
NAT L INST. OF STAND & TECH R.l.C,

A111D3 TT7im;

Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
Technology Administration

National Institute of

Standards and
Technology

Nisr

NISI

PUBUCATIOIMS

I NIST Special Publication 500-207

The First Text REtrieval

Conference (TREC-1)

D. K. Harman

-QC-

100
.U57

500-207

1995

7he National Institute of Standards and Technology was established in 1988 by Congress to "assist

industry in the development of technology . . . needed to improve product quality, to modernize

manufacturing processes, to ensure product reliability . . . and to facilitate rapid commercialization ... of

products based on new scientific discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S.

industry's competitiveness; advance science and engineering; and improve public health, safety, and the

environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national

standards of measurement, and provide the means and methods for comparing standards used in science,

engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized

by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic

and applied research in the physical sciences and engineering and performs related services. The Institute

does generic and precompetitive work on new and advanced technologies. NIST's research facilities are

located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their

principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Technology Services
• Manufacturing Technology Centers Program

• Standards Services

• Technology Commercialization

• Measurement Services

• Technology Evaluation and Assessment

• Information Services

Electronics and Electrical Engineering
Laboratory
• Microelectronics

• Law Enforcement Standards

• Electricity

• Semiconductor Electronics

• Electromagnetic Fields'

• Electromagnetic Technology'

Chemical Science and Technology
Laboratory
• Biotechnology

• Chemical Engineering'

• Chemical Kinetics and Thermodynamics
• Inorganic Analytical Research
• Organic Analytical Research
• Process Measurements
• Surface and Microanalysis Science

• Thermophysics^

Physics Laboratory
• Electron and Optical Physics

• Atomic Physics

• Molecular Physics

• Radiometric Physics

• Quantum Metrology

• Ionizing Radiation

• Time and Frequency'
• Quantum Physics'

Manufacturing Engineering Laboratory
• Precision Engineering

• Automated Production Technology
• Robot Systems

• Factory Automation
• Fabrication Technology

Materials Science and Engineering
Laboratory
• Intelligent Processing of Materials

• Ceramics
• Materials Reliability'

• Polymers

• Metallurgy

• Reactor Radiation

Building and Fire Research Laboratory
• Structures

• Building Materials

• Building Environment
• Fire Science and Engineering

• Fire Measurement and Research

Computer Systems Laboratory
• Information Systems Engineering

• Systems and Software Technology

• Computer Security

• Systems and Network Architecture

• Advanced Systems

Computing and Applied Mathematics
Laboratory
• Applied and Computational Mathematics^

• Statistical Engineering^

• Scientific Computing Environments^

• Computer Services^

• Computer Systems and Communications^
• Information Systems

'At Boulder, CO 80303.

^Some elements at Boulder, CO 80303.

NIST Special Publication 500-207

The First Text REtrieval

Conference (TREC-1)

D. K. Harman, Editor

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

March 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

Raymond G. Kammer, Acting Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer

systems technology within the Federal government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and
related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 500 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and
academia.

National Institute of Standards and Technology Special Publication 500-207
Natl. Inst. Stand. Technol. Spec. Publ. 500-207, 513 pages (March 1993)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1993

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

Preface

This report constitutes the proceedings of the first Text REtrieval Conference (TREC-1) held in

Gaithersburg, Maryland, November 4-6, 1992. The conference was co-sponsored by the National Institute of

Standards and Technology (NIST) and the Defense Advanced Research Projects Agency (DARPA), and was

attended by 92 people involved in the 25 participating groups. The conference was the first in an on-going

series of workshops to evaluate new technologies in text retrieval.

The workshop included plenary sessions and six discussion groups. Because the participants in the

workshop drew on their personal experiences, they sometimes cited specific vendors and commercial products.

The inclusion or omission of a particular company or product does not imply either endorsement or criticism

by NIST.

The sponsorship of the Software and Intelligent Systems Technology Office of the Defense Advanced

Research Projects Agency is gratefully acknowledged, along with the tremendous work of the program

committee.

Donna Harman
February 20, 1993

TREC-1 Program Committee

Donna Harman, NIST, Chair

Ed Addison, ConQuest, Inc.

Chris Buckley, Cornell University

Darryl Howard, U.S. Department of Defense

David Lewis, AT&T Bell Labs

Jan Pedersen, Xerox Pare

John Prange, U.S. Department of Defense

Alan Smeaton, Dublin City University, Ireland

Richard Tong, Advanced Decision Systems

iii

TABLE OF CONTENTS

ABSTRACT.... viii

PAPERS

1. Overview of the First Text REtrieval Conference (TREC-1) 1

D. Harman (National Institute of Standards and Technology)

2. Okapi at TREC 21

S. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, M. Lau (City University, London)

3. Query Improvement in Information Retrieval Using Genetic Algorithms -

A Report on the Experiments of the TREC Project 31

J. Yang, R. Korfhage, E. Rasmussen (University of Pittsburgh)

4. Automatic Retrieval With Locality Information Using SMART 59

C. Buckley, G. Salton, J. Allan (Cornell University)

5. Probabilistic Retrieval in the TIPSTER Collections: An Application of Staged

Logistic Regression 73

W. Cooper, F. Gey, A. Chen (University of California, Berkeley)

6. Optimizing Document Indexing and Search Term Weighting Based on

Probabilistic Models 89

N. Fuhr, C. Buckley (Universitaet Dortmund)

7. TIPSTER Panel -- The University of Massachusetts TIPSTER Project 101

W. B. Croft (University of Massachusetts, Amherst)

8. TIPSTER Panel -- HNC's MatchPlus System 107

S. Gallant, R. Hecht-Nielson, W. Caid, K. Qing, J. Carleton, D. Sudbeck (HNC, Inc.)

9. TIPSTER Panel -- DR-LINK's Linguistic-Conceptual Approach to

Document Detection 113

E. Liddy, S. Myaeng (Syracuse University)

10. WORDIJ: A Word Pair Approach to Information Retrieval. 131

J. Danowski (University of Illinois at Chicago)

11. LSI meets TREC: A Status Report 137

S. Dumais (Bellcore)

12. Retrieval Experiments with a Large Collection using PIRCS 153

K. Kwok, L. Papadopoulos, K. Kwan (Queens College, CUNY)

13. Natural Language Processing in Large-Scale Text Retrieval Tasks 173

T. Strzalkowski (New York University)

V

14. OCLC Online Computer Library Center, Inc 189

R. Thompson (Online Computer Library Center, Inc.)

15. A Single Language Evaluation of a Multi-lingual Text Retrieval System 193

T. Dunning, M. Davis (New Mexico State University)

16. The QA System , 199

J. Driscoll, J. Lautenschlager, M. Zhao (University of Central Florida)

17. Classification Trees for Document Routing, A Report on the TREC Experiment 209

R. Tong, A. Winkler, P. Gage (Advanced Decision Systems)

18. Compression, Fast Indexing, and Structured Queries on a Gigabyte of Text 229

A. Kent, A. Moffat, R. Sacks-Davis, R. Wilkinson, J. Zobel

(CITRI, Royal Melbourne Institute of Technology)

19. Application of the Automatic Message Router to the TIPSTER Collection 245

R. Jones, S. Leung, D. L. Pape (Australian Computing and Communications Institute)

20. CLARIT TREC Design, Experiments, and Results 251

D. Evans, R. Lefferts, G. Grefenstette, S. Handerson, W. Hersh, A. Archbold

(Carnegie Mellon University)

21. Site Report for the Text REtrieval Conference 287

P. Nelson (ConQuest Software, Inc.)

22. A Boolean Approximation Method for Query Construction and Topic

Assignment in TREC 297

P. Jacobs, G. Krupka, L. Rau (GE Research and Development Center)

23. Text Retrieval with the TRW Fast Data Finder 309
M. Mettler (TRW Systems Development Division)

24. Combining Evidence from Multiple Searches 319
E. Fox, M. Koushik, J. Shaw, R. ModUn, D. Rao (VPI&SU)

25. Multilevel Ranking in Large Text Collections Using FAIRS 329
S-C. Chang, H. Dediu, H. Azzam, M-W. Du (GTE Laboratories)

26. Description of the PRC CEO Algorithm for TREC 337
P. Thompson (PRC, Inc.)

27. Vector Expansion in a Large Collection 343
E. Voorhees, Y-W. Hou (Siemens Corporate Research, Inc.)

28. Proximity-Correlation for Document Ranking:

The PARA Group's TREC Experiment 353
M. Zimmerman (PARA Group)

vi

REPORTS OF DISCUSSION GROUPS

1. Use of Natural Language Processing at TREC 365

2. Automatically Generating Adhoc and Routing Queries 367

3. Machine Learning and Relevance Feedback 369

4. Evaluation Issues 371

APPENDICES

A. TREC-1 Results 373

B. TIPSTER Panel Results 431

C. System Features 435

vii

Abstract

This report constitutes the proceedings of the first Text REtrieval Conference (TREC-1) held in

Gaithersburg, Maryland, November 4-6, 1992. The conference was co-sponsored by the National Institute of

Standards and Technology (NIST) and the Defense Advanced Research Projects Agency (DARPA), and was

attended by 92 people involved in the 25 participating groups.

The goal of the conference was to bring research groups together to discuss their work on a new large

test collection. There was a large variety of retrieval techniques reported on, including methods using

automatic thesauri, sophisticated term weighting, natural language techniques, relevance feedback, and

advanced pattern matching. Because results had been run through a common evaluation package, groups were

able to compare the effectiveness of different techniques, and discuss how differences among the systems

affected performance.

The conference included paper sessions and six discussions groups. This proceedings includes papers

from all participants, including the poster sessions, and papers from the panel, along with reports from some

of the discussions groups.

viii

Overview of the First Text REtrieval Conference (TREC-1)

Donna Harman
National Institute of Standards and Technology

Gaithersburg, Md. 20899

1. Introduction

There is a long history of experimentation in information retrieval. Research started with exj)eriments in

indexing languages, such as the Cranfield I tests (Cleverdon 1962), and has continued with over 30 years of

experimentation with the retrieval engines themselves. The Cranfield II studies (Cleverdon et al. 1966) showed
that automatic indexing was comparable to manual indexing, and this and the availability of computers created a

major interest in the automatic indexing and searching of texts. The Cranfield experiments also emphasized the

importance of creating test collections and using these for comparative evaluation. The Cranfield collection,

created in the late 1960's. contained 1400 documents and 225 queries, and has been heavily used by researchers

since then. Subsequently other collections have been built, such as the CACM collection (Fox 1983), and the

NPL collection (Sparck Jones & Webster 1979).

In the 30 or so years of experimentation there have been two missing elements. First, although some
research groups have used the same collections, there has been no concerted effort by groups to work with the

same data, use the same evaluation techniques, and generally compare results across systems. The importance

of this is not to show any system to be superior, but to allow comparison across a very wide variety of tech-

niques, much wider than only one research group would tackle. Karen Sparck Jones in 1981 commented that:

Yet the most striking feature of the test history of the past two decades is its lack of

consolidation. It is true that some very broad generalizations have been endorsed

by successive tests: for example...but there has been a real failure at the detailed

level to build one test on another. As a result there are no explanations for these

generalizations, and hence no means of knowing whether improved systems could

be designed (p. 245).

This consolidation is more likely if groups can compare results across the same data, using the same evaluation

method, and then meet to discuss openly how methods differ.

The second missing element, which has become critical in the last 10 years, is the lack of a realistically-

sized test collection. Evaluation using the small collections currently available may not reflect performance of

systems in large full-text searching, and certainly does not demonsu^te any proven abilities of these systems to

operate in real-world information retrieval environments. This is a major barrier to the transfer of these labora-

tory systems into the commercial world. Additionally some techniques such as the use of phrases and the con-

struction of automatic thesauri seem intuitively workable, but have repeatedly failed to show improvement in

performance using the small collections. Larger collections might demonstrate the effectiveness of these pro-

cedures.

The overall goal of the Text REtrieval Conference (TREC) was to address these two missing elements. It is

hoped that by providing a very large test collection, and encouraging interaction with other groups in a friendly

evaluation forum, a new thrust in information retrieval will occur. There is also an increased interest in this

field within the DARPA community, and TREC is designed to be a showcase of the state-of-the-art in retrieval

research. NIST's goal as co-sponsor of TREC is to encourage communication and technology transfer among

academia, industry, and government.

1

2. The Task

2.1 Introduction

TREC is designed to encourage research in information retrieval using large data collections. Two types of

retrieval are being examined -- retrieval using an "adhoc" query such as a researcher might use in a library

environment, and retrieval using a "routing" query such as a profile to filter some incoming document stream.

The TREC task is not tied to any given application, and is not concerned with interfaces or optimized response

time for searching. However it is helpful to have some potential user in mind when designing or testing a

retrieval system. The model for a user in TREC is a dedicated searcher, not a novice searcher, and the model

for the application is one needing monitoring of data streams for information on specific topics (routing), and the

ability to do adhoc searches on archived data for new topics. It should be assumed that the users need the abil-

ity to do both high precision and high recall searches, and are willing to look at many documents and repeatedly

modify queries in order to get high recall. Obviously they would like a system that makes this as easy as possi-

ble, but this ease should be reflected in TREC as added intelligence in the system rather than as special inter-

faces.

Since TREC has been designed to evaluate system performance both in a routing (filtering or profiling) mode,

and in an adhoc mode, both functions need to be tested. The test design was based on traditional information

retrieval models, and evaluation used traditional recall and precision measures. The following diagram of the

test design shows the various components of TREC (fig. 1).

Q1
Training

Queries

~1 Gigabyte
Training

Documents
(D1)

Q2
Routing

Queries

Q3
Ad-hoc
Queries

~1 Gigabyte
Test

Documents
(D2)

Figure 1. The TREC Task.

This diagram reflects the four data sets (2 sets of topics and 2 sets of documents) that were provided to partici-

pants. These data sets (along with a set of sample relevance judgments for the 50 training topics) were used to

2

construct three sets of queries. Ql is the set of queries (probably multiple sets) created to help in adjusting a

system to this task, to create better weighting algorithms, jind in general to train tlic system for testing. The

results of this research were used to create Q2, the routing queries to be used against the lest documcnis. Q3 is

the set of queries created from the test topics as adhoc queries for searching against the combined documents

(both training documents and test documents). The results from searches using Q2 and Q3 were the official test

results. The documents were full-length text from various sources such as newspapers, newswires, magazines

and journals (see sect. 3.2 for more details).

22 Specific Task Guidelines

The. various TREC participants used a wide variety of indexing/knowledge base building techniques, and a

wide variety of approaches to generate search queries. Therefore it was important to establish clear guidelines

for the TREC task and to develop some methods of standardized reporting to allow comparison. The guidelines

deal with the methods of indexing/knowledge base construction, and with the methods of generating the queries

from the supplied topics. In general they were constructed to reflect an actual operational environment, and to

allow as fair as possible a separation among the diverse query construction approaches.

There were guidelines for constructing and manipulating the system data structures. These structures were

defined to consist of the original documents, any new structures built automatically from the documents (such as

inverted files, thesauri, conceptual networks, etc.) and any new structures built manually from the documents

(such as thesauri, synonym lists, knowledge bases, rules, etc.). The following guidelines were provided to the

participants.

1. System data structures can be built using the initial training set (documents Dl, training topics, and

relevance judgments). They may be modified based on the test documents D2, but not based on the test

topics. In particular, the processing of one test topic should not affect the processing of another test topic.

For example, it would not be allowed to update a system knowledge base based on the analysis of one test

topic in such a way that the interpretation of subsequent test topics was changed in any fashion.

2. There are several parts of the Wall Street Journal and the Ziff material (see sect. 3.2) that contain manually

assigned controlled or uncontrolled index terms. These fields are delimited by SGML tags, as specified in

the documentation files included with the data. Other parts of the TREC data contain no manual indexing.

Since the primary focus of TREC is on retrieval and routing of naturally occurring text, these manually

indexed terms should not be indiscriminately used as if they are a normal part of the text. If your group

decides to use these terms, they should be part of a specific experiment that utiUzes manual indexing

terms, and their use should be declared.

3. Special care should be used in handling the routing topics. In a true routing situation, a single document

would be indexed and "passed" against the routing topics. Since most of you will be indexing the test

documents as a complete set, routing should be simulated by not using any lest document information (such

as IDF based on the test collection, total firequency based on the test collection, etc.) in the searching. It is

perfectly jiermissible to use training-set collection information however. If your system bases system data

structures on the entire test data and is unable to operate in a proper routing mode, then you should either

have a different method for handling routing, or only submit results for the adhoc part of TREC.

Additionally there were guidelines for constructing the queries from the provided topics (see sect. 3.3 for more

on the topics). These guidelines were considered of great importance for fair system comparison and were

therefore carefully constructed. Three generic categories were defined, based on the amount and kind of manual

intervention used.

1. Method 1 - completely automatic initial query construction.

adhoc queries ~ The system will automatically extract infonmation from the topic (the topic fields used

should be identified) to construct the query. The query will then be submitted to the system (with no

manual modifications) and the results from the system will be the results submitted to NIST. There should

be no manual intervention that would affect the results.

routing queries - The queries should be constructed automatically using the training topics, the training

relevance judgments and the training documents. The queries should then be submitted to NIST before the

3

test documents are released and should not be modified after that point. The unmodified queries should be

run against the test documents and the results submitted to NIST.

2. Method 2 — manual initial query construction.

adhoc queries — The query is constructed in some manner from the topic, either manually or using machine

assistance. The methods used should be identified, along with the human expertise (both domain expertise

and computer expertise) needed to construct a query. Once the query has been constructed, it will be sub-

mitted to the system (with no manual intervention), and the results from the system will be the results sub-

mitted to NIST. There should be no manual intervention after initial query construction that would affect

the results. (Manual intervention is covered by Method 3.)

routing queries — The queries should be constructed in the same manner as the adhoc queries for Method 2,

but using the training topics, relevance judgments, and training documents. They should then be submitted

to NIST before the test documents are released and should not be modified after that point. The

unmodified queries should be run against the test documents and the results submitted to NIST.

3. Method 3 — automatic or manual query construction with feedback.

adhoc queries — The initial query can be constructed using either Method 1 or Method 2. The particular

technique used should be described. The query is submitted to the system, and a subset of the retrieved

documents is used for manual feedback, i.e., a human makes judgments about the relevance of the docu-

ments in this subset These judgments may be communicated to the system, which may automatically

modify the query, or the human may simply choose to modify the query himself. In either case, the exper-

tise of the person or persons examining the documents should be described, both their domain expertise and

their experience in online searching, and the manner of system feedback (i.e., automatic system

modification of query or human modification) should be also described. At some point, feedback should

end, and the query should be accepted as final.

Three sets of results should be sent to NIST for each topic. The first set should be the results without feed-

back, i.e., the top 200 documents retrieved from an initial query produced without feedback, whether pro-

duced manually or automatically. This set should be exactly the same as the results from Method 1 or

Method 2, but should be submitted again as one part of Method 3. The second set should be the results

after only one iteration of feedback, with the top X documents used in the first iteration of feedback frozen.

For example, if you "used" the top 20 documents for feedback, then the second set of results should have

these documents as the top 20 documents, followed by the top 200 documents retrieved based on feedback.

The term "used" means all documents for which some information has been seen by the judger, and are

deemed by the system to have been seen. These two sets of results will be used by NIST to calculate a

residual evaluation measure. The third set of results should be a record of your feedback, i.e., a list of

documents in the exact order they were seen and judged, with an indication of iteration boundaries. For

example, if you ran six iterations of feedback, with 10 documents looked at for each iteration, the record

would be a list of the 60 documents seen by the "user", marked at 10, 20, 30, etc. You should also indicate

what information the user communicated to your system about each document (relevant/not relevant, too

general/too specific/on target, etc.). We will be specifying a format for these record files later. These files

will be used to calculate measures based on the total number of relevant documents retrieved both across

iterations and across a given document level.

routing queries — Method 3 cannot be used for routing queries because routing systems have typically not

supported feedback.

In general tliese guidelines served well, although there was some misunderstanding about what constituted feed-

back. The guidelines will be clarified for TREC-2.

4

23 The Participants

There were 25 participating systems in TREC-1, using a wide range of retrieval techniques. The participants

were able to choose from three levels of participation: Category A, full participation, Category B, full participa-

tion using a reduced dataset (25 topics and 1/4 of the full document set), and Category C for evaluation only (to

allow commercial systems to protect proprietary algorithms). The program committee selected only 20 category

A and B groups to present talks because of limited conference time, and requested that the rest of the groups

present posters. All groups were asked to submit papers for the proceedings.

Each group was provided the data, and asked to turn in either one or two sets of results for each topic.

When two sets of results were sent, they could be made using different methods of creating queries (Methods 1,

2, or 3), or by using different parameter settings for one query creation method. Groups could choose to do the

routing task, the adhoc task, or both, and were requested to submit the top 200 documents retrieved for each

topic for evaluation.

3. The Test Collection

3.1 Introduction

Critical to the success of TREC was the creation of the test collection. Like most traditional retrieval collec-

tions, there are three distinct parts to this collection. The first is the documents themselves - the training set

(Dl) and the test set (D2). Both were distributed as CD-ROMs with about 1 gigabyte of data each, compressed

to fit. The training topics, the test topics and the relevance judgments were supplied by email. TREC-1 used

the same test collection (documents and topics) used in the DARPA TIPSTER project. (The DARPA TIPSTER

project involves the same tasks as TREC, but with four contractors doing more intense research than is being

expected from TREC participants (Harman 1993)). However a major increase in the number of relevance judg-

ments for this collection became available from the TREC-1 evaluation.

The components of the test collection - the documents, the topics, and the relevance judgments, are dis-

cussed in the rest of this section.

3.2 The Documents

The documents came from the following sources.

. Disk 1

. WSJ ~ Wall Street Journal (1986, 1987, 1988, 1989)

. A? AP Newswire (1989)

• ZIFF -- Information from Computer Select disks (Ziff-Davis Publishing)

. PR -- Federal Register (1989)

• DOE ~ Short abstracts from the Department of Energy

. Disk 2

. WSJ - Wall Street Journal (1990, 1991, 1992)

. AP -- AP Newswire (1988)

• ZEFF - Information from Computer Select disks (Ziff-Davis Publishing)

• FR -- Federal Register (1988)

The particular sources were selected because they reflected the different types of documents used in the ima-

gined TREC application. Specifically they had a varied length, a varied writing style, a varied level of edit-

ing and a varied vocabulary. All participants were required to sign a detailed user agreement for the data in

order to protect the copyrighted source material.

5

The documents were uniformly formatted into an SGML-like structure, as can be seen in the following

example.

<DOC>
<DOCNO> WSJ880406-0090 </DOCNO>
<HL> AT&T Unveils Services to Upgrade Phone Networks Under Global Plan </HL>

<AUTHOR> Janet Guyon (WSJ StafQ <yAUTHOR>
<DATELINE> NEW YORK </DATELINE>
<TEXT>

American Telephone & Telegraph Co. introduced the first of a new generation

of phone services with broad implications for computer and communications

equipment markets.

AT&T said it is the first national long-distance carrier to announce prices

for specific services under a world-wide standardization plan to upgrade phone

networks. By announcing commercial services under the plan, which the industry

calls the Integrated Services Digital Network, AT&T will influence evolving

communications standards to its advantage, consultants said, just as

International Business Machines Corp. has created de facto computer standards

favoring its products.

<yTEXT>
</DOC>

All documents had beginning and end markers, and a unique E)OCNO id field. Additionally other fields

taken from the initial data appeared, but these varied widely across the different sources. The documents

also had different amounts of errors, which were not checked or corrected. Not only would this have been

an impossible task, but the errors in the data provided a better simulation of the real-world task. Errors in

missing document separators or bad document numbers were screened out, although a few were missed and

later reported by participants.

Table 1 shows some basic document collection statistics.

TABLE 1. DOCUMENT STATISTICS

Subset of collection WSJ AP ZIFF PR DOE
Size of collection

(megabytes)

(disk 1) 295 266 251 258 190

(disk 2) 255 248 188 211

Number of records

(disk 1) 98,736 84,930 75,180 26,207 226,087

(disk 2) 74,520 79,923 56,920 20,108

Median number of

terms per record

(disk 1) 182 353 181 313 82

(disk 2) 218 346 167 315

Average number of

terms per record

(disk 1)

(disk 2)

329

377

375

370

412

394

1017

1073

89

Note that although the collection sizes are roughly equivalent in megabytes, there is a range of document

lengths from very short documents (DOE) to very long (FR). Also the range of document lengths within a col-

lection varies. For example, the documents from AP are similar in length (the median and the average length

6

are very close), but the WSJ and ZIFF documents have a wider range of lengths. The documents from the

Federal Register (FR) have a very wide range of lengths.

The distribution of terms in these subsets show interesting variations. Table 2 shows some term distribution

statistics found using a small stopword list of 25 terms and no stemming. For example the AP has more unique

terms than the others, probably reflecting both more proper names and more spelling errors. The DOE collec-

tion, while very small, is highly technical and has many domains, resulting in many specific technical terms.

TABLE 2. DICTIONARY STATISTICS

Subset of collection WSJ AP ZIFF FR DOE
Total number of

unique terms

(disk 1) 156,298 197,608 173,501 126,258 186.225

(disk 2) 153,725 186,500 147,405 116.586

Occurring once

(disk 1) 64.656 89,627 85.992 58,677 95,782

(disk 2) 64,844 83,019 72,053 54,823

Occurring more > 1

(disk 1) 91,642 107,981 87,509 67,581 90,443

(disk 2) 88,881 103,481 75,352 61,763

Average number of

occurrences > 1

(disk 1) 199 174 165 106 159

(disk 2) 178 169 139 91

How does this document set compare with the older collections? Table 3 shows a comparison of these col-

lections with the Cranfield 1400 collection mentioned earlier. Not only has the size of the document collection

increased by a factor of about 200, but the average length of the documents has at least doubled, and in some

cases (FR), increased by a factor of 10. Also, the dictionary sizes have increased by a factor of 20.

TABLE 3. COMPARISON TO OLDER COLLECTIONS

Subset of collection

Size of collection

(megabytes) 295 266 251 258 1.5

Number of records 98,736 84,930 75,180 26,207 1400

Median number of

terms per record 182 353 181 313 79

Average number of

terms per record 329 375 412 1017 88

Total number of

unique terms 156,298 197,608 173,501 126,258 8226

What does this mean to the TREC task? First, a major portion of the effort for TREC-1 was spent in the

system engineering necessary to handle the huge number of documents. This means that little time was left for

system tuning or experimental runs, and therefore the TREC-1 results can best be viewed as a baseline for later

research. The longer documents also required major adjustments to the algorithms themselves (or loss of perfor-

mance). This is particularly true for the very long documents in FR. Since a relevant document might contain

only one or two relevant sentences, many algorithms needed adjustment from working with the abstract length

documents found in the old collections. Additionally many documents were composite stories, with different

topics, and this caused problems for most algorithms.

7

33 The Topics

In designing the TREC (and TIPSTER) tasks, there was a conscious decision made to provide "user need"

statements rather than more traditional queries. Two major issues were involved in this decision. First there

was a desire to allow a wide range of query construction methods by keeping the topic (the need statement) dis-

tinct from the query (the actual text submitted to the system). The second issue was the ability to increase the

amount of information available about each topic, in particular to include with each topic a clear statement of

what criteria make a document relevant

The topics were designed to mimic a real user's need, and were written by people who are actual users of a

retrieval system. Although the subject domain of the topics was diverse, some consideration was given to the

documents to be searched. The topics were constructed by doing trial retrievals against a sample of the docu-

ment set, and then those topics that had roughly 25 to 100 hits in that sample were used. Tliis created a range

of broader and narrower topics.

The following is one of the topics used in TREC.

<top>

<head> Tipster Topic Description

<num> Number: 066

<dom> Domain: Science and Technology

<title> Topic: Natural Language Processing

<desc> Description:

Document will identify a type of natural language processing technology which

is being developed or marketed in the U.S.

<nan> Narrative:

A relevant document will identify a company or institution developing or

marketing a natural language processing technology, identify the technology,

and identify one or more features of the company's product.

<con> Concept(s):

1 . natural language processing

2. translation, language, dictionary, font

3. software applications

<fac> Factor(s):

<nat> Nationality: U.S.

</fac>

<def> Definition(s):

</top>

Each topic was formatted in the same standard method to allow easier automatic construction of queries.

Besides a beginning and an end marker, each topic had a number, a short tide, and a one-sentence description.

There was a narrative section which was aimed at providing a complete description of document relevance for

the assessors. Each topic also had a concepts section with a list of assorted concepts related to the topic. This

section was designed to provide a mini-knowledge base about a topic such as a real searcher might possess.

Additionally each topic could have a definitions section and/or a factors section. The definition section had one

or two of the definitions critical to a human understanding of the topic. The factors section was included to

allow easier automatic query building by listing specific items from the narrative that constrain the documents

that are relevant. Two particular factors were used in the TREC- 1 topics: a time factor (current, before a given

date, etc.) and a nationality factor (either involving only certain countries or excluding certain countries).

While the TREC topics did not present a problem in scaling, the challenge of either automatically construct-

ing a query, or manually constructing a query with little foreknowledge of its searching capability, was a major

challenge for TREC participants. In addition to filtering the relatively large amount of information provided in

the topics into queries, the sometimes narrow definition of relevance as stated in the narrative was difficult for

8

most systems to handle. The two narratives shown below illustrate this point.

<num> Number: 051

A relevant document will cite or discuss assistance to Airbus Industrie by the French, German, British

or Spanish govemment(s), or will discuss a trade dispute between Airbus or the European governments

and a U.S. aircraft producer, most likely Boeing Co. or McDonnell Douglas Corp., or the U.S. govern-

ment, over federal subsidies to Airbus.

<num> Number: 058

A relevant document will either repOTt an impending rail strike, describing the conditions which may
lead to a strike, or will provide an update on an ongoing strike. To be relevant, the document will

identify the location of the strike or potential strike. For an impending strike, the document will report

the status of negotiations, contract talks, etc. to enable an assessment of the probability of a strike. For

an ongoing strike, the document will report the length of the strike to the current date and the status of

negotiations or mediation.

In a preliminary analysis, the narratives and the factors played a strange and unpredictable role in the results

for TREC-1. Systems did as well on topics with very restrictive narratives, such as that of topic 58, as on topics

with non-restrictive narratives, such as topic 51. The subject and terms in the entire topic were more important

in determining success than the restrictiveness of the narrative. The factors also did not play a major role in

system performance. This could change in TREC-2 when groups have more time to adjust their systems to the

TREC task.

3.4 The Relevance Judgments

The relevance judgments are of critical importance to a test collection. For each topic it is necessary to

compile a list of relevant documents; hopefully as comprehensive a list as possible. For the TREC task, three

possible methods for finding the relevant documents could have been used. In the first method, full relevance

judgments could have been made on all 742,611 documents, for each topic, resulting in over 74 million judg-

ments. This was clearly impossible. As a second approach, a random sample of the documents could have been

taken, with relevance judgments done on that sample only. The problem with this approach is that a random

sample that is large enough to find on the order of 200 relevant documents per topic is a very large random

sample, and is likely to result in insufficient relevance judgments. The third method, the one used in TREC,

was to make relevance judgments on the sample of documents selected by the various participating systems.

This method is known as the pooling method, and has been used successfully in creating other collections. It

was the recommended method in 1975 proposal to the British Library to build a very large test collection

(Sparck Jones & van Rijsbergen).

To construct the pool, the following was done.

1. Divide each set of results into results for a given topic

2. For each topic within a set of results, select the top 200 ranked documents for input to the pool

3. For each topic, merge results from all systems

4. For each topic, sort results based on document numbers

5. For each topic, remove duplicate documents

Poohng proved to be an effective method. There was little overiap among the 25 systems in their retrieved

documents. Table 4 shows the overlap statistics. The first overlap statistics are for the adhoc topics (test topics

against both training documents Dl and test documents D2), and the second statistics are for the routing topics

(training topics against test documents D2 only).

9

TABLE 4. OVERLAP OF SUBMITTED RESULTS

Top 200

Possible

Top 200

Actual

Top 100

Possible

Top 100

Actual

Average Number of Unique

Documents Per Topic

(Adhoc, 33 runs, 16 groups)

6600 2398.4 3300 1278.86

Average Number of Unique

Documents Per Topic

(Routing, 22 runs, 16 groups)

4400 1932.42 2200 1066.86

For example, out of a maximum of 6600 unique documents (33 groups times 200 documents), over one-third

were actually unique. The top 100 documents retrieved contained about the same percentage of unique docu-

ments. This means that the different systems were finding different documents as likely relevant documents for

a topic. Whereas this might be expected (and indeed has been shown to occur, Katzer et. al. 1982) from widely

differing systems, these overlaps were often between two runs for a given system, or between two systems run

on the same basic retrieval engine. One reason for the lack of overlap is the very large number of documents

that contain many of the same keywords as the relevant documents, but probably a larger reason is the very

different sets of keywords in the constructed queries (this needs further analysis). This lack of overlap should

improve the coverage of the relevance set, and verifies the use of the pooling methodology to produce the sam-

ple.

The merged list of results was then shown to the human assessors. Only the top 100 documents were

judged, resulting in an average of 1462.24 documents judged for each topic, and ranging from a high of 2893

for topic 74 to a low of 61 1 for topic 46. Each topic was judged by a single assessor to insure the best con-

sistency of judgment and varying numbers of documents were judged relevant to the topics. Figure 3 shows the

number of documents judged relevant for each of the 100 topics. The topics are sorted by the number of

relevant documents to better show their range and median.

Number of Relevant by Topic

Topics

Figure 3. Number of Relevant Documents on a Per Topic Basis.

10

4. Evaluation

4.1 Existing Evaluation Methodology

An important element of TREC was to provide a common evaluation forum. Standard recall/precision

figures were calculated for each system and the tables and graphs for the results are presented in Appendix A.

Figure 4 shows a typical recall/precision curve for illustration purposes. The x axis plots the recall values at

fixed levels of recall, where

Recall = number of relevant items retrieved

total number of relevant items in collection

The y axis plots the average precision values at those given recall values, where precision is calculated by

Precision - ^"^^^ items retrieved

total number of items retrieved

Illustration of Recall-Precision Curve

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall

Figure 4. A Sample Recall/Precision Curve.

There is a standard table and graph in Appendix A for each run for each system, with the runs identified by their

unique tags. A map for matching the tags to the systems is also provided. Note that the tables for the TIP-

STER panel are in Appendix B as the results are not directly comparable to the TREC results. The tables show

some total statistics for each run, plus both the recall-level and document-level recall/precision averages.

A second type of information about each system is shown in Appendix C. These standardized forms

describe system features and system timing, and allow some primitive comparison of the amount of effort

needed to produce the results.

11

4.2 Problems with Evaluation

Since this was the first time that such a large collection of text has been used in evaluation, there were some
problems using the existing methods of evaluation. First, groups were asked to send in only the top 200 docu-

ments retrieved by their systems. This artificial document cutoff is relatively low and systems did not retrieve

all the relevant documents for most topics within the cutoff. All documents retrieved beyond the 200 were con-

sidered nonrelevant by default and therefore the recall/precision curves become inacciu^ate after about 40% recall

on average. Table 5 shows a comparison of one system using no threshold (so relevant documents found

beyond the 200 limit are mariced as relevant) versus using the 200 document threshold.

TABLE 5. COMPARISON OF TABLES FROM TIPSTER

Full Ranking Top 200 Ranking

Recall Precision Precision

0.0 0.821 0.8208

0.1 0.672 0.6710

0.2 0.581 0.5759

0.3 0.528 0.5030

0.4 0.472 0.3819

0.5 0.424 0.2999

0.6 0.368 0.1773

0.7 0.315 0.1075

0.8 0.244 0.0487

0.9 0.154 0.0117

1.0 0.039 0.0000

11 pt. average 0.421 0.3271

Recall Precision Recall Precision

0.25 0.559 0.20 0.5759

0.50 0.424 0.50 0.2999

0.75 0.280 0.80 0.0487

3 pt. average 0.421 0.3082

It can be seen from these tables that not only are the recall-level statistics beyond about 40% recall inaccurate,

but both the 11 pL and the 3 pt. averages based on this table are also inaccurate. Since all systems were com-

pared using the same measures, this problem is not serious in terms of comparing methods within TREC-1.

However, it could be improved by lowering the threshold, and TREC-2 will be run such that at least the top 500

documents are used for evaluation.

A related problem occurred because some systems in TREC-1 woriced on a variable thresholding system,

with that threshold set for each topic. Documents not matching sufficient system criteria were rejected, even if

fewer than 200 were returned. Sometimes as few as 10 documents were sent as results, and the evaluation

method again assumed all documents beyond the 10 were not relevant. This hurt performance for these systems

badly in some cases and the individual system papers discuss this. The plans for TREC-2 are to include some

additional thresholding tests, so that these systems can evaluate how their thresholding performs and evaluate the

standard ranking as done by other systems.

The third problem was more general in nature. The current recall/precision measures do not include any

indication of the collection size. This means that the recall and precision of a system based on a 1400 docu-

ment collection could be the same as that of a system based on a million document collection, but obviously the

discrimation powers on a million document collection would be much greater. This may not have been a prob-

lem on the smaller collections, but the discrimation power of systems on TREC-sized collections is very impor-

tant. Clearly some new evaluation measures are needed for this.

One new measure being tried in TREC-1 is the ROC (Relative Operating Characteristic) curves used in sig-

nal processing. These curves are similar to the recall/precision curves, but allow the total size of the collection

to influence performance. The two variables being used here are the probability of detection or probability of a

12

"hit" versus the probability of false alarm, or the probability of a "false drop". The x axis plots the probability

of false alarm, calculated as follows

Probability of false alarm = of nonrelevant items reirie.ed

total number of nonrelevant items in collection

The y axis plots the probability of detection, calculated as

D u u-i-^ r J . . number of relevant items retrieved
Probability of detection =

total number of relevant items in collection

Note that the probability of detection is the same as recall, and the probability of false alarm is the same as fal-

lout, an older measure in information retrieval (Salton & McGill 1983). These measures are for a single topic,

but averages can be computed similarly to the recall-level averages by using probability of detection at fixed

false alarm rates. The tables in Appendix A show both this average ROC curve and the same curve ploued on

probability scales (Swets 1969).

5. Preliminary Results

5.1 Introduction

The results of the TREC-1 conference should be viewed only as a preliminary baseline for what can be

expected from systems working with large test collections. There are several reasons for this. First, the dead-

lines for results were very tight, and most groups had minimal time for experiments. As discussed earUer, the

huge scale-up in the size of the document collection required major work from all groups in rebuilding their sys-

tems. Much of this work was simply a system engineering task: finding reasonable data structures to use, get-

ting indexing routines to be efficient enough to finish indexing the data, finding enough storage to handle the

large inverted files and other structures, etc.

The second reason these results are preliminary is that groups were working blindly as to what constitutes a

relevant document. There were no reliable relevance judgments for training, and the use of the long topics was

completely new. This means that results were heavily influenced by an almost random selection of what parts

of the topic to use. Groups also had to make often primitive adjustments to basic algorithms in order to get

results, with little evidence of how well these adjustments were working. The large scale of the whole evalua-

tion precluded any tuning without some relevance judgments, and the relevance judgments that were provided

were generally sparse and sometimes inaccurate. These problems particularly affected those systems that needed

training for routing.

Many of the papers in the proceedings show some new results from work done in the short amount of time

between the conference and the due date of the papers (less than 2 months). Some of the improvements are

very significant, and the improvements seen in the TIPSTER results (where the results are a second-try at this

task) are large. It can be expected that the results seen at the second TREC conference will be much beuer, and

also more indicative of how well a method works.

Because these results are preliminary, they should be compared very carefully. Some very broad conclusions

can be drawn, but no methods should be conclusively judged inferior or superior at this point.

5.2 Adhoc Results

The adhoc evaluation used new topics (51-100) against the two disks of documents (Dl + D2). There were

33 sets of results for adhoc evaluation in TREC, with 20 of them based on runs for the full data set. Of these,

13 used automatic construction of queries, 6 used manual construction, and 1 used feedback. Figure 5 shows the

recall/precision curve for the three TREC-1 runs with the highest 11 -point averages using automatic construction

of queries. These curves were all based on the use of the Cornell SMART system, but with important varia-

tions. The "fuhrpl" results came from using the training data to find parameter weights (see Fuhr & Buckley

paper), the "cmlpl" results came from doing local and global term weighting without training data (see Buckley,

Salton & Allan paper), and the "siemsl" results came from using term expansion with terms from "Wordnet"

(see Voorhees & Hou paper).

13

Best Automatic Adhoc
0.9

I

,

0.8 -

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall

-^fuhrpl _,_crnlpl _^siemsl

Figure 5. The Best Adhoc Results using Automatic Query Construction.

Figure 6 shows the recall/precision curve for the three TREC-1 runs with the highest 11 -point averages using

manual construction of queries. It should be noted that varying amounts of manual intervention were used, and

this should be considered when comparing results. These curves show differences in that the "clartb" and

"gecrd2" have initially a high precision, but lose this precision as recall increases, whereas the "cnqst2" method

has a lower initial precision, but higher precision at the higher recall levels. This may be a function of the very

different methods being used. The "clartb" system adds noun phrases found in likely relevant documents to

improve the query terms taken from the topic (see Evans paper), whereas the "cnqst2" system uses more general

thesaurus entries to expand the query (see Nelson paper). The "gecrd2" system uses a totally different approach

of constructing elaborate Boolean pattern matchers (see Jacobs, Krupka & Rau paper).

Best Manual Adhoc

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall

__ cnqst2 clartb ^ gecrd2

Figure 6. The Best Adhoc Results using Manual Query Construction.

14

It is useful to contrast the three methods of query consu-uction. Figure 7 shows a comparison of five sets of

results, two from automatic query construction, two using manual query construction, and the one relevance

feedback run. It should be noted that there is relatively little dilTcrcncc between the results from automatic

query construction versus manual query construction, although the relevance feedback results (citym2) were poor

in this case. Figure 8 shows a histogram of the same information, but for all adhoc systems working with the

full data set. In general it shows that the automatic query construction seems to work well for many systems,

and that certainly it can be concluded that for TREC-1 the automatic construction of queries was as effective as

the manual construction.

Adhoc Manual vs Automatic
1

I ,

, 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall

fuhrpl _»_cmlpl _4_ cnqst2 _e- clartb citym2

Figure 7. A Comparison of Adhoc Results using Different Query Construction Methods.

Adhoc -- All Category A Systems

0.25,
'

1

i Automatic Manual

Figure 8. A Comparison of Adhoc Results using Automatic and Manual Query Construction.

15

Figure 9 shows the comparison of automatic and manual query construction on a per topic basis. It is interest-

ing to note that, for the two systems shown, most topics show equal performance in terms of the percentage of

relevant documents retrieved by 100 documents. Some topics, like topic 51, show much better manual perfor-

mance, whereas other topics, like topic 69 show better automatic performance. This is somewhat different

results from earlier comparisons of Boolean systems (usually manual indexing and manual query construction)

versus the automatic systems such as the SMART system. In the Medlars study (Sallon 1969) the manual

(Boolean) systems seemed to do either very well or very poorly, whereas the automatic systems produced con-

sistent "medium" results. The difference in the TREC task is likely that the topics are very long and complex,

and sometimes are easy to express manually, but sometimes very difficult, whereas the automatic construction is

hampered by the existence of difficult narratives. This is only a hypothesis and needs further investigation.

Adhoc Manual vs Automatic by Topic

51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100

fuhrpl i cnqst2

Figure 9. Adhoc Results using Automatic and Manual Query Construction.

on a Per Topic Basis

There were also some category B results for adhoc, and the best of these are shown in Figure 10, with results

from the Cornell system run as a category B run to show some comparison. There is a wide spread in the

curves here, with widely differing systems being shown. The "pircs4" results represent a very successful

relevance feedback method, with the "pircsl" being an automatic query construction using the same system (see

Kwok, Padadopoulos & Kwan paper). The "nyuirl" results come from a system using natural language tech-

niques (see Strzalkowski paper).

16

Adhoc - Category B

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Recall

cmlB _^ pircsl pircs4 _s_nyuirl

Figure 10. Adhoc Results for Category B.

S3 Routing Results

There were 22 sets of results for routing evaluation, with 16 of them based on runs for the full data set

Note that all routing techniques suffered from the lack of sufficient and accurate training data, and therefore

these results are even more preliminary than the adhoc results. Of the 16 systems using the full data set, 8 used

automatic construction of queries, and 8 used manual construction. Figure 11 shows the recall/precision curve

for the three TREC-1 runs with the highest 11 -point averages using automatic construction of queries. Two of

the curves, based on the use of the Cornell SMART system, show very different results. The "fuhra2" results

came from using a probabilistically-based relevance feedback (see Fuhr & Buckley paper), whereas the "cmla2"

results came from doing traditional relevance feedback methods using the vector space model (see Buckley, Sal-

ton & Allan paper). The "cityrl" results also came from using traditional relevance feedback, but using a

different probabilistic model and term weighting (see Robertson, Walker, Hancock-Beaulieu, Gull & Lau paper).

The "cpgcn2" system used filtering methods rather than more traditional information retrieval methods to

achieve results similar to the feedback results (see Jones, Leung, and Pape paper).

Best Automatic Routing

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall

fuhra2 _^ cmla2 ^ cityrl _e- cpgcn2

Figure 11. The Best Routing Results using Automatic Query Construction.

17

Figure 12 shows the recall/precision curve for the three TREC-1 runs with the highest 11-point averages

using manual construction of queries. The systems used manually-built filters, with the "clartb" and "gecrd2"

results done similarly to their corresponding adhoc systems, but using the sample relevant documents as input to

the filler-building process. The "parazl" system used manually-constructed filters based on clusters of interest-

ing terms (see Zimmerman paper). The "cpghc2" group hand-crafted these queries as a contrast to their

automatic pattern filtering methods (see Jones, Leung & Pape).

Best Manual Routing
1

I

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall

, parazl _»_gecrdl gecrd2 _s_ trwl

Figure 12. The Best Routing Results using Manual Query Construction.

Again it is useful to contrast the methods of query construction. Figure 13 shows a comparison of four sets of

results, two fi"om automatic query construction and two using manual query construction. Here, unlike the

adhoc results, the automatic query building seems to be clearly superior, with the "fuhrl" results having higher

performance throughout the significant part of the recall/precision curve.

Routing Manual vs Automatic
1

I

'

0.00 O.IO 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall

, fuhrl cmla2 parazl _e_gecrd2

Figure 13. A Comparison of Routing Results using Different Query Construction Methods.

18

There were also some category B results for routing, and the best of these are shown in Figure 14. Again
there is a much wider spread in the curves here, and widely differing systems being shown. The "pircsl" and
"pircs2" results are correspondingly automatic and manually constructed queries using relevance fcalback learn-

ing from the training sample (see Kwok, Padadopoulos & Kwan paper). The "fairsl" system uses a combinauon
of different term weighting methods (see Chang, Dediu, Assam & Du paper). The "nyuirl" results come from a
system using natural languages techniques and probably reflect the short amount of time available to consunci
this very complicated system (see Strzalkowski paper).

Routing -- Category B

Figure 14. Routing Results for Category B.

5.4 Summary

The TREC-1 conference demonstrated a wide range of different approaches to the retrieval of text from large

document collections. Because of the preliminary nature of the results, very little can be said about which tech-

niques seem to perform the best. It was clear that the simple systems did the task well, but it is too early to

pass judgment on the more complicated systems. The automatic construction of queries from the topics did as

well as, or better than, manual construction of queries, and this is encouraging for groups supporting the use of

simple natiual language interfaces for retrieval systems.

There will be a second TREC conference in 1993, and all the systems that participated in TREC-1 will be

back, along with additional groups. The results from this second conference should better identify the more

promising retrieval techniques.

REFERENCES

Cleverdon C.W., (1962). Report on the Testing and Analysis of an Investigation into the Comparative Efficiency

of Indexing Systems. College of Aeronautics, Cranfield, England, 1962.

19

Cleverdon C.W., Mills, J. and Keen E.M. (1966). Factors Determining the Performance of Indexing Systems,

Vol. 1: Design, Vol. 2: Test Results. Aslib Cranfield Research Project, Cranfieid, England, 1966.

Harman D. (1993). The DARPA TIPSTER Project. SIGIR Forum, 26(2), 26-28.

Katzer J., McGill MJ., Tessier J.A., Frakes W., and DasGupta P. (1982). A Study of the Overlap among Docu-

ment Representations. Information Technology: Research and Development, 1(2), 261-274.

Fox E. (1983). Characteristics of Two New Experimental Collections in Computer and Information Science Con-

taining Textual and Bibliographic Concepts. Technical Report TR 83-561, Cornell University: Computing Sci-

ence Department.

Salton G. (1969). A Comparison Between Manual and Automatic Indexing Methods. American Documentation,

20(1).

Salton G. and McGill M. (1983). Introduction to Modern Information Retrieval. New York, NY.: McGraw-Hill.

Sparck Jones K. (1981). Information Retrieval Experiment. London, England: Butterworths.

Sparck Jones K. and Van Rijsbergen C. (1975). Report on the Need for and Provision of an "Ideal" Information

Retrieval Test Collection, British Library Research and Development Report 5266, Computer Laboratory,

University of Cambridge.

Sparck Jones K. and Webster (1979). Research in Relevance Weighting, British Library Research and Develop-

ment Report 5553, Computer Laboratory, University of Cambridge.

Swets J. (1969). Effectiveness of Information Retrieval Methods. American Documentation, 20(1).

20

Okapi at TREC

Stephen E. Robertson, Stephen Walker,
Micheline Hancock-Beaulieu, Aarron Gull, Marianna Lau

Centre for Interactive Systems Research

Department of Information Science

City University

Northampton Square

London EC1V0HB,UK

Advisers: Karen Sparck Jones (University of Cambridge); Peter Willett (University of Sheffield);

E. Michael Keen (University of Wales).

Abstract: The Okapi retrieval system is

described, technically and in terms of its design

principles. These include simplicity, robustness

and ease of use. The version of Okapi used for

TREC is further discussed. Designing

experiments within the TREC constraints but

using Okapi's supposed strengths proved
problematic, and some compromise was
necessary. The official TREC runs were (a) very

simple automatic processing of the ad-hoc topics;

(b) manually constructed ad-hoc queries; (c)

feedback on the manual queries from searchers'

relevance judgements; and (d) routing queries

automatically obtained using the training set in a

form of relevance feedback. The best run

(manual with feedback), although not up to the

best reported TREC results, was respectable, and

an encouragement to further development within

the same principles.

1. Introduction

Okapi is an experimental text retrieval system,

designed to use simple, robust techniques

internally and to present a user interface which

requires no training and no knowledge of

searching methods or techniques. It is presently

accessible by academic users at City University,

with the library catalogue and a scientific

abstracts journal as databases. It is used for

experimentation with and evaluation of novel

retrieval techniques.

A design principle of Okapi is that simple

techniques, without Boolean logic but with best-

match searching, and with little in the way of a

manually constructed knowledge base, can give

effective and efficient retrieval. 'Simple' also

implies minimum effort, either manual or

machine, either at the set-up stage or at input or at

search time. In particular, relevance feedback

(which requires little or no additional user effort,

since users must make such judgements anyway),

provides a mechanism whereby an initial query

formulated with no great effort can be improved.

Such a search process might be regarded as

having something of the character of browsing: an

exploration of a topic rather than a precise

specification.

In some respects (e.g. highly elaborate topic

specifications; no evaluation of interactive

systems) TREC does not at all represent the kind

of retrieval activities for which Okapi was
designed. However, our approach to TREC has

been to try to arrive at some compromise between

the aims of Okapi and those of TREC. The
resulting performance was not spectacular, but

was (we believe) respectable enough to encourage

us to pursue the ideas further.

2. Background: the Okapi project

The following is a description of Okapi as it

existed before the start of TREC-related work
("interactive Okapi"). Section 3 discusses some

21

changes which happened concurrently with, and

were necessary for, the TREC work.

Okapi is a family of bibliographic retrieval

systems, developed under a series of grants from

the British Library. It is suitable for searching

files of records whose fields contain textual data

of variable length up to a few tens of thousands of

characters. It allows the implementation of a

variety of search techniques based on the

probabilistic retrieval model, with easy-to-use

interfaces, on databases of operational size and

under operational conditions (Walker, 1989;

Walker & De Vere, 1990; Walker & Hancock-
Beaulieu, 1991; Hancock-Beaulieu & Walker,

1992).

The main purpose of the Okapi installation at City

is to allow the use of a variety of evaluation

methods, including live-user evaluation in the

context of user information-seeking behaviour.

2.1 Search techniques

The interactive Okapi system uses probabilistic

"best match" searching, and can handle queries of

up to 32 terms. (There is no Boolean search

facility in interactive Okapi - but see 3.2 below
concerning the development system.) Search

terms may be keywords or phrases, or any other

record component which has been indexed, and
are extracted automatically by very simple

"parsing" of an initial natural language query.

Search terms are assigned weights, based on
inverse document frequency in the absence of

relevance information and on the F4 formula

given in Robertson & Sparck Jones (1976) when
relevance information is available. The match
function is a simple sum-of-weights. There are

facilities for "adjusting" the weighting to favour

(for example) terms occurring in specified fields.

There is also a limited alphabetical browsing
facility (of records in index term order).

The F4 formula, point-5 version, is:

(r+0.5) (N-R-n+r+0 . 5)
w = log

(R-r+0.5) (n-r+0.5)

where n = collection size

n = number of postings of term

R = total known relevant documents
r = number of these posted to the term

The inverse document frequency (IDF) weight is

F4 with R=r=o, i.e.

w = log (N-n+0 . 5) / (n+0 . 5)

2.2 Relevance feedback and query expansion

The system can invite relevance judgments from
the user, and following one or more positive

relevance assessments it can perform an
"expanded" search, using the original query terms

together with additional terms extracted

automatically from the relevant records. This

procedure can be iterated.

2.3 Language processing

Very simple text and linguistic processing is

applied during indexing and searching.

There are two levels of automatic stemming, and
a mainly rule-based procedure for conflating

British and American spelhngs.

There are faciUties for constructing and using a

simple linguistic knowledge base containing "go"

phrases, classes of terms to be treated as

synonymous, prefixes, stopwords and phrases,

and "semi-stopwords" — words and phrases to be
treated as relatively unimportant in processing a

query.

2.4 Usage

The interactive system is intended for highly

interactive use by untrained users.

2.5 Logging

The system can produce detailed logs of both user

and system activity, down to keystroke level and
sub-second granularity.

2.6 Present use and status

The present use of Okapi is primarily as a tool for

the evaluation of highly interactive bibliographic

search systems with untrained users. It is also to

be used in an investigation of the use of linguistic

knowledge structures (e.g. thesauri) in text

retrieval systems.

The system is not commercially available. It is not

finished, maintained or documented to

commercial standards. It is, however, designed

for live use, and there has, over the years, been a

22

considerable amount of use under live conditions.

It is a set of functions from which experienced

designers and programmers can construct retrieval

systems, rather than a finished "product".

3. Concurrent developments

3.1 Towards a distributed system

This development reflects a long-standing plan

for the Okapi project, but was brought forward to

facilitate work on the TREC database.

Okapi has been split into a Basic Search System
(BSS) and a number of front-end systems. The
BSS is essentially a database engine offering

basic text retrieval functionality, extended in

various ways to allow weighting, ranking and
relevance feedback etc. Although the front-end

systems at present reside on the same machine,

the dialogue between the front-end and the BSS is

roughly comparable to that which might take

place using the Z39.50 or Search & Retrieve

protocols. It concerns mainly specifications for

and descriptions of search sets, and involves

actual records only at the time of display.

All automatic searching for the TREC project

involved purpose-written front-ends to the BSS.
A further front-end was developed for manual
searching. This was designed to include most of

the functionality of the old interactive version of

Okapi, but not to emulate its user interface; it is

command-driven.

3.2 Mixing Boolean and weighted searching

One characteristic of the BSS needs explaining.

The BSS is capable of conducting Boolean
searches as well as weighted (best match)

searches. Furthermore, any Boolean expression

(resulting in an undifferentiated search set) can be

treated as if it were a single term in the weighted

searching model. This is compatible with the

approach taken in the Cirt system (which acted as

a front-end to a Boolean host) (Robertson et al.,

1986); particular examples of uses in Cirt include

ORed synonyms and phrases constructed with the

ADJ operator. The Okapi BSS does not at present

allow proximity operators such as ADJ, but the

principle is the same.

To a very limited extent, this facility was used by

the manual searchers (see 5.3).

3.3 Term selection for query expansion

Interactive Okapi automatically selected terms

from relevant documents for query expansion by
taking the top x (=20) terms according to their

relevance weights. The BSS version uses the

Robertson selection value (Robertson, 1990),

approximately r*w (where w is the usual F4
weight). (See also discussion in section 6.3,

which shows that there was an error in taking this

approximation.) Also, the interface used in the

manual TREC experiments allows semi-automatic

query expansion, in that the list of candidate terms

can be displayed for the searcher to make
selections from (and then entered manually), or

the top 20 terms can be used automatically.

Terms once selected are weighted using F4 in the

usual way, except with the modification indicated

below.

3.4 Bias towards query terms

In interactive Okapi, the terms in the original

query held no special position in the query

expansion process, except in the sense that a

"semi-stopword" in the original query would be a

candidate for the feedback query, whereas the

same term occurring in a relevant document but

not in the query would not be considered.

For the TREC experiments, some bias in favour

of query terms was built in, in the form of some
hypothetical relevant documents assumed to

contain the query terms (Harman, 1992;

Bookstein, 1983). These hypothetical relevant

documents then contributed to the calculation of

F4. Different quantitative assumptions were
made in different TREC experiments (see section

5), but once again an error crept into the

implementation of this facility (see section 6.3).

4. Input processing

4.1 Converting the raw files

The Okapi system needs databases to be in its

own format, in which each record consists of an

identical sequence of fields in the form of

terminated text strings. Fields are identified by
sequence number only. Using the given

23

information about the makeup and structure of the

source material, together with quite a lot of trial

and error, a program (lex + C) was written to

convert all the raw datasets into a unified 25-field

structure. The only fields common to all input

were "text", document-ID and a "source" field

containing "fr", "doe" etc., so all records consisted

mainly of empty fields. The "source" fields were

intended solely as "limit" criteria, but were

unused except perhaps by one or two of the

human searchers. Fields other than the three

mentioned were used solely for display. Any
records longer than 64K were truncated at 64K.

This truncation only affected the text field (field

25).

Conversion, which included decompression,

conversion to Okapi format using the lex-C

program and a second- stage conversion to

runtime format ran at about 10 records/sec on a

SPARC machine.

4.2 Inversion

The text field was reduced to "words", stemmed
using the moderate-strength Porter algorithm

(Porter, 1980) with modifications aimed at

conflating British and American spellings, filtered

through a local database (GSL, see below)

containing stopwords, semi-stopwords, prefixes, a

few "go" phrases (phrases to be treated as words),

and a list of classes of words and phrases to be

treated as synonymous. The document-ID field

was extracted unchanged. Inversion took about 33

hours CPU on a SPARC machine (about 6
documents per second, but this increases more
than linearly with number of documents). The
result was a simple inverted file structure with no
within-field positional information (insufficient

disk space). There were facilities for limiting

searches by source dataset, by various document
length ranges and by odd/even half-collection (for

comparison experiments).

4.3 The local GSL database

The Go-See-List (GSL) for the TREC
experiments was based on existing databases, but

was somewhat extended for TREC. Both original

and extensions were derived in a fairly ad-hoc

fashion (some entries were identified by
examining a list of the most frequent terms in the

first part of the TREC collection). This is not a

sophisticated facility, and can only be said to

scratch the surface of the problem.

Stopwords: 120

Semi-stopwords: 256

These were humanly selected following trial

indexing runs. The criteria were (1) small

retrieval value and (2) high posting count.

Examples: 100, begin, carry, date, december,

enough, include, meanwhile, run, take, why,

without, yesterday.

Prefixes: 18

The purpose of this list is to cause <prefix>-

<word> and <prefix><word> to be treated

identically for any value of <word>

Go phrases: 27

Examples: cold war, middle class, saudi arabia

Synonym classes: 300, containing about 700 words

Examples:

australia, australian, australasia, australasian

buyout, buy out

mit, massachusetts institute of technology

pom, porno, pornography, pornographic

4.4 Some statistics

First Second Both

part part

Total 511514 230936 742450

documents

Truncated 603 531 1134

(over 64K)

Size (MB) 1107 759 1866

(bibfile only, runtime format)

Inversion 44 N/K 44

overheads (%)

Unique index terms 1040415

(excluding document numbers)

Mean unique index terms/document 1.43

Postings 95898880

(excluding document numbers)

Mean postings/document 132

(document "length")

5. Experiments

Following the TREC design, results were

submitted for routing queries on the second set of

records, and for ad-hoc queries on the combined
set. Routing queries were processed

automatically only (section 5.2; results table

cityrl); ad-hoc queries were processed

automatically (5.1; cityal) and manually, with

feedback on the manual searches (5.3; results

without feedback in table cityml, and with

24

feedback in citym2).

In accordance with the general philosophy of

Okapi, the TREC experiments were used to test

the use of simple statistical techniques, with

minimal linguistic processing, minimal searcher

knowledge of techniques of searching, and indeed

minimal effort generally. The routing test was
intended to address mainly the value of relevance

feedback (term selection and weighting) in a

routing context where relevance judgements are

accumulated from earlier runs. Automatic ad-hoc

queries tested the weighting scheme without

relevance information. Manual ad-hoc queries

tested the combination of human intelligence with

a simple weighting scheme, with and without

feedback.

5.1 Automatic processing of topics

The basic principle was to take specific section(s)

of the topic and parse them in standard Okapi
fashion, as if they had been typed in verbatim by a

searcher. Thus stopwords were removed; a few
phrases and/or members of synonym classes were

identified; remaining words were stemmed; all

search terms (stems or phrases or synonym
classes) were weighted using IDF (see section

2.1). No special account was taken of the

negative phrases which appear in some of the

TREC topics, so that negated words would have

been given positive weights by Okapi.

The selection of the topic sections was the subject

of a very small amount of initial experimentation

using the training set. The differences were not

very consistent and in some cases small, and more
testing would have been useful. However,
marginally the best overall was Concepts only,

and that was what we used for the returned

results.

The results for the above automatic analysis of

ad-hoc queries are given in the official tables as

cityal.

5.2 Routing queries

The principle on the routing queries was to

assume that all the known relevant documents

from the first document set were already available

for a relevance feedback process. Thus any actual

searches conducted on the first document set, and

their actual outputs, played no direct part in the

formulation of the routing queries, with one
exception discussed below. However, the terms

extracted from the topics took part in the

relevance feedback process in the manner
indicated in section 3.4, with a bias equivalent to

10 supposed relevant documents in all of which
the topic terms were supposed to occur (10 out of

10 bias).

The exception to the above statement was that for

some topics, some additional relevance

assessments were made (that is, additional to

those provided centrally). These were based on
the top ranked documents retrieved in automatic

searches on the first document set. (See section

6.1 for a discussion on the local relevance

judgements and on the reasons for this decision.)

The results for the above analysis of routing

queries are given in the official tables as cityrl.

5.3 Manual searching and feedback

The central idea behind these experiments was to

approach as closely as possible the situation of a

naive or inexperienced user. In other words, we
wanted to gain some idea of how the system

would perform if searched by an end-user with

little or no knowledge of information retrieval.

This intention reflects the design principles of the

interactive Okapi, as discussed in section 2 above.

To some degree, however, both the design of the

TREC experiment in general and the constraints

of the distributed system described in section 3.1

forced deviations from that ideal.

5.3.1 Searchers

The first constraint is of course that we had no

access to end-users (and more particularly, no
access to end-users with the specific

characteristics of the TREC analysts). We used a

panel of searchers, mainly information science

students who could be said to have some
knowledge of searching in general, limited

domain knowledge (depending on the topic), and

no particular knowledge of the system. (For

reasons to do with the very limited time available

for these searches, it was necessary to use project

staff for a few searches; these staff obviously had

more knowledge of the system.) The somewhat
limited interface to the BSS which was used for

this experiment required some training of the

searchers.

25

Clearly one would in general expect end-users to

have more domain or subject knowledge,

especially for the kinds of queries provided for

TREC. Highly interactive systems in general, and
Okapi in particular, may be assumed to exploit

such subject knowledge; clearly relevance

feedback in ad-hoc searching can only work well if

it is relatively easy for the user to find some
relevant items from the initial search. In this

sense, we see the present experiment as to some
degree unfavourable to Okapi.

5.3.2 Searching

Searchers were expected to make whatever

interpretations of the topic they deemed
appropriate for the purpose of searching. In other

words, they could use words or phrases taken

from any part of the topic, or from their own
general or specific knowledge. They could also

have used other reference sources. However, they

were encouraged to use the system to help them
refine the search, in the way that an end-user

might explore the possibilities within the system

and try out different combinations of search

terms.

The combination of these ideas with the TREC
rules was a little clumsy and artificial. The
procedure was as follows:

(a)The searcher was given the topic in full, as

received by us.

(b)The searcher examined the topic and chose

some terms as candidates for searching

(possibly including terms not in the topic as

received).

(c)The searcher made exploratory searches,

examining the results, making tentadve

relevance judgements and perhaps using the

semi-automatic query expansion facility (see

secdon 3.3) to suggest new terms.

(d)Having decided on an inidal formulation, the

searcher then finished the exploratory session

and started the definidve session.

(e)The definitive session involved two stages, an
initial search and a first iteration feedback

search. The inidal search was strictly in

accordance with the selected inidal

formulation; the searcher examined the top few
documents, making relevance judgements.

(f) The first iteration feedback was purely

automatic from the relevance judgements,
including re-weighdng and automatic

expansion. No further iterations were
conducted.

The guidelines to the searchers included the

following:

Time: Searchers were asked to allow very

roughly 30 minutes per topic. In fact, the

average was nearer 50 minutes.

Feedback: The guidance was to assess about the

first 20 documents retrieved by the initial

search, or to stop after finding about 8 relevant

(if that was sooner).

Relevance: If it seemed to be difficult to find any
relevant items, searchers were encouraged to

make generous relevance judgements, so as to

ensure that there was some basis for feedback

(see also section 6.2 below).

5.3.3 Remarks on the system

The bias in favour of initial formulation terms in

the relevance feedback formula was 2 out of 3

(i.e. 3 supposed relevant documents out of which
2 were supposed to contain the term).

Searchers were able to use the Boolean facility

described in section 3.2, for example to treat an

expression such as (A and B) as if it were a single

term, to be weighted like any other. However, the

emphasis was on the usual (in the Okapi context)

weighted searching of single terms, and this

facility was used only occasionally, and only as

part of larger best-match searches. In other

words, this use did not compromise the

characteristic of weighted searching as truly "best

match", with all the flexibility that that implies.

5.3.4 Choice of terms

The terms chosen by the searchers may be briefly

characterized by the following statistics:

Average number of terms 12.9

Terms appearing in the topic 10.5 (81%)

Terms appearing in different fields:

Description 3.4

Narrative 6.0

Concept 7.5

Others 2.9

(these add up to more than the total because a term may
occur in more than one field).

For comparison, the Concept field has around 19-

20 terms on average.

26

The results for the manual ad-hoc queries are

given in the official tables as cityml (without

feedback) and citym2 (with feedback). For a

discussion of the results, and of the evaluation

method for citym2, see section 7.

6. Some observations on the experiments

6.1 Local relevance judgements

We experimented with making our own relevance

judgements, based on the topics as provided.

Although these experiments were on a very small

scale and not very systematic, our impression was
that it was usually possible to reproduce the

judgements provided centrally, with a high chance

of agreement. If this is so, it presumably reflects

(a) the relatively highly specified nature of the

topics (as compared to most IR queries!), and (b)

the fact that the centrally-provided judgements are

being made by experts other than the original

requester. Thus we felt justified in attempting to

improve our routing queries by providing some
more relevance judgements of our own,
particularly in cases where there were few
centrally-provided ones. Note that the relevance

weighting method used (F4 formula in section

2.2) takes account only of positive relevance

judgements; items judged non-relevant are

combined with items not judged (the complement
method: Harper and van Rijsbergen, 1978).

However, as indicated in section 5.3, there were

topics for which (under strict relevance criteria)

the relevant documents were very sparse, and

relevance feedback would not have had much
effect. In these cases, for the manual searches

only, searchers were encouraged to make more
generous relevance judgements (i.e. to accept as

relevant some documents that did not meet all the

criteria precisely). The argument behind this

guideline was that relevance feedback should

work better given some partially-relevant items

than with few or no relevant items. This

argument obviously requires testing.

6.2 Bias to query terms

The bias in favour of original query terms

discussed in section 3.4 was an attempt to

represent the prior knowledge that a term chosen

by the original requester or a searcher is likely to

be good in terms of the probabilistic model. This

argument relates to, but is not limited to,

Harman's argument about negative weights

(Harman, 1992). The point-5 formula used in the

relevance weighting model actually has a built-in

bias which might be described as "0.5 out of 1".

The biases used in different TREC experiments

(10 out of 10 and 2 out of 3) were chosen
arbitrarily; unfortunately there was no time to do
any extensive testing to enable a better-informed

decision.

A bias such as 2 out of 3 has the curious effect of

downgrading some very good query terms (any

term that occurs in all the known relevant). This

was part of the reason for trying the 10 out of 10

bias. However, there may be good reason for this

effect: even very good results on the known
relevant should not persuade us that p is actually

unity.

6.3 Two implementation errors

There were also two errors in the implementation

of this bias. In the relevance weighting formula,

the probability p (that the term occurs in a

relevant document) is estimated directly from the

known relevant documents; the bias is correctly

used to modify this estimate (e.g. r->r+2 and
R->R+3 in the formula p=r/R). But the

corresponding non-relevance probability q is

normally estimated by the complement method
(i.e. all documents in the collection not known to

be relevant are assumed to be non-relevant,

q= (n-r) / (N-R)). In the implementation used for

TREC, the modifications to r and r were
incorrectly carried over to the q estimate.

The second error occurred in the term selection

value for query expansion. The full selection

value should be w (p-q) . Since q is normally very

small compared to p, this can be approximated by
wp. Since in a simple relevance feedback version,

p=r/R and r is the same for all terms (i.e. the

number of known relevant), ranking in wp order is

the same as ranking in wr order. So in the TREC
implementation, wr was used. However, the

modification to r for query terms invalidates the

second assumption (that r is the same for all

terms), so wp should have been used.

These errors will have had the effect of over-

emphasizing some infrequent query-terms, but

will probably not have affected the overall results

greatly.

27

7. Results and discussion

Full results can be seen in the official tables. The
evaluation of the feedback run was treated in a

somewhat special way, by agreement with the

organizers. The original plan had been to do
"residual ranking" evaluation, i.e. to remove from

the collection those items which were assessed for

relevance for feedback purposes, and to evaluate

two runs (with or without feedback) on the

reduced collection. This would have allowed a

comparison between these two runs, but not

between the feedback run and any of the other

results presented.

Instead, a "frozen rank" evaluation was used, in

which the documents examined for relevance

before feedback were retained as the top-ranking

documents in the feedback run. This simulates a

real search, in that those documents would have

been seen (in some form) by the user and would
therefore have to be regarded as part of the output

of the system. Therefore it may be seen as a

fairer evaluation of feedback than residual

ranking, although it is likely to reduce the

apparent effect of feedback.

A very brief summary of the results, taking just

two measures from the tables, is as follows:

citya 1

cityml

citym2*
cityrl

11 -point

average

12.1%
15.6%
18.2%
17.7%

Precision

at 5 docs

49.6%
57.6%
58.8%
54.8%

Ad-hoc auto

Manual
Feedback
Routing

(*Frozen ranks evaluation)

The performance of the automatic ad-hoc run is

really rather poor. The manual run without

feedback is better. Feedback does clearly produce
an improvement (though not, of course, given the

frozen ranks evaluation, at the high-precision

end). It seems that both the choice of terms and
the liberal relevance judgements by non-expert

students are effective at least to some degree.

(We have yet to compare the individual

judgements by the students with the "correct"

ones provided by the TREC organizers, or to

establish whether the "correct" judgements would

have given us greater performance benefits.) The
routing results seem reasonable.

In general, we believe that the simple, robust and
minimum-effort methods we have adopted in

Okapi have been shown to work, even with very

different material (both documents and queries)

from that for which Okapi was originally

designed. Performance, both in absolute terms

and relative to the other TREC entries, is

respectable but by no means wonderful. We also

believe that there is much scope for improvement;
there are other simple and robust methods (such

as other weighting formulae or different

treatments of compound terms) to which Okapi
would be hospitable, and which may bring

performance up to a more acceptable level. We
look forward to TREC 2.

References

Bookstein, A. (1983). Information retrieval: a sequential

learning process. Journal of the American Society for

Information Science 34(5) 331-342.

Hancock-Beaulieu M. & Walker S. (1992). An evaluation

of automatic query expansion in an online library

catalogue. Journal of Documentation 48(4) 406-421.

Harman, D. (1992). Relevance feedback revisited. In:

SIGIR 92 — Proc. 15th International Conference on

Research and Development in Information Retrieval,

ACM Press, MO.

Harper, DJ. & van Rijsbergen, CJ. (1978). An
evaluation of feedback in document retrieval using co-

occurrence data. Journal of Documentation 34(3), 189-

216.

Porter, M.F. (1980). An algorithm for suffix stripping.

Program 14(3) 130-137

Robertson, S.E. (1990). On term selection for query

expansion. Journal of Documentation 46(4), 359-364.

Robertson, S.E. & Sparck Jones, K. (1976). Relevance

weighting of search terms. Journal of the American

Society of Information Science 27(3), 129-146.

Robertson, S.E., Thompson, C.L., Macaskill, MJ. &
Bovey, J. (1986). Weighting, ranking and relevance

feedback in a front-end system. Journal of Information

Science 12(1/2). 71-75.

28

Walker, S. (1989). The Okapi online catalogue research

projects. In: The online catalogue: developments and

directions, edited by Charles R Hildreth. Library

Association. 84-106.

Walker S. & De Vere R, (1990). Improving subject

retrieval in online catalogues: 2. Relevance feedback

and query expansion. British Library (British Library

Research Paper 72.) ISBN 0-7123-3219-7

Walker S.&Hancock-BeaulieuM. (1991). Okapi at

City: an evaluation facility for interactive IR. British

Library Research Report 6056.

Appendix: System architecture

Platform

The system runs on Sun hardware. It should port fairly

easily to other UNIX platforms, at least of the BSD type.

All the search and indexing code is in C. Source file

conversion programs and log analysis programs may be

written in awk.

Database structure

A database consists of

text file (bibliographic file)

this is the dataset from which searches retrieve

records

up to three indexes

Each index consists of primary and secondary

dictionaries and a posting file. There are several

types of index. One contains no positional informa-

tion below the level of records, and is suitable for

"phrases" like personal names and titles. Others

contain positional information in the form field,

sentence, word number for every occurrence of

every indexed term. An index can contain terms for

up to 16 different types of search,

a set of parameter files:

database description parameter

indexing parameters (one set for each index).

These define how indexing is to be performed in

terms of linguistic knowledge base, stemming

function, procedure for extracting index terms

and the fields and subfields from which they are

to be extracted,

search type (or group) parameters

These are closely related to indexing parameters.

They are used to determine the linguistic

processing to be applied to queries and the

parameters to be used for index lookup and for

the exu-action of terms for automatic query

expansion

search mnemonics (e.g. TI, ABS, AUTH) used in

query parsing

display parameters, defining two levels of display

language knowledge bases

Up to three of these may be associated with a

database to allow linguistic processing to depend on

the type of data being searched or extracted.

Typically, these are common to a number of

databases of similar type and usage.

Input

Source files are stored in a simple format where each record

starts with a field directory giving the length of each field,

followed by the text of the fields. Fields may contain a

limited range of subfield or role markers, indicating the

nature of the following data. There are facilities for

importing a few types of bibliographic files, including

UKMARC and ISO 2709. An "Okapi exchange" format

also exists. Character coding is ASCII with a "shift"

character ('V) to allow the encoding of characters above hex

7F. No data compression is used.

Output (interactive Okapi only)

Output is to character-based terminals or windows, or hard

copy. There are two levels of record display and printout -

brief (one line) and full. Record layout is determined by

parameters and is fairly flexible.

Database maintenance

There are no record editing and no index updating facilities.

Source file and indexes must be completely regenerated

when necessary.

Indexing storage overheads

Several types of index are available. Depending on the

nature of the database and the extent of indexing required

overheads range from about 10% to 120% of the biblio-

graphic file size.

Performance

Index lookup is fast because each lookup only requires one

disk access. A multi-term search runs in time approximately

proportional to the total number of postings for all the terms

in the query.

29

Bibliographic record access is also fast because there is no

indirection: the postings records directly address the biblio-

graphic records, so again there is only one disk access per

record.

File inversion is relatively slow and cpu-bound because of

the multi-pass linguistic processing during index term

extraction. As a rough guide, inversion runs at about one

minute per megabyte of indexable text on a lightly loaded

Sun 4/330.

Limits

Maximum bibliographic file size: 32 gigabytes

but maximum index size 4 gigabytes

Number of records per database: no practical limit

Postings per index term: no practical limit

Maximum amount of data which can be u^eated as a

"record" for retrieval purposes: this is a system

parameter usually set to 16 kilobytes. Up to 64 K or

more is acceptable.

Maximum field length: same as record size

Maximum number of fields per record: 31

Maximum index term length: 127 characters

Maximum number of terms in single query: 32

(interactive Okapi only)

Query Improvement In Information Retrieval

Using Genetic Algorithms
- A Report on the Experiments of the TREC Project

Jing-Jye Yang, Robert R. Korfhage

Department ofInformation Science

and

Edie Rasmussen

Department ofLibrary Science

School ofLibrary and Information Science

University ofPittsburgh

Abstract

We have been developing an adaptive method using genetic

algorithms to modify user queries, based on relevance

judgments. This algorithm was adapted for the Text REtrieval

Conference (TREC). The method is shown to be applicable to

large text collections, where more relevant documents are

presented to users in the genetic modification. The algorithm

also shows some interesting phenomena, such as parallel

searching. Further studies are planned to adjust the system

parameters to improve its effectiveness.

1. Introduction

Information retrieval can be viewed as searching in a high-dimensional document space

to bring relevant documents to users. It is known, however, that this is not an easy task. Due
to the complexity of document writing styles and the difficulty users have in presenting their

information requests, the retrieval results often frustrate users. Returning to the system with a

modified query becomes unavoidable if a user wants to improve the retrieval results.

However, most systems provide little or no guidance to the user for modifying the original

query, adding to the frustration. Using relevance feedback to help users solve the problem has

long being viewed as a promising agenda.

31

Relevance feedback, although started more than twenty years ago, attracted more

research in recent years. With advances in computer hardware and software, the feedback

process, which requires more computing time and friendlier user interface than the traditional

method, will dominate the information retrieval area. However, feedback techniques also

need to be improved. They should include more intelligent mechanisms which embed the

ability to adapt to the changing environment and handle the feedback process automatically.

We have been developing an adaptive method using genetic algorithms to modify user

queries automatically. Our preliminary experiments based on several simple data collections

showed promising results (Yang and Korfhage, 1992a, 1992b). This algorithm was applied to

the TREC project. This paper reports the experiments and some of the results.

2. The Model

Our system is based on a vector space model. Within the model, both documents and

queries are represented as vectors. A document vector (D,-) with n keywords can be

represented as:

= (hi' H2' U3' ' hn)

th
where r,y (/ = 1, n) is the assigned value of the j keyword. Either weighted or

unweighted document keywords can be used. For unweighted document keywords, f,y is

either 0 or 1. For weighted document keywords, the value of is a real number in the range

[0,1].

In this model a query {Q) with m keywords is also represented in a vector format as:

Q = (Qtj, qt2, , qtfn)

th
where qtf^{k= 1, /n) is the k keyword in the query, where the keywords are extracted from

the user natural language requests. However, no weights are assigned to query terms in the

initial stage; query term weights are assigned by the system during the processing to be

described later.

In general, under vector space models, document retrieval is based on a similarity

measurement between the query and documents. This means that documents with high

similarity to the query are judged more relevant to the query and should be retrieved first. In

our model, the similarity measure is based on a metric, the Lp metric, which measures the

distance between document vectors and query vectors. This means that the shorter the

distance between a document and the query, the higher the similarity between them. The

distance value between a document D,- and the query Q is calculated, using the Lp metric, by

the formula:

32

DIS(D^-
, G) = II Di ,Q\\ = a\tik - qtiff^

k

where k, (k = 1, m), ranges over the set of query terms. Theoretically, the value of p can

be in the range [1, <»]. In the current experiments, p is set to 2. That is, the distance measure

is the Euclidean distance. Note that only terms which are present in the query are used in the

formula. This means if a term is present in the document but not in the query, the term is

assumed of no concern or not known by the user. In other words, a document will be

considered in the retrieval process only if it has at least one term in common with those in the

query.

However, variations exist in the actual implementation. The keyterms in documents

are unweighted in the TREC databases we have used. That is, the elements in the document

vectors are in binary mode, 0 or 1. This was determined for two reasons. First, for a large

database of this kind, obtaining document term weights using general term weighting

methods, such as the inverse document frequency (e.g., Salton and Buckley, 1988) requires

counting term frequencies from all of the documents in the database, which is resource

intensive for a database of this size. Second, previous experiments using the Cranfield

database indicate that our system performance equally well with either weighted or

unweighted document terms.

Each query vector is generated from a topic provided in the TREC project. In general,

a topic includes several descriptive items: the sequential number of the topic, domain, title,

descriptive, narrative, concepts, factors, nationality, etc. The terms of a query vector are

derived from the title and the concepts of the topic. In some cases the nationality is added, if

it is important to meet the requirement of the narrative. The query vector term weights are

assigned by the system at the beginning of each run.

3. The Algorithm

The method we developed is based on the relevance feedback concept. However, the

algorithm underlying the process is totally different from those used in other relevance

feedback studies. Our system is also based on genetic algorithms which are known for their

efficiency and effectiveness in searching large problem spaces to find optimal solutions (e.g.,

Holland, 1975; Goldberg, 1989).

Tlie basic concept behind genetic algorithms is that there exists a population of

individual variants (those individuals can be various types, depending on the actual problem to

be solved) in an environment, each trying to survive by exchanging information and competing

with others. The genetic algoritiims use methods analogous to natural evolution mechanisms

to generate those individuals who provide the optimal or near optimal solution to the problem.

The adaptability of genetic algorithms is due to the fact that individual selection and

manipulation are adaptive to the existing environment. The environment evaluates the fitness

33

of the individuals, and the results form the feedback from the environment to the system

where the genetic process is applied. The efficiency of the algorithm is due to parallel

searching, with a set of individuals exploring the problem space simultaneously. Information

of better structures is stored, exchanged and transferred from generation to generation, and

combined to make individuals having all or most of the better features of their predecessors.

A few researchers have applied genetic algorithms to information retrieval. Gordon

(1988) used a genetic algorithm to modify document descriptions to facilitate the retrieval of

relevant documents for a group of users who are interested in similar topics. Frieder and

Siegelmann (1991) developed a genetic algorithm to obtain an optimal allocation of

documents onto nodes in distributed multiprocessors.

In vector space models document retrieval can be seen as searching a very high-

dimensional document space to find the area(s) where most of the relevant documents to a

user query are located. We have been developing a genetic algorithm in document retrieval

through the modification of query term weights. The steps of the genetic query modification

processes can be described as follows.

(1) Generate query variants:

As described above, the genetic algorithms are applied to situations where there is a

group of individuals. To apply the techniques, there needs to be a set of query individuals.

They are generated in this step. Each query individual vector has the same elements as in the

original query (user's query). Each element within a query vector represents a weight

corresponding to the related term in the original query. The weights are assigned randomly

using a random number generator, with the values of the weights scaled to the range [0,1].

The number of query variants is set in the beginning of the experiments and remains fixed in

later processes of each run.

(2) Individual query performance evaluation:

This process evaluates the performance of each individual query variant. First, the

distances between query variants and documents are calculated, using the formula mentioned

in Section 2. Second, for each query individual, those documents whose distance values to

this query individual are less than a given threshold are viewed as relevant to the user request

and are retrieved. Finally, the retrieval performance (P) of each query individual is assessed

using the formula:

P=A-B-C

where A is the number of retrieved documents which are judged as relevant to the user

request; B is the number of retrieved documents which are not relevant; and C is the number

of relevant documents that are not retrieved by the query individual. The performance values

for the query variants are to be used in the genetic modification. (Note: the P value also can

be in the form: P = A - B, in case the C value is unknown which is normal in the actual online

retrieval process. Note also that P is the internal value used by the system and is unknown to

the user.)

34

(3) The genetic process:

After the evaluation process genetic operators are used to modify the structures of the

query variants, with the aim of improving the retrieval effectiveness of the variants.

(a) Selection: In this step those query individuals whose performances are greater than

the average performance of all the query variants are selected and retained for further

processing. Other query individuals are discarded.

(b) Reproduction: In this process the survivors from the previous step are reproduced.

In our algorithm, the reproduction algorithm developed by Baker (1987) is used. The number

of offspring for each individual depends on the ratio of its performance to the total

performance of all the survivors and the population size. Therefore, the individual survivor

with the highest performance will have the most offspring. Also, in this step, the query

variants are rearranged randomly in a sequence for later processing. We call the set of query

variants after reproduction the semi-new generation.

(c) Mutation: In the mutation step, some individuals are selected at random from the

semi-new generation, and some of their genes (i.e., the term weights) are selected and

assigned new values, also in the range [0,1]. The number of individuals to be selected

depends on the mutation ratio chosen in the experimentation. The selection of genes and the

new value assignments are also done randomly.

(d) Crossover: The crossover process mates pairs of query individuals in the semi-

new generation and exchanges parts of their term weights. Here, the two-point crossover

method is used. For each pair, two positions in the term vectors are selected randomly, and

all term weights between the two positions are exchanged for the two individuals. Thus, two

new individuals are bom. However, it may be the case that not all individuals are chosen to

mate with others. The crossover ratio controls the number of mates.

After the crossover operation, a totally new generation is created and the process goes

back to step 2 and continues until a preset condition is satisfied, either a fixed number of

generations has been processed or no more relevant documents are retrieved.

The genetic retrieval algorithm is distinguished from other research using relevance

feedback: (1) Several query individual variants exist and explore the document space

simultaneously. (2) To modify the term weights, it is not required to calculate and analyze the

document term weights, at least in the current study. Query term weight modification is done

by the genetic mechanisms through the interchange of term weights between query individuals

and the introduction of new weights by the mutation operation. (3) Only term weights are

modified and no new terms are introduced and no terms are deleted. The importance of a

term is shown by the value of its weight.

35

4. Preprocessing of Documents and Queries

As in most information retrieval systems, the documents and topics in the TREC
project need to be preprocessed before they can be used by our algorithm.

(1) Document processing:

Document retrieval in our system is based on keyword match. In current system, a

keyword' is a single word. For the documents, to facilitate the retrieval we need to create

inverted files. The processes for creating the inverted files can be described as follows.

(a) Keyword extraction:

Keywords are extracted for each document. The stopwords (total 2,529 stopwords on

the list) are deleted, and keywords are stemmed using the Porter stemming algorithm which

was implemented by Fox (Frakes, 1992). The document number from which a keyword is

extracted is also stored with that keyword, for it will be used to create inverted files and later

to facilitate the retrieval of the full text of the document. Also an "address file" is generated

which indicates for each document the offset of its location related to the original file within

which the document is stored.

(b) Creation of inverted files:

An inverted file is created for each database to facilitate the retrieval process. The file

is organized as: a keyword followed by a list of document numbers from which the keyword

extracted. Three-level indexed files are generated for the inverted file to reduce the search

time. Each index file include keywords, their offsets in the inverted file and the offset in the

immediately higher level file (for the second and third levels).

(2) Query processing:

Queries are generated from the topics provided on the TREC project. For each topic

a single query vector (the original query) is generated, which consists of a list of keywords

from the title and the concepts of the topic. For some queries information about the

nationality is also included if it is necessary to satisfy the requests from the narrative

descriptions of the related topics. The stemming algorithm is also applied to the terms in the

query. For the training queries we did not add any terms from other descriptive items on the

topics. But for some ad hoc queries, we added several keywords from the narrative because

we thought that those keywords would be useful to identify relevant documents. The routing

queries are those query individuals from the last generation of the training queries.

Ten query individual vectors were generated for each original query. On the training

queries the initial query term weights for the query individuals were assigned randomly, and

then modified by the genetic algorithm. The final query individual vectors from the training

set were used as routing queries with no weights being modified.

Keyword, keyterm and term will be used interchangeably in this paper.

36

The assignment of the term weights to the ad hoc queries is different. Only one query

vector (called query individual one) is generated for each ad hoc query. The term weights in

query individual one were assigned either by using the weights of the same terms in the final

generation of the training topics if they existed, or by the researchers by referring to the

weights of the relative terms in the final generation of the training topics or to their

importance related to the topic. Moreover, in the ad hoc queries, a term weight of the query

individual one could be assigned different values depending on which database the query is

used to against documents. Based on the query individual one, another nine query individuals

were generated with the weights of each term in the nine individuals being normally

distributed around the corresponding term weights on the query individual one.

One interesting question in query processing is how to handle the situation where a

concept with a NOT requirement is presented in a user's request (i.e., the topics in TREC). It

is hard to deal with in some retrieval systems. However, in the TREC topics, there are several

cases which include NOT in the concepts and the narrative items. Our solution to this

problem is to assign negative weight to a keyword if it is described by the NOT concept or

narrative item. Since our system is based on a distance measure, a negative assignment can

cause the documents which include this keyword to have longer distance from the query than

those without the keyword.

5. System Configuration

Some features of our system on the TREC project are described in this section.

(1) Window size for document retrieval

In much feedback retrieval research, there is a fixed window size which decides the

number of documents to be retrieved. The value usually was set between 5 and 20 (e.g.,

Salton, 1971). Aalbersberg (1992) used window size one in the feedback retrieval process

and showed that the precision values for four standard databases, on average, are higher than

those achieved with size greater than one. However, Aalbersberg also suggested that variable

relevance feedback (Ide, 1971) is worth implementing in term weighting IR systems.

In our original experiments on small databases a threshold value was generated for

each query in the beginning of an experiment, as the criterion for determining the retrieval

window. If the distance measure between a document and a query individual was less than the

threshold value, the document was viewed as relevant to the query and was retrieved. Thus

we had a variable window size. However, in dealing with the large databases we added

another factor to decide the window size. As in the previous method, a threshold value is

generated first as each original query is read into the system. Documents whose distance is

less than the threshold will be regarded as relevant to the query and will b>e printed for

evaluation. However, if more than forty documents satisfy the condition, only the top forty

are retrieved for evaluation. If there is a tie, the selection is random among these tied. This

number seems reasonable given the time constraints and focus of the study.

37

(2) User involvement and relevance judgment

Since our system uses relevance feedback (on the training queries and the ad hoc

queries), users (evaluators) are needed to evaluate the retrieved documents. The evaluators

are our researchers in the TREC project. The document evaluation process runs like this. On
each iteration, for each query individual the retrieved documents are printed with both their

full text (or abstracts or summaries if available) and document numbers. An evaluator

examines the retrieved documents based on his/her reading of the text (or abstract or

summaries) and understanding of the topic, and marks the document numbers which are

judged relevant to the topic.

The results of the judgment from the evaluators are fed back to the system. The

system then applies the genetic modification process (as described in Section 3) based on the

feedback information.

(3) The feedback process

The feedback process can be described as follows. The system uses the relevance

judgment to calculate the performance (P) of each query individual based on the function

described in Section 3.2. However, the parameters in the formula were changed as follows.

First, there are no known relevant documents for each query, the value C is deleted. Second,

in our initial tries on a few training topics we found that for these very large databases many

nonrelevant documents are retrieved in the first generation. This would cause the individuals

which retrieved few relevant and many nonrelevant documents to get lower P values than

those which retrieved no documents or only a few nonrelevant documents. So instead of

using equal weight for the values of A and B, we gave more weight to A. The formula

became: P = lO'^A - B. This increases the chance of survival for those individuals which

retrieve a few relevant documents. The weight 10 was chosen for the parameterA because in

several initial tries (weight equal to 1, 5 and 10), 10 brought more relevant documents in the

modified generation than the other weights. However, values higher than 10 were not used to

avoid the query variants to converging too quickly so that the final query might be a local

optimum.

After computing the performance for each variant, genetic operations are applied to

generate a set of new query individuals. Those new query individuals are then used by the

system to retrieve documents. However, those documents which have been retrieved in

previous generations are not presented in the new generation, even if they satisfy the selection

condition. This strategy is similar to the residual collection method used by Chang et. al.

(1971).

The feedback process continues until either no more relevant documents are retrieved

for any query variants or the user (the evaluator) decides to stop the process, mainly due to

the time constraints.

38

6. Statistical Data

(1) Computing time:

Time is given for two types of processing.

(a) Time for document processing:

Document processing time includes keyword extraction, sorting and merge, and
building inverted files. Two systems were used, a SUN -670 and SUN SPARC/IPC(s),
depending on availability. Table 1 provides the time used on several stages in document
processing.

(b) Time for document retrieval per generation

The time required to retrieve documents for each iteration (generation) depends on
several factors: the number of terms in a query, the generation, and the computing system

used. Table 2 gives the average retrieval time for three generations, based on topics 1-50 and

the first dataset (disk one).

(2) Storage space for data structures:

Several types of data structure were created to facilitate retrieval. They are inverted

files, indexed files and address files which consist of document numbers and their locations in

the databases. The storage space used for tiiese files (disk one only) is shown in Table 3.

(3) Machine capability:

The capabilities of our systems are:

SUN-670: 32 Megabytes RAM and 40 MHz CPU clock rate;

SUN SPARC/IPC: 24 Megabytes RAM and 25 MHz CPU clock rate.

(4) Manpower:

There are in total four persons participating in the project, two Ph.D. students and two

faculty. One Ph.D. student worked full time on this project, and the other part time, one

faculty member half time and the other part time.

Table 1. Time for document processing (Unit: min.)

DOE AP ZIFF WSJ FR

I'st

Dataset

I'st

Dataset

2'nd

Dataset

I'st

Dataset

2nd

Dataset

I'st

Dataset

2nd

Dataset

I'st

Dataset

2nd

Dataset

Keyword extraction 129 148 169 130 43 182 125 19 16

Sorting and merge 293 281 NA 248 72 404 398 18 11

Create inverted files 29 NA 27 28 11 NA 34 2 3

* NA: Not Available

39

Table 2. Average retrieval time for topics 1-50

on the first dataset

(Unit: minutes)

Generation 0 Generation 1 Generation 2

3:56 2:19 2:05

Table 3. Total amount of storage for inverted and

indexed files — disk one only

(Unit: Megabytes)

DOE AP ZIFF WSJ

Inverted files 162.3 199.8 143.7 223.4

Indexed files 3.0 2.2 2.4 2.1

Address files
4.3 1.7 1.7 2.6

7. Results

This section describes several results of using the genetic algorithm in the TREC
document collection. Examples provided are from training queries (topic 1 to 50) on the

DOE database.

(1) Query convergence

In large document collections like the TREC databases, the genetic algorithm caused

the query variants to converge within 3 to 6 generations in most cases. For an example,

Table 4 shows the term weights of query individuals in the first generation, 0, and last

generation, 5, on topic 3. For most of the query terms the weights on the query individuals

converged to a single value in the final generation. Although a few variations existed, they

were caused by the mutation operation. Table 5 shows a similar situation for topic 12, where

the final generation is 4.

An interesting phenomenon is how the query term weights changed. The genetic

operators select the query individuals which have higher performance values than the average

performance of all the individuals and exchange parts of their term weights by using mutation

and crossover. Although the two operations are random, the results are interesting. The

40

experiments show that from generation to generation the average weight of each term in the

query individuals gradually moves to the value in the final converged generation, although

small variations may exist. As an example, Table 6 shows the changes of the average term

weights on topic 3, from generation 0 to generation 5. The values on generation 5 are almost

identical with those in Table 4.

(2) Effects of query term weight modification

The goal of query convergence using the genetic algorithm is to find the query

individual with highest performance, that is, retrieving more relevant documents than its

predecessors. Evidence from the experiments has shown the GA works as expected. In most

cases, new relevant documents were brought in to the user in each generation, until

convergence at the final generation. Table 7 through Table 11 show the numbers of new

relevant documents retrieved in each generation for the five databases.

