

cision difference) on the test collection, and three

searchers (S03, s07, and S08) had on average only

slightly less good performance (< .05 precision dif-

ference) on the test collection. The remaining 5

searchers had larger drops in performance ( > . 1 preci-

sion difference). The worst drop occurred for searcher

S04 whose queries showed an average drop in preci-

sion of .194.

We also looked at differences between the train-
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ing and the test collection by trial (hardness cat-

egory). Average precision at 100 retrieved docu-

ments dropped for all trials (hardness categories)

with essentially no drop for the hardest topics (-

.001) and the biggest drop occurring in trial 2 (-

0.235). These differences were barely significant,

F(4,36) = 2.667, p = .048 < .05. However differ-

ences by trial were not significant for the R-precision

measure, F{4, 36) = 1.575, n.s. This is not surprising

since the hardness categories were formed based on

the TREC-2 performance on the training collection

TREC disks 1&;2 and thus are less applicable to the

test collection TREC disk 3.

Comparing Rutirl to General TREC-3 Per-

formance The variation in indexing and retrieval

mechanisms makes it difficult interpret the differ-

ences between our human searchers and the gen-

eral performance of all systems that participated in

TREC-3. Nevertheless, such a comparison allows us

to judge the performance of our information system,

comprised of INQUERY, the XINQUERY interface,

and the human searcher as a unit and to detect gen-

eral similarities and dissimilarities. Since R-precision

data were not available at this point for all systems,

we restrict our discussion to a comparison of pre-

cision as measured by the best, median, and worst

precision at 100 retrieved documents for each topic.

One should note as a proviso that the comparison

against the best and the worst performance is some-

what problematic if one averages over a (sub)8et of

topics since one would not expect a single system

to perform as well (or as badly) as the level which

one obtains by combining the best (worst) perfor-

mances of a large group of systems. A fairer com-

parison is probably the comparison with the median

performance of all TREC-3 systems.

The average precision at 100 retrieved documents

for our human searchers was .2898. The combina-

tion of best systems reached an average precision

of .5342, a significant difference of .2444, i(48) =
9.31, p < .001. The median TREC-3 average pre-

cision was .4190, a significant difference of .1292,

<(48) = 12.22, p < .001, and the combination of worst

system performances yielded an average precision of

0.1782, a significant difference of .1116 in favor of our

searchers, i(48) = 10.25, P < .001.

We correlated the performance of the human
searchers (rutirl) with the best, median, and worst

results for all TREC-3 systems. A high positive corre-

lation would suggest that the human searcher would

perform similarly on each topic (albeit on a differ-

ent level) whereas a negative correlation v/ould sug-

gest that, e.g. topics that were most difficult for

machine-based systems were much easier for human
searchers and vice versa. The correlation of preci-

sion at 100 retrieved documents between rutirl and

the best TREC-3 results was r - .802 (n = 50 top-

ics), the correlation of rutirl precision at 100 re-

trieved documents with the median TREC-3 result

was r — 0.870, and the correlation of rutirl preci-

sion at 100 retrieved documents with the worst pre-

cision level in TREC-3 was r ~ .829; all significant at

p < .001. This suggests that the difficulty of topics

relative to each other was similar for human searchers

and the machine approaches. One should note that

the independence assumption for the above statisti-

cal test is violated, but given the size of the effects

these violations will not change the results.

Given that relative searcher performance was in-

fluenced by topic difficulty based on the training col-

lection, we may want to confirm our results for the

test collection by comparing searchers not just among
themselves (see above), but also against the general

TREC-3 performance on the matching topic sets. Ta-

ble 5 indicates the average difference in precision at

100 documents between the human searchers and the

best, median, and worst TREC-3 results.

The searchers are sorted in order of decreasing av-

erage precision. Searcher performance is correlated

with the best and median TREC-3 performance on

the same topic set. Compared to the median per-

formance, searcher S08 performed best (an average

of -0.022 under the median), whereas searcher S02

performed worst (an average of -.234 under the me-

dian TREC-3 precision). We will return to these dif-

ferences when we discuss the search processes and

query characteristics associated with these searchers

in more detail.

We discussed earlier that trial effects could be at-

tributed either to learning or to the hardness of the
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Comparison to TREC-3
Precision @100 on Test Collection

n=5
^rutirl Median Xworst

s08 0.4420 0.5840 0.4640 0.2660

s07 0.4080 0.6720 0.5380 0.2140

slO 0.3620 0.6260 0.4760 0.1800

sOl 0.3340 0.6060 0.4420 0.1000

805 0.3340 0.6180 0.4980 0.2480

s09 0.3120 0.5680 0.4400 0.2280

s06 0.2300 0.4360 0.3600 0.1800

s04 0.1860 0.3920 0.3040 0.1420

s03 0.1740 0.3780 0.3180 0.1600

s02 0.1160 0.4620 0.3500 0.0640

All 0.2898 0.5342 0.4190 0.1782

Table 5: Subject differences for precision of final

queries on test collection. Given are the average pre-

cision at 100 documents for each searcher and the av-

erage performance for the same topics with the best,

median, and worst TREC-3 results

topic. It is, thus, interesting to compare the aver-

age precision of our human searchers for the various

hardness categories to the best, median, and worst

precision values for the same topic sets achieved by

the TREC-3 systems as a group. Figure 2 shows

the average precision at 100 retrieved documents for

the human searchers on the test and on the train-

ing collection and compares it to the best, median,

and worst TREC-3 results on the test collection. One
can see that there is a steady linear decline of preci-

sion with increasing hardness for all systems. Thus,

it seems appropriate to attribute the drop in perfor-

mance among the human searchers to the hardness

of the topic and not to fatigue, negative transfer,

or other problems. A by-hardness analysis of dif-

ferences between the various systems shows no sig-

nificant effect, except for the somewhat larger drop

in performance in hardness category 4 for the human
searchers. There is no trend that the difference be-

tween human searchers and automatic retrieval sys-

tems is larger or smaller based on topic difficulty.

Rulirl im Tip 3 (Tesl)

-B- Rulirl on Tip 1&2

TREC-3 Bcsl

TREC-3 Median

-A- TREC-3 Wiirsl

Trial (Hardness TREC-2)

Figure 2: Performance Comparison

3.2 Query Characteristics

In our study we were interested in the nature of in-

teractive query construction. This section describes

the queries searchers entered throughout the interac-

tion as well as the final queries saved as the routing

queries that constituted our official TREC-3 submis-

sion. Sections 3.3.1 and 3.3.2 discuss characteristics

of the interactions in which query construction took

place.

Searchers entered a total of 338 queries, i.e. an av-

erage of X = 6.76 queries per topic {sd — 4.00).

There were large individual differences: the aver-

age number of queries per topics ranged from 10 for

searchers S02 and S04 to 3.8 queries per topic for

searchers S06 and SlO but within searcher variation

was also substantial.

There was a significant increase in the number of

queries with increasing trials, F(4, 36) = 4.67, p <
.01. Table 6 gives the averages for each trial (hard-

ness category). Due to the confounding of trial and

hardness alternative interpretations are possible and

verbal protocols and interaction data suggest that

both are at play: on the one hand, easier topics often

led to satisfactory performance of early queries and

searchers simply ended the interaction without hav-

ing used up the allotted time. Secondly, searchers

became more confident in the use of system features
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Average Number of Queries

n=10

Trial X sd

1 4.40 3.1340

2 5.90 2.9981

3 6.30 4.4485

4 7.20 3.5528

5 10.00 4.0825

all 6.7600 3.9978

Table 6: Trial (Hardness Trec-2 ) differences for av-

erage number of queries.

Query Characteristics

Querytype First Interm. Last All

no rf

no operators 11 30 0 41

w/ operators 39 152 22 213

Sum no rf 50 182 22 254

with rf

no operators n/a 10 4 14

w/ operators n/a 46 24 70

Sum rf 0 56 28 84

Sum 50 238 50 338

Table 7: Query types for first, intermediate, and last

(final) queries. Relevance feedback (rf) not possible

in first query.

and were able to execute more queries in the con-

strained time span allowed for each topic.

We can characterize the queries by three factors:

the use of terms in the query, the use of operators

(synonym operator and proximity operators), and the

use of relevance feedback to expand the user's formu-

lated query and to reweight the terms. Searchers had

been trained on the use of all three query formulation

mechanisms. Users entered terms for all queries. Ta-

ble 7 provides a breakdown of the use of operators

and relevance feedback in the first, last, and interme-

diate queries.

The average number of terms in a query that was

entered by the searcher was X = 7.19. The majority

of these words was taken from the topic descriptions.

The minimum number of query terms was one and

Avg Number of Query Terms

n:::5

X All X First X Final

SOI 6.20 3.2 10.2

S02 5.66 3.4 7.0

S03 9.06 5.2 13.2

S04 6.36 3.8 7.2

S05 4.26 2.8 5.2

S06 6.00 4.6 6.2

S07 4.93 3.2 6.6

S08 16.15 11.2 17.0

S09 8.00 8.4 8.6

SIO 10.47 6.4 11.4

All 7.19 5.22 9.26

Table 8: Subject differences for the number of terms

entered per query. Given are the average number of

user terms entered for all queries, the first query, and
the last query.

the maximuin was 36 terms. For 42 of the searches

users never entered more than 12 terms.

Table 8 shows the average number of user terms

entered for all 338 queries, for the first query for each

topic, and for the final query for each topic. The
50 first queries contained an average oi X = 5.22

terms whereas the the 50 final queries had an aver-

age of X = 9.26 words entered by the user. One
should note that the number of processed terms in

the final queries is even higher in cases (28) where

relevance feedback led to query expansion. The av-

erage number of processed terms in the final queries

was X — 23.82 terms.

The average number of user terms per query also

varied with trial (topic hardness). The largest num-
ber of terms was found for trial 1 {X = 9.75) with

a steady decrease to trial A {X — 5.64). Trial 5 had

an average of X = 7.46 user terms per query. Fur-

ther analysis needs to be done to find an explanation

for these data. It may be the case that an increased

reliance on relevance feedback combined with increas-

ing fatigue led to the decline in user-supplied terms.

There was a weak but significant positive correlation

between the number of user words and the precision

at 100 retrieved documents, r = .2855, p < .05, that
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is, more user words led to better performance. How-

ever, the correlation between the actual number of

processed terms used for retrieval (i.e. after relevance

feedback led to query expansion) was not significant,

r= .209, p> .1.

Searchers were introduced during the training pro-

cess to the use of three non-boolean operators: fixed-

order proximity (#n), unordered proximity (#uw),

and synonym (#syn). The average number of oper-

ators per query was X — 2.54. The average num-

ber of operators used in final queries was X — 3.34,

and the average number of operators in first queries

was X = 1.94. Searchers made almost equal use of

all three operators (27.9% #n, 35.5% #uw, 36.6%

#syn). There was no significant correlation between

operator use in the final query and performance. The

structure of queries was relatively simple; the vast

majority of queries had at most one operator nested

inside of another operator (typically a synonym op-

erator inside of a proximity operator).

Table 9 details the use of operators by each

searcher. Given are the average number of operators

used in each query. Most searchers used on average

between one and three operators in each query. Only

searchers S03 and SOS had significantly higher use

of operators. Searcher SOS, the best searcher in our

group, used four times as many unordered proximity

operators compared to the other searchers and had

a higher frequency of synonym use as well. Searcher

503 used many more phrase (fixed proximity) oper-

ators than others, and slightly more synonym operar

tors as well.

Table 10 provides a breakdown of operator use by

trial (hardness). Searchers used the most operators

during their first search, in particular, #n operators.

The differences between trials were not significant

due to the variation within groups.

Finally, we looked more closely at the use of rele-

vance feedback. We noted already above (see table

7) that over half of the final queries used relevance

feedback and that a total of 84 queries were relevance

feedback queries. Tables 11 and 12 show the use of

relevance feedback on a by-trial (hardness) and by-

searcher basis.

There v/as no systematic increase or decrease in

relevance feedback usages over trials. Thus, neither

Operator t se in Query Construction

n=:5

Xall X #n X#uw X#syn
sOl 2.22 0.68 0.93 0.61

s02 1.28 0.02 0.88 0.38

s03 4.89 2.40 0.86 1.63

s04 LIS 0.38 0.00 0.80

s05 1.71 0.90 0.65 0.16

s06 2.53 1.37 0.58 0.58

s07 2.04 0.07 0.98 1.00

s08 6.81 0.27 4.19 2.35

s09 2.24 0.57 0.29 1.38

slO 2.95 1.68 0.11 1.16

All 2.54 0.71 0.90 0.93

Table 9: Searcher differences for the use of operators.

Given are the average number of operators per query.

The columns contain the averages for the number of

all operators used, the use of the proximity opera-

tors #n and #uw, and for the use of the synonym
operator

Operator Use in Query Construction

n=10
Trial A" all X#uw Xi^syn

1 3.43 1.39 1.07 0.98

2 3.14 0.51 1.39 1.24

3 1.86 0.35 0.81 0.70

4 2.63 0.81 0.79 1.03

5 2.18 0.69 0.68 0.81

All 2.54 0.71 0.90 0.93

Table 10: Trial (hardness) differences for the use of

operators. Given are the average number of operators

per query. The columns contain the averages for the

number of all operators used and averages for each

operator type
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Use of Relevance Feedback

n=10
Trial rf possible rf used %

1 34 7 0.21

2 49 8 0.16

3 53 16 0.30

4 62 27 0.44

5 90 26 0.29

all 288 84 0.29

Table 11: Trial (Hardness) differences for the use of

relevance feedback. Given are the number of queries

in which rf use was possible (non-first queries), the

number of queries in which rf was used, and the per-

centage of use for each trial.

Use of Relevance Feedback

n=5 rf possible rf used %
SOI 36 12 0.33

s02 45 0 0.00

s03 29 9 0.31

s04 45 25 0.56

s05 26 6 0.23

s06 14 6 0.43

s07 41 0 0.00

s08 21 8 0.38

s09 19 8 0.42

slO 14 10 0.71

all 288 84 0.29

Table 12: Subject differences for the use of relevance

feedback. Given are the number of queries in which

rf use was possible (non-first queries), the number of

queries in which rf was used, and the percentage of

use for each subject.

experience with the system nor the increased hard-

ness of topics led to a significant increase in the use

of relevance feedback. Searcher differences were pro-

nounced: two searchers (S02, S07) did not use rel-

evance feedback for any of their searches, whereas

searchers S04 and SlO used relevance feedback for

56% and 71% respectively of the queries where it was

possible to do so. A detailed analysis of the protocols

will be needed to determine situations that trigger the

use of relevance feedback by searchers. There was no

correlation between the use of relevance feedback and
performance.

3.3 The Interaction Process

The searchers in this project were presented with the

task of developing a single best query for each of the

topics given to them. Therefore, our discussion of in-

teractive searching behavior is in fact a discussion of

query formulation procedures. An interesting ques-

tion which we address in this study concerns the ways

in which experienced online searchers interact with a

new retrieval system, INQUERY. The searchers in

our study were experienced users of interactive sys-

tems, and they came to this experiment with a stock

of routine query formulation procedures. However,

some of these procedures, such as boolean set con-

struction, do not easily map onto INQUERY. At the

same time, INQUERY offered several interactive fea-

tures, such as automatic relevance feedback, which

were completely new to the searchers. The searchers

in our study were faced with conceptual problems of

understanding the topic itself, and in addition, the

conceptual and procedural problems of learning to

use the INQUERY system. An interesting research

question concerns the extent to which searchers in

this situation try to make the new system work to

support their typical searching behaviors; or whether

the searchers develop new searching behaviors, and

new query formulation procedures as they interact

with the new retrieval system.

3.3.1 Characteristics of the Interaction

We begin our discussion with some general character-

izations of the interactive query formulation process,
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relating them, where relevant, to performance mea-

sures. The extent to which query reformulation ac-

tually took place in our searches, and the means and

character of the changes, can be indicated by several

parameters, including:

• changes between the initial queries and the final

queries;

• number of iterations in a search;

« use of relevance feedback;

• use of features supporting manual reformulation;

• kinds of interaction with displayed output

Changes between initial and final queries can be

measured relatively easily in terms of difi'erences in

numbers of query features. Tables 7 and 8 and the

related discussion in section 3.2 show that there were

substantial changes in these characteristics, with

mean number of searcher-supplied words increasing

from 5.22 to 9.26 (to 23.82 when terms supplied by

relevance feedback are considered), and number of

operators increasing from 1.94 to 3.34.

The number of iterations per search is a strong

indicator of extent of interaction. Our definition of

iteration, "that part of a search bounded by uses of

the "Run Query" button" (first iteration beginning

with starting the search, last ending with saving the

final query), is equivalent to the concept of "cycle" as

used in discussing interaction in traditional boolean

retrieval systems (cf. [Harterl986]). The mean num-
ber of iterations per search, for all searchers, was

7.760. There was no significant difference in num-
ber of iterations by searchers, but the number of it-

erations increased significantly by trial (that is, by

hardness), F(4, 36) = 4.607, p< .01 (see table 13).

There was a medium but significant negative corre-

lation between the number of iterations and precision

at 100 retrieved documents, r — — .435,p < .05 and a

medium correlation between the number of iterations

and trial (hardness), r = .438, p < .01. One possible

interpretation is that topic difficulty led to increased

number of iterations but this increased eff"ort did not

pay off. To account for training and hardness, we

Average Number of Iterations

n=10

Trial X SD

1 5.50 3.064

2 6.90 2.998

3 7.30 4.449

4 8.10 3.604

5 11.00 4.083

all 7.7600 3.982

Table 13: Trial (Hardness Trec-2 ) differences for av-

erage number of iteration, per topic.

computed the correlation between the number of it-

erations and the precision at 100 documents retrieved

separately for each trial, i.e. for topics with similar

difficulty. None of the correlations was significant

(they ranged from .001 to -.498, but the trend was

clearly in the same direction as the overall result:

the more iterations searchers performed, the poorer

was the result. One possible partial explanation is

the fact that the submission of a syntactically wrong

query ended one iteration. Thus, searchers who made
syntcix errors and maybe had more difficulties in gen-

eral had more iterations.

The methods by which searchers reformulate their

queries can be characterized, in our setting, as

automatic (using relevance feedback) or manual

(adding/deleting terms and/or operators). Auto-

matic relevance feedback was used in 29.2% of all

of the queries in which it was possible. Interestingly,

it was used in 58.3% of the final queries (28 out of

the 48 searches which actually had some reformu-

lation). In fifteen searches relevance feedback was

never used. Two searchers accounted for ten of those

searches, the remaining five distributed amongst four

searchers. Two of the latter instances were searches

with no reformulation of any kind. See tables 11 and

12 in section 3.2 for detailed data on use of relevance

feedback, and its effect on performance.

Manual query reformulation, that is, addition,

deletion or replacement of terms or operators by the

user directly, was not used in seven searches. Five

of those searches used automatic relevance feedback,

and for two there was no reformulation at all.
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From our data, it is clear that manual and auto-

matic query reformulation are not mutually exclu-

sive. Two searches involved no reformulation at all,

five searches involved only automatic query reformu-

lation, and 13 searches used only manual query refor-

mulation. Thus 28 of the 50 searches used both au-

tomatic and manual query reformulation techniques.

The use of relevance feedback in our interface re-

quired the user to turn relevance feedback on, and

to select at least one document as relevant (negative

relevance feedback is not supported in INQUERY).
Over all 50 searches, relevance feedback was turned

on 54 times, and turned off 19 times (relevance feed-

back remains on in our interface to INQUERY, unless

explicitly turned off, once it is invoked). The mean
number of documents selected per iteration, over all

searches in which relevance feedback was used, was

3.969, and the mean sum of documents marked as

relevant, per search, was 16.120, with a range of 0 -

116. Over all searches, there were only 25 instances

of deselection of documents.

Support for manual query reformulation was mi-

nor in our interface. The major such tool was the

ability to save query statements, and subsequently

combine them. We can get some indication of the

general strategy of successive formulation of parts of

a query, with subsequent combination of those parts

(the most common query formulation pattern in tra-

ditional IR systems) through analysis of the use of the

save and load query facilities. The mean use of the

"save query" tool was 2.140, but since all searchers

were required to use this feature at least once, to save

the final query, the use of this tool for purposes other

than saving the final query was 1.140. The total num-
ber of such uses was 57. The "load query" is perhaps

the most direct indicator of this type of query refor-

mulation strategy. 41 searches did not use this tool

at all, and there were only 36 total occurrences, of

which one searcher accounted for 22.

Finally, we can ask where the searchers found the

evidence on which to base their query reformulation

strategies, whether manual or automatic. In the au-

tomatic relevance feedback strategy, the most obvi-

ous source of evidence was the relevance judgments

that were displayed with each document title. But

for many retrieved documents, there were no rele-

vance judgments, so the presumption is that decisions

would be made on the basis of the other informa-

tion in the summary window (belief value, document
id, including the acronym indicating the database,

and title), or on the basis of the texts of documents.

For support of manual query reformulation, the high-

lighted terms in the texts of displayed documents

could serve as an additional source for query refor-

mulation. Accordingly, we consider here the number
of titles, and the number of documents, that were

viewed by the searchers.

In our interface, the default display as a result of

a search was the summary window with five titles.

In order to view a document, the user either had to

double-click on the desired title, to double-click on

the desired title as indicated in the bar graph (this

never happened), to select a document through the

scroll-bar next to the document display window, or

to invoke the "next document" or "previous docu-

ment" buttons below the document display window

(this technique was eff'ective only if a document was

already displayed). The mean number of instances of

viewing the full-text of a document, per search, was

6.620. Since our definition of iteration leads to one

less chance for documents to be displayed than there

are iterations in a search, there was an overall average

of about one full-text display per iteration. That is,

the total number of displayed documents, for all it-

erations, was 331, and the total number of iterations

in which it was possible to see a document was 338.

There were clear diff"erences between searchers in

the display of the full-text of documents, as indicated

in table 14. The searcher with the highest average

(S09) looked at between 13 and 36 documents dur-

ing a search, whereas the searcher with the lowest

average never looked at more than one full text of a

document during a single search. Absolute numbers

for the other searchers ranged from 0 (searcher SIO)

to a maximum of 14 full texts viewed.

We identified three diff"erent conditions under

which our searchers could view titles: the total num-

ber of titles displayed during a search or interaction;

the number of unique titles displayed during an in-

teraction; and, the number of unique titles displayed

during an entire search. The first gives some indica-

tion of the overall extent of interaction in a search;
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Viewing of Full Text

of Documents

n=5 X SD

SOI 5.6 3.21

S02 0.6 0.55

303 6.6 5.55

S04 8.0 2.45

S05 7.0 2.00

S06 6.4 4.34

S07 8.8 3.03

808 2.0 1.73

S09 18.4 9.91

SIO 2.8 4.38

All 6.62 6.22

Table 14: Searcher differences for the number of times

a full text of a document was displayed during one

search (topic) and presumable viewed by a searcher.

the second, in comparison to the first, is an indica-

tion of searchers' returning to earlier displays; the

second and third show how many titles searchers had

available to them as sources for query reformulation;

and, the third is an indication of differences in out-

come of queries. We make the assumption, for gen-

eral analysis, that the display of a title is equiva-

lent to the searcher having attended to (viewed or

seen) that title, and the further simplifying assump-

tion that the number of documents without titles is

relatively small (or, alternatively, that the searchers

gain at least some information from the other infor-

mation associated with the summary display, even

when there is no title).

Table 15 shows the means per search, by searcher,

of total titles seen for each of these viewing condi-

tions.

Overall means for each condition, respectively, are

136.34 titles seen per search, 110.08 iteration-unique

titles seen per search, and 67.2 unique titles seen per

search. The first column (Table 15) indicates that

there was a fairly high degree of interaction over-

all. The second column suggests that there was not

too much "thrashing", or repetitive viewing within

an iteration. The mean percentage of duplicate ti-

tles seen in an iteration was 19.26%, but eight out of

the ten searchers had percentages below this mean,

with one accounting for an average of 95 duplicate

titles per search. The third column indicates that

the queries were in general reasonably effective in

finding new documents. Although the overall per-

centage of unique documents viewed is about 49%,

seven of the searchers performed at between 58% and

64% "effectiveness", with one, with a large number
of viewed documents, finding only about 27% new
titles. There are clear differences in all three char-

acteristics by searcher (table 15), but no significant

differences by trial (hardness). It is of some interest

to note that of the 6817 titles that were displayed,

to all searchers, in all iterations, only 331 (somewhat

less than 5%) were selected to be viewed in full.

Overall, these data indicate that the searchers en-

gaged in substantial interaction in the formulation of

their queries, using a wide variety of tools and facil-

ities. Judging the eff'ectiveness of the various forms

of interaction, in terms of performance, is not easy,

however. The problem is that it is not clear how
the initial user queries should be interpreted. If one

views them as initial starting points for subsequent

interaction, then it makes no sense to compare the

effectiveness of the first query with that of the final

query.

3.3.2 Interactive Query Formulation

In this section we look at some of the query formula-

tion procedures used by our searchers. We describe

three sample searches, in order to illustrate three dif-

ferent query formulation strategies; one in which the

searcher makes minimal or no use of new system fea-

tures; one in which the searcher attempts to learn

how to use system features over the course of a search,

and one in which the searcher uses new system fea-

tures right from the start.

Topic 122 - Minimal use of new features We
chose to describe the query formulation procedures

used by S07 in topic 122 as an example of minimal

use of new system features. Topic 122 was chosen

because it is familiax to all of the interactive systems

participating in TREC-3; that is, all interactive sys-
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Viewing of Document Titles

All Instances

of viewing

Unique

in Iteration

Unique

in Search

n=5
V Sd A. Sd

SOI

804

805

806

807

808

809

810

70 9

53.2

82.0

319.0

120.0

58.0

59.0

319.2

78.8

204.0

1 7 n

24.7

55.8

94.4

30.2

30.5

27.0

129.6

42.6

102.4

00»\J

45.2

69.6

224.0

98.0

48.0

50.0

267.8

68.8

174.4

1 Q

18.5

45.2

47.6

24.9

23.6

26.9

127.9

33.1

86.0

49 9

31.0

37.4

85.4

69.2

33.8

36.2

157.0

49.8

130.0

11 J.O

11.4

23.5

32.9

24.2

14.5

15.8

91.5

22.3

63.6

All 136.3 118.2 110.08 93.4 67.2 55.6

Table 15: Searcher differences for the number of titles displayed in the summary window throughout the

course of a single search (topic) and presumably seen by the searcher.

tems have been asked to provide a detailed descrip-

tion of the entire search process for this topic.

807 began tl22 with the following query formula-

tion:

#uw50(caLncer #syn(drug chemotherapy

treatment)

)

After 8 iterations, the final query was the following:

#uwlOO (ceuicer #syii( research testing

evaluation)

)

#syn(cancer leukemia)

#uw50 (cancer #syn (drug chemotherapy

treatment))

In this example, the searcher constructed three sep-

arate queries, evaluated them individually and then

together as one set. Table 16 gives the steps Searcher

07 went through in developing a final query for topic

122.

This searcher made no use of automatic relevance

feedback, and minimal use of full text. For the most

part, searcher 07 looked through the full text of docu-

ments to make sure that she hadn't missed anything,

rather than using them to search for new concepts.

Throughout the search, query construction centered

around changes in scope rather than on changes in

conceptual content of the queries. A total of seven

words was used to construct the combined query set.

Searcher 07 used a building blocks approach to

query formulation, in which three components were

identified, terms selected to represent the compo-

nents, and finally, the three components merged into

one search statement. This is one of the most com-

monly used approaches to online searching, and it

seems reasonable to think that searcher 07 was ap-

plying routine query formulation procedures to the

INQUERY environment. We characterize the strat-

egy used by searcher 7 as one of "fitting new tools to

old habits."

Topic 116 - Partial use of new system features

The strategy employed by searcher 03 for topic 116

is characterized by a combination of manual and au-

tomatic query reformulation. 803 began with the fol-

lowing initial query: #syn(drug generic)

After 13 iterations, the final query entered by the

user in the query window was the following:

#uwlO( #syn(breind generic) #syn(drug

pharmaceutical)

)

The searcher decided to use relevance feedback, so

the final query as produced through automatic rele-
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Iteration Step Description

1 1 Formulate query 1 (see text)

2 Run query

2 3 Display full text of the one relevant document in ranked set

4 Save query 1 without modification

5 Reset system and construct query #2:

7^uwlOO(cancer#syn(treatment research testing evaluation)

6 Run query

3 7 Fixes syntax error (missing closing parenthesis)

8 Run corrected query

4 9 Look at titles and relevance judgements of top five documents

(One relevant document in Hst)

10 Save query #2 without modification

11 Reset system and construct query #3:

#svn(cancer leukemia)

12 Run query

5 13 Look at titles and relevance judgements of top five documents

(One relevant document in list)

14 Save query ^3 without modification

15 Load query #3; load query 1: load query 2

16 Run combined query set

6 17 Look at titles and relevance judgements of top five documents

(All have "?"as relevance judgement)

18 Display fuU text of document ranked #2 in set

19 Reset system

20 Load query #2; delete term "treatment"

21 Run modified query #2
7 22 Display full text of document 1 in ranked set (relevant)

23 Display full text of document 4 in ranked set (?)

24 Display full text of document 5 in ranked set (?)

25 Save new query #2:

#uwlOO(cancer#syn(research testing evaluation))

26 Load query #3; load query #1
27 Run combined query set

8 28 Scroll through retrieved documents,

and look at 4 full-text documents

29 Save combined query set as final

Table 16: Query Formulation Process for Topic 122 (Searcher 7)
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vance feedback was the following:

#WSUM( 1.000000 20.072113 #UW10( #SYN(

bramd gener) #SYN( drug pharmaceut)

)

9.267074 vitarin 0.763216 bolar 5.181479

fda 0.489698 maxzid 0.420534 hemant

2.163789 dyazid 0.317706 hypertens 0.306859

sheJi 0.458595 pharmac)

In contrast to searcher 07, 503 made some use of

new system features. Relevance feedback was used in

three iterations; 14 full text documents were looked

at in seven of the 13 iterations. A total of 12 search

terms were selected by the searcher, and an addi-

tional four were added by the system, through rele-

vance feedback. Searcher 03 went through the query

formulation moves described in table 17

This example search illustrates some of the ways

in which searcher 3 combined manual query ex-

pansion techniques (steps 4,8,12) with query expan-

sion through automatic relevance feedback. In these

steps, S03 repeatedly used a strategy of running a

query, looking at retrieved texts, and then modify-

ing the query. In step 21 the searcher uses relevance

feedback to run a new query, and then manually adds

a new term. The pattern of interaction in this search

suggests that Searcher 03 did not have a complete

understanding of how to use the new system, and in

particular, how to use relevance feedback.

The example of topic 116 illustrates a search strat-

egy which begins with routine manual query formu-

lation procedures, and then attempts to incorporate

some of the automatic query expansion techniques

found in INQUERY. We characterize this strategy as

an attempt to combine old and new models of sys-

tems and search strategies.

Topic 107 - Effective Use of New Features

Topic 107 has been selected as an example of a one

searcher's ability to effectively use features of IN-

QUERY. Searcher 08 began this search with the fol-

lowing query formulation:

#uw300 ( #uw3 ( insider trading
)
j apan)

After five iterations, the final query as entered in

the query window was the following:

#uw300(#uw( insider trading) japaLn#syn(law

regulations guidelines legislation

#uw3(self regulation)))

The searcher decided to use relevance feedback, so

the final query as produced through automatic rele-

vance feedback was the following 120 term query:

#WSUM( 1.000000 2.658688 #UW300( #UW3(

insid trade) japan #SYN( law regul guidelin
legisl #UW3( self regul))) 2.621457 profit

2.841300 corpor 2.116411 osaka 2.873363
loss 9.742378 #foreigncountry 1.359818

unlist 9.114288 exchang 3.300622 disclosur
6.330032 compan 2.571121 client 1.268526

diet 1.321397 shimakura 2.059871 broker

[...91 terms left out...]

1.226791 know 11.650723 ministr 3.683496

foreign 4.168829 aide 11.580430 tokyo

1.515035 kiich 1.579114 question)

Searcher 8 used the scroll bar to move through the

document list, and looked at a total of 268 unique

titles over the course of four iterations. He consulted

only one full text document. Relevance feedback was

turned on during two iterations, and 85 documents

were selected by S08 as relevant. The query formula-

tion process for topic 107 (Searcher 8) is depicted in

table 18.

Summary These example interactions illustrate

three different ways in which experienced online

searchers in our study adapted to a new retrieval sys-

tem, INQUERY. Two of the searchers were able to

adapt to the new retrieval mechanism, one by using

new system features in ways which supported her rou-

tine searching strategies, and the other by developing

new searching behaviors which matched the capabil-

ities of the system. A third searcher tried to use

both traditional query formulation strategies and au-

tomatic features of the new system, with less success.

The data in our study do not enable us to say

what predicts successful adaptation to a new retrieval

system environment. From the descriptive evidence

we have presented, it seems as if Searcher 7 under-

stood how to use specific features of INQUERY, such

as proximity and synonym operators, in ways which

supported her routine searching strategies in boolean

systems. This searcher made the new system work

for her; or we might say that she applied new tools to
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Iteration Dtep Description

1
1 Forniula.te Query ^1 (above)
oL Run query

2 Look at top 25 titles and their relevance judgements

4 Delete query 1; replace with:

^uw200 (^syn(noinenclature 97^3 (chemical formula)

^3 (brand name) ^3 (generic name)))
rr
0 Run query 2

3 6 Look at top five titles and relevance judgements

7

Q0

1 \ • 1 .111 1. £ ^ 1 i.J J.Display lull text 01 one relevant document

Add one term to query 2, to form new query 3

Qy Run query 3
A
4 10 Correct speUing "drugnomenclatura" to "drug nomenclatura"

1 -1

11 Run corrected query

5 12 Look at top five titles and their relevance judgements
1 0
i. J Display full text of one relevant document

14 Delete query 3 and replace with:

^uwlO(^syn(brand generic)^syn(drug or pharmaceutic))

15 Run query

6 16 Look at top fifteen documents

17 Display lour full text documents

18 Automatic relevance turned on; one document selected

1 Qly Run query with relevance feedback

7 20 Look at top live titles and their relevance judgements
01
ill Display 2 full text documents

Li Reformulate query:

23

^uwlO(^3yn(brand generic chem)^syn(drug or pharmaceutic)

Run Ouprv

8 24 Relevance feedback on, add one document

25 Run query

9 26 Relevance feedback on, delete 1 document, add 1 document

27 Relevance feedback off

28 Fifteen titles and relevance judgements looked at

29 One fuU text document displayed

30 Run Query

10 31 Relevance feedback off, 1 document selected

32 Run query

11 33 Relevance feedback off, 1 additional document selected

12 34 Relevance feedback turned on, query run

13 35 Save last query as final query

Table 17: Query Formulation Process for Topic 116 (Searcher 3
)
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Iteration Step Description

J.
1
J.

£i
H 11 Tl 1 Ill^lTlTxvu.il Vc^ucxy

9Li O r? 1 film Tli^A TV>*»rlr\a f*lr tiifTKi/i r\T\

4 Scroll through the document list

look at 90 titles (50 unique)

5

c.D Retrieve 1 full text document
7 Rim nnerv

3 8 Relevance feedback turned off; save query

9 Look at 65 titles; 41 of which are unique

10 Modify query by adding 6 new terms. New query:

11

#uw300(#uw(insider trading) japan#syn(law regulations

guidelines legislation ^^uw3(self regulation)))

Run query

4 12 Relevance feedback turned on; 23 documents added

13 Run query (step 10) with relevance feedback on

5 13 save query as final query

Table 18: Query Formulation process for topic 107 (Searcher 8

old habits. Searcher 8, on the other hand, appears to

have learned new searching behaviors through his in-

teraction with INQUERY. Rather than adapting the

new system to his old behaviors, Searcher 8 changed

behaviors to fit the new system environment. SOS ap-

pears to have understood the concept of automatic

relevance feedback, and the procedures for using it

in INQUERY. Our last searcher, 803, did not change

routine searching behaviors to fit the new system en-

vironment, and she did not use features of INQUERY
to support her old habits. It appears as if searcher 3

did not have a well formed model of the new system,

and her attempts to use it were based upon trial and

error experiences.

Based upon this descriptive evidence, we suggest

that a future research goal might be the investigation

of factors which constrain or facilitate the adoption

of effective new system models.

4 Conclusions

One conclusion that we can draw immediately from

our data is that searchers in this study have been

able to use the interactive features, including rele-

vance feedback, offered by the INQUERY IR model

and the interface which we provided. Furthermore, it

appears that the combination of automatic and man-

ual query reformulation can be quite effective, if used

appropriately. From our few extended examples, we

have some reason to believe that appropriate use of

the reformulation and interaction facilities or capa-

bilities might depend upon the ability of the searcher

to develop an appropriate mental model of the IR

system.

One somewhat problematic result was the seem-

ingly negative effect of extent of interaction, as mea-

sured by number of iterations, on retrieval perfor-

mance. Although this effect is conflated, in our

study, with the hardness of the topic being searched,

there still seems to be some possibly significant ef-

fect. This remains for us an open question, but one

which might possibly be answered by analysis of the

thinking aloud protocols associated with the searches,

which we are now beginning.

Perhaps the most immediately striking result of

our study is the consistently poor performance of the

Rutirl final queries, with respect to the median per-

formance of all TREC-3 systems. Since this is also

a result for all of the other interactive systems in

TREC-3, it seems worthy of some comment.
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Our searchers basically took words from the topic

descriptions as the source for their queries. This is

also precisely what the automatic systems did. Per-

haps because of a lack of familiarity with the IN-

QUERY system, or with the relationships between

language in full-text documents and query effective-

ness, or because of lack of good tools to support refor-

mulation, our searchers tended not to exhibit much of

what one might expect to be the potential advantage

of human searchers in the interactive environment,

namely, exploration leading to new ways to formu-

late the information problem.

The automatic systems, on the other hand, started

with very rich queries (that is, basically, all of the

terms in the long topic descriptions), and used them

precisely in ways that were tailored to their various

retrieval techniques. Since the TREC topics are un-

usually long, in terms of what one might ordinarily

expect as input to a system from a user, and in terms

of our searchers' starting queries, this alone might ex-

plain some of the difference in performance between

automatic and interactive systems. It might indeed

be possible to interpret the original TREC topics as

the result of some substantial user interaction in an

IR system (indeed, at least some topics were pro-

duced in precisely this way), and thus the automatic

systems are working on top of a previous interaction.

But this reasoning is all highly speculative, and the

issue clearly needs to be addressed explicitly in fur-

ther studies.

Another issue that needs to be more directly ad-

dressed is the relationship of the searcher to the

information problem for which the search is being

conducted. In an automatic system, this may not

have a terribly strong effect on performance, but it

seems reasonable to suppose that searching proceeds

differently for persons who are doing searching for

their own problems, than for persons who are do-

ing delegated searches (e.g. see [Shenoudal990] and

[Spinkl994]). Thus, the entire experimental frame-

work of TREC may be working against appropriate

evaluation of end-user interactive searching.

This brings us to our final comment. That is, the

experience of doing a study of an interactive system

with human searchers in the TREC context leads us

ever more strongly to the conclusion that we need

to develop new evaluation measures and methods for

interactive IR for end users. One such change might

be to have searchers doing ad hoc style searches for

their own information problems, or problems which

are salient to them in other ways. Another might be

to address in some way the idea that queries in such

systems are being progressively formulated, rather

than progressively better specified. And something

that in our case can be done immediately, is to make
use of the searchers' comments in the thinking aloud

task in order to understand better their problems and

their behaviors. This last point is one that we are now
taking up, in order to address many of the open issues

that have been raised in these concluding comments.

Whatever changes might eventually result in meth-

ods for studying interactive IR, it seems clear to us

that the experience of our interactive systems studies

in TREC-3 has been highly beneficial in several ways.

It has given us an early, and important look into how
human searchers interact in best-match IR systems

with relevance feedback, the context in which we can

expect most IR to take place in the future. It has

in particular suggested several issues that will need

to be addressed in order to make these systems more

relevant to this context, and in order to make them

more supportive of users. And, it gives us some hope

that we will be able to design IR systems which di-

rectly support effective human interaction.
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APPENDIX: rutirl

INTERATIVE SYSTEM
DESCRIPTION
I. System description

1.1 Screen dump of "typical" screen

Figure 3 shows a typical state of the Rutgers XIN-

QUERY interface during a search. Individual fea-

tures are discussed below.

1.2 Usable features of the interface

I.2.a General

In our experiments we used the INQUERY re-

trieval engine (version 1.6.3), developed at the Uni-

versity of Massachusetts (Turtle Croft, 1991). We
used the INQUERY TK user interface, XINQUERY,
developed at the University of Massachusetts with a

number of modifications. Most actions are carried

out through keyboard-based and mouse-based inter-

action with the main Tkinq window (I.l) which is

comprised of four subwindows and a number of in-

teraction devices. Below we describe the various fun-

cionalities of the interface, and specify the particular

feature whose use we have monitored, in UPPER-
CASE.

I.2.b Query formulation features:

On the top right is a query window with limited

text editor functionality. Searchers use this window

to enter and edit their queries. Queries can extend

over multiple lines and a scrollbar allows scrolling

through complex queries that extend beyond the size

of the query window.

SAVE QUERY, LOAD QUERY Buttons above

the query window can be used to save a query to file

or to load a previously entered query into the query

window. In either case, a dialog window with a list of

current filenames and default names will appear. The

user can select an existing name or enter a new name.

The text of a loaded file will be appended to the

current contents of the query window, allowing for

the combination of previously stored query segments.

Clicking on the "Reset ALL" button will clear the

query window as well as all other information from

previously executed queries.

165



Figure 3: The Rutgers XINQUERY user interface
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To execute a query the searcher enters (or loads) a

query and clicks on the "Run Query" button above

the query window. If the query is syntactically incor-

rect a warning message and a separate error window

will pop-up. The error window will give extremely

limited feedback on the type and location of a syn-

tax error (if at all). These windows remain on the

screen until the users dismisses them explicitly. If

the query is syntactically correct it will be processed

further by the INQUERY system. Status messages

will appear that indicate that a query is processed,

the number of terms that are evaluated, and that the

resulting list of retrieved documents is sorted. Upon
completion, the summary window (see below) will be

updated with the results from the current query.

1.2.c. Search results

The window in the tniddle is a summary window

that gives summary information on five documents

retrieved by the system in response to a query. It

displays the rank of a document, the belief value as-

signed by the system, a relevance rating of the doc-

ument as assigned by the TREC raters (if available),

its external document ID, and the title of a document.

SCROLLBAR IN SUMMARY Users can scroll

through the ranked list of retrieved documents by

means of the scrollbar to the right of the summary
window.

SCROLLBAR IN DOCUMENT WINDOW
Searchers can also use the scrollbar on the lower

right to change the summary window. As the user

is dragging the scroller, feedback about the rank of

the about-to-be-selected document (that will appear

on the top of the summary window) is provided. Both

scrollbars are very sensitive if large numbers of doc-

uments have been retrieved and direct scrolling to

a particular rank in the list is not (easily) possible;

triangular buttons at the respective ends of the sum-

mary window scrollbar need to be used to change the

ranks displayed in the summary window by incre-

ments/decrements of five. An indicator under the

summary window gives the total number of docu-

ments retrieved by the current query.

DOCUMENT SELECTED/UNSELECTED
(AS RELEVANT) To the left of the titles

are toggle buttons that allow a searcher to mark
individual (or groups of) documents.

RELEVANCE FEEDBACK ON/OFF Di-

rectly above the summary window is the automatic

relevance feedback toggle. If the toggle is "off" (the

default), markers only serve the orientation of the

user. If automatic relevance feedback is turned "on"

,

every marked document is used as a source in the

computation of a relevance feedback query.

DOUBLE-CLICK ON TITLE The bottom half

of the window consists of the document window.

Users can select a document by double-clicking on

its title. As a result, the full text of the document is

displayed in the window. A scrollbar can be used to

scroll through the document if the document exceeds

the given height of the window. Each word in the full

text of the selected document who's stem matches a

stem of a term in the query is highlighted in the doc-

ument.

KEYWORD The "scroll to Keyword" button un-

der the document allows a searcher to scroll to the

next highlighted term in the document (if any).

NEXT DOCUMENT, PREVIOUS DOCU-
MENT A searcher can directly display the full text

of the next or previous document by clicking on the

respective buttons under the document window.

BARGRAPH On the top left is a bar graph win-

dow that depicts the belief values assigned to the re-

trieved documents in graphical form. Each graph de-

picts a range of 100 documents (by default the top

100 documents). Searchers can use the scrollbar un-

der the bargraph window to bring other portions of

these 100 documents into view. The bargraph will

be updated to depict a different range of the ranked

list if a document outside the current range is se-

lected. The two numeric values represent the belief

values assigned to the highest and the lowest ranked

documents in the current graph respectively. Each
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bar represents one document and the height of the

bar corresponds to its belief value; heights are scaled

relative to the belief value assigned to the document

ranked lowest in the current graph, i.e. the rightmost

document in the bar graph has a bar height of 0. The
bar associated with the currently selected document

is hatched. If a document is marked by the searcher

(with automatic relevance feedback being either on

or off) will appear grayed. A searcher can bring a

document into full text view by double-clicking on

the associated bar in the bar graph.

A user quits the inquery system by clicking on the

top left "Quit" button.

1.3 Style of Interface:

Graphical User Interface (GUI) (see also section

1.2)

II Experimental conditions

II. 1 Searcher Characteristics

a. Number of searchers in experiment: 10

b. Number of searchers per topic: 1

c. Age/age group of searchers.

Age
Under 21

21-30

31-40

41-50

Over 50

n (searchers)

0

3

3

4

0

• Frequency of online searching

Searching Frequency n (searchers)

More than twice a day 3

Once or twice a day 1

More than twice a week 0

One or two times a week 4

More than twice a month 0

One or two times a month 1

Less than monthly 1

• Experience
databases

searching full-text

Experience searching full-text databases

was measured by responses to a five point

Likert scale, in which 1= None at all, 3=
Some and 5= A great deal.

Full-text Experience

1 (None at all)

2

3 (Some)

4

5 (A great deal)

n(searchers)

2

2

5

0

1

Experience searching in ranked-
output information retrieval systems

The same five point Likert scale was

used to measure searchers' experience us-

ing ranked-output retrieval systems, as full-

text systems.

Ranked-output
Experience

1 (None at all)

2

3 (Some)

4

5 (A great deal)

n (searchers)

8

1

1

0

0

IR searching experience of searchers

We measured four dimensions of searching expe-

rience in this study:

• Years of searching experience: Mean:

6.1 years, Range: 1-15

e. Educational level of searchers

Searchers were asked to list all of their college or

university degrees.

All of the searchers had, or expected, the Mas-

ters degree in Library Science. Four of our
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searchers had graduate degrees in addition to the

MLS. Two searchers had a JD; two had, or ex-

pected to obtain, a PhD; and two searchers had

an additional masters degree.

f. Undergraduate major of searchers

Major n
English 1

History 1

Psychology 2

Political Sci 1

Zoology 1

Math 1

Chemistry 1

Two of the searchers did not list their undergrad-

uate major. One of these searchers had a JD; the

other searcher had a PhD in Oceanography.

Experience/familiarity with subject of

topic

After completing each search topic, subjects

were asked about their familiarity or experience

with the subject matter covered in that topic.

A five point Likert scale was used to record re-

sponses to the question, "Is this topic related to

things you normally search on?" where l=Not at

all; 3= Somewhat; and 5=Very much. Overall,

the Tree topics were not routine subject mat-

ter for the subjects who searched them. The

mean familiarity value for all 50 topics, across

all searchers is 2.0. The distribution of topics

across the scale is the following:

Familiarity

1 (Not at all)

2

3 (Somewhat)

4

5 (Very much)

n (topics)

20

13

12

3

2

Work affiliation:

Academic Library

Industrial/Research Lib

Research Lab
Full time MLS student

n (searchers)

6

2

1

1

II.2 Task description

Below are the verbatim instructions for the task

set our searchers. The cut-off level for each topic was

written on the topic description.

THE DOCUMENT ROUTING TASK
Task and context

Imagine a situation in which you are an intermediary

using the INQUERY system to satisfy the information

needs of a user. Rather than being a one-time affciir,

the user wants you to develop a query he or she can use

repeatedly in the future to retrieve documents of interest.

For example, the user may want to reissue the same query

every month to stay up-do-date on developments in his or

her field. Thus, your goal is to develop a query that not

only retrieves relevant documents now (and ranks them

reasonably high) but that will work equally well on future

document collections with different documents.

Since ranking systems like INQUERY may retrieve

large numbers of documents, the user will not be able

to look at all documents the system retrieves. The num-
ber of documents that a user might be willing to look

at will vary by each information problem. The user will

tell you for each topic how many documents the user is

willing to read. The user wUl not consider any document

ranked below this number.

Topic Description

The user has prepared a statement that describes in

detail the topic he or she is interested in. This statement

also contains a description of the kinds of documents the

user considers to be relevant and those s/he considers not

to be relevant. Assume that the user has left you with

this written statement, i.e. you cannot get clarifications

and you cannot negotiate changes.

For the purposes of training we are using a somewhat

outdated document collection. Because of this, some top-

ics will appear outdated as well. Please act as if you are

doing this search at a time in which the topic would have

been relevant.

User Judgments
To help you with your task, the user has looked through

parts of the currently available document collection and

has noted which of the documents are relevant and which

are not relevant. These ratings have been made available

to you in the INQUERY system. The summary for each

document has a notation after the belief value that states

the judgement of the user: documents that the user found

to be relevant are marked "REL" and documents the user

169



judged not- relevant are marked "NOT". If the user has

not judged a document it is marked as "?". The judge-

ments are also given above the full display of a document.

Again, since the user is not currently present, you should

accept ratings as they are.

• Reset the system

• Develop a query for the topic description handed to

you.

Your query should retrieve as many documents as

possible among the top number of documents that

the user is willing to look at which satisfy the spec-

ified information needs. The query should also be

likely to do will on future document collections.

NB: Each topic had a routing cut-off written on the

topic description.

You may use any of the system features (includ-

ing automatic relevance feedback) you have learned

about, but you are not required to do so.

You have up to 20 minutes to complete this task.

We are interested in how people interact with the IN-

QUERY system. Please think-aloud throughout this

session, i.e. we ask you to verbalize any thoughts,

comments, plans, or goals related to what you are

doing and why you are doing it as they come to mind.

Act as if you were talking to yourself (rather than

talking to us). Occasionally we may remind you to

keep talking.

• Once you are satisfied with your result, save your

final query under the name "final".

II.3 Training

Il.S.a Description of the training process

Subjects were given a short general description of

the TREC project and were given a consent form

that outlined the experiment and the data collection.

Upon signing of the form they were led to a screened-

ofF area that was set up with the computer equipment

and a video recording device. The experimenter gave

a 2-minute introduction to INQUERY by listing its

major features, namely ranked output (rather than

set based retrieval), full text search (rather than ti-

tle, abstract, or keyword search), the availability of

automatic relevance feedback functionality, and the

ability to process free form, unstructured queries.

Subjects were next given a 14 page, ring-bound tu-

torial. The tutorial contained a sequence of inter-

action exercises that demonstrated the various inter-

face features, the use of operators, and the use of

automatic relevance feedback. Subjects set their own
pace working through the tutorial. One experimenter

was seated next to the subject and provided addi-

tional help and guidance if the subject got stuck or

had questions that were not answered by the tutorial.

The experimenter did not carry out any interactions

with the system except for occasional restarts of the

system necessitated by system failures; most inter-

ventions by the experimenter were short interjections

that made sure that the intended learning experience

took place. The document collection used in the tu-

torial was disk 3 of the TREC test collection and

all examples were taken from the implicit context of

topic 77 (poaching of wildlife). Subjects completed

the tutorial's main portion (the first eleven pages) in

50-70 minutes.

The last part of the tutorial (after a short break,

if desired) consisted of a test trial of an actual

search. Subjects received the same task description

used later in the actual trials (see II. 2) and prac-

tised on a topic that was not part of the TREC-3
topic set, namely topic 84 (Alternative/Renewable

Energy Plant Equipment Installation). The docu-

ment collection was again the TREC test collection

disk 3. Subjects were also asked to "think-aloud"

during this phase as this was a requirement during

the later search trials. An experimenter operating

under the same model described above was available

during this trial search as well. No feedback was given

by the experimenter regarding the quality of individ-

ual queries nor regarding the quality of the overall

search session. Subjects were asked after 15 minutes

to wrap up their search and to save a final query for-

mulation.

II. 3.b Time for training

Time for training in minutes (times are approxi-

mate whole minute): Mean:80, Range: 65 - 90

III Search Process

1. Clock time (i.e. real, elapsed time) per search,

from the time the searcher was given the topic, until

the final query was saved, in seconds. Note that users

were restricted to 20 minutes (1200 seconds).

Mean: 928.6, Median: 981.0, SD: 245.24, Range:

421 - 1328
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2. Number of documents "viewed" in dur-

ing the search.

a. Definitions of viewing:

We report on three categories of viewing, as defined

below:

1. "All titles" defined as the total number of

document titles displayed during the course of the

entire search (the default display is five titles at a

time). This can be thought of as title "tokens".

2. "Unique titles", defined as the number of

unique titles seen by the user during the course of

the entire search. This can be thought of as title

"types".

3. "Text", defined as the number of documents

for which the user had the text of a document

displayed.

b. Number of items viewed per

(repeat for each viewing category).

search

3. Number of iterations per search.

a. Definition of iteration:

An iteration is all that occurs between one invocation

of the "run query" button and the next invocation of

that button. The first iteration begins when the user

is given the topic for searching, and the last iteration

ends when the user invokes the "save query" button,

saving the query as "final". The query run by an

invocation of the "run query" button is part of the

iteration defined by that invocation as the end point.

b. Number of iterations per search.

Mean: 7.76, Median: 7.0 SD:3.98, Range: 2 - 21

4. Number of terms used in queries.

a. Number of terms in the first query of a

search, per search.

Mean: 5.38, Median: 4.0, SD: 3.90, Range: 1 - 21

b. Number of terms in the final query of a

setirch, per search.

Mean: 23.82, Median: 18.0, SD: 22.50, Range: 3 -

120

5. Use of system features.

The following table provides summary statistics

for the use of system features, N = 50 topics (10

searchers).

Viewing Behavior

Viewing Type Mean Median SD Range

All titles

Unique titles

Text

136.3

67.2

6.6

94.5

51.0

5.5

118.2

55.6

6.2

15-515

8-310

0 - 36

Use of System Features

Feature X Md SD Range

bargraph double-click

(to view fulltext) 0 0 0 0

scrollbar

in summary 19.34 10.5 21.9 0-95

scrollbar

in document window 2.72 2.0 3.6 0-20

double-click on title

(to view fulltext) 4.82 4.0 4.0 0-16

next document

(to view fulltext) 1.14 0.0 3.1 0-20

previous document

(to view fulltext) 0.1 0 0 0-2

5 uses by 4 searchers

keyword 6.48 0.5 11.4 0-41

save query 2.14 1.0 1.8 1-7

load query 0.72 0.0 1.8 0-8

relevance feedback

on 1.08 1.0 1.0 0-5

relevance feedback

off 0.38 0.0 0.8 0-4

relevance feedback

used (number of

iterations/search) 1.68 1.0 1.9 0-7

documents

selected

(as relevant) 8.26 5.0 9.9 0-54

documents

unselected 0.50 0.0 1.2 0-7

6. Number of user errors made per search

a. Definition of an error

Error is defined as the use of syntax in a query

which caused the query to be uninterpretable by the

system query parser (the most common syntajc error

was to not include a required closed parenthesis).

b. Number of user errors per search

Mean: 0.7, Median: 0, SD:1.18, Range: 0 - 5
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7. Transcript for Topic 122 (Searcher 7)
What follows is the log of the interaction for topic 122 (searcher S07, trial 4. Given are the elapsed

time, the real time, a description of the searcher's actions, system responses and experimenter comments,

Statements enclosed in "" constitute the complete verbal protocol of the searcher. The full text of viewed

documents is reproduced for short documents, for long documents only the approximate amount that fit on

the screen and was visible without scrolling is given.

Iteration 1

:

00:00:00 11:46:34 START topic from VIDEO

00:00:15 11:46:49 starts entering query, enters "ubBO" (misses # in ub)

00:00:26 11:47:00 backspaces over ubSO and replaces it Bith #ub50(

00:00:54 11:47:28 adds term #syn and term - pauses: #UBBO(eaiicer #syn (drug

"That is something I don't understand about this system..."

"chemotherapy ... treatment ..."

enters complete query:

»ub50 (cancer #syn (drug chemotherapy treatment))

00:01:28 11:48:02 hit run query button

Iteration 2:

** parsed query •**

#UU50( cancer #SYII( drug chemotherap treatment))
Query processing: 4 Bords

00:01:34 11:48:08 neB summary •
1. 0.653723 HOT AP880524-0052 Ex-President's Brother Enters Cancer Institute for Treatment

2. 0.653723 ? AP880322-0156 Experimental Treatment Avoids Surgery for Bladder Cancer
3. 0.653723 REL WSJ87041E-0071 Cetus Venture Uins Approval to Harket Anti-Cancer Drug -

4. 0.653723 ? DDE2-42-0592

5. 0.653723 ? DDE2-38-0875
** 2443 documents retrieved

00:01:50 11:48:24 Double.Click.Title

Reads document, voice not audible

3. 0.653723 REL USJ870415-0071

Cetus Venture Uins Approval to Harket Anti-Cancer Drug
Partnership Uith Ben Venue Gets FDA's Clearance To Sell

Generic Product By Marilyn Chase Sta

Cetus Corp. said its joint venture Bith Ben Venue
Laboratories Inc. received
approval from the U.S. Food and Drug Administration to begin

marketing its second generic anti-cancer product.

Cetus, based in Emeryville, Calif., and Ben Venue, Bedford,

Ohio, Bill soon begin marketing vinblastine sulfate, a

standard chemotherapy agent extracted from periBinkle

floBers and used in the treatment of Hodgkin's disease,

lymphomas, testicular cancer, unresponsive breast cancer and

other malignant tumors.

[...]

00 02 12 11 48 45 hits save query button
enters file name "cancerdrug' ' ; queries read:

»ub50 (cancer #syn (drug chemotherapy treatment))

RF: #UU50( cancer #SYI[( drug chemotherap treatment))

00:02 27 11 49 00 clicks on "OK"

00 02 32 11 49 05 chooses "Reset All"

00 02 35 11 49 08 enters "ub" backspaces over it

00 02 37 11 49 10 enters "#ub" pauses

00 02 48 11 49 21 adds to query to read "#ub100 (cancer" and pauses
00 03 08 11 49 41 adds »syn( for query to read " KubIOO (cancer #syn(" pauses

00 03 10 11 49 43 completes query to read:

#UBl00 (cancer #syn(treatment research testing evaluation)

00 03 27 11 50 00 clicks on "Run Query" button
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Iteration 3

00:03:29 11 50 02

00 : 03 : 30 11 50 03

00 : 03 : 31 11 50 04

00 : 03 : 32 11 60 05

00:03:33 11 60 06

00:03:36 11 50 09

00:03:39 11 60 12

Gets syntax error msg. (small Bindos)

Sets error parsed query sindoB [missed closing parenthesis]
Dismisses error massage

Dismisses large BindoB error msg

"I have an about 50'/, hitrate on putting the parenthesis"
"I'm also trying to run a demo search system..."
adds the closing parenthesis for query to read:

#ub100 (cancer ffsyn(treatment research testing evaluation))

Iteration 4:

parsed query

#UW100( cancer ffSY&( treatment research test evalu))
*** Query processing: 6 Bords

00:03:46 11:60:19 gets neB summary
1. 0.632360 ? AP880322-0156 Experimental Treatment Avoids Surgery for Bladder Cancer
2. 0.632360 REL USJ870519-0014 Tests to Begin on a Toxin That Attacks Cancer Cells
3. 0.632350 ? FR891011-0077

4. 0.632350 ? FR89322-0189

6. 0.632350 ? DOE2-42-0592
3954 documents retrieved *

00:03:48 11:60:21 "A lot of question marks , not a lot of no's (?)"

00:03:63 11:60:26 clicks on "Save Query" button

enters file name "cancertreat" ; queries read:

(tuBlOO (cancer #syn(treatmont research testing evaluation))

RF: #UU100( cancer #SYH( treatment research test evalu))

00:04:04 11:50:37 clicks on "OK"

00:04:14 11:50:47 clicks on "Reset All"

00:04:17 11:60:50 starts entering query "#syn( cancer leukemia )"

00:04:31 11:51:04 "Hmm actually" picks up topic sheet reads description
"these [inaudible] clients actually...

he or she is Bhat I mean is actually the client

is actually interested only in the specifics of it [??] . .

.

but there are a lot of different forms of cancer . .

.

[inaudible] ... it doesn't matter Bhat ... [sighs]

it doesn't matter Bhat kind of cancer it is... Hmm...

I don't knoB Bhat kind of cancer . . . [T'Tinaudible]

#syn (cancer leukemia )

00:06:20 11:61:53 clicks on "run Query" button

Iteration 6

:

parsed query
#SYH( cancer leukemia)

Query processing: 2 Bords
00:06:24 11:61:67 gets neB summary •*

1. 0.593854 REL USJ920318-0064 Medicine: Scientists Say Progress Is Made

2. 0.693854 HOT USJ920305-0102 Technology ftampj Health: Colon Cancer Test Cuts Chance

3. 0.693854 HOT USJ920302-0204 Technology ftamp; Medicine: ICI Cancer Drug's

4. 0.693864 HOT USJ920226-0129 Technology; Medarex Drug Trials Approved
5. 0.593854 HOT USJ920219-0136 Technology ftamp; Medicine: Combination of Acne Drug...

9412 documents retrieved *
00 05 26 11 51 69 click on "Save Query" button

enter filename "cancerany"; queries saved:

Ssyn (cancer leukemia )

RF: ffSYH( cancer leukemia)
00 05 32 11 52 06 click on "OK"

00 06 35 11 62 08 click on "Reset All"

00 05 35 11 62 08 click on "Reset All"

00 06 36 11 52 09 "I'm gonna see Bhat I'm getting (."!)

00 05 39 11 62 12 click on "Load Query" button
selects file "cancerany" Bhich reads:

ffsyn (cancer leukemia )

00 05 43 11 52 16 clicks on "OK"
00 05 49 11 52 22 clicks on "Load Query" button

selects file "cancerdrug" Bhich reads:

#ub60 (cancer #syn (drug chemotherapy treatment))

00 05 S3 11 52 26 clicks "OK"

173



00:06:02 11:52:36 clicks on "Load Query" button

00:06:03 11:S2:36 move cursor over files, seems unsure vhich one to load next

00:06:11 11:52:44 selects file "cancertreat" shich reads:

tuBlOO (cancer *syn(treatment research testing evaluation))

00:06:14 11:52:47 clicks on "OK"

current content oi query sindos non:

#syn (cancer leukemia )

#uv5C (cancer Ssyn (drug chemotherapy treatment))

#uslOO (cancer #syn(treatment research testing evaluation))

00:06:19 11;B2:52 clicks on "Run Query" button

Iteration 6

:

** parsed query

#SU«( »SYB( cancer leukemia) #UW50( cancer #SYH( drug
chemotherap treatment)) *UV100( cancer #SYB( treatment

research test evalu)))
*** Query processing: 11 sords

00:06:23 11:62:56 "Let's see shat happens .. comes back ... up [??]

.
. 'cause the . . . ah. .

"

00:06:29 11:63:02 gets * neo summary **
1. 0.626642 ? AP880322-015e Experimental Treatment Avoids Surgery for Bladder Cancer
2. 0.626642 ? D0E2-42-O692

3. 0.626642 ? DOE2-38-0876

4. 0.626642 ? D0E2-32-1236

5. 0.626642 ? DDE2-10-1097
»* 9412 documents retrieved •

00:06:31 11:53:04 "[laughs] sell comes up sith a lot of questions ... oh veil"

00:06:35 11:53:08 double-click on title 2. full text for doc 2. displayed

2. 0.626642 ? D0E2-42-0592

Electron beam therapy has become more videly available in the radiation
oncology community. It is a unique modality, offering important contributions

to the management of cancer. It is, hooever, necessary to optimize dose

distribution, patent selection, and treatment techniques.

00:06:40 11:53:13 ''at least it didn't come up Bith instant no's'' [??]

00:06:46 11:53:19 looks at document (evaluates its relevance)
"sell [inaudible] research and development"

00:06:58 11:53:31 clicks on ** Hext_Doc * button, nes full text displayed

3. 0.626642 ? D0E2-38-O876

Indications and contraindications for radiation treatment of esophagus

cancer are presented. The role of chemoradiation among esophagus cancer
treatment methods is determined. Thechnical, dosimetric and clinical data

are sequently delivered. Preparation of a patient for chemoradiation

is described. Recommendations on their most efficient use are given.

95 refs.; IE figs.; 19 tabs.

00:07:11 11:53:44 looks at document full text

"treatment is getting some . .

.

00:07:20 11:53:63 clicks on "Reset All" button
00:07:23 11:53:56 clicks on "Load Query" button

selects file "cancertreat" Bhich reads:

#UB100 (cancer #syn(treatment research testing evaluation))
00:07:27 11:54:00 clicks on "QK"

00:07:28 11:64:01 "I better modify this" (deletes the Bord "treatment"), noB:

«UW100( cancer »SYB( research test evalu))
00:07:37 11:54:10 clicks on "Run Query" button

Iteration 7:

parsed query *
#UBlOO (cancer #syn( research testing evaluation))• Query processing: 4 sords

00:07:40 11:54:14 "I'm leaving out treatment because it Bas... hmmm"
00:07:43 11:54:17 gets * neB summary •**

1. 0.644194 REL WSJ870519-0014 Tests to Begin on a Toxin That Attacks Cancer Colls

2. 0.644194 ? FR891011-0077

3. 0.644194 ? FR89322-0189
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4. 0.644194 ? D0E2-2O-OO76
5. 0.644194 ? DOEl-87-0742

3028 documents retrieved

00:07:47 11:54:21 double-clicks on title of document 1. Full text gets displayed:
1. 0.644194 REL HSJ870519-0014

Tests to Begin on a Toxin That Attacks Cancer Cells

Cetus Corp. said the first clinical tests on humans sill soon begin involving
a breast cancer treatment that " targets" diseased cells and attacks them sith
a toxintipped monoclonal antibody.

Under the treatment, a toxin sill be bonded to antibodies that recently sere
proven capable of locating and attaching themselves to cancer cells in humans.
Scientists hope the toxin yill destroy the targeted cells sithout the damage to

healthy tissue that accompanies conventional chemotherapy cancer treatments.

[...]

An official of Cetus, a biotechnology concern that makes both the toxin and the
antibody, stressed that the initial test sill involve only a fes patients.

If it is successful, he said, the tests sill be expanded, but he added it

Bill probably be " several years" before the company sould be prepared to

seek Food and Drug Administration approval to market the product.

The treatment has proven successful in tests on animals, he added.

Cetus, shich said it expects to begin similar tests on ovarian cancer in humans
later this year, noted that other companies are testing the process on other
cancers , including melanoma and colon cancer.

00 07 49 11 54 23 reads through document, moves cursor over full text.

00 08 04 11 54 38 "I'm looking for any added term I could conceivably use to

00:08 07 11 54 41 clicks on "Scroll to Keyoord" button

00 08 10 11 54 44 clicks on "scroll to Keyword" button (no change in display (?))

00 08 15 11 54 49 moves cursor into bargraph, onto scroll in bar graph

but reconsiders and moves cursor back into summary sindos

00 08 18 11 54 52 double-clicks on title for doc 4. Full text displayed:

4. 0.644194 ? DOE2-20-0076

In this paper, the emphases are put on the description of design principle

and calculation method for radiation protection in the nes radiotherapy

department of Cancer Research Institute and Hospital, Chinese Academy

of Medical Science, as cell as the evaluation of meusaring results. In

addition, the problem of photo-neutron contamination amcng 16 HV X-ray

from SL 76-20 Philips Linear Accelerator and its relavent shielding measures

have been discussed.

00 : 08: 23 11 : 54 : 57 "I'm looking at question mark documents to see . . .

"radiation protection [from doc text] that's not relevant"

00:08:36 11:55:10 double-clicks on title for doc 5. Full text displayed:

00:08:37 11:55:11 reads doc full text (cursor in full text sindos)

5. 0.644194 ? DOEl-87-0742

High Performance Gel Permeation Chromatography (GPC) oas evaluated as

an alternative to the more expensive Suclear Magnetic Resonance (HHR)

spectroscopy technique for cancer detection using human plasma. These

tso techniques shos a biphasic relationship shich can be explained on

the basis of the relative amounts of the lipoprotein levels present in

the plasma and a good correlation cith total triglyceride concentrations

obtained from standard blood tests. The major difference in the GPC elution

nprofiles (254 nm) of plasma from normal individuals and that from cancer

patients occurred in the peak eluting at the void volume. This peak has

a retention time consistent oith very loo density lipoprotein (VLDL)

and is elevated in most cancer patients and in normal patients oith triglyceride

levels greater than 200 mg/ml. The use of these techniques as a screening

test for cancer in an asymptomatic population needs further evaluation.

00:08:54 11:55:28 clicks on "Save query" button
edits default file name (add 2) to "cancertreat2 ", uhich reads:
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SuwlOO (cancer #syn( research testing evaluation))

RF: #UU100( cancer #SY&( research test evalu))
00:09:01 11:55:35 clicks on "DK"

00:09:06 11:55:40 "So I'm gonna to try again having left out treatment"
00:09:07 11:65:41 clicks on "Load Query" button

selects file "eancerany" ohich reads:
#syn (cancer leukemia )

00:09:12 11:55:46 clicks on "OK"

00:09:15 11:55:49 "Lets see what I get"

00:09:16 11:55:50 clicks on "Load Query" button
selects file "cancerdrug" shich reads:

#ub60 (cancer #syn (drug chemotherapy treatment))

00:09:21 11:55:55 clicks on "OK", contents of query oindow noo:

#ub100 (cancer #syn( research testing evaluation))

#syn (cancer leukemia )SubSO (cancer tsyn (drug chemotherapy treatment))
00:09:25 11:55:59 "The more I use this the more confused I get"

00:09:30 11:56:04 "Put a return "

adds a return that puts last loaded query on nesline;
#uelOO (cancer #syn( research testing evaluation))

#syn (cancer leukemia )

#ub50 (cancer #syn (drug chemotherapy treatment))
00:09:31 11:56:06 Kun.Query

Iteration 8

:

* parsed query ••
#SUM( #UU100( cancer #SYD( research test evalu)) #SYH( cancer
leukemia) #UW50( cancer #SYH( drug chemotherap treatment)))

Query processing: 10 Bords
00:09:40 11:66:15 gets *• nes summary **

1. 0.626523 REL WSJ870519-0014 Tests to Begin on a Toxin That Attacks Cancer Cells
2. 0.614311 REL WS J910412-0102 Technology ftamp; Medicine: Cancer Drug Taxol May Hor
3. 0.614101 SOT AP881023-0047 HeB Cancer Treatment Tested Dn Tbo Patient
4. 0.613794 REL HSJ900419-0016 Technology ftamp; Medicine: Bes Drug Shows Promise Tr
5. 0.612908 HOT USJ870424-0155 Whose Life Is It AnyBay? By Robert K. Dldham* 9412 documents retrieved *

00:09:45 11:66:20 "Hmm. . . a little better"
00:09:46 11:56:21 Double-click on title for document 4. Full text displayed:

4. 0.613794 REL WSJ900419-0016

Technology ftamp; Medicine: HeB Drug Shoos Promise
Treating Type of Leukemia By Ron WinsloB
Staff Reporter of The Wall Street Jour

A noB cancer drug proved strikingly successful Bith very

fea side effects in treating a relatively rare form of

leukemia, researchers said.

The drug, called 2-CdA, Bas nearly 100'/, effective treating
12 patients Bith hairy-cell leukemia. The patients underBent

just one seven-day treatment and experienced almost none of

the debilitating side effects such as vomiting, hair-loss and

kidney and liver problems associated Bith other chemotherapy.

The results need to be replicated by other researchers

before definitive conclusions can be made, and the long-term
effect of the treatment remains unknosn. But the initial

experience Bith the compound is especially promising, and an

apparent improvement over other therapy for the disease,

scientists said.

[...]

00:09:66 11:56:31 "Qkay It gets as good as I'm going to be able to get"
"It Bon't [inaudible]'' [laughs]

00:10:02 11:66:37 scrolls outside doc counter to top, nes full text display:

1. 0.625623 REL WSJ870519-0014

Tests to Begin on a Toxin That Attacks Cancer Cells

Cetus Corp. said the first clinical tests on humans sill soon begin involving

a breast cancer treatment that " targets" diseased cells and attacks them oith
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a toxintippad monoclonal antibody.

Undor tha traatment, a toxin sill ba bonded to antibodias that racantly vara
proven capable of locating and attaching themselves to cancer cells in humans.
Scientists hope the toxin vill destroy tha targeted calls sithout the damage to

healthy tissue that accompanies conventional chemotherapy cancer treatments.
[...]

00:10tlO 11:56:46 scroll outside doc counter: neo summary and full text displayed:

00:10:11 11:56:48 gats new summary
79. 0.587702 HOT DnEl-29-0693

80. 0.587600 HOT WSJ911226-0005 Technology ftamp; Health: Hany Women With Breast Cancer
81. 0.687433 HOT WSJ910405-0006 Technology: Genenteeh Inc. Cancer Therapy
82. 0.686518 HOT AP880525-0061 Signs That Chemotherapy Hay Help Control Lung Cancer
83. 0.686406 HOT WSJ911107-0058 Business Brief — Schering-Plough Corp.: Company Reite

79. 0.687702 HOT DOEl -29-0593

Tha combination of radiotherapy (RT) and chemotherapy (CT) has markedly
improved the therapeutic results for those tumors shich are both chemosensitiva

and radiosensitive, such as lymphomas, embryonal tumors, small call lung
carcinomas, breast cancers, etc. Despite some spectacular results reported
follosing non-controlled studies, a significant increase in the total
survival or tha relapse free survival has never been documented in controlled
trials in head and neck, anal, ovarian carcinomas. Honever, in these
tumors, a combination of RT and CT may reduce the mutilations and sequellaa
caused by the treatment and may induce an increase in the survival in

some subsets of patients. Further clinical research is needed along these
lines. Cross resistance between ionizing radiation and

[...]

00:10:13 11:66:48 "[still laughing] oh you knoB .. there are some there .. there

are not a 150 there"
00:10:19 11:66:54 scrolls outside doc counter to top: new siunmary and full text:

00:10:20 11:66:55 gets neo summary

1. 0.625523 REL WSJ870519-0014 Tests to Begin on a Toxin That Attacks Cancer Cells
2. 0.614311 REL WSJ910412-0102 Technology Sampj Hadicine: Cancer Drug Taxol
3. 0.614101 HOT AP881023-0047 Hen Cancer Treatment Tested On Too Patients

4. 0.613794 REL WSJ900419-0016 Technology ftamp; Medicine: Hes Drug Shoos

6. 0.612908 HOT USJ870424-0155 Whose Life Is It Anyoay? By Robert K. Oldham

1. 0.625523 REL WSJ870519-0014

Tests to Begin on a Toxin That Attacks Cancer Cells

Cetus Corp. said the first clinical tests on humans vill soon begin involving

a breast cancer treatment that " targets" diseased cells and attacks them sith
a toxintipped monoclonal antibody.

Under the treatment, a toxin sill be bonded to antibodies that recently vere

proven capable of locating and attaching themselves to cancer calls in humans.

Scientists hope the toxin Bill destroy the targeted cells oithout the damage to

healthy tissue that accompanies conventional chemotherapy cancer treatments.

[...]

00:10:21 11:66:56 "I used chemotherapy"
00:10:26 11:67:01 "I really, I really think this is, I think this is the final one.''

00:10:29 11:57:04 clicks on "Save Query" button
enters name "final", query reads:

#ub100 (cancer #syn( research testing evaluation))

#syn (cancer leukemia )

#uy60 (cancer »syn (drug chemotherapy treatment))

RF: »SUH( »UW100( cancer #SYH( research test evalu)) #SYH( cancer

leukemia) #UW50( cancer #SYH( drug chemotherap treatment)))
00:10:36 11:57:11 Clicks on "OK"

00:10:40 11:57:16 "[inaudible] in my particular performance" [laughs]
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Interactive Exploration as a Formal Text Retrieval Method:
How Well can Interactivity Compensate for

Unsophisticated Retrieval Algorithms

Nipon Charoenkitkarn, Mark Chignell, and Gene Golovchinsky
Department of Industrial Engineering

University of Toronto

Introduction

Our goal in participating in TREC-3 was to see if it is possible to achieve adequate

performance using relatively simple retrieval techniques, coupled with the type of

interactivity at the user interface that is typical of a browsing system.

As the results reported in this paper show, our system was able to perform large scale text

retrieval on routing queries, albeit not at a level to challenge well established text retrieval

systems. However, since ST-PatTREC can handle both browsing and querying styles of

interaction in a single environment, and since ST-PatTREC did reasonably well in

comparison with other systems in category B of the competition, the present findings

demonstrate that it should be possible to develop general-purpose information exploration

systems that allow for both browsing and querying styles of interaction. The results that

we obtained provide a baseline for what can be done when a browsing style of query

formulation is combined with simple text retrieval methods. In addition to discussing the

methods used and results in TREC-3, future plans are outiined for using visualizing and
other styles of browsing in information exploration.

Information Exploration (Browsing AND Querying )

Current methods of accessing information tend to fall into two separate categories,

depending on whether a browsing or querying style of interaction is used. In browsing, the

goal is to navigate through a collection of documents or information nodes, looking for

interesting or relevant information.

In contrast to the point and click selection that typically occurs in browsing, querying

requires the user or system to specify a search goal that can be matched in some way
against the database, in order to identify a set of relevant documents. One of the

characteristics of querying situations is that it is much easier to define criteria of success.

For instance, if one can measure the relevance of documents in some way, then standard

measures such as precision and recall can be assessed.

The approach that we used in TREC-3 grew out of our earlier research on information

exploration. Waterworth and Chignell (1991) identified three dimensions of information

exploration. The first dimension of information exploration (structural responsibility)

concerns who is responsible for searching and who must consequentiy be concerned with

structure.

The second dimension of information seeking behaviour (target orientation) arose from the

distinction between browsing and querying. According to Waterworth and Chignell,

"Browsing is distinguished from querying by the absence of a definite target in the mind of

the user." Thus the distinction between browsing and querying is not determined by the

actions of the user, or by the configuration of the system, but by the cognitive state of the
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user. One hypothesis stated in this early conceptualization of the information exploration

task is that there is a continuum of user behaviours varying between querying and
browsing that is characterised by the level of specificity of the user's information seeking

goals. In our recent research we have been studying the degree to which users can readily

mix browsing and searching styles of information exploration when given appropriate

tools. The ST-PatTREC system used in TREC-3 allowed users to intermix browsing and
querying styles of interaction.

A third dimension of information seeking behaviour can be identified based on the method
of interaction used in the interface to the information system. Descriptive interfaces have

generally been associated with querying behaviour, and referential (point and cUck)

interfaces have generally been associated with hypertext browsing, but there is no intrinsic

correlation between interaction method, target orientation, and structural responsibility.

Thus the three-dimensional description of information seeking activity can be represented

as in Figure 1.

The Interactive Querying Approach

One of the points made by Waterworth and Chignell (1991) is that the space of possible

information exploration systems has not been fully explored. Most existing systems tend to

fall into two general categories, text retrieval (i.e., systems that focus on command-based
querying) and hypertext (systems that emphasize referential, or point and click, interaction

within a navigational browsing framework).

Information retrieval and hypertext systems as currently envisioned are only two extreme

cases within a family of possible information exploration systems. Our research is looking

at the properties of intermediate members of that famUy that combine the functionalities of

browsing and querying. One way of making querying more like browsing is to increase the

interactivity of querying. If sufficiently rapid and incremental feedback is provided, there is

very little cost to trying out a large number of different queries. The result is a more
exploratory style of interaction that starts to approximate the interactivity of hypertext. The
analogy with hypertext can then be reinforced by allowing queries to be marked up directly

on text. Hits then appear as menus of hypertext links from the marked up concept specified

by the graphical query to corresponding concepts in other documents.

