NIST Technical Note 1755

Factory Equipment Network
Testing Framework: Concept,
Requirements, and
Architecture

Jim Gilsinn
Kang Lee

John Michaloski
Fred Proctor
Eugene Song

http://dx.doi.org/10.6028/NIST.TN.1755

NIST

National Institute of
Standards and Technology
U.5. Department of Commerce

http://dx.doi.org/10.6028/NIST.TN.1755

NIST Technical Note 1755

Factory Equipment Network
Testing Framework: Concept,
Requirements, and
Architecture

Jim Gilsinn

Kang Lee

Fred Proctor

John Michaloski

Yuyin Song

Engineering Laboratory (EL)

http://dx.doi.org/10.6028/NIST.TN.1755

September 2012

U.S. Department of Commerce
Rebecca M. Blank, Acting Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

http://dx.doi.org/10.6028/NIST.TN.1755

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.
Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 1755
Natl. Inst. Stand. Technol. Tech. Note 1755, 18 Pages (September 2012)
CODEN: NTNOEF

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

1
2
3

4

5

6

Table of Contents

€ o 11 Tod ¥ o] o ISR 7
PUIPOSE & CONCEPT.... .ottt e bttt ebe e be e et e e saneebeennneenns 7
Testing Framework REQUITEMENTSc.ccveiiiieieeie ettt sne e 8
K TB R O 1V = VT SO SRRSO 8
3.2 Conformance, Interoperability, and PerfOrmancCe...........ccooeiiiieniie e 8
3.3 Performance MEASUMEMENTcoeiieie ettt sttt eesteesee s ee e e teste et e seeeseesaesteeneeseeaneenee e 9
3.3.1 OVEIVIBW ...tttk bbbt b bbbttt e bbbt st st et e e neene s 9
3.3.2 I 1] 0T YT U UP TP 9
3.3.3 (O3 o] [ToaN 11 1 PSSP 10
3.34 BaNOWIALN ... bbb b e ebe e sbaenreas 10
3.35 PRYSICAI VAIUB.........oiiiiiee bbb 10
3.3.6 e T T O 1 (=] 1 - PSSRSO 10
3.3.7 TSt CONDITIONS ...ecuveiieiiiee et be e s be e sba e s ab e st e e ebeesbeesbeesbaesabeerbeenbeenbeeas 10
34 Conformance MEASUIEIMENTviieieieee et ste et te et te e e e sbesteeseesteenaesresreenee e 11
IR T 010 o -V, [o V] T RSSO SROPR RSP 11
3.5.1 OVBIVIBW ...ttt ettt se e st b e b et b et et e st e ne e b e et e et e et e st et e e eneane e 11
3.5.2 V1ot (o] (T O 11 OSSPSR 11
3.5.3 Program EXECULION.........co.oiuiieieieisi ettt 11
3.5.4 INETWOTK SOCKELSviviiesieie ettt ettt sr et e e e eneans 12
3.6 COdE EXIENSIDIIITYeiviiiieiiiee bbb bbb 12
3.6.1 OVEIVIEW ...ttt ettt et et e s b e e s be e s at e st e e be e s be e s beesbeesbbeshbeesbeenbeebeesbeesaeesaeenneeeans 12
3.6.2 ProtOCOI IMOQUIES ... ettt 12
3.6.3 TESHING IMOTUIES. ...ttt ettt et te s beesb e s besreesbesbeeeesras 12
3.6.4 ANAIYSIS ENGINES....c.viiiiiieieeee bbbttt ene s 12
3.7 WITEShArK INEITACE.e ittt st neene s 12
Testing Framework ArChitECIUIEcvoviiie e 13
O R @ 1< o - OSSPSR PRRPRPR 13
4.2 Universal Client APPHCATIONc.ooiiiiieee e eas 13
421 LCT=] T - SRS 13
4.2.2 IS Lo AV, oo U] PSSR 14
4.2.3 ANAIYSIS MOAUIE ...ttt 14
4.2.4 REPOMING ENQINE ..ottt ettt e tesaeeseesreenee e 14
4.3 Personality MOGUIES. ...ttt ene s 14
431 GENETAl DESCIIPLION ...ttt bt 14
4.3.2 Y TS] o] (o] PSRRI 14
4.3.3 DIriver APPHCALIONviiiiiieieee bbbt 15
4.4 UCA Application Programming INTErfaCeccooiiiiiiiiiiiiine e 15
YV T 1= T SRS 15
Software Module INTEraCtioNS.........ccveiviiiieee e enes 15
TR R O 1V = 4V T OSSP PRSPPSO 15
5.2 Scenario: Online Testing with No StartCommunication MesSage.........ccccvvvveverrervernenne. 15
5.3 Scenario: Offline Analysis of a Capture File ..o 17
] (] =] (o0 SRRSO 18