Observing the results, one interesting phenomenon arises; that is, for a topic the

algorithm may retrieve different numbers of relevant documents on distinct databases. It

seems reasonable since the five databases may concentrate on different areas. Moreover, the

retrieval patterns for WSJ and AP databases, which should be interesting in the same topic,

looks similar with each other.

Table 4 Query individuals on Topic 3(11 terms)

Generation = 0

0 0.18 0.31 0.53 0.95 0.17

1 0.28 0.37 0.98 0.54 0.77

2 0.31 0.35 0.92 0.52 0.40

3 0.76 0.58 0.39 0.36 0.20

4 0.96 0.74 0.41 0.78 0.76

5 0.04 0.96 0.32 0.06 0.44

6 0.24 0.48 0.41 0.87 0.43

7 0.10 0.40 0.77 0.24 0.34

8 0.40 0.68 0.73 0.94 0.23

9 0.16 0.28 0.14 0.86 0.75

0.70 0.23 0.49 0.12 0.08 0.39

0.65 0.77 0.78 0.82 0.15 0.63

0.61 0.79 0.93 0.87 0.87 0.67

0.83 0.42 0.46 0.98 0.13 0.21

0.96 0.03 0.32 0.76 0.24 0.59

0.92 0.57 0.12 0.57 0.25 0.50

0.36 0.38 0.04 0.16 0.52 0.70

0.23 0.30 0.30 0.89 0.04 0.65

0.84 0.97 0.78 0.43 0.67 0.81

0.21 0.14 0.29 0.80 0.22 0.56

Generation = 5

0 0.28 0.37 0.98 0.54 0.77

1 0.28 0.22 0.98 0.54 0.77

2 0.28 0.22 0.98 0.54 0.77

3 0.28 0.22 0.98 0.54 0.77

4 0.28 0.22 0.98 0.54 0.77

5 0.28 0.22 0.98 0.54 0.77

6 0.28 0.42 0.98 0.54 0.77

7 0.28 0.22 0.98 0.54 0.77

8 0.28 0.37 0.98 0.54 0.77

9 0.28 0.37 0.98 0.54 0.77

0.76 0.03 0.45 0.69 0.24 0.78

0.56 0.03 0.32 0.76 0.24 0.58

0.66 0.03 0.45 0.69 0.24 0.78

0.66 0.03 0.45 0.69 0.24 0.78

0.66 0.03 0.45 0.69 0.24 0.78

0.66 0.03 0.45 0.69 0.24 0.78

0.66 0.13 0.45 0.69 0.24 0.78

0.66 0.03 0.32 0.76 0.24 0.58

0.67 0.13 0.32 0.76 0.24 0.55

0.66 0.03 0.32 0.76 0.24 0.58

41

Table 5 Query individuals on Topic 12 (12 terms)

Generation = 0

0 0.18 yj.j 1 yj.Dj yj.yj n 17 yj. i\j 0 1 9 U.Uo 0 •^Q

1 0.37 0.98 0.54 U. / / U.Oj U. / /
r\ TO
U. 10 O.oZ n 1 c

U. 15 0.63 0.31 f\ IK.0.35

2 0.92 0.52 0.40 0.61 0.79 0.93 0.87 0.87 0.67 0.76 0.58 0.39

3 0.36 0.20 0.83 0.42 0.46 0.98 0.13 0.21 0.96 0.74 0.41 0.78

4 0.76 0.96 0.03 0.32 0.76 0.24 0.59 0.04 0.96 0.32 0.06 0.44

5 0.92 0.57 0.12 0.57 0.25 0.50 0.24 0.48 0.41 0.87 0.43 0.36

6 0.38 0.04 0.16 0.52 0.70 0.10 0.40 0.77 0.24 0.34 0.23 0.30

7 0.30 0.89 0.04 0.65 0.40 0.68 0.73 0.94 0.23 0.84 0.97 0.78

8 0.43 0.67 0.81 0.16 0.28 0.14 0.86 0.75 0.21 0.14 0.29 0.80

9 0.22 0.56 0.72 0.20 0.99 0.25 0.43 0.76 0.86 0.89 0.98 0.40

Generation = 4

0 0.92 0.57 0.12 0.67 0.25 0.50 0.28 0.28 0.96 0.84 0.41 0.60

1 0.92 0.57 0.12 0.57 0.25 0.50 0.07 0.15 0.96 0.74 0.41 0.40

2 0.92 0.57 0.12 0.47 0.25 0.50 0.09 0.35 0.96 0.98 0.43 0.36

3 0.92 0.57 0.12 0.57 0.25 0.50 0.09 0.15 0.96 0.77 0.41 0.47

4 0.92 0.57 0.12 0.57 0.25 0.50 0.09 0.21 0.96 0.74 0.41 0.47

5 0.92 0.57 0.12 0.57 0.25 0.50 0.09 0.28 0.96 0.84 0.41 0.47

6 0.92 0.57 0.12 0.72 0.25 0.50 0.26 0.31 0.96 0.84 0.41 0.47

7 0.92 0.57 0.12 0.52 0.25 0.50 0.09 0.12 0.96 0.74 0.41 0.52

8 0.92 0.57 0.12 0.67 0.25 0.50 0.26 0.15 0.96 0.74 0.41 0.52

9 0.92 0.57 0.12 0.67 0.25 0.50 0.26 0.15 0.96 0.74 0.41 0.52

Table 6 Average query term weights on each generation for topic 3

Gen. tl t2 t3 t4 t5 t6 t7 t8 t9 tlO til

0 .343 .515 .560 .612 .449 .631 .460 .451 .640 .317 .571

1 .514 .493 .747 .688 .585 .772 .592 .672 .734 .426 .671

2 .396 .386 .881 .552 .510 .787 .315 .516 .763 .348 .684

3 .301 .349 .938 .526 .511 .811 .262 .444 .785 .213 .700

4 .286 .342 .968 .556 .696 .746 .060 .346 .746 .240 .649

5 .280 .285 .980 .540 .770 .661 .050 .398 .718 .240 .700

42

Table 7. # of relevant document

retrieved - DOE database

Table 8. # of relevant document

retrieved - FR database

Topic Generation Topic Generation
0 1 2 3 4 5 0

01 0 01 0

02 0 02 0

03 5 8 5 9 2 03 0

04 0 04 0

05 0 05 1

06 0 06 0

07 0 07 0

08 0 08 0

09 0 09 0

10 2 0 1 1 10 0

11 4 3 11 1

12 29 15 1 2 12 2

13 23 13 0

14 0 14 0

15 0 15 0

16 0 16 0

17 0 17 19
18 0 18 0

19 0 19 0

20 0 20 0

21 27 5 21 0

22 0 22 0

23 0 23 0

24 36 15 5 2 24 0

25 10 0 1 10 1 25 0

26 6 0 5 26 0

27 58 22 15 4 22 27 0

28 1 28 0

29 0 29 0

30 0 30 0

31 0 31 0

32 0 32 0

33 10 3 10 33 0

34 0 34 0

35 0 35 0

36 0 36 0

37 0 37 0

38 3 38 0

39 14 39 0

40 2 2 40 0

41 0 41 0

42 3 1 1 42 0

43 4 43 0

44 0 44 0

45 3 2 0 1 45 0

46 0 1 46 0

47 0 47 0

48 4 48 0

49 9 49 0

50 0 50 0

43

Table 9. # of relevant document

retrieved - AP database

Table 10. # of relevant document

retrieved - WSJ database

Topic Generation Topic Generation
0 1 2 3 4 5 6 0 1 2 3 4 5 6

01 12 6 19 5 01 15 10 4 8 1

02 12 11 2 02 24 9 1

03 17 03 30 5

04 5 7 7 04 11 9 7 8 2

05 6 0 2 1 05 3

06 11 14 14 8 3 7 26* 06 26 2 5 5 5 7 1

07 5 4 0 2 07 4 5

08 0 3 08 15 11 8 1

09 14 2 1 09 22 4 5 2

10 30 18 11 3 1 10 43 24 6 5 3

11 16 23 8 20 14 2 1 11 10 3 2

12 45 38 3 1 12 26 2

13 67 6 13 29
14 0 14 2

15 12 15 45
16 0 16 0

17 3 17 2

18 0 4 8 10 21 2 5* 18 31 16 8 12 8 2 22*
19 28 35 62 74 88 29 48* 19 50 50 30 5 31 23 32*
20 0 1 4 3 2 20 1 6 10 13 7 3 1

21 3 1 21 18 7 2 3

22 65 15 24 7 3 4 5* 22 21 9

23 1 2 23 2 3 7 1

24 16 14 10 2 24 28 25 13 2 7 9

25 0 25 1 1

26 0 1 2 26 6 3

27 0 27 1 1 1

28 3 1 28 6

29 0 29 1

30 0 30 20
31 0 31 3 4

32 0 32 0

32 0 33 6

33 0 1 1 34 3

34 0 35 2 2

35 0 1 36 1

36 0 37 0

37 2 38 1

38 0 39 0

39 0 40 1

40 0 41 0

41 0 42 0

42 2 1 43 0

43 0 44 0

44 7 5 45 0

45 0 46 1 14
46 0 19 47 22
47 8 48 0

48 1 8 49 23 20 19 1

49 12 50 0

50 0

* means more relevant documents were retrieved

after this generation, but the document number has

been added into this generation.

44

Table 11. # of relevant document

retrieved - ZIFF database

Topic Generation

0 1 2 3 4 5 6

01 3 1 2

02 10 1 0

03 24 10 7

04 0

05 2

06 0

07 1

08 0

09 0

10 0

11 3

12 0

13 0
14 0

15 47 3 2

16 0

17 0
18 0

19 0

20 18 11 15
21 2 1

22 4

23 0

24 0 4

25 0

26 73 75 10
27 28 27 17
28 34 29 8

29 9 4 1

30 8 0 2

31 11 5 1

32 18 4

33 13 20 13
34 24 29 7

35 2

36 3
37 59 38 1

38 6 4 3

39 6

40 3

41 15
42 12
43 2

44 43
45 10 6 1

46 14 20
47 26 13 14
48 1 0 5

49 72 14 5

50 2

(3) Effects of the genetic operators - mutation and crossover

Previous examples have shown the overall effect of the GA operations, where the

genetic modification processes on the query term weights have improved retrieval results.

However, in most situations, the function of the two important operators - mutation which

assigns a new weight to a randomly selected term, and crossover which exchanges individual

term weights between two randomly selected pairs - is difficult to display. However, in

experiments on the DOE database we found one example, topic 13, which shows how
mutation and crossover can create a new query individual retrieving, in this example, all of the

relevant documents which are retrieved part by one of their parent and part by the other

parent, together with the other new query individual retrieving none.

Table 12 depicts this situation. The top part of the table shows the term weights of the

query individuals. The left side are the two original query individuals - the parents, and the

right side are the children after mutation and crossover. The rest of the table shows the

documents retrieved by the parent 1, parent 2 and the children. We can see that one of the

children has inherited all of the proper term weights from the parents, and this child retrieved

all of the relevant documents retrieved by both of the parents. Note that although two of the

term weights are changed by the mutation, it does not affect the combination effect because

the difference between the changed weights and the original ones from one of the parents is

not significant. Of cause, the effects of crossover and mutation are not always this clear cut.

(4) Parallel search using multiple query individuals

The genetic algorithm using multiple individuals in the document retrieval process

provides the capability of parallel search with different query individuals searching the

document space simultaneously. Each individual, with the same terms but different weights,

may retrieve different documents which are located in different areas in the document space.

This makes the genetic search distinct from other searching methods, where only one query is

used.

The effects of parallel search can be explained by showing the documents retrieved

from several query individuals. Here we give the results from topic 24. Table 13 displays the

term weights of query individuals in the first generation, and Table 14 shows the relevant

documents retrieved by four different query individuals from Table 13. We can see that for

these four queries, there is no overlap among the relevant documents retrieved. Thus each

query individual emphasizes different concepts by assigning high weights to them. Documents

which are more closely related to those concepts would be retrieved by different query

individuals.

The situation also can be viewed as having the query individuals handle the AND and

OR operation simultaneously, which is impossible for methods using only one query unless

they use the Boolean model. However, many researchers reject the Boolean model because it

is difficult for users to apply the AND/OR operations correctly (e.g., Bookstein, 1985).

46

Table 12 The combined effect of crossover and mutation, topic 13

tl t2 t3 t4 t5 tl t2 t3 t4 t5

parent 1 .77 .65 .77 .78 .82 child 1 J2 .65 .77 ^ ^
parent 2 .46 .98 .13 .21 .96 child 2 ^ .98 .13 ^ M
Note: underline means caused by crossover

double underline means caused by mutation

Documents retrieved Documents retrieved Documents retrieved Documents retrieved

by parent 1 by parent 2 by child 1 by child 2

DOEl-
DOEl-
DOEl-
DOEl-
DOEl-
DOEl-
D0E2
D0E2
D0E2
DOE2
DOE2
D0E2
DOE2

05-0747

11-0383

44-0234

49-0051

69-0957

81-0200

20-0798

27-0146

32-1039

37-0525

48-0100
49-0342

71-0973

DOEl-
DOEl-
DOEl-
DOEl-
DOEl-
DOE2-
D0E2-
D0E2
D0E2
DOE2

24-0861

26-0555

36-0791

50-0948

79-0679

27-0093

69- 1023

70-0787

71-0280

80-0365

DOEl-
DOEl-
DOEl-
DOEl-
DOEl-
DOEl-
D0E2-
D0E2-
D0E2-
D0E2-
DOE2
DOE2
D0E2
DOEl-
DOEl
DOEl-
DOEl
DOEl-
D0E2
D0E2
D0E2
D0E2
D0E2

05-0747

11-0383

44-0234

49-0051

69-0957

81-0200

20-0798

27-0146

32-1039

37-0525

48-0100

49-0342

71-0973

24-0861

26-0555

36-0791

50-0948

79-0679

27-0093

69- 1023

70-0787

71-0280

80-0365

none

47

The parallel search could be continued if the individuals retrieving different relevant

documents have the same power, that is, the differences in the number of relevant documents

brought by each of them are small. The results in Table 15 and Table 16 come from the same

topic in Table 13 and Table 14, but from the second generation (generation 1) after feedback

and genetic modification to the first generation. It can be seen that due to the genetic

operations, parts of several query individuals have begun converging. At this point the queries

group into three clusters of similar queries, {0,3,7,8,9} , {1,5,6} and {2,4}— Table 15. Within

each group several term weights are identical. However, parallel search still continues.

Differences in the other weights result in query individuals that retrieve completely different

sets of documents. For example, contrast query 7 with the others in its cluster. Other

examples from this study show that this effect may be observed with differences in only one or

two term weights.

Tables 17 and 18 show that the parallel search from this topic went on to the final

generation, 3, where for each term almost all of the weights had converged to a single value.

But query 7 has two different values at terms 4 and 21 which cause it to retrieve totally

different relevant documents than the other query individuals. However, this is not always the

case. In most situations, the genetic algorithm will force the query variants to converge to a

single query; that is, all of the query individuals in the final generation retrieve the same

relevant documents.

The example on topic 24 also shows, as in previous cases, that new relevant

documents are brought to the user in each generation, as indicated by the '*' following the

document numbers.

Table 13. Term weights of query individuals of topic 24, the first generation (generation 0)

tl t2 t3 t4 t5 t6 t7 t8 t9 tio til M2 ^13 tl4 ti5 tl6 tl7 tl8 ^19^20 ^21

0 18 .31 .53 .95 .17 .70 .23 .49 .12 .08 .39 .28 .37 .98 .54 .77 .65 .77 .78 .82 .15

1 .63 .31 .35 .92 .52 .40 .61 .79 .93 .87 .87 .67 .76 .58 .39 .36 .20 .83 .42 .46 .98

2 .13 .21 .96 .74 .41 .78 .76 .96 .03 .32 .76 .24 .59 .04 .96 .32 .06 .44 .92 .57 .12

3 .57 .25 .50 .24 .48 .41 .87 .43 .36 .38 .04 .16 .52 .70 .10 .40 .77 .24 .34 .23 .30

4 .30 .89 .04 .65 .40 .68 .73 .94 .23 .84 .97 .78 .43 .67 .81 .16 .28 .14 .86 .75 .21

5 .14 .29 .80 .22 .56 .72 .20 .99 .25 .43 .76 .86 .89 .98 .40 .43 .13 .46 .24 .99 .65

6 .60 .24 .45 .79 .08 .48 .15 .25 .94 .61 .99 .48 .80 .74 .38 .48 .53 .10 .59 .35 .14

7 .78 .71 .45 .70 .10 .96 .55 .74 .58 .64 .78 .19 .30 .28 .68 .29 .57 .42 .31 .44 .57

8 .49 .61 .42 .13 .26 .04 .98 .11 .38 .65 .35 .55 .36 .57 .48 .16 .62 .17 .55 .29 .87

9 .84 .84 .90 .59 .54 .17 .65 .69 .26 .11 .81 .19 .42 .35 .84 .14 .26 .18 .48 .38 .50

48

Table 14 Relevant documents retrieved by query individuals for topic 24,

the first generation (generation 0)

Query individuals

Document number 0 3 6 8

DOE 1-57-0764 v

DOE2-04-0727 v

DOE 1-75-0356 v

DOEl-56-0376 v

DOE2- 14-0677 v

DOE 1-07-1283 v

DOEl-14-1165 v

DOEl-35-0677 v

DOEl-35-0739 v

DOE 1-53-1065 v

DOEl-77-0170 V

DOEl-85-0552 v

DOE2-15-0328 v

DOE2-31-1277 v

DOE2-61-0632 v

DOE2-28-0819 v

DOE 1-55-0792 v

DOE 1-70-0 125 V

DOEl-01-0620 V

DOEl-1 1-0738 V

DOE2-73-0983 v

DOE2-7 1-0057 v

DOE2-73-0254 v

DOE 1-85-0035 v

DOEl-06-1157 V

DOEl-22-1160 V

DOE 1-09- 1204 V

DOE 1-0 1-0602 V

DOE 1-73-0028 v

DOEl-19-0847 v

DOEl-21-1059 V

DOE2-83-0561 v

DOEl-09-1154 V

DOE 1-30-0306 v

DOE 1-33-0952 v

DOE2-25-0240 v

DOE 1-07- 1305 V

DOE 1-70-0 170 V

DOE 1-73-0068 v

49

(5) Precision and recall

The average performance of the current genetic algorithm can be shown using

precision and recall values. Here we use data provided by NIST to show the results from the

ad hoc queries and the routing queries. Note that in our experiment the ad hoc queries were

used only on the second dataset (disk two). Table 19 and Table 20 display the average

precision at the 11 recall levels from both the ad hoc queries and the routing queries,

respectively.

8. Discussion

The experimental results on the TREC document collection have shown that the

genetic approach in query modification can be applied in large and varied databases. Evidence

has indicated that the genetic query modification leads to the convergence of the query term

weights. The results have also shown that additional relevant documents can be retrieved by

modifying the query term weights using the genetic approach.

We have also shown, through specific examples, the effects of crossover and mutation,

and how variations in query term weights affect the retrieval of relevant documents. We
believe that the genetic algorithm technique introduces new information into the retrieval

process, allowing the system to do a better job of query modification.

Evidence has shown that even without the use of genetic techniques our system

employs parallel search, although the genetic modification brings additional relevant

documents. For the system designer interested in Boolean techniques this permits exploration

of several Boolean variants simultaneously, and also facilitates use of Boolean combinations of

the individual query variants.

Table 15. Term weights of query individuals of topic 24, the second generation (generation 1)

h t2 t3 t4 t5 t6 t7 tg t9 tiQ tn ti2 ti3 ti4 ti5 tig t^ tig ti9 t20 t2i

0 .18 .31 .53 .95 .17 .70 .23 .49 .12 .08 .39 .28 .37 .96 .38 .48 .69 .77 .78 .82 .15

1 .60 .24 .45 .79 .08 .48 .15 .25 .94 .61 .99 .48 .80 .76 .54 .77 .49 .10 .59 .35 .14

2 .49 .61 .42 .13 .26 .04 .98 .11 .38 .65 .35 .55 .36 .57 .48 .16 .74 .57 .55 .29 .87

3 .18 .31 .53 .95 .28 .70 .23 .49 .12 .08 .39 .28 .37 .98 .54 .77 .53 .37 .78 .82 .15

4 .49 .61 .42 .13 .26 .04 .67 .25 .94 .61 .99 .48 .80 .75 .48 .16 .62 .17 .55 .29 .87

5 .60 .24 .45 .79 .08 .48 .47 .11 .38 .65 .35 .55 .36 .55 .38 .48 .53 .10 .59 .35 .14

6 .60 .24 .45 .79 .08 .48 .15 .25 .94 .61 .79 .28 .37 .98 .54 .77 .65 .77 .78 .69 .14

7 .18 .31 .53 .95 .17 .70 .23 .49 .12 .08 .59 .48 .80 .74 .38 .48 .53 .10 .59 .48 .98

8 .18 .31 .53 .95 .17 .70 .23 .49 .12 .08 .39 .28 .37 .98 .54 .77 .65 .77 .78 .82 .15

9 .18 .31 .53 .95 .17 .70 .23 .49 .12 .08 .39 .28 .37 .98 .54 .77 .65 .77 .78 .82 .15

50

Table 16. Relevant documents retrieved by query individuals for topic 24,

the second generation (* new retrieved documents)

Query individuals

Document number 0 1 2 3

DOEl-57-0764 v v v v

DOE2-04-0727 v v v v

DOEl-56-0376 v v v v

DOEl-07-1283 v v v

DOEl-14-1165 V V V

DOEl-35-0677 v v v

DOEl-35-0739 v v v

DOEl-53-1065 v v v

DOEl-77-0170 V v v

DOEl-85-0552 v v v

DOE2- 15-0328 v v v

DOE2-3 1-1277 v v v

DOE2-73-0254 v v

DOEl-75-0356 v v v v v

DOEl-06-1164* V V

DOEl-1 1-0738 V V

DOE2-73-0983 v

DOE2-71-0057 v

DOE2-28-0819 v v

DOEl-19-0847 v

DOEl-21-1059 V

DOE2-83-0561 v

DOEl-09-1154 V

DOEl-30-0306 v

DOEl-33-0952 v

DOE2-25-0240 v

DOEl -55-0888* v

DOEl-83-0442* v

DOE2-42-0268* v

DOE2-72-0035* v

DOEl-77-0125* v

DOEl-40-1152* V

DOEl-1 1-0490* V

DOEl-15-1164* V

DOEl-35-0747* v

DOEl-46-0311* V

DOEl-73-0024* v

DOE2-39-0087* v

DOE2-7 1-0068* ^

DOE2-7 1-0075* v

DOEl-43-0907* v

DOEl-76-1035* ^

V V

V V
DOEl-82-0152*

D0E2- 14-0677

51

Table 17. Query individuals on Topic 24 (generation 3)

0 0. 18 0.31 0.53 0.95 0.17 0.70 0.23 0.49 0.12 0.08 0.39 0.28 0.37 0.98 0.54 0.77 0.65 0.77 0.78 0.82 0.15

1 0. 18 0.31 0.53 0.95 0.17 0.70 0.23 0.49 0.12 0.08 0.39 0.28 0.37 0.98 0.54 0.77 0.65 0.77 0.78 0.82 0.15

2 0. 18 0.31 0.53 0.95 0.17 0.70 0.33 0.59 0.12 0.08 0.39 0.28 0.37 0.98 0.54 0.77 0.75 0.77 0.78 0.82 0.15

3 0. 18 0.31 0.53 0.95 0.28 0.70 0.23 0.49 0.12 0.08 0.39 0.28 0.37 0.98 0.54 0.77 0.55 0.77 0.78 0.82 0.15

4 0. 18 0.31 0.53 0.95 0.17 0.70 0.33 0.59 0.12 0.08 0.39 0.28 0.37 0.98 0.54 0.77 0.65 0.77 0.78 0.82 0.15

5 0. 18 0.31 0.53 0.95 0.17 0.70 0.23 0.49 0.12 0.08 0.39 0.28 0.37 0.98 0.54 0.77 0.65 0.77 0.78 0.82 0.15

6 0 18 0.31 0.53 0.95 0.17 0.70 0.33 0.59 0.12 0.08 0.39 0.28 0.37 0.98 0.54 0.77 0.65 0.77 0.78 0.82 0.15

7 0 18 0.31 0.53 0.95 0.17 0.70 0.13 0.39 0.12 0.08 0.39 0.28 0.37 0.98 0.54 0.77 0.65 0.77 0.78 0.82m
8 0 18 0.31 0.53 0.95 0.17 0.70 0.23 0.49 0.12 0.08 0.39 0.28 0.37 0.98 0.54 0.77 0.65 0.77 0.78 0.82 0.15

9 0 18 0.31 0.53 0.95 0.17 0.70 0.23 0.49 0.12 0.08 0.39 0.28 0.37 0.98 0.54 0.77 0.65 0.77 0.78 0.82 0.15

Table 18. Relevant documents retrieved by query individuals for topic 24,

(generation 3) (* new retrieved documents)

Document number 01 234 56789
DOEl-57-0764 vvvvvvv vv
E>OEl-75-0356 vvvvvvv vv
DOE2-07-0957* vvvvvvv vv
DOE2-55-0603* vvvvvvv vv
DOEl-82-0152 vvvvvvv vv
DOEl-82-0447 vvvvvvv vv
DOE2-14-0677 vvv vvv vv
DOEl-07-1283 vvv vvv vv
DOEl-53-1065 vvv vvv vv
DOEl-59-1152 vv vvvv vv
DOEl-82-0434* vvv vvv vv
DOE2-63-0711* v

DOEl-07-1313* V

DOEl-12-0905* V

DOEl-23-0511 V

IX)E2-33-1315* V

DOE 1-48-0009 v

DOEl-16-1155* V

DOE2-40-1200* v

DOEl-1 1-0490 V

DOEl-15-1164 V

DOEl-35-0747 v

DOEl-43-0913* v

DOEl-46-0311 V

DOEl-73-0024 v

DOE 1-93-0736* v

DOE2-7 1-0075 v

DOEl-33-0034* v

DOE 1-84- 1200* V

DOEl-85-0564 v

52

Table 19. Precision and recall for

ad hoc queries

Top ranked evaluation

Run number: upitt3 all

Num_queries: 50

Total number of documents over all queries

Retrieved: 5383

Relevant: 5923

Rel_ret: 1249

Recall - Precision Averages:

at 0.00 0.5622

at 0.10 0.2723

at 0.20 0.2025

at 0.30 0.1382

at 0.40 0.0708

at 0.50 0.0309

at 0.60 0.0279

at 0.70 0.0155

at 0.80 0.0136

at 0.90 0.0000

at 1.00 0.0000

Average precision for all points

11-ptAvg: 0.1213

Average precision for 3 intermediate

points (0.20, 0.50, 0.80)

3-pt Avg: 0.0824

Recall:

at 5 docs: 0.0192

at 15 docs: 0.0509

at 30 docs: 0.0849

at 100 docs: 0.1753

at 200 docs: 0.2206

Precision:

At 5 docs: 0.3280

At 15 docs: 0.2867

At 30 docs: 0.2533

At 100 docs: 0.1844

At 200 docs: 0.1249

Table 20. Precision and recall for

routing queries

Top ranked evaluation

Run number: upitt3 all

Num_queries: 50

Total number of documents over all queries

Retrieved: 7611

Relevant: 14216

ReLret: 1277

Recall - Precision Averages:

at 0.00 0.5285

at 0.10 0.2057

at 0.20 0.0649

at 0.30 0.0085

at 0.40 0.0000

at 0.50 0.0000

at 0.60 0.0000

at 0.70 0.0000

at 0.80 0.0000

at 0.90 0.0000

at 1.00 0.0000

Average precision for all points

11-ptAvg: 0.0734

Average precision for 3 intermediate

points (0.20, 0.50, 0.80)

3-pt Avg: 0.0216

Recall:

at 5 docs: 0.0090

at 15 docs: 0.0215

at 30 docs: 0.0362

at 100 docs: 0.0842

at 200 docs: 0.1007

Precision:

At 5 docs: 0.3520

At 15 docs: 0.3013

At 30 docs: 0.2727

At 100 docs: 0.2102

At 200 docs: 0.1277

53

9. Failure Analysis

Comparing our results with those provided by NIST, the precision values at eleven

recall points indicate that our system performs better than the median level on about half of

the topics for the ad hoc queries (Figure 1). In several queries (54, 60, 79, 81, 84, 91, and

100) we sent only a few documents (fewer than 10), and for queries 59, 61, 68, 80 and 99 we
sent no documents, because the threshold values limited the number of documents retrieved.

Thus the precision values for those queries are zero or very low. The same situation

happened for some routing queries.

The precision values for the routing queries in our system are lower than the median

level in most cases (Figure 2). Beside the threshold inhibition mentioned above, we observed

that due to the query convergence in the final generation of the training topic, most query

variants retrieved the same documents. Some query individuals in the intermediate

generations which retrieved different relevant documents than the last generation may not

have survived. We think this caused the situation where fewer relevant documents were

retrieved on the routing queries.

Problems arose with specific queries due to our pre-processing of the documents.

Several circumstances were not considered in designing our system. For example, some

special keywords, such as AT&T and M which was used in some documents to represent

million, were not processed, but were significant in some topics. Another factor is that in the

AP, WSJ and ZIFF databases more than one text with different topics comprised a single

document. Since we did not separate them, the keyword match could cause a document to be

retrieved because keywords from different text parts matched the query, though the document

itself is not relevant.

54

59 61 79 84 99 89 71 51 57 88 87 67 81 86 72 55 90 97 76 64 78 62 52 82 69
60 68 80 91 92 73 66 65 56 95 54 74100 63 83 75 85 94 53 77 98 96 58 93 70

Topic number (ad-hoc)^ Upitt ED NIST-Median

Figure 1 . Precision values on 50 ad hoc queries

2535 7 16 4232711 15 94522 18 12 5 28424939 37 34 2617 21 13

Topic number (Routing)

Upitt ^ NIST-Median

Figure 2. Precision values on 32 routing queries

55

10. Further studies

In dealing with these large databases, our algorithm shows many interesting

phenomena which we could not deal with due to the short time period of TREC, and which

could form the agenda for further studies.

(1) The document term weights

Although we use the vector space model mentioned in Section 3, unweighted keyterms

are assigned to describe the documents. We have mentioned the two factors based on which

we made the decision. Moreover, the databases consist of a variety of subjects which may
make the general term weights less reliable than in most experimental databases, which deal

with only a narrow area. While our Cranfield study supports this decision, the effect of

weighted and unweighted document keywords in large databases should be further studied.

(2) Window size for document retrieval

Although we established the maximum size of the retrieved document set as 40, it

would be interesting to set the window size smaller than 40 at the beginning of the process

and gradually increase the size after the query individuals move toward convergence. Various

thresholds and cutoff points are often arbitrarily set. Further experimentation is planned to

investigate the effect of changes in these values.

(3) Document classification

In this experiment we found many cases in which different query individuals retrieved

different documents. This may arise because the database contains relevant documents that

belong to different classes, that can be retrieved only by using different queries. This fact

would never be discovered by systems that rely on a single query. Our present algorithm aims

at convergence to a single query form. We need a mechanism which will detect the

development of distinct classes, and automatically separate the query into two or more distinct

queries. Similar ideas, not based on genetic algorithms, have been discussed in document

classification (Worona, 1971) and in query splitting (Borodin, et. al., 1971).

(4) Term addition and deletion

In our feedback process, no terms were added to or removed from the original query.

This may cause lower recall. However, the determination of which terms should be added or

removed is not an easy task (e.g., Harman, 1988, 1992). It would be interesting to see how
this problem can be handled in the genetic process.

Reference

Aalbersberg, I.J. (1992). Incremental relevance feedback. Proceedings of the 15th Annual

International SIGIR Conference, pp 11-22. Copenhagen, Denmark (June, 1992).

56

Baker, J.E. (1987). Reducing bias and inefficiency in the selection algorithm. In J.J.

Grefenstette (Ed.), Proceedings of the Second International Conference on Genetic

Algorithms, pp. 14-21. NJ: Lawrence Erlbaum Associates, Publishers.

Bookstein, A. (1985). Probability and fuzzy-set applications to information retrieval. In: M.
E. Williams (Ed.), Annual Review ofInformation Science and Technology, Vol. 20,

pp. 117-151.

Borodin, A., Kerr, L. and Lewis, F. (1971). Query splitting in relevance feedback systems.

In: G. Salton (Ed.), The Smart Retrieval System: experiments in automatic document

processing. NJ: Prentice Hall.

Chang, Y.K., Cirillo, C. and Razon, J. (1971). Evaluation of feedback retrieval using

modified freezing, residual collection, and test and control groups. In: G. Salton (Ed.)

(1971). The SMART Retrieval System: experiments in automatic document

processing. New Jersey: Prentice-Hall, Inc.

Frakes, W.B. (1992). Stemming Algorithms. In W.B. Frakes and R. Baeza-Yates, (Eds.)

Information Retrieval: data structures and algorithms, pp. 131-160. NJ: Prentice

Hall.

Frieder, O. and Siegelmann, H. (1991). On the allocation of documents in multiprocessor

information retrieval systems. Proceedings of the Fourteenth Annual International

ACMISIGIR Conference on Research & Development in Information Retrieval, pp.

230-239. Illinois: Chicago.

Goldberg, D. E. (1989). Genetic Algorithms: in Search, Optimization, and Machine

Learning. New York: Addison-Wesley Publishing Company, Inc.

Gordon, M. D. (1988). The necessity for adaptation in modified Boolean document retrieval

systems. Information Processing & Management, 24(3), pp. 339-347.

Harman, D. (1988). Towards interactive query expansion. Proceedings of the Eleventh

Annual International ACMISIGIR Conference, pp. 321-331.

Harman, D. (1992). Relevance feedback revisited. Proceedings of the 15th Annual

International SIGIR Conference, pp 1-10. Copenhagen, Denmark (June, 1992).

Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: The

University of Michigan Press.

Ide, E. (1971). New experiments in relevance feedback. In: G. Salton (Ed.) (1971). The

SMART Retrieval System: experiments in automatic document processing.

Chapter 16. New Jersey: Prentice-Hall, Inc.

57

Salton, G. (Ed.). (1971). The SMART Retrieval System: Experiments in Automatic

Document Processing. NJ: Prentice-Hall, Inc.

Salton, G. (1986). Recent trends on automatic information retrieval. Proceedings of

ACMISIGIR Conference on Research and Development in Information Retrieval, pp.

1-10. Pisa, Italy (September, 1986).

Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.

Information Processing & Management, 24(5), pp. 513-523.

Worona, S. (1971). Query clustering in a large document space. In: G. Salton (Ed.) (1971).

The SMART Retrieval System: experiments in automatic document processing,

Chapter 12. New Jersey: Prentice-Hall, Inc.

Yang, J.J. and Korfhage, R.R. (1992a). Adaptive information retrieval systems in vector

space model. Proceedings ofSymposium on Document Analysis and Information

Retrieval, pp. 134-150. Las Vegas, Nevada (March, 1992).

Yang, J.J. and Korfhage, R.R. (1992b). Query modification using generic algorithms in vector

space models. Research Reports, LIS045/IS9200I, Department of Information

Science, University of Pittsburgh.

5S

Automatic Retrieval With Locality Information Using
SMART

Chris Buckleyr Geiard Salton, and Jaines Allan

Abstract

The Smart project at Cornell University, using a completely automatic approach for both rout-

ing and ad-hoc experiments, performed extremely well in the first Text Retrieval Conference. The
basic ad-hoc approach uses local/global matching to achieve its results. A global match ensuies

that each retrieved document uses the same vocabulary as the (juery; a local match then attem|)ts

to guarantee some local part of the document (eg. a paragra[)h or sentence) focuses on the query

topic. Runs were made with and without simple adjacency phrases. A simple relevance feedback

algorithm is used for routing experiments; llie original (|ueiy is ex|)an(led by terms occurring in

relevant documents, with term weights being based upon occurrence in t he relevant documents. In

addition, a set of system design issues and tradeoffs aie examined.

Introduction

For over 30 years, the Smart project at Cornell has been interested in the analysis, search, and

retrieval of heterogejieous text databases, where the vocabulary is allowed to vary widely, and the

subject matter is unrestricted. Such databases may include newspaper articles, newswii'e dispatches,

textbooks, dictionaries and encyclopedias, manuals, magazine articles, and so on. The usual text

analysis and text indexing approaches that are based on the use of thesauruses and ot her vocabulary

control devices are difficult to apply in unrestricted text environments, because the word meanings

are not stable in such circumstances and the inter])retat.ion varies de])ending on context. The

applicability of more complex text analysis systems that are based on the construction of knowledge

bases covering the detailed structure of particular subject areas, together with inference rules

designed to derive relationships between the relevant concepts, is even more cpiestionable in such

cases. Complete theories of knowledge representation do not exist, and it is unclear what concepts,

concept relationships and inference rules may be needed to understand particular texts. [5]

Accordingly, a text analysis and retrieval component must necessaiily be based primarily on a

study of the available texts themselves. Fortunately very large text databases are now available

in machine-readable form, and a, substantial amount of information is automatically derivable

about the occurrence properties of wojcls and expressions in natural-language texts, and about

the contexts in which the words are used. This information can help in determining whether two

or more texts are semantically homogeneous, that is. whether they cover similar subject areas.

When that is the case, such semantically homogeneous texts can be linked, thereby generating an

automatic structured text (hypertext) lepresentation; alternatively, in a retrieval setting a text can

be retrieved when anothei' semantically homogeneous text is submitted as a query.

'Department of Coiiijiiitcr Science, Cornell I'liivcrsily, Itliaca, NY 14853-7501. This study was supported in part

by the National Science Foundation uniler grant IRl 89-15847.

59

Automatic Indexing

In the Smart context, the vector-i)roce.s.sing model of retrieval is used to traiisfoi'm botii 1 he available

information requests as well as the stored documents into vector form of the type

where represents a document (or (piery) text and (/',/, is a term weight of term 1\. attached to

document D^. A weight of zero is used for terms that are al)sent from a paiiicular document, and

positive weights characterize terms actually assigned. I'lie assumption is that /, terms in all are

available for the re])resentation of the information.

In choosing a term weighting system, low weights should be assigned to high-fre([uency terms

that occur in many documents of a collection, and high weights to terms that are important in

particular document s but unimportant in the remainder of the collection. The weight of terms that

occur rarely in a collection is relatively unimportant, because such terms contribute little to the

needed similarity computation between different texts.

A well-known term weighting system following that presciiption assigns weights to term

T/t in document Di in proportion to the fre(iuency of occurrence of a term in Z),, and in inverse

proportion to the numbei' of documents to which the term is assigned. [6, 9] Such a. weighting system

is known as a // + idf (term frequency times inverse document frequency) weighting system. In

practice the document length, and hence the number of non-zero term weights assigned to as

document, varies widely. To give each text item an equal chance of being reti ieved, it is convenient

to use a length normalization factor as part of the term weighting formula. A high-quality term

weighting formula for i/;,/,-, the weight of term T/,. in document D; is

where fik is the occurrence frequency of /'/,. in Di, N is the collection size, and /i/.. the number of

documents with term 1\. assigned. The factor log(A'7/^.) is an inverse collection frequency factor

which decreases as terms are used widely in a collection, and the denominator in expression (1) is

used for weight normalization.

The terms Ti,. included in a given vector can in principle represent any entities assigned to

a document for content identification. In the Smart context, such terms are derived by a text

transformation of the following kind:[2]

1. recognize individual text words

2. use stop list to eliminate unwanted function words

3. perform suffix removal to generate word stems

4. optionally use term grouping methods based on a statistical word co-occurrence, or word

adjacency, computation to form term phrases (alteinatively syntactic analysis computations

can also be used

)

5. assign term weights to all remaining word stems and/or phiase stems to form the term vector

for all information items.

D, - ((('a, uii2- '",()

*log(A7//A.)
(1)

60

Once term vectors are available for all inrorination it(Miis. all sii bscfiiieiil i)rocessiiifj; is based on

term vector manipulations.

The fact that the indexing of bot li dociiiueiils and (|uorios is completely automatic means that

the results obtained are reasonably collection iiidependenl and should be valid across a wide range

of collections. No human expertise in I lie snbject matter is re(|uiied foi' either the initial collection

creation, or the actual cpiery formulation.

Text Similarity Computation

When the texts are re])resented by term vectoi- of the form D, =
((0,1 2, ...,(/',/) and Dj =

(iUji,irj2, • • ,Wjt) for documents D, and a siniilaril\- (,S') computation between two items can

conveniently be obtained as the inner product between corres|)onding weighted term vector as

follows:

Thus, the similarity between two texts (whether (juery or document) de|)ends on tli(> weights of

coinciding terms in the two vectors.

Information retrieval ajid text linking systems based on the use of global lext similarity measures

such as that of expression (2) will be successfid when the common terms in the two vectors are in

fact used in semantically similar ways. In many cases it may however happen that highly-weighted

terms that contribute substantially to the text similarit\' are semantically distinct. For example, a

sound may be an audible phenomenon, or a body of water.

In determining the meaning of individual words, we lake advice from Wittgenstein and others

who suggest that text understanding must be based on a. study of how text words are used in the

language ("word use'" theory of text meaning). [1 1] In a mechanized lext nraiiipulation environment,

"word use" may be interpreted as the contexts in which the words are used in the texts in which

they occur. The assumption then is that identical words used in identical contexts (that is, in

substantially similar i)hrases, sentences and paragrai)hs) are in fact semantically homogeneous.

Contrariwise, similar words such as "souiid" are expected to occur in different local environments

when they represent diffeieni entities such as bodies of water and audil)l(> plienomena.

To detect similaiity of local teiiu environments, we carry out text similarity measurements

such as those suggested by expression (2), but applied to small text units such as text sentence's

and text paragraphs. Two texts are then accepted as related only when a sufficiently high global

text similarity exists, as well as sufficient local text similarities in the form of" similarit ies between

sentences and/or paragraphs in the texts under study. [7.
S]

A complete text retrieval system based on text sinularity cominita.tions is then generated in the

following way:

1. formation of term vectors for the text items

2. computation of text similarities, and elimination of text pairs with insufficient global text

similarities

.3. computation of local text similarities for the remaining texts

4. retrieval of text items with sufficiently large global and local sinularities

5. use of user relevance judgments for rephrasing of search recpiests using relevance feedback.

(2)

61

This process is expected to perform eflV'ctively in])ro(liiciiig both high precision as well as high

recall.

System Description

Tlie Cornell TREC experiments use the SMART Information]{etrieval System, Version 11 and

were run on a dedicated Sun Spares 2 with 61 Mbytes of memory and 5 Cbytes of local disk.

SMART Version 11 is the latest in a long line of ex|)erimental information retrieval systems,

dating back over 30 years, developed under the guidance of G. Salton. Version 11 is a reasonably

complete re-write of earlier versions, and w^as designed and coded by C. Buckley. The new version

is approximately 44,000 lines of C code and documentation.

SM.VRT Version II offers a basic framework for investigations into the vector space and related

models of information retrieval. Documents arc fully automatically indexed, with each document

representation being a weighted vector of concepts, with the weight indicating the importance of a.

concept to that particular document. The document representatives are physically stored on disk

as an inverted file. Natural language (pieries will go through the same indexing process. The query

representative vector is then compared with the indexed document r<>|)resentatives to arrive at a

similarity. The documents are then fully ranked by similarity.

Specific Methodology Used for TREC Study

There are two major sets of Cornell TREC experimental runs. The first set is the official TREC set

with ad-hoc runs using the local/global matching procedure described above in steps 1-4. There

are two automatic runs in this set; one using only single term indexing aiul the second using both

single term and two term phrases. There is also an official routing run, using a simple relevance

feedback technique to form a revised (piery based on relevance judgements from the training set.

The other set of runs provide an examination of some of the tradeoffs (disk space, memory,

time, and effectiveness) encountered within a single infoi-mation retrieval system. There are many
decisions that need to be made when designing a system; the goal in this set of runs is to explore

the consequences of some fundamental choices including

1. Degree of stemming

2. Size of stopword list

•3. Inverse document freq weighting

4. Phrases

5. Query optimization

Both sets of runs use completely automatic indexing of (pieries and documents. Queries and

documents are treated as flat text; some sections (like DOCID) might be omitted, but all indexable

text is treated the same (unfortunately, even if preceded by a NOT!). This ignores the structure

(in both form and semantic meaning) of the queries which could be very useful. SMART has the

capability to treat different parts of query or document in different appropriate manners. However,

using this structure would have tremendously complicated the second set of runs by adding another

large set of variables to the experiments. Now that the choices investigated in the second set of

runs have been made, future runs can use the structure of documents and tjueries.

62

Official Runs (Ad-hoc Queries)

The ovcM-all prorediiro iisod for l)otli of 1 lie ofRcial runs (one willi siiif>;Io tonus only, tlio other

iiuludiiig phrases) is f>ivon in figure 1.

1. Automatically index document collection D1+D2 using

tf * idf weights, cosine normalized (ntc) creating inverted file.

2. Automatically index query collection Q2 using

tf * idf weights, cosine normalized (ntc)

3. For each Q in C)2

3.1 Compute sim of Q to each of documents in D1+D2

keeping track of the top 500 documents

.

3.2 Re-index Q, breaking it down into sentences.

Each sentence is reweighted with tf * idf weights (ntn)

and formed into a vector.

3.3 For each D in the top 500 global sim documents

3.3.1 Re-index D, breaking it down into sentences.

Each sentence is reweighted with tf * idf weights (ntn)

and formed into a vector.

3.3.2 Do a pairwise comparison of every sentence

vector of Q against every sentence vector

of D . If some sentence match satisfies the

local criteria, add a large constant to the

global sim of Q vs D already computed.

3.4 Return the top 200 documents out of the set of 500

documents. Given the method above, first will be

the documents satisfying the local criteria, sorted

by global sim, and then the documents not

satisfying the local criteria, sorted by global sim.

The local criteria varied in the two official runs.

Single Term Global/Local Matching

Indexing the document collection for the single term rnii (step 1) took 5.1 CPU hours, creating an

inverted file of 690 Mbytes.

The actual retrieval took 1465 CPV seconds for all 50 (pieries and considerably longer in elapsed

time (a large amount of time being spent waiting for disk io). For each ciuery. the text of 500

documents had to bo read in, broken down into sentences, indexed, and weighted with idf weights.

Then every indexed sentence in the (piciy had to be compared against every indexed sentence in

the document.

The local matching criteria are based on the detection of matching substruct ures in both the

query texts and the texts of retrieved documents. The criterion used for the sam])le runs recpiired

the presence of at least one pair of matching text sentences with a pairwise sentence similarity

of at least 100.0. This was chosen to be high enough so that veiy few matches of only one term

would satisfy the threshold, but low enough so that, several medium w^eiglited teiiiis could match

and reach the threshold.

63

Phrase Global/Local Matching

The phrases being used were two-teriii SMART adjacency phrases. Plirases were adjacent non-

stopwords, term components stemmed, that occurred at least 25 times in tlie learning (Dl) docu-

ment set. The term components were put into alphabetical oider, thus the text, i)hrases "information

retrieval" and "retrieving information" both mapped to the same phrase concept. The phrases were

treated as a separate concept type (ctype) within an indexed vector, and hati their own dictionary

and inverted file separate from those of the single terms. The components of phi ases remained in

the single term ctype.

Determination of phrases took 5.8 hours, finding -1,700.000 |)hrases occurring in Dl at least

once. Of those phrases 158,000 occurred at least 25 times. Tliese phrases were then put into a

dictionary and used as controlled vocabulary for phrases when doing the iudexing of Di + D2. The

single term indexing remained exactly as it was in the single term run (terms occurring in phrases

were not removed from the vector).

Both the terms and phrases were given a "natural" //* idf weight (ie, the idf weight was based

on the collection fre<iuency of the phrase itself rather than being a function of the idf values of the

single term components). The cosine normalization was handled in the following way. .411 terms in

the vectors had their weight divided by the cosine length of the single term sub-vector instead of

the vector as a. whole. Thus the weights of single terms in the final vector were exactly the same

as if phrases were not being used. At letrieval time, the effect of a i)hrase match was divided by 2.

(The same effect could have been obtained by dividing the indexed weight of a phrase by sqrt(2).)

Indexing the document collection with phrases took 10.6 hours, creating an inverted file of 840

Mbytes. The actual letrieval took 2405 CPU seconds for all 50 queries and again considerably

longer in elapsed time.

A more complicated local match criteria was used for the phrase run. The basic threshold was

reduced from 100.0 (used in the single term run) to 75.0, but an additional restriction was placed

on the match to ensure that no one term woidd contribute more than 65 percent of the computed

pairw-ise sentence similarity for any sentence pair. This effectively eliminates sentence matches due

to the presence of a single highly weiglited term. The 65% was determined empirically from tests

using the learning query/document sets; percentages ranging from 55% to 85%) performed equally

well.

The more complicated local match, in conjunction with the phrases, produced a very significant

improvement in the phrase run as opposed to the sijigle-term run. The 11 -point average over 50

queries for the single-term l un was 0.1738. while the phrase run did very well at 0.2032.

Offical Routing Queries

Standard SMART relevance feedback techniques were used to automatically construct routing

queries to be run on the test set of documents (D2).

Each routing query was composed of terms from the original indexed query plus the "best" 30

terms from the documents in the learning set that were relevant to that query. The weight of each

routing query term was a linear combination of the tf x idf weight in the original query, the tfxidf

weight in each of the relevant documents, and the tfxidf weight in a single non-relevant document.

E. Ide's [4,10] feedback formula was used:

rel

The idf component in the query and document weights was based on occurrences of the term in

the learning set of documents only.

64

The routing query was then run against eacii oftlic (lociiiucMits in the test set. Those clocuinents

were indexed in the standard SMAKT fashion, with each term receiving a If-ridf weiglit, cosine

normalization. Again, tlie idf document weight was determined by the occurrences of" the term in

the learning set of documents only. Thus no collection information from t he test set of documents

was used.

It took 306 seconds to constitict th(^ full feedback query set (most of the time spent deciding

which terms should be added to each query). It took 1.9 hours to index D2, forming an inverted

file, and then 293 seconds to run the 50 reformidated ([ueries against the inverted hie.

Effectiveness of this simple method was reasonable but not s|)ectaculai'. The 11 |)oint average

over 50 queries was 0.1924.

Tradeoff runs

This set of runs provide an examination of some of the tradeoffs (disk space, memory, time, and

effectiveness) encountered within a single information retrieval system. There are many decisions

that need to be made when designing a system; tlie goal in this set of runs is to ex])lore the conse-

quences of some fundamental choices including stopwords. stemming, phrases, and term weighting.

Conceptually, the standard SM.ART indexing and ret ii(>va.] algorithms are given below.

INDEXING

For each document/query text

1.1 Break the text into tokens

1.2 Determine if token is a common word (stopword) to be

discarded

.

1.3 Stem all remaining tokens to their root forms.

1.4 Assign concept numbers to each root, forming a

''vector'' of concepts.

1.5 Weight each term in the vector.

1.6 Store vector in an inverted file

RETRIEVAL

For each term in the query

2.1 Get the inverted list of documents containing that term.

2.2 For each document/weight on inverted list

2.3 Add Qi * Di to the partial similarity computed

for this term so far (Qi is this terms query

weight and Di the document weight)

2.4 Add doctunent to current list of top documents

if similarity is high enough.

Return list of top documents to the user.

65

Tradeoff runs

STANDARD

1. ntc.ntc (single terms) Full 2 pass indexing

2. ntc.ntc (single terms) alternate indexing method making document vectors

STOPWORD

3. ntc.ntc automatic stopword (added 69 terms occurring in 10\'/, of coll)

4. ntc.ntc automatic stopword (added 350 terms occurring in 5\'/, of coll)

5. ntc.ntc automatic stopword (added 1286 terms occurring in 2\'/, of coll)

STEMMING

6. ntc.ntc only plural stemming

7. ntc.ntc no stems

LOCAL/GLOBAL

local/global (single terms)

local/global (single terms, same thresholds as 2nd official run)

QUERY OPTIMIZATION

ntc.ntc query efficiency optimization (IS docs guaranteed good)

PHRASES

11. ntc.ntc phrase dictionary. (> 25 times in Dl, 158,000 out of 4.7 million)

12. ntc.ntc local/global (phrases)

*8. ntc.ntc

9. ntc.ntc

10,

13

14

15

nnc .ntc

Inc . Itc

. Incite
Doc

Indexing

Time

(hours)

4.5/4.9

4.7/0.7

4.3/4.6

4.0/4.3

3.7/3.9

4.3/5.0

4.2/4.7

. 4.7/0.7
II II

OTHER WEIGHTS

(single terms)

(single terms)

(phrases)

Inverted Other

File File

Size Size

1.

2.

3.

4.

5.

6.

7.

8

9.

10.

11. 7.5/8,

12 9.7/0,

13. 4.5

14. 4.5

15. 8.1

Query

Indexing

Time

(seconds)

2.3(13.6) 667

2.7

.2(13.1) 624

,0(12.8) 528

Retrieval

Speed

50 queries

Retrieval -Effectiveness

(averaged over 47 queries)

11-pt NumRel Recall/prec

(Mbytes) (Mbytes) (seconds)

3.8

2.7

(88.5)

2.7

381

724

752

667

892

892

667
II II

892

100

790

100

100

100

98

98

790

104

1040

89
II II

104

358
Mil

306

166

78

251

235

1465
1 1 1

1

97

415

2405

262**
7

396

1813
II II

1828

1750

1538

1745

1709

1783

1982

1693

1903

2080

1818

2249

2424

Total

3114
II II

3101

2978

2658

3148

3101

3150

3400

2983

3298

3555

3203

3746

3886

at 200

2614/3313
II II

2587/3299

2524/3168

2237/2828

2605/3349

2545/3299

2636/3351

2856/3617

2476/3173

2814/3509

3076/3782

2614/3407

3272/3985

3394/4134

* indicates official TREC run, **: timing on machine with 128 Mbyte memory

Query timing numbers in parenthesis indicate CPU time using dictionary on disk

66

The weighting scheme used in 1.5 <l(>1 (M inines \\ het Ikm- I lie entire indexing ai)|)r(j;i(li l an Ik- done

in one i)ass or requires two. 'J'he standard S.\'I.\1{'1' weight wliich we recoiii mend when nothing is

known about the coHection is a straight // * idf cosine normalized weight [vie). nnCortunately.

the "idf" value cannot i)e comi)uted without knowing t lie chjcimient freci iicnc v of the t.enii. Thus

an accurate idf re(|uiies a two |)ass algoritlim: the first linding t Ik' colhution rr('(|ii(ik v oCall terms

and the second actually assigning the ir*idr weight. .Alternative one pass weighting schemes are

discussed at the end of the tradeoff discussion. Lhitil t hen, all indexing runs discussed will he two

pass runs, indexing the documents with an nic weight.

Intermediate Document Vectors.

A two |)ass approach tJiat uses minimal space involves doing steps 1 . 1 through 1 .1 above on pass one.

but instead of weighting and storing the actual vectors, just keep tiack of t he coll<H tioii frequency

of each term. Then |)ass 2 repeals steps 1-1. but then can go ahead and compute the weight in

1.5 and store the vectoi-. iU'N 1 in Table 1 gives t h(> timing figures for this appioach: 1.5 hours

for pass 1 and 4.9 hours for pass 2 (pass 2 takes longer because it needs to const i iict t he iiivei led

index).

An alternative to this approach is to store unweiglit(>d document vcctoi's (as document vectors

in not in inverted index form) lor pass 1. Tluui pass 2 can ignore steps 1.1-1. I. and gf) directly to

the weighting and inverted index construction. As Rl'N 2 shows, this is much (piicker (-1.7 hours

for pass 1 and 0.7 hours foi' pass 2). but at a cost of doubling t he amount of disk .space needed.

Obviously the choice of these two apj^roaches depends on w hether indexing time or disk space

is important to the database administ ralor.

Stopwords

No retrieval system wants to store inveited indices for all words in the text (at least for retrieval

purposes). Words like "the", "of", and "a" are not useful for distinguishing relevant tlocuments

and take up an extremely large amount of space since they occur in nearl\' ovvvy document. The

question is how many stopwords to ignore. S.MART has a standard collection independent list of

571 words that seem to convey little inlbrmation about rele\'ance. Hut indixidiial collections often

contain an additional number of words that give little inlormatioji for t he])art icular subject matter

covered by that collection.

Three runs Runs 3-5 were made on I'HfX.', adding the most frequently occurring words occur-

ring in TREC to the standard SMART stopword list. Ru.n' 3 added the 69 terms occurring in more

than 10% of the collection: Run 1 added 350 terms occurring in more than 5% of the collection;

and Run 5 added the 1286 terms occurring in more than 2% of the collection. The space savings

are substantial, ranging from 7% to 13% of the inverted file size, with a coi iesi)onding savings in

indexing time. Retiieval tijiie is even more affected, as many oi the veiy long inverted lists for

common words no longer have to be dealt with. Run 4 saves 54%^ and Run 5 79%..

The penalty that needs to be paid for these savings is the letrieval effectiveiiess. There's no

penalty for Run 3, and the reduced effectiveness in Run 4 is insignificant, but Run 5 loses about

15%. Except if you need maximal effectiveness, Run 4 would seem to be worthwhile in practice.

One other potential problem with removing the most common words of the collection is user

mystification. Users can understand that words like "the" don't help retrieval, but may be surprised

when sentences like

The head and president of an .American computer system company based in W'ashingt on

said she expected to make a million systems by the end of the year.

67

contain no indexable words at all! All words are among 1 lie standard SMAIJT stopwords or occur

in more than 10% of the I'KEC (k)ciiiiieiii s.

Stemming

Steniuiing is one of those areas wheie i he I radeolTs can be somewhat sn bt ie[2.;{]. The standard

SMART approacli uses fidl stemming u licre most suffixes aic lemoved lU'N 1, Ht'N G removes only

])]urals and Run 7 does no stennuing al all. An ofl-cited drawback of not (k)ing full stemming is

the increase in the dictionary size; iiowever that is reasonai)ly insignificant. Far more important is

tlie increase in inverted file size due to multiple forms of the same word occui ring in a document.

Plural indexing increased the inverted Mo by 8.5% and using no stems increased it by 12.7%

Indexing speed is given as an advantage of not doing full stemming, but again, that's reasonably

insignificant. If full stejnming is efficient, then the cost is almost completely counter-balanced by the

cost of creating a larger inverted index. Retrieval speed is not normally mentioned as a disadvantage

of full stemming, but seems to be a considerable factor. \ 6 (plurals) is ;}()%^ faster than RuN I

(full).

Retrieval effectiveness is often giving as an adsaiitage of full st,(Mnming over just |)lural removal,

but the results here agree willi other recent results: the dilferences between t lie two are insignificant.

No stemming at all is noticeably wors(>. but not by an extraoidinary amount (6%).

Local/global

The basic local/global algorithm is described in a])revious section of this report. Our current

implementation is designed to increase flexibility' at the cost of retrieval lime: foi- every (piery, we

had to go out and index and weight 500 documents IVom scratch. That means at ret rieval time, we

can do any sort of indexing, weighting, and restrictions we like. In an operational system, however,

it's ex])ected that the local restriction operation would be determined in advanced, and would use

preindexed sentence vectors. Thus indexing time and space would increase, but retrieval speed

would go to a reasonable level (it cui reiit ly takes I t imes as lojig for let rieval with local/global

matching).

Run 8 gives the timing and effectiveness figures for the first Cornell official run. Effectiveness for

that run was disappointing; about the same as RvN 1 without local matching. However, between

the time we submitted our hrst official run and the time of oui' second official run, we were cible to

get a, better local restriction method woiking. I'sing the restiiction method of the second official

run (described in the main portion of the writeuj)), but on the single term collection (our second

official run used phrases), we get a 10%- improvement (1U'.\' 9).

Query Optimization.

In the stopword section above, tlie tradeoff b(>tween retrieval speed and ret, rieval effectiveness was

examined by com])letely removing long inverted file sto|)wor(l lists from the collectioi;. This tradeoff

can be examined directly at retrieval time by considering schemes to avoid looking at the longest

inverted lists for query terms unless forced to.

The basic method used here, (desciibed in more detail in [1]) is to soi't tlie query by decreasing

query weight (thus hopefully putting (piery terms with long lists and therefore low idf at the end),

go through the query term-by-term, and sto]) when it is guaianteed that a cert ain number of "good"

documents will appear in the final list of 200 top documents. Here, ''good" means retrieved in the

top 200 if all query terms are used.

68

If .V "good" (lociiiiKMils are to ho guarantocHl oiil of 200 docii iiiciil s. 1 lio decision piorcd ii i f

invoked before eacli toiiii h of tlie (juory lias been doiu^ is testing

i

(.V(/;,ou) + ^(7-))<

wliere S(D2oo) '^^ tli*^' similarily of tlie 200//, ranked docuiiKMit and .S'(/J v) is the siiiiilaiily of t lie

A'(/i ranked document. If tdiis condition is true, tlicMi do not (-(jnsider tlie rest ol' the icriiis in this

query. This makes the assumption that the weight of a term in a document will be less t han i li(>

weight of that term in the (luery. It's almost always true with nic weights (<\\ce|)t h)r very short

documents).

Run 10 in Table 1 gives one i)oinl on the curve: otluu- points are in tlu- table belou-.

G uarani ee CPti Elai)sed Uel 1 1-pt Recall /prec

Time 'i'ime Uet at 200

1 7 J III 282S 1575 2330/300!)

5 83 1 16 2911 1 630 2391/3097

JO 88 1 51 29 11 1659 2129/3 132

15 97 J 78 2983 1 693 2176/3 173

25 106 218 3017 1721 2505/3210

50 1 23 255 303 1 1751 25-13/3228

75 Ml 291 .3069 1 765 2571/3265

100 167 3 17 3082 1 782 2583/3279

1 50 22d 159 3085 1778 2595/32x2

200 (Full) 37 1 72 1 31 M 1 X 1

3

26M/33I3

As X decreases, retrieval effectiveness and ('PU time decrease pretty smoothly, with retrieval

effectiveness remaining reasonable for quite a. long tiiii(\ i'.xactly which [)oiiit is suitable for any

pa.rticular application is determined by tlie relative i)riorities of efficiency and effecti\eness.

Phrase runs

The basic adjacency i)hrase ai)proacli used by SM.AltT is described in the official run portion of the

paj)er. We've looked at other methods of producing |)liiases; but our other implementations were

too slow to be of use with TRTX.'. .-Vdjacency phrases lia\e t he advantage of being fast , simple, and

producing reasona])le results. They have ihv disadvantage that some sort of filtering operation has

to be performed to come up with a good])hra.se list. There are just too many pairs of terms to

index all of them. For these runs, we used the criteria that the phrase had to occur more than 25

times ill Dl, the learning document set.

We had hoped that phrases would help substantially in TREC since as the collection grows,

the need to be more specific in the query grows, and phrases should be a good way of increasing

precision. We got improvement, but it remained in the range of 5-8%, about what it is on the very

small conventional test collections of tlie])ast. Perhaps other phrase approaches can do better.

Phrases are indexed witli iilc weights, but the cosine normalization of the entire vector is done

over the length of the sijigle tein^i^subvector only. This means that the single terms (mkI up with

exactly the same weight as they woidd if the entire collection was indexed with only single terms.

Thus, phrases only increase similarity. This seems to be quite important for some collections,

although not crucial for our phrase selection on TREC.

69

In our runs, tho global phrase run. Run 11, does about 5% better in retrieval efl'ectiveness

than Run 1, at a cost of incioased in(h>\iiiti; time, indexing space, and ret riexal time. Similarly, the

local/global phrase run. Run 12. is about 5% better lhaji the local/global single term run with the

same parameters. lU'N 9.

Alternative Weighting Schemes

The two passes needed for idf weights in documents are a definite burden. In earlier experiments

with other collections we found that nol using idf in documents (wiiile still using it in qneries) was

very reasonable, just a. bit less effective t han using idf.

Wlien tried on TREC, tf-cosine normalized
(
unc) document weights even |)roved to be marginally

better than the ntc document weights. The one pass niic weights, RUN 13. took less than half the

total indexing time of Run 1. There is no (piesliou that this is a major advantage of nnc. The

possible advantage that iiU: weights might have is in feedback, where normally cpiery weights and

document weights are combined to form new queiy weights.

A variant of term freciuency weighting that's been in SM-AR T for a couple of years is the /

scheme (eg, Itc instead of 7?/c). / stands for log; (1.0 + In (tf)) is used instead of tf, the number of

times a term occurs in a document. The goal is to dowuweight the importance of the tf factor in

collections which have very long documents. That fits I'Hl'X.' very well.

Run 14 and Run 1.5 describe using Inc document weights and lie query weights for single terms

and phrases respectively. They work remaikably well, about 20% better than the corresponding

nnc.nic runs. That's an eiiormous impiovement.

Actually, half of the inii)roveiMeiit is somewhat questionable. .About 10%, out of the total 20%, is

due to the Itc query weights, and the other half is due to the iuc document weights. The document

weight improvement is reasonable; th(Me"s 770,000 documents of all sizes indexed with iuc weights.

I feel the strong imjirovement due to Itc (piery weights is almost cei tainly an artifact of the TREC
queries, and possibly even an artifact of t he second (|uery set (([ueries .51-100). 50 (pieries is a small

enough number so that random effects can be impoitant .

Aji average user sup]>lied query will not have t he distiibiition of terms that the TREC queries

have. For that reason, lie query weiglits can not be generally recommended. In tests on small

collections, Itc performs about the same as ntc. It shouldn"l hurt to use Uc, l)ut don't bet the farm

on it for TREC 2!

Failure Analysis

There seems to be little consistent that can l)e said about the performance ol' Smart in the ad-hoc

experiments. Smart does comparatively better (wlien compared with the median values) on queries

with a. lot of relevant documents, as opposed to those with few relevant documents, where it often

does substantially worse. But it is hai d to tell whether that is a feature of the system or the queries.

For some queries, the Smart performance is very poor, because tlie query structure is ignored. That

is especially true of C| ueries using NOT clauses. The NOT is ignored and the following words are

treated as positive relevance indications.

In general, the local match requirement does not have as big of an effect on ([ueries as it has

on other collections. There are definite successes; for example, query 69 on "Attempts to Revive

the SALT II Treaty". The local lecpiirement rejects all documents that deal with industrial salts

insstead of a peace treaty. But in TREC 1 at least, there are few queries in which and)iguous words

played an important i^art.

70

Query 69 - Global Match Only

Num Rel? Sim Title

349983 Y 0 .48 REVIEW & OUTLOOK (Editorial): Breaking With SALT II</HL>

339345 Y 0 .45 Letters to the Editor: Salt Ceilings Serve U.S. Interests</HL>

204128 0 .36 [disposal of waste salt]

187056 0 .33 [Superconducting compositions of the general formula]

370883 0 .33 Diamond Crystal Peppered by Rivals Admits It's Licked Maker

582868 0 .32 Salt Rationed in Many Parts of China</HEAD>

358376 Y 0 .32 REVIEW & OUTLOOK (Editorial): No-Sweat SALT</HL>

232619 0 .31 [process for recovering metals and metallic salts]

132873 0 .30 [Salt deposits have economic significance]

206721 0 .30 [interaction between intact salt and crushed salt]

Query 69 - Local/Global Match

Num Rel?' Sim Title

349983 Y 10 .48 REVIEW & OUTLOOK (Editorial): Breaking With SALT II</HL>

339345 Y 10 .45 Letters to the Editor: Salt Ceilings Serve U.S. Interests</HL>

358376 Y 10 .32 REVIEW & OUTLOOK (Editorial): No-Sweat SALT</HL>

342288 Y 10,.27 [House banned funds for deployment of weapons]

90352 10,.27 [Arms control purposes include strengthening]

530499 Y 10,,27 Arms Control Restrictions Figure In Pentagon Budget Battle</HE

167476 Y 10,.25 [controlling the nuclear arms race]

353163 Y 10,.23 REVIEW & OUTLOOK (Editorial): Is SALT Harmful?</HL>

534139 Y 10,.23 House OKs Pentagon Spending Bill</HEAD> <NOTE>Eds : To update i

166087 10.,23 [examines all the major arms control treaties]

340954 Y 10,,22 House Passes Bill Slashing \$33 Billion From Reagan's Military

The routing run perforiii.s (|iiite badly on a iiuiuIxm- of (piorics because of (|iKMy expansion. The

query Unigth after leriiis from relevant (lociiiiients are added is aboiil twice the (|iieiy lenglli of the

original query. A large portion of the adtUnl terms are gen<M al terms that hav(> not lung to do with

the query topic, but .still get a high weight because c^f the numb(>r of relevant documents t hey occur

in. Two approaches to try in the future are imi)roving the (|uery expansion i)rocess. and using

local/global matching to ensure a reti-icn^Hl document has something in (Diiimoii wit li the original

query as well as the expanded query.

Automatic versus Manual

One of the great unresolved debates of information retrieval is whether automatic a|)i)roa(hes using

no direct human expertise are better or worse than manual ap|)roaches. where human expertise is

directly involved in fashioning a query. Long tcM iii. of couise. the answer is ol)vious. Hy definition,

the automatic approacli is baried from using manual techni(|ues, while the manual api)roach can

u.se the best automatic approach and then add a bit of human knowledge on to|) of that. But

absent such piggy-backiiig, the results from TKEC 1 suggest foi- the time being t he approaches are

roughly equal. The best automatic runs and the best manual runs end u|) about the same.

As expected, the manual runs seeiu to do relatively better on precision and the automatic runs

better on recall, but the effects are so small as to be insignificant. It is clear that the local match

71

reqiiiremeiit of the Cornell local/glol)al appmacli. wliirli is almost puivly a precision enhancing
device, still does not increase precision to a point that is as good as a. niainial search.

Conclusion

The Cornell approach of using conii)letely automatic methods to index and let rieve works extremely
well. Requiring that some small j^art of a document (sentence) higldy matches the (piery well gains
about 10% in effectiveness. Using simple adjacencv i)hrase,s in addition to single terms improves
efffectiveness by 5% to 8%.

Th(M-e are a host of tradeoffs to be considered when designing and cieating an information
retrieval collection. Many of them produce surprising gains in efficiency, at oidy a minor cost in

effectiveness.

References

1. C. Buckley and A. bewit t. Oi>timi/,at ion of Inverted Vector Searches. Proc. fjghtli Int.

ACM/SIGTR Conference on Research and Development in Information Retrieval, As.sociation
for Computing Machinery. New ^brk. 1985. 97-1 10

2. D. llarman, A Failure Analysis on the Limitation of Suffixing in an Oidine Environment,
]^oc. Tenth Int. ACM/SIGIR Conference on Research and Develoj)ment in Information
Retrieval. Association for Computing Machinery. New York. 198?

3. 1). Harman, Towards Interactive Query Expansion. I'roc. Eleventh Int. AC.M/SIGIR. Con-
lerence on Researcli and Development in Information Retrieval. Association for Computing
Machinery, New York. 1988. :r2l-3;il

4. E. Ide, "New Experiments in Rehnance feedback", in The SMART Retrieval System - Ex-
periments in Automatic Document Processing, ed C. Salton. Prentice Hall Ilnglewood Cliffs

NJ. 1971, Chapter f(j.

5. C. Salton. Developments in Automatic Text Retrieved. Science. 253. 30 August 1991. 974-980.

G. G. Salton, Automatic Text Processing - The Transformation. Analysis and Retrieval of In-

formation by Computer, Addison -Wesley Publishing Co., Heading, M.V 1989.

7. G. Salton and C. Buckley, Global Text Matching foi- Information Retrieval, Science 253:5023,
30 August 1991. 1012-1015.

8. G. Salton and C. Buckley. Automatic Text Structuring and Retrieval - Ex])eriments in Auto-
matic Encyclo|)edia Searcldng, Proc. Fourteenth Int. ACM/SIGIR Conference oh Research
and Development in Information Retrieval. Association for Computing Machinery, New York
1991,21-30.

9. G. Saiton and C. Buckley, Term- weighting Approaches in Automatic Text Retrieval. Infor-

mation Processing t Management. Vol 24 No 5, 1988, 513-523

10. G. Salton and C. Buckley. Improving Retrieval Performance bv Relevance Feedback. .JASIS.
Vol 41 No 4, 1990. 288-297

11. L. Wittgenstein. Philosophical Investigations. Basil Blackwell ,^ Co. Ltd.. Oxford England
1953.

72

Probabilistic Retrieval in the TIPSTER Collections:

An Application of Staged Logistic Regression

Wm. S. Cooper

Fredric C. Gey

Aitao Chen

S.L.I.S., University of California

Berkeley, CA 94720

ABSTRACT: In this experiment the TIPSTER test collections were

used as a vehicle for evaluating an approach to probabilistic retrieval for

full-text documents. The methodology in question, called 'staged logistic

regression,' involves two or more stages of logistic regression analysis of

a learning sample of relevance judgements. The aim is to produce effec-

tive initial probability rankings of documents, without undue computa-

tional complexity at run time, by applying regression equations derived

with the help of standard statistical software packages. In addition, the

experiment explored the feasibiHty of using equations derived from train-

ing data for one document collection in a different document collection for

which no training data happens to be available, and of calculating docu-

ment relevance probabilities accurately enough so that they can be dis-

played as part of the output seen by the user. The regression equations

were implemented as retrieval rules in an experimental prototype system

obtained by modifying the SMART retrieval system.

Introduction

The Berkeley group's interest in participating in the NIST/TREC Conference was
stimulated by the opportunity it offered to gain experience with a methodology called

'Staged Logistic Regression.' This technique (hereinafter abbreviated 'SLR') is a sys-

tematic approach to retrieval system design based on probabilistic and statistical princi-

ples. It has been under study at Berkeley as a possible means of achieving effective prob-

abilistic retrieval including acceptably accurate estimates of relevance probability without

undue computational complexity.

In order to test out the SLR methodology on the TIPSTER data base in as straight-

forward a fashion as possible, attention was restricted to the problem of how to form the

initial document ranking ~ that is, the output ranking first offered by the system to the

user in response to the user's original query. This problem should not be confused with

the subsequent task of exploiting any relevance judgements that may be obtainable from

the user once he or she has started down the output ranking and is actively examining

documents. The latter problem ~ the matter of how to exploit intra-search 'relevance

73

feedback' ~ has been the subject of some fruitful probabilistic investigations, but the

question of how to create the initial ranking seems equally significant.

Objectives of the Experiment

A principal goal of the experiment was to investigate the retrieval effectiveness of

the SLR methodology in large collections. It was hoped especially that something could

be learned of the soundness and retrieval power inherent in the statistical logic that under-

lies the SLR method. In view of this emphasis on logical foundations, and also because

of the limited time and resources at the researchers' disposal, only a few simple and com-

monly employed frequency statistics were used as retrieval clues. No attempt was made
to exploit more elaborate types of linguistic or locatidnal evidence that would have

required the incorporation of a parser, a conflator, a disambiguator, a thesaurus, a phrase

identifier, etc. It is not that the latter kinds of evidence could not be exploited effectively

under the SLR approach. Rather, in this particular experiment the idea was to see how
far one could get on the basis of careful statistical logic alone.

Because of this 'mainly logic' approach, the results of the experiment must be

interpreted with special care. It is not the absolute retrieval effectiveness of the system

that is of most interest, but rather its retrieval effectiveness relative to the amount of evi-

dence used. If an SLR-based system can achieve with less clues the same level of effec-

tiveness that under other design approaches requires more clues, the objective of creating

a powerful underlying retrieval logic wUl have been demonstrated. Because regression

methods are hospitable to the use of almost any kind of predictive evidence that can be

expressed in statistical form, there is littie doubt that the performance of the system could

have been improved through the use of additional clue-types. In considering the present

experiment, however, the reader is asked to bear in mind the philosophy of building a

generalizable logical platform capable of extracting a maximum of retrieval power fi-om

whatever clues do happen to be available.

Another objective of the SLR methodology is to keep the computational aspects of

the retrieval reasonably simple and efficient. Some probabilistic schemes call for elabo-

rate programming and are not impressively efficient at run-time. As a reasonable desider-

atum, a truly practical probabilistic method should be no more trouble to program, and

not run substantially slower than, say, a vector-processing IR system using comparable

types of evidence.

Still another goal of SLR is to partially replace traditional IR research procedures

with more convenient and powerful standard statistical methods. For many years the cus-

tomary experimental research paradigm in IR has been to conduct retrieval trials and

apply specially invented IR effectiveness measures such as precision and recall to com-

pare the trial results. It is reasonable to hope that much of this trial-and-error experimen-

tation could be replaced by more efficient statistical regression analyses that use standard

statistical software packages and standard measures of goodness-of-fit, thus bringing IR

research more into the realm of mainstream statistical analysis.

The SLR design methodology requires the use of 'training data' ('learning trials',

etc.) in the form of human relevance judgements for a sample of query-document pairs

representative of the collection in which the proposed DR. system is to operate. It is some-

times objected that methods requiring training data are useless in situations where a

74

system must be designed for a collection for which no training data is available, and as a

practical matter none can be gathered. This objection has considerable force but it over-

looks the possibility of extrapolating the results of a regression analysis in one collection

for which training data exists into another for which it does not. As the experiment

developed, it cast some light on the question of whether such an extrapolation can be

effected without unacceptable loss of retrieval power.

A final objective of the SLR methodology is to produce estimates of relevance

probability that are reliable enough to present to the system users as part of the ranked

output they receive. Some IR research would appear to be premised on the notion that

the output ordering of the collection is all that matters -- that the only purpose of generat-

ing retrieval status values ('similarity coefficients', 'ranking scores', etc.) is to achieve as

effective a ranking as possible. We agree that imposing an effective order of presentation

on the documents is the most essential single role of the retrieval status values, but feel

that in addition the numeric scores are themselves a potentially important part of the out-

put. Their significance lies in their ability to provide the user at each point in the search

with information about whether it is likely to be worth while to continue the search down
the ranking. Clearly, such scores will be most helpful if presented in a form that most

users find readily interpretable, and interpretable moreover in a sense that bears as

directly as possible on the decision of whether they should stop searching. Probability-

of-relevance estimates would appear to fit this prescription admirably.

For reasons that will become apparent, this final objective was not attained in the

present experiment. However, experiments in small collections indicate that SLR is

capable of producing well-calibrated probability estimates, and doing so remains one of

the general objectives of the methodology.

The SLR Methodology

The theoretical foundations of the SLR approach are presented in a recent paper by

Cooper, Dabney, & Gey (1992). A synthesis and extension of earlier approaches to prob-

abilistic retrieval, the SLR method combines the commonplace theoretical stratagem of

invoking statistical simplifying assumptions with the empirical technique of applying sta-

tistical regression analysis to a learning sample. The use of statistical simplifying

assumptions in IR has been explored by Maron & Kuhns (1960), Robertson & Sparck

Jones (1976), Yu & Salton (1976), van Rijsbergen (1979) and others (surveyed by Maron

(1984), Bookstein (1985)). Examples of the use of regression analysis are to be found for

example in the work of Fox (1983), Fuhr (1989), and Fuhr & Buckley (1991).

A distinguishing characteristic of SLR is that it breaks the analysis of the retrieval

process down into two or more distinct steps or stages. For the present experiment a sim-

ple two-stage procedure was adopted. In the first stage a learning sample was used to

develop a regression equation that combines elementary retrieval clues into composite

clues. In the second stage, the same empirical data is used to derive another regression

equation that combines these composite clues into an estimate of the desired estimate of

relevance probability for each query-document pair. Thus the evidence bearing on the

retrieval decision is organized first into sets of simple properties of particular descriptors,

and then into combinations of such sets as determined by the particular descriptors com-

mon to the query and document under consideration.

75

This split level approach allows for a natural separation of the available retrieval

clues into two kinds. Statistical inferences based on properties of particular terms may be

drawn first, while other kinds of evidence not confined to particular terms (e.g. document

length, citedness, etc.) are saved for the second stage of statistical inference. An impor-

tant virtue of this split-level approach is that the second- stage regression tends to correct

for biases introduced by the statistical simplifying assumptions used to consolidate the

results of the first stage.

A 'Bare-Bones' SLR Methodology

Because the sole focus of interest in the experiment was the logic of the SLR
approach, it seemed appropriate to keep all other design complications to a minimum.

Except for the capacity to perform the two-level probabilistic computations requisite for

SLR, therefore, the experimental system was kept as simple and automatic as possible.

Thus no phrase discovery, part-of-speech tagging, disambiguation, or other linguistically

sophisticated operations were incorporated, nor was a thesaurus included for the confla-

tion of synonyms or other purposes, nor was the descriptor vocabulary structured in any

way. There was no clustering, no knowledge base, no set of implicative rules, no net-

work, nor anything else 'Al-like.' All indexing was performed extractively without bene-

fit of human intervention. No use was made of the manually assigned descriptors in the

document collections that had them.

The experimental retrieval system was implemented by modifying the SMART
system (Version 10), a suite of IR programs generously provided to the IR research com-

munity by researchers at Cornell University. Since the new model to be implemented

was probabilistic, all features of SMART motivated by the vector space retrieval model

were left unused or replaced by corresponding probabilistic operations. The SMART
stop list was used as-is except for the addition of a few common words from the query

vocabulary thought unlikely to be content-indicative (e.g. 'document', 'contains'). The

SMART system's stemmer was used without modification to strip suffixes and endings

off of all query and document words that survived the stop list. The search algorithm

used a sHghtiy extended form of SMART'S inverted file. The retrieval speed and general

programming complexity of the SMART system were left substantially unaffected by this

conversion to SLR-based retrieval, which meant that the objective of run-time efficiency

and complexity roughly comparable to that of a vector processing system had been

achieved.

The Design Equations

At the heart of the design are four statistical equations. Taken together they are

capable of supplying an estimate, for any query-document pair of interest, of the proba-

bility that the document in question is relevant to the query in question. We shall take

them up in their natural order of application.

Some preliminary vocabulary: A 'logodds' may be regarded simply as a probabil-

P{E)
ity re-expressed on a special scale. The odds 0{E) of an event E is by definition

p^-^y

PiEAEj)
The conditional odds 0(Ei I E2) is —= . The 'logodds' of E, sometimes also

76

called a 'logit', is log 0(E), or in the case of conditional odds, log 0(£| I E2). Natural

logarithms will be used throughout the sequel.

The first equation estimates the logodds that a document is relevant to a query,

given just one composite clue relating query to document. For the TREC experiment a

composite clue was defined to be a set of six frequency properties of a particular stem

match, where a 'stem match' is understood to be the event that some word stem has been

found to occur at least once in both the query and document. Consider a composite clue

Ai consisting of the six elementary properties Xj , . .
. , that describe some stem match.

Let R denote the possible event that the document under consideration is in fact relevant

to the query under consideration. The first equation, derived by logistic regression from a

learning sample for the Wall Street Journal (WSJ) collection, is

log 0(R \Ai) = log 0{R I Xi, X2, X3, X4, Xs, Xe)

= - 7. 08 + . 38 Xi + . 04 X2 + . 77 X3 - 07 + 1. 05 X5 + . 23 Xf, (1)

where

Xi = the log of the absolute frequency of occurrence of the stem in the query; i.e. a

simple count of its occurrences in the query, logged.

X2 = the log of the relative frequency of occurrence of the stem in the query; i.e. of

Xi divided by the query length, with query length defined as the total number of

occunences of all word stems in the query.

X3 = the log of the absolute frequency of occurrence of the stem in the document.

X4 = the log of the relative frequency of occurrence of the stem in the document.

X5 = the log of the inverse document frequency of the stem in the collection; i.e.

the proportion of documents containing at least one occurrence of the stem,

inverted and logged.

= the log of the global relative frequency of the stem in the collection; i.e. the

fraction of word occurrences in the entire collection that are occurrences of the

stem in question, logged.

The equation says roughly that if a TIPSTER query and a WSJ document were chosen at

random, and a certain stem were found to occur in them both with frequency statistics

Xj , . . . , Xg, then in the absence of other knowledge it would be appropriate to apply this

formula to estimate the logodds that the document is relevant to the query.

Next, suppose a query and document have N terms in common, leading via Eq.

(1) to different logodds estimates, one for each of the term matches through Ajy.

The second equation allows these estimates to be combined into a preliminary estimate of

the logodds that the document is relevant to the query. It has the form

log I A, , . . . , A/v) = log 0{R) + i [log 0{R I A,) - log 0(R)] (2)

The only quantity in the right side that cannot be estimated using Eq. (1) is the prior

logodds log 0(R). The value -6.725 was used for this parameter.

77

Eq. (2) follows from the 'Assumption of Linked Dependence.' Considering for

simplicity only the special case of two properties, this assumption can be expressed as the

equality

Intuitively this asserts that the degree of dependency that exists between properties Ai

and A2 in the set of relevance-related query-document pairs is linked in a certain way
with the degree of dependency that exists among the nonrelevance-related pairs. It is a

weaker assumption than the independence postulates commonly encountered in the litera-

ture on probabilistic IR. For discussion and a derivation of Eq. (2) from the Linked

Dependence Assumption see Cooper (1991) and Cooper, Dabney & Gey (1992 op. cit.).

The role of the third equation, as developed for this experiment at least, is to cor-

rect for deficiencies in the second equation. There are two major sources of distortion to

contend with. One is that the validity of Eq. (2) depends on the Linked Dependence

Assumption, a simplifying assumption that is at best only approximately true. Especially

when the number N of term matches is large, Eq. (2) (if uncorrected) is capable of

grossly overestimating the logodds of relevance. The other source of distortion is that

Eq. (2) as it stands fails to take into account the fact that longer documents will tend to

produce more term matches than shorter ones simply by chance. If nothing were done to

correct it, longer documents could receive much higher relevance probability estimates

than shorter ones merely by virtue of their length.

This latter failing is related to a subtle criticism that can be raised against the policy

of using only term matches, never mismatches, as the composite clues. Actually, a term

match (i.e. term present in both query and document) is only one of four conditions that

might obtain for a term vis-a-vis a given query and document. The others are: ii) term

present in query but absent from document; iii) term present in document but absent from

query; and iv) term absent from both query and document. Had clues of other types been

recognized, accorded their own regression equations, and allowed to make their own con-

tribution to Z, it might not have been necessary to make any correction for document

length. But because we have taken the computationally convenient shortcut of ignoring

all evidence of types ii) - iv) at the first stage of the analysis, we must compensate some-

how at the second stage for the distortion caused by that oversimplification.

The corrective equation, as developed for the WSJ collection through another

application of logistic regression to the learning sample, is

log (9(/? Ml, . . . , A^,) = - 6. 08 + 3. 63 log max(Z, 1) - 1. 45 log L (3)

where

Z = the value of the summation expression in the right side of Eq. (2);

max(Z, 1) is the larger of Z and 1; and

L = the length of the document under consideration, expressed as the total number

of stem occurrences in the document counting separate occurrences of the same
stem separately.

P(A„A2\R)

P{A,\R) P(A2\R)

P{Ai I R) PiAjlR)

78

This estimate of log 0(R I , . .
. , A^) is understood to modify and supercede the esti-

mate produced by Eq. (2).

Since logodds are monotonically related to probabilities, a retrieval system could in

principle probability-rank the documents of the collection for the user simply by present-

ing them in descending order of the logodds values assigned to them by Eq. (3). How-
ever, since probabilities are easier for users to interpret than logodds, the conditional

logodds estimates of form log 0(R I Aj, . .
. , A^v) produced by Eq. (3) were translated into

ordinary conditional probability estimates with the help of a fourth equation, the identity

nR\A,....,A,) = (4)

The probability estimates so obtained for the TIPSTER data appear in the 'score' column

of the rankings submitted by the Berkeley group.

Computational Arrangements

The computations required for storage and retrieval under the SLR methodology

follow roughly the order of the four equations. Documents are indexed as follows. First,

an incoming document is put through preparatory operations that include the removal of

markup and other unwanted information, the deletion of stop words, and the stemming of

the remaining words. Then for each stem, all stem statistics that can be calculated before

the query is known — specifically, ^3, X4, X^, and Xf, - are collected. Finally, these

statistics are used to compute the stem's indexing weight in the document using the for-

mula

Doc stem weight = -7. OS+.ll X^-.07 X^+ 1.05 Xs+.23 X^-i - 6.725)

This formula is just the right side of Eq. (1) without the terms for and X2, and with

the value of the prior logodds log 0{R) subtracted off in preparation for the application of

Eq. (2). The result is stored in the inverted file as the weight of the term for this docu-

ment.

Query indexing is similar. After an incoming query has been stop-listed and

stemmed, for each stem the two statistics Xi and Xj that are dependent upon query prop-

erties are calculated. The stem is then assigned as its weight in the query the value

Query stem weight = .3^ X^ + .04 Xj

This formula comprises the rest of the right side of Eq. (1).

To effect retrieval, the query is compared against each document with which it

shares at least one stem. For each stem contained in both query and document, the query

stem weight and the document stem weight are added, resulting in an estimate of

log 0{R I Ai) - log 0{R) for the stem. Summing these estimates for individual stems

over all the match stems yields the value of the summation expression in the right side of

Eq. (2). This computation is analogous to the calculation of a vector product in the vector

space model, except that corresponding query and document weights are added instead of

multiplied.

79

Calling this sum Z, Eq. (3) is applied to obtain the estimate of the logodds that the

document is relevant to the query. Using Eq. (4), this logodds is translated into a proba-

bility, and the documents are sorted for the user in descending order of their estimated

probabilities.

Constructing the Sample

The SLR method calls for the use of a learning sample of relevance judgements

that can be assumed accurate. Among other requirements the sample must (a) be suffi-

ciently large and include a sufficient number of queries; and (b) have a definite, complete

statistical structure of some kind (e.g. that of a random or a stratified sample) that can

serve as a basis for making statistical inferences. Arguably the TIPSTER data supplied

for TREC experimentation fulfilled condition (a) for one or two of the five collections

(WSJ and perhaps ZIFF). However, so far as could be ascertained from information

made available to participants, the second condition was not satisfied for any of the five

collections. The samples of relevance data that were provided had no apparent statistical

structure of the kind upon which statistical reasoning is ordinarily based. The omission is

understandable but unfortunate from the point of view of probabilistic retrieval.

For the present experiment the lack of a known statistical sample structure was

highly problematical and almost fatal. It meant that the method of interest could not be

rigorously applied to the available data. The theory on which SLR is based consists of a

careful chain of statistical reasoning. If one of the links is weak, scientifically sound esti-

mates of relevance probability cannot be expected.

Rather than abandon the experiment entirely, however, the following stopgap mea-

sure was adopted. An arbitrary assumption would be made about the structure of the

sample, and the analysis would be carried out on the basis of this fictitious assumption as

though it were known to be true. It was thought that this desperation measure would at

least allow the investigators to gain experience in applying the method to a large data set

(albeit on a hypothetical basis), and to illustrate the methodology for other interested par-

ties. Also, it was thought that the fictitious assumption could be chosen in such a way
that the experimental evidence gathered about the comparative worth of various retrieval

clues would probably have at least some value. Finally, it was hoped that the output

orderings might be reasonably effective in spite of the likely miscalibration of the

retrieval status values as probability estimates.

While this policy allowed participation in the venture to continue, the artificiality

of the constructed sample diminished to some unknown extent the retrieval effectiveness

of the prototype system. This should be remembered when interpreting the results of the

experiment: they do not fairly represent the SLR methodology's capabilities. Had the

investigators been in a position to design their own sampling procedure, the results would

presumably have been better. In the same spirit it should be kept in mind that the level of

accuracy of the probability estimates themselves cannot be taken as indicative of the reli-

ability of SLR.

The arbitrary assumption that was settied upon for the sample construction was that

for the WSJ collection the universe of all query-document pairs is separable into two sets:

one a small set rich in relevance-related pairs, the other a large set containing no rele-

vance-related pairs. The supplied judgements of relevance and irrelevance for the WSJ

80

were to be treated as though they were a random sample of one out of every ten members

of the first of these two sets. This implies among other things the supposition that the

professional searchers had found 10% of the relevance-related pairs that could have been

found had the entire collection been examined for every query. The 10% figure was an

unsupported guess.

This working assumption made it possible to construct a two-part (stratified) sam-

ple for the WSJ collection. The first portion or stratum of the sample consisted of the set

of 2194 query-document pairs for which human judgements of relevance and nonrele-

vance were available. In the subsequent regression analysis, each of these was weighted

by a factor of 10, reflecting the assumption stated above. The second part of the con-

structed sample consisted of a set of 1687 query-document pairs drawn essentially ran-

domly from among all query-document pairs that shared at least one stem in common.
(The latter sample was obtained by considering all query-document pairs constructible

from the 52 training queries and the documents in the WSJ training collection, ordering

them by query number and within query number by document number, choosing every

2444th pair from this ordering, and discarding any pairs so chosen for which there was no

overlap between query and document. The result may be considered a random sample,

though technically it was slightly preferable to a random sample isofar as it was stratified

by query.) The pairs in this second set were assumed to lie outside the first set and to be

nonrelevance-related (though not verified this assumption was probably approximately

true). Each pair was accorded a weight of 2400 in the subsequent regression analysis.

It may be worth reiterating that the necessity of specifying the number of rele-

vance-related pairs by sheer guesswork, together with the general artificiality of the con-

structed sample, dashed all hope of producing well-calibrated estimates to present to the

users.

The Regression Analysis

As the first stage of the regression analysis, for each query-document pair in the

sample the set of all stems shared in common by the query and the document was assem-

bled. This resulted in an expanded sample of 30,234 query-document-stem triples. For

each triple, the values of the six statistics Xj, . . . , were calculated and recorded along

with the relevance judgement associated with the query and document in question. A
weighted logistic regression analysis was performed on this data, with Xj, . , . , serving

as the independent variables and the binary relevance judgements as the dependent vari-

able. The result was the set of coefficients in Eq. (1). In other words, Eq. (1) is the

regression equation that was found to be the logistic equation of maximum likelihood

(the 'best fit') for the data in the sample.

How were the six retrieval clue-types chosen? Actually the aforedescribed regres-

sion analysis was performed repeatedly for various types and combinations of indepen-

dent variables before these six were settled upon. Of those tried out, these turned out in

combination to exhibit the most predictive power ~ that is, to offer the best prospects of

yielding useful estimates of logodds of relevance.

'Predictive power' was judged according to several interrelated criteria. One was

the extent to which a model based on a clue- combination under investigation was found

to fit the data, as measured by the -2 Log Likelihood statistic or one of its minor variants

81

such as the Akaike Information Criterion. Another was the extent to which the ordering

imposed on the triples by the logodds estimates assigned to them by the model resembled

the ideal ordering in which all relevant triples precede all nonrelevant triples. This was

measured statistically using various rank correlation coefficients including Kendall's Tau-

a and the Goodman-Kruskal Gamma. Still another property that was taken into account

was the shape of a variable's graph when the observed logodds was plotted against the

variable values arranged along the X-axis in deciles. In such a graph, a shape that

roughly resembles a straight Une is considered desirable. In some cases it was found that

pretransforming a variable by taking its logarithm helped to produce such a straight line.

This was in fact one of the motivations for logging the variables. Another motive for

doing so was the observation that it seemed to improve the general fit of the model as

measured by the other indicators.

Fortunately, the various criteria used to optimize the choice of variables were rarely

in qualitative conflict. But there was insufficient time to explore all variables of potential

interest, or to investigate more elaborate possibilities such as interaction terms. All

regression analyses were run using the SAS statistical package (Version 6.06) on an IBM
3090 mainframe computer with accelerated math capabilities. The SAS package auto-

matically supplies most of the diagnostic statistics mentioned above. Detailed discus-

sions of logistic model building can be found in works on logistic regression (Hosmer &
Lemeshow 1989; Collet 1991).

It is worth noting that all the choices among possible predictor variables were

made, and their weights in the equation determined, as part of the regression analysis.

There was no recourse to traditional retrieval trials based on precision, recall, and the

like. The regression procedures were found to be more convenient and efficient than

experimentation of the usual kind in which there is no way other than trial-and-error to

converge on optimal numeric coefficients. Ideally one might think of combining the two

techniques — that is, of using traditional methods to confirm the findings of the regression

studies. However, time pressures prevented the pursuit of that luxury.

Next, Eq. (1) was applied to each triple in the sample to calculate the estimate of

the logodds of relevance log 0{R I A,) for the query and document in question, given the

characteristics of the match stem. Then in accordance with Eq. (2) the estimated prior

logodds of relevance log 0(R) = - 6. 725 was subtracted from each of these estimates,

and the differences summed within each query-document pair to obtain the value of Z for

the pair.

For the second-stage regression, the value of Z calculated as just described,

together with the length L of the document, were recorded for each query-document pair

log Z
m the sample. From these the value of

-JqJ-
was calculated for each pair. (To ensure

that the logarithm would always be well defined, Z was first replaced by max (Z, 1) .)