User centeredness of hypertext systems can also be enhanced. Hypertext can be envisioned

as a special kind of retrieval process where the goal is to provide the user with a Link to the

article or node that is most relevant given the context and status of the current transaction. A
fundamental problem in manually authored (static) hypertext is that the links that are likely

to be relevant in a particular context must be predicted in advance. The user's range of

action is often limited to choosing among the available links at each step in the browsing

process.

One way to increase user centeredness of hypertext is to give users more control over

selection, as well as creation of links. The result would then be a form of dynamic
hypertext in which the user expresses a concept of interest and the system identifies the

nodes that address or relate to that concept. In this approach, link authoring is done at run-

time, on the basis of selected concepts. Clearly, this type of user centeredness places

considerable responsibility on the user to formulate and express concepts that are used as

the basis for creating links. However, with appropriate support tools and user interfaces,

such reader-based (dynamic) linking has considerable potential for enriching and
customizing the information exploration task.
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query browse

Figure 1. A Model of Information Exploration

Different types of feedback may be relevant at different stages of search or browsing. In the

early stages of exploring a topic, users may not fully understand what they are interested

in, or what terminology is used in the database. Thus the concept of a search lifecycle may
be appropriate, with statistical information about co-occurrence of terms being more useful

input from the user early in the search, and relevance feedback (based on accumulated

evidence about topics of interest to the user) being more useful for topic reformulation later

on in the search.

Some forms of dynamic feedback may approximate forms of authored information that

have proved to be useful in books and other information retrieval structures and systems.

For instance, feedback concerning term co-occurrence information provides some of the

functionahty of a hierarchical index. The first term acts to specify an entry in the index. The
coordinate terms for that first term serve as sub-topics listed under the entry. One can then
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explore further levels of the index hierarchy by looking for the coordinate terms of the first

and second terms joined together. For instance one might have "transport" as the first term.

A coordinate term might then be "roads." This would be equivalent to a hierarchical index

where road transport was a sub-entry of transport. A coordinate term of "roads" and
"transport" jointly might then be "trucking," corresponding to a sub-sub-entry under

transport. Not many books include more tiian two levels of indexing because of the effort

required to produce highly nested indices. The use of coordinate terms or more
sophisticated techniques for assessing relationship and cohesion can simulate some of the

functionality of a hierarchical index without authoring (manual indexing) effort. This

process capitalizes on hierarchical indexing implicit in the text.

Support Tools for the User: ST-PatTREC

ST-PatTREC^ was developed to implement a text browsing system capable of handling

moderately large (hundreds of megabytes) databases and providing enhanced feedback to

the user. ST-PatTREC uses a graphical notation developed by the second author

(Golovchinsky, 1993) for specifying queries against databases capable of supporting them.

It maintains a history of user requests and provides a workspace for storing components of

queries.

The number of nodes returned can be controlled in ST-PatTREC by reducing the scope of

the proximity operator (represented by the AND operator) until the desired number of
nodes is displayed. For example, assume a user set a target of 10-15 nodes. A query with

proximity of 500 characters may retrieve 100 nodes, but when the proximity criterion is

reduced to 150 characters, a more manageable set of about 10 nodes might be retrieved.

Furthermore, this set would likely be more relevant, since the terms would tend to be more
closely related in the text. Giving users dynamic control over the volume of data should

encourage exploration by reducing some of the uncertainty about the effects of commands.

IR Algorithms

A detailed description of the ST-PatTREC user interface and functionality is provided in the

appendix to this paper. In this section we will briefly review the IR algorithms that ST-
PatTREC uses, focusing on query execution and ranking.

ST-PatTREC uses exact matching of non-negated Boolean queries expressed in disjunctive

normal form. Queries in ST-PatTREC can be entered by directly marking up text (drawing

Unes between selected words to indicate the AND operator). Non-negated disjunctive

normal form Boolean command strings, e.g., (cancer AND drug) OR (cancer AND
therapy) can be created by building AND clusters of terms, where each AND cluster

contains a collection of words linked by Unes (as explained by Golovchinsky and Chignell,

1993). The AND operator was actually executed as a proximity operator in ST-PatTREC.
In the default condition, the AND condition was true if the words covered by the AND
appeared within 500 characters of each other. In addition though, the user was provided

with a proximity slider so that the scope of the proximity could be varied directly by the

user.

^ST represents the Smalltalk interface, Pat is the full-text search engine from OpenText Foundation, and

TREC is the Text REtrieval Conference sponsored by NIST for which this software was developed.
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A very simple form of document ranking was used for each final query. The first challenge

was to obtain a set of 1000 documents, given that many of our queries would extract

considerably less than a 1000 documents (sometimes less than 100 documents). Once the

set of 1000 documents (or as close as we could get to 1000 documents) was obtained, the

documents were ranked according to the number of times that the query terms appeared in

their text, normalized by the length of each document. This ranking was based on exact

matching of terms (i.e., no truncation was used).

The selection of the set of 1000 documents was done manually using the following

algorithm that could have been implemented in software had more time been available. This

algorithm was generally adhered to, but other methods were also tried if necessary to

produce the right number of documents.

Step 1. Use the exact final query with the exact proximity that was specified. This

provided the initial set of documents.

Step 2. Use the exact final query with the proximity expanded so that it equalled

the length of the document. That is, the AND became an actual Boolean AND rather

than a proximity operator.

Step 3. Use truncation AND/OR loosening of the query. For instance, loosening

might be done by removing a term from an AND cluster.

The procedure for expanding the hit set to the necessary 1000 documents can be illustrated

with an example. The original routing query that we identified for one topic was:

(Japan AND market AND access) OR (Unfair AND Talk) with proximity = 200

The first expansion of this query involved removing the proximity restriction so that the

scope of the AND operator was within entire documents. The query was then loosened by
removing the word "market" from the first AND cluster so that it became (Japan AND
Access). At this stage we still did not have the required number of documents. The final

expansion in this case involved conflating two terms across the AND clusters to obtain

(Japan AND unfair), which yielded the desired number of documents.

TREC.3 Evaluation Strategy for ST-PatTREC

Queries were constructed based on the work of two searchers. The searchers carried out

query formulation using the ST-PatTREC system. They worked independently and then

reviewed their results to select a routing query based on the precision and recall measures

obtained on the training data. In our study, the Wall Street Journal data was the only data

used in training.

Given that we used relatively simple text retrieval algorithms^ , how could we expect to

obtain reasonable results in comparison with much more sophisticated retrieval algorithms?

Our hope was that our searchers would be able to come up with better search terms based

on extensive browsing of the training data. To the extent tiiat the TREC routing topics

akeady included rich statements of tiie search concept, along with key terms, the task of

compensating for rudimentary IR algorithms through better selection of terms based on

extensive browsing was made more difficult.

2 The version of ST-PatTREC used in TREC-3 did not even have a truncation operator, which has since

been added to the system.
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We tried to increase the likelihood of including meaningful terms in the query by cross-

validating queries and terms across two separate halves of the training database. Each half

of the database was approximately 250 MB in size. We carried out browsing and query

formulation on one half of the database and then ran the resulting query on the other half of

the database to see how much "shrinkage" of the precision and recall scores occurred. We
then carried out query formulation on the other half of the database. The routing query was
chosen that seemed to maximize precision and recall across both halves of the database. An
example of the variability that can occur in the split half comparisons is shown in Table 1.

Numbers in parentheses show the corresponding values of precision and recall that

occurred in the second half of the database.

In general, Table 1 shows a fair amount of consistency between the two halves of the

database in terms of recall and precision associated with the exact fmal query. The large

differences that occurred (e.g., the increase in recall from .67 to .87 for the first query) are

generally due to changing the proximity, or seem to be associated with a tradeoff between
recall and precision (e.g., the query in the second row of the table has a higher recall in the

second half of the database, but a lower precision). Based on generally strong correlations

on recall and precision between the two halves of the training database, we expected that

better recall and precision on the training database would be predictive of better recall and
precision on the test database.

Query Recall Precision Proximity

(drug AND cancer) .67 (.87) .16 (.13) 128 (275)

(drug AND cancer OR cancer AND .69 (.75) .15 (.12) 85 (85)

research)

(drug AND cancer OR cancer AND .72 (.78) .14 (.10) 85(110)
research OR cancer AND development)

(drug AND cancer OR cancer AND .69 (.78) .14 (.14) 128(110)
therapy)

Table 1. Performance of Query for Topic 122 across Two Halves of the

Training Database.

Results

ST-PatTREC did reasonably well in comparison with the other two systems in category B
of the competition. Table 2 summarizes the results that we obtained across the 50 topics. In

addition to the topic number (top), the table shows the elapsed time for each query (time),

the number of iterations (iter), the precision of the query on the training data (tpre), the

recall of the query on the training data (tree), the corresponding recall (erec) and precision

(epre) scores for the test data, the average precision for the test data (avgpre), the number
of relevant documents (numr) that existed in the test database for that topic (as assessed by
the TREC organizers), the number of terms in the fmal query (numt), and the number of

OR operators in the fmal query (numor). The ranking (rank) of our system on a three point

scale (best, median, worst) based on feedback provided to us about how our system
compared with the other systems in our section of the competition, is also shown, as are

the ratings that the searchers made concerning their famiharity with the general search

topics (exp). All precision and recall scores shown in Table 2 except average precision

scores (avgpre) are based on exact fmal queries with exact proximities. The ranks are based

on those of relevance retrieved at top 100 articles. If our rank was tied with another system,

we used the average rank (e.g. tied for first = 1.5).
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top time iter tpre tree epre erec numr numt numor rank avgpre exp

101 33 14 .1^ .67 .15 .22 9 8 2 1.50 .2973 8

102 22 10 .22 1.00 .17 .20 5 7 2 1.00 .2246 8

103 17 8 .00 .00 .02 .05 20 7 2 3.00 .1025 5

104 15 6 .00 NA .00 NA 0 6 2 2.00 .0000 5

105 36 10 .14 1.00 .00 NA 0 8 2 2.00 .0000 5

106 60 10 .07 .45 .24 .42 12 5 1 2.00 .2063 5

107 40 6 .42 .25 .43 .12 24 4 1 2.00 .1629 5

108 12 18 .26 .23 .28 .07 67 5 1 3.00 .1377 5

109 39 7 .49 .92 .97 .82 132 5 4 1.00 .8952 8

110 29 10 .38 .71 .46 .52 102 4 1 3.00 .4595 7
111 36 15 .39 .49 .43 .30 231 11 5 2.00 .4488 7

112 18 4 .27 .36 .33 .22 72 6 2 2.00 .3161 5

113 51 7 .10 .71 .09 .57 21 8 3 1.50 .1386 8

114 42 12 .07 .29 .10 .03 40 6 1 3.00 .1563 7

115 23 7 .09 .73 .18 .64 25 7 4 2.00 .1548 5

116 33 11 .05 .44 .00 NA 0 5 2 2.00 .0000 5

117 20 9 .13 .39 .10 .20 15 4 1 2.00 .1762 6

118 57 10 .12 .34 .23 .16 183 6 2 3.00 .1652 7

119 29 10 .16 .41 .23 .19 139 6 2 2.50 .2159 7

120 20 12 .00 .00 .25 .01 89 4 1 1.50 .1016 5

121 45 6 .00 .00 .08 .03 118 7 2 2.00 .1157 5

122 20 10 .15 .80 .17 .80 30 4 1 1.00 .2204 5

123 18 7 .16 .49 .40 .54 125 6 2 2.00 .3976 5
124 22 6 .14 .78 .05 .67 21 8 3 2.00 .1037 5
125 17 5 .21 .64 .46 .61 101 7 3 1.00 .5791 5
126 59 13 .37 .45 .30 .27 67 6 2 2.00 .2621 5

127 20 7 .04 .56 .08 .62 24 6 2 2.00 .1857 7

128 39 12 .23 .60 .25 .22 27 8 3 1.00 .2913 5

129 14 7 .06 .86 .25 .01 36 6 2 2.00 .1891 7

130 28 8 .70 .36 .38 .17 59 3 1 2.00 .2295 7

131 54 13 .12 .42 .00 .00 1 3 0 2.00 .0038 4
132 21 6 .28 .72 .18 .71 28 8 3 2.00 .3737 4
133 21 1 .47 1.00 .20 .91 11 1 0 1.50 .5123 8

134 20 1 .89 .94 .50 .83 6 1 0 1.50 .7553 5

135 27 7 .63 .84 .53 .66 76 8 3 2.00 .4793 5

136 60 3 .59 .80 .71 .45 11 8 3 2.00 .5451 6

137 22 12 .39 .52 .22 .23 43 5 2 3.00 .1972 6
138 49 10 .06 .75 .08 1.00 16 4 1 1.50 .1559 7

139 16 6 .NA .00 .67 .20 10 5 1 2.00 .2198 7

140 18 5 .33 .50 .00 .00 7 2 0 1.00 .0618 7

141 60 18 .00 .00 NA .00 1 3 0 1.00 .0106 6

142 37 7 .42 .44 .86 .29 123 7 2 1.00 .4965 7

143 40 9 .12 .47 .14 .16 19 6 2 2.00 .2143 6
144 12 8 .00 .00 .00 NA 0 4 1 2.00 .0000 7

145 37 9 .46 .51 .41 .52 21 4 2 1.00 .7523 6

146 16 5 .00 NA .11 .67 3 4 1 1.50 .3269 7

147 55 10 .21 .43 .40 .21 98 11 5 3.00 .2087 6

148 20 7 .56 .64 .54 .94 78 4 3 2.00 .7951 4
149 55 7 .46 .28 .33 .05 58 4 1 1.00 .1511 5

150 48 10 .38 .64 .35 .55 155 4 2 1.00 .4903 6

Table 2. Evaluative and Descriptive Data for the ST-PatTREC Searches
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Table 3 shows the results obtained by our system (marked with asterisks) compared with

other systems in our section of category B, as provided to us by the TREC organizers.

While it is difficult to make meaningful comparisons across different databases and topics,

our average precision aggregated across all the topics was .27, within the range obtained by
the Okapi system in TREC-2 (Robertson et al. 1993). The Okapi average precisions varied

between a high of .36 and a low of .142 (aggregating across all the different topics with

different weightings and algorithms). Our average precision results also appeared to be

competitive with results obtained in TREC-2 using combination of evidence (Belkin et al.

1993).

We also looked at how well recall and precision on the training set predicted recall and

precision on the test data. We found evidence of predictive relationships on both recall and
precision scores (calculated from documents retrieved by exact final queries with exact

proximities). That is, if a query achieves a high recall score or high precision score on the

trainmg data it seems to do well on the test data as well. Table 4 shows the matrix of

intercorrelations for the data shown in Table 2. The conelation between the precision

measures on the training data versus the corresponding measures on the test data, and the

correlation between recall measures for training and test data were both .70

We then looked to see which other factors would predict when our system would perform

well. We looked at the relationship between the ranking of our system (rounded up to 1, 2,

or 3) across the 50 topics, and a variety of predictive measures, including the training

precision and recall, the elapsed time for the query formulation process, the number of

iterations used, the number of terms in the final routing query, etc. Separate analyses of

variance were carried out for each of these predictors as die dependent variable, with the

independent variable being the ranking of the topic. None of these ANOVAs were
significant at the .05 level. However, the number of terms in the final query (F[2,

47]=2.42) and the number of iterations (F[2, 47]=2.70) were both borderline significant (p

<.10). Figures 2 and 3 show the corresponding error bar charts. It can be seen in Figure 3

that the possible significant difference for iterations is due to the fact that more iterations

tend to be associated with relatively poor performance of the routing query. This seems
reasonable to us, since a large number of iterations indicated that the searchers were having

trouble in identifying a suitable query. Similarly a relatively low (less than 5) terms in the

query tended to be associated with better performance. This suggests that our system

worked best when a fairly simple query could be expressed witfi a few diagnostic terms.

Relatively few of the correlations shown in Table 4 are significant. Not surprisingly,

perhaps, there was a high (r=.83) correlation between the number of terms in the final

routing query and the number of OR operators used. However, the correlation between
number of iterations and time taken in performing the query was low (about .3). The
number of iterations was inversely related to recall on both the training and test data,

confirming the impression that a large number of iterations is generally a sign of problems
in query formulation.

There was also a significant (r=.45) correlation between the number of relevant documents
in the test database and the number of ORs in the final routing query. This seems
reasonable, since a broad topic might be expected to cover a number of disjunctive

concepts.

We also looked at what sort of topics our method did better or worse in. The two searchers

each independently rated their familiarity with the general topics used in the searches (e.g.,

science and technology, finance, international politics, etc.) on a 5-point scale. We added
the two sets of ratings to obtain a 10-point rating that represented the joint familiarity of

both searchers with the general topics. We then correlated the expertise ratings of
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Relevant Retr. @ 100 Relevant Retr. @ 1000 Average Precision

Topic Rel. Best Median Worst Best Median Worst Best Median Worst

101 9 7+ 7 4 9* 9 4 0.3120 0.2973* 0.0980
102 5 5* 4 4 5* 5 4 0.5520 0.5187 0.2246*
103 20 8 7 3* 18* 18 11 0.1194 0.1172 0.1025*
104 0 0* 0 0 0* 0 0 0.0000* 0.0000 0.0000
105 0 0* 0 0 0* 0 0 0.0000* 0.0000 0.0000
106 12 9 8* 1 11* 10 2 0.2453 0.2063* 0.0066
107 24 15 14* 10 21 17* 17 0.3117 0.1629* 0.1615
108 67 29 27 18* 61 59* 43 0.3138 0.2091 0.1377*
109 132 94* 89 13 129 127* 41 0.8952* 0.8804 0.0668
110 102 53 52 50* 102* 102 69 0.5480 0.4595* 0.4175
111 231 78 59* 40 222* 221 123 0.4488* 0.4140 0.4130
112 72 37 36* 6 66* 65 21 0.3639 0.3161* 0.0368
113 21 14* 14 8 21* 21 9 0.2068 0.1444 0.1386*
114 40 24 24 14* 40* 38 27 0.4086 0.3713 0.1563*
115 25 18 16* 8 24* 23 9 0.2662 0.1548* 0.0998
116 0 0* 0 0 0* 0 0 0.0000* 0.0000 0.0000
117 15 14 10* 8 15 14* 8 0.5962 0.2636 0.1762*

118 183 67 59 32* 154 115* 106 0.5081 0.4247 0.1652*

119 139 36 26* 26 124* 108 44 0.2827 0.2159* 0.1366
120 89 13* 13 9 84* 72 13 0.1016* 0.0926 0.0276
121 118 52 14* 2 114 107* 39 0.4721 0.1157* 0.0190
122 30 20* 13 12 26* 18 12 0.2690 0.2316 0.2204*
123 125 58 49* 24 121* 105 49 0.4521 0.3976* 0.1002
124 21 12 11* 4 20* 14 8 0.1532 0.1037* 0.0387
125 101 61* 46 42 101 100* 44 0.5791* 0.4037 0.3042
126 67 43 32* 25 55 49* 31 0.4598 0.3337 0.2621*

127 24 22 15* 12 24 24* 12 0.3712 0.2350 0.1857*

128 27 22* 10 5 25* 18 10 0.2913* 0.1724 0.0247
129 36 20 18* 13 33 31* 16 0.2750 0.1891* 0.1387

130 59 30 23* 19 59 52* 23 0.3379 0.2360 0.2295*

131 1 0* 0 0 1* 1 1 0.0072 0.0057 0.0038*

132 28 23 22* 15 28 27* 15 0.5139 0.4022 0.3737*

133 11 10* 10 5 10* 10 5 0.7622 0.5123* 0.3690
134 6 6* 6 1 6* 6 1 0.7553* 0.4451 0.0833
135 76 53 50* 30 76 63* 37 0.6848 0.4793* 0.2947

136 11 10 9* 4 11 10* 6 0.5451* 0.4997 0.0651

137 43 30 20 18* 41 38* 22 0.6102 0.2496 0.1972*

138 16 12* 12 11 16* 16 12 0.2786 0.2146 0.1559*

139 10 8 5* 4 8 5* 4 0.2198* 0.1640 0.1224

140 7 5* 4 4 7* 5 4 0.3813 0.3805 0.0618*

141 1 1* 0 0 1* 1 0 0.0106* 0.0064 0.0000
142 123 69* 42 31 99* 89 62 0.4965* 0.3113 0.1784

143 19 12 10* 5 18* 17 8 0.2573 0.2143* 0.0471

144 0 0* 0 0 0* 0 0 0.0000* 0.0000 0.0000
145 21 20* 12 2 21* 15 6 0.7523* 0.2259 0.0116
146 3 3* 3 1 3* 3 1 0.4019 0.3333 0.3269*

147 98 38 37 32* 77 66 59* 0.2889 0.2661 0.2087*

148 78 71 70* 44 77* 77 45 0.7951* 0.7870 0.5345

149 58 17* 16 10 40* 39 12 0.1511* 0.1141 0.0563

150 155 56* 53 19 140* 111 56 0.4903* 0.3862 0.1160

Table 3. TREC-3's Routing Results for Category B.
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familiarity with each topic with the corresponding measures of precision and recall on the

training and test data, respectively. None of these correlations were significantly greater

than zero (r<. 10 in every case). Thus we have no evidence that domain expertise was a

factor in the searches.

The final analysis that we carried out looked at what predicted performance of the routing

queries in terms of average precision. A stepwise multiple regression was carried out using

query formulation time, number of iterations, precision of the query for the training data,

recall of the query for the training data, the number of relevant documents for the topic

actually in the test database, and the number of terras used in the final query as predictors.

Training precision was the strongest predictor of average precision of the routing query

(r=.54). The other two predictors that entered the final regression equation were the

number of relevant documents and training recall (multiple R for the three predictor

equation was .79). None of the other predictors significant improved the three term

prediction equation. The beta weights in the three term equation were as follows:

training precision .54

number of relevant documents .29

training recall .29

The precision and recall of the exact final query on our training data were strongly related to

precision on the test data. The other predictor of performance on the test data appeared to be

number of iterations. A number of different attempts to form a search query is generally

indicative of problems in query formulation that tend to show up in the eventual

performance of the routing query. In the following section we will look at some of the

lessons learned concerning the usability of the system.

Lessons Learned

The two searchers spent many hours working on the 50 topics to form the final routing

queries. Much of this time was wasted due to deficiencies in the ST-PatTREC system. One
problem was that the graphical queries for complex disjunctions were sometimes parsed

incorrectly, requiring the users to try out different input strategies in order to get the query

they wanted. TTiis problem has since been fixed by allowing users to type in Boolean
queries direcdy. We also found that the demands of the TREC evaluation on our system

were greater than expected. As a research prototype, the system seemed to work quite well,

but in the face of many hours of focused searches, the system would often crash, adding to

the time and effort required. Thus there has been some effort to improve the reliabihty of

the system and make it more suitable for large scale searches in the future.

One of the features that we missed the most was U*uncation during the query formulation.

We used truncation during the query expansion phase, but in the interactive querying that

preceded the generation of the final routing query truncation was not available. Truncation

was one of the features that did not seem to be a "natural" part of the browsing interface,

but turned out to be important for querying styles of search. Although our original

philosophy had been to construct queries by directly marking up the text in a point and cUck
style of interaction, we soon found that direct input of queries as text was more convenient

in constructing complex queries. It was also easier to combine older queries into new
queries using text entry in a workspace than to try and modify the markup once a certain

number of terms were involved in the query.

The online dictionary didn't seem to add any value during the query generation process and

was not used. Similarly, the onUne thesaurus (WordNet) was not used. We found that the
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material in the online dictionary and thesaurus was too general, so that they did not add
value for specific queries (at least queries on topics relevant to the Wall Street Journal

database). In contrast, the coordinate terms turned out to be very useful. Knowing the

coordinate terms made it much easier to identify terms that could be ANDed to the current

term.

The searchers found that interactive feedback of recall and precision was both useful and
motivating. We found that the ability to select terms directly from document text was
useful, because the searchers could foUow the terminology actually used in the database.

For the TREC search tasks, the best working style seemed to be selection of the terms in

the text and graphical markup for simple queries followed by textual commands to combine
the simple queries into complex query. In later versions of the system we have since added
this capability and found it to be very useful. The TREC experience made it clear to us that

trying to build complex queries was just too difficult with the graphical querying methods
that we had originally developed. The searchers also found that the documents judged to be

relevant by experts were very useful and they consulted extensively in looking for

appropriate search terms.

Future Extensions

Our experience in using ST-PatTREC in the TREC-3 experiment showed that the ability to

form complex queries is fairly important in achieving good performance under the TREC-3
rules. The detailed search topics provided the relatively large number of documents that

were relevant for queries (typically over 100), and the requirement to create a routing query

tended to de-emphasize the role of browsing in the interaction in favor of query

construction. We are currently looking at methods of reinstating the role of browsing,

either within the TREC-3 rules, or else in terms of a modified approach that changes the

task and evaluation structure so as to encourage more browsing.

One of the problems with large databases and topics that have large numbers of relevant

items is that interactive browsing of the actual documents is too costly, in both time and
effort. However, browsing of a summarized version of the document space might still be
feasible. Two forms of summarization are the use of brief abstracts, and the use of

visualizations of the concept space in which documents reside. Automatic abstracting is

difficult, and articles such as those avaUable in the TREC database tend not to have written

abstracts. For some stories or articles, lead paragraphs might serve as abstracts or overall

summaries, while for others, the simple heuristic of picking the first one or two paragraphs

may not be adequate. Recently there have been proposals to use the cohesiveness of text

(e.g., Halliday and Hasan, 1976) to develop paths or chains through the text. However,
although promising, this research is still in the early stages.

In the near term concept visualization may be the most useful approach for text

summarization. In one technique (Damashek, 1994), inter-document similarity is assessed

based on frequencies of n-grams in documents. The advantage of using N-grams is that

they are less affected by incorrect spellings (Cavnar, 1993). Using one of a number of

scaling techniques (e.g., singular vaJue decomposition, or multidimensional scaling) the

documents can then be located in a low dimensional space and clustered.

We carried out an informal experiment at the TREC-3 conference to see how well the

Acquaintance system (Damashek, 1994) would work as visualization tool for handling

TREC-3 topics. We began by using ST-PatTREC to form a query. We used the final

routing query that we had developed for topic 122. This query was (cancer AND drug) OR
(cancer AND research). This query yielded about 15% precision and 74% recall. We then

191



took the 268 documents that were retrieved by this query for half of the training (Wall

Street Journal) database and passed them to the Acquaintance system where they were
visualized using the N-gram similarity scaling and clustering method. The document
clusters were then examined for relevance to the topic and non-relevant items were pruned

from the visualization. This pruning was done fairly quickly, taking less than five minutes.

The resulting set contained 19 documents, of which 9 or roughly 47% were relevant. The
visualization method was successful in improving the precision, something that had been a

problem for the ST-PatTREC system in the TREC-3 experiment, but at the expense of

recall (since only 9 of the 54 relevant documents or approximately 17% were relevant).

While this recall is low, it should be possible to explore the visualization further and find

additional clusters of relevant documents. Thus one future direction is to use text browsing

to develop a relatively large set of candidate documents with high recall and low precision,

and then pass this to a visualization process to prune irrelevant document clusters and
thereby improve precision. We could then characterize the steps in this overall process as:

,
1. Text browsing
2. Query formulation

3. Visual Browsing of Document Clusters

We will also be carrying out research that investigates the role of browsing and querying in

information exploration more closely. We are currently developing a revised information

exploration system called BrowsIR that incorporates some of the lessons learned from our

participation in TREC-3 as well as from subsequent usability studies using ST-PatTREC.
We will then carry out a study to see how people use a flexible information exploration

system when faced with different types of tasks. In particular, we will look at how
instructions that emphasize browsing or querying styles of interaction tend to affect

retrieval performance using a flexible information exploration system. The experiment will

be carried out using TREC databases and topics.

One further avenue that we will explore is the coordination of text retrieval on local and
distributed databases. We are currently connecting our text browsing tool to the world wide
web. We wUl then carry out TREC searches on both the TREC and world wide web data.

Our goal will be to study the effectiveness of wide area network (WAN) text searching as a

supplement to the information contained in the TREC databases.

Conclusions

Overall we were satisfied with the performance of our system in TREC-3. Given the

changes that we have since made to the system based on our experience, we expect that its

effectiveness should be improved now that truncation and textual entry methods to combine
simple queries into complex queries have been added.

One important result is the consistency between the evaluation scores for the training data

and the test data. Our system seemed to work best with short queries consisting of a few
highly diagnostic terms. The extreme case of this was two topics where the query consisted

of only one term ("Hubble" for one topic and "genome" for the other). It is not clear how
much this effect was due to the fact that construction of complex queries was too difficult in

the version of our system that we were using, and how much it is a general effect. One
clear diagnostic result is that a large number of querying iterations was a sign of trouble in

our system. The searchers wrote down the query and the recall and precision scores when
they felt that they had an interesting result. We used the number of entries that they wrote in

the search log as indicators of the occurrence of iterations in the query formulation. While
the implications of this result are unclear, one interpretation is that there is a law of
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diminishing returns in interactive querying, and that searches which do not yield useful

results relatively quickly are unlikely to improve with significant extra effort. Certainly our

experience as searchers was that some searches were difficult, while others seemed easy.

Putting a lot of extra time and effort into the difficult searches didn't seem to improve the

results much in most cases.
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Appendix. Interactive System Description

I. System Description

Figure 4 shows a "typical" screen from the system. The screen contains a number of

regions or windows which allow the user to buUd queries and view the results of queries

within a single environment One of the features of this system is that it does not have
different modes (e.g., forming queries vs. viewing documents).

The window on the lower left is the text window where documents are displayed.

Queries can be constructed directly by clicking on words in the text to add them to the

query. Dragging lines between words then connects them in the query with an AND
operator.

Words can also be added to a query by typing them in the margin. For instance, in Figure 4
the word "degenerative" has been typed in the margin. The current query is displayed in the

small gray field above the text window. In this case the current query is (research AND
cancer OR degenerative). This display uses parentheses to disambiguate the scope of the

AND and OR operators. The query displayed as text corresponds to the graphical query

marked on the text of the document. Each of the terms in the query is shown within a box.

The terms cancer and research are linked by a Une, which indicates the AND operator. The
fact that "degenerative" is not linked with a line to the other terms shows that it is ORed
with them.

Above the query display area is a quite button, and open file button (this button wasn't

used during the TREC-3 experiment), and a new query button, which gave the user a

quick way to initialize the query (the alternative was to explicitly delete the terms in the

current query using point and click selections). To the right of these buttons was a pull-

down menu showing a list of the TREC search topic statements. The pull-down menu is

currently showing topic 104 as being selected. The topic statement was normally used as

the starting point for each search. The topic statement could be marked up like any other

document.

The search controls at the top of the screen contained a proximity slider and a relevance

judgment slider. The proximity slider was used to vary the proximity. In addition to

moving the slider, the user could also type the new proximity value directly into the field

above the slider (thus making it possible to have proximities of greater than 1000). In

practice, the default proximity of 500 characters was used most of the time, with proximity

mainly being adjusted to fine tune the query.

Output from the online dictionary is shown in the lower right part of the display in a

window labeled "definition". In Uiis case the dictionary reports that there is no definition

for "degenerative". The lack of useful feedback from the onhne dictionary in this case was
fairly representative of its effectiveness throughout the searches.

The coordinate terms were shown in one of the two empty windows in the lower right of

the screen. Above them is a window that provided the feedback on recall and precision of

the current query. This information was updated every time a hit was selected. The window
above this allowed users to access the online thesaurus. The information from the thesaurus

was then displayed in the definition window (the same place that displayed the online

dictionary information).
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The window to the left of the WordNet window displayed the hst of documents judged to

be relevant by NIST as per their procedure. Each line (choice) in the window represents a

document. If the user clicks on one of the choices in the window, the corresponding

document is shown in the text window.

The two windows above the expert judged relevance window are the query history window
and the query construction workspace. The query history showed a Listing of the previous

queries that had been executed. The workspace provide a place where users could type

words or terms that could later be pasted in to the margin. Alternatively the users could type

words directly into the margin.

The large window above the query history showed the hit list. Each line in this Hst

represented one document in the set of hits. When a line was clicked on in the hit list, the

corresponding document was displayed in the text window, with the current query marked
up on it. Thus users could edit the query by modifying the graphical query that overlaid the

document in the text window.

The style of interface was a mixture of graphical user interface and command interface.

Queries could be constructed using point and chck interactions, but terms could also be

typed in the margin or entered in the workspace. Since TREC-3 we have revised the system

so that it retains the graphical user interface while adding more command-based functions

and making it easier for users to construct complex queries.

II. Experimental Conditions

The TREC-3 experiment was carried out over an intense one week period. After some pilot

testing with two experienced librarians, the actual searches were carried out by the two
researchers. The two searchers worked on all fifty of the topics. One searcher was 29, the

other 38 years of age. One of the searchers has had considerable searching experience,

while the other searcher had only limited experience. However, the goal of our system was
to minimize the need for experience and to make searching more productive for novices. To
a large extent, there did not appear to be a significant difference between the search results

obtained for the two searchers in our experiment. In terms of educational level, both

searchers had more than eight years of post-secondary education. One searcher had an

undergraduate degree in computer engineering, the other in psychology. Neither of the

searchers had any experience or expertise with respect to any of the 50 TREC-3 topics. One
searcher was an associate professor at the University of Toronto, the other was a Ph.D.

student at the same university.

The searchers knew that they were participating in the TREC-3 evaluation and were familiar

with the structures and the rules of TREC-3. Thus their goal was to construct a query that

would maximize the recall and precision on the training data. To do this they could use any

or all of the features and functions of ST-PatTREC.

The training process consisted of trying the system out and seeing what worked. Due to

lack of time, and the fact that the searchers were also trying to iron out the bugs in the

system, etc., there was little if any time for training. Our impression was that the earUer

topics ended up being training for the later topics, and that our skill as searchers using ST-

PatTREC increased significantiy during the experiment. Thus we would say that no formal

training was used.
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III. Search Process

1. Clock time (i.e. real, elapsed time) per search, from the time the searcher was given the

topic, until the final query was saved, in seconds.

Mean: 32.44 mins
Median: 28.50 mins

SD: 15.45 mins
Range: 12-60 mins

2. Number of documents "viewed" in during the search.

a. Definitions of viewing:

For the purposes of our system, viewing was defined as seeing a document in the text

window. Users had to click on the hit Ust to bring a document into the text window and

thus there was a clear indication of their intention to view documents.

b. Number of items viewed per search(repeat for each viewing category).

Mean: 18.18

Median: 16.5

SD: 7.912

Range: 3-42

3. Number of iterations per search.

a. Definition of iteration:

The searchers wrote up a search log that contained significant queries, along with recall and

precision measures for those queries. An iteration was defined operationally as a new entry

in the search log.

b. Number of iterations per search.

Mean: 8.9

Median: 8.5

SD: 3.388

Range: 3-18

4. Number of terms used in queries.

a. Number of terms in the first query of a search, per search.

Mean: 1

Median: 1

SD:0
Range: 1

b. Number of terms in the final query of a search, per search.

Mean: 5.571

Median: 6

SD: 2.17

Range: 1-11

5. Use of system features.

Not available

6. Number of user errors made per search.

Not applicable

7. An Example of the system in Use: Topic 122
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The following interaction shows how the interaction occurred for topic 122. This topic was
concerned with new or alternative cancer drugs therapies. The tide of the topic was
"RDT&E of New Cancer Fighting drugs. The concepts provided in the topic statement

included cancer, leukemia, drug, and chemotherapy. Figure 5 shows portions of the

transaction log that our system produced for the interaction. The interaction started with the

selection of the term "cancer" at 6:09 pm. on July 24. The transaction took almost exacdy
20 minutes. This was a relative short interaction for the TREC-3 topics with our system,

since the average topic took just over half an hour.

The user started by typing the words cancer, followed by drug, in the margin. The words
were then Hnked together to create an AND. The term "development" was added to the

query and then removed. At this stage an article was selected from the hit list. The user

then added the term "research" to the query, first ORing it with cancer AND drug and then

ANDing it to create the query research AND cancer AND drug. A document was then

selected from the resulting hit list. According to the log, the user then had about 10 seconds

to review the text of the document before the query was modified by removing the word
"research". The user would also have noted the feedback for this query, which was a

precision of .16 and a recall of .35. In contrast, the query "drug AND cancer" had provided

a recall of .8 1 and a precision of . 14, thus clearly being superior to the version of the query

which added "research" to the AND combination. Although this log does not show it, the

user had continuous updates on the precision and recall scores for each query executed.

Thus, the evolution of the search strategy in constructing the test query was guided to a

large extent by this feedback.

The user then tried adding "research" in a different version of the query, leading after an set

of interactions over a period of almost three minutes to the query:

drug AND research AND cancer OR cancer AND development

A considerable amount of time was then spent trying to find a term that would improve the

precision without adversely affecting recall, but without much success. The final

enhancement to the query came when die term dierapy was used (therapy was one of the

coordinate terms for "cancer"). The final query eventually chosen for this topic was:

cancer AND drug OR cancer AND therapy

One interesting feature of this interaction is that of the four concept terms provided as part

of the TREC-3 topic definition, only two (cancer, drug) were actually used in this session.

Not using "leukemia" or "chemotherapy" was probably an oversight on the part of the user.

When we amended the final query to include these terms , i.e., "cancer AND therapy OR
cancer AND drug OR chemotherapy OR leukemia" the resulting precision and recall on die

training database were .13 and .89, respectively. Thus "human errors" in forgetting to use,

or consider, useful terms could have lowered the performance of queries using our system

in some cases.

After this interaction, the final query submitted for the TREC-3 competition was "drug

AND cancer" OR "cancer AND therapy". For the first 1(X) documents, 20 out of the 30
relevant documents were retrieved from this query, reflecting a recall of .67 and a precision

of .20 for this subset of documents. This results were in line with the experiment gained in

forming the query on the training data where using exact matching, the recall was .81 and
the precision was .13. Expanding to 997 documents then yielded a further 6 relevant

documents for a recall of .87. However the precision was then only .026. However, given

that there were only 30 relevant documents, and 10(X) documents were to be retrieved, the
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maximum precision that could have been obtained at that point was only about 3 percent in

any case.

18:09:06 query cancer

18:09:06 addterm cancer

18:09:17 query drug OR cancer

18:09:17 addterm drug
18:09:22 query drug AND cancer

18:09:22 addop drug AND cancer

18:09:46 query development OR drug AND cancer

18:09:46 addterm development
18:09:54 query drug AND cancer

18:09:54 removeterm development
18:10:02 selecthit hitlist 3124737 3122285
18:10:02 selectdoc 3122285
18:11:45 selecthit hitlist 28740917 28736070
18:11:46 selectdoc 28736070
18:12:43 query research OR drug AND cancer

18:12:43 addterm research

18:12:51 query research AND drug AND cancer

18:12:51 addop research AND drug

18:12:52 selecthit hitlist 20201575 20196494
18:12:53 selectdoc 20196494
18:13:03 query drug AND cancer

18:13:03 removeterm research

18:13:12 query drug AND cancer OR research

18:13:12 addterm research

18:13:18 query drug AND cancer OR research OR cancer
...(this section of the log deleted to save space)...

18:24:51 query therapy AND cancer OR cancer

18:24:51 addterm cancer

18:24:55 query therapy AND cancer OR cancer OR drug
18:24:55 addterm drug

18:25:00 query therapy AND cancer OR cancer AND drug

18:25:00 addop cancer AND drug
18:25:01 selecthit hitlist 10646564 10646443
18:25:02 selectdoc 10646443
18:25:35 selecthit hitlist 7206040 7205634
18:25:36 selectdoc 7205634
18:26:24 newquery
18:26:30 query therapy cancer/cancer drug
18:26:30 query therapy AND cancer OR cancer AND drug
18:26:37 selecthit hitlist 3124615 3122285
18:26:37 selectdoc 3122285
18:28:05 query development Cancer/research cancer/Cancer drug/Cancer test

18:28:06 query development AND Cancer OR research AND cancer OR Cancer AND
drug OR Cancer AND test

18:28:51 selecthitoffset2 31463575 31463482
18:28:51 selectdoc 31463482
18:29:06 selecthitoffset2 117419014 117418921
18:29:07 selectdoc 117418921
logout

Figure 5. The Transaction Log for Topic 122.
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Interactive Document Retrieval Using TOPIC*^

(A report on the TREC-3 experiment)

Richard M. Tong

Verity, Inc.

1550 Plymouth Street, Mountain View, CA 94043

1 Introduction

This paper contains a description of the experiments per-

formed by Verity, Inc. as part of the Third Text Retrieval

Conference (TREC-3).^

Verity participated as an Interactive Category A system

and performed the full set of routing and adhoc experiments,

submitting complete sets of results for both experiments.

Section 2 of the paper contains a review of the TOPIC
system itself and the data structures it produces. Section 3 of

the paper contains a description of our experimental proce-

dure. Section 4 contains an analysis of our official results.

Section 5 contains some general comments on overall per-

formance and a brief discussion of possible future directions.

The Appendix contains additional details of our procedures,

as well as an analysis of topic 122, the interactive "focus

topic."

2 TOPIC System Configuration for TREC-3

TOPIC® is a commercial full-text retrieval system that is

available for a wide range of hardware and software environ-

ments. For the TREC-3 experiments we used version 4.0 of

the TOPIC client running on either Sun SPARC 2 class

machines with an X/Motif GUI, or on 386/486 class

machines running Windows. The TREC data and indexes

themselves were stored on a Sun SPARC 2 file-server with

approximately 4.6 Gbyte of disk storage. This file sever was

used exclusively for TREC during the period of the experi-

ments.

We used the standard set of Verity database administra-

tion tools to build the TREC database. We chose to extract

only the document ID (i.e., the <DOCNO> field) and a

1 . Requests for further information about the TREC-3 experiments,

or Verity's line of information retrieval products, should be directed

to the author either at the address above or electronically to

rtong@verity . com.

"title" (e.g., the <HEAD> field in the AP collections, the

<HL> field in the WSJ collections) for the structured ele-

ments in our databases, and then treated each document as a

regular full text document. We did not use a stop word list,

although we did remove the SGML tags, and so we chose to

create just an inverted index on word positions within docu-

ments (as opposed to an index that also recorded sentence

and paragraph positions) to keep the index at a reasonable

size. The final index (for all three disks) was approximately

1.5Gbyte and took approximately 112 hours to build.

We used the training data provided for disks 1&2 with

respect to topics 101-150 to define a series of "ground truth"

datasets that we modelled as Topics. These ground-truth

Topics were made available to all searchers as part of the

interactive routing query development process. We also used

TOPIC'S launch facility to allow searchers to access the offi-

cial TREC scoring program so that the performance of the

routing queries (with respect to the training data) could be

assessed as they were being developed.

3 The TREC-3 Experiments

For TREC-3 we participated in Category A and produced

two sets of results in each of the routing and adhoc experi-

ments. These results sets are labelled, naturally enough,

TOPIC 1 , T0PIC2, T0PIC3 and T0PIC4.

TOPICl and T0PIC2 are the routing results (i.e., the

results for topics 101 through 150) —• TOPICl correspond-

ing to the initial, manually generated, set of queries made

available to all searchers participating in the experiment, and

T0PIC2 corresponding to the final routing queries devel-

oped by the searchers. T0PIC3 and T0PIC4 are the adhoc

results (i.e., the results for topics 151 through 200) —
TOPIC3 corresponding to a set of automatically generated

queries that we made available to all searchers, and T0PIC4
corresponding to the final adhoc queries developed by the

searchers. TOPIC2 and TOPIC4 are thus our "official" sub-

missions. This information is summarized in Table 1.
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Table 1 : Results Identification

Result

Set

TREC
Category

Method Queries

TOPICl Routing A Manual Initial set of que-

ries; based on

veniy s dunoc

queries from

TREC-2 [1].

T0PIC2 Routing A Interactive Final set of que-

rics, me oiiiciai

routing queries

forTREC-3.

TOPIC3 Adhoc A Automatic An automatically

generated set of

queries; based on

a simple transfor-

mation of the

1 kj_,<„ miormd-

tion need state-

ments.

T0PIC4 Adhoc A Interactive Final set of que-

nCt>, IIIC UlilCIal

adhoc queries for

TREC-3.

Since our approach to developing queries is based on the

construction of conceptual representations of the domain of

the queries, the final queries for both the routing and adhoc

experiments are generally the result of several interactions

between the developer of the query and the test collections.

Our approach is thus fundamentally interactive, and for that

reason we elected to participate in TREC-3 as an interactive

system.

3.1 Experimental Procedure

The experimental procedure for Verity's TREC-3 exper-

iments is briefly summarized here. It consisted of the fol-

lowing main steps:

• Training of searchers. All searchers participated in a

short training session in which the basic TREC experi-

ments were described and the test and evaluation pro-

cedures discussed. The novice searchers were also

given a short tutorial introduction to TOPIC and query

building. Those who needed it were given personal

instruction in the use of TOPIC for the TREC experi-

ment. Searchers were not, however, given any specific

guidelines as to how exactly they should develop que-

ries (i.e., no attempt was made to impose a standard

procedure or a Verity "style"); they were simply

instructed to make use of whatever features of the

TOPIC query building language they found most use-

ful.

• Interactive routing query development. All search-

ers had access to the ground-truth Topics, the general

purpose thesaurus shipped as part of the standard

TOPIC product, and the initial set of routing queries

based on Verity's TREC-2 adhoc queries. Each

searcher was asked to "sign up" for one of more topics

and was then free to work on the queries to the extent

that their individual schedules permitted. No con-

straints were placed on the amount of time searchers

could (or should) spend developing queries, nor were

any constraints placed on the number of "iterations"

that needed to be performed. Searchers were asked to

keep notes on progress in query construction. Query

development ceased on a specific date (defined as one

week before the routing results were due at NIST), at

which time searchers submitted whatever they had

developed up to that point.

• Interactive adhoc query development. The only

assistance provided to searchers in the adhoc experi-

ment was the set of automatically generated adhoc

queries and the standard thesaurus. Searchers were

given a fixed amount of time to develop queries corre-

sponding to the new adhoc topics, and were asked to

keep notes on their query construction efforts. Again,

no special constraints were imposed on the process by

which queries should be developed, and searchers sub-

mitted whatever they had developed by the end of the

Ume period.

• Generation of test data. Once the query development

phase was completed, the individual queries were

merged to form the "official" query set. We then used

an interacfive, command-line version of TOPIC, called

VSH, to generate the official results sets.

3.2 Searcher Characteristics

Twelve Verity staff members participated in the TREC
experiments as searchers. They ranged widely in TOPIC

5

experience and job function, and they developed different f

2. We discovered after the fact that this occasionally results in offi-

cial scores that are different from the ones computed from within

TOPIC v4.0 (i.e., the version of the product used by the searchers).

This is due to the order in which results are generated within a rel-

evance bracket. VSH generates them in the reverse order from

TOPIC v4.0, so that if there are many documents in the relevance

bracket at which the 1000 document cut-off occurs, it is possible '|

that relevant documents could be above the cut-off in the jI

TOPIC v4.0 results list, but below the cut-off in the VSH results

list. This usually makes only a small difference, but occasionally

can have significant impact on the recall scores.
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numbers of queries (both routing and adhoc) as tlieir sched-

ules permitted. Summaries of these characteristics are given

in Table 2. The column labels #R and #A denote, respec-

Table 2: Searcher Characteristics

ID No.
Experience Job

#R ffA
Level Function

01 Expert Engineering 23 29

02 Expert Engineering 1

03 Expert Education 1

04 Expert Sales 5 5

05 Expert Tech. Support 5

06 Novice Engineering 1

07 Novice Engineering 3 4

08 Novice QA 2 3

09 Novice QA 1 1

10 Novice QA 1

11 Novice Education 1

12 Novice Documentation 1

tively, the number of routing and adhoc queries developed

by each searcher. The designation as "expert" or "novice"

refers to experience with TOPIC the product, and does not

necessarily imply that the searchers were expert searchers,

although several were. None of the searchers had any spe-

cial expertise with respect to the subject domains of the

routing and the adhoc topics.

4 Discussion of Official Results

This section contains an analysis of the official results

generated by NIST. Section 4.1 discusses the results from

the routing experiment. Section 4.2 discusses the results

from the adhoc experiment.

4.1 The Routing Experiment

Of the 50 queries submitted for the official routing

experiment, only 36 were actually the result of interactive

development. Of these 36, 29 were developed by TOPIC
experts and 7 by TOPIC novices. The remaining 14 were

just the initial manual queries.

An analysis of the notes kept by searchers suggests that

the average time spent developing queries varied widely,

from as little as 30 minutes to as much as 20 hours. On aver-

age though, experts spent significantly less time than nov-

ices on query development; approximately 90 minutes per

query versus approximately 400 minutes per query

A comparison of the initial and final queries shows that

most changes were relatively minor, in that they typically

involved adding specific query terms and adjusting weights

and operators. However, in approximately 10 queries there

was more significant changes, including complete rewrites

and major structural modifications.

The results generated by the two sets of queries with

respect to the training data (designated TOPICO — corre-

sponding to the initial queries, and TOPICOO — correspond-

ing to the final queries) indicate a generally small, but

positive, improvement in scores. Table 3 shows the main

Table 3: Routing Queries on Training Data

Performance

Measure
TOPICO TOPICOO A%

ReLRet 6599 7243 -H9.76

Av_Prec. 0.2510 0.2913 +16.06

Prec. @10 0.5840 0.6160 +5.48

Prec. @100 0.4582 0.4766 +4.02

R-Prec. 0.3174 0.3459 +8.98

performance measures. Inspection of the results on a per-

query basis do not reveal any significant patterns of behav-

ior vis a vis these measures, and so we are not able to draw

any particular conclusions about the query building strate-

gies of searchers. Anecdotal evidence suggests that most

searchers adopted a strategy that amounted to getting the

Rel_Ret number to a "reasonable" level and then focusing

on the Prec. @N measures.

Table 4 shows the same performance measures for the

official routing test data. Notice that the revised queries

again outperformed the initial queries. The improvements in

performance are, however, significantly larger than on the

3. The times are very approximate, based as they are on the notes

kept by the searchers. For the novices, the time spent often reflects

lack of familiarity with both the product and the general problem

of searching large text collections. No searcher kept detailed

enough records that we can say anything definiti\'e about the

"number of iterations" or the "number of documents read" during

the query building process, or about the features of the product that

users found especially useful or frustrating.
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Table 4: Routing Queries on Test Data

Performance

Measure
TOPIC 1 T0FIC2 A%

ReLRet 5371 5952 + 10.82

Av_Prec. 0.2243 0.2774 +23.67

Free. @10 0.4740 0.5280 + 11.39

Free. @100 0.3382 0.3880 + 14.73

R-Frec. 0.2786 0.3343 + 19.99

training data. The absolute level of the performance is less

than on the training data (as one would expect) — although

perhaps not significantly so; Av_Frec. is reduced by 4.77%

and R-Frec. is reduced by 3.35% when we compare

TOFICOO to TOFIC2.

Examination of the results on a per-query basis shows a

strong correlation between performance improvements on

the test data and improvements on the training data. That is,

an increase in the performance of a query on the training

data usually corresponded to a similar increase on the test

data, although not always to the same degree. This suggests

that the changes made by the searchers were not in response

to any specific characteristics of the training data, but really

did reflect an improved understanding of the intent of the

queries."^

Comparison of our results with the summary results for

Category A systems, shows that most of the T0PIC2 que-

ries were at the median or somewhat below on the average

precision measure. Of the rest, two were complete failures

(that is, they returned no relevant documents), five were

close to the minimum, and three posted the maximum aver-

age precision score. Figure 1 shows the differences between

the TOFIC2 results and the medians for average precision.

Preliminary analysis indicates little correlation between

performance and searcher expertise or job function. In fact,

of the two queries that were complete failures (for topics

131 and 141), one was done by an expert and one by a nov-

ice; and of the three queries that did best in category A (for

topics 105, 111, and 145) two were done by experts, and one

was done by a novice.

We also did not find any interesting correlation between

performance and the "hardness" of topics 101-150. In her

RIAO'94 paper [2], Harman defines hardness in terms of

4. As of this writing, we have not performed a detailed statistical

examination of these correlations, so these observations should be

treated with some caution.

the relative recall, which is a measure designed to show how
systems perform at the early stage of retrieval, and while

this appears to be a reasonable predictor of the median aver-

age precision scores for the TREC-3 routing experiment, we
found it to be less effective in predicting our own average

precision scores.

The overall results for the routing experiment are some-

what surprising since we had predicted that we would

achieve significance performance gains vis a vis the TREC-
2 results. Our tentative explanation is that while our interac-

tive approach can be made to work very well indeed (vide

the performance on topics 111 and 145), human searchers

are not, in general, very effective at exploiting large

amounts^of training data compared with the statistical tech-

niques used by the majority of the automatic methods par-

ticipating in TREC-3.

4.2 The Adhoc Experiment

All 50 of the adhoc queries for the T0PIC4 results set

were generated interactively by the searchers, and of these,

40 were generated by TOPIC experts and 10 by novices. As
in the routing experiment, the average time spent by novices

and experts in developing queries was markedly different;

approximately 80 minutes per query for experts versus

approximately 274 minutes per query for novices. While

this difference is of a similar magnitude as in the routing

experiment, the much reduced novice times are at least

partly explained by the fact that those novices who took part

in both experiments had, by the time of the adhoc experi-

ment, achieved some skill with TOPIC, thus enabling them

to develop queries more efficiently.

The anecdotal evidence from the notes kept by searchers

suggests that the nature of the adhoc test also acted to

reduce the amount of time spent on each query. That is,

since there is no "ground truth" against which to evaluate

the results of the query building effort, searchers often

seemed satisfied, or at least were not willing to spend any

further effort, after relatively little interaction.^

The searchers in the adhoc experiment were not con-

strained in any way with respect to the number of iterations

they could perform, the number of documents they could

view, the number of times they could view any given docu-

ment, or in any other aspect of their interactions with the

5. Again, the searchers' notes are not detailed enough to determine

specific figures for the number of iterations or the number of docu-

ments read. An examination of the final adhoc queries shows, how-

ever, that many of them are very simple (both in terms of the

number of terms they include and the degree of structuring they

exhibit), which supports the conjecture that little effort was spent

developing them.
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system. This is very much a "free style" approach to query

development, in contrast with more formal methodologies

such as the various form of frozen rank testing, but is

strongly representative of how our system is used in prac-

tice. The results of the adhoc experiment (i.e., the TOPIC4
results set) should therefore be viewed as an instance of

how a manual, interactive system can perform, rather than

as a set of data that is directly comparable with, say, the

automatic systems participating in the adhoc experiment.

The overall results for the adhoc experiment are shown

In Figure 2. Notice that compared to the median average

precision scores for all Category A systems the results look

quite good. There is much more variability than in the rout-

ing experiment, but on balance the scores are above median,

with five of the queries (for topics 158, 159, 172, 181 and

183) posting the best average precision score. As with the

routing experiment though, we do not find any significant

correlation between searcher experience and query perfor-

mance. Somewhat counterintuitively, however, the results

do seem to be generally lower (relative to the median) and

more variable as the median scores increase. We have no

immediate explanation for this.

5 Commentary

Verity's approach to full-text information retrieval is

based on a belief that users need to be provided with a query

language that enables them to built personalized semantic

models of their information needs. Within this context, we

see query development as a form of conceptual modelling,

and thus have designed the TOPIC system to be fundamen-

tally interactive. Although we provide a number of auto-

matic query expansion methods, our philosophy is that users

need to be actively engaged in the query development pro-

cess if they are to be convinced of both the soundness of the

system and the quality of the search results.

The results of the TREC-3 experiment show that this

approach can be very effective, especially in situations

where the searcher cannot draw upon large numbers of

exemplars. However, the TREC-3 results also show that

automatic systems that are able to extract significant search

terms and phrases from large sets of training data performed

better, on average, than the manually generated TOPIC que-

ries. We should probably not be surprised by this. Humans

are not particularly well suited to the task of determining

statistical correlations among large sets of data, so that to

the extent that good retrieval performance depends on find-

ing those correlations, automatic methods will outperform

manual ones. We note, though, that even in the routing

experiment, the TOPIC queries outperformed all others in

three cases. This suggests that human expertise and judge-

ment can be the critical factor in developing effective que-

ries. Further analysis of our queries, as well as a comparison

with those generated by automatic systems, will of course

be required to verify this conjecture.

The experimental data we collected with respect to the

performance of individual searchers was, unfortunately, not

particularly informative. The only definitive statements we
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can make are that "experts" spent less time developing que-

ries on average than "novices," and that less time on aver-

age was spent on the adhoc queries than on the routing

queries. We found no significant correlations between per-

formance and user expertise, nor between performance and

query "hardness." Neither did we find any correlation

between performance on individual queries and the amount

of time spent developing them. In the case of the routing

experiment, we did find that the performance improvements

realized on the training data were also realized on the test

data, which suggests to us that the searchers were indeed

building conceptual models, rather than just responding to

surface level characteristics of the training data.

Overall, we feel that this was a worthwhile exercise for

us. While our results on the routing experiment were not as

strong as we had anticipated, we did observe some searcher

behaviors with respect to our product that will allow us to

make improvements to the Topic construction process. The

adhoc results were very satisfactory, despite the relatively

small amounts of effort most queries received, and show

that the TOPIC query modelling language can be used to

great effect.

2. Harman, D. Analysis of Data from the Second Text

REtrieval Conference (TREC-2). Proc. RIAO'94:

Intelligent Multimedia Information Retrieval Systems

and Management, pp 699-709. Rockefeller Univ.,

New York, NY. October 11-13, 1994.

A Appendix

This appendix contains some additional details of the

experimental procedures used in the routing experiment. In

particular, it contains a description of the TOPIC user inter-

face together with a description of the main functional ele-

ments in that interface, and a detailed analysis of the results

for topic 122.

A.l The TOPIC User Interface

TOPIC is a commercial full-text retrieval system avail-

able for a wide range of hardware and software platforms,

and can be configured in a number of ways for different

environments. A typical query development screen from the

X/Motif version of the user interface is shown in Figure 3.

References

1. Lehman, J. W., Reid, C. A., et al. Knowledge-based

searching with TOPIC. In: Harman, D. K., ed. The

Second Text Retrieval Conference (TREC-2). NIST
Special Publication 500-215, Gaithersburg, MD:
March 1994.

The display is divided into two main sections. The upper

portion contains the query (in this case a partially expanded

Topic tree for topic 146), and the lower portion contains the

hit list. The relative sizes of these two panes are completely

controllable by the user, as is, of course, the overall geome-

try of the TOPIC window.
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Figure 3: Typical TOPIC Interface Screen

The pull-down menus at the top of the window provide

access to a large number of support functions, including the

usual array of system level commands (the File menu),

commands for editing and manipulating queries and associ-

ated data structures (the Edit menu), commands that control

the way in which the query screen appears (the View menu),

commands for setting parameters associated with the query

itself (the Query menu), and commands that are calls to

applications outside of TOPIC proper (the Launch menu).

The query pane itself is interactive. All commonly
required editing functions are available via a mixture of

point-and-cHck, pop-up menus and drag-and-drop opera-

tions. Thus a searcher can quickly build a sophisticated

query that can be viewed graphically. The interface also

supports some other views of the query, including a, so

called, simple query in which users can enter unrestricted

query terms, and a form-based query in which constraints

can be placed on the searches to be performed on the fielded

components of the documents.^

The results list is also configurable, but is shown with

the default for the TREC experiment. That is. we show the

document rank, its relevance score, its ID, the collection it

comes from, and its "title." To view a document, the
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searcher simply double-clicks on required item and the cor-

responding full-text of the document is displayed, with

highlights, in a separate window.

We collected little data on the use of specific features in

TOPIC. As we would predict, the anecdotal evidence sug-

gests that the experienced TOPIC users made use of more

features than the novices, but we can draw no specific con-

clusions from the limited data we have.

A2 The Focus Topic

An important component of the interactive test for

TREC-3 was the idea of using topic 122 as a "focus topic."

For this focus topic we provide some specific details about

query construction behavior, as well as a closer examination

of the actual query developed.

Unfortunately, a logistical error in collecting the queries

resulted in an intermediate query being used for the genera-

tion of the official TREC-3 results (i.e., the T0PIC2 results

set), and so we present here an analysis of the final query the

searcher actually produced. Therefore, of course, the perfor-

mance measure:: differ from those officially reported.

The statement of information need for topic 122 is:

<dom> Domain: Medical U Biological

<title> Tooic: RDT&E of New Cancer

Fighting Drugs

<desc> Description:

Document »?ill report on the research,

development, testing, and evaluation

(RDT&E) cf a new ar.ti-cancer drug

developec anywhere in the world.

<narr> Nar'ative:

A relevart document will report on any

phase in the worldwide process of

bringing new cancer fighting drugs to

market, from conceptualization to

government marketing approval . The

laboratory or company responsible for the

drug projsct, the specifi" type of

cancer (s) which the drug is designed to

counter, and the chemical/medical

properties of the drug must be

6. The simple query mode is mostly used in the initial stages of

query development when the searcher is more concerned with

determining an appropriate set of retrieval terms than with the

structuring of these terms. Once a reasonable set of terms have

been identified, searchers usually switch to the graphical mode.

The form query was not especially useful for TREC-3, since we
provided only a limited number of searchable fields (i.e., the Col-

l_Name and Title fields). Indeed, an analysis of the TREC-3 data

shows that no searcher used them in the final formulations of the

submitted queries.

identified.

<con> Concept (s):

1. cancer, leukemia

2. drug, chemotherapy

We see that this is a complex topic that requires a document

to contain a number of specific data items if it is to be con-

sidered relevant. Most information retrieval systems can

approach this topic only indirecdy, and TOPIC is no excep-

tion.

The initial formulation of the query (i.e., the one used to

generate the results in the TOPIC 1 results set) is essentially

disjunctive with two major components — one that searches

for variations of the "new anti-cancer drug" concept; and

one that searches for information related to anti-cancer

drugs, including the names of specific known drugs, the

names of various cancers, the names of agencies concerned

with regulating drugs, and synonyms for "treatment" and

"research."

The final formularion of the query retains the basic ele-

ments of the initial query, but reorganizes them so that a

retrieved document must contain evidence for the "new

anti-cancer drug" concept (i.e., a necessary condition), and

thereafter the degree of relevance is a function of the

amount of related informadon found. This is modelled in

TOPIC using a proprietary construct that can be thought of

as a weighted conjunct.

The performance of these two formulations on the train-

ing data (i.e., the performance the searcher was responding

to in their interactior with the system) are shown below.

The scores for the ini;ial formulation are labelled TOPICO;

the scores for the final formulation are labelled TOPICOO.

Queryid (Num) : 122

TOPICO TOPICOO

Total number of documents over all queries

Retrieved 1000 1000

Relevant

:

119 119

Rel ret

:

71 72

Interpolated Recall - ?recision Averages

at 0 .00 1 . OOCO 1 . 0000

at 0 .10 0 .4828 0 . 5517

at 0 .20 0 .3429 0 .3871

at 0 .30 0 .2628 0 .2975

at 0 .40 0 .1582 0 .2134

at 0 .50 0 .1202 0 .1760

at 0 .60 0 . OOCO 0 . 0940

at 0 .70 0 .OOCO 0 .0000

at 0 .80 0 . 0000 0 .0000

at 0 . 90 0 . COCO 0 . 0000

at 1 .00 0 . OOCO 0 . 0000

Average precision (r.on-interpolated) over

all rel docs
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0.1782 0.2226

Precision:

At 5 docs : 0 6000 0 8000

At 10 docs : 0 6000 0 8000

At 15 docs : 0 6000 0 6667

At 20 docs : 0 5000 0 5500

At 30 docs : 0 4667 0 5333

At 100 docs : 0 3000 0 3200

At 200 docs : 0 2050 0 2300

At 500 docs : 0 1200 0 1280

At 1000 docs : 0 0710 0 0720

R-Precision (precision after R (= num_rel
' for a query) docs retrieved)

:

Exact: 0.2857 0.2941

Inspection of these data shows that the revised query did

I

indeed oatperform the initial query, although not dramati-

,

cally so. Overall recall remained the same, but average pre-

' cision anl precision@N were significantly better.

The searcher reports that this was a difficult query to

j

develop and, although many variations were tried,^ there

I

was no cuery that generated a significantly higher recall

i while at the same time preserving "reasonable" precision,

j

The searcher felt that the precision improvements exhibited

I by the selected variant were significant enough that the lack

i of recall i-nprovement was "acceptable."

The main difficulty with this topic is, of course, that it

]

requires r,;levant documents to describe a process (i.e., the

I

development and marketing of a new drug) and identify

ij specific eiitities involved in that process (i.e., the drug com-

pany, the properties of the drug, and its target). Since die

I process is not completely described by the information need

statement (and was not known to the searcher) and there is

no enumeration of the companies, drugs and cancers, the

' searcher developed a query that attempts to model various

kinds of collateral indicators. As we would expect, this was

a difficult, and essentially non convergent, task that required

the searcher to amass a collection of relatively weak indica-

tors of relevance (i.e., search terms). Given that no one

group of indicators dominates, finding the right combina-

tions and weights reduces to a search in a high-dimensional

space — something humans are not very good at. This is,

we believe, the reason why the searcher found this to be a

I

hard topic, and ultimately found it difficult to build a satis-

factory query.

7. The searcher's notes show that twelve major variants of the

query were tested. A variant could include either a restructuring or

a redefinition of base-level quer\' terms, or both, and was marked
as such if the searcher preformed a complete retrieval (i.e., ran the

query over the entire training corpus) and then generated set of

retrieval results using the TREC evaluation program.

The performance of these two queries on the actual rout-

ing experiment are shown below. The original query gener-

ated the results labelled TOPIC 1, and the final query

generated the results labelled T0PIC2.

Queryid (Num) : 122

TOPICI T0PIC2

Total number of docurr.ents over all queries

Retrieved: 1000 1000

Relevant: 63 63

Rel_ret: 61 44

Interpolated Recall - Precision Averages:

at 0 00 1 0000 1 0000

at 0 10 0 9091 0 9231

at 0 20 0 7000 0 8235

at 0 30 0 2159 0 3231

at 0 40 0 1561 0 2593

at 0 50 0 0862 0 0831

at 0 tO 0 0862 0 0588

at 0 70 0 0862 0 0000

at 0 SO 0 0759 0 0000

at 0 :5o 0 0715 0 0000

at 1 00 0 0000 0 0000

Average precision (non-interpolated) over
all rel docs

0.2900 0.3026

Precis j on

:

At 5 docs : 0 8000 0 8000

At 10 docs : 0 9000 0 9000

At 15 docs : 0 6667 0 8000

At 20 iocs : 0 7000 0 7000

At 30 docs : 0 5333 0 5333

At 100 docs : 0 1900 0 2500

At 200 docs : 0 1400 0 1400

At 500 docs : 0 0800 0 0700

At 1000 docs : 0 0610 0 0440

R-Precisicn (precision after R (= nuir._rel

for a query) docs retrieved)

:

Exact: 0.2857 0.3175

What is striding about these results is the very signifi-

cant reduction in the number of relevant documents

retrieved by the revised query. In contrast, the precision

measures of interest (i.e., average precision, precision® 10.

precision@30, and R-precision) are either the same or

higher for the revised query.

These data suggest, perhaps, that the reformulated querv'

was a good model of those documents in the test collection

that were similar in character to the training data, but that

the necessary condition built into the revised query was too

restrictive. However, as of this writing, we have not done a

detailed enough analysis of the results to determine the

exact causes for the low recall score.
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1 Introduction

The WIN retrieval engine is West's implementation of the inference network retrieval model

[Tur90]. The inference net model ranks documents based on the combination of different

evidence, e.g., text representations, such as words, phrases, or paragraphs, in a consistent

probabilistic framework [TC91]. WIN is based on the same retrieval model as the INQUERY
system that has been used in previous TREC competitions [BCC93, Cro93, CCB94]. The

two retrieval engines have common roots but have evolved separately - WIN has focused

on the retrieval of legal materials from large (>50 gigabyte) collections in a commercial

online environment that supports both Boolean and natural language retrieval [Tur94]. For

TREC-3 we decided to rim an essentially unmodified version of WIN to see how weU a

state-of-the-art commercial system compares to state-of-the-art research systems.

Some modifications to WIN were reqiiired to handle the TREC topics, which bear little

resemblance to queries entered by online searchers. In general we used the same query

formulation techniques used in the production WIN system with a preprocessor to select

text from the topic in order to formulate a query.

WIN was also used for routing experiments. Production versions of WIN do not provide

routing or relevance feedback so we were less constrained by existing practice. However, we

decided to limit ourselves to routing techniques that generated normal WIN queries. These

routing queries could then be nm using the standard search engine.

In what follows, we will describe the configuration used for the experiments (Section 2)

and the experiments that were conducted (Sections 3 and 4).

2 System Description

The TREC-3 text collection was indexed in essentially the same way for both the ad hoc

and routing experiments. Some fields within each document were not indexed; these fields

include: CO, DESCRJPT, DOC, DOCID, DOCNO, FILEID, FIRST, G, GV, IN, MS, NS,

RE, SECOND. These fields were excluded either because they contained manually indexed

terms (which cannot be used imder the TREC rules) or because the were considered to be
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noise. A boiinded paragraph algorithm [Cal94] was used to identify paragraph boundaries.

Natural paragraphs were used subject to the constraint that a paragraph had to contain a

minimum of 50 and a maximum of 200 words.

All of the text not contained in these fields was indexed except for Federal Register

docimients. Federal Register documents tend to be very long and to contain a great deal of

noise. In an attempt to identify text that was a reasonable description of document content

we indexed only the "SUMMARY" paragraph if the document contained one, otherise we

indexed only the first kilobyte of text in a Federal Register docimient. Since no Federal

Register documents were contained in the routing test collection aJl text except for the

excluded fields was indexed.

3 Ad hoc experiments

The ad hoc experiments used queries that were automatically created from the topic text.

The retrieval algorithm used combined document and top paragraph scoring. It was ob-

served that the a priori likelihood of relevance for a document varied from collection to

collection. Furthermore each collection's likelihood of relevance given the value of domain

field, varied, as weU. Some experiments were done in an attempt to exploit these observa-

tions.

3.1 Query Processing

A WIN query consists of concepts extracted from natural language text. Rather than

extracting concepts from the full topic only the Title field, the Description field, and the

first sentence of the Narrative field were used. Each occurrence of a term, or concept, was

counted and weighted by field. A term appearing in Title was given a weight of 4, while

terms appearing in Description and Narrative were given weights of 2 and 1, respectively.

Normal WIN query processing eliminates introductory clauses and recognizes phrases

and other important concepts for special handling. Many of the concepts ordinarily recog-

nized by WIN are specific to the legal domain (e.g., legal citations, West Key Numbers)

and were not used in these experiments.

WIN ordinarily makes use of a dictionary of introductory clauses (e.g., "Find cases

about . . .", "I'm interested in statutes that . . .") that don't bear directly on the content of

the query. The set of introductory clauses was expanded to include 170 new clauses (e.g.,

"A relevant document must describe . .

.

") identified in the Description and Narrative fields

in the training set. In addition the string "e.g" was added to the set of query stopwords.

WIN also expands some query terms automatically. For example "usa", "us", "u.s", and

"imited states" were all replaced with the synonym class #syn(ac:us #-(-l(tmited states))

that wiU conflate common variants. Twenty nine new synonym classes were added for

automatic expansion.

WIN ordinarily uses a legal dictionary to find phrases in queries. For TREC-3 the dic-

tionary was expanded with phrases extracted from the machine-readable Collins Dictionary.

The normal WIN dictionary incorporates information about how a phrase identified in a

query is to be matched in document text. For example, query stopwords cire generally not
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AP DOE FR WSJ ZifF

Topics % of aU documents 22.2 30.5 6.2 23.3 17.8

1- 50 % of relevant docments 20.1 0.8 3.1 33.9 42.2

0.91 0.03 0.50 1.45 2.37

51-100 % of relevant docments 37.2 7.5 3.1 38.0 14.2

1.68 0.25 0.50 1.63 0.80

101-150 % of relevant docments 41.3 5.8 3.5 39.2 10.2

1.86 0.19 0.56 1.68 0.57

Total % of relevant docments 31.4 4.4 3.2 36.7 24.3

1.41 0.14 0.52 1.58 1.37

Table 1: Collection bias in relevance judgments

considered to be significant, but for some phrases (e.g., "at will") they are used. None of

the phrases extracted from the Collins Dictionary used any special recognition features.

3.2 Experiments with different likelihoods of relevance based on collection

In the TREC training set, the likelihood that a doctmient wiU be judged relevant depends

heavily on the collection in which it is found. Table 1 shows the distribution of documents

among the five TREC collections and the distribution of relevant documents among the five

collections. The AP collection, for example, contains 22.2% of aU documents in the TREC
collection, but it contains 31.4% of all relevant documents in the TREC collection. Table 1

shows that, for all topics, documents in two of the collections (DOE and Federal Register)

are substantially less likely to be judged relevant as would be expected if there were no

collection bias whereas documents from the Wall Street Journal, AP, and ZifF collections

are much more likely to be judged relevant than expected.

Table 1 also shows that the distribution of relevant documents among the collections

varies for different topic sets. For example, Ziffdocvunents are much more likely to be judged

relevant than expected for Topics 1-50, but less likely than expected for the remaining two

topic sets.

A set of experiments was conducted in which the prior probability of relevance was set

to the observed probability of relevance for each of the TREC collections rather than a

defatdt probability that was the same for aU documents. This essentially biased retrieval in

favor of AP, WaU Street Journal, and ZifF docimients and against DOE and Federal Register

docimients. These experiments showed a slight drop in retrieval effectiveness because the

priors computed for the entire topic set rarely match the priors computed for individual

topics.

A second set of experiments was conducted to determine whether it wotdd be possible

to predict the appropriate collection biases based on the characteristics of individual topics.

Approaches were tried using both the language contained in the topics and the domain

field contained in many of the training topics (note, however, that the test topics do not

contain domain fields). None of these approaches significantly improved performance, but

the amoimt of effort devoted to these experiments was Umited. We regard this as a promising
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line of future research.

4 Routing Experiments

The routing experiments used the same techniques as the ad hoc experiments to index the

text collection, except that idf values were derived differently. Since the test collection was to

be used as a simulation of routing, the TREC guidelines do not aUow use of any collection

wide statistics, such as idf. Accordingly, the idf values from the CD-I training set were

used instead. Query processing, or profile creation, however, was done in a substantially

different manner. No attempt was made to use the observed UkeUhoods of relevance of

different collections, as was done with the ad hoc queries. The routing experiments were

based on query expansion. No term reweighting was done.

4.1 Profile Processing

As was the case with the ad hoc queries, only certain portions of the topic text were used

for profile creation. These were the Title and Concepts fields. As before, each occiu-rence of

a term, or concept, was counted and also weighted by field. A term appearing in the Title

field was given a weight of 2, while a term appearing in the Concepts field received a weight

of 1. Any term not appearing in any of the relevant training documents, was removed.

Consideration was given to increasing the weight of any term appearing in relevant, but

not in irrelevant documents. This had no effect. Only one term met this condition. As a

form of normalization the maximum weight that a term could attain was set. This weight

was variously set at 5, 6, 7, and 8. This maximimi included the contribution provided by

the term expansion process, which was always 1 for a selected term, or 0 for a non-selected

term (see below). A term might appear multiple times in the Concepts field, thus resulting

in a imnormalized term weight that exceeded the maximum.
None of the usual WIN query formulation aids used with ad hoc queries (elimination

of introductory clauses, use of replacement strings, and use of a phrase dictionary) were

used for profiles. The Title and Concepts fields did not contain any introductory phrases, or

clauses. Simple acronyms, such as "RISC" or "MIPS" that were found in the text of relevant

training documents during query expansion were identified as acronyms in the profiles, so

that they would be treated as instances of the same concept in subsequent processing.

4.2 Query expansion

The focus of the routing experiments was on query expansion. Three different approaches

to query expansion were used: "best entire document", "best rntidf top 200 paragraphs",

and "best rntidf top paragraph" . Ultimately these three approaches were combined in the

"best overall" approach. The approaches were themselves based on three methods of term

selection: "rdfidf', "rntidf', and "rtfidf' [HC93]. The rdfidf score of a term was calculated

by multiplying its idf value by the number of relevant training documents in which the

term occurred. The rntidf score for a term was calctdated by mtdtiplying its idf value by

the simxmation over aU relevant training docximents of the ratio of the term's frequency to
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the frequency of the majcimally-occurring term for that particiJar document. The rtfidf

score was simply the multiplication of the term's idf value by the number of occurrences of

the term within relevant tredning documents. The rtfidf score did not perform as well as

the other two term selection methods, and so was not used as part of the final rims. For

each term selection method, terms selected were those with the highest scores. Terms were

only selected from relevant documents. The term scores were only used for term selection,

not for term reweighting. A selected term was given a weight of 1 in the expanded query.

If the term duplicated a term already represented in the topic profile, then 1 was added to

that term's current score.

A baseline rim was made using the profile creation process described above, but with

no term expansion. Each of the three expansion approaches was then run with terms

added by one or both of the remaining term selection methods, i.e., excluding rtfidf. For

each approach runs were made with from 5 to 50 terms added, in increments of 5. The

"best entire document" approach used both the rdfidf and the rnfidf methods of term

selection, with terms selected from any part of the docimient. The term selection that

performed better on the training set was selected on a topic per topic basis. With the

"best rntidf top 200 paragraphs", and the "best rntidf top paragraph" approaches, as their

names imply, only the rntidf method was used, as it provided better results. For the

"best rntidf top 200 paragraphs" approach searches were done for each topic using the

baseline, i.e., unexpanded, profile as a query against the training collection. For each topic

the top 200 scoring paragraphs from relevant documents were identified, using the WIN
paragraph scoring method. Terms were then selected from these paragraphs using the

rntidf method, rather than from the entire text of the relevant documents. For the "best

rntidf top paragraph" approach a similar procedure was followed, except that instead of

using the top 200 paragraphs from any relevant documents, the top scoring paragraph of

each relevant document was used as a sovirce for rntifd term selection. For each of the three

approaches the maximvmi weight allowed for a term, i.e., 5, 6, 7, or 8 (see section 4.1), on

a topic by topic basis, was the weight that gave the best performance on the training set.

Finally, the method of query expansion used on the oflUcially submitted rxm, "best

overall", was a combination of the three approaches described above. This method was

to select the best query expansion provided by any of the three approaches on a topic

per topic basis. Rather than simply selecting the best approach per topic in this manner,

some consideration was given to trying to combine the results of the different methods

[FS94, BKCQ94], but no experiments were carried out.

5 Summary

WIN was able to achieve strong performance on both the ad hoc retrieval and routing tasks

without any major modifications being made to its retrieval engine. The ad hoc residts

show the effectiveness of its basic indexing and retrieval operations. Some techniques that

were expected to give improved performance, did not lead to much improvement. In some

cases this may be because only Umited investigations could be done, e.g., when using the

collection-dependent UkeUhood of relevance. In other cases, such as the failure of phrases,

to yield much improvement, the result may indicate the difficulty in effective use of a feature

215



which has given good results on smaller collections on a collection the size of the TREC
collection [Har93].
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1. Abstract

This paper reports on recent developments of the

Latent Semantic Indexing (LSI) retrieval method for

TREC-3. LSI uses a reduced-dimension vector space

to represent words and documents. An important

aspect of this representation is that the association

between terms is automatically captured, explicitly

represented, and used to improve retrieval.

We used LSI for both TREC-3 routing and adhoc

tasks. For the routing tasks an LSI space was

constructed using the training documents. We
compared profiles constructed using just the topic

words (no training) with profiles constructed using the

average of relevant documents (no use of the topic

words). Not surprisingly, the centroid of the relevant

documents was 30% better than the topic words. This

simple feedback method was quite good compared to

the routing performance of other systems. Various

combinations of information from the topic words and

relevant documents provide small additional

improvements in performance. For the adhoc task we

compared LSI to keyword vector matching (i.e. using

no dimension reduction). Small advantages were

obtained for LSI even with the long TREC topic

statements.

2. Overview of Latent Semantic Indexing

Latent Semantic Indexing (LSI) is a variant of the

vector retrieval method (e.g., Salton & McGill, 1983)

in which the dependencies between terms are

explicitly taken into account in the representation and

exploited in retrieval. This is done by simultaneously

modeling all the interrelationships among terms and

documents. We assume that there is some underlying

or "latent" structure in the pattern of word usage

across documents, and use statistical techniques to

estimate this latent structure. A description of terms,

documents and user queries based on the underlying,

"latent semantic", structure (rather than surface level

word choice) is used for representing and retrieving

information. One advantage of the LSI representation

is that a query can be very similar to a document even

when they share no words.