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

API
CIP
DUT
EL
FENT
HMI
HTML
ID
IENetP
IP
MAC
NIST
PCI
PM
PNG
PSML
SDK
TCP
UCA
UDP
uSB
XML
XSD

Acronyms
Application programming interface
Common industrial protocol
Device under test
Engineering laboratory
Factory equipment network equipment
Human machine interface
Hyper-text markup language
Identifier
Industrial Ethernet Network Performance
Internet protocol
Media access control
U.S. National Institute of Standards & Technology
Peripheral component interconnect
Personality module
Portable network graphics
Packet Summery Markup Language
Software development kit
Transmission control protocol
Universal client application
User datagram protocol
Universal serial bus
Extensible markup language
XML schema definition

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

1 Introduction

This document describes the purpose, concept, requirements, and architecture for the Factory Equipment
Network Testing (FENT) Framework and the software to test equipment on real-time factory networks.
Other documents contain more detailed information about different aspects of the FENT Framework and
software.

2 Purpose & Concept

The purpose of the FENT Framework is to test equipment such as sensors, actuators and controllers in a
networked production environment, such as manufacturing or process control facilities, and evaluate their
performance and conformance to standards or specifications. For performance testing, FENT provides
data collection, analysis, and reporting so that problems that affect the quality and timeliness of
information can be identified and corrected. For conformance testing, FENT provides reports that verify
how correctly equipment implements the standards or specifications the vendor claims to support.

The FENT Framework is designed to be a modular, open-source testing framework capable of evaluating
the performance and conformance of different types of equipment that exist in factory floor networks. The
architecture has been broken into three main pieces: the Universal Client Application (UCA), the UCA
Application Programming Interface (API), and a series of Personality Modules (PMs). Inside the UCA,
there are additional blocks representing multiple Testing Modules, Analysis Engines, and a Reporting
Engine. A graphical representation of the concept for the FENT Framework can be seen in Figure 1. A
more detailed view of the architecture and discussion of the individual modules can be found in Section 4.

Reporting
Engine

- Personality Personality
~ Module Module
Ethernet
Sansor Internet
Gateway
Fieldbus
N 4 - 4 = ¥

Figure 1 — Concept for the FENT Framework

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

3 Testing Framework Requirements

3.1 Overview

Previous projects at the National Institute of Standards & Technology (NIST) have shown a need in
industry for a consistent tool capable of analyzing the performance and conformance for networked
factory equipment. One project developed the Industrial Ethernet Network Performance (IENetP) test
tool. [1][2] The IENetP test tool was originally developed by NIST to measure specific performance
characteristics for a single industrial Ethernet network. The IENetP test tool proved useful for many
organizations and showed a need in industry for this type of performance measurement for other
networks. The current IENetP software code base has been shown to lack the extensibility necessary to be
used by a larger audience.

The FENT framework will meet the needs of multiple groups that are responsible for measuring the
network performance and conformance of factory equipment. By being designed from the outset to be
portable, extensible, and open, the software code base should provide greater flexibility in application and
use by a larger audience.

3.2 Conformance, Interoperability, and Performance
In order for end-users to know that a particular device will meet their needs for their particular
application, the end-users need to have some level of confidence that the device:

1. Conforms to its protocols and standards;
2. Interoperates with other devices; and
3. Performs at a certain level.

Many network protocols and standards have tests and/or tools developed to prove that a device conforms
to those protocols or standards. These tests and/or tools generally check to make sure that the device
meets all of the required elements in the protocol definition or the standard, but may not test for optional
elements. A device may meet the minimum set of requirements for a protocol or standard, but may not
meet end-users’ needs if these optional elements are not implemented correctly or at all.