Using this ratio as the independent variable and the binary relevance judgements as the

dependent variable, a second weighted logistic regression was run. This produced two

coefficients — an intercept and a slope - specifying a regression equation. Simple manip-

ulations were used to transform it into the form displayed earlier as Eq. (3).

log Z
Here are some of the considerations that led to the use of —rrr- as the variable on

82

which to regress. If one could trust the Linked Dependence Assumption completely, and

if nonmatch as well as match events had been taken into explicit account in the computa-

tion of Z, one might have tried letting Z stand as-is as the desired logodds estimate. But

because such is not the situation, this would fail to correct for dependency distortion and

would give longer documents an unfair advantage. Thus it seemed advisable to perform

a corrective linear transformation on Z, and moreover to normalize Z first by dividing it

by some simple function of document length. It was found by trial and error that dividing

Z by L raised to a power of around 0.4 seemed to remove most of the visible bias toward

either very short documents or very long documents in the five collections. Logging the

entire expression was found to improve the fit to the sample data.

It would have been appropriate to include a correction for query length analogous

to the one developed for document length. However, for lack of time the necessary anal-

ysis could not be carried out.

Extrapolation to Other Collections

The regression analysis was confined to the WSJ data because relevance judge-

ments were not available for most of the other collections in sufficient quantities, or for

enough of the training queries, to make regression feasible. This circumstance brought

with it the problem of how to extrapolate the WSJ retrieval rules to the remaining four

collections.

Speaking generally, the extension of retrieval formulae to other collections is a sig-

nificant problem throughout the IR field. One would like to know how to transfer design

parameters from one collection, for which there is enough relevance data, to another col-

lection for which there may be too little data or none. If the transfer could be accom-

plished without too much loss of predictive power, the almost exclusive use by IR experi-

menters of special 'test collections' could be justified more easily. We welcomed the

dearth of TIPSTER relevance data for some of the collections as an opportunity to

explore this problem. To simplify the challenge and confront it in its starkest form, we
elected to ignore entirely even such data as were available for collections other than WSJ.

The method used for the extrapolation was based on the well known statistical con-

cept of standardization of variables. The standardized value of a variable in a population

is obtained by subtracting from its observed value the variable's mean value in the popu-

lation, then dividing this difference by its standard deviation in the population. The new
standardized values have a mean of zero and a standard deviation of one. The working

assumption that was made was that a regression equation such as Eq. (1) can be carried

over and applied in another collection provided all variables involved have first been

standardized in both collections.

Although no variable values were actually standardized, the coefficients in Eq. (1)

were recalculated for each of the other four collections in such a way as to create the

same effect. The values for the population means and standard deviations used in the

recalculation of the coefficients were taken from random samples of triples taken from

the five collections. The samples were comparable to those in the

'random' subsample of WSJ query-document triples described earlier.

The algebraic details of the transformation process will not be presented here, but

the resulting modifications of the right side of the earlier WSJ form of Eq. (1) may be of

83

interest. They are

ForAP: -7.21 + .40 + . 04 X2 + . 88 X3 -
. 10 X4 + l.OQXg + .lSXg

For DOE: - 7. 51 + . 44 Xi + . 05 X2 + 1. 18 ^3 -
. 12 X4 + . 94 X5 + . 24

For FR: - 6. 83 + . 44 Xi + . 04 X2 + . 57 X3 -
. 06 X4 + 1. 13 X5 + . 24 Xg

For TIFF: - 6. 95 + . 38 Xj + . 04 X2 + . 68 X3 -
. 07 X4 + 1. 03 X5 + . 2 1 Xg

As an illustration of what the transformation of coefficients has accomplished, one sees

that the coefficient for X3, the absolute frequency of the match term in the document, is

largest for the DOE collection and smallest for the FR collection. This serves to compen-

sate for the fact that the average document length is smallest in DOE and largest in FR.

No modifications were made of the coefficients in the second- stage regression

equation, Eq. (3), when applying it in other collections. Because adjustments had already

been made for inter-collection differences in the first-stage equation, the investigators

were not convinced that further adjustments would be profitable at the second stage.

Indeed we are not entirely confident that the adjustments are a good idea even for all the

variables at the first stage, but thought it worth the experiment.

Effectiveness Scores

In the TREC evaluations the 11 -point average recall calculated for ad hoc retrieval

by the Berkeley system was 0.151; the average number of relevant documents retrieved

in the top-ranked 100 documents for each request was 40.8; and the average number of

relevant documents retrieved in the top-ranked 200 documents for each request was 67.9.

The comparable three figures for the medians of all systems submitting results for ad hoc

retrieval were .157, 39.5, and 62.5 respectively. Comparing the Berkeley system's scores

against the median scores it can be seen that for the number of relevant documents

retrieved among the top 200, the Berkeley system exceeded the median by 5.4 docu-

ments, an amount that can be shown (in a paired comparison t-test over the mean of the

differences for the 50 topics) to be statistically significant at the 0.05 level. The other two

scores do not differ from the corresponding median scores by what are customarily

regarded as statistically significant amounts. Thus by one of the three measures the SLR
experimental system was significantly more effective than the median system, and by the

other two it was not significantly different from them.

To put these results in perspective it should be remembered that unlike other sys-

tems included in the comparison group, the SLR system was primitive in every respect

except for its statistical logic. It involved no human reformulation of topics or other man-

ual intervention, it used no relevance feedback, and it employed no special linguistic or

other devices such as parsing systems, thesauri, disambiguation, phrase identification, or

global/local combinations of evidence. It even forewent the use of training data from

four of the five collections. Yet by a statistically careful use of simple frequency infor-

mation alone, it was able to hold its own against typical systems that used much more

elaborate forms of evidence.

84

Since the SLR methodology is hospitable to the introduction of additional clue-

types, and indeed might be expected to wring a maximum amount of leverage out of

them, the prospect for future, less primitive, SLR systems that combine many types of

evidence seems promising.

Future Possibilities

Though the prototype system described here used only a few simple statistical

clues, the SLR approach is general and in principle flexible enough to accommodate most

of the clue-types that researchers have been interested in as predictors of relevance.

Broadly speaking, retrieval evidence having to do with particular index terms lends itself

to exploitation in the form of variables in the first-stage regression equation, while other

kinds ~ properties of the entire query, entire document, or their relationship - can be

accommodated as variables in the second stage.

As an example of possible new evidence at the first stage, suppose by virtue of

parsing, suffix analysis, or dictionary lookup some information is available about the

parts of speech of the match stems in the query and document. Then an additional cate-

gorical variable might be introduced into the first-level regression analysis to represent

the match stem's part of speech in the document, on the hunch that some parts of speech

(e.g. nouns) should be more heavily weighted than others. The general two-level form of

the analysis would remain the same. A further possibility would be to introduce a vari-

able to represent the event that the part of speech of the stem as it occurs in the query is

the same as its part of speech in the context in which it occurs in the document.

Further clues could be introduced at the second stage. In the present experiment

the only retrieval evidence introduced at the second stage that was not already present in

the first was the document length L, which was intended more as an antidote to a bias in

Z than as an independent predictor of relevance in its own right. But nothing prevents

any helpful relationship between the query and document from being brought to bear. As

an example, suppose a measure of the mutual closeness of the query's match stems in the

document is to be introduced on the hypothesis that the closer together the query stems

tend to occur in the document, the likelier it is (other things being equal) that the docu-

ment is relevant (Keen 1992). Such a measure of proximity could be added as a new

variable in the second-level equation, with no other change being needed in the underly-

ing statistical framework.

Conclusions

L The TREC results indicate that the SLR methodology is capable of achieving a

respectable degree of retrieval effectiveness even when the retrieval evidence is

confined to a few simple frequency clues. ('Respectable' in this context means

competitive with the median performance of other systems most of which use more

elaborate evidence.) Since nothing prevents the incorporation of additional clue

types into future SLR systems, and the regression procedure should help to com-

bine them with existing clues in an optimal way, the outlook for the retrieval effec-

tiveness of the SLR approach seems promising.

2. The prototype SLR system demonstrates that a probabilistic initial ranking can be

achieved with a run-time efficiency approximately equivalent to that of a vector

85

processing system utilizing similar kinds of evidence.

3. Standard statistical program packages can be used for an SLR analysis even in

large collections, circumventing much of the need for retrieval trials of conven-

tional design and allowing the choice of variables and the determination of optimal

numerical parameters to be carried out more conveniently.

4. The TREC results suggest that use of the SLR approach need not necessarily be

ruled out because of a lack of training data for the particular document collection to

which it must be applied. A respectable level of effectiveness can (under at least

some conditions) be achieved through the extrapolation into the new collection of

regression equations derived from a collection for which training data already

exists.

5. The present experiment failed to demonstrate that the SLR method is capable of

producing, in large collections, probability of relevance estimates sufficiently well-

calibrated to be presented to the users as part of the output display. It is suspected

that this failure is associated with the peculiar limitations of the training data sup-

plied for this initial TREC conference. If so, use of the more extensive training

data to be made available for future conferences may be sufficient to resolve this

problem.

Acknowledgements

The theory of staged logistic regression, developed in collaboration with Dan Dab-

ney of U.C.L.A, was originally stimulated by discussions with James Allen and Gerard

Salton of Cornell University and Stephen Robertson of City University, London. The

computer science department at Comell University provided a hospitable environment for

the early stages of the theoretical development. Ray Larson at U.C. Berkeley con-

tributed experienced advice on the conversion of SMART and on general systems prob-

lems. We are indebted to Chris Buckley for supporting our efforts to make SMART
regressive, and to all past contributors to SMART for making this valuable research tool

available. The work stations used for the experiment were DEC 5000 's supplied by the

Sequoia 2000 project at the University of California, a project principally funded by the

Digital Equipment Corporation. A DARPA grant supported the programming effort.

References

Bookstein, A. Probability and fuzzy set applications to information retrieval. In

M. Williams (ed.). Annual Review of Information Science and Technology, 20, White

Plains, NY: Knowledge Industry Publications. 1985.

Collett, D. Modelling Binary Data. London: Chapman & Hall; 1991.

Cooper, W. S. Exploiting the maximum entropy principle to increase retrieval

effectiveness. Journal of the American Society for Information Science, 34(1): 31-39;

1983.

86

Cooper, W. S. Inconsistencies and Misnomers in Probabilistic IR. Proceedings

Fourteenth Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval. Chicago: 57-62. October 1991.

Cooper, W. S.; Dabney, D.; Gey, F. Probabilistic retrieval based on staged logistic

regression. Proceedings of the Fifteenth Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval. Copenhagen: 198-210; June

1992.

Cooper, W. S.; Huizinga, P. The maximum entropy principle and its application to

the design of probabilistic retrieval systems. Information Technology: Research and

Development, 1(2): 99-112; 1982.

Fox, Edward A., Extending the Boolean and Vector Space Models of Information

Retrieval with P-Norm Queries and Multiple Concept Types, Ph.D. Dissertation, Com-
puter Science, Cornell University, 1983.

Fuhr, N. Optimal polynomial retrieval functions based on the probability ranking

principle. ACM Transactions on Information Systems 10): 183-204; 1989.

Fuhr, N.; Buckley, C. A probabilistic learning approach for document indexing.

ACM Transactions on Information Systems, 9(3): 223-248; 1991.

Harper, D. J.; Van Rijsbergen, C. J. An evaluation of feedback in document

retrieval using co-occurrence data. Journal ofDocumentation, 34(3): 189-216; 1978.

Hosmer, D. W.; Lemeshow, S. Applied Logistic Regression. New York: Wiley;

1989.

Kantor, P. Maximum entropy and the optimal design of automated information

retrieval systems. Information Technology: Research and Development, 3(2): 88-94;

1984.

Keen, E. M. Term position ranking: Some new test results. Proceedings of the Fif-

teenth Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval. Copenhagen: 66-76; June 1992.

Lee, J. J.; Kantor, P. A study of probabilistic information retrieval systems in the

case of inconsistent expert judgement. Journal of the American Society for Information

Science, 42(3), 1990.

Maron, M. E. Probabilistic Retrieval Models. In B. Dervin and M. Voigt (Eds.),

Progress in Communication Sciences, Vol. V, Ablex, 1984, pp. 145-176.

Maron, M. E.; Kuhns, J. L. On relevance, probabilistic indexing, and information

retrieval. Journal of the Association for Computing Machinery, 7(3): 216-244; 1960.

Robertson, S. E; Bovey, J. D. Statistical problems in the application ofprobabilis-

tic models to information retrieval. British Library Research and Development Depart-

ment, Report No. 5739, November 1982.

Robertson, S. E.; Sparck Jones, K. Relevance weighting of search terms. Journal

of the American Societyfor Information Science, 27(3): 129-146; 1976.

van Rijsbergen, C. J. A theoretical basis for the use of co-occurrence data in infor-

mation retrieval. Journal ofDocumentation, 33(2): 106-119; 1977.

87

van Rijsbergen, D. J. Information Retrieval (2nd ed.). London: Butterworth & Co.

Ltd; 1979.

Yu, C.T,; Buckley, C; Lam, H.; Salton, G. A generalized term dependence model

in information retrieval Information Technology: Research and Development, 2:

129-154; 1983.

Yu, C.T.; Salton, G. Precision Weighting ~ An Effective Automatic Indexing

Method. Journal of the Association for Computing Machinery, 23(1): 76-88; 1976.

88

Optimizing Document Indexing and Search Term Weighting

Based on ProbabiHstic Models

Norbert Fuhr* Chris Buckley^

Abstract
We describe the application of probabilistic indexing and retrieval methods to the TREC

material. For document indexing, we apply a description-oriented approach which uses relevance

feedback information from previous queries run on the same collection. This method is aJso very

flexible w.r.t. the underlying document representation. In our experiments, we consider single

words and phrases and use polynomial functions for mapping the statistical parameters of these

terms onto probabilistic indexing weights. Based on these weights, a linear (utility-theoretic)

retrieval function is applied when no relevance feedback data is available for the specific query.

Otherwise, the retrieval-with-probabilistic-indexing model can be used. The experimental results

show excellent performance in both cases, but also indicate possible improvements.

1 Learning in IR

terms terms

documents
=*•

'y--/
:

••

learning

application

queries

routing queries

search term weighting

documents
s*-

I
I '

V. /

learning

application

queries

ad-hoc queries

description-oriented

from relevance feedback indexing

Abbildung 1: Learning approaches in IR

Figure 1 shows two major learning approaches that are used in IR, both of which are applicable to

the tasks to be performed within TREC. For the routing queries, we have relevance feedback data for

some documents w.r.t. a specific query, and then the system has to rank further documents for the

same query. As indicated by the third dimension, our knowledge is restricted to the terms we have

•University of Dortmund, Informatik VI, P.O. Box 500500, W-4600 Dortmund 50, Germany, fuhr@ls6.informatik.uni-

dortmund.de

Department of Computer Science, Upson Hcill, Cornell University, Ithaca, NY 14853, USA, chrisb@cs.comeIl.edu

89

seen in the learning sample. If the new documents would contain totally different terms, the learning

sample would be of no use for coping with these documents. For dealing with the routing queries,

mostly search term weighting methods are applied, which are well established in IR.

For the ad-hoc queries, the task is more difficult: Given relevance information for some query-document

pairs, this information has to be exploited in order to rank new documents w.r.t. new queries; further-

more, most of these new query-document pairs will involve new terms. As a method for dealing with

this type of task, description-oriented indexing has been developed ([Fuhr h Buckley 91]). The major

concept of this approach is abstraction. For the routing queries, we abstract from specific documents

by regarding the presence or absence of terms. In description-oriented indexing, we have to abstract

in addition from specific queries and terms. This can be done by regarding features of these objects

instead of the objects itself. Similar to pattern recognition methods, documents, queries and terms

are described by sets of features here. This way, new documents, queries and terms can be mapped
onto sets of features which we have already seen in the learning sample.

In principle, description-oriented learning could be combined with most IR models. Only the proba-

bilistic model, however, relates directly to retrieval quality. The probability ranking principle described

in [Robertson 77] states that optimum retrieval performance is achieved when documents are ranked

according to descending values of their probability of relevance. So our probabilistic approach uses

the learning data in order to optimize retrieval quality for the test sample. This statement also holds

for our work with the routing queries, where we apply the retrieval-with-probabilistic-indexing (RPI)

model for estimating the query term weights.

In the following section, we describe the description-oriented document indexing method which yields

probabilistic weights for terms w.r.t. documents. In order to use these weights in retrieval, two methods

are applied here. When no relevance information for the specific query is available, a utility-theoretic

retrieval function can be used, where the utility weights for the terms from the query are derived by

some heuristics. With relevance feedback data, however, the RPI model can be applied. Experiments

with the ad-hoc queries are described in section 3.1, followed by the presentation of our work with

the routing queries in section 3.2.

2 Probabilistic document indexing

2.1 General approach

We first give a brief outline of the description-oriented indexing approach, which is presented in full de-

tail in [Fuhr k. Buckley 91]. Based on the binary independence indexing model ([Maron & Kuhns 60],

[Fuhr 89]), one can define probabilistic document indexing weights as follows: let dm denote a doc-

ument, ti a term and R the fact that a query-document pair is judged relevant, then P{R\ti, dm)

denotes the probability that document dm will be judged relevant w.r.t. an arbitrary query that con-

tains term tj. These weights can hardly be estimated directly, since there will not be enough relevance

information available for a specific document. Instead, the description-oriented indexing approach is

applied, where the indexing task is divided into two steps, namely a description step and a decision

step.

In the description step, term-document pairs (<, , dm) are mapped onto so-called relevance descriptions

x{ti,dm)- The elements Xi of the relevance description contain values of features oi ti,dm and their

relationship, like e.g.

90

if within-document frequency (wdf) of <j,

logidf = log(inverse document frequency),

lognumterms = log(number of different terms in dm),

imaxtf — l/(maximum wdf of a term in dm)-

In the experiments described in the following, we only use these simple parameters. However, it should

be emphasized that the concept of relevance description is a means for coping with rather complex

forms of document representations, e.g. when advanced natural language processing techniques are

applied.

In the decision step, probabilistic indexing weights of the form P{R\x{ti, dm)) are estimated. Instead of

the probability P{R\ti, dm) which relates to a specific document and a specific term, P{R\x{ti, dm)) is

the probability that an arbitrary term-document pair having relevance description x will be involved

in a relevant query-document relationship. This probability is estimated by a so-called indexing

function u{x). Different regression methods or probabilistic classification algorithms can serve as

indexing function. Here, we use polynomial regression. For this purpose, a polynomial structure

V (x) = {vi, . . . ,vi,) has to be defined as

V{x) = (l,Xi,X2, . . .
, XN,xl,XiX2, . . .)^

where N is the number of dimensions of x. The class of polynomials is given by the components

x\ xj^ x^ . . . k, . . . £ [1, A'^]; l,m,n, . . . > 0) which are to be included in the polynomial.

The indexing function now yields u(x) — v{x), where a = (ai, ...,ai)^ is the coefficient vector

which has to be estimated in a separate training phase preceding the application of the indexing

function. So P{R\x) is approximated by the polynomial

u{x) — a]_ + a-i xi + X2 . . . + a^+i x^ -\r 0^+2 + a^+s xi X2 +

In the training phase, a learning sample is derived from relevance feedback data in the following way:

for every query-document pair {qk, dm), a learning sample element {x{ti, dm), y) is generated for each

term common to and dm with y — 1, ii dm is relevant w.r.t. q^, and y — 0 otherwise. Given this

set of learning sample elements, a linear regression method is applied in order to minimize the squared

error (y — tx(£))^ (see [Fuhr <^ Buckley 91] for the details). The result of the regression method is the

coefficient vector a which defines the indexing function.

In the application phcise, for each term occurring in a document, a relevance description is constructed

first and then the indexing function gives the indexing weight of the term in the document.

2.2 Experiments

We developed two types of document indexing, one with single terms only and one with both single

words and phrases.

For the single words, we initially used a linear indexing function, which gave us the function:

u{x{ti,dm))^ -0.0019844 -|-

0.0000296 • tf +
0.0001079 • imaxtf +
0.0003519 • logidf +
0.0003068 lognumterms.

Retrieval experiments with this type of document indexing, however, revealed that the few extremly

long documents (Federal Register documents with up to 2.6 MB) were always retrieved in the top

91

ranks. This effect was due to the positive coefficient of lognumterms, which gave indexing weights

larger than 1 for the terms in these documents, thus yielding high retrieval status value for these

documents w.r.t. most queries.

Obviously a linear indexing function is not well suited for coping with such extreme distributions of

the elements of the relevance description. Besides the effect on the few very long documents, other

documents are also affected by this distribution, for the following reason: Many terms in the long

documents will be assigned indexing weights larger than 1. For the computation of the squared error

that is to be minimized, the quadratic difference (y — between the indexing weight u{x) and

the actual relevance decision y (0 or 1) in the learning sample is considered. Even if y = 1, there is

still the difference {u{x) — 1)^, for u{x) > 1. In order to reduce this error and thus the overall error,

a larger error for other indexing weights is taken into account. There are three possible strategies for

coping with this problem:

• Some experiments performed with other material have shown that overall indexing quality can

be improved by excluding outliers from the learning sample ([Pfeifer 91]). As outliers, not only

those pairs with weights lying on the "correct side" of the interval [0, 1] (i.e. either y = 0 and

u{x) < 0 or y = 1 and u{x) > 1) should be regarded. Also the exclusion of those pairs with

weights lying on the "wrong side" (i.e. either y = 0 and u{x) > 1 or y = 1 and u{x) < 0) yields

better results.

• Using logistic functions instead of linear functions overcomes the problem of indexing weights

outside the interval [0, 1]. However, we have some experimental evidence ([Pfeifer 90]) that even

in this case the removal of outliers from the learning sample (where the outliers are defined w.r.t.

a linear indexing function) improves the indexing quality.

• For the experiments described here, we switched from linear to polynomial functions, which also

gave fairly good results.

The function finally used for indexing with single terms only is

u{x) = 0.00042293 +
0.00150083 • tf logidf imaxtf +

-0.00150665 tf imaxtf +
0.00010465 • logidf +

—0.00122627 lognumterms imaxtf.

For indexing with phrases, we first had to derive the set of phrases to be considered. We took all

adjacent non-stopwords that occurred at least 25 times in the Di (training) document set. Then
an indexing function common for single words and phrases was developed by introducing additional

binary factors is_single (is^phrase) having the value 1 if the term is a single word (a phrase) and 0

otherwise. The parameters tf and logidf were defined for phrases in the same way as for single words,

and in the computation of imaxtf and lognumterms for a document both phrases and single words

were considered. This procedure produced the indexing function

u{x) = 0.00034104 +
0.00141097 is.single tf logidf imaxtf

-0.00119826 is_single tf imaxtf +
0.00014122 is.single logidf +

-0.00120413 lognumterms imaxtf +
0.00820515 is.phrase tf logidf imaxtf +

-0.04188466 is_phrase tf imaxtf +
0.00114585 is.phrase logidf.

92

For each phrase occurring in a document, indexing weiglits for the phrase as well as for its two

components (as single words) were computed.

In the following, we will refer to the indexing with single words only as "word indexing" and to the

indexing using both single words and phrases as "phrase indexing"

.

3 Retrieval

For the probabilistic document indexing weights as described above, there are specific retrieval func-

tions which yield a probabilistic or utility-theoretic ranking of documents w.r.t. a query. These func-

tions differ in the aspect whether or not they consider relevance feedback information for the specific

query. For this reason different retrieval functions were applied for the ad-hoc queries and the routing

queries.

3.1 Ad-hoc queries

For the ad-hoc queries, we used a linar utility-theoretic retrieval function described in [Wong k. Yao 89].

Let qj denote the set of terms occurring in the query, rf^ the set of document terms and Uim the

indexing weight u(x{ti, dm))- If c^- gives the utility of term ti for the actual query qk, then the utility

of document dm w.r.t. query qk can be computed by the retrieval function

Q{qk,dm)- ^ Cik-Uim- (1)

The only problem here is the estimation of the utility weights c^jt, for which we do not have a theoreti-

cally justified method. As a heuristic approach, we used the SMART if idf weights
,
where // denotes

the number of occurrences of the term ti in the query q^ here [Salton & Buckley 88]. We assume that

there are other choices for this parameter which could significantly improve retrieval quality.

run if idf fuhral fuhrpl

(words) (phrases)

average precision f

11-pt Avg.

3-pt Avg.

or recall points:

0.1750 0.1943 0.2054

0.1159 0.1399 0.1664

query-wise compar

U-pt Avg:

Prec. @ 100 docs

ison with median:

32:14 32:17

25:21 35:13

Best/worst results

U-pt Avg:

Prec. @ 100 docs

6(2)/l(l) 4(l)/2

2(2)/2 8(3)/(2)

single words vs. pi

11-pt Avg:

Prec. @ 100 docs

irases:

25:25

21:28

Tabelle 1: Results for adhoc queries

The retrieval function (1) was applied for both kinds of document indexing, where words only were

considered for run fuhral and both words and phcises in the run fuhrpl. Figure 2 shows the recall-

precision curves for both runs in comparison to a standard SMART tf idf run. It can be seen that

93

both probabilistic indexing methods clearly outperform the if idf run, with the exception of the

low-recall end for the phrase run (see below). Comparing word indexing with phrase indexing shows

mixed results (see also table 1): For the recall-precision averages, phrases perform better again with

the exception of the low recall end. More information is given by the recall and precision values at

different numbers of documents retrieved (see appendix of this volume). Precision for phrases is worse

or about equal to that of words, but recall is always better. This means that phrases perform better

for narrow queries (with a small number of relevant documents).

precision

recall

Abbildung 2: Recall-precision curves for probabilistic indexing in comparison to tf idf run

In general, one would expect that using phrases in addition to single words would never decrease

precision. We blame the current definition of the retrieval function (1) for the observed behaviour.

This function assumes that all the terms considered are independent, which is obviously not true when

we consider a phrase in addition to its two components as terms. Since the size of the error made
here depends on the indexing weights of the components, this fact may explain the precision decrease

for the highest ranked documents (i.e. at low recall levels). A better strategy would be to ignore the

components in case the phrase occurs in the document.

The query-wise comparison with the median (see table 1) shows a large scattering of the results for

the single queries. A preliminary analysis has indicated that the relative performance for a specific

query depends significantly on the fact whether or not the query statement contains negated terms.

For example, in topic 86 we have ... it is a bank, as opposed to another financial institution such as a

savings and loan or credit union . . . and topic 87 reads . . . Civil actions, such as creditor claims filed

for recovery of losses, are not relevant In both cases, our system yields one of the worst results

(for word indexing). Since our query indexing procedure extracts only the terms from the query and is

not able to recognize negation, the system explicitly searches for documents containing these negated

terms. Theoretically, it is obvious that negated terms should be given a negative utility weight.

However, the examples cited here show that it is a difficult task to recognize negation automatically.

3.2 Routing queries

For the routing queries, the retrieval-with-probabilistic-indexing (RPI) model described in [Fuhr 89]

and [Fuhr 92] was applied. This model combines query-specific relevance feedback information with

94

probabilistic document indexing in order to estimate query term weights. Let pik denote the average

indexing weight of term in the documents judged relevant w.r.t. query qk and rik the average

indexing weight of U in the nonrelevant documents. Now the query term weight is computed by the

formula

fikKX -Pik)

and the RPI retrieval function yields

e{qk,dm)= ^ log{CikUim + l). (2)

In our experiments, due to the lack of time, we used the standard SMART tf idf document indexing

here [Salton & Buckley 88] (single words only) instead of the probabilistic indexing described above.

After an initial retrieval run with both tf idf weights for queries and documents, relevance feedback

information was used for computing the feedback query term weights c,jfc. Only the terms occurring in

the query were considered here, so no query expansion took place. Theoretically, the RPI formula can

also be applied in case of query expansion. However, the additional terms should be treated differently

when estimating their query term weights. This problem has not been investigated yet for the RPI
model.

queries: 49

query-wise compar

11-pt Avg:

Prec. @ 100 docs

ison with median:

43:5

43:5

Best/worst results

11-pt Avg:

Prec. @ 100 docs

12/1

16/1

Tabelle 2: Results for routing queries

Table 2 shows the results for the run luhra2 with routing queries. It can be seen that this approach

works very well for almost every query. The single worst result is for topic # 50, where we did

not retrieve any relevant document; this outcome is due to the fact that there was only one rele-

vant document in the training sample, which is obviously not sufficient for probabilistic parameter

estimation.

A Operational details of runs

A.l Overall

All runs were done completely automatically, treating the text portions of both documents and queries

as flat text without structure. This made everything much simpler, but was not ideal given the

complexity in both form and meaning of the queries. Recall-precision definitely suffered.

All actual indexing (as opposed to weighting) and retrieval was done with the Cornell SMART Version

11.0 system, using the standard SMART procedures (eg, stopwords, stemming, inverted file retrieval).

All runs were made on a Sun Sparc 2 with 64 Mbytes of memory. All times reported are CPU time.

95

A. 2 Ad-hoc runs

Two automatic ad-hoc runs were done; one in which the documents and queries were indexed with

single terms only, and one in which they were indexed with both single terms and adjacency phrases.

The overall procedure for both runs was:

1. Index Di (the learning document set) and Qi (the learning query set).

2. For each document d E Di
2.1 For each q G Qi

2.1.1 Determine the relevance value r of to 5

2.1.2 For each term t in common between (set of query terms) and

(set of document terms)

2.1.2.1 Find values of the elements of the relevance description

involved in this run and add values plus relevance

information to the least squares matrix being constructed

3. Solve the least squares matrix to find the coefficient vector a

4. Index Di U D2 (both sets of documents together) with term-freq weights.

5. For each document c/ G U -D2 (both sets of documents together)

5.1 For each term t ^ (f^

5.1.1 Find values of the relevance description x{t,d) involved in run.

5.1.2 Give t the weight o • v{x[t, d))

where a is the value determined in step 3.

5.2 Add d to the inverted file.

6. Weight Q2 (test query set) with tf idf weights (ntc variant).

7. Run an inner product inverted file similarity match of Q2 against

the inverted file formed in step 5, retrieving the top 200 documents.

In an operational environment, the learning document set and test document set would be the same,

so step 1 (or step 4) would be omitted. Once coefficients have been found, they should remain valid

unless the character of the collection changes. So new documents can be added to a dynamic collection

by just going through step 5 for each new document.

The algorithm above is diff'erent from that implemented in the past for this learning approach. Earlier

versions iterated over queries (instead of documents) in step 2 and used inverted files for speed (with

the document vectors still being needed). However, the size of TREC required a reformulation since

document vectors and inverted files could not be kept in memory.

The coefficient determination is valid only if the relevant judgements used are representative of the

entire set of reolevance judgements. In this first TREC, the initial judgements are fragmentary and

not very representative; it's impossible to tell how much this aff'ects things.

A.3 Single term automatic ad-hoc run

The single term ad-hoc run used 5 factors (described in 2.1):

• constant

• tf logidf imaxtf
• tf imaxtf
• logidf

• lognumterms imaxtf

96

Determining the coefficients for the factors in the single term run took about 1.7 hours (steps 2 + 3

above). Construction of the inverted file (steps 4+5) containing the factor weighted terms took about

6.4 hours from scratch. Note that this is only about 1.0 hours longer than construction of a normal

(for SMART) tf idf weighted inverted file.

Query indexing and weighting used the normal SMART procedures and took about 1.5 seconds. The
fields Topic, Nationality, Narrative, Concepts, Factors, Description were used to index the query, with

no distinction made between fields.

Retrieval plus ranking took 383 seconds.

A.4 Phrase automatic ad-hoc run

The phrases being used were two-term SMART adjacency phrases. Phrases were adjacent non-

stopwords, term components stemmed, that occurred at least 25 times in the Di document set.

The term components were put into alphabetical order, thus the text phrases "information retrieval"

and "retrieving information" both mapped to the same phrase concept. The phrases were treated as

a separate ctype within an indexed vector, and had their own dictionary and inverted file separate

from those of the single terms.

Determination of phreises took 5.8 hours, finding 4,700,000 phrases occurring in Di at leeist once. Of
those phrases 158,000 occurred at least 25 times. These phrases were then put into a dictionary and

used as controlled vocabulary for phrases when doing the indexing of Di (step 1) and Di U D2 (step

4). The single term indexing remained exactly as it was in the single term run (terms occurring in

phrases were not removed from the vector).

The phrase term ad-hoc run used 8 factors (described in 2.2):

• constant

• is.single tf logidf imaxtf

• is.single tf imaxtf
• is.single logidf

• lognumterms imaxtf
• is.phrase tf logidf imaxtf
• is.phrase • tf imaxtf

• is.phrase • logidf

Determining the coefficients for the factors in the phrase run took about 2.4 hours (steps 2 + 3 above).

Construction of the inverted file (steps 4+5) containing the factor weighted terms took about 12.6

hours from scratch. Note that this is only about 1.7 hours longer than construction of a normal (for

SMART) tf idf weighted inverted file with phrases.

Query indexing and weighting used the normal SMART procedures and took about 2.7 seconds. The

fields Topic, Nationality, Narrative, Concepts, Factors and Description were used to index the query,

with no distinction made between fields.

Retrieval plus ranking took 374 CPU seconds. (This was less than the single term run, but for no

apparent reason. Perhaps the machine was less loaded.)

A. 5 Automatic routing run

There was one automatic routing run done. It was totally unconnected to the factor weighting

approach described above. Basically, it was very easy to implement and run so we decided we might

as well submit it. The actual weighting function had to be programmed, but even so less than 3

person-days in total was spent on routing.

97

The routing experiment format was treated almost exactly as a normal relevance feedback experimental

run. The overall procedure was:

1. Index query set Qi and document set Di with tf idf weights

2. For each query q ^ Q\
2.1 For each term t ^ (set of query terms)

2.1.1 Reweight term t using the RPI relevance weighting formula and

the (fragmentary) relevance information supplied.

3. Index document set D2 with tf idf weights. Note that the collection

frequency information used in the idf weight was derived from occurrences

in Di only (in actual routing the collection frequencies within D2 would

not be known)

4. Run the reweighted queries of Qi (step 2) against the inverted file (step 3),

returning the top 200 documents for each query.

This approach differs from true routing in that

A. All documents of D2 were indexed at once instead of individually indexing them and comparing

at each query sequentially. Thus the indexing/retrieval times obtained for the above algorithm

are pretty meaningless.

B. True routing is really a binary decision most often implemented as a similarity threshold, and

retrieving the top 200 documents (in ranked order) wouldn't normally be done. However, this

difference from true routing is required for evaluation purposes, and was thus required for TREC.
Note that the approach was completely automatic with the query and documents treated as flat text

(no structure). Differing from the ad-hoc runs above, the queries were indexed including the words

from all topic sections.

It's unknown what effect the fragmentary relevance information had on the query reformulation. The
strength of the effect will depend on whether the top similarity documents according to the tf idf

weights used had been judged and included in the fragmentary judgements.

Step 1 took 3.0 hours, step 2 about 1304 seconds, step 3 about 1.9 hours, and step 4 about 312 seconds.

References

Fuhr, N.; Buckley, C. (1991). A Probabilistic Learning Approach for Document Indexing. ACM
Transactions on Information Systems 9(3), pages 223-248.

Fuhr, N. (1989). Models for Retrieval with Probabilistic Indexing. Information Processing and

Management 25(1), pages 55-72.

Fuhr, N. (1992). Integration of Probabilistic Fact and Text Retrieval. In: Belkin, N.; Ingwersen, P.;

Pejtersen, M. (eds.): Proceedings of the Fifteenth Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 211-222. ACM, New York.

Maron, M.; Kuhns, J. (1960). On Relevance, Probabilistic Indexing, and Information Retrieval.

Journal of the ACM 7, pages 216-244.

Pfeifer, U. (1990). Development of Log-Linear and Linear-Iterative Indexing Functions (in German).

Diploma thesis, TH Darmstadt, FB Informatik, Datenverwaltungssysteme II.

Pfeifer, U. (1991). Entwicklung linear iterativer und logistischer Indexierungsfunktionen. In: Fuhr,

N. (ed.): Information Retrieval, pages 23-37. Springer, Berlin et al.

Robertson, S. (1977). The Probability Ranking Principle in IR. Journal of Documentation 33,

pages 294-304.

98

Salton, G.; Buckley, C. (1988). Term Weighting Approaches in Automatic Text Retrieval. Infor-

mation Processing and Management 24(5), pages 513-523.

Wong, S.; Yao, Y. (1989). A Probability Distribution Model for Information Retrieval. Information

Processing and Management 25(1), pages 39-53.

99

The University of Massachusetts TIPSTER Project

W. Bruce Croft

Computer Science Department

Universit}^ of Massachusetts

Amherst, MA. 01003

The TIPSTER project iu the lufonuatiou Retrieval Laboratory of the Computer Science

Department, University of Massachusetts, Amherst (which inchides MCC and David Lewis

of the University of Chicago as sul)contractors), is focusing on the following goals:

• Improving the effectiveness of information retrieval techniques for large, fuU-text

databases,

• Improving the effectiveness of routing techniques appropriate for long-term informa-

tion needs, and

• Demonstrating the effectiveness of these retrieval and routing techniques for Japanese

full-text databases.

Our general approach to achieving these goals has lieen to use improved representations

of text and information needs in the framework of a new model of retrieval. Retrieval (and

routing) is viewed as a. prol)al)ilistic inference process which '"compares" text representa-

tions based on different forms of Unguistic and statistical evidence to representations of

information needs based on similar evidence from natureil language queries and user inter-

action. New techniques for learning (relevance feedback) and extracting term relationships

from text are also being studied. The details and evaluation (with smaller test databases)

of the new model, known as the inference net model, can be found in other papers [3, 2, 4].

Some of the specific research issues we are addressing are morphological analysis in En-

gUsh and Japanese, word sense disam])iguation in Enghsh, the use of phrases and other

syntactic structiire in English and Japanese, the use of special puri)ose recognizers in rep-

resenting documents and queries, analyzing natural language queries to build structured

representations of informa tion needs, learning techniques appropriate for routing and struc-

tured queries, and probability estimation technicpies for indexing.

Comparing the TIPSTER experiments to previous IR experiments done using the staji-

dard test collections (e.g. CACIM, CISI. NPL, etc.), there are a number of interesting

differences:

• The size of the corpus is much larger than previous collections, both in terms of

the number of documents and the amount of text. This presents a challenge to the

robustness and efficiency of experimental information retrieval systems. Experiments

with indexing, for example, can take days instead of minutes.

• The documents in TIPSTER are nearly all fuU text, rather than abstracts.

101

• The documents in TIPSTER are heterogeneous in terms of both subject and length.

They come the general area of science, technology and economics, but the sources

are the Wi\]l Street Journal, Associated Press newswire, Ziff magazines in the high

technology area, Deijartuient of Energy abstracts, and the Federal Register.

• The queries (known as "toi)ics" in TIPSTER) are longer and have more structure

than those found in other test collections.

• The queries have specific and strict criteria specified for documents to be relevant.

These criteria (specified in the '"narrative" part of the topic) will reduce inconsistency

between relevance judges, but are sometimes difficult to handle in the context of an

information retrieval system.

• The roiiting experiments are imlike any carried out before.

• The retrieval and routing experiments with Japanese are also unique.

The first TIPSTER evaluaticni was limited hy a number of factors, the primary one

being the lack of relevance judgements for the initial query set. This made it difficult to

carry out experiments to st'lect rcchnicpies appropriate for large, full-text databases. The
resiilts from this evahiation shcjuld. therefore, ho regarded as preliminary, and indeed raise

more cpiestions than they answer.

In the retrieval experiment, 5U new "topics" were used to search the "old" database,

which consisted of approximately 1 GByte of text. One of the major subjects of the eval-

uation was to try different forms of queries produced by processing the topics. Our basic

approach to topic processing is to parse them, selecting parts to be indexed, recognizing

phrases and "factors" such as locations, dates, companies, etc. Some factors, such as "de-

veloping country", which have been specifically identified as important in the topic, will be

expanded using a synonym oi)erator. Weights reflecting relative importance are attached

to the concepts (words and phrases). Phrase-based concepts are represented by operators

defined in the inference net language. These operators use proximity of the words making

up the phrase as the major form of evidence for the presence of the concept [1]. The result

of topic processing is an inference net representing the information need.

In addition to the automatic query processing, some query versions were generated by

simulating simple iiser interaction with the results of the topic processing. The modifica-

tions to the automatically processed topics were limited to changing the weight of concepts,

deleting concepts considered uuimportaut, and adding striictiire (such as specifying syn-

onymous concepts). The most significant change in the last category was the introduction

of "unordered window" operators to simulate paragraph-level retrieval. The equivalent in

terms of a user user interface would l)e to ask users to group concepts that should occur

together.

The results of the first evaluation are described here in terms of the average precision in

the top 5, 30 and 200 documents in the ranking produced by the inference net retrieval engine

(INQUERY). This evaluation method was chosen because only the top 200 documents for

each query were judged for relevance. The resiilts were as follows:

102

Query Type Average Precision (50 topics)

5 docs 30 docs 200 docs
T+D+C+F+pliiase .64 .52 .35

T+D+C+F .62 (-3.1%) .52 (0%) .35 (0%)
1+N .60 (-6.7%) .50 (-3.8%) .34 (-2.8%)

T+C+phrase .66 (-h3.1%) .53 (+ 1.9%) .36 (+2.8%)
1+man .65 (+ 1.6%) .56 (+7.7%) .36 (+2.8%)
1+man+para .72 (+ 12.5%) .61 (+ 17.3%) .39 (+ 10.3%)

Table 1: TIPSTER Retrieval Results: Query types refer to topic fields used. T is topic, D
is description, C is concepts, F is factors, N is narrative, phrase means phrase constructs

used, 1 refers to the basehne (the first Hue), man means manual modification, para means

paragraph retrieval.

These results support two main conclusions: the first being that the effectiveness of the

retrieval techniques is surprisingly good coiisidering the diffictdty of the queries; the second

is that paragraph-level retrieval as simidated by manual creation of "unordered window"

queries significantly improves effectiveness. Much of the short-term development of the

inference net retrieval system wiU concentrate on techniques to accomplish paragraph-level

retrieval automatically. The major question raised by the results concerns the effectiveness

of phrases. In previous experiments with medium-sized full-text collections, phrase-based

retrieval led to significant effectiveness improvements. This is not evident in the results

shown here. A possible explanation for this is the size of the TIPSTER topics, where

queries may have more than 50 terms, but it should also be remembered that these results

are very preliminary.

The routing experiments used 20 "old" topics to search the "new" database (approxi-

mately 1 GByte of text from the same sources as the "old" database, with the exception of

DOE abstracts). Since the aim of these experiments was to stiidy techniques for represent-

ing and using long-term information needs, we assumed that users would be more involved

in query formulation and thus the baseline used was the "1+man+para" queries. The other

query types in this experiment used variations of relevance feedback to modify the baseline

queries. These modifications consist of adding concepts to the query and reweighting the

query concepts based on their frequency of occurrence in the identified relevant documents.

For this experiment, we had a small num])er of relevance judgements based on documents

retrieved by another system. The techniques used to select concepts to add to the query

were based on local and global application of the EMIM measure of association [5] The

number of terms added to a query was hmited to 5.

The results show that, once again, the effectiveness levels are quite good (note the

50% precision value at the 200 document level). The relevance feedback techniques were

not effective, except at the high precision end of retrieval. The features selected were, on

inspection, reasonable, but they do not appear to be the features required by the narrative

in order to make a document relevant. No definite conclusions can be made about the

103

man

Query Type Average Precision (20 topics)

5 docs 30 docs 200 docs

.C6 .65 .50

man+weights

man+EMIM+wciglits

Man 4-LEMIM+weigh t .s

.68(4-3.0%) .63 (-3.1%) .48 (-4.0%)

.71 (+7.6%) .61 (-6.2%) .49(-2.0%)

.68(-H3.0%) .64 (-1.5%) ..50(0%)

Table 2: TIPSTER Routing Results: weights are based on frequency in relevant documents,

EMIM is a global selection measure, LEMIM is a local (window-based) selection measure.

feedback techniques until experiments with larger sets of relevance judgements are carried

out.

The third set of resiilts are related to the retrieval of Japanese text. The goal of these

experiments was to compare different api)roaches to morphological analysis or word seg-

mentation. .Japanese text is made up of characters from a numl)er of alphabets (Kanji,

Katakana, Hiragana, and Enghsh). There are, however, no word separators and therefore

a major part of indexing is deciding what to index. We tested two alternatives:

1. An efficient, relatively crude technique where individual Kanji (Chinese) characters

and strings of Katakana characters are indexed.

2. A more sophisticated dictionary and grammar-based segmentation algorithm devel-

oped at Kyoto Uiriversity (.JUMAN).

There is a significant difference in the indexing times required by these techniques. With

a database of 1,100 doctiments from a .Japanese newspaper, the character-based indexing

took 4 minutes while the word-based (JUMAN) indexing took 31 minutes. The relative

effectiveness of the two text representations was then tested using the average precision in

the top 10 documents for 30 queries. The queries were either treated as strings of characters,

or were automatically structured using the JUMAN segmenter. In the character-based ap-

proach, words found in the ([uery were exi)ressed using the phrase operator to combine Kanji

and Katakana characters. The results show that the retrieval performance using Japanese

seems to be comparable to similar experiments with Enghsh databases, and the relatively

simple character-based indexing technique is surprisingly effective compared to more sophis-

ticated word-based techniques. The latter result is interesting, but the experiment must be

repeated when the larger TIPSTER Japanese database and query set becomes available.

We are currently carrying out a range of more detailed experiments using the relevance

judgements that are now available. The results from these experiments will allow us to

tune the techniques being used and to make more definite conclusions about their relative

effectiveness. In addition, we will continue to incorporate new approaches into the retrieval

and routing software for the upcoming evaluations.

104

Query Type Average Precision in Top Ten (30 queries)

Character-Based Indexing Word-Based Indexing
Characters .01

Words using phrase operator .03 (+3.3%)
Words - .05 (+0.6%)

Table 3: TIPSTER Japanese Retrieval Results

References

[1] W.B. Croft, H. Turtle, D. Lewis, '-The Use of Phrases and Structured Queries in

Information Retrieval", Proceedings of SIGIR 91, 32-45, (1991).

[2] W.B. Croft and H. Turtle, ^^Text Retrieval and Inference", in Text-Based Intelligent

Systems, Paul Jacobs (ed.), Lawrence Erlbaum, New Jersey, 127-156, (1992).

[3] H.R. Turtle and W.B. Croft, "Evaluation of an Inference Network-Based Retrieval

Model", ACM Transactions on Information Systems, 9(3), 187-222, (1991).

[4] H. Turtle and W.B. Croft, "A Comparison of Retrieval Models", Computer Journal,

35(3), 279-290, (1992).

[5] C. J. Van Rijsbergen, Information Retrieval. Butterworths, (1979).

105

HNC's MatchPlus System

Stephen I. Gallant* William R. Caid^ Joel Carleton^

Robert Hecht-Nielsen^ Kent Pu Qing^ David Sudbeck^

HNC Inc

1 Introduction

HNC is developing a neural network related approach

to document retrieval called MatchPlus^ . Goals of

this approach include high precision/recall perfor-

mance, ease of use, incorporation of machine learning

algorithms, and sensitivity to similarity of use.

To understand our notion of sensitivity to similar-

ity of use, consider the four words: 'car', 'automobile',

'driving', and 'hippopotamus'. 'Car' and 'automo-

bile' are synonyms and they very often occur together

in documents; 'car' and 'driving' are related words

(but not synonyms) that sometimes occur together

in documents; and 'car' and 'hippopotamus' are es-

sentially unrelated words that seldom occur within

the same document. We want the system to be sen-

sitive to such similarity of use, much like a built-in

thesaurus, yet without the drawbacks of a thesaurus,

such as domain dependence or the need for hand-

entry of synonyms. In particular we want a query on

'car' to prefer a document containing 'drive' to one

containing 'hippopotamus', and we want the system

itself to be able to figure this out from the corpus.

The implementation of MatchPlus is motivated by

neural networks, and designed to interface with neu-

ral network learning algorithms. High-dimensional

(« 300) vectors, called context vectors, represent

word stems, documents, and queries in the same vec-

tor space. This representation permits one type of

neural network learning algorithm to generate stem

context vectors that are sensitive to similarity of use,

and a more standard neural network algorithm to per-

form routing and automatic query modification based

upon user feedback.

Queries can take the form of terms, full documents,

parts of documents, and/or conventional Boolean ex-

pressions. Optional weights may also be included.

*124 Mt Auburn St, Suite 200, Cambridge, MA 02138

+5501 Oberlin Drive, San Diego, CA 92121.

'Patents pending.

The following sections give a brief overview of our

implementation, and look at some preUminary test

results. For a previous description of the approach

and comments on complexity considerations see [1];

a longer journal article is in preparation.

2 The Context Vector Ap-
proach

One of the most important aspects of MatchPlus is

its representation of words (stems), documents, and

queries by high (« 300) dimensional vectors called

context vectors. By representing all objects in the

same high dimensional space we can easily:

1. Form a document context vector as the

(weighted) vector sum of the context vectors for

those words (stems) contained in the document.

2. Form a query context vector as the (weighted)

vector sum of the context vectors for those words

(stems) contained in the query.

3. Compute the distance of a query Q to any doc-

ument. Moreover if document context vectors

are normaUzed, the closest document d (in Eu-

clidean distance) has the context vector that

gives highest dot product with the query context

vector V:

<closest d> = {d|V''-V*5 is maximized for d ^ D}

(proof: IIV'^-V'^lp = ||V'^||2-t-||V«||2-2(V'^-V^) =
const - 2(V'^-V'5).)

4. Find the closest document to a given document

d by treating as a queiy vector.

5. Perform relevance feedback. If d is a relevant

document for query Q, form a new query vector

107

where a is some suitable positive number (eg 3).

(See also [6].) Note that search with V*^ takes

the same amount of time as search with V^.

2.1 Context Vector Representations

Context vector representations (or feature space rep-

resentations) have a long history in cognitive science.

Work by Waltz & Pollack [7] had an especially strong

influence on the work reported here. They described a

neural network model for word sense disambiguation

and developed context vector representations (which

they termed micro-feature representations). See Gal-

lant [2] for more background on context vector repre-

sentations and word sense disambiguation.

We use context vector representations for docu-

ment retrieval, with most of the representation being

learned from an unlabeled corpus. A main constraint

for all of this work is to keep computation and storage

reasonable, even for very large corpora.

For defining context vectors, we begin by specifying

a set of n features that are useful for diiferentiating

among terms and contexts. These may be chosen in

an ad hoc manner using "common sense", or they

may consist of the high frequency terms in a given

corpus after removal of stopiuords {a, the, and, •••).

Figure 1 gives some typical examples that might be

suitable for general news stories. Experiments sug-

gest that the precise selection of features is not criti-

cal to system performance.

human man woman machi ne politics
art science play sex entertair
walk lie-down motion speak yell

research fun sad exciting boring
friend family baby country hot
cold hard soft sharp heavy
light big small red black
white blue yellow animal mammal
insect plant tree flower bush
fruit fragrant stink past present
future high low wood plastic
paper metal building house factory
work earl y late day night
afternoon morning sunny cloudy rain
snow hot cold humid bright
smart dumb car truck bike
write type cook eat spicy

Figure 1: Some typical features. For convenience

some features that apply to star have been moved
to the top of the list.

• « {strongly} negative if word k {strongly}

contradicts feature j.

As an example, v^^*^^"^™^'^ might be

< +2 + 1 + 1 -1 -1

0 +2 0 0 0

0 0 + 1 +1 +1
+2 + 1 -1 +1 -1

using the features in figure 1. Note that the inter-

pretation of components of context vectors is exactly

the same as the interpretation of weights in neural

networks.

In addition to the "word features" there are other

"learned features" that primarily serve to increase the

dimensionahty of context vectors.

Features are deUberately chosen so that they over-

lap. This makes context vectors less dependent upon

any individual feature. Context vector representa-

tions give built-in sensitivity to similarity of meaning

between terms. For example it is likely that the con-

text vector for 'car" would be very close to the context

vector for 'auto', somewhat close to the context vector

for "driving", and less close to the context vector for

'hippopotamus' for any "'reasonable'' set of features

and for any "reasonable " person entering the context

vectors. For more on this point see the plausibility

argument in Waltz & Pollack [7]. Note that overlap-

ping features provide a distributed representation [3],

and therefore help insulate against a small number of

questionable entries for context vectors.

2.2 Bootstrap Learning

Bootstrapping is a machine learning technique that

begins with hand-entered context vectors for a small

set of core stems, and then uses an unlabeled train-

ing corpus to create context vectors for all remaining

stems.

The basic idea is to define the context vector for a

new stem by making it similar to the context vectors

of its neighbor stems. Note that bootstrapping takes

into account local word positioning when assigning the

context vector representation for stems. Moreover it

is nearly invariant with respect to document divisions

within the training corpus. This contrasts with those

methods where stem representations are determined

solely by those documents in which the stem lies.

We have also developed a fully-automated method
for bootstrapping that requires no initial hand entry.

This capability is very useful for specialized domains

such as the tests on traditional IR corpora presented

in the next section. We are currently researching

For any word stem k we now define its context vec-

tor, V*', to be an n-dimensional vector, and interpret

each component of V*^ as follows:

• « {strongly} positive if word k is {strongly}

associated with feature j

• « 0 if word k is not associated with feature j

108

V iivii y

X X
A

X
A

/n the course of human events

Context Vector
for Document

Normalize

Vector Sum

Inverse
Frequency
Weighting

Context Vector for
Individual Words

Stopllst

Document

Figure 2: Generating the context vector for a document.

whether the fully-automated method can perform as

well as standard bootstrapping.

2.3 Context Vectors for Documents

Once we have generated context vectors for stems it

is easy to compute the context vector for a document.

We simply take a weighted sum of context vectors for

all stems appearing in the document^ and then nor-

malize the sum. See figure 2. This procedure applies

to documents in the training corpus as well as to new

documents. When adding up stem context vectors,

we can use term frequency weights similar to conven-

tional IR systems.

2.4 Context Vectors for Queries; Rel-

evance Feedback

Query context vectors are formed similarly to docu-

ment context vectors. For each stem in the query we

^Stopwords are discarded.

can apply a user-specified weight (default 1.0). Then
we can sum the corresponding context vectors and

normalize the result.

Note that it is easy to implement relevance feed-

back. The user can specify documents (with weights)

and the document context vectors are merely added

in with the context vectors from the other terms. We
can also find documents close to a given document by

using the document context vector as a query context

vector.

2.5 Retrieval

The basic retrieval operation is simple: we find the

document context vector closest to the query context

vector and return it. There are several important

points to note.

1. As many documents as desired may be retrieved,

and the distances from the query context vector

give some measure of retrieval quality.

109

2. Because document context vectors are normal-

ized, we may simply find the document d that

maximized the dot product with the query con-

text vector, V*:

max{V^-V^}.
d

3. It is easy to combine keyword match with con-

text vectors. We first use the match as a filter

for documents and return documents in order by

closeness to the query vectors. If all matching

documents have been retrieved, MatchPlus can

revert to context vectors for finding the closest

remaining document.

4. MatchPlus requires only about 300 multiplica-

tions and additions to search a document. More-

over it is easy to decompose the search for a cor-

pus of documents with either parallel hardware

or, less expensively, several networked conven-

tional machines (or chips). Each machine can

search a subset of the document context vectors

and return the closest distances and document

numbers in its subset. The closest from among

the distances returned by all the processors then

determines the documents chosen for retrieval.

We are also investigating a cluster tree prun-

ing procedure that finds nearest neighbor docu-

ment context vectors without having to compute

dot products for all document context vectors.

This data organization affects retrieval speed,

but does not change the order in which docu-

ments are retrieved.

3 Preliminary Results

Our system is very 'young'. It has been able to handle

large corpora (1,000,000-1- documents) only since July

1992. Nevertheless we have some promising results.

In figure 3, we see that MatchPlus gives comparable

performance to Salton's SMART system [5] on small,

traditional IR test corpora when corresponding term

weighting schemes are used. Salton reports signifi-

cantly improved performance (10—50%) with other

term weighting methods, and we are in the process of

running the corresponding tests with MatchPlus.

These experiments used fully automated boot-

strapping with no hand entry of context vectors. Ex-

periments on other corpora with a hand-entered set of

core stems show 3% to 15% improvement, with larger

improvement on smaller corpora.

Bootstrapping for the tests in figure 3 was on the

target corpus only, with maximum size being 3200

CISI CACM MED
MatchPlus .1914 .1749 .5013

SMART .1410 .2535 .5062

Notes:

- MatchPlus: $Match(3) filter

- SMART figures from Salton [5].

- Comparisons use classical idf term weighting

for both systems.

Figure 3: MatchPlus results are comparable to

SMART system results on traditional IR corpora us-

ing a corresponding term weighting method.

documents. We have found a significant advantage

to bootstrapping with larger corpora, as shown in

figure 4. We also plan experiments where bootstrap-

ping begins with stem context vectors generated from

a larger corpus.

Bootstrap corpus size 50,000 200,000 500,000

(# docs)

Performance 36.5 39.0 39.9

Improvement — 7% 9%

Notes:

- Performance was average relevant for 200 re-

trievals using Tipster corpus.

Figure 4: Improvement with size of bootstrap corpus.

Experiments with the Tipster/TREC corpus are in

progress.

4 Concluding Comments

The key feature of MatchPlus is its uniform represen-

tation of all objects by context vectors. This makes

possible a large number of interesting experiments for

the next year, such as

• use of neural network learning algorithms to per-

form fast automated query modification based

upon user feedback

• word sense disambiguation as described in [2]

110

• cluster tree speedup for retrieval

• different term weighting methods for document

and query context vector creation, as well as for

bootstrapping.

Although young, we believe MatchPlus has already

shown encouraging results, and we look forward to

growing it.

References

[1] Gallant. S. I. Context Vector Representa-

tions for Document Retrieval. AAAI-91 Natu-

ral Language Text Retrieval Workshop, Ana-

heim. CA, July 15, 1991.

[2] Gallant, S. I. A Practical Approach for

Representing Context And for Performing

Word Sense Disambiguation Using Neural

Networks. Neural Computation, Vol. 3, No.

3, 1991, 293-309.

[3] Hinton, G. E. Distributed Representations.

Technical Report CMU-CS-84-157, Carnegie-

Mellon University, Department of Computer

Science. Revised version in Rumelhart, D.

E. & McClelland, J. L. (Eds.) Parallel Dis-

tributed Processing: Explorations in the Mi-

crostructures of Cognition, Vol. 1. MIT Press,

1986.

[4] Salton, G. The SMART retrieval system - Ex-

periments in automatic automatic document

processing. Englewood Cliffs, NJ: Prentice-

Hall, 1971.

[5] Salton, G. & Buckley, C. Term-Weighting Ap-

proaches in Automatic Text Retrieval. Infor-

mation Processing & Management, Vol. 24.

No. 5, 1988, pp. 513-523.

[6] Salton, G. & Buckley, C. Improving Retrieval

Performance by Relevance Feedback. Journal

of the American Society for Information Sci-

ence, 41(4):288-297, 1990.

[7] Waltz, D. L. & Pollack, J. B. Massively Par-

allel Parsing: A Strongly Interactive Model

of Natural Language Interpretation. Cogni-

tive Science 9, 51-74 (1985).

Ill

DR-LINK's

Linguistic-Conceptual Approach to Document Detection^

Elizabeth D. Liddy

Sung H. Myaeng
School of Information Studies

Syracuse University

Syracuse, New York 132100-4100

liddy@mailbox.syr.edu; shmyaeng@mailbox.syr.edu

1^ Overview

Our approach to the difficult problem of selecting only those documents which satisfy a user's

specified information need, is to pay parallel attention to two very important aspects of the task.

Firstly, there are many documents which have no likely possibility of being relevant to either a

standing query or a query newly put to the system. These documents should be filtered from

further consideration at an early stage in the system's processing if the system's later

processing is computationally expensive, and if their presence introduces unnecessary

ambiguity, while their removal produces more accurate results. This focusing process should

continue at subsequent stages using additional linguistic features of the query and documents in

order to further refine the flow of documents. Secondly, there is a continuum of levels of

linguistic-conceptual processing which can produce enrichments of the original text in order to

explicitly represent documents at more conceptual levels for more accurate matching to

queries.

Our approach also recognizes that, as reflected by the topic statements, the retrieval task in

TREC requires capabilities beyond what has been required in the past for traditional IR systems.

Topic statements describe not only 'aboutness' but also more detailed information such as

relationships among entities, characteristics of participants in an event, and temporality. We
believe that richer representations of documents and topic statements are essential to meet the

extended retrieval requirements of such complex information needs and to reduce the ambigui-

ties resulting from keyword-based retrieval. To produce this enriched representation the

system uses lexical, syntactic, semantic, and discourse linguistic processing techniques for

distilling from documents and topic statements all the rich layers of knowledge incorporated in

their deceptively simple textual surface and produces a final document representation which has

been snaped by all these levels of linguistic processing.

To achieve the goals stated above, we have devetoped a system whose architecture is modular in

design, with five separate processing modules which continuously refine the flow of documents

both in terms of pure numbers and in terms of continual semantic enrichments (see Figure 1).

Briefly previewed, the five modules processing is as follows:

The Subject Field Coder uses semantic word knowledge to produce a summary-level topical

vector representation of a document's contents that is matched to a vector representation of a

topic statement in order to select for further processing only those documents which have real

potential of being relevant. This subset of documents is then passed to the Text Structurer,

1 Ken McVearry, Woojin Paik, Ming Li, Edmund Yu, and Chris Khoo contributed to the design,

data analysis and implementation of the system for TREC-1

.

113

114

which sub-divides a text into its discourse-level segments in order to focus later matching to

the appropriate discourse component in response to particular types of information need. All of

the structured texts, with the appropriate components high-lighted, are passed to the Relation-

Concept Detector, whose purpose is to raise the level at which we do matching from a key-

word or key-phrase level to a more conceptual level by expanding terms in the topic statement

to all terms which have been shown to be 'substitutable' for them, and then by extracting

semantic relations between concepts from both documents and topic statements. This component
produces concept-relation-concept triples which are passed to the Conceptual Graph
Generator which converts these triples into the CG formalism (Sowa, 1984). The resultant

CGs are passed to the Conceptual Graph Matcher, which measures the degree to which a

particular topic statement CG and candidate document CGs share a common structure, and ranks

the documents accordingly.

The five modules in DR-LINK have well specified interfaces, making it possible for some of the

modules to be re-combined, when appropriate, in a different order for a more advantageous flow

of processing. For example, the Subject Field Coder can produce vectors for any-size unit of

text (e.g. a sentence, a paragraph, a discourse-level text-type component, or the full

document). Therefore, the Subject Field Coder can create an SFC representation for the full

document before the text has been decomposed into its constituent discourse-level components

by the Text Structurer, or the Subject Field Coder can be run on the document after the Text

Structurer has recognized the discourse level components of a text, and can therefore produce

separate vectors for the differing types of information (e.g. current event, past event, opinion,

potential future event) contained in the various discourse-level components (e. g. Main Event,

History, Evaluation, Expectation) within a newspaper text. This permits an SFC-vector of a

particular topic statement to be matched to the representation for just that component whose
content is most likely to be appropriate.

Another vital aspect of our approach which is evidenced in the various semantic enrichments

(e.g. Subject Field Codes, discourse components, concept-relation-concept triples. Conceptual

Graphs) added to the basic text, is the real attention paid to representation at a deeper than

surface level. That is, DR-LINK deals with lexical entities using more conceptually-based

syntactic groupings. For example, complex nominals will be processed as meaningful multi-

word constituents because the combination of individual terms in complex nominals conveys

quite different meanings than if the individual constituents were individually interpreted. In

addition, verbs are represented in case-frames so that the other lexical entities in the sentence

which perform particular semantic roles in conjunction with the verb are represented

according to these semantic roles. Also, the very rich semantic data (e.g. location, purpose,

nationality) that is conveyed in the formulaic, appositional phrases typically accompanying

proper nouns are represented in such a way that the semantic relations implicitly conveyed in

the appositions are explicitly available for more refined matching and the creation of CGs which

contain this relational information. In each of these three examples, relations are important in

that they contextually bind concepts which otherwise would be treated as if they were

independent of each other. To accomplish this task, given a text database, DR-LINK extracts

important relations by relying on relation-revealing formulae (RRF) that are patterns of

linguistic (lexical, syntactic, and semantic) clues by which particular relations are detected.

2, Detailed Svstem Description

Since our system is modular In design, with well-defined boundaries between the various

115

modules, the system description will also be organized according to these same divisions. The
documents and the topic statements are analyzed in basically similar ways by the system's

modules, with a few exceptions which will be detailed below within that module's description.

We have chosen to perform rather substantive pre-processing of the raw text that is received

from DARPA because much of our later processing is dependent on clean, well-demarcated text.

For example, we identify sub-headlines, and embedded figures, as well as identifying and
restoring correct sentence boundaries. Also, we identify multiple stories within a single

document so that each separate story can have its own SFC vector produced which will be

representative of just that one story, and so that accurate text structuring can be accomplished

at the individual story level.

The text is then processed by the POST part-of-speech tagger (Meteer et al, 1991) loaned to us

by BBN, that stochastically attaches a part-of-speech tag to individual words. The part-of-

speech tagged text is then fed into a bracketer, a deterministic finite state automaton that adds

several different types of brackets for linguistic constituents (e.g. noun phrases, prepositional

phrases, clauses, etc.) essential for several tasks in our system.

2Jl Subject Field Coder

The Subject Field Coder (SFCer) produces a summary-level semantic representation of a text's

contents that is useable either for ranking a large set of incoming documents for their broad

subject appropriateness to a standing query, or for dividing a database into clusters of

documents on the same topic. One important benefit of the the SFC representation is that it

implicitly handles both the synonymy and polysemy problems which have plagued the use of NLP
in I.R. systems because this representation is one level above the actual words in a text.

For example. Figure 2 presents a short WSJ article and a humanly readable version of the

normalized SFC vector which serves as the document's semantic summary representation.

A U. S. magistrate in Florida ordered Carios Letider Rivas, described as among the

world's leading cocaine traffickers, held without bond on 1 1 drug-smuggling

count. Lehder, who was captured last week in Colombia and immediately extradited

to the U.S., pleaded innocent to the charges in federal court in Jacksonville.

Fig. 2: Sample WSJ document and its SFC representation

The SFCer uses the Subject Codes from Longman's Dictionary of Contemporary English (LDOCE)

to produce this semantic representation of a text's contents. The machine-readable tape of the

1 987 edition of LDOCE contains 35,899 headwords and 53,838 senses, for an average of 1 .499

senses per headword plus several fields of information not visible in the hard-copy version

LAW .2667
BUSINESS .1333
DRUGS .1333
POUTICAL SCIENCE .1333

SOCIOLDGY

ECONOMICS
MILITARY

.1333

.0667

.0667

.0667OCCUPATKDNS

116

which are extremely useful in natural language processing tasks, e. g. the Subject Codes. The
Subject Codes are based on a classification scheme of 124 major fields and 250 sub-fields.

Subject Codes are manually assigned to words in LDOCE by the Longman lexicographers. There is

a potential problem, however, with the Subject Code assignments which become obvious when an

attempt is made to use them computationally. Namely, a particular word may function as more
than one part of speech and each word may also have more than one sense, and each of these

entries and/or senses may be assigned different Subject Codes. This is a slight variant of the

standard disambiguation problem, which has shown itself to be nearly intractable for most NLP
applications, but which needed to be successfully handled if DR-LINK was to produce correct

semantic SFC vectors.

We based our computational approach to successful disambiguation on a study of current

psycho linguistic research literature from which we concluded that there is no single theory that

can account for all the experimental results on human lexical disambiguation. We interpret the

these results as suggesting that there are three potential sources of influence on the human
disambiguation process:

Local context - the sentence containing the ambiguous word restricts the

interpretation of ambiguous words

Domain knowledge - the recognition that a text is concerned with a particular

domain activates only the senses appropriate to that domain

Frequency data - the frequency of each sense's general usage affects its

accessibility

We have computationally approximated these three knowledge sources in our disambiguator. We
consider the 'uniquely assigned' and 'high-frequency' SFCs of words within a single sentence as

providing the local context which suggests the correct SFC for an ambiguous word. The SFC
correlation matrix which was generated by processing a corpus of 977 Wall Street Journal

(WSJ) articles containing 442,059 words, equates to the domain knowledge (WSJ topics) that

is called upon for disambiguation if the local context does not resolve the ambiguity. And finally,

ordering of SFCs in LDOCE replicates the frequency-of-use criterion. We implement the

computational disambiguation process by moving in stages from the more local level to the most

global type of disambiguation, using these sources of information to guide the disambiguation

process. The work is unique in that it successfully combines large-scale statistical evidence

with the more commonly espoused local heuristics.

We tested our SFC disambiguation procedures on a sample of twelve randomly selected WSJ
articles containing! 66 sentences consisting of 1638 words which had SFCs in LDOCE. The

system implementation of the disambiguation procedures was run and a single SFC was selected

for each word. These SFCs were compared to the sense-selections made by an independent judge

who was instructed to read the sentences and the definitions of the senses of each word and then

to select that sense of the word which was most correct. The disambiguation implementation

selected the correct SFC 89% of the time (
Longman's Dictionary o f Contemporary English

(LDOCE).

Operationally, the SFCoder tags each word in a document with the appropriate, disambiguated

(SFC). The within-document SFCs are then summed and normalized to produce a vector of the

SFCs representing that document. Topic statements are likewise represented as SFC vectors. In

117

the routing situation, each topic statement SFC vector is compared to the incoming document SFC
vectors and the douments are then ranked according to similarity to the topic statement SFC
vector. Either a predetermined or adjustable criterion can be used to select those documents
whose SFC vectors exhibit a predetermined degree of similarity to the topic statement SFC
vector. This set is then passed to later system components for more refined representation and
matching.

For use with retrospective or ad hoc queries, the SFC vectors are clustered using Ward's

agglomerative clustering algorithm (Ward, 1963) to form classes in the document database. For

retrieval, queries are likewise represented as SFC vectors and then matched to the prototype

SFC vector of each cluster in the database. Clusters whose prototype SFC vectors exhibit a

predetermined criterion of similarity to the query SFC vector are passed on to other system

components for more computationally expensive representation and matching (Liddy, Paik, &
Woelfel, 1992).

£^ Text Structurer

The purpose of the Text Structuring module in DR-LINK is to delineate the discourse-level

organization of each document's contents so that those document components where the type of

information suggested by the topic statement is most likely to be found, can be selected for

higher weighting. For example, in newspaper texts, opinions will be found in EVALUATION
components, basic facts of the news story will be found in MAIN EVENT components, and

predictions will be found in EXPECTATION components. The Text Structurer produces an

enriched representation of each document by decomposing it into these smaller, conceptually

labelled components. In parallel, the Topic Statement Processor evaluates each topic statement

to determine if there is an indication that a particular component in the documents should be

more highly weighted when matched to the topic statement representation. For example, topic

statement indicator-terms such as predict or anticipate or proposed reveal that the time frame

of the event being searched for must be in the future, in order for the document to be relevant.

Therefore, documents in which this event is reported in a piece of text which has been marked

by the Text Structurer as being either EXPECTATION or MAIN, FUTURE would be ranked more

highly than those in which this event is reported in a different component.

Operationally, DR-LINK evaluates each sentence in the input text, comparing it to the known

characteristics of the prototypical sentence of each component of the text-type model, and then

assigns a component label to the sentence. For the newspaper text-type model, we took as a

starting point, the hierarchical newspaper text model proposed by van Dijk (1988). With this

as a preliminary model, several iterations of coding of a sample of 149 randomly chosen Wall

Street Journal articles from 1987-1988 resulted in a revised News Schema which organized

van Dijk's terminal node categories according to a more temporally oriented perspective. The

News Schema Components account for all the text in the sample of articles. The components are:

CIRCUMSTANCE, CONSEQUENCE, CREDENTIALS, DEFINITION, ERROR, EVALUATION,

EXPECTATION, HISTORY, LEAD, MAIN EVENT, NO COMMENT, PREVIOUS EVENT, REFERENCES, and

VERBAL REACTION.

The process of manually coding the sample also served to suggest to us that during our

intellectual decomposing of texts, we were in fact relying on six different types of linguistic

information to make our decisions. The data from the sample set which could be used to provide

the raw data for these evidence sources was then analyzed statistically and translated into

118

computationally recognizable text characteristics to be used by the Text Structurer to assign a

component label to each sentence. Briefly defined, the six sources of evidence used in the Text

Structurer are:

Likelihood of Component Qccurrlnij - The unit of analysis for the first source of evidence Is the

sentence and is based on the observed frequency of each component in our coded sample set.

Order of Components - This source of evidence relies on the tendency of components to occur in

a particular, relative order determined by calculating across the coded files of the sample

documents, looking not at the content of the individual documents, but the component labels. The
results are contained in two 19 by 19 matrices, one for probability of which component follows

a given component and one for probability of which component precedes a given component.

Lexical Clues - The third source of evidence is a set of one, two and three word phrases for each

component. The set of lexical clues for each component was chosen based on obsen/ed frequencies

and distributions. We were looking for words with sufficient occurrences, statistically skewed
observed frequency of occurrence in a particular component, and semantic indication of the role

or purpose of each component.

Syntactic Sources - We make use of two types of syntactic evidence: 1) typical sentence length

as measured in average number of words per sentence for each component; 2) individual part-

of-speech distribution based on the output of the part-of-speech tagging of each document, using

POST, a part-of-speech tagger loaned to us by BBN (Meteer et al, 1991). This evidence helps to

recognize those components which, because of their nature, tend to have a disproportionate

percentage of words of a particular part of speech.

Tense Distribution - Some components, as might be expected by their name alone, tend to

contain verbs of a particular tense more than verbs of other tenses. For example, DEFINITION

sentences seldom contain past tense, whereas the predominate tense in HISTORY and PREVIOUS
EVENT sentences is the past tense, based on POST tags.

Continuation Clues - The sixth and final source of evidence is based on the conjunctive

relations suggested in Halliday and Hasan's Cohesion Theory (1976). The continuation clues are

lexical clues which occur in a sentence-initial position and which were observed in our coded

sample data to predictably indicate either that the current sentence continues the same
component as the prior sentence or that there is a change in the component.

These evidence sources for Instantiating a discourse-level model of the newspaper text-model

have been incorporated in the Text-Structurer, which evaluates each sentence of an input

newspaper article against these six evidence sources for the purpose of assigning a text-level

label to each sentence. The implementation uses the Dempster-Shafer Theory of Evidence

Combination (Shafer, 1976) to coordinate information from the very complex matrices of

statistical values for the various evidence sources which were generated from the intellectual

analysis of the sample of 149 WSJ articles (Liddy, Paik, McVearry & Yu, In press).

Operationally within DR-LINK, each document is processed a sentence at a time and each source

of evidence assigns a number between 0 and 1 to indicate the degree of support that evidence

source provides to the belief that a sentence is of a particular news-text component. Then, a

simple supporting function for each component is computed and the component with the greatest

119

support is selected as the correct tag for that sentence.

To convey how the Text Structurer output is used by DR-LINK, Figure 3 presents a Topic

Statement which is highlighted to show its implicit request for future-oriented prediction

information. This need for a specific type of information is recognized by the Topic Statement

Processor which maps this need for future-oriented information to EXPECTATION or MAIN,

FUTURE components in documents. The Text Structure Matcher then searches for documents
with these components, as exemplified in the document in Figure 4, which shows a relevant WSJ
article, as structured by the DR-LINK component, in which the required information occurs in

sentences which have been correctly tagged as EXPECTATION.

ZjL Relation-Concept Detector

The main function of the RCD module is to extract relations that connect concepts that otherwise

would be treated as isolated and independent. For example, a relation REASON can be extracted

from phrases like 'because of, 'as a result of, and 'due to', which form lexical RRF, in order to

connect the two constituents occurring before and after the phrases. It should be noted that the

RRF we are developing are domain-independent since they are based on fairly universal

linguistic clues rather than a domain model. There are several types of RRF derived from a

variety of linguistic constructs including verb-oriented thematic roles, complex nominals,

proper noun appositions, nominalized verbs, adverbs, prepositional phrases, and some other ad

hoc patterns revealing relations that appear in the literature (cf. Somers, 1987) and are

expected to be suitable for IR purposes based on our preliminary analysis of the topic

statements. We intend to conduct an extensive study of usefulness of individual relations as part

of our failure analysis.

With different types of RRF stored in a knowledge-base, we go through multiple stages of partial

linguistic analyses, as opposed to a holistic syntactic processing followed by a semantic

interpreter, to extract relations and generate CGs eventually. With the tagged, bracketed, and

structured text as the input, various sub-modules in the RCD selectively detect implicit

relations as well as concepts being connected, by focusing on occurrences of patterns of interest

found in the knowledge base and by bypassing portions of text irrelevant to the relation

extraction tasks. The output of the RCD component is a set of concept-relation-concept triples

where concepts are derived often from content-bearing words and relations from non-content

words or indirectly from the linguistic structure by consulting the knowledge base.

For example, the Proper Noun (PN) apposition category of RRF will help categorize the many
occurrences of PNs in text and determine semantic relations between a PN and the apposition

which either precedes or follows it. For example, in the following sentence fragment, apposition

RRF will recognize and categorize the LOCATION relation and the PRODUCT relation of the PN,

General Development:

"... General Development, a Miami-based developer of planned communications,..."

General Development -> (LOCATION) -> Miami

General Development -> (PRODUCT/SERVICE) -> developer of planned communications

As another example of processing in the RCD module, the Case Frame Handler will, given a

sentence fragment which has been processed by the tagger and bracketer:

120

Tipster Topic Description: 008

Topic: Economic Projections

Description: Document will contain quantitative projections of the
future value of some economic indicator for countries

other than the U.S.

Narrative: To be relevant, a document must include a projection of the

value of an economic indicator (e.g., gross national product

(GNP), stock market, rate of inflation, balance of payments,

currency exchange rate, stock market value, per capita income,

etc.) for the coming year, for a country other than the United

States.

Concepts:

1. inflation, stagflation, indicators, index

2. signs, projection, forecast, future

3. rise, shift, fall, growth, drop, expansion, slowdown, recovery

4. %, billions

5. NotU,S.

Nationality: Not U.S.

Time: Future

Fiq. 3: Sample Topic Statement

121

HEADLINE West Germany's Central Bank Cuts Key Rate: Little Impact Is

Expected On Currency Markets Or Nation's Economy

LEAD The West German central bank, as expected, cut the interest

rate it charges on securities-repurchase agreements with

banks, a move that appears likely to fall short of its goal of

supporting the dollar by widening the gap between German and

U.S. interest rates.

MAIN The Bundesbank yesterday called for interest-rate tenders on

28-day securities-repurchase agreements at a minimum rate

of 3.5%, well below the 3.8% rate it had been asking since

January.

EXPECT. Market experts estimate that the actual rate to emerge
from bidding today is likely to be closer to 3.6% or

3.65%.

EXPECT. But they expect the Bundesbank to use later tenders to

continue to push the rate lower, possibly to 3.3%.

DEFIN. The repurchase facility is the central bank's principal open-

market means for refinancing the banking system with funds

backed by securities.

EXPECT. Yesterday's Bundesbank action signals broad declines

in capital-market interest rates, and could lead to

lower credit rates charged by commercial banks.

MAIN The West German move complements a recent lowering of

short- term interest rates in Japan and a tightening of credit

by the U.S. Federal Reserve Board.

MAIN However, foreign-exchange traders said the Bundesbank's

action didn't have any immediate effect on the currency market

and that small interest-rate movements are unlikely to

significantly outweigh other factors weakening the dollar,

including the U.S. trade deficit.

Fiq. 4: Wall Street Journal article Relevant to T.S. 8

122

" Venezuela and its creditor banlis agreed yesterday to restructure $3 billion of

its foreign debt

the verb 'agree' triggers a set of case frames in tlie knowledge base witli tlie additional

information provided by the preposition to' followed by another verb, the correct case frame

(i.e. RRF for case relations) will be chosen:

(((A X S) ((AT ? to+V) (CT ? that)))

where the first element of each of the two list indicates the relation (e.g. A for AGENT, AT for

ACTIVITY, and CT for CONTENT), the second specifies the LDOCE semantic restriction (e.g. X for

'abstract or human), and the last shows the syntactic or lexical clue that must be satisfied in

order for the case frame to be instantiated. In this example, S is for a subject, to+V for an

infinitive, and 'that' for a relative clause. The two sub-lists, (AT ? to+V) (CT ? that), indicates

that only one of them is triggered at a given time. Eventually the following set of triples are

generated:

[agree] -> (A) -> [country: Venezuela]

[agree] -> (A) -> [creditor_bank]

[agree] -> (AT) -> [restructure]

where the concept node [country: Venezuela] is formed by applying rules from the Proper Noun
knowledge base and processor.

£^ Conceptual Graph Generator

Given the triples generated in the RCD module by applying various types of RRF, the next step is

to merge them to form a complete CG for a sentence, paragraph, or an SRF component. The

resulting CGs consist of not only concepts and relations but also instantiations or referents of

concepts, which are usually derived from proper nouns like company names but can be another

CG derived from a nested clause, thereby allowing for nested CGs. Since the different types of

RRF in the knowledge base are developed and applied in the RCD modules in a more or less

independent manner, a form of conflict resolution is necessary in this component.

Given the set of concept-relation-concept triples as shown above and another set derived from

the verb restructure' with a frame ((A X S) (P W O)):

[restructure] -> (A) -> [country: Venezuela]

[restructure] -> (A) -> [creditor_bank]

[restructure] -> (P) -> [debt]

where A and P are for 'agent' and 'patient' relations, and

[debt] -> (ME) -> [money]

[debt] -> (CH) -> [foreign]

are produced by a special handler within the RCD, where ME and CH stand for measure' and

'characteristics', the CG generator produces the following CG for the sentence:

123

[agree] -

(A) -> [country: *1 Venezuela]

(A) -> [creditor_bank: *2]

(AT) -> [restructure] -

(A) -> [country: *1 Venezuela]

(A) -> [credltor_bank: *2]

(P) -> [debt] -

(ME) -> [money]

(CH) -> [foreign].

where *1 and *2 indicate that the nodes with the same number represent the same concept.

While this process of extracting relations and constructing CGs is applied both to documents and
topic statements, the latter require additional processing to capture unique features of

information needs often found in the topic statement. Accordingly, CGs generated from topic

statements have such additional features as importance weights on concept and relation nodes and

ways of indicating whether an instantiation of a concept must exist in relevant documents. This

specialized processing, in comparison with document processing, is accomplished by treating

topic statements as a sub-language and building a model for them. For example, some
information on weights is revealed by phrases like "... optional" and "... must exist ..." whereas

the need for an instantiation of a concept id indicated by phrases like "Identification of the

company must be included".

While CG theory provides a framework in which IR entities can be represented adequately, much
of the representation task involves intellectual analysis of topic statements and documents so

that we capture and store concepts and relations that are ontologically adequate for IR. For

example, it is essential to choose, organize and classify a restricted set of relations in such a

way that they facilitate matching and inferencing with two CGs representing a document and a

topic statement. The efficacy of the relations we have chosen will be determined with full

experiments and failure analyses.

2uL Conceptual Graph Matcher

The main function of the CG matching component is to determine the degree to which two CGs
share a common structure and score each document with respect to the topic statement. This is

accomplished by employing techniques necessary to model plausible inferences with CGs
(Myaeng & Khoo, 1992). In order to allow for approximate matching between concept nodes or

relation nodes, we have developed a matrix that represents similarities among relations being

used in CG representation, as well as some concepts. Our goal is to enhance both precision and

recall. By exploiting the structure of the CGs and the nature of the relations, we attempt to meet

the specific information needs in topic statements. By allowing for partial matching (e.g.

between debt' and 'bank debt') and inexact matching (e.g. between 'debt' and 'loan' and between

CO-AGENT' and 'AGENT') at the node level, we can increase recall.

For CG matching, we first developed and implemented a base algorithm that is flexible enough to

allow for various types of partial matching between two CGs and ran experiments to test its

practicality (Myaeng and Lopez-lopez, 1992). While the general subgraph isomorphism

problem is known to be computationally intractable, matching CGs containing conceptual

information (i.e. labels on nodes) appears to be practical. With improved understanding of the

124

nature of RRF and the exact features of the representation of documents and topic statements, we
have developed and implemented heuristics for scoring documents for their relevancy with

respect to a given topic statement, and added them to the base algorithm. With the rich

representation of topic statements and documents, the expanded matching component currently

is capable of discriminating documents based on the availability of rather unusual information

needs specified in a topic statement, such as a certain status of an event or a need to contain a

specific entity (e.g. company name) satisfying a certain condition. Also it facilitates the process

of reliably identifying "hot spots" in retrieved documents.

An example of how a matching between document CG and a topic statement CG is shown in Figure

5, where the entire CG represents the example sentence discussed above and the topic statement

sentence:

"... a current debt rescheduling agreement ... between a debtor developing

country and one or more of its creditors, commercial and/or official. It will

identify ttie debtor country and the creditor(s), the payment time period

and the interest rate, ..."

The dark area and the individual nodes with gray shades represent the matched parts: a connected

sub-CG that is the main contributor for the final score and some single node matches,

respectively. It should be noted that information on the relative importance of the text

components delineated by the Text Structure component with respect to the topic statement is

incorporated in the scoring heuristics.

An independent module under development, which will have direct bearing on the final results of

matching and which will be added at a later stage to determine its efficacy, is RIT (Roget's

International Thesaurus) Coder. The goal is to simulate the use of a type hiearchy in the CG
theory by replacing lexical terms in concept nodes in our representation with RIT semi-colon

group numbers, each of which represent a set of semantically similar words and phrases in its

hierarchy. Our approach is to use the words surrounding the target word to be replaced with an

RIT code as context words by which we try to disambiguate the sense of the target word and find

the exact location in the RIT. While this approach is to increase both recall and precision at the

same time through implicit expansion of terms and sense disambiguation, we will have to see the

sensitivity of incomplete disambiguation to the overall retrieval results.

a. Testing and Results

Although the DR-LINK entry in TREC was not tested in the same manner as the other systems,

the status of the system and the testing which was done were consistent with the milestones that

had been established in consultation with our TIPSTER contractor. DR-LINK was not tested as a

full system due to the fact that DR-LINK is based on several theories that have never before been

implemented in an information retrieval system and none of the system's components were in

even the design stage of development when the project began. As a result of these facts, our

system is not yet fully implemented. The results that follow are on the three modules (Subject

Field Coder, Text Structurer, Conceptual Graph Matcher) that have been implemented to date.

The full system will be tested at the eighteenth month meeting of TIPSTER.

125

2*a» Subject Field Coder Testing

The Subject Field Coder can be evaluated in its filtering function in the following way: The SFC
vectors of documents in a database are compared to a topic statement vector and, for each topic

statement, ranked according to similarity. The question then is, how far down this ranked list

would the system need to proceed in order to include all the relevant documents in the set of

documents that was passed on to the next system module? This testing procedure has been run

using the WSJ and Ziff collections on Disk 1 and Topic Statements 1 to 50 provided by TREC. In

the Wall Street Journal database, results showed that on average across the 50 topic statements,

all the relevant documents were ranked in the top 28% of the list. Therefore, on average, 72%
of the WSJ database did not need to be further processed by the later modules in the system. In

the Ziff database, on average across the 50 topic statements, all the relevant documents were

ranked in the top 66% of the database, a much poorer result. Therefore, on average, 34% of the

Ziff database need not be further processed. When Topic Statements 51 to 100 were searched on

the WSJ database, all the relevant documents were ranked in the top 32% of the list.

Error analysis of the Ziff results, has revealed the cause of the poorer performance on that

database. Namely, for several of the queries, documents were judged relevant only if they

contained the particular proper noun mentioned in the topic statement (e.g. OS/2, Mitsubishi,

IBM's SAA standards, etc.). Given these types of topic statements, the most appropriate search

approach for a system would be keyword matching, which is not at all the type of matching that

is done using the SFC representation. The SFCs represent a document at a higher level of

abstraction, not at the keyword level. That is documents which discuss a particular computer,

will have a strong weighting of the Data Processing slot on the SFC vector, but no means for

matching on a particular computer name. Therefore, the error analysis showed that the SFC
performance was hampered by its inability to match at the level of a specific company name or

product. Fortunately, we do have at hand the means to improve the results, as we are in the

process of incorporating a second-level of document ranking using Proper Noun processing

algorithms. Results using this extended representation will be available at the eighteenth month

TIPSTER meeting.

^ Text Structurer Testing

The Text Structurer was tested using five of the six evidence sources, as we have not yet

implemented the algorithms for incorporating evidence from the Continuation Clues. We tested

the Text Structurer on a set of 1 1 6 WSJ documents, consisting of several thousand sentences.

This first testing resulted in 72% of the sentences being correctly identified. An additional hand

simulation of one small, heuristic adjustment was tested and improved the system's

performance to 74% of the sentences being correctly identified. A second run of a smaller

sample of sentences resulted in 80% correct identification of components for sentences. Ongoing

efforts at improving the quality of the evidence sources used by the Text Structurer, plus the

incorporation of the Continuation Clue evidence, promise to improve these results significantly.

It should be remembered, as well, that the automatic discourse structuring of documents has not

been reported elsewhere in the literature, so that this very new type of text processing is in its

infancy and likely has much room for future improvements.

127

2JL Conceptual Graph Matcher Testing

As the first prototype, the CG Matcher was implemented with a set of scoring heuristics whose
theoretical basis is on the Dempster-Shafer theory of evidence. The score for a document is

computed progressively from node-level evidence through multiple stages to generate a score

for text units of different granularities.

In order to test the feasibility of the prototype module, we have run it with manually generated

CGs for twenty documents and five topic statements for which we have relevance judgments.

While it is premature to draw any conclusions on the efficacy of the matching algorithm and the

heuristics, mainly due to the size of the data set and the stage of the development, the results

were encouraging and have provided us with much insight on how the scoring heuristics need to

be tuned.

4. Conclusions

This paper on the DR-LINK system should be considered a report on a work in progress, since

we did not have a fully devetoped system at the time of the TREC testing. However, we do believe

that the three system components which were tested perform quite respectably, given their

innovativeness. Continued development and feedback from the TREC results will provide much
more refined versions of these system modules. In addition, two system modules remain to be

developed and the full system, which is quite synergistic in its approach to achieving its goals,

remains to be integrated and tested as a full system. The Relation Concept Detector and

Conceptual Graph Generator modules are being implemented in tandem and, when completed, will

make the DR-LINK system fully operational. Full system testing will be conducted for the

eighteen month TIPSTER testing.

In the interim, our goal in this paper has been to describe the five unique modules which

comprise DR-LINK and which, in combination, promise to provide a full system which has the

necessary filtering power to make later processing more accurate and the depth of linguistic

processing required to provide real conceptual level matching and retrieval.

^ References

Halliday, M. A. K. & Hasan, R. (1976). Cohesion in English . London, Longmans.

Liddy, E.D. & Paik, W. (1992). Statistically-Guided word sense disambiguation. In Proceedings

of AAAI Fall Symposium Series: Probabilistic approaches to natural language . Menio Park,

CA:AAAI.

Liddy, E.D., Paik, W., McVearry, K. & Yu, E. (In press). Automatic discourse-level structuring

of newspaper texts: Empirical testing of a model.

Liddy, E.D., Paik, W. & Woelfel, J. (1992). Use of subject field codes from a machine-readable

dictionary for automatic classification of documents. Proceedings of 3rd ASIS Classification

Research Workshop.

Meteer, M., Schwartz, R. & Weischedel, R. (1991). POST: Using probabilities in language

processing. Proceedings of the Twelfth International Conference on Artificial Intelligence.

Sydney, Australia.

Myaeng, S. H. (1992) Using conceptual graphs for information retrieval: a framework for

representation and flexible inferencing. Proceedings of Symposium on Document Analvsis

and Information Retrieval. Las Vegas, March 16-18.

Myaeng, S. H. & Khoo, C. (1992). On uncertainty handling in plausible reasoning with

conceptual graphs. Proceedings of 7th Workshop on Conceptual Graphs . Las Cruces, MM,

July, 1992.

128

Myaeng, S. H. & Lopez-lopes, A. (1992). A conceptual graph matching: a flexible algorithnri and

experiments. Journal of Experimental and Theoretical Artificial Intelligence . Vol. 4,

107-126.
Shafer, G. (1976). A mathematical theory of evidence . Princeton, NJ: Princeton University

Press.

Somers, H. L. (1987). Valency and Case in Computational Linguistics . Edinburgh: Edinburgh

University Press.

Sowa, J. (1984). Conceptual Structures: Information Processing in Mind and Machine . Reading,

MA: Addison-Wesley.

van Dijk, T. (1988^. New analysis: Case studies of international and national news in the press.

Hillsdale, NJ: Lawrence Earlbaum Associates.

Ward, J. (1963). Hierarchical grouping to optimize an objection function. Journal of the

American Statistical Association. 58, p. 237-254.

129

I

WORDU: A WORD-PAIR APPROACH TO INFORMATION RETRIEVAL

James A. Danowski

University of Illinois at Chicago

CONCEPTUAL MODEL

WORDij is a system based on a linkage or network

model for representing textual information. The

fundamental unit of analysis is the word pair, or bi-gram

phrase, rather than the individual term. WORDij also takes a

local approach to term cooccurrence. Systems such as

SMART historically used the entire document as the field

within which to define term cooccurrence. More recent

research has suggested that defining cooccurrence within

smaller text units such as paragraphs may be better [Salton &
Buckley 91]. WORDij is even more local in focus. It

defines cooccurrence of terms within three word positions

(after dropping stop words). In addition, WORDij uses

direct and indirect pair information to compute shortest paths

among words in retrieved documents. This counts both

direct and indirect matches between queries and documents.

Consider a query Q containing the phrase {tl, 6} and a

document D containing the phrases {tl, t2}, and {t2, t3) but

not the phrase {tl, t3). Existing algorithms [Salton &
Buckley 91, Croft, Turtle & Lewis 91, Fagan 89] would not

consider the dependency between tl and t3 as there is no

match for the phrase. However, tree-dependency models

[van Rijsbergen 77; Yu, Buckley, Lam and Salton 83]

recognize such indirect dependencies and produce a formula

to compute the degree of dependency between tl and t3.

The WORDij approach considers not only the direct phrases

but also indirect phrases.

METHODS

TREC work was begun using a network of Sun

workstations in the Database and Information Systems

Laboratory in the Electrical Engineering and Computer

Science Department at the University of Illinois at Chicago.

Because the lead Research Assistant, Nainesh Khimasia,

died during the project, software development using C and

Unix tools was impeded. Earlier generations of tools had

been optimized for an IBM mainframe computer, so work

was switched to that platform. The machine used was an

IBM 3090/3001 platform running VMXA, CMS. A virtual

machine CPU size of 16meg was used along with three

gigabytes of disk space. The CPU clock speed is rated at

14.5 nanoseconds, or 69 MHz.

We modified earlier generations of WORDij software

written in SPITBOL [Danowski 82, Danowski & Andrews

85]. These modifications consisted mainly of replacing

some SPITBOL code where possible with CMS PIPELINE
code, because it runs approximately one thousand times

faster. The *JZ text files were uncompressed using a

compress utility on CMS that works with Unix based

compressed files. WORDij code was run on each

uncompressed text file, generating an inverted file of word

pairs by document identification numbers. All word pairs

occurring only once in each document were dropped to save

disk space.

No spell checking, stemming, morphological analysis,

parsing, or tokenizing was done. A stop list of 63 1 words

was used, comprised of the 570 stop words in SMART v. 10

and some additional stop words forming the markup format

of the raw text. Processing time to create the word pair

index averaged three minutes per file.

Ad hoc queries were automatically processed in the

same way as raw documents, except that no single pairs were

dropped. Query text used to generate word pairs for

matching included all text provided, except the factors and

definitions, and concepts numbered higher than two. Total

CPU seconds to build a query averaged .26 seconds. For the

ad hoc queries, nothing further was done to them, either

automatically or manually.

For the routing topics, queries were also constructed

automatically, but in a different way. The training sets of

relevant and irrelevant documents were separately analyzed

to identify all word pairs that occurred in the relevant set but

not in the irrelevant set These unique relevant word pairs

were used as routing queries.

131

PIPELINE matching of the query pairs against the pair

files for each text file executed in approximately 16

milliseconds per file per 100 sets of query pairs. This meant

that to run all 100 queries against the entire collection took

approximately five hours of PIPELINE processing on the

word pair index files, or three minutes per query.

Time constraints precluded completing a word and

word-pair by document count on the entire collection for

inverse document frequency or entropy word and word pair

weighting. Retrieved documents were ranked from 1 to 200

by counting the number of matching pairs each document

had to the query. Frequency of pair occurrence in documents

was not used to weight except in breaking ties at the 200

document-rank threshold.