Latent Semantic Indexing (LSI) uses singular-value

decomposition (SVD), a technique closely related to

eigenvector decomposition and factor analysis

(Cullum and Willoughby, 1985), to model the

associative relationships. A large term-document

matrix is decomposed it into a set of k, typically 100

to 300, orthogonal factors from which the original

matrix can be approximated by linear combination.

Instead of representing documents and queries directly

as sets of independent words, LSI represents them as

continuous values on each of the k orthogonal

indexing dimensions. Since the number of factors or

dimensions is much smaller than the number of unique

terms, words will not be independent. For example, if

two terms are used in similar contexts (documents),

they will have similar vectors in the reduced-

dimension LSI representation. The SVD technique

can capture such structure better than simple term-

term or document-document correlations and clusters.

LSI partially overcomes some of the deficiencies of

assuming independence of words, and provides a way

of dealing with synonymy automatically without the

need for a manually constructed thesaurus. LSI is a

completely automatic method. (The Appendix

provides a brief overview of the mathematics

underlying the LSI/SVD method. Deerwester et al.,

1990, and Furnas et al., 1988 present additional

mathematical details and examples.)

One can also interpret the analysis performed by SVD
geometrically. The result of the SVD is a vector

representing the location of each term and document

in the ^-dimensional LSI representation. The location

of term vectors reflects the correlations in their usage

across documents. In this space the cosine or dot
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product between vectors corresponds to their

estimated similarity. Retrieval typically proceeds by

using the terms in a query to identify a point in the

space, and all documents are then ranked by their

similarity to the query. However, since both term and

document vectors are represented in the same space,

similarities between any combination of terms and

documents can be easily obtained.

The LSI method has been applied to many of the

standard IR collections with favorable results. Using

the same tokenization and term weightings, the LSI

method has equaled or outperformed standard vector

methods and other variants in almost every case, and

was as much as 30% better in some cases (Deerwester

et al., 1990). As with the standard vector method,

differential term weighting and relevance feedback

both improve LSI performance substantially (Dumais,

1991). LSI has also been applied in experiments on

relevance feedback (Dumais and Schmitt, 1991), and

in filtering applications (Foltz and Dumais, 1992).

The MatchPlus system described by Gallant et al.

(1992) is similar to LSI. Both systems model the

relationships between terms by looking at the

similarity of the contexts in which words are used, and

exploit these associations to improve retrieval. Both

systems use a reduced-dimension vector

representation, but differ in how the term, document

and query vectors are formed (Caid, Dumais and

Gallant, in press). More recently, a number of other

groups have developed corpus-based association or

similarity thesauri for use in automatic query

expansion (e.g., Jing and Croft's (1994) PhraseFinder;

Strzalkowski's (TREC-3) conceptual hierarchy; or

Qui and Frei's (1993) similarity thesaurus). As with

LSI and MatchPlus, the idea in all these systems is to

discover and exploit corpus-specific inter-item

associations to improve retrieval.

3. LSI and TREC-3

We used the previous TREC conferences as an

opportunity to "scale up" our tools, and to explore the

LSI dimension-reduction ideas using a very rich

corpus of word usage. We were pleased that we were

able to use many of the existing LSI/SVD tools on the

large TREC collection. (See Dumais, 1993, 1994 for

details.) We were able to compute the 200-300 largest

singular triples of 75k docs x 90k words matrices

without numerical or convergence problems on a

standard Sparc 10 workstation. Because of these limits

on the size of the matrices we could handle, we

divided the documents into separate subcollections

(TREC-1) or computed the SVD of only a sample of

documents (TREC-2). For TREC-3 we used the same

sampling approach we tried last year.

3.1 Pre-processing

We used the SMART system' for pre-processing the

documents and queries. Some markups (e.g. <>
delimiters) were removed, and all hand-indexed

entries were removed from the WSJ and ZIFF

collections. Upper case characters were translated into

lower case, punctuation was removed, and white

spaces were used to delimit terms. The SMART stop

list of 572 words was used as is. The SMART
stemmer (a modified Lovins algorithm) was used

without modification to strip words endings. We did

not use: phrases, proper noun identification, word

sense disambiguation, a thesaurus, syntactic or

semantic parsing, spelling checking or correction,

complex tokenizers, a controlled vocabulary, or any

manual indexing.

The result of this pre-processing can be thought of as a

term-document matrix, in which each cell entry

indicates the frequency with which a term appears in a

document. The entries in the term-document matrix

were then transformed using an "Itc" weighting. The

"Itc" weighting takes the log of individual cell entries,

multiplies each entry for a term (row) by the IDF

weight of the term, and then normalizes the document

(col) length.

We began by processing the 742358 documents from

CD-I and CD-2. Using the minimal pre-processing

described above, there were 960765 unique tokens,

512251 unique stems, and 81901331 non-zero entries

in the term-document matrix. 742331 documents

contained at least one term. To decrease the matrix to

a size we thought we could handle, we removed

tokens occurring in fewer than 5 documents. This

resulted in 781421 unique tokens, 104533 unique

stemmed words, and 81252681 non-zero entries. We
used the resulting 742331 document x 104533 term

matrix as the starting point for results reported in this

paper. The "Itc" weights were computed on this

matrix.

1. The SMART system (version 1 1.0) was made available through

the SMART group at Cornell University. Chris Buckley was

especially generous in consultations about how to get the

software to do somewhat non-standard things.
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3.2 SVD analysis

The "Itc" matrix described above was used as input to

the SVD algorithm. The SVD program takes the Itc

transformed term-document matrix as input, and

calculates the best "reduced-dimension"

approximation to this matrix. The result of the SVD
analysis is a reduced-dimension vector for each term

and each document, and a vector of the singular

values. The number of dimensions, k, was between

200 and 350 in our experiments. This reduced-

dimensional representation is used for retrieval. The

cosine between term-term, document-document, or

term-document vectors is used as the measure of

similarity between them.

For the runs submitted, we used a sample of

documents from the above matrix. When appropriate,

the documents that were not sampled were "folded in"

to the reduced-dimension LSI space. In all cases, we

used the weights from the 742k x 104k matrix (and

did not recompute them for our samples).

For the routing experiments, we used the subset of

documents for which we had relevance judgements.

There were 38175 unique documents with relevance

judgements. We used both relevant and non-relevant

documents. The SVD analysis was computed on the

relevant 38175 document x 78746 term subset of the

above Itc matrix, containing 8869743 non-zero cells.

A 346 reduced-dimension approximation took 22 hrs

of CPU time to compute on a Sparc 10 workstation.

This 346-dimension representation was used for

matching the profiles to the new documents in the

routing experiments.

For the adhoc experiments, we took a random sample

of 70000 documents. A reduced-dimension SVD
approximation was computed on a 69997 document x

82968 term matrix (7666044 non-zeros). A 199-

dimension approximation was computed and used for

retrieval. The 672331 documents not included in this

sample were "folded in" to the 199-dimension LSI

space, and the adhoc queries were compared against

all 742k documents.

These "folded in" documents were located at the

weighted vector sum of their constituent terms. That

is, the vector for a new document was computed using

the term vectors for all terms in the document. For

documents that are actually present in the term-

document matrix, this derived vector corresponds

exactly to the document vector given by the SVD.

New terms can be added in an analogous fashion. The

vector for new terms is computed using the document

vectors of all documents in which the term appears.

When adding documents and terms in this manner, we

assume that the derived "semantic space" is fixed and

that new items can be fit into it. In general, this is not

the same space that one would obtain if a new SVD
was calculated using both the original and new

documents. In previous experiments, wc found that

sampling and scaling 507c of the documents, and

"folding in" the remaining documents resulted in

performance that was indistinguishable from that

observed when all documents were scaled. For

TREC, however, the scaling is based on less than 107o

of the total corpus.

3.3 Queries and retrieval

Queries were automatically processed in the same way

as documents. For queries derived from the topic

statement, we began with the full text of each topic

(all topic fields), and stripped out the SGML field

identifiers. For feedback queries, we used the full text

of relevant documents. A query vector (or new

document in the case of routing) indicating the

frequency with which each term appears in the query

was automatically generated for each topic. The

query was transformed using SMART'S "Itc"

weighting.

Note that we did not use any Boolean connectors or

proximity operators in query formulation. The

implicit connectives, as in ordinary vector methods,

fall somewhere between ORs and ANDs, but with an

additional kind of "fuzziness" introduced by the

dimension-reduced association matrix representation

of terms and documents.

The terms in the query are used to identify a vector in

the LSI space; recall that each term has a vector

representation in the space. A query is simply located

at the weighted vector sum of its constituent term

vectors. The cosine between the query vector and

every document vector is computed, and documents

are ranked in decreasing order of similarity to the

query. (Although there are many fewer dimensions

than in standard vector retrieval, the entries are almost

all non-zero so inverted indices are not useful. This

means that each query must be compared to every

document and this is time consuming for large

databases. It is, however, straightforward to split this

matching across several machines or to use parallel

hardware since all documents are independent.)

It is important to note that all step in the LSI analysis

are completely automatic and involved no human

intervention. Documents are automatically processed
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to derive a term-document matrix. This matrix is

decomposed by the SVD software, and the resulting

reduced-dimension representation is used for retrieval.

While the SVD analysis is somewhat costly in terms

of time for large collections, it need is computed only

once at the beginning to create the reduced-dimension

database. (The SVD takes only about 2 minutes on a

Sparc] 0 for a 2k x 5k matrix, but this time increases to

about 1 8-20 hours for a 60k x 80k matrix.)

3.4 TREC-3: Routing experiments

For the routing queries, we created a filter or profile

for each of the 50 training topics. We submitted

results from two sets of routing queries. The lsir2

submission was judged. In one case, the filter was

based on just the topic statements - i.e., we treated the

routing queries as if they were adhoc queries. The

filter was located at the vector sum of the terms in the

topic. We call these the routing_topic (Isirl) results.

This method makes no use of the training data,

representing the topic as if it was an adhoc query. In

the other case, we used information about relevant

documents from the training set. The filter in this case

was derived by taking the vector sum or centroid of all

relevant documents. We call these the

routmg_reIdocs (Isir2) results. There were an

average of 215 relevant documents per topic, with a

range of 25 (topic 140) to 742 (topic 109). Note that

this method makes no use of the topic words.

(Cooper, Chen and Gay (TREC-3) have also described

a method which makes minimal use of the query terms

when enough feedback is available.) This is a

somewhat unusual variant of relevance feedback - we

replace (rather than combine) the original topic with

relevant documents, and we do not downweight terms

that appear in non-relevant documents. Although it is

not implemented as such, the lsir2 method can be

thought of a kind of "massive query expansion",

which other groups have found quite useful for TREC
routing tasks. Recall that each LSI document is

located at the weighted average of its constituent

terms. The lsir2 routing vector is at the centroid of all

relevant documents - that is, at the centroid of all

terms in all relevant documents.

The topic and reldocs filters provide two extreme

baselines against which to compare other methods for

combining information from the original query and

feedback about relevant documents. In both cases, the

filter was a single vector. New documents were

matched against the filter vector and ranked in

decreasing order of similarity.

The new documents (336306 documents from CD-3)

were automatically processed as described m section

3.2 above. It is important to note that only terms from

the CD-I and CD-2 training collection were used in

indexing these documents. Each new document is

located at the weighted vector sum of its constituent

term vectors in the 346-dimension LSI space (in just

the same way as queries are handled). New
documents were compared to each of the 50 routing

filter vectors using a cosine similarity measure in

346-dimensions. The 1000 best matching documents

for each filter were submitted to NIST for evaluation.

The lsir2 run was judged.

3.4.] Results

The main routing results are shown in Table 1. The

two submitted runs, Isirl and lsir2, differ only in how
the profile vectors were created - using the weighted

average of the words in the topic statement for Isirl

(routing_top!c), and using the weighted average of all

relevant documents from the training collection (CD-I

and CD-2) for Isir2 (routing_reldocs). Not

surprisingly, the lsir2 profile vectors which take

advantage of the known relevant documents do better

than the Isirl profile vectors that simply use the topic

statement on all measures of performance. The

improvement in average precision is 30% (.3737 vs.

.2880). Users would get an average of 2 additional

relevant documents in the top 10 returned using the

lsir2 method for filtering (6.7 vs. 4.6). We suspect

that this would be a noticeable improvement for end

users and would provide a good starting place for

feedback methods. Note, however, that the 30%
difference between Isirl and lsir2 is probably an

overestimate of the benefits of lsir2 since some of the

Isirl documents were not judged (1241 of the 10000

top-200 Isirl documents were not judged).

We also performed the same routing experiment in

TREC-2, with amazingly similar results. In TREC-2,

lsir2 was 31% better than Isirl (.3442 vs. .2622), and

compared to other systems, lsir2 was better than the

median for 40 of the 50 topics. Thus, the LSI method

of representing routing profile information as the

centroid of known relevant documents appears to be

quite robust and useful. As noted above, our centroid

method is related to the massive query expansion

method used successfully by Buckley and others, and

to Cooper et al.'s use of relevance-associated stems.

Because each document is represented as a vector in

LSI space, our implementation is quite efficient and

does not involve explicit term-expansion (since this

has already been done in creating the reduced-

dimension LSI representation).
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Table 1: TREC-3 LSI Routing Results

Isirl lsir2 * best(rl,r2) rl+r2 .75rl+ .25rl+

.25r2 .75r2

(topic wds) (rel docs) (best) (sum) (sum) (sum)

Rel_ret 6252 6878 7058 7078 6930 7010

Prec at 10 .4620 .6720 .6500 6840 5540 6500

Prec at 1 00 .3532 .4544 .4520 .4400 .4118 .4590

Avg prec .2880 .3737 .3963 .3792 .3561 .3827

R-prec .3386 .3950 .4266 .4054 .3997 .4007

LSI >= Median 21(4) 41 (10) 42(13) 37(2) 32 (4) 40 (4)

LSI < Median 29 (2) 9(0) 8(0) 13(0) 18(0) 10(0)

Table 1: LSI Routing Results. Comparison of topic words (Isirl) vs. relevant documents (lsir2) as routing

filters. The * indicates the judged run.

Compared to other TREC-3 systems, LSI does quite

well, especially for the routing_reldocs 0sir2) run

and the rl+r2 run, to be discussed below. In the case

of lsir2, LSI is at or above the median performance (Pr

at 100) for 41 of the 50 topics, and has the best score

for 10 topics. The lsir2 results are especially good at

low recall. LSI performs about average for the

routing_topic (Isirl) run even though no information

from tlie training set was used in forming the routing

vectors in this case.

We also examined the best that one could do using the

rl and r2 vectors. For each query we chose either

vector rl or r2, depending on which had the best

average precision for that query. Fourteen of the

topics were represented by the Isirl vector and the

remaining 36 by the the lsir2 vector. These results are

shown in the third column of Table I, labeled

best(rl,r2). Average precision for best(rl,r2) is 6%
better than lsir2. These scores are at or above the

median performance for 42 of the 50 topics and the

best for 1 3 topics.

The Isirl and lsir2 runs provide baselines against

which various combinations of query information and

relevant document information can be measured. We
tried a simple combination of the Isirl and lsir2 profile

vectors, in which both components have equal weight.

That is, we took the sum of the Isirl and lsir2 profile

vectors for each topic and used this as the new profile

vector. The results of this analysis are shown in the

fourth column of the table labeled rl+r2. This

combination does somewhat better than the centroid of

the relevant documents in the total number of relevant

documents returned and in average precision. (We

returned fewer than 1000 documents for one topic and

not all documents returned by the rl+r2 method had

been judged for relevance, so we suspect that

performance could be improved a bit more.)

We examined two other combinations of rl and r2,

varying the contributions of the individual vectors

from .75 to .25. Neither combination was as good as

the average. These results are shown in the last two

columns of Table 1.

The rl+r2 methods which combines a query vector

with a vector representing the centroid of all relevant

documents is a kind of relevance feedback. This is an

unusual variant of relevance feedback since all the

words in relevant documents are used, words in non-

relevant documents are not down-weighted, and query

terms are not re-weighted. Interestingly, this method

produces improvements that are comparable to those

obtained by Buckley et al. (1994, TREC-3) using

more traditional relevance feedback methods. Average

precision for the rl+r2 method is 32% better than for

Isirl which used only the topic words (.3792 vs.

.2880), and this is somewhat better than the 24%
improvement reported by Buckley, et al. (TREC-3) for

their richest routing query expansion method (.3699

vs. .2985).

The above combination methods could be described as

query vector combinations. In all cases the filter is a

single vector. We have also started to look at

combination methods that use multiple filters for each

query, but do not have results to report at this time.

One method involves data fusion in which the results

of the Isirl and lsir2 matches are combined in various

ways. A related method involves query splitting. We
have previously conducted experiments using a

relevance density method for cumulating information

from several separate vectors for each quer>' and
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would like to apply this to TREC. (See Kane-Esrig et

al, 1991 or Foltz and Dumais, 1992, for a discussion

of multi-point interest profiles in LSI.)

Finally, we are beginning to look in detail at the

successes and failures of the LSI system. LSI does

quite well on some queries:

107 (Japanese Regulation of Insider Trading)

108 (Japanese Protectionist Measures)

1 13 (New Space Satellite Applications)

120 (Economic Impact of International Terrorism)

125 (Anti-Smoking Actions by the Government)

138 (Iranian Support for Lebanese Hostage-takers)

140 (Political Impact of Islamic Fundamentalism)

and quite poorly on others:

109 (Find Innovative Companies)

1 15 (Impact of the 1986 Iimtiigration Law)

149 (Industrial Espionage)

It is not entirely clear what distinguishes between

these topics. We will examine both misses and false

alarms in more detail. A preliminary examination of a

few topics suggests that lack of specificity is the main

reason for false alarms (highly ranked but irrelevant

documents). This is not surprising because LSI was

designed as a recall-enhancing method, and we have

not added precision-enhancing tools although it would

be easy to do so.

3.5 TREC-3: Adhoc experiments

We submitted two sets of adhoc queries - IsiaOmf and

Isia0mw20f. The Isia0mw20f run was judged. The

same SVD analysis was used for both runs. The SVD
was based on a random sample of 70k of the 752k

documents from CD-I and CD-2. The SVD was

computed on this sample and the remaining

documents were "folded in". The IsiaOmf run is a

baseline. The Isia0mw20f run is the same, but omits

documents that have fewer than 20 characters from

the returned list. The results from these two runs are

shown in the first two columns of Table 2.

The difference between the two IsiaO runs is not large.

Omitting short documents never hurt performance and

improved it substantially on two topics (156 and 187).

In terms of absolute levels of performance, both IsiaO

runs are a little below average. Performance does not

deviate much from the median.

We also compared our LSI runs to a SMART run

using exactly the same pre-processing. For this run

we used the same term-document matrix that LSI

begins with but we did not do any dimension

reduction. These results are shown in the third

column of Table 2. The advantage of LSI over

Table 2: TREC-3 Adhoc Results

IsiaOmf Isia0mw20f * smart

Rel_ret 6045 6090 5857

Avg prec .2325 .2393 .2220

Pr at 100 .3130 .3246 .3084

Pr at 10 .4340 .4520 .4040

R-prec .3030 .3071 .2932

Q >= Median 18 19 18

Q < Median 32 31 32

Table 2: LSI Adhoc Results. The * indicates the

judged run.

traditional vector matching is about 5% for these

queries. This is smaller than the advantages observed

for other test collections. However, as we and others

have previously noted (Dumais, 1994; Jing and Croft,

1994; Lu and Keefer, TREC-3; Voorhees, 1994), the

TREC topics are quite long and smaller advantages for

query expansion methods are to be expected. The

average TREC-3 query had 35 content words in it.

Based on TREC-2 results, we would expect larger

advantages over keyword matching if the queries were

shorter, as real adhoc queries typically are.

In both TREC-2 and TREC-3 our SMART runs were

worse than those reported by Buckley et al., Fuhr et

al., or Voorhees. This is because we used slightly

different pre-processing options, non-optimal

weightings ("Itc" rather than "Itn" for documents), did

not use phrases, and used only words occurring in

more than 4 documents (for comparability with the

LSI analyses). For TREC-3, for example, our .2220

average precision is 19% worse than Voorhees et al.'s

baseline using Inc document weights (.2643) and is

28% worse than Buckeley et al.'s baseline using both

Inc and phrases (.2842). Thus, we believe that we

could improve the absolute level of performance in all

our conditions by using phrases and selecting optimal

document weights. In addition, the LSI adhoc

analysis used only 199 dimensions, and this is

probably too few for good performance with large,

diverse corpora (see section 4.2.1 below).

4. Improving performance

4.1 Improving performance - Speed

The LSI/SVD system was built as a research prototype

to investigate many different information retrieval and

interface issues. Retrieval efficiency was not a central

concern because we first wanted to assess whether the
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method worked before worrying about efficiency, and

because the initial applications of LSI involved much

smaller databases of a few thousand documents.

Almost no effort went into re-designing the tools to

work efficiently for the large TREC databases.

4.1.1 SVD

SVD algorithms get faster all the time. The sparse,

iterative algorithm we now use is about 100 times

faster than the method we used initially (Berry, 1992).

There are the usual speed-memory tradeoffs in the

SVD algorithms, so time can probably be decreased

some by using a different algorithm and more

memory. Parallel algorithms will help a little, but

probably only by a factor of 2. Finally, all

calculations are now done in double precision, so both

time and memory could be decreased by using single

precision computations. Preliminary experiments with

smaller IR test collections suggest that this decrease in

precision will not lead to numerical problems for the

SVD algorithm. It is important to note that the pre-

processing and SVD analyses are one-time-only costs

for relatively stable domains.

4.1.2 Retrieval

In LSI retrieval query vectors are compared to every

document. Although there are many fewer dimensions

than in standard vector retrieval, the entries are almost

all non-zero so inverted indices are not useful. This

process is linear in the number of documents in the

We know of no practical and efficient algorithms for

finding nearest neighbors in 200- or 300-dimension

vector spaces. Methods like kd-trees which work well

in 2 or 3 dimensions are not very helpful for more than

10 dimensions.

We are exploring several methods which could be

used to speed retrieval, a) Document clustering could

be used to reduce the number of comparisons, but

accuracy would probably suffer some. We have

explored several heuristics for clustering, but none are

particularly effective when high levels of accuracy are

maintained, b) HNC's MatchPlus system (Gallant et

al., 1993) uses another approach to reduce the number

of alternative documents that must be matched. They

use an initial keyword match to eliminate many

documents and calculate reduced-dimension vector

scores for only the subset of documents meeting the

initial keyword restriction. This may be a reasonable

alternative for long queries (like TREC), but we

believe that recall would be reduced substantially for

short queries. In addition two data structures need to

be maintained, c) Query matching can also be

improved tremendously by simply using more than

one machine or parallel hardware. Using a 16,000 PE
MasPar, with no attempt to optimize the data storage

or sorting, we decreased the time required to match a

200-dimensional query vector against all document

vectors and sort by a factor of 60 to 100.

4.2 Improving Performance - Accuracy

We have only begun to look at a large number of

parametric variations that might improve LSI

performance.

4.2.1 Number ofDimensions

One important variable for LSI retrieval is the number

of dimensions in the reduced dimension space. In

previous experiments we found that performance

improves as the number of dimensions is increased up

to 200 or 300 dimensions, and decreases slowly after

that to the level observed for the standard vector

method (Dumais, 1991). We have examined TREC-3

routing performance using fewer dimensions than the

346 reported above and consistently found worse

performance for both the total number of relevant

documents returned and average precision measures -

346 dimensions (7078, .374)

300 dimensions (6831, .371)

250 dimensions (6751, .367)

We could easily improve performance simply by

increasing the number of dimensions some. The same

is also true for the adhoc runs which used only 199

dimensions and could be improved substantially by

increasing the number of dimensions in the LSI space.

4.2.2 Term Weighting

We still need to experiment with different term

weighting methods. For the routing and adhoc

experiments we used SMART'S "Itc" weighting for

both documents and queries (i.e., Itc. Itc). Buckley and

others have found that alternative weightings ("Inc"

for documents. Incite) are more effective in TREC for

the standard vector method. We suspect that LSI

would benefit from optimal weighting as well.

4.2.3 Document Sampling

The size of the SVD we can compute on standard

workstations is still limited. Computing the SVD of a

60k X 80k matrix takes about 18-20 hours of CPU time

and 250 meg of memory. Larger SVD analyses are

just not practical at this time. We have used two

approaches to overcome this limitation - in TREC-1

we divided the collection into several subcollections,
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and in TREC-2 and TREC-3 we computed the SVD of

only a sample of documents. For the routing task, we

used a sample chosen from the training data, and this

worked quite well. For the adhoc task, we chose a

small random sample (70k of 752k), and this was not

as successful. The 70k sample represents less than

10% of the documents and this may not be sufficient

to accurately represent the variability of topics

encountered in the adhoc queries. We would like to

try larger samples.

4.2.4 Retrievalfailures

In order to better understand retrieval performance we

will examine two kinds of retrieval failures: false

alarms, and misses. False alarms are documents that

LSI ranks highly that are judged to be irrelevant.

Misses are relevant documents that are not in the top

1000 returned by LSI. We have only examined these

retrieval failures for a few topics so far.

4.2.4.1 False Alarms. The most common reason for

false alarms was lack of specificity. These highly

ranked but irrelevant articles were generally about the

topic of interest but did not meet some of the

restrictions described in the topic statement. Many

topics required this kind of detailed processing or

fact-finding that the LSI system was not designed to

address. Precision of LSI matching can be increased

by many of the standard techniques - proper noun

identification, use of syntactic or statistically-derived

phrases, or a two-pass approach involving a standard

initial global matching followed by a more detailed

analysis of the top few thousand documents. We
would like to try some of these methods, and will

focus on general-purpose, completely automatic

methods that do not have to be modified for each new

domain or query restriction.

Another reason for false alarms appears to be the

result of inappropriate query pre-processing. The use

of negation is the best example of this problem. 32 of

the 50 routing queries and 21 of the 50 adhoc queries

contain some negation in the topic statement. We do

nothing about this. In fact, we include all the negated

terms in the query. The use of logical connectives is

another example of inappropriate query processing.

LSI does not handle Boolean combinations of words,

and often returned articles covering only a subset of

ANDed topics. Often one aspect of the query appears

to dominate (typically the one described by the terms

with high weights). Limiting the contribution of any

one term to the overall similarity score might help this

problem.

For the TREC routing tasks there are additional

sources of false alarms that would likely be minimal in

real routing applications. LSI often returned many
documents on the same topic that were all judged to

be not-relevant. In a real routing application, one

would get immediate feedback that a particular topic

was not of interest, and presumably subsequent similar

documents would not be returned. In addition, for

some topics there appears to be a lack of

correspondence between judgements for training and

test documents. Documents on what appear to be the

same topic were judged relevant in the training set but

not relevant in the test set. This may be the result of

different people making the relevance judgements at

the two points in time, or it may simply reflect slightly

changing criteria over time.

4.2.4.2 Misses. For this analysis we examine a

random subset of relevant articles that were not in the

top 1000 returned by LSI. Many of the relevant

articles found by other groups were fairly highly

ranked by LSI, but there were also some notable

failures that would be seen only by the most persistent

readers.

Most of the misses represent articles that were

primarily about a different topic than the query, but

contained a small section that was relevant to the

query. Because documents are located at the average

of their terms in LSI space, they will generally be near

the dominant theme, and this is a desirable feature of

the LSI representation. Some kind of local matching

or divisions of documents into smaller sections should

help in identifying less central themes in documents.

This should be especially easy in some cases where

documents are tagged to indicate separate news briefs.

Some misses were also attributable to poor text (and

query) pre-processing and tokenization.

4.2.4.3 Examples. Many of these ideas are

illustrated more concretely by considering some

specific examples of retrieval failures. We examined

routing topics for which LSI (the lsir2 run) does

poorly relative to other TREC groups on the average

precision measure. For two of these topics (109 and

149), we miss more than 50% of relevant documents

found by other groups. For other topics, we find all

relevant documents but precision is poor. Finally, for

some topics both retrieval failures and poor precision

contribute to poor performance.

Topic 149 (Industrial Espionage) - LSI misses 224 of

310 (72%). There are many false alarms (e.g., 21 of
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the top 25) which also contributes to the poor

precision. Several of the false alarms appear to be

relevant to my eye (e.g., Niedorf distributing

proprietary documents, a few directly about industrial

espionage). Others are about computer security

(information privacy, hacking, pirated software, etc.)

but do not involve a specific company. Finally,

several are about counter intelligence and government

security breaches, again not aimed at a specific

company. Almost all of the missed articles involve

the insider trading cases of Boesky, Milken, et al.

LSI's performance on this topic mirrors the training

documents - most were about computer fraud, Soviet

spying, and only a few about Milken and Boesky.

Topic 109 (Find Innovative Companies) - LSI misses

707 of 1191 (59%). This topic involves the matching

of 5 specific company names. LSI does not do literal

string matching and really suffered here. Many of the

misses involved the company being mentioned in an

article that was primarily about something else (e.g., a

MIPS stock holder listed in a chart). It is trivial to

solve this particular problem with the appropriate

string matching tools.

Topic 115 (Impact of the 1986 Immigration Law) -

LSI misses none (of 56), but precision is poor. Most

of the false alarms are about immigration problems

but do not mention the 1986 Immigration Act. This

lack of specificity is a fairly typical kind of LSI

failure.

Topic 142 (Impact of Government Regulated Grain

Farming on International Relations) - LSI misses 213

of 638 (33%). The misses for this topic were

generally in the top 5000, although this is no

consolation to an end user. The false alarms result

from the same lack of specificity noted for the

previous topic. The irrelevant items near the top of

the list tended to be about domestic (vs international)

effects of farm regulations, or about farm exports but

not also about regulation. One might be able to

increase the likelihood that many concepts contribute

to the match by limiting the contribution of any one

term to the overall similarity.

Topic 144 (Management Problems at the United

Nations) - LSI misses none of 8, but precision is poor.

This topic seems to suffer from inconsistent relevance

judgements. Several of the LSI false alarms appear to

me to be quite similar to two of the relevant

documents as well as training documents (U.S. failing

to pay U.N. dues because of inefficiencies and budget

over runs). In addition, half to the relevant documents

are questionable in my mind. There is just not much

right on target here.

Topic 121 (Death from Cancer) - LSI miss 127 of

258 (49%), although precision is reasonable. Almost

all the misses come from the SJM where obituaries are

formatted as long lists rather than individual articles

for each person. LSI's centroid representation is

problematic here. This could easily be solved by

splitting articles on multiple topics, especially those

that are tagged as such. All the top false alarms here

are about death from cancer, but no specific type of

cancer is mentioned.

4.3 Future research

On the basis of preliminary failure analyses we would

like to exploring some precision-enhancing methods.

We would also like to explore three additional areas.

4.3.1 Separate vs. combined scaling

We used 9 separate subscalings, one for each

subcollection, for the TREC-1 experiments. For

TREC-2 and TREC-3 we used a single scaling based

on a small sample of the CD-I and CD-2 documents.

Although the sampling has worked quite well, we
believe that there are many practically reasons for

using subscaling based on topically coherent

collections. First, we believe that subscalings will

result in more dimensions being devoted to

discriminating among objects. Many fine-grained

discriminations can be made among computer

documents if 200 dimensions are used in a Ziff

subscaling. In a larger analysis, many fewer

dimensions will be devoted to distinguishing among

computer related topics. Both term weights and the

LSI space will be based on topically coherent

subcollections. Second, for distributed or rapidly

changing collections, separate analyses may be

necessary. We have not yet had time to compare the

subscaling and sampling results but would like to

examine this issue in more detail.

4.3.2 Centroid query vs. many separate

points of interest

A single vector was used to represent each query. In

some cases the vector was the average of terms in the

topic statement, and in other cases the vector was the

average of previously identified relevant documents.

A single query vector can be inappropriate if interests

are multifacted and these facets are not near each

other in the LSI space. We have developed techniques

that allow us to match using a controllable

compromise between averaged and separate vectors

(Kane-Esrig et al., 1991). In the case of the routing

queries, for example, we could match new documents

against each of the previously identified relevant

documents separately rather than against their

average. Since the computational complexity of this
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method increased with the number of vectors, query

splitting should be used only in cases where relevant

documents or query terms are not too similar to each

other.

4.3.3 Interactive interfaces

All LSI evaluations were conducted using a non-

interactive system in essentially batch mode. It is well

known that one can have the same underlying retrieval

and matching engine, but achieve very different

retrieval success using different interfaces. We would

like to examine the performance of real users with

interactive interfaces. A number of interface features

could be used to help users make faster (and perhaps

more accurate) relevance judgements, or to help them

explicitly reformulate queries. (See Dumais and

Schmitt, 1991, for some preliminary results on query

reformulation and relevance feedback.) Another

interesting possibility involves returning something

richer than a rank-ordered list of documents to users.

For example, a clustering and graphical display of the

top-k documents might be quite useful. We have done

some preliminary experiments using clustered return

sets, and would like to extend this work to the TREC
collections.

The general idea is to provide people with useful

interactive tools that let them make good use of their

knowledge and skills, rather than attempting to build

all the smarts into the database representation or

matching components of the system.
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6. Appendix

Latent Semantic Indexing (LSI) uses singular-value

decomposition (SVD), a technique closely related to

eigenvector decomposition and factor analysis

(Cullum and Willoughby, 1985). We take a large

term-document matrix and decompose it into a set of

k, typically 100 to 300, orthogonal factors from which

the original matrix can be approximated by linear

combination.

More formally, any rectangular matrix, X, for

example atxd matrix of terms and documents, can be

decomposed into the product of three other matrices:

X=To-So-Do\
'X" fxr rxr rxd

such that To and Do have orthonormal columns. So is

diagonal, and r is the rank of X. This is so-called

singular value decomposition of X.

If only the k largest singular values of So are kept

along with their corresponding columns in the Tq and

Do matrices, and the rest deleted (yielding matrices S,

T and D ), the resulting matrix, X , is the unique matrix

of rank k that is closest in the least squares sense to X :

X ~ X = T- S D'.
ixj ixil ixkkxkkxJ

The idea is that the X matrix, by containing only the

first k independent linear components of X, captures

the major associational structure in the matrix and

throws out noise. It is this reduced model, usually

with k = 100, that we use to approximate the term to

document association data in X. Since the number of

dimensions in the reduced model (k) is much smaller

than the number of unique terms (r), minor

differences in terminology are ignored. In this

reduced model, the closeness of documents is

determined by the overall pattern of term usage, so

documents can be near each other regardless of the

precise words that are used to describe them, and their

description depends on a kind of consensus of their

term meanings, thus dampening the effects of

polysemy. In particular, this means that documents

which share no words with a user's query may still be

near it if that is consistent with the major patterns of

word usage. We use the term "semantic" indexing to

describe our method because the reduced SVD
representation captures the major associative

relationships between terms and documents.

One can also interpret the analysis performed by SVD
geometrically. The result of the SVD is a k-

dimensional vector representing the location of each

term and document in the /: -dimensional

representation. The location of term vectors reflects

the correlations in their usage across documents. In

this space the cosine or dot product between vectors

corresponds to their estimated similarity. Since both

term and document vectors are represented in the

same space, similarities between any combination of

terms and documents can be easily obtained.

Retrieval proceeds by using the terms in a query to

identify a point in the space, and all documents are

then ranked by their similarity to the query. We make

no attempt to interpret the underlying dimensions or

factors, nor to rotate them to some intuitively

meaningful orientation. The analysis does not require

us to be able to describe the factors verbally but

merely to be able to represent terms, documents and

queries in a way that escapes the unreliability,

ambiguity and redundancy of individual terms as

descriptors.

Choosing the appropriate number of dimensions for

the LSI representation is an open research question.

Ideally, we want a value of k that is large enough to fit

229



all the real structure in the data, but small enough so

that we do not also fit the sampling error or

unimportant details. If too many dimensions are used,

the method begins to approximate standard vector

methods and loses its power to represent the similarity

between words. If too few dimensions are used, there

is not enough discrimination among similar words and

documents. We find that performance improves as k

increases for a while, and then decreases (Dumais,

1991). That LSI typically works well with a relatively

small (compared to the number of unique terms)

number of dimensions shows that these dimensions

are, in fact, capturing a major portion of the

meaningful structure.
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1.0 Introduction
I

I Query expansion should help improve information retrieval effectiveness. Reported stud-

ies [1-5] using the TREC data generally support this position, though earlier studies [6-8]

using smaller test databases did not obtain any conclusive results. Three important

j
research questions remain open. First, assuming that a thesaurus will be used, should a

general or data specific thesaurus be used in query expansion? Second, at what point does

j

query expansion cease to add value? Finally, to what degree does query expansion help
' improve retrieval effectiveness?

A general thesaurus has been found to have little effect on information retrieval results,

and may even cause negative results. Prior studies [1-5] have observed that a thesaurus

derived from the data on which the retrieval tasks will be performed tends to add useful

terms to the query, and as a result, tends to improve retrieval effectiveness. To address this

question an associative thesaurus was developed using the TREC data (disks 1 and 2) for

our TREC3 query processing.

The second question, at what point does query expansion cease to add value, is a real chal-

lenge to those studying manual query expansion. The primary concern is that excessive

expansion may dilute the original query and result in the retrieval of nonrelevant docu-

j

ments. The answer to this problem is beyond the scope of this report.

A proposed alternative to manual query expansion is automatic query expansion. This

alternative is not a very viable option in the on-line service environment because auto-

matic query expansion largely excludes the user from the query formulation process. This

may cause the user some confusion since he does not know how the system has modified

^

his query. Another alternative would be to combine manual and automatic query expan-

j

sion. The user is an intelligent being, not merely a mechanical receptor of data. The

user's intelligence can be channeled into the information retrieval system to strengthen the

I

quality of the query and increase its effectiveness.

' The primary focus of this report will be on the degree to which query expansion helps

improve retrieval effectiveness. Previously published studies of TREC data [1-5] showed

improvements ranging from 0% to 20%. We view these findings as inconclusive due to

I

Query Expansion/Reduction and its Impact on Retrieval Effectiveness

231



the characteristics of the TREC queries. To those working in the on-line information ser-

vice industry, the TREC queries are unusually long, structured and descriptive. In other

words, the current users of the commercial on-line services rarely, if ever, type in such

lengthy natural language queries. To illustrate this point. Table 1 compares the TREC2
and TREC3 ad hoc queries to query statistics gathered over a 3 day period by FREE-
STYLE™, the non-Boolean on-line information retrieval service provided by Mead Data

Central, Inc.

Query Average Length Longest Shortest

TREC2 170 319 89

TREC3 105 180 49

FREESTYLE™ 7 32 1

TABLE 1. TREC Ad Hoc Queries and FREESTYLE™ Query size (# words)

These basic descriptive statistics indicate the significant difference in query size between

the TREC queries and those used in FREESTYLE™. Assuming that these statistics show

an order of magnitude difference and that the FREESTYLE™ queries are typical of those

processed by most on-line information services, two basic questions are raised. How
should the TREC research results be interpreted and generalized? How much can query

expansion help improve retrieval effectiveness? To address these questions, we designed

and performed a series of experiments using four sets of shorter TREC2 ad hoc queries. A
subset of these experiments were repeated in our TREC3 efforts.

2.0 TREC2 Query Reduction Experiments

The TREC2 topics (including summary and definition fields) were used as the ideal que-

ries (baseline). Then four different generations of modifications were made to this base-

line. First, the summary and definition fields were deleted. The second experiment had the

concept field deleted from the base queries. The third experiment was conducted using the

recomposed, short version of the queries. This version of the topics are queries consisting

of one to three sentences. This process was completed by a professional data analyst who
read the entire topic and then composed a shorter version of the topic. The goal was to

condense the TREC2 topics down to a size that was closer to that of the FREESTYLE™
queries. The final set of queries contained only the description field of the TREC2 topics.

Table 2 compares the sizes of the five generations of topics studied. The retrieval results

from our experiments with the short topics may shed some light on the potential risks

involved in generalizing the TREC results.
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Query Average Length Longest Shortest

Topics 170 319 89

Topics-Sum-Def 138 297 62

Topic-concept 135 273 64

ShortTopic 33 63 18

DescTopic 19 42 6

NOTE: The "-" should be viewed as deletion

TABLE 2. TREC2 Query Reduction

We used the SMART system developed by Cornell University [9] to perform our TREC2
experiments. This system was chosen for its general availability and acceptance over the

past 30 years. Specifically, we used the default version of SMART. We did not utilize a

customized stop list, phrase capability, sophisticated stemming, or thesaurus of any kind.

We used a subset of automatic indexing strategies available in SMART to simulate differ-

ent indexing systems. The selected indexing strategies are the top 10 ranked according to

the 11-point averages in TREC2 (i.e., Incite, Inc. ate, Inc.mtc, Itc.ltc, mtc.ltc, Itc.atc,

Itc.lnc, mtc.atc, Itc.mtc, Itc.nnn [10]). With this design, we could focus our research

efforts on the two factors of interest: the size of the queries and the indexing/retrieval

methods.

2.1 Impact of Query Size on Retrieval Effectiveness

Accepting the hypothesis that query expansion is beneficial to information retrieval, we
may also hypothesize that query reduction would be detrimental to retrieval results. In

other words, by demonstrating that query reduction has a negative effect on the retrieval

results, we may infer that query expansion would have a positive effect on the retrieval

results.

Associated with the query reduction hypothesis is the hypothesis that query reduction has

a different degree of negative effect on individual indexing and retrieval systems. In other

words, some information retrieval systems that perform effectively with large queries

may not perform as well with small queries. In addition, the deterioration rates among the

particular indexing and retrieval systems are different in processing a series of gradually

smaller queries.

The three tables in this section summarize the experimental results. The numbers were

generated by the SMART system based on the top 1000 retrieved documents for each

TREC2 test query. The measure in Table 3, 11-point recall average precision, is a recall-

biased measure. The measures in Tables 4 and 5 are precision at the fixed rank points, top

5 documents and top 15 documents, respectively, and are precision-biased measures. The

deterioration rates, computed using the Topic column as the baseline, are in parentheses

next to each precision measure.

In Table 3, deleting the summary and definition fields did not have any noticeable effect

on the measure of 1
1 -point recall average. However, when the concept field was deleted,

retrieval effectiveness was reduced by an average of 23%. Use of the recomposed, short
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TREC2 topics reduced the results by another 10%. Finally, use of the description field as

the query reduced the results by still another 18%. The results in Table 3 support the

hypothesis that a shorter query is strongly related to significantly lower retrieval perfor-

mance.

Indexing Topic lop-hum-Dei Topic-concept Snort iopic TV HP •

DescTopic

Incite 0.3405 0.3413(0%) 0.261 1(-23%) 0.2208(-35%) A 1 C^Hf C C frf \
0.1526(-55%)

Inc.atc o.3iyy 0.3z0o(0yo) O.Z5Z/(-Zlvo) 0.z093(-357o) 0.1536(-52%)

Inc.mtc 0.3099 0.312/(1%) 0.z464(-20yo) 0.214z(-31%) A ICAyl/ CI nt \0.1504(-51%)

Itc.ltc 0.3040 0.3055(0%) O.Z319(-z4%) o.zoyy(-3i%) n 1 coo/ AQCJ \0.15oo(-4o%)

mtc.ltc 0.2953 0.2958(0%) 0.2187(-26%) 0.1921(-35%) 0.1511(-49%)

Itc.atc 0.2952 0.2957(0%) 0.2278(-23%) 0.2093(-29%) 0.1583(-46%)

Itc.lnc 0.2858 0.2926(2%) 0.2057(-28%) 0.1790(-37%) 0.1108(-61%)

mtc.atc 0.2849 0.2839(0%) 0.2168(-24%) 0.1902(-33%) 0.1527(-46%)

Itc.mtc 0.2750 0.2797(2%) 0.2181(-21%) 0.2045(-26%) 0.1567(-43%)

Itc.nnn 0.2662 0.2760(4%) 0.2002(-25%) 0.1727(-35%) 0.1081(-59%)

Average 0.2977 0.3004(1%) 0.2279(-23%) 0.2002(-33%) 0.1453(-51%)

TABLE 3. Impact of Query Reduction: TREC2 11-Point Recall Average Precision

Analysis of the precision biased measures in Tables 4 and 5 produces similar observations

to those in Table 3. The absence of summary and definition fields did not have observable

impact on either of the two precision results. However, by removing the concept field or

by using the two shortened topics, both of the precision percentages showed significant

deterioration. Tables 4 and 5 further support the hypothesis that query reduction is detri-

mental to retrieval effectiveness.

Indexing Topic Top-Sum-Def Topic-concept ShortTopic DescTopic

Incite 0.6200 0.6040(-3%) 0.5320(-14%) 0.3960(-36%) 0.3600(-42%)

Inc.atc 0.5760 0.5640(-2%) 0.5160(-10%) 0.4360(-24%) 0.3480(-40%)

Inc.mte 0.5320 0.5520(4%) 0.4800(-9%) 0.4040(-24%) 0.3520(-34%)

Itc.lte 0.5200 0.5240(1%) 0.4320(-17%) 0.3960(-24%) 0.2840(-45%)

mtc.lte 0.5520 0.5480(-l%) 0.4880(-12%) 0.4480(-19%) 0.3920(-29%)

Ite.atc 0.5240 0.5160(-2%) 0.4560(-12%) 0.3920(-24%) 0.2880(-45%)

Ite.lne 0.5200 0.5320(2%) 0.4480(-14%) 0.4000(-23%) 0.2920(-44%)

mtcate 0.5480 0.5440(-l%) 0.4880(-ll%) 0.4440(-19%) 0.3840(-30%)

Itc.mtc 0.4720 0.4760(1%) 0.3960(-16%) 0.3760(-20%) 0.2800(-41%)

Ite.nnn 0.5000 0.4440(-ll%) 0.4040(-19%) 0.3760(-25%) 0.2880(-42%)

Average 0.5364 0.5304(-l%) 0.4640(-13%) 0.4068(-24%) 0.3268(-39%)

TABLE 4. Impact of Query Reduction: TREC2 Precisions at top 5 Documents
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Indexing Topic Top-Sum-Def Topic-concept ShortTopic DescTopic

Incite 0.5680 0.5667(0%) 0.4933(-13%) 0.4147(-27%) 0.3307(-42%)

Inc.atc 0.5653 0.5693(1%) 0.4853(-14%) 0.4133(-27%) 0.3387(-40%)

Inc.mtc 0.5213 0.5240(0%) 0.4573(-12%) 0.3947(-24%) 0.3173(-39%)

Itc.ltc 0.4947 0.5013(1%) 0.4107(-17%) 0.3800(-23%) 0.2800(-43%)

mtc.ltc 0.5240 0.5160(-2%) 0.4507(-14%) 0.4227(-19%) 0.3493(-33%)

Itc.atc 0.4880 0.4893(0%) 0.4240(-13%) 0.3800(-22%) 0.2827(-42%)

Itc.lnc 0.5147 0.5240(2%) 0.4067(-21%) 0.3520(-32%) 0.2440(-52%)

mtc.atc 0.5027 0.5013(0%) 0.4480(-ll%) 0.4213(-16%) 0.3533(-30%)

Itc.mtc 0.4587 0.4653(1%) 0.3787(-17%) 0.3547(-23%) 0.2800(-39%)

Itc.nnn 0.4440 0.5080(14%) 0.3680(-17%) 0.3320(-25%) 0.2347(-47%)

Average 0.5081 0.5165(2%) 0.4323(-15%) 0.3865(-24%) 0.3010(-40%)

TABLE 5. Impact of Query Reduction: TREC2 Precisions at top 15 Documents

2.2 Impact of Query Size on Performance Consistency

Associated with the query reduction hypothesis is the hypothesis that query reduction has

a varying degree of negative effect on individual indexing and retrieval systems. In other

words, some information retrieval systems that perform effectively with large queries may
not perform as well with small queries. To test the hypothesis that information retrieval

systems perform inconsistently on different sized queries, a series of simple correlation

analyses was performed using the results in Tables 3, 4 and 5. If an information retrieval

system performs consistently over an array of gradually smaller queries, performance on

large queries should be a good predictor of performance on smaller queries as measured

by linear correlation. Stated another way, one could expect a high linear coefficient of

determination, i.e. high value. Conversely, performance of an information retrieval sys-

tem would be considered inconsistent if it produced a low value. To illustrate this point,

the weak correlations between the retrieval performance of the topic and the recomposed

topics in Table 6 suggest that the selected indexing/retrieval systems did not consistently

handle the large and small TREC2 queries. The results, however, are preliminary and to

some extent inconclusive due to the small sample size and the SMART system constraints.

Correlation 11-Point Avg Precision at top 5 Precision at top 15

Topic vs. Top-Sum-Def R2=0.97 R^O.79 R2=0.75

Topic vs. Top-Concept R2=0.85 R2=0.90 R^O.88

Topic vs. ShortTopic R2=0.53 R2=0.25 R^O.57

Topic vs. DescTopic R2=0.23 R2=0.47 R2=0.43

TABLE 6. TREC2: Linear Correlation analysis of indexing/retrieval consistency

3.0 TREC3 Query Expansion and Reduction Experiments

One of the two submitted TREC3 entries, ASSCTVl, was created to further test the two

hypotheses that query expansion in general is beneficial to information retrieval and that
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different retrieval systems receive different levels of help from query expansion. Indexing

and retrieval conditions identical to the TREC2 query reduction experiments were main-

tained, i.e. the default version of SMART and the same set of automatic indexing methods

were used. Unlike the TREC2 experiments, the TREC3 ad hoc queries were expanded

using an associative thesaurus. The expanded queries were loaded into the SMART sys-

tem to retrieve the top 1000 ranked documents. We then waited for the query relevance

information in order to conduct further experiments.

Three additional experiments were performed: one using the TREC3 topics; one using the

recomposed, shorter TREC3 queries; and one using only the description field of the

TREC3 queries. Table 7 provides the statistics of the original, expanded and recomposed

TREC3 ad hoc queries. The Expanded Topics results shown in Table 7 reflect an actual

query expansion experiment, as opposed to a query reduction experiment. In expanding

the TREC3 topics, we tried to maintain the rule to not expand to more than 150% of the

original topic size. This rule is merely a guide to prevent over expansion.

Query Average Length Longest Shortest

TREC3 Topics 105 180 49

Expanded Topics 135 194 73

ShortTopics 24 41 16

DescTopics 23 43 9

TABLE 7. TREC3 Query Expansion and Reduction

Tables 8 through 1 0 describe the impact of query expansion and reduction on the TREC3
ad hoc retrieval results. Note that the baseline in these three tables is composed of the

searches using the original TREC3 ad hoc topics. The heading "Expanded Topic" is for

the expansion experiment; the headings "ShortTopic" and "DescTopic" are for the two

reduction experiments. In Table 8 the expanded queries enhanced the recall-oriented per-

formance an average of 33%, while the two sets of short queries reduced the performance

an average of 34% and 39%, respectively. Moreover, Tables 9 and 10 show the expanded

queries and the short queries enhanced or reduced the precision-oriented performances an

average of approximately 30%.
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Indexing Topic Expanded Topic ShortTopic DescTopic

Incite 0.2930 0.3685(26%) 0.1775(-39%) 0.1738(-40%)

Inc.atc 0.2835 0.3551(25%) 0.1787(-37%) 0.0915(-68%)

Inc.mtc 0.2624 0.3375(29%) 0.1737(-34%) 0.1708(-35%)

Itc.ltc 0.2343 0.3181(36%) 0.1564(-33%) 0.1527(-35%)

mtc.ltc 0.2279 0.3001(32%) 0.1674(-27%) 0.1630(-28%)

Itc.atc 0.2261 0.3086(36%) 0.1582(-30%) 0.1557(-31%)

Itc.lnc 0.2067 0 3140('52%') 0 1 172r-43%'>

mtc.atc 0.2203 0.2930(33%) 0.1663(-25%) 0.1619(-26%)

Itc.mtc 0.2243 0.2895(29%) 0.1549(-31%) 0.1510(-32%)

Itc.nnn 0.2000 0.2877(44%) 0.1140(-43%) 0.1121(-44%)

Average 0.2379 0.3172(33%) 0.1564(-34%) 0.1447(-39%)

TABLE 8. Impact of Query Expansion/Reduction: TREC3 11-Point Recall Average

Precision

Indexing Topic Expanded Topic ShortTopic DescTopic

Incite 0.5640 0.7080(26%) 0.3720(-34%) 0.3480(-38%)

Ine.ate 0.5840 0.7000(20%) 0.3840(-34%) 0.1880(-68%)

Ine.mte 0.4560 0.5520(21%) 0.3560(-22%) 0.3320(-27%)

Ite.lte 0.3920 0.5680(45%) 0.2400(-39%) 0.1527(-61%)

mtc.ltc 0.5080 0.6720(32%) 0.3760(-26%) 0.3840(-24%)

Itc.atc 0.3960 0.5920(50%) 0.2560(-35%) 0.2600(-34%)

Itc.lnc 0.3920 0.6360(62%) 0.2360(-40%) 0.2160(-45%)

mtc.atc 0.4600 0.6400(39%) 0.3800(-17%) 0.3880(-16%)

Itc.mtc 0.3360 0.4600(37%) 0.2480(-26%) 0.2440(-27%)

Itc.nnn 0.3120 0.4600(47%) 0.2200(-30%) 0.2000(-36%)

Average 0.4400 0.5988(36%) 0.3068(-30%) 0.2712(-38%)

TABLE 9. Impact of Query Expansion/Reduction: TREC3 Precisions at top 5 Documents
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Indexing Topic Expanded Topic ShortTopic DescTopic

Incite 0.5227 0.6253(20%) 0.3333(-36%) 0.3267(-38%)

Inc.ate 0.5280 0.6147(16%) 0.3427(-35%) 0.1947(-63%)

Ine.mtc 0.4480 0.5267(18%) 0.3173(-29%) 0.3120(-30%)

Ite.ltc 0.3827 0.5347(40%) 0.2827(-26%) 0.2733(-29%)

mtc.ltc 0.4587 0.5840(27%) 0.3573(-22%) 0.3533(-23%)

Itc.ate 0.3960 0.5333(35%) 0.2893(-27%) 0.2800(-29%)

Itc.lnc 0.3827 0.5560(45%) 0.2187(-43%) 0.2253(-41%)

mtc.atc 0.4320 0.5800(34%) 0.3640(-16%) 0.3587(-17%)

Itc.mtc 0.3467 0.4573(32%) 0.2747(-21%) 0.2667(-23%)

Itc.nnn 0.3200 0.4493(40%) 0.2067(-35%) 0.2133(-33%)

Average 0.4218 0.5461(29%) 0.2987(-29%) 0.2804(-34%)

TABLE 10. Impact of Query Expansion/Reduction: TREC3 Precisions at top 15 Documents

Correlation analysis was conducted using the results in Tables 8, 9 and 10. Table 11 sum-

marizes the analysis results. Similar to the TREC2 results, the selected indexing/retrieval

methods were inconsistent in processing the large and small queries as indicated by the

low values. Note that the "predictor" in Table 1 1 is the expanded TREC3 topic instead

of the original TREC3 topic. These results are preliminary and to some extent inconclu-

sive due to the small sample size and the SMART system constraints.

Correlation 11-Point Avg Precision at top 5 Precision at top 15

ExpTop vs. Topic W=0.18 R2=0.69 R2=0.74

ExpTop vs. ShortTopic W=0.20 R2=0.29 R2=0.18

ExpTop vs. DescTopic W=0.2l R2=0.25 R2=0.23

TABLE 11. TREC3: Correlation analysis of indexing/retrieval consistency

The associative thesaurus used in these experiments was compiled automatically using the

data that was to be used for the ad hoc query portion of TREC3. For this particular version

of the thesaurus, the computation took approximately 80 clock hours on a shared SUN
Sparc 1000 machine. The actual computation time depends on the number of natural lan-

guage processing tasks to be performed on the data set. The constructed thesaurus con-

tains uncontrolled index terms. A user interface was built for accessing the thesaurus.The

associative thesaurus was also used in the query expansion for another TREC3 entry

(ASSCTV2) which was an internal study on search engines.

4.0 Summary

The results of the TREC2 and TREC3 query reduction experiments support the concept

that reducing queries is detrimental to information retrieval results. Moreover, the results

of the TREC3 ad hoc query expansion experiments support the concept that expanding

queries using a thesaurus derived from the local data tends to improve retrieval effective-
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ness. Depending on the length of the original query, the improvement could be very signif-

icant. The optimal level of manual query expansion is still an open question. In addition,

both sets of experiments suggest that different indexing/retrieval systems perform incon-

sistently in processing the various sizes of queries. This observation suggests a cautious

attitude toward efforts to generalize the current TREC results.
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Abstract

A conventional text retrieval method is improved by

two additional sources of evidence of relevance: first,

by a passage retrieval method that is based on Hidden

Markov Models and second, by a so-called link method

which was originally developed for hypertext retrieval.

The results show that the two additional sources of

evidence improve a conventional vector space retrieval

method both in a consistent and in a complementary

way. The link method has the ability to retrieve relevant

documents whose description vectors are not very simi-

lar to the query description vector whereas the passage

retrieval method has the ability to improve an existing

ordering of the documents.

1 Introduction

Our approach is aimed at improving a conventional text

retrieval method by means of two additional sources

of evidence of relevance. The conventional retrieval

method is called the basic method B. It consists of

a well-known weighting scheme which is sometimes re-

ferred to as Incite (Knaus & Schauble, 1993).

Passage retrieval is used as a second source of ev-

idence of relevance. We used our passage retrieval

method P which is based on Hidden Markov Models

(Mittendorf k Schauble, 1994). This approach has the

advantage that the passages are not restricted to a fixed

length. Furthermore, the parameters can be estimated

automatically by means of the Baum-Welch reestima-

tion formula.

A so-called link method L is used as a third source

of evidence of relevance. The link method was origi-

nally developed for hypertext retrieval (Frei & Stieger,

1995). Since the TREC documents are not linked, we

automatically create appropriate links before applying

the hypertext retrieval method.

We combined the three sources of evidence of rele-

vance in an ad-hoc way, i.e. by trying several combi-

nations lo fiiid (he best combination. When combining

several sources of evidence of relevance the scores of the

particular sources have to be normalized. We circum-

vented the normalization problem by using rank num-
bers. We believe that the problem of combining several

sources of evidence of relevance needs further investiga-

tions.

2 Multiple Levels of Evidence

2.1 Basic Method

TREC-2 hcis shown that using a general stoplist, a word

normalization algorithm, and an appropriate weighting

scheme already leads to fairly good results in terms of re-

trieval effectiveness (Knaus h Schauble, 1993). Our ba-

sic method for TREC-3 uses the stoplist of the SMART
System (Ide h Salton, 197]) consisting of 571 stop-

words. The remaining words are normalized by Porter's

suffix stripping algorithm (Porter, 1980). Thus, our in-

dexing features consist of Porter reduced words which

do not occur in the SMART stoplist. The analysis of

all documents of the document collection provides the

feature frequencies fr(v?i, dj) and the document frequen-

cies df( </?,). The feature frequency ff((^,-,(ij) denotes the

number of occurrences of the indexing feature (pi within

the document dj and the document frequency df(<y?,) de-

notes the number of documents containing the feature

tpi. It should be noticed that the document frequencies

are always determined by disk 1 and disk 2 (D1D2) in-

dependent of whether they are used for the ad-hoc or

the routing task. Hence, query features not occurring

in D1D2 have a document frequency df((^) = 0 even

though they may occur in disk 3 (D3).

The retrieval function is equivalent to the cosine mea-

sure. The indexing method uses Inc.ltn feature weight-

ing. This weighting scheme showed the best retrieval

effectiveness in our experiments at TREC-2 and it has

the advantage that features of routing documents not

occurring in the training collection are independent of

collection statistics such as inverse document frequen-

cies. Throughout the paper we refer to this method as
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the basic method D.

query q

documents dj, 0 < j < n

indexing features <^,-, 0 < i < m
feature frequencies fi{ipi,dj), fF(

document frequencies df(i^i)

normalized inverse document frequencies

query feature weights {Itn weighted)

bi := (1 + log(ff 9) )) * nidf(v7s)

document feature weights {Inc weighted)

:= (1 + log(ff(v'i,f/j)))

document lengths

Retrieval Status Values

RSYsiq, dj) := 4^ * E,>.e,,d, ^.i
*

2.2 Link Method

The link method is based on Stieger's hypertext re-

trieval method (Frei & Stieger, 1995). Hypertext re-

trieval methods do not only take into account the rele-

vance of a node but also the relevance of its neighbors

(Frisse, 1988). The main ideas of Stieger's hypertext

retrieval method are the following.

1. We take into account the relevance of a link with

respect to the query. Below we will elaborate on

what we mean by the relevance of a link.

2. We reduce the hypertext to a substructure consist-

ing only of links that are sufficiently relevant to the

query.

3. We reduce the variation of how much the retrieval

status value of a node is affected by the retrieval

status values of its neighbors.

Since the TREC data does not contain links between the

documents we first generate links automatically before

applying Stieger's hypertext retrieval method.

We generate a link from document dj to document d^

if they contain a common phrase A which satisfies the

following three conditions.

1. The common phrase A = {(fhtfi) consists of two

indexing features iph and y?,- which must occur in

both documents dj and dk in such a way that only

short non-stop words may occur in between where

a word is considered as short if it consists of one

or two letters. Examples are "exploration of the

universe' which becomes "EXPLOR UNIVERS"
or "flight spectrometer " which becomes "FLIGHT
SPECTROMET".

2. In addition, the two words (p^ and which con-

stitute the link between dj and dk must occur suf-

ficiently many times.

ffmm < min{ff(v?/,,£/j),fF(v?,-,c?j)}

ffm.n < min{fr((^/,,4),fr(v7,-,4)}

In this way, we require that the phrase is an impor-

tant phrase in both documents dj and dk.

3. Finally, the document frequency of the phrase A is

within a certain interval.

This is in accordance with Luhn's ideas for select-

ing good indexing features (Luhn, 1958). By adding

such links to the document collection we obtain a hy-

pertext to which the link method is applied. Subse-

quently, a link is identified by the corresponding phrase

In what follows, we describe the hypertext retrieval

method. First, the hypertext is reduced to a substruc-

ture consisting only of links that are sufficiently relevant

to the query. In particular, we obtain the correspond-

ing substructure by restricting ourselves to those links

which satisfy the following requirements.

1. The two reduced words (ph and y?,- constituting the

link A must occur in the query.

2. The relevance of the link A = {(ph,'Pi} with respect

to the query q must be above the threshold c,

RSVinkiqA) > c,

where the relevance is estimated by

RSVlr^k{q,^) :
=

Using the estimated relevance of the links, the neigh-

borhood Dj{q) of a document dj with respect to the

query q is defined by

{dk,X)eDj{q)

dk E DID2

dj —> dk

XCq
RSVir^k{q,X) > c

where dj —> dk means that a link A from dj to dk

exists which satisfies the three conditions given above.

Finally, the retrieval status values of the link method L

are defined by

RSVL{q,dj) :=

1

Dj{q) ^ RSVink{q,X)RSVB{q,dk]

242



parameter value

ffmin 2

3

7000

Table 1: Parameters.

where the parameters of the link method we have chosen

are shown in Table 1. Because the parameter c was

adapted to the different tasks its values are shown in

Section 3.

2.3 Passage Level Evidence

In this section we describe how relevant passages are

extracted from documents and how the documents are

scored using the scores of the passages. Hidden Markov

Models (HMM) and the Viterbi-algorithm provide a

natural method for retrieving passages without knowing

anything about the structure of documents and with-

out assuming anything about the format and the size of

the passages. Document and passage retrieval based on

Hidden Markov Models are described in (Mittendorf &:

Schauble, 1994).

For our purposes we roughly assume that—with re-

spect to a query—each document can be segmented into

three passages: an irrelevant passage, followed by a rel-

evant passage, again followed by an irrelevant passage.

The HMM which models these assumptions is visual-

ized in Figure 1. An HMM can be regarded as a set of

p' p p'
1

Sq S| $2 S3

Figure 1: HMM for modeling a document

stochastic production rules for documents. These can

be described by a stochastic syntax diagram. So in our

case a document is produced while traversing the syn-

tax diagram in Figure 1. Upon each arrival in a state a

token is generated according to a probability distribu-

tion that belongs to this state. The next state is chosen

according to the transition probabilities p and p' . In the

states So and 52, tokens are generated which belong to

irrelevant passages, in the state sy, tokens are generated

which belong to a relevant passage. In the state S3 and

only in this state, a token is generated that marks the

end of the document.

A document is considered as a sequence of tokens.

To gain (jucry independence and a higher stability of

the model parameters a description step is introduced:

Each token of the sequence is mapped to a value that de-

scribes the similarity between the token and the query.

If the token is an occurrence of the feature (pi , we used

sim(^,-,g) := ff(y?,-,9) • nidf^((^,)

as the corresponding similarity value. I'hus, the HMM
can be considered as a probabilistic production rule for

sequences of real values that describe the similarity of a

token and a given query q.

The output probabilities are adjusted automatically

by the Baum-Welch algorithm (Baum, 1972). We used

the queries 1-50 and D1D2 for training. For the distri-

bution of the similarity values in the states sq and S2

we use irrelevant query-document pairs as input for the

Baum-Welch algorithm, and for the state si we use rele-

vant query-document pairs. The transition probabilities

p and p' are set to 0.5.

Given a document dj, a query q, and the correspond-

ing sequence of similarity values, the Viterbi-algorithm

performs a probabilistic parse through the given HMM.
It determines a path through the model which has a

maximal probability of producing the given sequence of

similarity values. There is a subsequence that is pro-

duced in the state si while traversing the HMM along

this path. The passage Pj{q) which belongs to this sub-

sequence is a subsequence of the document dj. We will

call this passage the best passage of dj with respect to q.

The retrieval status value of a document is the sim-

ilarity between the query and the best passage deter-

mined by the Viterbi-algorithm. The feature weighting

is implemented as follows:

a'ij := l + \og{if{^i,pj{q))).

Since passages from relevant documents are likely to be

longer than passages from irrelevant, documents, it is not

reasonable to normalize, as this is done for example for

method B, therefore the inner vector product is chosen

to be the retrieval function, i.e.

RSVp{q,dj) -Y.^ij^i-
i

This passage retrieval based method is referenced to as

method P.

2.4 Combination

In this section we describe how the basic method B, the

link method L and the passage method P are combined.

There are several possibilities for combining two sets of

retrieval status values to a new set of retrieval status

values. Given a method X and a method Y they can

be combined by using a linear combination of the cor-

responding retrieval status values. The resulting com-

bination method is denoted by XY' . The basic method
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B and the link method L are combined in this way:

RSVBL{q,d,) := aRSVB{g,dj} + (1 - a)RSVL{q, dj).

Table 2 and Table 4 show which values are chosen for

parameter a.

For this kind of combination the retrieval status val-

ues of two different methods have to be on the same

scale. If they are not, they could be normalized by e.g.

the median or a maximal value. But sometimes one

method might be rather on a logarithmic scale and the

other on a quadratic scale or some scale not easy to

recognize. In these cases a very sophisticated normal-

ization is required.

Another possibility of combination is the combination

of the rank numbers instead of the combination of re-

trieval status values (Bartell et al., 1994). In this way

normalization can be avoided but some information will

be lost. For a given method and a given method Y
the new method that is derived by the combination of

rank numbers is denoted by X oY . Since the retrieval

status values of the method BL and of the method P
are not on a comparable scale, this kind of combina-

tion was used to combme the lists of ranked documents

derived from RSVbl and RSVp.
If the document dj is ranked on position rsL with

respect to RSVbl and if the passage pj which belongs

to dj is ranked on position rp with respect to RSVp,
then

RSVBLop{q.dj) - (3{-rBL{q,dj)) ^ [l - l3){-rp{q,d,)).

For efficiency reasons only those documents are ana-

lyzed that are retrieved either by the method L ore by

the method 5, i.e.

RSVp{q,dj) :=
if rB{q,dj)<im
or rL(?,cfj) < 1000.

otherwise.

Also for efficiency reasons, rstiq, dj) was assumed to

be 1001 if dj was retrieved by P and not retrieved by

BL (i.e. rank greater than 1000). Similar, rp{q,dj) was

assumed to be 1001 if a'j was retrieved by BL but not

by P.

If a document does not appear among the top 1000

documents on the list of ranked documents of the meth-

ods BL or P, its rank number tbl respectively rp is

assumed to be 1001. The value l3 was chosen according

to Table 2.

3 Results

We submitted the results of two ad-hoc experiments

(ETHOOI and ETH002) and the results of two rout-

ing pxpermients (ETHOO;^ and ETH004). ETHOOI and

method description and parameter values

RSVb basic method

nidf derived from D1D2
RSVr link method

links derived from D1D2
c = 0.1

RSVp passage retrieval method

HMMs trained using topics 1-50

and D1D2
RSVr I linear combmation of RSVs

from methods RSVb and RSVl
a = 0.4

/i iS v Da r linear combination of ranks

from methods RSVb and RSVl
13 = 0.83

hi ,J l/

D

linear combination of ranks

from methods RSVb and RSVp
f3 = 0.47

RSVr t ciP linear combination of ranks

from methods RSVbl and RSVp
/? = 0.8

Table 2: Ad-hoc experiments (151-200 versus D1D2).

ETH003 were determined by linear combination of the

retrieval status values obtained from the basic method

B and from the link method L. ETH002 and ETH004
were determined by combining the ranks of the docu-

ments obtained from the combination BL and from the

passage retrieval method P. An overview of all ad-hoc

experiments is given in Table 2. Table 3 shows the re-

trieval effectiveness of these experiments. The numbers

within brackets are comparisons to the basic method B.

The following facts can be derived from Table 3:

• Method L is much less effective than method B but

510 new relevant documents are found that have

not been retrieved by the basic method B (i.e. that

are not among the 1000 top ranked documents).

• Comparing the most effective BL combination

(a = 0.6) and the most effective B o L combi-

nation (/? = 0.1) shows that combining retrieval

status values is cleary more effective than combin-

ing ranks. The optimal a and the optimal /? have

been determined using TREC-2 data.

• The combinations perform much better than the

methods B, L, or P perform on their own.

• The improvements of the simple combinations BL
and B o P are complementary. The overall combi-

nation BL o P has a better retrieval effectiveness

than both simple combinations.
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1 C ti IC Vcii ^ rel . retr. jf rel. not submitted

(max. yoUo
j

retr. by B as

oUoo

RSVl 0.1045 (-59.5%) 0.1800 (-44.6%) 3071 (-2962) 510

RSVp 0.1833 (-28.9%) 0.2557 (-21.3%) 6087 (+54) 396

RSVbl 0.2737 (-^6.3%) 0.3374 (+3.9%) 6202 (+169) 364 ETHOOl
RSVbol 0.2616 (-fl.2%) 0.3217 (-0.9%) 6134 (+101) 324

RSVbop 0.2853 (-f-10.7%) 0.3435 (+5.8%) 6156 (+123) 330

RSVblop 0.2916 (-M3.1%) 0.3475 (+7.0%) 6237 (+204) 38

1

ETH002

Table 3: Retrieval effectiveness of the ad-hoc experiments.

method description and parameter values

RSVb basic method

nidf determined from D1D2
RSVl link method

links determined from D1D2
c = 0.075

RSVp passage retrieval method

HMMs trained using topics 1-50

and D1D2
RSVbl linear combination of RSVs

from methods RSVb and RSVl
a = 0.3

RSVblop linear combination of ranks

from methods RSVbl and RSVp
0 = 0.8

Table 4: Routing experiments (101-150 versus D3).

retrieval

method

avg. precision exact R-precision # rel. retr.

(max. 9353)

submitted

as

RSVb
RSVbl
RSVbloP

0.2993

0.3092 (+3.3%)

0.3154 (+5.4%)

0.3460

0.3440 (-0.1%)

0.3468 (+0.2%)

6024

6242 (+218)

6295 (+271)

_

ETH003
ETH004

Table 5: Retrieval effectiveness of the routing experiments.
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The same methods have been applied to the routing

experiments. We did not take advantage of the rele-

vance assessments that were available for the routing

topics. The parameter values used in the routing ex-

periments are given in Table 4. Table 5 summarizes

the results. The same statements can be derived as

from the ad-hoc experiments but the improvements are

somewhat smaller.

4 Conclusions

The results of our experiments seem to indicate that the

link method and the p8i,ssage retrieval method improve

conventional vector space retrieval in a complementary

way. The link method has the ability to retrieve rele-

vant documents whose description vectors are not very

similar to the query description vector. On the other

hand, the passage retrieval method has the ability to

improve an existing ordering of the documents. At this

moment it is not clear whether it is possible (desirable)

to measure how complementary two retrieval methods

are. Finally, we lack a theoretical framework to combine

several retrieval methods. The current adhoc approach

to find an optimeil combination is rather time consum-

ing. There may exist more efficient ways to optimize

combinations of retrieval methods.

For TREC-3, we concentrated on the ad-hoc exper-

iments. In the routing task, we did not use the rele-

vance informeition of the training collection. Thus, our

methods could be improved by applying a simple rele-

vance feedback method or by modifying the neighbor-

hood Dj{q) of the link method L.

i
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ABSTRACT

The PIRCS retrieval system has been upgraded in TREC-3
to handle the full English collections of 2 GB in an efficient

manner. For ad-hoc retrieval, we use recurrent spreading of

activation in our network to implement query learning and

expansion based on the best-ranked subdocuments of an

initial retrieval. We also augment our standard retrieval

algorithm with a soft-Boolean component. For routing, we
use learning from signal-rich short documents or

subdocument segments. For the optional thresholding

experiment, we tried two approaches to transforming

retrieval status values (RSV's) so that they could be used to

partition documents into retrieved and nonretrieved sets.

The first method normalizes RSV's using a query

self-retrieval score. The second, which requires training

data, uses logistic regression to convert RSV's into

estimates of probability of relevance. Overall, our results

are highly competitive with those of other participants.

1. INTRODUCTION

PIRCS is an experimental information retrieval (IR) system

designed and implemented at Queens College. PERCS
allows both ad-hoc retrieval and routing of free-text

documents based on natural language as well as Boolean

form queries. In TREC-1, Queens College took part in

Category B, with PIRCS returning highly competitive

results on a 1/2 GB test collection. A major redesign of

PIRCS allowed it to be applied to the full 2 GB Category

A data set for TREC-2. However, only a subset of PIRCS'

capabilities had been reimplemented in time, leading to

PIRCS results for TREC-2 that were median and below our

expectations.

For TREC-3, we employ an upgraded version of PIRCS to

the full TREC-3 ad-hoc retrieval and routing of English

data sets, as well as taking part in the optional experiment

on thresholding for routing. For ad-hoc, we make use of

several best-ranked subdocuments for query enhancement to

improve retrieval results. For routing, different subsets of

relevant subdocuments are used for learning. Two
approaches to thresholding were tried. The first approach

normalizes the raw scores using the query self-retrieval

value and applies a fixed threshold. The second estimates

the probability of relevance for each test document using a

logistic function fitted to the training data. We shov; two

ways to use these probability estimates for thresholding.

In Section 2, we review the salient features of PIRCS.

Sections 3 and 4 discuss our ad-hoc and routing experiments

respectively, while Section 5 is on thresholding. Our

conclusion is in Section 6.

2. PIRCS' DESIGN

2.1 Effectiveness Aspects

PIRCS is based on the probabilistic indexing and retrieval

models of [MaKu60, RoSp76] but extended with the

concept of document components [Kwok90]. Both

documents and queries are represented as lists of

independent conceptual components that are approximated

with content terms. These terms can be single words or

two-word phrases and are obtained automatically from the

corpus. Additionaly, queries can also have a Boolean

expression structure. Term weights are based on conditional

probabilities estimated from local term usage in individual

items (documents or queries) and from global term usage in

the whole collection. Thus, within-item term frequencies,

item length, collection and inverse collection term

frequencies (ICTF) and total number of tokens are

effectively utilized. Moreover, PIRCS can bootstrap itself

(i.e. define initial weights) based on the property that each

individual item is consisted of conceptual components that

are relevant to the item. The probability estimates relying
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on item self-relevancy are quite rough because the sample

of components from a single item is small at this initial

stage, but may become more accurate when the system

learns from larger relevant samples obtained via historical

or interactive relevance judgment.

The system is implemented as a network shown in Fig.l,

where the three layers of nodes (Q, T, D) denote the set of

queries, terms and documents. Nodes of one layer are

connected to those of an adjacent layer only, via bi-

directional edges with the weights discussed earlier. In a

heterogenous collection one has to deal with documents of

widely diff^nt lengths, or that one document may contain

several unrelated stories. We segment these documents into

'subdocuments' of mwe unifonn sizes as before, and nodes

on our network can be subdocuments or whole documents.

This segmentation may lead to better retrieval, display,

learning, and general efficiency in document processing as

discussed in [KwGr94a,b].

During retrieval, PIRCS normally supports two mokies:

query-focused, when activation starts from a document and

spreads towards a query under attention, or vice versa for

the document-focused mode. This results in two retrieval

lists for each query with different RSV's (reoieval staois

values) that are based on different statistics. When these

RSV's are additively combined, the resultant ranking of

documents almost always provides better effectiveness than

either one alone. In addition, a third retrieval list can be

provided if a Boolean expression tree replaces each of the

set of query-term edges of the network. Thus, three types

of evidence can be combined to enhance retrieval results.

An important feature of our network is that it supports

training based on given relevant items. Thus, if a query has

a known set of relevant documents as shown in Fig.2 (and

vice versa, a document having a known set of relevant

queries), the edge weights on either or both sides of the net

can adapt incrementally based on term usage statistics in die

relevants and attain values that would provide more

effective retrieval results. Moreover, the network also

supports query expansion whereby terms that are used in

relevant items are selectively added with appropriate

weights to the query under attention. Thus, these

procedures can lead to higher recall because relevant

documents having terms not ccmtained in the original query

may get retrieved, and higher precision because terms that

are prevalent in relevant documents would attain larger

weights and documents having them may get ranked earlier.

With these learning capabilities, the network behaves like a

2-layer neural network with adaptive architecture [Kwok9x]

.

22 Efnciency Aspects

PIRCS is also unique in its processing design pCwGr94].

In our system a full inverted (posting) file is not produced

as is normaUy done in many other systems, saving

substantial disk space and reducing the 'dead time' between

a collection being acquired and its availability for searching.

Also, the problem of updating the full inverted file when a

collection grows incrementally becomes non-existent. We
create our network for learning and retrieval dynamically at

query time from the direct file consisting of the list of terms

within each document. The network is built based on the

'active term set' defined by the current queries and

subcollection, ensuring that it is compact enough to fit into

main memoy. Having a netwoik image of a textbase in

RAM allows us to do learning and retrieval relatively fast.
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Since TREC-2, we have reduced the time for building the

network by over 80% by truncating and compressing the

direct file. Depending on the query length, a single TREC
topic can now be run against a 1/2 GB textbase in about 2

minutes clock time on a Sparc 10/30, producing a ranked

list of 1000 subdocuments. Batching queries 10 at a time

reduces the average to slightly more than one minute per

query. Although this is not yet satisfactory for interactive

retrieval, it is quite adequate for experimentation. We
expect future upgrades will improve on this timing. For a

raw text collection of x GB, we can support retrieval using

only about 1.2x GB with our truncated and compressed

direct file that does not include term position information.

During preparation of the textbase however, more space is

needed.

PIRCS also employs a master-subcollection file organization

in such a way that a huge collection can be broken up into

convenient subcollection sizes of say 0.5-1.0 GB each,

while ensuring that documents are ranked exactly as if a

single large collection and its statistics had been used. This

gives us the flexibility to organize, retrieve and maintain

collections of essentially unlimited sizes bounded only by

available hardware. If PIRCS runs in a parallel

environment with multiple processors each supporting one

subcollection, then timing would also not be much more

than that for a single subcollection. In addition, the

previously mentioned subdocument segmentation approach

to handling heterogenous documents of unconstrained

lengths also contributes to the efficiency of processing.