Some network protocols and standards have tests and/or tools developed to demonstrate that a device
interoperates with other devices on a network. These interoperability tests go above and beyond the
minimum conformance requirements for a standard to include some of the optional elements. The list of
optional elements that are required to establish interoperability is generally not the entire set of optional
elements, but some subset that different vendors or industry groups have decided upon. This subset makes
up a minimum set used by a majority of the devices using that network protocol or standard. If a device
demonstrates its ability to meet the interoperability requirements, end-users can be relatively comfortable
that the device will operate correctly in their application and that it will work with a variety of other
vendors’ products. Even though the device may operate correctly, it may still not be the right device for
the end-user’s particular needs or application.

Conformance and interoperability are necessary, but not sufficient, for end-users to know whether a
particular device will meet their needs. Performance metrics are also very important for that purpose.
They establish that not only does the device operate correctly, but that it also operates at a particular level
of performance. They are generally what differentiate one vendor’s product from another and one model
from another. Having performance metrics for a device makes it possible for end-users to know to some
level of certainty that a particular device will operate at this level under these conditions. It allows end-
users to design their system to operate at a certain performance before obtaining equipment, thus reducing
the integration time afterwards.

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

3.3 Performance Measurement

3.3.1 Overview

The performance of a device can be measured in many different ways, depending on what metric is being
measured. For networked devices, it can mean that the network interface performs up to a certain level
under a specific set of network conditions. For sensors, it may mean that the device measures and reports
the correct value to within a certain percentage. For actuators, it may mean that the actuator responds
within a given amount of time and to within a certain percentage of the desired position.

In many factory equipment networks, the network infrastructure is no longer the bottleneck for device
communication. Generally, the network performance of a device is much more related to the device’s
internal architecture and software implementation. Different performance characteristics have different
importance based on the type of communication used by the devices. The three main communication
models that are used for industrial communications are:

1. Polled or Master/Slave;
2. Periodic or Publish/Subscribe; and
3. Triggered.

In polled or master/slave communications, a master device sends a poll or request to a slave device to
perform some action and/or return some value. Slave devices cannot perform functions on their own
without first receiving a request from the master device. Slave devices can have less computing power
than master devices, however they must be architected to perform actions quickly. An example of a slave
device may be a small sensor that reports its measurement to a controller when polled.

In periodic or publish/subscribe communications, one device publishes information at a particular
frequency and another device subscribes to that information and uses it in some way. An example of this
arrangement would be a controller that publishes information that is displayed on a human-machine
interface (HMI) every 100 ms. In the case of a controller and HMI, there is most likely a bi-directional
publish/subscribe relationship. The controller may publish information for the HMI to display and the
HMI may publish information related to the operator’s actions to change parameters in the controller.

In triggered communications, one device waits until a certain condition or event occurs before sending a
message to another device. This type of communication is used in many systems to reduce the amount of
traffic on a network. Devices using triggered communications typically maintain some sort of heartbeat
messages to report their status on a regular interval, similar to publish/subscribe but at a much lower
frequency.

3.3.2 Latency

Latency is the time delay between two events. For industrial devices, it may mean the time between a
command being received and an action being performed and/or a response being sent back. It can also
mean the time between a physical value being changed and the value reported by the device reflecting the
physical change.

The network infrastructure latency between the sending device and the receiving device can be substantial
for large chemical facilities or electrical power companies due to the signal distance travelled. In most
discrete-part or batch manufacturing facilities, this network latency is relatively small when compared to
the latency introduced by the end devices due to high-speed Ethernet-based networks currently being
deployed. A large portion of the latency associated with factory networks is related to the device’s
internal architecture and protocol stack implementations.

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

The performance of devices using polled or triggered communications is greatly affected by any latency
introduced by end devices. The control loop timing for the system can be affected by the latency of
devices taking some action, responding to a request, or reporting some event.