Time limitations also prevented full implementation of

the indirect matching process. Only directly matching pairs

were used for the main analysis to produce the results.

Indirect matching was, however, later tested. This will be

described after presentation of the basic results.

RESULTS

WORDij results were greater than or equal to the

median levels of performance for seven topics. Our results

were within one standard deviation on 55 topics, and within

two standard deviations on 82 topics. Performance was

significantly lower than the median for 14 topics, as judged

by counting topics whose results were greater than two

standard deviations below the median. Table 1 lists the

topics in two categories, those that were better than or equal

to the median, and those that were significantly below the

median.
'

Failure Analysis

Query Style.

Several kinds of failure analysis were performed. To
investigate whether stylistic features of queries were

associated with performance, we computed the following

variables for each query using the shareware program, PC-

STYLE:

Number of Sentences

Number of Words

Words per sentence

• Percentage of long words

Percentage of personal words

Percentage of action verbs

Average number of syllables per word

Table T. Topic Results Ordered by Performance

TOPIC Difference (median - result)

Better than or Equal to Median

66 -.08980 Natural Language Processing
29 -.04540 OS/2 problems
94 -.03180 Computer-aided Crime
95 -.00800 Computer-aided Crime Detection
18 . 00000 Global Stock Market Trends
44 . 00000 What Makes CASE succeed or fai
88 . 00000 Crude Oil Price Trends

100 .00000 Controlling High Tech Transfer
50 .00250 Virtual Reality Military Apps.

Significantly Below Median (Failures)

22 .19590 Legal Repercus . -Agrochemicals
58 .20740 Rail Strikes
37 .21290 Role of Minis and Mainframes
20 .21770 Superconductors
77 .23290 Poaching
17 .24350 Japanese Stock Market Trends
93 .24560 What Backing Does the NRA Have
13 .24780 Drug Approval
54 .26840 Satellite Launch Contracts
51 .29490 Airbus Subsidies
10 .33340 Space Program
70 . 35440 Surrogate Motherhood
78 .38240 Greenpeace
21 .48710 Counternarcotics

• Reading grade level

These variables were correlated with a criterion variable,

which was the difference between the median and our result.

We subtracted for each query our obtained result from the

median result on the 11 -point averages of recall-precision

contained in the official results across systems for the test

queries 51-100. Table 2 displays these correlations. None of

them are statistically significant at the .01 level. A second

criterion variable was created to represent whether the query

was in the "failed" category, greater than two standard

deviations below the median. A dummy variable was

created for each query using zero to represent success and

one to represent failure. Correlations of the style variables

were also computed with the failure criterion. No
correlations were significant at the .01 level. This suggests

that query length, complexity, and other stylistic variables

are unrelated to retrieval performance.

Query Words.

132

Table 2: Query style & performance correlations

Dif f

.

Failure

Sentences -.1053 -.1102
Words -.1139 -.1616
Words/sent

.

.0736 -.0004
Long words -.1574 -.1086
Personal words . 0846 -.0046
Action words .1192 .2690

Syllables /word -.1055 -.0763
Reading grade level -.0256 -.0629

Additional failure analysis was conducted to explore

whether there were particular words associated with

performance. The frequencies of all words (no stop words)

for each query were correlated with both types of

performance criteria: 1) continuous difference from the

median and 2) failure, indicated by results significantly

below median performance. Table 3 presents the

correlations that were significant at the .01 alpha level or

better across the 98 topics, and which occurred in at least

five different topics.

The words 'to' and 'some' increased in frequency as

performance increased, while frequency of the following

words was associated with lower performance: 'who, more,

type, following, been, two.' For the failure criterion, 'who,

more, been, two' were also significantly associated with

lower performance. In addition, 'national, system, support'

were also negatively associated with it. This analysis of

words from queries associated with performance suggests

that the pair matching approach worked best when the

documents used a domain-specific vocabulary.

Proper Name Identification.

At the other extreme, topics that used more domain-

general words had lower performance. In particular, queries

that asked for a category of documents, such as indicated by

words such as 'who' and 'type' were more likely in the failure

category. Words including: 'system, national, following,

been, and two' were also associated with higher failure rates.

This suggests that proper noun compounds may require

special treaunent. The names of organizations, products,

locations, etc. cannot apparently be easily identified through

direct pair matching when these specific proper nouns are

not contained in the query. When such specific results are

called for by a query, special procedures are probably

desirable for identification of proper nouns in documents that

match on other query pairs.

Domain Specificity of Words.

Table 3: Query words & performance correlations

WORD r No. of Topics

Difference

to -.2743* 15
some -.2480* 10

who . 3570** 8

more .2509* 8

type . 3740** 6

following . 3069* 6

been .2580* 6

two . 3750** 5

Failure

An additional implication is that query expansion may
be fruitful when dealing with domain-transcendent words.

Through use of thesauri or databases such as WordNet,

alternative word meaning senses may be disambiguated.

Then synonyms specific to the proper domain could be

added to the actual query pairs contained in the original raw

query text.

Interestingly, queries that contained the words 'some'

resulted in higher performance. This may suggest that the

criteria for relevance were less stringent for such queries, in

that they asked not for an exhaustive and complete fit of

query to documents, but a more partial overlap. The word

'to' in queries was also associated with higher performance.

This may be associated with the specificity of this word in

discourse, indicating relationships of direction, degree, state,

contact, possession, etc.

national .2479* 11

system .2479* 9

who .3828** 8

more .2426* 8

been .2545* 6

two . 4100** 5

support .2479* 5

p < .01, ** p < .001

Natural Language Processing on Queries.

Together, such query-focused results suggest that future

work may benefit from performing complex natural language

processing such as parsing, sense disambiguation, etc. on the

queries themselves to tune them before matching.

Sophisticated treatment of queries may improve performance

to the point that such treatment of the raw texts themselves,

which is expensive, may not add much marginal

performance improvement

133

Stemming.

Tests were run with the training sets for three queries

selected at random: 2, 26, and 49. For query 2 the

difference was zero. For query 26, the relevant documents

retrieved increased by 43%, while for query 49 there was a

73% improvement. Average improvement for the three

queries was 37% using stemming.

All Pairs.

Tests were run for three different queries to examine

effects of dropping single occurring word pairs from

documents. Queries 51, 71, and 78 were chosen at random.

Retrieval of relevant documents increased on average by

75%, with varied results across queries. Query 51 saw

relevant documents retrieved increase by 2.25 times, query

71 decreased performance by .93, and query 78 increased by

1 1 times, for an average of 1 .75 times increase in

performance.

Indirect Match Tests.

The training set of documents for query 5 1 , about

Airbus subsidies, was used to test indirectness effects. One-

step indirectness was assessed, meaning that two query pair

words were not directly in the document, but were indirectly

connected through an intermediary word.

To illustrate, here are the query pairs including the

word, "aid," none of which have any direct matches in the

documents:

AID LOAN

AID TRADE

AID FINANCING

AID SUBSIDIES

AID ASSISTANCE

AID GOVERNMENT

Table 4 contains the direct (one-step) and indirect (two-

step) links that "aid" had in the documents. The lefunost

pairs are direct links, while the rightmost words were

directly linked only to the second word of the direct pairs,

thus forming a two-step indirect link to the first word in the

pair. For example, "aid" is linked to "government" only

indirectly through "Airbus." Also, "aid" is linked to

"subsidies" only indirectly through "Airbus." These two sets

of indirect hnks, aid-(Airbus)-subsidies and

aid-(Airbus)-govemment are meaningful in terms of the

content of the query, which generally concerns government

aid and subsidies to Airbus. If we had used only directly

matching pairs, we would have missed these two

conceptually meaningful sets of links. After identifying all

indirect pairs in documents matching query pairs in this way,

retrieval of relevant documents was 12% higher.

Shortest Paths.

WORDij does not restrict detection of indirect phrases

to these dual bi-gram cases. Rather, indirectness can be of n-

step lengths [Danowski and Martin 79, Van Rijsbergen 77].

For example, if there is an intermediate term between two

other terms not otherwise linked, then these two other terms

have an indirect step linkage of two. If the connection is only

through two intermediaries, then the indirect linkage is at

step three, and so on. Shortest path algorithms [Gabow &
Tarjan 89] find the best set of all direct and indirect links

connecting all nodes in a networic. Here, this is all words in

the query.

We expect that indirectness at the two-step level may
contribute most to recall-precision effectiveness. At larger

numbers of steps the value of indirect information

diminishes. This is because at the extreme lengths, every

word is indirectly connected to every other word. This is

equivalent to a simple within-document cooccurrence of

words, such as in traditional approaches. It renders useless

the local cooccurrence constraints. Note also that stop word

removal from texts is necessary to represent higher degrees

of indirecdiess. When stop words are present, they increase

the connectivity of the word network.

Structural Equivalence and Meaning.

In network analysis, attention to the direct links in a

network is called a "cohesion" approach while examining the

degree of similarity in two-step links is called "structural

equivalence" [Burt 90]. Two nodes are structurally

equivalent to the extent that they share the same indirect

links, though they may not be directly linked themselves.

For example, if word A is linked to words C,D,E and word B
is linked to words C,D,E, then although A and B are not

directly linked (i.e. show no cohesion), they are structurally

equivalent and maximally similar because they share the

same links.

Research in mathematical sociology and network

analysis has found that structural equivalence is usually

equal to or better than cohesion in accounting for system

behavior. In text analysis using words as nodes, two words

can be considered to share more meaning to the extent they

have overlapping two-step links. Therefore, structural

equivalence of words is meaning equivalence.

Latent Semantic Indexing and Indirect Pairs.

It is interesting that another approach to indirectness is

Latent Semantic Indexing (LSI) [Deerwester et al. 90;

Dumais 92]. Instead of than using a network approach,

however, it uses an eigenvector model. Eigenvectors

represent the combined effects of direct and indirect

associations among elements in the matrix. "Latent" refers

134

Table 4: Direct and indirect links to the word "aid"

FREQUENCY

aid airbus 1

fdp 1

back. 1

jets 2

adams 1

board 1

crash 1

group 1

plans 1

airbus 1

boeing 2

family 1

german 1

member 1

planes 2

dispute 1

mandate 1

nations 2

partner 2

percent 1

program 2

provide 1

aircraft 1

european 1

products 1

projects 2

amendment 1

executive 1

industrie 9

initially 1

ministers 1

spokesman 2

structure 1

* subsidies 2

violating 1

consortium 5

* government 1

management 1

aid package 1

aid guarantee 1

aid consortium 1

airbus 1

* These are indirect links that
create pairs contained in the
query pairs: aid- (Airbus) -subsidies
and aid- (Airbus) -government . The
other indirect links are not
meaningful because they do not
relate to the query at the two-step

level. Nevertheless, they are listed
to show the larger context of
identifying meaningful indirectness.

to indirect association patterns below the manifest or direct

level. Currently, eigenvector solutions to large matrices are

more computationally limited than shortest path network

solutions. There has been more development of large scale,

parallel algorithms for shortest paths, due to the {M^ctical

needs to aid routing of information in telecommunications

networks. Some work, however, suggests that there is a

mathematical equivalence between eigenvector and network

approaches to reducing matrices of associations to a simpler

underlying structure [Bamett & Richards 91].

Shortest Path Weighting.

Given a set of query word pairs and a list of all

documents that contain each word pair-both directly and

indirectly-- we can take all pairs of nodes and identify the

shortest path linking them in the network. These paths are

measured for length according to Euclidean distance in grz^h

terms. Such distance is a direct function of the minimum
number of link steps it requires to connect two nodes on their

geodesic. Directly linked nodes have a distance of one,

nodes linked through one common intermediary node have a

distance of two, etc. Documents are counted that were

"passed through" or "activated" as each step in the shortest

path is traversed. Shortest path algorithms can find these

indirect paths with large data sets provided parallel

algorithms and hardware are used. We are further

developing such experiments.

After IDF weighting, ranking, and selection of the best

words, networic analysis is conducted on the word pairs they

form. The shortest paths linking every word in the set are

found, and the word centrality in the network is indexed via

the average of the minimum number of steps between that

word and all other words in the set

Then, for each document, it is given a weight that is

based on the centrality of the words from the query it

contains. The retrieved documents found along the shortest

paths between all query pairs are counted and weighted by

their constituent word centrality. ank ordered

for each query. Documents are then rank-ordered for each

query.

CONCLUSION

Results showed that even with unexpected limitations

due to the mid-project death of the lead research assistant,

Nainesh Khimasia, we succeeded in processing the entire

TREC collection and doing direct matching of query word

pairs to document word pairs. For 15% of the topics, our

results can be considered failures. Failure analysis suggests

that improvements in future research may result from:

135

query tuning based on natural language processing

using special procedures for treating proper noun

names for organizations, products, locations, etc.

retaining and using word pairs occurring only once in

documents

• stemming the documents and queries

• doing indirect document frequency (IDF) or entropy

weighting on words and using these to weight query

pairs

computing additional weights based on shortest paths.

ACKNOWLEDGEMENTS

The author is grateful for the contributions of the

following University of Illinois at Chicago faculty, students,

and staff to this project: John Andrews, Robert Goldstein,

Alan Hinds, Nainesh Khimasia, Jin Hong Meng, Stephen

Roy, Gary Singer, Anand Sundaram, George Yanos, and

Clement Yu.

REFERENCES

Bamett, G.A. & Richards, W.D. (1991, February). A
comparison of NEGOPY'S clique detection algorithm with

correspondence analysis. Paper presented to the

International Social Networks Conference, Tampa, Florida.

Burt, R.S. (1990). Structure. New York: Center for Social

Sciences, Columbia University.

Croft, B., Turtle, H. & Lewis, D. (1991). Proceedings of the

SIGIR '91, 32-45.

Danowski, J. (1982). A network-based content analysis

methodology for computer-mediated communication: An
illustration with a computer bulletin board," Communication

Yearbook, 6, 904-925.

Danowski, J. (1988). Organizational infographics and

automated auditing: Using computers to unobtrusively

gather and analyze communication. In G. Goldhaber and G.

Bamett (eds.) Handbook of organizational communication

(pp. 335-384). Norwood, NJ: Ablex.

Danowski, J. & Andrews, J. (1985, February). A method for

automated network analysis of word cooccurrences. Paper

presented to the International Social Networks Conference,

San Diego.

Danowski, J. & Martin, T.H. (1979). Evaluating the health

of information science: Research community and user

contexts. Final report to the Division of Information Science

of the National Science Foundation, no. IST78-21130.

Deerwesier, S., Dumais, S.T., Landauer, T.K., Furnas, G.W,
& Harshman, R.A. (1990). Indexing by latent semantic

analysis. Journal of the Society for Information Science,

41:6, 391-407.

Dumais, S.T. (1992). LSI meets TREC: A status report

Paper presented to TREC.

Fagan, J. (1989). The effectiveness of a nonsyntactic

approach to automatic phrase indexing for document

retrieval. Journal of the American Society for Information

Science, 40:2,1 15-132.

Gabow, H.N. & Tarjan, R.E. (1989). Faster scaling

algorithms for network problems. SIAM Journal on

Computing. 18(Oct),1013-36.

Salton, G. & McGill, M. (1983). Introduction to modem
information retrieval. New York: McGraw-Hill.

Salton, G. & Buckley, C. (1991). Automatic text structuring

and retrieval: Experiments in automatic encyclopedia

searching. Proceedings of the SIG-IR '91, 21-30.

van Rijsbergen, C. (1977). A theoretical basis for the use of

cooccurrence data in information retrieval. Joumal of

Documentation, 33,106-119.

Yu, C, Buckley, C, Um, H. & Salton, G. (1983). A
generalized term dependence model in information retrieval.

Information technology: Research and development,

2,129-154.

136

LSI meets TREC: A Status Report

Susan T. Dumais

Bellcore

445 South St.

Morristown, NJ 07960-1910

std(a)bellcore.com

1. Overview of Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an extension of the vector retrieval method (e.g., Salton &
McGill, 1983) in which the dependencies between terms and between documents, in addition to

the associations between terms and documents, are explicitly taken into account. This is done by

simultaneously modeling all the association of terms and documents. We assume that there is

some underlying or "latent" structure in the pattern of word usage across documents, and use

statistical techniques to estimate this latent structure. A description of terms, documents and

user queries based on the underlying, "latent semantic", structure (rather than surface level word

choice) is used for representing and retrieving information.

Latent Semantic Indexing (LSI) uses singular-value decomposition (SVD), a technique closely

related to eigenvector decomposition and factor analysis (Cullum and Willoughby, 1985). A
large term-document matrix is decomposed it into a set of k, typically 100 to 300, orthogonal

factors from which the original matrix can be approximated by linear combination. Instead of

representing documents and queries directly as sets of independent words, LSI represents them

as continuous values on each of the k orthogonal indexing dimensions. Since the number of

factors or dimensions is much smaller than the number of unique terms, words will not be

independent. For example, if two terms are used in similar contexts (documents), they will have

similar vectors in the reduced-dimension LSI representation. The SVD technique can capture

such structure better than simple term-term or document-document correlations and clusters.

LSI partially overcomes some of the deficiencies of assuming independence of words, and

provides a way of dealing with synonymy automatically without the need for a manually

constructed thesaurus. LSI is a completely automatic method. (The Appendix provides a brief

overview of the mathematics underlying the LSI/SVD method. Deerwester et al., 1990, and

Furnas et al., 1988 present additional mathematical details and examples.)

One can also interpret the analysis performed by SVD geometrically. The result of the SVD is a

vector representing the location of each term and document in the ^-dimensional LSI

representation. The location of term vectors reflects the correlations in their usage across

documents. In this space the cosine or dot product between vectors corresponds to their

estimated similarity. Since both term and document vectors are represented in the same space,

137

similarities between any combination of terms and documents can be easily obtained. Retrieval

proceeds by using the terms in a query to identify a point in the space, and all documents are

then ranked by their similarity to the query.

The LSI method has been applied to many of the standard IR collections with favorable results.

Using the same tokenization and term weightings, the LSI method has equaled or outperformed

standard vector methods and other variants in almost every case, and was as much as 30% better

in some cases (Deerwester et al., 1990). As with the standard vector method, differential term

weighting and relevance feedback both improve LSI performance substantially (Dumais, 1991).

LSI has also been applied in experiments on relevance feedback (Dumais and Schmitt, 1991),

and in filtering applications (Foltz and Dumais, 1992).

The TREC conference was an opportunity for us to "scale up" our tools, and to explore the LSI

dimension-reduction ideas using a very rich corpus of word usage. This large collection of

standard documents and relevance judgements should be a valuable IR resource and an

important step in the systematic development of more effective retrieval systems.

2. Application of LSI to the TREC collection

2.1 Overview

We used existing LSI/SVD software for analyzing the training and test collections, and for query

processing and retrieval. For pragmatic reasons, we divided the TREC collection into 9

subcollections - API, DOEl, FRl, WSJl, ZIFFl, AP2, FR2, WSJ2, ZIFF2. Queries were passed

against the appropriate subcollections, and the returns recombined to arrive at a single ranked

output.

There were three main stages involved in processing documents and constructing the relevant

data structures. All steps were completely automatic and involved no human intervention. The

resulting reduced-dimension representations were used for matching and retrieval.

1. Pre-processing and indexing (extracting terms, calculating term weights, etc.)

2. Computing the SVD (number of dimensions ranged from 235-310)

3. Adding new documents and/or terms

2.1.1 Pre-processing and indexing

We did minimal pre-processing on the raw text of the TREC documents. Some markups (any

text within <> delimiters) were removed, and all hand-indexed entries were removed from the

WSJ and ZIFF collections. Upper case characters were translated into lower case, punctuation

was removed, and white spaces were used to delimit terms. A minimum term length of 2 was

used.

All terms occurring in more than one document, and not on a stop list of 439 words were used to

generate a term-document matrix. We did not use: stemming, phrases, syntactic or semantic

parsing, word sense disambiguation, heuristic association, spelling checking or correction,

138

proper noun identification, complex tokenizers, a controlled vocabulary, a thesaurus, or any

manual indexing. The entries in the term-document matrix were then transformed using a

^ogiOfui+l))x(l-entropy,)) weighting. The weight assigned to each term was: 1 - entropy or noise,

where entropy = ^-^ foj^ndocs) ' "^^^"^ number of documents in the collection, t is the

index for terms, d is the index for documents, p,d=^^, tftd is the frequency of term / in

document d, and gf, is the global frequency of occurrence of term / in the collection. (For

simplicity, we refer to this as the log*entropy term weight.) The transformed term-document

matrix was used as input to the SVD. The results of the SVD analysis, a -dimensional real

vector for each term and each document and k singular values, were stored in a database. The
terms and their log*entropy weights were also stored in a database.

Each of the 9 subcollections was processed separately. Because of software constraints, the

initial indexing and SVD analysis were done on a random subset of 20,000-57,000 documents.

The remaining documents were added into the resulting data structure as described below. (We
have recently completed an SVD analysis of the complete 226,000 document by 90,0(X) term

DOE collection, but this was not used in the experiments reported below.)

Table 1 summarizes the number of terms and documents in the samples used for scaling as well

as the total number of terms and documents in the databases.

SVD scaling

sampled added total total database ^

collection docs terms docs docs terms ndim / N 2,3
(meg)

DOEl 50000 42221 176087 226087 42221 250 262

WSJl 49555 70019 49556 99111 70019 250 169

API 42465 78167 42465 84930 78167 250 163

ZIFFl 37590 60565 37590 75180 60565 250 135

FRl 26207 54713 0 26207 54713 250 80

WSJ2 50000 76080 24520 74520 76080 235 141

AP2 50000 82997 29923 79923 82997 235 153

ZIFF2 56920 72197 0 56920 72197 235 121

FR2 20108 48728 0 20108 48728 235 64

totals 382845 585687 360141 742986 585687
^

Table 1. Summary of 9 subcollections

NOTES

1. In the union of the 9 subcollections, there were 585687 word tokens, and 200785 word

types.

2. In general, database size will be: (ndocs+nterms)*ndim*4

3. The total combined database size was 1288 meg (750000 docs and 585000 terms). If a

single combined database had been used, the total database size would have been smaller

because many terms are now represented in more than one database. There were only

about 200000 unique terms, so a combined database would have been about 930 meg. The
fact that the number of terms does not grow linearly with the number of documents will

help make large SVD calculations possible.

2.1.2 SVD

The SVD program takes the log*entropy transformed term-document matrix as input, and

calculates best "reduced-dimension" approximation to this matrix. The result of the SVD
analysis is a reduced-dimension vector for each term and each document, and a vector of the

singular values. For TREC, we computed a separate SVD for each of the 9 subcollection. The

number of dimensions, k, ranged from 235-310.

2.1.3 Adding new documents and terms

As noted above, the initial indexing and SVD were typically performed on a random sample of

documents from each subcollection. The documents not included in the sample were "folded in"

to the database. These documents were located at the weighted vector sum of their constituent

terms. That is, the vector for a new document was computed using the term vectors for all terms

in the document. These term vectors were combined using the appropriate term weights, and the

singular values to differentially weight each dimension. (Details are given in Deerwester et al.,

1990, p. 399.) For documents that are actually present in the term-document matrix, the derived

vector corresponds exactly to the document vector given by the SVD. New terms can be added

in an analogous fashion. The vector for new terms is computed using the document vectors of

all documents in which the term appears. For the TREC experiments, only new documents, not

terms, were added. The sizes of the complete databases (including all documents which were

added) are summarized in Table 1.

When adding documents and terms in this manner, we assume that the derived "semantic space"

is fixed and that new items can be fit into it. In general, this is not the same space that one would

obtain if a new SVD were calculated using both the original and new documents. In previous

experiments, we found that sampling and scaling 50% of the documents, and "folding in" the

remaining documents resulted in performance that was indistinguishable from that observed

when all documents were scaled.

2.2 Timing data

For the TREC experiments, all the pre-processing and retrieval was done on a Sparc2 with 384

meg of RAM. The SVD analyses were run on a Dec5000 with approximately 380 meg of RAM.
Table 2 provides a summary of times (in minutes) to process documents and create the necessary

data structures. It is important to note that these costs are incurred only once at the beginning.

Subsequent query processing does not require any new SVD calculations or database updates.

140

2.2.7 Pre-processing and indexing

This includes the time for sampling documents (if necessary), processing the raw ascii text,

creating the raw term-document matrix, calculating the log*entropy term weights (which

requires two-passes), and transforming the matrix entries using a log*entropy weights. A
combination of C-code, awk, and shell-scripts were used. The time required for this depends on

the amount of raw text, the number of terms, and the number of documents.

2.22 SVD

The SVD program computes the best "ik -dimensional" approximation to the transformed term-

document matrix. We used a sparse, iterative Single-Vector Lanczos SVD code (Berry, 1992).

The code is written in ANSI Fortran-77 using double precision arithmetic, and is available from

Netlib. The number of singular values (dimensions) calculated for the TREC subcollections

ranged from 235 to 310. As it turned out, we used only 235 or 250 dimensions for retrieval, so

fewer dimensions could have been computed. Thus some of the reported SVD times are higher

than necessary - in particular, the SVD times for API, ZIFFl, and FRl would be approximately

20% lower if only 250 dimensions had been computed.

2.23 Adding new documents

The time required to add new documents includes the time to pre-process and index the text of

the new documents as well as the time to compute the new document vectors.

2.2.4 110 translation

Because several existing tools were patched together for the TREC experiments, there were

some additional I/O translation involved. This will be removed soon.

collection index SVD
adding

new docs I/O TOTAL (mins)

DOEl 49 1219 591 194 2053

WSJl 241 1474 404 174 2293

API 271 1644 455 214 2584

ZIFFl 241 1359 352 156 2108

FRl 241 939 0 133 1313

WSJ2 427 1382 461 220 2490

AP2 338 1210 273 218 2039

ZIFF2 260 1452 0 208 1920

FR2 187 486 0 105 778

Table 2. Summary of LSI/SVD times (in minutes)

141

2.3 Retrieval

2.3.1 Query processing

Queries were automatically processed in the same way as documents. For queries derived from

the topic statement, we began with the full text of each topic (all topic fields), and stripped out

the SGML field identifiers. For feedback queries, we used the full text of relevant documents.

We did not use: stemming, phrases, syntactic or semantic parsing, word sense disambiguation,

heuristic association, spelling checking or correction, proper noun identification, complex

tokenizers, a controlled vocabulary, a thesaurus, or any manual indexing. Note also that we did

not use any Boolean connectors or proximity operators in query formulation. The implicit

connectives, as in ordinary vector methods, fall somewhere between ORs and ANDs, but with an

additional kind of "fuzziness" introduced by the dimension-reduced association matrix

representation of terms and documents.

2.3.2 Adhoc queries:

The topic statements were automatically processed as described above to generate a list of query

terms and their frequencies. This histogram of query terms was used to form a "query vector".

A query vector was the weighted vector sum of its constituent term vectors. A separate query

vector was created for matching against each of 9 databases (DOEl, WSJl, API, FRl, ZIFFl,

WSJ2, AP2, FR2, ZIFF2). For each subcollection, all query terms occurring in that database and

their term weights were used. For example, a DOEl query vector was created using the term

weights and term vectors from the DOEl database, and it was compared against the 226k

documents in DOEl. This procedure was repeated for the remaining 8 collections, resulting in a

total of 746k similarities between the adhoc queries and the 746k documents in the full TREC
collection. (Note that we always started with the same query terms. However, these terms

usually had somewhat different weights in the different collections, and some terms were not

present in some subcollections.) We used 235 dimensions and a cosine similarity measure for all

collections.

We submitted results from two sets of adhoc queries. The two sets of adhoc results differed only

in how the information from the 9 subcollections was combined to arrive at a single ranking. In

one case, we combined the information from the 9 databases by simply taking the raw cosines

from the different collections and ranking them from largest to smallest. We call these the

adhoc_topic cosine results. In another case, we normalized the cosines within each

subcollection before combining. That is, within each subcollection, we transformed the cosines

to z-scores so that they had a mean of 0 and a standard deviation of 1. We then combined across

collections using these normalized z-scores rather than the raw cosines, again ranking from

largest to smallest. We call these the adhoc_topic normalized_cosine results. This method of

normalizing scores offers somewhat more flexibility in combining information from many
subcollections. It means, for example, that different numbers of dimensions or similarity

measures could be used in the different subcollections, but combined on the basis of a

comparable score. In the TREC experiments, all comparisons used the same number of

dimensions, so this normalization will equate for real differences in the data rather than

statistical artifacts of the analysis.

142

2.3J Routing queries:

For the routing queries, we created a filter or profile for each of the 50 training topics. We
submitted results from two sets of routing queries. In one case, the filter was based on just the

topic statements - i.e., we treated the routing queries as if they were adhoc queries. The filter

was located at the vector sum of the terms in the topic. We call these the routing_topic cosine

results. In the other case, we used feedback about relevant documents from the training set. The
filter in this case was derived by taking the vector sum of all relevant documents. We call these

the routing_reldocs cosine results. This was an atypical variant of relevance feedback in that

we replaced (rather than combined) the original topic with relevant documents. These two

extremes provide baselines against which to compare methods for combining information from

the original query and feedback about relevant documents.

In both cases, the filter was a single vector. New documents were matched against the filter

vector and ranked in decreasing order of similarity. We have previously conducted experiments

which suggest that performance can be improved if the filter is represented as several separate

vectors. We did not use this method for the TREC results we submitted, but would like to do so

in subsequent experiments. (See also Kane-Esrig et al., 1991 or Foltz and Dumais, 1992, for a

discussion of multi-point interest profiles in LSI.)

For each topic, a separate filter vector was created in 4 training databases (WSJl, API, FRl,

ZIFFl). Thus each of the 50 filters was represented in 4 different databases. New documents

(those from WSJ2, AP2, FR2, ZIFF2) were automatically pre-processed and indexed as

described above. New documents were "folded in" to the comparable training database and

compared to the filter vector in that database. For example, a new document from WSJ2 was

added to the WSJl database and compared to the 50 filters in that database. In is important to

note that only term vectors and term weights from the training subcollections were used in

indexing and comparing these new documents to the routing filters.

We used 250 dimensions and a cosine similarity measure for all routing comparisons. Results

from the different training subcollections were combined using raw cosine values.

2.3.4 Matching/retrieval times

Both queries (or filters) and documents were represented as reduced-dimension vectors. The

cosine between each query and every document was computed, and documents were ranked in

decreasing order of similarity to the query. The cosines were computer using 235 dimensions

for the adhoc queries and 250 dimensions for the routing queries. Although there are many

fewer dimensions than in standard vector retrieval, the entries are almost all non-zero so inverted

indices are not useful. This means that each query must be compared to every document.

For 250-dimensional vectors, about 50,000 cosines can be computed per minute on a Sparc2.

This time includes both comparison time and ranking time, and assumes that all document

vectors are pre-loaded into memory. For the adhoc queries, the time to compare a query to the

742,986 documents was about 12 minutes if all comparisons were sequential. It is

straightforward to split this matching across several machines or to use parallel hardware.

Preliminary experiments using a 16,000 PE MasPar showed that 50,000 cosines could be

143

computed and sorted in 1 second. For the routing queries, the time to compare a new document

to the filters (50 filters in each of 4 databases) was about .2 sec on a Sparc2 even when the term

and filter vectors were read from disk.

3. Improving performance

3.1 Time

The LSI/SVD system was built as a research prototype to investigate many different information

retrieval and interface issues. Retrieval efficiency was not a central concern because we first

wanted to assess whether the method worked before worrying about efficiency, and because the

initial applications of LSI involved much smaller databases of a few thousand documents.

Almost no effort went into re-designing the tools to work efficiently for the large TREC
databases. There are some obvious ways to decrease indexing, SVD, and retrieval time, and we
discuss some of them below.

3.1.1 Pre-processing, SVD, and database creation

About 10% of the time is spent in unnecessary I/O translation (e.g., transposing large matrices),

and this will be eliminated soon.

About 60% - 70% of the time is spent in the SVD. SVD algorithms get faster all the time. The

sparse, iterative algorithm we now use is about 100 times faster than the method we used

initially. There are the usual speed-memory tradeoffs in the SVD algorithms, so time can

probably be decreased some by using a different algorithm and more memory. Parallel

algorithms will help a little, but probably only by a factor of 2. Finally, all calculations are now
done in double precision, so both time and memory could be decreased by using single

precision. PreUminary experiments with smaller IR test collections suggest that this decrease in

precision will not lead to numerical problems for the SVD algorithm.

It is important to note that the pre-processing and SVD analyses are one-time-only costs for

relatively stable domains. We have also found that at least as many new items can be added to an

existing SVD database without redoing the SVD scaling or seriously diminishing retrieval

effectiveness.

3.1.2 Query construction and retrieval

Some calculations (e.g., scalings of various sorts) were done on the fly but could easily be

precomputed. In addition, all calculations were done in floating point, and could be speeded up

using integer arithmetic. By dropping all very low vector values, sparse vectors could be

constructed to take advantage of efficient methods currently used by vector methods.

Query vectors were compared to every document. Document clustering could be used to reduce

the number of comparisons. Query matching can also be improved tremendously by simply

using more than one machine or parallel hardware. Parallel query matching produces much
larger gains than any of the modifications discussed above. Using a 16,0(X) PE MasPar, with no

144

attempt to optimize the data storage or sorting, we decreased the time required to match a 250-

dimensional query vector against all document vectors and sort by a factor of 60 to 100.

3.2 Accuracy

This section on accuracy is divided into two main parts - one examining the results of the two

Adhoc and two Routing runs we submitted, and the other looking in detail at some failures of the

LSI system.

Compared to other systems, LSI performance was average on the adhoc topics and somewhat
below average on the routing topics (tho see the section on misses for a discussion of sizable

improvements). Because there were so many differences between systems (tokenization, query

construction, representation, matching, amount of human effort, etc.) it is difficult to isolate

performance differences to specific, theoretically interesting components. For this reason, we
focus on our own experimental results and failure analyses as a first step in understanding and

improving performance.

3.2.1 LSI experiments

3.2.1.1 Adhoc - normalization experiment. We submitted results from two sets of adhoc

queries. The two sets of adhoc query results differed only in how the similarities (cosines) from

the 9 subcollections were combined to arrive at a single ranking. In one case, adhoc_topic

cosine, we simply used the raw cosines from the different collections. In the other case,

adhoc_topic normalized_cosine, we normalized the cosines within each subcollection before

combining.

The differences in accuracy between these two methods were not very large. The raw cosine

method of combining was about 15% better overall that the normalized cosine method (2786 vs.

2469 relevant articles, and .1274 vs. .1100 11-pt precision). In general, some form of

normalization is needed to correct for measurement artifacts (e.g., lower mean cosine in higher

dimensions) when combining scores from many different subcollections. Since we used the

same number of dimensions for comparisons in each subcollection this correction was

unnecessary in the present experiments. Normalization appeared to have some undesirable

consequences for a few topics. Because normalization subtracts the mean cosine and divides by

the variance, the same raw cosine will have a higher normalized score if it comes from a

subcollection with a low mean cosine and low variance - but these are precisely the

subcollections that we probably want to avoid!

3.2.1.2 Routing - feedback experiment. For the routing queries, we created two filters or

queries for each of the 50 training topics. In one case, routing_topic cosine, the routing query

was based on just terms in the topic statements, as if it had been an adhoc query. In the other

case, routing_reldocs cosine, we used feedback about relevant documents from the training set

and located the filter at the vector sum of the relevant documents. Our intent is to use these two

runs as baselines against which alternative methods for combining the original query and

relevant documents can be compared.

145

Somewhat surprisingly, the query using just the topic terms was about 25% more accurate than

the feedback query (2234 vs. 1837 relevant articles; .1235 vs. .0972 11-pt precision). We
suspect that part of the problem was attributable to the small number and inaccuracy of

relevance judgements in the initial training set. This had substantial impact on performance for

some topics because our feedback queries were based only on the relevant articles (and ignored

the original topic description). For Topic 050, for example, there was only one relevant articles,

and it did not appear to us to be relevant to the topic - the Topic was about "potential military

interest in virtual reality", and the so-called relevant article was about "Denmark's crisis on

nuclear power threatening its membership in NATO". Not surprisingly, using only this article as

a query, no relevant articles about virtual reality were returned. Now that we have a larger

number of hopefully more accurate relevance judgements, we will repeat this basic comparison.

We will then use these two baseline runs to explore: a) combining the relevant documents and

the original topic; b) selecting only some relevant documents and/or discriminating terms; and c)

representing the query vector as several points of interest rather than a single average.

3.2.2 Failure analyses

In order to better understand retrieval performance we examined two kinds of retrieval failures:

false alarms, and misses. False alarms are documents that LSI ranks highly that are judged to be

irrelevant. Misses are relevant documents that are not in the top 200 returned by LSI. The

observations presented below are based on preliminary analyses of some topics on which LSI

performed poorly. Although we suggest methods for improving performance, most have not

been tested systematically on the entire TREC collection, although we plan to do so.

3.2.2.1 False Alarms. The most common reason for false alarms (accounting for

approximately 50% of those we examined) was lack of specificity. These highly ranked but

irrelevant articles were generally about the topic of interest but did not meet some of the

restrictions described in the topic. Many topics required this kind of detailed processing or fact-

finding that the LSI system was not designed to address. Precision of LSI matching can be

increased by many of the standard techniques - proper noun identification, use of syntactic or

statistically-derived phrases, or a two-pass approach involving a standard initial global matching

followed by a more detailed analysis of the top few thousand documents. Salton and Buckley

(SMART'S global and local matching), Evans (CLARIT's evoke and discriminate strategy),

Nelson (ConQuest's global match followed by the use of locality of information), and Jakobs,

Krupka and Rau (GE's pre-filter followed by a variety of more stringent tests) all used two-pass

approaches to good advantage in the TREC tests. We intend to try some of these methods for

TREC-2, and will focus on general-purpose, completely automatic methods that do not have to

be modified for each new domain or query restriction.

Another common cause of false alarms appears to be the result of inappropriate query pre-

processing. The use of negation is the best example of this problem. About 20% of the TREC
topics contained explicit negations. LSI included negated words in the query along with all the

other words. Topic 094, about computer-aided crime, also stated that articles that simply

mentioned the spread of a computer virus or worm were NOT relevant. The first 20 documents

that LSI returned were all about computer viruses! Another example of inappropriate query

146

processing involved the use of logical connectives. LSI does not handle Boolean combinations

of words, and sometimes returned articles covering only a subset of ANDed topics.

Finally, it is not at all clear why about 20% of the false alarms were returned by LSI. Since LSI

uses a statistically-derived "semantic" space and not surface- level word overlap for matching

queries to documents, it is sometimes difficult to understand why a particular document was

returned. One advantage of the LSI method is that documents can match queries even when they

have no words in common; but this can also produce some spurious hits. Topic 066, about

natural language processing technology, returned several articles about chip processing

technologies and high technology products in general. Another reason for false alarms could be

inappropriate word sense disambiguation. LSI queries were located at the weighted vector sum
of the words, so words were "disambiguated" to some extent by the other query words.

Similarly, the initial SVD analysis used the context of other words in articles to determine the

location for each word in the LSI space. However, since each word has only one location, it

sometimes appears as if it is "in the middle of nowhere". A related possibility concerns long

articles. Lengthy articles which talk about many distinct subtopics were averaged into a single

document vector, and this can sometimes produce spurious matches. Breaking larger documents

into smaller subsections and matching on these might help.

3.2.2.2 Misses. For this analysis we examined a random subset of relevant articles that were

not in the top 200 returned by LSI. Many of the relevant articles were fairly highly ranked by

LSI, but there were also some notable failures that would be seen only by the most persistent

readers. So far, we have not systematically distinguished between misses that "almost made it"

and those that were much further down the list.

About 40% of the misses we examined, represent articles that were primarily about a different

topic than the query, but contained a small section that was relevant to the query. Because

documents are located at the average of their terms in LSI space, they will generally be near the

dominant theme, and this is a desirable feature of the LSI representation. Some kind of local

matching should help in identifying less central themes in documents.

Another 40% of the misses appear to be the result of inappropriate selection of subcollections.

Recall that we analyzed 9 subcollections separately and combined the similarities later to arrive

at a single ranked list. The different subcollections sometimes had different densities of

documents on some topics. This is most evident when considering computer-related topics. For

general collections like AP or WSJ, relatively few of the articles were about computers, and we

suspect that few of the 235-250 dimensions in the LSI semantic space were devoted to

distinguishing among such documents. Thus, the similarities of these documents to queries

about computers were relatively high and undifferentiated. For the ZIFF collections, on the

other hand, most of the LSI dimensions were used to represent differences among computer

concepts. Similarities of the top few hundred articles to computer queries were lower on

average, but much finer distinctions among subtopics were possible. One consequence of this

was that, when combining across collections, few articles from the ZIFF subcollections were

included for queries about computer-related topics! Different term weights in the different

subcollections also contributed to this problem.

147

Inappropriate subcollection selection accounts for many of LSI's failures on computer-related

topics. Consider, for example, topic 037 about IBM's SAA standards. LSI performs very poorly

compared to other systems on this topic, returning the fewest relevant articles (19) and having

the lowest 11-pt precision (.0088). Summing over all systems for this topic, 68% of the total

number of returned articles (554/812) and 99% of the relevant articles (444/449) were from

ZIFF2. For LSI, however, only 17 of the top200 articles (8%) were from ZIFF2; all 17 of these

(articles were relevant. When a comparable proportion of LSI documents were selected from

ZIFF2, the number relevant increased to 175 and the 11-pt precision increased to .3532. This

performance places LSI slightly above the median for topic 037. We performed the same

analysis for all topics in which more than 33% of the total returned articles were from ZIFF.

: There were 26 such topics (19 Adhoc Topics from 026-050, and 7 Routing Topics). For these

topics, the mean percent of ZIFF articles chosen by all systems was 59%, compared with 9% for

LSI. When comparable proportions of ZIFF articles were selected for LSI, the average number

of relevant documents increased from 26 to 58, and the 1 1-pt precision increased from .0554 to

.1111. A total of 700 new relevant documents were found for the 19 Adhoc Topics, and 125

new relevant documents were found for the 7 Routing Topics. Performance improvements were

observed for 23 of the 26 topics - two of those in which there were no improvements were about

AT&T products where poor pre-processing omitted AT&T from the LSI query (see below).

While these results are encouraging, the problem of how to select appropriate subcollections is

not solved. For the routing topics, we could use training data to set some apriori mixture of

articles from various subcollections. This strategy is not, however, generally applicable for

adhoc queries. We will examine some more appropriate way of combining across subcollections

to take distributional effects like this into account. Alternatively, we could use randomly

selected documents (rather than topically organized ones) to create the subcollections. Finally,

we could use a single large combined scaling in which there would be no need to combine across

subcollections.

Finally, some misses were attributable to poor text (and query) pre-processing and tokenization.

Since we do not keep single letters or use a database of company and location names, several

important acronyms like U.S. and AT&T disappeared completely from both articles and queries!

Not surprisingly, this resulted in many missed documents. We noticed that many of the top

performing automatic systems used SMART'S pre-processing, and we hope to do so as well for

TREC-2. This will allow us to better understand the usefulness of LSI per se without many of

the additional confounds introduced with different indexing.

3.3 Open experimental issues

The results of the failure analyses suggest several directions to pursue for TREC-2, including:

improving pre-processing and tokenization; exploring some precision-enhancing methods; and

developing methods for more effectively combining across subcollections. We also hope to

explore three additional.

148

3.3.1 Separate vs. combined scaling

We used 9 separate subscalings for the TREC experiments. Our decision to use the 9

subcollections was largely a pragmatic one initially. Would like to create a single large scaling

and compare the results with those obtained using the subcollections.

3.3.2 Centroid query vs. many separate points of interest

A single vector was used to represent each query. In some cases the vector was the average of

terms in the topic statement, and in other cases the vector was the average of previously

identified relevant documents. A single query vector can be inappropriate if interests are

multifacted and these facets are not near each other in the LSI space. In the case of the routing

queries, for example, we could match new documents against each of the previously identified

relevant documents separately rather than against their average. We have developed techniques

that allow us to match using a controllable compromise between averaged and separate vectors

(Kane-Esrig et al., 1991). We did not use this method for TREC, but would like to do so for

TREC-2.

3.3.3 Interactive interfaces

All LSI evaluations were conducted using a non-interactive system in essentially batch mode. It

is well known that one can have the same underlying retrieval and matching engine, but achieve

very different retrieval success using different interfaces. We would like to examine the

performance of real users with interactive interfaces. A number of interface features could be

used to help users make faster (and perhaps more accurate) relevance judgements, or to help

them explicitly reformulate queries. (See Dumais and Schmitt, 1991, for some preliminary

results on query reformulation and relevance feedback.) Another interesting possibility involves

retuming something richer than a rank-ordered list of documents to users. For example, a

clustering and graphical display of the top-k documents might be quite useful. We have done

some preliminary experiments using clustered return sets, and would like to extend them to the

TREC-2 collection. The general idea is to provide people with useful interactive tools that let

them make good use of their knowledge and skills, rather than attempting to build all the smarts

into the database representation or matching components.

4. Onward to TREC-2

We were quite pleased that we were able to use many of the existing LSI/SVD tools on the

TREC collection. The most important finding in this regard was that the large, sparse SVD
problems could be computed without numerical or convergence problems. The computations

were not fast, but a day of CPU on existing workstations (for each subcollection) is certainly

feasible, especially given that these calculations are only done once at the beginning to create the

database. We have already computed some larger SVDs (100k x 200k) and would like to take

advantage of this for TREC-2.

In terms of accuracy, LSI performance was reasonable. There are some obvious ways to improve

149

the initial pre-processing and indexing and we will do so. We would like to use indexing

methods that are as similar as possible to other automatic vector methods, so that we can

examine the contribution of LSI per se. We also now have many of the basic tools in place and

should be able to conduct more experiments comparing various indexing and query matching

ideas using the same underlying LSI engine.

LSI was designed as a method to increase recall, especially for the short queries that users

typical generate. For the TREC application we would like to explore some precision enhancing

tools as well. Some of these will probably consist of more refined matching algorithms, but we
also hope to move in the direction of interactive interfaces. We see this as an effective way of

combining human and machine intelligence.

5. References

[11 Berry, M. W. Large scale singular value computations. International Journal of

Supercomputer Applications, 1992, 6(1), 13-49.

[2] Cullum, J.K. and Willoughby, R.A. Lanczos algorithms for large symmetric eigenvalue

computations - Vol 1 Theory, (Chapter 5: Real rectangular matrices). Brikhauser,

Boston, 1985.

[3] Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas, G. W. and Harshman, R. A.

Indexing by latent semantic analysis. Journal of the Society for Information Science,

1990,41(6), 391-407.

[4] Dumais, S. T. Improving the retrieval of information from external sources. Behavior

Research Methods, Instruments and Computers, 1991, 23(2), 229-236.

[51 Dumais, S. T. and Schmitt, D. G. Iterative searching in an online database. In

Proceedings ofHuman Factors Society 35th Annual Meeting, 1991, 398-402.

[6] Foltz, P. W. and Dumais, S. T. Personalized information delivery: An analysis of

information filtering methods. Communications of the ACM, Dec. 1992, 35(12), 51-60.

[7] Fumas, G. W., Deerwester, S., Dumais, S. T., Landauer, T. K., Harshman, R. A.,

Streeter, L. A., and Lochbaum, K. E. Information retrieval using a singular value

decomposition model of latent semantic structure. In Proceedings of SIGIR, 1988, 465-

480.

[8] Kane-Esrig, Y., Streeter, L., Dumais, S. T., Keese, W. and Casella, G. The relevance

density method for multi-topic queries in information retrieval. In Proceedings of the

23rd Symposium on the Interface, E. Keramidas (Ed.), 1991, 407-410.

[91 Salton, G. and McGill, M.J. Introduction to Modern Information Retrieval. McGraw-
Hill, 1983.

150

Appendix

Latent Semantic Indexing (LSI) uses singular-value decomposition (SVD), a technique closely

related to eigenvector decomposition and factor analysis (Cullum and Willoughby, 1985). We
take a large term-document matrix and decompose it into a set of k, typically 100 to 300,

orthogonal factors from which the original matrix can be approximated by linear combination.

More formally, any rectangular matrix, X, for example a txd matrix of terms and documents, can

be decomposed into the product of three other matrices:

X = Tq-SqDq',
•x" fxr r-xr rxd

such that Tq and Do have orthonormal columns, 5o is diagonal, and r is the rank of X. This is so-

called singular value decomposition of X

.

If only the k largest singular values of 5o are kept along with their corresponding columns in the

Tq and Do matrices, and the rest deleted (yielding matrices S , T and D), the resulting matrix, X, is

the unique matrix of rank k that is closest in the least squares sense to X

:

X = X = r- SD'.
txd txd txkkxkkxd

The idea is that the X matrix, by containing only the first k independent linear components of X

,

captures the major associational structure in the matrix and throws out noise. It is this reduced

model, usually with k = 100, that we use to approximate the term to document association data in

X. Since the number of dimensions in the reduced model (k) is much smaller than the number of

unique terms (0, minor differences in terminology are ignored. In this reduced model, the

closeness of documents is determined by the overall pattern of term usage, so documents can be

near each other regardless of the precise words that are used to describe them, and their

description depends on a kind of consensus of their term meanings, thus dampening the effects

of polysemy. In particular, this means that documents which share no words with a user's query

may still be near it if that is consistent with the major patterns of word usage. We use the term

"semantic" indexing to describe our method because the reduced SVD representation captures

the major associative reladonships between terms and documents.

One can also interpret the analysis performed by SVD geometrically. The result of the SVD is a

k -dimensional vector representing the location of each term and document in the k -dimensional

representation. The location of term vectors reflects the correlations in their usage across

documents. In this space the cosine or dot product between vectors corresponds to their

estimated similarity. Since both term and document vectors are represented in the same space,

similarities between any combination of terms and documents can be easily obtained. Retrieval

proceeds by using the terms in a query to identify a point in the space, and all documents are

then ranked by their similarity to the query. We make no attempt to interpret the underlying

dimensions or factors, nor to rotate them to some intuitively meaningful orientation. The

analysis does not require us to be able to describe the factors verbally but merely to be able to

represent terms, documents and queries in a way that escapes the unreliability, ambiguity and

redundancy of individual terms as descriptors.

151

Choosing the appropriate number of dimensions for the LSI representation is an open research

question. Ideally, we want a value of k that is large enough to fit all the real structure in the data,

but small enough so that we do not also fit the sampling error or unimportant details. If too

many dimensions are used, the method begins to approximate standard vector methods and loses

its power to represent the similarity between words. If too few dimensions are used, there is not

enough discrimination among similar words and documents. We typically find that performance

improves as k increases for a while, and then decreases (Dumais, 1991). That LSI typically

works well with a relatively small (compared to the number of unique terms) number of

dimensions shows that these dimensions are, in fact, capturing a major portion of the meaningful

structure.

152

Retrieval Experiments with a Large Collection using PIRCS

K.L. Kwok, L. Papadopoulos and Kathy Y.Y. Kwan

email :kklqc(S)cunyvm.bitnet

Computer Science Department, Queens College, CUNY
Flushing, NY 11367

ABSTRACT

Our strategy to Information Retrieval and to the TREC experiments is based on techniques that have

previously been demonstrated to work for small to medium size collections: 1) use of document

components for retrieval and term weighting; 2) two-word phrases to achieve better precision and recall;

3) combination of retrieval methods, and 4) network implementation with learning capability to support

feedback and query expansion. Evaluation shows that we return the best results for Category B in both

ad hoc and routing retrievals, and our approach is comparable to the best methods used in Category A
experiments. It appears techniques that work for small collections such as combining soft-boolean

retrieval with probabilistic model, user relevance feedback, and feedback with query expansion also work

for this large collection.

1. Introduction

Over the past years, we have built an experimental system for automated information retrieval (IR) called

PIRCS, acronym for Probabilistic Indexing and Retrieval - Components - System. It provides storage and

retrieval capability based on collection statistics using content terms as index terms for document

representation. Its design is based on a network, and has flexibility in mind more than efficiency or

performance, so that future and unforseen approaches to IR may be supported. As it turns out, when the

TREC experiments were announced, we found that our system fits nicely with the requirements. Certain

changes (mostly because of large file sizes) and a number of peripheral programs are needed, but the basic

design remains intact. Because available RAM and disk space are limited, we can only handle Category

B Wall Street Journal files (WSJ 500 MByte raw data); however, we forsee no problem running the

system for Category A files (2 GByte raw data) if we have the appropriate hardware. In what follows we
shall describe our strategies for IR and TREC in Section 2, system description in Section 3 and the

Appendix, results and discussions in Section 4, and conclusions in Section 5.

2. Strategies for IR and TREC Experiments

Over the past twenty five or so years, a number of techniques have been known to work in IR for small

to medium collections. These include: manually created thesauri and phrases to enhance recall and

precision; term weighting that can account for importance of content and discrimination; user relevance

feedback and feedback with query expansion; combining multiple retrieval methods, and using multiple

document and query representations. Many other methods exist and have been experimented with, (such

as clustering, natural language processing, various artificial intelligence techniques, etc.) but their

effectiveness in general are still in question. Our strategy to IR and to the TREC experiments is based

on the following that reflect on the previous workable techniques: 1) use of document components; 2)

two-word phrases; 3) combination of retrieval methods, and 4) network implementation with learning.

We shall discuss how and why each of these methodologies may help contribute to the effectiveness of

our results.

153

2.1. Use of Document Components and Query Formulation

We view each source document not as monolithic, but as constituted of components. Document

components are utilized in two ways: for constructing a more restricted context for term weighting,

retrieval and feedback, and for defining initial weights to the content terms for representation. These are

discussed in the following sub-sections.

2.1.1 Sub-Documents as Document Components

A survey of the WSJ files shows that document lengths vary substantially, from a couple of lines to

hundreds, with several thousand words. Moreover, many documents carry unrelated news stories,

separated by three dashes
'—

' on an independent line. We believe that treating such documents as

monolithic objects will have adverse impact on: a) precision, because they might lead to high probability

that homographs would occur in a different sense and context from what one intends; b) term weighting,

because unreliable estimates of the necessary probabilities for the index terms might result, and affecting

retrieval; c) feedback and query expansion, because documents that are long and have mixed unrelated

topics will make these processes imprecise; and d) system output effectiveness, because after retrieval,

users still have to manipulate a large document to locate where the relevant passage is.

There may be some risks in using document breakups. Boolean AND's would not be satisfied if the two

factors for an AND happen to be split up in separate sub-documents. Coordinate matching would get less

term counting if one does not somehow combine the counts of each sub-documents for ranking purposes,

assumming all match terms are topically relevant. List queries with term weights may or may not suffer:

even though a sub-document would have less term match than a full document, shorter document lengths

may lead to higher term weights depending on the weighting method used. Since all documents are

treated in the same fashion, the sub-document weights will be affected to the same degree. If we allow

for a substantial chunk of text, such as a few hundred words, a writer generally would have a chance to

express what s/he intends fairly completely, either in this or in another sub-document. Since we are

neither using Boolean retrieval nor coordinate matching, we believe using sub-documents with more

uniform lengths outweigh the risks. Our experimental results seem to support our conjecture.

Therefore the first processing we did was to break each document into component units of approximately

equal lengths. We creat a new component, (which we call a sub-document, with two more digits attached

at the end of the original document ID, assumming a breakup of at most 100 sub-documents per

document) whenever we recognize the story separation mark '—
', or when we have a run of texts

exceeding N words and ending on a paragraph boundary. A sub-document should not be too short lest

it carries little content. Moreover, since each sub-document is an independent entry consuming space and

time resources, we do not want to exceed a certain limit, which we arbitrary set as double the original

number. After some experimentation, we found that a break at N=360 raw words satisfies our design goal.

The original number of documents in WSJ is (first half plus second half) 98733+74486 = 173219; after

breaking into components, we end up with 192935+156880 = 349815 sub-documents. This forms our

database for subsequent processing. We would prefer to break documents based on more sophisticated

strategies such as context, but we have not done so.

2.1.2 Query Formulation

In PIRCS without soft-boolean, queries and documents are items of the same category, each containing

a list of content terms. For a query, we obtain the list from the <title>, <desc>, <narr> and <con>

paragraphs of the topic in a fully automatic fashion. These paragraphs also go through a filtering program

that removes standard introductory phrases such as: 'To be relevant, a document (will I must I ..) (discuss

154

I cite I report I ..)'. etc. If a capital 'NOT' is found in a sentence, the rest of the sentence including the

'NOT' is also removed, because it is difficult for list queries to handle negation. We understand that this

does not completely solve the negation problem because some 'not's are not capitalized, and many
negations are expressed by other means. The remaining words from the four paragraphs are then merged

and processed against the collection dictionary to form a query representation. No breakup into sub-

documents is done for topics.

We also manually form a boolean query for each topic for soft-boolean retrieval, thus providing both an

alternative representation for queries as well as a different retrieval method. We essentially scan the same

paragraphs as before. Sometimes we also consult the document frequency of a term to screen out high

frequency terms, to arrive at a smaller expression. We might occasionally add to the boolean expression

some new terms that are not in the original paragraphs. However, the way our evaluation program works

is that these new terms are ignored because they are not part of the automatically formed query.

2.13 Initial Term Weighting based on Single Terms as Conceptual Components

After the previous processes, we apply the use of document components a second time. We regard each

content tenm within a sub-document or query as an independent concept. This allows us to use the

principle of document self-recovery to give initial weights to each term of an item, or to use the simpler

Inverse Collection Tenm Frequency (ICTF) weighting [1,2]. Because the former requires experimentally

adjusting some paramenters and we did not have sufficient relevance judgment information, we decided

to use the simplier ICTF for our initial weighting of a term in an item (query or document) as follows:

Wa, = ln [p/(l-p)] +ln [(l-s^)/sj. (1)

Wji, is the weight given to term k in item i; p = 1/50, a constant chosen based on previous experience; and

Sik = (Fk*dii;)/(Nw-L-,) if item i is a document, and s^ = F^/N^ if item i is a query. Here F^ = di^. is the

collection frequency of term k, is the term frequency of term k in item i, Lj = Xk di^ is the length of

item i, and N^ = Z; L; = Ft is the total number of terms in the database. The fraction (1-8;^)^^^ inside

the logarithm In in Eqn.l is approximately N^j,, if N^ » F^ » d^j,, hence the nomenclature ICTF.

2.2. Two-word Phrases and Other Vocabulary Control

Docimient frequencies (of terms) of a few hundred are small compared with a few hundred thousand

documents. Yet a few hundred high-ranked documents that are irrelevant would stretch a user's patience

to great limits. We therefore believe that in large collection environments, precision enhancement tools

are very important. Syntactic phrases, or statistically generated phrases within tight context would

probably be useful as indexing terms. However, we do not have these tools yet for the experiments.

A look at the collection also shows that WSJ jargon contains many two-word phrases that are a

combination of very common words. Examples are 'big three', 'buy down', 'drug money', 'go public',

'take over', etc. By themselves, many of the single tenms would be screened out because they are either

on the stopword list, or have high document frequencies. In combination however these two-word phrases

are precise in meaning and would probably impact favorably on both precision and recall. We therefore

spent a fair amount of manual effort to record these content-specific combinations in a two-word phrase

file. During processing, whenever such two-word phrases occur in adjacent positions in a sentence, a new

index term is created consisting of the combination, in addition to the single terms. Such two-word

combinations are also common in other fields. Our file has 396 such pairs, containing also some from

the computing field, and not necessarily just consisting of function or common words. We would like to

have a larger set, but we did not have the resource nor the domain expertise. Another vocabulary control

155

tool is a stopword list with 595 entries, some of which are morphological variants of the same word. In

addition, we use Porter's stemming [3] algorithm for suffix stripping.

There are many other vocabulary control tools such as spell-checker, proper noun and date identification,

synonym list, thesaurus, semantic nets, etc. These could be added in the future.

2.3. Multiple Retrieval Methods

It is well known that different retrieval algorithms on the same collection would lead to different retrieval

results and that combining them could substantially enhance effectiveness [2,4,5,6]. Our network approach

to IR (Section 4) can support multiple retrieval methods fairly easily. Three methods of retrieval are used

in PIRCS for these experiments, and they agree nicely with the different types of TREC query

requirements:

(a) Query-Focused Retrieval

This method involves the question: given a query q^, should document d; be considered as relevant to it?

This point of view is appropriate for ad hoc environment where we have a set of static documents being

processed against a query stream. Each query serves as a focus to which documents are ranked. An
approximate probabilistic measure Wj of this answer for dj is evaluated as follows, and is used as the RSV
(retrieval status value) to rank the whole collection with respect to q^:

Wjk is the weight of term k in query q^ as given in Eqn. 1 , and du/L; measures the proportion that term k

is used in dj. The sum is over all terms k that overlap between dj and q^.

(b) Document-Focused Retrieval

This method involves the reverse question: given document d;, should query q^ be considered as relevant

to it? This point of view is appropriate for routing where we have a set of static queries being processed

against a document stream. Each document serves as a focus to which queries can be ranked. However,

evaluation of retrieval is usually done with respect to a specific query q^, and so an approximate

probabilistic measure V; of this answer is given to each document d; and used as RSV as follows:

(c) Soft-Boolean Retrieval (Query-Focused)

This method depends on a boolean query being available for each topic, which we creat manually for this

experiment. The idea is that topics that are represented as a list of terms (as in (a) and (b) above) have

no structure. Boolean queries have structure but its logic is 'hard' and we lose the ability to attach term

importance or rank the collection. The soft-boolean approach allows one to retain the query structure yet

provides weights to both the terms and boolean operators, so that we can soften the logic and provide

ranking capability. We have followed the extended Boolean approach of the vector model [7] for this

implementation, but with simplified weights. For example, a query q^ may be of the form:

• = Ik W3k*dik/Li. (2)

Vi = I, w,,*d,,/L,. (3)

q, = Bb Ap X,

with

X
(4)

156

B,C,D are index terms with weights b,c,d respectively, a,v are the boolean AND and OR each given a

fixed weight p=2, and all clause weights are set to 1. If document dj also has these three terms with

weights 0 <= b',c',d'<= 1, then the similarity between dj and q, could be evaluated recursively as:

x'= Sim(di,X) = sqit[((cc')^ +(dd')^)/(c^+d^)],

Sim(di,q.) = 1 - sqrt[(b^(l-b')^+l*(l-x')^)/(b^ +1)] (5)

All document and query term weights are taken from the edges of the net, so that the system is fully

automatic once the boolean expression has been defined manually.

Our retrieval results for automatic query construction is then based on combining methods (a) and (b),

thus: W,""° = (W, + Vi)/2. Those for manual query construction is based on W,""*" = r*W/""' +

s*Sim(di,q,). Both make use of combination of retrieval methods. The constants r, s are chosen as 0.65

and 0.35 respectively. The objective is that adding soft-boolean structure may enhance the retrieval results

of the automatic method for the same queries. Our soft-boolean evaluation algorithm currently only

accounts for terms that also appear in the network for this query; additional terms that may have been

inserted manually are ignored.

2.4. Network Implementation with Learning

2.4.1 Network for Routing, Ad Hoc and Feedback without/with Query Expansion

The use of a network can provide a unified view of many retrieval algorithms and is a flexible tool for

implementation. In PIRCS, retiieval meUiods (a) and (b) of the previous section are implemented as

feedforward and feedbackwards processing in a Query-Term-Document (Q-T-D) network as presented in

[8,9]. A binary tree representing a boolean expression can also be hung onto the net for method (c).

These are shown in Figs. 1 ,2.

QTD DTQ

The edges of the net are initialized as follows: w^ (t^ acting on qj as in Eqn.l and w^j (dj acting on tj

= dik/L, as in Eqn.2, and similarly for w^^ and w^. Activation on dpi gated through w^i deposits on

157

activation equal to the proportion that the term is used in dj. These activated terms spread to a target

gated through which has the odds that given t^ that q, is relevant. The sum of activations received

at q^ implements the query-focused retrieval method (a) of Section 2.3, while the reverse QTD direction

processing implements document-focused retrieval method (b). Moreover, edge weights from the net can

also be used to initialize the tree leaf nodes for soft-boolean evaluation in the DTQ direction, Fig.2.

Relevance feedback, which has been demonstrated in numerous experiments as the most effective tool for

improving retrieval, is modeled as training in our net. For example, the edge weight w^ (wj adapts

according to a learning algorithm based on the average activation x^ induced in term k by the relevant set,

the current p factor (see Eqn.l) on the edge, and a learning rate tIq (r\^), tiius:

DTQ: Aw^ = Apy[p/"'(l-p„°"')], Ap^ = t1q(x,-p^°"*)

QTD: AWik = APi^lp/^d-p/")], APik = ilD(Xk-p/")

see [8,9] for details and Fig.3 illustrating the DTQ process. Learning in both directions are allowed: DTQ
query-focused training is done when we know the set of documents relevant to a query and corresponds

to probabilistic retrieval [10,11], and QTD document-focused ti^aining is done when we know the set of

queries relevant to a document and corresponds to probabilistic indexing [12]. Query-focused training let

query representations improve with experience and prepare them to match new similar documents better,

and normally associated with relevance feedback [13]. Document-focused training let document

representations improve with experience and prepare them to match new similar queries better, and

normally associated with dynamic document space modification [13]. They provide a precision enhancing

tool because term weights are rendered 'sharper* towards relevant items. Our network implementation

differs from the traditional approaches in that two sets of weights are associated with an item, e.g. v/-^^. and

Wy. Wy= dik/Lj are the observed properties and not modified, while Wi,^ embeds inference and adapts as

more evidence is gathered. Moreover, effects of training from both query-focused and document-focused

processes are combined into one RSV, Wj*"'", tiiat has been shown to lead to cooperatively belter ranking

results. These ideas were first introduced in a series of papers [14,15,1,2]. With learning capability, the

net becomes a two layer direct-connect artificial neural network in each direction.

DTQ DTQ

An additional feature allowed in our feedback learning is query expansion. The idea is that terms that are

158

highly activated in the set of relevant documents should be highly related to the concepts and topics

wanted for that query. These terms can therefore be added to the original query as illustrated in Fig.4,

and could be expected to enhance both recall and precision, since these terms come from relevant samples.

Experiments with small collections have shown that this is indeed the case [16,8,9]. This tool resembles

that of an automatic thesaurus, associated terms being derived from user experience. From the network

viewpoint, query expansion corresponds to growing new edges from a query to highly activated terms

during relevance feedback, and weights are assigned according to the following learning algorithm:

DTQ: w„ = a*x,; p«, = P*t1q*Xic' w„ = In [p^/Cl-pJ] + In [N^J

which we introduced in [8,9]. In the TREC WSJ collection, we realize that documents can contain totally

different stories and they can also be exceptionally lengthy, while both feedback and feedback with query

expansion requires restricted context to work. This is a major reason why we decide to break documents

into sub-documents, as discussed in Section 2.

2.4.2 Implementation of Retrieval in a Network

To satisfy TREC requirements, we need to simulate different querying circumstances as given in the

following table:

Query 1 Query Type
Construction

Method 1 ad hoc 1 routing

automatic 1 PIRCSl 1 PIRCSl
manual 1 PIRCS2 1 PIRCS2
feedback 1 PIRCS3 1 n.a.

fdbk + qry expansion 1 PIRCS4 1 n.a.

We have submitted results to all six types of experiments. The last Sections describe the rationale and

how RSV's are calculated in our approach. The following discusses the processing of routing, ad hoc and

feedback queries:

(a) Routing Queries: a special requirement in TREC is to do routing retrieval. This simulates the

classification of new test documents with respect to a set of static queries that have been trained with past

documents. The (past) training documents are the first half of the TREC collection c(A). We process

c(A) and capture the necessary statistics of term usage. The queries from the first set of topics are then

processed against c(A), and a network created using ICTF weighting. Query-focused DTQ learning is now
applied with the supplied relevant (but not irrelevant) documents, and the resultant edge weights on the

Q-T side of the net saved. Note that each relevant document is split into multiple sub-documents for this

leaming, and because we do not have relevance judgment at the sub-document level, we choose not to

expand the queries. These become our routing queries q(A). The test documents from collection B, c(B),

are then processed against c(A) as if they were queries, so that only collection A statistics are used for

the ICTF term weighting. The q(A) are now loaded with c(B) and the dictionary from c(A) to form a new

network, from which routing retrieval results based on Wj""'" and W;""^ (Section 2.3) are obtained, for fully

automatic and manual routing queries.

(b) Ad Hoc Queries: collection B is now re-processed as additions to collection A, forming a total

collection c(AB) and accumulating their total term usage statistics as well as a new dictionary. The ad

hoc topics are processed to form ad hoc queries q(B) against the whole c(AB). We did not perform

159

document-focused QTD learning of c(AB) based on known relevant queries in q(A). The ad hoc queries

q(B), the total dictionary, and the total collection c(AB) then form a network using ICTF weighting, from

which both automatic and manual ad hoc query retrieval results (Wj""'" and Wi""^) are obtained.

(c) Feedback Queries: To simulate user relevance feedback, we employ the ten highest ranked sub-

documents of the automatic ad hoc results in (b), and determine their relevance to their respective topics

manually. Two queries out of 25 have no relevant documents within the first ten, and they are removed

leaving 23. We have performed two types of feedback training: without and witli query expansion. In

both cases, query-focused and document-focused training were done. Our method of adding terms to

existing queries is based on [8,9] during DTQ direction training. The n^ documents relevant to a query

q^ are instantiated to 1 and their activation to each term node, after gated through the weights w^^—d^/L^,

is averaged. The highest 20 activated terms with document frequency less than 2000 are then used to

expand q^. However, not all the terms are different from the existing terms of q^, so that on average, each

query got expanded with about 12.3 terms (284 new terms for 23 queries). After this, training proceeds

in the QTD direction. We have not used expansion for documents because usually there is only one

relevant query per document. We have done only one round of feedback iteration.

3. System Description

Our system was designed over a number of years for IR experimentation. Its primary goal is to be

flexible so that unforseen developments or algorithms can be supported for testing without much change

in the basic implementation. Many intermediate files are produced for more convenient hooks to and

from the system. These will be trimmed in later verisons. It was originally programmed in Pascal, but

has been translated and is now running in a UNIX and C environment on a Sun SparcStation 2GS. The

system has 48MB RAM, a TREC-dedicated 1.7GB disk drive, plus about 0.5GB on another drive that we
can occasionally use. Our system characteristics and timings are described in the Appendix of this paper.

4. Results and Discussions

Our runs are named PIRCS'n', where n=l denotes fully automatic retrieval, n=2 denotes manual, i.e.

automatic combined with soft-boolean where boolean queries are manually created, n=3 denotes feedback

using automatic retrieval, and n=4 is the same as n=3 but with query expansion. Although we use sub-

documents for indexing and retrieval, our final 200-document output list has only unique document ID's;

all sub-documents of the same document ID are suppressed except for the one with the highest rank.

Precision-recall and other measures are gathered in the Appendix of this volume. Our runs are based on

twenty five queries for ad hoc and another twenty five for routing retrievals, which we recognize as too

few and may not reflect sufficiently the variety of query types in real-life. On the other hand, the

evaluation curves and average values serve as a lower bound to the power of our system because relevance

judgments are rendered only to the combined first 100 documents of all systems. This means documents

ranked 101 to 200 in our retrieval are automatically considered irrelevant if they are not in the judged

relevant set. Also, Category B texts come from a single source, viz. WSJ of multiple years, not like

Category A with texts from multiple sources. With these reservations we like to make the following

observations:

(a) Inter-site comparison shows that the PIRCS results are the best among Category B participants for

both ad hoc and routing retrievals, and comparable to the best methods in Category A based on one

evaluation with cmlB.

160

(b) Some of the topics have very specific requirements for documents to be relevant. For example: Topic

#1 needs antitrust cases as a result of complaint, not routine review; #2 needs acquisitions between a U.S.

company and another non-U.S. company; #53 needs leveraged buyout cases valued at or above $200

million; while #60 requires a policy change from merit-pay vs. seniority or vice versa. Data like 'above

$200 million' or other numerics are removed either because they are on our stopword list or because of

high frequency. Other topics involve very general concepts that require the system to understand their

specific inferences. Examples are: course of action to decrease the U.S. deficit (#7); the body of water

being polluted (#12); specific commercial applications of superconductors (#21); hypocritical and

conflicting policies of the U.S. government (#74). The possible 'course of action', 'commercial

applications', 'conflicting policies', etc. are essentially open-ended. Yet others need synonym lists or other

aids to interpret proper terms in order not to miss documents. Examples are: Japanese, U.S. or foreign

companies (#2,3), European Community or countries (#5, #69), third world or developing countries (#4,6),

or economic indicators (#8). When would a proper noun, if identifiable, represents a company? And if

it is, is it a foreign company? Also, a few of the topics like #3, 15, 53, 56, 66 have short descriptions

with many general words, so that after stemming and stop-word processing, these queries end up with few

terms. PIRCS does not have tools for these problems. Its precision values at 50% recall and at 1 1-pt Avg
for ad hoc and routing retrievals are tabulated below:

Ad Hoc I Routing

PIRCS 1 PIRCS2 I PIRCS 1 PIRCS2

50% Recall I .276 .278 I .340 .342

1 1-pt Avg I .311 .322 I .343 .369

The ad hoc precision value of about 0.28 at 50% recall says that, averaged over 25 queries, if one wants

to retrieve half of all relevant documents, one would have to read about eleven documents to get three

relevant, and about nine documents to get three relevants for routing. Routing queries receive some help

from the few relevants provided for training purposes, just as in experiments first reported in [8] where

we simulate users posing queries equiped with some known relevants. The 11-pt Avg precison values

sample eleven recall points and simulate a uniform distribution of users with different recall needs, and

may reflect actual usage better. Effectiveness improves to between three in ten and three in nine retrieved

documents being relevant for ad hoc, and slightly better for routing. These results naturally leave much
room for improvement; but considering that PIRCS 1 is fully automatic and relies only on statistical

methods, results seem reasonable for this large WSJ collection. See also analysis in (c) and (f).

(c) Another evaluation of the system is to look at the precision-recall values at different cut-off points

of 5, 15, 30, 100 and 200 retrieved documents. This may give users a better 'feel' than the hypothefical

11-pt Avg. A quesfion is what should these values be compared to? The theoretical limit is of course

1.0, for perfect recall and precision. However, this would punish the system unfairly. For example, at

15 retrieved documents, many queries have x relevants with x > 15. Hence the best recall at this cut-off

should be 15/x. This we call the best operational recall in contrast to the theoretical best of 1.0.

Similarly, if x <15, these queries would have the best operafional precision at this cut-off of x/15, instead

of 1.0. We have listed below for PIRCS 1 the precision-recall values at various cut-offs and also the best

operational values for comparison:

Cut-off: 5 15 30 100 200

Ad Hoc
Best Oper. Recall: .146 .298 .456 .828 .916

Recall: .066 .130 .204 .419 .586

45% 44% 45% 51% 64%

161

Best Oper. Precision:

Precision:

.984

.624

63%

.944

.523

55%

.899

.480

53%

.689

.364

53%

.469

.281

60%
Routing

Best Oper. Recall:

Recall:

.083

.048

58%
1.00

.608

61%

.241

.145

60%
.995

.597

60%

.387

.228

59%
.945

.521

55%

.777

.443

57%
.781

.398

51%

.915

.576

63%
.551

.294

53%

Best Oper. Precision:

Precision:

For ad hoc retrieval at 30 retrieved document cut-off for example, it means that on average we get about

20% (.204) of all the relevant documents, but nearly one out of two (.480) retrieved documents are

relevant. However, because of the number of known relevant documents for each of the queries, the best

operational recall and precision at this cut-off is only .456 and .899. Our .204 recall and .480 precision

achieve 45% and 53% of these best values. On the whole we have achieved between 44-64% of the best

operational recall and 53-63% of the best operational precision values for ad hoc, and respectively between

57-63% and 51-61% for routing. These are quite respectable figures.

(d) Based on our strategy and experimental data, techniques that work for small collections also work for

this large WSJ collection as well. For example, using the 11-pt Avg precision values, PIRCS2 performs

better than PIRCSl in both ad hoc (0.322 vs 0.311, +3.6%) and routing (0.369 vs 0.343,' +7.6%)

environments. Thus, adding soft-boolean as a third retrieval method helps, but requires forming the

boolean queries manually. An illustration of the better results of PIRCS2 over PIRCSl can be seen by

comparing between pairs of methods using the 1 1-pt Avg measure, where 'equal' means values within 5%:

Both PIRCS3 and PIRCS4 make use of feedback based on evaluating the first ten retrieved sub-documents

of PIRCSl, but PIRCS4 employs query expansion as well. These methods are automatic. Comparing

PIRCS4 with PIRCS3 in ad hoc feedback retrieval shows that query expansion is better (0.305 vs 0.282,

+8.1%) than no expansion. Note that in this feedback, only 23 queries are used because topic #66 and

#73 have no relevants in the first ten retrieved. P1RCS3 and PIRCS4 have also been re-evaluated using

the frozen rank method, viz. the ten documents used for feedback are given the same rank as in PIRCSl,

while the other retrieved documents follow. In addition, the two queries without relevants in first ten are

put back carrying their PIRCSl results. This way, PIRCSl,3f,4f can be directly comparable. It can be

seen that feedback by itself worics (0.3407 vs 0.3107, +9.7%) and query expansion improves further

(0.3634 vs 0.3107, +17%). There are about 5.5 (126/23) relevant documents in the first ten retrieved.

(e) To illustrate the power of feedback, we have tabulated the number of queries that perform better,

about equal, or worse between pairs of methods using the 11-pt Avg measure:

@ = better:

@ = equal:

@ = worse:

AD HOC
PIRCSl @ PIRCS2

5

9

11

ROUTING
PIRCSl @ PIRCS2

3

6

16

PIRCSl @ PIRCS3f PIRCS3 @ PIRCS4f

@ = better:

@ = equal:

@ = worse:

1

5

19

5

3

17

162

PIRCS3f overwhelmingly improves over PIRCSl 19 to 1 with 5 ties. This is because PIRCSl starts with

low performance. PIRCS4f improves over PIRCS3f, but not with such wide margin, because PIRCS3f

already achieves better results. It can been seen that feedback with or without query expansion within this

collection is definitely worthwhile. Looking at the recall and precision at various retrieved document cut-

off in the Appendix of this volume, it can be seen that PIRCS4f performs better than PIRCSBf, except at

the high precision cut-ff of 5. This reflects that query expansion is more of a recall enhancement tool.

This can also be seen from the number of relevants retrieved at the 200 document cut-off: 1403, 1526 and

1582 respectively for PIRCSl, 3f,4f. At high precision region, the added terms could lead to more noise.

The effect however is small, and may be related to the number and type of added terms. Thus, query

expansion behaves like an automatic thesaurus, terms added being indirectly based on user relevance.

(f) It is tempting to compare the results of PIRCS in this large WSJ collection with those in small

collections. We have listed the ad hoc 10-pt Avg precision of the four standard collections popular with

IR research [2] below, with that of WSJ PIRCSl results:

MED CRAN CACM WSJ ISI

(30q,1.03Kd) (225q,1.40Kd) (52q,3.2Kd) (25q,350Kd) (76q,1.46Kd)

0.472 0.374 0.297 0.263 0.174

MED (medicine) and CRAN (aerodynamics) use more specific, scientific vocabulary and can be expected

to have better performance. CACM (computer science) terminology generally is less 'scientific' and can

often have general vocabulary; its performance and that of WSJ are similar. ISI (information science) has

very broad nonspecific queries, and the vocabulary is quite general and has the worst retrieval results.

We were afraid WSJ would have low performance like ISI. Listed below is a comparison between the

CACM [2] and WSJ PIRCSl P-R curves:

Recall: 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

WSJ: .78 .66 .55 .41 .31 .28 .19 .11 .07 .04 .01

CACM: .62 .50 .41 .36 .30 .24 .18 .15 .11 .09

A characteristic of WSJ is that precision falls off to much smaller values at high recall region, compared

with CACM or other small collections. One should expect a large collection to have more noise, and it

is interesting that this noise impacts predominantly the low signal region. For example, WSJ has

generality ratio of only 0.00077 versus 0.00478 for CACM, i.e. more than six times as much noise in

WSJ. Another reason for this phenomenon, perhaps to a lesser degree, is that of the incomplete evaluation

procedure for documents ranked between 101 to 200 as discussed earlier. At low recall region, however,

precision of WSJ is comparable or better than the small collections. Why is that? Our interpretation is

that first, queries are much richer and better formed in WSJ compared to those in CACM. Second, when

a collection is large, there is a very good chance that a number of relevant documents exist using closely

the same terms as the queries describing their content, especially if the queries are well-worded. These

documents will rank high, and hence precision at low recall does not suffer in spite of adverse generality

ratio. At high recall region, relevant documents do not express their content in similar terms to the queries

and have few term matches, and interference from poor generality ratio noise magnifies. Techniques to

improve precision at high recall would therefore be very important if one needs exhaustive search. It has

been quite popular to criticise IR research in that small collection results do not reflect those of large

collections. Our hope is that as experience is gained with more of these large scale collections, we might

be able to predict their behavior based on small collection results. Small collection experiments can be

performed in a matter of hours, while large collections take days using current technology. It should be

noted that all databases considered here are from one homogeneous field of knowledge. Many commercial

database providers produce CDROMs that are homogeneous and of about the same size as WSJ, and these

163

results may be relevant.

5. Conclusion

Our system called PIRCS, acronym for Probabilistic Indexing and Retrieval -Component- System, has

been shown to be able to support storage and retrieval for a large collection of 0.5 GB. If appropriate

hardware is available, and with some software modification, it should support 2GB size collections. Our

strategy to IR and TREC consists of: 1) use of document components to provide a more restricted context

for retrieval and feedback, and to provide an initial ICTF term weighting; 2) two-word phrases, especially

consisting of stopwords and high frequency stems as a precision and recall enhancing tool; 3) combination

of retrieval methods, including soft-boolean, to capture cooperative effects between retrieval methods, and

4) networlc implementation with learning to implement feedback and feedback with query expansion,

resulting in a two-layer direct-connect artificial neural network with adaptive architecture. Our approach

leads to results that are better than expected.

6. Acknowledgment

We would like to thank our department Chairman and the Dean of Mathematics and Natural Science for

their support throughout the project. This work is partially supported by a grant from DARPA and a PSC-

CUNY grant #6-63288.

References

1. Kwok, K.L (1989). A neural network for probabilistic information retrieval. Proc. ACM SIGIR 12th

Ann. Intl. Conf. on R&D in IR. N.J. Belkin & C.J. van Rijsbergen, eds. ACM: NY, pp.2 1-30.

2. Kwok, K.L (1990). Experiments with a component theory of probabilistic information retrieval based

on single terms as document components. ACM TOIS 8:363-386.

3. Porter, M.F (1980). An algorithm fro suffix stripping. Program 14:130-137.

4. Smith, M (1990). Aspects of the p-norm model of information retrieval: Syntactic query generation,

efficiency, and theoretical properties. TR 90-1128, Ph.D. Thesis, Cornell University.

5. Turtle, H.R & Croft, W.B (1991). Evaluation of an inference network-based retrieval model. ACM
TOIS 9:187-222.

6. Fox, E.A; Nunn, G.L & Lee, W.C (1988). Coefficients for combining concept classes in a collection.

Proc. ACM SIGIR 1 1th Ann. Intl. Conf on R&D in IR. Y. Chiaramella, ed. PUG: Grenoble,

pp.29 1-307.

7. Salton, G; Fox, E.A & Wu, H (1983). Extended boolean information retrieval. Comm. ACM 26:1022-

1036.

8. Kwok, K.L (1991). Query modification and expansion in a network with adaptive architecture. Proc.

ACM SIGIR 14th Ann. Inti. Conf on R&D in IR. A. Bookstein, Y. Chiaramella, G. Salton &
V.V. Raghavan eds. ACM: NY, pp. 192-201.

9. Kwok, K.L (199x). A network approach to probabilistic information retrieval, submitted for

publication.

10. Robertson, S.E & Sparck Jones, K (1976). Relevance weighting of search terms. J. ASIS. 27:129-146.

11. van Rijsbergen, C.J (1979). Information Retrieval, 2nd Ed. Butterworths: London.

12. Maron M.E & Kuhns, L.J (1960). On relevance, probabilistic indexing and information retrieval. J.

ACM 7:216-244.

13. Salton, G (1989). Automatic Text Processing. Addison-Wesley: NY.

164

14. Kwok, K.L (1986). An interpretation of index term weighting schemes based on document

components. Proc. 1986 ACM Conf. on R&D in IR. F. Rabitti, ed. ACM: NY, pp.275-283.

15. Kwok, K.L & Kuan, W (1988). Experiments with document components for indexing and retrieval.

Inform. Proc. Mgmnt. 24:405-417.

16. Salton, G & Buckley, C (1990). Improving retrieval performance by relevance feedback. J. of ASIS.

41:288-297.

Appendix

System Summary and Timing

I. Construction of indices, knowledge bases, and other data suiictures

(please describe all data structures that your system needs for searching)

A. Which of the following were used to build your data structures

1. Stopword List YES
a. how many words in list? 595

2. is a controlled vocabulary used? NO
3. stemming

a. standard stemming algorithms YES
which ones? PORTER'S ALGORITHM

b. morphological analysis NO
4. term weighting YES
5. phrase discovery NO
a. what kind of phrase?

b. using statistical methods

c. using syntactic methods

6. syntactic parsing NO
7. word sense disambiguation NO
8. heuristic associations NO

a. short definition of these associations

9. spelling checking (with manual correction) NO
10. spelling correction NO
11. proper noun identification algorithm NO
12. tokenizer (recognizes dates, phone numbers, common patterns)

NO
a. which patterns are tokenized?

13. are the manually-indexed terms used? NO
14. other techniques used to build data structures (brief description)

A TABLE OF 3% MANUALLY CREATED 2-WORD PHRASES. WHEN THESE ARE IDENTIFIED
Dsf ADJACENT POSITIONS IN DOCUMENTS OR QUERIES THEY ARE USED AS ADDITIONAL
INDEX TERMS.

B. Statistics on data su-uctures built from TREC text

(please fill out each applicable section)

1. inverted index

a. total amount of storage (megabytes) 372

b. total computer time to build (approximate number of hours)

95+11+2=108 for 500MB.

CLOCK TIME
c. Is the process completely automatic? YES, IF SUFHCIENT DISK.

NOT IN THIS EXPERIMENT.

165

if not, approximately how many hours of manual labor?

0.5

d. are term positions within documents stored?

NO, BUT SENTENCE YES.

f. single terms only? YES, EXCEPT FOR I.A.14.

2. clusters NO
a. total amount of storage (megabytes)

b. total computer time to build (approximate number of hours)

c. brief description of clustering method

d. is the process completely automatic?

if not, approximately how many hours of manual labor?

3. ngrams, suffix arrays, signature files NO
a. total amount of storage (megabytes)

b. total computer time to build (approximate number of hours)

c. brief description of methods used

d. is the process completely automatic?

if not, approximately how many hours of manual labor?

4. knowledge bases NO
a. total amount of storage (megabytes)

b. total number of concepts represented

c. type of representation (frames, semantic nets, rules, etc.)

d. total computer time to build (approximate number of hours)

e. total manual time to build (approximate number of hours)

f. use of manual labor

(1) mostly manually built using special interface

(2) mostly machine built with manual correction

(3) initial core manually built to "bootstrap" for

completely machine-built completion

(4) other (describe)

g. auxiliary files needed for machine use

(1) machine-readable dictionary (which one?)

(2) other (identify)

5. special routing structures (what?) SEE I.B.6

NETWORK NODE, EDGE RLES.
ROUTING USING NETWORK NODE AND EDGE FILES IS STRAIGHTFORWARD.

a. total amount of storage (megabytes)

NODE HLE: 4x7.5 EDGE RLE: 4x4

NETWORK SEGMENTED INTO 4, BECAUSE OF INSUFHCIENT RAM.

b. total computer time to build (approximate number of hours)

40+5+1+4x0.2=46.8, STARTING FROM TEXT FILE.

c. is the process completely automatic? YES, IF SUFFICIENT
RAM AND DISK SPACE.

d. brief description of methods used

1. PROCESS (OLD) COLLECTION A.

2. PROCESS QUERIES AGAINST COLLECTION A.

3. PROCESS NEW COLLECTION B AS IF THEY WERE QUERIES TO MAKE USE OF COLLECTION
A STATISTICS.

4. COMBINE QUERIES, (OLD) DICTIONARY AND COLLECTION B INTO NETWORK FOR
RETRIEVAL.

6. other data strucUires built from TREC text (what?)

166

1. SUBDOCUMENT FILE 2. CODED HLE
3. DOCID CHECKING FILE 4. TERMID CHECKING FILE

5. DOCNUM RLE 6. TERMNUM (DICTIONARY) FILE

7. DIRECT HLE 8. INDEX TO DIRECT FILE

9. NODE RLE 10. EDGE FILE

a. total amount of storage (megabytes)

1. 481 2. 324

3. 7 4. 4

5. 11 6. 6

7. 372 8. 19

9. 4x14 10. 4x9

SYSTEM WAS DEVELOPED FOR EXPERIMENTAL RESEARCH, WITH FLEXIBILITY TO
GENERATE OTHER DATA. SOME OF THE RLES ARE NOT NECESSARY FOR RETRIEVAL.

b. total computer time to build (approximate number of hours)

1. 1.5 2,3.4,5.6. 95

7,8. 11

9,10. 4x0.25=1

c. is the process completely automatic? YES IF SUFFICIENT RAM
AND DISK SPACE.
FOR THIS EXPT, NO.

if not, approximately how many hours of manual labor?

2

d. brief description of methods used

RAW TEXT --> SUBDOCUMENT FILE

SUBDOCUMENT --> CODED RLE, DOCID FILE, TERMID FILE

DOCNUM FE.E, TERMNUM (DICTIONARY) FILE.

ZIPF-LAW PROGRAM TRUNCATES DICTIONARY VIA USER ASSIGNED LIMITS.

CODED, TERMNUM --> DIRECT FILE with INDEX
DIRECT --> INVERTED FILE

DIRECT, INVERTED --> NODE, EDGE RLES.

C. Data built from sources other than the input text

1. internally-built auxiliary files

a. domain independent or domain specific (if two separate

files, please fill out one set of questions for each file)

DOMAIN SPECIFIC

b. type of file (thesaurus, knowledge base, lexicon, etc.)

WORD PAIR

c. total amount of storage (megabytes)

0.005

d. total number of concepts represented

396

e. type of representation (frames, semantic nets, rules, etc.)

f. total computer time to build (approximate number of hours)

(1) if already built, how much time to modify for TREC?
0

(THIS IS A FILE CREATED VIA EDITOR).

g. total manual time to build (approximate number of hours)

16

(1) if already built, how much time to modify for TREC?

167

h. use of manual labor

(1) mostly manually built using special interface

(2) mostly machine built with manual correction

(3) initial core manually built to "bootstrap" for

completely machine-built completion

(4) other (describe)

SEARCH FOR WSJ TERMINOLOGY
LIBRARY AND FROM TOPICS.

2. externally-built auxiliary file NONE
a. type of file (Treebank, WordNet, etc.)

b. total amount of storage (megabytes)

c. total number of concepts represented

d. type of representation (frames, semantic nets, rules, etc.)

II. Query construction

(please fill out a section for each query construction method used)

A. Automatically built queries (ad-hoc)

1. topic fields used

<TITLE>, <DESC>, <NARR>, <CON>
2. total computer time to build query (cpu seconds)

5 (AVERAGE FOR EACH QUERY).
3. which of the following were used?

a. term weighting with weights based on terms in topics

YES + OTHER WEIGHTS
b. phrase extraction from topics NO
c. syntactic parsing of topics NO
d. word sense disambiguation NO
e. proper noun identification algorithm NO
f. tokenizer (recognizes dates, phone numbers, common patterns)

(1) which patterns are tokenized? NO
g. heuristic associations to add terms NO
h. expansion of queries using previously-constructed data structure

(from part I) YES
(1) which structure? WORD-PAIR PHRASE FILE

i. automatic addition of Boolean connectors or proximity operators

NO
j. other (describe) NONE

B. Manually constructed queries (ad-hoc)

1. topic fields used

<TITLE>, <DESC>, <NARR>, <CON>
2. average time to build query (minutes)

300 minutes for 25 queries.

3. type of query builder

a. domain expert NO
b. computer system expert YES

4. tools used to build query

a. word frequency list SOMETIMES
b. knowledge base browser (knowledge base described in part I)

(1) which structiu-e from part I NO
c. other lexical tools (identify) NO

5. which of the following were used?

a. term weighting YES
b. Boolean connectors (AND, OR, NOT) YES

168

c. proximity operators

d. addition of terms not included in topic

(1) source of terms

e. other (describe)

C. Feedback (ad-hoc)

1. initial query built by method 1 or method 2? METHOD 1

2. type of person doing feedback

a. domain expert NO
b. system expert YES

3. average time to do complete feedback

a. cpu time (total cpu seconds for all iterations)

12 PER QUERY PER ITERATION - NO EXPANSION.
50 " " " " - WITH EXPANSION.

NO
YES
WORD-PAIR PHRASE FILE.

b. clock time from initial construction of query to completion of

final query (minutes)

60 PER QUERY TO DO RELEVANCE JUDGMENT.

3. average number of iterations 1

a. average number of documents examined per iteration

10

4. minimum number of iterations 1

5. maximum number of iterations 1

6. what determines the end of an iteration? DEADLINE + LACK OF
MANPOWER

6. feedback methods used

a. automatic term reweighting from relevant documents

YES
b. automatic query expansion from relevant documents

(1) all terms in relevant documents added

NO
(2) only top X terms added (what is X)

TOP 20 MOST 'ACTIVATED' TERMS THAT HAVE DOCUMENT FREQUENCY < 2000WERE USED.
BECAUSE MANY WERE ALREADY IN QUERY, ABOUT 12 ON THE AVERAGE WERE NEW AND
ADDED PER QUERY.

(3) user selected terms added NO
c. other automatic methods

brief description

FEEDBACK IS BASED ON SUB-DOCUMENTS.

d. manual methods NO
(1) using individual judgment with no set algorithm

(2) following a given algorithm (brief description)

D. Automatically built queries (routing)

1. topic fields used

<TITLE>, <DESC>, <NARR>, <CON>
2. total computer time to build query (cpu seconds)

5 (AVERAGE FOR EACH QUERY).

3. which of the following were used in building the query?

a. terms selected from

(1) topic YES

(2) all training documents NO
(3) only documents with relevance judgments NO

169

b. term weighting

(1) with weights based on terms in topics YES
(2) with weights based on terms in all training documents

YES
(3) with weights based on terms from documents with relevance judgme

nts YES
c. phrase extraction NO

(1) from topics

(2) from all U-aining documents

(3) from documents with relevance judgments

d. syntactic parsing NO
(1) of topics

(2) of all training documents

(3) of documents with relevance judgments

e. word sense disambiguation NO
(1) using topic

(2) using all training documents

(3) using documents with relevance judgments

f. proper noun identification algorithm NO
(1) from topics

(2) from all training documents

(3) from documents with relevance judgments

g. tokenizer (recognizes dates, phone numbers, common patterns)

NO
(1) which patterns are tokenized?

(2) from topics

(3) from all training documents

(4) from documents with relevance judgments

h. heuristic associations to add terms NO
(1) from topics

(2) from all training documents

(3) from documents with relevance judgments

i. expansion of queries using previously-constructed data structure

(from part I) YES
(1) which structure? WORD-PAIR PHRASE HLE

j. automatic addition of Boolean connectors or proximity operators

NO
(1) using information from the topics

(2) using information from the all training documents

(3) using information from documents with relevance judgments

k. other (brief description) NO
Manually constructed queries (routing)

1. topic fields used

2. average time to build query (minutes)

<TITLE>, <DESC>, <NARR>, <CON>

300 MINUTES FOR 25 QUERIES.

type of query builder

a. domain expert NO
b. system expert YES
data used for building query

a. from training topic YES
b. from all training documents NO
c. from documents with relevance judgments NO
d. from other sources (what?) NO

170

5, tools used to build query

a. word frequency list SOMETIMES
b. knowledge base browser (knowledge base described in part I)

(1) which structure from part I

c. other lexical tools (identify)

d. machine analysis of training documents

(1) describe

5. which of the following were used?

a. term weighting YES
b. Boolean connectors (AND, OR, NOT) YES
c. proximity operators NO
d. addition of terms not included in topic NO

(1) source of terms

e. other (brief description) NO

III. Searching

A. Total computer time to search (cpu seconds)

1. retrieval time (total cpu seconds between when a query enters

the system until a list of document numbers are obtained)

18-30 PER QUERY, NO SOFT-BOOLEAN (COMBINE 2 METHODS).
30-70 " " WITH " " (COMBINE 3 METHODS).