3. AD-HOC RETRIEVAL EXPERIMENTS

3.1 Methodology

Ad-hoc experiments for TREC-3 involve creating a textbase

from the revised Disks 1&2 data and retrieving with the

new, unseen 4th topic set (151-200). We segment the

documents into about 550-word chunks ending on a

paragraph boundary. Four subcollections were produced,

viz.: wal (274,110), fzdl (422,660), wa2 (239,107) and fz2

(149,790) totalling 1,085,667 subdocuments. They are

served by a master lexicon of 658,404 unique terms that

includes 55,296 entries of our semi-automatic 2-word

phrases. Our stop list remains as in TREC-2 with 630

words. The title, description and narrative sections of each

topic are processed automatically like documents (but with

non-content introductory phrases and 'not' sentences

removed), resulting in query set Q4. A Boolean expression

for each topic is also automatically generated by ORing two

AND clauses that are constituted of the content terms in the

title and description sections. A new feature in TREC-3 is

that the concept section previously supplied with each topic

is no longer available, making retrieval more difficult.

Our two submitted results are pircsl (evaluated by NIST)

and pircs2. An unsubmitted run called pircsO consisting of

our standard combination of query-focused and document-

focused retrieval procedures (as discussed in Section 2)

serves as a control for our internal comparison. In pircsl,

we augment pircsO by a new document-focused activation

spreading which we called 'controlled recurrent processing'.

In this process we let the system do some learning and

query expansion from a few of the best-ranked sub-

documents of each query. Ad-hoc is an initial retrieval and

therefore no known relevant documents are available for

training. However, previous experiments [KwPK93,

KwGr94] have shown that PIRCS' ad-hoc operation can

achieve average precision close to 60% in the first 5 to 10

retrieved. Hence such feedback without user judgments

could be useful, and some of our limited experiments

showed that it was indeed the case. It is fairly simple to

implement the process in our network (Fig.l). Activation

first spreads from a query node to the term layer and then

to the document layer nodes. That would be our normal

document-focused process. Instead, we initiate a choice

operation that selects the m best-ranked document nodes

with sufficient activation, and let them spread backwards to

the term layer thus turning on many terms not originally

connected to the query. Again, only the n highest activated

terms are selected, and activation then spreads back and

impacts on the document nodes providing the final RSVs
for ranking. The process is very efficient; timing is

practically unchanged from not using the controlled

recurrent process. Moreover, it is done 'on-the-fly' so that

future additions to the subcollection will influence the

outcome in a dynamic fashion. We use a conservative

setting of m=6 and n=30. The result is that only 40 out of

50 queries are modified, and for these an average of about

1 1 (443/40) new terms are added per query.

For our second ad-hoc submission pircs2, we augment our

normal pircsO with soft-Boolean retrieval. For each query

a Boolean expression consisting of the OR of two AND
clauses is automatically generated. Each of the AND
clauses is composed of the content terms from the <topic>

and <desc> sections of a topic respectively.

3.2 Results

A summary comparison of our approaches to ad-hoc

retrieval averaged over the 50 queries in Q4 is tabulated in

Table 1 below. Compared with our standard approach

pircsO, both of our enhancements in pircsl and pircs2 are

successful. In particular, the use of a few best-ranked

subdocuments for query training and enhancement (pircsl)

improves over pircsO by 8.6% in average precision, 6.6% in

R-Precision and 0.6% in relevants retrieved (rel_ret). The

effect on recall is negligible. Adding soft-Boolean

processing is also effective in contrast to TREC-2, leading
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pircsO pircsl pircs2

(std) (Qexp) (Bool)

relev: 9805 9805 9805

rel_ret: 5981 (base) 6017 (+0.6) 6145 (+2.7)

av.precision: .2764 .3001 (+8.6) .2913 (+5.4)

precision at:

5 docs .6520 .6600 .6600

20 docs .5090 .5670 .5240

100 docs .3540 .3792 .3774

R-precision: .3267 .3484 (+6.6) 3402(44.1)

Table 1: Ad-Hoc Results

to increases of 5.4% in average precision, 4.1% in R-

precision and 2.7% in rel-ret. We believe that the absence

of the concept section in the topics (which normally has

many specific keywords) has depressed the standard pircsO

result by something like 20 to 30%. This offers an

opportunity for the controlled recurrent processing and the

soft-Boolean operations to show some improvements.

Using pircsl results, we observe that it recalls 61.4% of all

relevants at 1000 documents retrieved. At 5 documents

retrieved, one can expect more than 3 of them are relevant;

at 20 documents, more than 1 1 are relevant; and at 30 more

than half.

Comparisons with the MEDIAN values of submissions from

other TREC-3 sites are summarized below in Table 2. It

can be seen that both pircsl and pircs2 results outperform

the median. Since different sites make use of different

techniques and methodologies, it would be interesting to see

for each query which site has done best as tabulated in

[Harm94] and why. We also introduce in TREC-2 MAXI-
retrieval as a hypothetical system that returns the best

performance for each quer)' among all sites. This assumes

that we have an intelligent agent who is able to choose the

best retrieval system among this set of participants for each

query, and would reflect the best we can do using our

pircsl pircs2

> = < > = <

av. prec: 31(1) 2 17 36(0) 1 13

rel_ret

@ 100: 27(1) 3 20 30(1) 6 14

rel_ret

@ 1000: 30(2) 2 18 34(1) 3 13

(figure in paranthesis is number of queries equaling the best

values)

Table 2: Comparison of Ad-Hoc Results with Median

collective wisdom at this time. This MAXI-system will

return an average precision, precision at 100 docs and at

1000 docs of 0.4982, 0.5736 and 0.1600 respectively. Thus,

Pircsl achieves 60.2%, 66.1% and 75.2% and pircs2

achieves 58.5%, 65.8% and 76.8% respectively of these best

values. Pircsl seems to be better than pircs2 in absolute

values of precision, but pircs2 outperforms pircsl when we
count the number of query results that are above median.

4. ROUTING RETRIEVAL EXPERIMENTS

4.1 Methodology

Routing involves the 3rd topic set (101-150) processing

against Disk3 data. Our routing queries Q3 are defined

using both the topic texts as well as their known sets of

relevant subdocuments from Disks 1&2. No Disk 3 data

were used for training as no relevant items from Disk 3

were available. As discussed before [KwGr94a,b], a

judicious choice of training items can impact favorably on

retrieval results. Short documents are the quality items and

they are very effective for training. Selecting only them for

training is also efficient because there is no need to do a

ranking operation. However, there may not be enough of

them in the known relevant set. Selecting the top-ranked

subdocument of every known relevant ensures that every

item is represented for training, and these subdocuments can

be the most signal-rich portions of the relevants. This is an

advantage of segmentation because using the top whole

document may add noise in the learning process if the

document happens to be long and most of it is irrelevant.

However, a ranking operation is required. In [KwGr94b]

we also show that the usual feedback strategy of using the

X best-ranked items for training can lead to inferior retrieval

results.

For TREC-3, we segment long documents and documents

with multiple unrelated stories as previously, but use a

larger chunk size of 550 words instead of 360 [KwPK93,

KwGr94]. This saves some space by reducing the number

of our network nodes. Also, if we get comparably good

results as in our previous TREC-2 'further' experiments, it

can be argued that segmentation size is not critical. We
submitted two sets of results based on the two selection

strategies discussed earlier. Pircs4 makes use only of the

short relevant documents for each query, i.e. those having

160 or less unique words per document (after deleting stop

words and conflating via stemming). They roughly

correspond to those of TREC-2 'nonbreak' documents of

about 360 raw words, and are independent of how we

segment documents. There are 4,043 such short documents

out of a total of 1 1,645 relevants. These relevants break up

into 32,837 subdocuments. Thus, for pircs4 we make use

of about 12% of the relevant texts only. In pircs3 which is
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our official routing submission evaluated by NIST, we
further merge this set of short training documents with the

set of top-ranked relevant subdocuments obtained from

2,400 best-ranked subdocuments for each query. ('Top-

ranked' means the set of subdocuments, only one from each

document, that are ranked highest, while 'best-ranked' just

means the highest ranked set of subdocuments). The 2,400

best-ranked's may not be all relevant and may have many

subdocuments from the same document; so the top-ranked

relevants obtained are less than 2,400 and we do not

recover all 1 1,645. After merging with the short documents

we end up with 11,559 subdocuments for training purposes.

This represents about 35% of the available relevant texts.

The actual process of training on our network is unchanged

from TREC-2.

42 Results

Comparison of our two approaches for routing (see the

appendix of this volume) shows that training by short

relevant documents only (pircs4) is both effective and

efficient, as observed previously [KwGr94a]. It gives an

average precision of 0.3749, R-precision of 0.3899 and rel-

ret at 1000 documents of 7318 (78.24% of all relevants).

Augmenting the training document set by using a ranking

operation to add top-ranked subdocuments (pircs3) involves

much more work, and leads to average precision of 0.3887,

R-precision of 0.3991 and rel_ret of 7640 (81.69% of all

relevants). These are 3.7%, 2.4% and 4.4% better than

pircs4. If an application does not require the last few

percent improvements in precision and recall, training with

short documents will do. The precision at 15 documents or

less retrieved is at least 60% on average. This means that

one would expect 9 relevant documents in the first 15

retrieved averaged over the Q3 (101-150) query set; and in

the first 5 retrieved, over 3.

Comparison with the MEDIAN values of submissions from

other TREC-3 sites are summarized below in Table 3. It

can be seen that both pircs3 and pircs4 results are

substantially better than median. The MAXI-system returns

pircs3 pircs4

> = < >. = <

av. prec: 41(4) 1 8 36(1) 0 14

rel_ret

@ 100: 36(6) 8(1) 6 34(5) 5 11

rel_ret

@ 1000: 38(10) 9(5) 3 33(7) 12(5) 5

(figure in paranthesis is number of queries equaling the

values; some median values are also the best values)

Table 3: Comparison of Routing Results with Median

an average percision, precision at 100 and at 1000

documents of 0.4951, 0.5342 and 0.1631 respcciivcly.

Pircs3 achieves 78.5%, 86.2% and 93.7% and pircs4

achieves 75.7%, 84.4% and 89.8% respectively of these best

results. This indicates that pircs performs comparatively

well for exhaustive searches at the high recall end. Also

pircs3 returns 7640 relevants retrieved at 1000 documents

cutoff, the most of the automatic systems.

Tabulated below in Table 4 is the behavior of our routing

algorithm at different levels of query expansion, and can be

direcdy compared with our pircs3 results at expansion level

80. Effectiveness of our reuieval algorithm seems to

plateau at the high end of the expansion. The behavior is

quite similar to what we observed in our TREC-2 'further'

experiments. We did not perform massive query expansion

as done in [BuAS94].

Expansion Level: 0 40 80 120

relev: 9353 9353 9353 9353

rel_ret: 7015 7574 7640 7680

average precision:

.3256 .3782 .3887 .3960

Precision at:

5 docs .5360 .6480 .6400 .6560

10 docs .5200 .6080 .6260 .6480

100 docs .3844 .4490 .4606 .4698

R-Precision:

.3668 .3862 .3991 .4102

Table 4: Pircs3 Routing Results at Various Expansion

Levels

5. THRESHOLDING EXPERIMENTS FOR
ROUTING RETRIEVAL

Routing systems are presented with new documents in an

ongoing fashion. Limited storage and/or limited

communication bandwidth may force the system to discard

all but the most relevant documents. The system must not

only rank documents, but must strictly partition them into

retrieved and nonreuieved sets, just as set-based retrieval

(boolean query) systems and text categorization systems do.

For systems which produce RSV's, one approach to

partitioning is to set a threshold and retrieve all documents

with RSV's over that threshold. Thus the TREC-3 optional

routing experiment requiring systems to declare which

documents were retrieved was refered to as a

"thresholding" experiment. It should be noted, however,

that thresholding is not the only approach to partitioning

[Jaco94,ToAp94].

251



In this section we begin by discussing some problems with

the TREC-3 thresholding evaluation. We then present our

approach to the evaluation, our results, and some

observations.

5.1 Evaluation

A person setting up a routing system needs to know what

users desire the routing system to do. This goal needs to be

expressed in the form of some effectiveness measure which

the system can be tuned to optimize. The goal for the

TREC-3 thresholding experiment was defined by NIST as

follows:

"This threshold should be 'set' so that the

system would retrieve R relevant documents,

where R is the number of relevant documents

that were found for this topic in TREC-2."

Retrieving a specified number of relevant documents is one

of several plausible goals for a routing system. As defined

above, however, the goal is unclear. Only the ideal

partition of the test data (R relevant documents retrieved

and, presumedly, no nonrelevant documents retrieved) is

defined. It is not clear how non-ideal partitions should be

evaluated. For instance, is retrieving 50% of the relevant

documents and no nonrelevant ones better or worse than

reoieving 90% of relevant documents plus 10% of the

nonrelevant ones?

In any case, the thresholding experiment's goal was

incompatible with the overall rules of the TREC-3 routing

evaluation:

"Special care should be used in handling the

routing topics. In a true routing situation,

a single document would be indexed and

'passed' against the routing queries. Since

most of you will be indexing the test data

set as a complete set, routing should be

simulated by not using any test document

collection information (such as IDF based on

the test collection, total frequency based on

the test collection, etc.) in the searching."

This meant, in particular, that routing methods were not

allowed to take into account the number of documents in

the test set or other global properties of the test set. But

without such knowledge, it is impossible to define a rule

that is expected to retrieve R relevant documents. To see

this, consider a rule that retrieves R relevant documents on

test set A. Now consider test set B which consists of 100

copies of the test set A. Clearly 100*R documents will be

retrieved on the test set B, and under the TREC-3 rules

there would be no way to distinguish the two test sets and

thus, in general, no way to meet the goal of the thresholding

experiment given the TREC-3 rules. (It is worth noting that

there are effectiveness measures, notably decision theoretic

loss measures [DuHa73], which could have been optimized

under the TREC-3 restrictions.)

5.2 Approach

Despite the problems with the thresholding evaluation, we
chose to test several approaches to it A common goal of

these approaches was to normalize the PIRCS RSV's so that

a threshold could be determined automatically for each

topic. In PIRCS, the retrieval status value that is calculated

for each document is theoretically the log-odds value that

the given document is relevant to the topic under attention.

In practice, so many approximations are made that the raw

RSV's are only useful for ranking.

5.2.1 Normalization Using Query Self-Relevance

Our first approach to normalizing RSV's relies on the

property of 'self-relevance' as discussed in [Kwok85]. A
query describes what a user needs. Suppose there were a

'document' identical to the query. We can presume this

hypothetical document would be relevant to the query.

Thus, given a query we always have one 'relevant

document' as reference. We call the RSV for this

'document' the query self-retrieval RSV, or qRSV.

The qRSV for a query will normally be larger than the RSV
for any true document, since true documents will only

partially match the query. If we divide a document's RSV
by qRSV, the result can be interpreted as a percentage of

the RSV of a good 'relevant document'.

In practice, we use (constant * RSV/qRSV) as the

normalized score. The hope is that this normalized score is

more comparable between queries, so that to achieve a

desired effect the same threshold can be used for all queries.

For the TREC-3 thresholding experiment all test documents

with normalized scores of 0.5 or above were considered to

be retrieved. We call this strategy Selfl. The threshold of

0.5 was chosen arbiu^arily, and could be improved by

learning from other queries, or from relevance judgments on

a particular query. A related strategy, based on the score of

the top ranked document rather than a self-retrieval value,

has been used elsewhere [LPY94].

5.2.2 Normalization Using Logistic Regression

For our other approaches, the normalized RSV was an

explicit estimate of the probability of relevance. We began

by finding, for each topic, the RSV for all training

documents which were judged for relevance to that topic.

The resulting RSV's, along with the relevance data, were fit
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to a logistic function. The result was a pair of parameters

a and b for each topic, such that

exp(a + b * RSV)

1 + exp(a + b * RSV)

(where exp is the exponential function) should be a good

estimate of P(TID), the probability that document D is

relevant to the topic [LeGa94]. The routing system can

then generate an estimate of P(TID) for new documents by

first computing an RSV for the document and then applying

the above formula with the appropriate a and b for that

topic. Note that unlike Selfl, this method requires relevance

judgments.

Our submitted thresholding run, Probl, was a compromise

between the stated goal of the threshold evaluation and the

somewhat contradictory restrictions on how routing could be

done. We estimated P(TID) for all training documents for

a topic and sorted these estimates in descending order. A
program then went down this sorted list, taking the

cumulative sum of the P(TID) values until the sum exceeded

R (the number of documents judged relevant to the topic).

The value of P(TID) at that point was chosen as the

threshold to be used on the test set. (Actually, this value

was used in a normalization formula for RSV's, enabling

0.5 to be used as the threshold for all topics, but the effect

was the same.) The rationale was that the summed
P(TID)'s provided a better estimate of the number of

relevant above a threshold, than the number of judged

relevant documents above a threshold.

As observed earlier, however, there was no reason to

believe that retrieving a specified number of relevant

documents was possible at all without knowledge of the size

of the test set and the distribution of scores on it. We
therefore tested a third method (Batch 1). In this approach,

the RSV's of test documents instead of training documents

are converted to estimates of P(TID), using the logistic

parameters fit on the training data. (No information about

test set relevance judgments is used.) Again a program

sorts these estimates and sums them in descending order

until a total of R is reached. Exactly the documents above

that point were retrieved.

Note that Batch! is not allowed under the TREC-3 rules,

since all test documents must be scored and sorted before

the decision is made to retrieve any individual document.

53 Results

Table 5 below shows for all three partitioning methods, the

total number of documents retrieved (i.e. above threshold),

estimated number of relevant retrieved (for methods that

can estimate this), and tlie judged number of relevant

retrieved, along with macroaveraged recall, precision, and

R-precision as computed by the TREC-3 ihresholding

evaluation program.

Total Estimated Judged

Ret Rel Ret Rel Ret Recall Prec. R-Prec.

Selfl 23872 — 6708 0.7118 0.2658 0.2795

Probl 10498 — 4562 0.5145 0.3916 0.4477

Batchl 43499 10155 7014 0.8362 0.1907 0.1765

Table 5: Thresholding Results

The desired number of relevant to retrieve (based on the

training set) was 11,645. Batchl comes closest to this

target, with Selfl, due to a fortuitous choice of threshold,

close behind. Probl, the submitted result, was inferior to

the other two on this measure.

Batchl is more effective than the immediate comparison of

7,014 relevant retrieved to 11,645 desired suggests. First,

there were only 9,353 topic / test document pairs judged

relevant at all, so this was the maximum number any system

could get. Second, following the TREC-3 rules, we did not

allow Batchl to retrieve more than 1000 test documents for

any topic, nor did we allow it to compensate for this

limitation by attempting to retrieve more than the desired

number of documents for other topics.

These limitations are reflected in the fact that the sum of

the estimated probability of relevance for the 43,499

documents retrieved by Batchl was approximately 10,155,

which was lower than the target number of 11,645. Selfl

was also affected by the restriction to 1000 documents

retrieved since the 1000th document was still above the

Selfl threshold for some topics.

Finally, not all documents which Batchl retrieved had been

judged for relevance. Of the 43,499 documents that Batchl

retrieved, only 29,193 were judged for relevance. Of those,

Batchl estimated that 8,037 were relevant, only a 14.6%

overestimate compared with the true value of 7,014 relevant

among these documents. Batchl retrieved 14,306

documents which were not judged for relevance, and

estimates that 2,118 of these are in fact relevant. Thus the

effectiveness of Batchl, as well as of all the thresholding

methods, is understated.

Batchl 's 15% overestimation is similar to that observed by

Cooper [CCG94] when applying a different logistic model

to the TREC-2 data. A plausible explanation is that the

training data, since it consists of best-ranked documents

from a number of systems, contains more relevant
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documents than a random samph; with the same distribution

of RSV's.

If we evaluate by R-precisioni, say, instead of by the stated

thresholding goal of numlber of relevant documents

retrieved. Batch 1 is clearly inferior to both Selfl and Probl.

This reinforces our point that a meaningful evaluation of

partitioning systems must define an actual effectiveness

measure, not simply an ideal retrieval.

As a final obsevation, note that Batch 1 estimates there are

2,118 unjudged relevant topic / document pairs among its

retrieved data. Even allowing for the roughly 15%
overestimation observed on the judged data, this would still

suggest there are 1,840 unjudged relevant documents in just

the Batch 1 retrieved sets. This should be taken into account

in interpreting the TREC-3 results.

6. CONCLUSION

The PIRCS retrieval system and its learning capabilities

have been demonstrated to give excellent performance in a

routing environment In particular, we have shown that

learning from known relevants can be beneficially affected

by using only the signal-rich short documents and

subdocuments for training and query expansion. For

ad-hoc, the controlled recurrent activation spreading

procedure, which enhances retrieval via a few initially

best-ranked documents,, appears useful. However, more

investigation needs to be done to find the best parameters

for this operation. For thresholding, the normaUzation of

retrieval raw scores by the query self-retrieval value also

seems to give reasonable results. An advantage of such an

approach is that it needs not rely on past results for training

(although it can make use of training data as well), and can

be used in an ad-hoc environment for stopping retrieval.

When training data is available, transformation to

probabilities is useful for estimating and optimizing various

effectiveness measures.
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Abstract

Full-text scanning offers significant advantages over other methods of document retrieval

but is normally too slow for use on large collections. The Fujitsu APIOOO parallel distributed-

mcmory mactiinc has been used to reduce the time penalty for full-text scanning to accept-

able interactive levels. The query language for the retrieval software (called PADRE) is

described herein and differences between PADRE and traditional systems are iiiglJightcd.

The advantages of the full-text scanning in broader retrieval contexts are outlined. TPEC
precision-recall results are discussed and timings are reported.

1 Introduction

The computational cost of full-text scanning as a method of document retrieval is usually re-

garded as prohibitive for large document collections. The availability of a large-memory pai-allel

machine challenges this wisdom by permitting a full scan of a TIPSTER-sized collection to be

carried out in of the order of one second.

Full-text scanning offers the following advantages over other methods:

• It preserves all the information in the document collection.

• It allows queries to be constructed from completely general operations over the text.

• It permits rapid response to changes in the document collection, such as the addition or

deletion of documents.

PADRE is a document retrieval system designed and implemented by the author for the

Fujitsu APIOOO parallel distributed memory supercomputer. The architectm'e of this machine

is described in [1, 2, 3]. Fuller details of the design and implementation of PADRE cu-e to

be found in [9]. PADRE's capabilities are constructed on top of a small set of basic pattern

matching operations.

2 Capabilities Of The PADRE Query Language

The PADRE quexy language is more fully described in the User Manual [7]. Below is a brief

summary of its capabilities. Note that the query language is not very user friendly. It is intended

that PADRE quexnes will be generated by a more friendly, perhaps graphical interface. Indeed

a graphical front-end for PADRE does exist (see Hawking and Bailey [6]) but it is only capable

of accessing a subset of PADRE functionality.
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2.1 Primary Terms

The basic pattern matching operations implemented by PADRE are as follows:

• Literal strings (using Boyer-Moore-Gosper (BMG) string matching);

• Nmneric ranges (matches strings of digits whose numeric value lies in a nommated range,

eg. 1776..1859); and

• Regular expressions (using GNU regular expression code)

2.1.1 Word-Start Mode

By default, matches for literal strings are constrained to stai-t at the beginning of a word. For

example, searching for "ice" will find only words beginning with that string. This behaviour

can be changed by changing the value of the wsmode variable to any in which case matching is

independent of word starts. In this case, ice would match nice and spices as well as iced.

2.1.2 Case Sensitivity

The casesensitive variable allows the searcher to specify whether searches for literal strings

are to be considered case sensitive or otherwise.

2.1.3 Spaces In Patterns

A space in a PADRE literal term matches any single non-alphameric character.

This allows the searcher to locate phrases, such as "wool exports", and word suffixes, such

as "ize " which with wsmode=any will match any word ending in "ize" even if the character

following is a punctuation mark.

Introducing a meta-character to match an arbitrary sequence of non-alphamerics would be a

significant improvement but this has not yet been implemented in the BMG context. A regulai*

expression can achieve this end but the computational cost is much greater. Alternatively, the

searcher can make multiple BMG searches for the pattern with one space, two spaces, etc.

and then combine the results.

2.2 Regular Expressions

PADRE's regexp command allows the searcher to locate all occurrences of strings matching a

regular expression using the Unix egrep syntax. PADRE incorporates the Free Softwai-e Founda-

tion GNU regular expression code almost immodified. The following example matches the most

common pattern of vehicle registration (license) plate from the Australian Capital Territory:

Rl: regexp "\<Y[A-Z] [A-Z] [0-9] [0-9] [0-9] \>"

2.3 How PADRE Represents The Results Of A Search

Tlie result of a PADRE search takes the form of an ordered array of pointers to the first chau'acter

of each match in the text collection. Such an cirray is called a match set. Match sets are used

directly by the conmiands which display lexicographic context and are also used to calculate

a component of the cumulative relevance measure for a document. Note that the match set is

distributed across all processors in the parallel machine.
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2.4 Compound Terms

Compound terms modify the behaviour of primary terms or combine the match sets resulting

from searching for other terms, either primary or compound. There are thi-ee types of compound

term:

• Component secirch (eg. pattern within component component name);

• Proximity semxh (eg. patternl near pattem2)\ and

• Set operations, which allow pairs of match sets to be combined using difference, union and

inter-section operations. Set operators allow named as well as imjnediate operands.

2.4.1 Component Searches

PADRE permits the searcher to define components such as title, abstract, definition, head-

word etc., by specifying start and end markers for each component. For example the title of a

document may be enclosed by <title> and </title> markers.

Subsequent searches for primary terms may be constrained to lie within particular compo-

nents. CmTently, only literals may be used in component searches but there will be no pai-ticular

diflaculty in generalising this.

2.4.2 Proximity Searches

Proximity is cmTently expressed as a fixed number of characters; it would be useful, and may

also be feasible, to express it in terms of paragraphs, sentences or words.

The proximity operators near n and fby n operate on the n most recently computed match

sets and produce a result set consisting of all the members of the first match set which satisfy

the appropriate near (or followed by) relationship with members of the other sets. The following

group of commands creates a result match set indicating all the occurrences of "Clinton"' which

are followed within 200 characters by one or more occurrences of "Yeltsin".

» -Cproximity 200}

» "Clinton "

» "Yeltsin "

» near 2

Note that proximity'' operators can be applied regardless of how the match set operands were

computed.

2.4.3 Set Operations

Union, intersection and difference operators may be applied to named or inmiediate operands.

They produce a result match set by applying the appropriate operator to two match sets. The

union operator is useful for matching a series of alternatives. The following command makes a

set of pointer's to all occurences of each of the strings.

» "car " + "vehicle " + "sedan "

Difference can be used to exclude specific instances of a general pattern. For example, the

following command finds all words starting with comput except those starting with computer.

» "comput" - "computer"
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2.5 Measuring Relevance

A document's estimated relevance is computed according to the following formula:

k

i?^ = 10000 x^(J,xr(i,rf)) (1)

where:

Rd is the estimated relevance of document d,

r^t^fi) is the relevance of a document d due to term t,

It is the manually assigned importance of term t, and

k is the number of terms.

(2)
y/f\irrd

where:

f{t,(l] is the frequency of term t in document d,

Ft is the frequency of term t in the entire collection, and

Id is the length of document d

The factor of 10,000 is introduced merely to scale the relevance measures into a more con-

venient range. It may be that a logarithmic function rather than a square root would be even

more effective at preventing the bias against long documents and toward infrequent terms from

being applied too severely.

2.6 Identifying and Displaying Relevant Documents

The commands top n and retrieve n respectively identify and retrieve the n documents with

the highest accumulated relevance scores.

2.7 Displaying Lexicographic Context

The seaixher may request the display of each match in the current match set with specified

number of characters of pre and post context. The pr conmiand displays all matches; the

sample n command displays at most n of them.

2.8 Key Differences Between PADRE And Conventional Systems

1. Use of pattern matching as the basic operation.

2. Availability of manually assigned term importance weighting.

3. Ability to use negative or zero importance weights.

4. Different meeming of set operations.

5. Support of regular expressions.
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3 TREC-3 Participation

PADRE was entered only in the Ad Hoc section of the TREC competition. Unfortunately,

the generation of both Manual and Automatic queries was subject to significant constraints

on human resources and time. A TREC-ready form of the PADRE query language was first

implemented only a few weeks before the deadline for entries and insufficient time was available

to benefit from the training topics.

3.1 Generation Of Manual Queries

Manual queries were generated by an unskilled researcher (the principal author). Proximity

operators and manually assigned term importance weightings were used extensively to try to

improve precision and word prefixes were used to match multiple variants of the same word. For

example:

{weight 0}

"smoking" + "smokers" + "tobacco "

"ban " + "prohibit" + "disallow" + "forbid" + "outlaw" + "bann"

{weight 1000}

near 2

Negative term importance weightings were used to implement exclusions specified in the

topics.

{weight 1}

"murder" + "homicide" + "kill" + "assassinate" + "strangle" + "manslaughter"

"motive" + "reason " + "because "

{weight 1000}

near 2

{weight 0}

"popular" + "author " + "fiction" + "reviewer" + "book " + "whodunnit"

{weight -900}

near 2

Manual thesaurus expansion was used to improve recall. Synonyms and specific instances

of general terms were generated using general knowledge, dictionaries, thesauri, subject-specific

material and a friend who knew the names of American restaui'ant chains. Terms were combined

using the PADRE union (+) operator.

3.2 Generation Of Automatic Queries

The core of the automatic query generation software is an algorithm for generating an ordered

list of key words and phx'ases from a document. The topic specification provided by TREC is

processed by this algorithm, and the output is foi'matted to comply with the PADRE query

language.

The algoritlmi is based on familieu" statistical techniques using word and phreise frequency

information, word stemming, and pln^ase subsumption. Currently, no thesaurus or semaiitic-net

information is used, and the algorithm could clearly be strengthened by its incorporation.

The relative weights for the PADRE query axe calculated by normalising the rank values

generated by the keywording softwai-e. Equivalent words and phrases (e.g.. "Australian live
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sheep shipments", and "shipping live sheep from Australia") are detected by the algorithm, and

the PADRE "+" operator is used to represent their synonymy. Phrases are not represented as

strictly ordered sequences of words; rather the PADRE proximity and near operators are used

to permit greater flexibility in word separation and order.

4 PADRE Performance

This year's results are relatively poor, though having achieved best results on three of the topic-

specific measures is quite encouraging. We believe that the major area of potential improvement

for next time lies in the process of query generation rather than in the basic design of PADRE.
The lack of a user-friendly query interface, coupled with lack of sleep on the part of the

person generating the manual queries, caused a significant reduction in performance in the

Manual category. No fewer than fourteen of the 50 Manual queries were later discovered to

include obvious errors. Errors included neglecting to reset weight to zero before terms of no

significance by themselves (12 times), leaving out a proximity operator (three times), and mis-

typing "santion". Correcting these errors (before looking at the documents retrieved) caused

dramatic performance improvements on three topics, changing performance levels from worst or

near worst to above median.

More generally, a lack of experience with the document collection and with generation of

retrieval queries, shows up as rather poorly formulated queries.

4.1 Case Study - Topic 155, Manual

Right Wing Christian Fundamentalism - 42 relevant documents.

This was originally submitted with a missing "weight 0" meaning that any dociiment men-

tioning any of "constitution", "Constitution", "civil liberties", "Civil Liberties",

"US", "U.S.", "United States" or "USA" was regarded as highly relevant. Consequently, 1000

documents were retrieved of which none were relevant.-^ The topic as originally submitted ap-

pears below.

topic 155

{weight 0}

[proximity 100>

"right wing " + "fundamental is"

"christian"

"grass roots " + "politic" + "religious agenda " + "elector"

{weight 500}

near 3

Ccasesensitive 1}

"constitution" + "Constitution" + "civil liberties" + "Civil Liberties"

+ "US" + "U.S." + "United States" +"USA"

{casesensitive 0}

{weight 1000}

near 2

top 1000

^Sincere apologies to tlie person who read the 200 documents erroneously retrieved due to this error!
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After correction of the error, 27 documents were retrieved of which still only 5 were relevant.

To investigate why, all documents officially judged relevant and the documents retrieved by the

modified PADRE query were extracted and examined. It soon became clear that the query was

defective in several ways:

• A number of words and phrases connoting the religious dimension were missing from the

query partly due to the query author's lack of subject knowledge. Excimples include "Moral

Majority", "evangeli", "christian right", "prayer", "preacher", "ministry", "Pat

Robertson", "Jerry Falwell".

• A number of words and phrases connoting the US political dimension were missing from

the query partly due to the query author's lack of subject knowledge. Examples in-

clude "GOP", "Republican", "Democrat", "primaries", "Super Tuesday", "Campaign",

"presidential", "nomination", "party".

• During initial query design, the author could not see how to enforce the requirement that

the documents must relate to the U.S. It was hoped that by assigning greater weight to

documents whose references to religion and politics occurred also near references to the

United States, the constitution or the second amendment, this would cause actually rele-

vant documents to achieve the highest rank, while allowing documents rendered UTelevant

because of nationality to cause false hits lower down the list. This strategy did not work,

largely because documents written in the United States about the U.S. political process

do not generally name the U.S. A better strategy would attempt to include documents

which mentioned names of U.S. states, U.S. cities, U.S. polititicians, U.S. religious figures

and U.S. political parties and to exclude documents which frequently referred to foreign

places and personalities. In fact, most of the erroneously retrieved docimients could be

excluded or down-weighted by assigning negative weights to places and people associated

with Lebanon.

• The proximity of 100 was too tight when looking for associations between terms connoting

the religious dimension and terms indicating the U.S. political dimension.

We are optimistic that a refined query addressing these defects would achieve dramatically

better performance.

4.2 Speed

PADRE runs for the TREC competition were run on a 512-processor configuration of the Fu-

jitsu API 000, a machine with 8 gigabytes of RAM. Competition runs used full-text scanning

exclusively. Table 1 shows the average times taken to process TREC-3 topics in this way.

Though it was not used in the TREC competition, PADRE does have the ability to build a

distributed inverted file index. Table 2 shows the relative speeds of the three alternative PADRE
methods for locating literal strings. Table 3 shows the time taken to build an inverted file index

over the TREC data.

A time of 40 seconds to process a complex TREC query does not seem excessive. However,

considerable improvement is possible. Dramatic improvements could be made by building an

inverted file and usmg it to search for literal terms. The applicability of the inverted file could

readily be extended.

Even without using an inverted file, improvements ai-e likely to be possible in the following

areas.
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Query Type

No. terms

per topic

No. set/proximity

operations per topic

Mean time

(sec.) per topic

Manual

Automatic

11-110 (mean=27.4)

5-57(mean=18.7)

9-105 (mean=24.7)

1-29 (mean=9.4)

38.1

42.3

Tabic 1: Elapsed time required to process THEC-S topics on a 512-proccssor Fujitsu APIOOO using full-

text scanning. Times arc averaged over all 50 topics. Tlicy do not include time taken to load the data

into memory across the network.

Search method Eapsed time (sec.)

Boyer-Moore-Gosper

GNU Regular Expression

Indexed

1.12

6.60

0.02

Tabic 2: Elapsed time required to find all occurrences of a literal term using three different methods. Each

time is the average of the times taken to locate the six strings: "ape"", "fish", "cannibal". "Australia",

"reject" , and "unconditional" . The data set comprised all three TREC CD-ROMs after purging manual

indexing terms and the machine was a 512-processor Fujitsu APIOOO.

Data set Elapsed time (sec.)

GDI and CD2 combined

GDI, GD2 and GD3 combined

92.18

128.41

Tabic 3: Elapsed time taken to build an inverted file index over the TREC-3 data, using a 512-proccssor

Fujitsu APIOOO. Note that the inverted file actually consists of 512 separate partial indexes which do not

need to be merged.
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• Replacing the multiple literal scans and multiple union operations used to find alternates

with a single-pass finite state automaton method.

• Replacing the ver}' inefficient algorithm for returning docimients in order of decreasing

rank.

• Introducing a more effective automatic method of balancing load across cells.

padre's ability to handle dynamic document collections has been reported elsewhere [9].

Retrieval downtimes caused by additions to or removals from the document collection did not

exceed 20 seconds for changes of 10 megabytes or more.

5 Desirable PADRE Extensions For Future TRECs

1. Tuning up the software which generates automatic queries and adding thesaurus and se-

mantic net capabilities are likely to produce the greatest benefit.

2. For manual query generation, a well-designed user interface is sorely needed.

3. It would be very useful if PADRE incorporated pre-defined class terms which could be

efficiently located in the text. For example, the class term US-states might match any of

Alaska, Arizona, etc.

6 Beyond TREC-3

The architectui'e of PADRE is capable of supporting retrieval based on any function computable

over text. In its present form PADRE includes capabilities which were not exercised in the

TREC-3 competition.

Numeric ranges are useful in conjunction with proximity operators. They would also be

useful in component searches. It is planned to remove the current implementation restriction

which prevents the latter.

» "Nixon "

» 1968. . 1972

» near 2

» 1968.. 1972 within component publicat ion_date

Thought will also be given to extending PADRE to handle more general date compcirison

functions. For example:

>> published before June 1985

Below cu-e some illustrations of PADRE's regular expression capabilities. R2 matches num-

bers from 1900 to 1999. R3 could be used to find docxmaents containing Gaithersburg ai-ea

telephone numbers. It matches several different forms, while R4 matches NIST email addresses.

R5 and R6 illustrate the use of regular expressions to match alternative spellings or \^riations

on the same word. R6-R8 could be used to find documents of pai'ticular types, based on content.

R6 matches a common form of LaTeX command, R7 matches the familiar SGML pattern <blah>

</blah> and R8 matches C language comments.
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R2: regexp "\<19[0-9] [0-9]\>"

R3: regexp "\<\+?l?\-?\(?301\)? [- ] [0-9] [0-9] [0-9] [- ]? [0-9] [0-9] [0-9] [0-9] \>"

R4: regexp "\<[a-zA-Z_\-]+Q(ncsl.nist .gov) I (NCSL.NIST.GOV)\>

R5: regexp "\<judge?ment\>"

R6: regexp "\<ha(th) |d| s Kve) I ving\>"

R6: regexp "\\begin-C . *}"

R7: regexp "<([a-zA-Z]+)>.*</\l>"

R8: regexp "/\*.*\*/"

PADRE regulcir expressions can also be used to find pallindromic words of up to 19 characters

in length, however this requirement arises rather infrequently in practical document retrieval

applications.

The PADRE architecture could feasibly be extended to support retrieval based on stylistic

properties. For example, retrieving documents in order of decreasing stylistic similarity to the

Gettysburg address. A future PADRE might also be able to be used to retrieve documents

which quote or paraphrase texts of interest.
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1.0 Abstract

N-gram-based representations for documents have several

distinct advantages for various document processing tasks.

First, they provide a more robust representation in the face

of grammatical and typographical errors in the documents.

Secondly, N-gram representations require no linguistic

preparations such as word-stemming or stopword removal.

Thus they are ideal in situations requiring multi-language

operations.

Vector processing retrieval models also have some unique

advantages for information retrieval tasks. In particular,

they provide a simple, uniform representation for docu-

ments and queries, and an intuitively appealing document

similarity measure. Also, modern vector space models have

good retrieval performance characteristics.

In this work, we combine these two ideas by using a vector

processing model for documents and queries, but using N-

gram frequencies as the basis for the vector element values

instead of more traditional term frequencies. The resulting

system provides good retrieval performance on the TREC-1

and TREC-2 tests without the need for any kind of word-

stemming or stopword removal. We also have begun testing

the system on Spanish language documents.

2.0 Background

2.1 N-Gram Representations

An N-gram is an N-character slice of a longer string. For

example, we could represent the word TEXT with the fol-

lowing N-grams:

• bi-grams: _T, TE, EX, XT, T_

• tri-grams: _TE, TEX, EXT, XT_

• quad-grams: _TEX, TEXT, EXT_

where the underscore character represents a leading or trail-

ing space. N-grams provide a distributed representation, in

which each word is represented by a set of N-grams. Words

that are similar, say by virtue of having a different suffix or

a spelling variation, will nonetheless share a large number

of N-grams. For example, consider the words RETRIEVE,
RETRIEVAL, and RETRIEVING, which share the bi-

grams _R, RE, ET, TR, RI, IE, and EV. Likewise,

RETRIEVE and its frequent misspelling RETREIVE share

most of their N-grams.

We built several systems using this notion of N-gram-based

representations to perform various retrieval tasks. The first

was a simple text retrieval tool called zview which served as

an informal corporate database at ERIM. zview provided

very easy-to-use access to a set of ASCII documents since it

tolerated spelling and word order variations in queries, and

required no Boolean search expressions.

Another example of N-gram-based representations was in

some of our work for the U.S. Postal Service [Cavnar93a].

In conjunction with USPS-sponsored research on address

interpretation, we built an N-gram-based system for match-

ing city, state and ZIP information off of an address in order

to determine a set of relevant ZIP codes. This was quite

important, given the realities of postal patrons' addressing

errors, peculiar local addressing conventions, errors in the

Postal databases, and errors in OCR systems attempting to

read low-quality address images. Thus, one could not count

on any one piece of information in an address as being cor-

rect. It was only the coordinated redundancy inherent in an

N-gram-based representation that allowed this system to

maintain a high retrieval performance in the face of multiple

errors in the city, state and ZIP information.

2.2 TREC

The TREC competitions [Harman94] are a series of confer-

ences sponsored by ARPA and NIST specifically to stimu-

late the advancement of the art of information retrieval by
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• Providing large standardized datasets, query sets, and

relevance assessments for measuring retrieval perfor-

mance, and

• Providing a conference where both commercial vendors

and academic researchers may meaningfully exchange

approaches and results. Furthermore, these conferences

are high in content and reasonably free of advertising

hype.

For TREC-2, we fielded a retrieval system that used an N-

gram-based representation, but with an adhoc retrieval

model [Cavnar93b]. This system had several notable defi-

ciencies:

• It was designed as a filter rather than as a true retrieval

system. Thus, every run of the system required a com-

plete pass of all of the data. This process took hours for a

single query.

• The system built queries from the topic statements in a

very simplistic way, using only the <concept> section of

the topics. This was unfortunate, since many very rele-

vant terms appeared only in the narrative portion of the

topics. Furthermore, we knew that for TREC-3, at least

some of the topic sets would not have <concept> sec-

tions at all.

• The system used a completely adhoc method of term

weighting based on the order of the terms in the <con-

cept> section of each topic and somewhat on the fre-

quency of occurrence of the terms in each document.

Although we tried several different variations, none

proved at all adequate.

On the other hand, we did demonstrate that the system could

tolerate some level of typographical errors in the queries.

This level of errors would have rendered most, if not all, of

the other TREC-2 systems completely helpless.

During the same time, we also did some research on using

N-gram occurrence frequencies to categorize documents by

language and subject [Cavnar94]. Basically, the idea was to

compute an N-gram frequency profile for both a set of cate-

gory samples and for a document. Using a simple distance

measure, we then computed distances between the docu-

ment and each of the category samples. For language cate-

gorization, this approach was remarkably successful. Using

only the top 300 N-grams by frequency (where N = 1 to 5)

we could correctly identify the language of a Usenet posting

in the soc.culture hierarchy 99.8% of the time. The system

was somewhat less successful in the subject categorization

task we tested, but the system performed well enough on

certain parts of the task to suggest that the approach merited

further inquiry.

2.3 Vector Processing Retrieval Models

The most common type of text retrieval system uses com-

plicated Boolean expressions to specify relevant documents

by selecting on the presence or absence of terms and combi-

nations of terms. Although researchers and vendors alike

have been working on these kinds of retrieval systems for

decades, there continue to be difficulties with using them.

First, it is difficult for novice users to get satisfactory results

because of the complexity, and in some cases, the opacity of

Boolean term expressions. Moreover, even for experts,

some kinds of information needs are difficult or tedious to

specify in Boolean expressions.

Among the alternatives to Boolean retrieval systems is the

vector processing retrieval model introduced by Salton over

30 years ago, and continuously researched by him and his

group since then [Salton94]. The key concept in vector pro-

cessing models is representing both documents and queries

as vectors in very high dimensional spaces. Typically, each

dimension in a vector represents the frequency of occur-

rence of a term in the document or query. Given all of the

possible terms in a document collection, a vector may well

have many thousands of dimensions, most of whose specific

values are zero for a given document. Viewing documents

and queries as vectors suggests one very natural measure of

similarity: the angle between two vectors. That is, the

smaller the angle between two vectors, the more similar we
would consider their respective documents or queries to be.

In practice, most vector processing systems actually use the

cosine of the angle between the vectors as the actual mea-

sure since that is easy to calculate and yields a number

between 1.0 and -1.0.

Viewing documents and queries as vectors has many attrac-

tions. For example, one could use a document itself as a

query, which would enable the system to find documents

similar to a given document. One could likewise form a vec-

tor to represent a whole set of documents by simply averag-

ing the values of each of their dimensions or performing

some other similarly plausible geometric operation on their

vectors.

3.0 System Description

Given the success of using N-gram frequency information

for text categorization that we mentioned earlier, we felt

inspired to find a different approach to the TREC task that

made better use of this information. The similarity in spirit

between our N-gram frequency profiles and the vectors used

in vector processing retrieval models suggested to us a new

possibility. We decided to try using a conventional vector

processing model, but with N-gram frequencies instead of

term frequencies for the dimensions. We also decided to

limit the system to just quad-grams for this version.
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Although shorter N-grams work very well for name match-

ing, our experience with the text categorization task showed

that the longer N-grams are the ones that seem to carry more

content or meaning. We used quad-grams composed of dig-

its and letters, and also the leading and trailing space for

each word.

This idea is very similar to one independently developed by

Thomas and described in [Thom.as]. Although that system

also used N-grams and a vector processing model there

were several notable differences:

• Thomas's system used only tri-grams of letters.

• It ignored all word boundaries due to punctuation, white

space, or digits, and treated each line as a very long sin-

gle word.

• It did not make use of the notion of inverse document

frequency.

Also Thomas did not attempt the TREC task, but success-

fully performed a smaller relevance measurement task

retrieving medical records. Our motivation for developing

an N-gram-based vector processing system is very similar

to that which inspired Thomas, and produces largely the

same benefits.

Figure 1 gives a dataflow diagram for the system we

designed. We will describe each component of these in

some detail.

3.1 ngramjstats And The Quad-Gram
Dictionary

The first bubble, labeled ngram_stats, represents a program

which reads the documents and builds a dictionary of quad-

grams and their associated information. Among the

attributes that the dictionary associates with each quad-

gram is its inverse document frequency (IDF). The IDF

measures how focused a word is in the collection: a word

with a high IDF would occur in few documents, whereas

one with a low IDF would occur in most documents. See

section 4.0 for a detailed description of the IDF calculation.

The quad-gram dictionary provides the mechanism which

allows the system to keep track of each quad-gram in order

to apply the appropriate term weighting. After building the

dictionary, ngram_stats removes all quad-grams that occur

only once. Data disks 1 and 2 together had 171514 entries

left in the dictionary, while disk 3 had only 136414.

3.2 ngram_vecs And Document Vectors

The process represented by the bubble titled ngram_vecs

reads the document files and produces for each document a

vector giving the appropriate weights for each quad-gram

with respect to that document. This program dealt with pars-

ing the SGML structure of the document files, splitting the

body of the text into quad-grams, counting the quad-grams,

and building the actual document vectors according to the

resulting quad-gram frequencies.

Even though most of the quad-grams had zero weights for

any particular document, prompting us to use a sparse vec-

tor representation, we still had a problem with the space

required to store the non-zero weights for a document. In

general we found that the more quad-grams with non-zero

weights that we kept in the vector, the better the retrieval

performance. Unfortunately, that also meant that the vector

file required more disk space. Happily, the IDF corresponds

very strongly with the importance of the quad-gram, and

thus makes it easy to threshold on the IDF as a way of limit-

ing quad-grams in the vectors to the most important. We
compromised on a minimum IDF threshold of 2.75, which

maximized retrieval performance on the several test sets we
had available while staying within disk availability. At this

threshold, the vector for documents in disks 1 and 2 had an

average length of 360 quad-grams out of an average of 1460

possible quad-grams. We did a few informal experiments on

disk 3 reducing the minimum IDF threshold all the way

down to 2.0. The best performance in this short set of exper-

iments was at an IDF of 2.25. However, even at this level,

the improvement was a few percent in precision, and that

was at the expense of increasing the storage by over 40%.

The overall effect of this IDF thresholding was very similar

to performing word-stemming and stopword removal.

Quad-grams with low IDFs coiTespond precisely to the lexi-

cal components that word-stemming and stopword removal

would eliminate. The great advantage of the N-gram-based

approach is that this elimination is dictated entirely by the

statistics of the language. There is no need for a step requir-

ing detailed linguistic knowledge, and thus the system is

immediately usable without change on any language that

can be represented in ASCII. To illustrate this, we have pro-

vided some frequency statistics tables in Appendix I. Table

1 in the Appendix lists the top 20 quad-grams by frequency

from disks 1 and 2. Notice that nearly all of these quad-

grams are components of words or suffixes that would have

to have been eliminated by the more traditional linguistic

preprocessing. The one difference is the presence of very

frequently occurring prefixes, such as 'PRO', 'COM', and

'CON'. Given their extremely high frequency, these pre-

fixes actually contribute very little semantic content. Like-

wise, Table 2 shows similar statistics for the Spanish data,

and again, the very frequent quad-grams represent those
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text database

document vectors topic vectors

matches relevance judgements

evaluations

Figure 1: System Dataflow Diagram

words or word parts that word-stemming and stopword

elimination would have removed.

3.3 topic_vecs And The Topic Vectors

The bubble labeled topic_vecs represents a process that is

very similar to the ngram_vecs process. It reads the topic

files and produces for each topic a vector giving the appro-

priate weights for each quad-gram with respect to that topic.

The only significant difference between topic_vecs and

ngram_vecs is that they have to parse two different kinds of

SGML structures, and there are some differences in the

details of term weight calculations. The format of the actual

vectors produced is the same. Figure 2 gives a sample topic

and Figure 3 a portion of the corresponding vector for the

topic.

3.4 match_vecs And Document Retrieval

Once we have a set of document vectors available for every

document and topic, we can use them to retrieve documents

that are relevant to a particular topic. Following the vector

processing model, the process represented by the

match_vecs bubble performs this retrieval. This process
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<top>

<head> Tipster Topic Description

<num> Number: 001

<dom> Domain: International Economics

<title> Topic: Antitrust Cases Pending

<desc> Description:

Document discusses a pending antitrust case.

<narr> Narrative:

To be relevant, a document will discuss a pend-

ing antitrust case and will identify the alleged

violation as well as the government entity inves-

tigating the case. Identification of the industry

and the companies involved is optional. The anti-

trust investigation must be a result of a com-

plaint, NOT as part of a routine review.

<\top>

Figure 2: Topic 001 From TREC-1

consists of computing the similarity between the topic's

vector and all of the document vectors, and then taking the

top 1000 documents by this similarity measure.

For the similarity measure, we are again taking the lead

from the classic vector processing model described by

[Salton94], which uses the cosine of the angle between the

vectors. Since we also normalized all vectors to unit length,

this similarity measure thus amounts to computing the dot

product between the topic vector and each document vector.

This is simple and reasonably efficient given the sparse vec-

tor representation. For the full dataset consisting of disks 1

and 2, match_vecs typically takes around 20 minutes on a

Sun SPARCstation 2 to pass all of the 741856 document

vectors and compute the top 1000 scores against a single

topic vector. While this is fine for our research task, it is too

slow for any realistic use as an interactive tool. However,

there are several possible ways to significantly improve

search times which we hope to investigate in future ver-

sions.

3.5 trecjeval And Performance Evaluation

The final bubble labeled trec_eval is a program supplied by

Cornell University as part of their SMART system, but spe-

cifically modified by them to serve as the standard evalua-

tion tool for the TREC task. This program produces some

standard reports showing precision and recall values, and is

= 001
' ANT

'

14 .851851
'NTIT' 19 .151485
*TITR' 32 .506756
' ITRU

'

31 .479759
' TRUS

'

20 .348030
' RUST

'

18 .863096
'CASE' 9 . 288112
' ASES

'

3 . 004144
' PEN' 9 . 087247
' ENDI

'

7 . 693622
* ISCU

'

6 . 482330
' SCUS

'

6 . 481742
* CUSS

'

6 . 467620
* USSE

'

3 . 795147
'USS ' 5 . 027708
* IDE

'

8 . 047592
'NTIF

'

6 . 976310
'TIFY' 4 . 401021
'IFY ^

3 . 791184
' LLEG

'

7 . 611647
' LEGE

'

4. 174561

ire 3: Portion Of Vector For Topic 001

the basis for the comparative reports and graphs in all of the

TREC proceedings.

4.0 Term Weighting

In her closing talk at TREC-2, Donna Harman observed that

by making simple changes in the term weighting one could

drive the performance curve of a good retrieval system

down to completely unacceptable levels. Also Salton has

explored numerous term weighting schemes, and found that

they make very large differences in performance [Salton88].

As we observed earlier, our TREC-2 system used a com-

pletely adhoc term weighting scheme that doubtless was a

major contributor to its weak performance. For our initial

work in TREC-3, we decided to use a simplified version of

one of Salton's weighting methods. For documents, our sys-

tem uses term weights of the form:

(log2(//) + 1)

where tfj is the term frequency of the yth quad-gram in the

document, and the denominator is a normalization for the

document vector for unit length. (log2 refers to the log func-

tion in base 2.) For queries, our system uses similar term
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weights, but which include the IDF (inverse document fre-

quency);

(log2(f/.) +1) IDF
J

The precise formula we used for the IDF of a quad-gram

was:

/DF^. = log2(^)

where is the number of the documents in the collection,

and Hj is the number of documents in the collection contain-

ing at least one occurrence of the y'th quad-gram. This is

about the simplest IDF formulation possible, and we have

not had a chance to pursue the effects of using one of the

more sophisticated versions. See [Harman92] for a more

detailed discussion of the IDF, and alternative formulations

other researchers have used.

Following a suggestion by Salton, we use the IDF factor

only for the query vector so that the IDF factor appears only

once for each term in the final dot product between the doc-

ument vector and the query vector.

5.0 Assessing Performance

The beauty of the TREC task is that there already is a

defined performance criterion in the relevance assessments

provided by NIST and the standard trec_eval tool for actu-

ally calculating the performance results. According to

trec_eval measures, our system appears to be functioning

reasonably well. We ran a number of tests using the earlier

TREC data sets and query sets. Results for tests on the

dataset from Disks 1 & 2 appear in Table 1 . 'Average Preci-

TABLE 1. Test Results For Disks 1&2

Description

Average

Precision

Precision

@ 100

docs R-precision

NG94/Q1 0.1997 0.3934 0.2874

NG94/Q2 0.2172 0.3988 0.3002

NG94/Q3 0.2614 0.4068 0.3236

NG93/Q3 0.1885 0.3426 0.2494

Median93/Q3 0.2804 0.4354 0.3388

NG94/Q4 0.2061 0.2884 0.2668

sion', 'Precision @ 100 docs', and 'R-precision' are some

of the most popular and best understood of the performance

measures used by other TREC participants. In the Descrip-

tion field of the table, NG93 and NG94 refer to last year's

and this year's N-gram-based retrieval systems, respec-

tively. Ql, Q2, Q3, and Q4 refer to the topic query sets 1, 2,

3, and 4. The shaded rows are the results from this year's

(NG94) system. The unshaded rows provide some basis for

comparing the performance of NG94 on query set 3 against

last year's system and against the median performance of all

system in last year's TREC evaluation. NG93 was at the top

of the bottom quartile of last year's TREC competitors, but

has now moved very close to the median performance of

those systems. This is very encouraging, especially in view

of the fact that we have not had a chance to further tune the

system with regards to term weighting or query enhance-

ments. The row labelled NG94/Q4 gives our results for this

year's adhoc test.

Table 2 shows similar results for the dataset on Disk 3.

TABLE 2. Test Results For Disk 3

Description

Average

Precision

Precision

@ 100

docs R-precision

NG94/Q2 0.1877 0.2938 0.2502

NG93/Q2 0.1415 0.2524 0.2031

NG94/Q3 0.2528 0.3360 0.3101

Again, comparing the 'NG94/Q2' and 'NG93/Q2' rows

shows a significant performance improvement from last

year's system to this one.

The row labelled 'NG94/Q3' gives our results for this year's

routing test.

Table 3 gives our results from the Spanish test.

TABLE 3. Test Results For Spanish Test

Description

Average

Precision

Precision

@ 100

docs R-precision

NG94/SP1 0.4275 0.5258 0.4522

6.0 Conclusions And Future Directions

We have successfully implemented an N-gram-based infor-

mation retrieval system using the vector processing model.

This system uses the frequency of N-gram occurrence in

queries, documents, and the entire document collection as a

whole to drive its processing. This approach has many

advantages, including:
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• It provides a robust retrieval system that can tolerate

spelling errors in both documents and queries.

• It requires no linguistic pre-processing of documents or

queries to perform word-stemming or stopword

removal. Thus it is also inherently language indepen-

dent, as indicated by our early results in processing

Spanish documents.

• It allows the system to accrue all of the benefits of the

vector processing model, including being able to manip-

ulate documents and queries in a uniform way. For

example, it easy to use a retrieved document as a query

for a more refined search, such as is necessary for rele-

vance feedback systems.

Using the various TREC datasets, query sets, and relevance

assessments, we determined that our new system performed

substantially better than last year's adhoc N-gram-based

system. Indeed, even in its current simple form, it is com-

petitive with over half of the systems fielded last year.

Besides performing better, the new system, unlike its prede-

cessor, has more obvious directions for improvements. For

example, we used only the simplest of term weighting

schemes that Salton suggested. It would be straightforward

to try some of the more elaborate weighting schemes men-

tioned in [Harman92] and [Salton88]. Also, all of the high-

performing systems from last year included some sort of

auxiliary processing using thesauri or semantic networks to

enhance or enlarge the queries, and improve their retrieval

performance. We have not yet done any of those things, but

it seems clear that they would help. Furthermore, as we
noted in Section 3.2, one of the real limitations we found

was that we had to trade off disk space and performance. It

would be very worthwhile to investigate other low-level

representation techniques that would allow us to keep more

quad-grams with lower IDFs to allow a bit more selectivity.

Finally, although this system is far faster than last year's

entry, it still is not usable for true interactive use. We will

pursue various approaches for significantly improving the

system's retrieval times, including the use of intermediate

indexes to speed the selection of relevant vectors to evalu-

ate.
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Appendix I: Quad-Gram Frequency Tables

TABLE 1. Top 20 Quad-Grams By Frequency In Data Disks 1 & 2 (English)

Quad-Gram Total Occurrences

Number of Documents

Containing Quad-Gram
Inverse Document
Frequency
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I
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Appendix I Continued

TABLE 2. Top Quad-Grams By Frequency In Spanish Data

Quad-gram Total Occurrences

Number of Documents

Containing Quad-Gram
Inverse Document

Frequency

QUE_ 1136311 57071 0.011732

-QUE 1084538 57043 0.012440

_CON 651580 56787 0.018929

LOS_ 650327 56509 0.026009

_LOS 567903 56147 0.035281

_EST 471028 55709 0.046580

_PAR 428472 55453 0.053224

_DEL 424458 55696 0.046916

NTE_ 409750 55510 0.051742

DEL_ 406817 55496 0.052106

_POR 387101 55370 0.055385

ENTE 382908 55007 0.064875

LAS_ 370691 53887 0.094553

_COM 353891 53944 0.093027

ADO_ 346527 54791 0.070551

_LAS 326221 53274 0.111058

POR_ 324827 54548 0.076964

DOS_ 319534 53112 0.115452

ARA_ 310465 53803 0.096803

PARA 308931 53718 0.099084
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Abstract

In this our first year of TREC participation, we implemented an IR system using an AT&T
DBC-1012 Model 4 parallel relational database machine. We started with the premise that a

relational system could be used to implement an IR system After implementing a prototype

to verify that premise, we then began to investigate the performance of a parallel relational

database system for this application. We only used the category B data, but our initial results

are encouraging as processing load was balanced across the processors for a variety of different

queries. We also tested the effect of query reduction on accuracy and found that queries can

be reduced prior to their implementation without incurring a significant loss in precision/recall.

This reduction also serves to improve run-time performance.

Finally, in a separate set of work, we implemented Damashek's n-gram algorithm for n=3
and were able to show similar results as found when n=5.

1 Introduction

For TREC-3, we implemented relevance ranking queries using unchanged SQL on an AT&T DBC-
1012 (formerly Teradata) parallel database machine [4]. The purpose of this implement axion was

to test the following hypotheses:

• A relational system that implements standard SQL, may be used as the search engine for an

information retrieval application.

• A parallel relational database machine will use an optimizer to balance the workload across

multiple processors. The result wiU be a scalable system such that required levels of perfor-

mance may be achieved with the purchase of additional hardware.

• Query reduction based on term frequency counts wiU dramatically improve performance with-

out a significant degradation in accuracy.

*This work supported in part by the National Science Foundation under contract number IRI-9357785.
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We have found that each of these hypothesis are true as our relational implementation provides

scalable performance. Additionally, query reduction improved run time performance without a

significant degradation in accuracy.

Section 2 describes related prior work that serves as the foundation behind our hypothesis.

The use of the relational DBMS to model an inverted index is described in Section 3. Our means

of computing a measure of relevance is described in in Section 3.3. Section 4 and Section 5 describe

our runtime and accuracy results. Conclusions and suggestions for future work are given in

Section 6.

2 Prior Work

We briefly describe the prior work that provides the motivation behind these hypotheses. The

use of a relational system that would serve as a search engine for an IR application was first

proposed by Blair [5]. In this work, it was mentioned that SEQUEL (a precursor to SQL) could

be used to perform boolean keyword retrievals such as "Find all documents that contain the word

'terrorist'. " Later, Macleod presented several SEQUEL queries that performed keyword searches

using unchanged SEQUEL. Additional operators were then described that could achieve relevance

ranking of a set of documents to a query. Research continued in the use of the relational model as

a means of providing a more robust form of information retrieval.

Most research in the area stopped when user-defined operators were defined to address certain

"application specific" operations [3]. Any function required by an application that does not exist in

the database system may be incorporated via a user-defined operator. Stonebraker, et al, examined

the usefulness of user-defined operators in assisting a text editing application [10]. A more recent

thesis was devoted to the use of user-defined operators to provide typical information retrieval

functionality such as keyword searches and proximity searches [8]. Additionally, enhancements to

the database optimizer were analyzed that would allow for query optimization of these user- defined

operators.

We have developed algorithms using unchanged SQL that implement vector space relevance

ranking, proximity searches, and Boolean retrieval. Additionally, we computed worst case disk I/O

estimates for a relational implementation and a traditional IR implementation [7]. It was this work

that led us to the realization that query reduction based on term selectivity would dramatically

affect I/O. For TREC-3, we were able to test different levels of query reduction based on term

frequency and verified the impact on disk I/O and accuracy.

3 Implementation Details

We now discuss the approach used to migrate the category B portion of the TIPSTER collection to

a set of relations. The relations effectively model an inverted index which may be used to efficiently

query the database. The steps used to move text to the relational model are preprocess, load, and

index.

3.1 Preprocess

We have developed a text preprocessor that accepts SGML marked text as input and produces three

files as output. The preprocessor applies text formatting rules for special characters as described in

[1, 2]. Subsequently, for each document, the document frequency for each distinct term is computed

and written to a flat file. After aU of the documents have been processed, a list of each distinct
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term is identified and the inverse document frequency for each term is computed. Implementation

details of the preprocessor are found in [9].

3.2 Create

Relations are created on the DBC-1012. A clustered primary key ensures that the data are stored

in a fashion such that all tuples for a distinct term are on contiguous data pages. Some of our

experiments suggest that this approach seemed to best minimize I/O. Other research continues to

investigate the best placement strategy for these data [11].

Additionally, FALLBACK mode is used for each of the relations. This results in a full replica

of all the data so that the system has resilience to a disk failure.

3.2.1 Load

The DBC-1012 FA.STLOAD utility is used to move the data from the flat files (residing on an

Intel 80486 based machine) to the DBC-1012. The utility makes use of aU of the processors and

ensures that data are distributed to each processor in the fashion prescribed by the clustered index.

We typically found that the FASTLOAD was able to load our largest relation at a speed of 857

rows per second. By comparison, work we have done on an Intel Pentium based processor running

Microsoft SQL Server on Windows NT typically loads data (using the Bulk Copy facility) at a rate

of 381 rows per second.

3.2.2 Query processing

For TREC-3, we only addressed the ad-hoc queries (Topics 151-200). The queries were preprocessed

and loaded into corresponding relations using a similar method as done for the data.

3.2.3 Example

The following example illustrates our process of starting with an input document in a TIPSTER
file and completing with the properly loaded relations.

Consider the following document from the TIPSTER data (a final sentence has been added

to assist our presentation):

<DOC>
<DOCNO> WSJ870323-0180 <DOCNO>
<HL> Italy's Commercial Vehicle Sales <HL>
<DD> 03/23/87 <DD>
<DATELINE> TURIN, Italy <DATELINE>
<TEXT>
Commercial-vehicle sales in Italy rose 11.4% in February from a year earlier, to 8,848 units, according to

provisional figures from the Italian Association of Auto Makers.

Sales for the Association are expected to rise an additional 2% in July. <TEXT>
<DOC>
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The following relations will be built to model this document:

DOC:
doc-id doc^name date dateline

1 WSJ870323-0180 3/23/87 Turin, Italy

DOC-TERM:
doc-id tevm It term-ireq

i commercial i

1 vehicle i

1 sales o
I.

1
i italy 1

i

1
i rose 1

i

i il.4/c
1
1

i february 1
i

1
i year 1

i

i earlier
1
i

i o,o4o
1
i

1 according 1
i

1
i provisional 1

1

1 figures 1

1 Italian 1

1 association 2

1 auto 1

]. makers 1

1 expected 1

1 additional 1

1 2% 1

1 July 1

IDF
teVTCL 10.1

i 1.4/0 z.yoyo

^/o i.oyii

88/1 8 /I "jmc4.oyoD

according n 77SOU. J ( oz

additional 1 nyooi.U ( y2

association i.U ( yz

auto 1 0788

commercial i.UUUU

earlier U.DUZi

expected u.byyu

lebruary l.OZZZ

figures i.ZOOo

Italian 1.8451

italy 1.6721

July 1.0414

makers 1.3010

provisional 2.5172

rose 0.7782

sales 0.6990

vehicle 1.7709

year 0.0000

. , The first relation, doc contains a tuple for each document that occurs in the text. The internal

document identifier and official TIPSTER document name are stored in this tuple along with any

other structured data that has a 1-1 relationship v;ith the document. For TREC-3, we only used

the date and dateline SGML marked fields, but other fields such as source could easily be placed

into this relation.

The docAerm relation models a typical inverted index. An attribute doc.freq is used to store

the number of occurrences for the term in the document. A compressed internal document identifier

is used here, while the official TREC-3 name may be obtained from the doc relation.

Finally, the idf relation stores the inverse document frequency for each distinct term in the

entire document collection. The idf is computed as:

idf{term) = logjo df

where df is the number of distinct documents in which the term appears.

3.2.4 Overhead

Typically, storage overhead has been a justification used against relational IR implementations.

Given that the document identifier and the term must be replicated numerous times in the docAerm
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relation, it would appear that storage requirements would be substantial. The following table

indicates the storage requirements for each of the three relations. Since the DBC-1012 uses hash-

based indices, there is no extra storage required for each index; rather, a fixed 13 byte overhead is

assigned for each table to maintain an internal hash identifier.

Storage Overhead

Name Tuples Megabytes

Doc 173,252 29.6

Idf 389,797 32.7

Doc_Term 33,497,912 2,037.5

For the 534 megabytes found in Category B data the relational structures required to imple-

ment it required 2.1 Gigabytes of storage. However, the DBC-1012 replicates all data to provide

real time protection for a disk failure. Without this replication, only 1.05 Gigabytes would be

required. The overhead ratio is 1.97:1.00.

3.3 Query Processing

Having constructed the relations, we were able to implement a variety of experiments to learn

more about performance of the DBC-1012 for this application. To learn more about accuracy, we

reduced the size of TIPSTER queries based on the precomputed ic?/ values. The premise was that

a very frequently occurring term increases the I/O but decreases the accuracy of the query. Hence,

this form of query reduction is based on the same premise as a stop word list and can be viewed as

a tailored stop word list.

3.4 Building the Query Threshold Relation

A new query relation is generated caUed query.threshold. The original query relation is joined with

the id/ relation such that the idf is obtained for each term in the query. The terms in the query

are then sorted in decreasing order of their idf.

The relation is then exported to a flat file and a simple utility is invoked to determine the

number of terms in the query and develop new queries based on a given threshold. The threshold

indicates the percentage of terms that are found in the new query. A threshold of ten indicates

that the new query contains ten percent of the terms in an unmodified query. For a one hundred

term query, a threshold of ten would result in a query composed of those terms that are ranked (by

idf) one through ten. We developed a query-threshold relation that contains tuples that represent

queries for thresholds of .1, .2, .25, .3, .33, .5, and 1.0.

3.5 Implement the Query with Unchanged SQL

We have previously identified queries that use standard SQL to implement both the inner product

and cosine measures of relevance [7]. These queries used a query relation as described in Section

3. A slight modification is required to implement different query thresholds. Additionally, we

found performance improved when we denormalized the query.threshold table to contain the id/ as

weU. The doc table is used to obtain the official doc name after the internal document identifier

is matched. The query used to compute a vector inner product between a query and aU document

vectors for the TREC-3 data is:
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SELECT c.doc_name, suni(q.cntidf*b.termJ'req)

FROM QUERY_THRESHOLD a, DOC.TERM b, DOC c

WHERE a.term b.term AND
b.docid = c.docid AND

THRESHOLD = ? AND
QUERY_NUM = ?

GROUP BY b.docJd

ORDER BY 2 DESC

4 Run Time Performance

We developed macros to execute queries 151-200 for threshold of .10, .20, .25, .30, .33, .50, and

1.0. Each query was run with one and three concurrent sessions. The reason for this is that the

processors were only being used at a capacity of between twenty and thirty percent with a single

session. Increasing the number of concurrent sessions gives the machine more work to do and results

in increased throughput.

Figure 1 gives the average response time for all fifty queries for each of the query thresholds.

Separate lines depict results for one and three sessions. Figures 2 and 3 provide CPU and disk I/O

results. It can be seen that for thresholds less than .5, workload increases linearly, and over .5, we

experience an exponential change. This is consistent with Zipf's law [12].

1200

1000

800
s
e

o 600
n
d

^ 400

200

0

10 20 30 40 50 60 70 80 90 100

Threshold

Figure 1: Avg. Response Time for Varying Query Thresholds

^ r

1 session

3 sessions +

To further illustrate the cause of the exponential increase in run time performance. Figure

4 provides the number of tuples found in the docJerm relation that match a term in the query.

Again, the behavior is the same, and we can see that thresholds of below .5 runs substantially faster

than over .5.

Finally, we measured the amount of load balancing that takes place in using the four pro-
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cessors on the DBC-1012. The table below indicates the amount of processor imbalance for CPU
time: measured at each query threshold. It can be seen that for all workloads, the

processors are less then ten percent out of balance. Given this high degree of load balancing, it is

reasonable to suspect that additional processors may be added to achieve required response time.

Percent of Processor Imbalance :

threshold CPU Time (1 session) CPU Time (3 sessions)

10 7.36 7.88

20 8.39 7.29

25 9.38 4.81

30 4.79 2.02

33 5.02 3.02

50 8.19 2.38

100 5.13 4.51

5 Accuracy

We measured precision/recall for each of the queries 151-200 for thresholds of .10, .25, .33, .50,

and 1.0. Our hypothesis was that higher thresholds would result in reduced precision/recall as the

query would be searching for terms that were very common across the corpus and would do little

for differentiating a relevant document from an irrelevant document.

Figure 5 illustrates the number of relevant documents that were retrieved for all fifty queries

using varying thresholds. Separate lines for result sets of size 100 and 200 are presented. It can be

seen that as the threshold increases from ten to twenty-five, more relevant documents are found.

This is reasonable to expect as a threshold of ten or twenty may omit many query terms that assist

in identifying relevant documents. As the threshold increases beyond twenty-five the number of
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relevant documents retrieved drops. This is also understandable as a higher threshold will result in

increased noise within the query. Hence, we have found that a query threshold of between twenty-

five to thirty-three may yield good accuracy as well as dramatically improved run time performance

over a query that is not filtered at all (one hundred percent threshold). These results are unofficial

as they were determined after the TREC-3 submission deadline.

6 Conclusions and Future Work

Our TREC-3 effort has served as a proof- of-concept of our prior ideas that an unchanged

relational DBMS may be used to serve as an engine for IR. Our experiments found that overhead

was somewhat high, but tolerable for a large scale machine. An overhead of 1.97:1.00 may be

reasonable for applications that have performance requirements large enough to justify a large scale

parallel architecture. Given the lack of scalable parallel algorithms for parallel information retrieval,

our work may be one means of easily spreading workload across large numbers of processors.

Another advantage of our approach is that structured data and text may be easily integrated.

Although we only used date and dateline in our prototype, other structured fields could have easily

been used. Queries that integrate both structured data and text are relatively straightforward

extensions to the queries we have discussed.

We have also shown that query reduction using term frequencies may be a viable means of

reducing disk I/O without significantly affecting accuracy.

Finally, it should be noted that the results given here are unofficial. Our official results came as

a result of implementing Marc Damashek's approach using n-grams of size three instead of size five

[6]. Interestingly, our results for the ad-hoc collection were markedly similar to those submitted

by Damashek's group. We plan to incorporate this work into our relational implementation by

developing algorithms that implement this work using unchanged SQL.
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Abstract

This paper describes the development of a

prototype system to generate routing profiles

automatically from sets of relevant documents

provided by a user, and to assign relevance scores to

the documents selected by these profiles. The

prototype was developed with the Logicon Message

Dissemination System (LMDS) for participation in

the Third Text REtrieval Conference (TREC-3).

Each generated profile contains two sets of

terms: a very small set to select documents, and a

much larger set to assign a relevance score to each

document selected. The profile generator chooses

each term and assigns a weight to it, based on its

frequency of occurrence in the set of documents

provided by the user, and on its frequency of

occurrence in a large representative corpus of

documents. The LMDS search engine uses the

resulting profiles to select documents, and then

passes the documents to the scoring prototype for

ranking. The score assigned is a function of the

weights of all profile terms found in the document.

Performance figures and TREC-3 results are

included.

1. Introduction

LMDS is a commercial off-the-shelf (COTS)

product, designed specifically for high-speed docu-

ment routing on a wide range of hardware and

operating system platforms. LMDS users create

interest profiles to specify the types of documents

that they wish to receive. Each profile contains a

list of tokens (or "search terms") which may appear

in such a document, together with a Boolean

expression indicating the logical combination in

which the tokens must occur for LMDS to select the

document. In addition, the user may optionally

attach a weight to each search term.

When LMDS selects a document, it passes the

document to a scoring routine, together with

pointers to the set of search terms discovered in the

document, and to their associated weights. In

addition, LMDS provides an API which allows any

installation to customize the scoring routine for its

own purposes. The resulting document scores are

then used to order the documents for display.

A feature not yet available in LMDS is the

ability to generate profiles automatically, based on a

sample of documents which the user deems relevant

to a specific topic. Since the relevance judgments

associated with the TREC-3 training documents

provide 50 such sample sets, our objective for

TREC-3 was to use these sample sets to develop a

prototype system for automatic profile generation

and relevance ranking.

LMDS is designed to run thousands of profiles

against incoming documents in a minimum amount

of time and with minimum hardware requirements.

To qualify as workable enhancements to LMDS,
therefore, any algorithms for automatic profile

generation and relevance ranking must be not only

effective, but also compact and fast. The prototype

system was designed with these goals in mind, and a

hardware configuration was used which reflected

typical real-world resource constraints:

Processor: Dedicated SPARCstation IPC

CPU Clock: 25 MHz
RAM: 24 MB
Hard Disk: 4 GB
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Figure 1: System Data Flow

2. Problem Description

Routing participants in TREC-3 were provided

with 742,000 training documents, 2.1 gigabytes on

two CDROM disks. Documents were selected from

the Wall Street Journal, AP Newswire, Computer

Select disks. Federal Register, and DOE abstracts,

and were stored with embedded SGML formatting

tags. Participants also received 50 routing topics,

each a full-page description of a user's information

needs, together with 50 sets of document numbers

(TREC-2 retrieval results) identifying the training

documents which satisfied each topic.

Participants were to use the above data to gener-

ate routing profiles and to develop relevance scoring

algorithms. They were then provided with 336,000

test documents, 1.1 gigabytes on another CDROM.
They were to run their routing profiles against the

test documents to identify the 1 ,000 highest-scoring

documents for each topic. They were then were to

sort the set of hits for each topic in descending order

of relevance, and were to return the 50 sets of 1,000

hits for evaluation by TREC-3 judges.

3. System Overview

As shown in Figure 1, the prototype system

consists of six separate processes. For TREC-3,

each had its own specific purpose:

1. Corpus Frequency Analysis analyzed a large

representative corpus of documents to create a

database of token-frequency data.

2. Sample Extraction used the TREC-2 results to

extract all documents relevant to each routing

topic from CDROM-1 and CDROM-2, and

created a database of topic samples.

3. Sample Frequency Analysis analyzed the sam-

ple set of documents associated with each topic

to determine the set of tokens that were
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statistically most descriptive of the sample, and

assigned a weight to each token based on its

observed frequencies of occurrence in the

sample and in the corpus.

4. Profile Synthesis incorporated the most descrip-

tive tokens into a LMDS profile, appended a

Boolean logic statement to indicate which

tokens would be used for document selection,

and sent the completed profile to LMDS for

activation.

5. Document Selection used the LMDS routing

engine to dispatch each active profile against

each document on CDROM-3. Whenever the

Boolean logic statement in a profile was

satisfied by the document, LMDS sent the

document to the Document Scoring process,

together with the token and weighting data

necessary to score the document.

6. Document Scoring calculated a document score

for each profile which selected the document,

based on the weights of all profile terms that

were found in the document. The scoring

routine then stored the document and its score

in a profile-designated hitfile for TREC-3
evaluation.

The details of each of the above processes are

discussed below in the context of TREC-3.

Performance figures for each process are provided.

3.1. Corpus Frequency Analysis

This preliminary process analyzed all training

documents on CDROM-1 and all training documents

with relevance judgments on CDROM-2. (This total

set of documents will be referred to hereafter as the

"corpus.") For each document, the process

tokenized all alphanumeric strings, and then

eliminated those tokens which:

1 . Were only one character long.

2. Contained one or more numeric characters.

3. Were in the stopword list.

4. Served as SGML tags.

5. Occurred only once in the corpus.

6. Were in an area of the document deemed non-

searchable by TREC-3 rules.

The process next counted the number of

documents in which each token occurred, then

sorted the tokens alphabetically and stored them in a

file with their associated document counts. A
portion of this file is shown in Figure 2. The

following figures summarize the performance of the

process:

487,000 Documents analyzed

171 Stopwords used

241,000 Tokens identified

0.79 Wall-clock seconds/document, average

3.2. Sample Extraction

This preliminary process used the TREC-2
results to extract all relevant documents for each

topic from CDROM-1 and CDROM-2, and to store

these sets of documents in 50 separate directories.

CORPUS SIZE: 487013

CORPUS
TOKEN TOKEN
DOCS STRING

506 aa
126 aaa

2 aaaa
2 aaac

99 privatisation
14 privatise
38 privatised
16 privatising

920 privatization
93 privatizations

239 privatize
300 privatized

2 privatizer
7 privatizes

141 privatizing

57 zz
5 zzz

60 zzzz
7 zzzzbest

Figure 2: Corpus Analysis Results
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TOPIC ID: 12 8

SAMPLE SIZE: 405
CORPUS SIZE: 487013

TOKEN TOKEN SAMPLE CORPUS
TOKEN RECALL PRECIS TOKEN TOKEN TOKEN

NUMBER PERCNT PERCNT PERCNT DOCS DOCS STRING

1 0 . 00000000 70 1 30 870 284 920 privatization
2 0 .00000000 58 8 1 125 238 21152 sale
3

u . uuuuuuuu 53 6 1 386 217 15656 owned
4 u nnnnnnnn

. uuuuuuuu 91 1 0 556 369 66405 government
5 0 .00000000 nu D J R RJ 0 85 130 denationalizat
6 0 . 00000000 3

-J
1X ni nU J. u 212 20983 tnm

7 0 . 00000000 19 0 25 667 77 300 ^ J- -L V JL ^ <3

8 0 . 00000000 44 2 1 242 179 14414 mergers
Q
-/ n nnnnnnnn 43 7 1 107 177 15995 tender

10 n nnnnnnnn
. uuuuuuuu 44 0 1 082 178 16445 acquisitions

998 0 . 00094249 11 4 0 161 46 28588 best
999 0 .00094302 2 0 0 657 8 1217 indefinitely

1000 0 .00095270 15 1 0 144 61 42319 cost

3287 17 . 64646237 1 2 0 084 5 5925 donald
3288 17 .65115527 1 2 0 084 5 5950 replaced
3289 17 . 65598058 1 2 0 083 5 6007 fundamental

Figure 3: Sample Analysis Results for Topic 128

Each directory thus contained the sample for a given

topic. No figures were kept on the time required to

perform this extraction, but sample sizes varied from

a low of 28 documents to a high of 792 documents.