Devices using publish/subscribe communications are less affected by latency. The same amount of
latency introduced into every packet sent by a device is not important since that latency would only be
seen during connection startup.

3.3.3 Cyclic Jitter

Cyclic jitter is the variability of the timing for periodic events. For devices utilizing publish/subscribe
communications, the ability for a device to maintain its communications at the established cyclic
frequency is very important. It is very common for industrial end-users to utilize every data point they
receive in their control loops, disregarding Nyquist oversampling for digital communications. In that case,
control loops may get out of sync with the data received if the packets are delayed enough.

Devices using triggered communications generally have a heartbeat message to report to another device
their status and that they are still operating. These messages are typically sent at some low-speed cyclic
frequency, and are thus subject to cyclic jitter measurement. Devices using polled communications are not
subject to this type of performance measurement since they are not capable of sending messages without
first being sent a request.

3.3.4 Bandwidth

Many industrial devices are capable of performing more than one operation at a time. Many networked
industrial devices have web servers with diagnostic information or file systems for configuration data. If
end-users attempt to access these services during normal operation, a device that is already sending and
receiving the maximum number of packets it is capable of supporting, or maximum bandwidth, may start
to show performance degradation on its industrial communications. End-users need to know the
maximum bandwidth for a device to make sure that they limit their communications to within that
bandwidth. Also, devices may need to prioritize their communications to favor the industrial
communications over other services.

3.3.5 Physical Value

In addition to the network performance of a device, the ability for a device to relate network information
to physical values is quite important. For a sensor, the ability to report its measured value correctly is just
as important as the ability to report that value at a particular time. For an actuator, the ability to move to
the desired location is just as important as how quickly it took the action. Physical values can be
compared to the values included in the network packets in order to evaluate the physical value
performance. The physical value would need to be measured using an independent, proven method in
order to validate the physical to network value relationship.

3.3.6 Pass/Fail Criteria

The FENT Framework is not meant to establish pass/fail criteria for any particular performance
measurement. It is strictly being designed as a measurement tool, similar to a thermometer. The FENT
Framework will measure the different performance metrics and report their results to within a certain
percentage. It is up to end-users or industry groups to decide what factors determine the pass/fail criteria
for any particular device under any particular circumstances.

3.3.7 Test Conditions

The FENT Framework will not only specify the performance metrics to measure, but how to actually
measure them and under what conditions. Certain tests may require a particular network architecture to
limit the effect of network latency introduced into the measurement. Other tests may require a particular
set of background network traffic load in order to measure the cyclic jitter or bandwidth for a device

-10 -

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

under “normal” industrial network conditions. When specified, these test conditions should be maintained
as close as possible and should be documented to ensure that measurements taken at one time can be
compared to measurements taken at another time or for another device.

3.4 Conformance Measurement

There are a large number of industrial communication protocols that have each been designed to meet a
particular need. Some of the protocols have established conformance test tools and services, while others
do not. Even for some protocols that do have conformance tools and services, the end devices may choose
to use those services or not. Standards development organizations may not have the ability to force
vendors to certify their devices. The FENT framework will help end-users to determine whether devices
support the particular communication protocol, although it will not be able to fully replace these testing
services.

PMs for each communication protocol will include a driver application that will communicate with the
device under test. When developing a new device, or testing an existing device, the ability for the device
to communicate properly with the PM can demonstrate some level of conformance. It will not be able to
check all of the conformance cases with the device under test, however it will establish basic
communication conformance.

3.5 Code Modularity

3.5.1 Overview

The devices tested by the FENT Framework are expected to span a broad range of platforms, from
standalone systems with simple serial wired interfaces, through peripheral component interconnect (PCI)
bus or universal serial bus (USB) devices with software drivers for Windows or Linux, to complex
machine controllers with full Ethernet and web capabilities. It is impractical to develop the FENT
software base so that it can be ported to all of the native software environments that host the factory
equipment. Rather, the FENT architecture is designed so that custom interfaces to particular equipment
can be written to localize the impact on the overall testing framework. The modular software approach
shown in Figure 1 accomplishes this. In the figure, the UCA can communicate with the PMs by
implementing any of three methods: direct function calls, program execution, or network socket
communication across distributed computers. The choice is determined by the support for each type
provided by the vendor’s software drivers or hardware protocol, and implemented in the UCA layer
following the API. The modular approach followed by FENT to handle each alternative is via definitions
of the UCA-API for each of the three communication methods. This concept is detailed in the following
sections.