2. ranking time (total cpu seconds to sort document list)

4 - 12 PER QUERY.

B. Which methods best describe your machine searching methods

1. vector space model NO
2. probabilistic model YES
3. cluster searching NO
4. ngram matching NO
5. Boolean matching NO
6. fuzzy logic (include your definition) YES, SOFT-BOOLEAN
7. free text scanning NO
8. neural networks YES
9. conceptual graph matching NO
10. other (describe) NONE

B. What factors are included in your ranking?

1. term frequency YES
2. inverse document frequency NO
3. other term weights (where do they come from?)

INVERSE COLLECTION TERM FREQUENCY
TOTAL WORD OCCURRENCES.

4. semantic closeness (as in semantic net distance) NO
5. position in document NO
6. syntactic clues (state how) NO
7. proximity of terms NO
8. information theoretic weights NO
9. document length YES
10. completeness (what % of the query terms are present) NO
11. ngram frequency NO
12. word specificity (i.e., animal vs. dog vs. poodle) NO
13. word sense frequency NO
14. cluster distance NO
15. other (specify) NONE

171

IV. What machine did you conduct the TREC experiment on? SPARC-2GS
How much RAM did it have? 48 MB
What was the clock rate of the CPU? 40 MHz

V. Some systems are research prototypes and others are commercial.
To help compare these systems:

1. How much "software engineering" went into the development of
your system?

TIME WAS SPENT TO TRUNCATE RECORD SIZES TO SAVE SPACE
AND FIT CERTAIN STRUCTURES IN MEMORY; REPLACE SOME
LINKED LISTS WITH ARRAYS.

2. Given appropriate resources, could your system be made to run
faster? By how much (estimate)?

YES, 50-100%. LOTS OF CODE WAS TRANSLATED
FROM PASCAL TO C & USED AS IS.

3. What features is your system missing that it would benefit by
if it had them?

DEDICATED SPARCSTATION WITH MORE RAM, DISK SPACE.

172

NATURAL LANGUAGE PROCESSING IN LARGE-SCALE TEXT RETRIEVAL TASKS

Tomek Strzalkowski

Courant Institute ofMathematical Sciences

New York University

715 Broadway, rm. 704

New York, NY 10003

tomek(S)cs.nyu.edu

ABSTRACT

We developed a prototype text retrieval system

which uses advanced natural language processing

techniques to enhance the effectiveness of key-word

based document retrieval. The backbone of our sys-

tem is a traditional statistical engine which builds

inverted index files from pre-processed documents,

and then searches and ranks the documents in

response to user queries. Natural language process-

ing is used to (1) preprocess the documents in order

to extract contents-carrying terms, (2) discover inter-

tenn dependencies and build a conceptual hierarchy

specific to the database domain, and (3) process

user's natural language requests into effective search

queries. For the present TREC effort, the total of 500

MBytes of Wall Street Journal articles have been

processed in two batches of 250 MBytes each. Due to

time and space limits, two separate inverted indexes

were produced for each half of the data, with a partial

concept hierarchy built from the first 250 Mbytes

only but used for retrieval on either half. Retrieval

were performed independently on both halfs of the

database and the partial results were merged to pro-

duce the final rankings.

INTRODUCTION

A typical information retrieval (IR) task is to

select documents from a database in response to a

user's query, and rank these documents according to

relevance. This has been usually accomplished using

statistical methods (often coupled with manual

encoding) that (a) select terms (words, phrases, and

other units) from documents that are deemed to best

represent their contents, and (b) create an inverted

index file (or files) that provide and easy access to

documents containing these tenns. A subsequent

search process will attempt to match a preprocessed

user query (or queries) against tenn-based represen-

tations of documents in each case detennining a

degree of relevjmce between the two which depends

upon the number and types of matching tenns.

Although many sophisticated search and matching

methods are avmlable, the crucial problem reinjiins to

be that of iin adequate representation of contents for

both the documents c'lnd the queries.

The simplest word-based representations of

contents are usually inadequate since single words

are rarely specific enough for accurate discrimina-

tion, and their grouping is often accidental. A better

method is to identify groups of words that create

meaningful phrases, especially if these phrjises

denote important concepts in datiibase domain. For

example, joint venture is an important term in Wall

Street Journal (WSJ henceforth) database, while nei-

ther joint nor venture is important by itself. In the

retrieval experiments with the training TREC data-

base, we noticed that both joint and venture were

dropped from the list of terms by the system because

their idf (inverted docun^ent frequency) weights were

too low. In large databjises, such as TIPSTER, the

use of phrasal terms is not just desirable, it becomes

necessary.

The question thus becomes, how to identify the

correct phrases in the text? Both statistical and syn-

tactic methods were used before with only limited

success. Statistical methods based on word co-

occurrences and mutual information ru'e prone to high

error rates, turning out many unwanted associations.

Syntactic methods suffered from low quality of gen-

erated pjirse structures that could be attributed to lim-

ited coverage grainmjirs and the lack of adequate lex-

icons. In fact, the difficulties encountered in applying

computational linguistics technologies to text pro-

cessing have contributed to a wide-spread belief that

automated natural language processing may not be

suitable in IR. These difficulties included

inefficiency, lack of robustness, and prohibitive cost

of manual effort required to build lexicons and

knowledge bases for each new text domain. On the

other hand, while numerous experiments did not

estabUsh the usefulness of linguistic methods in IR,

they cannot be considered conclusive because of their

173

limited scale.
'

The rapid progress in Computational Linguis-

tics over the last few years has changed this equation

in Vt'U'ious ways. First of all, large-scale resources

became available: on-line lexicons, including Oxford

Adviinced Learner's Dictionary (OALD), Longman
Dictionary of Contemporary English (LDOCE),
Webster's Dictionary, Oxford English Dictionary,

Collins Dictionary, and others, as well as large text

corpora, many of which can now be obtained for

reseju-ch purposes. Robust text-oriented software

tools have been built, including part of speech

taggers (stochastic and otherwise), and fast parsers

capable of processing text at speeds of 2600 words

per minute or more (e.g., TTP parser developed by

the author). While many of the fast parsers are not

very accurate (they are usually partial analyzers by

design),^ some, like TTP, perform in fact no worse

than standard full-analysis parsers which are many

times slower and far less robust.
^

An accurate syntactic analysis is m essential

prerequisite for tenn selection, but it is by no means

sufficient. Syntiictic pjtfsing of the database contents

is usually attempted in order to extract linguistically

motivated phrases, which presumably are better indi-

cators of contents than "statistical phrases" where

words are grouped solely on the basis of physical

proximity (e.g., "college junior" is not the same as

"junior college"). However, creation of such com-

pound terms makes term matching process more
complex since in addition to the usual problems of

synonymy and subsumption, one must deal with their

structure (e.g., "college junior" is the same as "junior

in college"). In order to deal with structure, parser's

output needs to be "normalized" or "regularized" so

that complex terms with the same or closely related

meanings would indeed receive matching representa-

tions. This goal has been achieved to a certain extent

in the present work. As it will be discussed in more
detail below, indexing terms were selected from

among head-modifier pairs extracted from predicate-

argument representations of sentences.

' Standard IR benchmark collections are statistically too

small and the experiments can easily produce counterintuitive

results. For example, Cranfield collection is only approx. 180,000

English words, while CACM-3204 collection is approx. 200,000

words.

^ Partial parsing is usually fast enough, but it also generates

noisy data: as many as 50% of all generated phrases could be in-

correct (Lewis and Croft, 1990).

TTP has been shown to produce parse structures which are

no worse in recall, precision and crossing rate than those generated

by full-scale hnguistic parsers when compared to hand-coded

Treebank parse trees.

Introduction of compound terms also compli-

cates the task of discovery of various semantic rela-

tionships among them, including synonymy and sub-

sumption. For exajnple, the tenn natural language

can be considered, in certain domjiins at least, to sub-

sume any term denoting a specific human language,

such as English. Therefore, a query containing the

former may be expected to retrieve documents con-

taining the latter. The same can be said about

language and English, unless language is in fact a

part of compound term programming language in

which case the association language - Fortran is

appropriate. This is a problem because (a) it is a stan-

dard practice to include both simple and compound
terms in document representation, and (b) term asso-

ciations have thus far been computed primarily on

word level (including fixed phrases) and therefore

care must be taken when such associations are used

in term matching. This may prove particularly trou-

blesome for systems that attempt term clustering in

order to create "meta-tenns" to be used in document

representation.

The system presented here computes term

associations from text on word and fixed phrase level

and then uses these associations in query expansion.

A fairly primitive filter is employed to separate

synonymy and subsumption relationships from others

including antonymy and complementation, some of

which are strongly domain-dependent. This process

has led to an increased retrieval precision in experi-

ments with smaller and more cohesive collections

(CACM-3204), but may be less effective with large

databases. We are presently studying more advanced

clustering methods along with the changes in

interpretation of resulting associations, as signalled in

the previous paragraph.

Working with TREC topics has also helped to

identify other, perhaps unanticipated problems, some

of which may render the traditional statistical

approach to information retrieval quite unworkable.

A typical document retrieval query will specify (in

one way or another) a set of concepts that are of

interest to the originator of the query. Thus if the user

is interested in documents that report on anticipated

rail strikes, the following query may be appropriate:

(TREC topic 058) A relevant document will report an

impending rail strike Any other wording can be

used so long as it is going to denote a concept to be

found in a document. The system's task is then to dis-

cover that the same concept is being denoted in both

the query and a document, no matter how different

the surface descriptions happen to be. In other

words, no new information is requested, the query

being entirely self contained and completely

174

specified. An altogether different situation arises

when the query actually requests that certain

underspecified information is found before a docu-

ment could be judged relevant. In TREC topics (e.g.,

058, as in many others) the following request is com-
monplace: to be relevant, the document will identify

the location of the strike or potential strike. What we
ask the system here is to extract the value of certain

variable that satisfies certain conditions, i.e., find X
such that location-of-strike(X). It is impossible to

properly evaluate such query using any kind of con-

stant term based retrieval. What is required, at the

minimum is a general pattern matching capabihty.

and appropriately advanced representation of con-

tents (including more careful NLP processes).

In the remainder of this paper we discuss par-

ticulars of the present system and some of the obser-

vations made while processing TREC data. The
above comments will provide the background for

situating our present effort and state-of-the-art with

respect to where we should be in the future.

OVERALL DESIGN

Our information retrieval system consists of a

traditional statistical backbone (Harman and Candela,

1989) augmented with various natural language pro-

cessing components that assist the system in database

processing (stemming, indexing, word and phrase

clustering, selectional restrictions), and translate a

user's information request into an effective query.

This design is a careful compromise between purely

statistical non-linguistic approaches and those requir-

ing rather accomplished (and expensive) semantic

analysis of data, often referred to as 'conceptual

retrieval'. The conceptual retrieval systems, though

quite effective, are not yet mature enough to be con-

sidered in serious information retrieval applications,

the major problems being their extreme inefficiency

and the need for manual encoding of domain

knowledge (Mauldin. 1991). However, as pointed out

in the previous section, a more careful text process-

ing may be required for certain types of requests.

In our system the database text is first pro-

cessed with a fast syntactic parser. Subsequently cer-

tain types of phrases are extracted from the parse

trees and used as compound indexing terms in addi-

tion to single-word tenns. The extracted phrases are

statistically analyzed as syntactic contexts in order to

discover a variety of similarity links between smaller

subphrases and words occurring in them. A further

filtering process maps these similarity links onto

* This does not mean that the query has to accurately reflect

the user's intentions. We take what we've got and give it our best

semantic relations (genenilization, speci^lJiz^ltion,

synonymy, etc.) Jiiter which they <'ire used to

transform user's request into a seju'ch query.

The user's natunil language request is ;iJso

parsed, and all indexing terms occurring in them ju-e

identified. Certain highly ambiguous, usually single-

word terms may be dropped, provided that they Jilso

occur as elements in some compound terms. For

example, "natural" is deleted from a query jilready

containing "natural language" because "natural"

occurs in many unrelated contexts: "natunil number",

"natural logarithm", "natun'd approach", etc. At the

same time, other terms may be added, namely those

which are finked to some query tenn through admis-

sible similarity relations. For exjunple. "unlawful

activity" is added to a query (TREC topic 055) con-

taining the compound term "illegal activity" via a

synonymy link between "illeg^d" and "unlawful".

After the final query is constructed, the database

search follows, and a ranked list of documents is

returned.

It should be noted that all the processing steps,

those performed by the backbone system, and these

performed by the natural language processing com-

ponents, are fully automated, and no human interven-

tion or manual encoding is required.

FAST PARSING WITH TTP PARSER

TTP (Tagged Text Parser) is based on the

Linguistic String Grammju" developed by Sager

(1981). The parser currently encompasses some 400

grammar productions, but it is by no means complete.

The parser's output is a regularized parse tree

representation of each sentence, that is, a representa-

tion that reflects the sentence's logical predicate-

argument structure. For example, logical subject Jind

logical object are identified in both passive iind active

sentences, and noun phrases are organized Jiround

their head elements. The significance of this

representation will be discussed below. The parser is

equipped with a powerful skip-and-fit recovery

mechanism that allows it to operate effectively in the

face of ill-fonned input or under a severe time pres-

sure. In the runs with approximately 83 million words

of TREC's Wall Street Journal texts,^ the parser's

speed averaged between 0.45 and 0.5 seconds per

sentence, or up to 2600 words per minute, on a 21

MIPS SparcStation ELC.

try.

* Approximately 0.5 (JBytes of text, over 4 million sen-

tences.

175

TTP is a full grainmar parser, and initially, it

attempts to generate a complete analysis for each

sentence. However, unlike an ordinary parser, it has a

built-in timer which regulates the amount of time

allowed for parsing any one sentence. If a parse is not

returned before the allotted time elapses, the parser

enters the skip-and-fit mode in which it will try to

"fit" the parse. While in the skip-and-fit mode, the

pjirser will attempt to forcibly reduce incomplete

constituents, possibly skipping portions of input in

order to restart processing at a next unattempted con-

stituent. In other words, the parser will favor reduc-

tion to backtracking while in the skip-and-fit mode.

The result of this strategy is an approximate parse,

partially fitted using top-down predictions. The frag-

ments skipped in the first pass are not thrown out,

instead they are analyzed by a simple phrasal parser

that looks for noun phrases and relative clauses and

then attaches the recovered material to the main pju^se

structure. As an illustration, consider the following

sentence taken from the CACM-3204 corpus:

The method is illustrated by the automatic con-

struction of both recursive and iterative pro-

grains operating on natural numbers, lists, and

trees, in order to construct a program satisfying

certain specifications a theorem induced by

those specifications is proved, and the desired

program is extracted from the proof.

The italicized fraginent is likely to cause additional

complications in parsing this lengthy string, and the

parser may be better off ignoring this fragment alto-

gether. To do so successfully, the parser must close

the currently open constituent (i.e., reduce a program

satisfying certain specifications to NP), and possibly

a few of its parent constituents, removing

corresponding productions from further considera-

tion, until an appropriate production is reactivated.

In this case, TTP may force the following reductions:

5/ to V NP; SA 5/; S NP V NP SA, until the

production S ^ S and S is reached. Next, the parser

skips input to find and, and resumes normal process-

ing.

As may be expected, the skip-and-fit strategy

will only be effective if the input skipping can be per-

formed with a degree of detenninism. This means
that most of the lexical level ambiguity must be

removed from the input text, prior to parsing. We
achieve this using a stochastic parts of speech tagger

to preprocess the text. Full details of the parser can

be found in (Su-zalkowski, 1992).

PART OF SPEECH TAGGER
One way of dealing with lexical ambiguity is to

use a tagger to preprocess the input marking each

word with a tags that indicates its syntactic

categorization: a part of speech with selected mor-
phological features such as number, tense, mode,

case and degree. The following are tagged sentences

from the CACM-3204 collection:
^

The/dt paper/nn presents/vi>z a/dt proposal/wn

for/in structured/vi?« representation/«« of/in

mu!tiprogramming/vfeg in/in ajdl high/y}' level/«rt

language//!/? ./per

The/dl notation//?/? used/vbn explicitly/rfe

associates/vfcz a/dt data/nns structure//?/?

shared/vfo/? by/in concurrent//)' processes/n/zs

with///? operations//?n5 defined/v^i/? on/in it/pp

/per

The tags are understood as follows: dt - determiner,

nn - singular noun, nns - plural noun, in - preposition,

jj - adjective, vbz - verb in present tense third person

singular, to - particle "to", vbg - present participle,

vbn - past participle, vbd - past tense verb, vb -

infinitive verb, cc - coordinate conjunction.

Tagging of the input text substantially reduces

the search space of a top-down parser since it

resolves most of the lexical level ambiguities. In the

examples above, tagging of presents as "vbz" in the

first sentence cuts off a potentially long and costly

"garden path" with presents as a plural noun followed

by a headless relative clause starting with (that) a

proposal In the second sentence, tagging resolves

ambiguity of used (vbn vs. vbd), and associates (vbz

vs. nns). Perhaps more importantly, elimination of

word-level lexical ambiguity allows the parser to

make projection about the input which is yet to be

parsed, using a simple lookahead; in particular,

phrase boundaries can be determined with a degree

of confidence (Church, 1988). This latter property is

critical for implementing skip-and-fit recovery tech-

nique outiined in the previous section.

Tagging of input also helps to reduce the

number of parse structures that can be assigned to a

sentence, decreases the demand for consulting of the

dictionary, and simplifies dealing with unknown

words. Since every item in the sentence is assigned a

tag, so are the words for which we have no entry in

the lexicon. Many of these words will be tagged as

"np" (proper noun), however, the surrounding tags

may force other selections. In the following exam-

ple, Chinese, which does not appear in the dictionary,

is tagged as "jj":^

this/dt paper//jn dates/vfcz hack/rb the/dl

genesis//?/! of///? binary//)' conception//in circa///?

' Tagged using the 35-tag Penn Treebank Tagset created at

the University of Pennsylvania.

' We use the machine readable version of the Oxford Ad-

vanced Learner's Dictionary (OALD).

176

5000/cd years/nns ago/rb Jcom as/rb

derived/v6n by/in the/dt chinese/y)' mcients/nns

./per

The tagger which we use to process the input

text prior to parsing is based upon a bi -gram model; it

selects most likely tag for a word given co-

occurrence probabilities computed from a relatively

small training set.^ While the peak accuiacy of the

best-tag option of the tagger is predicted to approach

97% (Meteer et al., 1991), we noted that the actual

performance on unprocessed WSJ text was in fact

somewhat worse. The main problem, it appears, were

frequent mistakes in tokenization of input, especially

in recognizing sentence boundaries. For example,

when a sentence ended with a period but wasn't fol-

lowed by at least two blanks or an end-of-Hne, this

and the next sentence would be collapsed together.

On the other hand, intra-sententiaJ periods (like those

following abbreviated words) were occasionjilly

found followed by a new-Une character, and the sen-

tence was split into two. While the parser contains a

provision to deal with the case of collapsed sen-

tences, the tags were likely to be incorrect. The fol-

lowing example is typical; note tagging errors at the

second apostrophe, and plans.

Gorbachev was running into trouble at home, including the

August coup, "which I thought would be the end of it," Mr.

Costa says. Still, plans to send the tank to the U.S. somehow
moved ahead.

Gorbachev//?/; was/vbd running/v/?g into//«

trouble/n« al/in home/nn Jcom inciuding/vfe;?

the/dt August//2/? coup/«Ai Jcom "japos

vj\\\c\\lwdt l/pp thought/vW would/W be/yi>

theM end/rt/1 oi/in it/pp Jcom "Inn Mr/nn Jper

Costa/«/j says/vbz Jper siiWIrb Jcom plans/vfez

to//o send/vi? \heldt tank/n« to/Zo ihsldt \J.S./np

somehow/rfe mo\ed/vbd ahead/r6 Jper

WORD SUFFIX TRIMMER
Word stemming hjis been jin effective way of

improving document recall since it reduces words to

their common morphological root, thus allowing

more successful matches. On the other hand, stem-

ming tends to decrease retrievjil precision, if care is

not taken to prevent situations where otherwise unre-

lated words are reduced to the same stem. In our

' The program, supplied to us by Bolt Beranek and New-

man, operates in two alternative modes, either selecting a smgle

most likely tag for each word (best-tag option, the one we use at

present), or supplying a short ranked list of alternatives (Meteer et

al., 1991).

system we replaced a traditionrd morphologiciil stem-

mer with a con.servative dictionjiry-assisted suffix

trimmer. The suffix trimmer pcrfonns es,scnlially

two tasks: (1) it reduces inflected word forms to their

root forms as specified in the diction<'U7, and (2) it

converts nominjilized verb forms (e.g., "implemcnui-

tion", "storage") to the root forms of corresponding

verbs (i.e., "implement", "store"). This is accom-

plished by removing a stJindard suffix, e.g.,

"stor-i-age", replacing it with a standard root ending

("-t-e"), and checking the newly created word against

the dictionary, i.e., we check whether the new root

("store") is indeed a legal word, and whether the ori-

ginal root ("storage") is defined using the new root

("store") or one of its st^mdiird inflection;!] forms

(e.g., "storing"). For exajnple, the following

definitions are excerpted from the Oxford Advanced

Learner's Dictionary (OALD):

storage n [U] (space used for, money paid for)

the storing of goods ...

diversion n [U] diverting ...

procession n [C] number of persons, vehicles,

etc moving forward and following each other in

an orderly way.

Therefore, we can reduce "diversion" to "divert" by

removing the suffix "+sion" and adding root form

suffix "+t". On the other hiind, "process-i-ion" is not

reduced to "process".

Earlier experiments with CACM-3204 collec-

tion showed an improvement in retrieval precision by

6% to 8% over the base system equipped with a st;in-

dard morphological stemmer (the SMART stemmer).

Due to time Hmitations the.se numbers are not aviiil-

able for TREC database at this time.

HEAD-MODIFIER STRUCTURES

Syntactic phrases extracted from TTP p;u-se

trees are head-modifier pairs. The head in such a p.'iir

is a central element of a phrase (main verb, main

noun, etc.), while the modifier is one of the adjunct

ru"guments of the head. In the TREC experiments

reported here we extracted head-modifier word ;ind

fixed-phrase pairs only. While TREC WSJ database

is large enough to warrant generation of ku'ger com-

pounds, we were in no position to verify their effec-

tiveness in indexing (largely because of the tight

schedule). We discuss some options below.

' Dealing with prefixes is a more complicated matter, since

they may have quite strong effect upon tlie meaning of the result-

ing term, e.g., un- usually introduces explicit negation.

Definition checking is not implemented yet.

177

Let us consider a specific example from WSJ
database:

The former Soviet president has been a local

hero ever since a Russian tank invaded Wiscon-

sin.

The tagged sentence is given below, followed by the

regularized parse structure generated by TTP, given

in Figure 1.

The/dt former/jT/' Soviet/yy president/«/j has/v6z

been/vbn a/dt local//} hero/wi e\er/rb since/in

a/dt Russian//}' tankjnn invaded/vM

Wisconsin/«/j ./per

It should be noted that the parser's output is a

predicate-arguiTient structure centered around main

elements of various phrases. In Figure 1, BE is the

main predicate (modified by HAVE) with 2 argu-

ments (subject, object) and 2 adjuncts (adv, sub_ord).

INVADE is the predicate in the subordinate clause

with 2 arguments (subject, object). The subject of

BE is a noun phrase with PRESIDENT as the head

element, two modifiers (FORMER, SOVIET) and a

determiner (THE). From this structure, we extract

head-modifier pairs that become candidates for com-

pound terms. The following types of pairs are con-

sidered: (1) a head noun and its left adjective or noun

adjunct, (2) a head noun and the head of its right

(assert

llperflHAVEll

||verb(BE|l

Isubject

|np

[n PRESIDENT]

|t_pos THE]

(adj [FORMER]]

[adj (SOVIET] 111

(object

(np

[n HERO]

(t_pos A)

(adj [LOCAL]]]]

(adv EVER]

|sub_ord

(SINCE

((verb [INVADE]]

(subject

(np

[nTANK]

[t_pos A]

[adj [RUSSIAN]]]]

(object

[np

(name [WISCONSIN]]]]]]]]]]

Figure 1. Predicate-argument parse structure.

adjunct, (3) the main verb of a clause and the head of

its object phrase, and (4) the head of the subject

phrase and the main verb. These types of pairs

account for most of the syntactic variants for relating

two words (or simple phrases) into pairs carrying

compatible semantic content. For example, the pair

retrieve+information will be extracted from any of

the following fragments: information retrieval sys-

tem; retrieval of information from databases: and

information that can be retrieved by a user-

controlled interactive search process. In the example

at hand, the following head-modifier pairs are

extracted (pairs containing low-contents elements,

such as BE and FORMER, or names, such as

WISCONSIN, will be later discarded):

[PRESIDENTBE]

[PRESIDENTFORMER]

[PRESIDENT,SOVIET]

[BE.HERO]

[HERO.LOCAL]

[TANK,INVADE]

[TANKJiUSSIAN]

[INVADE.WISCONSIN]

We tnay note that the three-word phrase former

Soviet president has been broken into two pairs

former president and Soviet president, both of which

denote things that are potentially quite different from

what the original phrase refers to, and this fact may
have potentially negative effect on retrieval preci-

sion. This is one place where a longer phrase appears

more appropriate. An further example is shown in

Figure 2." One difficulty in obtaining head-modifier

pairs of highest accuracy is the notorious ambiguity

of nominal compounds. For example, the phrase

natural language processing should generate

language+natural and processing+language, while

dynamic information processing is expected to yield

processing+dynamic and processing+information.

Since our parser has no knowledge about the text

domain, and uses no semantic preferences, it does not

attempt to guess any internal associations within such

phrases. Instead, this task is passed to the pair extrac-

tor module which processes ambiguous parse struc-

tures in two phases. In phase one, all and only unam-

biguous head-modifier pairs are extracted, and the

frequencies of their occurrences are recorded. In

phase two, frequency information about pairs gen-

erated in the first pass is used to form associations

from ambiguous structures. For example, if

" Note that working with the parsed text ensures a degree of

precision in capturing the meaningful phrases, which is especially

evident when compared with the results usually obtained from ei-

ther unprocessed or only partially processed text (Lewis and Croft,

1990). Note also that names, pronouns and dummy verbs are not

allowed to create pairs.

178

SENTENCE:

Gorbachev ordered the tank shipped to a plant in the Ukraine,

where seven mechanics worked for three months restoring it.

PARSE STRUCTURE:

[assert

[|verb [ORDER] 1

[subject

[np

[name [GORBACHEV]]]]

(object

[Iverb[]]

[subject

[np

[n TANK]

[t_pos THE]

[m_wh

[[verb [SHIP])

[subject ANYONE]

[object VAR]

[TO

[np

[n PLANT]

[t_pos AJIJ

[IN

[np

[name [UKRAINE]]

(t_pos THE]

(m_wh

[[verb [WORK]]

[subject

[np

[n MECHANIC]

[count [SEVEN])]]

[FOR

[np

[n MONTH]
[count [THREE]]])

[sa_wh

[[verb [RESTORE]]

[subject PRO\

[object

[np

In IT]]]]]]])]]]])])))

EXTRACTED PAIRS:

MECHANIC WORK
SHIP TANK
TANK SHIP

Figure 2. Extraction of syntactic pairs.

language+natural has occurred unambiguously a

number times in contexts such as parser for natural

language, while processing+natural has occurred

significantly fewer times or perhaps none at all, then

we will prefer the former as.sociation Jis valid.

Although the noun phrase disjunbiguation rou-

tine has been implemented to work with the pjiir

extractor program, it hiis not been used in the current

installment of TREC. A more conservative version of

pair extractor was used instead (it generates fewer

pairs) since that version was found effective in test

12
runs.

TERM CORRELATIONS FROM TEXT

Head-modifier pairs form compound terms

used in database indexing. They jUso serve as

occurrence contexts for smaller terms, including

single-word terms. In order to detennine whether

such pairs signify any important association between

terms, we calculate the value of the Informational

Contribution (IC) function for each element in a pair.

This is important because not every synt^ictic associa-

tion necessarily translates into a semantic one, and

we may also need to eliminate spurious pairs gen-

erated by the parser. Higher values of /C indicate

stronger association, and moreover the element

which has the larger value is considered semantically

dominant. These values are context dependent, and

will vary from one corpus to another. '
^

The likelihood of a given word being paired

with another word, within one predicate-iu-gument

structure, can be expressed in statistical terms Jis a

conditional probability. In our present approach, the

required measure had to be uniform for all word

occurrences, covering different types of predicate-

argument links, i.e., verb-object, noun-adjunct, etc.

This is reflected by an additional dispersion parame-

ter, introduced to evaluate the heterogeneity of word

associations. The resulting new formula IC {x, [x,y])

is based on (an estimate oO the conditional probabil-

ity of seeing a word y as a modifier of the word x,

normalized with a disf)ersion parameter for x.

where f^^y is the frequency of [x,y] in the corpus, n^

is the number of pairs in which x occurs at the same

position as in [jc,y], and d{x) is the dispersion pju^n-

eter understood as the number of distinct words with

In a few test runs with TREC topics 001 to 005 against the

training database (disk 1), we observed that the inclusion of com-

pound terms obtained from head-modifier pairs increased both re-

call and precision quite sugnificantly. In particular, for topic 003 no

relevant documents could be found without compound terms.

" For more details please refer to (Strzalkowski and Vau-

they, 1992).

179

1

which X is paired. When /C(jc, [x,}']) = 0, x and y
never occur together (i.e., = 0); when
IC{x, [x,y]) = 1, jc occurs only with y (i.e., f^^y = az^

and 1).

So defined, IC function is asymmetric, a pro-

perty found desirable by Wilks et al. (1990) in their

study of word co-occurrences in the Longman dic-

tionary. In addition, IC is quite stable even for rela-

tively low frequency words (dispersion parameter

helps here), and in this respect it compares favour-

ably to Fano's inutual infonnation formula. The lack

of stability on low frequency terms is particularly

worrisome for IR applications since many important

indexing tenns could be eliminated from considera-

tion.

It should also be pointed out that the particular

way of generating syntactic pairs was dictated, to

some degree at least, by statistical considerations.

Our original experiments with IC fonnula were per-

formed on the relatively small CACM-3204 collec-

tion, and therefore we combined pairs obtained from

different syntactic relations (e.g., verb-object,

subject-verb, noun-adjunct, etc.) in order to increase

frequencies of some iissociations. This became

h'lrgely unnecesscuy in a large collection such as TIP-

STER, but we had no merins to test alternative

options, and thus decided to stay with the original. It

should not be difficult to see that this was a

compromise solution, since many important distinc-

tions were potentially lost, and strong associations

could be produced where there weren't any. A way to

improve things is to consider different syntactic rela-

tions independently, perhaps as independent sources

of evidence that could lend support (or not) to certain

term similarity predictions. We have already started

testing this option. A few examples of IC

coefficients obtained from CACM-3204 corpus Jire

listed in Table 1

.

IC values for terms become the basis for calcu-

lating term-to-term similarity coefficients. If two

terms tend to be modified with a number of common
modifiers and otherwise appear in few distinct con-

texts, we assign them a similarity coefficient, a real

number between 0 and 1. The similarity is deter-

mined by comparing distribution characteristics for

both tenns within the corpus: how much infonnation

contents do they ciury, do their infonnation contribu-

tion over contexts vary greatly, are the common con-

texts in which these terms occur specific enough? In

general we will credit high-contents terms appearing

in identical contexts, especially if these contexts are

not too commonplace.'^ The relative similarity

'''
It would not be appropriate to predict similarity between

language and logarithm on the basis of their co-occurrence with

natural.

word head-i-modifier IL coett.

distribute distribute+normal 0.040

normal distribute+normal 0.115

minimum minimum+relative 0.200

relative minimum+relative 0.016

retrieve retrieve+inform 0.086

inform retrieve +inform 0.004

size size+medium 0.009

medium size+medium 0.250

editor editor+ text 0.142

text editor+ text 0.025

system system+parallel 0.001

parallel system+parallel 0.014

read read+character 0.023

character read+character 0.007

implicate implicate+legal 0.035

legal implicate+legal 0.083

system system+distribute 0.002

distribute system+distribute 0.037

make make+recommend 0.024

recommend make+recommend 0.142

infer infer+deductive 0.095

deductive infer+deductive 0.142

share shares-resource 0.054

resource share+resource 0.042

Table 1. Examples of IC coefficients.

between two words jcj md x^ is obtained using the

following fonnula (a is a large constant):

SlM{xx,Xi)- log ia^simyixi,X2))
y

where

simy{x^,X2) = MIN{IC{x^\x^,y])JC{x2\[x2,y]))
* MIN(IC(y, [Xi,y]),IC(y,[X2,y]))

The similarity function is further normalized with

respect to SIM (x
i
,x

j
).

In addition, we require that words Xi and X2

appear in at least two distinct common contexts,

where a common context is a couple of pairs [xi,y]

and [X2.y], or [yjci] and [yjC2] such that they each

occurred at least twice. Thus, banana and baltic will

" This is inspired by a formula used by Hindle (1990), and

subsequently modified to take into account the asymmetry of IC

measure.

180

not be considered for similarity relation on the basis

of their occurrences in the common context of repub-

lic, no matter how frequent, unless there is another

such common context comparably frequent (there

wasn't any in TREC WSJ database).

It may be worth pointing out that the similari-

ties are calculated using tenn co-occurrences in syn-

tactic rather than in document-size contexts, the latter

being the usual practice in non-linguistic clustering

(e.g., Sparck Jones and Barber, 1971; Crouch, 1988;

Lewis and Croft, 1990). Although the two methods of

term clustering may be considered mutually comple-

mentary in certain situations, we beheve that more

and stronger associations can be obtained through

syntactic-context clustering, given sufficient amount

of data and a reasonably accurate syntactic parser.'^

QUERY EXPANSION

Similarity relations are used to expand user

queries with new terms, in an attempt to make the

final search query more comprehensive (adding

synonyms) and/or more pointed (adding specializa-

tions).'* It follows that not all similarity relations will

be equally useful in query expansion, for instance,

complementary and antonymous relations like the

one between australian and Canadian, or accept and

reject may actually harm system's performance,

since we may end up retrieving many irrelevant

documents. Similarly, the effectiveness of a query

containing vitamin is likely to diminish if we add a

similar but far more general term such as acid. On
the other hand, database search is likely to miss

relevant documents if we overlook the fact that for-

tran is a programming language, or that infant is a

baby and baby is a child. We noted that an average

set of similarities generated from a text corpus con-

tains about as many "good" relations (synonymy,

specialization) as "bad" relations (antonymy.

" However, SIM(banana,dominican) was generated since

two independent contexts were indeed found: republic and plant,

even though word plant apparently occurs in different senses in ba-

nana plant and dominican plant.

" Non-syntactic contexts cross sentence boundaries with no

fuss, which is helpful with short, succinct documents (such as

CACM abstracts), but less so with longer texts; see also (Grishman

etal., 1986).

" Query expansion (in the sense considered here, though not

quite in the same way) has been used in infomiation retrieval

research before (e.g., Sparck Jones and Tait, 1984; Harman, 1988),

usually with mixed results. An altemative is to use term clusters to

create new terms, "metaterms", and use them to index the database

instead (e.g.. Crouch, 1988; Lewis and Croft, 1990). We found that

the query expansion approach gives the system more flexibility, for

instance, by making room for hypertext-style topic exploration via

user feedback.

complementation, generalization), as seen from the

query expansion viewpoint. Therefore any attempt to

separate these two cUisses and to increase the propor-

tion of "good" relations should result in improved

retrieval. This has indeed been confirmed in our e;ir-

lier experiments where a relatively crude filter has

visibly increased retrieval precision.

In order to create an appropriate filter, we
expanded the IC function into a globjil specificity

measure called the cumulative informational contri-

bution function (ICW). ICW is calculated for each

term across £ill contexts in which it occurs. The gen-

eral philosophy here is that a more specific

word/phrase would have a more limited its use, i.e., a

more specific term would appear in fewer distinct

contexts. In this respect, ICW is simihu" to the st<in-

dard inverted document frequency (idf) measure

except that term frequency is measured over syntJictic

units rather than document size units. Tenns with

higher ICW values are generally considered more

specific, but the specificity compjuison is only mean-

ingful for tenns which are akeady known to be simi-

lar. The new function is calculated according to the

following formula:

ICW{w)=^

IC^w) * ICjiiw) \{hoth exist

ICniw) if only ICr{w) exists

0 otherwise

where (with n^^, d^, > 0):

lCdw) = lC{[w,]) =

ICr{w) = IC([,w]) =

d^n^+d^-l)

djn^+d,^-l)

For any two terms w, and wj, and constants 5i > 1,

62 > 1, the following situafions were considered. If

ICW{w2)>8\ * ICWiwi) then W2 is considered

more specific than u'). If ICWiwi) < 62 * /CW(m |)

and /CW(w2)> lCW{wi) then W2 is considered

synonymous with wi.^'^ In addition, if

SIM^rmiwi^'W2) = ^ > 9' where 9 is an empirically

established threshold, then can be added to the

query containing term Wi with weight o.'' The

" We beheve that measuring temi specificity over

document-size contexts (e.g., Sparck Jones, 1972) may not be ap-

propriate in this case. In particular, syntax-based contexts allow for

processing texts without any intemal document structure.

In TREC runs we used 6, = 10 and 8^ = 3.

^' For CACM-3204 coUecrion the filter was most effective at

O = 0.57. For TTIEC we changed the similarity fomiula shghtly in

order to obtain correct normalizations in all cases. This however

lowered similarity coefficients in general and a new threshold had

to be selected. We used O = 0. 1 in TREC runs.

181

cutoffs could be different for synonymy and speciali-

zation. For example, the following were obtiiined

from TREC WSJ training database:

ICW (child) =0.000001

lCW(baby) =0.000013
ICW (infant) =0.000055

with

SIM (childjnfant) =0.131381

SIM (baby, child) = 0.183064

SIM (babyjnfant) = 0.323 121

Therefore both baby and infant can be used to spe-

cialize child (with 5i = 10), while baby and infant

can be considered synonyms (with 62 = 5). Note that

if 6 is well chosen, then the above filter will also help

to reject antonymous Jind complementiiry relations,

such as 5/M„^,„(^)ac/:,/r(JAiO=0.305287 with

lCW(back)=OmO(m and /CIV (//Y?nO=0.000006.

We continue working to develop more effective

filters. Examples of filtered similarity relations

obtained from TREC corpus are listed in Tables 2

and 3.

SUMMARY OF RESULTS

We have processed the total of 500 MBytes of

articles from Wjill Street Journal section of TREC
database. Runs were made independently on training

corpus (250 MBytes) and the test corpus (another 250

Mbytes). Natural language processing of each half of

the corpus, including tagging, stemming, prirsing iind

pair extraction required approximately 2 weeks of

nearly uninterrupted processing on two Sparc works-

tations (we use an assortment of SparcStation 1, ELC
and 2, with MIPS rates varying from 13 to 21 to

28.5). " Computing tenn similarities from the first

250 Mbytes of text took up another week. This time

limitations in our computing resources, mostly

memory, were the main reason. With a sufficient

amount of RAM (on the order of 256 MBytes or

more) we estimated that this process should tJike no

more than 20 hours. It should be noted that we com-

puted term similarities based only on the training

corpus, but we used them in retfievjil from either

database. We assumed that the underlying set of

concepts and describing them terms does not vary

greatly between the two databases (the first covered

Wall Street Journal from 1987 to 1989, the second

from 1990 to 1992).

" Processing of the training corpus took significantly longer

in practice (real time) since we had only one Sparcstation available

at any given time, and also due too errors made and resulting from

them need for re-processing some parts.

Subsequent indexing process performed by the

NIST IR system required additional 2 weeks for each

half of the database, on a single SparcStation 2. In

total, we created three inverted file indexes: two were

derived from the training corpus, and one from the

test corpus. The first index created from training

corpus did not include compound tenns; the remjiin-

ing two indexes included them. No cumulative index

was produced, since we estimated it would require

more than 6 weeks to build. Some interesting

discrepancies were observed. While the postings file

generated from the training corpus was 25% hirger

that the one generated from the test corpus, the

corresponding dictionary of tenns was about 25%
smaller in the training corpus. This seems to suggest

that in 1990-92 volumes of Wall Street Journal (test

corpus) a greater number of unique terms were used,

while these terms were on average occurring more

sparsely in the text. This fact may partially under-

mine an eiu"her assumption that tenn similarities gen-

erated from training corpus were adequate for test

corpus as well.

During the training stage of TREC we per-

fonned only very limited tests, mostly because the

base system retrieval was quite slow on a database of

this size (approx. 173 MBytes, 99-i-K documents).
"^"^

We run experiments with topics 001 to 005, using

relevance judgements supplied with the training data-

base. The purpose of these tests was to (1) observe

any improvement in performance resulting from the

use of compound phrase tenns, (2) tune the tenn

similarity filter by adjusting certain threshold values

in an attempt to obtain the most effective set of simi-

larities, and (3) note if any manual intervention into

the queries could improve retrieval results. As may
be expected, none of these experiments were con-

clusive, but this was all we could rely upon in the

short time given. First of all, we noticed that system

overall performance (cumulative recall and precision

levels) were what we could have expected from runs

on smaller benchmc'u"k collections such as CACM-
3204. This may be partially explained by the diver-

sity of the subject matter covered in the TREC data,

and also by the character of the queries (i.e., requests

to extract infonnation), but some problem with the

base search engine may also be to blame. We were

^' Indexing process could not be done in parallel because

NIST system requires serial processing. Moreover, as indexing

progressed, and the partial database grows in size, the process

slowed down significantly from approx. 6 min/file to 37 niin/file.

Tlie system needed approx. 60 minutes to process a query.

In the middle of the training run we discovered that the

NIST system has been designed to handle databases up to 65K do-

cuments (2""). Subsequently we rewrote portions of the code to fix

this, but we were not certain if other decisions made by the re-

tneval module (e.g., bitmapping, idf cutoffs) were not in fact coun-

182

OliVlIlurili

abm *anti+ballistic 0.534894

absence *maternity 0.233082

accept acquire 0.179078

accord pact 0.492332

acquire purchase 0.449362

speech address 0.263789

adjustable one+year 0.824053

maxsaver *advance +purchase 0.734008

affair scandal 0.684877

affordable low+income 0.181795

disease *ailment 0.247382

medium+range *air+to+air 0.874508

aircraft *jetliner 0.166777

aircraft plane 0.42383

1

airline carrier 0.345490

alien immigrate 0.270412

anniversary *bicentennial 0.588210

anti+age anti+wrinkle 0.153918

anti+clot cholesterol+lower 0.856712

contra *anti+sandinista 0.294677

candidate *aspirant 0.116025

contend *aspirant 0.143459

property asset 0.285299

attempt bid 0.641592

await pend 0.572960

stealth *b+] 0.877582

child *baby 0.183064

baggage luggage 0.607333

ban restrict 0.321943

bearish bullish 0.847103

bee *honeybee 0.461023

roller+coast *bumpy U.o96Z/o

two+income two+earner 0.293104

television tv 0.806018

soldier troop 0.374410

treasury *short+term 0.661133

research study 0.209257

withdrawal *pullout 0.622558

Table 2. Filtered word similarities (* indicates the

more specific term).

terproductive with larger databases. Later experiment have

confirmed this as we obtained new code from NIST.

wordl word2 SIMnonn

lord abuser (J./ol

break accelerator I). lUo/ / .T

accept reject 0.275802

accord level u. 1 ^z^)z,i

cent accrue 0.2594 /«

acquire deficient 0.615525

fix+rate adjustable 0.930 1X0

advertise environmental U. i Z4UZO

petroleum aerospace U.Z()/4()o

afghan nicaraguan 0.4Z14/X

uunana uuminic an

begin month 0.346558

german british 0.112465

superpower reagan+gorbachev 0.400145

republic sea 0.227662

sunglasses sneakers 0.126749

Table 3. Some (apparently?) "bad" similjirities gen-

erated.

also quite disappointed with the effect that the query

expansion had (or did not have) on either precision or

recall figures. This was somewhat more directly

related to the wide domain scope of WSJ articles, iind

we noticed many obvious word sense mixups leading

to unwanted term associations. Also, the rather

straightforward method of query expansion terms

proved less adequate here, and we are considering

new methods as outlined briefly in the introduction to

this paper. Our final test with manuiilly rtJtered

queries (terms were deleted or added after consulting

the original topic) brought only negative results: any

kind of intervention appeared only to further decrease

both recall and precision.

Final runs were performed as follows:

(1) Topics 1-25 were processed using only direct

fields (<title>, <desc>, and <narr>) with

respect to the training database (disk 1). They

were subsequently run in the routing mode

against the test database (disk 2). Unfor-

tunately, the routing results were hindered by a

bug in our program that removed duplicate

While other fields provided much useful infomiation

about various aspects of a given topic (including definitions of spe-

cialized terms), we thought tliat their inclusion in the final query

would make it difficult to assess the advantages of linguistic pro-

cessing. This especially apphes to Concepts fiels <con> which list-

ed hand-extracted keywords. Subsequently, we realized that more

often this field in fact provided further clues not found in other sec-

tions of a topic.

183

terms from queries while preparing them for a

routing run.

(2) Topics 51-75 were processed using the same 3

fields as above with respect to the test database

only (disk 2). They were then run in ad-hoc

inode independently against the training data-

base and the test database, and the top 200

documents from each run (for each query)

were merged using document scores. The

upper 200 documents were selected for the

final result. It should be noted that we run

topics against disk 1 using /ti/ weights on tenns

from disk 2 (a routing-like mode). This, it

turned out, created an even distribution of hits

between the two databases. We call this

method the uniform merge.

(3) We repeated run (2), but this time we run

topics 51-75 in ad-hoc mode on both disks (i.e.,

different weights were used in these runs).

Again, top 200 documents were selected. We
call this method the brute force merge.

(4) Finally, we repeated uniform merge with

queries mjinually pruned before actual

retrieval.

Summary statistics for these runs are shown in

Tables 4 Jind 5. It has to be pointed out that these

results iire lower than expected because of various

problems with the database search program and

because the Concepts field in TREC topics was not

included in search queries. Subsequent runs with

Concepts field included in seju'ch produced results

shown in Table 6.

ACKNOWLEDGEMENTS
We would hke to thank Donna Hannan of

NIST for making her IR system available to us. We
would also like to thank Ralph Weischedel, Marie

Meteer and Heidi Fox of BBN for providing md
assisting in the use of the part of speech tagger. Jose

Perez CrirbJillo has contributed a number of valuable

observations during the course of this work, and his

assistance in processing the TREC data was critical

for our being able to finish on time. This paper is

bc'ised upon work supported by the Defense

Advanced Research Project Agency under Contract

N00014-90-J-1851 from the Office of Naval

Research, under Contract N00600-88-D-3717 from

PRC Inc., and the National Science Foundation under

Gnint IRI-89-02304. We also acknowledge support

from Canadian Institute for Robotics and Intelligent

Systems (IRIS).

Run nyuirl nyuir2

Name routing routing

Queries 25 25

Tot number of docs over all queries

Ret 5000 5000

Rel 3766 3766

RelRet 834 1177

Recall Precision Averages

0.00 0.5691 0.6983

0.10 0.3618 0.5072

0.20 0.1846 0.3508

0.30 0.1314 0.2997

0.40 0.1065 0.2286

0.50 0.0481 0.1481

0.60 0.0295 0.0604

0.70 0.0104 0.0296

0.80 0.0104 0.0260

0.90 0.0000 0.0125

1.00 0.0000 0.0000

Average precision for all points

Il-pt 0.1320 0.2147

Average precision at 0.20, 0.50, 0.80

3-pt 0.0811 0.1750

Recall at

5 docs 0.0338 0.0374

1 5 docs 0.0671 0.0961

30 docs 0.0979 0.1533

100 docs 0.2117 0.3119

200 docs 0.2988 0.4298

Precision at

5 docs 0.3360 0.4480

1 5 docs 0.2960 0.4587

30 docs 0.2787 0.3973

100 docs 0.2276 0.3080

200 docs 0.1668 0.2354

Table 4. Routing run sUitistics: (1) duplicate terms

(unintentionally) removed from queries; and (2) du-

pHcate terms retained and Concepts fields included.

184

Run nyuirl nyuir2 nyuir3

Name brute prune uniform

Queries 25
.

25 25

Tot number of docs over all queries

Ret 4986 4990 4989

Rel 3318 3318 3318

RelRet 1161 958 1039

Recall Precision Averages

0.00 0.7830 0.7168 0.7368

0.10 0.6216 0.4858 0.5592

0.20 0.4891 0.3722 0.4660

0.30 0.3815 0.2032 0.3235

0.40 0.2350 0.1382 0.2099

0.50 0.1871 0.0599 0.1385

0.60 0.1447 0.0419 0.0801

0.70 0.0705 0.0058 0.0560

0.80 0.0229 0.0030 0.0056

0.90 0.0000 0.0000 0.0000

1.00 0.0000 0.0000 0.0000

Average precision for all points

11 -pt 0.2669 0.1843 0.2341

Average precision at 0.20, 0.50, 0.80

3-pt 0.2330 0.1450 0.2034

Recall at

5 docs 0.0713 0.0444 0.0571

15 docs 0.1326 0.0929 0.1297

30 docs 0.1868 0.1424 0.1734

100 docs 0.3350 0.2550 0.2918

200 docs 0.4294 0.3466 0.3908

Precision at

5 docs 0.5680 0.5200 0.5360

15 docs 0.5200 0.4267 0.4907

30 docs 0.4320 0.3627 0.4147

100 docs 0.3140 0.2684 0.2916

200 docs 0.2322 0.1916 0.2078

Run nyuirl nyuir4 nyuir5

Name brute concepts negations

Queries 25 25 25

Tot number of docs over all queries

Ret 4986 4984 4984

Rel 3318 3318 3318

RelRet 1161 1291 1309

Recall Precision Averages

0 00 0.7830 0.7685 0.7823

0.10 0.6216 0.6521 0.6625

0.20 0.4891 0.5396 0.5460

0.30 0.3815 0.4306 0.4419

0.40 0.2350 0.2671 0.2755

0.50 0.1871 0.2094 0.2085

0.60 0.1447 0.1457 0.1457

0.70 0.0705 0.0660 0.0660

0.80 0.0229 0.0385 0.0385

0.90 0.0000 0.0000 0.0000

1.00 0.0000 0.0000 0.0000

Average precision for all points

11 -pt 0.2669 0.2834 0.2879

Average precision at 0.20, 0.50, 0.80

3-pt 0.2330 0.2625 0.2643

Recall at

5 docs 0.0713 0.0738 0.0741

1 5 docs 0.1326 0.1362 0.1386

30 docs 0.1868 0.2007 0.2011

100 docs 0.3350 0.3513 0.3565

200 docs 0.4294 0.4739 0.4828

Precision at

5 docs 0.5680 0.6080 0.6080

15 docs 0.5200 0.5360 0.5493

30 docs 0.4320 0.4760 0.4773

100 docs 0.3140 0.3432 0.3484

200 docs 0.2322 0.2582 0.2618

Table 5. Ad-hoc run statistics with Automatic Brute Table 6. Ad-hoc run statistics using Automatic Brute

Force Merge, Uniform Merge with hand pruning, and Force Merge: without Concepts field, with Concepts

Automatic Uniform Merge. field, and with Concepts excluding negated terms.

185

REFERENCES

Church, Kenneth Ward and Hanks, Patrick. 1990.

"Word association norms, mutual infonna-

tion, and lexicography." Computational

Linguistics, 16(1), MIT Press, pp. 22-29.

Crouch, Carolyn J. 1988. "A cluster-based approach

to thesaurus construction." Proceedings of

ACM SIGIR-88, pp. 309-320.

Grishman, Ralph, Lynette Hirschman, and Ngo T.

Nhan. 1986. "Discovery procedures for sub-

language selectional patterns: initial experi-

ments". Computational Linguistics, 12(3), pp.

205-215.

Grishman, Ralph and Tomek Strzalkowski. 1991.

"Information Retrieval and Natural Language

Processing." Position paper at the workshop

on Future Directions in Naturjil Language Pro-

cessing in Information Retrieval, Chicago.

Harman, Donna. 1988. "Towards interactive query

expansion." Proceedings of ACM SIGIR-88,

pp. 321-331.

Harman, Donna and Gerald Candela. 1989.

"Retrieving Records from a Gigabyte of text

on a Minicomputer Using Statistical Rank-

ing." Journal of the American Society for

Information Science. 41(8), pp. 581-589.

Hindle, Donald. 1990. "Noun classification from

predicate-ru'gument structures." Proc. 28

Meeting of the ACL, Pittsburgh, PA, pp. 268-

275.

Lewis, David D. and W. Bruce Croft. 1990. "Term
Clustering of Syntactic Phrases". Proceedings

of ACM SIGIR-90, pp. 385-405.

Mauldin, Michael. 1991. "Retrieval Performance in

Ferret: A Conceptual Infonnation Retrieval

System." Proceedings of ACM SIGIR-91, pp.

347-355.

Meteer, Marie, Richard Schwartz, and Ralph

Weischedel. 1991. "Studies in Part of Speech

Labelling." Proceedings of the 4th DARPA
Speech and Natural Language Workshop,

Morgan-Kaufman, San Mateo, CA. pp. 331-

336.

Sager, Naomi. 1981. Natural Language Information

Processing. Addison-Wesley.

Spju"ck Jones, Karen. 1972. "Statistical interpreta-

tion of term specificity and its application in

retrieval." Journal of Documentation, 28(1),

pp. 11-20.

Sparck Jones, K. and E. O. Barber. 1971. "What
makes automatic keyword classification effec-

tive?" Journal of the American Society for

Information Science, May-June, pp. 166-175.

Sparck Jones, K. and J. I. Tait. 1984. "Automatic

search term variant generation." Journal of

Documentation, 40(1), pp. 50-66.

Strzalkowski, Tomek and Barbara Vauthey. 1991.

"Fast Text Processing for Information

Retrieval." Proceedings of the 4th DARPA
Speech and Natural Language Workshop,

Morgjui-Kaufman, pp. 346-351.

Strzalkowski, Tomek and Barbara Vauthey. 1992.

"Infonnation Retrieval Using Robust Natural

Language Processing." Proc. of the 30th ACL
Meeting, Newark, DE, June-July. pp. 104-1 1 1.

Strzalkowski, Tomek. 1992. "TTP: A Fast and

Robust Parser for Natural Language."

Proceedings of the 14th International Confer-

ence on Computational Linguistics (COL-

ING), Nantes, France, July 1992. pp. 198-204.

Wilks, Yorick A., Dan Fass, Cheng-Ming Guo,

James E. McDonald, Tony Plate, and Brian M.

Slator. 1990. "Providing machine tractable

dictionary tools." Machine Translation, 5, pp.

99-154.

APPENDIX A: EXAMPLE QUERY
We show TREC topic 057 and a part of result-

ing search query with only top ranked terms showed

in Table A.l. Please note that we rank terms by their

idf scores even though their actual scores are idf
*

weight. It is worth pointing out, however, that the

NIST system uses idf scores to decide if a term falls

below a preset "significance" threshold. We only

show fields used for query generation.

<top>

<num> Number: 057

<title> Topic: MCI
<desc> Description:

Document wiU discuss how MCI has been doing since the Bell

System breakup.

<narr> Narrative:

A relevant document will discuss the financial health of MCI Com-
munications Corp. since the breakup of the Bell System (AT&T
and the seven regional Baby BeUs) in January 1984. The status in-

dicated may not necessarily be a direct or indirect result of the

breakup of the system and ensuing regulation and deregulation of

Ma Bell or of the restrictions placed upon the seven BeUs; it may
result from any number of factors, such as advances in telecom-

munications technology, MCI initiative, etc. MCI's financial

health may be reported directly: a broad statement about its earn-

ings or cash flow, or a report containing financial data such as a

quarterly report; or it may be reflected by one or more of the fol-

lowing: credit ratings, share of customers, volume growth, cuts in

capital spending, figure net loss, pre-tax charge, analysts' or

MCI's own forecast about how well they will be doing, or MCI's

response to price cuts that AT&T makes at its own initiative or

under orders from the Federal Communications Commission

(FCC), such as price reductions, layoffs of employees out of a per-

ceived need to cut costs, etc. Daily OTC trading stock market and

monthly short interest reports are NOT relevant; the inventory

must be longer temi, at least quarterly.

</top>

186

tcmi lUl weight

deposit+financial 16.185341 0.192091

resitll+ breakup 16.185341 1.000000

restrict+action 16.185341 0.441260

number factor 16.185341 1.000000

deposit+financial 16.185341 0.192091

layoff+job 15.600377 0.199677

report{health 15.185340 1.000000

share-vcut 15.185340 1.000000

benefit-^price 14.863412 0.263889

share*annual 14.600377 0.249365

document-vrelcvant 14.377985 1.000000

growth-¥custom 14.185340 1.000000

need^^^perceive 14.185340 1.000000

report^i-short 14.185340 1.000000

earnings{cash 14.015415 1.000000

report^^interest 13.725908 1.000000

share^{^benefit 13.484900 0.263889

restrict-^place 13.185340 1.000000

share-¥growth 13.097878 1.000000

layoff{ employee 13.015415 1.000000

breaiaip^i-system 12.661778 1.000000

bell+alarm 12.484900 0.303537

number{adjust 12.377985 0.421292

hoard-{-cash 12.278449 0.253572

rebate+cash 12.015415 0.112116

growth^{^volume 11.661778 1.000000

flow+earnings 11.512915 1.000000

pre-{-tax 11.430452 1.000000

report-{-monthly 11.056057 1.000000

flow{capital 10.827788 0.434692

report^hquarterly 10.827788 1.000000

bell^¥baby 10.541484 1.000000

reduce{price 10.314976 1.000000

health^+financ'ial 10.005431 1.000000

hoard 9.956521 0.253572

infusion^{-cash 9.717734 0.332548

ensue 9.505860 1.000000

stock{trade 9.327359 1.000000

boost-{^price U.ZoU

breakup 9.135491 1.000000

disposable 9.108524 0.216766

rebate 8.918553 0.112116

fee 8.810301 1.000000

cut^{-price 8.763275 1.000000

mci 8.555984 1.000000

Table A .1. Partial search query for topic 057

OCLC Online Computer Library Center, Inc.
Roger Thompson

Introduction

We are interested in determining the extent to which the effects of
syntactic phrase indexing scales up to large databases. Previous
investigations of the hypothesis that syntactic phrase indexing leads to
improvements in retrieval performance were conducted on databases ranging
from 250 records to a few thousand records (Dillon and Gray 1983, Fagan
1987, Lewis 1991, Burgin and Dillon 1992) . The results have been
conflicting or equivocal. However, we believe that the issue isn't
settled. Technologies for phrase extraction and thesaurus construction
have been evolving, and the arguments favoring syntactic phrase indexing
have not been convincingly dispelled.

The major argument in favor of phrase indexing is that it is a precision
enhancer because words in context are less ambiguous than isolated
terms, and because documents represented in indexes as key phrases
indicative of their content instead of the sum of their individual terms
have undergone considerable noise reduction. Nevertheless, we believe that
there are upper limits to the effectiveness of syntactic phrase indexing.
One of our goals in this project is to understand and elucidate these limits.

In keeping with our interest in answering the simple question of whether
syntactic phrase indexing scales up, we tested the effectiveness of an
existing program for phrase extraction, FASIT (described in Dillon and
Gray 1983, Dillon and McDonald 1983 and Burgin and Dillon 1992), in the
SMART retrieval environment. The primary advantages of FASIT are that the
phrase extraction process is fully automatic, the parse is shallow and
time-efficient, and the logic is table-driven and easily modified. Thus,
FASIT represents a kind of lower-bound estimate of what is necessary to
enhance retrieval performance through automatic indexing.

FASIT Description

FASIT identifies noun phrases appropriate for indexing by
determinining the part of speech for each word in the input text.
This is done by looking up the word in a dictionary created by
assigning tags derived from the Brown Corpus to all entries in the
Oxford Advanced Learner's Dictionary. If the word is not found in
the dictionary, its part of speech is determined from the word's suffix.
Words with more than one part speech have multiple tag assignments and
are eventually disambiguated by examining the tags of the words in the
surrounding context

.

Once tagging is complete, the concept selection module consults a

template to identify index phrases. Concepts in FASIT are a subset
of the noun phrases encountered in the input text which are judged
by syntactic criteria to be useful for indexing. These include
all proper nouns, adjective-noun combinations such as "federal
agency"; noun-noun combinations such as "metals technology"; or

noun-prepositional phrase combinations such as "maker of furniture",
which might be paraphrased as the noun-noun construction "furniture
maker". The selected concepts are normalized by eliminating determiners
and pronouns, and the head noun is stemmed.

Table I shows a portion of a sentence as it passes through the major
phases of FASIT processing.

Table I — Stages of FASIT Processing

Input Tagging Disambiguation Selected
Concepts

189

Most
of
these
homocides
have
been
related
to
the
city'

s

burgeoning
drug
trade

AP
OF
DTS
NNS
HV
BEN
VBD
RI
AT
NN$
VBG
m VB
m VB

VBN
TO

VBZ

NN
NN

VBD

NNS homocides

drug
trade

In previously reported work on FASIT (Dillon and Gray 1983, Dillon
and McDonald 1983) , additional processing was done on the extracted
concepts. Nouns and adjectives which might be judged not to be
indicative of the document's content, such as "current account" or
"little flexibility", and might therefore be expected to reduce
precision, were filtered out. Secondly, the earlier work reported
an algorithm which might increase precision by performing a rudimentary
degree of phrase clustering. Phrases such as "life insurance" and "life
insurance policy" were collected to form a type of thesaurus entry because
they share many stems. Both improvements were eliminated from the present
study because of our interest in establishing a baseline performance for
FASIT. However, both are active areas of research.

Data Preparation

All data is processed automatically; there is no hand-guiding. Queries
are in the narrative-concept format.

Queries and documents are represented as FASIT output. In addition, the
component words of the phrases identified by FASIT are represented as terms.
All words and phrases are stemmed.

Because we are Plan B participants, we are working with the 350M subset
of the Wall Street Journal data. A SMART database with ATC weighting was
built from the FASIT output and submitted to the TREC sponsors for
evaluat ion

.

We have also performed extensive testing and failure analysis of a

46449-record subset of the TREC training database which consists of all
Wall Street Journal articles from 1987. We chose this subset because all
of the documents relevant to the training queries for the Plan B participants
were drawn from the 1987 subset. A baseline database for these experiments
was created using SMART, ATC weighting and stem indexing.

The results reported here are from the 1987 subset of the Wall Street
Journal database because the results of the full database were not
available at the time of this writing. Table II shows precision scores
for eleven levels of recall in the baseline database; Table III shows
results for a test database constructed with FASIT processing of
queries and documents.

Table II

Precision Results for Eleven Levels of Recall
with Stem Indexing

Results

190

Num_queries: 25
Total number of documents over all queries

Retrieved: 5000
Relevant: 245
Rel_ret: 166
Trunc_ret : 4432

Recall - Precision Averages:
at 0.00 0.3590
at 0.10 0.3031
at 0.20 0.2118
at 0.30 0.1641
at 0.40 0.1444
at 0.50 0.1269
at 0.60 0.0946
at 0.70 0.0819
at 0.80 0.0599
at 0.90 0.0322
at 1.00 0.0292

Average precision for all points
11-pt Avg: 0.1461

Average precision for 3 intermediate points (0.20, 0.50, 0.80)
3-pt Avg: 0.1329

Table III

Precision Results for Eleven Levels of Recall
with FASIT Indexing

Num_queries : 25
Total number of documents over all queries

Retrieved: 5000
Relevant: 245
Rel_ret: 164
Trunc_ret: 4382

Recall - Precision Averages:
at 0.00 0.3867
at 0.10 0.3092
at 0.20 0.2369
at 0.30 0.1918
at 0.40 0.1449
at 0.50 0.1034
at 0.60 0.0816
at 0.70 0.0666
at 0.80 0.0501
at 0.90 0.0458
at 1.00 0.0337

Average precision for all points
11-pt Avg: 0.1501

Average precision for 3 intermediate points (0.20, 0.50, 0.80)
3-pt Avg: 0.1301

The higher precision scores at the lowest levels of recall are a

replication of the experiments with FASIT reported in Dillon and
McDonald (1983) and Burgin and Dillon (1992), and support the
hypothesis that phrase indexing serves primarily as a precision
enhancer. In the higher levels of recall, the effects of phrase
indexing and stem indexing are essentially the same, indicating that
retrieval performance is not jeopardized by the reduced document
representation. We expect larger gains in precision with phrase
indexing as we fine-tune our phrase-extraction algorithms.

References

Burgin and Dillon, M (1992). Improving Disambiguation in FASIT.

191

Journal of the American Society for Information Science, 43,
101-114

.

Dillon and Gray, A.S. (1983). FASIT: A fully automatic syntactically
based indexing system. Journal of the American Society for
Information Science, 35, 3-10.

Dillon and McDonald, L.K. (1983). Fully automatic book indexing.
Journal of Documentation, 39, 135-154.

Fagan, J.L. (1987). Experiments in automatic phrase indexing for
document retrieval: A comparison of syntactic and non-syntactic
methods. (Ph.D. dissertation, Cornell University.) Technical
Report No. 87-868. Ithaca, NY: Cornell University.

Lewis, D. (1991). Representation and learning in information
retrieval. (Ph.D. dissertation. University of Massachusetts,
Amherst.) COINS Technical Report 91-93.

192

A Single Language Evaluation of a Multi-lingual Text Retrieval

System

Ted Dunning

Mark Davis

Computing Research Laboratory

New Mexico State University

Las Cruces, NM 88003

1. Introduction

The goal of the participation by the Computing Research Laboratory at New Mexico State

University in the Text Retrieval Evaluation Conference was to evaluate our multi-lingual text

retrieval system in a mono-lingual setting and in the context of a large set of documents. This

system is currently being developed for use in a multi-lingual setting, but we felt that there were

novel aspects to the system which should prove useful in retrieval from a large text base.

In particular, the system is able to find and make use of phrases in queries which will aid

in retrieval. Marking which phrases are significant was done using a likelihood ratio test which

is more reliable than previously used measures.

2. System Structure

Our Multi-Lingual Text-Retrieval system consisted of a fairly conventional system based

around an inverted index structure. The positions of individual words are recorded in terms of

which document they appeared in, and where in the document they appeared, both in terms of

bytes, as well as in terms of words. In order, to maintain language independence as weU as to

improve modularity, tokenization during indexing can be done as a separate process. This

modularity allows most of the system to remain unchanged when changing languages from

English to Japanese, or when changing the indexing structure to support fast access to, say, a

traditional dictionary of word definitions where only the various spelling forms of the head

word might be indexed.

All postings in the final database are constant length structures in order to facilitate and

simplify vector onented operations. Document numbers and locations are uniformly stored as 4

byte integers in order to avoid for all practical purposes any limitations on the number or size of

documents and tokens. Since full positional information is kept, it is relatively fast and simple

193

to search for phrases, or to find instances of words appearing near each other. We plan in the

near future to alter one of the position indices to store sentence position instead of word position

relative the beginning of a file. In other CRL systems, the ability to determine whether words

appear in the same sentence has proved very useful.

3. Indexing Operations

Indexing for the Multi-Lingual Text-Retrieval system consists of a 4-pass process. The

passes include tokenization, relabelling, sorting and stripping.

3.L Tokenization

Tokenization in English consists of putting each word in the input text on a single line

along with positional and document information. Kill list processing is done at this stage, as

well, as creation of a word and document table. Lemmatization and suffix stripping can be done

at this stage, but no savings result since this merely increases the average length of posting vec-

tors during retrieval. Further, early lemmatization or suffix stripping makes it impossible to

later avoid lemmatization or suffix stripping.

In Japanese, tokemzation down to the level of strings of consecutive kanji, or katakana is

supported as well as tokenization down to individual kanji and strings of katakana. Since

strings of hiragana typically are used for inflection, they are ignored. This results in words

being ignored, since there are words in Japanese (mostly verbs) which are written in hiragana.

Using kanji strings results in indexing a large number of phrases, while indexing each kanji ide-

ograph separately results in an increasing number of phrase searches later in the retrieval pro-

cess with an accompanying drop in performance.

Preprocessing to mark and normalize company, place and person names and dates is best

included into the tokenization process. We plan to incorporate elements of CRL's Tipster

Extraction software into this program at some ome to investigate the impact this has on perfor-

mance, but we have not done so at the present time.

Indices for fielded data can be created by using a conventionalized word location such as

0. This approach allows ail such data to be handled in a uniform manner.

3.2. Relabelling

The output of the tokenization process is still ASCII or some form of extended ASCII

such as Unicode or JIS. The next step is the conversion to a uniform binary form which assists

194

in subseqent sorting. This step is also where word and document tables are created which allow

bi-directional conversion between strings and word numbers, or file references and document

numbers. The output of the relabelling consists of three files.

1) the string table, in which all strings (including file names) are kept.

2) the document table, in which the file names, starting offset and lengths of all documents is

kept

3) a vector of sortable posting structures.

In order to improve performance in cases where a large amount of data must be indexed,

the first two passes are often integrated. This has several benefits which primarily include a rad-

ical decrease in the number of times the word and document tables must be reread, and the sub-

stitution of function call/return instead of Unix pipes for the transfer of data between the tokeni-

zation and relabeling passes.

3.3. Sorting

Next, these sortable posting are sorted using a version of MSB radix sort combined with a

heap merge pass for very large files. Our radix sort uses a radix of 65536 and is able to sort at

a rate of nearly 1MB per second. Total time for the radix sort is linear in the number of ele-

ments to be sorted, up to the limit of main memory. Merging then takes 0(n log/n) where m is

the number of internal sorts needed. In practice, sorting is so fast that tokenization and relabel-

ing are the bottleneck even when these first two passes are integrated.

The major disadvantage of this technology is that a considerable amount of temporary disk

space is required. Ultimately, at least 100% overhead in temporary disk space is required.

Furthermore, this overhead is needed even if all that is being done is to update the indices. We

believe that paying a time penalty to avoid this overhead is probably very much warranted if a

system is to be used on large files.

3.4. Stripping

The output of the sort phase consists of a very large vector of postings. In this vector,

there are long runs in which the word number is constant. The stripping process consists of

creating and index so that the boundaries of these long runs can be found, and deleting the word

number from the postings. This change in structure results in about a 25-50% decrease in post-

ing file size (depending on how much positional information is kept), and the index allows very

fast access to the vector of postings for any particular word.

195

4. Primitive Document Access

The posting vector for any particular word can be retrieved from the database with a single

procedure call. The posting vectors obtained in this way can be combined using a set of func-

tions which combine perform the customary boolean operations, as well as functions which

allow adjacent words to be found, as well as when specified words appear within a specified

neighborhood of each other. In addition, the basic query routines include a procedure which,

given a document number from withm a posting, will read the contents of this document into

memory and return the resulting string.

On top of this primitive layer, another level is built which supports scoring of documents

based on a query. Given a vector of strings which represent query terms, procedures in this

level return a sorted score vector whose contents contain documents and scores. All scoring is

done based on inverse document frequency weighting. We plan to convert to a system based on

Bayesian decision rules if time permits in this original contract

5. Query Formulation

In the CRL TREC effort, conversion from topics to queries was done entirely automati-

cally. The retrieval topics were reduced to lists of one, two, three and four word phrases. Each

such phrase was included in the query if it met a statistical test based on generalized likehhood

ratios. On the average, this resulted in about 80 terms being retained for the retrieval.

Had time permitted, we would have included a manual relevance feedback operation in the

process of query formulation. We expect that this would have greatly improved the utility of

the multi-word phrases.

6. Document Scoring

Retrieval was accomplished by using the or_posting procedure to compute a.posting

vector which contained references to all documents which potentially had a non-zero score.

These documents were then scored using a conventional inverse document frequence weighting

scheme and the results were sorted. Only the first 200 documents in the sorted document vector

were printed.

In the submitted results, the fact that there was a very significant difference in average

document length was partially compensated for by accumulating scores in quadrature rather than

simply summing them. There are much better methods available to normalize for document

length in a principled way.

196

7. Overall Results

Analysis of the results as returned by the automatic TREC scoring program shows that the

CRL entry performed much better than might be expected, given the severe problems encoun-

tered in actually running the tests. Even though the system was not able to complete a clean

index of the AP textbase in time, and even though the merging process was severely flawed, and

even though no relevance feedback was employed, the system was able to perform on a credit-

able level.

Many of the last minute problems can be backed out of the results by examining the

results for only the WSJ and Ziff textbases. The other primary databases are less interesting

because:

1) The FR texts were significantly longer and thus caused severe problems in merging

results.

2) The index of the AP textbase was not completed by the revised program in time.

3) Excluding the DOE textbase had little effect on the results (only three queries among the

first 50 had relevant documents in the DOE textbase).

When these exclusions are made, and a composite recall-precision plot is made it can be

seen that, on the average, our system provides a maximum precision of about 60%, a minimum

precision of about 40% and a maximum recall of about 40%. Unfortunately, there is a wild

variability so that in a strong sense, no single average is a terribly vahd picture of the systems

performance.

197

The QA System

James Driscoll, Jennifer Lautenschlager, Mimi Zhao
Department of Computer Science

University of Central Florida

Orlando, Florida 32816 USA

Abstract

In the QA system, semantic information is combined with

keywords to measure similarity between natural language

queries and documents. A combination ofkeyword relevance

and semantic relevance is achieved by treating keyword
weights and semantic weights alike using the vector pro-

cessing model as a basis for the combination. The approach
is based oa (1) the database concept of semantic modeling
and (2) the linguistic concept of thematic roles. Semantic
information is stored in a lexicon built manually using

information found in Roget's Thesaurus.

Keywords: vector processing model, semantic data model,
semantic lexicon, thematic roles, entity attributes.

1. Introduction

The QA system is based on the semantic approach to text

search reported in [9]. The QA system accepts natural

language queries against collections of documents. The
system uses keywords as document identifiers in order to sort

retrieved documents based on their similarity to a query. The
system also imposes a semantic data model upon the "surface

level" knowledge found in text (unstructured information

from a database point of view).

The intent of the QA System has been to provide conve-

nient access to information contained in the numerous and
large public information documents maintained by Public

Affairs at NASA Kennedy Space Center (KSC). During a

launch at KSC, about a dozen NASA employees access these

printed documents to answer media questions. The planned

document storage for NASA KSC Public Affairs is around

3(X),000 pages (approximately 900 megabytes of disk stor-

age).

Because of our environment, the performance of our

system is measured by a count of the number of documents
one must read in o-der to find an answer to a natural language

question. Consequently, the traditional precision and recall

measures for JR have not been used to measure the per-

formance of the QA System.

We have had success using semantics to improve the

ranking of documents when searching for an "answer" to a

query in a document collection ofsize less than 50 megabytes.
However, it is important to note that our success has been
demonstrated only in a real-world situation where queries are

the length of a sentence and documents are either a sentence

or, at most, a paragraph [8,9].

Our reasons for participating in TREC have been to (1)

learn how our semantic approach fares when traditional IR
measures of performance are used, and (2) test our system on
larger collections of documents. In this paper, we describe

our system, the experiments we performed, our results, and
failure analysis.

2. Overview of the QA System Modified for TREC

The QA System has been restricted to an IBM compatible

PC platform running under the DOS 5.0 operating system and
without the use of any other licensed commercial software

such as a DOS extender. The DOS version of the QA System
is available at nominal cost from [3]. About 2,000 hours of

programming have been used to develop the current software

which includes a pleasant user interface; just as many hours

have been used testing the basic keyword operation of the

system. In addition, approximately 1,000 hours have been

used performing experiments involving the semantic aspect

of the QA System. The SQL/DS relational data base system
has been used to carry out some of these semantic experi-

ments.

The QA System is implemented in C and uses B+ tree

structures for the inverted files. We felt the speed of the

system and its storage overhead was not efficient enough to

app>ear reasonable for TREC, so we designed a separate

system without a pleasant user interface which uses a hashing

scheme to establish codes for strings. This was done to cut

down on storage space and eliminate the use of B+ trees.

Approximately 400 hours of programming and debugging

effort was used to modify the system for the TREC experi-

ments. We kept the DOS environment.

This work has been supported in part by NASA KSC Cooperative Agreement NCC 10-003 Project 2, Florida High Technol-

ogy and Industry Council Grants 4940-11-28-721 and 4940-11-728, and DARPA Grant 4940-11-28-808.

199

For theTREC experiments, we used nine IBM PS/2 Model
95 computers. Th^e were 50MHz 486 computers, each with

8 megabytes ofRAM and one 400 megabyte hard drive. Two
of the machines had 16 megabytes of RAM and another one
had two 400 megabyte hard drives. A 33 MHz 486 PC was
used to distribute text to the nine IBM machines, and then

collect information for merging and redistribution.

Our plan was to put each of the nine Vol. 1 and Vol. 2
document collections on a separate machine, determine the

document frequency for each term tj on each machine, and
then merge the results and determine the inverse document
frequency for each term in the entire collection. Next, we
would index and query each document collection separately,

and finally merge the retrieval results.

The vector processing model is the basis for our approach.

Terms used as document identifiers are keywords modified

by various techniques such as stop lists, stemm ing, synonyms,
and query reformulation.

The calculation of the weighting factor (w) for a term in a

document is a combination of term frequency ((/), document
frequency (dj), and inverse document frequency (idf). The
basic definitions are as follows:

tfij
= number of occurrences of term r, in document

dfj = number of documents in a collection which contain tj

idfj -]og{N/dfj), where TV^ = total number of documents

•'tfij*idfij

When the system is used to query a collection ofdocuments
with t terms, the system computes a vector Q equal to

{w^j
, Wg2' • %() representing the weights for each term in the

query. The retrieval of a document with vector equal to

(4i,4i2» •••'4/) representing the weights of each term in the

document is based on the value of a similarity measure
between the query vector and the document vector. For
the NIST experiments, we used the Jaccard similarity

coefficient [7] to retrieve documents for the September
deadline.

Jaccard Coefficient
,

sim(Q,D.) = - '-^
;

l{d,f+l{w^jf-2w^jd,
> - 1 ; - 1 > -

1

3. Semantic Approach

Although the basic IR approach has shown some success

in regard to natural language queries, it ignoressome valuable

information. For instance, consider the following query:

How long does the payload crew go through

training before a launch?

The typical IR system dismisses the following words in the

query as useless or empty: "how", "does", "the", "through",

"before", and "a". Some of these words contain valuable

semantic infonmation. The following list indicates some of
the semantic information triggered by a few of these words:

how long -• Duration, Time
through Location/Space, Motion with Reference

to Direction, Time
before Location/Space, Time

The database concept ofsemantic modeling and the linguistic

concept of thematic roles can help in this regard.

3.1 Semantic Modeling

Semantic modeling was an object ofconsiderable database
research in the late 1970's and early 1980's. Abriefoverview
can be found in [2]. Essentially, the semantic modeling
approach identified concepts useful in talking informally

about the real world. These concepts included the two notions

of entities (objects in the real world) and relationships among
entities (actions in the real world). Both entities and rela-

tionships have properties.

The properties of entities are often called attributes. There
are basic or surface level attributes for entities in the real

world. Examples of surface level entity attributes are General
Dimensions, Color, and Position. These properties are

prevalent in natural language. For example, consider the

phrase "large, black book on the table" which indicates the

General Dimensions, Color, and Position of the book.

In linguistic research, the basic properties of relationships

are discussed and called thematic roles. Thematic roles are

also referred to in the literature as participant roles, semantic

roles and case roles. Examples of thematic roles are Bene-
ficiary and Time. Thematic roles are prevalent in natural

language; they reveal how sentence phrases and clauses are

semantically related to the verbs in a sentence. For example,
consider the phrase "purchase for Mary on Wednesday"
which indicates who benefited from a purchase (Beneficiary)

and when a purchase occurred (Time).

The goal of our approach is to detect thematic information

along with attribute information contained in natural lan-

guage queries and documents. When the information is

present, our system uses it to help find the most relevant

document. In order to use this additional information, the

basic underlying concept oftext relevance as presented earlier

needs to be modified. The major modifications include the

addition of a lexicon with thematic and attribute information,

and a modified computation of the similarity coefficient. We
now discuss our semantic lexicon.

3.2 The Semantic Lexicon

Our system us^ a thesaurus as a source of semantic

categories (thematic and attribute information). For example,

Roget's Thesaurus contains a hierarchy of word classes to

relate word senses [6]. For our research, we have selected

several classes from this hierarchy to be used for semantic

categories. We have defined thirty-six semantic categories

as shown in Figure 1.

200

Thematic Role Categories

Accompaniment

Amount

Beneficiary

Cause

Condition

Comparison

Conveyance

Degree.

Destination

Duration

Goal

Instrument

Location/Space

Manner

Means

Purpose

Range

Result

Source

Time

Attribute Categories

Color

External and Internal Dimensions

Form

Gender

General Dimensions

Linear Dimensions

Motion Conjoined with Force

Motion in General

Motion with Reference to Direction

Order

Physical Properties

Position

State

Temperature

Use

Variation

Figure 1. Thirty-Six Semantic Categories.

Prior to TREC, there were 3,000 entries in the lexicon

established by manual examination of roughly 6,000 of the

most frequent words occurring in NASA KSC text. For

TREC, we made 1,000 new entries by examination of 1,700

frequent words occurring in the training text and the 52
training topics. Since the 1911 edition of Roget's Thesaurus

has become public domain, we also created software which

automatically extracted approximately 20,000 lexicon

entries. However, we did not have enough time to explore

the use of these entries.

In order to explain the assignment of semantic categories

to a given term using Roget's Thesaurus, consider the brief

index quotation for the term "vapor":

vapor
n. fog

fume
illusion

spirit

steam
thing imagined
be bombastic
bluster

boast
exhale
talk nonsense

404.2
401
519.1

4.3
328.10
5353
601.6
911.3
910.6
310.23
547.5

The eleven different meanings of the term "vapor" are given

in terms of a numerical category. We have developed a

mapping of the numerical categories in Roget's Thesaurus to

the thematic role and attribute categories given in Figure 1.

In this example, "fog" and "fume" correspond to the attribute

State; "steam" maps to the attribute Temperature; and "ex-

hale" is a trigger for the attribute Motion with Reference to

Direction. The remaining seven meanings associated with

"vapor" do not trigger any thematic roles or attributes. Since

there are eleven meanings associated with "vapor," we
indicate in the lexicon a probability of 1/11 each time a

category is triggered. Hence, a probability of 2/1 1 is assigned

to State, 1/11 to Temperature, and 1/11 to Motion with

Reference to Direction. This technique of calculating prob-

abilities is being used as a simple alternative to a corpus

analysis. It should be pointed out that we are still

experimenting with other ways of calculating probabilities.

Figure 2 shows lexicon entries for prepositions as a sample

of the lexicon used in our experiments. These entries are

somewhat misleading. Most prepositions trigger too many
semantic categories to be of real use. The prepositions

"during" and "until" are examples of useful prepositions.

33 Extended Computation of the Similarity Measure

The probabilistic details of a semantic lexicon and the

computation of semantic weights can be found in [9]. A
detailed explanation of the manner in which we combine

semantic weights and keyword weights can be found in [8].

Essentially we treat semantic categories like indexing

terms, and the probabilities introduced by a semantic lexicon

mean that the frequency of a category in a document becomes

an expected frequency and the presence of a category in a

document becomes a probability for the category being

present. This means that the document frequency for a

category becomes an expected document frequency, and this

enables an inverse document frequency to be calculated for

a category.

201

after: Time(3), None(3), External and Internal Din3ensions(2), Motion with Respect to Direction, Order, Location/Space
above: Amount(2), Location/Space, None{2), Linear Dimensions(2), Order, External and Internal Dimensions, Position

as: Condition, Comparison, Manner, None(2), Amount
at: Condition, Location/Space, Manner, Time, Position, External and Internal Dimensions, Duration
atop: Location/Space, Position

before: Location/Space, Time(4), External and Internal Dimensions, Motion with Respect to Direction, Order, None(2), Position

below: Motion with Respect to Direction, None(2), Amount, State, Linear Dimensions, Location/Space, Position

between: Comparison, Duration, External and Internal Dimensions, Location/Space, Position, Amount
by: Amount, Conveyance, Location/Space, Time, Position, External and Internal Dimensions, Means, Order, Motion with Respect

to Direction, Duration, None
during: Duration, Time
except: Condition, None(2), Order, Amount(2)
for: Duration, Goal, Purpose, Variation, Destination, Beneficiary, Amount, Range
from: Cause, Source, Time, Motion with R^pect to Direction(2), Amount, Location/Space, Position, Instrument

in: Instrument, Location/Space, Purpose, Time, Motion with Respect to Direction(5), External and Internal Dimensions(2), Position,

Condition, Goal, Means
into: Condition, Location/Space, Time, Motion with Respect to Direction, External and Internal Dimensions, Position, None
like: Comparison(3), Amount(2), Condition, Manner, None(7)
of: Cause, Location/Space, Source, None, Time, Duration, Position

on: Condition, Conveyance, Location/Space, Source, Time, Linear Dimensions(2), Motion with Respect to Direction, General

Dimensions, Position, Means, External and Internal Dimensions, Purpose

over: Duration, Location/Space, Time(2), Order, Linear Dimensions(3), Amount(4), General Dimensions, Motion with Respect to

Direction, External and Internal Dimensions, Position, Degree, Condition

per: Means, Order(2)

through: None, Order, Goal, Linear Dimensions, Means, Time, Location/Space, Position, Motion with Respect to Direction

to: Accompaniment, Beneficiary, Condition, Degree, Location/Space, Purpose, Result, Time, General Dimensions, Position,

Motion with Respect to Direction(2), Comparison
under: Condition, Location/Space, Position, Order, Degree, None, Amount, Linear Dimensions(3)
until: Condition, Time
upon: Condition, Conveyance, Source, Time, None, General Dimensions, Linear Dimensions, Means, External and Internal

Dimensions, Motion with Respect to Direction, Purpose

with: Accompaniment(2), Comparison, Manner, Result, Amount(3), Means, None, Order, Location/Space, Position, Time
within: Range, External and Internal Dimensions(2), Time, Degree, Position, Location/Space

without: External and Internal Dimensions, Order, Amount, None(2)

Figure 2. Prepositions and Their Semantic Categories

(Reprinted by Permission of [3]).

For TREC semantic experiments performed after the

September deadline (refer to Section 5.2), we treated

semantic categories like keywords and used the following

normalized similarity coefficient:

t+s

/ 1*3

Y .2(4;)'

where s « 36 is the number of semantic categories. It should

be pointed out that we are stiU performing experiments to

determine a proper blend of keyword and semantic infor-

mation.

4. System Details

The following is an overview of the system we used to

perform theTREC experiments. As pointed out earlier, many
hours of programming and debugging effort were used to

create a system for the TREC experiments.

4.1 The Scanning Process

Under the QA scanning procedure, scanning a document
for indexing terms is a three-step process:

A. A token is scanned.

B. The token is analyzed. It is compared to a list of 166
stopwords, and these words (along with any numbers) are

later discarded. Dates are transformed into a generic format.

to allow for the matching of dates in a variety of different

formats. Non-valid hyphenated words are separated into

multiple tokens. Words that can be abbreviated (as deter-

mined by a list of 122 abbreviations) are replaced by their

abbreviated form. Acronyms of multiple words are detected,

and replaced by their resjiective acronyms.

C. The remainder of the words are stemmed according

to a modified version of the J. B. Lovins stemming
algorithm [5]. In some cases, prefixes are also removed.

The scanning procedure for the TREC experiments is a

modification of the QA scanning procedure, in which only

the words found in the text fields of the documents are

tokenized. In order to speed up text processing, the amount
of analyzing in step B is reduced. Dates are no longer

transformed, and abbreviations and acronyms are not created.

The stemming algorithm and removal of prefixes in step C
remains unchanged.

For the TREC scanning procedure, an additional step is

added. During this extra step, a hashing algorithm is used to

assign each indexing term a unique 32-bit integer value,

whidi we call a stem code.

4.2 Data Files

After a document is proc^essed by theTREC version of the

QA System, four primary data files are created. These are

the document weight file, the inverted index file, the inverted

data file, and the document name file.

202

The document weight file is a binary file c»ntaining a list

of floating point numbers. These numbers are ordered
sequentially by document number, and represent the sum-
mation of the weight in the query squared for a particular

document's keywords.

The inverted index file is ordered by stem code. Each code
has two file pointers, one pointing to the first block of data

in the data file, and the second pointing to the last block of
data. The inverted data file then consists of blocks of data,

containing pairs of document numbers that the code is found
in, and the code's frequency within that document. The
blocks are linked together to form a list.

The document name file consists of a list of pointers into

the original text file.

For Vol. 1, both the document weight file and the inverted

index file were two megabytes. The inverted data file was
approximately 385 megabytes, and the document name file

was two megabytes.

4J Basic Procedure

For the TREC experiments, we did the following:

Step 1 : This step involves matching every legitimate stem

in the document collection with a unique integer value. This

is done with a linear hashing function. A table containing

this mapping, along with the number ofdocuments each code
is found in, is temporarily saved for use in Step 2.

Step 2 ; This step creates the four data files described

above. The entire database is scanned, with the four files

being created on the fly. Once this is accomplished, the table

from Step 1 is no longer necessary, and is discarded.

Step 3 : Relevant documents for each query are selected

using the Jaccard similarity coefficient. The top 200 docu-

ments for each query are then determined.

The above three steps were followed to create the results

for the September deadUne. In the next section we present

our "official" experiments and results, and some "unofficial"

experiments and results.

5. Experiments and Results

Our experiments were intended to be Category A
experiments with two results submitted for each ranking task.

One ranking result would be for just keywords, the other

ranking result would be for keywords combined with

semantics. All query construction was automatic, and the

treatment of ad-hoc routing queries was identical.

We also performed experiments concerning the expected

behavior of string hashing functions and the use of part-of-

speech tagging to improve retrieval performance. These
experiments are not reported here.

As an example of our automatically built ad-hoc and

routing queries, consider Topic 004 reproduced in Figure 3.

Figure 4 indicates the keyword and semantic information

generated by the QA System for this topic. The first part of

Figure 4 indicates the stems along with their frequencies

found in the query. The second part of Figure 4 indicates the

semantic categories also found in the query along with their

cxp)ected frequencies and probabiHtv present.

It is important to note that the topic represented in Figure

3 and Figure 4 has generated many semantic categories and

the probability present for most of them is close to, or at.

100%. This is mainly due to the length of the text involved.

We discovered that, for theTREC document collection, each
document generated many semantic categories with high

probability present. Because we treated semantic categories

like keywoixls, this caused semantic weights to be essentially

useless.

For the TREC September deadline, we were only able to

submit a routing experiment using a keywording approach.

The results of this experiment, computed with the aid of Chris

Buckley's SMART evaluation program [1], are shown in

Figure 5. The results are not good. In Section 6, we discuss

what impeded our experiments.

Further "unofficial" experiments were designed to test the

use of semantics. The main goal of our experiments was to

demonstrate that our original routing results could be
improved through the use of semantic analysis. In order to

do this, we made two modifications to our approach. The
first change involved dividing the original TREC documents
into paragraphs. The second change involved a semantic
analysis when calculating the list of relevant documents.

Our experiments involved the use of only six routing

queries (for topics 001, 002, 003, 007, 017, and 022). These
topics were selected because our original results for them
were poor. Through the use of semantic analysis, we hoped
to significantly improve our results. Figure 6 shows the

precision-recaU statistics for the six "poor" queries using the

retrieval results which created the statistics in Figure 5.

When analyzing our results, we computed aU precision-

recall tables through the use of Chris Buckley's SMART
evaluation program [1]. The relevancy Msts used were those

produced before November 1 (the original qrels for the

routing queries). We did not use the modified results that

were distributed later for Query 017. This should not affect

our results, though, because our experiments were aimed only

at improving our precision-recall averages, and the relevancy

results used were consistent from one experiment to the other.

5.1 Re-ranking of Documents

In an effort to demonstrate that semantics could affect

retrieval in the TREC environment, we used the original QA
System with a semantic lexicon containing TREC words as

described in Section 3.2. We created a separate database for

each query we considered, for a total of six databases. Each
database contained only the documents that we originally

judged in the top 250 for each query. Because of this, when
wecomputed new relevancy lists wewere simply rearranging

the order of the same 250 documents, not bringing in new
documents.

Figure 7 reveals the precision-recaU statistics when orig-

inally retrieved documents for a query are used as a document
collection and re-ranked by imposing the query again. There

is a 25.8% inCTease when comparing the 11 -pt average here

to the U-pt average of the originally retrieved text (Figure

6).

To determine the ranking of a particular document with

paragraph divisions, we defined the similarity coefficient of

a document to be equal to the highest coefficient associated

with one of its corresf>onding paragraphs. The paragraph

divisions were automatically constructed from the original

text. The precision-recall statistics for paragraphs being used

as documents are shown in Figure 8. There is an 18.8%

203

<top>

<head> Tipster Topic Description

<num> Number: 004

<dom> Domain: International Finance

<top> Topic: Debt Rescheduling

<deso Description: Document will discuss a current debt

rescheduling agreement between a developing country and
one or more of its CTeditor(s).

<narr> Narrative:

A relevant document will discuss a current debt rescheduling

agreement reached, proposed, or being negotiated between a

debtor developing country and one or more of its creditors,

commercial and/or official. It will identify the debtor country

and the creditor(s), the repayment time period requested or

granted, the monetary amount requested or covered by the

accord, and the interest rate, proposed or set.

<con> Concept(s):

1. rescheduling agreement, accord, settlement, pact

2. bank debt, commercial debt, foreign debt, trade debt,

medium-term debt, long-term debt

3. negotiations, debt talks

4. creditor banks, creditor countries/governments, Paris Club

5. debtor countries, developing countries

6. debt package

7. debt repayments

8. restructuring, rescheduling existing loans

9. lower interest-rate margin, easier terms, more lenient terms

<fac> Factor(s):

<nat> Nationality: Developing country

<time>Time: Current

</fac>

<def> Definition(s):

Debt Rescheduling - agreement between creditors and debtor

to provide debt reUef by altering the original payment terms

of an existing debt. This is most often accomplished by
lengthening the original schedule for principal and interest

payments, and deferring interest payments. Done most
publicly by developing countries and their bankers, but often

less publicly by other willing creditors and debtors, e.g.,

governments, banks and companies. Much in vogue in the

early 1980s, the road to rescheduling for countries in crisis

runs as follows: when a country borrows so much that its

lenders grow nervous, the banks start lending for shorter and
shorter maturities. Eventually the country, though stiU paying

interest on its debt, is unable to make p>ayments on the

principal. The country is then forced to request a rescheduling,

which means that it is able to escape its immediate repayment
commitments by converting short-term loans into longer-term

ones. A country wishing to reschedule its official debt tal

</top>

Figures. Topic 004.

Stems Frequency Stems Frequency

tal

on
r

longer
oLJVJi I

WV/lllllllLIil ililiilWHJi

aoi
r

mcdn
7

fore
nn pay
though J eventu
mstur

start

ncrv prow
lender borrow
follow J run
cris

1
road

ear VOPU

wil
i

puuiic

defer nrinrHn

length accomnl
origin alter

ICilCl prov

margin lower
loan exist

club L/dL

talk

long-terni term
med trad
finrpi (Tn UdllN.

rat

cover
}amount monet

gidllL rcqucal aJ
paym 1

ofiic 2
commerc 2 negoti 2
propos 2 reach 1

relev 1 credit 7
countr 13 develop 5
agre 4 cur 3
discus 2 docum 2
schedl 10 debt 22
fin 1 intern 1

Semantics
Expected Probability

Frequency Present

Linear Dimensions 0.300000 0.300000
Motion with Reference to Direction 2.000000 1.000000
Accompaniment 0.333333 0.333333
Condition 2.000000 0.937500
External and Internal Dimensions 0.333333 0.333333
Time 5.744589 1.000000
Duration 1.291667 0.819444
PurfKJse 2.000000 1.000000
Color 2.333333 0.941472
Position 6.071428 0.999654
Location/Space 6.071428 0.999654
Variation 5.933333 1.000000
Amount 53.412807 1.000000
Order 6.833333 1.000000

Figure 4. Automatically Generated Query for Topic 004.