3.3. Sample Analysis

This process was responsible for producing the

sample statistics necessary for automatic profile

generation. For each topic sample, the process first

tokenized each document in the sample, using the

same tokenizing rules as Corpus Frequency

Analysis. The process then counted the number of

sample documents in which each token occurred.

The process then combined the sample count for

each token with the corpus count for that token to

calculate the binomial probability distribution P(r)

for the token, as shown in the following formula:

P{r) =
r\{n-r)\

P

where:

n = documents in sample

r = sample documents containing token

p = corpus documents containing token

q = documents in corpus

Calculated in this way, the value P(r) can be used as

a measure of how "descriptive" each token is with

regard to a given sample of documents, with lower

values indicating greater descriptive power.

The process next calculated the weight w for

each token, as shown in the following formula:

r
w =—
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! Profile: P_128X_999 . DIS
! Topic: 12 8

! This is a machine-generated profile, based on an analysis
! of the word frequencies in a sample of relevant documents,
! and of the word frequencies in the corpus as a whole.

DISSEM: jy_l/C-128X-999
SOURCE: all

TERMS:

1 DOC CONTAINS privatization (H 30870)
2 DOC CONTAINS sale (H 1125)
3 DOC CONTAINS owned (H 1386)
4 DOC CONTAINS government (H 0556)
5 DOC CONTAINS denationalizat (H 65385)
6 DOC CONTAINS tnm (H 1010)
7 DOC CONTAINS privatized (H 25667)
8 DOC CONTAINS mergers (H 1242)
9 DOC CONTAINS tender (H 1107)
10 DOC CONTAINS acquisitions (H 1082)

998 DOC CONTAINS best (H 0161)
999 DOC CONTAINS indefinitely (H 0657)
1000 DOC CONTAINS cost (H 0144)

LOGIC: ANY OF 1 THRU 10

Figure 4: Automatically Generated Profile for Topic 128

The process then created a table containing each

unique token in the topic sample, together with its

associated values for P(r) and w. Finally, the

process sorted this table on P(r), the measure of

descriptiveness.

A portion of one such table is shown is Figure 3.

Its rows contain the statistics for each unique token

in the topic sample. Its columns contain the

information described below:

1. Token Number is a one-up token identification

number.

2. Binomial Probability Percent is the value P(r)

expressed as a percent — the probability that this

token has occurred in this sample as often as it

has, purely by chance.

3. Token Recall Percent is the value:

r

n

expressed as a percent — the probability that this

token will occur in a relevant document.

4. Token Precision Percent is the value w
expressed as a percent — the probability a docu-

ment will be relevant if it contains this token.

5. Sample Token Documents is the value r ~ the

total sample documents containing the token.

6. Corpus Token Documents is the value p — the

total corpus documents containing the token.

7. Token String is the first 14 characters of the

token.
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3.4. Profile Synthesis

To create the actual LMDS profile, this process

concatenated the top 1000 tokens with their respec-

tive weights from the sorted table, and placed them

in a file. It then appended a Boolean logic statement

containing the top 10 tokens in an OR condition,

indicating that a document was to be selected if it

contained any one of the top 10 most descriptive

tokens. (Once a document was selected, however,

the scoring algorithm would assign a document

score based on the weights of all profile tokens that

appeared in that document.) The process then sent

the new profile to LMDS to be activated. A portion

of one such profile is shown in Figure 4.

The following figures summarize the combined

performance of the Sample Analysis and Profile

Synthesis processes:

50 Profiles generated

\, 6.1 Wall-clock minutes/profile, average

3.5. Document Selection

Document selection was performed with the

LMDS 2.13 routing engine, which enabled each

profile to perform a free-text scan of each document

on CDROM-3.

Whenever the Boolean logic statement in any

profile was satisfied by a document, LMDS sent the

document to the Document Scoring process, to-

gether with the token and weighting information

needed by that process to score the document.

The LMDS program product itself was not

modified in any way for TREC-3. All prototype

functionality was added via externally-generated

LMDS profiles and via the LMDS APL

3.6. Document Scoring

For each document and set of profile tokens and

weights received from LMDS, this process first

tokenized the document, using the same tokenizing

rules as Corpus Frequency Analysis. The process

then counted the number of unique tokens in the

document, and calculated the score 5 for the docu-

ment, according to the following formula:

5=:(1-(1-W,)(l-W2)...(l-W„))y

where:

w, = weight of each unique profile token in doc

u = unique profile tokens indoc

t = unique tokens in doc

Figure 5: Observed Optimum Relationship of Sample Size to Proflle Size
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The first part of this formula calculates the probabil-

ity that this document will be relevant to a topic,

given that the document contains a particular subset

of the topic's most descriptive tokens. Multiplica-

tion by the ratio of u/t then corrects for the tendency

of larger documents to achieve higher scores simply

by having more tokens.

Although each profile contained 1,000 tokens, it

was discovered during testing with trial documents

that as the sample size increased, the accuracy of the

profile usually decreased. Further testing suggested

that the optimum number of profile tokens indeed

was inversely proportional to the size of the sample.

Accordingly, the Document Scoring process was

modified to calculate s with only the top x tokens in

the profile, where x was the value of a step function

on the sample size, as shown in Figure 5.

When scoring was complete for the profile, the

process stored the document number and its score

into the hitfile designated by the profile. When all

documents on CDROM-3 had been processed in this

fashion, the 50 hitfiles were sorted on document

score, and the top 1,000 entries in each hitfile were

sent to the TREC-3 judges.

The following figures summarize the combined

performance of the Document Selection and

Document Scoring processes:

336,000 Documents processed

0,99 Wall-clock seconds/document, average

Total number of documents
over all queries:

Retrieved: 50000
Relevant

:

9353
Ret AND Rel : 6756

Interpolated recall-precision:
At 0 .00 0. 8387
At 0 .10 0. 6539
At 0 .20 0. 5450
At 0 .30 0 . 4576
At 0 .40 0. 3885
At 0 .50 0 . 3344
At 0 .60 0. 2877
At 0 .70 0. 2122
At 0 .80 0. 1316
At 0 .90 0. 0606
At 1 . 00 0 . 0055

Non-interpolated precision
over all relevant documents:

0 . 3373

Precision

:

At 5 docs : 0.5840
At 10 docs : 0.5760
At 15 docs : 0.5747
At 20 docs : 0.5560
At 30 docs : 0.5253
At 100 docs : 0.4288
At 200 docs : 0.3540
At 500 docs : 0.2168
At 1000 docs : 0.1351

R-Precision

:

0 . 3725

Figure 7: Routing Results for Prototype

4. TREC-3 Results

The recall-precision scores for the prototype are

summarized in the graph in Figure 6, and a table of

detailed scores is provided in Figure 7.

Except for the first section of Figure 7, all

results are averages of the corresponding scores for

each of the 50 topics. While most sections of Figure

7 are self-explanatory, several concepts may require

additional explanation:

1 . Interpolated precision is the maximum precision

over a range of recall points. Thus, the

interpolated precision at recall 0.10 (i.e., after

10% of relevant documents have been retrieved
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for a query) is the maximum precision at all

recall points >= 0.10.

2. Precision at X docs is the precision after X
documents have been retrieved, whether or not

the documents are relevant.

3. R-Precision is the precision after R documents

have been retrieved, where R is the number of

relevant documents possible for a topic. Thus,

if a topic has 50 possible relevant documents,

precision is measured for that topic only at 50

documents.

5. Analysis

As stated in the Introduction, to qualify as

workable enhancements to LMDS, any algorithms

for automatic profile generation and relevance rank-

ing must be not only effective, but also compact and

fast. The prototype is evaluated below with regard

to those criteria:

1. Effectiveness ~ The prototype achieved aggre-

gate scores (Figures 6 and 7) slightly above

average across all measures, a strong showing

for a first-time participant in TREC-3. These

scores can now be used a baseline for develop-

ing improved versions of the prototype.

2. Compactness — The only element of the proto-

type of any notable size is the 5-megabyte file

containing the results of Corpus Analysis. Even

allowing for some growth in a production

environment, its costs in disk storage would

remain insignificant. Moreover, the entire file

does not need to be in RAM at any one time.

3. Speed — Average wall-clock times are recapped

below for those processes which could be

ongoing in a production environment:

Corpus Frequency Analysis: 0.79 seconds/doc

Sample Analysis plus

Profile Synthesis: 6.1 minutes/prof

Document Selection plus

Document Scoring: 0.99 seconds/doc

Of these, only the figure of 6.1 minutes for

profile generation is unacceptable. The profile

generation software, however, is quite ineffi-

cient, and a few simple code modifications

should produce a substantial increase in speed.

6. Anticipated Improvements

Substantial opportunities exist for improving the

prototype. A number of these are discussed below:

1. Word-Stemming Algorithm — Since the weight

of a token is directly proportional to the number

of times it occurs in a sample, use of a word-

stemming algorithm should allow Sample

Analysis to m.ore accurately calculate the

weight of a word which might appear many
times in a sample, but in slightly different forms

( e.g., "privatize" in Figures 2, 3 and 4).

2. Larger Stopword List — Additional stopwords

should help exclude from profiles those tokens

with no predictive value, and should also

improve the u/t calculation used by Document

Scoring to correct for the tendency of larger

documents to score higher simply by having

more tokens.

3. AND Logic ~ The current approach of selecting

documents via an OR condition on the top 10

most descriptive tokens virtually guarantees that

the set of documents passed to Document

Scoring will contain all relevant documents. It

also guarantees the set will contain a very large

number that are totally unrelated. Examination

of Sample Analysis output, such as that shown

in Figure 3, strongly suggests that selecting

documents via an AND condition on any 2 of

the top 10 tokens would substantially reduce the

number of unrelated documents selected with-

out significantly affecting the number of rele-

vant ones.

4. Mathematically Optimized Profile Sizes ~ The

optimization step function graphed in Figure 5

was derived by analyzing the results of a subset

of training profiles and averaging the observed

optimum relationships between sample sizes

and profile sizes. While a useful tool, it cannot

accurately predict the optimum size for every

profile. Preliminary evidence suggests that

optimum profile size actually is a cumulative

function of Token Recall and Token Precision

values over the set of most descriptive tokens.
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5. Reduced Profile Generation Time — Sample

Analysis and Profile Synthesis are the two most

inefficient processes in the prototype. Speed

improvements of at least an order of magnitude

should result from using C code in place of

UNIX shell scripts for Profile Synthesis, and

from streamlining the ways in which Sample

Analysis uses the database of corpus token

frequencies.

The above set of improvements should result in

smaller, more accurate profiles, and in reduced

throughput time for Document Selection and Docu-

ment Scoring. More accurate profiles, in turn,

should provide noticeable improvements in both

precision and recall.

7. Summary

The prototype described in this paper is a hybrid

routing system, successfully coupling the LMDS
Boolean search engine with a probabilistic scoring

algorithm, and using the speed of LMDS to quickly

reduce the set of documents that must be evaluated

by the more computationally-intensive scoring algo-

rithm. As implemented, the prototype is simple,

compact and fast, and requires no special hardware.

TREC-3 scores for the prototype are highly

encouraging, and will be used as a baseline against

which to measure future improvements. A set of

such improvements has been identified, and will be

implemented and evaluated for TREC-4.

297





TREC-3 Retrieval Evaluation Using Expert Network

Yiming Yang
Christopher G. Chute

Geoffrey E. Atkin
Andrew Anda

Section of Medical Information Resources

Mayo Clinic/Foundation

Harwick 615, 200 First Street, S.W.
Rochester, Minnesota 55905 USA

Abstract

In Mayo Clinic's first year of participation at the Text Retrieval Conference (TREC-3, Category B), our

system takes a completely automatic approach to both routing and ad-hoc retrieval, using a combination

of a statistical learner (Expert Network or ExpNet) and a shared-word-based matcher (STR). Our focus is

to examine how much a Nearest Neighbor approach to query expansion can improve retrieval performance,

given the kind of relevance information available in TREC. We found ExpNet effective in the routing test

because large amounts of relevant documents are available for each query. In contrast, we found ExpNet

less effective in the ad-hoc test because only a small number of training queries are available, and they are

often not representative of the testing queries. Therefore, relevance information about such training queries

is not very useful for statistical learning about query expansion in general. A realistic strategy for the TREC
collections then is to use shared-word-based matching as a basic approach to relevance judgment, and use

statistical learning about human judgments for additional evidence. Our experiments show that combining

ExpNet and STR leads to better results than using either alone.

1. Method and System Description

Our retrieval system consists of two components, STR and ExpNet. Given a query and a collection of

documents, each component system contributes a partial relevance score of a document. The weighted sum
of these partial relevance scores are used to rank documents with respect to the query.

STR (string matcher) is our implementation of a vector space model for shared-word-based matching

between queries and documents. STR has the same basic features as the SMART system (developed by the

Salton group at Cornell) [1], and it allows the use of different word weights such as binary, term frequency

(TF), Inverse Document Frequency (IDF), and combinations of them (TFIDF, etc.); however, it does not

provide mechanisms for stemming, phrase identification, and relevance feedback. Ideally, we would like to

use the SMART system as the string matcher, but we did not have a working interface between SMART and

the other components of our system by the deadline for the TREC-3 submission, so we used STR instead.

ExpNet is a statistical learning method for document retrieval and document indexing based on human
relevance judgments [2] [3] [4]. In document retrieval, it applies a Nearest Neighbor (NN) approach to query

formulation using a set of training queries and their related documents. Given an arbitrary query, ExpNet

compares this query to training queries, finds its NNs according to a cosine-similarity measure, and then uses

terms (words and/or categories) of the NN-related documents to formulate the "translation" of the original

query. ExpNet is similar to relevance feedback in the sense of using training documents to expand a query.

The fundamental difference is that ExpNet can handle queries which are not included in the training set,

while relevance feedback can only handle queries which are included in the training set. ExpNet is applicable,

in theory, to both routing and ad-hoc tasks, however, its effectiveness is dependent on the availability of

training queries which are representative of testing queries. The training data in the TREC collections for

routing tests and adhoc tests are obviously unbalanced. In the routing case, each testing query itself is a

training query, and has a few hundred related documents cissigned by humans, providing rich information

for the expansion of this query. In the ad-hoc caise, on the other hand, none of the training queries are
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the same as a testing query, and the total number of training queries is rather small (150 at most). This

means that a testing query may not have any "near" neighbors in training queries, and that using related

documents of remote training queries to expand this testing query can be misleading. Due to the nature

of training data, we expect the relative performance of ExpNet to be much better in routing tests than in

ad-hoc tests. We use a weighting factor to adjust the effect of ExpNet when combining it with STR in the

retrieval process. That is, we make ExpNet more influential in relevance judgment when the training data are

relatively reliable; otherwise, we make ExpNet less influential. The weighting factor can be experimentally

determined, as described in the following sections.

ExpSTR is the combined system using both ExpNet and STR. There are two ways to combine the two

component systems. One way, as shown in Figure 1, is to combine them at the stage of query formulation,

i.e.

Qerpstr — Qstr U fV X Qexpnet — {^1 j •••) tm} U Or X {^m+l > ^m+n})

where Qstr is the original query, Qexpnet is the expanded portion by ExpNet, and Qexpstr is the combined

query. The weighting factor, a, adjusts the influence of Qexpnet in Qexpstr- We use conventional term

weights (Section 2 and 3) in query formulation; in the above formula, for i = 1, . .
.

, m are the weights of

the terms in the original query, and ti for i = m + 1, . . . ,m + n are the weights of the terms in the NN-related

documents. In document retrieval, the cosine-similarity between Qexpstr and each document is used as the

relevance score of the document.

An alternative way to combine ExpNet and STR is to run each component system separately to obtain

partial relevance scores of documents, and then merge the relevance scores of these component systems, i.e.

relevance-score(D) = cosine-similarity((5jtr, D) + (3 x cosine-similarity((5expnet, D)

where D is a document, and 3 is the factor adjusting the influence of ExpNet in ExpSTR and is experimentally

chosen. Figure 2 illustrates this approach.

There is no fundamental diff'erence between the two ways of merging. The former makes the combined

query Qexpstr explicit, which is required by the TREC committee for management purposes. The latter

makes the experiments for finding the optimal merging factor more eflBcient, i.e. we only need to run each

component system once to search, and repeat the merge with diff'erent values of /?.

Our retrieval system is implemented as a combination of C-|—f-, Perl and UNIX shell programming,

running on a SUN SPARCstation 10 with 32 Mbytes of memory and 3 Gbytes of local disk.

2. Document Indexing

Our experiments use the category B documents including the Wall Street Journal (WSJ) documents in

disks 1 and 2, and the San Jose Mercury News (SJMN) documents in disk 3. Each document is represented

using a vector whose dimensions are words or identifiers of categories. For convenience, we call a word or a

category identifier a term. Each vector of a document consists of subvectors, each of which corresponds to

a field of the document. For WSJ documents, we use the words in the fields of TEXT, HL and LP, and the

categories in the fields of CO, GV and IN. We use the phrase of a category name as an atomic token. For

SJMN documents, we use the words in the fields of TEXT, HEADLINE, LEADPARA and DESCRIPT. All

terms have a TFIDF weight which is the product of the within-document term frequency and the Inverse

Document Frequency (IDF) of the term. The document collection of category B is used to compute IDF
values of terms. All categories have an equal weight of one. The system allows using diff'erent weighting

factors for subvectors; however, due to the time limit we had for the deadline of TREC-3, we only tested

an equal weight for all subvectors. We use the stop list of SMART to remove non-informative words. No
titemming or phrasing is used.

Document indexing is the major computational bottleneck in our experiments. As this is our first year

experience with TREC, our current programs are relatively inefficient to handle large amounts of documents.

It takes about one hour on our system to index 10 Mbytes of documents (counting the size of the raw data on

TREC disks), which is significantly slower than the SMART system which reported an indexing performance
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Figure 1 . Query formulation using Expert Network where Qstr is the original query,

Qexpnet is the transformed query by Expert Network, and Qexpstr is the expanded
query by merging Qstr and Qexpnet.
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Figure 2. Merging document relevance scores obtained by STR and ExpNet; the truncated

version of Qexpnet is used, i.e. the maximum length of Qexpnet is 1000 terms.

of about 240 Mbytes/hour. Due to the inefficient indexing performance, we have not been able to try a variety

of options in term weighting and vector normalization, so the current setting of document vectorization may
not be optimal.

3. Query Processing

A query is represented using a vector whose dimensions are topic words. We use the fields of title, desc,

narr and con in a topic to form the subvectors of a query. Different weighting factors are used for subvectors.

We give a weight of one to the field narr, and a weight of 10 to the other three fields. These weights were

determined empirically, i.e. we tried three combinations of weights, and chose the best combination among

these three; this choice is not necessarily optimal. All query words have a TFIDF weight which is a product
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of vvithin-query term frequency and the IDF value of the term. The IDF values are the same as those used

in document indexing.

Both routing queries and ad-hoc queries are expanded. We use ExpNet to identify A' Nearest Neighbors

(NNs) among training queries using the cosine-similarity scores of training queries with respect to a given

query. The documents related to these K training queries are collected and weighted using corresponding

cosine-similarity scores, and the terms in these documents are added together to form a new query Q expnet'-

Qexpnet = ^Q,e{K top-ranlcing NNs} cosine-simiIarity(g,tr, <3i) x {Ai U A2 U . . .}

where Qi for i = is the fth-ranking nearest neighbor of the given query, A' is a predetermined

parameter, and Dfi, A^-- - the documents related to Qi. From the terms in Qexpnet, N top-ranking

terms are further selected, weighted, and added to the original query as below:

Qexpstr — Q,ir U a X {N top-ranking terms in Qexpnet}

where a is the weighting factor which we use to adjust the influence of ExpNet in ExpSTR, as mentioned

earlier.

The three parameters. A', A'^ and a are empirically chosen. The choices are dependent on the nature

of tasks and statistical features of training data. For routing we set K to 1 because each testing query is a

training query. That is, a query is the NN of itself, and its related documents are the most ideal references

for query expansion; referring to more NNs would only increase the noise in query expansion and decrease

the retrieval performance [2]. In the ad-hoc case, on the other hand, all the training queries are diflFerent

from the testing queries, i.e. none of the training queries are an ideal NN of a testing query, so it is better

to refer to multiple NNs instead of a single NN [2]. Experimentally, we found that A' = 13 is about optimal

for the ad-hoc test. We also found that = 1000, a = 0.45 for routing, and a = 0.10 for ad-hoc are about

optimal settings. The a value in routing is much higher than its value in ad-hoc because the training data

in the former case are much more reliable than those in the latter case.

4. Tests and Results

The routing test: For training, we used topics 101-150 and their related WSJ documents in disks

1 and 2; for testing we used the same topics as queries, and SJMN documents in disk 3 as the search space.

Due to a communication problem between our group and NIST, we used some wrong files in the SJMN
collection, which caused an SGML parsing error, and as a result, only 40% of the SJMN documents were

indexed. Our official submission of the routing results (expstl) was effected by this error, whose average

precision was 0.1838. After correcting this indexing error, the average precision is 0.2446 (the SMART
evaluation packages were used for the statistics).

We also used SMART to replace STR for a comparison. We used the Itc query weighting and the Inc

document weighting schemes in SMART; we did not use phrase processing or relevance feedback. No claim

is made that these are the best possible settings of SMART. Our interest is to use SMART as a better string

matcher, and to observe whether the effect of ExpNet on SMART is similar to its effect on STR. The system

combining ExpNet and SMART is referred to as ExpSMART.

Figure 3 shows the recall-precision curves of ExpSTR with the processing error (the official routing

result), ExpSTR after the error was fixed, and ExpSMART. The 11-point average precision of ExpSMART
is 0.3509, a 43% improvement over ExpSTR (the correct result) whose 11-point average precision is 0.2446.

This comparison indicates that SMART is significantly better than STR, i.e. term weights used in STR and

ExpNet are far less than optimal, and that an improvement in term weighting would significantly improve

the results of STR and ExpNet, and consequently improve the results of ExpSTR and ExpSMART.

Figure 4 compares the curves of STR, ExpNet and ExpSTR. The 11-point average precisions are 0.1667

of ExpNet, 0.2007 of STR, and 0.2446 of ExpSTR which has a 22% improvement over STR. We also observed

a 0% improvement of ExpSMART over SMART whose 11-point average precision is 0.3332 (not shown in

this figure). It is evident that ExpNet can improve the results of both STR and SMART.
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Rgure 5. AdHoc Results

The ad-hoc test: For training, we used topics 1-150 and their related WSJ documents in disks 1

and 2; for testing we used topics 151-200 as queries, and the same WSJ documents as the search space. We
tested both ExpSTR (as the official submission to TREC-3, labeled as expst2) and ExpSMART. Figure 5

shows the curves of STR, ExpNet and ExpSTR. The 11-point average precisions are are 0.0668 of ExpNet,

0.1763 of STR, and 0.1910 of ExpSTR (8% improvement over STR). The improvement of ExpSMART over

SMART was 2% (0.3307 verses 0.3231, not shown in this figure).
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ExpNet had a much poorer performance in the ad-hoc test than its result in the routing test, reflect-

ing the sensitivity of ExpNet to the quality of training data. Nevertheless, using ExpNet in combination

with a string matcher, STR or SMART, still improved the results of the string matcher. ExpSMART is

again significantly better than ExpSTR (0.3307 verses 0.1910, 73% improvement), indicating the potential

improvements by using better term weights in STR and ExpNet, and consequently the improvements in

ExpSTR and ExpSMART.

5. Discussion

In the TREC experiments, we have focused on whether a statistical learning method is useful in situa-

tions where training data may or may not be sufficient. Our Nearest Neighbor approach to query expansion

has shown improvements in both routing and ad-hoc tests, compared to the results when using shared-word-

based matching alone. The improvements by using ExpNet were much more significant in the routing tests

than those in the ad-hoc tests, reflecting that ExpNet is sensitive to the quality of training data. Interest-

ingly, despite the poor performance of ExpNet in the ad-hoc tests, it still improved the retrieval results when
it is used in combination with STR or SMART. This means that the statistical evidence about relevance

captured by ExpNet is consistent and complementary with the evidence captured by word-based matching.

It also indicates that better retrieval performance of ExpNet can be expected when more training data are

available in TREC.

Further questions can be raised about our Nearest Neighbor approach. That is, can we use this approach

without requiring human relevance judgments? Would we get better results if we use automatically estimated

relevance judgments instead of using human relevance judgments, given that the training data are insufficient?

The answer to both questions is yes. Many TREC participating systems applied a modified version of

relevance feedback to the ad-hoc task. In those systems, instead of requiring human relevance judgments

among A' top-ranking documents in an initial retrieval for an ad-hoc query, all the K top-ranking documents

are treated as relevant documents, and used for expanding this query. This is equivalent to our Nearest

Neighbor approach in ExpNet, if we remove the nodes of training queries, and directly search for NNs
among training documents instead of training queries. The reported improvement of SMART in the tests of

the Cornell's group (TREC-3 Nootbook) is about 20% when using the modified relevance feedback, compared

to the baseline search (no relevance feedback) of SMART. This improvement is larger than the improvement

(2%) of ExpSMART over the baseline SMART in our tests, indicating that the NNs found in a document

space are much more representative of an ad-hoc query, compared to the NNs found in training queries. This

is not surprising, considering the density in the document space is much higher than the density of the query

space. We do not think the above observation is generalizable when a better collection of training queries

is available; however, it seems a better strategy to use training documents instead of training queries (and

their related documents) in the NN approach, given the current data of TREC collections.

In our first year of experience with TREC, we have faced major challenges in system efficiency issues.

The performance level of our current system is not satisfactory, and this has limited our experiments to

find optimal parameters of our method. Further study includes optimization of term weights and vector

normalization in document and query representations, and improvements in data structures and algorithms

for system efficiency.
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for Document Categorization
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Acquaintance is the name of a novel vector-space n-gram technique for categorizing documents.

The technique is completely language independent, highly garble resistant, and computationally simple. An
unoptimized version of the algorithm was used to process the TREC database in a very short time.

Acquaintance is the name of a new technique for information processing that

combines the robustness of an n-gram based algorithm with a novel vector-space model.
Acquaintance gauges similarity among documents on the basis of common features,

permitting document categorization based on a common language, a common topic, or

common subtopics. The algorithm is completely language and topic independent, and is

resistant to garbling even at the 10% to 15% (character) level. Acquaintance is fully

described in (Damashek, 1995). The TREC-3 conference provided the first public

demonstration and evaluation of this new technique

The Acquaintance algorithm can be used for processing the information in a

database of documents in at least two distinct ways. One method explores the conceptual

space of a set of documents by determining the degree of similarity among all the

documents in that set. When the documents are then viewed with a tool that displays the

strengths of the connections among documents, and arranges them so that the distance

between them corresponds with their putative degree of similarity, the conceptual space

defined by those documents will be apparent. That is, those documents which are similar,

and thus related by language or topic, will cluster together. Furthermore, documents that

relate to two or more different topics will be clearly visible, both in terms of their

positions and strength of their connection to more than one cluster of documents. Those
documents which are not clearly similar (that is, related by topic) to any others in the set

will stand alone and unconnected to other documents. This mode of using Acquaintance

is very useful when exploring the contents of a large and unknown database.

Acquaintance can also be used in the more traditional task of retrieving

documents from a database based on their similarity to one or more example, or

reference, documents. When used in this manner, reference documents are compared to

the documents in the database. Those documents in the database which are similar to the

reference documents can be quickly and easily identified. Clearly, using Acquaintance in

this fashion most closely approximates the tasks performed by systems participating in

TREC, and so two variations on this latter method were used to process the data for

TREC-3.
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Methodology

N-Gram Processing

The Acquaintance algorithm starts by processing texts in a manner very similar to

traditional n-gram based techniques. An n-wide window is stepped through text, moving
one character at a time. From each n-gram lying within the window, a hash function

generates a value that is treated as an address in a vector characterizing that document,
and the contents of that vector address are incremented by one. When all of the n-grams
in the document have been processed, the document vector is normalized by dividing the

frequency count of n-grams at each vector address by the total number of n-grams in the

document.

Centroid Subtraction

A distinctive and crucial aspect of Acquaintance is the subtraction of a centroid

vector from document vectors when gauging similarity among documents. The centroid

in Acquaintance defines a context within which a set of documents can be usefully

compared. The method of subtracting a centroid stands in contrast to more traditional

vector-space models which frequently use some form of multiplicative weighting, leading

to a rescaling of the axes in the vector space.

Another advantage of using a centroid vector is that it characterizes those features

of a set of documents that are more or less common to all the documents, and are

therefore of little use in distinguishing among the documents. The Acquaintance centroid

thus automatically captures, and mitigates the effect of, those features traditionally

contained in stop lists.

The creation of the centroid vector for a set of documents is straightforward and
language independent. After each separate document vector is created, the normalized

frequency for each n-gram in that document is added to the corresponding address in a

centroid vector. When all documents have been processed, the centroid vector is

normalized by dividing the contents of each vector address by the number of documents
that the centroid characterizes. A centroid thus represents the "center of mass" of all the

document vectors in the set.

Computing Similarity Scores

Once documents are characterized by normalized document vectors, the resulting

vector-space model permits the use of geometric techniques to gauge similarity among
the documents. When comparing a set of document vectors to a set of reference vectors,

the cosine of the angle between each document vector and each reference vector, as

viewed from the centroid, is computed using the equation:

S =
-lyr

= cos0,„„, m,= l,...,M, n = l,...N (1)



where the vectors x^, m g 1,...,M are the M document vectors, the vectors

n G 1,..., A'' are the N reference vectors in a /-dimensional space, and fi is the

centroid vector.

A cosine value of 1.0 indicates that the document and reference vectors are

perfectly correlated (or identical), a value of 1 .0 that they are perfectly anticorrelated (or

antithetical), and a measure of 0.0, that they are uncorrected (or orthogonal). We have
done a great deal of experimentation using this scoring method for gauging topic

similarity, and we have a clear idea of how the measure behaves as features such as n-

gram length and garbling are varied (Huffman, 1995).

Acquaintance at TREC-3

System Parameters and Text Processing Procedures

We made the decision to participate in this year's TREC conference at a very late

date. Consequently, we did not have the opportunity to modify the algorithm or tune it to

the data; we used a generic, unoptimized version of Acquaintance written in ANSI C. The
TREC data was processed on a heavily time-shared Cray YMP. Both the routing and ad
hoc tasks were run as overnight background jobs, and each took less than 8 hours clock

time to finish. We used an n-gram length of 5, and our vector length was 262144.

Acquaintance requires almost no preprocessing of the documents. To prepare the

TREC database, we merely stripped away the SGML tags and headers from the data, and
then processed only the characters between the TEXT tags. Acquaintance ignored all

non-alphabetic characters in the text and translated all lowercase alphabetic characters to

uppercase characters.

Query generation was, of course, completely automatic. The "queries" consisted

of reference vectors generated from example documents or topic descriptions.

Routing

It is clear that Acquaintance, at least in the form discussed here, is best used for

example-based document retrieval. Therefore, in TREC-3 we were particularly interested

in how the technique performed on the routing task, which permits systems to operate in

an exemplar-based fashion. To perform the routing task, we took the documents from
TREC-2 which were defined to be relevant to each of the routing topics. We concatenated

all the relevant documents for a topic into a single large document, and from that created

a reference vector for that topic. From all the reference vectors, we created a centroid

vector, in the manner described above. Thus, we had robust reference vectors and a

centroid vector based on a large set of typical, relevant documents.

To score the documents in the routing database, we created a document vector

from each document and computed the cosine of the angle between that document vector

and each of the topic reference vectors, according to Eq. (1). If a document scored above
a certain threshold when compared to a reference vector, we stored that document's
number and score. To ensure that we would report at least 1000 documents for each

reference vector, we kept the highest scoring document from every file for each topic,

whether that document exceeded the threshold or not. After all documents were compared
to all reference vectors, we sorted the documents by score within topic, creating a ranked

list of documents gauged similar to each topic.
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According to a preliminary analysis of the TREC-3 results, among the 34 systems
participating in this task, Acquaintance scored at least as well as half in 18 out of the 50
topics, and it scored better than two-thirds of the systems in 10 of the topics. A summary
of Acquaintance's performance on the routing task is shown in figure 1.
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Rank Among Systems Under Test (Percentile)

Figure 1

100

Ad Hoc

For the ad hoc task we had no example documents for the new topics.

Furthermore, the topic descriptions were not particularly good exemplars of the

documents in the database, since they were short, generally contained a fairly restricted

vocabulary, and contained boilerplate language irrelevant to the topic (i.e., "
.. to be

relevant, a document ...") as well as language expressly unrelated to the topic ("..not

relevant would be...").

In a effort to minimize the problem of irrelevant, boilerplate language in the topic

descriptions, we scored the document vectors against the reference vectors in a different

manner than in the routing task. As before, we created a reference vector from each of the

topic descriptions, and a reference centroid vector from all of the topic vectors. This

reference centroid served to minimize the effect of the stereotyped phrases peculiar to the

ad hoc topic descriptions. Then, however, we read in one file of documents from the

database at a time, and created not just document vectors, but also a centroid vector for

that set of documents to capture the commonality among the database documents.
Finally, when comparing a document vector to a reference vector, the appropriate

centroid was subtracted from the corresponding vectors, as shown in Eq. (2):

S =- ^- — = cosd^„, m = l,...,M, n = \,...N (2)

.7=1 7=1

1/2

where tl^e vectors jc^, m 6 1,...,M are the M document vectors, the vectors

n €l,...,N are the N reference vectors in a 7-dimensional space, jj, is the centroid

vector for the current set of documents, and v is the centroid for the set of reference

documents.

While this double-centroid measure seemed to eliminate the problems caused by
stereotyped language in the topic descriptions, the lack of good example documents for
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the topics caused Acquaintance's performance in tiie ad-hoc portion of TREC to be
considerably below that of its performance in the routing task. In fact, Acquaintance
exceeded the median score of the other systems on only two topics, though it performed
better than 10% of the other systems for more than half of the topics. A summary of the

performance of Acquaintance in the ad hoc task is shown in figure 2.
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Figure 2

Summary

Acquaintance's performance in the TREC routing task was on par with most of

the systems presented at the conference. Given the fact that the algorithm combines such

performance with complete language independence, strong tolerance for garbles, and ease

of implementation, we believe that it warrants serious study and further development.

Future Directions

Acquaintance has often been used in conjunction with a knowledge visualization

tool called Parentage (Cohen, 1995). This powerful tool permits a user to view the

relationships among documents in a variety of ways. It allows, for instance, the

exploration of a database's conceptual space. For the next TREC conference, we hope to

utilize Parentage to improve Acquaintance's performance, particularly on the ad hoc task.

We intend to begin by processing the data with essentially the same basic Acquaintance

algorithm, and determine the 1000 or so documents which score most highly when
compared to a particular topic. These high scoring documents and the relationships

among them can be examined using the Parentage tool, and those documents that form
the best cluster of documents which are highly related to the topic can rapidly identified.

Those documents will be used to create a new reference vector for that topic, now based

on highly relevant example documents. We believe that this method will recover a much
better sample of relevant documents from the database.

As part of our poster session, we demonstrated that Acquaintance was able to

reliably categorize documents which were garbled at the 15% character level. We believe

that the ability of information retrieval systems to recover relevant documents regardless

of a moderate degree of garbling is very important when considering the real-world

applications of these systems. Therefore, we intend to take part in the new track at TREC-
4 which will investigate systems' performance on such garbled data.
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Information Retrieval System for TREC3

Kenji SATOH, Akitoshi OKUMURA, Kiyoshi YAMABANA
Information Technology Research Labs.

NEC Corp.

1 . Introduction

This is our first participation with TREC. Our team researches natural language

processing, and we have developed English-Japanese and Japanese-English machine translation

system. (The code name of machine translation system is VENUS.) We are now researching a new

natural language processing environment, including mformation retrieval and text understanding.

(The environment name is VIRTUE: VENUS for Information Retrieval and Text Understanding.)

Last year, our team participated with MUC5, and we got promising results[l]. This year,

Natural Language Processing Environment:VIRTUE

Figure 1. Our Goal
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our team has participated with the TREC3 for researching and developing and information retrieval

system. Figure 1 shows our goal of researching natural language environment.

Because of our past development of machine translation systems, we have on hand

translation system dictionaries (140,000-word), a conjugation table of EngUsh words, and

morphological and syntax parsers. The purpose of participating with TREC3 focuses on the

feasibility of using this data and applying English language analysis technology. We developed a

system very quickly using them.

2. System Modules

The overall outline of the system concerns firstly, the generation of an index from NIST

document collection as inverted files. We generated inverted files for each CD-ROMs. Query term

generation from topic with routing task phase is generated manually, and with ad-hoc task phase is

processed automatically.

Query weights are added by weight calculation modules with referring inverted files.

Finally, matching between query and document as well as ranking documents used the same

program with both tasks.

Index File Generation

Manually Query

Generation

Automatic Query

Generation

Inverted

File.

Weight Calculation

(for routing)

Weight Calculation

(for ad-hoc)

Matching and

Document Ranking

Rank of Documents

Figure 2. System modules
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I will explain this system in order; Index File Generation, Query Generation, and

Matching and Document Ranking. Figure 2. shows modules of our system.

3. Index File Generation

The index generation method from a document collection will be explained in this

section. The index is created by an inverted file in which a single word (not including spaces) as a

key. Words in the conjugated form and/or the plural form may be used as a key.

The reason that general stemming method dose not used is this method can not handle

irregular conjugations, our system has an English-language conjugation table, and it is thought that

with this table, the conjugated form sufficiently handled during matching phase.

The word recognition of each document is carried out by matching with a 140,000-word

EngUsh dictionary, the 430 stop words are dropped. Furthermore, symbolic strings (repetition of

upper case and hyphens, etc.) are recognized as a single word.

After the word recognition phase is carried out, the DOCNO of documents in which the

word has appeared, as well as the frequency and position of the word in each document are saved.

Although word weight is not recorded at this point in time, word weight calculates for the words

appearing in the query when matching with document.

During indexing generation, listing the number of words in the document is simultaneously

generated as a separate file. This information is used in normalizing the word weight during

matching.

The size and generating time (with Sun SPARCstation 10) of the inverted files are:

Disk 1 — 880 MBytes, 93 Hours

Disk 2 — 610 MBytes, 53 Hours

Disk 3 — 660 MBytes, 67 Hours

4. Query Generation

A sample of query is shown in Figure 3. The query format is a compound format

consisting of the boolean operator and word weight. The one key of the query does not necessarily

have to be a singular word; if it is, the word sequence in the text is checked.

As boolean operator, AND condition as simple Usting of keys in query, OR condition

(enclosed by brackets) in which the appearance of multiple keys regarded as a single key. A key
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}

corporate intelligence 8.66497

disgruntled employee 5.54695

{

confidential information

confidential data

} 5.98639

computer crime 6.64692

eavesdropping 6.49831

@ { ^
industry

company

commercial

TV

} 4.13302

! spy 6.22033 ^
economic intelligence 8.07718

electronic surveillance 6.51318

- security council 6.59907

OR Condition

Indispensable Condition

NOT Condition

Minus Condition

Figure 3. Sample of query

preceded by an exclamation mark indicates a NOT condition, and a key preceded by an @-mark

indicates the indispensable condition. A key preceded by a minus-sign makes the word weight value

take on a negative.

The query generation with routing task phase is executed manually. At the first stage,

initial query matched for training documents. That result is compared with the relevance judgment,

upon which the query is modified.

The query generation with ad-hoc task phase processed automatically. For all the files in

topic, an English-language analysis is executed from which noun phrases are extracted. In this

phase, if there are expressions indicating negation for a noun phrase, the phrase is inserted in a

query with a minus operator.

Word weight calculation does not occur in either of the query generation processes. Word

weight is assigned by a program after completion of the query keys. A combination method using

the operator and word weight wiU be explained as follows.

5. Matching and Document Ranking
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The way in which the query operator and word weight combinations are carried out

during matching is as follows. Keys connected by an OR condition calculate the frequency and list

up the documents in which a word appears as a single key. A document with the NOT condition

key in a matched document on another key is excluded from the ranking calculation. Conversely, a

document without the indispensable key conditions in a matched document on another key is

excluded from the ranking calculation.

Next, when an inverted file is referenced by a key in the query, the key returns once to its

original form by using the conjugation table and it is unfolded into the all the possible conjugated

form. If a key 'wrote' exists in the query, it returns to 'write' and it is unfolded into 'write', 'wrote',

'written' and 'writing.'

Also, if the key in the query is consist of multiple words, the unfolding phase and index

search are enabled for each word in the key. If a key 'wrote file' exists in the query, it is unfolded

into 'write file', 'wrote fUe', 'written file', 'writing file', 'write files', 'wrote files', 'written files'

and 'writing files.' After each word is searched, the sequence check is executed according to their

positions in the document which saved in the index file.

The weight calculation during the routing task phase is uses the modified form of

traditional relevance weight model[2]:

: the number of documents

n. : the number of documents containing the term /

R : the number of relevant documents

a; : the number of relevant documents containing the term i

Also, the weight calculation during the ad-hoc task employs the modified form of the

standard deviation of word appearance frequency:

= log

where
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{

= log
1 ^ m^. n,

n,\L^\M^ N
J

J

where

L : the number of documents

N : the total number of terms in all documents

n. : the number of term i in all documents

My : the total number of terms in documentj

m.j : the number of term / in document j

For ranking, the internal product is taken between the weight of words in a query and

word frequency in a document, and the log factor is imported by the results of multiplying each

internal product [3].

S- : the score of document /

D-
\ the total number of terms in document /

N : the total number of terms

d-j
: the number of term j in document /

"^j-. the weight of term j

Total time of weight calculation, matching with document and document ranking is about

20 Minutes (average per query.)

6. Discussion

5..

where

The results of our system are shown in Table 1

.
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Table 1. Results of our systems

Routing

(manually)

Ad-hoc

(automatically)

Average precision 0.2717 0.0624

R-precision 0.3204 0.1170

Because the calculation of the word weight uses the standard deviation of word

appearance frequency during ad-hoc task phase, the deviation value is often very large for

particularly long documents. This results in such documents being placed in a high ranking.

Another problem is that noun phrases which automatically extracted from topic, sometimes

retrieves insufficient documents. Table 2 shows the summary of our system.

Concerning points of improvement from now, we are thinking of another weight

calculation method rather than the use of deviation. Also, if an adjacent operator were introduced,

we believe that even if a topic changes within a particularly long document, more precise matching

can be carried out. For the retrieval of more sufficient documents, other sources, such as thesaurus

or Word Net, should be used so that the number of keywords is increased.

Table 2. Summary of our system

routing ad-hoc

Index File Conjugated form used

Generation as a key.

Position of word is saved.

(same as routing)

Query Format Boolean and weight

compound format (same as routing)

Query Noun phrase extraction

Generation

Term (traditional relevance weight model) Standard deviation

Weighting

Keys are unfolded into all

Matching conjugated form.

Multiple words key is

checked the sequence.

(same as routing)

Ranking (internal product) (internal product)
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7. Conclusion

Because this is the first such presentation of TREC3, we started from estimation of the

amount of time and memory necessary for the creation of an inverted file, and unfortunately, did

not have enough time to repeatedly matching nor modify of the weight.

But using our original dictionary and conjugation table, as well as adopting natural

language processing technology for developing this system, we got promising results when

applying these technologies to information retrieval systems, while at the same time, we decreased

developing and maintenance costs. (We have developed this system in a month with a 3-person

team.)
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Decision Level Data Fusion for Routing of Documents in the TREC3 Context: A Best Case

Analysis of Worst Case Results.

Paul B. Kantor

Department of Library and Information Studies and

Alexandria Project Laboratory (APLab), SCILS, Rutgers

kantor@ kantor .rutgers.edu

ABSTRACT

The performance of a simulated test of decision level data fusion in the routing (filtering)

task of the Text Retrieval Conference is summarized and analyzed. The relatively poor results

of an approach in which a specific fusion rule was selected for each retrieval task are analyzed

in terms of a best possible fusion scenario based on a given scheme for quantizing the messages

from the systems to be combined. The limitations of that scenario are in turn explored, and

possible ways to improve upon it are outlined.

L INTRODUCTION

In the TREC3 setting, each participant submits two proposed ranked sets of retrieved

documents for each of two sets of 50 problem or "topic" statements. The top portions of each

retrieved set are pooled and evaluated for relevance (binary score) to the corresponding topic by

trained evaluators. [See Harman (1995) for further details]. One set of topics, called the "Adhoc

topics" are provided without any training information, and are to be run against a specified set

of retrievable documents. The second set of topics, called the "Routing topics" a provided

together with a set of relevance judgements for (selected items) from a training set of documents.

This permits participants to "tune" the query formulations, retrieval systems, or fusion rules,

before applying them to a "test" set of data. One expects that the performance of such tuned

rules would be, in general, better than the performance of adhoc retrieval, and that the

performance on the test set should be comparable to (but probably somewhat lower than) the

performance on the training set.

The purpose of the present work is to simulate the situation in which two or more distinct

systems are available, each providing evaluations of the "similarity score" (or "retrieval status

value") for the same set of documents, to a given topic. In addition, we seek to simulate the

situation in which the internal workings of the several systems and, in particular, the "scores" are

hidden from view (either because they are proprietary, or because the working of the system e.g.

a neural network, does not produce a numerical score). In this case each system provides only

its ranked list of documents, for each topic. This is an instance of what is called "decision level"

fusion. [Hull, Esp Ch 6]. That is, the ranked lists represent the decisions, made by the several

systems, in response to the presented topic. In the work described here, a single very effective

retrieval system, the University of Massachusetts Inquery system [Turtle and Croft ] was used

to perform all indexing, stemming and retrieval.
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In an effort to simulate the case of several systems, three different retrieval modes of the

Inquery system were used, and their results were treated as if they had come from three different

systems. Two of these modes accept a Boolean formulation, and the third, called "natural

language processing (nip)" accepts strings of terms, with possible repetitions. Queries were

formed by a "nearly algorithmic" process, carried out by one person, working without aid of

thesaurus. The details of the fusion rules are set out below.

After the training set had been run, the apparently most effective fusion rule was selected

for each routing topic.

Table 1 . Overall Results of Data Fusion Trials. The measure used throughout is precision

at 100 documents retrieved, averaged over 50 topics

Method Precision at 100 Documents

rutfual .371

rutfua2 .359

rutfurl .266

rutfur2 .267

File rutfurl contains, for each topic, the results from that fusion scheme which did best

on the training set for that topic. Best is determined by comparing precision at 100 documents.

File rutfur2 contains, for each topic, the results from that fusion scheme which had second best

performance on the training set for that topic. Best is determined as above.

The procedures for rutfur[ 1,2].test are exactly as described for the training set. The

weights used are the ones determined from the training set. The searches were run at the

University of Massachusetts, using Inquery, with (inverse) document frequencies determined on

the training set only.

Since there were no training data for adhoc runs, the method which appeared to be most

effective most often was applied to the adhoc topics. The adhoc runs, rutfua[ 1,2]. test were run

using the best data fusion schemes, based on overall performance on the training set. Specifically

rutfual. test uses a sum of ranks provided by the three component schemes, to determine an

effective rank. rutfua2 uses the minimum of the ranks assigned by the three component schemes

to determine an effective rank.

For the adhoc runs, rutfual and rutfua2 our scores fall near the median whichever measure

of performance is used. As shown by Tague-Sutcliffe [Workshop presentation at TREC3],

posthoc Scheffe tests can be applied to these data, treating the precision scores as the sum of an

effect due to the topic and an effect due to the system. Under this analysis, using the precision

at 100 documents as a score, the adhoc fusion results are not significantly worse [at 95%
confidence] than the results obtained by using the full power of the Inquery system, which
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provided top performance among all the systems in TREC3. This lack of difference is

presumably a reflection of the low power of the TREC setting to discriminate among systems,

rather than any suggestion of parity between the two sets of results. A discussion of a somewhat

less restrictive nonparametric approach to the comparison of systems, when their rank in the

TREC setting is known, is given in an unpublished note [Kantor 1994].

For the routing case, as noted, a "tuned" choice of fusion rule was made for each topic.

As a second set, the second best fusion rule was assigned for each topic. These results ranked

dead last by several measures of system performance! The purpose of the present note is to lay

out in more detail what was done, and to explore some details of the decision-level fusion

process, in an effort to understand why the results were not better.

11. QUERY FORMULATION AND THE THREE SIMULATED SYSTEMS

The three simulated systems, which are to be combined in a variety of ways, begin with

the reduction of the topic text to a Boolean expression as a single conjunction of disjuncts. This

corresponds to the basic notion of "combination of concepts" as it is used in commercial Boolean

set retrieval systems. The Boolean forms were constructed by a graduate student who added no

vocabulary, and only made one correction to an error in the topic text. Proximity operators were

used, but no weights were provided, as they would not be interpretable by all modes of the

Inquery system. An example query is, for Topic #125:

Inference Form: #ql25 =

#and(#or(govemment authority court)

#or(law regulation control limit warning discourage funding research action)

#or(#l(anti smoking) smoking tobacco)

#not(#or(#2(price support) #2(export encouragement)))

);

This was submitted to the Inquery "inference mode" (inf), using the default settings for

belief levels. [Turtle and Croft] This produces a ranked set output. It was also submitted to the

"hard Boolean mode" (hbl) which produces a set retrieval without ranking.

The operators were removed to provide the query formulation for the "natural language

processing mode" (nip), using the default values for belief settings. This produces a ranked set.

The Unstructured or "natural language processing" form for Topic 125 is:

#ql25 =

government authority court law regulation control limit warning discourage funding research

action anti smoking smoking tobacco ;
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III. DECISION LEVEL DATA FUSION FOR INFORMATION
RETRIEVAL.

Given the output of two or more systems or modes of a single system we combine them

using several possible fusion rules. In order to illustrate the action of these rules we introduce

a binning procedure which will be used for the remainder of this analysis. Such a binning

procedure is also called a "quantization" of the decision-level signals issued by the systems. The

set of ranks assigned by any mode is broken into 25 bins, each containing 40 consecutive ranks.

These are labelled by the numbers 0,1, ... 24, which we call "bin ranks". A given document, if

it is retrieved in the top 1000 by two different modes, will have two different bin ranks, (b,,b2).

Hence it can be represented as appearing in the location indexed by that pair of coordinates.

We will also refer to those products of bins as bins, in the plane. In general there will

be some number of documents, in each bin, which have been judged and judged relevant. We
denote this by g(bi,b2). Similarly, there will be some number that have been judged not relevant,

which we denote by b(bi,b2). The goal of any retrieval system faced with this information is to

sweep across the plane of bins, in such a way that the accumulation of relevant documents is as

rapid as possible, while the accumulation of not relevant documents is as slow as possible. This

will be made more precise below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
3 3 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
4 4 4 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
5 5 5 5 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
6 6 6 6 6 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
7 7 7 7 7 7 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
8 8 8 8 8 8 8 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
9 9 9 9 9 9 9 9 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

10 10 10 10 10 10 10 10 10 10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
11 11 11 11 11 11 11 11 11 11 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24
12 12 12 12 12 12 12 12 12 12 12 12 12 13 14 15 16 17 18 19 20 21 22 23 24
13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 15 16 17 18 19 20 21 22 23 24
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 16 17 18 19 20 21 22 23 24
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 17 18 19 20 21 22 23 24
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 18 19 20 21 22 23 24
17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 19 20 21 22 23 24
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 19 20 21 22 23 24
19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20 21 22 23 24
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 22 23 24
21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 23 24
22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 24
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24
24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

Exhibit 1. Maximum logic for fusion of ranks. The combined rank of each bin is shown.

There are a number of a priori schemes which may be applied to pursue this goal. Three

of the simplest are the symmetric rules: MAX, MIN and SUM. These may be defined formally

by the rule which gives the combined bin rank b^.^,^ as a function of the values (bi,b2). These

322



rules are shown in Table 2.

Table 2. Mathematical form of the rules of combination.

Rule Formula for combined rank

MIN min(b,,b2)

MAX max(b,,b2)

SUM bi+b2

u u u U U U U
A
u

A
U

A
U

A
U

A
U

A
U

A
U

A
U U

A
U

A
U

A
U

A
U U

A
U

A
(J

A
U

A
(J

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0 1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

0 1 2 3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

0 1 2 3 4 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

0 1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

0 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11
0 1 2 3 4 5 6 7 8 9 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12
0 1 2 3 4 5 6 7 8 9 10 11 12 13 13 13 13 13 13 13 13 13 13 13 13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 16 16 16 16 16 16 16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 17 17 17 17 17 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 18 18 18 18 18
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 20 20 20
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 21 21
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Exhibit 2. Minimum logic for fusion of ranks. The combined rank of each bin is shown.

Each document is located in one of the bins, identified by the rank assigned to that bin

by the inf system (reading down the page) and by the rank assigned to that bin by the nip system

(reading across the page). The number at the position of each bin indicates its rank under the

fusion rule.

In Exhibits 1,2, and 3 we show the combined rank assigned to each bin in the plane,

under each of the three rules of combination. In practice ties must be broken in some way, such

as using one of the two bin coordinates as a second sort key. This is not material for the

remainder of this analysis, and will not be pursued here.

It is clear from examination of Exhibit 1, that the MAXimum rule corresponds to the
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0 21 22 23 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2

1

22 23 24 25
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 5 26
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2 9 3 0 3

1

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3 2

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3 3

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2 9 3 0 31 32 3 3 34
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

1

32 33 34 3 5

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

1

32 33 34 3 5 3 6

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3 0 3

1

32 33 34 3 5 3 6 37
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3 5 3 6 37 38
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3 8 39
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 3 9 40
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Exhibit 3. Sum of ranks rule for combination of ranks. The combined rank of each bin is

shown.

logical combination AND. That is, a bin will have combined rank less that, say, 5, if and only

if the ranks assigned to it by both modes of retrieval are less than or equal to 5. Similarly, the

MINimum rule corresponds to a logical OR. That is, a bin in the plane will have a rank less

than or equal to 5 if either of the two modes assigns it a rank less than or equal to 5.

Finally, the SUM rule, while still treating the two coordinates symmetrically, does not

correspond to a specific logic. Rather, it permits a tradeoff of high rank in one mode and low

rank in another. There are many other possible symmetric rules of combination, which can be

generated from basic symmetric functions of two or more variables as discussed by Kantor

[19811. The enumeration of symmetric logical rules for combining three inputs is given by

Cherikh.

In our treatment of the routing problem we asked which of several rules provided the best

performance, for a given topic, and then applied the same rule (using of course the same query

formulations) to retrieval from the test set. In fact, since our experiments included fusion of

decision level data (that is, ranked lists) from each of three modes of the Inquery system, we
considered a fourth possible rule, MED which set the combined rank equal to the median of the

three separate ranks. Our analysis, in this note, of the problems with tuning decision level fusion

will be carried out using only two modes (the nip and the inf).
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IV. EXAMINING THE TEST AND TRAINING DATA TOGETHER

To get a better understanding of the problems that have arisen, we present the bin arrays

for the test and training data on a single topic from the routing set, Topic 125. The data of

interest are the numbers g(bi,b2) and b(b,,b2). However, the retrieval performance, by any

standard measure, will be optimized if we sort the bins in decreasing value of the ratio:

r(b„b2)=g(b„b2)/b(b„b2)

Since this may be undefined (if b(b,,b2) =0), we work instead with:

P(b„b2)=g(b„b2)/[g(b„b2)+b(b„b2)].

This is undefined only if there are no evaluated documents in the bin. In that case we represent

the bin by a To compress the ratio into a single digit we use a formula defining the graphic

character, c(b,,b2):

Table 3. Definition of Graphic Characters for Exhibit 4.

c(b„b2)

"." if g+b=0

"!" if g>0 and b=0

Int(Log2(1000*g/(g+b)))

The largest value of the numerical character is Int(Log2(1000))=9.

Table 4. Training data, for three modes of retrieval, for Topic 125.

Inquery retrieval mode Precision at 100 Documents

Hard Boolean .02

Inferential .46

Natural Language .45

Examining the patterns in Exhibit 4, we see that the patterns look generally similar. This

means, from the perspective of data fusion, that this should be a fairly good test case on which

to explore the potential of data fusion. To do so we consider several possible ways in which to

order the bins, in the test array.

One possibility is to pay no attention to the training set, and adopt an order such as one

of the ones shown in Exhibits 1,2,3. A second possibility is to "learn" as much as possible from

the training set, and to use the results of that learning to perform the data fusion on the test set.

We first summarize the information that was available after the training run. Recall that, under
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the data fusion rules, the queries themselves are not to be modified on the basis of the retrieved

set in the training run. All that can be changed is the rule of combination.

Topic 125
Training Set Test Set

898 . ! ! 998 . . !

8998798 . . ! 9878
! 98 . 797 . !......... 79878 !

!898. !8. .8. . . . ! .99987. .9

. . . . 78 ! ! . 8 . . . . 8 ! ! . . ! . 8887 . 8 . . 7

. ! . . ! 989 . 8 . . . 8 ! . . . . .. 88 . 98989 ..!...

..8.8.!!! 889 8 . . . 87 ! 8 ! . 8 ! . 8

.....!.. 8 ... ! . . . 88 . . 8788 !..!.!
!..8 !....8 ...!8.!88.7....!.7
. ! . 8 . ! 8 . . ! 88 8 . . . .

. . ! ! ! 88 ... 8 ! . . .

! ! ! . ... 8 .... 8 .. !

. . . ! ......!..... 8

! ... 8 ... 8 ... ! ! . !

I I

, _ , I I
, j

\

I

! !.....!.... ! .

8

I
_

I

8 ! .

I

Exhibit 4. Relative distributions of relevant and non-relevant documents in the training and

test sets for Topic 125. Codes are defined in Table 3.

The precision, at 100 documents, for the original three runs of Topic 125 are shown in

Table 4. These data show that our concentration on just two of the modes is certainly justified

here, as the third (the hard Boolean form) seems to have very little to contribute. We note that

this disparity might suggest that the problem with our performance is due to the insistence on

symmetry among the three modes, which seems unreasonable in situations like the one shown

in Table 4. However, the detailed results to follow show that the problems are deeper than that.
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V. TUNING THE DATA FUSION RULE.

In the TREC context we explored the possibiHty of tuning, Topic by Topic, by

considering each of several data fusion rules, and selecting, for each topic, the rule which

performed best. We did not consider the question of whether differences among rules were

statistically significant in maicing these choices. Four rules were considered: the maximum, the

minimum, the equally weighted sum, and a weighted sum. Under the weighted sum rule the rank

assigned to a document by each mode is divided by 0.02+p(100, Mode). The 0.02 offset is

intended to prevent division by zero. p(100,Mode) is the precision of that Mode, at 100

documents, in retrieval from the test set. In the present case the quantized version of this

formula becomes:

Effectively, this gives the inf and nip modes 22 or 23 times as much "weight", in the sense that

after the first bin of the hbl retrieval is included, some 22 bins of each of the other two will be

brought into the fusion result before the second bin from the bhl mode enters. The precise

meaning of this is a somewhat unclear as the boolean system does not produce a ranked retrieval.

Thus, at some point there are no more documents to be considered from that mode.

For the present, then, we consider just the inf and nip modes, as shown in Exhibit 4.

However, the performance of four possible rules of combination [for all

three inputs] is shown in Table 5.

Table 5. Performance of rules of combination on the training set. Topic 125

MAX MIN MED Sum(Wtd) Sum(Equal)

.28 .30 .31 .05 .45

SUM(Equal) means the sum with equal weights. Based on these results, our first choice

for the test situation should be the sum with equal weights. In our TREC runs, however, this

alternative was not included. We do not know why the weighted sum performs so poorly for this

topic or, for that matter, in general.

Given the disappointing results of the fusion rules selected here, we have explored the

possibility of learning in much finer detail. That is, rather than sweeping across the array of bins

in one of the three patterns shown in Exhibits 1,2,3, we consider picking and choosing among

the specific bins in the plane, so as to produce the best possible results on the training set.

The most aggressive approach to this is to rank the bins in the plane in decreasing order

of g/b. This produces the results shown in Figure 1. This figure contains a great deal of

information on both the training and test performance. The horizontal axis records the number

of non-relevant documents collected while sweeping across the bins in the indicated order.
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Topic 125. C urn u I ated Scores

160

a 40 BD 120 1BQ 2DD 24D 280 320

Cumulated Not Re I Documents

Figure 1. Cumulated Number of Good Documents. Bins sorted by g/(g+b).

The left-most curve , labelled "Op" is the cumulated curve for the training data if bins are

collected in the optimal order (corresponding to first taking all bins marked "!", and then taking

up the numbered bins in decreasing order, as shown in the left portion of Exhibit 4). The

performance in this case, on the training set, is very good. To normalize this cumulated

performance curve we have shown the straight line from the origin to the endpoint. This straight

line represents the performance that would be achieved, on the average, if bins were simply taken

in random order.

In the curves extending to the right-most portion of Figure 1 , we show the corresponding

structure for the test data. Again the straight line represents expected random performance. The

jagged line labelled "Lc" (for "Local" tuning) shows the performance if the order of bin selection

is exactly the same as the one used to generate the training curve. In the early portions it tracks

the straight line, beginning below it, and rising above it. It lies above the random performance

for an interval, and then falls below it again. Thus this highly detailed choice of tuning performs,

overall, not very differently from a random selection rule. To calibrate the notion of "not very

differently" we show, in the curve labelled "Su" the performance, on the training set, that is

achieved by using the sum of ranks rule of Exhibit 3. This clearly everywhere dominates the

performance of detailed local tuning. In other words, knowledge of the training set has not
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helped the data fusion at all!

Topic 125. Cumulated Scores

40 BO 120 160 200 240 280 320

Cumulated Not Pel Documents

\
ii'igure 2. Cumluated relevant documents, using a rule which assigns greater weights to bins

with more judged documents.

Table 6. A modified rule for determining combined rank of bins, "sqrt" represents the

square root function.

Situation Combined Rank

b=0, g=0 -1

b=0, g>0 sqrt(g)

b>0, g=0 0

b>0, g>0 g/sqrt(g+b)

The obvious explanation for this is that we have "over trained". That is, we are using

distinctions among bins which are due essentially to random fluctuations in the training data.

Presumably these fluctuations are most prominent in bins containing small numbers of relevant

(or non-relevant) documents. To test this, we have used another ranking scheme, which weights
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bins according to the square root of the total number ofjudged documents that they contain. The

modified ranking rule is shown in Table 6.

The resulting cumulated curves of relevant versus non-relevant documents are shown in

Figure 2. On the training set this does not perform as well as the optimal rule shown in Figure

1. But it does very well in comparison to the sum rule, shown as a jagged line rising from the

origin to the endpoint of the training set ("Train"). On the test set, this less aggressive rule,

labelled "Lo" is consistently better than random. But, except for a small region near the origin

(which may well be due to fluctuations) it is still not better than the sum rule.

These results move us towards understanding why our application of data fusion to the

routing situation did not work well. Disappointingly, they also suggest that even tuning that

makes use of all the routing information will not do better than a symmetric fusion rule chosen

a priori. However, the details of plots such as Exhibit 4 suggest that there may be other

"generic" fusion rules which are more effective that the rules shown in Exhibits 1,2, and 3. In

that plot we see that relevant documents are nicely clustered into the upper left comer, but, then,

they continue across the plot in patterns that stay close to the main diagonal.

This suggests a rule for combination that does not correspond well to a simple logical

expression. For example, it could be represented as b(,on,=lbn,p-biJ. The vertical bars represent

absolute value, and ensure that the combined rank is positive. The meaning of such rules is not

yet clear. One possible interpretation is that when the two schemes agree on the rank that they

assign, it is more likely that the document is relevant than that it is not. But why this should

itself be true is not yet clear.

VL DISCUSSION AND CONCLUSIONS

The clear conclusion of our efforts to select a "best symmetric tuning rule" for each of

the routing topics is that, as implemented here, it does very poorly in the TREC setting. The first

observation is that (Harman 1995) most TREC groups used results of the training data to improve

their query formulations, eliminating terms that led to irrelevant documents, and adding terms that

retrieved relevant documents. The evidence shows that this level of tuning is clearly superior

to an approach that treats the query formulations as part of an impenetrable black box.

However, motivated by our observation that not all systems will permit their interiors to

be manipulated in this way, we ask (perhaps over-optimistically) whether there are directions in

which the present work might be extended to bring its performance closer to that of other training

schemes.

We can represent the situation here using Q,R,S to represent systems, a prime (') to

represent the training of systems, F to represent fusion rules, and F' to represent a trained fusion

rule. Using < to mean "performs more poorly than" our present result is that F'(Q,R)<Q'-

However, there is a body of evidence suggesting that F(Q,R)>Q, even if Q>R [Belkin, Kantor,
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Fox and Shaw].

One line of approach is to seek better formulations of the training rule F~>F'. This will

require detailed exploration of schemes for defining and ordering the bins in the space of

combined ranks. We have used prior fixed bins. Better results might be obtained, for example,

by using a nearest neighbor scheme, or some other pattern analysis method [Fukunaga] to

determine the ordering of the bins. The bins will have to be weighted along the lines used in the

work shown in Figure 2, to avoid the effects of overtraining.

A second line of approach, to be investigated in future work, considers that perhaps our

effort to simulate the case of different systems is not realistic enough. While we use different

modes of the Inquery system, those modes still draw upon the same underlying stemming and

indexing algorithms. Thus our "systems" Q,R,S are not very different from each other. [This

is reflected, in Exhibit 4, by the tendency of the bins with high weight to lie close to the

diagonal. This is a pattern which is not consistent with any of the rules shown in Exhibits

1,2,3.]. A very different approach is given by the so-called n-gram schemes [Cavnar, Damashek].

In direct evaluation [TREC-3] these schemes have not done as well as term-based schemes. But

they are likely to be more nearly independent from those schemes, and hence to provide a more

powerful basis for trainable data fusion schemes in information retrieval.

VIL ACICN0WLEDGEJS4ENTS

Mr. Won-Sik Shim, of the Rutgers program in Library and Information Studies produced

the "nearly automatic" but concept-structured query formulations. Mr James Callan processed

them in several ways, using the Inquery software at the University of Massachusetts Laboratory

for Information Retrieval Studies. We are indebted to Prof. W. Bruce Croft for this support as

well. Prof. Nicholas Belkin at Rutgers installed and maintained the Inquery file file structure on

the Rutgers computers, and provided the support of Mr. Richard Quatrain, of Electricite de

France, who coded some of the post-processing data fusion scripts. The Alexandria Project

Laboratory is supported by research funds from the US Department of Education, the Council

on Library Resources, and other agencies. Additional support is provided by Dean Richard W.
Budd of the School of Communication Information and Library Studies.

VIII. REFERENCES AND LITERATURE CITED

Belkin, NJ, Kantor, PB, Fox, EA, Shaw, JA. (to be published) Combining the Evidence of

Multiple Query Representations for Information Retrieval. Information Processing and

Management. [To be published].

Cavnar, WB. Using an N-Gram-Based Document Representation with a Vector Processing Model.

In Harman 1995 op cit.

Cherikh, M. (1989) Optimal Decision and Detection in the Decentralized Case. Cleveland Ohio.

Department of Operations Research, Case-Western Reserve University. PhD. Dissertation.

331



Damashek, M. Gauging Similarity via N-Grams: Language Independent Sorting, Characterization

and Retrieval of Text. Prepritn: Fort George Meade, MD.

Fukunaga, K. Introduction to Statistical Pattern Recognition. Second Ed. Academic Press. 1990.

591pp.

Hall, DL. Mathematical Techniques in Multi-Sensor Data Fusion. Artech House. (1992).

Harmon, DK.[1995] The Third Text REtrieval Conference (TREC-3). NAtional Institutes of

Standards and Technology. (This volume).

Kantor PB [1981]. The Logic of Weighted Queries. IEEE Transactions on Systems, Man and

Cybernetics, vl 1(12)816-821. (1981).

Kantor PB [1984e]. A Simulation Method for Assessing the Significance of Non-Paramteric

Comparisons in the TREC setting. Unpublished. Available by ftp from kantor.rutgers.edu.

Saracevic, T; Kantor PB. (1988) A Study of Information Seeking and Retrieving. III. Searchers,

searches, overlap. Journal of the American Society for Information Science v39(3) 197-216.

Turtle, HR; Croft, WB. (1991) Evaluation of an Inference network-based model. ACM
Transactions on Information Systems. 9(3)187-222.

332



TREC-3: Experience With Conceptual Relations in Information

Retrieval

David Gardiner, John Riedl, and James Slagle

University of Minnesota

Computer Science Department

(gardiner I riedl I slagle) @cs.umn.edu

Abstract
This report describes an experiment evaluating the performance gains that can be achieved by

using high-level conceptual relations in information retrieval. The objective of the experiment is

to determine if conceptual relations can improve overall retrieval performance and, if so, under

what conditions using relations is likely to be justified. We represent five TREC topics each as

two concepts linked by a single relation, where a concept corresponds to a noun phrase and a

relation corresponds to a verb phrase or a noun phrase that describes an action, activity, or

relationship. A Boolean search (with proximity) is associated with each concept and a

parameterized search with each relation. We then compare the performance of the expanded

concept-relation-concept representation with the searches for the two concepts linked by each of

several proximity operators. Our results show that use of relations can provide significant

performance improvements but that the improvements are dependent on the nature of the two

concepts and the relation with respect to the text collection being searched.

1. Introduction

The primary objective of the field of information retrieval is to provide technology allowing people to find

sufficient information to answer questions. Historically, the problem of information retrieval was finding

any relevant information. Now, with the wide-spread availability of enormous electronic databases, being

overwhelmed with too much information is common. The challenge of information retrieval is therefore to

provide relevant and only relevant information. Unfortunately, providing more relevant information tends

to also result in more non-relevant information, just as eliminating non-relevant information tends to

eliminate information that is relevant.

A key to improving information retrieval performance is for the retrieval system to have a better

representation of the user's information need. Information need is often expressed as a set of concepts. The

focus of this research project is to determine whether specifying and searching for specific relations

between concepts — one way to more completely specify the information need — can improve retrieval

performance. For the purpose of this project, a concept corresponds to a noun phrase and a relation

corresponds to a verb phrase or a noun phrase that describes an action, activity, or relationship.

Ideas that form information needs are comprised of both concepts and relations. If there are multiple

relations that can occur between two concepts, specification of the relation becomes critical to properly

specifying the query. Cimino & Bamett note the importance of relations in their analysis of questions

generated by physicians (Cimino & Bamett 1992). They cite an example of the concepts methotrexate and

psoriasis and several questions that might be posed by these two concepts: "Does methotrexate cause

psoriasis?", "Does methotrexate treat psoriasis?", and "Is the use of methotrexate contraindicated in
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someone with psoriasis?" They advocate development of a vocabulary of "Relation Concepts" to allow

more precise specification of medical questions.

While use of relations can allow better representation of information need than concepts alone, there has

been limited research evaluating the impact that using relations can have on retrieval performance. The two

research questions addressed in this project are:

1. Can retrieval performance be improved by explicitly specifying and searching for relationships

between concepts?

2. Under what conditions is the improvement likely to be justified?

Systems such as RUBRIC (McCune et al., 1985) search for concepts. Relationships between concepts are

specified implicitly, using Boolean operators and proximity. The idea of using explicit relations to improve

retrieval performance has been explored in the context of document indexing. (Farradane, 1981) describes

a notation for indexing relations between concepts. Concepts and relations can be specified in a search.

Searches then use the index to identify matches. (Farradane & Thompson 1980) describes preliminary

experiments indicating that relational indexing can improve retrieval performance. Relational indexing

requires manual recognition and indexing of relations in each document in the collection. While manual

indexing of concepts has been widely used, it is labor-intensive. Our approach builds on (Farradane, 1981)

in that we also explore using relations to improve retrieval performance. However, instead of indexing

each relation, we construct a search expression for the existence of the relation in the collection. The

manual effort required is in developing the recognition expression. The only indexing required is automated

word-based indexing as used in most current information retrieval systems.

2. Experimental Design

To answer these research questions, our experiment compares the performance of searches using a relation

between two concepts to searches using a simple proximity operator between the same two concepts. We
use concept-relation-concept queries because doing so reduces the issues associated with representing a

topic. In many cases, an information need cannot be represented as a single concept-relation-concept

(Liddy & Myaeng 1994). A complete representation of an information need often involves multiple

concepts and relations, nesting, and functional dependencies. Evaluating the effect of a single relation in a

complex representation would be difficult. Furthermore, it is not clear what a complex representation

would be compared against. We chose proximity operators as our baseline for comparison because they

are commonly used to specify that some relationship exists between two terms without specifying the

relationship explicitly.

Since this experiment is done as a part of the Third Text REtrieval Conference (TREC-3), we use the

TREC document collection, topics, and relevance judgments. Most TREC topics require more than two

concepts and a relation for a complete representation (Liddy & Myaeng 1994). Of the five topics that we

use, only two were adequately represented by concept-relation-concept. This means that, for three of the

topics used, there is a significant discrepancy between the topic on which the relevance judgments are based

and the representation of the topic that we use for searching. We use failure analysis to analyze the effect

of this discrepancy on our results.

Figure 1 shows the experimental process used to collect performance results. An information need

specification is manually translated into both a concept-relation-concept representation and a concept-



process

= infnrmation need

specific data

= persistent data

Search Expression Search Expression

Documents Retrieved Documents Retrieved

proximity-concept representation. A
search expression is created for each of

the concepts and the relation and put into

the knowledge base. At this point there

are two parallel, identical paths: one for

the concept-relation-concept

representation and one for the concept-

proximity-concept representation. Each

representation is expanded using the

searches stored in the knowledge base

and the expanded search run against a

large document collection. The

documents retrieved are compared to the

pre-existing relevance judgments and an

evaluation program outputs performance

results. The results for the concept-

relation-concept and concept-proximity-

concept representations are then

compared.

Our planned experimental methodology

is shown in Figure 2. We plan to collect

results for approximately five

information needs. The searches will

then be developed and refined using a

training collection. When the searches

are as good as we can make them, we

will collect "after refinement" results.

We then plan to load two other

collections in turn, collecting "blind"

results, refining the searches, and then

collecting "after refinement" results on

each collection. Finally, we plan to load

a final test collection and collect "blind"

results on that collection.

Our methodology involves manual effort

used to create the concept-relation-

concept representations and the concept

and relation searches. Since this

experiment is intended as a qualitative

exploration of the value of relations in

information retrieval, the source of the

relations and their linked concepts is not significant. Their significance is in what we learn from evaluating

their performance. Similarly, the source of the concept and relation search expressions is unimportant.

The quality of the concept search expressions has little effect on the results of the experiment as the same

concept searches are used in both the concept-relation-concept and concept-proximity-concept searches.

For relation searches, our objective is to find whether good relation searches can be defined. If the relation

Evaluation Program Relevance

Judgments
Evaluation Program

ResuKs Results

Figure 1. Experimental Process for a Single

Information Need. For the experiment, information

needs are manually translated into Concept-Relation-

Concept representation. The same two concepts are also

linked with a proximity operator to produce a Concept-

Proximity-Concept representation. The two

representations go through the succeeding steps in

parallel. First, each is expanded into a search expression

using the knowledge base. Next, documents are retrieved

by a search engine using the search expression. Then the

retrieved documents are evaluated using the relevance

judgments to produce performance results.
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Translate approximately five

topics to conceptual graphs

I

Create concept and relation

searches

i

Refine searches using

first training collection

I

Collect "after refinement"

results

Load next

training collection

Collect results

Refine searches

Collect "after refinement"

results

Load test collection

i

Collect "blind" results

Figure 2. Planned Methodology. TREC
topics are translated to concept-relation-concept

graphs. Searches for the concepts and relation

are created and refined using training

collections. A test collection is loaded and final

"blind" results collected.

searches are poorly defined, then this experiment

might make relations look less effective than they

really are.

A danger in using manually created search

expressions is that they might be tuned to a particular

collection so that changes that improve performance in

one collection make performance worse in another.

We contrast tuning with refinement, which improves

performance in a new collection without negatively

impacting the performance in a previous collection.

The use of multiple training collections allows us to

determine how much tuning is occurring. The

collections used are drawn from two different sources,

with all documents in each collection drawn from a

single source. This diversity between collections helps

ensure that we do not tune for a single source. If

tuning occurs, this implies that a relation search may
work only with collections very similar to the training

collection. If tuning does not occur, it suggests that

relations may be defined that can work on a broader

set of collections.

The following sections describe the components of the

dataflow diagram in detail.

2.1. Information Need Specification

and Knowledge Representation

The start of any information retrieval process is som.e

specification of an information need. For this

experiment, we use topics and relevance judgments

provided as part of the Third Text REtrieval

Conference (TREC-3). The narratives of the topics

used in this experiment are shown in Figure 3.

We need a notation for the concept-relation-concept

representation of an information need. Since our

representational need is simple, virtually any

knowledge representation has the representational

power required. The notation we use is Sowa's conceptual graphs (Sowa 1984). Examples of other

representations that would have worked are frames or any Lisp-like notation.

Conceptual graphs are directed graphs containing concepts (denoted with brackets) and relations (denoted

with parentheses) connected with arrows. Concept types are organized in a type lattice stored in the

knowledge base. While Sowa's notation for concepts allows specification of both a concept type name and

a referent, we replace the referent with a type scope indicator that is either null, >=, or >. The type scope

indicators specify that the concept refers to the specified concept type only, to the specified concept type
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and all narrower types, or to narrower types only, respectively. For exannple, the concept [politician]

represents only the specific concept of a "politician" while [politician: >=] represents the concept of a

politician or any kind of politician such as a senator, congressperson, or supreme court judge, [politician:

>] refers to kinds of politicians, not to the concept of "politician" itself. Use of type scope indicators

simplifies representation of information need and appears to simplify knowledge base creation and

maintenance.

The relations that we use in this project are high-level, complex relations. Examples are develops, spies

on, and finances. These relations could be defined by conceptual graphs containing concepts and more

fundamental relations such as agent and object. We use complex relations because they tend to be

represented in text by words rather than sentence structure and are therefore easier to recognize.

In this project, we use conceptual graphs only as a convenient notation for the concept-relation-concept

form of an information need. Unlike previous work in information retrieval that has used conceptual

graphs (Dick 1991; Liddy & Myaeng 1994), we do not do direct matching between a conceptual graph and

the document collection. Instead, a conceptual graph is converted into a search expression and that search

is run on the collection.

2.2. Knowledge Base and Recognition Expansion

Our knowledge base is our repository for concept and relation recognition knowledge. That is, it contains

the knowledge used to translate a conceptual graph representation of information need into a form that can

be evaluated by the search engine.

Both concept and relation types have recognition expressions associated with them. These recognition

expressions are written in the Personal Librarian full-text search language with one extension: a concept,

which may contain a conceptual graph, may be inserted anywhere in a recognition expression. This

capability allows recognition expressions to refer to other concept and relation types rather than repeating

the search expression for those types. For example, the concept type cancer drug has the recognition

expression

[cancer: >=] NEAR/20 [drug]

The recognition expression for a relation type is similar to that of a concept type but must contain two

parameters, represented as %1 and %2. These parameters correspond to the recognition expressions of the

relation input and output concepts, respectively (we limited our implementation to binary relations). The

following is the recognition expression for the relation typefinances:

%l NEAR/15 (financ* or fund* or (pay for) or contrib* or donation*) NEAR/15 %2

Recognition expansion is the process of transforming a conceptual graph into a full-text search language

expression by replacing each concept and relation with its fully expanded recognition expression.