3.5.2 Function Calls

The driver software for some devices may reside on the same computer that runs FENT and include a
software development kit (SDK) with a library of function calls to initialize and communicate with the
devices. Typically these libraries are provided for one of the popular languages, such as C, C++, Java, or
C#. Connecting the C#-based FENT performance testing modules to these SDKs is straightforward.
Language bindings for each of these languages are defined in the UCA-API specification [3], and the
FENT library contains functions that map the C, C++, or Java implementations of these bindings to the
corresponding C# function that is reference by the FENT modules.

3.5.3 Program Execution

Some devices may reside on the same computer that runs FENT and include a set of programs to initialize
and communicate with the devices. Connecting the C#-based FENT performance testing modules to these
applications is straightforward. Program names that will be called by FENT to initialize and set up
communication are defined in the UCA-API specification. Mapping the device-specific applications and

-11 -

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

their command-line options can be done using simple batch files or shortcuts. In cases requiring more
sophisticated interaction, an extra application layer can be built in C, C++, Java, or C# instead.

3.5.4 Network Sockets

Some devices may not reside on the same computer that runs FENT and need to be connected across a
network. In this case, FENT will connect to the device controller as a Transmission Control Protocol
(TCP) / Internet Protocol (IP) client and send messages and receive replies following an ASCII protocol
defined in the UCA-API specification. This method can also be used locally if desired, so that devices
with this interface may easily be moved from the local host to remote computers with no impact on the
software. This method requires that a TCP/IP socket server program be written that translates the FENT
messages to the device’s native interface, typically functions in an SDK.

3.6 Code Extensibility

3.6.1 Overview

In addition to the FENT Framework being modular, it is also extensible. The code base will include
different modular sections that can be incorporated at compile time and at run time to extend the
capabilities beyond that of the initial software. The following sections outline some of the different
modules within the FENT Framework and their extensibility.

3.6.2 Protocol Modules

The FENT Framework is specifically designed to work with a variety of different network protocols. By
utilizing the UCA-API specification and a simple descriptor file, PMs can be easily designed and
implemented for different network protocols. The UCA is also capable of dynamically loading PMs
utilizing program execution or network socket communication.

3.6.3 Testing Modules

Testing modules will be designed using a series of common base classes and function calls used by the
UCA to conduct the performance and conformance testing. Similar to the UCA-API, this set of common
classes and function calls will allow test designers to easily implement their own testing methodology.
Due to the tighter integration necessary for the testing modules, these will not be designed to allow
program execution or network sockets.

3.6.4 Analysis Engines

The initial analysis engine developed for the FENT Framework uses rather simple mathematical models.
As more complex mathematical models are written, they will be implemented as additional analysis
engines. This approach will allow end-users to compare new models to the existing models, improving
them over time. As with the testing modules, these engines will only be implemented through common
classes and function calls due to their tighter integration requirements.

3.7 Wireshark Interface

Wireshark [4] is the de facto standard network protocol analysis tool used in the industry. It is open-
source and has a well-established process to develop new or revised dissectors for network protocols.
Many of the industrial network protocols already have protocol dissectors written for Wireshark.

Wireshark provides multiple ways to interact with the software. One method is using network sockets to
command Wireshark to perform some actions. Another is a command-line version called TShark, or text-
based Wireshark, that provides even more features. The FENT Framework may use a combination of both
of these methods.

-12 -

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

4 Testing Framework Architecture

4.1 Overview

The concept FENT Framework architecture shown in Figure 1 provided a way to develop the
requirements shown in Section 3. However, it does not provide enough detail to develop the functional
architecture and module interactions. Figure 2 shows a modified version of the concept architecture
showing a single protocol PM, the module interactions, and the device under test (DUT).