204

Top ranked evaluation Top ranked evaluation

Run number: UCFQAl (category B) Run number: 1

Num_queries: 19 Num queries: 6
Total number of documents over all quenes Total number of documents over all quenes

Retrieved: xw Retrieved: 1 OAA

Kelevant: Relevaat: OOJ
Rel_ret: 31 / Rel_ret:

Recall - Precision Averages: Recall - Precision Averages:

at 0.00 0.5146 at 0 00 0.4585
at n in 0.2645 at n inal \f.x\f 0.21 13

at 0.20 o!l735 at 0.20 0.0775

at 0.30 0.1006 at 0.30 0.0315

at 0.40 0.0693 at 0.40 0.0000

at 0.50 0.0107 at 0.50 0.0000

at 0.60 0.0069 at 0.60 0.0000

at 0.70 0.0000 at 0.70 0.0000

at 0.80 0.0000 at 0.80 0.0000

at 0.90 0.0000 at 0.90 0.0000

at 1.00 0.0000 at 1.00 0.0000

Average precision for all points Average precision for all points

11 -pt Avg: 0.1037 11 -pt Avg: 0.0708

Average precision for 3 intermediate points Average precision for 3 intermediate points

(0.20, 0.50, 0.80) (0.20, 0.50, 0.80)

3-pt Avg: 0.0614 3-pt Avg: 0.0258

Recall: Recall:

at 5 docs: 0.0162 Exact: 0.2109

at 15 docs: 0.0362 at 5 docs: 0.0072

at 30 docs: 0.0692 at 10 docs: 0.0128

at 100 docs: 0.2156 at 30 docs: 0.0469

at 200 docs: 0.2899 at 100 docs: 0.1374

Precision: at 200 docs: 0.2109

at 5 docs: 0.2737 Precision:

at 15 docs: 0.2211 Exact: 0.1267

at 30 docs: 0.2088 at 5 docs: 0.2000

at 100 docs: 0.1932 at 10 docs: 0.1833

at 200 docs: 0.1361 at 30 docs: 0.1944

Figure 5. Results for Experiment Completed by
September E)eadline.

Top ranked evaluation

Run number: 1

Num_queries: 6
Total number of documents over all queries

Retrieved: 1200
Relevant: 863
Rel_ret: 147

Recall - Precision Averages:

at 0.00 0.3486

at 0.10 0.1676

at 0.20 0.0749

at 0.30 0.0279

at 0.40 0.0000

at 0.50 0.0000

at 0.60 0.0000

at 0.70 0.0000

at 0.80 0.0000

at 0.90 0.0000

at 1.00 0.0000

Average precision for all points

11-ptAvg: 0.0563

Average precision for 3 intermediate points

at 100 docs:

at 200 docs:

0.1683

0.1267

Figure 7. Results of Keywording with Document Divisions.

Top ranked evaluation

Run number: 1

Num_queries: 6

Total number of documents over all queries

Retrieved: 1200
Relevant: 863
Rel_ret: 157

Recall - Precision Averages:

at 0.00 0.4096

at 0.10 0.2089

at 0.20 0.0832

at 0.30 0.0340

at 0.40 0.0000

at 0.50 0.0000

at 0.60 0.0000

at 0.70 0.0000

at 0.80 0.0000

at 0.90 0.0000

at 1.00 0.0000

Average precision for all points

U-ptAvg: 0.0669

Average precision for 3 intermediate points

3-pt Avg: 0.0250 3-pt Avg: 0.0277

Recall: Recall:

Exact: 0.1997 Exact: 0.2167

at 5 docs: 0.0033 at 5 docs: 0.0121

at 10 docs: 0.0062 at 10 docs: 0.0167

at 30 docs: 0.0382 at 30 docs: 0.0462

at 100 docs: 0.1212 at 100 docs: 0.1392

at 200 docs: 0.1997 at 200 docs: 0.2167

Precision: Precision:

Exact: 0.1225 Exact: 0.1308

at 5 docs: 0.1000 at 5 docs: 0.2667

at 10 docs: 0.0833 at 10 docs: 0.1833

at 30 docs: 0.1556 at 30 docs: 0.1833

at 100 docs: 0.1550 at 100 docs: 0.1650

at 200 docs: 0.1225 at 200 docs: 0.1308

Figure 6. Results for Six Poorly Performing Queries using

Experiment Completed by September Deadline.

Figure 8. Results of Keywording with Paragraph Divisions.

205

increase when comparing the U-pt average here to the U-pt
average of the originally retrieved text (Figure 6).

The re-ranking of documents using keywords was done in

order to establish a baseline for the semantic experiments

reported in the next subsection. The increase in retrieval

performance because of the re-ranking was a surprise.

According to Sparck Jones' criteria, the increases of 25.8%
and 18.8% would each be categorized as "significant" (greater

than 10.0%) [4].

5.2 Semantic Experiments

Essentially, what we are trying to show in this section is

that semantics can be useful if documents do not get larger

than a paragraph.

Figure 9 displays results when semantic similarity is

combined with keyword similarity for the case that originally

retrieved TREC documents are used. These results can be

compared to those in Figure 7 (the same documents with a

strictly keywording approach). Comparing the 11 -pt average

for the two methcxis shows a 0.7% dcCTcase when going from

the strictly keywording results to the combined semantic with

keywording results. According to Sparck Jones' criteria [4],

this is not a noticeable decrease. But, certainly, semantics

did not help.

The explanation for this is that when the size of adocument
is large, a greater number ofsemantic categories are triggered

in the document. Also, the probability present for each
category in a document is often very close to 100%. Con-
sequently, almost every semantic category becomes present

in every document causing the semantic category weights to

become very low and useless.

To remedy this problem, we used the database that was
constructed with paragraph divisions, and computed rele-

vancy lists using the combined semantic and keywording
approach explained in Section 3.3. The results are shown in

Figure 10. The statistics there can be compared to those in

Figure 8 (the same documents with a strictly keywording
approach). When going from a keywording approach to a

combined semantic and keywording approach, the 11 -pt

average increased by 7.9%. According to Sparck Jones'

criteria, this change would be classified as "noticeable"

(greater than 5.0%) [4].

The two semantic experiments reported here demonstrate

the main thing that we have learned. Our semantic approach

to text retrieval is only useful when documents are no larger

than a paragraph.

Top ranked evaluation Top ranked evaluation

Run number: 1 Run number: 1

Num queries: 6 Num_queries: 6

Total number of documents over all queries Total number of documents over all queries

Retrieved: 1200 Retrieved: 1176

Relevant: 863 Relevant: 863

Relret: 155 Relret: 158

Recall - Precision Averages: Recall - Precision Averages:

0.4556at 0.00 0.4370 at 0.00

at 0.10 0.2250 at 0.10 0.2231

at 0.20 0.0789 at 0.20 0.0845

at 0.30 0.0329 at 0.30 0.0294

at 0.40 0.0000 at 0.40 0.0000

at 0.50 0.0000 at 0.50 0.0000

at 0.60 0.0000 at 0.60 0.0000

at 0.70 0.0000 at 0.70 0.0000

at 0.80 0.0000 at 0.80 0.0000

at 0.90 0.0000 at 0.90 0.0000

at 1.00 0.0000 at 1.00 0.0000

Average precision for all points Average precision for all points

0.072011-pt Ave: 0.0703 U-pt Avg:

Average precision for 3 intermediate points Average precision for 3 intermediate points

(0.20, 0.50, 0.80) (0.20, 0.50, 0.80)

0.02823-pt Avg: 0.0263 3-pt Avg:

Recall: Recall:

Exact: 0.2133 Exact: 0.2159

at 5 docs: 0.0072 at 5 docs: 0.0096

at 10 docs: 0.0128 at 10 docs: 0.0171

at 30 docs: 0.0508 at 30 docs: 0.0513

at 100 docs: 0.1378 at 100 docs: 0.1456

at 200 docs: 0.2133 at 200 docs: 0.2159

Precision: Precision:

Exact: 0.1292 Exact: 0.1332

at 5 docs: 0.2000 at 5 docs: 0.2333

at 10 docs: 0.1833 at 10 docs: 0.2000

at 30 docs: 0.2000 at 30 docs: 0.2167

at 100 docs: 0.1700 at 100 docs: 0.1767

at 200 docs: 0.1292 at 200 docs: 0.1317

Figure 9. Results of Semantics with Document Divisions. Figure 10. Results of Semantics with Paragraph Divisions.

206

It should be noted that the semantic experiments reported

here were crude. Our lexicon did not have enough TREC
words, and we used a blend of keyword and semantic weights

that was not the best. Sowe expect that better semantic results

for paragraphs can be achieved (refer to Section 6).

6. Failure Analysis

In general our participation in the TREC experiments was
impeded by the following:

PC DOS Platform . This platform has a serious memory
addressing restriction which results in memory page swap-
ping and this seriously affects the speed of processing,

especially during creation of inverted files and index

structures. We can solve this problem by moving to an OS/2
or UNIX platform.

Extra Semantic Processing Time . Our semantic proba-

bilistic and statistical calculations more than double the

processing time for indexing and statistical ranking of

retrieved documents. Again, we can solve this problem by
moving to an OS/2 or UNIX platform.

Time to Build Semantic Lexicon . We were only able to

incorporate 1000 frequently occurring words in the training

text within our semantic lexicon. We did not have enough

time to process the test text for the ad-hoc queries. This

problem can be solved by having archival data distributed

earlier. We suspect that by having more TREC words in our

semantic lexicon, better results could have been achieved in

Section 5.2 when paragraphs are used as the basis for retrieval.

Unknown Blend for Semantic and Keyword Weights .

There are three main aspects to our blend of semantic and

keyword weights within the vector processing model:

(i) The Proper Probabilities to Use for the Semantics

Triggered by a Word. For example, we let the word
"vapor" trigger State with 18% probability, Tem-
perature with 9% probability, and Motion with

Reference to Direction with 9% probability. We
have several techniques for determining probabili-

ties such as these.

(ii) The Scaling of Keyword Weights and Semantic

Weights. For example, in a Question/Answer
environment where queries are the length of a

sentence and documents are either a sentence or at

most a paragraph, we have been successful by

forcing semantic similarity to be approximately 1/3

of keyword similarity when the two are combined

in processing small document collections (less than

1000 documents). There was no scaling for the

experiments ref)orted in Section 5.2; we suspect

better results could have been achieved.

(iii) Independent Semantic Weights and Keyword
Weights. A valid criticism of our research has been

that the semantic contribution from a word in a

document should be kept independent of the word's

own similarity contribution if the word is a keyword

in common with the query.

The overall problem of proper blend can be solved by

spending more time using TREC test documents, test topics,

and good test relevance judgments to run many retrieval

experiments to establish the correct blend.

Number of Semantic Categories . Another way to solve

the problem of long documents causing semantic weights to

be of little value is to have more semantic categories. A large

number of "semantic" categories could be obtained (for

example) by using ail the categories and/or subcategories

found in Roget's Thesaurus, instead of the 36 semantic

categories we use. This would be a deviation from database

semantic modeling but it probably should be examined.

Block-split Tree Structured Files . The QA System used

B+ tree structures for implementing inverted files and this

actually slowed the system in our DOS environment. The
QA System also had severe storage overhead due to storage

of character strings in the B+ trees. We have solved these

two problems by implementing a separate system using a

hashing function to establish codes for strings.

TREC Document Length . Semantic experiments like

those reported in Section 5.2 have shown that documents
larger than a paragraph cause our semantic approach to be of

little value. This problem can be corrected by considering

paragraphs as a basis for document retrieval.

Finally, we spent too much time on work that was never

incorporated in our experiments. We originally designed an

efficient method of inverting data files, but it could not be

used for routing queries. Also, trying to do semantic

part-of-speech tagging experiments using SQL/DS slowed us

down.

References

[1] C. Buckley, SMART Evaluation Program (for TREC),
Cornell SMART Group, Cornell University.

[2] C. Date, An Introduction to Database Systems, Vol. I,

Addison Wesley, 1990.

[3] HeUo Software, P. O. Box 494, Goldenrod, FL 32733.

[4] K. Sparck Jones and R. Bates, "Research on Automatic
Indexing 1974-1976," Technical Report, Computer
Laboratory, University of Cambridge, 1977.

[5] J. Lovins, "Development of a Stemming Algorithm,"

Mechanical Translation andComputationalLinguistics,
Vol. 11, No. 1-2, pp. 11-31, March and June, 1968.

[6] Roget's International Thesaurus, Harper & Row, New
York, Fourth Edition, 1977.

[7] G. Salton, Automatic TextProcessing, Addison-Wesley,

1989.

[8] D. Voss and J. Driscoll, "Text Retrieval Using a Com-
prehensive Semantic Lexicon," Proceedings ofISMM
First International Conference on Information and
Knowledge Management, Baltimore, Maryland,

November 1992.

[9] E. Wendlandt and J. Driscoll, "Incorporating a Semantic

Analysis into a Document Retrieval Strategy," Pro-

ceedings of the Fourteenth Annual International

ACM/SIGIR Conference on Research and Development
in Information Retrieval, Chicago, Illinois, pp. 270-279,

October 1991.

207

CLASSIFICATION TREES FOR DOCUMENT ROUTING

A Report on the TREC Experiment

Richard Tong, Adam Winkler, Pamela Gage

Advanced Decision Systems

(a division of Booz*Allen & Hamilton)

1500 Plymouth Street, Mountain View, CA 94043

1. Introduction

In this paper we describe an approach to document routing on the TREC corpus that

employs a technique for the automatic construction of classification trees. The approach
makes use of the Classification and Regression Trees (CART) algorithm that has seen

application in various areas of machine learning [1,2].

Our initial work with this algorithm [3] has demonstrated that probabilistic struc-

tures can be automatically acquired from a training set of documents with respect to a

single target concept, or a set of related concepts. These structures can then be applied to

individual documents to derive a posterior probability that the document is about a par-

ticular target concept. In addition, CART provides the user with a mechanism for explic-

itly controlling the precision and recall performance trade-offs.

In the CART approach, the task is to provide a direct assessment of the probability

that a given concept is in a document given all possible combinations of evidence. Classi-

fication trees are used as the probabilistic structure for representing this direct assess-

ment. When used to perform the document routing task, the CART algorithm takes as

input a collection of example documents (the training set), each of which consists of a

known class assignment and a vector of features (e.g., whether or not the document is

about the topic of interest, together with a list of the feature words found in the docu-

ment). In the general case, the feature values may be boolean, integer, real or nominal

and, in addition, may be both noisy and incomplete. The output from CART is a binary

decision tree that can be used to classify subsequent documents for which the class is not

known. When the training set is noisy, trees of maximal size are invariably too large in

that a smaller tree will perform better in terms of classification accuracy. This is the stan-

dard statistical "overfitting" problem. CART addresses the overfitting problem via tree

prurung and error estimation algorithms that locate the "right sized" tree, ensuring a

parsimonious, accurate classifier.

The remainder of the paper is divided into a number of sections. In Section 2 we
briefly describe the processing steps performed by our system, first to generate the opti-

mal classification tree and then to use the tree for classification. In Section 3 we illustrate

how the TREC data is processed. In Section 4 we discuss our "official" TREC results.

209

Then finally in Section 5 we offer some observations on the overall value of using CART
as the basis of a document routing system.

2. The CART Algorithm

CART has been shown to be useful when one has access to datasets describing

known classes of observations, and wishes to obtain rules for classifying future observa-

tions of unknown class—exactly as in the document routing problem. CART is particu-

larly attractive when the dataset is "messy" (i.e., is noisy and has many missing values)

and thus unsuitable for use with more traditional classification techniques. In addition,

and particularly important for the document routing application, if it is important to be

able to specify both the misclassification costs and the prior probabilities of class mem-
bership then CART has a direct way of incorporating such information into the tree

building process. Finally, CART can generate auxiliary information, such as the expected

misclassification rate for the classifier as a whole and for each terminal node in the tree,

that is useful for the document routing problem.

Figure 1 shows how the CART algorithm is used first to construct the optimal classifi-

cation tree and then to generate a classification decision. The upper part of the diagram

Raw
Training

Data

CART
Training Vectors

Largest

Tree (Tmax)

Feature

Extraction

I
Class Specs.

Feature Specs.

Class Priors

Cost Function

Tree Tree Tree

Growing Pruning
—^ Selection

Optimal

Tree (T*)

Nested Sub-Trees

(Tnnax>T1 >T2 ... >Tn)

Raw
Test

Data

Feature

Vectors

Feature

Extraction

Feature Specs.

Classifier
Classification

Decision

I
Optimal

Tree

Figure 1: CART Processing Flow

210

shows the four sub-processes used to generate the optimal tree, T*. The "raw" training

data (i.e., the original texts of the articles), together with the class specifications (i.e., the

training data relevance judgments) and the feature specifications (i.e., the words defined

to be features), are input to the Feature Extraction Module. The output is a set of vectors

that record the class membership and the features contained in the training data. These
vectors, together with class priors and the cost function (these are optional), are input to

the Tree Growing Module which then constructs the maximal tree (Tmax) that character-

izes the training data. Since this tree overfits the data, the next step is to construct a series

of nested sub-trees by pruning Tn^x to the root. The sequence of sub-trees (Tm^x > Ti >

... >Tn) are input to the Tree Selection Module which performs a cross-validation analy-

sis on the sequence and selects that tree with the lowest cross-validation error^ This is

T*.

The lower part of the diagram shows how T* is used to classify documents of

unknown class. As in tree building, the "raw" test data (i.e., the unprocessed texts of the

test documents) are passed, together with the feature specifications, to the Feature

Extraction Module, which in turn generates a feature vector for each text. These vectors

are passed to the Classifier Module which uses the optimal tree to make the classification

decision (i.e., whether the document is relevant or not).

3. Working with the TREC Corpus

Since the application of the CART algorithm to document routing is a relatively unex-

plored area of research (see [3] for some of our preliminary results with a small test cor-

pus), we chose to participate in TREC as a Category B group. That is, we worked only

with the Wall Street Journal articles and used only the first 25 query topics. In addition,

since CART is intended to be used with training data, it most readily lends itself to the

document routing problem. Thus we did not address the ad hoc retrieval problem in our

experiments.

Our primary goal in working with the TREC data was to develop a totally automatic

approach to generating document classification trees, working only with the information

need statements and the training data provided. That is, we wanted to test the hypothe-

sis that CART would be a valuable tool in situations where the user can formulate an

information need in some detail and can provide examples of documents that are rele-

vant and examples of those that are not. Such a scenario is common in organizations that

monitor large volumes of real-time electronic documents.

To illustrate how we used the information need statements, consider the following

topic description:

1. The algorithm actually minimizes with respect to both the cross-validation error and the tree

complexity. So that if two trees have statistically indistinguishable error rates, then the smaller of

the two trees will be selected as optimal.

211

<top>
<head> Tipster Topic Description
<nuro> Number: 001

<doin> Domain: International Economics
<title> Topic: Antitrust Cases Pending
<desc> Description:
Document discusses a pending antitrust case.

<narr> Narrative:
To be relevant, a document will discuss a pending antitrust case
and will identify the alleged violation as well as the government
entity investigating the case. Identification of the industry and
the companies involved is optional. The antitrust investigation
must be a result of a complaint, NOT as part of a routine review.
<con> Concept (s):

1. antitrust suit, antitrust objections, antitrust investigation,
antitrust dispute
2. monopoly, bid-rigging, illegal restraint of trade, insider
trading, price-fixing
3. acquisition, merger, takeover, buyout
4. Federal Trade Commission (FTC), Interstate Commerce Commission
(ICC), Justice Department, U.S. Securities and Exchange Commission
(SEC) , Japanese Fair Trade Commission
5. NOT antitrust immunity
<fac> Factor(s)

:

<def> Definition (s)

:

Antitrust - Laws to protect trade and commerce from unlawful
restraints and monopolies or unfair business practices.
Acquisition - The taking over by one company of a co trolling
interest in another, also called a takeover. The action may be
friendly or unfriendly.
Merger - The acquisition by one corporation of the stock of

another. The acquiring corporation then retires the other's stock
and dissolves that corporation. Therefore, only one corporation
retains its identity in a merger.
</top>

Since this is a very comprehensive description it contains many topic-specific words.

Recognizing this, our approach is to:

• extract the <desc>, <narr>, <con>, and <def > fields from the topic

specification,

• concatenate them, removing the SGML-style tags and the field labels (i.e.,

the Description
:

, Narrative :, Concept (s) : , and Def inition (s) :

strings),

• map all the words into lowercase, remove duplicates and stop words
from the resulting description, and

• use the remaining list of words as the set of features.

2. We used a stop word list published by Fox [4] that contains 421 words.

212

Note that we do no further processing of the topic text. We do no phrasal analysis, no
stemming, no term expansion and, in particular, we do nothing with the NOT-clauses.

Applying this procedure to the topic above results in the following list of feature

words:

acquisition: antitrust: conmierce : cominission: department:
exchange: ftc : fair: federal: ice: identification: interstate:
japanese: justice: laws: merger: sec: securities: trade: acquir-
ing: action: alleged: bid: business: buyout: called: companies:
company: complaint: controlling: corporation: discuss: dispute:
dissolves: document: entity: fixing: friendly: government: iden-
tify: identity: illegal: immunity: industry: insider: investigat-
ing: investigation: involved: merger: monopolies: monopoly:
objections: optional: pending: practices: price: protect: rele-
vant: restraint: restraints: result: retains: retires: review:
rigging: routine: stock: suit: takeover: taking: trading: unfair:
unfriendly: unlawful:

This feature specification is used as input to the Feature Extraction module (see upper
part of Figure 1) along with the original training data and the relevance judgements
associated with the topic.

A key characteristic of the training data provided for TREC is that there were very

few relevance judgments for each topic. Thus we were only able to generate a limited

number of training vectors to be used by the CART algorithm. For each document in the

training set for which there is a relevance judgement, we determine the number of occur-

rences of each feature (using only the <text > fields). Thus for each topic we get a set of

training vectors that looks like those shown below (augmented here, for presentation

purposes, with the topic and document ids):

001 QO WSJ870320-0188 (0 (0 , 1 , 0 , 5 , 0, 0 , 3 , ... , 6))

001 QO WSJ870320-0069 (0 (2 , 0 , 9 , 1 , 0 , 4 , 1 , 0))

001 QO WSJ870424-0084 (1 (1 , 3 , 0 , 5 , 2 , 0 , 0 , 2))

Where in each vector the first element indicates whether the document is relevant to the

topic (0 mean no, 1 mean yes) and the remainder of the elements represent counts of the

occurrence of the features in the document. Thus document WSJ870320-0188 is not-rele-

vant to Topic 1 and contains zero occurrences of the first feature, one occurrence of the

second feature, etc.

This training data is input to the Tree Growing module (see Figure 1) along with the

cost function and class priors'^. CART then grows the largest tree, prunes this into a set of

nested sub-trees and uses cross validation to suggest the optimal tree. For the example

3. In our "official" TREC experiments we set the priors to be P(rel)=0.01 and P(non-rel)=0.99, and

the ratio of the cost of misclassifying a relevant document to the cost of misclassifying a non-rele-

vant document to be 100:1. That is, we assumed that there are relatively few relevant documents in

the collection and that we want to emphasize recall significantly over precision.

213

above, the optimal tree is:

class 0 (0.000)

company<=0 . 50

class 1 (0.981)

federal<=9 .00

class 0 (0.000)

takeover<=l . 50

class 0 (0.000)

securit ies<=l . 50

class 0 (0.000)

company<=4 . 50

class 0 (0.000)

fair<=0 . 50

class 0 (0.000)

This is a the binary classification tree against which new documents can be tested. The
tree is read from left to right. Branches upwards correspond to "yes" answers to the test

at the node; branches downwards correspond to "no" answers. Class 0 terminals cor-

respond to the "not relevant" decision; class 1 terminals correspond to the "relevant"

decision. The numbers in parentheses are estimates of the probability that the document
is relevant'*.

Thus in this example if a document has fewer than 0.5 occurrences of the word com-
pany (i.e., the word does not appear) then the document is not relevant. On the other

hand if the document has more than 0.5 occurrences (i.e., the word does appear) then

additional features are tested to lead to a classification decision. Note that a test often

requires multiple occurrences of the feature (e.g., for the word federal). Also note that

this tree has only one Class 1 terminal, and that the pattern of features that indicate a rel-

evant document can be written as a logical expression of feature counts. Thus we have:

company>0 & ! fair & company<5
& securities<2 & takeover<2 & federal<10

as a description of a relevant document.

Other overall system features of note are:

• The exact word is used as the basis of the feature, although our imple-

mentation for TREC the actual test is case insensitive and is a substring

match—so the feature fair would match with Fair or FAIR or fairs
as well as with fairground . We do not, though, perform any stemming
per se.

• No additional data structures are needed by CART. That is, we did not

use any external data (e.g., thesauri or knowledge-bases) to help with tree

construction.

• We spent approximately one-person month of effort in developing the

4. These are generated by CART from re-substitution error estimates and are, therefore, overly

optimistic.

214

system infrastructure r\eeded to handle the TREC data and to produce the

official results. We used an "off-the-shelf" version of CART (written in C).

• The data were stored in compressed form and only uncompressed as

needed. This was a satisfactory strategy for tree construction since the

training sets involved relatively few documents. However, the time over-

head was unacceptable when we came to do the actual test classifications.

4. Official Results and Performance Analysis

ADS submitted two sets of results for the routing queries. In the first set (denoted

adsbal) we used the classification trees generated by exactly the information provided
by the training data. In the second set (denoted adsba2) we used trees generated using

an augmented training data. To generate this additional data we randomly selected an
additional block of 50 Wall Street Journal articles from the trairung corpus and then one
of us made the relevance judgements with respect to the 25 topics. This data was then

added to the original collection of relevance judgements to provide a larger training set

from which the second set of trees were grown. As noted above, we used a set of priors

that reflect the low density of relevant documents, together with a cost function that

encourages recall over precision. We also performed a number of auxiliary tests to help

with our interpretation of the official results. These are all described in the following sec-

tions.

4.1 The Baseline Experiment

The baseline experiment (adsbal) was designed to explore how well our approach

could do with absolutely no manual intervention and with the minimum of training

data. So for this experiment we used just those documents in the training set for which
there were relevance judgments.

Table 1 shows the performance on the baseline experiment together with the perfor-

mance from the other Category B systems. We have chosen to show only the number of

relevant-retrieved documents at the 200 document cut-off point since we believe that this

gives a more accurate picture of the ability of the system to perform document routing

than do the precision and recall numbers^.

Table 1: Performance on Baseline Experiment

Topic # # Rel

Rel-Ret @ 200

adsbal Max Median Min

1 131 2 67 32 2

2 172 15 33 21 9

3 304 3 130 48 3

4 20 1 18 7 1

215

Table 1: Performance on Baseline Experiment

Topic # # Rel

Rel-Ret @ 200

adsbal Max Median Min

5 55 4 45 29 4

6 68 4 46 20 4

7 92 1 46 30 1

8 133 4 37 16 2

9 157 13 41 29 13

10 149 94 109 88 46

11 61 15 55 26 9

12 82 14 56 15 3

13 93 7 93 26 7

14 156 38 73 52 23

15 515 29 74 49 23

16 58 2 44 17 2

17 69 23 53 23 9

18 95 38 49 38 14

19 664 74 147 99 56

20 274 111 179 121 56

21 16 12 16 14 0

22 106 28 79 40 8

23 30 2 27 7 2

24 253 37 96 41 29

25 13 1 12 9 1

Overall performance of the baseline case is mixed and our analysis does not reveal

any obvious correlation between performance and factors such as:

• the number of features extracted from the information need statements

(the maximum number was 161, the minimum was 17, with the median
being 39),

• the complexity of the topics (some are straightforward—such as Topic 13
' "Mitsubishi Heavy Industries Ltd.", whereas others involve complex con-

ditionals—such as Topic 1 "Antitrust Cases Pending"),

5. We return to this point in the final section of the paper.

216

• the number of training examples (Table 2 shows the size of the training

sets—notice that for adsbal the set size was approximately 30 for each

topic with approximately 10 relevant instances for each topic), and

• the size of the optimal tree (Table 2 also shows the size of the optimal tree

generated for each topic—this varied from a tree with only one terminal

node to a tree with 10 terminal nodes, with the median being 2 terminal

nodes).

In fact, given the paucity of information actually used to generate the classification

trees, perhaps the most surprising aspect of these results is how well some of the trees

perform. There were many instances in which the adsbal trees generated the minimum
response. However, there were several results around the median score and even one
significantly above the median.

As an example of a tree that performed moderately, consider the optimal tree for

Topic 22 "Counternarcotics." This had only one decision node—a split on the word
coca^. The actual tree is:

class 0 (0.050)

coca<=0 . 50

class 1 (0.862)

That is, the classification is based in the presence of absence of the word coca. If it is

present, then the document is marked as "relevant" and the estimate of the probability of

it being relevant is 0.862; if it is not present, then the document is marked as "non-rele-

vant" but in fact still has a small probability (0.050) of being relevant. As we see from the

table, this tree identifies 28 out of a possible 106 relevant documents, by the 200 docu-

ment cut-off point.

A tree that performed poorly is the one for Topic 9 "Candidate Sightings." Here the

optimal tree had three decision nodes:

class 0 (0.000)

cainp<=0 . 50

class 0 (0.000)

ran<=l .50

class 1 (0.948)

sen<=9 . 00

class 0 (0.000)

Thus a relevant document is one which contains the word camp, the word sen (an

abbreviation for Senator) rune times or less, and has a least two occurrences of the word
ran. This tree only identified 13 of 157 relevance documents and was the worst perform-

ing of the Category B systems.

On the other hand, the tree for Topic 10 "AIDS Treatments" performed very well. It

6. Recall that our feature extraction algorithm would match coca with any word with coca as a

substring. So coca, cocaine and Coca-Cola would all match.

217

also had only one decision node, but correctly identified 94 of 149 relevant documents:

class 0 (0.126)

azt<=0.50
class 1 (1.000)

Thus relevant documents are those that contain the word azt (the name of a drug for

treating AIDS patients).

4.2 The Effect of Additional Training Data

Our second set of official results was designed to investigate the sensitivity of system
performance to the size of the training sets. To provide additional training samples we
randomly selected a block of 50 Wall Street Journal articles'' for which we generated rele-

vance judgements for the first 25 topics. In practice this gave us some additional relevant

articles, but mostly contributed to the non-relevant examples. Table 2 shows the effect of

adding the additional documents—notice that some articles in the new set were already

included in the original training data.

Table 2: Size of Training Sets and Optimal Trees

Topic #

Size of Optimal Tree Size of Training Set

adsbal absba2

adsbal absda2

Total Rel Total Rel

1 7 7 34 7 83 T

2 8 14 31 7 81 8

3 4 5 30 9 80 9

4 3 5 29 12 79 12

5 3 3 30 18 79 18^

6 3 2 28 15 78 15

7 2 3 28 10 78 10

8 1 19 32 7 82 . 8

9 4 4 23 4 73 4

10 2 4 20 12 69 12b

11 2 2 21 12 71 12

12 8 11 35 8 85 8

13 2 2 12 8 62 8

14 10 13 30 5 80 6

7. The articles were in the block starting with WSJ870311-0102 and ending with WSJ870324-0001.

218

Table 2: Size of Training Sets and Optimal Trees

Size of Optimal Tree Size of Training Set

Topic #

adsbal absba2

adsbal absda2

Total Rel Total Rel

15 3 13 27 7 77 10

16 2 3 36 3 86 3

17 2 2 30 12 80 12

18 2 3 18 14 68 14

19 2 3 30 12 80 15

20 2 3 30 14 80 14

21 2 2 33 12 82 12b

22 2 2 28 10 78 10

23 2 2 29 10 79 10

24 2 2 48 10 98 10

25 2 2 39 6 89 6

a. Some relevant documents in the augmented training set already in the original training set.

b. Some non-relevant documents in the augmented training set already in the original training

set.

The new training data did not have a significant impact on the size of optimal tree,

except in those cases where there were additional relevant documents—that is, for topics

6, 8, 14, 15 and 19. The changes here were quite dramatic. For example, in the case of

Topic 8 "Economic Projections" the addition of just one more relevant article changed the

.optimal tree from one with only one terminal node to one with 19! This suggests, of

course, that for this topic the training data do not provide a very representative sample

of texts.

Of more interest, however, is whether these additional training data had any effect on

the overall performance of the system. Table 3 shows the official results for absda2. The

results for adsbal are retained for comparison, as are the results for the other Category B

systems.

Table 3: Performance with Additional Training Data

Topic # # Rel

Rel-Ret @ 200

adsbal absba2 Max Median Min

1 131 2 25 67 32 2

2 172 15 9 33 21 9

219

Table 3: Performance with Additional Training Data

Topic # # Rel

Rel-Ret @ 200

adsbal absba2 Max Median Min

3 304 3 15 130 48 3

4 20 1 1 18 7 1

5 55 4 29 45 29 4

6 68 4 10 46 20 4

7 92 1 22 46 30 1

8 133 4 2 37 16 2

9 157 13 25 41 29 13

10 149 94 69 109 88 46

11 61 15 9 55 26 9

12 82 14 3 56 15 3

13 93 7 25 93 26 7

14 156 38 23 73 52 23

15 515 29 49 74 49 23

16 58 2 17 44 17 2

17 69 23 53 53 23 9

18 95 38 14 49 38 14

19 664 74 56 147 99 56

20 274 111 63 179 121 56

21 16 12 0 16 14 0

22 106 28 8 79 40 8

23 30 2 2 27 7 2

24 253 37 29 96 41 29

25 13 1 1 12 9 1

As for adsbal, the results are mixed. For 10 topics performance improved; for 13 top-

ics performance got worse; and for 2 topics performance was unchanged. We also do not

see any strong correlation between change in performance and change in the number of

positive instances in the training set, or change in the optimal tree size. There is some
indication that the while the extra positive instances tended to produce significant

changes in optimal tree size, these new trees also tend to have poorer performance—sug-

gesting, as we should expect, that the tree construction process is highly sensitive to local

changes in these small training sets. Nevertheless there are some interesting results.

220

For example, the tree for Topic 22 "Counternarcotics" becomes:

class 0 (0.000)

drug<=0 . 50

class 1 (0.905)

Thus although the tree size is unchanged, the test is now on the word drug instead of

coca. As we might expect this turns out to be a much less generally useful test and the

tree only identifies 8 of the relevant articles—actually the minimum retrieved by a Cate-

gory B system.

The tree for Topic 15 "CEO" is one which shows marked change from the adsbal ver-

sion, growing from two decision nodes to twelve, and retrieving 49 relevant documents

instead of 29. The tree is: .

class 0 (0.000)

chief<=0 . 50

class 0 (0.000)

executive<=0 . 50

class 1 (1.000)

company<=0 . 5 0

class 0 (0.000)

executive<=l . 50

class 0 (0.000)

name<=0 . 50

class 1 (1.000)

conipany< = l . 50

class 0 (0.000)

resign<=0 . 50

class 0 (0.000)

chief <=1 . 50

class 1 (1.000)

name<=3 . 50

class 0 (0.000)

executive<=9 . 00

class 0 (0.000)

appoint<=0 . 50

class 0 (0.000)

ceo<=0 . 50

class 0 (0.000)

This is a much more complex structure than the other trees illustrated so far. Note that

there are three terminal nodes that lead to a document being classified as relevant.

Although they are in the same sub-tree defined by the expression:

chief>0 £c ! ceo & lappoint & executive>0 U executive<10 & name<4

they make minor distinctions based on the words company, name, resign and chief.

Thus we have three further tests:

executive<2 U ! company
executive>l & coiT\pany>l & resign>0 & chief>l

executive>l &. coinpany<2 & name>0

221

to separate relevant from non-relevant documents.

Finally, the tree for Topic 17 "Measures to Control Agrochemicals" does the best of all

the Category B systems detecting 53 of the 69 relevant documents. The tree has one deci-

sion node:

class 0 (0.042)

pesticide<=0 . 50

class 1 (0.920)

That is, a test for the presence of the word pesticide—a surprisingly simple structure

given it performance.

4.3 Sensitivity to the Choice of Optimal Tree

Since the choice of optimal tree from the sequence of nested sub-trees is dependent

on the cross-validation error estimates, and since the number of training samples is

rather small, we might expect that there is a possibility that the tree selection process is

in fact in error. To explore the sensitivity of the system's performance to errors in select-

ing the optimal tree we ran an auxiliary experiment for Topic 22 "Counternarcotics".

As in the official experiments, we used the adsbal dataset to generate a sequence of

sub-trees, but instead of selecting just one (i.e., T*), we saved all the trees. We then used

each tree to classify the test data and tabulated the results. These are show in Table 4. The

Table 4: Performance as a Function of Tree Size

Tree No. Tree Size Rev
Rel-Ret

@200
Recall

@200
Precision

@200

1 6 0.3932 12 0.1132 0.0600

2 4 0.5004 1 0.0094 0.0050

3 3 0.3931 24 0.2264 0.1200

4(1-) 2 0.4645 28 0.2642 0.1400

5 1 0.7866

columns of the table record the tree identifier (Tree No.), the size of the tree in terms of

the number of terminal nodes in the tree (Tree Size), the cross-validation error estimate

(R(,y), the number of relevant documents retrieved (Rel-Ret @ 200), and the recall and

precision at the cut-off (Recall @ 200 and Precision @ 200).

For this topic, the maximum tree (Tj) has six terminal nodes and an estimated error

rate of 39%. The minimum tree (T5) has only one terminal node—which in this case clas-

sifies all document as non-relevant—and an estimated error rate of 79%. The optimal tree

(T4) has two terminal nodes but an estimated error rate of 46%.

We see that the optimal tree did in fact generate the best result, increasing our confi-

222

dence that the tree selection process is working as intended despite the small sample

sizes.

4.4 The Use of Surrogate Split Information

A basic problem with the use of classification trees in the TREC experimental envi-

ronment is that although we use the probability of being relevant as a mechanism for

ordering the system's output, this is a very weak method for generating a ranking. In

fact, since we typically have very few "output bins" for any given tree, for most topics

we effectively generated no ordering that would discriminate over the top 200 docu-

ments. In this situation we need to look for a mechanism for generating a "finer-grained"

ranking.

Our second auxiliary experiment was designed to explore the use of the surrogate

split information generated by the CART experiment as a way of ordering the output.

Surrogate splits are a feature of CART used too deal with the problem of missing data.

They define alternative splitting criteria in the case that the primary feature measure-

ment is not available^. In TREC trees these appear as additional tests on the frequency of

occurrence of words. So, for example, in adsbal the optimal tree for Topic 22 "Countern-

arcotics" is:

class 0 (0.050)

coca<=0 . 50

class 1 (0.862)

and the alternatives to the split on the word coca are:

cocaine<=0 . 50 [1.00]

colombia<=0 . 50 [0.84]

drug<=0.5 [0.78]

where the number in brackets indicate how correlated the surrogate split is with the

optimal split. Thus in this example a split on coca and cocaine are identical in term of

their ability to classify the documents. We also show the next two highly correlated

splits.

To use this information for output ranking we took the output from the adsbal tree

for Topic 22 (i.e., the one shown above) and then for each document classified as relevant

by this tree we gave it a weighted score based on the number of surrogate split tests it

also satisfied. Thus if a document contained only the word coca it received a score of

1.00. If a document contained coca and Colombia then it received a score of 1.84. In gen-

eral a document received a score that was the sum of the correlation coefficients for those

tests that were satisfied^.

8. Of course in the document routing problem addressed by TREC we do not have the notion of a

missing measurement—a word is either present or not. However, it is easy to imagine document

routing scenarios in which this does apply—for example, when working with noisy transmis-

sions—so that the surrogate split information would be extremely useful.

223

The effect of using this information is shown in Table 5. The table demonstrates the

impact on system performance for Topic 22 of adsbal. Without any ordering we detected

Table 5: Performance of T* as a Function of Output Ordering

Tree/Output Ordering
Rel-Ret

@200
Recall

@200
Precision

@200

T*: no additional ordering 28 0.2642 0.1400

T*: ordering based on surrogate splits 43 0.4057 0.2150

28 relevant documents in the first 200, but with the ordering scheme just described we
were able to improve this to 43 in the first 200. This in turn translated into an increase of

14 points of recall and 7 points of precision at the 200 document point.

The surrogate splits also give us some insights into the overall behavior of the tree

selection process as the number of training samples change. Thus although the optimal

tree for Topic 22 in adsba2 was:

class 0 (0.050)

drug<=0.50
class 1 (0.862)

with worse performance than the optimal tree for adsbal, when we look at the top three

surrogate splits we see that they are:

cocaine<=0 . 50 [0.89]

coca<=0.50 [0.88]

government<=0 . 5 [0.86]

That is although the optimal split for the augmented training set changed, we still see the

importance of the same set of word features, which in turn indicates are certain stability

in the underlying feature space. We might predict that as the training set increases in size

that we would see the splits also becoming more stable.

4.5. Commentary

The TREC corpus represents a significant challenge for our system. Our previous

results with a small corpus, while encouraging, did not allow us to evaluate how well

the technique might do with realistically sized document collections. Our conclusion

based on the results we have from TREC is that CART does exhibit some interesting

behaviors on a realistic corpus, and that, despite the small size of the training sets and
the restricted choice of features, for some topics it produces competitive results. So

although the overall performance is moderate (relative to the better performing systems

at TREC), we believe that the absolute performance (given that the system is totally auto-

9. As yet, there is no theoretical justification for this algorithm. It does however have the intuitive

property that documents that satisfy additional splits get a higher score in proportion to the

"power" of those splits.

224

matic) is at least encouraging and definitely acceptable in several instances.

Some specific observations on the performance of the current implementation of the

CART algorithm are:

• Relying on the re-substitution estimates for the terminal nodes is a very

weak method for producing an output ranking. The estimates themselves

are not very good and when combined with optimal trees that emphasize
recall over precision give a largely undifferentiated output. As we noted
above, a scheme that makes use of surrogate split information to generate

a post hoc ranking shows much promise as a technique for improving our

scores in the TREC context.

• While our approach is totally automatic, it is restricted to using as fea-

tures only those words that appear in the information need statement.

This is obviously a limitation since the use of even simple query expan-

sion techniques (e.g., stemming and/or a synonym dictionary) is likely to

provide a richer and more effective set of initial features.

• Using words as features is possibly too "low-level" to ever allow stable,

robust classification trees to be produced. At a minimum, we probably

need to consider working with concepts rather than individual words.

Not only would this reduce the size of the feature space but would proba-

bly result in more intuitive trees. The disadvantage of this that it is not

clear where the concepts would come from, other than from a manually
constructed knowledge-base of some sort.

• We need to work with much bigger and more representative training sets.

Our preliminary experiment in this area shows, not surprisingly, that

adding more training examples can lead to dramatic changes in the classi-

fication trees.

As a final comment, we would like to suggest that the overall evaluation paradigm
used in TREC does not properly assess the performance of systems on the routing task.

Although ad hoc retrieval and routing are similar when viewed in terms of the basic tech-

nology, systems designed and built to support these two applications have significantly

different requirements. In particular, operational routing systems do not usually empha-
size output ordering but instead focus on optimizing the trade-off between detection and

false alarm rate. In this respect, at least, we believe that recall and fallout are better indi-

cators of routing performance than recall and precision. Furthermore, artificially limiting

reported output to the first 200 documents automatically discriminates against those

routing systems that actually do attempt to perform the recall/fallout trade-off. A fairer

set-up for the routing component of TREC would be to allow systems to report exactly

those documents marked as relevant. Comparison of systems would be more complex

since different systems will produce different numbers of documents, but individual

scores would give a better picture of routing performance.

225

5. CART as the Kernel of a Document Routing System

Users today are faced with ever increasing amounts on real-time text that must be
sifted for relevant information. This information space is: massive—^both in terms of the

number of sources and the volume of material available within each source; dynamic

—

sources and their contents are changing constantly and especially within the time hori-

zon of any specific analysis problem; and heterogeneous—each source represents infor-

mation in different ways and independently of the others.

In this environment, users require tools that can perform document filtering and
selection that are: easy to learn and use, easily adaptable to changing and ill-defined

information needs, portable across sources and analysis domains, and give good preci-

sion and recall. With our TREC results in hand, we are in a position to briefly consider

the potential role of CART as a central component in such an operational document rout-

ing system.

Figure 2 illustrates how a such a system might be organized. In our scenario, we

documents

Preprocessor

users

non-relevant documents

Compiled

Profiles

real-time processing path

Learning

Algorithms

stored

documents

i L

user

Figure 2: A Document Routing System Concept

imagine that documents enter the system in real-time and after preprocessing to extract

features are passed to the detection module where they are either rejected as being non-

relevant to any of the user profiles stored in the system, or are marked as relevant and

passed to the router for transmission to users. Note that in our proposed architecture,

learning takes place in parallel to actual operation of the real-time routing system so that

the classification trees can be updated as necessary when new training instances become

226

available or when users interests change.

While we would make no claim that CART alone is sufficient to guarantee high-per-

formance detection and routing, we do believe that its ability to work automatically with

any size data set and with any set of specified features means that it can be a very cost

effective component of such a system. Indeed we believe that it is probably best used as

an initial filter to screen out non-relevant documents and that CART's output might then

be fed to a more language-oriented algorithm to decrease the false alarm rate.

To summarize, we consider CART to be an important tool in our arsenal of effective

and efficient document detection and routing technologies. While the results from TREC
are preliminary, we believe that they do demonstrate that CART has a number of advan-

tages over other approaches, namely:

• classification trees are constructed automatically from specifications of

features and a set of examples,

• the learning algorithm generates an "optimal" classifier together with

useful auxiliary data and statistics such as the misclassification probabil-

• prior class probabilities can be used if known,

• specification of the misclassification cost function provides for direct con-

trol of the fallout and recall of the classifier, and

• the classification trees are easily understood and interpreted by end users.

In addition, the CART algorithm is completely language independent, in the sense that it

make no assumptions about the inherent features of the source language of the docu-

ment—all that it requires are "features" and training examples. Further, the features

themselves can be extracted from document externals as well as document internals.

In TREC-2 we will explore some of the extensions discussed in Section 4 to show how
CART can indeed be integrated into a system to help users who are faced with the task of

searching through the "information wilderness."

References

[1] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees. Wadsworth & Brooks, Pacific Grove, CA. 1984.

[2] S. L. Crawford. Extensions to the CART Algorithm. International Journal of Man-

Machine Studies, 31:197-217, 1989.

[3] S. L. Crawford, R. M. Fung, L. A. Appelbaum, and R. M. Tong. Classification Trees for

Information Retrieval. Proceedings of the Eighth International Workshop on Machine Learning

(ML91). Morgan Kaufmann, San Mateo, CA. 1991.

[4] C. Fox. A Stop List for General Text. SIGIR Forum, 41:19-35, Fall/Winter 1989/90.

227

Compression, Fast Indexing, and Structured Queries

on a Gigabyte of Text

Alan Kent

Alistair Moffat

Ron Sacks-Davis

Ross Wilkinson

Justin Zobel

Collaborative Information Technology Research Institute

Departments of Computer Science

RMIT and The University of Melbourne

723 Swanston St, Carlton, Melbourne 3053

Australia

{ajk, alistair, rsd,ross,jz}@kbs.citri.edu.au

1 Introduction

Large document collections present many problems for practical information retrieval. To avoid

unnecessary accesses to the text of the collection during query evaluation, comprehensive in-

dexes are required. It must be possible to create and access these indexes in a reasonable

amount of time, and to store them, and the data itself, in a reasonable amount of space. More-

over, although advanced indexes permit efficient evaluation of conventional ranking measures,

they make only limited use of any structure inherent in the query.

Here we describe two separate streams of research that address these problems. In the first

stream we have over the last two years developed indexing and compression techniques that

allow the text to be stored compressed [2, 8]; provide fast access to document collections via

compressed indexes [2, 9, 16]; create indexes with a fast inversion technique [7]; and permit

fast ranking of large document collections [17]. On the small document collections initially

available to us (the largest was 132 Mb), compressed text and index typically required less than

35% of the space required for the source text; query response times were a few seconds; and

peak memory requirements were less than a Megabyte during query processing. In Section 2

we describe the application of these techniques to the TREC data.

In the second stream of research we used the compression and indexing techniques discussed

above, as well as signature file indexing techniques developed previously by the group [5, 11], to

investigate the extent to which the structure of queries aids the retrieval process. In Section 3

we report on a series of experiments that examine how this structure may be used in both

generation of Boolean queries and in ranking. As part of these experiments we are able to test

the advantage of using adjacent pairs in retrieval.

2 Compression and Inverted File Indexing

We first describe the structure of text databases with inverted file indexes, and how documents

are ranked with regard to a query. Then, in Section 2.3, we describe the compression of the

text of the documents, and in Section 2.4 describe the representation of the inverted file and

229

associated information. The result of applying these techniques to the TREC data is described

in Section 2.5.

2.1 Text databases

Text databases provide access to text documents on the basis of their content. We assume that

access is via the inverted file indexing scheme we have described elsewhere [16]. In this scheme,

each distinct word in the database is held in a vocabulary, which may be an array, or may be

a search structure such as a B-tree. For each word in the vocabulary the inverted index stores

an index entry, a list of the identifiers of documents containing the word. Interleaved with the

identifiers are the number of occurrences of each word in each document. Since the index

entries contain ordinal document identifiers rather than disk addresses, a document mapping

is needed to convert identifiers into addresses. This wiU require either a non-trivial amount

of memory space, or must be stored on disk in an auxiliary file. Similarly, an index mapping

is required to turn an ordinal word number into the address of the corresponding index entry.

Query

Answers

Vocabulary

Search

Algorithm

Index

Mapping

Inverted

Index

Entries

Compression

Model

J Compression I

.

I

Algorithm
[

Approximate

Lengths

Ranking

Algorithm

Compressed

Text

Document

Information

Figure 1: Organisation of text databases

Other components of the database are the compression model, used for text compression,

and the document lengths, used for ranking. These are discussed later. In our experiments, the

vocabulary and compression model were held in memory, together with an array of approximate

lengths, also described below; all of the other structures were stored on disk. Figure 1 shows

the relationship between these various components.

2.2 Query evaluation

Given an inverted file index of the format described, it is straightforward to rank the documents

in a database with respect to an informally phrased query, returning, say, the top ten documents

as answers. As an example, consider the cosine measure, one of the most effective ranking

230

techniques [1, 13, 14]. The cosine measure evaluates the relevance of a document to a query

via the function

where q is the query, d is the document, and w^^t is the weight of word t in document or query

X. A common function for assigning weights to words in document or query x is to use the

frequency-modified inverse document frequency, described by

w

where ^/^.^ is the number of occurrences of word < in x, iV is the number of documents in the

collection, and ft is the number of documents containing t. This is commonly called the tf-idf

weighting.

The information required to compute the sum Ylt '^q,t • '^d,t is held in the inverted index.

To answer the query, an accumulator with initial value zero is created for each document in

the database; the index entry for each word in the query is retrieved; and, for each 'word-

number, document-number, frequency-in-document' triple, a cosine contribution is added into

the corresponding accumulator. This technique is also used by Harman and Candela [4].

For each document in a static database the document length, is ^ constant, and

can be pre-computed and stored at the time the database is created. Thus, to compute the final

ranking after the accumulators have been calculated, the document length for each document

with a non-zero accumulator value must be fetched, the accumulator value divided by this

length.

For the queries supplied with TREC, over 90% of the documents contained one or more

of the query terms, meaning that over 90% of the document lengths needed to be accessed.

Moreover, at over 2 Mb, the table of document lengths is large, and in practice space limitations

might prevent it being held in memory. We have shown, however, that keeping limited precision

approximate lengths in memory can largely eliminate the cost of fetching document lengths from

disk [17]. Suppose we are prepared to allow b bits of main memory storage for each document

length X, where L < x < U . Then if B - [(U + €)/L]'^~'', where e is a very small number, the

function f{x) = [\ogg{x / L)\ yields integers c between 0 and 2** — 1 for all legal values of x,

and g(c) = L • can be used to compute approximations to x.

The c values stored can then be used in either of two ways. First, the approximate lengths

can be used to determine which exact document lengths should be retrieved from disk. Second,

cosine can be computed with fir(c), yielding an approximate ranking. With as few as two bits

per length, there was only a small decline in retrieval performance in the five small document

collections for which we had relevance judgments [17]. The effects of these techniques on TREC
are discussed in Section 2.5.

2.3 Text compression

Using a word-based model of the text, the space required to store the documents comprising a

database can be reduced to less than 30% of the original size [2, 8, 15]. Each word occurrence

in the text is replaced by a canonical Huffman code, the length of which is dependent on the

frequency of the word, and the intervening 'non-words' are similarly coded against a vocabulary

of non-words. Thus, by alternately decoding a word, then a non-word, and so on down the

compressed text, the exact form of the input document can be reconstructed. For further

details of the scheme used the reader is referred to our previous work [15].

231

The decompression process is very fast. The canonical Huffman code used is particularly

amenable to a table-based 'look up and copy' implementation, and each such decoding step

generates several output bytes. As a result, the compression regime has only limited impact

on retrieval time. Moreover, the small amounts of time needed for decompression are partially

(and sometimes fuUy) offset by reduced disk traffic.

Because every word and non-word decompressed is retrieved from the compression model,

it is crucial that this model be held in main memory. If the compression model was stored on

disk, two or more disk accesses would be required for each word in each document retrieved.

On the smaller databases, the compression model did not exceed about 500 Kb. We were very

interested to see how much space would be required to hold the model for the TREC collection.

2.4 Inverted file compression

The inverted file index entries should also be compressed, since without compression the in-

verted file might take as much space as the original text itself [2, 9, 16]. Good compression

of index entries can be achieved by numbering documents sequentially from 1, sorting index

entries, representing each sequence of identifiers as a sequence of differences or gaps, and then

using compact representations of the generally small integers that result.

For example, a word might appear in the first, fourth, seventeenth, . . ., documents, with

an index entry of

1,4,17,91,113,...

This can be represented by the seqiience of differences

1,3,13,74,22,... ,

which can then be compressed.

We have experimented with several different techniques for compressing these runlengths,

in two broad classes [8, 9]. Global methods use the same encoding for aU entries, and so have

the advantage of being more general, but are insensitive to the frequency of each term. Local

methods code each entry using a code that is adjusted to take into account the frequency of

the term.

Use of a variable length prefix code allows the frequent smaU runlengths to be represented

more succinctly that the less frequent long runlengths, and is a marked improvement over the

standard binary encoding. The further advantage of using a local code arises because of the

high variability of word frequency, and the effect this has on the average runlength within the

entry. For example, the word 'the'^ can be expected to have a sequence of runlengths where

each difference is very small, usually one. On the other hand, a rare word such as 'palimpsest'

will have gaps that are often much larger, but also sometimes small, since rare words wiU tend

to occur in clusters of related documents within the collection. Hence, a local compression

method that adjusts its codes according to word frequency can be expected to perform better

than a global method, and this is indeed the case [9]. Term 'frequency-within-document' values

are efficiently represented by use of the 7 code [16].

After compression, the index entries for a text database wiU typically occupy less than 10%
of the space required for the text itself. Decompression is fast, with about 100,000 document

identifiers decoded per second on a 25 MIP Sun SPARC 2. None of these compression methods

require any significant memory resources, once the index entry has been retrieved.

'We did not 'stop' any words, and also indexed all numbers. We did, however, stem all words before indexing,

using Lovins's algorithm [6].

232

We have also used these inverted file encodings in the inversion process required during

database construction, again capitalising on the large main memory offered by current work-

stations and the ability to perform two passes over a static database [7]. An alternative

approach is the disk-based method described by Harman and Candela [4]; they report that the

inversion of an 806 Mb database required 313 hours and 163 Mb of disk work space to produce

an inverted index of 112 Mb. We were thus very interested to see whether the in-memory
approach would be successful for the TREC collection.

2.5 Experimental results

This section describes the performance of our techniques on the 2055 Mb TREC collection. AU
results are for a 25 MIP Sun SPARC 2 with 256 Mb of main memory and no other active user

processes.

Compression

The two components of the compression process took about three hours each, generating a

compression model and a compressed database of 4.2 Mb and 605.1 Mb respectively (Table 1).

The second pass also generated a file containing the document mapping, a little under 3 Mb.
That is, including both of these auxiliary files, the document collection was reduced from

2055 Mb to 612 Mb, or 29.8%, a disk saving of 1400 Mb.
The need to store the coding model meant that the compression passes were expensive

on memory. With more than 900,000 unique symbols, and an additional storage requirement

of about 12 bytes per word for the search structure, each pass required about 25 Mb of data

structures. These figures reinforce our contention that database creation needs to be performed

on a reasonably well configured machine, even if query processing is performed elsewhere.

Pass Output files Size CPU Time Memory
Mb % (Hr:Min) (Mb, peak)

First pass:

Compression Compression model 4.2 0.2 2:37 25.6

Inversion Vocabulary 6.4 0.3 3:02 18.7

Overhead 0:19 2.5

Total 10.6 0.5 5:58 46.8

Second pass:

Compression Compressed text 605.1 29.4 3:27 25.6

Document ma!pping 2.8 0.1

Inversion Inverted index 132.2 6.4 5:25 162.1

Inverted index mapping 2.1 0.1

Document lengths 2.8 0.1

Approximate lengths 0.7 0.0

Overhead 0:23 2.5

Total 745.8 36.3 9:15 190.2

Overall Total 756.4 36.8 15:13 190.2

Table 1: Files in compressed TREC database (6 = 8). Percentages are relative to the size of

the original document collection (2055.3 Mb)

233

Inversion

The inversion process was performed as two passes in tandem with the two compression passes.

The first stage, counting term frequencies, had similar time and memory requirements to the

first component of the compression process, but could not actually share data structures because

of differing definitions of 'words' and the need, in the index, for stemming.

The second pass of the inversion process was where we expected to encounter problems.

The in-memory technique requires the allocation of memory a little larger than the final size

of the compressed inverted file, and our previous experiments had indicated that this would be

roughly 10% of the size of the input text [7]. That is, we expected to use more than 200 Mb
of the 256 Mb memory available. However, the long TREC documents—averaging 470 words

rather than the 90 for our previous largest collection—meant that the inverted file was smaller

than anticipated, and, as it turned out, the inversion process ran smoothly to completion in

162 Mb, and contributed five and a hcdf hours to the time of the combined second pass. One
would not want to do this every day, but these resource requirements are well within the

capabilities of a typical $50,000 workstation.

Using the 'local Vg' code [8, 9], the final inverted file required 132 Mb, or 6.4% of the input

text, of which about 40 Mb was by 7 coded 'frequency-within-document' values. Hence, if only

Boolean queries were to be supported, the inverted file could be reduced to under 100 Mb.

The second pass of the inversion process also produced three other files—the index mapping

for the inverted file, giving the bit address for each entry; the file of exact document lengths

(later merged with the document mapping to form the document information file); and a file

of approximate document lengths. The sizes of these, plus all of the other components of the

compressed database, are shown in Table 1.

Performance on ranked queries

The 50 test queries were transformed, by removal of SGML tags, stop words, and punctuation,

into lists of words to which the cosine measure could be applied. The top 200 ranked documents

were then retrieved and decompressed for each query.

Operation File Disk

Accesses

Data

(Kb)

CPU Time
(sec)

Elapsed

(sec)

Searching Index mapping 43 170

16.6 18.2

'

Ranking Inverted Index

Document Information

43

219

1708

7

Compression Compressed text

Answers

200 203

729 3.7 7.2

Total 505 2817 20.3 25.4

Table 2: Ranked queries on TREC (6 = 8)

Processing of these queries was remarkably quick. Table 2 shows, for the three stages of

processing each query, the average amount of data involved and the average time required.

(We did not separate the time taken by the searching algorithm and the ranking algorithm.)

As can be seen, on average the queries were processed in about 20 seconds of CPU time.

Given that each query involved approximately 2.1 million document numbers and 600,000

non-zero accumulators, we were very pleased with this result. Note that the times listed in

234

Table 2 include the cost of writing the retrieved documents to disk for later analysis by a

post-processing program, but do not include the time required by the post-processing.

On average the queries required about 500 disk accesses and the transfer of 2.8 Mb of data.

At (say) 100 accesses per second on the disk^, and a transfer rate of 1 Mb/sec, the input/output

operations contribute about 5-8 seconds to the elapsed query time, accounting for the observed

difference between CPU times and elapsed times.

For small queries response was even more impressive. For a query involving four terms

('Australia wheat tariff subsidy') and retrieval of the top ten documents, 2.6 seconds of CPU
time were required; and, if output was directed into a file, the total elapsed time for the query

was under 4 seconds.

The use of approximate lengths in-memory (using 6 = 8) meant that on average only

219 exact weights were required to identify the top 200 documents for the 50 TREC queries.

Depending on whether the exact lengths would have been stored in memory or on disk, with

the use of approximate lengths we have either reduced the memory required by over 2 Mb,

at the expense of 19 disk operations; or, alternately, at a cost of 725 Kb of memory, we have

avoided the need to sequentially read the entire exact lengths file, a saving of several seconds

per query.

We also tested using the limited precision lengths to provide the final ranking, ignoring

the exact lengths altogether. This means that the cosine measure is approximate, and some

variation in recall effectiveness can be expected. In our previous experiments on smaller col-

lections this degradation was minimal for even very low values of b. We used the 47 partial

judgments supplied, and compared the number of relevant answers using the exact ranking and

the approximate ranking technique. These results are shown in Table 3. Note that relevance

judgements were not provided for all documents, hence the range for precision—most queries

returned some documents that were un-judged. If we pessimistically assume that these docu-

ments were not relevant, the precision should be taken to be the lower value. Clearly, although

the approximate ranking is finding different documents, the use of approximate ranking has,

down to 6 = 4, little effect on precision.

b

5

Nui

15

Tiber of ans\

30

vers

100 200

exact 55.7-56.2 52.1-52.3 48.8-49.6 40.7-44.1 34.2-43.3

12

10

8

6

4

2

55.3-55.7

55.3-55.7

54.9-55.7

55.7-56.6

57.9-59.1

42.6-46.4

51.9-52.2

51.8-52.1

51.2-51.5

50.8-51.3

50.2-50.9

32.6-42.4

48.8-49.6

48.9-49.7

48.8-49.5

47.5-48.4

46.5-48.6

29.9-46.6

40.7-44.1

40.6-44.1

40.6- 44.1

40.6-44.5

38.0-45.6

21.3-57.7

34.1-43.3

34.1-43.2

34.2-43.3

34.1-44.0

31.2-48.0

15.7-65.8

Table 3: Effect of varying b—percentage precision, 47 queries

^One hundred accesses per second for the file containing the compressed text is optimistic for purely random

accesses, since a transfer of several Kb from a random point in a large file in the Unix file system will typically

require three or more seeks, each costing perhaps 10 to 20 milliseconds. However, the accesses to the document

information file are in sequential order, and the accesses into the compressed text were batched into groups that

were performed in sequential order.

235

Memory requirements

In total, the peak memory requirement during query processing is about 10.9 Mb (not all

components are required to be co-resident, and, in particular, the accumulators and answer

buffer are never simultaneously present). If necessary, this could be further reduced by writing

the output text directly to disk rather than into an answer buffer. However, we do not feel that

this requirement is excessive given the large size of the document collection, and to date the

use of approximate weights is the only area where we have concentrated on reducing memory
usage.

3 Structured Queries

We focused in this experiment on structured queries. They would be transformed in two

ways: into Boolean queries that would return a given number of documents, and into a vector

of weights for the purposes of ranking. The system in which these experiments were carried

out was a nested relational database. Atlas, that uses the multi-organisation signature file

scheme [10]. The bulk of these experiments were carried out on the second part of the Tipster

database. At the end of this section, we wiU report on some of the experiments that we have

carried out on the whole database.

3.1 Boolean Query Generation

There are good reasons for preferring ranked retrieval over Boolean retrieval. Nevertheless,

there are two key reasons that Boolean retrieval might be used. The first is that Boolean

retrieval is computationally simpler, and the second is that the retrieval system may not support

ranked retrieval. Since both factors were relevant to the set of experiments described here

—

we had been working with a Boolean retrieval system rather than the system described in

Section 2—it was desirable to form a Boolean query and rank the answers it returned.

There were several requirements that a Boolean query generation method needed to satisfy.

The first is that it should return a fixed number of documents. This allowed control over query

time by fixing the number of documents to be subsequently ranked. Secondly, the query should

be in disjunctive normal form, and have relatively few disjunct s. This is because query time is

almost linear in the number of disjuncts in signature file retrieval systems. Thirdly the query

generation mechanism should be automatic. These are the requirements that have previously

been used as criteria for Boolean query generation algorithms [12]. However, the queries that

we are considering in the TREC experiments have additional structure that may be used to

advantage. Despite the limited amount of text to be processed, no natural language processing

was performed; all processing was statistically and structurally based.

There were many possible approaches to Boolean query generation. A starting point

might be to use one of the Boolean query generation algorithms previously developed [12]

on the <narrative>. However, this would not adequately use the other available structures.

We considered three approaches: base the query on the < concepts >, base the query on

the < description>, augmented by the < narrative>, and base the query on the <topic>,

< description>, and <narrative>, using adjacent pairs in the disjuncts as well.

The first approach used a list of concepts. The words within the concept were ordered with

the most frequent word in the full text of the query first, and the least frequent last. Starting

at the first concept, a disjunct was formed by creating a conjunction of terms from the concept,

starting at the first word, until the conjunct returned fewer documents than the desired limit.

236

If the conjunct had fewer words than was required to meet this termination condition, other

words were added to the concept by finding words in the remaining text that were adjacent to

the first word in the concept. Finally, words that occurred rarely in the database were added
as simple disjuncts if the query was stiU estimated to return fewer than the required number
of documents. For example, to return 500 documents for query 82 on genetic engineering, we
generated the Boolean query:

(genetic AND engineering) OR (manipulation AND molecular)

OR (biotechnology AND genetic AND manipulation)

OR (animal AND drug AND plant)

The second approach started by forming a simple disjunction of rare words, up to 10% of

the required number of documents. Next, two key descriptors were identified, using the text

of the description primarily, but also using the narrative. The key descriptors were created as

a set of three words each, where each key descriptor is intended to capture a principal char-

acteristic of the query. The frequency of the terms in the query and the adjacency of words

were used to generate the key descriptors. Sometimes the algorithm would form two variations

of the one concept, sometimes two distinct concepts. For instance query 82 formed the key

descriptors:

(genetic, engineering, developed)

(genetic, engineering, manipulation)

to generate the query:

(genetic AND engineering) OR (genetic AND manipulation)

The third approach was quite similar to the second, except that more emphasis was placed

on the title in generating the concepts, and, by using pairs of words in the query, finer gradation

of the Boolean queries was possible. The concepts for queries 82 and 87 were the same. The
Boolean query for query 82 was the same as for the second algorithm, however the query

generated for 87 was:

institutions-failed OR (actions.criminal AND officers)

When evaluating these approaches, the key consideration is whether or not relevant doc-

uments are identified. For a fair comparison, each algorithm should return the same average

number of documents. In Table 4, each algorithm has returned an average of about 400 docu-

ments. The recall and precision results are all based on the same ranking formula. Note that

since these algorithms identified documents that had not been assessed as relevant or irrelevant,

we made the (pessimistic) assumption that all such documents were irrelevant.

Algorithm Concepts Description Description with Pairs

Docs. Requested 200 700 600

Docs. Returned 453 354 360

Disjuncts 3.5 1.8 4.4

Recall 0.155 0.170 0.146

Precision 0.150 0.144 0.121

Table 4: Comparison of Boolean query generation algorithms

To show how increasing the number of documents requested affects these algorithms, in

Table 5, we show how many documents were retrieved and how many disjuncts were used

when each of the algorithms were requested to return 1,000 documents.

237

Algorithm Concepts Description Description with Pairs

Docs. Returned

Disjuncts

1221

4.01

543

1.94

676

6.03

Table 5: Further comparison of Boolean query algorithms

^From these tables we are able to see that the least costly algorithm is based on finding two

key descriptors. If pairs are added, there are more rare terms, which each contribute a single

disjunct.

3.2 Ranking

Ranking documents using the vector space model has usually treated both documents and

queries as a flat structures—lists of words. However, it is very simple to combine different

representations of a query in ranking. If each form of a query is represented as a unit vector

over the same vector space, we may combine the representations by vector addition. We are

thus able to combine structural information and statistical information in the same measure.

The first series of ranking experiments were used to determine the relative usefulness of some

of the query fields. The results are given in Table 6. The third Boolean query generation

algorithm was used to generate a set of approximately 1,000 documents for each query. These

were ranked using each field successively, and then combined, ignoring structure. In all these

experiments we give first the results in terms of recall and precision, and then in terms of

precision in terms of the number of viewed documents.

Let Vt stand for the title vector, Vj stand for the description vector, Vn stand for the

narrative vector, Vc stand for the concepts vector, Vf stand for the definition vector, Va stand

for the vector for all of the text, and Vp stand for vector of all adjacent pairs in the query.

Recall 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Av.

Va 0.197 0.114 0.032 0.014 0.015 0.012 0.000 0.000 0.000 0.000 0.038

Vn 0.192 0.112 0.034 0.014 0.015 0.012 0.000 0.000 0.000 0.000 0.038

Va 0.191 0.114 0.034 0.018 0.015 0.012 0.000 0.000 0.000 0.000 0.038

Table 6: Ranking using individual fields

Table 7 shows what happens if each of the five fields are added with the same weight, and

then what happens if adjacent pairs are added as well. By way of comparison, we show the

effect of adding pairs to the full text vector, and by adding pairs to the narrative vector.

Vi

V4

= V,

Vt + Vd + F„ + VV + K + Vp

a

238

Recall 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Av.

Vi 0.209 0.112 0.034 0.014 0.015 0.012 0.000 0.000 0.000 0.000 0.040

V2 0.209 0.112 0.034 0.014 0.015 0.012 0.000 0.000 0.000 0.000 0.040

V3 0.191 0.114 0.034 0.018 0.015 0.012 0.000 0.000 0.000 0.000 0.038

0.198 0.115 0.037 0.018 0.015 0.012 0.000 0.000 0.000 0.000 0.039

0.192 0.112 0.034 0.014 0.015 0.012 0.000 0.000 0.000 0.000 0.038

0.198 0.111 0.045 0.014 0.015 0.012 0.000 0.000 0.000 0.000 0.039

Table 7: All field ranking

Using this information, we tried to combine the various fields in "creative" ways. In Table 8

we show the results of creating a combined vector described by

V-r = lVt + 2Vd + 3Vr, + 0.5Vf + 3Vc + 2Vp

Vs = lVt + lVd + lVr^-\-0.5Vf + 3Vc + 3Vp

Recall 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Av.

V7 0.208 0.112 0.034 0.014 0.015 0.012 0.000 0.000 0.000 0.000 0.039

Vs 0.205 0.112 0.033 0.014 0.015 0.012 0.000 0.000 0.000 0.000 0.039

Table 8: Combining the fields

The first thing to note is how similar the results are. Since a limited number of documents

are being examined using an imperfect Boolean algorithm, many relevant documents are being

missed altogether, so the ranking formulas have no possibility of giving them high scores.

An alternative technique for evaluating ranking formulas is to determine precision after fixed

numbers of documents have been examined. This has the advantage that large numbers of

relevant documents not identified by the Boolean algorithm do not flatten out recall/precision

results. Table 9 gives results at twenty document intervals for all previous experiments.

Documents 5 15 30 100 200 Av.

Vd 0.374 0.321 0.298 0.223 0.158 0.275

Vn 0.319 0.295 0.279 0.225 0.159 0.255

Va 0.349 0.316 0.305 0.224 0.169 0.273

Vi 0.387 0.352 0.336 0.237 0.166 0.296

V2 0.391 0.352 0.336 0.237 0.166 0.296

0.349 0.316 0.305 0.224 0.169 0.273

V4 0.349 0.305 0.304 0.230 0.171 0.272

Vn 0.319 0.295 0.279 0.225 0.159 0.255

Ve 0.336 0.304 0.284 0.229 0.164 0.263

Vi 0.404 0.367 0.334 0.236 0.166 0.302

0.370 0.350 0.327 0.238 0.165 0.290

Table 9: Comparison of ranking formula for fixed no. of documents returned

239

There are two observations that one might make after examining both forms of evaluation.

The first is that there appears to be a small gain obtained by treating the text in the query

in a structured way using the methodology proposed here. The gain is less than 10%. The
second result is both surprising and has significant ramifications. The use of adjacent pairs

in previous experiments on small collections with relatively short queries provided substantial

improvement in recall/precision [3, 12]. We see no such improvement in these experiments.

Finally, we may compare the three Boolean algorithms in their ability to identify appropriate

subsets for ranking. In this comparison, we use V4 for ranking each of the subsets. Let Ac

represent the algorithm based on concepts, Ad represent the algorithm based on the description,

and Ap represent the algorithm that uses adjacent pairs. Table 10 shows recall/precision figures

and Table 11 shows precision for fixed number of documents returned.

Recall 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Av.

Ac 0.185 0.089 0.054 0.031 0.028 0.012 0.000 0.000 0.000 0.000 0.040

Ad 0.220 0.133 0.048 0.017 0.018 0.017 0.000 0.000 0.000 0.000 0.045

A, 0.198 0.115 0.037 0.018 0.015 0.012 0.000 0.000 0.000 0.000 0.039

Table 10: Comparison of Boolean algorithms

Documents 5 15 30 100 200 Av.

Ac 0.328 0.319 0.306 0.221 0.169 0.269

Ad 0.349 0.332 0.311 0.222 0.149 0.272

Ar> 0.349 0.305 0.304 0.230 0.171 0.272

Table 11: Comparison of Boolean Algorithms for fixed no. of documents returned

Using both methods of evaluation, the algorithm that uses key descriptors, without adjacent

pairs outperformed augmenting the algorithm with pairs, and the algorithm using concepts.

This is despite the fact that Ac returned an average of 1190 documents per query, Ap returned

an average of 667 documents and Aj, returned only an average of 530 documents.

3.3 The Atlas System

The Boolean query generation experiments were performed using the Atlas database system [5].

This system is a nested relational database system designed for text applications. The system

was not adapted or tuned in any way to support the TREC experiments. There are a number

of signature file organisations that are supported by Atlas—bit slice, two level schemes, and

multi-organisation schemes. We implemented an algorithm that analyses the data and selects

the most appropriate scheme and optimal parameters for this scheme [11]. For the TREC
collection, the multi-organisation scheme was selected.

It took 23 hours to load the database and build the index, which required 313 Mb of disk

space. This indexed all stopped and stemmed terms, including adjacent pairs. The text stored

in the database was compressed using the mechanism described in Section 2.3.

240

3.4 Combined Database Results

Due to our inability to hold the whole of TREC in the form used for the compression experi-

ments, and the form used for the Atlas system, we ran a further set of experiments using the

compressed database system, but using the Boolean algorithm based on concepts to test some

of the rank formulas. We performed 4 experiments where we repeated experiments using Vj,

the description vector, V"„ the narrative vector, Va the vector of all text with structure ignored,

Vi where all text was used but structure was taken into consideration, and V2, a modification

of Vi where pairs were added as an extra vector. The results are given in Table 12 using recall

and precision and then at various intervals based on the number of documents retrieved in

Table 13.

Recall 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Av.

Vd 0.324 0.196 0.136 0.090 0.083 0.034 0.022 0.005 0.000 0.000 0.089

Vn 0.325 0.218 0.128 0.084 0.080 0.034 0.022 0.005 0.000 0.000 0.090

Va 0.298 0.170 0.116 0.074 0.067 0.040 0.026 0.005 0.000 0.000 0.080

0.372 0.235 0.129 0.092 0.083 0.048 0.022 0.005 0.000 0.000 0.099

V2 0.372 0.236 0.129 0.092 0.083 0.048 0.022 0.005 0.000 0.000 0.099

Table 12: Ranking all data

Documents 5 15 30 100 200 Av.

0.417 0.431 0.404 0.349 0.294 0.379

0.370 0.408 0.407 0.353 0.301 0.368

Va 0.383 0.391 0.379 0.329 0.279 0.352

Vi 0.447 0.472 0.438 0.377 0.312 0.409

V2 0.447 0.475 0.438 0.375 0.312 0.409

Table 13: Ranking all data

The results we obtained for the smaller collection are again observed with the full 2 Gb of

text. However the advantage of using the structure of the queries is slightly more pronounced.

4 Summary

In the first line of investigation, we built a compressed retrieval system for around 2 Gb of text

that required under 37% of the size of the input text, and was created in just over 15 CPU-hours

on a typical well-configured workstation. Retrieval performance for simple techniques such as

the cosine measure is fast, and queries can be processed effectively on low-end workstations in

seconds. The techniques developed during this first thread of investigation have thus altered

the status of 2 Gb information retrieval systems from being 'unpleasantly expensive' to being

'eminently practical'.

In our second thread of research we have seen that the use of the structure of queries has

enabled Boolean queries to be generated that have few disjuncts and perform better than more

complicated ones. Given the large number of documents that are relevant to many of the

queries that have been examined, such algorithms must be subject to reduced performance

241

when compared to techniques that rank the entire collection. In the light of the parallel

experiments carried out using the full collection, it must be questionable as to whether such

techniques will survive.

We have seen a minor improvement in ranking as a result of taking the structure of queries

into account. A more surprising result however is that pairs do not provide the performance

gains that we have seen with much smaller collections. As a result, the vocabulary for a

collection would appear to be more manageable than if pairs need to be explicitly described.

Acknowledgements

We are grateful to Lachlan Andrew, Daniel Lam, and Neil Sharman for assisting with the

implementation. This work was supported by the Australian Research Council.

References

[1] S. Al-Hawamdeh and P. Willett. Comparison of index term weighting schemes for the

ranking of paragraphs in full-text documents. International Journal of Information and

Library Research, pages 116-130, 1990.

[2] T.C. Bell, A. Moffat, C.G. NeviU, I.H. Witten, and J. Zobel. Data compression in full-text

retrieval systems. Journal of the American Society for Information Science. To appear.

[3] J. Fagan. Automatic phrase indexing for document retrieval: An examination of syntac-

tic and non-syntactic methods. In Proc. lO'th ACM-SIGIR International Conference on

Research and Development in Information Retrieval, pages 91-108, 1987.

[4] D. Harman and G. Candela. Retrieving records from a gigabyte of text on a minicom-

puter using statistical ranking. Journal of the American Society for Information Science,

41(8):581-589, 1990.

[5] A.J. Kent, R. Sacks-Davis, and K. Ramamohanarao. A signature file scheme based on

multiple organisations for indexing very large text databases. Journal of the American

Society for Information Science, 41(7):508-534, 1990.

[6] J.B. Lovins. Development of a stemming algorithm. Mechanical Translation and Compile

tation, ll(l-2):22-31, 1968.

[7] A. Moffat. Economical inversion of large text files. Computing Systems, 5(2):125-139,

1992.

[8] A. Moffat and J. Zobel. Coding for compression in full-text retrieval systems. In Proc.

2'nd IEEE Data Compression Conference, pages 72-81, Snowbird, Utah, March 1992.

IEEE Computer Science Press.

[9] A. Moffat and J. Zobel. Parameterised compression for sparse bitmaps. In Proc. 15'th

ACM-SIGIR International Conference on Research and Development in Information Re-

trieval, pages 274-285, Copenhagen, Denmark, June 1992. ACM Press.

[10] R. Sacks-Davis, A. Kent, R. Kotagiri, J. Thom, and J. Zobel. A nested relational database

for text applications. Technical Report 92-52, Collaborative Information Technology Re-

search Institute, Melbourne, Australia, 1992.

242

[11] R. Sacks-Davis, A.J. Kent, and K. Ramamohanarao. Multi-key access methods based on

superimposed coding techniques. ACM Trans, on Database Systems, 12(4):655-696, 1987.

[12] R. Sacks-Davis, P. Wallis, and R. Wilkinson. Using syntactic analysis in a document

retrieval system that uses signature files. In Proa. 13'th ACM-SIGIR International Con-

ference on Research and Development in Information Retrieval, pages 179-192, September

1990.

[13] G. Salton. Automatic Text Processing. Addison Wesley, Massachusetts, 1989.

[14] G. Salton and M.J. McGill. Introduction to Modem Information Retrieval. McGraw-Hill,

New York, 1983.

[15] J. Zobel and A. Moffat. Adding compression to a full-text retrieval system. In Proc. 15'th

Australian Computer Science Conference, pages 1077-1089, Hobart, Australia, January

1992.

[16] J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient indexing technique for full-text

database systems. In Proc. 18'th Conference on Very Large Databases, pages 352-362,

Vancouver, Canada, August 1992.

[17] J. Zobel, A. Moffat, and R. Sacks-Davis. Memory-efficient ranking of document collec-

tions. Technical Report TR-92-53, Collaborative Information Technology Research Insti-

tute, Melbourne, Australia, August 1992.

243

Application of the Automatic Message Router to the TIPSTER Collection

by

Richard L Jones,

Sek Kit Leung

and D Lewis Pape

Centre for Electronic Document Research

c/- Computer Power

PO Box 7126

Canberra Mail Centre ACT 2610

AUSTRALIA

Abstract

The two expmments undertaken (CPGHC and CPGCN) investigated the applicability of technology developed in

the Automatic Message Router Project (AMR) to the TIPSTER data. AMR inverts the queries rather than the data;

this is claimed to be an ^propriate way of handling document routing given the ephemeral nature of documents in

an electronic network. AMR's techniques of automatically identifying good discriminating terms and using the

relative position of t^ms in documents as a means of developing a single relevance score proved to be very

effective in producing good results in the experiment.

Background

The Centre for Electronic Research (CEDR) is based in Canberra, Australia. It is s laboratory in

the Australian Computers and Communications Institute (ACCI), an organisation whose primary

mission is to act as a link between Australian research in I.T. and the market-place. CEDR is the

principal contribution to ACCI by Computer Power Group (CPG), Australia's largest computer

services company. It also continues an eight year R and D program by CPG into document

analysis and retrieval techniques.

The technology being tested in the TREC experiments has been developed in the Automatic

Message Router Project, (AMR). AMR was developed over the past three years extending

techniques called IQ, developed earlier by CPG for document retrieval, and incorporated in the

STATUS document retrieval product since 1988.

245

The AMR Project

The AMR Project set out to develop viable techniques that operate in an electronic mail or wire

service environment. In these environments, the roles of query and document are reversed,

compared with document retrieval. Users have a relatively long term interest in a topic and wish

to receive documents that are relevant to that topic passed to them as soon as possible. However,

documents are of short term interest and lose their value rapidly with time, unless they have been

routed to someone with a specific interest in them. Of course all documents may be routed to a

document retrieval system for more general historical access. AMR reflects this exchange of role

of query and document, by inverting the queries (referred to as filters) and passing the

documents one at a time against them.

AMR allows filters to be prepared in a structured form, where each filter term represents a set of

synonymous terms, or in a plain English statement of the information that is desired. The former

technique was used for all the filters used in the experiment. The filters are inverted into

memory for performance reasons.

AMR computes the relevance of each document by utilising a set of heuristics that take into

account the number of different terms in a filter, and their relative positioning at a paragraph

level. Each term is automatically weighted by estimating its effectiveness as a discriminator, i.e.

its ability to divide the universe of documents into two groups, those that are relevant and those

that are not. From the model of routing defined above a decision on the fate of a document must

be made immediately. Thus the universe of documents is not constant but changes as each

document is filtered. To handle this dynamic environment, AIDA keeps statistics of the

discriminating power of each terms, both with respect to the most recent documents seen and

the average over the life-time of the filter. In practice, the weights stabilise after some 40

documents that have some degree of relevance to the filter have been processed. Thereafter, the

weights are only changed by a group of documents that predominantly discuss a few aspects of a

filter.

The TREC Experiments

The experiments conducted for TREC had four major objectives:

• to obtain an objective evaluation ofAMR on a large document collection;

• to develop as many different filters as possible for each topic to see what sensitivity there

was in the AMR heuristic to widely differing filters;

• to investigate AMR's performance and robusmess;

• to perform tuning and relevance normalisation on the AMR heuristics.

246

Four sets of filters were run, though because of time constraints, only two were submitted to the

formal experiment set. These two were:

• CPGHC - Hand-crafted structured form of filters. These were written by an experienced

staff member over a period of a week.

• CPGCN - Automated structured form, generated directly from the Concept field of each

topic. These were generated by a simple LEX program that converted each entry directly

into an AMR term.

Experimental Procedure

The filters were run against a portion of the Disk 1 data. The primary purpose of this run was to

tune the internal weights of the terms in each filter. Because of hardware problems, the filters

had been submitted to TREC before these experiments were conducted so no changes were made
to the filters in the light of these runs. However, some changes to the AMR algorithms were

made to stabilise the dynamic weight modification process described above.

The two sets of filters submitted, together with two other sets generated from the Disk 1 data

(200 filters in all) were run against the Disk 2 collection over a weekend.

Though AMR provides a measure of the relevance of each document in the range 1 to 100, no

cut-off was applied to the results submitted. If a filter returned 200 documents, then these were

submitted, regardless of the scores obtained.

Results Analysis

The results of the experiments were very encouraging, with both the manually generated and

automatic sets appearing in the top four routing results presented at TREC, as measured by the

1 1 -point average precision vs recall scores.

The manually generated filters performed better than the automatically generated ones though

not markedly so. This is probably due to the fact that the Concepts were well described and

provided an adequate range of synonyms for most topics. Four of the manually generated filters

presented very poor results, due to the insertion of a mandatory term in the filter.

As measured by the precision figures, the filters performed better on the second 25 topics than

they did on the first 25. This may be due to the different nature of the topics; the first half of the

topics being more fact specific, and the last being more generic and 'information retrieval'

oriented. However, the 1 1 point average recall precision scores do not reflect any significant

difference.

247

The system achieved a throughput of one document a second against 200 filters. This was

especially pleasing since the experiments were run on a relatively modest platform, an 80486/33

processor with 8 Mbytes of memory under SCO UNIX.

As measured against the original objectives described above, three of the four have been

achieved: AMR techniques have proved to be as accurate as any other in current use. The tests

certainly proved that AMR is robust in running a very large collection, its performance was also

quite adequate. The system was tuned during the first set of runs, and the experience has proved

to be very valuable. The only major objective that remains to be achieved is to analyse AMR's
sensitivity to widely differing filter types. Work is proceeding on this.

References

(1) Jones R.L., Enhanced Retrieval Mechanisms for Free Text

Data Bases, Proceedings First Pan Pacific Computer

Conference, (1985), pp 134-143

248

Centre for Electronic Document Research

TREC Routing Experiments CPGHC and CPGCN

Systems Summary and Timing

Construction of Indexes

The software does not invert the text. It inverts the queries (or filters) and passes the text

through the combined index formed from the queries.

n Query Construction

D Automatically Built Queries (Routing)

1 Concept field used

2 Time to build query < 5 seconds

3 (a) Terms selected from topic

(b) Terms weighted with weights based on terms from documents with

relevance judgements, and dynamically modified through the training set

and the test set.

c) Phrases extracted from topics

j) Automatic addition of Boolean connectors and proximity operators from

topics.

E Manually constructed queries (routing)

1 All topic fields used

2 Average time to build query 30 minutes

3 Query builder system expert

4 Data used to build query from topic

5 The creation of the query uses Boolean operators, and proximity operators.

249

in Searching

A Total Computer Time

One message through 200 filters per second. This includes searching and ranking.

B Method

Software uses a fuzzy AND and Proximity measure to rank documents.

C Factors included in ranking

1 Term frequency

5 Position in document

7 Proximity of terms

IV Machine

The experiments were run on an HP 486/33 with 8 Mbytes under SCO UNIX. The CD
ROM drive was accessed via NFS.

V AMR Software

AMR is commercial strength software developed by Computer Power Group. Its

commercialisation software engineering phase took some three person years.

250

CLARIT TREC Design, Experiments, and Results

David A. Evans, Robert G. Lefferts, Gregory Grefenstette,

Steven K. Handerson, William R. Hersh, Armar A. Archbold

Laboratory for Computational Linguistics

Department of Philosophy

Carnegie Mellon University

1 Introduction

This report presents an abbreviated description^ of the approach and the results of the CLARIT
team in completing the tasks of the "Text Retrieval Conference" (TREC) organized by the

National Institute of Standards and Technology (NIST) and the Defense Advanced Research

Projects Agency (DARPA) in 1992.2

1.1 A Characterization of the TREC Tasks

TREC activities required participants to 'retrieve' 200 documents for each of 100 different 'top-

ics' from a large database of full-text documents. Each topic was given as a one-page description

of an item of interest. This feature of the TREC tasks was somewhat unusual, at least com-

pared to many traditional 'bibliographic'-retrieval evaluations, in which the topic or 'query' is

a minimal, often telegraphic, single-phrase statement of a 'subject' or 'an interest'.^ However,

the principal distinguishing features of the TREC tasks were (1) their scale—involving a total

of approximately 2 gigabytes of text, representing approximately 750,000 full-text documents

of varying length—and (2) the careful attention of the organizers in evaluating the results

submitted by each participating group.

More specifically, TREC tasks were designed to simulate two general types of information

'retrieval' situations, "routing" and "ad-hoc" querying. "Routing" corresponds to situations in

which a topic is possibly well documented (e.g., with examples) and the user desires to find

more similar documents. In the case of TREC tasks, 50 topics were designated as "routing"

topics; each was accompanied by a set of documents judged to be "relevant" to the topic.'* The

first installment of the full set of documents, representing approximately 1.1-gigabytes of text,

was available to each team for use in identifying possible other relevant documents for each

more complete and detailed description of the CLARIT-TREC activities and results is available as a

technical report, [Evans et al. in preparation].

^The TREC activities were organized at the end of 1991. Data was made available in the Spring of 1992.

All processing results were submitted by September 1, 1992, to NIST. The "Conference" itself—a Workshop

involving the approximately two dozen groups that submitted partial or full processing results—took place on

November 4-6, 1992, in Rockville, MD.

^The longer statements of 'topics' in TREC were arguably more interesting as a test of systems and more

representative of many contemporary information-seeking situations. See Figure 9 for a sample topic statement.

*The number of sample releveint documents varied greatly from topic to topic. Some topics had almost 100

sample relevants; other had only about ten.

251

routing topic. The rules of the exercise required each group to submit 'models' for each routing

topic (e.g., a set of procedures or a 'query vector'), which then were 'on record' and had to

be used in the final evaluation of the routing task. That evaluation required that each group

retrieve documents from the second installment of documents, approximately 0.9-gigabytes of

text. "Ad-hoc" querying corresponds to situations in which a topic is presented to a system

and appropriate documents must be found; no example documents are available. In TREC, the

second 50 topics were designed as "ad-hoc-query" topics. The rules required each group to use

the full 2-gigabyte database as the search space for ad-hoc queries. All results were reported

as a ranked list of the 200 'top' documents in response to each topic, whether a routing topic

or an ad-hoc-query topic.

1.2 Notes on CLARIT Team Participation

The CLARIT team submitted results, labeled "A" and "B",^ representing the top 200 docu-

ments at the end of each of two sequential steps in the processing of topics. Since the actual

processing of topics was designed to give 'best' results only after both stages of processing were

completed, the "A" results are known to be suboptimal; the "B" results represent the true test

of the CLARIT-TREC design.

The large scale of the tasks challenged the resources that were available to the CLARIT
team. Storage for the source data and topics alone required 2 gigabytes of space. The research-

prototype version of the CLARIT system, which was used in the task, generates various sec-

ondajy and intermediate resources in the course of processing. Such intermediate files also

require temporary storage. In all, approximately 8 gigabytes of disk space was used for the

process. The system-engineering work required to manage the data represented a significant ef-

fort for the team; more than 75% of the team effort was devoted to (a) re-implementing critical

CLARIT processes to deal with larger volumes of data and limited space and (b) monitoring

and directing the use of resources and the sequence of processes when making actual 'runs' over

the data.

Data for the final tests was made available from NIST only after preliminary processing

results were submitted. The CLARIT team submitted its preliminary results (the 'frozen'

forms of the routing queries) on Friday, August 21, 1992. NIST express-mailed the new test

data to Carnegie Mellon on the same day, but the package was misaddressed and did not arrive.

A second mailing finally did arrive on Tuesday, August 25, one week before the deadline for

final results. Thus, all final processing took place in seven days.

The CLARIT team utilized, variously, six machines (including a DECsystem 5820 and DEC-
station 5000s and 3100s) and the approximately 8 gigabytes of dedicated storage for TREC-
processing tasks. Actual processing occurred in batch mode over several machines and across

a network (as some storage was remote),

2 Background Description of Basic CLARIT Processing in TREC

Basic CLARIT processing is described elsewhere.^ A schematic representation of the 'standard'

CLARIT process for document indexing is given in Figure 1. A representation of the simplified

CLARIT process that was employed in the case of CLARJT-TREC document indexing is given

in Figure 2.

^The Conference provided a special category ("Category B") for groups that intended to work only with a

subset (100 megabytes) of the TREC data. This should not be confused with what we call the CLARIT "A"

and "B" results: all CLARIT processing involved the full set of TREC data.

®Cf. [Evans 1990], [Evans et al. 1991a,b,c].

252

Formating

Text Text Prep

NLP

Morph

Parsing

Candidate NPs

Term/Doc
Statistics

Thesaurus

' Lexicon

'Core' Lex (100,000 items)

Optional Sub-Domain Lex

• 'Heuristic' Grammar
'Simplex' NP
Optional "Complex" NP
Optional "Full Sentence" Constituents

General Set of Terms

Specific

Set of Terms

"Ist-Order" Thesaurus: Flat List of Terms,
Implicit Compositional, Hierarchical Structure

Figure 1: 'Standard' CLARIT Indexing Overview

Text

Formating

Text Prep

NLP

Scoring

Term/Doc_
Statistics

Morph

Parsing

Candidate NPs

NPs &: Words

Lexicon
'Core' Lex (100,000 items)

'Heuristic' Grammar
'Simplex' NP

General Set of Terms

Figure 2: Modified CLARIT Indexing in TREC

253

2.1 Selective NLP to Nominate Information Units

In brief, the CLARIT indexing process as shown in Figure 1 involves several steps, one of

which utilizes selective natural-language processing (NLP) to identify noun phrases (NPs) in

texts, which are taken as the relevant information units in all further processing. Subsequent

steps take advantage of several statistical measures of 'importance' to evaluate NPs as potential

index terms. One special feature of CLARIT processing is the use of an automatically-generated

'first-order' thesaurus for a domain to support the selection of appropriate terms. The standard

CLARIT process returns three categories of index terms, corresponding to terms that (1) occur

in the document and exactly match terms in the thesaurus, (2) terms that are in the thesaurus

and are more general than near-matching terms in the document, and (3) terms that are 'novel'

to the document and not found in the thesaurus. In addition to being categorized as an exact,

general, or novel index term, each term is given a numerical relevance weight deemed to reflect

its relative value in characterizing the contents of the document.

2.2 'Thesaurus Discovery' to Nominate Sets of Terms for Collections

First-order thesauri are 'discovered' via another CLARIT process, distinct from indexing. The
process requires a sample of documents representing a 'domain'. The sample must be moder-

ately large (e.g., minimally 2 megabytes of text) and must be composed of documents that are

more or less 'about' the topic of the domain.'^

In general, CLARIT 'thesaurus discovery' comprises algorithms and techniques for cluster-

ing phrases in collections of documents to construct first-order thesauri that optimally 'cover'

an arbitrary percentage of all the terminology in the domain represented by the document col-

lection. 'Normal' thesaurus discovery involves (1) decomposition of candidate NPs from the

documents to build a term lattice in which nodes are organized hierarchically from words to

phrases based on the number of phrases subsumed by the term associated with each node and

(2) selection of nodes that have high subsumption scores and that also satisfy certain structural

and statistical characteristics (such as being legitimate NPs, well distributed in the corpus, and

relatively uncommon in general English). Terms thus selected represent a subset of vocabulary

that accurately characterizes the domain. Thesaurus discovery is quite fast^ and typically yields

a subset of terminology that represents less than 5% of all the available terms in the corpus.^

Since the TREC experiments involved a heterogeneous collection of documents and since

it was not possible to identify specific subsets of documents in the database as 'about' one or

another topic, it was not possible to discover and use relevant thesauri in TREC tasks. Thus,

as shown in Figure 2, the simplified CLARIT indexing process in TREC tasks did not involve

'matching' of terms against a first-order thesaurus and did not result in three-way-categorized

index terms.

^An example of an appropriate sample might be 50 full-text articles involving "AIDS Research"; or 2,000

abstracts about "Silicon Engraving"; or even one's personal file of recent e-mail correspondence, provided it is

sufficiently large and topically coherent.

*At present, using the CLARIT research system, a thesaurus can be found for a 3-megabyte corpus in less

than 10 minutes on a DECstation 5000/200.

®In fact, the number of terms returned wiU vary depending on parameters the user selects when generating

the thesaurus.

254

2.3 Vector-Space 'Similarity' Measures

The principal method used by the CLARIT system in comparing 'information objects' (e.g.,

in retrieval, in routing) is vector-space distance.^^ The basic metric is that of 'similarity' of

terms. 'Similarity' is determined by different procedures in different contexts. Partial or 'fuzzy'

matching of terms is facilitated by noting whether terms share words or attested subphrases.