2.3. Document Collection

As in any information retrieval experiment, we need a large document collection. For this experiment, we

need four large document collections: one for testing, two for the knowledge base refinement iterations, and

one for the final test. TREC provided three CD-ROMs full of compressed text files for information

retrieval research. The data is organized by source. Each of the collections we used was one source from

one disk. Our initial training collection was Disk 1 Wall Street Journal (WSJ) data. The other collections,
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in the order used, were: Disk 2 WSJ, Disk 3 Associated Press (AP), Disk 1 AP. The Disk 3 AP data was

used to produce our official TREC-3 conference results. Due to technical problems, we were able to load

only four of twelve months of this data.

2.4. Search Engine

The search engine is the final component in the process of identifying documents that are relevant to the

information need. The search engine takes a search expression and returns a set of documents from the

document collection. There are two basic kinds of search engines readily available: intelligent search

engines that take natural language input and Boolean search engines that require a specific. Boolean-based

search language. We chose to use Boolean searching for this experiment because Boolean provides us with

greater control over the searching. We did not want the effects of an intelligent search mechanism

confounding our results.

The search system used for this experiment is Personal Librarian, created and sold by Personal Library

Software. Personal Librarian provides a robust Boolean search mechanism as well as an intelligent search

mechanism that we did not use. We stress that we do not test the performance of Personal Librarian's

natural language-based search mechanism in this experiment but only its robust Boolean and proximity

search capabilities.

The Personal Librarian search language includes the standard Boolean operators AND, OR, and NOT, as

well as unidirectional and bidirectional proximity operators. A unidirectional operator requires that the

operands be in the specified order and proximity. A bidirectional operator requires only that the proximity

criterion be met. In Personal Librarian, the unidirectional and bidirectional operators are W/« and

NEAR/n, respectively, where n is the proximity in words. For example, the search "A W/10 B" will return

only documents where word A occurs ten or fewer words before word B. "A NEAR/ 10 B" will return all

documents where word A occurs within ten words of word B, regardless of the order.

In the experiment, we compare the performance of each relation search expression to ten alternatives: both

unidirectional and bidirectional proximity operators for 5, 10, 15, 20, and 30 words. We had hoped to also

use within sentence and within paragraph proximities but these operators were not available in the search

engine used. Figure 1 is simplified to show the process for the relation and a single proximity.

Personal Librarian takes the search expression produced by recognition expansion and returns a list of

documents. We use a utility program to change this list into a form that can be processed by the TREC
evaluation program, discussed below. The results returned by Personal Librarian are ordered by the

Personal Librarian search engine's proprietary algorithm.

2.5. Relevance Judgments

Evaluating the performance of a retrieval method requires relevance judgments specifying which documents

in the collection are relevant for an information need and therefore should have been retrieved by the

system. Relevance judgments were supplied by TREC. Ideally, relevance judgments would exist for all

combinations of topics and documents. Since TREC now has 200 topics, the collection contains hundreds

of thousands of documents, and relevance judgments must be made by people, only a small fraction of the

possible relevance judgments exist. These judgments were created for the top ranked documents returned

by systems used in previous TREC conferences.
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The limited relevance judgments are issue for our experiment, as for all TREC participants. The TREC
evaluation program treats all unjudged documents as not relevant. If a significant portion of the unjudged

documents are relevant the results may be skewed.

2.6. Evaluation Program and Metrics

Once we have the list of documents retrieved and the relevance judgments, we can perform evaluation to

produce our experimental results. TREC provides an evaluation program that outputs several different

measures. The metric that we use in our experiment is non-interpolated average precision. Average

precision corresponds to the area under an ideal (non-interpolated) recall/precision curve and is computed

as the average of the precision at each relevant document retrieved. We use average precision as our

primary metric for three reasons:

1. It is a single measure of overall system performance. Any retrieval method will provide some

mixture of precision and recall. Since improving precision tends to reduce recall, and vice versa, those

cannot be used for comparison. We needed one metric that would provide a measure of overall system

performance, and average precision is the best metric of that type at this time.

2. It is a standard metric that is widely used within the information retrieval research community.

Since retrieval performance is subjective, depending on the exact information need of each user, no

metric can provide an indisputable measurement of system performance. Average precision is currently

the most commonly used metric of overall system performance.

3. The TREC evaluation program computes it This ensures that our computations of average

precision would be standard.

Measurement of time for this experiment was "wall clock" time. Wall clock time measures the interval

between when a query is submitted and results are displayed, which is the key measure of time relevant to

retrieval system users. The standard Windows clock was displayed in digital mode. The start time was

recorded when the Personal Librarian "Search" button was pressed, and the finish time was recorded when

the search results began displaying. The clock display was in one second increments, so the precision of

the time results is plus or minus one second.

2.7. System

We developed a system named Teknos that is used to build and maintain the knowledge base, maintain a

list of conceptual graph queries, and perform recognition expansion on the graphs. The resulting search

expression is copied (via the Windows clipboard) to Personal Librarian where the search is run. The

results are output to a file and run through a utility program to provide a results file that can be processed

by the TREC evaluation program.

Teknos is implemented in Borland C+->r using the POET object-oriented database system and runs under

Microsoft Windows 3. 11. The computer used for this project is a Gateway 2000 486DX2 66 MHz PC
with 12 MB of RAM and two hard drives: one has 424 MB of space, the other has 540 MB compressed

using Stacker 4.0 to provide over 1 GB of space.
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~— ~—
Topic 111

Topic Narrative: A relevant document will report on efforts by the UN's International Atomic Energy Agency to

monitor compliance with the Nuclear Non-proliferation Treaty, or, report on efforts by the United States,

Britain, France, USSR, India, or China to control the transfer of technology, equipment, materials, or

delivery systems to nations suspected of nuclear weapons development programs, or, a relevant document

will report any nuclear activities by Argentina, Brazil, Iraq, Israel, North Korea, Pakistan, South Africa, or

Iran (all suspected proliferators).

Conceptual Graph: [nuclear wannabe: >] (develops) [nuclear weapon].

Graph Narrative: A relevant document will report on nuclear weapons development programs in Argentina,

Brazil, Iran, Iraq, Israel, North Korea, Pakistan, or South Africa (all suspected proliferators).

Topic 122
Topic Narrative: A relevant document will report on any phase in the worldwide process of bringing new cancer

fighting drugs to market, from conceptualization to government marketing approval. The laboratory or

company responsible for the drug project, the specific type ofcancer(s) which the drug is designed to counter,

and the chemical/medical properties of the drug must be identified.

Conceptual Graph: [company] —> (tests) [cancer drug].

Graph Narrative: A relevant document will report on any company testing a new cancerfighting drug.

Topic 129

Topic Narrative: A relevant document will discuss reported espionage by entities of the Soviet government -

KGB, GRU, etc. - conducted within the territory of the United States of America, or against U.S. diplomatic

or military facilities overseas. Reported entrapment or involvement of U.S. citizens, residents, or employees

in Soviet spying, be it overseas or within U.S. territory, is also relevant. However, espionage cases involving

states linked to the USSR - Czechoslovakia, Bulgaria, Cuba, etc. - are NOT relevant, unless linkage to Soviet

intelligence can be demonstrated.

Conceptual Graph: [USSR] -> (SpiesOn) [USA].

Graph Narrative: A relevant document will discuss any spying conducted by the USSR against the USA.

Topic 131

Topic Narrative: A relevant document will provide specified data on contracts awarded to McDonnell Douglas

for the production of military aircraft for any nation, any military service, or of any aircraft type

(interceptor, fighter-bomber, helicopter, etc.). The contract must be for completed airframes, NOT contracts

for aircraft development, factory tooling, components, spare parts, services, etc. To be relevant, the

document also must specify the number of aircraft to be delivered, the dollar size of the contract, and the

aircraft type sought.

Conceptual Graph: [McDonnell Douglas] —> (WonContractFor) —> [military aircraft].

Graph Narrative: A relevant document will discuss McDonnell Douglas winning a contract for some kind of

military aircraft. The contract must be for completed airframes or aircraft development, not factory tooling,

components, spare parts, services, etc.

Topic 150
Topic Narrative: A relevant document will show how U.S. politicians (federal, state, or local — individually or

as a group) pay for their election campaigns, the role played by "special interests" and contributors in the

electoral process, allegations or evidence ofcampaign contributions buying political favors, and/or proposals

to limit the cost of campaigns or "reform" electoral finance practices.

Conceptual Graph: [politician: >=] —> (Finances) —> [campaign].

Graph Narrative: A relevant document will discuss a politician financing his or her campaign.

Figure 3. Narratives for TREC Topics Used in Experiment
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Translate topics 111, 122, 129,

131, 150 to conceptual graphs

Create concept and relation

searches

Refine searches using Wall

Street Journal (WSO Disk 1 data

Collect "after refineaient"

resolts

Load WSJ Disk 2 data

CoDect "blind" results

Refine searches

Collect "after refinement"

results

Load Associated Press (AP)

Disk 3 daU

CoHeet "hibid" results

Load AP Disk 1 data

CoOect "blind" results

Figure 4. Actual Methodology

3. Experimental Process

This section discusses the details of our data collection

process as shown in Figure 4.

To isolate the effects of single relation, a requirement of this

experiment is that each query had to be represented by a

single concept-relation-concept graph. Most TREC topics

require several such graphs for a complete representation

(Liddy & Myaeng 1994). We identified five topics that we

could "bend" for our use: 111, 122, 129, 131, and 150.

Topics 129 and 150 were reasonably well represented by a

simple conceptual graph. The substance of Topic 131 was

well represented but the topic contained a requirement for

more detailed information than the conceptual graph could

represent, hence the conceptual graph was more general than

the topic. To get two additional topics, we allowed the topic

to contain two primary concepts that were linked via multiple

relations (Topic 122) or to have a major aspect of the topic

representable with a simple conceptual graph (Topic 111).

The topic-graph mismatch for Topics 111, 122, and 131

means that the relevance judgments for these topics are only

partially valid. This issue is discussed in more detail in

Section 5. The topic narratives, conceptual graphs, and

conceptual graph narratives are presented in Figure 3.

Our training collection was Wall Street Journal Disk 1,

which was loaded into Personal Librarian. To develop the

searches, we reviewed a few of the relevant documents in the

test data and used them as guides to develop preliminary

concept and relation searches. We then used an iterative

process of searching, analysis using the TREC evaluation

program, and refinement to improve the individual concept

searches. When the concept searches worked reasonably well

individually, we began testing the relation using the whole

conceptual graph search. All of the relation searches are of

the form

%1 proximity (relation search) proximity %2

where %1 and %2 are substituted with the concept searches Unked by the in and out arrows, respectively.

The two proximity operators are the same and the relation search is a search for words indicating the

relation independent of the concepts. The first focus was refining the relation search using techniques

similar to those used for the concepts. Next, we determined the most effective proximity to use. We
experimented with same proximity operators used later in the experiment—^unidirectional and bidirectional

operators for 5, 10, 15, 20, and 30 words — collecting average precision results for each. The proximity
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operator that produced the best results on the test data was used in the final version of the relation search.

One of the benefits of using relations is that recognition criteria such as proximity can be experimentally

determined during knowledge engineering.

Once the searches were complete, we collected final results for WSJ Disk 1, which were "after refinement"

results. We then loaded the WSJ Disk 2 data and collected "blind" results. Our methodology called for

refinement of all searches and subsequent collection of "after refinement" results. We determined that a

search needed refinement if the results for a new collection were significantly worse than they had been for

an earlier collection and failure analysis indicated that the cause was relation words that occurred in the

new collection but not in the earlier one. We actually needed to refine the searches and collect "after

refinement" results for Topic 111 only. The performance of the other four topics did not indicate a need for

further refinement of the searches, though the performance of Topic 122 indicated other issues. The results

from the reladon-based search for topic 122 were much worse than for the proximity operators and

preliminary analysis indicated that this was largely due to the topic-graph mismatch and the limited number

of relevance judgments.

We decided to create custom relevance judgments for Topic 122 and the WSJ Disk 2 data to eliminate

these problems. The set of documents judged was the set of 208 documents returned by the broadest

proximity operator used in the experiment, NEAR/30. Due to time and funding constraints, judgments were

created by one of the authors of this paper rather than an independent judge. We used the conceptual graph

narrative for topic 122 as the guide to relevance and focused on being as objective as possible.

Because of the small amount of search refinement that we had to do with the WSJ Disk 2 data, we modified

our experimental methodology to use both of the remaining collections for blind results only.

Our third collection was the Associated Press (AP) Disk 3 data used for the official TREC-3 runs. This

was the first collection used for blind results only. Our plan was to load all of the AP Disk 3 data.

Unfortunately, technical difficulties in indexing caused us to load only one third of that data (four of twelve

months). Two of our five relation-based searches — topics 122 and 131 — returned no documents on this

collection. We submitted our results to TREC for the three searches that did return documents. Since we

needed to have results for eleven searches for each topic (one relation-based search and ten proximity-based

searches), our TREC-3 results appear as eleven runs. Within each run are the results for the three topics

that worked.

The fourth and final collection used was the AP Disk 1 data. This was the second collection used for blind

results only. The relation-based search for topic 131 did not return any documents on this collection. There

was one relevant document in the collection, which was returned by all of the proximity-based searches. As

with the official TREC-3 run, all results from this collection were "blind" and based on the standard TREC
relevance judgments (the judgments resulting from TREC-2, not the new TREC-3 judgments).

4. Results

Table 1 is a summary of the results of this experiment, showing the relative improvement of the relation-

based search over the best proximity alternative and the relative increase in time required. The detailed

performance results are presented graphically in Figure 5 through Figure 9. Performance results are

reported as precision ratios which allow easy comparison between a relation-based search and its

proxiinity-based altematives. A precision ratio is computed as
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. , , average precision (operator)
precision ratio (operator) = ^—^

average precision (relation)

so that the value for the relation-based search is 1 .000. Any operator whose performance is greater than

1.000 did better than the relation-based search; any operator whose performance is less than 1.000 did

worse.

A few notes on the results:

1. The WSJ Disk 2 results for Topic 1 1 1 are the "after refinement" results

2. The WSJ Disk 2 results for Topic 122 for both the standard TREC relevance judgments and our

custom judgments are shown.

3. Due to technical difficulties and time constraints, we did not collect time search times for the AP
Disk 3 data

Topic WSJ Disk 1 WSJ Disk 2 AP Disk 3 AP Disk 1

Ave Prec Time Ave Prec Time Ave Prec Time Ave Prec Time

111 +18.7% +328%) -5.1% +222% -13% +9.7% +109%

122 -7.3% +29% +55% +26.7% +18.6% +33%
129 +2073% 0% +1200% +5.7% +252% +676% +3%
131 +52.5% +77% +227% +71%
150 +8.8% +164% +22.2% +182% + 176% +114% +73%

Table 1: Relative Improvement of Relation vs. Best Alternative

Italics indicate where the percent performance increase is greater than the percent time increase
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Figure 5. Topic 111 Precision Ratio
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5. Analysis of Results

The methodology that we use in this experiment lends itself to more of a qualitative than quantitative

analysis. Therefore, we discuss what we learned from each topic separately. The topic narratives,

conceptual graphs, and conceptual graph narratives for the topics used in the experiment are shown in

Figure 3. Prior to discussing the topics, we discuss our failure analysis process.

5.1. Failure Analysis

Two key issues that affect the validity of our results are the topic-graph mismatch, discussed in Section

2.1, and the limited number of relevance judgments, discussed in Section 2.5. We perform failure analysis

on the WSJ Disk 2 results to determine how these issues affect the validity of our results. For each

relation-based search we create three lists:

• Hits. A hit is a document returned by the relation-based search that is relevant in the TREC judgments.

• False hits. A false hit is a document returned by the relation-based search that is not relevant in the

TREC relevance judgments.

® Misses. A miss is a document that is relevant in the TREC relevance judgments but was not returned

by the relation-based search.

For each of these lists, we manually evaluate a random sample of the documents to determine if those

documents are relevant to the conceptual graph representation of the topic. The list is sorted by date and

every nth document is evaluated. Relevance of a document with respect to the conceptual graph is

determined using the conceptual graph narrative as a guide. These results are organized in tables. For

example. Table 2 shows the failure analysis results for Topic 111. The rightmost column, "% Deviation

from TREC Judgments" shows the strength of the evidence that the TREC judgments are not valid for the

conceptual graph. The equations for the deviations are as follows:

# Hits Relevant to Graph

# Hits Analyzed

# False Hits Relevant to Graph

# False Hits Analyzed

# Misses Relevant to Graph

# Misses Analyzed

Hits deviation is high when the documents returned by the relation-based search that are relevant to the

TREC topic are not relevant to the conceptual graph. Hits deviation is often high when the conceptual

graph is more specific than the topic. High Hits deviation indicates that the actual performance of the

relation may be worse than computed using the TREC judgments. False Hits deviation is high when many

of the false hits are relevant to the conceptual graph. There are two causes of False Hits deviation being

high: the conceptual graph being more general than the topic and missing relevance judgments. Misses

deviation is high when few of the misses are relevant to the conceptual graph. Like Hits deviation, this is

primarily an issue when the conceptual graph is more specific than the topic. High False Hits deviation or

Misses deviation indicates that the actual performance of the relation may be better than the value

computed using the TREC judgments.

Failure analysis was performed on the WSJ Disk 2 collection. Results of failure analysis are presented in

the individual topic discussions.
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One limitation of our failure analysis process is that it indicates how the results of the relation-based

searches might improve with better relevance judgments but gives no information on how the proximity-

based alternatives would be affected.

5.2. Topic 111

The conceptual graph representing Topic 111 is more specific than the topic in that there are several

concepts described in the TREC topic narrative that are not subsumed by the conceptual graph:

"International Atomic Energy Agency", "Nuclear Non-proliferation Treaty", and "nuclear nations

controlling nuclear technology transfer". Documents mentioning these concepts are relevant for the TREC
topic but are not relevant to our conceptual graph.

The results for Topic 111 indicate that the relation performed marginally better than the proximity

alternatives, although there were situations where proximity was better. For this topic, co-occurrence of

concepts in proximity appears to be a good predictor of relevance in itself. Including specific relation

words in the search does not appear to have significant benefit for this topic. Discussion of a nuclear

wannabe near discussion of nuclear weapons generally indicates a connection between the two.

Failure analysis results for Topic 111 are shown in Table 2. This table shows that 10 items in the Hits list

were analyzed, and all 10 of them are relevant to the graph. This means that our judgments and those of

TREC agree completely for the Hits list, a deviation of 0%. Of the 10 False Hits analyzed, 7 are relevant

to the graph, giving a 70% deviation. To have complete agreement with the TREC judgments, none of the

False Hits would be relevant to the graph. Of the 12 Misses analyzed, 4 are relevant, giving a 67%
deviation. For the Misses to have complete agreement with the TREC judgments, all of them would be

relevant to the graph.

The deviations indicate that the real performance of the relation-based search should not be any worse than

reported and may be significantly better. That is, the relation-based search results would likely improve

significantly with relevance judgments that are more complete and based on the conceptual graph rather

than the TREC topic. Due to time and resource constraints, we were unable to create custom relevance

judgments for this topic as we did for Topic 122.

List # Analyzed # Relevant to Graph % Deviation from TREC Judgments

Hits 10 10 0%
False Hits 10 7 70%

Misses 12 4 67%

Table 2. Topic 111 Failure Analysis Results

5.3. Topic 122

The conceptual graph for Topic 122 is more specific than the topic in some regards and more general in

others. The conceptual graph is more specific in that it does not cover any phase of development other than

testing, such as research, evaluation, or marketing. We chose to focus on "testing" for this topic because it

is a clearly defined, specific relation. The conceptual graph is more general than the topic in that it does

not require as complete information about the specific types of cancers the drug is designed to counter and

the chemical/medical properties of the drug. Searching for these details would required more than a single

concept-relation-concept graph.
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Using the standard judgments, the performance of the relation-based search ranges from shghtly worse to

much worse than the best proximity alternative.

Failure analysis results for Topic 122 are shown in Table 3. The Hits deviation indicates that the real

performance of the relation-based search might be significantly worse than reported. The False Hits and

Misses deviations indicate that the performance might be significantly better. These failure analysis results

strongly indicate that the conceptual graph is a poor match for the relevance judgments. To obtain more

valid performance results, we created custom relevance judgments for this topic.

The graph in Figure 6 shows the dramatic difference in the performance reported using the standard

judgments versus using the custom judgments. Using the custom judgment results, the relation-based

search performance is significantly better than the proximity-based altematives.

List # Analyzed # Relevant to Graph % Deviation from TREC Judgments

Hits 7 3 57%

False Hits 10 7 70%

Misses 10 0 100%

Table 3. Topic 122 Failure Analysis Results

5.4. Topic 129

Topic 129 was easily representable as a simple concept-relation-concept graph. The failure analysis results

shown in Table 4 show no deviation of any kind, suggesting that the results are valid.

The relation-based search performed much better than the proximity operator altematives. The proximity

operators, especially the broad ones, returned thousands of documents. Writing these results to a file took

as much as an hour for each operator tested. Early results were so dramatic and collecting data for each

operator took so long that results for some operators were not collected.

Topic 129 is an ideal topic for using relations. The two concepts USA and USSR co-occur frequently in

the collections with a very large number of relations. Specifying the relation led to large performance

improvements.

List # Analyzed # Relevant to Graph % Deviation from TREC Judgments

Hits 4 4 0%
False Hits 10 0 0%
Misses 3 3 0%

Table 4. Topic 129 Failure Analysis Results

5.5. Topic 131

While the conceptual graph representing Topic 131 effectively captures the primary meaning of the topic, it

does not require "the number of aircraft to be delivered, the dollar size of the contract, and the aircraft

type sought". Hence, the conceptual graph is more general than the topic: there are documents that are

relevant to the conceptual graph but not relevant to the topic.

The performance results for this topic show that the relation-based search performed significantly better

than the proximity-based altematives. Topic 131 is a good topic for using relations. The two concepts co-
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occur frequently with many different relationships. One of the most common relations is simply the implicit

indication that McDonnell Douglas is the builder of the aircraft mentioned: "... a McDonnell Douglas F-

15..."

The failure analysis results shown in Table 5 suggest that the real performance of the relation-based search

was no worse than reported and is likely to be considerably better. None of the Hits are not relevant to the

graph but many of the False Hits are relevant to the graph and many of the Misses are not relevant to the

graph.

List # Analyzed # Relevant to Graph % Deviation from TREC Judgments

Hits 4 4 0%
False Hits 11 6 55%

Misses 8 3 63%

Table 5. Topic 131 Failure Analysis Results

5.6. Topic 150

Like Topic 129, Topic 150 was easily and effectively representable as a simple conceptual graph. This

topic showed interesting behavior in that the performance of the relation-based search was only marginally

better than the alternatives for the first two collections. This surprised us, as the concepts politician and

campaign seem to be ones that would frequently co-occur with many different relations: finances, starts,

makes vows in, discusses issues in, etc. After some consideration, we realized that the first two collections

were both Wall Street Journal, which is fundamentally focused on financial issues. We hypothesized that

performance of the relation-based search would be much better on a collection with a broader focus. The

tests run on the Associated Press data support this hypothesis: the relation-based search performs much

better than the alternatives.

The failure analysis results shown in Table 6 indicate that the performance results for this topic are valid.

The one Hit document that was judged not relevant to the conceptual graph was marginally relevant to both

the topic and the conceptual graph. That TREC judged it as relevant and we judged it as not relevant

appears to be more a variation between judges than a graph-topic mismatch.

List # Analyzed # Relevant to Graph % Deviation from TREC Judgments

Hits 10 9 10%

False Hits 11 0 0%
Misses 10 10 0%

Table 6. Topic 150 Failure Analysis Results

6. Conclusions

Can retrieval performance be improved by explicitly specifying and searching for

relationships between concepts?

The data we collected provides evidence that, in some cases, retrieval performance can be improved by

explicitly searching for relationships. In all but two of our tests, relations provided improved retrieval

performance over all of the proximity-based alternatives. In the best case, performance was twenty times
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better. In the worst case, performance was only slightly worse than the best alternative. In these worst

cases, failure analysis suggests that the relation would have performed significantly better than the

alternatives if we had used complete relevance judgments based on the conceptual graph rather than the

topic. Hence, we believe that relations will often improve performance.

Under what conditions is the improvement likely to be justified?

Our experience suggests that using a relation for retrieval provides the greatest performance improvement

when the two concepts it links frequently occur in proximity to each other with several different

relationships. The effectiveness of relations is dependent on the concepts, the relation, and the data being

searched. Some pairs of concepts, like nuclear wannabe and nuclear weapon (Topic 111), inherently have

a small number of relationships between them. For these concepts, using relations will generally provide a

small increase in performance. Other pairs of concepts inherently have a large number of relations, such as

U.S.A. and U.S.S.R. (Topic 129). With these concepts, specifying a relation provides a large increase in

performance and, for many purposes, may be essential to getting usable results. For some pairs of

concepts, such as politician and campaign (Topic 150), the number of relations depends on the nature of

the document collection. In this case, using a relation that is very common (such as Finances in the WSJ
collection) provides relatively little performance gain but using a less common relation provides significant

benefit.

The cost and value of using relations are both subjective measures that depend on the system and the user's

needs. There are at least three costs associated with using relations: reduced recall, increased retrieval

time, and the cost of building the supporting knowledge base.

Like any method of improving precision, relations do so at the expense of recall. The difference is that, for

a given improvement in precision, relations may cause less degradation of recall than other methods, such

as tightening proximity. Use of relations may provide significant benefit to a user whose focus is on

precision or a balance of precision and recall. For a user who requires high recall, the degradation in recall

caused by relations may not be acceptable.

Explicitly searching for relations increases the complexity of the search expression and therefore increases

the processing time cost associated with the search. In Table 1 we show the percentage increase in

performance provided by the relation-based search compared to the best proximity alternative. We have

italicized the cases where the relative increase in performance exceeds the relative increase in time. This

cutoff point is not necessarily the point where the time cost of using relations exceeds the value. A 300%

increase in time is probably cheap if the current response time is 0.1 second but prohibitive if the current

response time is 30 seconds. Similarly, a 30% improvement in performance is more significant when there

are 1000 documents returned than when there are 10. In Table 1 note that the greatest performance

improvements have the lowest time cost while the smallest performance improvements tend to have high

time cost.

The approach to recognizing concepts and relations that we used in this experiment requires a knowledge

base that takes substantial time and expertise to construct. The number of concepts and relations required

in such a knowledge base depends on the domain to be searched but could easily be in the thousands or tens

of thousands of concepts and hundreds of relations. If each concept and relation takes one hour to define, a

knowledge base of 10,000 concepts and 200 relations would require 4.6 person years to construct.
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7. Research Questions For B'uture Work

While the results of this experiment indicate that relations provide significant performance advantages,

there are several related questions that could affect the ability to use this approach in a retrieval system.

Will our relation definitions work with other concepts? We defined five relations, each of which was

used for a single pair of concepts. Are the searches for these relations general enough that they will work

properly with a wide variety of concepts? If not, can they be redefined so that they do?

Can human users consistently identify the same relation for the same information need? One use of

relations is to have a list of concepts and relations and allow the user to build a conceptual graph

representing his or her information need. Given an information need, two specified concepts, and a list of

relations, would users consistently identify the same relation between the concepts? What information or

mechanisms could be provided to aid a user in selecting the correct relation?

How well can directionality be detected? Conceptual graphs are, by definition, directional. This is

essential, as there is a major difference between the U.S.S.R. spying on the U.S. and the U.S. spying on the

U.S.S.R. The relation-based searches in this experiment all used bidirectional search operators and

therefore ignored directionality. What can be done to better represent directionality in relation-based

searches?

Can relations be identified more effectively using a different (non-Boolean and proximity-based)

search mechanism? In this experiment we used Boolean searching. How might other search mechanisms

be used, and how do those results compare to ours?

Does explicitly specifying relations help users better frame their information need? That is, does the

process of selecting a relation from a list or otherwise explicitly specifying the relation help the user to

better understand what he or she is looking for?
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The FDF Query Generation Workbench

K-I. Yu P. Scheibe F. Nordby

Paracel, Inc.

Pasadena, CA

The TREC-2 experiments with the FDF-3 clearly showed the power of automated
query generation from relevance information; the broader TREC-2 results also

suggest that there may be no single "best" query generation method. Building on
this experience, Paracel has begun the design and implementation of a Query
Generation Workbench for the FDF-3, to provide a structure for implementing

and selecting among a variety of relevance-based query generation methods.

TREC-3 has provided an early large-scale test of this prototype, and we have used

the opportunity to begin a study of the first generation of tools for the Workbench.

1. Introduction

In TREC-2, two methods were used to generate queries for the FDF-3 hardware text

search system: for one a human expert manually generated queries for all 50 topics; the

other used an automated term weighting scheme, augmented by operator-supplied sug-

gestions. The results of this experiment were clear: the automated system produced supe-

rior results in less human time— including the time required to implement the system!

More broadly, the diversity of systems and results at TREC-2 suggests to us that there

may not be any one "best" automated query generation system. Certainly there were sys-

tems that performed well overall; there were also many systems— including the human-
generated FDF-3 queries— that showed superior performance for some specific topics.

Based on these observations, Paracel has begun the design and implementation of a

Query Generation Workbench. This Workbench has two complementary aspects: in the

broad sense, the Workbench is a structure for the implementation, evaluation and combi-

nation of different query generation methods; in the narrow sense, the Workbench com-

prises a collection of tools which can be combined within this structure to implement

different query generation variants, and a query selector which can be used to automati-

cally choose among a variety of query generation methods based on estimated perfor-

mance for a particular query generation task.

TREC-3 has provided an early large-scale test of the Workbench. For this first test we
populated the Workbench with a variety of conservatively-designed and -implemented

tools; then we set the system on automatic and let it run its course. Thanks to the modular

structure of the Workbench, and thanks to the operation of the query selection stage of

the Workbench, we immediately derived an extra result: in addition to a set of queries,

the selector returned a parameter-by-parameter, tool-by-tool, topic-by-topic comparison

of the different query generation tools in the Workbench. We have begun an analysis of

these data, and the preliminary results have shown some interesting patterns. We are

now working to incorporate these results into the Workbench and its component tools.
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{ 1 document -> return 1+ (

'guilty' : 12 ;

' insider '' trading ' : 21;

' ivan' 'boesky' : 2 6 ;

'trading' : 18 ) }

Figure 1. A simple FDF weighted set query. If the term "
' gui 1 ty '

" is matched once or more in

a document, then 12 is added to the score for that document; similarly, if
"

' ivan '
' boesky '

"

is matched, 26 is added to the document score. With this query, the maximum score for any
single document is 77 (i.e., 12+21+26+18).

2. The Query Generation Workbench

The goal of Paracel's FDF Query Generation Workbench project is to develop an "indus-

trial strength" system for automating query construction from relevance data. While this

system is oriented towards fully automatic query generation from relevance data, it also

allows for user input at various stages of the query generation process. Finally since the

TREC results suggest that there may be no one "best" relevance-based query generation

method, the Workbench makes provision for case-by-case selection among a collection of

query generation methods and parameters.

The major early result of this project is a prototype Workbench architecture. This architec-

ture is a uniform, modular framework for relevance-based automatic query generation.

The Workbench structures query generation in stages, and provides plug-and-play use of

different tools at each stage, allowing piece-by-piece customization of the query genera-

tion process. Also, since one of the stages in the Workbench is a query selection, or simple

query-level data fusion, the Workbench allows for automatic parameter optimization and

tool selection within the same framework.

The Workbench structures query generation as a four-stage process. This process starts

with the enumeration of candidate terms: these terms may be anything for which the FDF
search engine can match. From the candidate terms, a subset is selected for use in the

query; then the selected terms are weighted and built into an a query for the FDF search

engine. Finally, given a collection of queries— typically the collected results from various

tools and parameter values in the first three stages— the performance of each query is

estimated, and one query is selected for actual use as routing profile. In summary, the

query formulation stages used in the Workbench are:

1. Enumerate a set of terms (words, word pairs, etc.).

2. Select a subset of the terms enumerated in step 1 for use in the final query.

3. Choose a weight for each term selected in step 2 and use these weights to formu-

late a query.

4. Given several queries using a variety of selection and weighting criteria in steps 1,

2 and 3, estimate the accuracy of each of these queries and choose the best.

In the first version of the Workbench, the stages have been populated with tools based

primarily on a probabilistic model, and the tools currently all produce queries in a single

form most suited to this model (figure 1 for a sample query). We are now working to

incorporate methods from vector-space and other models into tools, so that we may use

these methods within the framework of the Workbench.
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2.1 Candidate Term Enumeration

The first stage of the Workbench is term er\umeration: this stage simply lists a collection

of relevance cues for possible use in query formulation. The terms produced by the

present term enumeration tool are quite simple: words and word sequences^ from the

text of known relevant documents. In this process, case distinctions are ignored, but no

stemming is performed. The enumeration tool is parameterized by the lengths of the

allowed word sequences.

2.2 Term Selection

Given a list of candidate terms, the next stage of the Workbench is term selection. The

first step in this process is stop word elimination: to this end, any term which either

begins or ends with a "stop word" is discarded. For the TREC experiments, a "stop

word" is either any word from a list of common English words, or any word found in

more than half of the documents of any one of the TREC corpora.

Next, the term selectors gather data on the occurrences of the candidate terms, both in the

relevant set and in the training database as a whole. These collected statistics are used to

calculate a "selection score" for each of the candidate terms by any of a number of formu-

lae, and the terms are sorted according to score. The prototype toolkit includes several

term selection functions; for the TREC experiments we used two of these:

1. The odds of document relevance given term presence ("O"): P(R \w-= 1)

;

2. A heuristic ("VxLD") based on the normalized deviation of the term occurrence

frequency and the in-document frequency.

Finally, given this ranking of the terms, some number are chosen from those with the

highest scores: this selection process may impose other restrictions, such as a limit on the

number and lengths of phrases used in a query.

2.3 Query Construction

The third stage of the Workbench is query construction. All of the query construction

tools which currently populate the Workbench produce queries of the same general form

(e.g. figure 1). To build queries, the tools use many of the same statistics gathered in the

term selection process: from these data, the tools weight each selected term, then build a

query is built to approximate of the desired scoring function. For the initial tool set we
implemented a few simple term weighting functions; for TREC-3 we used two:

1. The odds of relevance given term presence ("O"), P(R
|
w. = 1) ; and

2. The log of the relative likelihood of term presence vs. document relevance

^ P(w. = l\ R) Piw. = 0|7?)^
("LLR"), log

1. A.K.A. "phrases". This terminology should not be taken to suggest that these sequences necessarily have

any linguistic significance; these "phrases" are just sequences of words which appear in the source text.
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Query #1 Query #2 Query #3 Query #4 Query #5

Subset #1 19(1.0) 16(3.0) 15(5.0) 16(3.0) 16(3.0)

12(5.0) 14(2.0) 13(4.0) 14(2.0) 14(2.0)

17(5.0) 19(3.0) 18(4.0) 20(1.5) 20(1.5)

22(1.0) 20(3.5) 20(3.5) 21 (2.0) 18 (5.0)

Subset #2

Subset #3

Subset #4

(Total) (12.0) (11.5) (16.5) (8.5) (11.5)

Table 1. Query selection table for five methods on topic #125. Each colunin of the table shows
the results for one query formulation; each row shows the results for one subset of the corpus.
The entries (e.g., "14 (2.0)" for query #2, subset #2) show the recall at 50 documents retrieved

for that query on that subset of the training set, and the ordinal rank of that result over all five

?uery formulations. The final row, labeled "(Total)," shows the summed ranks for each query,

he query selector picks the query with the lowest summed rank— in this case, query #4.

There are also a number of adjustments which may be made to the term list and the term

scores in this stage. The first, and simpler, of these adjustments is a heuristic which we
implemented to test the effect of adding a bonus for multiple term occurrences. To this

end we doubled size of the query: under this adjustment if a term is found once in a doc-

ument, the standard term weight is added to the document score; if the term is found

twice or more in a document, a 50% bonus is added.

The other term weighting adjustment which is available is a compensation for the pres-

ence of sub-phrases in a query. For example, consider the query shown in figure 1: if a

document includes a match for
"

' insider '
' trading '

" then it certainly includes a

match for
"

' trading '

" — thus the presence of the sub-phrase adds no new informa-

tion. If this query were subjected to phrase weight adjustment, the weight of the super-

phrase ("
' insider '

' trading ' ") would be decreased by the combined weights of all

its sub-phrases included in the query— the final weight would be 3 in this case.

2.4 Query Selection

The final stage in the Workbench is query selection: this stage might described as simple

query-level data fusion. The inputs to this stage are any number of queries for the same
topic, built with different term enumeration, term selection and query construction meth-

ods: from these queries, the Workbench selection tool chooses one query which shows the

best estimated performance on the training collection.

To accomplish this, the selection tool divides the test collection into four subsets. Each of

the candidate queries is run against the four training subsets, and the performance of

each query on each subset is measured as the recall at 50 documents retrieved. The que-

ries are assigned ordinal ranks for each subset, and these ordinal ranks for each query are

summed to form an overall query score. The query with the lowest score is then selected.

Table 1 shows an actual selection table for one of the TREC-3 topics.

2.5 Practical Matters

The process just described is, in terms of functional results, exactly what is done in the

TREC query construction process; however, in practical terms, a number of optimizations
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are applied. These optimizations impact the performance of the query generation pro-

cess, but do not reflect on its overall behavior.

For example, a list of all the words in the training corpus is pre-computed and shared

among the query construction processes for all topics. Also, word frequency data is col-

lected in the compilation of this word list: this help in determining stop words and com-
puting term selection scores and term weights. This index-style statistics collection works
well for single words, but for it would be impractical to maintain statistics for every

phrase found in the corpus. Instead, the term selectors compose queries and use the FDF
to gather the desired statistics. (The statistics are passed on to the query constructors, so

they need not re-collect the data.)

2.6 The TREC-3 Experiments

For this year's TREC experiments we wanted to begin a systematic evaluation of the

results from last year's automated FDF query generation results. Accordingly, one of the

inputs to the query selector is an emulation of last year's automated query generator: this

method phrases up to three words, 50 terms, the "O" selector and the "O" constructor;

also, the selector was restricted to only those phrases found in at least 30% of the relevant

documents. The method did not use either phrase weight adjustment or a multiple-

occurrence bonus.

All of the other inputs to the query selector used the "VxLD" term selector and the "LLR"
query constructor with phrase weight adjustment: we had designed these tools to imple-

ment a simple log-likelihood model query generator, fixing the "mistakes" in TREC-2
query generator. Here again, the term selector was restricted to those phrases with a

recall of at least 30%. In some cases, phrases up to three words were allowed; in others,

only single-word terms were included. Term counts were varied from 32 to 64, and in

some cases the number of phrases in the final query was restricted. Finally, multiple

occur bonuses were used in some of the cases.

3. Results

We have derived two sets of results from the TREC-3 process: first, of course, the formal

TREC results provide a gross comparison of the Workbench results to the other TREC
systems; second, the data from the query selector show in detail the strengths and weak-

nesses of the various query generation tools. These latter results in particular are

extremely valuable to the tool development process, as they allow point-by-point, param-

eter-by-parameter, stage-by-stage comparison of different query generation methods.

3.1 Query Selection Results

This year, to provide a reasonably close comparison against last year's results, we
included a similar query formulation method as one input to the final query selection

step. To this, we added a number of query formulations all based on the VxLD selection

and the LLR weighting (with phrase weight correction) formulae; we used these because

of limited time, and because our preliminary results suggested that these were over-all

the best performers. For these alternative query formulations, we varied several of the

secondary parameters: term count, phrase count, etc.
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Overall, the VxLD/LLR methods far out-performed the O/O method: seldom was the

O/O method chosen by the query selector, and often the O/O method showed the worst
performance of all the methods. We have not yet performed an statistical analysis of this

comparison, but we expect that the VxLD/LLR methods will be found to be generally

superior to the O/O method with strong statistical significance.

That said, there were a few cases in which the O/O query far out-performed the VxLD/
LLR queries. We are looking at the terms to try to determine what aspects of the O/O
query formulation are responsible for these cases, to see if we can derive a hybrid query
formulation method.

Beyond these broad results, there are many more details; to summarize just a few:

• Phrases can be very beneficial, as long as they don't replace good single-word

terms in the query.

• Along the same lines, phrases of four words or longer tend to be superfluous: the

shorter two- and three-word sub-phrases will already be in the query, and the

four-word phrases will add no effective precision to the query.

• The VxLD heuristic for term selection seems to work quite well— the term lists

seem, subjectively, appropriate to the topic— and they appear on the whole to

provide good recall. More research is needed here, however.

• Similarly, the LLR query builder worked better than the O query builder, on the

whole; however, as mentioned above, there were a few cases where the O queries

outperformed the LLR queries. We don't yet know wether this is an artifact of

term selection or weighting.

• Phrase weight adjustment was a powerful tool— sometimes increasing precision

at fixed retrieval levels by a factor of two or more with all other parameters held

constant.

• Multiple occurrence bonuses often but not always had a positive effect on query

performance. More research and a more rigorous model are needed here. Also,

new query construction tools are needed to build queries which reflect a broader

range of query generation methods.

• The query selector is too simple: use of precision at 50 documents as ranking crite-

rion should probably be replaced by another (perhaps selectable) metric— for

example, one which estimates average precision. Also, some more care needs to

be given to ensuring unbiased performance estimation in the query selector.

3.2 TREC Scores

Our analysis of the official TREC results is on-going. In gross terms, the overall perfor-

mance of the Workbench was approximately median— measured as precision at 1000

documents, for example, the Workbench scored at or above median for 26 of the topics

and below median for 24 of the topics. We are currently examining the results in greater

detail, and we hope to learn more from that analysis.
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4. Conclusions and Acknowledgments

Our efforts have been focussed on developing a framework for query generation, and

populating that framework with an initial set of tool. The results have shown us a great

deal about the component effects present in the query generation process, and we are

learning more as we continue this work.

As we have shown, the avenues for further research and development in the FDF Query
Generation Workbench are many and broad. In the main, we are working to incorporate

the major lessons learned into the structure of the Workbench and its constituent tools;

and we are working to extend the comparisons we began with our TREC-3 experiments.

Also, since the FDF search engine is entirely language independent, we are starting to

apply the Workbench to non-English query generation problems. Along these lines, we
expect to participate in the non-English TREC exercises next year.

We would like to express our gratitude to the TREC sponsors and participants alike. The

former have provided an excellent testbed for research and development in text retrieval

systems; the latter have sown this fertile ground with ideas. We hope to continue to bene-

fit from this abundance in the future.
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Summary

This paper describes and evaluates a retrieval

scheme, or more precisely an additional retrieval

mechanism based on interdocument relationships,

that can be integrated in almost all existing

retrieval schemes (e.g., Boolean, hybrid Boolean,

vector-processing or probabilistic models). The

intent of our approach consists of inferring

knowledge about document contents based on the

relevance assessments of past queries. Through a

learning process, our scheme establishes relevance

links between documents found relevant for the same

request. Based on this information and a list of

retrieved records for the current request, the

proposed mechanism tries to improve the ranking of

the retrieved items in a sequence most likely to

satisfy user intent. The underlying hypothesis of

this mechanism states that future requests addressed

to the system should have some degree of similarity

with previous queries, or that the retrieval

apparatus will process requests for which it has

already found a partial, appropriate answer in the

past.

Participation: Category: B Query: ad-hoc, fully

automatic

Introduction

To find pertinent information from a large text

collection, most retrieval models represent both

documents and requests by a set of weighted

keywords. To extract relevant records from this

collection, the retrieval function computes a

similarity value or estimates a probability of

relevance based on both document and query

surrogates.

When applying such a scheme, the system

considers documents as separate entities. To relax

this assumption, some studies have proposed various

techniques and have reported evaluations describing

the importance of interdocument relationships (e.g..

[Kwok 88], [Turtle 91]). Our main research objective

is also to analyze and assess interdocument

relationships as a useful source of document contents

evidence. In this vein, we have already

investigated the relative importance of explicit

(e.g., bibliographic reference), implicit

(bibliographic coupling, co-dtation) and computed
links (nearest neighbor) between documents [Savoy

94a]. In this study, we are concerned with the means
by which the system may have derived other

relationships between documents based on past

queries and their relevance assessments.

This paper is made up of two sections. The first

describes our learning scheme and presents some
related works. The second section shows and
explains results obtained using the Wall Street

Journal corpus, a subset of the TIPSTER-DARPA

collection, and discusses some problems related to

traditional evaluation methodology.

1. Learning Scheme

Evaluation of current retrieval models has shown
that their retrieval effectiveness is far from perfect

and one of the principal explanations of this lack of

effectiveness is related to the ambiguity of natural

language. This problem has two facets: on the one

hand, the same idea or concept may be expressed by

various forms [Furnas 87], and, on the other hand,

the same word may have more than one meaning,

even in a specialized corpus [Krovetz 92].

In order to resolve this difficulty, Blair [90]

suggests that a retrieval model must have better

document contents representation:

"The central problem of Information Retrieval

is how to represent documents for retrieval.

The most intricate or carefully designed

retrieval algorithm cannot compensate for

inappropriately represented documents. ...

The central task of Information Retrieval

research is to understand how documents

should be represented for effective retrieval.
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This is primarily a problem of lar\guage and

meaning." [Blair 90, vii]

This may lead to a perception of the retrieval

system as an adaptive process, allowing better

communication between the searcher and the indexer

(or the author (s)) [Blair 90].

From a practical point of view, one feasible

approach to the design of such a learning scheme

consists of taking into account the knowledge

obtained from past queries, or more precisely, from

their relevance judgments, in order to enhance

system's retrieval effectiveness over time. We also

believe that documents found relevant for a given

request do share similar concepts [Savoy 94b]. Thus,

past queries and their relevance assessments may be

a useful source of information about the meaning of

documents and may be helpful in ranking the

retrieved records in a sequence that more closely

reflects the user's intent.

The first subsection describes the main principles

underlying our learning scheme. The second presents

the design of our adaptive model and the guidelines

for its implementation. The third subsection shows

statistics related to query similarities and the

fourth one describes the main features of related

researches.

1.1. Motivation

The aim of a learning scheme is to provide the

system with the ability to record its successes and

failures, and thus infer knowledge useful for

increasing its performance over time. To define such

a mechanism, we have to specify the underlying

hypotheses, determine how the system learns and

how it stores and uses the knowledge provided by

previous experiments.

Our learning scheme is based on the following

principles:

a ) Documents known to be relevant to the same

query tend to contain similar concepts and must

deal with similar subjects;

b) No conclusions can be drawn about documents

found nonrelevant for a given request.

On the one hand, our learning scheme is based

exclusively on successes, i.e., on the presence of

couples of retrieved and relevant documents. On the

other hand, our procedure does not take into account

the shared presence of retrieved and nonrelevant

items. Nonrelevant records retrieved by the system

are those documents tliat have at least one common
keyword with the request. However, such keyword

matching does not always imply word sense

matching:

"Word sense mismatches are far more likely to

appear in nonrelevant documents than in those

that are relevant." [Krovetz 92, p. 139].

Our prior feeling is that negative relevance

feedback ir\formation does not really represent useful

information. By analogy, if you are lost in a desert,

a negative relevance feedback only tells you that

"you are on the wrong path" and does not provide

"efficient" hints as to the path leading to the for i =

1, 2, ... nearest dty. This fact is confirmed by
relevance feedback studies which have

demonstrated that positive relevance information

depicts more valuable information than negative one
[Salton 90]. However, this approach considers only

relevance data given for the current request and a

direct comparison with this scheme is therefore not

suitable.

i

l.Z Implementation of our Learning Scheme

In order to represent the ir\formation given by the

previous experiments or requests, we have designed a

special interdocument relationship called a

relevance link. This link type connects two
documents found relevant for a given query.

Associated with each link, a relevance value

specifies how many times both the lii\ked documents

are found relevant.

To account for the information provided by the
j

learning stage, our retrieval scheme works in two
phases. In the first, the retrieval status value (RSV)

of each document is computed according to a well-

known retrieval scheme. To achieve this step, one

can use the p-norm model, a vector-processing scheme

or a probabilistic retrieval strategy. In the second

stage, the ranking of retrieved documents is

modified according to the presence of relevance links

according to the following equation.

s

RSV(Di) = RSVinit(Di) + ^ «ik ' RSVinit(Dk)
k=l

for i = 1, 2, m (1)

if'

in which aik reflects the strength of the
j

relationship between Documents i and k and s the
i

number of neighbors of Document i. At the initial ;

stage, the retrieval status value of a document

depends only on the similarity between its surrogate

and the query (RSVinit(Di), computed according to

the Vector Space Model presented later in this

paper). The value aik can be either a cxinstant or a

i
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function of the relevance value of the link connecting

Documents i and k.

To illustrate the way our retrieval proposal

works, Figure 1 depicts some relevance links with

their respective relevance values. In the first step of

our retrieval process, a vector-processing scheme

attributes a reti-ieval status of 0.8 to Document 11.

According to Formula 1, this weight is propagated

through links to Documents 3, 7 and 10. If we define

the strength of the link between Nodes 11 and 7 as

0.3, Document 7 will increase its retrieval status

value by 0.24.

In order to improve the efficiency of our retrieval

scheme and to guarantee a reasonable processing

time, we modify the retrieval status value not for

all retrieved records, but we select the first m best-

rariked documents after the initial stage to activate

the relevance links (the constant m in Equation 1).

We believe that relevance links indicate

semantic relationships between documents and may
be valuable in the searching process. Although

Blair [90] considers such a scheme to be a useful

pedagogical tool, he questions its retrieval

effectiveness:

"Bush [45] recognized early ... how inquirers

could benefit from the "traces" left by searches

conducted by informed inquirers. While this is

an important notion, realistically each

inquirer's searches are unique enough that a

record of previous searches might only be

marginally useful for finding specific

information." [Blair 90, p. 181]

The main underlying hypothesis of our retrieval

model is that coming requests have some
relationships with previous ones. On the contrary,

if future queries are totally dissimilar with past

queries, our scheme will have litUe hope of

improving and may possibly decrease the retrieval

effectiveness of the response.

1.3. Similarity Between Queries

In order to provide an indication of the degree of

similarity between requests in three test-collections,

we have computed some statistics, depicted in

Table 1. This table shows that the CISI collection

included more pertinent records per query than the

CACM corpus (perhaps "too many relevant documents

per query" [Fox 83, p. 7]). The Wall Street Jojimal

collection included in tiie TIPSTER-DARPA collection

reveals a similar pattern.

The second part of Table 1 illustrates the

computed similarity between requests according to

their relevance assessments. For this computation,

we used the Dice's simple coefficient [van Rijsbergen

79, p. 39]. Requests from the CISI test-collection

reveal a higher degree of similarity between them
than for those of the CACM or in the WSJ. However,
the mean similarity between queries is rather low in

two cases (QSI: 0.04; CACM: 0.0182) and very low
for the subset of ihe TIPSTER collection (WSJ:

0.00228).

Moreover, the estimated standard error is

relatively high indicating that the empirical

distribution of the similarity values is mostly in the

range 0.0 to 0.1. The second part of Table 1 confirms

tiiis fact. For the CISI corpus, 88.4% (526 over a total

of 595) of the similarity values are less or equal to

0.1 while for the CACM and WSJ these numbers are

99.45% and 99.5% respectively.

In our evaluations, we have built two sets of

relevance links, namely the RF set containing all

relevance lirUcs and the RFl set including all

relevance links having a relevance value strictly

greater than one. For example, in Figure 1, the RFl

set contains only one relevance link (between

Document 3 and 7). Table 2 presents the statistics

associated with both sets.

From this data, one can see that for the CISI

collection, the set RF contains 66,067 links from

which 63,889 (around 97%) have a relevance value

of one (CACM: 96.7%). The WSJ corpus depicts a more
extreme case (1,707,152 over 1,738,429 links in total

or 98.2%).

Finally, it is interesting to note that when
building a test-collection, we are trying (consciously

or not) to write queries for which the relevance

judgments are as dissimilar as possible, a phenomena
reflected in the above statistics. Such a practice

mirrors the designer's wishes that the underlying

requests must cover different concepts contained in

the corpus. When we designed our additional

retrieval mechanism, we formulated a contradictory

hypothesis which should hold in commercial

retrieval services or, at least, we hope so.
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Figure 1: Retrieval of Information Using Relevance Links

Statistics \ Collection CACM asi WST
50 queries 35 queries 150 queries

# documents 3,204 1,460 173,252

# relevant documents 792 1,742 17,069

# distinct relevant documents 554 925 14,280

Mean rel. doc per request 15.84 49.77 113.79

Estimated standard error 12.59 39.96 104.56

Min. # relevant documerits 1 (#q: 33) 1 (#q: 6) 2 (#q: 121)

Max. # relevant documents 51 (#q: 25) 144 (#q: 20) 591 (#q: 56)

Similarity between queries (Dice)

Mean similarity measure 0.0182 0.04 0.00228

Estimated standard error 0.0756 0.0671 0.0151

# 0.00 < SIM < 0.05 1,117 438 11,057

# 0.05 < SIM < 0.1 40 88 66

# 0.10 < SIM < 0.15 27 38 29

# 0.15 < SIM < 0.2 6 17 10

# 0.20 < SIM < 0.25 5 2 6

# 0.25 < SIM < 0.3 3 4 2

# 0.30 < SIM < 0.35 8 2 2

# 0.35 < SIM < 0.4 5 1 0

# 0.40 < SIM < 0.45 2 2 2

# 0.45 < SIM < 0.50 1 0 0

# 0.50 < SIM < 0.55 4 1 1

# 0.55 < SIM < 0.60 4 2 0

# 0.60 < SIM < 0.65 1 0 0

# 0.65 < SIM < 0.70 1 0 0

# 0.70 < SIM < 0.75 0 0 0

# 0.75 < SIM < 0.80 0 0 0

# 0.80 < SIM < 0.85 1 0 0

# 0.85 < SIM < 1.00 0 0 0

Table 1: Relevance Information Characteristics
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Statistics \ Collection CACM CISI WSJ
50 queries 35 queries 150 queries

Relevance Link Value RF Set

# links 8,876 66,067 1,738,429

a= 1 8,265 63,889 1,707,152

a = 2 495 2,044 30,337

a = 3 90 121 907

a = 4 23 13 31

(X = 5 3 0 2

a = 6 and more 0 0 0

Mean a value 1.085 1.035 1.019

Estimated standard error 0.343 0.197 0.440

Relevance Link Value RFl Set

# links 611 2,178 31,277

a = 2 495 2,044 30,377

a = 3 90 121 907

a = 4 23 13 31

a = 5 3 0 2

a = 6 and more 0 0 0

Mean a value 2.237 2.067 2.031

Estimated standard error 0.535 0.274 0.180

Table 2: Relevance Links Statistics

1.4. Related Research

In order to include permanently relevance

feedback information, various researchers have

proposed modification of the document surrogates in

a vector-processing scheme. In this vein, Friedman

et al. [71] present a framework within which the

index term weight wy assigned to term tj in document

representative di can be modified to reflect user's

judgments about document content. This proposition

is grounded on three principles. The first one

specifies that the modification of indexing term

weights can occur only for the "good" keywords or for

those appearing more frequently in the relevant

documents. As a second principle, Friedman et al.

[71] suggest deriving the new indexing term weight

wlj in proportion to the existing wei^t wij. Thirdly,

the authors suggest that the indexing weight

modification must be based on the importance of term

tj in: (1) the current request, (2) the set of relevant

documents, and (3) the sample of nonrelevant

records.

In a related work, Brauen [71] also suggests

transforming the document surrogates. In this

approach, the system modifies only the document

representatives of relevant records (relevance

document modification). When implementing such a

learning scheme, the system had to consider three

cases:

1 ) a concept tj is present in the request and absent

from the relevant document di; thus, the

system must add the "synonym" tj to the

corresponding document surrogate;

2) a concept tj is present in both the request q^
and the relevant document d^; the indexing

term weight wjj must be reir\foroed;

3) a concept tj is present only in the relevant

document di; the indexing term weight wjj

must be reduced.

From a different perspective, Gordon [88] suggests

a learning scheme based on a genetic algorithm to

er\hance the retrieval effectiveness. In this

approach, each document is described by various

surrogates obtained using various binary indexing

policies (e.g., based on document abstract, on titles,

using full-text or derived from a manual indexing

process). The retrieval system considers more than

one description for each record and the competition

between them will eliminate inappropriate

surrogates while retaining more accurate ones. An
iterative process affects document surrogates by

including or removing index terms based on: (1) the

reproduction of descriptions according to their

average matching score in which a better

representation has a higher chance to survive than

others surrogates; and (2) cross-over between pairs of

surrogates to generate new descriptors more

appropriate to the retrieval of the corresponding

document. The retrieval evaluations of the

previously described learning schemes are based on
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relatively small test-collections: ADI collection (82

documents, 11 queries) for Friedman's experiment,

CRANFIELD corpus (424 documents, 155 queries) in

Brauen's paper, and Gordon's scheme (18 documents).

Of course, other learning strategies have already

been proposed and evaluated, and most of them are

directly related to the probabilistic retrieval model
[Kwok 90]. Current probabilistic retrieval models
[Cooper 92], [Gey 94], [Fuhr 91], [Fuhr 94] consider

statistical clues present in the texts of document and
queries to infer a probability of relevance.

Following [Gey 94], these are hints of the absolute

and relative term frequency in the document and in

the request, the inverse document frequency and the

relative term frequency in the collection.

Experimental results have shown attractive

retrieval effectiveness. Moreover, Gey [94] has

shown that one can compute the value of various

parameters according to a given test-collection and
report them for other test-collections.

When comparing these probabilistic models with

our learning schem_, one can see that they do not

operate at the same level of granularity. By
analogy with physics, the probabilistic retrieval

models lay stress on the components of a document;

they operate on an atomic level, whereas our

approach, considering words as ambiguous entities,

works at a molecular level.

2. Evaluation

To evaluate our proposed strategy and in order to

be able to manage a large collection, we have

worked with the SMART system [Salton 71]. This

vector-processing scheme retrieves, for each request,

an ordered list of retrieved records forming the input

of our retrieval scheme. To implement our learriing

model, we have written the needed programs in

Smalltalk-80 (an interpreted object-oriented

language) and communication between these two
systems is achieved by a common file.

2.1. Evaluation of the Vector Space Model

To represent each document and each query by a

set of weighted keywords, we have used the SMART
indexing system. To select the more appropriate

weighting scheme for this operation, we have

conducted a set of experiments based on different

weighting formulas.

Firstly, to assign an indexing weight wjj

reflecting the importance of each single-term tj,

j = 1, 2, t, in a document dj, we may use the

following equation:

NNN: wij = tfij (2)

where tfij depicts the frequency of the term tj in the

document di (or in the request).

To normalize each indexing weight between 0 and
1, we may consider the cosine normalization which
is:

LNC wij =
log(tfn)+l

V k = l

(3)

[log(tfik) + 1]'

Finally, we may also take account of the

distribution of each indexing term in the collection

by giving a higher weight to sparse words and a
lower importance to more frequent terms (idf

component).

LTC wij =
[Iog(tfi|)-H] • idfj

([log(tfik)+l] • idfk)^

I

with idfj = log|^^j (4)

in which n represents the number of documents dj in

the collection, dfj the number of documents in which
tj occurs, and idfj the inverse document frequency.

The retrieval effectiveness of various

combinations of these weighting formulas are

reported in Table 3. Since latter evaluation

outcomes are computed according to the ten standard

recall values. Table 3 depicts results obtained using

10 recall-predsion points. Finally, to dedde
whether one search strategy is better than another,

the following rule of thumb is used: a difference of

at least 5% in average precision is generally

considered significant and, a 10% difference is

considered very significant [Sparck Jones 77, p. A25].

For an unknown reason, the best weighting

scheme seems to include the idf component only to

weight the keywords included in requests and not

during the indexing of documents (doc = LNC, query =

LTC). The presence of spelling errors can be a partial

explanation of such an unexpected result. In the WSJ
corpus, low-frequency words are often no longer

English. Since the idf scheme assigns extremely

high weights to those misspelled terms, the

normalization procedure given by Equation 4 also

attributes a high value to those terms. The
documents containing such terms cannot be retrieved

because they will have a relatively small retrieval

status value.
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In the following results, the weighting scheme

"doc = LNC, query = LTC" has been used in the first

stage of our retrieval system and forms the baseline

of our comparisons. The evaluation under the label

"UNINEl" reflects this weighting scheme for queries

from #151 to #200.

2.2. Retrospective Evaluation

In order to evaluate a learning strategy, we may
provide the learning system with all the available

information (all the requests with their relevance

assessments in our case). The retrieval effectiveness

obtained under such circumstances is called a

retrospective test or the apparent performance

measure. The resulting average precision represents

an upper bound of the performance of the underlying

model. From a practical point of view, this measure
is computed according to Equation 5,

'app =7-jS^APk(Q) (5)

in which AP^ denotes the average precision at ten

standard recall value for the k*^ query, considering

that the learning scheme is fitted using the entire

query sample Q (having a size denoted by r or 150 in

this paper).

Such retrospective evaluation retiuns retrieval

effectiveness values that are too optimistic (biased

high), reflecting an unrealistic situation. For

example, in Table 4a, the learning scheme using all

the relevance links (RF set) returns perfomiance

results that are too good to be true.

Precision (% change]

Model (# of queries) \ Collection WSJ
Vector Space Model (150 queries]

using 10 recall-precision points

doc = NNN, query = NNN
doc = LNC, query = LNC
doc = LTC, query = LNC
doc = LTC, query = LTC

doc = LNC query = LTC

8.24

24.81 (+201.1%)

26.16 (+217.5%)

28.93 (+251.1%)

31.94 (+287.6%)

Table 3: Evaluation of the Vector Processing Scheme Done by SMART

Precision (% change]

Model \ Collection WSJ
Vector-processing (r=150 queries)

(doc = LNC, query = LTC, 1,000 doc.) 31.9

Full Relevance Feedback

Papp (a = 0.1, m: 10)

Papp (a = 0.15, m: 10)

Papp (a = 0.2, m: 10)

Papp (a = 0.3, m: 10)

Papp (ot = 0.5, m: 10)

Papp (a = 0.9, m: 10)

73.1 (+129.6%)

77.8 (+144.4%)

79.9 (+151.0%)

81.7 (+156.4%)

82.9 (+160.1%)

83.8 (+163.2%)

Full Relevance Feedback (a = 0.9]

Papp (m: 5)

Papp (m: 10)

Papp (m: 20]

Papp (m: 30)

Papp (m: 50)

Papp (m: 100)

82.8

83.8 (+1.2%)

82.9 (+0.3%)

83.2 (+0.5%)

83.2 (+0.5%)

81.5 (-1.6%)

Table 4a: Evaluation of Vector-Space Model

with Full Relevance Feedback (RF Set)
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Precision (% change)

Model \ Collection WSJ
Vector-processing (r=150 queries)

(doc = LNC, query = LTC, 1,000 doc.) 31.9

Full Relevance Feedback

Papp (ct = 0.1, m: 10) 35.8 (+12.4%)

Papp (a = 0.15, m: 10} 36.5 (+14.5%)

Papp (ot = 0.2, m: 10} 36.9 (+15.9%)

Papp (« = 0-3, m: 10) 37.4 (+17.5%)

Papp (ot = 0.5, m: 10) 37.7 (+18.4%)

Papp (a = 0-9, m: 10} 37.8 (+18.5%)

Full Relevance Feedback (a = 0.9)

Papp (m: 5} 36.3

Papp (m: 10} 37.8 (+4.1%)

Papp (m: 20) 38.1 (+5.0%)

Papp (m: 30} 38.6 (+6.3%)

Papp (m: 50) 38.3 (+5.5%)

Papp (m: 100) 37.1 (+2.2%)

Table 4b: Evaluation of Vector-Space Model
with Full Relevance Feedback (RFl Set)

When the apparent performance measure is too

optimistic, it is generally an indication that the

underlying learning scheme is over-fitted, too

narrow for the given data, and cannot forget the

details. What we really expect from a learning

model is its capability to generalize given

information, to retain the main features of the given

information and to find useful relationships between

data. In our point of view, the learning knowledge

derived from RF set is over-fitted and this fact will

be confirmed when considering the following

subjection. Thus, the performance obtained using the

RFl set seems to depict a more realistic situation (see

Table 4b).

2.3. Predictive Evaluation

If the evaluation results under full relevance

feedback are usually misleading, more accurate or

more 'honest" evaluation estimate must be

discussed. The basic principle underlying such an

evaluation methodology is the following: the

performance of a retrieval system must be based on

requests other than those given to the learning

scheme. Since in each test-collection the number of

available queries is relatively small, evaluation

must use all the available requests to adjust its

parameter settings, on the one hand, and, on the

other, all the available queries must be used to

measure the performance of the proposed retrieval

scheme. This latter fact may contribute to an

objective comparison with a system ignoring

learning.

To take account of these criteria, the hold-out

method suggests splitting the queries sample into

two disjoint parts: one subsample will be applied in

the learning stage and the other will be used during

the evaluation process. This division must be

carried out randomly, without looking at the

requests themselves. However, not all queries can be

exploited both in the learning scheme and during the

evaluation.

To overcome this drawback, multiple train-and-

test experiments or random subsampling approaches

can be considered within which all queries are used

for testing, and almost all requests for training [Stone

74]. More precisely, the leaving-one-out approach, a

special case of the cross-validation method,

represents a solution which works as follows. The
query sample Q of size r is divided into r sets. In the

k^ set, one can find all requests except the k^ one.

The model is fitted according to r-1 requests and an

evaluation measure is computed according to the k^
query (not included in the learning sample). The
above procedure is repeated for k = 1, 2, ... r and we
combine the r prediction values to obtain an average

precision measure (see Equation 6),

Plv S APk(Q-k) (6)
r k=l

in which AP^ denotes the average precision at ten

standard recall values for the k"^ query under the
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condition that the learning scheme is fitted using

the query set Q minus this request. Such an

evaluation strategy results in a real predictive

measure because the system does not have any

information about the current request during both the

learning and the retrieval stages.

Table 5a depicts the retrieval evaluation

obtained using the RF set. From these data, one can

conclude that taking account of all relevance lir\ks

does not improve the retrieval effectiveness when
the value of the parameter a is less than or equal to

0.1. Setting this parameter to a higher value

significantly decreases the retrieval performance.

When considering the impact of the parameter m,
one can see that the best value seems to be five.

Model \ Collection WSJ
Vprtor-nroressinff fr=150 aueriesl

fdoc = LNC auerv = LTC 1 000 doc 1 31.9

I pavinp'-nnp-OLifr

Plv (a = 0.1, m: 10) 30.9 (-2.9%)

Plv (a = 0.15, m: 10) 29.9 (-6.3%)

Plv (a = 0.2, m: 10) 28.8 (-9.6%)

Plv (a = 0.3, m: 10) 26.9 (-15.4%)

Plv (a = 0.5, m: 10) 24.5 (-23.1%)

Plv (a = 0.9, m: 10) 21.0 (-34.2%)

Leaving-one-out (a = 0.1)

Plv (m: 5) 31.6

Plv (m: 10) 30.9 (-2.2%)

Plv (m: 20) 29.2 (-7.6%)

Plv (m: 30) 28.0 (-11.4%)

Plv (m: 50) 25.8 (-18.4%)

Plv (m: 100) 22.4 (-29.1%)

Table 5a: Evaluation of Vector-Space Model

Using the Leaving-one-out Method (RF Set)

Precision (% change)

Model \ Collection WSJ
Vector-processing (r=150 queries)

(doc = LNC, query = LTC, 1,000 doc.) 31.9

Leaving-one-out

Plv (a = 0.1, m: 10) 31.8 (+0.0%)

Plv (a = 0.15, m: 10) 31.7 (-0.5%)

Plv (a = 0.2, m: 10) 31.6 (-0.8%)

Plv (a = 0.3, m: 10) 31.4 (-1.3%)

Plv (a = 0.5, m: 10) 31.2 (-2.1%)

Plv (a = 0.9, m: 10) 30.7 (-3.5%)

Leaving-one-out (a = 0.1)

Plv (m: 5) 31.9

Plv (m: 10) 31.8 (-0.3%)

Plv (m: 20) 31.7 (-0.6%)

Plv (m: 30) 31.5 (-1.2%)

Plv (m: 50) 31.3 (-1.9%)

Plv (m: 100) 30.4 (-4.7%)

Table 5b: Evaluation of Vector-Space Model

Using the Leaving-one-out Method (RFl Set)
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When only considering relevance links having a

relevance value greater than 1 (RFl set), the

retrieval performance cannot increase significantly

as shown in Table 5b. When testing the system with

various values for the parameters a and m, we
cannot find a significant change in the retrieval

effectiveness over the baseline ignoring learning.

We also have to try to take account for 2,000

retrieved records instead of 1,000, but this

alternative does not present any significant change

over the results depicted in Table 5b.

From these results, it seems dear that the queries

included in the WSJ collection do not have any

pertinent relationship between them, or at least,

such relationships are not detected by our learning

mode!. This fact confirms our prior feeling as stated

in Section 1.3.

The retrieval results submitted to the conference

board under the label "UNINE2" are obtained using a
= 0.05 and m = 5 representing a conservative setting.

This pararrieter setting reflects our prior opinion

that the relevance judgments of queries #151 to #200

will not have a high degree of similarity with older

requests.

2.4. Analysis of Official Results

The official results cire based on queries #151

through #200. The results obtained under the label

"UNINEl" represents the baseline or the first stage or

our retrieval strategy (vector-processing scheme

with index term weight = LNC, search term weight =

Lie). The performance under the column "UNINE2"

is obtained using our additional retrieval scheme

with a = 0.05 and m = 5.

From Table 6, we cannot conclude that our

additional retrieval strategy represents significant

change over the vector-processing scheme. Our
approach retrieves the same relevant records as the

vector space model but ranJ<s them in a more suitable

sequence, especially for medium or high recall

values.

To define the setting for the UNINE2 experiment,

we are faced, by analogy, with the following

dilemma:

Solution 1: you may win S500.

Solution 2: you obtain a lottery ticket for which

the probability of winning $1,000 is 0.5 and

the probability of winning $0 is 0.5.

In both approaches, the expected win is the same

(S500), however, Solution 2 can be considered risky.

Since we have a loathing for risk, we have chosen
Solution 1 in our parameters setting.

Conclusion

This paper suggests a learning algorithm based
on interdocument relationships established

according to relevance assessments obtained from
previous requests. The underlying hypothesis of this

scheme states that the relevance judgments of future

queries will have a high degree of similarity with
the relevance assessments of previous requests. To
take account of this information, we propose an
additional additive scheme within which
relevance links are considered to increase the

similarity between documents and query, and thus

modify the ranking of retrieved documents.

Based on the WSJ collection, a retrospective test

shows very attractive retrieval performance but the

leaving-one-out method, representing a more
realistic predictive measure, does not confirm this

previous evaluation. We can conclude that the

results of a retrospective test must be interpreted

with caution. Since the queries included in a test-

collection are written sudi that they cover different

topics contained in the corpus, they do not have a

high degree of similarity between them. This fact

contradicts the underlying hypothesis of our

learning scheme and may be a plausible explanation

for the absence of any significant retrieval

enhancement However, even in sudi circumstances,

our retrieval scheme does not significantly decrease

retrieval effectiveness over a baseline ignoring

learning.

If, traditionally, learning schemes are used
mainly with probabilistic retrieval models, our

solution is advantageous by being integrated with

various Boolean models (p-norm, fuzzy set extension,

hybrid Boolean strategies) or with the vector-

processing scheme.

In this study, we never take relevance judgments

such as relevance feedback into account to

reformulate the initial query [Salton 90]. Although

we do not reject this attractive proposition, our

objective is to evaluate the effectiveness of the

initial search; therefore, relevance feedback can be

used after this first search to enhance the retrieval

effectiveness.
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Statistics \ Specification UNlNhl UNINE2
Retrieved: 50000 50000

Relevant: 3913 3913

Relevant and retrieved: 3191 3191

Interpolated Recall - Precision

at 0.00 80.25 81.07 (+1.0)

at 0.10 62.97 62.72 (-0.4)

at 0.20 54.23 53.89 (-0.6)

at 0.30 43.92 44.28 (+0.8)

at 0.40 36.81 37.99 (+3.2)

at 0.50 30.52 32.51 (+6.5)

at 0.60 25.13 26.88 (+6.9)

at 0.70 19.14 20.82 (+8.8)

at 0.80 13.40 15.20 (+13.4)

at 0.90 7.05 8.45 (+19.9)

at 1.00 1.23 1.29 (+4.9)

non-interpolated

average precision 31.90 32.79 (+2.8)

Precision:

at 5 docs: 52.0 52.0 (0.0)

at 10 docs: 47.4 49.0 (+3.4)

at 15 docs: 45.6 45.87 (+0.6)

at 20 docs: 43.2 43.6 (+0.9)

at 30 docs: 40.4 40.67 (+0.7)

at 100 docs: 28.06 28.36 (+1.1)

at 200 docs: 20.43 20.63 (+1.0)

at 500 docs: 11.1 11.16 (+0.5)

at 1000 docs: 6.38 6.38 (0.0)

R-Predsion

(precision after R docs ret), Exact: 34.42 35.02 (+1.7)

Table 6; Official Evaluation of Vector-Space Model

(UNINEl) vs. Including Relevance Links (UNINE2)
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Abstract

The Entity-Relationship (ER) Model is used as a basis for descriptions of information preferences

(profiles) in the information filtering process. We view a profile as having both a static aspect

and a dynamic aspect. It is shown that the static aspect of a profile can be represented as an ER
schema; and the dynamic aspect of the profile can be represented by synonyms of schema

components and domain values for schema attributes. The TREC-3 filtering task is

accomplished using this technique to generate a "custom" filter for each routing topic. These are

true filters in the sense that each one moves across the enfire document collection to produce the

TREC ranked list results. Our network environment to allow any number of filters to run

simultaneously is also described.

Introduction - The Filtering Task and Profiles

The filtering process is based on descriptions of individual (or group) information

preferences, often called profiles. Profiles typically represent long-term interests. Information

filtering is concerned with repeated uses of the profiles, and the profile is assumed to be a correct

specification of an information interest [1].

For our participation in TREC-3, we focus on the filtering task and view a profile as having

both a static aspect and a dynamic aspect. We present a procedure for representing the user need

statement of a TREC topic as a database Entity-Relationship (ER) schema. An ER schema

becomes the static aspect of a profile. For a schema, a synonym list is created for each of the

schema components, and a domain value list is created for each of the schema attributes. These

lists become the major part of the dynamic aspect of a profile. Our filtering procedure uses the

dynamic aspect of a profile to detect relevant documents.

For the TREC filtering task, there are fifty topics or descriptions of information to be

considered, and these must be transformed into filter profiles. Each TREC topic is in the form of

a highly-formatted, natural language, user need statement. Refer to Figure 1 for an example.

This is TREC Topic 122 which concerns new cancer fighting drugs.
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<top>

<head> Tipster Topic Description

<nuin> Number: 122

<dom> Domain: Medical & Biological

<title> Topic: RDT&E of New Cancer Fighting Drugs

<desc> Description:

Document will report on the research, development, testing, and evaluation (RDT&E) of a new
anti-cancer drug developed anywhere in the world.

<narr> Narrative:

A relevant document will report on any phase in the worldwide process of bringing new cancer

fighting drugs to market, from conceptualization to government marketing approval. The

laboratory or company responsible for the drug project, the specific type of cancer(s) which the

drug is designed to counter, and the chemical/medical properties of the drug must be identified.

<con> Concept(s):

1. cancer, leukemia

2. drug, chemotherapy

<fac> Factor(s):

<def> Definition(s):

</top>

Figure 1. TREC-3 Routing Topic 122.
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Semantic Modeling

From a database point of view, it is interesting to note that each TREC topic represents the

data requirements analysis of a small enterprise (real-world situation). Semantic modeling can

be used to capture such an analysis. The Entity-Relationship model is the best-known semantic

model [2,3]. Briefly, the ER model includes the following semantic concepts:

Entity Set:

This is a collection of objects which have common attributes. Each

attribute is associated with a domain of possible values. Objects can

have a physical existence (such as a person) or a conceptual existence

(such as a company, or laboratory). Some attributes can be used to

identify an object in an entity set (such as Social Security Number for a

person). Some entity sets may be weak because objects in the entity set

are identified by being related to specific objects from another entity set.

Relationship:

This is a set of associations among objects in one entity set and objects

in other entity sets. For example, between the entity set of drugs and the

entity set of cancers, there can be a relationship representing which drug

counters which cancer. Each entity set that participates in a relationship

plays a particular role in the relationship. Relationships can also have

attributes.

Specialization, Generalization, Categorization:

These concepts describe the superclass/subclass relationships that can

exist among entity sets. Subclasses can inherit attributes, predicates can

be used to define subclasses, mulfiple subclasses can be disjoint or

overlapping, and the union of classes can be formed.
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An ER diagram or schema is a technique for representing the logical structure of a database

in a pictorial manner. As such, it provides a simple and readily understood means of

communicating the salient features of the design of any given database [2]. The popularity of the

ER model as an approach to database design can be attributed to the ER diagramming technique.

The major diagramming rules follow [3]:

Each entity set is shown as a rectangle.

Each attribute is shown with an ellipse.

Each relationship is shown as a diamond with lines to the participating

entity sets, and roles may be identified by labeling the lines.

A weak entity set and its identifying relationship are distinguished by

using double lines for the rectangle and the relationship.

A subclass relationship is indicated with a line and a subset symbol and

possibly a predicate.

Overlapping subclasses are indicated with a circled "o".

Disjoint subclasses are indicated with a circled "d".

The union of classes is indicated by a circled "u".

There are other semantic concepts that can be expressed using an ER schema, but the above

concepts are enough to demonstrate our idea for creating and using profiles for information

filtering.

Example

Consider, again, TREC Topic 122 shown in Figure 1. An ER Model schema for this topic

is shown in Figure 2. Like the user need statement in Figure 1, the schema specifies the

information that must be detected within a section of text to decide whether or not the text is

relevant to Topic 122.

ER schemas can be created following some simple rules if one has a narrative description of

the database requirements. The nouns appearing in the narrative will tend to give rise to entity

sets, verbs will tend to indicate relationships, adjectives will generally indicate predicates,

additional nouns that modify other nouns tend to be entity attributes, and so on.

By comparing the text of Topic 122 in Figure 1 to the ER schema in Figure 2, one can see

that the schema reflects the sentences read in the topic. The ER diagram is also "atomic" in the

sense that every component is labeled with a single word found in the topic. For example, the

phrase "drug project" in the topic became the entity set "project" with a specialized entity for

"drug project", where the adjective "drug" became a predicate for the superclass/subclass

relationship.
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Figure 2. ER Schema for TREC-3 Routing Topic 122.
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Procedure for Making a Profile

We have established a filtering system based on profiles represented by ER schemas. In our

system, a profile has a static and dynamic aspect. The static aspect of a profile is an atomic ER
schema. The dynamic aspect of a profile consists of a series of lists (files) based on the ER
schema. A list is either a synonym list or a domain list. A synonym list is created for each

labeled component of the ER diagram that is significant. Sometimes, several synonym lists can

be merged into one list. A domain list is created for each attribute in the ER diagram.

Sometimes, the values that should be in a domain list are not known, or only partially known.

Considering the ER schema in Figure 2, the following lists could be created as significant

lists:

List 1

A synonym list for the word "counter":

counter, cure, block, control, . . .

List 2

A synonym list for the words "company" or "laboratory":

company, laboratory. Inc., Co., Incorporated, . .

.

List 3

A synonym list for the word "drug":

drug, medicine, medication, . .

.

List 4

A synonym list for the words "conceptualization", . .
. , "approval":

conceptualization, . . . , approval, study, experiment, . . .

List 5

A synonym list for the word "properties":

properties, attributes, characteristics, . .

.

List 6

A synonym list for the word "cancer":

cancer, cancerous, carcinogen, carcinoma, . .

.

List 7

A domain list for names of companies or laboratories:

SQUIBB, ROCHE, <others are not known, for now>.

List 8

A domain list for types of cancer:

kidney, lung, skin, ovarian, ...

List 9

A domain list for descriptions of properties:

<unknown, for now>.
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The next step in completing the profile is to indicate the possibilities for finding

information which satisfy the schema. This is part of the dynamic aspect of a profile. As an

example, a simple technique (which we used in the TREC-3 routing experiments) is to weight

each of the lists, use a window of text, and then count "hits" in the window for combinations of

the lists. We consider the window size, the file combinations, and list weights as a part of the

dynamic aspect of a profile called the insertion criteria for an ER schema.