Analysis Reporting
Engine Engine

I~ PSML File

M Wireshark

Protocol PM

PM
Descriptor App

DUT

Figure 2 - FENT Framework Architecture with Module Interactions

The following sections provide greater detail about each one of the modules and describe the module
interactions. Section 5 offers some example timelines to better demonstrate the sequence of module
interactions.

4.2 Universal Client Application

421 General

The UCA serves as the central testing application for the FENT Framework. It contains the main operator
interface as well as the testing modules, analysis engines, and reporting engine. The UCA coordinates the
actions of the PMs and Wireshark to conduct the performance and conformance testing. Connections are
made between the UCA, the PMs, and Wireshark. Each of the individual module connections will be
described in greater detail along with those modules.

The UCA runs on a Microsoft Windows-based computer running Windows XP, Vista, or 7 with the .NET
Framework installed. It is built using Microsoft Visual C# and the .NET 4.0 libraries.

-13 -

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

The main UCA operator interface is responsible for storing and communicating runtime characteristics to
each of the different modules within the FENT Framework, like the DUT’s network address and
filenames while conducting the tests.

4.2.2 Testing Module

The testing module is responsible for actually conducting the tests. It links with the PM through the UCA-
API to perform any communications with the DUT and links with Wireshark to capture and filter the
captured network for the appropriate network protocol. The way that the testing module links to the UCA-
APl and PM is dictated by the way the PM has been designed, as described in the PM Descriptor.

4.2.3 Analysis Module

The analysis module is responsible for analyzing the data collected by Wireshark and calculating the
performance results based on some mathematical model. The analysis engine does not read data directly
from Wireshark, it uses an intermediate file encoded in Packet Summary Markup Language (PSML) [5].
PSML is an extensible markup language (XML)-based file format that encodes a subset of the available
protocol information Wireshark stores for each packet. The specific fields that are encoded in the PSML
file are dictated by the Wireshark parameters stored in the PM Descriptor file. The analysis engine is
capable of recognizing and sorting multiple communication streams in a single PSML file by using
identifying information stored in each packet for each connection. Each of these communication streams
is analyzed individually and performance results are calculated for each stream. The analysis engine then
sends these performance results to the reporting engine.

4.2.4 Reporting Engine

The reporting engine is responsible for reporting the results of the tests in human-readable form. The
results will be displayed in the UCA software as well as output to files. The on-screen display will allow
the user to zoom and scroll through the data to observe specific events with the ability to export those
views to a file. The automatically generated report files will contain images and reports about each
communication stream. Portable network graphics (PNG) image files, hyper-text markup language
(HTML), and XML files are the default methods for reporting results. Other file formats will also be
available.

4.3 Personality Modules

4.3.1 General Description

PMs are designed for each protocol, and may also be designed for different implementations of each
protocol. The PM handles any direct communications with the DUT through the driver application. It also
contains a listing of the Wireshark parameters used by the UCA to calculate different aspects of the
protocol’s network performance.

4.3.2 PM Descriptor

The PM Descriptor is an XML-based file containing identification information about the PM, a list of
Wireshark parameters, information about the driver application, and any runtime values that can be
specified by the user. The XML schema definition (XSD) file describing the PM Descriptor will be
described in a future document.

The Wireshark parameters contain a list of all the relevant Wireshark header fields necessary to analyze
the performance of the protocol as well as an additional Wireshark filter that can help to limit the network
packets in the capture file to the relevant set. These Wireshark header fields can be used to override some
of the default Wireshark fields. Some protocols encode the packet timing value inside the packet, not
relying on Wireshark’s native packet timing value. This is useful for protocols that can timestamp each
packet at the hardware layer. Some protocols do not use IP addresses or media access control (MAC)
addresses to identify their devices, so it may be necessary to override the source and destination addresses

-14 -

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

with a non-default header field as well. Some of the modern industrial protocols have removed parts of
the TCP/IP and Ethernet suites from their protocol stacks to improve performance, and some of the legacy
industrial protocols were never designed to run over the TCP/IP or Ethernet suites. In these cases, another
way to identify the source and destination devices may be encoded in the network packets. There may
also be other header fields necessary to measure the performance of the device, including connection
identifiers for identifying multiple connection streams, sequence counters to help identify missed packets,
and data containing sensor values. All of these different header fields are identified and classified in the
Wireshark parameters section of the PM Descriptor.