For example, in vector-space modeling of documents, the contained words of all terms (in the

document vector as well as the query vector) are broken out, giving, in effect, the possibility of

matching parts of terms, though, technically, the individual words are realized as independent

dimensions of the term space.

2.4 Notes on the Limited Version of CLARIT Processing in TREC

Because of the time and space limitations in the task, the CLARIT team did not utilize several

features of CLARIT processing that normally produce enhanced results. One of the features

—

the automatic 'tokenization' or identification of proper names—would certainly have assisted

processing of some topics. Another feature—the identification of equivalence classes of terms

—

also would have aided the task.

In addition, no attempt was made to establish 'uniform-length' documents or sub-documents

(e.g., by setting a maximum word count or sentence length for such units). Though CLARIT
processing supports the treatment of documents as sub-document collections, that feature of

CLARIT processing was not utilized in the experiments.

All topic statements were treated uniformly and simply: no attempt was made to handle

implicit or explicit quantification, time intervals, satisfaction conditions, etc., except as literally

encoded in the topics.

Though CLARIT NLP modules can produce fuU sentence analyses or complex-NP analyses,

neither of these features was utilized in TREC processing. All documents were processed only

for simplex NPs; inevitably, some non-NP information was lost.

In indexing TREC documents, term weights were based on a general IDF-TF score^^ for

topic 'domains'. In the case of multi-word terms (the norm), the full terms are assigned an inde-

pendent IDF-TF score, and each word in the term was broken out and assigned an independent

IDF-TF score.

While all CLARIT processing is designed to be fully automatic, we did not employ fully

automatic processing in TREC tasks. In particular, there were two steps in the CLARIT-
TREC process that required non-automatic processing: (1) initial review and weighting of the

index terms automatically-nominated and derived from each topic statement and (2) review

of first-pass retrieved documents to identify 5-10 relevant ones for 'feedback'. The two steps

involved minimal user intervention (and, in fact, required very little time and effort); however,

they do qualify the CLARIT-TREC system as a "manual process".

In general, we regard the CLARIT-TREC system as a minimal system for purposes of

evaluation. The results of CLARIT-TREC processing are useful in helping us establish baseline

performance for core but abbreviated CLARIT functions.

^°Cf. [Salton & McGill 1983] for background on vector-space modeling in information retrieval applications.

"Cf. [Evans et al. 1992] and [Hersh et al. 1992] for an evaluation of CLARIT vector-space 'similarity' measures.

12 "IDF-TF" represents the standard inverse document frequency x intradocument term frequency score for

terms.

255

3 Overview of CLARIT-TREC Processing

There were three major phases of processing for the CLARIT-TREC retrieval experiments.

Initially, the entire corpus, along with the topic statements, was parsed to extract candidate NPs
via CLARIT NLP. In the special case of topics, the candidate NPs were manually reviewed and

evaluated to produce weighted query terms. Second, the entire corpus (in noun phrase form) was

passed through a quick, and somewhat rough, ranking procedure that was designed to nominate

a large subset of documents for further analysis. This step is referred to as "partitioning".

A "partitioning thesaurus", or list of weighted, representative terminology was automatically

created for each topic. In the final phase of processing, referred to as "querying", a "query

vector" was produced for each topic. The query vector was used to retrieve (= rank) documents

in the selected partition for the topic using a vector-space 'similarity' metric. The details of

these phases of processing are presented below, along with a discussion of different techniques

used for "routing" and "ad-hoc" queries.

3.1 Design Philosophy—"Evoke" and "Discriminate"

In approaching the principal TREC task of returning 200 ranked documents for each topic,

we used a two-stage processing strategy, illustrated in Figure 3. The first stage of processing

was designed to identify candidate documents that seemed likely to contain information related

to a topic. Of course, since the topic was represented as a set of weighted terms, this step

involved scoring each document based on the set of terms. Because this step involved scoring

every document in the database against every topic, it was important to design the scoring

procedure so that it was not computationally expensive. In fact, it was based on summing
the value and number of 'hits' between the topic's set of terms and the terms (NPs) in each

document and was expected to result in an over-generated set of candidate documents. The
highest-scoring documents were retained as a candidate 'partition' of the database with respect

to the topic. The second stage was designed to find the subset of documents in each partition

that best matched the topic. In theory, greater (= more discriminating) processing resources

could be devoted to this second-stage task, as the total number of documents involved was

small compared to the whole collection.

In practice, as illustrated in Figure 3, partitioning resulted in a set of 2,000 ranked docu-

ments. The top 200 documents from the partition were submitted to NIST as the CLARIT
"A" set of results. Final querying or 'discrimination' among the documents in each partition

yielded another, more accurately ranked set of 200 ranked documents, which were submitted

as the CLARIT "B" results.

3.2 Overview of the Task

As Figure 4 shows, different portions of the total TREC database were used for the "routing"

and "ad-hoc" phases of the experiment. The routing task required 'training' of the first fifty

topics on the first set of data (represented as the darkened block in Figure 4). In the second step

of processing, the partitioning and query vectors that were derived from step one were used to

identify, first, 2000-document partitions in the second set of data (represented as a light block

in Figure 4) and, second, the top-200 ranked documents in each partition. The ad-hoc query

task involved the whole database, but the CLARIT team actually used the first set of data for

a preliminary retrieval of documents (based on partitioning). A few (5-10) of the top 20-50

were chosen by quick manual inspection to supplement the query vector and then a second

automated round of partitioning over the total database was performed. The final top-200

ranked documents ultimately derived from these second-pass, 2000-document partitions.

256

\fector-Space "Similarity"

Figure 3: Overview of CLARIT-TREC Processing

Figure 4: Overview of Processing for "Routing'" vs. "Ad-Hoc" Queries

257

*

\#

WSJ891102-0187

\#

\!

HcDermott International Inc. said its Babcock ft Wilcox

unit completed the sale of its Bailey Controls Operations

to Finmeccanica S.p.A. for $295 million.

\9

Finmeccanica is an Italian state-owned holding company

with interests in the mechanical engineering industry.

\8

Bailey Controls, based in Wickliffe, Ohio,

makes computerized industrial controls systems.

It employs 2,700 people and has annual revenue

of about $370 million.

\«

\!

*

Figure 5: Sample of Data—Document After Text Formating

4 Details of the CLARIT-TREC Experiments

Both "routing" and "ad-hoc" query experiments took advantage of basic CLARIT processing.

There are several features the two experiments share. The experiments are distinct in that

"routing" involved a special step of creation of a partitioning thesaurus using larger sets of

supplied relevant documents and "ad-hoc" queries involved partitioning the document set once

using only automatically derived (but manually weighted) query terms and choosing a small

set of relevant documents to expand the final query vector.

4.1 Preparing Data

Each TREC document had to be formated for CLARIT processing. This involved making

the unique text ID accessible to CLARIT as a special field and delimiting the beginning and

end of each text in a file. Figure 5 gives a sample formated document. As can be seen in the

sample, the beginning and end of the record is marked by a backslash followed by "*". The
unique ID is set off by a backslash followed by "#". The beginning and end of the text of the

document is marked by a backslash followed by "!". Each paragraph is separated from the

next by a backslash followed by "Q".^^

4.2 Processing TREC Corpora (NLP)

Figure 6 gives a schematic representation of the processing steps that occurred subsequent

to data formating. The process labeled "NLP" in the figure includes all the steps illustrated in

the "NLP" portion of Figure 2: morphological analysis of words and parsing for simplex NPs.

Simplex NPs were extracted for all TREC documents; words were morphologically normalized.^^

^^Though CLARIT data preparation demarks paragraph units, the CLARIT-TREC process did not distinguish

divisions of text at this leveL For CLARIT-TREC purposes, all the text between the "!"-marks was used as the

source of information about a document. Thus, longer and shorter documents were treated uniformly as 'unit'

texts.

"The manually-supplied keywords attached to some TREC documents in a "keyword field" were discarded.

258

Step; Input:

1 Document(s)

Process:

NLP

Output:

TermsDoc

"Parsed-Doc"

Topic(s) NLP Termsr,op

Termsrop

Hand Filter:

1. "Eliminate"
2. "Weight"—3/2/1

Weighted-TermsT op

"Source-Query"

Figure 6: Schematic Representation of Data Preparation

*

\#

WSJ891102-0187

\»

\!

"mcdermott" na mcdermott

"intemationad" adj internationzil

"inc." ukw? inc.

"said" vt-past say vt-pastprt say

"its" gen its

"babcock" na babcock

"\t" *and* and

"wilcox" na vilcox

"unit" sn unit

"completed" vt-past complete vt-pastprt complete

"the" d the

"sale" sn sale sn sell

"of" prep of

"its" gen its

"bailey" sn bailey

"controls" vt-pressgS control pn control vt-pressg3 control

"operations" pn operation

"of" prep of

"about" prep about

"$370" ukH? $370

"million" quant million
"\." *period* \.

\$

\«

\!

*

Figure 7: Sample of Data—Document After Morphological Analysis

259

*

« 1

\#

WSJ891102-0187

\#

\!

-1 (mcdermott) () 0

-1 (international inc.) () 0

-1 (babcock) () 0

-1 (wilcox vinit) () 0

-1 (sale) () 0

-1 (bailey control operation) () 0

-1 (f inmeccanica s.p.a.) () 0

-1 ($295) 0 0

\«

-1 (finmeccanica) () 0

-1 (italian state) () 0

-1 (owned holding company) () 0

-1 (interest) () 0

-1 (mechanical engineering industry) () 0

\e

-1 (bailey control) () 0

-1 (wickliffe) () 0

-1 (Ohio) 0 0

-1 (computerized industrial control system) () 0

-1 (employ) () 0

-1 (people) 0 0

-1 (annual revenue) () 0

-1 ($370) 0 0

\«

\!

*

Figure 8: Sample of Data—Document After NP Extraction

260

A sample of a document after morphological analysis is given in Figure 7. A sample of the

same document after simplex-NP extraction is given in Figure 8. Note that "owned holding

company" and "$295" or "$370" are treated as NPs along with legitimate phrases like "comput-

erized industrial control system". While CLARIT does have facilities to discover and eliminate

inappropriate participles (such as "owned" in isolation) and can recognize nonce adjectives,

such as "state-owned", such processing was not employed in the TREC tasks. Hence, the cor-

rect expression, "Italian state-owned holding company" was not found or used in this case. In

addition, as noted previously, the CLARIT-TREC system did not 'tokenize' company names

or dates or other 'regular-expression '-like phrases; there was no time in our schedule for such

processing.

All NLP (and other) processing steps were piped through the system; intermediate files

were not retained. The parsed representation of all the texts took up approximately 98% of the

space occupied by the original text. Intermediate (but unretained) files generated in CLARIT
processing included a file of the words in each text, in their original order, annotated with

morphological categories. Other files contained the output of the parser as a list of NPs in the

order in which they occurred in each text. The parsed representation of the text was retained

and used at all subsequent steps of processing. Indeed, hereafter, unless otherwise specified,

any reference to a document or collection of documents refers to the CLARIT representation

of the text, viz., a sequence of normalized simplex NPs.^^

4.3 Identifying Terms from Topics

AH fields of topic statements, such as given in Figure 9, were similarly processed for NPs.

Team members reviewed the NPs and assigned weights of "1", "2", or "3" to each NP according

to whether the term was central or peripheral to the topic. (Some extracted NPs were discarded

as irrelevant or ill-formed; the vast majority were retained.) A sample set of weighted terms

for the topic in Figure 9 is given in Figure 10. The manual review and weighting of terms from

the topic statement took less than 5 minutes per topic. AU subsequent processing of the query

was performed automatically.

4.4 Establishing Sets of 'Relevant' Documents

Given the need to 'evoke' candidate documents and to 'partition' the database into subsets

that were easier to manage, we were naturally interested in identifying features in the topics

that would be useful as discriminators. We had little confidence, however, that the specific

terms in topics, which constitute the "source query", were either most respresentative of the

domain of the topic (= the 'satisfaction class') or reasonably comprehensive. We thus decided

to supplement the source query with additional terms.

In particular, we used the CLARIT thesaurus-discovery technique on known relevant doc-

uments to identify terminology that might be better representative of the satisfaction- class

documents than the source query alone. The process produced a list of terms from the avail-

able topic-relevant documents (or from a small sample of relevent documents that we may have

found) and automatically nominated the top (approximately 20%) ranked terms to supplement

the original query (as derived from the topic statement) to produce a "routing/partitioning

thesaurus" for the topic.

Since the routing topics already had accompanying relevant documents, we used these as

a source of additional terminology. Ad-hoc queries, on the other hand, had no associated

relevant documents, so we designed a preliminary, partial 'retrieval' step that would help us

^^From the point of view of the CLARIT system, the information in a document is entirely represented by the

extracted noun phrases.

261

<top>

<head> Tipster Topic Description

<num> Number: 057

<dom> Domain: U.S. Economics

<title> Topic: MCI

<desc> Description:

Document vill discuss hov MCI hcts been doing since the Bell System breeJnip.

<narr> Ncirrative:

A relevant document vill discuss the financied health of MCI Communications

Corp. since the breakup of the Bell System (ATftT and the seven regioncil Baby

Bells) in January 1984. The status indicated may not necessaorily be a direct

or indirect result of the breakup of the system and ensuing regulation and

deregulation of Ma Bell or of the restrictions placed upon the seven Bells; it

may result from any number of factors, such cis advemces in telecommunications

technology, MCI initiative, etc. MCI's financial health may be reported

directly: a broad statement about its eatmings or cash flos, or a report

containing financial data such as a quarterly report; or it may be reflected

by one or more of the following: credit ratings, sh<u:e of customers, volume

growth, cuts in capital spending, $$ figure net loss, pre-tcix charge,

analysts' or MCI's own forecast about how well they will be doing, or MCI's

response to price cuts that ATftT makes at its own initiative or under orders

from the Federal Communications Commission (FCC), such as price reductions,

layoffs of employees out of a perceived need to cut costs, etc. Daily OTC

trading stock market and monthly short interest reports are NOT relevant; the

inventory must be longer term, at least quarterly.

<con> Concept (s):

1. MCI Communications Corp.

2. Bell System breakup

3. Federal Communications Commission, FCC

4. regulation, deregulation

5. profits, revenue, net income, net loss, write-downs

6. NOT daily OTC trading, NOT monthly short interest

<fac> Factor(s)

:

Time: after January 1984

</fac>

<def> DefinitionCs)

:

</top>

Figure 9: Sample of Data—Topic 57

262

*

\#

057

\»

\!

2 (bell system brealcup) () 0

2 (capital spending) () 0

2 (cash flow) () 0

2 (credit rating) () 0

2 (customer) () 0

1 (ma bell) () 0

3 (mci communication corporation) () 0

3 (mci financial health) () 0

1 (mci initiative) () 0

2 (mci) 0 0

2 (net income) () 0

2 (net loss) () 0

1 (order) () 0

2 (pre tax charge) () 0

2 (price cut) () 0

2 (price reduction) () 0

2 (profit) () 0

2 (quarterly report) () 0

1 (regional baby bell) () 0

1 (telecofflffltmication technology) () 0

\!

*

Figure 10: Sample of Data—Hand-Weighted Term-Set for Topic 57

263

Step: Input: Process: Output:

4a Parsed-Doc Feature Scoring

T

Weighted-Termsxop

Scored-Docyop

4b Scored-DocTop Ranking Top-2000 Scored-Doc(s)T<,p

4c
50-Top/2000
Scored-Doc(s)xop

Hand Filter

= Review Top Docs
5-10 Rel-Doc(s)Top

"Relevance-Feedback"

Step in Ad-Hoc Cases

Figure 11: Schematic Representation of Processing When 'Relevant' Documents are not Given

find candidate relevant documents. In practice, this required a partitioning of a sample of data

and a review of the returned top-ranked documents. This phase of processing is illustrated in

Figure 11.

As shown in Figure 11, Step 4a, the weighted, relevant terms were taken as a query vector

representing a subset of positive instances of concepts in the equivalence class of the topic. In

the case of ad-hoc querying, the query vector was used to identify a sample of 50 candidate

documents from a subset of the corpus, which were reviewed in rank order by team members
until 5-10 'true' relevant documents were identified (Step 4c). This can be regarded as a

'relevance-feedback' step in the querying process. In the case of routing, the sample of 'true'

relevants provided by the TREC organizers was accepted as valid and no review was performed.

4.5 Using Relevant Documents to Create 'Partitioning Thesauri'

As indicated in Figure 11 Step 4d, the 'authoritative' set of relevant documents was processed

with CLARIT 'thesaurus-discovery' modules to produce a set of terms that (arguably) bear

some relation to the topic. We refer to the output of this process as a "pseudo-thesaurus".

The actual routing/partitioning thesaurus was generated by CLARIT by combining the set of

weighted terms for the topic with the pseudo-thesaurus, as shown in Step 5. Note that partial

noun phrases, derived from pseudo-thesaurus entries, and attested in the documents, were also

added to the routing/partitioning thesaurus with a partial score.

As illustrated in Figures 13 (and Figure 14), the partitioning thesaurus itself is a list of

terms, where each term has an associated vector of information specifying its importance in

any number of topics. In the case illustrated for Topic 57, for example, the term "bell system

breakup" has the triple "<057 1 2.0>" associated with it. The "057" indicates that the term is

relevant to Topic 57; the "1" indicates that the term is a full term (not an attested sub-phrase

of a term); and the "2.0" gives the term's relative weight or importance (in this case, reflecting

the score that was assigned by hand).

4.6 'Feature Scoring' to Partition Documents

Figure 14 gives a portion of the composite or 'super thesaurus' for all 100 topics. Each

264

Step: Input; Process; Output:

4d Rel-Docsrop
Thesaurus
Discovery

Pseudo-ThesTop

Weighted-TermsTop

Pseudo-Thesrop
Merge Part-Thesrop

Parsed-Doc Feature Scoring

T

Part-ThesTop

Scored-DocT',op

Scored-Docrop Ranking Top-2000 Scored-Doc(s)Top

Figure 12: Schematic Representation of Processing When 'Relevant' Documents are Available

advance I <057 1 1.0>

atkt I <057 1 1.0>

bell system breakup I <057 1 2.0>

bell system I <057 1 1.0>

bell I <057 1 1.0>

breakup I <057 1 1.0>

broad statement I <057 1 1.0>

capitzG. spending I <057 1 2.0>

cash flow I <057 1 2.0>

credit rating I <057 1 2.0>

customer I <057 1 2.0>

cut cost I <057 1 1.0>

cut I <057 1 1.0>

deregulation I <057 1 1.0>

direct indirect result I <057 1 1.0>

ma bell I
<057 1 1.0>

mci communication corporation I <057 1 3.0>

mci financial health I <057 1 3.0>

mci initiative I <057 1 1.0>

mci I <057 1 2.0>

net income I <057 1 2.0>

net loss I <057 1 2.0>

order i <057 1 1.0>

telecommunication technology I <057 1 1.0>

united states economics I <057 1 1.0>

volume growth I <057 1 2.0>

Figure 13: Sample of Data—1,201-Term Partitioning Thesaurus for Topic 57

265

advance | <057 1 1.0> <065 1 0.30> <075 1 0.30> <076 1 0.30>

american telephone I <057 1 0.30>

analyst | <054 1 0.30> <055 1 0.50> <057 1 0.50> <074 1 0.50> <080 1 0.50> <082 1 0.50> <088 1 0.50>

announcement I <057 1 0.30>

at&t cut I <057 1 0.50>

at&t price I <057 1 0.50>

at&t I <057 1 1.0>

bell system breakup I <057 1 2.0>

bell system I <057 1 1.0>

bell I <057 1 1.0>

benefit I <057 1 0.30> <060 1 0.30> <073 1 0.50> <074 1 0.50> <075 1 0.50> <088 1 0.30> <099 1 0.30>

breakup I <057 1 1.0>

broad statement | <057 1 1.0>

business customer I <057 1 0.50>

capital spending I <057 1 2.0>

jack grubman I <057 1 0.50>

late price cut I <057 1 0.30>

layoff I <057 1 1.0>

leaist qu2^terly | <057 1 2.0>

local phone company I <057 1 0.50>

local telephone company I <057 1 0.30>

long distance carrier I <057 1 0.30>

long distance telephone rate I <057 1 0.30>

ma bell | <057 1 1.0>

mzurgin I <057 1 0.30>

market share I <057 1 0.30> <089 1 0.30>

mci communication corporation I <057 1 3.0>

mci communication I <057 1 0.50>

mci earning I <057 1 0.50>

mci executive I <057 1 0.50>

mci financial health I <057 1 3.0>

mci initiative I <057 1 1.0>

mci move I <057 1 0.50>

mci official I <057 1 0.50>

mci price I <057 1 0.50>

mci spokesman I <057 1 0.50>

mci I <057 1 2.0>

result I <057 1 1.0> <070 1 1.0> <081 1 2.0>

revenue I <057 1 1.0> <081 1 2.0> <053 1 0.30> <054 1 0.30> <093 1 0.30>

rising cost I <057 1 0.30>

telecommunication technology I <057 1 1.0>

telegraph company I <057 1 0.30>

telegraph 1 <057 1 0.30>

united states economics | <057 1 1.0> <072 1 1.0>

united telecommunication inc. I <057 1 0.50>

united telecommunication I <057 1 0.50>

vashington bzised mci I <057 1 0.50>

Washington bcised telecommunication concern I <057 1 0.50>

William e consay jr. I <057 1 0.50>

Figure 14: Sample of Data—15,287-Term 'Super' Partitioning Thesaurus

266

• Data from Partitioning Thesaurus:

The8_Weight(term): Real number weight assigned to term in par-

titioning thesaurus

The8_Whole(term): Boolean value indicating that term is a whole

term in the thesaurus (1) or an attested sub-

term of a whole term (0)

• Data from Document Text:

Tot-Terms: Number of terms in a document

Num_Terms: Number of unique terms (or sub-terms) found

in document that match terms (or sub-terms)

in the partitioning thesaurus

Term_IVeq(term): Frequency of term in document

Term_Length(term): Number of words in term

Text_Whole(terin): Boolean value indicating that term is a whole

term in the text (1) or an attested sub-term

of a whole term (0).

Figure 15: Feature Matching Score (Partitioning) Input Data

Num-Terms

y]
TermJScore(termi)

DocJScore =
ln(Tot.Terms-f- 1.72)

Num-Tcrms

Term_Freq(term,)

1=1

(Tot-Terms -t- 1)

TermJScore(term) = ^

Raw_Score(term)

0.0

if (Thes_Whole(term) = 1)

A (Text_Whole(term) = 1)

Raw .^coreC term) if (Thes-Whole(term) = 1)

*° A (Text_Whole(term) = 0)

Raw^core(terin) if (Thes_Whole(term) = 0)

» 0 A (Text.Whole(term) = 1)

if (Thes.Whole(term) = 0)

A (Text_Whole(term) = 0)

RawJScore(term) = 2f™'"(Term-Length(term).3)-ii ^ Thes_Weight(term) x Term_Freq(term)

Figure 16: Formula for Scoring Documents in 'Partitioning'

Doc-

Length
Factor

(n(total

Hit-

Opportunity

Factor

ota()

Phrasal-

Term
Factor

y ^
term-weight x term.freq x [2 '

]

Status

Factor

1

1

8

0

Figure 17: Schematization of 'Partitioning' Formula

267

ZF09-435-245 7.720000

WSJ870123-0031 6.470000

FR89214~0026 6.310000

WSJ870519-0094 6.130000

WSJ900912-0046 5.830000

WSJ870305-0055 5.360000

ZF07-783-164 5.310000

ZF07-189-244 5.100000

ZF07-443-642 4.980000

AP881122-0107 4.060000

WSJ911018-0122 4.060000

ZF07-971-724 4.050000

ZF07-251-245 3.930000

WSJ870421-0065 3.780000

ZF08-084-048 3.740000

ZF07-621-948 3.670000

HSJ911030-0170 3.610000

ZF09-584-807 3.570000

ZF07-294-735 3.420000

ZF09-526-239 3.390000

ZF07-789-516 3.330000

ZF07-218-520 3.300000

ZF07-800-964 3.300000

ZF07-495-528 3.280000

WSJ900629-0110 3.210000

ZF09-559-173 3.200000

ZF07-118-812 3.170000

WSJ871030-0149 3.160000

ZF07-878-828 3.120000

WSJ870309-0110 3.070000

AP880419-0280 3.050000

Figure 18: Sample of Data—First-Pass Partitioning Results for Topic 57

TREC document was 'scored' against the super thesaurus in a single pass (Step 6 in Figure 11):

effectively, each document was scored against the routing/partitioning thesaurus for each topic

in parallel. In particular, every NP in each document was matched against the NPs (terms)

in the routing thesaurus; partial matches were allowed. The definitions in Figure 15 and the

formula in Figure 16 (given schematically in Figure 17) were used to yield a composite score for

the document based on the number of exact and partial hits as a function of document length

and term 'value'.

The routing/partitioning thesaurus was used to score the full database, yielding a ranking

of all documents relative to all topics simultaneously. As shown in Step 7 in Figure 11, the top

2000 documents for each topic were retained as the partition for the topic for the next stage of

processing.

Figure 18 gives sample results of the rankings of documents based on feature scoring for

Topic 57. Figure 19 shows the set of 'true' relevants chosen by manual review of the top 10-50

ranked documents.

4.7 Final 'Querying'

Figure 20 gives the final steps in the process. There were two essential phases in querying at

this point: building the final query vector and querying a partition of the database to retrieve

the final set of relevant documents. Note that the query was weighted based on statistics

268

WSJ86 1204-0059

WSJ870123-0031

ZF08-695-706

WSJ870305-0055

WSJ8705 19-0094

WSJ871030-0149

ZF08-096-680

WSJ86 1208-0024

ZF08-318-964

ZF08-338-122

Figure 19: Sample of Data—Hand-Selected 10 Relevants for Topic 57

Step: Input:

Source-Query

2000 Docs

Process;

IDFxTF
Indexing

Output:

Indexed Docs
(Words Broken Out)

10

11

Rel-Docs

2000 Docs

Source-Query

Query-Sup-Docs

Indexed-Docs

Final Query Vector

Intersect

Merge

Calibrate

Vector
Space

Ranking

Query-Sup-Docs
(Possibly 0)

Final Query Vector

Top 200 Docs

Figure 20: Schematic Representation of Final Steps in Processing

269

*

\!

58,274554 (mci) () 0

54.311172 (mci communication corporation) () 0

27.003252 (customer) () 0

22.711744 (price cut) () 0

20.039764 (sprint) () 0

19.527712 (price reduction) () 0

19.383471 (at&t) () 0

15,882106 (pre tax charge) () 0

15.090805 (make) () 0

14.682230 (industrywide price cut) () 0

14,592388 (price) () 0

13,906499 (communication) () 0

13,878939 (distance) () 0

13.527033 (industrywide) () 0

12,290086 (capital spending) () 0

12.258577 (response) () 0

11.278964 (cash flow) () 0

10.960371 (telecommunication) () 0

10.681927 (conway) () 0

10.480049 (william e conway jr.) () 0

1.260289 (product) () 0

1.134040 (york) () 0

1.133174 (computer) () 0

1.121569 (reported) () 0

1.121431 (gain) () 0

\!

*
\-

Figure 21: Sample of Data—Final Query for Topic 57

270

extracted from a partition of the database. For the ad-hoc queries, the partition used for the

statistics was the same as the partition actually being queried. For the routing queries, however,

the final query vector was fixed before processing the new text (i.e., the second set of TREC
documents). In particular, in this case, the partition used to weight the routing-query vector

was extracted from the training corpus (the first set of TREC documents); this vector was then

queried against a partition extracted from the new, test corpus.

The NPs and their contained words among the documents in ea^h partition were scored

for distribution and frequency; each NP/term- and word-type was given an IDF-TF score. As

noted above, for routing queries, the IDF-TF score was based on statistics from the original

partition of 2000 documents from the training corpus; it was a static query vector. For the

ad-hoc queries, on the other hand, the final partition of 2000 documents was used a^ the source

of statistics for the IDF-TF scoring. Therefore, the scores for terms in the query vector for

the ad-hoc queries could vary depending on the set of documents selected in the partitioning

process. Figure 21 gives a sample of a final query.

The terms in each topic's routing/partitioning thesaurus were given IDF-TF scores based

on the sample; original-query terms were added and the factors of those terms ("1", "2", or

"3") were used to multiply their IDF-TF-based scores; the combined terms and their contained

words thus formed an extended-query vector (the final query vector).

The 2000 documents for each topic were modeled in vector space (in which all terms and

their contained words formed the dimensions) and the final query vector was used to identify

and rank the 200 'best' documents, which constituted our results.

4.8 Summary of the Process

Figures 22 and 23 summarize the CLARIT-TREC processes described in detail in the preceed-

ing sections. As noted previously, there were only two steps in the CLARIT-TREC process

that required non-automatic processing: (1) initial review and weighting of the index terms

automatically-nominated and derived for the topic and (2) in the case of ad-hoc queries, review

of first-pass retrieved documents to identify 5-10 relevant ones for use in creating a pseudo-

thesaurus for further processing.

5 Results and Evaluation

This section presents the CLARIT-TREC results in several forms, including broad overviews

of the performance, the "official" results tables, and tables of data that focus on statistics

that are especially relevant to the CLARIT-TREC approach. Results are presented with only

abbreviated explanations.^^

As noted previously, the CLARIT team submitted both intermediate results ("A") and final

results ("B"). The intermediate results were generated by taking the highest-scoring 200 (out of

2000) documents as determined by the routing/partitioning process. Since the strategy of rout-

ing/partitioning was to nominate a moderately large candidate subset of documents in which

all the true relevants would be found and since the procedure and scoring were designed to over-

generate candidates, we expected to have many 'false positives' in each set of 2000. We had no

reason to expect the relative ranking of these documents by their evoking routing/partitioning

scores would be a good measure of fit to the source topic. By contrast, we expected the final

steps (which utilize subset-specific term scoring and vector-space similarity measures) to induce

a relative ranking of documents that would represent a good fit to the source topic.

More detailed analysis of the results is given in [Evans et al. in preparation].

271

Topic

Thesaurus

Discovery

Relevant

Docs

Figure 22: CLARIT ''A"—Eooktng

Source-Quer>'

Figure 23: CLARIT "B"

—

Dtscrhiiinatiiig

272

>Median =Meclian <Median

llpt Average 33 [3] 3 13 [2]

Rels in Top 100 31 [4] 6 12 [1]

Rels in Top 200 33 [3] 4 12 [1]

Note: An Average of 0.53 Total Relevants were in the "A" 2000

Table 1: Summary of Results for Routing (1-50)

>Median =Median <Median

llpt Average 34 [7] 2 14 [0]

Rels in Top 100 32 [7] 3 15 [0]

Rels in Top 200 31 [5] 2 17 [0]

Note: An Average of 0,39 Total Relevants were in the "A" 2000

Table 2: Summary of Results for Ad-Hoc Queries (51-100)

Except where otherwise indicated, all reported results and all analyses in the following

sections are based on the CLARIT "B" results.

5.1 General Summary of Results

Tables 1 and 2 give the results of applying the techniques described above to the routing

topics, 1-50, and to the ad-hoc query topics, 51-100. The numbers in each cell give the

number of times the CLARIT-TREC system produced results above, equal to, or below the

median for all TREC-participant systems. Numbers in brackets give the instances of 'extreme'

performance—best and worst—among all systems.

For the routing topics, the quick partitioning of documents (which produced our "A" set of

2000 candidate documents per topic out of the approximately 300,000 possible documents in

the second data set) captured 53% of all the documents judged relevant by the TREC judges.

These candidate sets were then processed by the baseline CLARIT-TREC system and ranked

results were produced. The results of this ranking were better than the median results of all

systems tested at TREC for more than 30 of the topics, according to the measures of average

precision ("llpt Average"), the number of relevants in the top 100 returned, and the number

of relevants in the top 200 returned. For three or four topics, CLARIT's results were the best

of all systems tested in TREC for routing.

For the ad-hoc queries, the "A" sets of 2000 candidate documents per query contained 39%

of documents considered as relevant by the human judges, yet results of the discrimination

phase of CLARIT provided even better results. Seven times over the 50 queries, CLARIT
processing produced the best ranking of all systems tested in terms of average precision and in

terms of the number of relevant documents in the first-100 documents returned.

273

5.2 Official Results

Table 3 gives the official results as reported by NIST. The figures for precision "at 30 docs"

show, for example, that on average, in the first-30 documents returned by the CLARIT-TREC
system, more than half of the routing and 60% of the ad-hoc query documents were relevant.

Tables 4 and 5 present the official calculations of precision by topic, compared to the best,

median, and worst performance across all evaluated TREC-participant systems. The tables also

give the ranking of CLARIT precision relative to the best precision for each topic ("B2oo/Best").

Tables 6 and 7 show the official results of CLARIT for the first- 100 and full-200 documents

retrieved for each query, along with 11-pt precision scores. Each line in the table gives a topic

number ("T") followed by the total number of documents found relevant by the TREC judges

("Rel"). This is followed by the CLARIT results for the first 100 hundred documents ("Bioo")

and the global results (based on all TREC-participant systems) for the greatest ("Best"), the

average ("Med"), and the smallest ("Worst") number of documents returned in the first 100 for

each topic. This, in turn, is followed by results for the first 200 documents along with the global

best, average, and worst performance and the 11-pt average precision figure for CLARIT, along

with the best, average, and worst 11-pt performances.

5.3 CLARIT «A'7"B" Comparative Results

Tables 8 and 9 present the official results with a focus on CLARIT-TREC differential pro-

cessing. Here "R#" gives the number of documents found relevant by the TREC judges. "T"

is the topic number, followed by "A2ooo"i which gives the number of the relevant documents

that were present in the partition of 2000 documents created by the evoking routing thesaurus

for the topic. Since the actual identifiers of relevant documents were not reported for some

topics, there are zeroes (signifying missing data) for some A2000 amounts. (For example, we

do not know how many relevant documents were in our partitions for Topic 22, 45, 49, etc.).

When the A2000 number is present, we can measure the effectiveness of our 'discrimination'

processing—the final steps in the CLARIT-TREC process. As a measure of effectiveness in

bringing the relevant documents to the top of the final ranked list, we give the percentage of

relevant documents present in the 2000 document partition that were promoted to the first 100

returned ("% A2ooo")- For the routing queries, these values range from 3% for Topic 18 in which

only 3 of the 118 relevant documents available were promoted to the first 100, up to 95% for

Topic 21 and 100% for Topic 6 and 23 in which all relevant documents were promoted into the

first 100 documents returned. The average was about 42% promoted from among all the 2000

into the top 100. For the ad-hoc queries, the discrimination step was more successful, averaging

a 52% promotion rate, and promoting all the relevant topics in the partition six times out of

48 (Topic 51, 52, 70, 78, 81, and 92).

These tables also present the results ranked according to performance, taking the average

results of all TREC systems as a baseline. The columns marked "Bioo/m" and "B2oo/m" show

the ratio of CLARIT results to the baseline, for the first- 100 and final-200 documents returned.

6 Analysis

We are continuing to evaluate CLARIT-TREC processing results and to interpret CLARIT-
TREC performance. This section presents initial observations.

6.1 General Observations

It is extremely difficult to evaluate system performance on a task such as the TREC experiments.

First, as with many such experiments involving information retrieval, it is difficult to establish

274

Routing Queries, 1-50 Ad-Hoc Queries, 51-100
"NT •

JNum_queries: 50 Num_queries: 50

iotal number of documents Total number of documents
over all queries over all queries

Retrieved: 10000 Retrieved: 10000

Relevant: 14216 Relevant: 16400

Rel_ret: 3427 Reljet: 3409

Recall-Precision Averages: Recall-Precision Averages:

at 0.00 0.7479 at 0.00 0.9010

at 0.10 0.5440 at 0.10 0.5497

at 0.20 0.3641 at 0.20 0.3609

at 0.30 0.2513 at 0.30 0.1997

at 0.40 0.1725 at 0.40 0.1304

at 0.50 0.0663 at 0.50 0.0514

at 0.60 0.0336 at 0.60 0.0423

at 0.70 0.0162 at 0.70 0.0169

at 0.80 0.0000 at 0.80 0.0000

at 0.90 0.0000 at 0.90 0.0000

at 1.00 0.0000 at 1.00 0.0000

Average precision for all points Average precision for all points

11-pt Avg: 0.1996 11-pt Avg: 0.2048

Average precision for 3 Average precision for 3

intermediate points intermediate points

(0.20, 0.50, 0.80) (0.20, 0.50, 0.80)

3-pt Avg: 0.1435 3-pt Avg: 0.1374

Recall: Recall:

at 5 docs: 0.0130 at 5 docs: 0.0179

at 15 docs: 0.0431 at 15 docs: 0.0455

at 30 docs: 0.0802 at 30 docs: 0.0804

at 100 docs: 0.2080 at 100 docs: 0.1834

at 200 docs: 0.2917 at 200 docs: 0.2567

Precision: Precision:

At 5 docs: 0.5120 At 5 docs: 0.7560

At 15 docs: 0.5320 At 15 docs: 0.6533

At 30 docs: 0.5140 At 30 docs: 0.6020

At 100 docs: 0.4560 At 100 docs: 0.4570

At 200 docs: 0.3427 At 200 docs: 0.3409

Table 3: Offical Results, CLARIT "B"—Topics 1-50 and 51-100

275

Results by Topi c Results Ranked by Best Precision

Topic XJ200 Best A/ffHi a TiJ.VJ. Or11 Bonn / Best Topic B200 Best -^200 / -UCo u

I 0.0991 0 1897 0.0640 0 noon 0.5224 40 0.1818 0 .1818 1 nnnn

2 0.0466 0 1470 0.0631 0.0021 0.3170 22 0.3327 0 1197 1 nnnn± .UUUU

o 0.2004 0 3374 0.1515 0.0182 0.5940 1 4X ^ n 9Q08u . ^yuo nu 9Qnay uo 1 nnnn± .UUUU

4 0.3074 0 3088 0.1457 0 0028 0 9955 4 0.3074 0 .3088

5 0 0862 0 5286 0.1585 0.0687 0.1631 36 n 5526 0 .5694 fl 97fl'iU.J 1 uo

u 0 1544 0 3879 0.1371 0.0264 0.9136 17O 1 n 4149 nu .tOUU fl Qfit^Ou.yuoz

7 0.1540 0 2886 0.1806 0.0010 fl 5116u .oo ou 42 fl 171=>\j • X \ 00 flu 1 8flfi
. ± 0 uu fl Qfifl7u. yuu (

co n 1 nns 0 1225 0 0195 fl fin9fi n 899Q 5 fl 1544 0 .3879 fl Q1 If!u.yloD

Q 0 1765 0.1188 fl flfldfl n 4innU .T:0 UU 14 fl 114"^u .00^0 0 .3776 fl aat^Qu.oooy

10 0.4889 0 5764 0.3789 0.0455 0.8482 21 fl fifl65 0 .6889 fl 8804u.oou^
1

1

X X 0.2154 0 3005 0.0849 0 nofii 0.7168 10 0.4889 0 .5764 0.8482

12 0.1249 0 2494 0.1146 0 0022 0 5008 26 0.2459 0 .2928 0 8398

13 0 3298 0 9058 0.2847 0.0061 0.3641 3 0.1008 0 .1225 fl 8229

14 0 2908 0 2908 0.1122 0 ooon\J ,\J\J\J\J 1.0000 49 0 2n05 0 .2438 fl 8994

15 0.0709 0 1591 0.1016 0 0202 0.4456 27 0 9625 0 .3326 n 7899

16 0.1930 0 2763 0.0641 0.0015 0 6985 20 fl 1416U .Ot:OU 0 .4361 0 787Qu . 1 0 1 y

1 7 n 94fiQ 0 4791 0.2436 n nnnnu .uuuu 0 n\j ,o X oo 45 fl 9fl99 0.2722 fl 771

1

U.I J J. X

1 sX o n ni 4fi f)u 91 ^8 fl 1 fl44 n m 4f;U. U J. TiU n nf;77U .UU 1 1
1 Q1 y n 1 178U. lo 1 0 0.1801 n 7fi'^iu. t Dol

1 Q fl 1 178 nu 1 8fn1 ou 1 fl 1 178u.io (

o

fl fl'lllu.uool U. (DOl 94z^ n 1 Q17u. 1 y0

1

0.2552 n 7'%Qnu. 1 oyu
n i4ifi 41fi1 fl 9in7 fl flfiaiU.UUOO fl 7Q7Qu . 1 o 1 y 1'^oo n ifi9fiU.ODZD 0.4800 n 7'v<^4u. 1 004

91 U.DUDO u fiaaooooy fl t^fll fiU .Ou ID fl finfifiu.uuuu n 8an4U.OOU^ 1 11

1

n 91 =;4 0.3005 n 71 fiaU. 1 IDo
99 n 1197 nu 1197 fl 99fi9 fl filfilu.uouo 1 nnnnX .UUUU 1 fi1

D

n 1 QinU.lyoU 0.2763 n fioat;u.Dyoo

91ZO n fl 9f;79U.ZD 1 Li
fl fii ni fl fii 7n 18oo n 1 789U. 1 1 oz 0.2619 0 fi8n4U.D0U4

94z^ n 1 Q17 nu fl nQ'i9u.uyoz fl fl44flU.U4:^U fl 7i;Qnu. 1 oyu 1Qoy fl 9971yj,zz 1 1 0.3597 n fill 4U.D014
9"^ n 1 fil 1\J . X\J X X fl 1 9fl4 fl finnnu.uuuu n "iQi

n

u.oy xu 91Zo fl 4n8aU.4UOO 0.6626 0 fii 70U.Dl (U

9fi n 94=^Q fl 9098 n 1 118 fl fl997 n aiQSu.ooyo 4f% n 1 79"^u. 1 1 zo 0.2824 0 fii 08U.DIUO

97 fl 119fi n 9188 fl fll 89U.UlOi n 78Q9u. (oyz oo n 9nn4 0.3374 0 ';q40U.oylU

98zo n 1 088 fl fl 1 91 flU .1 Z lU fl 091 fl n ^1 Q1u .o J. yo 9^zo n 1 fii 1U. ID 1

1

0.2726 n t;Qi

n

u.oy lu

9Q n flQflQ u 1f;77 fl fl4^^U .u^oo fl flflflflu.uuuu n 9479 19oZ n 1 7fiau. 1 1 Do 0.3157 n t^fiooU.OOUU

ou n n'^7au.uo / o u 9fi1

1

n 1 174 fl fll fiaU.UIUO n 991 9 7 u.ioiu 0 .2886 U.OooD
11ox n 0499 fl 991"^ n fififiaU .UDDO fl flflflflU.UUUU n 1 888U.lOoo 11 n noQiu.uyy 1 0 .1897 0 "^994

19 n 1 7fia flu 11 =^7OXD t
fl flQflQ fl flflflflU.UUUU U.ODUU 98 n 1 naaU.IUoo 0 .2095 (\ Q1U.olyo

11 n 1 4'^n u 11 47 n 1 1

1

fl fll =^9U.UIOZ n 4fin8 1 7 n OA fiQ 0 .4791 n K1 CIU.OlOo
14 n 114 flu 177fl fl 918flU.aiOOU fl fll inU.UloU n 88 i=;qu.oooy 1 91 Z fl 1 OAQu. 1 Z4y 0 .2494 0 cooau.ouuo
1^ n ifi9fi 0 4800 fl 1fl41 n nnnnU.uuuu fl 7KKAU. 1 OO^ 11oo n 1 di^nu. iiou 0 .3147 n 4fina

Ifi U.OOZD 0 5694 fl 99fi1 n nnnnu.uuuu n Q7n=;u.y / uo 1 o n n7nQu.u 1 uy 0 1591 A 4 4 t^fi

17 n 414Q 0 4506 fl 1481 n nnaaU.UUOO u .yDoz Qy n n7'^Qu.u 1 oy 0 1765 fl 4inoU.40UU

18 fl 1 789 0 2619 n 1 1^^U.lOOD n 0997M .M Lit t
n fian4 4 4 n 1 nU.lo4U 0 3761 n 4nQccu.4Uyo

1Q fl 9971 0 3597 fl 9971 n ni 89U.UloZ n fill

4

U.Doll 1

1

lo n i9QaU.oZyo 0 9058 n ifi4iU.OD41

dn fl 1 81 aU. i o 1 o 0 1818 n 1 1=; '14 n n9f;7 1 nnnn1 .UUUU 9 U.U4DD 0 1470 nil 7nU.ol 1 u

4.1 n fii a9 0 1360 0.0182 n nnnnU.UUUU n 1 1 iQU.looo 29 0.0909 0 3677 0.2472

42 0.1735 0 1806 0.1632 0.0427 0.9607 30 0.0578 0 2613 0.2212

43 NA NA NA NA NA 31 0.0422 0 2235 0.1888

44 0.1540 0.3761 0.0909 0.0029 0.4095 48 0.0303 0 1700 0.1782

45 0.2099 0.2722 0.1823 0.0000 0.7711 5 0.0862 0 5286 0.1631

46 0.1725 0.2824 0.1855 0.0199 0.6108 47 0.0373 0 2569 0.1452

47 0.0373 0.2569 0.0932 0.0031 0.1452 41 0.0182 0 1360 0.1338

48 0.0303 0.1700 0.0492 0.0015 0.1782 18 0.0146 0 2158 0.0677

49 0.2005 0.2438 0.1682 0.0130 0.8224 50 0.0000 0 2374 0.0000

50 0.0000 0.2374 0.0039 0.0000 0.0000 43 NA NA NA

Table 4: Official Results, CLARIT "B"—11-Point P-R, Topics 1-50

276

Results by Topic

Topic B200 Best Median Worst B200 /Best Topic B200 Best B200 /Best

51 u 1 799 0 7088 u 1101 AU 0000uuuu 0.2429 94 AU 1 Q c^n
1 you u lyou 1.0000

52 u 0 3625 u AU 001 c; 0.2508 90 A
U 97nQZ 1 Uy u 97nQz 1 uy 1.0000

53 u 0 2282 Au 1 1 *^o AU not fi 0.8655 86 AU oy/U U oyZU 1.0000

54 n 0 4840 n 11 10v>i oy AU U100 0.6911 79 AU 1^4^ u 1^4^oO^O 1.0000

55 u 9^77 0 2615 n 171ft AU oil 9 0.9855 76 AU 9

1

u 91 '^ftZ 100 1.0000

56 nu 9fi97 0 2708 n 1 7ftft AU 1 119 0.9701 68 AU 14ft9«J4oi u 14ft9o40Z 1.0000

57 n
J. y 0 (0 3151 nu 1 910 nu 0909 0.6306 100 nu 41 fifi*t 1 DO u 41 fifi^ 1 DO 1.0000

58 nu 1 770 0 5602 nu nu 091

1

UZ 1

1

0.3160 92 n 0000uyuy u 001 1uy 1

0

0.9956

59 u uy y^ 0 2331 u 1 990 nu 0040UU^U 0.4256 55 Au ZO 1 1 u ZDIO 0.9855

60 nu 0 2181 nu 0700u 1 yy nu 0041UU^l 0.7263 56 yj 9fi97ZD^ f u 970ftZ 1 uo 0.9701

61 u 0 4957 u 11olio AU OQOOuyuy 0.6560 85 Au 1 DiO u 1 fiOl1 Dy X 0.9610

62 nu 1 fi71ID /

1

0 2261 AU 1 1*\9 AU 01 1ftU 1 Oo 0.7391 67 AU 9 1 4ft nu 911 1Zolo 0.9287

63 n 1 9QQ1 ^ yy 0 2737 n 1 Oftfi n 0090 0.4746 98 n 1 40ft1 ^uo nu 1 ^Ift 0.9155

64 u 1 970 0 2088 n 1 9701 ^ 1 y AU 00^^ 0.6125 93 AU ^9^ft0 ZOO nu ^ft7000 t y 0.8944

65 u 1 1 84 0 2023 AU 1 1 ft4 AU 0070UU 1 u 0.5853 96 AU 1 ^001 ouu u 17171 1 1 4 0.8736

66 071

4

0 3977 nu 1 194 u 001

1

UUl 1 0.1795 53 u 1 07^
J. y 1 0 u 99ft9zzoz 0.8655

67 u 91 4ft 0 2313 nu OQOOuyuy u 01 9fiUl ^D 0.9287 80 nV 1 99"^ u 1 414 0.8543

68 u 0 3482 nu 1141 u 001^woo 1.0000 99 n 97fiftZ 1 DO u 1194 0.8327

69 nu 940ft 0 6548 n 147ft n 00^1 0.3677 70 0 u*±o ± 0 7798 0.8273

70 nu fi4=\1D*401 0 7798 u 4ft94 nu 0091uu^o 0.8273 72 1 fi71 0 2073 0.8070

71 u 0 2239 u 0000uyuy AU 0000UUUU 0.2032 62 Au 1 fi711 D 1 1 0 2261 0.7391

72 u 1 fi71 0 2073 u 1 1 44 n 001 9UUl ^ 0.8070 60 u 1 ^ft41 00^ 0 2181 0.7263

73 u 1 141 0 1870 u 0101 nu 0000uuuu 0.7182 73 n 1 141
J. 0^0 0 1870 0.7182

74 u OAOA 0 1493 nu 0000uyuy nu 007fiUU 1 D 0.4059 54 n 114^ 0 4840 0.6911

75 u OQOQuyuy 0 1573 0111uoo 1 n 0097 0.5779 83 n 1 *%ftfi1 0<j\J 0 2308 0.6872

76 u 91 =\ft 0 2158 AU 1 fi04 A
VJ 01 07U lU 1 1.0000 82 flyj 1 ft04 0 2651 0.6805

77 u 0 5503 AU 91ft0 AU 00^1 0.6366 61 Au 19'^9 0 4957 0.6560

78 u 'ill Q 0 6278 AU iftinoooU AU OOOAUUUD 0.5287 87 AU 99fi9 0 3490 0.6481

79 u 0 3545 AU 1 1 DO AU Uo04 1.0000 77 AU 1=^01 0-.5503 0.6366

80 u 1 99tC 0 1434 AU 1 089 AU ni ifiUloD 0.8543 57 AU 1 0ft71 yo 1 0 3151 0.6306

81 U UyUy 0 2873 AU 1 A noi4Uy nu UUoD 0.3164 64 AU 1 9701 z 1 y 0 2088 0.6125

82 U loU4 0 2651 A
U OOQAZZo4 U HQ Q QUooo 0.6805 65 AU 1 1 QA1 104 0 2023 0.5853

83 U lOoD 0 2308 A
U 1 fin 1 A

u 0.6872 75 AU OQOQuyuy 0 1573 0.5779

84 U U14 (0 1150 A
U U4oo A

u UUUU 0.1278 88 AU 1 /I Q1i4y 1 0 2670 0.5584

85 U 0 1691 AU 14/1 U (\^ ATU14 / 0.9610 78 AU Q Q1 Qooiy 0 6278 0.5287

86 rv
U coon5yzU 0 5920 U ^ 0 AQ A

U UUocS 1.0000 63 AU 1 9QQ1 zyy 0 2737 0.4746

87 U 0 3490 A
U Uo 14 Au UUUO 0.6481 89 AU 1 0071 yy 1 0 4286 0.4659

88 U 14yl 0 2670 U 1 /1 1 n141u A
u UUDl 0.5584 59 AU 0009uyyz 0 2331 0.4256

89 AU 1 OQ7iyy / 0 4286 AU 0000uy Uy Au 0041UU10 0.4659 74 n 0 1493 0.4059

90 0 2709 0 2709 0 1223 0 0182 1.0000 69 0 2408 0 6548 0.3677

91 0 0490 0 2394 0 0455 0 0000 0.2047 97 0 0455 0 1306 0.3484

92 0 0909 0 0913 0 0091 0 0000 0.9956 95 0 0909 0 2743 0.3314

93 0 5258 ^0 5879 0 4020 0 0028 0.8944 81 0 0909 0 2873 0.3164

94 0 1950 0 1950 0 0909 0 0101 1.0000 58 0 1770 0 5602 0.3160

95 0 0909 0 2743 0 1012 0 0083 0.3314 52 0 0909 0 3625 0.2508

96 0 1500 0 1717 0 1262 0 0045 0.8736 51 0 1722 0 7088 0.2429

97 0 0455 0 1306 0 0753 0 0035 0.3484 91 0 0490 0 2394 0.2047

98 0 1408 0 1538 0 1243 0 0341 0.9155 71 0 0455 0 2239 0.2032

99 0 2768 0 3324 0 2393 0 1157 0.8327 66 0 0714 0 3977 0.1795

100 0 4166 0 4166 0 2500 0 0455 1.0000 84 0 0147 0 1150 0.1278

Results Ranked by Best Precision

Table 5: Official Results, CLARIT "B"—11-Point P-R, Topics 51-100

277

T Rel Bioo Best Med Worst B200 Best Med Worst 11-pt Best Med Worst

1 216 29 42 25 0 45 62 30 0 0.0991 0.1897 0.0640 0.0000

2 384 24 50 24 1 51 72 43 1 0.0466 0.1470 0.0631 0.0021

3 431 61 91 58 6 95 167 84 8 0.2004 0.3374 0.1515 0.0182

4 48 28 29 14 2 31 33 18 2 0.3074 0.3088 0.1457 0.0028

5 150 20 67 27 6 35 116 38 10 0.0862 0.5286 0.1585 0.0687

6 137 51 57 32 13 78 78 45 15 0.3544 0.3879 0.1371 0.0264

7 200 44 55 41 0 55 87 63 1 0.1540 0.2886 0.1806 0.0010

8 159 11 28 11 2 18 43 18 3 0.1008 0.1225 0.0325 0.0020

9 638 37 81 58 2 78 117 87 8 0.0759 0.1765 0.1188 0.0040

10 233 87 88 76 10 121 153 110 15 0.4889 0.5764 0.3789 0.0455

11 196 41 57 29 3 67 89 52 7 0.2154 0.3005 0.0849 0.0063

12 262 42 61 36 1 54 103 54 4 0.1249 0.2494 0.1146 0.0022

13 112 46 99 36 2 53 111 46 5 0.3298 0.9058 0.2847 0.0061

14 203 55 55 28 0 85 85 48 0 0.2908 0.2908 0.1122 0.0000

15 624 41 75 50 14 62 114 80 17 0.0709 0.1591 0.1016 0.0202

16 88 25 34 19 0 27 44 24 1 0.1930 0.2763 0.0641 0.0015

17 303 69 88 69 0 87 154 81 0 0.2469 0.4791 0.2436 0.0000

18 147 3 36 19 1 16 61 31 2 0.0146 0.2158 0.1044 0.0146

19 985 67 98 74 48 102 161 102 74 0.1378 0.1801 0.1378 0.0531

20 403 92 96 74 5 151 178 124 5 0.3436 0.4361 0.2307 0.0083

21 47 36 41 31 0 37 44 35 0 0.6065 0.6889 0.5016 0.0000

22 466 96 96 78 10 140 162 120 14 0.3327 0.3327 0.2262 0.0303

23 100 48 63 37 3 48 74 41 5 0.4088 0.6626 0.2672 0.0101

24 345 57 69 38 11 86 113 59 11 0.1937 0.2552 0.0952 0.0440

25 36 20 24 11 0 20 34 14 0 0.1611 0.2726 0.1204 0.0000

26 313 65 75 42 1 111 122 49 1 0.2459 0.2928 0.1338 0.0227

27 232 55 63 49 6 109 109 91 10 0.2625 0.3326 0.2388 0.0182

28 332 18 56 36 13 39 89 47 14 0.1088 0.2095 0.1210 0.0210

29 142 7 61 10 0 10 79 13 0 0.0909 0.3677 0.0455 0.0000

30 269 28 64 37 9 44 92 48 17 0.0578 0.2613 0.1374 0.0108

31 156 19 42 22 0 31 66 31 0 0.0422 0.2235 0.0668 0.0000

32 119 27 41 13 0 36 52 15 0 0.1768 0.3157 0.0909 0.0000

33 462 55 83 55 10 83 147 71 17 0.1450 0.3147 0.1411 0.0152

34 303 66 80 60 6 125 129 104 6 0.3345 0.3776 0.2380 0.0130

35 270 74 86 70 0 117 139 113 0 0.3626 0.4800 0.3041 0.0000

36 158 77 82 41 0 103 110 50 0 0.5526 0.5694 0.2263 0.0000

37 409 100 100 92 6 170 189 158 19 0.4349 0.4506 0.3483 0.0088

38 810 96 100 70 25 133 169 120 37 0.1782 0.2619 0.1536 0.0227

39 501 76 100 76 14 123 184 117 24 0.2271 0.3597 0.2271 0.0182

40 800 99 99 85 16 147 150 121 16 0.1818 0.1818 0.1554 0.0267

41 144 8 25 8 0 10 34 11 0 0.0182 0.1360 0.0182 0.0000

42 696 90 96 79 10 125 131 92 10 0.1735 0.1806 0.1632 0.0427

43 0 0 0 0 0 0 0 0 0 0.0000 0.0000 0.0000 0.0000

44 241 38 63 29 1 43 105 35 1 0.1540 0.3761 0.0909 0.0029

45 304 63 72 52 0 79 103 71 0 0.2099 0.2722 0.1823 0.0000

46 51 22 28 21 6 38 40 31 9 0.1725 0.2824 0.1855 0.0199

47 237 16 59 19 1 32 80 35 2 0.0373 0.2569 0.0932 0.0031

48 189 11 35 17 1 16 48 28 2 0.0303 0.1700 0.0492 0.0015

49 139 40 46 34 4 61 65 56 4 0.2005 0.2438 0.1682 0.0130

50 26 0 12 1 0 0 12 1 0 0.0000 0.2374 0.0039 0.0000

Table 6: Official Results, CLARIT "B"
,
Topics 1-50

278

A. IVcl Bioo 13cat ivieci ^A^orst U200 DCSt ivied worst 1 1 r\\1 1-pi Dest ivieci Worst

01 1 ISloO OA Q1yo "inou nu OAZ1 1 UO 77
((U n 1 700U.l (ZZ n 7 n a aU. (Uoo n 1 1 mU.olUl A n(\(\{\U.UUUU

OZ tilOoO oy 1 nnlUU SQoy 1 1Qoy 1 Q1lyi 1 C 710 (
Qo n nof^ou.uyuy U.oOZO A OKORU.zOZd A A A1 cU.UUlo

Do "^710(1 ^7O 1
S4ol 471

1

1 91 z 1 1110 1 1110 oayo A OIZ n 1 Q7 cu.iy (

0

n ooaoU.ZzOZ A 1 q cnU. 1 JoU A no 1 ^U.UZlD

01 171111 Oo 71
1 1 '^0OZ 7 RA01 1 n7lU 1

ai01 1 A11 U.oolO n /1 8/1 nU.IOlU A q 1 qou. Jijy A A/1 C CU.Uloo

00 SinOIU 1 nnlUU 1 nnlUU 870 1
inoU 100 1 7a1 1 0 1 KR100 ROOZ A Ot:77U.ZO ((

A o^; 1 cU.ZOlO n 1 71 aU. 1 (10 A A q 1 oU.Uo 1 Z

OD a7a0 1 0 1 nnlUU 1 nnlUU yo i^nou 1 7a1(0 1 OAlyi 1 Rf\lOU 1 nolUJ n 0R07U.ZDZ (
A o7f^aU.Z (UO A 1 7QQU. 1 (00 A 1 q qoU.looZ

0 t 101 Do SIoo 49tz 1 91 z 1 nnlUU 1 M101 R70 1
1 91 Z n 1 Qa7u.iyo 1

n 1 1 ciU.o 101 n 1 oqnU.l ZoU n nonoU.UZUZ

Oo 1loy 11ol 71
1 o AO1Z y C9OZ 1171 1 (

RnOU 1 R10 n 1 77nU.l ((U
A c^noU.OdUZ A ooa

c

u.zzeo A noilU.UZl 1

oy 0 1 y 97Z 1
S

1

01 Rt01 0z c;a08 1 19loZ OQyy A1 n noQOu.uyy z
A o 1 1 1U.Zool A 1 OOOu.izzy n n(\A nU.UU4U

art ou 1 A11 1 Qly Qy 0z 1 R10 OKzo 10 Qi n 1 ca/iU.1084 A o 1 a 1U.Zlol A A7QQU.U (yy n f\(\A 1U.UU41

01 zuo 00 SI01 ^70 (
1 nlu Q9MZ 1111 lo a t:00 lu n locoU.ozOz A A (\K7U.iyo (

A q 1 7 cU.ol (

0

n nonoU.uyuy

/yo 1Qoy t;70 1
A 111 Qy ROoy Q9VZ 7n

(

U

zy U.IO 1

1

A oo^; 1U.ZZDl A 1 q COU.loOz n n 1 q aU.UloO

Do zuo OAZ1 101 99zz oo 97Z 1
71
(

1

97Z I
QO n 1 ooQu.izyy A 0717U.Z (o (U.IUOO n nnoQu.uuzy

04 ii / 0 i A41 RR00 A A44 z a 1Oo lUo 7C\
1 y z

n 1 07flU.lz (

y

A onaaU.ZUoo A 1 070U.lz (y
A An c cU.UUOO

00 IRRoOD 19oZ R ^DO 10oy A1 A 71

1

111111 K K00 7
(

n 1 1 RAU.1181 A onoiU.ZUZo n 118/1U.1104 n nn7nU.UU 1 U

RR00 1 07ly 1
1 71

1

RRDO 19oZ u 9n
Z\}

1 nnlUU A n1U oZ
n n7i /IU.U 1 11 A 0 077u.jy (

1

A 1 qo/iU.loZI n nni i

0 1 Ool 71
1 1 SIOo 471

1

7
1

1 99IZZ 1 97IZ 1
7R10 97

i2 1
(\ O'X ARU.Z110 n oil 1U.Zolo n nonoU.uyuy nni ORU.UIZD

Do 1 Qi^lyo RA01 RA04 9nzu o yo QKyo 07Z 1
7
1

n 1489U.oIOZ n 14 aoU.oIOZ n 1 1 4 qu.l llo n nm=;U.UUoO

Di7 Oil 99 lo 1 4 o
£i 9Qzy ^nou 1 71 (o n 94naU.ZIUO U.DOIO n 1 478U. 11 (o n nn=;i

I u 00 AX4o KOOZ IfioD 1
1 41lo KA01 17o (

qo U.D101 n 77Qau. ((yo n A ROAU.10Z1 n nnoiU.UUZo

71 isnOOU 1 71 f
RROD ISoo nu 9QZo 1 noluy oy nu n (\AKKU.U100 n 991Qu.zzoy n nonou.uyuy n nnnnU.UUUU

79 I 1 QI I y 97Z 1
1404 9n nu l^ioO 471 (

11oo 0z n 1 fi7iU. 10 (o n 9n7iU.ZU to nil 44u.l 111 n nni oU.UUIZ

71 1 SIloo 97Z 1
19oZ 1

1

1 o nu 1Qoy KR00 9nzv u n 1 141U.lolo n 1 a7nu.l 0 (

u

n mmU.UoUo n nnnnU.UUUU

74 lyy 9azo filOo 9azo 0 17o (
onyu 17O I

Q0 n n^n^U.UOUD n 1 AQ'iu.iiyj n nonou.uyuy n nn7^^U.UU 1 D

7fi
1 0 oOO 9nZ\} 1/1ol 1 71 1

oo inoU 71
(

o

98Zo qo n nonou.uyuy n 1 C71U.IO (o n nqqiU.Uool n nno7U.UUZ 1

10 zyi ^R00 ROOZ y(94iJ 4 7Q(y RA04 ROOZ 1 nlU n Ol caU.ZlOO A o 1 c aU.ZlOO A 1 CCiAU.1DU1 n n 1 n7U.UlU I

77 1 1Qloy i;70 (
RQDO 10oy A4 ROOZ yy KOOZ 0 n icniU.oOUo n ccmU.OOUo n oqanU.ZooU n nnciU.UUol

7a
1 o 10^ 01 Q 101 K.R00 AU KA01 1 oa RROD 11 n 111 Qu.ooiy a co7ao.OZ (

o

A qoqnU.oooU n nrtCiRu .uuud

70 919 00 RQDO 1Qoy 1 9IZ 1 (\A1U4 1 CtA1U4 K K00 1 9IZ n 1 Cy^ cU.J040 A Q CA CU.oOlO A 1 7^; qU. 1 I Oo n n q C/iU.U J04

ou 17Aoil inoU ou 90zy 1 nlu ROoy OAy4 A 1lo 91Zl n 1 oo cU.IZZO n 1 A1AU.14o4 n 1 naou. luoz n n 1 qfiU .U loO

ol fi9DZ 1 97Z 1
1 R10 1 A4 4n1U OKZO 11 n nonou.uyuy n 9871U.ZO (

o

n 1 4nQu.iiuy n nnifiU .UUoD

OUZ 7^
1 0 Q Kyo 7Q

1 y 01 RR00 1 77lit 1 98IZO KK00 n 1 sn4U.10U1 n 9K'^iU.ZDOl n 9984u.zzoi n nasiU .Uooo

SI fillDoo 7n
1 u RA01 RR00 91ZA 1 nRlUO 1 1RloO 191IZl 98ZO n 1 KRRu.iooo n 9in8U.ZoUO n 1 fimU. 1 DU

1

n r\OROU.UZOZ

Sdo4 oyD 1 A11 4.11

1

1 411 nu 1 411 7n
(u 91Zl nu n ni 47U.U11 (

n 1 1 '^nu.l loo U.U100 n nnnnU.UUUU

00 oyo S404 s";00 RR00 7
1

1

1

110 1 KK1 OO liftIID 97Z (
n ifi9^u.iozo n 1 fiQiu. 1 oy 1 n 1 477U. 11 ((

n m 47U .U 1 1 (

00 OtAJ14 Q7y I
Q7y 1

A(\1U QO 1 inloU 1 in1 oU R1Do 0 n f^Qonu.oyzu n "^Qonu.oyzu n 1 148U. lolo n nmaU.UUoO

870 1
1 Qfi100 01 R 101 7 nU 7K

1 0 anou 1 R10 1 n 99fi9u.zzoz n i4Qnu.oiyu n nil

4

U.Uoll n nnn"^U.UUUO

OS00 100 17 A a40 9aZo Qo Rt01 7K
I 0 KfiOU Q0 n 1 40

1

u. iiy 1 n ofi7nU.ZO (

u

n 1 4 1 nU.lllU n nnfiiU .UUO 1

SOoy 1 71^1(0 XAo4 RQoy onZV 1 AR40 lUO OKZO 1 n 1 QQ7u.iyy (
n 498fiU.IZoD n nonou.uyuy n nn4iU .U Ulo

yu OR RZOO RA04 RRDO 1 KOO 1 9yz 1 nnlUU 1 nnlUU CIOo 9fiZD n 07nQu.z (uy n 97nQU.Z (uy n 1 991U. 1 ZZO n m 89U .U 1 OZ

Q

1

y 1 4U o
O O KZo c

0 U 0 inoU y u n (\A0(\u.U4y u n 01Q4u.zoyi U.U100 n nnnnu .uuuu

92 88 6 18 3 0 6 21 5 0 0.0909 0.0913 0.0091 0.0000

93 171 77 77 62 2 111 130 90 4 0.5258 0.5879 0.4020 0.0028

94 310 53 63 24 8 72 89 31 14 0.1950 0.1950 0.0909 0.0101

95 263 10 64 19 3 15 84 32 5 0.0909 0.2743 0.1012 0.0083

96 693 79 80 49 1 104 133 82 1 0.1500 0.1717 0.1262 0.0045

97 352 11 39 18 2 12 61 31 4 0.0455 0.1306 0.0753 0.0035

98 666 57 67 53 25 95 109 80 27 0.1408 0.1538 0.1243 0.0341

99 288 68 68 54 30 106 129 98 46 0.2768 0.3324 0.2393 0.1157

100 316 87 88 66 11 149 149 89 12 0.4166 0.4166 0.2500 0.0455

Table 7: Official Results, CLARIT "B", Topics 51-100

279

T A.2000 Yfi Aonnn Bi 00 b m w Bi nn /m T A2OOO /b Aonnn B2OO b m w Donn /

m

119 32 82 0.33 27 41 13 0 2.08 32 82 0.44 36 52 15 0 2.40

48 4 32 0.88 28 29 14 2 2.00 26 161 0.69 111 122 49 1 2.27

203 14 148 0.37 55 55 28 0 1.96 36 0 NA 103 110 50 0 2.06

158 36 0 NA 77 82 41 0 1.88 14 148 0.57 85 85 48 0 1.77

36 25 20 1.00 20 24 11 0 1.82 6 91 0.86 78 78 45 15 1.73

137 6 91 0.56 51 57 32 13 1.59 4 32 0.97 31 33 18 2 1.72

313 26 161 0.40 65 75 42 1 1.55 1 92 0.49 45 62 30 0 1.50

345 24 193 0.30 57 69 38 11 1.50 24 193 0.45 86 113 59 11 1.46

196 11 112 0.37 41 57 29 3 1.41 25 20 1.00 20 34 14 0 1.43

810 38 449 0.21 96 100 70 25 1.37 42 327 0.38 125 131 92 10 1.36

88 16 30 0.83 25 34 19 0 1.32 11 112 0.60 67 89 52 7 1.29

241 44 47 0.81 38 63 29 1 1.31 44 47 0.91 43 105 35 1 1.23

100 23 48 1.00 48 63 37 3 1.30 46 0 NA 38 40 31 9 1.23

112 13 53 0.87 46 99 36 2 1.28 20 195 0.77 151 178 124 5 1.22

403 20 195 0.47 92 96 74 5 1.24 40 467 0.31 147 150 121 16 1.21

466 22 0 NA 96 96 78 10 1.23 34 0 NA 125 129 104 6 1.20

304 45 0 NA 63 72 52 0 1.21 27 148 0.74 109 109 91 10 1.20

139 49 0 NA 40 46 34 4 1.18 2 120 0.42 51 72 43 1 1.19

262 12 86 0.49 42 61 36 1 1.17 22 0 NA 140 162 120 14 1.17

800 40 467 0.21 99 99 85 16 1.16 33 170 0.49 83 147 71 17 1.17

216 1 92 0.32 29 42 25 0 1.16 23 48 1.00 48 74 41 5 1.17

47 21 38 0.95 36 41 31 0 1.16 13 53 1.00 53 111 46 5 1.15

696 42 327 0.28 90 96 79 10 1.14 3 189 0.50 95 167 84 8 1.13

233 10 167 0.52 87 88 76 10 1.14 16 30 0.90 27 44 24 1 1.12

232 27 148 0.37 55 63 49 6 1.12 38 449 0.30 133 169 120 37 1.11

303 34 0 NA 66 80 60 6 1.10 45 0 NA 79 103 71 0 1.11

409 37 0 NA 100 100 92 6 1.09 10 167 0.72 121 153 110 15 1.10

200 7 56 0.79 44 55 41 0 1.07 49 0 NA 61 65 56 4 1.09

270 35 241 0.31 74 86 70 0 1.06 37 0 NA 170 189 158 19 1.08

431 3 189 0.32 61 91 58 6 1.05 17 123 0.71 87 154 81 0 1.07

51 46 0 NA 22 28 21 6 1.05 21 38 0.97 37 44 35 0 1.06

501 39 338 0.22 76 100 76 14 1.00 39 338 0.36 123 184 117 24 1.05

462 33 170 0.32 55 83 55 10 1.00 35 241 0.49 117 139 113 0 1.04

384 2 120 0.20 24 50 24 1 1.00 19 538 0.19 102 161 102 74 1.00

303 17 123 0.56 69 88 69 0 1.00 12 86 0.63 54 103 54 4 1.00

159 8 47 0.23 11 28 11 2 1.00 8 47 0.38 18 43 18 3 1.00

144 41 16 0.50 8 25 8 0 1.00 31 118 0.26 31 66 31 0 1.00

985 19 538 0.12 67 98 74 48 0.91 30 172 0.26 44 92 48 17 0.92

156 31 118 0.16 19 42 22 0 0.86 5 96 0.36 35 116 38 10 0.92

237 47 0 NA 16 59 19 1 0.84 47 0 NA 32 80 35 2 0.91

624 15 312 0.13 41 75 50 14 0.82 41 16 0.62 10 34 11 0 0.91

269 30 172 0.16 28 64 37 9 0.76 9 313 0.25 78 117 87 8 0.90

150 5 96 0.21 20 67 27 6 0.74 7 56 0.98 55 87 63 1 0.87

142 29 0 NA 7 61 10 0 0.70 28 139 0.28 39 89 47 14 0.83

189 48 0 NA 11 35 17 1 0.65 15 312 0.20 62 114 80 17 0.78

638 9 313 0.12 37 81 58 2 0.64 29 0 NA 10 79 13 0 0.77

332 28 139 0.13 18 56 36 13 0.50 48 0 NA 16 48 28 2 0.57

147 18 118 0.03 3 36 19 1 0.16 18 118 0.14 16 61 31 2 0.52

26 50 0 NA 0 12 1 0 0.00 50 0 NA 0 12 1 0 0.00

0 43 0 NA 0 0 0 0 NA 43 0 NA 0 0 0 0 NA

Table 8: General Results, CLARIT "A"/"B", Topics 1-50, Ranked by Performance

280

Rait T A2000 /V ^2000 Bj 00 b m w *-'100 / T "2000 /V ^^2000 B200 b

188 87 81 0.63 51 61 7 0 7.29 87 81 0.93 75 80 16 1 4.69

195 68 0 NA 64 64 20 2 3.20 68 0 NA 95 95 27 7 3.52

214 86 0 NA 97 97 40 3 2.42 94 78 0.92 72 89 31 14 2.32

310 94 78 0.68 53 63 24 g 2.21 86 0 NA 130 130 63 6 2.06

183 73 0 NA 27 32 13 0 2.08 73 0 NA 39 56 20 0 1.95

88 92 6 1.00 6 18 3 0 2.00 90 173 0.58 100 100 53 26 1.89

266 90 173 0.37 64 66 35 12 1.83 79 138 0.75 104 104 55 12 1.89

232 79 138 0.49 68 68 39 12 1.74 89 92 0.50 46 105 25 4 1.84

175 89 92 0.37 34 69 20 1 1.70 69 35 0.83 29 50 17 5 1.71

693 96 144 0.55 79 80 49 1 1.61 100 0 NA 149 149 89 12 1.67

52 69 35 0.63 22 48 14 2 1.57 67 308 0.40 122 127 76 27 1.61

60 60 24 0.58 14 19 9 2 1.56 80 179 0.39 69 94 43 21 1.60

534 67 308 0.23 71 83 47 7 1.51 57 148 0.68 100 151 67 12 1.49

461 57 148 0.43 63 83 42 12 1.50 96 144 0.72 104 133 82 1 1.27

139 77 63 0.90 57 68 39 4 1.46 76 99 0.80 79 84 62 10 1.27

119 72 0 NA 27 34 20 0 1.35 93 134 0.83 111 130 90 4 1.23

294 76 99 0.57 56 62 42 4 1.33 88 155 0.39 61 75 50 8 1.22

316 100 0 NA 87 88 66 11 1.32 92 6 1.00 6 21 5 0 1.20

166 88 155 0.24 37 48 28 3 1.32 98 168 0.57 95 109 80 27 1.19

288 99 266 0.26 68 68 54 30 1.26 77 63 0.98 62 99 52 6 1.19

896 85 184 0.46 84 85 68 7 1.24 53 179 0.64 115 116 98 42 1.17

171 93 134 0.57 77 77 62 2 1.24 70 43 1.00 43 54 37 3 1.16

571 53 179 0.32 57 84 47 12 1.21 56 0 NA 178 194 160 102 1.11

55 70 43 1.00 43 52 36 1 1.19 99 266 0.40 106 129 98 46 1.08

365 75 43 0.47 20 34 17 3 1.18 61 168 0.55 92 113 85 10 1.08

810 55 454 0.22 100 100 87 30 1.15 75 43 0.70 30 73 28 3 1.07

208 63 37 0.65 24 51 22 3 1.09 60 24 0.67 16 25 15 3 1.07

666 98 168 0.34 57 67 53 25 1.08 55 454 0.37 166 178 156 62 1.06

878 56 0 NA 100 100 95 50 1.05 72 0 NA 35 47 33 2 1.06

633 83 153 0.46 70 84 68 23 1.03 64 254 0.33 83 108 79 2 1.05

374 80 179 0.17 30 50 29 10 1.03 54 115 0.73 84 107 81 14 1.04

171 54 115 0.46 53 71 52 7 1.02 74 121 0.31 37 90 37 8 1.00

499 74 121 0.23 28 63 28 6 1.00 63 37 0.73 27 71 27 3 1.00

396 84 0 NA 14 41 14 0 1.00 85 184 0.62 115 155 116 27 0.99

375 64 254 0.17 44 66 44 2 1.00 62 123 0.56 69 92 70 29 0.99

206 61 168 0.33 56 81 57 10 0.98 83 153 0.69 106 136 121 28 0.88

162 78 54 1.00 54 81 56 0 0.96 58 91 0.57 52 117 60 16 0.87

602 82 95 0.79 75 95 79 51 0.95 65 0 NA 47 111 55 7 0.85

298 62 123 0.32 39 57 41 9 0.95 82 95 0.91 86 177 128 55 0.67

386 65 0 NA 32 65 39 4 0.82 84 0 NA 14 70 21 0 0.67

159 58 91 0.34 31 73 42 9 0.74 78 54 1.00 54 128 86 1 0.63

352 97 19 0.58 11 39 18 2 0.61 59 131 0.44 58 132 99 4 0.59

40 91 5 0.60 3 25 5 0 0.60 91 5 1.00 5 30 9 0 0.56

263 95 23 0.43 10 64 19 3 0.53 66 23 0.87 20 100 40 2 0.50

197 66 23 0.74 17 66 32 0 0.53 71 171 0.17 29 109 59 0 0.49

138 51 24 1.00 24 93 50 0 0.48 95 23 0.65 15 84 32 5 0.47

380 71 171 0.10 17 66 38 0 0.45 97 19 0.63 12 61 31 4 0.39

579 59 131 0.21 27 81 61 2 0.44 51 24 1.00 24 105 77 0 0.31

535 52 39 1.00 39 100 89 1 0.44 52 39 1.00 39 191 157 3 0.25

62 81 4 1.00 4 27 16 1 0.25 81 4 1.00 4 40 25 1 0.16

Table 9: General Results, CLARIT "A'7"B", Topics 51-100, Ranked by Performance

281

a 'gold standard' for the task—authoritative and comprehensive knowledge of the 'correct'

responses to a query. A gold standard is difficult to establish in general and is genuinely

problematic in the case of the TREC experiments because of the sheer size of the corpus.

Second, for the CLARIT-TREC effort in particular, many errors resulted from simple mistakes

(i.e., human errors) made in the course of processing. It is difficult to isolate such incidental

errors from actual flaws in the design and performance of the CLARIT-TREC system.

In the following sections, we offer thoughts about the 'official' performance of the CLARIT-
TREC system, several hypotheses about sources of failure, and a list of known problems in the

design and application of the CLARIT-TREC system to the TREC tasks.

6.2 Observations About CLARIT-TREC Performance

An evaluation of CLARIT-TREC performance must certainly begin with the comparison of

CLARIT-TREC results to the NIST-identified 'correct' results. Such results are reflected in,

but are not restricted to, recaU-precision statistics, e.g., as given in Table 3 and the comparative

results in Tables 4 through 7. We must bear in mind, however, that recall-precision statistics

grossly under-simplify the analysis of a system's performance in a retrieval task.

CLARIT recall-precision curves demonstrate very high precision at low percentages of recall.

The first few documents returned by the system are extremely likely to be relevant for the given

query. Such a result is encouraging, and suggests straightforward methods to improve the recall

rates of the system. A simple, automatic iteration of the query, augmented with the top few

relevant documents, should extend the 'net' of retrieved relevant documents, as has been well

demonstrated in past IR experiments.^^

Such high precision at low recall tends to validate several hypotheses about performance

characteristics of the CLARIT system. A priori, we expect that one of the benefits of accurate

and appropriate NLP in information retrieval is an improved ability to discriminate among
similar documents. Furthermore, increased precision is an expected result of our 'evoke-and-

discriminate' system design. Because only a small subset of candidate relevant documents was

considered in the discrimination phase of CLARIT-TREC processing, the distinctions among
the documents could be highlighted through more 'expensive' processing of the smaller topical

partitions. We were able to use a vector-space model with a large number of dimensions (all

multi-word terms and individual words) relative to the number of documents under considera-

tion.

The CLARIT-TREC results are clearly competitive with other state-of-the-art information

retrieval systems. As indicated in Tables 1 and 2 and 4 through 7, CLARIT performance relative

to other TREC-participant systems is quite good. CLARIT performs consistently above the

median and often at or near the top of the group. There are relatively few cases where CLARIT
performance is the worst; for the ad-hoc queries, CLARIT does not perform minimally on any

of the topics.

6.3 Hypotheses About Failure

Comparison of CLARIT "A" recall rates against the full results of CLARIT "B" (Tables 8 and 9)

helps to isolate some sources of failure and possible flaws in CLARIT processing. CLARIT "B"

processing is confined to the restricted document set identified by the partitioning procedure;

it is impossible for the final results to demonstrate recall rates better than the number of

documents present in the 2000 document partition. In some cases, many of the actually relevant

documents simply were not available in the partition. As noted previously, on average, at

Cf. [Salton & McGill 1983] for discussion, for example.

282

Feature: Exclusions

Total Yes No

71 24 47

Good 12 25

Bad 12 22

Featiu-e: Generalizations

Total Yes No
71 30 41

Good 15 22

Bad 15 19

Feature: Temporal Constraints

Total Yes No

71 11 60

Good 7 30

Bad 4 30

Note: None of the above shows significant correlation!

Table 10: Topic Features x Performance

least half of the relevant documents were missing in both the ad-hoc and routing experiments.

Relative to the available relevant documents, the vector-space discrimination phase of CLARIT-
TREC processing demonstrated fairly accurate retrieval. Refinements in the techniques used

to nominate an initial partition, therefore, become a natural focus for efforts to improve overall

system performance.

In some cases, CLARIT processing missed relatively large numbers of correct documents.

While it is difficult to imagine a single-strategy IR system that would perform optimally on

all types of queries, it is important to understand why certain queries may cause failures for

a given system. To this end, we conducted several experiments to attempt to identify features

in the queries that might have caused sub-optimal performance. We examined all of the topic

statements to determine if the presence or absence of certain features is correlated with 'good'

or 'bad' recall rates for that topic. ("Good" here is defined as being above the median, "bad"

as being below the median recall rate.) In particular, we tested three hypotheses:

1. The presence of exclusions in the topic causes poor retrieval. "Exclusions" include any

statements that specifically identify concepts or interpretations related to the topic that

are not to be considered relevant for the purposes of retrieval. For example, one query

asked for information on computer crimes, but specifically excluded computer viruses.

In CLARIT-TREC processing, no attempt was made to accommodate such exclusions

except that specifically negated phrases were deleted from the query term list during

initial manual evaluation and term weighting.

283

2. The presence of generalizations in the topic causes poor retrieval. For example, one query

asked for information on currently proposed acquisitions involving a U.S. company and

a foreign company. Without a list of U.S. and foreign companies, one cannot accurately

evaluate candidate documents about acquisitions.

3. The presence of temporal constraints in the topic causes poor retrieval. For example,

one query asked for the location of presidential candidates during a certain time period.

Documents describing events outside of that time period were not considered relevant.

Table 10 gives the instances of 'good' and 'bad' performance relative to the presence or

absence of the specific features in topic statements. There is no correlation. The sources

of difficulty that the CLARIT-TREC system experienced cannot be traced to such simple

characteristics of queries. (Of course, it is still the case that such features of queries present

special problems to all IR systems.)

6.4 A Collection of Known Problems

As noted previously, we made a number of obvious mistakes in processing the TREC corpus

that we simply did not have time to correct. It is likely that some such mistakes contributed

to poor performance. The following is a list of known problems that occurred while processing

the TREC corpus:

1. Errors in the Lexicon. All CLARIT NLP depends on information derived from the lexicon;

incorrect lexical entries will cause errors throughout the system. As with morphological

processing, these errors result in false analysis for some words.

2. Morphological Processing Errors. A certain number of rather simple bugs have been

discovered in the morpholgical analysis module. The bugs have caused incorrect analyses

of some words.

3. "Robust" Parsing of Training Corpus. Unfortunately, the initial parsing of half of the

TREC corpus was done in a mode where all phrases (not just NPs) in the input were

retained in the output. Therefore, this output contained quite a bit of 'noise' in the form

of verbs, adverbs, and adjective phrases.

4. Limited Partition Size. In creating the partition using the partitioning thesauri, we were

limited to sets of 2000 documents. As noted above, one result of the 'low' cutoff is

that many relevant documents were simply not included in the partition. Using larger

partitions should improve overall performance.

In addition, there are many facets of the CLARIT-TREC process that we believe are not

properly calibrated or configured. These include the following:

1. Iteration of Retrieval. Automatic feedback of retrieval results can be used to expand

the set of relevant documents retrieved. However, we did not have time to perform such

feedback during the TREC experiment.

2. Alternative Scoring Functions. It is not clear that IDF-TF is the best scoring function

to use in biased collections of text, such as our 2000 document partitions. In fact, IDF

scoring will specifically demote terms in the document that are known to be important,

yet are very well distributed because of their prominence in the partitioning thesaurus.

3. Refinements to Document Partitioning Formula. TREC represents our initial attempt at

using the partitioning techniques on a large corpus. The feature-scoring formula has not

been validated. Additional experiments will likely lead to refinements.

284

4. Construction of Query Vectors. The techniques used to compose query vectors from sam-

ple documents are problematic. For example, all terms from the contributing documents

were included in the query vector. It is clear that this will contribute 'noise' to the final

vector.

5. Scoring of Query Vectors. The terms in the query vector were scored in their independent

documents, and then the scores were combined using addition. This has the desirable

effect of reinforcing terms that occur in several contributing documents, but it is a crude

mechanism for doing so.

Improvements can be made in many elements of the CLARIT-TREC system. It is clear

that we require further experimentation and analysis to evaluate the system.

7 Conclusion

The CLARIT system has been and is continuing to be developed as part of a university research

project. The specific configuration of the system used in the TREC experiments was developed

in less than one week. As a research prototype, the system has not been engineered for optimal

performance.

The TREC task was challenging, in part, because of the size of the corpus. The CLARIT-
TREC team had not previously worked with such a large database; we 'invented' solutions to

many engineering problems on the fly. We were often inefficient.

Many text processing functions that are available in the CLARIT system or are near com-

pletion were not used on TREC documents. In future evaluations, we plan to utilize some of the

more sophisticated functionality in the system. For example, we have been developing gram-

mars for recognizing complex tokens such as proper names, dates, times, monetary values, etc.,

but did not use token recognition modules in CLARIT-TREC processing. We believe that such

token recognition would greatly improve the results for queries involving specific persons or time

intervals. In addition, we believe that it will be possible to improve results by taking advantage

of sub-document scoring. By dividing a long document into smaller, multi-paragraph units

we wiU be able to score documents more accurately with respect to a topic. Finally, we have

also been experimenting with generating sub-corpus-derived equivalence classes for words and

terms. Equivalence classes wiU make it possible to expand query terms precisely and selectively.

Clearly, there is a great deal more to be learned from the TREC experiment. In our contin-

uing analyses, we will attempt to parameterize CLARIT performance and to experiment with

extensions of CLARIT functionality that may result in superior retrieval.

8 Acknowledgements

CLARIT team- participation in the TREC activities was made possible, in part, by grants

from DARPA/NIST and from the Digital Equipment Corporation. In addition, several groups

at Carnegie Mellon University—including the Laboratory for Computational Linguistics, the

University Libraries, and the School of Computer Science—provided resources to the CLARIT
team. All the groups that supported our effort have our sincerest thanks and appreciation.

285

9 References

[Evans 1990]

[Evans et al. 1991a]

[Evans et al. 1991b]

[Evans et al. 1991c]

[Evans et al. 1992]

[Evans et al. in prep.]

[Hersh et al. 1992]

[Salton k McGill 1983]

Evans, David A., "Concept Management in Text via Natural-Language Pro-

cessing: The CLARJT Approach." Working Notes of the 1990 AAAI Sympo-

sium on "Text-Based Intelligent Systems", Stanford University, March, 27-29,

1990, 93-95.

Evjins, David A., Ginther-Webster, Kimberly, Haxt, Mary, LefTerts, Robert G.,

Monarch, Ira A., "Automatic Indexing Using Selective NLP and First-Order

Thesauri." RIAO '91, April 2-5, 1991, Autonoma University of Barcelona,

Barcelona, Spain, 624-644.

Evans, David A., Hersh, William R., Monarch, Ira A., Lefferts, Robert G., Han-

derson, Steven K., "Automatic Indexing of Abstracts via Natural-Language

Processing using a Simple Thesaurus." Medical Decision Making, 11, (Sup-

plement), 1991, S108-S115.

Evans, David A., Hemderson, Steven K., Lefferts, Robert G., and Monarch, Ira

A., A Summary of the CLARIT Project. Technical Report No. CMU-LCL-
91-2, Laboratory for Computational Linguistics, Caxnegie Mellon University,

Pittsburgh, PA, 1991, 12pp.

Evans, David A., Monarch, Ira A., Lefferts, Robert G., Handerson, Steven

K., and Hersh, William R., "Automating Reliable Judgments of 'Similarity'

among Medical Texts." Laboratory for Computational Linguistics, Carnegie

Mellon University, March 1, 1992.

Evans, David A., Lefferts, Robert G., Grefenstette, Gregory, Handerson,

Steven K., Hersh, Wilham R., and Archbold, Armar A., A Report on the

CLARIT TREC-1 Experiments. Technical Report No. CMU-LCL-93-2, Labo-

ratory for Computational Linguistics, Carnegie Mellon University, Pittsburgh,

PA, 1993. (In Preparation)

Hersh, William R., Evans, David A., Monarch, Ira A., Lefferts, Robert G.,

Handerson, Steven K., Gorman, P. N., "Indexing Effectiveness of Linguistic

and Non-Linguistic Approaches to Automated Indexing." K.C. Lun, P. De-

goulet, T.E. Piemme, and O. Rienhoff (Editors), Medinfo 92, Amsterdam, NL:

Elsevier Science Publishers B.V. (North-Holland), 1992, 1402-1408.

Salton, G. & McGill, M., An Introduction to Modem Information Retrieval.

New York, NY: McGraw-Hill, 1983.

286

Site Reportfor the

Text REtrieval Conference

by

ConQuest Software Inc.

Paul E. Nelson

VP of Research & Development

|Wi Conquest "

^^^^ SOFTWARE
9700 Patuxent Woods Drive, Suite 140, Columbia, Maryland 21046

(410)-290-7150

287

Introduction

ConQuest software has a commercially available text search and retrieval system* called

"ConQuest" (for Concept Quest). ConQuest is primarily an advanced statistical based

search system, with processing enhancements drawn from the field of Natural Language

Processing (NLP).

ConQuest participated in Category A of TREC, and so produced results for 50 test queries

over the entire 2.3 Gigabyte database. In this category, we constructed queries and

submitted results for two methods: Method 1 where queries were automatically generated

from the TREC topics, and Method 2 where queries were manually constructed by the

software engineers at ConQuest.

We were extremely pleased with our performance in TREC, as the Category A system with

the highest 1 1 point averages. This performance is not indicative of our full potential,

however, for the system is still relatively young. We are continuing to evaluate, test, and

tune our dictionaries, ranking algorithms, and search methods.

This paper describes our background, the system architecture used for TREC, some
features of ConQuest, and a discussion of the results. This paper is written for those with a

background in computers with some exposure to artificial intelligence and text retrieval.

Background
ConQuest has been working on text retrieval since 1988. From the beginning, we meant to

use Natural Language Processing (NLP) to better understand the text database and improve

retrieval accuracy. This was a natural approach, since both founders of ConQuest, Edwin
Addison & Paul Nelson, teach NLP at Johns Hopkins University.

During development, we concentrated on solving the two biggest problems of Natural

Language Processing: 1) Most NLP requires large, hand-crafted knowledge bases, and

2) traditional techniques are not robust in the face of text errors.

To solve the first problem, we relied on machine readable dictionaries and thesauri for all

knowledge data. Machine readable dictionaries provide ample information on syntax, word
variations, and inflected forms. Thesauri and similar sources provide semantic information

(word and meaning relationships) which were compiled into structured networks. Both

sources were judged to be useful for text retrieval. Combining the resources, however,

required signiSficant engineering effort.

The second problem, that of robust processing, required work in two areas. First, NLP
development was directed towards statistical approaches and away from rule-based

approaches. Statistical approaches typically use heuristics or probabilities to provide

confidence factors that accumulate evidence. Unlike rules, which are typically pass/fail,

statistical approaches can handle unexpected or variable input without causing total system

failure.

But to fully solve the problem of robust processing, we had to have good, solid software

engineering. Most NLP systems are ad-hoc affairs, often thrown together at the last minute

and patched up. ConQuest has concentrated on producing concrete bullet-proof software,

* For additional infonnation on ConQuest, please contact the author

288

even if this means delaying some advanced or exotic modules. Our philosophy is that

simple programs, well executed, will always out-perform complex tools poorly done.

System Architecture

ConQuest uses pre-built indexes to perform text database searches at fast speeds. In such a

system, all text to be searched must first be indexed. The indexes built in this process can

then be used by the text search engine to produce results. Both indexing and search use a

dictionary with a semantic network to perform various NLP tasks.

Search

Results

Figure 1 ConQuest System Architecture

There are other modules in the ConQuest system not shown in Figure 1. These include the

library manager, which is responsible for system parameters, database configuration,

resource allocation, and physical partitioning of the indexes. Also the dictionary editor,

which can be used to edit words, meanings, links, and definitions.

The Dictionary

ConQuest uses a dictionary augmented with a semantic network to perform indexing and

queries. The dictionary is a Ust of words where each word contains multiple meanings.

Each meaning contains syntactic information (part-of-speech, feature values), and a

dictionary definition.

The semantic network contains nodes which correspond to meanings of words. These

nodes are linked to other related nodes. Relationships between nodes are extracted from

machine readable dictionaries. Some example relationship types include synonym,

antonym, child-of, parent-of, related-to, part-of, substance-of, contrasting, and similar-to.

ConQuest uses the dictionary for morphological analysis (see below) and idiom

processing. The semantic networks are used to expand the query to include related terms.

Since connections are made between meanings of words, both in the dictionary and the

semantic networks, processing is much more accurate compared to a simple thesaurus.

289

aardvark-

aback —
abacus—

zwieback

zygote

—

zymosis -

Dictionary

1: (n) a slab which forms the

uppennost member of the coital

of a column

2: (n) an instrument for

performing calculations by

sliding counters along rods

Semantic Network

counter.4
computation:!

Figure 2 Example Structures for the Dictionary & Semantic Networks

Indexing

ConQuest performs several steps of normalization and information extraction during

indexing to help queries run faster. Words are normalized and enhanced before indexing

with tokenization, morphology, and idiom processing.

Figure 3 The Indexing Process

290

The modules used for indexing are as follows:

• Parse Document: Looks for codes in the text database to locate fields such as title,

headline, authors, etc. These fields can be indexed, ignored, or stored in a special

database for fast access. Parse document takes a command file which describes the

structure of the text database to be indexed and can handle a wide variety of different text

file formats.

• Tokenize: Divides a string of characters into words. This may include special

processing for dates, phone numbers, floating point numbers, hyphens, etc.

• Morphology: An advanced form of stemming, attempts to remove suffixes and perform

spelling changes to reduce words to simpler forms which are found in the dictionary.

For example, one morphology rule will take "babies," strip the "ies," add "y", and

produce "baby" which is found in the dictionary. Irregular forms of words are stored

directly in the dictionary and are not subject to morphological analysis.

Morphology is a much more accurate form of word reduction than stemming, because

the dictionary can be used to validate the transformations. Morphology will not reduce

proper nouns, and will produce much more accurate reductions, especially for words

ending in "e."

• Find Idioms: Idioms are phrases which have a meaning beyond that of the individual

words added together. For example, "kangaroo court" has nothing whatsoever to do

with kangaroos. Also proper nouns, such as "United States," have a meaning beyond

the sum of their component parts.

This module finds idioms in the text and indexes the idiom as a single unit. This

prevents idioms such as "Dow Jones Industrial Average" from getting confused with

queries on "industrial history." Words inside of idioms can still be located individually,

if desired.

• Index: The final step is to store the reduced words and collected idioms into the indexes.