For example, one variation of the lists could be to consider hits in List 1, List 2, List 3, List

4, List 5, List 6, and List 8 while ignoring List 7 (since only two values are known) and ignoring

List 9 (since no values are known). There are several variations which could be used to indicate

the presence of relevant information in this example. For TREC experiments, we ranked

relevant documents according to a value determined by summing the "hits" in weighted

variations of the above lists.

To summarize, we consider the static aspect of a profile to be the ER schema, and we

consider the dynamic aspect of a profile to be the values placed in each of the domain and

synonym files, the window size, and the various file combinations and file weights. At the

present time we manually create filter profiles. We create an ER schema after reading a TREC
topic. Next, we determine the significant domain and synonym lists from the ER schema. Then

we initially populate the lists using thesauri, dictionaries, and whatever other reference sources

we can find; sometimes a list remains empty. Finally, we create an information (INF) file to

specify the window size, and the various file combinations and file weights.

Details

To establish a filter for a TREC topic, and do TREC filtering experiments, we have a

standard text scanning program which inputs the window size, the domain and synonym files,

and one or more variations (which also indicate weights) of the lists. The scanning program then

moves across TREC document collections, producing a ranked list of relevant documents. We
have used the TREC training data to modify the dynamic aspect of a profile. This is

accomplished by using viewed relevant and non-relevant documents to adjust the window size

and make additions and deletions to the domain and synonym lists. We have developed a few

utility programs to help us do this quickly.

In its current implementation, the scanner requires a stream of text delimited by standard

SGML. The only specific markers actually used are the <DOC>, </DOC>, <DOCNO>, and

</DOCNO> markers.

Figure 3 provides an example of an INF file for the Topic 122 ER schema displayed in

Figure 2. The INF file indicates the topic number, the size of the text window to be used, the

number of synonym and domain files, an output filename, the actual file names of the synonym

and domain files, a minimum document relevancy value to consider valid, and the number of

combinations followed by the weighted combinations that result in an acceptable insertion in the

ER schema. In Figure 3, there are two combinations. The first combination is the one

mentioned in the previous section; it is appropriate in the case that few or no domain values are

known for company/lab names and descriptions of properties. The second combination is one

that could result after filter training, when company/lab names have been identified and

descripfions of properties can be specified. Since the topic statement in Figure 1 specifies three

items of information that must be present in a relevant document, there are three attributes within
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the ER schema for the topic and three domain files specified in the INF file. These three items

are each given a high weight in the second combination.

Examples of the synonym and domain files for the INF file in Figure 3 appear as List 1

through List 9 in the previous section.

A central part of the scanner is the "text window". This structure is essentially an array

which contains the current group of words being evaluated for local purposes. At any given point

in processing, the text window contains the last X words read from the text, where X is specified

as the window size in the INF file. This provides for a variety of local evaluation sizes, with an

appropriate size selected based on the schema being checked (e.g., searching on a paragraph-by-

paragraph size of roughly 100 words, as opposed to a sentence-by-sentence search of 20 words at

a time). The text window's usage gives rise to the terms local and global. Local refers to an

evaluation done exclusively on the text within the window, and global refers to an evaluation on

the entire text of a document.

Documents are evaluated in a single-pass through the text. Document text begins

immediately after the document ID, and ends at the document end marker. As each new word is

scanned into the text window, it is compared to the entries in the files. This is accomplished by

having read all the file entries into a memory resident hash table prior to the scanning process. If

a match or matches are found, they are tallied in an array which contains the number of matches

currently within the window, by file. At the same time, match counts that are passing out the end

of the text window are subtracted from the array.

When the current word registers a match, there is an immediate evaluation of the current

window's contents. For each valid combination specified in the INF file, there is determined a

combination value. The combination value is the sum of the quotients of the number of non-zero,

required matches (zero matches or non-required files add zero to the sum) for each file multiplied

by 1 minus the result of 1 divided by the sum of the "parts" specified in the INF file for each

particular file in the combination being evaluated plus the total number of files.

122

155

9

tl22.out

counter,syn

COorLAB.syn

drug,syn

con-app.syn

properties.syn

cancer,syn

COorLAB_name.dom
cancer_type.dom

properties_desc.dom

0.00

2

1111110 10
111111666

Refers to Topic 122.

Indicates a 155 word window.

There are nine synonym and domain files.

Output file for ranked documents.

Synonym file.

Synonym file.

Synonym file.

Synonym file.

Synonym file.

Synonym file.

Domain file.

Domain file.

Domain file.

Minimum allowable document weight to output.

There are two combinations.

One part for every "established" file.

Emphasis on relevancy requirement.

Figure 3. An INF file for the ER Schema in Figure 2.
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Only the highest combination value encountered is retained, such that at the end of the

document, there will be a set of combination values which are maximums for the entire

document. Concurrent with these local evaluations, a global document match array is

maintained for combined local and global weighting at the end of the document.

Once the entire text of a document has been scanned, a local weight is determined by

sunmiing the squares of the best combination weights achieved within the document. Following

this, a series of combination values are calculated, then summed, and squared to arrive at a global

weight. This operation is identical to the combination calculations for local weight except that

the global match count array is used instead of the array for the window. The final weight of the

document is then reported as 75% of the local weight added to 25% of the global weight.

Network Environment

Figure 4 diagrams the network that enabled twenty undergraduate students in a Computer

Science database class to develop ER schema synonym and domain files, and establish filters for

each of the TREC-3 routing topics.

For training filters:

1 . The Vol. 1 CD was copied to the hard drive of a PC running Linux

(a public domain version of Unix) and functioning as an NFS node

on the network.

2. The Vol. 2 CD was copied to the hard drive of a SPARCserver

690MP (four processors) on the network.

3. Students ran filters and viewed training text from 32 RISC 6000

machines across the network.

For the UCFlOl and UCFSJM runs:

1 . The Vol. 3 CD was copied to the hard drive of the SPARCserver

690MP (four processors) on the network.

2. Most filters were run on the SPARCserver 690MP (a few were

run on the RISC 6000 machines).

Each of the 32 RISC 6000 machines had 8 MB of RAM. The NFS node had 16 MB of

RAM, and the SPARCserver 690MP had 128 MB RAM. All these machines (except for the NFS
node) were shared with normal University and Department computing.

During training, students began to partition the Vol. 1 and Vol. 2 document collections and

submit each of their filters in parallel by remote login to the 32 RISC 6000 machines. This

caused network problems between the RISC machines and the SPARCserver. The NFS node

connection never failed! For the UCFlOl and UCFSJM runs, we never exceeded eight filters

running simultaneously.
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Sun Network

copy ofVol2 CD
copy ofVol3 CD
relevancy lists and TREC
utility programs

osceola

longwood

SPARCserver 690 MP
(4 processors)

128 MB RAM

router

CD ROM drive

oz-PC
33 MHz, 16 MB RAM

Olympus - RISC 6000 server

to the internet

Engineering Lab - 15 RS/6000 machines

each with 8 MB RAM
Computer Center Lab - 17 RS/6000 machines

each with 8 MB RAM

Figure 4. The network environment.
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Performance Results and Analysis

One of our experiments was a Category B filtering task (UCFSJM) using a document

collection representing a single domain (newspaper documents). There were three participants in

this task. Four of the topics had no relevant documents. Our filtering approach had the best

average precision for 28 topics, the median average precision for 16 topics, and the worst average

precision for two topics. Our overall average precision was .3326 for this experiment.

Another experiment was the regular filtering task (UCFlOl) using approximately one

gigabyte of text representing several domains. Our filtering approach had the best average

precision for 6 topics. For 26 of the topics, our average precision was above the median. For 24

of the topics, our average precision was below the median. Our overall average precision was

.3278 for this experiment.
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Abstract

A statistical analysis of the TREC-3 data shows that performance differences across queries is greater than

performance differences across participant runs. Generally, groups of runs which do not differ significantly at large,

sometimes accounting for over half the runs. Correlation among the various performance measures is high.

1. Introduction

Although the purpose ofthe TREC trials is primarily to learn from one another what works

and what does not work in information retrieval, rather than picking winners and losers,

there is a need to determine which runs produce results which are significantly different from

the results of other runs. By significantly different we mean that, by standard statistical

tests, the differences among the performance scores for the various runs, averaged over

queries, appear to be greater than what might be expected by chance. Only by looking at

statistically significant differences can we generalize the TREC results to other queries and

databases.

The question of chance arises because the set of fifty queries actually processed in the

TREC-3 trials is really a random sample from the population of all possible queries which

could be asked of the database. We assume our results hold not just for the particular set

of queries we used in TREC-3, but for any similar set of queries. The function of statistical

testing is to determine which differences among run means appear to be real and which

differences appear to be the result of sampling variation. These conclusions can be drawn

only with a predetermined error probability of saying there is a difference in runs when there

is not, the alpha error probability, usually set at .05. At the same time, there is also an

undetermined beta error probability of saying there is no difference when there actually is.

In choosing a statistical test, one attempts to minimize beta for the preset alpha value.

In this paper, we will look at the variables which have been used to summarize the output

from each TREC-3 run and at the results of statistical tests primarily using the analysis of

variance (ANOVA) followed by a posteriori tests of individual differences between the

means of pairs of runs. The ANOVA technique makes a number of assumptions about the

data, but when it may be used it is to be preferred to the nonparametric approach, called the
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Friedman test, which makes no assumptions beyond a level of measurement at least ordinal.

The reason for this preference is that nonparametric tests, in general, have a higher beta

error probability than the corresponding parametric tests. However, we will also look at

two other approaches, for comparison with the primary one: ANOVA applied to an arcsine

transformation of the original data and the nonparametric Friedman test. However, the

nonparametric test is based on a rank-transformation of the data, so that a certain amount

of information about differences in performance is being ignored. The comparative ordering

of the runs will be by average rank, rather than by the original scores (such as average

precision) and so the ordering may change.

All of these approaches control the alpha error probability at .05 both for the initial test,

whether or not there is overall a significant difference among a set of treatments (in our case

runs), and for the set of a posteriori tests which determine which pairs of means are

significant different. As Berenson, Levine, and Goldstein (1983) say relative to an

experiment in which c treatments (e.g., mns) are being compared and where Hq, the null

hypothesis, is that there is no difference between means:

In an effort to determine which of the c means are significantly different from the

others, it is improper for the researcher to use all possible two-sample t tests to

examine all pairwise comparisons between the means; all such comparisons would

not be independent and, if c was large enough, it is likely that the difference between

the largest and smallest ofthe <means> would be declared significant even if the null

hypothesis were true. That is, the greater the number of groups (i.e., levels of a

factor) c, the greater the number of pairwise comparisons [i.e., c(c-l)/2] between

means, and the more likely it would become to erroneously reject one or more of

them—even ifHq were true. Thus, if several pairwise comparisons were made, each

at the a level, the probability of incorrectly rejecting Hq at least once would increase

with c and would exceed a.

(page 86-87)

In fact, in the case of the TREC-3 Ad Hoc data, where there are 42 runs, there are

42(41)72=861 possible pairwise comparisons and so, if each of these were tested at the

a=.05 level, the probability of incorrectly rejecting H^ at least once would be 1 - (.95)^^\

i.e., almost a certainty.

As Berenson et al note, several a posteriori multiple comparison procedures have been

devised for investigating significant differences following a significant ANOVA. The one

which we use is the Scheffe test, which determines a minimum significant difference, based

on the number of means being compared and alpha, such that any pair of means differ

significant if their difference exceeds this value. Generally speaking, this minimum

significant difference will increase with the number of means being compared, since it is, for

example, much more likely we will get a large difference by chance when we are looking at

861 differences, rather than a single difference.
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2. Performance Measures

There are a number of ways of describing the effectiveness of each TREC participant

strategy or run for each query. The query run performance measures used in the TREC-3
analysis carried out at NIST are the following:

• Average Precision, defined as the average of the precision values at the points

relevant documents were retrieved in the run;

• R Precision, defined as the precision after R documents are retrieved in the run,

where R is the number of relevant documents for the query;

• Precision at Standard Recall Levels, where the levels are

0, 0.1, 0.2. 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.

• Precision at Standard Numbers of Documents Retrieved, where the numbers of

documents are 5, 10, 15, 20, 30, 100, 200, 500, and 1000.

In addition, we examined the following:

• Precision averaged over the 1 1 Standard Recall Levels

• Precision averaged over the 9 Number ofDocument Levels.

For each of these variables, the following procedures were carried out:

• Determination of the means and variances over queries for all runs,

• Hartley test to determine if the ANOVA assumptions are satisfied,

• Arcsine transformation of variable if the ANOVA assumptions are not satisfied,

• Rank transformation of variable if the ANOVA assumptions are not satisfied,

• Analysis of Variance (ANOVA) on scores and transformed scores if necessar\- to

determine if there is an over-all difference in the means for the runs,

• Scheffe tests to determine which pairs of run means differ significantly and to group

runs for which there is no significant difference in means.

• Friedman nonparametric test on ranks, as described in Conover (1980), to assess

which pairs of run means differ significantly ifANOVA assumptions not satisfied.
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3. The Analysis of Variance

The assumptions ofANOVAapplied to the TREC-3 data, are as follows:

• the effectiveness scores represent a random sample, i.e., are independent of one

another;

• the effectiveness scores are approximately normally distributed

• ' the variance of the effectiveness scores is approximately the same for all runs

ANOVA is robust (i.e., still valid) under moderate departures from the last two

assumptions. If the last two assumptions are not satisfied for data which, essentially, is a

proportion or percentage, the usual procedure is to apply transformation consisting of taking

the arcsine ofthe square root of the original scores (the arcsine transformation). ANOVA
is then applied to the transformed scores. Alternatively, one can carry out a nonparametric

Friedman test, which makes no assumptions about the variables, but which replaces the

original scores by their ranks.

The ANOVA model is a repeated measures design, where the runs were performed on the

same set of queries; its mathematical form is:

7..=Li+a.+B.+e..

where is the score for the ith participant on the jth query

^ is the overall mean score

a- is the effect of the ith run

Pj is the effect of the jth query

e,j is the random variation about the mean

The function of the analysis of variance is to determine if the run effects (the aj are

different from zero. The logic of the procedure is that, if the means show no more

variability than what would be expected if they were the means of random samples from the

same population of scores, then the run effects are zero (the null hypothesis Hq is true).

One can also test whether or not the variability of the query means is greater than would be

expected by chance H.e., whether or not the Pj =0).
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In the SchefFe test a minimum significant difference is determined based on the underlying

random variation and the number of runs. Iftwo participant means do not differ beyond this

minimum significant difference, they are assigned to the same group, indicated in the tables

by the same alphabetic symbol.

4. Results

The Hartley test showed some evidence that the original scores in the Ad Hoc data set did

not satisfy the equality of variance assumption of ANOVA. For this reason, an arcsine

transformation was applied to stabilize the variances and the rank-based Friedman test was

carried out in addition to ANOVA for this data. However, the resulting groupings showed

very few differences from the nontransformed data. Analysis is given for nontransformed

scores, and where there is a difference with the arcsine-transformed data in the top and the

bottom group in the Scheffe test it is noted. The rank-based analysis is presented in a

separate table, when carried out, since it produces a different ranking of the runs.

The analysis ofvariance table and the Scheffe groups for the variable Average Precision are

shown in Tables 1 and 3 . The variability attributable to the various effects (runs, queries,

error) is shown in the fourth column of Table 1, labelled 'Mean Square'. The F values

indicate that the runs and queries effects are significantly different from zero at both the

a=.05 and the a=.01 significance levels. It can be seen, from Table 1, that the variance due

to queries is much greater than that due than that due to runs. Thus, it appears that runs are

preforming differentially over the queries, so that for some queries some approaches are best

and for other queries other approaches are best.

Source of

Variation

DF Sum of

Squares

Mean
Square

F
Value

Runs 41 15.42 0.38 34.44*
*

Query 49 46.25 0.94 86.46*
*

Error 2009 21.93 0.01

Total 2099 83.60

**Probability ofF< .0001.

Table 1 ~ Analysis of Variance of Average Precision, Ad Hoc Data
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In Table 3, we see that the top group, represented by the letter A in the Scheffe groupings,

consists ofthe top-ranking 20 runs ofthe 42 runs and that the corresponding range ofmean

average precision values which do not differ significantly from one another varies from

0.269 to 0.423. The B group includes the 21st run and all those runs which do not vary

significantly from it, namely the runs from rank 2 to rank 24. The C group includes the 25th

ranking run and all those runs which do not vary significantly from it. . Other groups are

formed in a similar fashion. There is a great deal of overlap among the groups, but one can

see that several sets of three groups, for example, groups A, F, and M, will 'cover' the set

of runs.

Using the arcsine transformation produces a marginal change in the groupings: two runs

added to the top group and three runs removed from the bottom group. More changes can

be observed from the rank-transformation based results in Table 4. The A group now
contains 18, rather than 20, runs, a not surprising result since ranks have now been

substituted for precision scores. Note, also, some variation in the ordering, as a result of the

fact that we are averaging ranks, rather than original scores.

The wide range ofmean average precision values which do not differ significantly and the

small number of differing groups is surprising. It can be attributed to the effect we noted

earlier, namely that there is a great deal more variability resulting from the queries than from

the runs, so that runs perform very differently with different queries. Rankings of runs are

not very stable from one query to another.

Using a different performance measure does not seem to change this pattern very much.

Similar findings resulted from the ANOVA and the Scheffe test for the other variables.

Tables 5 and 6 show, for example, the Scheffe groupings obtained with the variables R-

precision and Precision at 100 documents retrieved, respectively, for the Ad Hoc results.

These variables are even less discriminating, with the top-ranked 28 runs and 31 runs,

respectively, in the A group.

The ANOVA and Scheffe tests for the Routing data show a similar pattern (Tables 2 and

7). The variance resuhing from queries is over five times that resuhing from the runs. Of

the 34 runs, 23 lie in the top A group of runs which do not differ significantly. Also, as with

the Ad Hoc data, very little difference in ranking resulted from using the other variables.

Is there any value in using all the variables described in the 'Variables' section above? The

results from this analysis indicate the answer to this question is 'no'. The rankings of runs

obtained using different variables are very similar. The correlations between seven of the

variables is shown in Table 8: average precision, R-precision, precision at 30, 10, and 200

documents retrieved and interpolated precision at .5 and .9 recall All correlations are above

the .9 value except for those with precision at .9 recall. The reason for this anomoly is that
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interpolated values for high recall levels are not very reliable, as, for those runs which did

not achieve a total recall, the precision for a recall of one was set to zero.

Source of

Variation

DF Sum of

Squares

Mean
Square

F Value

Runs 33 6.18 0.19 21.65**

Query 49 49.54 1.01 118.10*

Error 1617 13.84 0.01

Total 1699 69.56

**Probability ofF< .0001.

Table 2 — Analysis of Variance of Average Precision, Routing Data.

Another question one might ask of the multiple effectiveness measures is: which one

appears to be the most discriminating in terms of showing significant differences among the

runs. Table 9 was compiled to answer this question. It shows, for each of the measures, the

number and percentage of the runs in the top group (A group) for both the ad hoc and the

routing data. Two additional variables were were added to those which have been

heretofore calculated from TREC tests: precision averaged over all nine levels of numbers

of retrieved documents and precision averaged over all eleven levels of recall.

These results indicate that precision at very high low and very high values of the number of

documents retrieved (n) and the recall level (r) are not very discriminating, tending to lump

most participants into a singlegroup. Of the original effectiveness measures, the best

discriminator is average precision, followed by R-precision. The two added performance

measures do better at discriminating than the original measures. However, there is some

concern that the scores do not meet the first assumption of the the analysis of variance,

independence of the scores, since the precision score at each number of retrieved documents

or recall level for a query will be related to the score at the previous level. The numerator

in the precision score is a cumulation which includes the numerator in the previous score.

4. Conclusions

The lack of significant differences in the resuUs of TREC-3 should not be interpreted as
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indicating that it does not really matter how we do retrieval. The interesting fact to emerge

from the analysis of variance is the high variability over queries. What this means is that

some approaches are working well with some queries and other approaches well with other

queries. The challenge will be to find out what characterizes the queries and the retrieval

approaches which work well together. A multi-approach system can then determine, based

on the characteristics of the query, what the optimal approach will be.
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SchefTe Grouping Mean Run
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T
1 LJ n VJ c Vr isiaunu

E J I D H K G c F 0.22541 rutfua2

E J I D H K G c F 0.22487 CLARTM
E J L I D H K G F 0.2092 xerox3

t,
T
J

TL T
1 JJ

TT
li Lr t?r U.zUoo4 siems 1

E J L I H K G F 0.20683 citri2

E J L I H K G F 0.20613 erimal

J L I H K G F 0.18726 siems2

J L I H K G M 0.17518 padre2

J L I H K M 0.16929 xerox4

J L

L
L

I K
K

M
M
M
M

** 0.14481

0.0823

0.06245

0.02865

padre 1

ACQNTl
virtul

T0PIC3

*lncluded in A group when arcsine transformation is applied.

**Not included inM group when arcsine transformation is applied.

Table 3--SchefFe Test for Average Precision, Ad Hoc Data.

Minimum Significant Difference= 0.158, Alpha=.05.

Means with the same letter are not significantly different.
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Scheffe Grouping Mean
Rank

Run

A 36.9 INQ102
B A 34.39 cityal

B A 32.78 Brkly7

B A C 32.3 INQlOl

E B D A C 32.13 ASSCTV2
E B D A c F 32.04 ASSCTVl
E B D A c F 32.01 citya2

E B D A c F 31.48 CmlLA
E B D A G c F 30.06 CmlEA
E B D A G c F 28.75 westpl

E B D H A G c F 27.14 E'm002
E B D H A G c F 26.32 pircsl

I E B D H A G c F 25.96 VTc2s2

I E B D H A G c F 25.89 Brkly6

I E J B D H A G c F 25.59 pircs2

I K E J B D H A G c F 24.48 ETHOOl
I K E J B D H A G c F 24.35 VTc5s2

I K E J B D H A G c F 23.37 nyuir2

I K E J B D H L G c F 23.23 nyuirl

I K E J B D H L G c F 22.77 T0PIC4
I K E J B D H L G c F 21.02 dortD2

I K E J D H L G c F 20.81 CLARTA
I K E J D H L G c F 20.62 citril

I K E J D H L G c F 20.03 Isia0mw20f

I K E J D H L G c F 20.01 rutfual

I K E J M D H L G c F 19.26 dortDl

I K E J M D H L G F 18.62 IsiaOmf

I K J M H L G F 18.58 mtfua2

I K J M H L G 18.33 CLARTM
I K J M H L G 17.98 siems 1

I K J M H L G 16.13 xerox3

I K J M H L N 16.02 siems2

I K J M H L N 15.85 erimal

I K J M 0 H L N 15.63 citri2

I K J M O H L N 12.36 padre 1

K J M 0 L N 12.18 padre2

K M
M

0
O
0

L
L

N
N
N

11.38

6.39

4.43

xerox4

ACQNTl
virtu 1

Table 4~Friedman Test for Average Precision Ranks, Ad Hoc Data, Alpha

Means with the same letter are not significantly different.
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SchefTe Grouping Mean Run

A 0.45238 INQ102
B A 0.42169 cityal

B A C 0.41522 Brldy7

B D A C 0.4088 INQlOl
B D A c 0.39989 ASSCTV2
B D A c 0.39482 ASSCTVl

E B D A c 0.38899 CmlEA
E B D A c F 0.38155 citya2

E B D A G c F 0.37798 westpl

E B D A G c F 0.37679 CmlLA
E B D H A G c F 0.35382 VTc2s2

E B D H A G c F 0.35104 TOPIC4
E B D H A G c F 0.34982 Brldy6

E B D H A G c F 0.34844 pircsl

E B D H A G c F 0.34749 ETH002
E B D H A G c F 0.34042 VTc5s2

E B D H A G c F 0.34015 pircs2

E B D H A G c F 0.33741 ETHOOl

E B D H A G c F 0.32318 nyuirl

E B D H A G c F 0.32313 nyuir2

E B D H A G c F 0.32276 citril

E B D H A G c F 0.32214 dortD2

E B D H A G c F 0.31842 CLARTA
E B D H A G c F 0.31635 rutfual

E B D H A G c F 0.31279 dortDl

E B D H A G c F 0.30912 rutfua2

E B D H A G c F 0.30711 Isia0mw20f

E B D H A G c F 0.30303 IsiaOmf

E B D H * G c F 0.29106 citxi2

E B D H I G c F 0.28411 CLARTM
E B D H I G c F 0.2822 siems 1

E B D H I G c F 0.27648 xerox3

E J D H I G c F 0.26676 erimal

E J D H I G F 0.26349 siems2

E J H I G F 0.23955 xerox4

J H I G 0.22789 padre2

J H I 0.21768 padre 1

J I K 0.14588 ACQNTl
J K

K
0.11704

0.06099

virtul

T0PIC3

Included in A group when arcsine transformation is applied.

Table 5 ~ Scheffe Groups for R-Precision, Ad Hoc Data

Minimum Significant Difference= 0.1507, aipha=.05.

Means with tlie same letter are not significantly different.
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SchefTc Grouping Mean Run

A 0 49082

B A 0.47592

B A c Rrlrlv7

B D A c A<\<srTV21 V ^

E B D A c 0 44041 Twnini

E B D A c /\oO\.^ 1 V 1

E B D A c 0.43429 city&2

E B D A c F 0 4224S PmlT A
E B D A c F 0 41808 PmlFA
E B D A c F 0 407"^^ WcSip 1

E B D A c F 0 40/=^ 1 7 VTp2«2V iCZdZ

E B A F 0 40S71 THPTPd

E B A c F 0 4004

1

PTTTnr)2

E B D A c F VTr<;<!2V iUJo^

E B D A c F 0.39327 Rrklv6XJl r\Aj\J

E B A G c F 0 "^81 72\J.30 i i^t. pircs 1

E B D A (j c FX 0 ^81 22 pircs2

E B A c FX \}.J 1 J 1 PT ARTA
E B E) A G c FX FTROOlsZi 1nuu 1

E B A G c FX 0 ^71 22 rUllUa 1

E B A G c FX V.JO / I\J citn 1

E B D A G c F* nyuirl

E B D A G c F 0 36163 nyuir2

E B A G c F 0 3S878 I ULiUa.^

E B D A G c F 0 35673 UUl LL^^

E B D A G c FX 0 35102

E B D A G c F 0.34939 CLARTM^^X^i^^V X xvx

E B D A G c F 0 33755 finrtniUUl LL/ 1

E B D A G c F 0.32755 Isia0mw20f

E B D A* G c F 0.32673 siemsl

E B D H A* G c F 0.31571 IsiaOmf

R L 1
rjVJ c r \j.Ljo 1

0

xerox3

E B D H G c F 0.29204 erimal

E D H G c F 0.28286 siems2

E D H G F 0.27184 padre2

E H G F 0.25592 padre 1

E H
H
H

I

I

I

G F 0.25571

0.19592

0.13735

0.05633

xerox4

ACQNTl
virtu 1

T0PIC3

*Not in A group in arcsine transformed data.

Table 6 ~ Scheffe's Test for Precision at 100 Documents Retrieved, Ad Hoc Data.

Minimum Significant DifFerence= 0.1856, alplia=.05.

Means with the same letter are not significantly different.
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SchefTe Grouping Mean Run

A 0.4068 cityrl

B A 0.3887 pircs3

B A 0.3879 INQ104

B A 0.3838 INQ103

B A 0.3824 dortRl

B A C 0.3748 pircs4

B A C 0.3737 lsir2

B A C 0.3724 cmlQR
B A C 0.3699 cmlRR
B A C 0.3642 Brldy8

B A C 0.3621 cityr2

B A C 0.3535 westp2

B A C 0.3373 losPAl

E B A C 0.3277 UCFlOl
E B A C 0.3244 nyuir

E B A C 0.3188 FDF2
E B A C 0.3155 FDFl

E B A C 0.3154 EIH004
E B A C 0.3139 CLARTA
E B A C 0.3111 xerox2

E B A G C 0.3092 ETH003
E B A G C 0.2879 Isirl

E B A G C 0.2867 xerox 1

E B G C F 0.2774 T0PIC2
E B G C F 0.2754 rutir2

E B G C F 0.2742 nyuir 1

E B G C F 0.2717 virtu2

E B G C F 0.2641 ACQNT2
E G C F 0.2528 erimrl

E G C F 0.2498 cityil

E G F 0.2243 TOPIC 1

E G F 0.2045 rutirl

G F 0.1854 rutfurl

G 0.1817 rutfur2

Table 7 — SchefFe's Test for Average Precision, Routing Data.

Minimum Significant DifFerence= 0.1277, alpha=.05.

Means with the same letter are not significantly different.
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Ad Hoc Data Routing Data

Aver. R Precision at Aver. R Precision at

Prec. Prec. N=30 N=100 N=200R=.5 R=.9 Prec. Prec. N=30 N=100N=200R=.5 R=.9

Ave.Prec. 1.000 0.987 0.956 0.972 0.983 0.987 0.766 1.000 0.988 0.928 0.974 0.970 0.984 0.844

R Free. 1.000 0.977 0.989 0.993 0.968 0.704 1.000 0.921 0.968 0.971 0.979 0.782

N=30 1.000 0.986 0.974 0.916 0.636 1.000 0.968 0.922 0.876 0.707

N=100 1.000 0.993 0.940 0.674 1.000 0.985 0.948 0.794

N=200 1.000 0.965 0.694 1.000 0.963 0.805

R=.5 1.000 0.750 1.000 0.838

R=.9 1.000 1.000

Table 8 — Correlation of Selected Performance Measures.

Variable Ad-Hoc Routing

Num. % Num. %

Ave. Precision 20 47.62 22 64.71

R-Precision 28 66.67 28 82.35

Precision at n=5 42 100.00 33 97.06

n=10 40 95.24 32 94.12

n=15 40 95.24 31 91.

r

n=20 39 92.86 27 79.4.

n=30 36 85.71 27 79.41

n=100 31 73.81 28 82.35

n=200 34 80.95 30 88.24

n=50 36 85.71 31 91.18

n=1000 38 90.48 31 91.18

Precision at r=0 39 92.86 34 100.00

r=.l 29 69.05 31 91.18

r=.2 27 64.29 30 88.24

r=. 30 71,43 26 76.47

r=.4 29 69.05 28 82.35

r=.5 28 66.67 30 88.24

r=.6 30 71.43 27 79.41

r=.7 27 64.29 27 79.41

r=.8 31 73.81 28 82.35

r=.9 18 42.86 30 88.24

r=l 42 100.00 34 100.00

Precision avererage

over

9 levels of n 14 33.33 17 50.00

11 levels of r 7 16.67 13 38,24

Table 9 — Size of Top Group of Runs (A Group)
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APPENDIX A

This appendix contains results for all TREC-3 participants. The first three pages list the

system tags, organizations, and query construction methods for all runs. The next 9 pages

describe the evaluation techniques and measures used. The rest of the appendix contains

results.

A-1



ADHOC RUNS

CATEGORY A DATA

Tag Organization

ACQNTl National Security Agency

ASSCTVl Mead Data Central, Inc.

ASSCTV2 Mead Data Central, Inc.

BrklyS University of California, Berkeley

Brkly? University of California, Berkeley

citril Royal Melbourne Institute of Technology

citri2 Royal Melbourne Institute of Technology

cityal City University, London

citya2 City University, London

CLARTA Carnegie Mellon University / CLARITECH
CLARTM Carnegie MeUon University / CLARITECH
CrnlEA Cornell University

CrnlLA Cornell University

dortDl Universitaet Dortmund
dortD2 Universitaet Dortmund

erimal The Environmental Research Institute of Michigan

ETHOOl Swiss Federal Institute of Technology

ETH002 Swiss Federal Institute of Technology

INQlOl University of Massachusetts, Amherst

INQ102 University of Massachusetts, Amherst

IsiaOmf Bellcore

Isia0mw20f Bellcore

nyuirl New York University

nyuir2 New York University

padrel Australian National University

padre2 Australian National University

pircsl Queens College, CUNY
pircs2 Queens College, CUNY
rutfual Rutgers University

rutfua2 Rutgers University

siemsl Siemens Corporate Research Inc.

siems2 Siemens Corporate Research Inc.

TOPICS Verity, Inc.

T0PIC4 Verity, Inc.

virtul NEC Corporation

VTc2s2 Virginia Polytechnic Institute

VTc5s2 Virginia Polytechnic Institute

westpl Westlaw Publishing Company

xeroxS Xerox Palo Alto Research Center

xerox4 Xerox Palo Alto Research Center

CATEGORY B DATA

Tag Organization

DCUNLl Dublin City University

DCUNL2 Dublin City University

dgrosl George Mason University

Query Construction Method

automatic

manual

manual

automatic

manual

automatic

automatic

automatic

automatic

automatic

manual

automatic

automatic

automatic

automatic

automatic

automatic

automatic

automatic

manual

automatic

automatic

automatic

automatic

manual

automatic

automatic

automatic

manual
,

manual

automatic

automatic

manual

interactive

automatic

manual

manual

automatic

automatic

automatic

Query Construction Method

manual

manual

automatic
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CATEGORY B DATA (Continued)

Tag Organization Query Construction Method

expst2

UniNEl

UniNE2

Mayo Clinic/Foundation

Universite de Neuchatel, Switzerland

Universite de Neuchatel, Switzerland

automatic

automatic

automatic

ROUTING RUNS

CATEGORY A DATA

Tag Organization Query Construction Method

ACQNT2
BrklyS

cityil

cityrl

cityr2

CLARTA
crnlQR

crnlRR

dortRl

erimrl

ETH003

ETH004

FDFl

FDF2

INQ103

INQ104

losPAl

Isirl

lsir2

nyuirl

nyuir2

pircs3

pircs4

pixtex

rutfurl

rutfur2

rutirl

rutir2

TOPICl

TOPIC2
UCFlOl

virtu2

westp2

xeroxl

xerox2

National Security Agency automatic

University of California, Berkeley automatic

City University, London interactive

City University, London automatic

City University, London automatic

Carnegie Mellon University / CLARITECH automatic

Cornell University automatic

Cornell University automatic

Universitaet Dortmund automatic

The Environmental Research Institute of Michigan automatic

Swiss Federal Institute of Technology automatic

Swiss Federal Institute of Technology automatic

TRW, Paracel automatic

TRW, Paracel automatic

University of Massachusetts, Amherst automatic

University of Massachusetts, Amherst manual

Logicon Operating Systems automatic

Bellcore automatic

Bellcore automatic

New York University automatic

New York University automatic

Queens College, CUNY automatic

Queens College, CUNY automatic

DeMontfort University • manual

Rutgers University manual

Rutgers University manual

Rutgers University interactive

Rutgers University interactive

Verity, Inc. manual

Verity, Inc. interactive

University of Central Florida manual

NEC Corporation manual

Westlaw PubKshing Company automatic

Xerox Palo Alto Research Center automatic

Xerox Palo Alto Research Center automatic
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CATEGORY B DATA

Tag Organization Query Construction Method

expstl

stpatl

UCFSJM

Mayo Clinic/Foundation

University of Toronto

University of Central Florida

automatic

interactive

manual

OTHER DATA

Tag

TeknosNOS

TeknosNlO

TeknosNlS

TeknosN20

TeknosNSO

TeknosRel

TeknosWOS

TeknosWlO

TeknosWlS

TeknosW20

TeknosW30

Organization

University

University

University

University

rsity

niversity

University

University

University

University

of Minnesota

of Minnesota

of Minnesota

of Minnesota

of Minnesota

of Minnesota

of Minnesota

of Minnesota

of Minnesota

of Minnesota

of Minnesota

Query Construction Method

manual

manual

manual

manual

manual

manual

manual

manual

manual

manual

manual
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Evaluation Techniques and Measures

Categories

The results are separated into categories according to two ta.sks, adhoc or routing. Table

1 contains a further breakdown of runs depending on how the query was built (automatic,

manual, or interactive) and the magnitude of the task (Category A or Category B).

Table 1

Runs broken down by category and query construciion method.

48 Adhoc Runs

Category Automatic Manual Interactive Total

A 28 12 2 42

B 4 2 0 6

49 Routing Runs

Category Automatic Manual Interactive Total

A 24 18 4 46

B 1 1 1 3

I. Adhoc.

Retrieval using an "adhoc" topic such as a researcher might use in a library

environment. In TREC this implies that the input topic has no training material

such as relevance judgments to aid in the construction of the input query.

A. Category A.

Systems running TREC topics against aU documents from Disks 1 and 2 of the

Tipster Collection.

B. Category B.

Systems running TREC topics against the Wall Street Journal (WSJ) on Disks

1 and 2 of the Tipster Collection. (Intended for new groups, allowing them to

scale their systems to handle large collections.)

II. Routing.

Retrieval using a "routing" query such as a profile to filter some incoming document

stream. In TREC this implies that the input topic has training material, including

relevance judgments against the training documents, to use in constructing the input

query or profile. This query is then used against new documents (the test documents).

A. Category A.

Systems running TREC topics against all documents from Disk 3 of the Tipster

Collection.

B. Category B.

Systems running TREC topics against only documents from the San Jose Mer-

cury News (SJMN) on Disk 3 of the Tipster Collection. (Intended for new
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groups, allowing them to scale their systems to handle large collections.)

Evaluation Measures

I. Recall.

A measure of the ability of a system to present aU relevant items,

„ number of relevant items retrieved
recall =

number of relevant items in collection

II. Precision.

A measure of the ability of a system to present only relevant items,

. . number of relevant items retrieved
precision = —

: —

.

total number oi items retrieved

III. Fallout.

A measure of the ability of a system to filter out non-relevant items,

number of nonrelevant items retrieved
fallout

total number of nonrelevant items in collection
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System Results Description

Each page contains all the results for one system comprised of a header, 4 tables, and 3

graphs described as follows:

Header

• The header contains the task and organization name, where task is either adhoc or

routing and the organization is the organization name producing the run described

on the page.

Tables

Tables are generated by frec_et;a/ courtesy of Chris Buckley using the SMART methodology

as defined in Salton and McGill [1].

I. "Summary Statistics" Table.

Table 2 is a sample "Summary Statistics" Table.

Table 2

Sample "Summary Statistics" Table.

Summary Statistics

Run Number CrnlEA-category A, automatic

Number of Topics 50

Total number of documents over all topics

Retrieved: 50000

Relevant: 9805

ReLret: 7267

A. Run Number.

An identifier for a system of the form: Tag - Category, Query Construction

Method, where Tag is the id of the run provided by the participant, Category is

either Category A or Category B (full documents or a subset of full documents),

and Query Construction Method is either automatic, manual, or interactive.

B. Number of Topics.

Number of topics searched in this run (normally 50 topics are run for each task).

C. Total number of documents over all topics (the number of topics shown in B).

i. Retrieved.

Number of documents retrieved and sent in. This is normally 50,000 (50

topics X 1000 documents), but could be less.
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ii. Relevant.

Total possible relevant documents within a given task and category. Table

3 contains the possible relevant documents for TREC-3.

Table 3

Possible relevant documenis within a given task and category for TREC-3.

Category Adhoc Routing

A
B

9805

3913

9353

2559

iii. Rel_ret.

Total number of relevant documents returned by a run for all the topics, i.e.

the Number of Topics shown on the second line of the Summary Table.

II. "Recall Level Precision Averages" Table.

Table 4 is a sample "Recall Level Precision Averages" Table.

Table 4

Sample "Recall Level Precision Averages" Table.

Recall Level Precision Averages

Recall Precision

0.00 0.7759

0.10 0.5910

0.20 0.5244

0.30 0.4735

0.40 0.4213

0.50 0.3595

0.60 0.3031

0.70 0.2365

0.80 0.1605

0.90 0.0664

1.00 0.0031

Average precision over

aU relevant docs

non-interpolated 0.3419

A. Precision at 11 recall cutolT values.

Each recaU-precision average is computed by summing the precisions at the

specified recaU cutoff value (denoted by ^ Pr where Pr is the precision at recall

cutoff value R) and then dividing by the number of topics, for TREC normally

NUM = 50.

NUM

2^^^ i2= {0.0,0.1, 0.2, 0.3, ...,1.0}

NUM
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• Interpolating recall- precision.

In order to graphically show precision at various recall averages, interpola-

tion must be used. The interpolated precision at a recall cutoff R is defined

to be the maximum precision at all points < R.

For example, if there are only 3 relevant documents retrieved, and these are

retrieved at ranks 4, 9, and 20, then the exact recall points are 0.33, 0.67,

and 1.0. Interpolated precisions are computed using the "true" recall values

(precision 0.25 at recall 0.33, precision 0.22 at recall 0.67, and precision 0.15

at recall 1.0, respectively) and mapping them to the 11 recall cutoff values

using the above rule. Therefore, the precisions at recall points 0.0, 0.1, 0.2,

0.3 are 0.25, the precision at recall points 0.4, 0.5 0.6, are 0.22 and precision

at recall points 0.7, 0.8, 0.9, 1.0 are 0.15. Note that theoretically precision

is not defined at a recall of 0.0, however this interpolation rule aUows values

to be determined.

B. Average precision over aU relevant documents, non-interpolated.

This measure is not an average of the above cutoff values, but an average calcu-

lated after each relevant returned document.

Consider a system returning 10 documents and four of the 10 documents are

relevant. The rankings of the four documents are 1, 2, 4, 7 giving precisions of

1, 1, 0.75, and 0.57, respectively. By averaging the 4 precisions the single value

measure of average precision over all relevant documents is 0.83.

III. "Document Level Averages" Table.

Table 5 is a sample "Document Level Averages" Table.

Table 5

Sample "Document Level Averages" Tabic.

Document Level Averages

Precision

At 5 docs 0.5760

At 10 docs 0.5540

At 15 docs 0.5480

At 20 docs 0.5370

At 30 docs 0.5187

At 100 docs 0.4168

At 200 docs 0.3413

At 500 docs 0.2254

At 1000 docs 0.1453

R— Precision (precision af-

ter R docs retrieved (where

R is the number of relevant

documents))

Exact 0.3890
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A. Precision at 9 document cutoff values.

Each document precision average is computed by summing the (50) precisions

at the specified document cutoff value divided by the number of topics (50).

B. R- Precision is the precision after R documents (whether relevant or non-relevant)

have been retrieved, where R is the number of relevant documents for a topic.

R-Precisions are computed, one for each query (50), and then they are averaged.

Suppose a topic with 50 relevant documents was run returning 200 documents.

In the top 50 documents returned, 17 of them are relevant. Then the R-Precision
17

is — or 0.34.
50

IV. "RecaU FaUout Averages" Table.

Table 6 is a sample "Recall Fallout Averages" Table.

i Table 6

Sample "RecaU FaUout Averages" Table.

Recall Fallout Averages

RecaU Fallout

0.00 0.00000

0.10 0.00003

0.20 0.00008

0.30 0.00014

0.40 0.00023

0.50 0.00037

0.60 0.00058

0.70 0.00094

0.80 0.00175

0.90 0.00528

1.00 0.13424

A. FaUout at 11 recaU cutoff values.

Each recaU-faUout average is computed by summing the faUouts at the specified

recaU cutoff value (denoted by Yl where Fr is the fallout at recaU cutoff

value R) and then divided by the number of topics (NUM — 50).

i? = {0.0, 0.1, 0.2, 0.3,..., 1.0}

• Interpolating recaU-faUout

.

The recaU at X non relevant documents is used for the recaU at X — 1 non

relevant documents. When faUout is not exactly defined at il, the fallout of

X — 1 is used.

Tabular Interpretation

I. RecaU Level Precision Averages.

NUM

NUM
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A. Precision at 11 cutoff values.

This table allows comparisons of systems.

B. Average precision over all relevant documents.

This is a single valued number which reflects the performance over all relevant

documents. It is intended to reward those systems retrieving relevant documents

quickly (highly ranked).

II. Document Level Averages.

A. Precision at 9 document cutoff values.

Document level reflects actual measured system performance as a user might see

it. However, the averages computed using document-level measures are difficult

to compare.

B. R-Precision.

It is a measure that is intended to de-emphasize the exact ranking of the

documents. As such, it is especially valuable for examining routing systems,

where the real-life criteria is whether a document is given to a user, rather than

at what rank the document would be. R- Precision is particularly useful in TREC
where there are large numbers of relevant documents.

III. Recall Fallout Averages.

Fallout is a parallel measure to recall for measuring the nonrelevant documents. An
effective retrieval system wiU exhibit maximum recaU and minimal fallout.

Graphs

I. Recall- Precision Graph.

Figure 1 is a sample Recall-Precision Graph.

Recall-Precision Curve

0 0.2 0.4 0.6 0.8 1

Recall

Fig. 1. Sample Recall-Precision Graph.

The Recall-Precision Graph is created using the 11 cutoff values from the Recall

Level Precision Averages. This graph is useful for comparing systems. The graphs of
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different systems can be superimposed on the same graph to determine which system

is superior. Curves closest to the upper right-hand corner of the graph (where recall

and precision are maodmized) indicates the best performance. Comparisons are best

made in three different recall ranges: 0 to 0.2, 0.2 - 0.8, and 0.8 to 1. These ranges

characterize systems as high precision, middle recall, and high recall, respectively.

II. Average Precision Histogram.

Figure 2 is a sample Average Precision Histogram.

Average Precision

1

0.8

0.6

0.4

0.2

Median 0

-0.2

.

^
-0.4

^
-0-6

': -0.8

-1

150 160 170 180 190 200
Topics

Fig. 2. Sample Average Precision Histogram.

The Average Precision Histogram measures the precision of a system on each topic

against the median precision of all systems on that topic.

III. Recall-Log FaUout Curve.

Figure 3 is a sample RecaU-Log FaUout Curve.

The Recall-Log Fallout Graph is generated using the 11 cutoff values from the Recall

Fallout Averages (exactly like the Recall-Precision Graph). Curves closest to the lower

left-hand corner of the graph (where recall is maximized and fallout is minimized)

indicates the best performance. Fallout is graphed using a logarithmic scale for

viewing purposes.

Graphical Interpretation

I. RecaU-Precision Graph.

This graph is the most common used to compare information retrieval systems.

Typically these graphs slope downward from left to right, enforcing the notion that as

more relevant documents are retrieved (recall increases) then the more non relevant

documents are retrieved (precision decreases).

II. Average Precision Histogram.

This graph is intended to give insight into the performance of individual systems and

the types of topics they handle well.
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Recall-Log Fallout Curve

1

0.1

0.01

Log Fallout

0.001

0.0001

le-05

0.1 0.3 0.5 0.7 0.9

Recall

Fig. 3. Sample Recall-Log Fallout Curve.

III. Recall-Log Fallout Curve.

This graph illustrates the same concept as the recall-precision graph, except the fallout

measure is used. As systems retrieve all relevant documents (recall increases) the

number of non-relevant documents returned increases (fallout increases).

References

[1] G. Salton and M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill,

New York, first ed., 1983.
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APPENDIX B

This appendix contains the system description forms filled out by each participating group.

These forms are meant to supplement the system papers and contain a standarded and

formatted description of system features and timing aspects.
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System Summary and Timing
Organization Name: Xerox PARC
List of Run ID'S: Xeroxl, Xerox2 , Xerox3 , Xerox4

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 951
- Stemming Algorithm: Two-level Finite-state lexicon

- Morphological Analysis: yes
- Term Weighting: applied at run-time, typically tf.idf
- Phrase Discovery? : yes

- Kind of Phrase: word pairs
- Method Used (statistical, syntactic, other): statistical

- Tokenizer? : Rule-based Finite-state
- Patterns which are tokenized: dates, numbers, abbreviations,
words , model numbers
Other Techniques for building Data Structures: automatically
constructed word thesaurus from analysis of lexical cooccurrence
events; uses SVD matrix decomposition to reduce dimensionality

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : Xeroxl , Xerox2 , Xerox3 , Xerox4
- Total Storage (in MB) : 1200
- Total Computer Time to Build (in hours) : 120
- Automatic Process? (If not, number of manual hours): yes
- Use of Term Positions? : yes
- Only Single Terms Used? : no

- Special Routing Structures
- Run ID : Xeroxl, Xerox2
- Type of Structure: Neural net classifier
- Total Storage (in MB) : less than 1

- Total Computer Time to Build (in hours) : 100
- Automatic Process? (If not, number of manual hours): yes
- Brief Description of Method: Used standard back-propagation neural

net training method

- Other Data Structures built from TREC text
- Run ID : xeroxl, xerox2 , xerox3 , xerox4
- Type of Structure: Document profiles
- Total Storage (in MB): 700
- Total Computer Time to Build (in hours): 120
- Automatic Process? (If not, number of manual hours): yes
- Brief Description of Method: These are parsed, tokenized, but
uninverted document representation that speed subsequent computations

- Other Data Structures built from TREC text
- Run ID : xeroxl, xerox2 , xeroxB , xerox4
- Type of Structure: Word thesaurus vectors
- Total Storage (in MB) : 80
- Total Computer Time to Build (in hours) : 24
- Automatic Process? (If not, number of manual hours): yes
- Brief Description of Method: One vector per unique word that captures

the cooccurrence patterns for that word. Used to define similarity
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between words

- Other Data Structures built from TREC text
- Run ID : xeroxl , xerox2 , xerox3 , xerox4
- Type of Structure: Document segments: TextTiles
- Total Storage (in MB) : 20
- Total Computer Time to Build (in hours) : 24
- Automatic Process? (If not, number of manual hours) : yes
- Brief Description of Method: Segment long texts into topic coherent
multi-paragraph sections

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: yes
- Average Computer Time to Build Query (in cpu seconds) : less than 1

- Method used in Query Construction
- Term Weighting (weights based on terms in topics)? : yes
- Phrase Extraction from Topics? : yes
- Tokenizer? : rule-based finite-state

- Patterns which are Tokenized: dates, numbers, abbreviations,
words, model numbers

- Expansion of Queries using Previously-Constructed Data Structure? :

Structure Used: word thesaurus vectors

Automatically Built Queries (Routing)

- Topic Fields Used: yes
- Average Computer Time to Build Query (in cpu seconds) : 12 0

- Method used in Query Construction
- Terms Selected From

- Topics : yes
- All Training Documents : yes

- Term Weighting with Weights Based on terms in
- Topics : yes
- All Training Documents: yes

- Phrase Extraction from
- Topics : yes
- All Training Documents: yes

- Tokenizer
- Patterns which are tokenized (dates, phone numbers,

common patterns, etc): dates, numbers, abbreviations, words,
model number

- from Topics: dates, numbers, abbreviations, words, model number
- from All Training Documents: dates, numbers, abbreviations,
words , model number

- from Documents with Relevance Judgments: dates, numbers,
abbreviations, words, model number

- Expansion of Queries using Previously-Constructed Data Structure:
Structure Used: word thesaurus vectors

- Other: query terms were partitioned into topic-cherent groups
called query factors. These factors were scored separately
over documents and document segments, or TextTiles

Searching
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Search Times

- Run ID : xeroxl , xerox2
- Computer Time to Search (Average per Query, in CPU seconds): 150
- Component Times : build neural net input representation, score
against trained neural net

- Run ID : xerox3 , xerox4
- Computer Time to Search (Average per Query, in CPU seconds) : 60
- Component Times : score and filter document used standard tf-idf

method, apply probabilistic scoring to reorder documents

Machine Searching Methods

- Vector Space Model? : yes, for initial filtering
- Probabilistic Model? : yes, to reorder results
- Fuzzy Logic? : yes
- Neural Networks? : yes, for routing only

Factors in Ranking

- Term Frequency? : yes
- Inverse Document Frequency? : yes
- Other Term Weights? : TextTile scores, from document segments

and Factor scores from query factors
- Semantic Closeness? : yes, based on word thesaurus vectors
- Proximity of Terms? : yes, though phrases
- Document Length? : yes
- Percentage of Query Terms which match? : yes
- Other: We tested various combinations of whole query vs
query factors vs whole documents vs document TextTiles to
generate scores. For example, one predictor scored documents
according to the min score across factor of their maximum score
across a document's TextTiles

Machine Information

- Machine Type for TREC Experiment: Sun Sparc Station 10
- Was the Machine Dedicated or Shared: Dedicated
- Amount of Hard Disk Storage (in MB) : 7000
- Amount of RAM (in MB) : 100
- Clock Rate of CPU (in MHz) : 50

System Comparisons

- Amount of "Software Engineering" which went into the Development
of the System: variable. Some parts are the result of considerable
engineering, other parts were custom for TREC 3

- Given appropriate resources
- Could your system run faster? : yes
- By how much (estimate) ? : 100
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System Summary and Timing
Organization Name: University of Massachusetts
List of Run ID'S: INQlOl, INQ102, INQ103, INQ104

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 419
- Controlled Vocabulary? : 4 (assigned automatically)
- Stemming Algorithm: Porter
- Term Weighting: tf.idf

Phrase Discovery? : Yes, using PhraseFinder

.

- Kind of Phrase: Noun phrases of 3 words or less.
- Method Used (statistical, syntactic, other): statistical

- Other Techniques for building Data Structures: PhraseFinder.

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : INQlOl, INQ102
- Total Storage (in MB): 1,285
- Total Computer Time to Build (in hours) : 2 6.2
- Automatic Process? (If not, number of manual hours): Yes.
- Use of Term Positions? : Yes.
- Only Single Terms Used? : Yes.

- Inverted index
- Run ID : INQ103, INQ104
- Total Storage (in MB) : 467
- Total Computer Time to Build (in hours): 11.6
- Automatic Process? (If not, number of manual hours): Yes.
- Use of Term Positions? : Yes.
- Only Single Terms Used? : Yes.

- Other Data Structures built from TREC text
- Run ID : INQlOl, INQ102
- Type of Structure: PhraseFinder database
- Total Storage (in MB) : 530
- Total Computer Time to Build (in hours) : About 4 CPU days on

a DEC 5000 workstation.
- Automatic Process? (If not, number of manual hours): Yes.
- Brief Description of Method: Index noun phrases by words

that co-occur in a small window of text. Use normal
retrieval algorithm to retrieve phrases . See RIAO-4
paper for details.

Data Built from Sources Other than the Input Text

Externally-built Auxiliary File
- Type of File (Treebank, WordNet, etc.): Gazetteer.
- Total Storage (in MB): less than 1.

- Number of Concepts Represented: US cities, foreign countries
- Type of Representation: lists.

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: Title, Description, Narrative.
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- Average Computer Time to Build Query (in cpu seconds)

:

Without query expansion, about 7 seconds (probably 1

second if optimized)

.

- Method used in Query Construction
- Phrase Extraction from Topics? : Yes, noun phrases.
- Syntactic Parsing of Topics? : Only part-of-speech tagging to

find noun phrases.
- Proper Noun Identification Algorithm? : Only part-of-speech

tagging to find noun phrases.
- Tokenizer? : Yes

.

- Patterns which are Tokenized: #city,#usa. Stop phrases
are recognized and removed.

- Expansion of Queries using Previously-Constructed Data
Structure? : Yes, PhrasePinder added phrases to each

query. (See paper.)
Structure Used: PhraseFinder database.

- Automatic Addition of Boolean Connectors or Proximity Operators?
Yes . Noun phrases were broken into two word subphrases and
placed in a #phrase operator.

Automatically Built Queries (Routing)

- - Topic Fields Used: No.
- Method used in Query Construction

- Terms Selected From
- Only Documents with Relevance Judgments: Yes.

- Term Weighting with Weights Based on terms in
- All Training Documents: Yes.

- Automatic Addition of Boolean connectors or Proximity
Operators using information from
- Documents with Relevance Judgments: Yes.

Manually Constructed Queries (Ad-Hoc)

- Topic Fields Used: Title, Description, Narrative.
- Average Time to Build Query (in Minutes): 5 minutes per query.
- Type of Query Builder

- Computer System Expert: Yes.
- Method used in Query Construction

- Term Weighting? : Yes

.

- Proximity Operators? : Yes.

Manually Constructed Queries (Routing)

- Topic Fields Used: An automatic query (INQ103) was combined with
a manual query from TREC-2 . No additional effort was
required for TREC-3

.

- Average Time to Build Query (in Minutes) : 0.

Searching

Search Times

- Run ID : INQlOl
- Computer Time to Search (Average per Query, in CPU seconds) : 23 9

- Run ID : INQ102
- Computer Time to Search (Average per Query, in CPU seconds) : 244
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Machine Searching Methods

- Probabilistic Model? : Yes.

Factors in Ranking

- Term Frequency? : Yes

.

- Inverse Document Frequency? : Yes

.

- Other Term Weights? : Yes, query term weights, based on frequency
of word in query.

- Proximity of Terms? : Yes, both in proximity operators and
passage retrieval.

- Document Length? : Yes

.

Machine Information

- Machine Type for TREC Experiment: DEC Alpha 3000-500.
- Was the Machine Dedicated or Shared: Shared.
- Amount of Hard Disk Storage (in MB): 40,716
- Amount of RAM (in MB) : 12 8

- Clock Rate of CPU (in MHz) : 175

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: About 15 person years of ongoing research

and development.
- Given appropriate resources

- Could your system run faster? : Yes.
- By how much (estimate)? : At least a factor of 2.

Significant Areas of System
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System Summary and Timing
Organization Name: New York University
List of Run ID'S: nyuirl, nyuir2

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 365
- Controlled Vocabulary? : no
- Stemming Algorithm: yes, lexicon

- Morphological Analysis: partial
- Term Weighting: yes

Phrase Discovery? : yes
- Kind of Phrase: syntactic
- Method Used (statistical, syntactic, other): syntactic with

statistical disambiguation
Syntactic Parsing? : yes
Proper Noun Identification Algorithm? : yes
Tokenizer? yes :

- Patterns which are tokenized: names, fixed phrases
- Other Techniques for building Data Structures: domain map

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : nyuir
- Total Storage (in MB) : 804
- Total Computer Time to Build (in hours) : 2 0

- Automatic Process? (If not, number of manual hours): yes
- Use of Terra Positions? : no
- Only Single Terms Used? : no

- Clusters
- Run ID : not used in TREC-3

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: all
- Average Computer Time to Build Query (in cpu seconds) : 2

- Method used in Query Construction
- Term Weighting (weights based on terms in topics)? : yes
- Phrase Extraction from Topics? : yes
- Syntactic Parsing of Topics? : yes
- Word Sense Disambiguation? : no
- Proper Noun Identification Algorithm? : yes
- Tokenizer? : yes

- Patterns which are Tokenized: names, fixed phrases
- Heuristic Associations to Add Terms? : no
- Expansion of Queries using Previously-Constructed Data

Structure? : yes, but not used in TREC-3
- Automatic Addition of Boolean Connectors or Proximity

Operators? :no

Automatically Built Queries (Routing)

- Topic Fields Used: desc, con
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- Average Computer Time to Build Query (in cpu seconds) : 2
- Method used in Query Construction

- Terms Selected From
- Topics : yes
- Only Documents with Relevance Judgments: yes

- Term Weighting with Weights Based on terms in
- Topics : no
- All Training Documents: yes

- Phrase Extraction from
- Topics : yes
- All Training Documents: yes

- Syntactic Parsing
- Topics: yes
- All Training Documents: yes

- Proper Noun Identification Algorithm from
- Topics : yes
- All Training Documents: yes

Searching

Search Times

- Run ID : nyuir
- Computer Time to Search (Average per Query, in CPU seconds) : 60

Machine Searching Methods

- Vector Space Model? : yes

Factors in Ranking

- Term Frequency? : yes
- Inverse Document Frequency? : yes
- Syntactic Clues? : phrases and names weighted differently
- Document Length? : yes

Machine Information

- Machine Type for TREC Experiment: Sun SparcStation 10
- Was the Machine Dedicated or Shared: dedicated
- Amount of Hard Disk Storage (in MB) : 500
- Amount of RAM (in MB) : 12 8

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: substantial, new version installed

- Given appropriate resources
- Could your system run faster? : yes
- By how much (estimate)? : 8-10 times

- Features the System is Missing that would be beneficial:
automatic feedback
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System Summary and Timing
Organization Name: Dublin City University
List of Run ID's: DCUNLl DCUNL2

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: all words in the STOPWORD
grammatical category of RUCL

- Stemming Algorithm:
- Morphological Analysis: RUCL parser developed as part of SIMPR project

- Term Weighting: tf*IDF and a combination of lexical labels
Phrase Discovery? :

- Kind of Phrase: yes
- Method Used (statistical, syntactic, other): syntactic
Syntactic Parsing? : yes
Word Sense Disambiguation? : no
Proper Noun Identification Algorithm? : no
Other Techniques for building Data Structures: lexical parsing of

text using RUCL parser

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : DCUNLl DCUNL2
- Total Storage (in MB) : 157
- Total Computer Time to Build (in hours) : 50
- Automatic Process? (If not, number of manual hours) : yes
- Use of Term Positions? : no
- Only Single Terms Used? : no

- Clusters
- N-grams , Suffix arrays. Signature Files
- Knowledge Bases
- Special Routing Structures
- Other Data Structures built from TREC text

- Run ID : DCUNLl DCUNL2
- Type of Structure: Tree Structured Analytics (tree

representations of syntactic structure of clauses)
- Total Storage (in MB) : 672
- Total Computer Time to Build (in hours) : 22 00
- Automatic Process? (If not, number of manual hours) : yes
- Brief Description of Method: lexical parsing of text using

RUCL parser. This parsed text is then converted into
sets of TSAs

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: narrative and description
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? :

tf*IDF and lexical label weighting
- Phrase Extraction from Topics? : yes
- Syntactic Parsing of Topics? : yes
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- other: construction of TSAs from queries to replicate
the syntactic structure used in query text

Searching

Search Times
- Run ID : DCUNLl DCUNL2
- Computer Time to Search (Average per Query, in CPU

seconds) : 1800
- Component Times :

parsing of query : 240
presearch using tf*IDF index : 300

(threshold of 17% of total # of docs.)
TSA matching : 1260

Machine Searching Methods

- Other: our approach is a combination of VSM and tree
structure matching where the tree structures
are derived from syntax.

Factors in Ranking

- Factors in Ranking
- Term Frequency? : yes
- Inverse Document Frequency? : yes
- Other Term Weights? : yes
- Syntactic Clues? : yes
- Proximity of Terms? : yes, by finding the common ancestor

in the TSAs to see if two matched terms are in a similar
syntactic construct

- Document Length? : yes, normalise by the number of clauses
in the document

Machine Information

- Machine Type for TREC Experiment: Sun Server 690MP
- Was the Machine Dedicated or Shared: Very Shared
- Amount of Hard Disk Storage (in MB): 14,000
- Amount of RAM (in MB) : 12 8

- Clock Rate of CPU (in MHz) : don't know

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: Excluding the development of
the RUCL parser, all software was developed in-house and
the software engineering took 4 months with about 15 months
of background research and experimentation

- Given appropriate resources
- Could your system run faster? : yes . . . much
- By how much (estimate)? : many orders of magnitude ... the

system used is a demonstrator prototype with no effort put
into optimising the execution speeds at all.

- Features the System is Missing that would be beneficial:
word-word conceptual similarity scoring is where our next
efforts will be put
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significant Areas of System

- Brief Description of features in your system which you feel
impact the system and are not answered by above questions:

Our system is implemented as a two-phase operation. A pre-search
based on tf*IDF weighting of word baseforms gives us the top 1000
documents and these 1000 documents are then re-ranked using our
TSA-based scoring mechanism. This implementation strategy was
adopted for efficiency reasons.
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System Summary and Timing
Organization Name: Cornell University
List of Run ID's: CrnlRR CrnlQR CrnlEA CrnlLA CrnlES CrnlVS

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list:
571 English, 342 Spanish

- Stemming Algorithm: English - Modified Lovins, Spanish - ad-hoc
- Morphological Analysis: Nothing Additional

- Term Weighting: Cornell's "Inc" and "Itc" weights
Phrase Discovery? : Yes

- Kind of Phrase: Adjacent words
- Method Used (statistical, syntactic, other):

Any pair of adjacent non-stopwords that
occurred 25 times in Dl

Proper Noun Identification Algorithm? : Exists, not used
Tokenizer? :

- Patterns which are tokenized: nothing special

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : CrnlEA, CrnlLA (D12, ad-hoc)
- Total Storage (in MB) : 863
- Total Computer Time to Build (in hours): 3.6
- Automatic Process? (If not, number of manual hours): yes
- Use of Term Positions? : no
- Only Single Terms Used? : no

- Inverted index
- Run ID : CrnlQR, CrnlRR (D3, routing)
- Total Storage (in MB): 395
- Total Computer Time to Build (in hours): 1.8
- Automatic Process? (If not, number of manual hours): yes
- Use of Term Positions? : no
- Only Single Terms Used? : no

- Inverted index
- Run ID : CrnlVS, CrnlES (Spanish)
- Total Storage (in MB) : 84
- Total Computer Time to Build (in hours): 0.38
- Automatic Process? (If not, number of manual hours): yes
- Use of Term Positions? : no
- Only Single Terms Used? : yes

- Special Routing Structures
- Run ID : CrnlQR, CrnlER
- Type of Structure: Occurrence statistics for the most

frequently occurring (in learning set rel docs) 1000

terms for each routing query.
- Total Storage (in MB): 1.5
- Total Computer Time to Build (in hours): 1.0
- Automatic Process? (If not, number of manual hours) : yes

- Special Routing Structures
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- Run ID : CrnlER
- Type of Structure: For each query, history of how well

7 different feedback runs worked on it (learning
on Dl , testing on D2

)

- Total Storage (in MB): 0.1
- Total Computer Time to Build (in hours): 1.1
- Automatic Process? (If not, number of manual hours): yes

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: title, nationality, narrative, factors,
descriptions, concepts

- Average Computer Time to Build Query (in cpu seconds) : .03
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? : yes
- Phrase Extraction from Topics? : yes
- Tokenizer? :

- Patterns which are Tokenized: recognized and discarded
constructs of general form "relevant documents
{consist

I

contain | include | . . .

}

"

Automatically Built Queries (Routing)

- Topic Fields Used: title, nationality, narrative, factors,
descriptions, concepts

- Average Computer Time to Build Query (in cpu seconds) : .04
- Method used in Query Construction

- Terms Selected From
- Topics : yes
- Only Documents with Relevance Judgments: yes

- Term Weighting with Weights Based on terms in
- Topics : yes
- All Training Documents: yes

- Phrase Extraction from
- Topics : yes
- Only documents with Relevance Judgments: yes

- Tokenizer
- from Topics: recognized and discarded constructs of

general form "relevant documents {consist | contain | include |
...}

"

Searching

Search Times

- Run ID : CrnlEA
- Computer Time to Search (Average per Query, in CPU seconds): 71
- Component Times : Initial search (getting top 30 docs) 2.5 seconds

Expansion of query by 510 terms in top 30 docs, 1 second.
Running expanded query, 36 seconds Keeping track of top
1000 docs, 31 seconds (the bottom hundred docs are
constantly churning)

- Run ID : CrnlLA
- Computer Time to Search (Average per Query, in CPU seconds) : 189
- Component Times : Initial global Search getting top 1750 docs,

8.5 seconds. Reindexing each top doc, splitting into 200
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word overlapping windows , comparing query with each window,
adding global sim with best local sim, 181 seconds.

- Run ID : CrnlRR
- Computer Time to Search (Average per Query, in CPU seconds) : 43 seconds
- Component Times : Calculation of similarities (average of 394

terms per query), 9 seconds . Keeping track of top 1000 docs,
34 seconds.

- Run ID : CrnlQR
- Computer Time to Search (Average per Query, in CPU seconds) : 3 6

- Component Times : Calculation of similarities (average of 372 terms
per query), 11 seconds. Keeping track of top 1000 docs, 25
seconds . Note . Each query was a separate invocation of the SMART.

- Run ID : CrnlVS
- Computer Time to Search (Average per Query, in CPU seconds): 3.2 seconds
- Component Times : Calculations of similarities .08 seconds

Keeping track of top 1000 docs, 3.12 seconds

- Run ID : CrnlES
- Computer Time to Search (Average per Query, in CPU seconds) : 27.1
- Component Times : Calculations of similarities (average of 525.9

terms per query), 1.3 seconds Keeping track of top 1000 docs,
25.8 seconds (the bottom hundred docs are constantly churning!)

Machine Searching Methods

- Vector Space Model? : yes
- Probabilistic Model? : yes (some queries in CrnlQR)

Factors in Ranking

- Term Frequency? : yes
- Inverse Document Frequency? : yes
- Other Term Weights? : weights in learning docs for routing.

weights in top retrieved docs for CrnlEA
- Proximity of Terms? : to form adjacent phrase terms
- Information Theoretic Weights? : yes in CrnlQR
- Document Length? : yes? (cosine normalization)

Machine Information

- Machine Type for TREC Experiment: Sparc 20/51
- Was the Machine Dedicated or Shared: Dedicated
- Amount of Hard Disk Storage (in MB) : 18 Gbytes
- Amount of RAM (in MB) : 160 Mbytes
- Clock Rate of CPU (in MHz) : 50?

System Comparisons

- Amount of "Software Engineering" which went into the

Development of the System: 7 Person years?
- Given appropriate resources

- Could your system run faster? : yes
- By how much (estimate)? : Indexing, not much. Retrieval,

all runs can be sped up by a factor of 20 using

retrieval optimization techniques.
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System Suirimary and Timing
Organization Name: CITRI
List of Run ID'S: citril, citri2

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 0

- Stemming Algorittim: Lovins
- Term Weighting: XX

Statistics on Data Structures built from TREC Text

- Inverted index
- citril
- Total Storage (in MB) : 132
- Total Computer Time to Build (in hours) : 4

- Automatic Process (Number of Manual Hours) : 0

- Use of Term Positions: no
- Only Single Terms Used: yes

- Inverted index
- citri2
- Total Storage (in MB) : 27
- Total Computer Time to Build (in hours) : 4

- Automatic Process (Number of Manual Hours): 0

- Use of Term Positions: no
- Only Single Terms Used: yes

- Other Data Structures built from TREC text
- Type of Structure: supplementary inverted file for citri2
- Total Storage (in MB) : 121
- Total Computer Time to Build (in hours): 4

- Automatic Process (Number of Manual Hours) : 0

- Brief Description of Method: main index on blocks of
100 records, supplementary index for detail withing blocks

- Other Data Structures built from TREC text
- Type of Structure: compressed form of tree text
- Total Storage (in MB) : 670
- Total Computer Time to Build (in hours) : 4

- Automatic Process (Number of Manual Hours): 0

- Brief Description of Method: word-based model, semi-static
Huffman coding

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: all
- Average Computer Time to Build Query (in cpu seconds) : negligible
- Method used in Query Construction

- Term Weighting (weights based on terms in topics) : XX

Searching

Search Times

- Run ID: citril
- Total Computer Time to Search (in CPU seconds) : 22
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- Retrieval Time (in CPU seconds) : 22
- Ranking Time (in CPU seconds) : 0

- Run ID: citri2
- Total Computer Time to Search (in CPU seconds) : 10
- Retrieval Time (in CPU seconds) : 10
- Ranking Time (in CPU seconds) : 0

Machine Searching Methods

- Vector Space Model: yes

Factors in Ranking

- Term Frequency: yes
- Inverse Document Frequency: yes
- Document Length: yes

Machine Information

- Machine Type for TREC Experiment: Sparc 10 model 512
- Was the Machine Dedicated or Shared: shared
- Amount of Hard Disk Storage (in MB) : 10 Gb
- Amount of RAM (in MB) : 160 Mb
- Clock Rate of CPU (in MHz) : 55

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: moderate

- Given appropriate resources
- Could your system run faster: yes
- By how much (estimate) : factor of 5, using optimisations

described last year
- Features the System is Missing that would be beneficial:

provision for interactive use, relevance feedback

Significant Areas of System

- Brief Description of features in your system which you feel
impact the system and are not answered by above questions:

This year's runs are a simulation of a distributed system,
so times are artificially high and some quantities (such
as amount of index processed) can't be measured because
unnecessary work is being done
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System Summary and Timing
Organization Name: Siemens Corporate Research, Inc.
List of Run ID'S: siemsl siems2

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 571
- Stemming Algorithm: standard SMART
- Term Weighting: yes (cosine-normalized tf)
- Phrase Discovery? : Oil

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : siemsl, siems2
- Total Storage (in MB) : 201
- Total Computer Time to Build (in hours) : 1.8
- Automatic Process? (If not, number of manual hours): yes
- Use of Term Positions? : no
- Only Single Terms Used? : yes

- Inverted index
- Run ID : siemsl, siems2
- Total Storage (in MB) : 95
- Total Computer Time to Build (in hours) : .75
- Automatic Process? (If not, number of manual hours): yes
- Use of Term Positions? : no
- Only Single Terms Used? : yes

- Inverted index
- Run ID : siemsl, siems2
- Total Storage (in MB) : 72
- Total Computer Time to Build (in hours) : 1.5
- Automatic Process? (If not, number of manual hours): yes
- Use of Term Positions? : no
- Only Single Terms Used? : yes

- Inverted index
- Run ID : siemsl, siems2
- Total Storage (in MB) : 194
- Total Computer Time to Build (in hours): 1.4
- Automatic Process? (If not, number of manual hours) : yes
- Use of Term Positions? : no
- Only Single Terms Used? : yes

- Inverted index
- Run ID : siemsl, siems2
- Total Storage (in MB) : 130
- Total Computer Time to Build (in hours): 2.2
- Automatic Process? (If not, number of manual hours): yes
- Use of Term Positions? : no
- Only Single Terms Used? : yes

- Knowledge Bases
- Automatic Process? (If not, number of manual hours): yes
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Data Built from Sources Other than the Input Text

Internally-built Auxiliary File
- Domain (independent or specific): collection specific
- Type of File (thesaurus, knowledge base, lexicon, etc.):

siemsl: ranks of relevant docs in training queries
siems2: training query clusters

- Total Storage (in MB)

:

siemsl: ~ .1 per collection
siems2: ~ .025 per collection

- Total Computer Time to Build (in hours):
-.5 per collection including doing retrieval

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: title, nat, narr, fac, desc, con
- Average Computer Time to Build Query (in cpu seconds)

:

.03 per collection
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? : yes,
(cosine-normalized tf*idf, within each collection)

Searching

Search Times

- Run ID : siemsl
- Computer Time to Search (Average per Query, in CPU seconds):

42 (assuming parallel execution of searches)
- Component Times :

index query in fusion's query collection — .03 (once)
index query in 5 subcollections — .03 (per collection)
retrieve 1000 docs on each subcollection -- 11 (slowest

single collection)
fuse --30 (once)

- Run ID : siems

2

- Computer Time to Search (Average per Query, in CPU seconds):
12 (assuming parallel execution of searches)

- Component Times :

index query in 5 subcollections — .03 (per collection)
retrieve 1000 docs on each subcollection — 11 (slowest single)
fuse --

.

5

Machine Searching Methods

- Machine Searching Methods
- Vector Space Model? : yes
- Cluster Searching? : query clusters in siems2

Factors in Ranking

- Factors in Ranking
- Term Frequency? : yes
- Inverse Document Frequency? : yes
- Docaament Length? : yes
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- other: in siemsl, expected usefulness of subcollection

Machine Information

- Machine Type for TREC Experiment: SPARC-10/41
- Was the Machine Dedicated or Shared: mostly dedicated
- Amount of Hard Disk Storage (in MB): ~ 13,000
- Amount of RAM (in MB) : 12 8

- Clock Rate of CPU (in MHz) : 40 MHz

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System:

individual subcollection retrieval done by SMART, which
is a well-tuned research prototype;
fusion code experimental with almost no tuning

- Given appropriate resources
- Could your system run faster? : yes
- By how much (estimate)? : with some effort, fusion time

for method in siemsl could be halved
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System Summary and Timing
Organization Name: Virginia Tech
List of Run ID's: VTc5s2, VTc2s2

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 418
- Stemming Algorithm: Plural Removal, as provided by SMART.
- Term Weighting: wgt = 0.5+0.5 * tf/max tf (doc) . SMART "ann" weighting

Tokenizer? : As provided by SMART.
- Patterns which are tokenized: dates, times
Other Techniques for building Data Structures: Source text was preparsed from

SGML to SMART format.

Statistics on Data Structures built from TREC Text

- Document Vector Files
- Run ID : VTc5s2, VTc2s2
- Total Storage (in MB) : 1100
- Total Computer Time to Build (in hours): 75
- Automatic Process? (If not, number of manual hours): Yes
- Use of Term Positions? : No
- Only Single Terms Used? : Yes

Query construction

Manually Constructed Queries (Ad-Hoc)

- Topic Fields Used: title, description, narrative
- Average Time to Build Query (in Minutes) : 10
- Type of Query Builder

- Computer System Expert: Yes
- Method used in Query Construction

- Term Weighting? : Yes
- Boolean Connectors (AND, OR, NOT)? : Yes; Pnorm queries only.
- Addition of Terms not Included in Topic? : Yes (Pnorm and one set of vector

queries )

.

- Source of Terms: General knowledge of computer system expert, limited use
to compensate for obvious omissions in text of topic descriptions.

- Other: Three sets of queries were constructed: one pnorm boolean query set
and two different length vector query sets.

Searching

Search Times

Search Times
- Run ID : VTc5s2, VTc2s2
- Computer Time to Search (Average per Query, in CPU seconds) : 2750
- Component Times : Average 5 minutes per query for each of the nine

collections, 50 seconds for combination of collection results.

Machine Searching Methods

- Machine Searching Methods
- Vector Space Model? : Yes
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- Boolean Matching? : Yes; P-norm soft boolean evaluation.
- Other: Combination of results from both pnorm and vector queries.

Factors in Ranking

- Factors in Ranking
- Term Frequency? : Yes
- Other Term Weights? : Yes; maximum term weight in document.
- Document Length? : Yes; Indirectly via use of maximum term frequency.

Machine Information

- Machine Type for TREC Experiment: DEC station 5000/125
- Was the Machine Dedicated or Shared: Shared
- Amount of Hard Disk Storage (in MB) : 1000

'

.
- Amount of RAM (in MB) : 40
- Clock Rate of CPU (in MHz): 25

System Comparisons

- Amount of "Software Engineering" which went into the Development of the
System: None for TREC3

- Given appropriate resources
- Could your system run faster? : Yes
- By how much (estimate)? : 2-4 times faster

Significant Areas of System

- Brief Description of features in your system which you feel impact the system
and are not answered by above questions: Basic system was 1985 version of SMART, with
many enhancements (ie, pnorm query processing) added from previous projects before TREC.

Software development during TRECl and TREC2 consisted of creation of external routines
for merging/combining the results from individual SMART retrieval runs, and adding
support for multiple query and index processing during a single retrieval run.
Collections were indexed and searched separately; values above for index creation and
query search times are combined totals for building or searching all collections.
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System Summary and Timing
Organization Name: City University
List of Run ID'S: cityal citya2 cityrl cityr2 cityil

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list:
247 (cityal citya2)

- Length (in words) of the stopword list:
247 + 226 semi-stopwords (cityrl cityr2 cityil)

- Stemming Algorithm: Modified Porter with spelling normalization

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : cityal citya2
- Total Storage (in MB) : 1200
- Total Computer Time to Build (in hours) : about 25 hours
- Automatic Process? (If not, number of manual hours): Yes
- Use of Term Positions? : Yes
- Only Single Terms Used? : Some prespecified phrases are

mapped to tokens
- Inverted index

- Run ID : cityrl cityr2 cityil
- Total Storage (in MB) : 530
- Total Computer Time to Build (in hours) : about 14 hours
- Automatic Process? (If not, number of manual hours): Yes
- Use of Term Positions? : Yes
- Only Single Terms Used? : Some prespecified phrases are

mapped to tokens

Data Built from Sources Other than the Input Text

Internally-built Auxiliary File
- Domain (independent or specific): Somewhat angled towards

American data
- Type of File (thesaurus, knowledge base, lexicon, etc.):

Contains synonym classes, go phrases, stop- and
semi-stopwords, prefixes

- Total Storage (in MB) : << 1

- Number of Concepts Represented: About 1500
- Type of Representation: Lookup table
- Total Manual Time to Build (in hours) : Not recorded, done

haphazardly. Much of it is common to many databases
- Total Manual Time to Modify for TREC (if already built) : Not k:

- Use of Manual Labor
- Other: Yes

Query construction

Automatically Built Queries (Ad-Hoc)

- Run Id: cityal
- Topic Fields Used: Title, narrative, description
- Average Computer Time to Build Query (in cpu seconds): About 500
- Method used in Query Construction
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- Term Weighting (weights based on terms in topics)? : See below
- Other: Addition of terms from top documents retrieved by

trial search using topic fields. Terms weighted based on
term frequency in topics and in documents, collection
frequency, and frequency in documents retrieved by trial
search

.