The PM Descriptor also contains information about how to access and utilize the driver application. This
information allows the UCA to send the correct messages to the PM through the UCA-API to start and
stop communications with the DUT. This message may include values like the path to the executable for a
command line implementation or the correct network socket to use. It may also include any default
parameters necessary to operate the driver application or DUT properly.

4.3.3 Driver Application

The driver application is the piece of software responsible for communicating directly with the DUT. The
PM needs to be written to abstract the commands from the UCA-API and convert them to the appropriate
commands and/or messages in order to communicate with the DUT. No specific requirements are
necessary to build the driver application as long as the UCA-API commands are implemented correctly at
the PM level.

4.4 UCA Application Programming Interface

The UCA-API is a series of messages that can be sent between the UCA and the PM to perform actions
related to the test being conducted and to report results. Generally, these actions tell the PM to establish a
connection to and communicate with the DUT. Other actions may be added in the future if a need arises.
More information about the specifics of the UCA-API can be found in another document [3].

45 Wireshark

The Wireshark module allows the method used to connect to the Wireshark application and the actual
commands used to be abstracted from the UCA. The UCA can use a single set of commands which the
Wireshark module converts to the correct lower-level commands to interact with the Wireshark
application.

In order for the Wireshark module to capture packets for the performance tests, it should also tap off of
the communications between the driver application and the DUT. This tap connection should be done as
close to the DUT as possible in order to reduce any latency or jitter associated with the network
infrastructure.

5 Software Module Interactions

5.1 Overview

The following sections provide simple examples of how the different modules interact for a few of the
more common scenarios using the FENT Framework. For each of these scenarios, it is assumed that the
correct PM has already been loaded into the FENT Framework and UCA.

5.2 Scenario: Online Testing with No StartCommunication Message

One common way that the FENT Framework will be used is to conduct online performance tests on a
device that does not require a StartCommunication message. A sequence diagram of the messages
between and actions performed by different modules and in the FENT Framework is shown in Figure 3.

-15-

Factory Equipment Network Testing Framework:

Concept, Requirements, and Architecture

In the figure, the messages shown between the PM, Driver App, and DUT are not controlled by the FENT

Framework. They are shown for informational purposes, but are managed and designed by the PM

developer and the protocol specification.

all4 TNSd amm <]
3|14 aimde))4 A

A

11484n3depaa3]l

synsay Ae(dsiq 9 3|14 Hoday MM A

|41

synsaylaoday

——— — —

A

s)insay are|nofed A

Wsd azheuy <]

s1nsaylaoday

s3nsay

——— — =
azAjeuy

A

S}INsay

azAjeuy

—_——— — —

a1ajdwodisa)

3|14 ainde)d aym A

'z

11484an3depaaa]l

aanydepdols

—_——— — =
U013 03UuU0)aso|D

U0 1398UU0DBS0)

—_——— =

spuewWwo) paso|D uonIauuoD
24199dS-|090)0.1d
pue Nd uol93UU0D 8y} 8s0|D
uopPdUU0Y 8y} 8S0|D
UO13.08UU0D3SO D
UO1399UU0)3S0)
sabessay o109ds-1020101d
.
.
sabessay opoads-joo0l0.d 0 | e e e e e ——— — —— o —
f— — — — = uor32suuojuadp
uoi323uuoluado
||||||||||| -
spuewwo) pauadQ uondsuuod
ol199ds-|090301d
pue Ad slalaweled palisaq Y uondauuo e uado
I
slajaweled palisag yum uondauuo) e uado
uoi3o9auuojuado
uor3o8uuogyuado
aanydedyaels
isalyaels
STeysalm 1na 7 ddy 1sAg ; 7 Wd ; 7 1dv-von ; 7 sulbuz buniodsy : subug sisAfeuy ; 7 SINPON BunsaL ; 7 von ;

Figure 3 — Sequence Diagram for Online Testing with No StartCommunication Message

-16 -

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

5.3 Scenario: Offline Analysis of a Capture File

Another common way in which the FENT Framework will be used is to conduct offline analysis of
previously captured packets. It may not be possible to conduct online tests with all the equipment
necessary at the end-user’s facility. Offline analysis allows end-users to capture traffic in any way
possible and send it elsewhere to be analyzed at a later time. This capability is also useful for doing long-
term performance testing where a series of captures can be compared.