Automatically Built Queries (Ad-Hoc)

- Run Id: citya2
- Topic Fields Used: Title, narrative, description
- Average Computer Time to Build Query (in cpu seconds) : About 2

- Method used in Query Construction
- Term Weighting (weights based on terms in topics)? : See below
- Other: Terms weighted based on term frequency in topics and

in documents, and collection frequency.

Automatically Built Queries (Routing)

- Run Id: cityrl cityr2
- Topic Fields Used: None
- Average Computer Time to Build Query (in cpu seconds) : Thousands
- Method used in Query Construction

- Terms Selected From
- Only Documents with Relevance Judgments: Yes (only from

relevant documents)
- Term VJeighting with Weights Based on terms in

- Only documents with Relevance Judgments: Yes (only relevant
documents )

.

Interactive Queries

- Initial Query Built Automatically or Manually: Manually
- Type of Person doing Interaction

- Other: Information scientists and graduate students.
- Average Time to do Complete Interaction

- CPU Time (Total CPU Seconds for all Iterations) : Unknown
- Clock Time from Initial Construction of Query to
Completion of Final Query (in minutes) : 39

- Average Number of Iterations: 1.5
- Average Number of Documents Examined per Iteration: 18.5
- Minimum Number of Iterations: 0

- Maximum Number of Iterations: 3

- What Determines the End of an Iteration: searcher decision
- Methods used in Interaction

- Automatic Term Reweighting from Relevant Documents? : Yes
- Automatic Query Expansion from Relevant Documents? : Yes

- Only Top X Terms Added (what is X) : Yes; 2 0

- User Selected Terms Added: Yes
- Manual Methods

- Using Individual Judgment (No Set Algorithm) ? : Yes

Searching

- Search Times
- Run ID : cityal citya2 cityrl cityr2
- Computer Time to Search (Average per Query, in CPU

seconds): Varies enormously, from about 10 seconds
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with 3 or 4 terms up to a few minutes . Would guess
overall average about 60 on SSIO

- Run ID : cityil
- Computer Time to Search (Average per Query, in CPU

seconds) : Unknown

Machine Searching Methods

- Machine Searching Methods
- Probabilistic Model? : Yes

Factors in Ranking

- Factors in Ranking
- Term Frequency? : Yes
- Inverse Document Frequency? : Yes
- Other Term Weights? : From relevance information when

available
- Document Length? : Yes

Machine Information

- Machine Type for TREC Experiment: Suns. SSIO, 4/330, IPX
- Was the Machine Dedicated or Shared: SSIO dedicated, others shared.
- Amount of Hard Disk Storage (in MB) : About 11 GB for TREC
- Amount of RAM (in MB) : 64, 40, 16 resp

.

- Clock Rate of CPU (in MHz) : N/K

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: A lot, but very little which is
TREC-specif ic

.

- Given appropriate resources
- Could your system run faster? : Of course.
- By how much (estimate)? : Order of magnitude?

- Features the System is Missing that would be beneficial:
Factors X and Y.

Significant Areas of System

- Brief Description of features in your system which you feel
impact the system and are not answered by above questions:

Both the databases had enough wi thin-document information to allow
searching sub-documents consisting of any run of
algorithmically-determined paragraphs; this facility was used in the
cityal run.
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System Summary and Timing
Organization Name: U. of California, Berkeley
List of Run ID'S: Brkly6, BrklyV , BrklyS

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 592
- Stemming Algorithm: SMART STEMMER
- Term Weighting: YES

i'

1. Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : Brkly6 , BrklyV
- Total Storage (in MB) : 659
- Total Computer Time to Build (in hours) : APPROX. 80
- Automatic Process? (If not, number of manual hours) : YES
- Use of Term Positions? : NO
- Only Single Terms Used? : YES

- Inverted index
- Run ID : BrklyS
- Total Storage (in MB) : 364
- Total Computer Time to Build (in hours) : APPROX. 40
- Automatic Process? (If not, number of manual hours) : YES
- Use of Term Positions? : NO
- Only Single Terms Used? : YES

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: TITLE, DESC, NARR
- Average Computer Time to Build Query (in cpu seconds) : APPROX. 3 / QUERY
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? : YES
- Other: ABSOLUTE QUERY STEM FREQUENCIES, QUERY LENGTHS, AND

IDE'S WERE USED IN WEIGHTING THE QUERY STEMS

Automatically Built Queries (Routing)

- Topic Fields Used: DOM, TITLE, DESC, NARR, CON, DEF, NAT TIME
- Average Computer Time to Build Query (in cpu seconds) : APPROX. 100 / QUERY
- Method used in Query Construction

- Terms Selected From
- Topics: YES
- Only Documents with Relevance Judgments : YES

- Term Weighting with Weights Based on terms in
- Topics: YES
- Only documents with Relevance Judgments: YES

Manually Constructed Queries (Ad-Hoc)

- Topic Fields Used: TITLE, DESC, NARR
- Average Time to Build Query (in Minutes) : 2 0-3 0

- Tools used to Build Query
- Other Lexical Tools? : Thesaurus allowed but not used much.
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- Method used in Query Construction
- Addition of Terms not Included in Topic? : YES

- Source of Terms: Boolean lookups in parallel collections

Searching

Search Times

- Run ID : Brkly6, BrklyV
- Computer Time to Search (Average per Query, in CPU seconds)

:

APPROX 16 SECONDS PER QUERY TO SEARCH ANY ONE OF THE FIVE
COLLECTIONS SEPARATELY.

- Run ID : BrklyS
- Computer Time to Search (Average per Query, in CPU seconds)

:

APPROX. 3 00

Machine Searching Methods

- Machine Searching Methods
- Probabilistic Model? : YES

Factors in Ranking

- Factors in Ranking
- Term Frequency? : YES
- Inverse Document Frequency? : YES
- Document Length? : YES

Machine Information

- Machine Type for TREC Experiment: DEC STATION 5000/125
- Was the Machine Dedicated or Shared: Dedicated
- Amount of Hard Disk Storage (in MB) : 4 GB
- Amount of RAM (in MB) : 48
- Clock Rate of CPU (in MHz) : 15 MHZ

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System:

NONE EXCEPT FOR THE PROBABILISTIC LOGIC. THE BERKELEY
SYSTEM IS AN EXPERIMENTAL PROTOTYPE ONLY, PROGRAMMED
AS A MINIMAL MODIFICATION OF THE SMART SYSTEM (VERSION 10).

- Given appropriate resources
- Could your system run faster? : NATURALLY
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System Siimmary and Timing
Organization Name: Dortmund

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 577 words
- Stemming Algorithm: Standard SMART stemmer
- Term Weighting: Yes
- Phrase Discovery? :

- Kind of Phrase: Any pair of adjacent non-stopwords that occurred 2 5 times in
Other Techniques for building Data Structures : we incorporated the manually

assigned index-terms appearing in ziff material (the SGML-tag DESCRIPT) in the
indexing process, because we considered it part of the documents. The SGML-tags
MS and NS in the wsj material are not included.

Statistics on Data Structures built from TREC Text

- Inverted index
- Total Storage (in MB):~460 MB for D3 (test set for routing)
-~900 MB for D12 ( learning set for routing and test set for ad-hoc)
- Total Computer Time to Build ( in hours) : ~5 CPU hours for D3
- -10 CPU hours for D12
- Use of Term Positions? : No
- Only Single Terms Used? :No

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used : Everything except Definitions
- Average Computer Time to Build Query (in cpu seconds) : -30/60 CPU seconds for

each query
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? :Yes
- Phrase Extraction from Topics? :Yes

Machine Information

- Machine Type for TREC Experiment: Sparc 10
- Amount of Hard Disk Storage (in MB) : 63 00 MB
- Amount of RAM (in MB) : 157 MB

System Comparisons

- Amount of "Software Engineering" which went into the Development
of the System: Several years
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System Summary and Timing
Organization Name: Rutgers University, Interactive Searching
List of Run ID'S: rutirl, rutir2

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures : PLEASE SEE THE SYSTEM SUMMARY AND
TIMING FOR THE INQUERY SYSTEM FROM UNIVERSITY OF MASSACHUSETTS FOR THESE DATA

Statistics on Data Structures built from TREC Text: PLEASE SEE THE SYSTEM
SUMMARY AND TIMING FOR THE INQUERY SYSTEM FROM UNIVERSITY OF MASSACHUSETTS FOR THESE DATA

Query construction

Manually Constructed Queries (Ad-Hoc)

- Topic Fields Used: ALL

Manually Constructed Queries (Routing)

- Average Time to Build Query (in Minutes) : 15.48
- Type of Query Builder

- Computer System Expert: YES (rutir2)
- Searching Expert: YES (rutirl)

- Data Used for Building Query from
- Training Topics : YES
- All Training Documents: YES
- Only documents with Relevance Judgments : YES

- Method used in Query Construction
- Term Weighting? : YES (NO SEARCHER CONTROL)
- Proximity Operators? : YES
- Addition of Terms not Included in Topic? : YES

- Source of Terms: SEARCHER
- Other: SYNONYM OPERATOR

Interactive Queries

- Initial Query Built Automatically or Manually: MANUALLY
- Type of Person doing Interaction

- System Expert: YES (rutir2)
- Searching Expert: YES (rutirl)

- Average Time to do Complete Interaction ALL DATA FOR RUTIRl
- Clock Time from Initial Construction of Query to Completion of Final Query

(in minutes) : 928 . 553
- Average Number of Iterations: 7.760
- Minimum Number of Iterations: 2

- Maximum Number of Iterations: 21
- What Determines the End of an Iteration: CLICKING THE "RUN QUERY" Oil BUTTON

(OR SAVING THE "FINAL QUERY")
- Methods used in Interaction

- Automatic Term Reweighting from Relevant Documents? : YES
- Automatic Query Expansion from Relevant Documents? : YES

- Only Top X Terms Added (what is X) : 5

- User Selected Terms Added: YES
- Manual Methods

- Using Individual Judgment (No Set Algorithm) ? : YES

Searching
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Search Times

- Run ID : rutirl
- Computer Time to Search (Average per Query, in CPU seconds) : 19.288
- Component Times : NOTE THAT THESE ARE TIMES TO RUN THE QUERY MADE IN EACH

ITERATION OF EACH SEARCH, FOR THE TRAINING CONDITION. COMPONENTS ARE SYSTEM TIME
AND CPU TIME

Machine Searching Methods

- Machine Searching Methods
- Probabilistic Model? : YES

Factors in Ranking

- Factors in Ranking
- Term Frequency? : YES
- Inverse Document Frequency? : YES
- Proximity of Terms? : YES

Machine Information

- Machine Type for TREC Experiment: SUNlO/51
- Was the Machine Dedicated or Shared: SHARED
- Amount of Hard Disk Storage (in MB): 6,000
- Amount of RAM (in MB) : 96
- Clock Rate of CPU (in MHz) : 50

System Comparisons

- Amount of "Software Engineering" which went into the Development of the System
3 PERSON-MONTHS

- Given appropriate resources
- Could your system run faster? : YES
- By how much (estimate)? : 50%
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System Summary and Timing
Organization Name: Department of Industrial Engineering,

University of Toronto

List of Run ID'S: stpatl

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 24 words
- Stemming Algorithm: No

- Morphological Analysis: No

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : stpatl
- Total Storage (in MB) : about 370 MB (250MB TREC text plus 120MB of index)
- Total Computer Time to Build (in hours) : about 10 hours (elapsed time)
- Automatic Process? (If not, number of manual hours): Yes
- Use of Term Positions? : No
- Only Single Terms Used? : No

Query construction

Manually Constructed Queries (Routing)

- Topic Fields Used: title, desc, smry, con
- Average Time to Build Query (in Minutes) : 3 0 minutes
- Type of Query Builder

- Domain Expert : no
- Computer System Expert: Yes (perhaps) . the queries were constructed by

the two researchers for this project. In comparison with other TREC-3
researchers we might not be consider computer system experts.

- Tools used to Build Query
- Other Lexical Tools? : Webster's online dictionary (hardly ever used

in practice) , Wordnet (available but not used)
- Data Used for Building Query from

- Training Topics: No. We didn't use a separate set of training topics.
We simply used the test topics on the training database for training.

- All Training Documents: No. Only WSJ text were used.
- Only documents with Relevance Judgments: Yes. We used these to construct
measures of precision and recall that were shown to the user each
time the query was modified. The user was also able to review the list
of relevant documents that were identified by the experts in the
training database.

- Method used in Query Construction
- Term Weighting? : No.
- Boolean Connectors (AND, OR, NOT)? : Yes
- Proximity Operators? : Yes
- Addition of Terms not Included in Topic? : Yes

- Source of Terms: topic definitions, documents in training database,
coordinate terms, user memory

Interactive Queries

- Initial Query Built Automatically or Manually: Manually
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- Type of Person doing Interaction
- Domain Expert : No
- System Expert: Yes

- Average Time to do Complete Interaction
- CPU Time (Total CPU Seconds for all Iterations): considerably less than

3 0 minutes, possibly between 1 and 5 minutes, but the exact value is not
available. We didn't distinguish between CPU time and clock time in making
our logs

.

- Clock Time from Initial Construction of Query to Completion of Final
Query (in minutes): 32.44 minutes (on average)

- Average Number of Iterations: 8.9. We found it hard to define precisely
what was an iteration, since this depends to a large part on the user's
intention. In our system, the query was executed every time it was
modified. However, we tried to assess an iteration as a "new" query
rather than a simple adjustment which was one step in a sequence of
adjustments to build a new iteration of the query.

~ Average Number of Documents Examined per Iteration: 18.18
- Minimum Number of Iterations: 3

- Maximum Number of Iterations: 18
- What Determines the End of an Iteration: User evaluation of the

effectiveness of the query followed by a change in query. Thus the
definition of what an iteration is, is based entirely on the user,
not the system.

- Manual Methods
- Using Individual Judgment (No Set Algorithm)? : Yes. In practice

there was a tendency to construct a query that had high recall and
then add terms to improve precision. If this didn't work the strategy
was to identify subqueries with high precision and then OR them together
to create a final query that had good precision and recall.

- Following a Given Algorithm (Brief Description) ? : No

Searching

Search Times

- Run ID : stpatl
- Computer Time to Search (Average per Query, in CPU seconds): not available.

The CPU search time was of less interest to us than the elapsed time.
The search time was determined by the text retrieval engine that we
were using as an off-the-shelf component of our system. We believe
that we could fairly easily substitute a different retrieval engine
with approximately the same features and get similar results for our
interactive experiments. The whole philosophy of our approach is that
performance of this style of interactive search is largely driven by
the properties and features of the user interface.

- Component Times : not applicable.

Machine Searching Methods

- Boolean Matching? : Yes
- Free Text Scanning? : Yes

Factors in Ranking

- Term Frequency? : Yes
- Document Length? : Yes
- Percentage of Query Terms which match? : Yes

B-32



Machine Information

- Was the Machine Dedicated or Shared: Dedicated
- Amount of Hard Disk Storage (in MB): approximately half a

gigabyte used on a 2 gigabyte disk
- Amount of RAM (in MB) : 32 MB
- Clock Rate of CPU (in MHz) : 50

System Comparisons

- Amount of "Software Engineering" which went into the Development
of the System: Half a person year of non-professional student
programming. No formal software engineering process.

- Given appropriate resources
- Could your system run faster? : Yes
- By how much (estimate) ? :

At least twice as fast. Even if the
system ran twice as fast it probably wouldn't make much
difference, as thinking time, and query formulation time are the
major issues. Thus getting better functionality and simplifying
the user's tasks are probably better areas to look at for
increasing overall system efficiency. No effort has been put into
the optimization problem. Instead we attempted to identify the
most useful functionality for the user based on an iterative
design approach. We never stayed with one iteration long enough
to justify a major optimization effort. One feature of our system
is that it was originally developed as a browsing system. The
information retrieval tools were specifically added to meet the
needs of TREC-3 . These changes were made in a hurry and not fully
tested prior to the TREC-3 evaluation, thus we expect that
considerable improvements can be made to the system which should
lead to greatly improved retrieval effectiveness.

- Features the System is Missing that would be beneficial: There are a

number of traditional IR functions that would enhance the performance
of the system greatly. These include truncation, a NOT operator,
and more sophisticate relevance ranking methods.

Significant Areas of System

- Brief Description of features in your system which you feel
impact the system and are not answered by above questions: We think
that our system was at a general disadvantage in this evaluation
because much of the query formulation that our system would be
expected to excel in appeared to already have been done in the
statement of the topic. For instance, the concept fields contained
a number of highly diagnostic terms in several cases (e.g.,

chemotherapy and leukemia for topic 122) . On the other hand, our
system was not designed to provide relevance rankings. Thus the
method that we constructed for expanded the retrieval set to 1000

documents to meet the TREC-3 requirements was extremely ad hoc.

Discussions with Chris Buckley and others has convinced us that
sophisticated relevance feedback algorithms will tend to be
dominant in determining the overall effectiveness of a system for

ranked data sets. Thus our strategy was to go with the simplest
brute force method we could think of so that our results could
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not be attributed to the performance of a particular relevance
ranking algorithm or method. One of our goals in entering the
TREC-3 system was to show how a browsing style of system could
be used in text retrieval. We think that systems like ours would
actually look a lot better if evaluations like TREC-3 were modified
to consider the specific properties of interactive retrieval.
We expect that our system would do a lot better in cases where:
the search topic was not precisely stated or known ahead of time,
the terminology and vocabulary tended to be inconsistent or
imprecise, and where the emphasis was on getting a few good
articles that answer specific questions rather than as large a

fraction as possible of the set of potentially relevant documents.
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System Summary and Timing
Organization Name: Verity Inc.
List of Run ID'S: TOPICl, T0PIC2 , T0PIC3 , T0PIC4

Construction of Indices, fCnowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: No content stop words used in
building the collections; some reserved words (i.e., SGML tags) removed

- Stemming Algorithm: Verity proprietary, but similar in spirit to Porter
- Morphological Analysis: Limited to that provided by the stemmer

- Tokenizer? : No special tokens recognized for TREC

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : all runs
- Total Storage (in MB): 1,504
- Total Computer Time to Build (in hours): 112 hrs (elapsed time)
- Automatic Process? (If not, number of manual hours): Yes
- Use of Term Positions? : Yes
- Only Single Terms Used? : Yes

Query construction

Interactive Queries

- Initial Query Built Automatically or Manually: Manually for
routing test; automatically for ad hoc test

- Type of Person doing Interaction
- System Expert: Some; we used a team of query builders, some

of whom were proficient in the use of TOPIC
- Average Time to do Complete Interaction

- CPU Time (Total CPU Seconds for all Iterations) : No data
- Clock Time from Initial Construction of Query to Completion of

Final Query (in minutes): 116 mins (estimate) averaged across
routing and adhoc queries; routing queries on average somewhat
lower, adhoc queries on average somewhat higher

- Average Number of Iterations: No data
- Average Number of Documents Examined per Iteration: No data
- Minimum Number of Iterations : No data
- Maximum Number of Iterations: No data
- What Determines the End of an Iteration: the point at which the

query is rerun and the results rescored
- Methods used in Interaction

- Manual Methods
- Using Individual Judgment (No Set Algorithm) ? : Yes

Searching

Search Times

- Run ID : averaged over all runs
- Computer Time to Search (Average per Query, in CPU seconds)

:

no data; average elapsed time is 3 mins (est.) but this varies
widely with factors such as query complexity, field search
constraints, data subsets being used, network load, etc.
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- Component Times : no separate data available, but times are
dominated by query matching and scoring

Machine Searching Methods

- Other: Verity's concept-based retrieval technology which uses a

mixture of knowledge-based and probabilistic techniques

Factors in Ranking

- Term Frequency? : yes for some operators
- Semantic Closeness? : yes
- Proximity of Terms? : yes for some operators
- Percentage of Query Terms which match? : yes for some operators

Machine Information

- Machine Type for TREC Experiment: SPARC 2 used as file server
- Was the Machine Dedicated or Shared: Dedicated for TREC, but shared
by all people doing the query building and experiments

- Amount of Hard Disk Storage (in MB) : 4600
- Amount of RAM (in MB) : 32MB
- Clock Rate of CPU (in MHz) : Unknown

System Comparisons

- Amount of "Software Engineering" which went into the Development of
the System: TOPIC is COTS

- Given appropriate resources
- Could your system run faster? : of course
- By how much (estimate) ? : hard to tell

- Features the System is Missing that would be beneficial: a capability
that allowed us to focus on specific "zones" of documents would
probably reduce the over generation problem we have
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System Summary and Timing
Organization Name: West Publishing Co.
List of Run ID's: westpl (Ad Hoc) westp2 (Routing)

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 290
- Stemming Algorithm: Modified Porter Stemmer

- Morphological Analysis: Yes. There are 2789 words in our
exception list. The remaining words are stemmed using
the Porter Algorithm.

- Term Weighting: Yes.
Phrase Discovery? : Yes

.

- Kind of Phrase: File of common phrases. (approx. 32000).
Tokenizer? : A small collection of synonyms for company

names, countries, states, and months is used.

Statistics on Data Structures built from TREC Text

- Inverted index
- Total Storage (in MB) : westpl (adhoc) 52 3

westp2 (routing) 380
- Total Computer Time to Build (in hours):

westpl (adhoc) 42 hrs

.

westp2 (routing) 16 hrs.
- Automatic Process? (If not, number of manual hours)

:

westpl (adhoc) yes
westp2 (routing) yes

- Use of Term Positions? : westpl (adhoc) yes
westp2 (routing) yes

- Only Single Terms Used? : westpl (adhoc) yes
westp2 (routing) yes

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: title, desc, narr
- Average Computer Time to Build Query (in cpu seconds)

:

.5 sees per query. (25 seconds for 50 queries.)
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? : yes.
- Phrase Extraction from Topics? : yes.
- Tokenizer? :

- Patterns which are Tokenized: some company and country names

Automatically Built Queries (Routing)

- Topic Fields Used: title, con
- Method used in Query Construction

- Terms Selected From
- Topics: yes

- Term Weighting with Weights Based on terms in
- Topics: yes. weight of 2 given to terms in title

- Tokenizer: yes. some acronyms such as "ASK" and
"RISC" were recognized.

B-37



Searching

Search Times

Run ID: westpl
Computer Time to Search (Average per Query, in CPU Seconds)

:

Averaged 349 sees/query (clock time)

.

Machine Searching Methods

- Probabilistic Model? : Yes.

Factors in Ranking

- Term Frequency? : Yes

.

- Inverse Document Frequency? : Yes

.

- Other Term Weights? : Yes. Differential weights were assigned.

Machine Information

- Machine Type for TREC Experiment: SUN Sparc 5

- Was the Machine Dedicated or Shared: Shared.
- Amount of RAM (in MB) : 64
- Clock Rate of CPU (in MHz) : 70

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: A couple of years.

- Given appropriate resources
- Could your system run faster? : Yes.
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System Summary and Timing
Organization Name: Bellcore
List of Run ID's: Isirl, lsir2 (routing), laiaOmw, Isia0mw20f (adhoc)

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: yes, 571, SMART'S list
- Stemming Algorithm:

- Morphological Analysis: yes, SMART vll.O, modified lovins
- Term Weighting: yes, SMART'S "Itc" for both documents and

queries for both adhoc and routing runs
- Other Techniques for building Data Structures: yes

LSI uses a k-dimensional vector space (k << nterms) for
representation and retrieval. LSI begins with a term-document
matrix and calculates the best k-dimensional approximation to
this matrix using singular value decomposition (SVD) . The number
of dimensions, k, was about 350 for TREC-3

.

Statistics on Data Structures built from TREC Text

- Other Data Structures built from TREC text
- Run ID : Isirl, lsir2, laiaOmw, Isia0mw20f
- Type of Structure: k-dimensional vector representation (k << nterms);

one vector for each term and for each document; k~350 Routing,
a 78746 term by 38175 doc sample was used to construct the LSI
space. Adhoc, a 82968 term by 69997 doc sample was used to
construct the LSI space, and the remaining 572,3 58 CD-12 documents
were folded in.

- Total Storage (in MB) : Adhoc 549 Mb. Routing 109 Mb.
- Total Computer Time to Build (in hours) : Routing, about 24 hours

(SVD with k=346) .Adhoc, about 20 hours (SVD with k=199) plus 2

hours for folding in 672k docs.
- Automatic Process? (If not, number of manual hours) : yes
- Brief Description of Method: LSI analysis in brief:

1. Create term-document matrix, with user-selected term
weighting (used SMART vll.O for this pre-processing)

.

2 . Compute the best reduced k-dimensional approximation
to this matrix using singular value decomposition (SVD)

.

For TREC-3 about 350 dimensions were used in this
approximation

.

3 . If necessary, fold in any terms or documents not in
the original matrix. Necessary for Adhoc runs, not
for Routing runs

.

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: All
- Average Computer Time to Build Query (in cpu seconds)

:

about .1 sec / query (time to take weighted vector
sum of query terms)

- Method used in Query Construction
- Term Weighting (weights based on terms in topics)? : yes

Automatically Built Queries (Routing)
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- Topic Fields Used: All (Isirl)

;

None (lsir2 - uses only rel documents)
- Average Computer Time to Build Query (in cpu seconds)

:

.1-.2 sec/query (time to take weighted vector sum
of query terms, Isirl or relevant documents, lsir2)

- Method used in Query Construction
- Terms Selected From

- Topics: yes, Isirl
- Only Documents with Relevance Judgments: yes, lsir2 -

used only relevant documents, ignored irrelevant documents
- Term Weighting with Weights Based on terms in

- All Training Documents : yes

Searching

Machine Searching Methods

- Vector Space Model? : Yes, a k-dimensional vector space
(k << nterms), but matching does not use an inverted
index. The cosine between the k-dim query vector and
every k-dim document vector is computed. Adhoc - about
600 sec/query. Routing - about 0.1 sec/query.

Factors in Ranking

- Factors in Ranking
- Term Frequency? : yes, for constructing term-doc matrix before SVD
- Inverse Document Frequency? : yes, for constructing term-doc

matrix before SVD
- Semantic Closeness? : yes, the cosine between the query vector

and the document vector in LSI-space determines rank
- Document Length? : yes, for constructing the term-doc matrix

before the SVD
- Other: NOTE: the ranking is determined entirely by the cosine

between the query vector and the document vector. Factors
like term frequency, inverse document frequency, etc. enter
indirectly in the sense that they determine the cell entries
for the term-doc matrix which we approximate using the
k-dimensional SVD vectors.

Machine Information

- Machine Type for TREC Experiment: Sparc 10
- Was the Machine Dedicated or Shared: Shared
- Amount of Hard Disk Storage (in MB) : about 6 Gig
- Amount of RAM (in MB): 128-384 MB, depending on machine
- Clock Rate of CPU (in MHz): don't know

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: Built as a research prototype -

lots of flexibility at the cost of efficiency. About 1-2

person years.
- Given appropriate resources

- Could your system run faster? : yes
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- By how much (estimate)? : A factor of 2-3 would be easy for
the pre-processing and SVD (tho these are one time costs)

.

Query matching is slow (linear in the number of documents)
and this is trivial to parallelize - improvements of 100
times were obtained using a MasPar

Features the System is Missing that would be beneficial: Feature
recognition (e.g., proper names, company names, geographic
locations, dates, amounts of money would be especially useful
for TREC) ; Phrases and other precision enhancing methods like
proximity; Training in routing could use information about
non-relevant documents; Perhaps handling "nots" would help.
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System Suiranary and Timing
Organization Name: ETH Zurich, Switzerland
List of Run ID'S: ETHOOl, ETH002 (adhoc), ETH003, ETH004 (routing)

Construction of Indices, Knowledge Bases, and other Data Structures Oil

Methods Used to build Data Structures

- Length (in words) of the stopword list: 571
- Stemming Algorithm: suffix stripping (Porter, 1980) Oil
- Term Weighting: ( 1+log ( f f (phi_i , d_j ) ) ) (so-called Inc)

Phrase Discovery? : yes Oil
- Kind of Phrase: two words without separator (punctuation etc.)

in between
- Method Used (statistical, syntactic, other): weak syntax rules

- Tokenizer? : yes
- Patterns which are tokenized: words and phrases

Statistics on Data Structures built from TREC Text

- Other Data Structures built from TREC text
• - Run ID : link method

- Type of Structure: links and files for direct access to
ff of each document; link: phrase and a document list where it is

- Total Storage (in MB) : 670
- Total Computer Time to Build (in hours) : ca. 48h
- Automatic Process? (If not, number of manual hours): yes
- Brief Description of Method:

extract phrases from dociiments;
invert them;
cut all phrases that are in less than three documents

or in more than 7000 (about 1% of all documents;
phrases as 'UNITED STATES' are cut this way)
of all documents;

cut all phrases that have a weight less than a limit c
- Other Data Structures built from TREC text

- Run ID : passage retrieval method
- Type of Structure: token files
- Total Storage (in MB) : 1723
- Total Computer Time to Build (in hours) : ca. 14h
- Automatic Process? (If not, number of manual hours) : yes
- Brief Description of Method:

extract features from TIPSTER disks,
delete stopwords

Data Built from Sources Other than the Input Text

~ Internally-built Auxiliary File
- Domain (independent or specific): specific, basic method
- Type of File (thesaurus, knowledge base, lexicon, etc.): mapping

of features to a number
- Total Storage (in MB) : 10
- Niimber of Concepts Represented: 500 '000
- Type of Representation: hash table
- Total Computer Time to Build (in hours) : ca. 10
- Total Manual Time to Build (in hours) : no manual time

- Internally-built Auxiliary File
- Domain (independent or specific): specific, passage retrieval method
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- Type of File (thesaurus, knowledge base, lexicon, etc.): HMM
- Total Storage (in MB) : 6KB
- Number of Concepts Represented: 2

- Type of Representation: HMM
- Total Computer Time to Build (in hours) : 12 0

- Total Manual Time to Build (in hours) : no manual time

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: all
- Average Computer Time to Build Query (in cpu seconds)

:

basic method: msec
link method: 60

passage retrieval method: msec (same query as basic method)
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? :

(1+log ( f f (phi_i, q) )

) *nidf (phi_i) (so-called Itn)
- Tokenizer? : yes

- Patterns which are Tokenized: words and phrases
- Expansion of Queries using Previously-Constructed Data Structure? : yes

Structure Used: links

Automatically Built Queries (Routing)

- Topic Fields Used: all
- Average Computer Time to Build Query (in cpu seconds)

:

basic method: msec
link method: 60

passage retrieval method: msec
- Method used in Query Construction

- Terms Selected From
- Topics: 101-150
- All Training Documents: yes

- Term Weighting with Weights Based on terms in
- Topics: 101-150
- All Training Documents: yes

- Tokenizer
- Patterns which are tokenized

(dates, phone numbers, common patterns, etc): words and phrases
- from Topics: 101-150
- from All Training Documents: yes

- Expansion of Queries using Previously-Constructed Data Structure:
Structure Used: links

Searching

Search Times

Run ID : ETHOOl (adhoc) , ETH003 (routing)

Computer Time to Search (Average per Query, in CPU seconds) : msec
Component Times :

basic method: msec
link method: msec

Run ID : ETH002, ETH004
Computer Time to Search (Average per Query, in CPU seconds) : 600 seconds
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- Component Times :

basic method: msec
link method: msec
passage retrieval: 600 seconds

- Machine Searching Methods
- Vector Space Model? : yes
- Other: yes - HMM based passage extraction

Factors in Ranking

- Factors in Ranking
- Term Frequency? : yes
- Inverse Document Frequency? : yes
- Position in Document? : yes
- Proximity of Terms? : yes
- Document Length? : yes

Machine Information

- Machine Type for TREC Experiment: SPARC MP690
- Was the Machine Dedicated or Shared: shared
- Amount of Hard Disk Storage (in MB) : 8000
- Amount of RAM (in MB) : 12 8

- Clock Rate of CPU (in MHz) : 40

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System:

basic method 2 00h;
link method 3 8 0h;

passage retrieval 300h

- Given appropriate resources
- Could your system run faster? : yes
- By how much (estimate) ? : more than 10 times

- Features the System is Missing that would be beneficial:
effactivity: Rel . feedback, query dependent training (routing)
efficiency: optimized data structures (they leave less room

for experiments)

Significant Areas of System

- Brief Description of features in your system which you feel
impact the system and are not answered by above questions: none
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System Summary and Timing
Organization Name: Queens College, City University of New York
List of Run ID's: Pircsl , Pircs2 Pircs3 , Pircs4

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the st
- Stemming Algorithm: Porters
- Term Weighting: yes

Phrase Discovery? :

- Kind of Phrase: 2-word
- Method Used (statistical.

Statistics on Data Structures

ipword list: 630
algorithm

syntactic, other): statistical

built from TREC Text

- Special Routing Structures
- Run ID : pircsB, pircs4
- Type of Structure: Network of linked NODE and EDGE files capturing

the query expansion terras and learnt weights
- Automatic Process? (If not, number of manual hours): yes
- Brief Description of Method: built from direct files of queries and

documents and known relevant document information

- Other Data Structures built from TREC text
- Run ID : Pircsl

,
pircs2

,
pircsB

,
pircs4

- Type of Structure: Compressed, truncated direct file; network of
linked NODE and EDGE files built during query time

- Total Storage (in MB) : direct file - about 80MB per 500MB raw text;
network - about 60MB for 10 queries per 500MB textbase

- Total Computer Time to Build (in hours) : About 5 min per 10 query
- Automatic Process? (If not, number of manual hours): Yes
- Brief Description of Method: built from direct files of queries

and documents

Data Built from Sources Other than the Input Text

Internally-built Auxiliary File
- Domain (independent or specific): independent
- Type of File (thesaurus, knowledge base, lexicon, etc.): Stop words
- Total Storage (in MB): .004
- Number of Concepts Represented: 63 0

- Type of Representation: array
- Total Computer Time to Modify for TREC (if already built) : none

Internally-built Auxiliary File
- Domain (independent or specific): independent
- Type of File (thesaurus, knowledge base, lexicon, etc.): 2-word Phrases
- Total Storage (in MB): .005
- Number of Concepts Represented: 52 8

- Type of Representation: array

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: title, desc, narr; Boolean: title, desc
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- Average Computer Time to Build Query (in cpu seconds) : 3 sec
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? : yes
- Phrase Extraction from Topics? :yes, 2-word
- Expansion of Queries using Previously-Constructed

Data Structure? : yes
- Structure Used: Network

- Automatic Addition of Boolean Connectors or Proximity
Operators? : yes

Automatically Built Queries (Routing)

- Topic Fields Used: title, desc, narr, con
- Average Computer Time to Build Query (in cpu seconds) : 18
- Method used in Query Construction

- Terms Selected From
- Topics : yes
- Only Documents with Relevance Judgments: yes

- Term Weighting with Weights Based on terms in
- Only Documents with Relevance Judgments: yes

- Phrase Extraction from
- Topics : yes
- Only Documents with Relevance Judgments: yes

- Expansion of Queries using Previously-Constructed Data
Structure

:

Structure Used: Network

Searching

Search Times

- Run ID : Pircs3 , Pircs4
- Computer Time to Search (Average per Query, in CPU

seconds) : about 2-3 min clock time
- Component Times :

Build network 4 min (per 10 query)
Retrieval 12 min (per 10 query)
Sort, merge reformat results 20 min

Machine Searching Methods

- Probabilistic Model? : yes
- Boolean Matching? : yes
- Neural Networks? : yes

Factors in Ranking

- Term Frequency? : yes
- Other Term Weights? : yes, within-doc term frequency,

inverse collection term frequency.
- Proximity of Terms? : yes, 2 word phrases
- Document Length? : yes

Machine Information

- Machine Type for TREC Experiment: Sparc 10-30
- Was the Machine Dedicated or Shared: Dedicated
- Amount of Hard Disk Storage (in MB) : 6000
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- Amount of RAM (in MB) : 128

System Comparisons

- Amount of "Software Engineering" which went into the Development
of the System: Efficiency improvement were made cutting retrieval
time by a factor of 3

.

- Given appropriate resources
- Could your system run faster? ryes
- By how much (estimate)? : probably half the time.

- Features the System is Missing that would be beneficial: ability t

differentiate contexts
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System Summary and Timing
Organization Name: Australian National University
List of Run ID'S: padrel , padre2

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 0

- Term Weighting: Not used in data structure building
Manually- Indexed Terms? : Removed from collection

Statistics on Data Structures built from TREC Text

- Inverted index
- Total Storage (in MB): 1248, but note that inverted

index was not actually used in submitted runs.
- Total Computer Time to Build (in hours): 0.025
- Automatic Process? (If not, number of manual hours): yes
- Use of Term Positions? : yes
- Only Single Terms Used? : yes

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: Unknown
- Average Computer Time to Build Query (in cpu seconds): Unknown
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? : yes
- Phrase Extraction from Topics? : yes
- Automatic Addition of Boolean Connectors or Proximity Operators? : yes

Manually Constructed Queries (Ad-Hoc)

- Topic Fields Used: all
- Average Time to Build Query (in Minutes) : 3 0

- Type of Query Builder
- Computer System Expert: yes - almost no experience with

retrieval systems.
- Other Lexical Tools? : Dictionary, thesaurus, books,

spouse, friend who knew names of American restaurants.
- Method used in Query Construction

- Term Weighting? : yes, based on perceived importance
- Boolean Connectors (AND, OR, NOT)? : No
- Proximity Operators? : Yes -

- Addition of Terms not Included in Topic? : Yes
- Source of Terms: Dictionary, thesaurus, books, spouse,

friend who new names of American restaurants.
- Other: Set Operator: Union (related to but not the same as

boolean OR)

Searching

Search Times
- Run ID : padrel
- Computer Time to Search (Average per Query, in CPU seconds):

38 (elapsed)
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Search Times
- Run ID : padre2
- Computer Time to Search (Average per Query, in CPU seconds) : 42

Machine Searching Methods

- Machine Searching Methods
- Free Text Scanning? : yes

Factors in Ranking

- Factors in Ranking
- Term Frequency? : yes
- Inverse Document Frequency? : yes
- Other Term Weights? : yes, assigned by searcher or generated

automatically based on key word and key phrase ranks
- Proximity of Terms? : yes
- Document Length? : yes

Machine Information

- Machine Type for TREC Experiment: Fujitsu APlOOO
- Was the Machine Dedicated or Shared: Dedicated
- Amount of Hard Disk Storage (in MB) : 0 on APlOOO, data loaded from

fileserver over ethernet
- Amount of RAM (in MB): 8192
- Clock Rate of CPU (in MHz) : 512 x 25 MHz

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: PADRE was developed from earlier

(non-TREC-style ) software (FTR) in six weeks (elapsed)

.

FTR was developed intermittently in the author's spare
time over 3 years with some help from a vacation student.
Total effort on PADRE and ancestors: less than half a
person-year

.

- Given appropriate resources
- Could your system run faster? : yes
- By how much (estimate)? : factor of 100. PADRE can

use inverted files but did not to demonstrate the viability
and advantages of full text scanning on a large parallel machine.

- Features the System is Missing that would be beneficial: Improved
query generation methods. More expert manual query generator.
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System Summary and Timing
Organization Name: GMU / OIT
List of Run ID's: masonl

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: None
- Stemming Algorithm: No

- Morphological Analysis : No
- Term Weighting: No, trigram weighting was used instead

Query construction

Automatically Built Queries (Routing)

- Topic Fields Used: all
- Method used in Query Construction

- Terms Selected From
- Topics : Yes

Searching

Search Times

Search Times
- Run ID : masonl
- Component Times : 4.5 hours for results to 50 queries

Machine Searching Methods

- Machine Searching Methods
- Vector Space Model? : Yes
- N-gram Matching? : Yes
- Free Text Scanning? : Yes

Factors in Ranking

- Factors in Ranking
- Other Term Weights?
- Document Length? :

- N-gram Frequency? :

: within document
Yes
Yes

Machine Information

- Machine Type for TREC Experiment: Cray-Ymp
- Was the Machine Dedicated or Shared: Shared
- Amount of Hard Disk Storage (in MB) : 60 GB
- Amount of RAM (in MB) : 64 MB

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: None

- Given appropriate resources
- Could your system run faster? : Yes
- By how much (estimate)? : Several orders of magnitude.
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no secondary access structure was used.
- Features the System is Missing that would be beneficial: System at time

of TREC did not use a centroid, did not have automatically generated thesaurus.
We now have an inverted index and an automatically generated thesaurus.
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System Summary and Timing
Organization Name: Logicon Operating Systems
List of Run ID's: losPAl

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 171.
- Controlled Vocabulary? : No.
- Stemming Algorithm: No.
- Term Weighting: No.

Tokenizer? : Yes.
- Patterns which are tokenized: All alphanumeric strings were

tokenized. Only alphabetic tokens of length > 1 were kept.
The following were then eliminated: stopwords; tokens
serving as SGML tags; tokens occurring only once in the
training documents.

Statistics on Data Structures built from TREC Text

- Other Data Structures built from TREC text
- Run ID : losPAl
- Type of Structure: Corpus word- frequency table.

Total Storage (in MB): 13.5
- Total Computer Time to Build (in hours) : 107
- Automatic Process? (If not, number of manual hours): Yes.
- Brief Description of Method: Process analyzed all documents

on CDROM #1, and all documents with relevance judgements on
CDROM #2. Each document was tokenized, and a count was kept
with each token indicating the number of documents in which
it occurred.

Query construction

Automatically Built Queries (Routing)

- Topic Fields Used: None.
- Average Computer Time to Build Query (in cpu seconds) : CPU time

was not measured. Average wall-clock time was 366 seconds.
- Method used in Query Construction

- Terms Selected From
- Only Documents with Relevance Judgments: Yes. Terms were

selected only from relevant training documents.
- Term Weighting with Weights Based on terms in

- All Training Documents: Yes.
- Only Documents with Relevance Judgments: Yes.

- Tokenizer
- from All Training Documents: Yes. See Data Structures.
- from Documents with Relevance Judgments: Yes. Same as

tokenizing rules for Data Structures.
- Automatic Addition of Boolean connectors or Proximity Operators
using information from
- All Training Documents: Yes.
- Only Documents with Relevance Judgments: Yes. The ten "most

descriptive" terms were OR'ed for selection. Additional
terms were then used for ranking.
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Searching

Search Times

- Run ID : losPAl
- Computer Time to Search (Average per Query, in CPU seconds)

:

CPU time was not measured. Average wall-clock time was 0.99
seconds per document.

Machine Searching Methods

- Free Text Scanning? : Yes . Search engine was the Logicon Message
Dissemination System (LMDS), a COTS product.

Factors in Ranking

- Term Frequency? : Yes . Term frequency in the set of relevant
training documents vs. the set of all training documents.

- Document Length? : Yes. Score from term weights was multiplied
by the ratio of unique query tokens in document to total
unique tokens in document.

Machine Information

- Machine Type for TREC Experiment: Sun SPARCstation IPC.
- Was the Machine Dedicated or Shared: Dedicated.
- Amount of Hard Disk Storage (in MB): 4,000 MB.
- Amount of RAM (in MB): 24 MB.
- Clock Rate of CPU (in MHz) : 2 5 MHz.

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: The search engine was the Logicon
Message Dissemination System (LMDS), a COTS product. The query
creation software and document ranking software were research
prototypes integrated with LMDS via its API.

- Given appropriate resources
- Could your system run faster? : Yes.
- By how much (estimate)? : 50 to 80 percent.

- Features the System is Missing that would be beneficial:
A word stemmer; AND logic in the query; an improved method for
determining the optimum number of terms to use in ranking.
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System Summary and Timing
Organization Name: Mayo
List of Run ID'S: expstl expst2

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 571
Manually-Indexed Terras? : CO, IN and GV are used; the given
abbreviation of each concept is used as the ID of the concept.

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : expstl
- Total Storage (in MB) : 123 MB
- Total Computer Time to Build (in hours) : 22 CPU hours
- Automatic Process? (If not, number of manual hours) : Yes
- Only Single Terms Used? : No. The concepts in the CO, IN

and GV fields are used, too.

- Special Routing Structures
- Run ID : expstl
- Type of Structure: sparse matrices, similar to

inverted-file document indexing
- Total Storage (in MB) : 8 MB (plus 72 MB if counting the WSJ

documents which are indexed for the AdHoc Test anyway)
- Total Computer Time to Build (in hours) : 0.13 CPU hours

(plus 6 0 hours if counting the indexing time of the
WSJ documents which is needed for the AdHoc Test anyway)

- Automatic Process? (If not, number of manual hours) : Yes
- Brief Description of Method: We use Expert Network (ExpNet)

to expand both routing queries and ad-hoc queries . Given
a query, ExpNet identifies its Nearest Neighbors (NNs) among
training queries, and then the terms in the documents which
are related to the NNs are added to the given query. For the
routing task, we set the number of NNs to one. That is,

ExpNet behaves just like relevance feedback, and adds to
each query the top-ranking terms (1000) in related documents
of this query. A weighting factor of 0.45 was experimentally
determined to scale the additional terms in the query expansion.

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : expst2
- Total Storage (in MB) : 72 MB
- Total Computer Time to Build (in hours) : 60 CPU hours
- Automatic Process? (If not, number of manual hours): Yes
- Only Single Terms Used? : No. The concepts in the CO, IN

and GV fields are used, too.

- Special Routing Structures
- Run ID : expst2
- Type of Structure: sparse matrices, equivalent to inverted-file

document indexing
- Total Storage (in MB) : 14 MB (plus 72 MB if counting the index
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of the WSJ documents which are needed anyway)
- Total Computer Time to Build (in hours): 0.3 CPU hour (plus 60
hours if counting the indexing time of the WSJ documents which
are needed anyway)

- Automatic Process? (If not, number of manual hours) : Yes
- Brief Description of Method: We use Expert Network (ExpNet) to

expand both routing queries and ad-hoc queries. Given a query,
ExpNet identifies its Nearest Neighbors (NNs) among training
queries, and then the terms in the documents which are related
to the NNs are added to the given query. For the ad-hoc task,
we set the number of NNs to 13. That is, ExpNet chooses 13 NNs
(training queries) for each testing query, and adds 1000
top-ranking terms in the related documents to the given query.
A weighting factor of 0.10 was experimentally determined to
scale the additional terms in the query expansion.

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: title, desc, narr, con
- Average Computer Time to Build Query (in cpu seconds) : 871/50
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? : Yes.
TF*IDF is used, where TF is the with-in-topic-frequency
of a term, and the IDF is derived from a document
collection (WSJ documents in disk 1 and 2, and SJM
documents in disc 3)

- Heuristic Associations to Add Terms? : Yes, a query-query
similarity (cosine value) is used to identify the NNs
(13 training queries) of a given query, and the
query-document relevance judgments of these NNs are
used to expand the given query.

Automatically Built Queries (Routing)

- Topic Fields Used: title, desc, narr, con
- Average Computer Time to Build Query (in cpu seconds) : 524/50
- Method used in Query Construction

- Terms Selected From
- Topics : yes
- Only Documents with Relevance Judgments : yes

- Term Weighting with Weights Based on terms in
- Topics : yes
- Only Documents with Relevance Judgments: yes

- Heuristic Associations to Add Terms from
- Topics : yes
- Only Documents with Relevance Judgments : yes

- Expansion of Queries using Previously-Constructed Data Structure:
Structure Used: sparse matrices (equivalent to inverted

files, refer to the report for details).

Searching

Search Times

- Run ID : expstl
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- Computer Time to Search (Average per Query, in CPU seconds): 438/50

- Run ID : expst2
- Computer Time to Search (Average per Query, in CPU seconds) : 1290/50

Machine Searching Methods

- Run ID : expstl
- Vector Space Model? : yes

' - Other: Expert Network (a Nearest Neighbor classification
approach) is used in combination with a Vector Space Model.

- Run ID : expst2
- Vector Space Model? : yes
- Other: Expert Network (a Nearest Neighbor classification

approach) is used in combination with a Vector Space Model.

Factors in Ranking

- Run ID : expstl
- Term Frequency? : yes
- Inverse Document Frequency? : yes

- Run ID : expst2
- Term Frequency? : yes
- Inverse Document Frequency? : yes

Machine Information

- Machine Type for TREC Experiment: SparcStation 10/30
- Was the Machine Dedicated or Shared: Shared (was also

researcher's desktop)
- Amount of Hard Disk Storage (in MB) : 3059 MB
- Amount of RAM (in MB) : 32 MB
- Clock Rate of CPU (in MHz) : 36 MHz

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: our ExpNet is an research-oriented

system; about 4 person-month has been spent on adopting it to
the TREC materials and its scale-up

- Given appropriate resources
- Could your system run faster? : yes

- Features the System is Missing that would be beneficial:
simplification of data structure and system
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System Summary and Timing
Organization Name: National Security Agency
List of Run ID'S: ACQNT2 (= routing), ACQNTl(= adhoc)

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 0

- Term Weighting: yes
Other Techniques for building Data Structures: uses n-grams

to build vectors that characterize each document by the
frequency of occurrence of those n-grams

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : ACQNTl
- Total Computer Time to Build (in hours): approx 0.2
- Automatic Process? (If not, number of manual hours): yes
- Use of Term Positions? : no
- Only Single Terms Used? : yes

- Inverted index
- Run ID : ACQNT2
- Total Computer Time to Build (in hours): approx 0.2
- Automatic Process? (If not, number of manual hours) : yes
- Use of Term Positions? : no
- Only Single Terms Used? : yes

- N-grams, Suffix arrays. Signature Files
- Run ID : ACQNTl
- Total Storage (in MB) : generally less than 10
- Total Computer Time to Build (in hours) : less than 2

- Automatic Process? (If not, number of manual hours) : yes
- Brief Description of Method: The n-grams in each document

were tallied.
- N-grams, Suffix arrays. Signature Files

- Run ID : ACQNT2
- Total Storage (in MB) : generally less than 10
- Total Computer Time to Build (in hours): less than 2

- Automatic Process? (If not, number of manual hours) : yes
- Brief Description of Method: The n-grams in each document

were tallied.

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: title, description, narrative
- Average Computer Time to Build Query (in cpu seconds)

one
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)?
terms are n-grams in topics

Automatically Built Queries (Routing)

- Average Computer Time to Build Query (in cpu seconds) : less than
one

less than

yes, where
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- Method used in Query Construction
- Terms Selected From

,

- Only Documents with Relevance Judgments: yes, from relevant
documents

- Term Weighting with Weights Based on terms in
- Only Documents with Relevance Judgments: All the documents judged

relevant to a particular topic were used to build n-gram-based
query vectors

Searching

Search Times

- Run ID : ACQNTl
- Computer Time to Search (Average per Query, in CPU seconds)

:

approx 2.5 sees per 100 MB of text

- Run ID : ACQNT2
- Computer Time to Search (Average per Query, in CPU seconds)

:

approx. 4.8 sees per 100 MB of text

Machine Searching Methods

- Vector Space Model? : yes
- Probabilistic Model? : yes
- N-gram Matching? : yes

Factors in Ranking

- Term Frequency? : yes , where terms are n-grams
- Other Term Weights? : yes
- N-gram Frequency? : yes
- Other: n-gram frequencies are offset according to population means

Machine Information

- Machine Type for TREC Experiment: CRAY C 9 0

- Was the Machine Dedicated or Shared: shared
- Amount of Hard Disk Storage (in MB): 4,000
- Amount of RAM (in MB) : 12 8

- Clock Rate of CPU (in MHz) : 250

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: one-half person year

- Given appropriate resources
- Could your system run faster? : yes
- By how much (estimate)? : with software improvements,

1 order of magnitude, with hardware implementation,
perhaps 3 orders of magnitude
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System Summary and Timing
Organization Name: NEC
List of Run ID's: virtul, virtu2

Construction of Indices, Kiiowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 43 0

- Stemming Algorithm: Yes
- Morphological Analysis: Yes

- Term Weighting: Yes

Statistics on Data Structures built from TREC Text

- Inverted index : Yes
- Run ID : virtul, virtu2
- Total Storage (in MB) : 2056
- Total Computer Time to Build (in hours) : 214
- Automatic Process? (If not, number of manual hours): Yes
- Use of Term Positions? : Yes
- Only Single Terms Used? : Yes

Data Built from Sources Other than the Input Text

- Internally-built Auxiliary File : Yes
- Domain (independent or specific): independent
- Type of File (thesaurus, knowledge base, lexicon, etc.):

lexicon, inflection table
- Total Storage (in MB) : 4

- Number of Concepts Represented: 143360
- Type of Representation: look up table
- Total Computer Time to Build (in hours): Not recorded
- Total Computer Time to Modify for TREC (if already built): 0.5

Query construction

Automatically Built Queries (Ad-Hoc) : Yes

- Topic Fields Used: All
- Average Computer Time to Build Query (in cpu seconds) : > 10 sec per query
- Method used in Query Construction

- Term Weighting (weights based on terms in topics)? : Yes
- Phrase Extraction from Topics? : Yes
- Syntactic Parsing of Topics? : Yes
- Proper Noun Identification Algorithm? : Yes
- Tokenizer? : Yes

- Patterns which are Tokenized: part of noun phrase identification
- Automatic Addition of Boolean Connectors or Proximity Operators? : Yes

Manually Constructed Queries (Routing) : Yes

- Topic Fields Used: All
- Average Time to Build Query (in Minutes) : 3 0 min per query
- Type of Query Builder

- Domain Expert : No
- Computer System Expert: Yes

- Data Used for Building Query from
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- Training Topics : Yes
- All Training Documents: Yes
- Only Documents with Relevance Judgments : Yes

- Method used in Query Construction
- Term Weighting? : Yes
- Boolean Connectors (AND, OR, NOT)? : Yes
- Proximity Operators? : Adjacency operator used
- Addition of Terms not Included in Topic? : Yes

- Source of Terms : relevant document

Searching

Search Times

- Run ID : virtul, virtu2
- Computer Time to Search (Average per Query, in CPU seconds) : 1200

Machine Searching Methods

- Vector Space Model? : Yes
- Probabilistic Model? : Yes
- Boolean Matching? : Yes partially

Factors in Ranking

- Factors in Ranking
- Term Frequency? : Yes
- Inverse Document Frequency? : Yes
- Proximity of Terms? : Adjacency used
- Document Length? : Yes

Machine Information

- Machine Type for TREC Experiment: sparclO
- Was the Machine Dedicated or Shared: shared
- Amount of Hard Disk Storage (in MB) : 8000
- Amount of RAM (in MB) : 9 0

- Clock Rate of CPU (in MHz) : 40

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: It was a first prototype.

Three person month were spent.
- Given appropriate resources i

- Could your system run faster? : Yes
- By how much (estimate)? : Main part of CPU time is

disk I/O. If separate inverted files are used, 20-40%
of CPU time may be decreased.

- Features the System is Missing that would be beneficial:
Document Clustering, General Proximity Operation

Significant Areas of System

- Brief Description of features in your system which you feel
impact the system and are not answered by above questions:

Morphological analysis on making inverted files. Noun
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phrase detection on automatic query Construction (ad-hoc)

,

Adjacent word detection

B-61



System Summary and Timing
Organization Name: Rutgers /APLab-Data Fusion
List of Run ID'S: rutfu [r , a] [1 , 2

]

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list : As Inquery 2.0
- Controlled Vocabulary? : As Inquery 2.0
- Stemming Algorithm: As Inquery 2.0

- Morphological Analysis: As Inquery 2.0
- Term Weighting: As Inquery 2.0

Manually Constructed Queries (Ad-Hoc)

- Topic Fields Used: all
- Average Time to Build Query (in Minutes) : 3

- Type of Query Builder
- Domain Expert: No. Simple entry of content words from

topic, assembled into a Boolean AND of
(ORs) structure.

- Method used in Query Construction
- Boolean Connectors (AND, OR, NOT)? : Yes. AND OR

Manually Constructed Queries (Routing)

- Topic Fields Used: All
- Average Time to Build Query (in Minutes) : 3

- Type of Query Builder
- Domain Expert: No. Simple entry of content words from

topic, assembled into a Boolean AND of
(ORs) structure.

- Method used in Query Construction
- Boolean Connectors (AND, OR, NOT)? : AND OR

Searching

Search Times
- Computer Time to Search (Average per Query, in CPU seconds)

:

As for Inquery. But multiplied by 3 because 3 runs are
combined in each fusion. The fusion program takes less
than 1 minute to run per topic.

Machine Information

- Machine Type for TREC Experiment: For basic retrieval, as for
the Inquery group. For Fusion. Sparc 10

- Was the Machine Dedicated or Shared: Shared

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: For the fusion: Two person-weeks

- Given appropriate resources
- Could your system run faster? : Yes
- By how much (estimate) ? : Factor 5 on fusion
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System Summary and Timing
Organization Name: University of Minnesota
List of Run ID'S: TeknosNOB, TeknosNlO, TeknosN15, TeknosN20,

TeknosN3 0, TeknosRel, TeknosWOS, TeknosWlO,
TeknosWlS, TeknosW2 0, TeknosW3 0

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 213
- Stemming Algorithm:

- Morphological Analysis: Personal Librarian default
- Term Weighting: Personal Librarian default

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : All Teknos runs. Load information for Wall

Street Journal Disk 2. This is NOT the data
set load used to produce the TREC results but
is the only data set load that we were able
to measure.

- Total Storage (in MB): 328,904,027 bytes:
222,485,339 data,
106,418,688 for index

- Total Computer Time to Build (in hours) : 10 hours 16 minutes
for Personal Librarian indexing.

- Automatic Process? (If not, number of manual hours) : Yes

- Knowledge Bases
- Run ID : All Teknos runs
- Total Storage (in MB): 1.31 MB
- Automatic Process? (If not, number of manual hours) : Manual.

Did not measure time. Estimated 40 hours.
- Use of Manual Labor

- Mostly Manually Built using Special Interface: yes
- Number of Concepts Represented: 10 pertaining to this experiment
- Type of Representation: semantic network

Data Built from Sources Other than the Input Text

Query construction

Manually Constructed Queries (Ad-Hoc)

- Topic Fields Used: Description, narrative
- Method used in Query Construction

- Proximity Operators? : yes
- Addition of Terms not Included in Topic? :

- Source of Terms: test data set (WSJ Disk 1)

Manually Constructed Queries (Routing)

- Average Time to Build Query (in Minutes) : 8 hours (very rough estimate)
- Data Used for Building Query from

- All Training Documents: yes

B-63



- Method used in Query Construction
- Boolean Connectors (AND, OR, NOT)? : yes
- Proximity Operators? : yes
- Addition of Terms not Included in Topic? :

- Source of Terms: training documents

Searching

Search Times

- Run ID : TeknosRel
- Computer Time to Search (Average per Query, in CPU seconds) : 3 0

Machine Information

- Machine Type for TREC Experiment: Gateway 2 000 66 MHz 48 6DX2
running Windows 3.11

- Was the Machine Dedicated or Shared: Dedicated
- Amount of Hard Disk Storage (in MB) : 2 drives: 424 MB,

540 MB (real) compressed using Stacker 4.0
- Amount of RAM (in MB) : 12 MB
- Clock Rate of CPU (in MHz): 66 MHz

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: Indexing system is commercial.

System to maintain knowledge base and expand conceptual
graphs to boolean search expressions: 200+ hrs . (it

evolved from a different project - this is the time
I estimate it would have taken to develop from scratch)

.

- Given appropriate resources
- Could your system run faster? : yes
- By how much (estimate)? : unknown
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System Summary and Timing
Organization Name: Paracel
List of Run ID'S: FDFl FDF2

Construction of Indices, Knowledge Bases, and other Data Structures

Statistics on Data Structures built from TREC Text

- Other Data Structures built from TREC text
- Run ID : FDFl FDF2
- Type of Structure: word and phrase statistics table
- Total Storage (in MB) : 100 MB (uncompressed)
- Total Computer Time to Build (in hours): (unrecorded)
- Automatic Process? (If not, number of manual hours): yes
- Brief Description of Method:

Collection of in-document frequency, frequency and
variance statistics for all corpus words and for all
relevant document phrases. This process is only
applied to the training text. For queries built
one-at-a-time this process need take no additional
storage

.

Query construction

Automatically Built Queries (Routing)

- Average Computer Time to Build Query (in cpu seconds) : -200
- Method used in Query Construction

- Terms Selected From
- All Training Documents : yes
- Only Documents with Relevance Judgments: yes

- Term Weighting with Weights Based on terms in
- All Training Documents: yes
- Only Documents with Relevance Judgments : yes

- Phrase Extraction from
- Only Documents with Relevance Judgments: yes

Searching

Search Times

- Run ID : FDFl
- Computer Time to Search (Average per Query, in CPU seconds)

:

1462.5 (host CPU)
4547.9 (real)

- Component Times : As above. (The search engine takes queries
and text and spits out scored hits. Collection and
sorting time is negligible.)

- Run ID : FDF2
- Computer Time to Search (Average per Query, in CPU seconds)

:

1068.7 (host CPU)
3097.9 (real)

- Component Times : As above. (The search engine takes queries
and text and spits out scored hits. Collection and
sorting time is negligible.)
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Machine Searching Methods

- Probabilistic Model? : yes
- Free Text Scanning? : yes, FDF-3 search engine

Factors in Ranking

- Term Frequency? : yes
- Inverse Document Frequency? : yes
- Other: term frequency variance, term recall, estimated

query method performance

Machine Information

- Machine Type for TREC Experiment:
Host: at various times. Sun SPARC-2, SPARC ELC,

HP 9000/715
Peripheral: 4 * FDF-3/15 w/ Seagate Elite-3 and Elite-9 disks

- Was the Machine Dedicated or Shared: shared
- Amount of Hard Disk Storage (in MB) : 3 GB (actual max usage,

uncompressed data from all CD-ROMs) 22 GB (max in configuration)
- Amount of RAM (in MB) : 16 MB (32 MB swap)
- Clock Rate of CPU (in MHz): Hosts: various

FDF-3: 12.5 MHz

System Comparisons

- Amount of "Software Engineering" which went into the
Development of the System: 0.2 5 person-year (on top of the

underlying FDF-3 system)
- Given appropriate resources

- Could your system run faster? : yes
- Features the System is Missing that would be beneficial:

This is very difficult to answer. The system is currently
under development. We believe that the underlying search
engine has all the necessary facilities to perform the
desired retrieval functions; we're currently working to
make those facilities available to the user in appropriate
form.

Significant Areas of System

- Brief Description of features in your system which you feel
impact the system and are not answered by above questions:

(a) ability to quickly re-run statistics collection.
(b) easy reconfiguration of workbench.
(c) automatic query selection (query-level data fusion) which

also provides low-level performance data (and hence
detailed performance comparisons).

General Comments

:

There isn't place to put this in the form: we used a stop-word list
for term suppression (173 words). This isn't used for searching,
however, just for query construction. Also, we did statistical
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phrase discovery -- but again, this was for query construction,
not searching. CPU time is nearly meaningless. REAL TIME! Should
include CPU type (which is listed elsewhere) , types of disks
involved, etc. Our "FDFl" run used >4 500 sec REAL time, but
<1500 sec CPU time, so REAL>3*CPU! This is crucial: the user
wants to know how long it took to get the answer, not how long
the CPU spent on the problem. Oil
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System Siommary and Timing
Organization Name: University of Neuchatel (Switzerland)
List of Run ID'S: UniNEl, UniNE2

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Length (in words) of the stopword list: 571 {S14ART)
- Stemming Algorithm: yes Lovins (SI4ART)
- Term V7eighting: yes Inc for doc; Itc for query
- Other Technic[ues for building Data Structures : yes

Statistics on Data Structures built from TREC Text

- Inverted index
- Run ID : UniNEl, UniNE2
- Total Storage (in MB): 17 8.9
- Total Computer Time to Build (in hours) : 2.6
- Automatic Process? (If not, number of manual hours) : yes
- Use of Term Positions? : no
- Only Single Terms Used? : yes

- Other Data Structures built from TREC text
- Run ID : UniNE2 only
- Type of Structure: relevance judgments for queiry #1 to #150
- Total Storage (in ME) : 3 . 7 MB
- Total Coitputer Time to Build (in hours): 0.12
- Automatic Process? (If not, nmnber of manual hours) : yes
- Brief Description of Method: for each document, we store the

identifier of all documents found relevant in a previous request

Query construction

Automatically Built Queries (Ad-Hoc)

- Topic Fields Used: all
- Average Computer Time to Build Query (in cpu seconds)
- Method used in Query Construction

- Term Weighting (v/eights based on terms in topics)?

Searching

Search Times

- Run ID : UniNEl, UniNE2
- Computer Time to Search (Average per Query, in CPU seconds)

:

16.1 sec. for UniNEl, 19.3 sec. for UniNE2

Machine Searching Methods

- Vector Space Model? : yes (SI^IART)

Factors in Ranking

- Term Frequency? : yes
- Inverse Document Frequency? : yes
- Other Term Weights? : yes

0.5

yes (Itc SlihRT)
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- other: yes

Machine Information

- Machine Type for TREC Experiment: SUN SPARCstation 10 model 51
- Was the Machine Dedicated or Shared: shared
- Amount of Hard Disk Storage (in MB): 6,144 MB
- Amount of RAM (in MB) : 128 MB
- Clock Rate of CPU (in MHz): 50 MHz

System Comparisons

- Amount of "Software Engineering" which went into the Development of
the System: 4 months to understand SMART, 3 months to write our
additional features in Sraalltalk-80

- Given appropriate resources
- Could your system run faster? : yes, because Smalltalk is interpreted
- By how much (estimate) ? : the improvement factor is unknown
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System Summary and Timing
Organization Name: University of Central Florida
List of Run ID's: UCFlOl and UCFSJM (each is a routing run).

Construction of Indices, Knowledge Bases, and other Data Structures

Methods Used to build Data Structures

- Controlled Vocabulary? : Yes.
- Stemming Algorithm: None

Phrase Discovery? : Yes, but it is a manual process when training a filter.

- Kind of Phrase: Any kind of phrase (a sequence of words) that could be useful.
For example, "chief executive officer", "due to", "back to committee", "plan that
would insure Americans", and "shut down trading".

- Method Used (statistical, syntactic, other): Manual observation of viewed
training text

.

- Manually-Indexed Terms? : Each topic has its own knowledge base
which is derived from an Entity Relationship (ER) schema for the
topic. For each topic, the knowledge base primarily takes the form of
one or more lists (files) . There are two types of files. There is a
synonym file for each structure component of the ER schema, and there
is a domain file for each attribute specified in the ER schema. A
phrase (a sequence of words) can be an entry in a domain or synonym
file. Different forms of an entry (such as carry, carries,
carried, . . .) are also put in these files. These files are initially
built from information found in a dictionary, a thesaurus, or any
specialized reference source. Training text is manually viewed to
make modifications to these files. The knowledge base for a topic
also includes another information (INF) file. The INF file specifies
the size of a window for evaluating text, along with the importance of
the individual domain and synonym files for determining relevancy of
the text in the window.

Statistics on Data Structures built from TREC Text

- Knowledge Bases
- Run ID : UCFlOl and UCFSJM (each is a routing run)

.

- Use of Manual Labor
- Special Routing Structures

- Run ID : UCFlOl and UCFSJM (each is a routing run)

.

- Type of Structure: Hash table in memory to store entries in the synonym
and domain files of a particular topic filter before beginning input text scan.

- Total Storage (in MB) : Insignificant.
- Total Computer Time to Build (in hours) : A few seconds.
- Automatic Process? (If not, number of manual hours) : Yes.
- Brief Description of Method: Before a filter starts scanning input

text documents, its synonym and domain files are read and each entry is placed
in a memory resident hash table.

- Other Data Structures built from TREC text

Data Built from Sources Other than the Input Text

- Internally-built Auxiliary File
- Domain (independent or specific) : Domain specific, a set of synonym

and domain files are built for each topic.
- Type of File (thesaurus, knowledge base, lexicon, etc.) : Each file is a

list of words or phrases (a sequence of words). A synonym file is constructed
for a component of an ER schema. A domain file is constructed for an attribute
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in an ER schema. Alternate forms of words or phrases are also placed in these
files

.

- Total Storage (in MB) : For the fifty routing topics, total storage for
the synonym and domain files was 214K.

- Number of Concepts Represented: The concepts represented by a filter's
synonym and domain files are ER schema entities, attributes, relationships, roles,
subset predicates, specializations, generalizations, and categories.

- Type of Representation: An Entity Relationship (ER) Schema for a topic.

- Total Manual Time to Build (in hours): Manually building the synonym and
domain files for a single topic ranged from one hour to sixteen hours, the average
time was ten hours. However, we did not have enough time to build the best
possible files.

- Use of Manual Labor
- Mostly Manually Built using Special Interface: The files were manually

built using only an editor. Initially, the files are established using reference
material such as a dictionary, a thesaurus, or any specific reference book. The
files were later modified after viewing training text. A few special interfaces
were used during the training process

.

Internally-built Auxiliary File
- Domain (independent or specific): Domain specific, an information (INF)

file. One is built for each topic.
- Type of File (thesaurus, knowledge base, lexicon, etc.): The INF file

specifies the insertion criteria for a topic's ER schema.
- Total Storage (in MB) : Small, about 100 bytes each.
- Number of Concepts Represented: The INF file specifies the size of a

sliding window (the number of words) used to determine membership in specified
combinations of synonym and domain files. The importance of each synonym and
domain file is also indicated in the INF file.

- Type of Representation: The insertion criteria for an Entity
Relationship schema.

- Total Manual Time to Build (in hours) : A few seconds to establish one,
but an hour or so of wait time to see how good the INF file was for the filter.
We did not have enough time to build the best possible INF file for each of
the filters.

- Use of Manual Labor
- Mostly Manually Built using Special Interface: An INF file is

manually built using only an editor. An INF file is usually modified after
viewing training text. In an INF file, the window size and weights of individual
synonym and domain files were also modified by observing successive performance
evaluations over training text. This was done (when we had time) to obtain
optimiim performance of a filter over the training text. We did not have enough
time to build optimum filters.

Externally-built Auxiliary File

Manually Constructed Queries (Routing)

- Topic Fields Used: All.
- Average Time to Build Query (in Minutes) : This is the time to sketch an

ER schema for a topic (typically, one hour) plus the time to build synonym and
domain files for the schema (average is ten hours) plus a minute or so to create
the INF file for the topic.

- Type of Query Builder
- Computer System Expert: The person constructing the synonym and domain

files for a topic was an undergraduate student in a Computer Science database
course

.

- Data Used for Building Query from
- Only Documents with Relevance Judgments: Yes, if we had time.
- Other Sources: Hardcopy references (such as a dictionary, a thesaurus.
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or a specialized reference book) were used. During training, some documents were
retrieved that had no definite relevance judgment, so these documents were read
and used if the student felt they were relevant.

- Method used in Query Construction
- Term Weighting? : A weight can be assigned to each synonym file and

each domain file of a filter.
- Boolean Connectors (AND, OR, NOT) ? : A form of AND and NOT is used

when a combination of synonym and domain files is specified. A form of OR is
used when different combinations of synonym and domain files are listed.

- Proximity Operators? : The sliding window (number of words) to evaluate
relevancy.

- Addition of Terms not Included in Topic? : Yes!
- Source of Terms: Any kind of reference material and viewed training text.

Searching

Search Times

- Search Times
- Run ID : UCFlOl and UCFSJM (each is a routing run)

.

- Computer Time to Search (Average per Query, in CPU seconds) : Since each
routing query was a true filter that scanned across the entire document collection,
we kept track of wall clock time. For all of Vol. 3, the fastest time was 1 hour
and 23 minutes, while the slowest time was 2 hours and 45 minutes. For the SJMN
directory, the fastest time was 23 minutes and the slowest time was 28 minutes.
The difference in times was determined by the number of filters running on the
network at the same time. This ranged from one filter to about eight filters
running simultaneously when producing UCFlOl and UCFSJM.

- Component Times : No component times, just run the filter across the
document collection.

Machine Searching Methods

- Machine Searching Methods
- Boolean Matching? : Somewhat.
- Free Text Scanning? : Yes

.

- Other: A window (number of words) to view was moved across a document
collection and the window was evaluated in regard to words that satisfied the
insertion criteria for an Entity Relationship (ER) schema of a topic description. '

This could be Conceptual Graph Matching.

Factors in Ranking

- Factors in Ranking
- Term Frequency? : Yes

.

- Other Term Weights? : Yes. Each synonym or domain file can be assigned an
integer "importance" determined by optimum performance over training text. We did
not have enough time to determine optimum numbers.

- Position in Document? : Yes, sliding window of words to evaluate.
- Proximity of Terms? : Yes, sliding window of words to evaluate.
- Other: 1. Number of synonym and domain files for a filter.

2. Local evaluations (in the window) and a global evaluation of
the entire document are used.

3. Multiple combinations of synonym and domain files are allowed for
a filter.

Machine Information
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- Machine Type for TREC Experiment:
For training:
1. The Vol. 1 CD was copied to the hard drive of a PC running Linux (a

public domain version of Unix) and functioning as an NFS node.
2. The Vol. 2 CD was copied to the hard drive of a SPARCserver 690MP

( 4 processors )

.

3. Students ran filters and viewed training text from 32 RISC 6000 machines
across a network.

For UCFlOl and UCFSJM runs:
1. The Vol. 3 CD was copied to the hard drive of a SPARCserver 690MP

( 4 processors )

.

2. Most filters were run on the SPARCserver 690MP (a few ran on the
RISC 6000 machines)

.

- Was the Machine Dedicated or Shared: Shared, except for the NFS node
running Linux.

- Amount of Hard Disk Storage (in MB) : We had access to 1000 MB on the
NFS node, and 1000 MB on the SPARCserver.

- Amount of RAM (in MB) : 8 MB on each of the 32 RISC 6000 machines.
16 MB on the NFS node.
12 8 MB on the SPARCserver.

- Clock Rate of CPU (in MHz): 33 MHz for the NFS node. Not known for the
RISC 6000 machines. Not known for the SPARCserver 690MP.

System Comparisons

- Amount of "Software Engineering" which went into the Development of the System
80 hours: Purchase and install hardware and establish network access.
160 hours: Design, code, and test the basic filter scanner.
40 hours: Design, code, and test a few utilities for training.
40 hours: Figure out the rules for drawing an "atomic" ER diagram.
100 hours: Establish an ER schema diagram for each of the routing topics.
500 hours: Establish synonym and domain files for the routing topics for the
two submitted runs

.

- Given appropriate resources
- Could your system run faster? : Yes.
- By how much (estimate)? : It is a function of how many machines are

available for running a filter, and how much traffic the network will tolerate.
It might be possible to put a filter on each processor of a machine like the MASPAR,
and in four iterations, filter the documents on Vol. 3 in about four minutes.

- Features the System is Missing that would be beneficial:
1. A human-computer dialog interface to automate the development of an ER "atomic"
schema from a person with a search request.
2. Access to electronic dictionaries, thesauri, and reference material for
initial filter construction from the ER schema.
3. Utility programs to help train the filters using training documents and
relevancy judgments.
4. An interface for filter modification during interactive queries.

Significant Areas of System

- Brief Description of features in your system which you feel impact the system
and are not answered by above questions:
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APPENDIX C

COMPARISON BETWEEN TREC2 and TREC3

Karen Sparck Jones, November 15, 1994

The following table presents Precision performance at Document Cutoff 30 for both Tree 2 and Tree 3.

The Tree 2 figures are taken from KSJ, 'Reflections on TREC (prepared for the issue of Information

Processing and Management on TREC, also published as Computer Laboratory TR 347, 1994). The

Tree 3 figures are from the Tree 3 conference working papers. The data are only for full runs, not Cate-

gory B.

The conventions are as for Tree 2: figures are not rounded, performance is assigned to 'blocks', teams

per block are in Proceedings order, the best of two official runs is taken where there are two, regardless

of the retrieval method used. However I have indicated the Tree 3 interactive figures separately, as a dif-

ferent evaluation methodology was applied.
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DOCUMENTS 30

An wnp DOT TTTMn iiN 1 Jj/KAL- 1 1 V rl,

(ROUTING)

Tree 2 Tree 3 Tree 2 Tree 3 Tree 3

>= 60 Amherst

City

Berkeley

Cornell City

Dortmund

>=55 Amherst Cornell

HNC Mead
VT

City Amherst

Berkeley Cornell

Amherst Berkeley

Bellcore Dortmund

CMU Bellcore

CUNY
>= 50 Cornell VT

Berkeley Westlaw

Dortmund ETH
CMU CUNY
Verity

Siemens

CUNY

Rutgers CMU
HNC Westlaw

GE Logicon

TRW TRW
Verity Florida

Siemens

AC>= 45 City NYU
Bellcore CMU
ETH RMIT
CITRI RutgersK

Conquest

V 1 Xerox

NYU
Verity

ETH
NSA
NEC

RutgersB

Verity

>= 40 City

Notes:

1) Changed players - Tree 2 only: GE, Conquest

Tree 3 only: Westlaw, Logicon, Xerox, NSA, NEC
also RMIT, Tree 3, was part of the CITRI group, Tree 2

Rutgers had two groups, RutgersB (elkin) and RutgersK(antor)

2) P >= 45 was not shown for Tree 2 Routing in 'R on T': it is included here both to

cover new players and for comparison with interactive

3) I do not include Minnesota as I do not know which of their many runs to use
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COMMENTS:

1) Ad hoc performance shows a slight rise of the top level from Tree 2 to Tree 3.

2) Routing top performance is similar for Tree 2 and Tree 3.

3) Both ad hoc and routing show a slight drift up over classes, but rather

more for ad hoc than for routing: with ad hoc it applies overall,

with routing really only for lower blocks.

4) Ad hoc performance for Tree 3 is comparable with routing for Tree 3.

5) On the whole the better performing teams for Tree 3 are those for Tree 2:

the odd downward movement (where not a goof) probably reflects a willingness

to experiment.

6) Some teams that did poorly for Tree 2 (below the bottom of the table)

got it together enough for Tree 3 to be with the main pack.

7) Some new players performed respectably (though one, NSA, perhaps less

well than for comfort).

8) One team, NYU, showed ability to do NLP on the full scale, not just in group B.

9) Interactive performance was absolutely poor.

OVERALL REMARKS:

1) The General Findings for Tree 2 given in 'R on T' continue to apply in Tree 3.

2) Many different approaches give similar performance.

3) Good performance is obtained with variants of the statistical approach

souped up with phrases etc.

4) Routing performance seems to have reached a plateau.

5) The improvement in adhoc performance must be attributed to the stability of the

queries (or query types) and the large volumes of training data, as well as the

honed character (even after concept removal) of the queries.

6) (Setting aside any evaluation methodology issues) the poor interactive

performance must be attributed to the fact that the queries were already

well worked up, and mainstream ad hoc and routing performance is good

because of quality queries and lots of training data.
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7) ALL of these points are broad brush ones: there may be significant

differences within performance blocks, and also none between members of

adjoining blocks. Without accepting the degree of similarity between

different runs that Jean tague's Scheffe tests show, and also recognising

that a Precision difference between 45 and 60 at Document cutoff may be not

only statistically significant, but meaningful to a user, I think a

conservative view of performance differences is in order.

8) IN PARTICULAR, all of Tree 2 and Tree 3 is within a very specific retrieval

context; and as many of the successful systems are complex overlays on simple

bases, it is essential to get a better view of how the Tree IR environment

is influencing the settings for the many parameters that are often involved

in these systems.
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Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute is

active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement methodology and the basic technology

underlying standardization. Also included from time to time are survey articles on topics closely related to

the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) devel-

oped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports, and

other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical

properties of materials, compiled from the world's literature and critically evaluated. Developed under a

worldwide program coordinated by NIST under the authority of the National Standard Data Act (Public

Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published

bimonthly for NIST by the American Chemical Society (ACS) and the American Institute of Physics (AIP).

Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC
20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test methods, and

performance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of

a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the

subject area. Often serve as a vehicle for final reports of work performed at NIST under the sponsorship of

other goverimient agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce
in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized

requirements for products, and provide all concerned interests with a basis for common understanding of

the characteristics of the products. NIST administers this program in support of the efforts of private-sector

standardizing organizations.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (TIPS PUB)—Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves as the

official source of information in the Federal Government regarding standards issued by NIST pursuant to

the Federal Property and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of

Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed by

NIST for outside sponsors (both government and nongovernment). In general, initial distribution is handled

by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161,

in paper copy or microfiche form.
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