For this scenario, the architecture diagram can be revised and collapsed as shown in Figure 4. The driver
application and DUT are removed and Wireshark only reads from a previously captured file.

Analysis
Engine

Reporting
Engine

1 PSML File

Protocol PM

PM
Descriptor

v4

Capture File

Figure 4 — Revised Architecture Diagram for Offline Analysis of a Capture File

A sequence diagram of the messages between and actions performed by different modules and in the
FENT Framework is shown in Figure 5. This diagram is the same as that from the online sequence
diagram shown in Figure 3 with the online communications removed.

’ UCA ‘ ’ Testing Module ‘ ’ Analysis Engine H Reporting Engine ‘ ’ Wireshark ‘
StartTest : ' ' :

1 1
FilterCaptureFile !

g
D Filter Capture File
|

Write PSML File

FilterCaptureFile
TestComplete é————:—————:——___

Anal yze'Resu Its : :

1 n! |
1] !
i P Analyze PSML File
1 |
] 1

1 Calculate Results

Anal yzeAResu Its
e 1
| ReportResults 1
1 1 »
| | >

1 1

| ReportResults |

—_—— — — d —_— — — — e —_ —_ —_ —
| 1 1
| 1 1 1

|
|
| Write Report File & Display Results
I 1
1
1 1
I
| 1 1 [1

Figure 5 — Sequence Diagram for Offline Analysis of a Capture File

-17 -

Factory Equipment Network Testing Framework:
Concept, Requirements, and Architecture

6 References

[1]

[2]

[3]

[4]
[5]

Gilsinn, J., Johnson, F., “Test Tool for Industrial Ethernet Network Performance”, 55"
International Instrumentation Symposium, June 1-5, 2009, League City, TX.

Gilsinn, J., Johnson, F., “Testing, comparing industrial Ethernets”, InTech Magazine, August
2009, pp. 12-15.

Factory Equipment Network Testing Framework: Universal Client Application, Application
Programming Interface, NIST Technical Note 1754, September 2012.

Wireshark Network Protocol Analyzer, available at <http://www.wireshark.org>

Packet Summary Markup Language (PSML) Specification, available at
<http://www.nbee.org/doku.php?id=netpdl:psml_specification>

-18 -

http://www.wireshark.org/
http://www.nbee.org/doku.php?id=netpdl:psml_specification

	1 Introduction
	2 Purpose & Concept
	3 Testing Framework Requirements
	3.1 Overview
	3.2 Conformance, Interoperability, and Performance
	3.3 Performance Measurement
	3.3.1 Overview
	3.3.2 Latency
	3.3.3 Cyclic Jitter
	3.3.4 Bandwidth
	3.3.5 Physical Value
	3.3.6 Pass/Fail Criteria
	3.3.7 Test Conditions

	3.4 Conformance Measurement
	3.5 Code Modularity
	3.5.1 Overview
	3.5.2 Function Calls
	3.5.3 Program Execution
	3.5.4 Network Sockets

	3.6 Code Extensibility
	3.6.1 Overview
	3.6.2 Protocol Modules
	3.6.3 Testing Modules
	3.6.4 Analysis Engines

	3.7 Wireshark Interface

	4 Testing Framework Architecture
	4.1 Overview
	4.2 Universal Client Application
	4.2.1 General
	4.2.2 Testing Module
	4.2.3 Analysis Module
	4.2.4 Reporting Engine

	4.3 Personality Modules
	4.3.1 General Description
	4.3.2 PM Descriptor
	4.3.3 Driver Application

	4.4 UCA Application Programming Interface
	4.5 Wireshark

	5 Software Module Interactions
	5.1 Overview
	5.2 Scenario: Online Testing with No StartCommunication Message
	5.3 Scenario: Offline Analysis of a Capture File

	6 References

		Superintendent of Documents
	2022-04-07T12:13:10-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