The index is an inverted positional word index, which is conceptually similar to the

index at the back of a textbook.

The speed of indexing by ConQuest has been measured to be approximately 40 megabytes

per hour. This evaluation was done on a Sun IPC Sparc-Station (a 14 MIP computer), with

32 megabytes of RAM. The same speed has been achieved on a 486 EBM-PC, running at a

clock rate of 33 Mhz, with 16 megabytes of RAM.

Query

The query process is more complex than indexing, due to word expansion and ranking.

Generally speaking, ConQuest attempts to refme and enhance the user's query. The result

is then matched against the indexes to look for documents which contain similar patterns.

Queries are not "understood" in the traditional sense of natural language processing.

ConQuest makes no attempt to deeply understand the objects in the query, their interaction,

or the user's intent. Rather, ConQuest attempts to understand the meaning of each

individual word and the importance of the word. It then uses the set of meanings and their

related terms (retrieved from the semantic networks) as a statistical set which is matched

against document information stored in the indexes.

291

ConQuest
Dictionary

Figure 4 The Query Process

The following is a description of the modules used for query:

• Tokenize, Morphology, Find Idioms: These modules are the same as for indexing.

• Query Enhancement: The user is given the opportunity to enhance the query for

additional improvement in precision and recall. There are many options available here,

but the two most important are to choose meanings and weight query terms.

Choosing a meaning of a word will restrict the expansion of words to only related terms

which are relevant to the chosen meanings. This reduces noise in the query. When
running in automatic mode, ConQuest expands all meanings of all words.

Weighting query terms identifies the importance of the various words in the query.

These weights are used by the search engine when ranking documents and computing

document relevance factors.

• Remove Stop Words: Small function words—such as determiners, conjunctions,

auxiliary verbs, and small adverbs—are removed from the query, just as they were

during indexing. Removing these terms makes queries faster, and also reduce

ambiguous noise in the query.

• Expand Meanings: Words in the query are expanded to include related terms.

• Search and Rank: ConQuest uses an integrated search and rank algorithm which

considers the relevance rankings of documents throughout the search process. Since

ranking and search are integrated, the search engine automatically produces the most

relevant documents right away. This is different than past approaches, which typically

retrieve all matching documents and then rank and sort them as a separate step.

292

The speed of queries is based on many factors, including database size, amount of

expansion, size of dictionaries, etc. Many of these parameters can be modified to achieve

the appropriate trade-off between accuracy and speed. For TREC, a query over a 1

Gigabyte database with 15 terms took roughly 9 seconds to retrieve 500 documents on a

Sparc-IPC with 32 megabytes of RAM. Equivalent speeds have been measured on 486

IBM-PC computers running at 33 Mhz with 16 megabytes of RAM.

Queries can be expanded to a very large number of terms, if desired. If the user wishes for

the greatest amount of recall, a 5 word query can be expanded to 200 or 300 related terms.

Ranking

Ranking and retrieval with ConQuest uses a variety of statistics and criterion, which are

flexible and can be modified to handle varying requirements. The following are some of the

factors used in ranking:

Completeness: A good document should contain at least one term or related

term for each word in the original query.

Contextual Evidence: Words are supported by their related terms. If a

document contains a word and its related terms, then the word is given a

higher weight because it is surrounded by supporting evidence.

Semantic Distance: The semantic network contains information on how
closely two terms are related.

Proximity: A document is considered to be more relevant if it contains

matching terms which occur close together, preferably in the same

paragraph or sentence.

Quantity: The absolute quantity of hits in the document is also included, but

is not as strong a discriminator of relevance as the other factors.

ConQuest is the first truly "concept-based" search system to operate over unrestricted

domains. If a document contains the word and some of the related terms, the word is more

likely to be used in the correct meaning, using the "contextual evidence" factor above. In

this way, ConQuest can determine word meanings at query time.

Other Features

ConQuest contains a number of other search features, used to handle specific situations and

search requirements. These were not used for the Text REtrieval Conference. Some of

these features are listed below:

• Wildcards: Are useful for locating misspellings in the queries or in the database. The

user can specify a word with a wildcard, such as "compute*," and then choose which of

the matching terms from the indexes should be included in the query. Query words

derived from wildcards are not otherwise expanded.

• Boolean: The traditional boolean query mode is also available, and contains all of the

basic operators. These include AND, OR, NOT, WITHIN, thesaurus expansion, and

nested expressions.

293

• Query By Example: It is possible to submit an entire document as a query, which is

called "query by example." Essentially, the document is used as an example, and

documents similar to it are retrieved. This function works even when the example

document is very large.

• Search Within: A query can be directed to search only within a small set of documents.

The set of documents is often selected from a previous query. This function is also

called "recursive" search or "recurrent" search. This function is especially useful when a

statistical query searches over the results of an earlier boolean query, or visa-versa.

• Numeric and Date Ranges: ConQuest can find documents which contain numbers or

dates within a specified range. Numbers are subject to the standard proximity tests in the

boolean and natural language queries, just like other words.

• Fielded Searches: A search can be restricted to any particular field in a document. For

example, a users often wish to search only over the "authors" field, and not over the full

body of the text.

• Document Categories: Documents in ConQuest can be categorized as appropriate. Users

can target searches to occur only over a single category, or over multiple categories.

Evaluation Results

ConQuest had the highest overall score in TREC for Category A systems (the full 2.5

Gigabyte database) using the 1 1 point averages. In comparing ConQuest to other systems,

we found the following two graphs to be useful.

100%

80%

60%

40%

20%

0%

-20%

-40%

-60%

-80%

100%

Best

+ H Average

Worst

Figure 5 ConQuest vs All Systems for the 39 Non-Zero Queries

Category A, Manual Mode

This first graph (figure 5) shows the results of ConQuest for the 39 non-zero queries (the

remaining 1 1 queries had no relevant documents in iJie database). A score of 100%
represents the best of all Category A systems, a score of -100% represents the worst of all

Category A systems. A score of 0% represents average performance.

294

The results show that ConQuest was best on five of the 39 queries, worst on one query,

and well above average for most. Essentially, the area above average is much greater than

the area below.

The next chart (figure 6) compares ConQuest to the next two highest Category A manual

systems. This chart was originally produced in the TREC proceedings.

1.0000

0.9000

0.8000

a> 0.7000

§ 0.6000

0.5000

0.4000

o
u

a.

o
M 0.3000

o
£ 0.2000a

0.1000

0.0000

— X ConQuest
~— —-Y

o o
00

o
O)

o o d

o
o

Recall Percentage

Figure 6 Precision at Recall for the Top 3 Scorers

Category A, Manual Mode

This chart shows ConQuest having better performance in the high-recall region (where a

large percentage of the relevant documents are retrieved). We suspect that the performance

in this region is enhanced by our aggressive expansion of terms coupled with die flexible

ranking algorithm.

Good performance in the high recall region is important to us, because studies have shown
that high recall is the most difficult problem for text retrieval systems. Many systems

achieve relatively high precision by discarding documents, but very few achieve high

recall.

295

Conclusions / Future

The performance of ConQuest exceeded all our expectations. The system is still young, and

we fully expected that much more time would be required to rework the ranking algorithms

and evaluate the system. These positive results from TREC indicate that we are well on our

way to superior retrieval performance.

Since TREC, ConQuest has been working on detailed analysis of all factors which drive

ranking and retrieval. This includes the dictionary, morphology, idiom processing, term

expansion, and the ranking engine itself.

We feel that our performance on TREC is good start, but that it does not represent our full

potential. We look forward to TREC-2 to see how much further we can progress.

296

A Boolean Approximation Method for Query

Construction and Topic Assignment in TREC*

Paul S. Jacobs, George R,. Krupka, and Lisa F. Rau
GE Research and Development Center

Schenectady, NY 12301 (518) 387 - 5059

Abstract

Word-based search is the simplest and most widely-available method for process-

ing and retrieving volumes of information from free text. However, this common
method of searching is generally cumbersome and inaccurate. The method de-

scribed here automatically generates complex Boolean queries for word-based

search, so that the same mechanism can be used with higher accuracy and effi-

ciency. This practical approach worked, with good results, on the entire TREC
corpus on both the "routing" and "ad hoc retrieval" tasks, with the official

averages in the top group for both tasks.

1 Introduction

Full-text search is currently the simplest and most commonly-used method for

locating information in large volumes of free text. Because users are accustomed

to describing what they are looking for with specific words, and those words are

often found in the texts, searching the text for selected words or word combi-

nations is a natural and easy-to-implement method for information retrieval.

However, it can be very inaccurate. In some experiments, the percentage of

relevant texts retrieved has been shown to be lower than 10%, and a high per-

centage of material that is retrieved can be irrelevant. Also, it can be very

difficult for searchers to compose "queries" that combine the words that are ef-

fective in locating relevant material without finding large quatities of irrelevant

information as well.

* Special thanks to Mirhael Charbonnean, Mark Freeman, GeofF Gordon, .John Miinson and

Ilri Zemik, who all helped part.iripate in the design and implementation of the GK TREC
system

.

This research was sponsored in part hy the Defense Advanced Research Project Agency. The
views and conclusions contained in this document are those of the authors and should not

he interpreted a.s representing the official policies, either expressed or implied, of the Defense

Advanced Research Project Agency or the US CJovemment.

297

There are many alternatives to full-text search that can produce much
higher accuracy, including statistical methods that weight matches based on
relative word frequencies, automatic indexing strategies, and knowledge-based

approaches that give very high accuracy for repetitive searches at the cost of a

large amount of work in constructing a knowledge base. The ideal search strat-

egy would be one with the accuracy of knowledge-based approaches, but with

the simple efficiency of word searches. This is the motivation for the method
described here.

The selection of this method for the TREC evaluation combined a sense of

the practice of information retrieval with a particular interpretation of what
the evaluation is about. For example, the strategy makes several assumptions

about the task that are apparently different from those made by other sites, and
which perhaps take a looser and less academic view of the experiment. These

key assumptions are:

• Relevance over ranking. The focus of text interpretation is to assign to

each text, with the highest possible accuracy, the set of topics or content

indicators that apply to that text (i.e., particularly for routing, to treat

the topic or relevance of each text individually rather than as a relative

measure against other texts in the corpus).

• Technology over engineering. The goal of the experiment is to show high-

accuracy, practical results, avoiding the threatening limitations of disk

size, memory management, and tractability. (The system did no pre-

indexing or analysis of any portion of the corpus.)

• Text interpretation over query interpretation. As there may not be any

principled structure or methodology in the sample queries, the emphasis on

matching texts to an internal representation of each query, rather than on

automatic query processing, pushes the limits of the routing and retrieval

engine instead of the interface to the user.

These choices were made for various reasons, and are presented here not as

the right way to view the task but as one software system's implicit focus. A
project with a different choice of focus could, for example, produce lower accu-

racy but have the benefit of fully automatic query processing; another project

might have higher accuracy on the top few texts in each category but lower recall

on a general routing task. We view our (preliminary) results as very satisfying

as a test in a high-throughput, high-accuracy, routing-style interpretation.

The sections that follow cover the motivation for the design and implemen-

tation of this method, some specific details of the experiment, and an analysis

of the results.

298

2 Background

There are several different methods for general-purpose information retrieval

from text, as mentioned, including full-text search, statistical and probabilistic

techniques, and those using automatic or manual indexing. Of these, word-

based full-text search is generally believed to be the least accurate, but by far

the most widely practiced. The method is used in spite of its inaccuracy because

it is so easy to implement, and because it gives a direct and natural way for

users to describe what they are looking for.

Knowledge-based approaches—those that rely on formal descriptions of con-

cepts rather than combinations of words—can be the most accurate for certain

limited tasks, but are the most difficult to implement and apply to general

information retrieval problems. While there are a variety of knowledge-based
methods, they share the common framework of looking for structured informa-

tion in a text, while other methods look for simple combinations of words. For

example, a simple query looking for stories about takeovers by GE in a typiccJ

word-based system might be (GE AND ACQUISITION), while in a knowledge-

based system it would look more hke ($GE * $acquire * $company) where

the terms marked by $ indicate classes of words or phrases that the system

can recognize; for example, GE might include GE and General Electric but not

General Electric company of Britain, and $company would match any company
named or described.

The knowledge-based approach is more accurate, in general, for two rea-

sons. First, it allows the program scanning the texts to look for many ways of

expressing the same concept, enhancing recati-ihe percentage of relevant docu-

ments that the program retrieves. Second, it focuses search on specific pieces

of information, thus enhancing precision-the percentage of retrieved texts that

are relevant. In this case, improved recall would come from spotting the variety

of ways of expressing the concept of acquiring, and improved precision comes

from eliminating texts that are about the acquisition of real estate, products,

and so forth, as well as acquisitions by other companies of GE's products and

services.

Most full-text search systems are driven by Boolean queries-terms joined

together by AND, OR, and NOT, such as (GE AND ACQUISITION) above.

These can be arbitrarily complex, and one can start to approximate the opera-

tion of a knowledge-based approach by combining large numbers of terms. For

example, the GE query above could be expressed as;

(AND (OR GE (AND GENERAL ELECTRIC (NOT (AND OF BRITAIN))))

(OR ACQUIRED ACQUISITION BOUGHT (AND (OR TAKE TOOK) OVER) ...)

(OR COMPANY CORP INC CO LTD SA AG ...))

There are several problems with this approach. First, it is very difficult

for users to formulate queries of this sort, so, in practice. Boolean queries are

299

quite simple. Second, it is easier for a system to recognize most or all company
names than it is to list all the possible words that could appear in the name
of a company. Third, the amount of information captured in the query is still

limited; for example, it ignores the order that words appear as well as their ad-

jacency or proximity. Many text search systems allow augmentations to queries

that express these constraints, but this makes the queries still more difficult

to construct and makes searches less efficient. Hence Boolean retrieval systems

remain, in practice, awkward and inaccurate.

The experiment that this team performed in TREC hatched under the pres-

sure of a very difficult task with very limited resources. While a number of

individuals participated (including the three authors and five others), the pro-

gram described here resulted from less than a week of programming over and

above the existing software tools we had in hand to apply to the task. The
constraints thus forced upon the effort included the realization that not much
could be salvaged from the queries as distributed, that the sample relevance

judgements were incomplete and the training samples too small for most statis-

tical tests, and that indexing the corpus by any practical method could delay the

project by weeks, overflow the disks, and prevent any corrections to the method.

This led to a "bare bones" strategy that takes advantage of two strategies; (1)

treating boolean queries as an approximation to more detailed, structured rep-

resentations, and (2) using the corpus, rather than the queries, as the main

source of information for formulating the topics.

3 Our Approach

The fundamental idea behind the method is to take a knowledge-based descrip-

tion of a query or topic, and convert it to a Boolean form that can be efficiently

applied by a text-search engine. This Boolean form, furthermore, must be an ap-

proximation of the knowledge based query, in the formal sense that the Boolean

expression should match all texts that the knowledge-based query would, but

perhaps can admit more texts.

There are several key advantages to this approach of generating a Boolean

query from a knowledge-based description. The simplest benefit is that it makes

building queries easier, because much of the work in forming complex Boolean

expressions is done automatically. A second major advantage is that the Boolean

queries, in approximating a knowledge-based approach, are more likely to give

accurate results. Finally, because retrieval using the automatically-generated

Boolean query approximates the knowledge-based query, the knowledge-based

system can run on the results of Boolean retrieval, thus enhancing precision

without having to apply the more computationally-intensive knowledge-based

processing to very much text.

One of the obvious problems to overcome in TREC was, with a limited

amount of time to formulate 100 queries, with a small amount of training data

300

(none for the ad hoc test), how to make the queries practical and accurate.

Our choice here was to keep the initial queries relatively simple, and to run the

results of a "first pass" retrieval against the entire corpus through a statistical

filter to pull out terms that would help to augment or refine the query. In

addition, the matching engine would display the exact portion of each text that

(correctly or incorrectly) matched the query, making it easy to correct glaring

errors and refine ambiguous terms. This amounts to a peculiar sort of feedback

mechanism that relies on detailed analysis of portions of the corpus instead of

user input.

3.1 Detailed Method

The method brings together four key elements: (1) a language for express-

ing knowledge-based topics or queries, developed at GE and described in the

open Uterature, (2) a new program to generate Boolean expressions that ap-

proximate these queries (called the nik compiler), (3) a program to match

the automatically-generated expressions against text to be retrieved (called the

pre-fiUer), and (4) a knowledge-based pattern matcher, described in the open

literature [2], that takes the results of the first match and rejects texts that do

not satisfy the more constrained, knowledge-based query.

Because the pattern matcher is designed as an efficient "trigger" mechanism

and an aid in parsing, the knowledge-based queries are mostly simple combina-

tions of lexical categories. The patterns largely adopt the language of regular

expressions, including the following terms and operators:

• Lexical features that can be tested in a pattern:

- token "name" (e.g. "AK-47")
- lexical category (e.g. "adj")

- root (e.g. "shoot")

- conceptual category (e.g. "human")

• Logical combination of lexical feature tests

- OR, AND , and NOT

• Wild cards

$ - 0 or 1 tokens

* - 0 or more tokens

-|- - 1 or more tokens

• Variable assignment from pattern components

?X =

• Grouping operators:

<> for grouping

P for disjunctive grouping

301

• Repetition

* - 0 or more + - 1 or more

• Range

*N - 0 to N +N - 1 to N

In practice, certain of these features are used more than others, and most

queries rely most heavily on different lexical categories, grouping, and wildcards.

For example, a simple description of the query looking for texts describing sanc-

tions against South Africa is the following:

Scinction == [(member sanction sanctions disinvestment)

Oullivan Principles>

<punitive *2 measures>] ;

safrica == [(member Buthelezi Pretoria ajiti-apaxtheid apartheid)

<De Klerk> <South (member Africa African) >] ;

; ; ; rule 1

$sanction *50 $safrica => (mairk-topic 52) ;

; ; ; rule 2

$safrica *20 $sanction => (mark-topic 52) ;

This description says that any matching text must have both an indicator of

South Africa ($safrica) and one of sanctions (Ssanction), and that the sanction

phrase must occur within 50 words of the South Africa phrase, except if it only

comes afterwards, in which case it must come within 20 words.

A sanction phrase can be any of the simple words sanction, sanctions, or

disinvestment, or any phrase including punitive measures with no more than two

intervening words (like punitive economic measures). A South Africa phrase can

also be either one of a group of simple words, or a phrase, hke De Klerk, South

Africa, or South African.

These queries or topic descriptions can be quite complex, and the method

has been designed to handle many queries simultaneously, so the rule compiler

is designed to produce expressions that can be efficiently applied within a large

set of queries. This is important because many queries can share the same

simple terms or combinations of terms, and because the pre-filter must match

the simplest expressions first.

For the topic description given above, the output of the rule compiler will

include the following tests:

52 TERM AFRICAN

2029 TERM MEASURES

302

2134 TERM SANCTION

2135 TERM SANCTIONS

2136 TERM DISINVESTMENT

2138 TERM SULLIVAN

2139 TERM PRINCIPLES

2141 TERM PUNITIVE

2144 TERM BUTHELEZI

2145 TERM PRETORIA

2146 TERM ANTI-APARTHEID

2147 TERM APARTHEID

2149 TERM DE

2150 TERM KLERK

2152 TERM SOUTH

2153 TERM AFRICA

2137 OR 2134 2135 2136

liau 0^ 91 "^Q^ 1 OO Z lO «7

2142 AND 2141 2029

2143 OR 2137 2140 2142

2148 OR 2144 2145 2146

2151 AND 2149 2150

2154 OR 2153 52

2155 AND 2152 2154

2156 OR 2148 2151 2155

2157 AND 2143 2156

2158 AND 2156 2143

T0PIC052 OR 2157 2158

Each line in the above data gives a unique number (or topic designator) to

the test, a test identifier (either TERM for a simple word test, OR, or AND),
and a list of simple terms or previous tests. For example, test 2137 depends on

tests 2134, 2135, and 2136, and is true if any of those tests is true, namely, if

the text includes any of the words sanction, sanctions, or disinvestment. The
tests are automatically ordered so that all tests that are dependent on other

tests will have higher numbers than the tests they depend on; thus all TERM
tests appear first. In this case, the TERM test AFRICAN appears with a much
lower number simply because it is used in many diff'erent queries.

The pre-filter, which can work either on complete documents or paragraphs,

goes through every word in its input and, using a fast table look-up, sets the

TERM tests to true for every word it encounters. At the end of input, either

the end of the paragraph or end of each document, it runs through the table of

possible tests from low numbers to high numbers and sets tests to true if their

303

conditions are satisfied. A topic test produces a match if it has become true at

the end of this process, meaning that the paragraph or document has passed

the pre-filter for that query. A single paragraph, of course, can satisfy multiple

queries.

The pattern matcher then loads in only those texts that have passed the

pre-filter, and uses the original queries to apply more stringent tests to those

texts, such as ordering, proximity, and more complex lexical tests. In typical

cases, the amount of text the pattern matcher must scan is only 2-3% of the

words in the original, and the pattern matcher discards 20-30% of the matches

of the pre-filter. Hence, well over 95% of the text filtering is done by the pre-

filter, making the whole process efficient as well as showing that the pre-filter

closely approximates the knowledge-based pattern matcher.

4 Implementation and Results

The lexical analyzer and the matching method described above were programmed
in the C programming language, compiled, and tested on a corpus of about 1.2

gigabytes of text (about 200 million words) with a set of 50 topics, as part

of the government-sponsored Text Retrieval Conference (TREC). The program

was then tested on an additional gigabyte of text (the "second" disk) with an

additional 50 topics, and the results were submitted to the government for com-

parative evaluation purposes. The results, in this case, were a ranked list of up
to 200 documents that matched each query.

The final test, run on two SUN workstations, took about 10 hours of elapsed

time for the entire corpus. The pre-filter ran at a speed of several hundred

thousand words per minute, thus covering the entire contents of each disk in

a few hours. This would reduce the text to 3% of the original data, with

each paragraph marked according to the queries that matched in the pre-filter.

During query refinement, a statistical filter ran through the entire contents of

this marked portion of the corpus, pulling out words and phrases with a high

correlation (a variation of the metric for categorization reported in [1]) to a

particular topic. For every topic, then, the statistical filter listed terms not in

the (Boolean) query that occurred with a disproportionate frequency in text

that matched the query. This, for example, produced the terms Butheltzi and

punitive measures in the South Africa query above.

Figure 1 summarizes some of the official results from TREC, including the

number of times the systems achieved the best score, and were above, below

and equal to the median score. The system was very close to the top in both

the ad hoc and routing tasks, and was well above median on most topics. The

pre-filter, surprisingly, was better than the pattern matcher almost across the

board, indicating that with this style of evaluation there seemed to be no real

benefit to deeper analysis than a simple Boolean match. The logical conclusion

is that a Boolean routing or retrieval engine can perform as well as much more

304

complex and sophisticated methods, so long as enough knowledge is used in

constructing the Boolean expressions.

AD HOC TEST ROUTING TEST
11 -pt. Rel.@ Rel./ 11 -pt. Rel.@ Rel./

avq. 100 docs. Retrieved avq. 100 docs. Retrieved

Boolean pre -filter .2029 47.2 .46 .2078 35.6 .34

Pattern matcher .1961 46.2 .46 .1851 34.6 .37

Median for all runs .1585 39.7 .1246 28.6

top above below

score median median equal
top above below

score median median equal

Boolean pre -filter 5 28 15 2 5 31 6 7

Pattern matcher 5 26 17 2 6 27 10 6

Figure 1: GE TREC test results

5 Limitations and Future Work
While the overall, relative results were generally strong, the system as it was
implemented had some basic flaws that should be easily corrected. One char-

acteristic of this method is that it seems to produce excellent results on the

queries that produce large volumes of data, and tends to produce almost noth-

ing on some of the narrowest queries. It also produces both high precision and
high recall for the texts that match, but makes it difficult to "loosen up" to

let in more texts. Since the match relies on at least some exact match between
query terms and texts, there are some queries (for example, about the details of

rewriteable disks), that produced no hits. By contrast, in one configuration, the

system assigned over 4,700 texts to one query ("sightings of 1988 presidential

candidates"), of which only 200 were included in the submitted results. This

might be desirable behavior for a routing system, but in the TREC style of

evaluation the system did badly on those queries where it failed to produce at

least 200 documents. On the other hand, the system produced at least 6000
responses in even its strictest configuration, or at least 120 texts, on average,

per query.

305

The problems with undergeneration (and the related problem of not doing

a very good job of ranking the documents) were due to the fact that our sys-

tem was designed for routing, while TREC used traditional retrieval evaluation

methods, along with a 200-document cutoff, effectively counting recall on the

harder topics much more heavily than overall recall. Our approach can correct

for this by using a more flexible statistical method to expand the queries and

by performing a more sophisticated ranking (the document ranking as reported

was implemented post hoc in one line of Unix code).

More important than the problems to correct, there is an important result

here to build on. Our experience has been that pattern matching can be a

close approximation for this sort of task to natural language processing, so it

might seem that advanced methods are much more critical for finding what

to put in the queries than they are for the detailed analysis of the texts. The
general framework of this approach means that, with the continued development

of advanced methods for natural-language based corpus analysis, substantial

performance improvements can come within the context of almost any current

text retrieval systems.

6 Evaluation Methods

One unusual characteristic of our method is that it assumes that each relevance

judgement that the system makes is made independently of all other texts, as in

a routing task where the system processes each incoming message in turn and

assigns topics or actions for filing or routing that message. Certainly, this style

has certain advantages—it is simple, clear, and makes parallel processing easy

—

and it reflects some real assumptions about the nature of the task. However,

although it seems to have done very well relative to other systems, it is not

consistent with the instructions for submitting results in TREC, and certainly

doesn't lead to the best possible showing on some of the results.

Topic 77, about poaching techniques, is one example of the different (naive,

perhaps) perspective toward evaluation that our system adopts. The query

specifies:

A relevant document will identify the type of wildlife being poached,

the poaching technique or method of killing the wildlife which is used

by the poacher, and the reason for the poaching (e.g. for a trophy,

meat, or money).

This is a very specific query. Our test (bootstrapping) sample produced a good

number of hits, but most of them failed to include one of the required pieces of

information, usually the technique or method of killing. So, we narrowed the

query. The result is that, for this query, the system produced 9 total documents,

6 of which were judged relevant. This is high precision (.67), but it doesn't help

the overall results, since for this topic the precision at 200 documents is treated

306

as .03. To us, narrowing the query seemed a good idea because the precision

on this topic otherwise would have been low, but we did not realize that the

documents that the system didn't retrieve were still treated as incorrect in this

calculation.

On Topic 43 (1991 AI conferences), our system produced 3 documents, all

of which were irrelevant. This "routing" topic was later discarded because no

relevant documents were found in the corpus, but there is nothing inherently

wrong with testing topics for which there is no data. In fact, the ideal routing

system should produce 0 hits for such a topic, not 200 hits as dictated in TREC.
Certainly ranking and routing don't go together in any real task on a gigabyte

sample. One way that future evaluations can test routing is to use a random (or

otherwise fair) sample of the collections as a test, judge every document in that

sample with respect to every query, and then measure each system's recall and

precision on the basis of the sample. This would probably require less hand-

work in judging relevance, but would require that each system produce topic

assignments for every document in the collection (from which the assignments

for the test sample would be extracted post hoc). This could be impossible for

some systems. On the other hand, the strategy would give real numbers for

both recall and precision, and would be much truer to the routing task.

7 Utility

The main purpose of this method is as a front-end for computation-intensive

natural language processing of large bodies of text. Because the pre-filter closely

approximates more in-depth processing with a very fast, efficient process, it

permits detailed processing of large volumes of text by discarding most of the

irrelevant material and by producing a rough approximation of the more detailed

processing.

The method is more broadly applicable to problems in information dissemi-

nation and retrieval. Accuracy is only one appealing characteristic of the tech-

nique, since the main innovation is that it allows for improved accuracy within

the context of traditional word-based full-text search.

In addition to the programs described here, the method was tested with a

statistical corpus analyzer that helps to identify candidate words and phrases

to include in queries. This method helps to overcome some of the limitations

of word-based methods in cases where statistical approaches clearly seem to do

better. As an additional experiment, this automated corpus analysis can be

used to reduce further the amount of labor involved in building queries.

307

8 Summary

GE's participation in TREC involved a small implementation of a simple strat-

egy for compiling knowledge based pattern matcher rules into the language of

Boolean expressions. A statistical corpus analyzer helped to formulate and re-

fine queries for both the ad hoc and routing tasks, and the resulting matching

engine ran on the entire 2.3 gigabytes of text. The simple Boolean retrieval

engine performed very well on both tasks. These results are promising, both

from the perspective of accuracy and for the simplicity with which they seem to

bring knowledge-based techniques to bear within the rudimentary framework of

word-based retrieval.

References

[1] Paul S. Jacobs. Joining statistics with NLP for text categorization. In

Proceedings of the 3rd Conference on Applied Natural Language Processing,

April 1992.

[2] Paul S. Jacobs, George R. Krupka, and Lisa F. Rau. Lexico-semantic pat-

tern matching as a companion to parsing in text understanding. In Fourth

DARPA Speech and Natural Language Workshop, pages 337-342, San Ma-

teo, CA, February 1991. Morgan-Kaufmann.

308

Text Retrieval with the TRW Fast Data Finder

Matt Mettler

TRW Systems Development Division

One Space Park R2/2194
Redondo Beach, CA 90278

(310) 814-4925
matt@ wilbur.coyote.trw.com

1.0 Introduction

TRW has been building high perfonnance text processing and retrieval systems for a

number of years. Most of these systems have involved the application of the TRW Fast

Data Finder (FDF) text search hardware and have been designed to meet the requirements

of specific government customers. Our goal for the TREC conference has been to consider

and experiment with the FDF as a tool for more general purpose information retiieval, and

to determine the FDF's strengths and weakness compared to conventional information

retrieval techniques.

Om" experience with the TREC conference has left us encouraged about the ability of a text

scanning approach to be competitive with the more involved information retrieval

techniques. The inherent limitations of the FDF hardware do not prevent competitive

precision and recall for general information retrieval applications when the user topics are

properly understood and the topic queries are properly tuned to the dataset.

2.0 FDF Text Retrieval Approach

The Fast Data Finder is a hardware device that performs high-speed pattern matching on a

stream of 8-bit data. It consists of an array of identical programmable text processing cells

connected in series to form a pipeline processor. The cells are implemented using a custom

VLSI chip designed and patented by TRW. In the latest implementation, each chip contains

24 processor cells and a typical system will have 3,600 of cells. Each cell can match a

single character of query or perform all or part of a logical operation. The processors ai-e

interconnected with an 8-bit data path and approximately 20-bit conti'ol path. To perfonn

a search, a microcode program is first downloaded into the pipeline to direct each

processor. The database is then streamed thi'ough the pipeline. The data bytes clock

through each processor in turn until the whole database has passed thi ough all processors.

As the data is clocking through, the processors alter the state of the control lines depending

on their program and the data stream values.

309

When the pipeline's processor cells detect that a series of database characters have passed

by that match the desired pattern, a hit is indicated and passed by external circuitiy back to

the memory of the host processor and to the user. The FDF pipeline runs at a constant speed

as it performs character comparisons and logical operations, regardless of query

complexity. The system we used for the TREC conference searched at 10 MB/sec.

The queries or patterns ai'e specified in the FDF's Pattern Specification Language (PSL).

The hardware directly supports all the features in the PSL query language without the need

for software post-processing. The processors in the pipeline may all be used to evaluate a

single large query or may assigned to evaluate numerous smaller queries. The number of

pipeline cells a query needs is proportional to the size of the query. PSL provides numerous

search functions, which may be nested in any combination, including:

• Boolean logic including negative conditions

• Proximity on any arbitrary pattern

• Wildcards and "don't cares"
• Character alternation

• Term counting, thresholds, and sets

EiTor tolerance (fuzzy matching)
• Term weighting
• Numeric ranges

2.1 Advantages and Disadvantages of Hardware Scanning

There are four principle advantages in using a hardware scanning approach for information

retrieval. Fust, the FDF can perform pattern matching functions much faster and more

cost-effectively that a general purpose CPU. This benefit comes in part because of the

parallelism of the FDF architecture. Second, a hardware scanner like the FDF can begin

processing the data immediately upon its receipt. There is no need to wait for the data to

be preprocessed or 'indexed before it can be searched. This is especially important for

dissemination (routing) applications. Third, no extra disk space is needed to store inverted

index data or other vector data beyond the text itself. Finally, the system's response time

in evaluating a query is independent of the query's complexity and thus easily predictable.

The FDF can perform fuzzy pattern matching on a term like "krasnoyarsk" with three

missing, incorrect, or extra characters, as easily as performing an exact string match.

There are two disadvantages to the FDF scanning approach. First, it is moderately

expensive to buy the hardware and adapt application programs to work with it. The

approach is therefore not cost effective for low-end applications or systems that don't do

significant amounts of text processing. Second, since the search is not complete until the

entire database has been scanned, the time to complete a single simple query will be greater

than with indexing methods.

3.0 Query Generation Approach

Our objective for the TREC conference was to see if we could utilize the pattern matching

power of the FDF to achieve superior recall and precision. This in turn revolved around

how well we could construct the queries for the FDF to execute. We were able to identify

310

at least three possible approaches that could be used in preparing queries for execution by

the Fast Data Finder.

• Parse the topic narratives, extract key terms and phrases, expand the

terms where possible, and generate queries to find documents with the

same combinations of terms.

• Take a sample of relevant documents, extract common keywords and
phrases, especially those the occur multiple times, and generate queries

to find documents with at least some of the same phrases and keywords
within a sliding window of text about the size of a paragraph.

• Construct the initial queries manually and refme them iteratively.

We elected to try both methods (ii) and (iii). To supply the relevant documents for the

statistical trials, we used the sample relevance judgments supplied by NIST in late May and

early June.

3.1 Automatic Query Generation

Our plan was to take sample documents for a particular topic, merge them together, and

build a PSL query that would find similar documents. Using the single document

WSJ870320-0062 as a seed, the query would be something like:

{30 words ->

5+ ('cola'; 'coca'; 'coca cola'; 'bottling';
' enterprises '

; ' cola bottling
'

; ' cola enterprises
'

;

'coca cola enterprises'; 'coca cola bottling'; ' atlanta
')

}

This query finds a document which contains a 30 word sliding window with 5 or more of

the specified terms or phrases. The term list is determined by removing stopwords and

counting the number of occurrences for each term, 2 word phrase, and 3 word phrase in the

seed document. The top 10 terms/phrases with the highest counts are selected. The "30

words" and "5 or more" values were selected aibitrarily and we'd planned to run a series of

trials to determine the optimal values.

The initial experiments with this method of query construction were not encouraging. We
ran into three difficulties.

• The May/June NIST sample relevance judgments seemed incomplete

and inaccurate and were not giving us the statistical base we'd hoped for.

• This method assumes that the whole document in all on one subject.

Longer seed documents were contributing terms that had little to do with

the topic. Some method to segment the documents and indicate the

interesting section is required.

• This method wasn't capturing the subtlety of the topics. The queiy

shown above does an excellent job of finding documents about Coca
Cola Enteiprises or bottling units in Atlanta but completely misses the

part about antitRist violations because it is only mentioned once in the

article.

311

3.2 Manual Query Generation

The poor results from our initial trials with statistical query generation led us to fall back

on a purely manual (with feedback) approach. We extracted key concepts from the topic

description, added additional terms from outside knowledge or by observing them in

database documents. In building our multiple queries to provide a coai'se grain ranking, we
favored documents where the subqueries matched in lead sentences or paragraphs. We
mostly ignored the May/June NIST sample judgements.

Refinement of the queries was done manually by executing them, reviewing the results, and

modifying the queries. The easier topics requu'ed only a few iterations, whUe on some of

the more difficult topics we iterated several dozen times. We stopped working on a topic

when it seemed that the results were converging to practical limit for our approach, i.e.

when adding additional synonym keywords or altering the query structure wasn't producing

more reasonable results.

4.0 Results and Analysis

Table I shows our results for the TREC routing queries. Since our system doesn't really

rank the retrieved documents, we think the Table I presentation is more representative of

our performance than the 1 Ipt averages. The first and last columns ai^e the topic number

and description. The second column, "# Rel", is the number of relevant documents as

judged by NTST in the Volume n Corpus. The next three columns give an indication of

how the field did on the topic. "TRW Rel" is the number of relevant documents we
submitted out of the "TRW Submit" we sent in for each topic. Our scores are summarized

as follows:

High Above Med Median Below Med Low
8 15 4 19 2

Unlike most of the TREC participants, we did not submit the full 200 allowed documents

for each topic. This tui^ned out to be a major blunder because the TREC scoring procedure

did not reward this self restraint. Many of our queries were too restrictive, achieving high

precision at the expense of recall and a good score for the conference.

This problem comes about because of the binaiy nature of the FDF's evaluation of a quei7

against a document. To operate properly against a routing data stream, it is necessaiy to

execute several queries for each topic, with each successive query aiming for higher recall.

When our queries were "tuned" properly, the results were quite good. Considering only

those queries where we made the full submission, the distribution is well above the median.

High Above Med Median Below Med Low
6 8 3 5 0

Our analysis shows that we did well on topics where the ability to find phi-ases, acronyms,

numbers, and alphanumerics were important. We had the high score on topics 28 and 29,

both which involved finding references to AT&T. Since we retain and scan the full data

stream, we didn't have to worry about an indexing parser splitting "AT&T" into "AT" and

"T" and then throwing them both away. Our PSL subquery to find AT&T was

312

TABLE I - TRW TREC Results for the Routing Topics

Relevant Retr

.

(a 200 TRW TRW
Qry Rel Best Median Worst Rel Submit Description

01 216 62 30 0 49 200 Pending Antitrust
02 384 72 43 1 72 200 Foreign Acquistions
03 431 167 84 8 161 200 US -Japan Joint Vent.
04 48 33 18 2 10 49 Debt Rescheduling
05 150 116 38 10 80 141 Japanese Dumping
06 137 78 45 15 44 200 Debt Relief
07 169 87 63 1 63 200 US Budget Deficit
08 159 43 18 3 28 72 Econimic Projection
09 638 117 87 8 91 200 Candidate Sightings
10 233 153 110 15 153 188 AIDS Treatments
11 196 89 52 7 35 128 Space Program
12 262 103 54 4 75 200 Water Pollution
13 112 111 46 5 111 113 Mitsubishi Heavy
14 203 85 48 0 46 56 Drug Approval
15 624 114 80 17 89 200 CEOs
16 88 44 24 1 1 13 Mkt Agrochemicals •

17 303 154 81 0 33 58 Agrochemical Cntls
18 147 61 31 2 41 147 Japan Stock Trends
19 985 161 102 74 85 140 Global Stock Trends
20 403 178 124 5 161 178 Patent Infringement
21 47 44 35 0 12 29 Superconductors
22 466 162 120 14 32 45 Counternarcotics
23 100 74 41 5 37 54 Legal Problems
24 345 113 59 11 11 21 Medical Technology
25 71 34 14 0 15 36 Chernobyl Effects
26 313 122 49 1 47 122 Multimedia Stds
27 232 109 91 10 80 200 AI in business
28 332 89 47 14 89 200 ATT in Comp/Comm
29 142 79 13 0 79 200 Foreign Acq ATT Tech
30 269 92 48 17 57 88 OS/2 Problems
31 156 66 31 0 36 200 OS/2 Advantages
32 119 52 15 0 6 12 Outsourcing
33 462 147 71 17 71 200 Doc Mngt Capable
34 303 129 104 6 107 200 ISDN Entities
35 270 139 113 0 98 200 Postscript Alts
36 158 110 50 0 10 11 Optical Disk Tech
37 409 189 158 19 158 200 SAA Components
38 810 169 120 37 98 156 Mini/Main Roles
39 501 184 117 24 142 156 Client- Server Plans
40 800 150 121 16 87 200 IS Impact on Orgs
41 144 34 11 0 31 200 Comp/Comm Upgrade
42 696 131 92 10 92 112 End User Computing
43 125 AI Conferences
44 241 105 35 1 105 200 Layoffs at Companies
45 304 103 71 0 103 200 CASE Suceed/Fail
46 51 40 31 9 30 200 Virus Outbreaks
47 237 80 35 2 80 200 Contract > $1 mil
48 189 48 28 2 17 40 Purch Comm Equip
49 139 65 56 4 44 131 Who ' s in Supercomp
50 26 12 1 0 4 5 Virtual Reality

313

define ATT ' [AT\&
[

| amp\;] T | AT and t|\
American Telephone [and|\&] Telegraph]' end

The "[[amp;]" notation means to allow an optional "amp;" as was present in the Ziff

database. We had the high score on Topic 10 "AIDS Treatments". This may be due to our

ability to easily find phrases like "acquked inmiune deficiency syndrome" or "AIDS
related complex" in close proximity to drug names like "TPA", "5-fluorouracil", or "AZT".

We had the high score on topic 13 to find documents about Mitsubishi Heavy Industries.

Our query that found 111 of the 112 documents the NIST judged relevant, was simply to

find the two word phi-ase "Mitsubishi Heavy". Apparently the other TREC pailicipants had

trouble either finding phrases or determining the need to find phrases during query

generation. The following sections discuss in detail topic 47 where we achieved the high

score, and topic 36 where we achieved a low score.

4.1 Example ofGood Performance - Topic 47

Topic 47 was to find documents discussing new contracts for computer systems in excess

of $1 million. We found 80 good documents out of 200 submitted, the high score for this

topic. We believe we did well on this topic because we were able to look for various

numeric representations of $1 million in close proximity to keywords for new contracts and

computer systems.

To be relevant/ a document must identify the selection of a
source for the development or delivery of information systems
products or services valued at more than $1 million dollars.

The PSL query for this topic used three subqueries: one each for the "selection of a source",

"information systems products or services", and "more than $1 million dollars". The PSL
definitions were:

define award {3 words -> '[sign | award] *
' and "contract"} end

define computer
" [computer

I
communic | network

|

phone | telecomm|mainfrcune
|

\

StarlanI PBx|cyber | IBM 3090 | X\-MP | Y\-MP| SCS\-40 | information] " end

define million {1 word -> " [million | billion] dollar" or
"\$[|] [I

[0-9]] [
I

[0-9]] [0-9] [|\.] [I
[0-9]] [

I

[0-9]] [
I

[0~9]]\
[million

I

billion] " or

"\$[I] [I
[0-9]] [

I
[0-9]] [0-9] [|\,] [0-9] [0-9] [0-9] [|\,]\

[0-9] [0-9] [0-9]
" } end

The "award" definition requires the root words "sign" or "award" to be within 3 words of

"contract" in the text. This word count includes stop words, acronyms, or any other

alphanumerics that were in the original text. This definition will find phrases like:

a contract was awarded
AT&T signed a new contract
Bellcore was awarded three new contracts

.

The "computer" definition looks for any of the root terms shown. Note that looking for

alphanumerics such "X-MP" or "IBM 3090", which may include multiple chaiacter white

314

space, is no problem. The "million" subquery uses proximity and an alphanumeric

sequence pattern and will find items like the following:

a million dollar contract
a $2.3 million system
a $ 12 billion program
a $2000000 machine
a $ 2,000,000 machine

Note that the phrase "a 2,000,000 dollar award" would not be found by this definition. This

was an oversight. The winning query was then simply

{50 words -> award and computer and million}

This finds documents which contain a 50 word sliding window in which all three

subqueries match. Note how the "award" subquery that uses a 3 word sliding window can

be nested inside a query using a 50 word sliding window,

4.2 Example of Bad Performance - Topic 36

Topic 36 was to find documents discussing how rewritable optical disks work.

To be relevant, a document must describe how rewritable
optical disk technology works at length and in significant and
comprehensive technical detail.

This topic was particularly challenging because the topic narrative describes attributes the

documents must have rather than specific concepts or keywords. We started by defining a

subquery to find documents mentioning rewritable optical disks.

define optical_disk
{10 word -> "rewrit" and "optical [disk | drive | technolog] " } end

To find documents that describe the technology "at length", we wrote a subquery to find

places where there were at least 5000 characters between the <TEXT> definition and the

</TEXT> marker.

define LONG TEXT {5000 char -> no TEXTEND} end

To find documents that contained "significant and comprehensive technical detail" we

manually extracted a list of keywords (Table II), and required that the documents to have

at least 10 or more of these terms present.

The tightest query (intended for high precision) was

{1 document -> optical_disk and LONG and 30+ <technical terms> }

The loosest (intended for high recall) was

{1 document -> optical_disk and 10+ <technical terms>)

315

TABLE II - Subterms used for Topic 3 6

"amorphous "

;

"crystalline "

;

" [ISO] CCITT] "

;

"operation"

;

"Kerr effect"; "phase

[

\-] change"

;

"SCSI "

;

"phenomenon "

;

"bias"; "polarit "

,

"binary"

;

"polarized"

;

"capacity"

;

"principle "

;

"chemical "

;

"reflect"

,

" states "

;

"refresh
"cycles "

;

"
[sector track cylinder] "

;

"density"

;

" [silver gold]

'

/

" spatial "

;

"Oersteds

'

"High Sierra"; " surface reflectance "

;

"dye[|
1

\-
]
polymer "

;

"phase

[

\-] change"

;

"Curie temperature"; "thin film";
"gadolinium"

;

"terbium"

,

"lanthanide "

;

"magnetization

'

1 ,

f

"birefringence"

;

" substrate "

;

"emerging technolog"; " speed"
"erasable "

;

"transfer "

;

" fatigue "

;

" transluscent "

,

"field"

;

"Winchester";
" [frequency | Mhz]

"

;

" [mega

[

byte [A [a-z]]MB[

A

[a- z]]]
";

" inductance "

;

" [giga[byte [A [a-z]]GB[

A

[a- z]]] ";

" [jukebox 1 autochanger] "

;

"magneto

[

|\-] optical "

;

"laser"; "media" "magnet"

4.3 Failure Analysis - Topic 36

Unfortunately, even our high recall query retrieved only 1 1 documents in the Volume II

Corpus of which 10 were judged relevant. (The 11th was discussing WORM technology

and only mentioned "rewritable optical drives" in passing.)

Upon examination of the NIST judgements, we made several observations about the

relevant documents. First, we missed the keywords "erasable" as a synonym for

"rewritable" and "video" as a synonym for "optical". Second, the assessor accepted articles

about "optical recorders" and "optical image processing" systems. To pick up these

coiTections we would change the optical_disk subquei^ to read as follows:

define optical_disk {10 words ->

"[rewr it
I

erasable]
" and

" [video
I

optical]
" and

" [disk
I

drive
I
technolog I recorder

I

image processing]"} end

We then thi'ew out the length restriction and reran the query requiring differing numbers of

the technical teims to be present. The results from these runs are shown in Table HI. This

table shows two things. First, for this topic, the number of technical terms is an excellent

"knob" to adjust the precision and recall. Second, the assessor was making a loose

interpretation of "comprehensive technical detail". If we'd completely ignored this part of

316

the query, we would have had 135 good documents out of 262. Turning in only 200, we'd

expect to have ai'ound 103 relevant, which would have been near the high score.

Table III - Topic 36 Results as a Function of the
Number of Technical Terms

Num
Tech
Terms

Rel
Ret

Docs
Ret Prec Recall

10
9

8

7
6

5

4
3

2

1
0

26
34
41
50
58
77
96

111
120
131
135

31
42
59
77

100
139
176
210
222
240
262

0.84
0.81
0.69
0.65
0.58
0 . 55
0.55
0.53
0.54
0.55
0.52

0.17
0 . 22
0.26
0.32
0 . 37
0.55
0.62
0.71
0.77
0.84
0.87

5.0 Future Plans

During 1993 we hope to continue researching and evaluating better methods for query

construction. Our objectives will be:

• Design and test a method of sequencing the execution of FDF queries to

insure that 200 documents will be retrieved for each topic.

Develop methods and algorithms to semi-automate manual query

construction,

• Use the extensive relevance judgements from TREC-I to test techniques

to generate FDF queries from statistical analysis of the relevant

documents for each topic, and

• Examine the feasibility of using the FDF's term weighting capability to

allow it to act as a back-end processor for other text retrieval techniques.

6.0 Acknowledgments

The FDF system is the result of extensive development by many people over the last 8

yeai's. My role has been that of a reporter on the basic system's capabilities and the manner

in which they might be applied to a TREC-like problem.

317

Combining Evidence from Multiple Searches

Edward A. Fox, M. Prabhakar Koushik,

Joseph Shaw, Russell Modlin and Durgesh Rao
Department of Computer Science

Virginia Tech, Blacksburg, VA 24061-0106

Abstract

At Virginia Tech and PRC Inc. investigations with TREC data have focused on developing

and comparing mechanisms for combining evidence related to a number of search schemes. Our
work with the first CD-ROM hcis included various indexing, weighting, retrieval, combination,

evaluation, and failure analysis efforts. Related work reported elsewhere in the proceedings by

Paul Thompson discusses extensions undertaken by PRC Inc. and an evaluation of those results.

Future work will develop our ideas further, try them out with additional data, and hopefully be

evaluated in connection with other work on TREC and TIPSTER.

1 Overview

The 1992 TREC effort at Virginia Tech was carried out largely on a DECstation 5000 Model
25 with 40 MB of RAM. The 1985 version of the SMART retrieval system, with numerous of our

enhancements, was used for indexing, retrieval, and evaluation.

Our efforts were divided into two main phases. Prior to the TREC meeting we worked solely

with the Wall Street Journal (WSJ) on the first CD-ROM. Thus, in Phase 1, we made eight different

types of runs employing three different retrieval models - the Boolean model, the p-norm model and

the vector space model — and three different weighting schemes. The queries for the Boolean and

p-norm runs were manually generated by project team members. Vector queries were generated

automatically from the topic descriptions. The results from these runs were then merged together

to provide combined result sets. Relevance judgements were also performed on a subset of the

retrieved documents to help with training studies.

In Phase 2, after the TREC meeting, we experimented with all five collections on the first

CD-ROM. However, based on our work with the WSJ, we restricted our investigation to five out

of the original eight cases. We also explored use of limited training information in carrying out the

merging of results. Work is continuing at Virginia Tech to incorporate the results of our many runs

into merged selections, to improve performance.

Subsequent sections of this paper describe all of these activities in greater detail.

2 Indexing and Data Structures

This section outlines the indexing done with the document collection provided by NIST. Due

to limitations of available disk space, only Disc 1 was used during the experimental runs. The

documents were indexed on a DECstation 5000/25 using an enhanced version of the 1985 release

319

of the SMART Information Retrieval System [1]. The following specifications were used during

the indexing process:

1. No stemming was done.

2. A stop word list of 418 words was used.

3. The Heading, Text, and Summary sections were included.

4. A controlled vocabulary was not included.

Briefly, the document text is tokenized, stop words are deleted, and non-noise words are included

in the term dictionary along with their occurrence frequencies. Each term in the dictionary has a

unique identification number. A document vector file is also created during indexing which contains

for each document its unique ID, and a vector of term IDs and term weights. The weighting scheme

itself is fairly flexible and can be changed to one of several schemes after the indexing is complete.

Indexing the WSJ created a dictionary of approximately 15 MB and a document vector file of 121

MB. The other 4 collections take up space proportional to their sizes.

3 Retrieval Approach

3.1 Retrieval Runs

Several retrieval runs were then made as outlined below:

• Retrieval based on the vector model

The topics were indexed considering the Description, Narrative, and Concepts sections to

form vector queries. Retrieval was performed by varying the weighting on the document and

query vectors. Three different methods were tried:

1. Weighting with //

2. Weighting with (tf/max(tf)) * idf

3. Weighting with (0.5 + 0.5 * tf/max(tf)) * idf— called aug-norm

where

tf = term frequency, and

idf = inverse document frequency.

During retrieval, the query-document similarities were computed in two different ways for

each of these weighting schemes: cosine and inner product.

• Retrieval based on the Boolean model

Boolean queries were manually generated by team members (with a background in computer

science), and a retrieval run was made using these queries. The queries were composed,

for the most part, using the entire text of the topic descriptions provided, and occasion-

ally broader/narrower terms were obtained from general domain knowledge. The Boolean

operators used were AND and OR.

320

Table 1: Summary of Retrieval Runs

Name Model Sim. Function Weighting Scheme

bool Boolean Boolean binary term weights

pnorml.O

pnorml.5

pnorm2.0

p-norm

p-norm

p-norm

p-norm

p-norm

p-norm

binary term weights, p=:1.0

binary term weights, p=:1.5

binary term weights, p=2.0

cosine,atn

cosine.nnn

inner.atn

inner.nnn

vector

vector

vector

vector

cosine

cosine

inner product

inner product

aug_norm * idf

tf

aug_norm * idf

tf

• Retrieval based on the p-norm model

The Boolean queries described above were also used for the p-norm runs. Retrieval runs were

made with three different p-values: 1.0, 1.5, and 2.0. No query term or clause weights were

used during the p-norm runs.

The different runs are summarized in Table 1. Note that in Phase 1 of our efforts, we used all

eight runs listed. In Phase 2, however, we focused on the pnorml.O case, with document weighting,

and the four vector runs.

3.2 Weighting Schemes

The weighting schemes mentioned above are detailed in Table 2.

Table 2: Weighting Scheme Options

• Term frequency normalization. This has the following choices:

(n)one

(b)inary

(m)ax_norm

(a)ug_norm

newJf = tf

newJf = 1

newJf — ——
max-tf

newJf = 0.5 -t- 0.5 * wtf

Document weights. This has the following choices:

(n)one new AVt = new -tf

(t)fidf new -Wt = new -tf *logr'']?i°'')
\ coll^jreq '

(p)rob new JWt = new -tf
1 num-docs—coU -freq \

yy coll^freq '

Document vector normalization. This can be either of:

(n)one

(s)um

norm^wt =
norm.wt =

new.wt
new-wt
T,neru-wt

This allows for a very flexible approach to changing the document vector weights as can be seen

from Table 3.

321

Table 3: Matrix of weighting options

Combinations Term frequency Doc. weights Doc. vector norm.

nnn tf none none

ntn tf tfidf none

npn tf prob none

bnn binary none none

btn binary idf none

bpn binary prob none

mnn max_norm none none

mtn maxjiorm idf none

mpn max_norm prob none

ann aug_norm none none

atn aug_norm idf none

apn augjiorm prob none

3.3 CPU time

The retrieval runs required approximately 4 minutes of CPU time for each topic. We did a full

sequential pass through the document vector file for this since we did not have enough disk space

for the inverted file.

3.4 Combination of Run Results

Our original plan was to compare several schemes for combining the results of a number of runs.

The results of using one scheme, the CEO Model, are reported elsewhere in these proceedings by

Paul Thompson. One of our goals was to use an artificial intelligence methodology called Decision

Trees.

Decision Trees should reflect the most effective evaluation methods for each query. Our Decision

Trees were produced by a commercial software package called KnowledgeSEEKER [2], by FirstMark

Technologies Limited. Input to KnowledgeSEEKER is a training set of documents for which the

results of the various evaluation runs are known along with the relevance values of the documents.

The output of KnowledgeSEEKER is a Decision Tree that indicates in what order to apply the

evaluation runs in order to determine the relevance of documents in the collection. The highest

level of the tree is the test that most effectively evaluates documents for a given query. Based on

the results of the most effective test, documents may be assigned a relevance score or additional

tests that further evaluate the documents may be suggested. The Decision Tree partitions the

collection into disjoint document groups with relevance values for the documents in each group.

The results produced by KnowledgeSEEKER for the training set of documents must be parsed in

order to apply the Decision Trees to other documents in the collection.

In Phase 1, training data was fed into the Decision Tree system so that the ranges of values

of independent variables (e.g., similarity for a particular type of search) could be categorized into

sets or intervals that predict the dependent variable values (e.g., relevance value of 0 or 1). For

example, one Decision Tree developed during Phase 1 is given below.

322

Figure 1: Decision Tree Example for Query 52

RULE.l IF

COSINE-2 = [0.032,0.07)

THEN

RELEVANCE = 0 73.3*/.

RELEVANCE = 1 26.7'/.

RULE.2 IF

COSINE-2 = [0.07,0.195]

THEN

RELEVANCE = 0 9.5'/.

RELEVANCE = 1 90.5'/.

This indicates that the likelihood of relevance is about .27 for very low values from the second

cosine run, and about .91 for higher values from that same cosine run. When selecting this tree, the

Decision Tree method suggests that ranking solely based on this cosine run would be wise. More

complicated Decision Trees resulted for a number of queries, where several of the base runs' values

had to be consulted. Unfortunately, no full ranking of run results using the Decision Trees could

be completed in time for this report, so other, simpler methods were applied.

In Phase 1, a simple scheme was used for the results that were turned in. Essentially, the best

results from each of the runs were included, until 200 distinct documents were found, for each

query. This scheme is referred to as Ad Hoc Merge in discussions below.

In Phase 2, a more complex system was explored, called Recall-Precision (R-P) Merge. Details

and results are given in Section 6.

4 Systems description

The main machine used for the indexing and retrieval runs was a DECstation 5000 Model 25

with 40MB of RAM. This is a MIPS R3000 CPU running at 25MHz. The total disk space used

for the project was on the order of 3 GB.

5 Results of Phase 1

Due to limitations of disk space, only a subset of the collection comprising of Disc 1 of the Wall

Street Journal was used during Phase 1 experimental runs. Relevance judgements were performed

on a subset of this data by team members, in order to obtain a large set of training information.

These were compared with the NIST judgement data and showed very high correlation. (Almost

90% of the documents we judged relevant were judged relevant by NIST.) In any case, the NIST

judgments were used in the official (November 18, 1992) evaluation of our Phase 1 system, shown

in Figure 2.

323

Figure 2: Phase 1, Disc 1, WSJ, Queries 50-100, Ad Hoc Merge

Top ramked evaluation

Run niimber: vpidt2 all

Num_queries : 50

Total number of documents over all queries

Retrieved: 10000

Relevant : 4056

Rel.ret: 1371

Recall Precision Averages:

at 0 00 0 5153

at 0 10 0 2841

at 0 20 0 1898

at 0 .30 0 1285

at 0 .40 0 0988

at 0 .50 0 0746

at 0 .60 0 0527

at 0 .70 0 0338

at 0 .80 0 0271

at 0 .90 0 0222

at 1 .00 0 0222

Averag e precision for all points

11- pt Avg: 0 .1317

Average precision for 3 intermediate points (0.20, 0.50, 0.80)

3-pt Avg: 0.0972

Recall

:

at 5 docs

:

0 0476

at 15 docs: 0 0640

at 30 docs: 0 0843

at 100 docs: 0 2050

at 200 docs: 0 4481

.ision:

At 5 docs: 0 3160

At 15 docs

:

0 2147

At 30 docs: 0 1760

At 100 docs: 0 1246

At 200 docs: 0 1371

6 Results of Phase 2

6.1 Base Runs

In Phase 2, twenty-five base runs were made on Disc 1: 5 different retrieval methods were used for

each of the 5 sub-collections. Based on our evaluation, the 11-point averages are given in Table 4.

Note that in the p-norm case, document weights were utilized, in contrast to the binary weighting

used in Phase 1.

324

Table 4: Base Runs, Phase 2, Disc 1, 11-point averages

Run/Collection AP DOE PR WSJ ZF
cosine, atn 0.1138 0.0543 0.0259 0.2740 0.0813

cosine.nnn 0.1890 0.0330 0.0504 0.2184 0.0946

inner.atn 0.1241 0.0609 0.0405 0.3224 0.0888

inner.nnn 0.1478 0.0252 0.0108 0.1329 0.0101

pnorml.O 0.3006 0.0876 0.0727 0.3085 0.1448

Table 5: Base Runs + Similarity Merge

Run/Collection AP DOE PR WSJ ZF Sim-Merge

cosine,atn 0.1138 0.0543 0.0259 0.2740 0.813 0.1149

cosine.nnn 0.1890 0.0330 0.0504 0.2184 0.0946 0.1513

inner.atn 0.1241 0.0609 0.0405 0.3224 0.0888 0.1717

inner.nnn 0.1478 0.0252 0.0108 0.1329 0.0101 0.0075

pnorml.O 0.3006 0.0876 0.0727 0.3085 0.1448 0.1831

It should be noted that the p-norm run results were best in almost all situations for the given

collection (except for WSJ, where inner.atn was slightly better).

6.2 Similarity Merge

TREC evaluations were to be done for the entire Disc 1 contents, so it is necessary to combine the

results of the 5 sub-collections into an overall Disc 1 evaluation. This is a difficult matter, since

each collection has a different number of relevant documents, and each was indexed separately. In

1993 we expect to consider this problem in more detail.

As a first solution to the problem we decided on the simplest possible approach — combine

the results based on similarity. Thus, for a particular retrieval approach, we merged all of the

documents retrieved from the 5 sub-collection runs, sorted the 1000 documents found for each

query based on similarity, and returned the 200 with the highest similarity values.

For convenience. Table 5 shows the data from Table 4, but with an added column to show the

Similarity Merge results.

Clearly, some improvement is needed in this collection merging process. One might use training

based on the number of relevant documents in a collection, to predict a prior probability of finding

a relevant document in that collection, and then use that to temper the similarity values.

6.3 Recall-Precision Merge

Another type of merger involves combining the several retrieval runs for a given sub-collection. To

improve upon the Ad Hoc Merge used in Phase 1, we elected to train the merging process using

recall-precision results. Thus, we considered the retrospective case of using the recall-precision

tables from our evaluations, to help determine which runs to draw from for merging.

In particular, we use the following Recall-Precision Merge algorithm:

1. For each run to be merged, store the top 200 items on a stack, with the highest rank at the

bottom of the stack.

325

Table 6: Base Runs + Similarity Merge + R-P Merge

Run/ Collection AP DOE FR WSJ ZF Sim-Merge

cosine.atn 0.1138 0.0543 0.0259 0.2740 0.813 0.1149

cosine.nnn 0.1890 0.0330 0.0504 0.2184 0.0946 0.1513

inner,atn 0.1241 0.0609 0.0405 0.3224 0.0888 0.1717

inner.nnn 0.1478 0.0252 0.0108 0.1329 0.0101 0.0075

pnorml.O 0.3006 0.0876 0.0727 0.3085 0.1448 0.1831

R-P Merge 0.2268 0.0554 0.0521 0.2555 0.1003 0.1523

2. Associate with each run an estimate of the probability that the top item on the stack is

relevant. Initially, this value is the precision value at recall 0.0 from our evaluation.

3. To draw the next item for the merged result, identify the stack with the highest estimated

probability of relevance, pop the top of the stack, and update the probability estimate.

4. To update the probability estimate, use interpolation based on the number of popped items

(i.e., the number "retrieved") and the rest of the recall-precision results.

5. Continue the process starting again with step 3, as long as less than 200 items have been

drawn.

The results of applying this "R-P Merge" algorithm are given in Table 6, on the last line. Note

that the first 5 columns of that line show the results of merging for a particular collection, and the

very last value reflects Similarity Merge followed by R-P Merge.

From Table 6 we see that the R-P Merge method does not yield results that are as good as

the best individual run. In particular, we could simply use the pnorml.O results uniformly and do

better than with merging.

Further improvement in the above algorithm, possibly yielding more accurate estimates in step

4, will be investigated in 1993. Other studies will consider if recall-precision data for each query

could be used in a similar training situation, for subsequent testing on Disc 2.

7 Evaluation

7.1 Software engineering

We began with the 1985 version of SMART, and have enhanced it. We tried for a long period

of time to use the new version of SMART on an RS/6000 but found the use of disk space to be

excessive. Since we could not get reliable results, we went back to the older version.

We underwent extensive software development since May. This included writing of C programs

and Unix shell scripts to partially automate indexing, retrieval, relevance judgement making, merg-

ing, evaluation and tabulation of results.

7.2 Problems and Failure Analysis

Problems encountered in the project were partially identified. A failure analysis was performed

on a subset of documents that failed to be included in our result set in Phase 1. Observations

regarding our merging methods came from further studies in Phase 2. The following observations

aim to summarize our findings.

326

Disk Space Limitations:

We had problems acquiring the required disk space in time for the submission of results due

to lateness of the promised award from DARPA. A great deal of time was wasted in making

partial runs using a hodgepodge of computers, with NFS mounting of remote files slowing

processing by almost an order of magnitude. Ultimately we started over when told that work

on the WSJ would suffice.

This forced us to submit a subset of results in Phase 1, and to only complete work on Disc 1

during Phase 2. With more disk space we could have use inverted files for indexing the data

and that would have made things much faster. It would have allowed real time interactive

searching which would have speeded up and improved the quality of our relevance judgement

operation. Also, with more disk space, we could have used an RS/6000, to get runs done more

quickly, assuming SMART could be ported and made fully operational on that platform.

Merging of Retrieval Runs:

Ideally, an effective method to predict relevance like the Decision Tree or CEO model should

be used to take the results from the various runs and determine the relevant documents based

upon the training set and the relevance judgements. However, in Phase 1 we did not have

enough time to properly implement these, so we settled on a less effective approach - using

the ranks of the documents from each of the runs. The top N documents from each run were

included in the results set, ordered based upon the ranks. The value of N was determined by

the number of document number repetitions across the various runs. The average value of N
was near 40.

This method used to combine the results from the various runs was flawed. Using the top N
documents from each run assumes that each of the runs was of equal quality, which is usually

not the case. Each poor run would have many non-relevant documents in the final list,

while a quality run could have many relevant documents miss the cutoff of N. The similarity

values should be used to determine the top-ranked documents to pull from each run, but the

combinations of runs with various incompatible similarity measures made this a non-trivial

task.

In Phase 2, we used additional training data, namely the recall-precision average values from

the evaluation of each run whose results were to be merged. This approach, too, is flawed,

since the averages reflect general trends, while query-specific trends would be much more

appropriate to use.

Faulty Queries:

No feedback modification could be performed to improve retrieval performance. The Boolean

queries proved to be too general in many cases. The p-norm runs were made with the

Boolean queries; separate p-norm queries (i.e., that made use of user-assigned p-values and

query weights) would have improved retrieval effectiveness. The vector queries were generally

good, but also had some faults. In particular, shorter vector queries might have led to

better Similarity Merge behavior by decreasing the likelihood of spurious matches in sub-

collections with few relevant documents. Also, the NOT clauses from the topics descriptions

were included in the vector queries, which may have contributed to retrieval of non-relevant

documents. The effect of bad queries and an inadequate combination method was lower

retrieval quality than desired.

327

7.3 Possible enhancements

Because of the disk space problem we were not able to do many of the tests we planned to do, even

by the end of Phase 2. Work will continue in 1993 now that new disks have been received. Among
the planned tasks are:

• Phrase Identification and Matching

In the current system, phrases are handled by using an AND query term. For example.

Information AND Retrieval was used for Information-Retrieval. Due to the absence

of a proximity operator, this leads to retrieval of non-relevant documents where these words

occur widely apart. The retrieval results can be improved by providing a mechanism for

dealing with phrases explicitly, and/or the use of proximity operators.

• Better Base Methods

In addition to considering the use of phrases, further study of base runs, considering query

construction, indexing, weighting schemes, and lexical information, will be undertaken. Of

particular interest is the use of p-norm queries, which if tailor-made, might well out-perform

the vector queries in all collections. Contrasts between stemming and morphological analysis

can also be made.

• Merging Methods

While the Ad Hoc and the R-P Merge methods are not based on elaborate theory, they do

provide insight into the effects of combining results. Further refinement of the approaches,

and additional testing to obtain upper-bound performance values, will be undertaken.

• The CEO Model

The Combination of Expert Opinion (CEO) model [3, 4] of Thompson can be used

to treat the different retrieval runs as experts, and combining their weighting probability

distributions to improve performance. This could be used in a variety of ways to combine

results from a variety of runs and indexing schemes.

References

[1] C. Buckley. Implementation of the SMART information retrieval system. Technical Report

85-686, Cornell University, Department of Computer Science, May 1985.

[2] FirstMark Technologies Limited. KnowledgeSEEKER User's Guide. FirstMark Technologies,

14 Concourse Gate Site 680, Ottawa, Ontario, Canada, 1990.

[3] P. Thompson. A Combination of Expert Opinion approach to probabilistic information retrieval.

Part 1: The conceptual model. Information Processing & Management, 26(3):371-382, 1990.

[4] P. Thompson. A Combination of Expert Opinion approach to probabilistic information retrieval.

Part 2: Mathematical treatment of CEO Model 3. Information Processing & Management,

26(3):383-394, 1990.

328

Multilevel Ranking in Large Text

Collections Using FAIRS

S-C. Chang, H. Dediu, H. Azzam, M-W. Du
GTE Laboratories

Abstract

A description of a general-purpose multilevel ranking

information retrieval prototype is presented. The methods

used in weighting and ranking the retrieved documents are

discussed. Experiments with the TREC92 collection of

text and queries have been conducted without manual pre-

processing. Initial results have shown the multilevel rank-

ing scheme to be highly competitive in precision and recall

relative to other ranking strategies.

1.0 Introduction

Information retrieval research at GTE Laboratories has led

to the development of a prototype system called FAIRS
(Friendly Adaptable Information Retrieval System).

FAIRS has evolved into a functional and flexible system

currently running on SunOS, HPAJX, Ultrix, AIX, VMS
and PC platforms. It has been used in environments as

diverse as literature searching, library operations, research

and development, customer support, market analysis and

management. FAIRS is being further tested as a retrieval

engine for very large collections of text, such as those pre-

sented by the TREC92 collection and wide-area distrib-

uted collections.

FAIRS is designed to minimize user effort in the prepara-

tion of text, the learning of query syntax while providing a

user-modifiable multilevel ranking schemed Experiments

with the TREC92 collections of text and queries have been

conducted with no human intervention in the processing of

either text or queries. The results of experiments against

the collection of Wall Street Journal articles are listed in

Section 3.4.

1. Patent Pending

2.0 System Overview

FAIRS uses pure text as its information base, while

allowing flexible links into non-textual information.

FAIRS extracts information out of an unstructured,

amorphous collection of data, in four main steps:

1. First, it partitions (logically) a raw text file or a col-

lection of such files into retrievable record units.

This simple record partitioning is necessary and suf-

ficient for indexing to begin. The goal is to use

source information as-is [1].

2. Second, FAIRS automatically constructs an index. A
feature exists where deletions are permitted from an

index. Statistics on the collections can also be gener-

ated at this time. Such statistics are used in normaliz-

ing the weighting of retrieved documents.

3. The third step involves the user queries. Queries are

accepted and interpreted in an intelligent and sensi-

tive manner [1,2]. A flexible approach to the imder-

standing of the query is essential to providing good

responses.

4. Finally, once the query is processed, the relevant hits

are retrieved quickly and displayed in an ordered list

ranked according to a relevance measure. The

records corresponding to the hits can then be viewed,

printed or mailed in their entirety on demand.

2.1 Characteristics

In FAIRS, both the responses to information requests

and the way relevance is determined can be customized

by the user. FAIRS can provide a tool for decision mak-

ing by presenting to the user all the relevant facts in an

elegant and timely fashion. There are some interesting

and novel features of FAIRS and research issues associ-

ated with each of these strategies. They will be dis-

cussed in sequence.

329

2.1.1 Using Files As-ls 2.1.3 Stemming

Raw textual information is broken into records (i.e., the

units that will be subsequently retrieved). Consistent with

the goal of using the information as-is (i.e., eliminating

file conversion), FAIRS does not require the input files to

be in any particular format [1]. Any ASCII file can be

indexed and searched. However, if a file does have a logi-

cal field structure that the user wants to use in searching

(e.g., restrict a search to text in the NAME field of

records), then this structure must be described to FAIRS.

If the information files do not have "record" or "field"

structures then an implicit method must be used to parti-

tion these files into records. To use the files as-is, FAIRS

allows the user to impose a record structure. Any character

string(s) can be designated as an end-of-record marker(s).

Such a page/record structure has been used successfully

and a number of documents have been quickly trans-

formed into textbases that could be processed by FAIRS.

Alternatively, a fixed line count, such as 66 lines or 78

lines, can be used as an end-of-record marker. Further-

more, each file may be declared as an individual record if

multiple files are present. Records can be further divided

into fields by using any character string(s) as field mark-

ers.

For retrieval, FAIRS requires the information base being

searched to be partitioned into indexed, retrievable

records. Either the record/field structure in the original

text file can be used or, in the absence of such structure, it

can be imposed. In either event, a description of record/

field format will control how FAIRS breaks the raw text

file into records. Note that a file format description is sep-

arate from the described input file which can be used as-is

(without conversion).

These methods of record definition are the result of praai-

cal experience with text collections generated in typical

business environments. A flexible input text structure or

pre-processor is essential to the effectiveness of a general-

purpose information retrieval system.

2.1.2 Stop Lists

FAIRS constructs an index to support the full text retrieval

of records. A user-defined stop list can be used to limit the

words indexed. For the TREC92 experiments the stop

word list consisted of 280 words. It was customized with

the addition of several common embedded SGML strings

and spurious field definitions such as: docno, doc, text,

journal, title, summary, descriptor, author, fileid, file_id,

&bullet, ¶, ^.degrees, etc.

Words are stemmed at index time and at query parsing

time. The stemming rules used are published by Paice

[4]. The rules are incomplete but are claimed to be satis-

factory. Words shorter than 4 characters are not

stemmed.

Conflation is used as an alternative to the inadequacies

of truncation. Paice 's scheme does not return "correct"

roots, but does ensure that members of a family reduce

to the same root, and members of different families

reduce to different roots.

2.1.4 Query Formation

FAIRS handles free association queries for information

[1,2]. Free association is the essence of being "user

friendly" in information retrieval, rather than graphical

user interface features such as windows, icons, mice,

and pulldown menus. Free association means that there

is no set of keywords that must be known and used

exactly. Queries do not have to be phrased as Boolean

expressions with ANDs and ORs. Words, phrases, and

even word stems thought to be relevant are listed in a

free association fashion. A FAIRS query has the simple

form:

/erwij [Wj] [.J/ermjLw^] [,] -term^iw^]

Where termi can be a single word or a phrase and w,- is a

user-specified weight for that word. There will be a hit

for each record in the information base that contains at

least one word from the query.

Commas are the only delimiters used to delineate

phrases, so that relative adjacency relation among
search words (i.e., the distance between two words that

appear as a query term such as "scenic view" or "soft-

ware engineering") could be considered automatically.

The weight w. is used at ranking time but if omitted, it is

set by default to 1.

2.1.5 Previewing Records

The ranking results are shown to the user via several

interactive and selectable preview features. The preview

features show some aspects of the top ranked records.

The aspects include the first (or all) lines containing

query words, coverage, and frequency data or simply

the first few lines of highly ranked records. This is

designed to give users a better feel for how relevant the

retrieved records really are, and thus give him a feel for

how well do the ranking rules work, and how they

330

should be customized. After examining a preview or the

full text of the highly ranked records, the user can then

revise the query or even change the ranking strategy.

2.1.6 Synonyms

A synonym definition capability (glossary) is also avail-

able within FAIRS. Given a word, FAIRS will retrieve

instances of that word, as well as instances of its syn-

onyms. The option can be invoked to broaden a query.

Users can build their own vocabulary or invoke and mod-

ify the system-wide synonym dictionary. This can be used

to ease the problem of different word usages from differ-

ent people.

A very fast elastic string matching algorithm^ [5] is being

evaluated for inclusion among the query expansion fea-

tures of FAIRS.

2.1.7 Displaying Records

When a request is made, users will always be presented

with the retrieved records in their full-text form. Further-

more, FAIRS provides several ways to associate non-text

information with each record. There are basically two

types of links: implicit and explicit. Implicit links use

source information as~is while explicit links involve spe-

cial fields embedded in the source text. Implicit links are

useful in situations where an implied one-to-one mapping

may be established between records and image files.

Explicit links may be used to express one-to-many rela-

tions between records and other media.

2.1.8 Ranking

One of the most interesting aspects of FAIRS is its uncon-

ventional ranking scheme to determine the relative rele-

vance of retrieved records. The ranking scheme is

designed to mimic the human relevancy judgement pro-

cess.

When a person is asked to determine the relative relevance

between two reccxds he is likely to first weigh them using

a set of criteria. If the two records have the same weight

with the set of criteria, a secondary set of criteria may be

used to differentiate them, and so on. The criteria used can

be highly heuristic. The adaptation of this "multilevel

ranking scheme" has been filed with the Patent office in

the United States.

To enable FAIRS to use free association in place of Bool-

ean semantics, a multilevel ranking model [1,2] for full-

2. Patent Pending

text information retrieval has been developed and imple-

mented. FAIRS ranks records with respect to a particular

query according to a set of rules. The default rules consist

of six attributes in six levels. The six attributes are the

importance, popularity, frequency, location of a search

word, and record size, and record ID of the record it occurs

in. Each attribute may have either positive, negative or no

impact {neutral) on the relevance judgement of a record.

Such arrangement also guarantees the automatic consider-

ation of coverage (i.e., percentage of different query words

covered by record), which is next to impossible to imple-

ment in a Boolean environment [1,2]. The ranking rules of

FAIRS are always accessible and modifiable by the user.

Descriptions of the attributes chosen for FAIRS follow:

FREQUENCE: The number of occurrences of the key-

word in the record. This attribute may be used to reflect

interest in finding records with more repetitions of a given

term. That is, when set to have a positive impaa, the more

instances of a term in a record, the more relevant the

record. Therefore, the record with the higherfrequency of

a term is more likely to be retrieved.

IMPORTANCE: FAIRS provides the searcher the ability to

assign an arbitrary weight (importance) to each query key-

word; thus the user has additional control over how
records are retrieved. For example, specifying breakfastA

assigns a weight of 4 to the term breakfast in a query. In

general, keyword weighting allows the searcher to change

how FAIRS sorts records in order to identify the most rele-

vant ones. If a keyword is not weighted, FAIRS supplies a

default weight which is in reverse proportion to its input

position in the query (words that came to mind first

deserve more weight). Therefore, if the searcher chooses

to weight some or all keywords in a query with a range of

weights, records strong in the heavily-weighted keywords

are ranked before others. This attribute is defaulted to have

a positive impact on the relevance judgement.

POPULARITY: This is the number of times a term occurs

in the entire collection, as opposed to the number of times

it appears in the retrieved record. For example, if the word

software appeared, at least once, in 15 records in a collec-

tion, its popularity is considered to be 15. This attribute is

usually used in the negative sense and, by default, FAIRS

assumes that the more popular a term is, the less effective

it is in retrieval.

RECJD: The record ID is the location of a record in the

collection. It may indicate the age of the record.This is

also useful when the records are arranged according to

their degree of significance (in either increasing or

decreasing order.) This attribute is a good example for

331

showing there is no perfect ranking rules that work in all

situations. This attribute may have either a positive or neg-

ative impact, depending on user intention. Although there

is no obviously better default setting for this attribute, we
chose positive to be the default, so as to give priority to the

later records as they are likely to be more timely.

REC_SIZE: The total word count of the record. This

attribute may be used to counter (normalize) the size

advantage that a larger record may have over smaller ones

during rank judgement. A larger record may have more

keywords simply because it contains more words. It is

therefore we set its default to have a negative impact on

the relevance judgement. Of course, when records are of

similar size, this attribute will have minimal effect, and

should probably be disabled to improve response time.

WORD LOC: The location of the first occurrence of the

keyword in the record. A negative setting (the default) of

this attribute assimies that important words appear in the

beginning of a collection, or record. For example, head-

ings or tides which contain keywords describing the con-

tents of a document, usually appear at the beginning. Of

course, this depends solely on how the contents of the

information are organized. This serves as another example

of the context-sensitivity of the ranking process.

The following table shows the default ranking rules:

Table 1: Ranking Attributes Settings for TREC92

Table 2: Ranking Attributes Settings for TREC92

level Imp Pop Freq Size ID Loc

1

2 pos

3 neg

4 pos neg pos neg

5 neg

6 pos

The first level, having no attribute values, automatically

accounts for coverage if the weight computation is done

using Method 1, as described below in section 2.1.9.

To perform TREC92 experiments, we changed the ranking

rules as follows: Size was introduced on level one to bal-

ance the effect of the very large records found in the Fed-

eral Register. Consequently, we also had to specify

impacts for the Importance, Popularity and Frequency

attributes on the first level since they are the most impor-

tant criteria for ranking.

The following table shows the TREC92 ranking rules:

level Imp Pop Freq Size ID Loc

1 pos pos

2 pos neg neg

3 pos neg pos neg

4 neg

5 pos

2.1.9 Weight computation

Two methods were available to compute the weight of a

document:

Method 1

The weight of a retrieved record r at level / is determined

by the following formula:

K r A

I - 1

e[i] n^W"
- 7 = 1

Where:

e[i] = 1 if the ith keyword exists in the record and 0

otherwise,

a\j] = The value of the attribute j,

A= Number of attributes (currently 6,)

K = Total number of query keywords,

s\j] = 1 if the value of attribute y is positive,

0 if the value of attribute ; is neutral,

-1 if the value of attribute j is negative.

In other words, the weight at a certain level is the sum of

the product of the attributes at that level. This weight com-

putation method automatically calculates coverage since

for each keyword e[i], the product of attributes is never 0.

The value of the attribute is configured by the user either

before running FAIRS, or before delivering the query. To

set the value before running FAIRS, a file must be created

containing the initial values. A default value is set during

system start-up.

Method 2

One disadvantage of method 1 is that it lacks a common
reference scale that evenly distributes the influence of the

attributes on the weight of the document. For example,

consider a textbase with one very large record, record

332

number 1, and assume the following settings for the vari-

able attributes:

FREQUENCY = neutral (s[l] = 0)

POPULARITY = neutral (j[2] = 0)

WORD_LOC = neutral (s[3] = 0)

RECJD = neutral (j[4] = 0)

REC_SIZE = positive (j[5] = 1)

The contributing factors to the weight of a retrieved docu-

ment are IMPORTANCE and REC_SIZE. Because of its

large size ia[5] » 0,) record / will be irrelevantly

retrieved in response to a large percentage of pending que-

ries,

To avoid the above scenario, method 2 uses the following

formula to compute the normalized weight of a retrieved

record r at level /:

3.0 Experiments

K r

/ = 1

a[j]sU]

Where:

e[i] = 1 if keyword i exists in the record and 0 other-

wise,

a\j] = The value of the attribute j,

A = Number of attributes (currently 6,)

K = Total number of query keywords,

s\j] = 1 if the value of attribute j is positive,

0 if the value of attribute j is neutral,

-1 if the value of attribute j is negative.

C = Number of attributes whose value is not 0.

a^\j] = The maximimi value of the attribute j.

To avoid the effect of disproportionately large attribute

values, a[/]/a^[/] is set to 1 if is one of the largest 2%
attribute values. Method 2 has the advantage of accommo-
dating large attribute values by normalizing with respect to

their maximum.

However, this method does not automatically calculate the

coverage since s\j] contributes as a multiplicand rather

than as an exponent as in Method 1. Therefore, if the

attributes are all neutral (level 1 in Table 1—default
attributes,) the weight would be 0, evan though query

terms would occur in the record r. We are therefore still

looking for ways to improve the method.

The TREC92 collection of text and topics was used to

quantify and analyze the performance of FAIRS in the

domain of very large collections. The entire collection

includes 2.3Gb of text from various sources and of various

formats.

3.1 System Configuration

The hardware platform used for indexing and query pro-

cessing was an IBM RS/6(X)0 320 workstation with AIX
3.0 operating system. The core memory (RAM) installed

was 32 Mb. The net disk space available was
4,169,728Kb. The CPU clock rate was 25 MHz, with a

MIPS rating of 27. The disk access time was 9.8 ms on

average.

3.2 Indexing Performance

Our experiments showed that performance in indexing is

strictly constrained by I/O wait. We used several tech-

niques to reduce this constraint and optimize throughput.

We scheduled index runs to run simultaneously, thus keep-

ing the CPU busy during I/O wait. We used a kernel which

employs automatic disk caching (providing an order of

magnitude improvement in indexing time.) To further

exploit caching, large amounts of high-speed core memory
should be used (our limit of 32 Mb is by no means ideal.)

The I/O bottleneck also implies that the very fastest disks

be used. We chose 9.8 ms disks as the fastest available for

the platform for a reasonable price. Using the above con-

figuration, the sustained indexing throughput was on the

order of 10 days (240 hrs.)/Gb. The storage overhead for

index output was 1 10%. That is, for 1 Gb of text, 2.1 Gb of

space should be available before indexing is initiated. By

this measure, the entire TREC92 collection of 2.3 Gb
would require 4.83 Gb of storage. Since only 4.17 Gb was

available, we participated in category B (Wall Street Jour-

nal only.)

3.3 Query processing

Before submitting the raw topics to FAIRS, they were con-

verted automatically into FAIRS-compatible queries of the

form described in section 2.1.4. The TREC92 topics were

pre-processed by a simple syntactic term token generator.

The pre-processor removed stop words, stemmed and

removed cases from topic terms. It used an ad-hoc term

weighting scheme to assign IMPORTANCE weights to

terms according to their positions in the topic (e.g. terms

occurring in the title section were assigned an arbitrarily

higher importance than those in other sections.)

333

The importance weights were assigned with a minimum of

attention. As described below, failure analysis had later

shown that great improvements in precision could be made
if pre-processing were better timed with term expansion,

duplicates removal and a heuristic importance measure.

After conversion, queries were submitted to the retrieval

engine through a non-interactive interface. The time for

processing (ranking) was approximately 30 minutes per

query. Again, I/O wait was the dominant faaor in nmning

time. The same system solutions which apply to indexing

can be applied with equal effectiveness to query process-

ing. Modification of some of the internal data structures

for index storage (concordance list optimization) could

also improve ranking running time.

3.4 Retrieval Performance

FAIRS participated in the following categories: Ad-hoc

Wall Street Journal disk 1 (AWl), Ad-hoc Wall Street

Journal Disk 2 (AW2), Routing, Category B (RB). Rele-

vance judgements are as follows: AWl: 50 topics, AW2:
50, RB: 25; total 125.

Of these judgements, FAIRS' recall rates were ranked as

follows: 77 on or above median, 45 below median, and 3

undetermined (1 tied, 2 with 0 relevant.) 61.6% on or

above median, 36% below, 2.4% undetermined.

Table 3: Recall Performance Summary

Category
%>=
med

%<
med

% rel

ret

AWl 66.0 32.0 38.5

AW2 46.0 50.0 54.7

RB 84.0 16.0 30.0

Total 61.6 36.0 38.8

Beside recall, relevancy judgements made available recall/

precision figures across 1 1 points of recall rates. The aver-

age of the 11 recall/precision figures is called the U-pt.

average. FAIRS' 11-pt. average rates were ranked as fol-

lows: 79 on or above median, 43 below median, and 3

undetermined. The percentages for 11-pt. averages are:

63.2% on or above, 34.4% below, 2.4% undetermined.

Table 4: 11-pt. Average Performance Summary

Category
med med

AWl 85.7 31.0

AW2 45.8 54.2

RB 84.0 16.0

Totals 63.2 34.4

3.4.1 AWl
Ad-hoc WSJ disk 1, results were submitted by three sys-

tems. In this category, of all systems' submissions, 4,056

documents were judged relevant, 10,000 were submitted

by FAIRS in response to 50 queries, of which 1,561 were

among the relevant. The average 1 1 point average (over 50

queries over 1 1 recall rates for each query) was 0.2083.

The distribution of relevant retrieved (recall) over the 50

topics was: 20 ranked best, 12 on the median, 16 worst, 2

tied. The distribution of 1 1-pt. averages over the 50 topics

was: 22 ranked best, 14 on the median and 13 worst, 1

tied.

Table 5: AWl Recall/Precision Performance

Best Med Worst

Recall 20 (40%) 13 (26%) 16 (32%)

11-pt. 22 (44%) 14 (28%) 12(24%)

Total recall placed FAIRS second among 3 participants,

and first in 11-pt. averages recall/precision.

3.4.2 AW2
Ad-hoc WSJ disk 2, results were submitted by two sys-

tems. In this category 2,172 documents were judged rele-

vant, 10,000 were submitted in response to 50 queries, of

which 1,188 were among the relevant. The 11 point aver-

age precision was 0.2216. The distribution of relevant

retrieved (recall) over the 50 topics was: 17 ranked best,

22 worst, 9 tied, 2 unevaluated. Of the tied, the 11-pt.

averages favored FAIRS 6 times, the other system 3 times.

334

Table 6: AW2 Recall/Precision Performance

Best Worst Tie

Recall 17 (34%) 22 (44%) 11

11-pt. 22 (44%) 26 (52%)

For those queries for which there was a tie in recall values,

there are two queries which had 0 records judged relevant.

Of the remaining 9, we considered the 11-pt. average as a

tie-breaker. The result was 6 best, 3 worst. Combining the

recall and 11-pt. averages, for AW2, FAIRS had 23 sub-

missions on or above the median (46%), 25 below (50%)

(4% undetermined).

3.4.3 RB
Routing, Category B results were submitted by 7 systems.

For those topics judged, 3,766 documents were considered

relevant, 5,000 were submitted by FAIRS in response to

25 queries. Of those submissions, 1,124 were among the

relevant.

The following graph illustrates the performance index of

the recall rates of FAIRS compared to the group. It shows

FAIRS is above average most of the time. The average

recall PI of FAIRS is 65.8.

I

7 B 11 13 15 17 18 21 23 25

Recall /Query

The next graph shows the performance index of the 11-

point average of FAIRS compared to the group. It again

shows FAIRS to be above average most of the time. The

average 1 1 -point-average PI of FAIRS is 61.8.

The distribution of relevant retrieved (recall) over the 25

topics was: 2 ranked best, 13 ranked above the median, 6

on the median, 4 below, for a total of 21 on or above the

median, 4 below.

Table 7: RB Recall/Precision Performance

Relation to Median > <

Recall 15(60%) 6 (24%) 4 (16%)

11-pt. 15 (60%) 6 (24%) 4 (16%)

I

1 3 5 7 9 11 13 1 5 17 1 9 21 23 25

11-point average /Query

This is the only group that had enough participants to

make a comparative-performance analysis meaningful. We
compared our 11-point average and recall rates for each

query to the best, the median, and the worst scores of that

query. The performance index (PI) is calculated as fol-

lows:

PI =

Cscore - median \
50 + 50 ,

\ best - median)

(score - worst \
50 —T •

\median - worst J

score > median

score < median

PI has the property that a value of 100 means the best is

achieved, and a 50 means the performance is on the

median, and a 0 means it is the worst.

3.5 Failure Analysis

Based on the feedback from relevance judgements, we are

considering several improvements in the query handling

and ranking methods. These changes include:

1. Expanding of terms in the topics which are abbreviated

via an abbreviation dictionary. Initial investigation of

topics which have abbreviations reveals that those

abbreviations had an appreciably negative impact on

recall. Topic 17 is a good example, where the term

"United States" is abbreviated as "U.S.", In a later trial,

this simple expansion alone significantly improved the

recall rate for this topic.

2. Using better term weighting based on heuristics. Up to

50% improvement was observed when term weighting

was modified more intuitively (by hand.)

335

3. Considering more terms in the topics based on their

popularity.

4. Using synonyms to expand terms.

5. Optimizing the ranking rules. This will be important in

Category A participation. The diversity of the docu-

ments in Category A will necessitate the use of opti-

mum ranking rules which minimize the negative

effects of extreme attribute values. These ranking rules

will require more experimentation and analysis.

4.0 Conclusion

Various techniques used by FAIRS to retrieve, weight and

rank documents were discussed. The system was shown to

successfully process the TREC92 collection and achieve a

high degree of precision and recall in the categories it par-

ticipated, relative to other systems in those categories.

The system was described, the ranking rules and weight-

ing methods were also presented. The application of

FAIRS to the TREC92 collection was analyzed in terms of

system and retrieval performance. The retrieval perfor-

mance was compared to competing systems in the same

categories. It is hoped that further analysis of the results

will provide insight into which features of FAIRS contrib-

ute the most to its effectiveness.

5.0 References

1. Chang, S. C. and A. Chow, "Towards a Friendly

Adaptable Information Retrieval System," Proceedings

ofRIAO 88, March 1988, pp. 172-182.

2. Chang, S. C, "Adaptive Ranking: A Spreadsheet

Approach." Technical Report TR0017 1288500, GTE
Laboratories, Waltham, MA, Dec. 1988.

3. Chow, A. and S. C. Chang, "Text Structure Specifica-

tion: A Study to Eliminate File Conversion," Technical

Note TN87 500.03, GTE Laboratories, Waltham, MA,
Dec. 1987.

4. Paice, C. D., Information Retrieval and the Computer,

MacDonald and Jane's Computer Monographs, Lon-

don. 1977.

5. Du, M. W. and S. C. Chang, "A Model and Fast Algo-

rithm for Multiple Errors Spelling Correction," Techni-

cal Report TR0650989500, GTE Laboratories,

Waltham, MA, Sept. 1989.

336

Description of the PRC CEO Algorithm for TREC

Paul Thompson
PRC Inc., Mail Stop 5S3

1500 Planning Research Drive

McLean, VA 22102
Phone: 703/556-1923

Email: thompson_paul@po.gis.prc.com

This paper describes work done on the TREC project at PRC Inc. in collaboration with

Professor Edward Fox and his colleagues at Virginia Polytechnic Institute and State

University (VPI&SU). The reader should refer to the description of their system included

in this proceedings for further details on the common processing of the TREC data shared

by PRC and VPI&SU (Fox et al. 1993). PRC developed an algorithm, the Combination
of Expert Opinion (CEO), which combined the results of VPI&SU's runs. VPI&SU used

a different combination technique for their final results. Originally the intent was that the

CEO algorithm would be integrated with the SMART system used by VPI&SU. Both
upper and lower level combination of results would take place, i.e., at the lower level of
individual document features within a particular retrieval method and the upper level of

combination of the output of the individual methods themselves, i.e., the various cosine

and p-norm methods used by VPI&SU. Furthermore we had originally hoped to train the

CEO algorithm, so that the weighting of the various methods would be optimized based on
relevance judgments. For the official TREC results we were only able to use the upper

level of CEO without any training. Since then we have done additional retrospective

experiments in which the different methods are weighted in the CEO algorithm by one of
several measures of their performance for TREC.

Combination of Expert Opinion

The statistical technique of CEO provides a solution to the problem of combining different

probabilistic models of document retrieval. This technique is expected to result in

improved precision and recall over that provided by any one model, or method, since

research has shown that various retrieval models retrieve different sets of relevant

documents (BCatzer et al. 1982, Fox et al. 1988). In the Bayesian formulation of the CEO
problem (Lindley 1983) a decision maker is interested in some parameter or event; and
he/she has a prior, or initial, distribution or probability for that parameter or event. The
decision maker revises the distribution upon consulting several experts, each with his/her

own distribution or probability for the parameter or event. To effect this revision, the

decision maker must assess the relative expertise of the experts and their interdependence,

both with each other and the decision maker. The experts' distributions are considered as

data by the decision maker, which is used to update the prior distribution.

For automatic document retrieval, the retrieval system is the decision maker and different

retrieval algorithms, or models, are the experts (Thompson 1990a,b, 1991). This is

referred to as the upper level CEO. At the lower level the probabilities of individual

features, e.g., terms, within a particular retrieval model can be combined using CEO. In

lower level CEO the retrieval model is the decision maker and the term probabilities are

viewed as lower level experts. The probability distributions supplied by these lower level

experts can be updated, according to Bayes theorem, by user relevance judgments for

retrieved documents. These same relevance judgments also give the system a way to

evaluate the performance of each model, both in the context of a single search of several

iterations and over all searches to date. These results can be used in a statistically sound

337

way to weight the contributions of the models in the combined probability distribution used

to rank the retrieved documents. Since various algorithms, such as p-norm, are expressed

in terms of correlations rather than probability distributions, it was necessary to extend the

CEO algorithm to handle correlations. So far this extension has been handled in a heuristic

fashion. If a retrieval method, e.g., one of the cosine methods, returned a value between 0
and 1 as a retrieval status value; the logistic transformation of this weight was interpreted as

an estimate of the mean of a logistically transformed beta distribution which was provided

as evidence to the decision maker. Since there was no basis with which to assign a

standard deviation to this distribution, as called for by the CEO methodology, an
assumption was made that all standard deviations were .4045, a value corresponding to a

standard deviation of .1 in terms of probabilities.

All of the retrieval methods used by VPI&SU were combined with the CEO algorithm

except for the Boolean. That is, we used weighted and unweighted cosine and inner

product measures as well as p-norm measures of 1.0, 1.5, and 2.0. For measures, such as

the inner product and some of the p-norm results that did not give a retrieval status value in

the 0 to 1 range, the result was mapped to this interval by scaling the highest score of the

method in question for a given topic to the highest score given by one of the cosine

measures. Default scores half way between 0 and the lowest score achieved by a particular

method were used for documents not retrieved in the top 200 in response to a given topic,

since the actual score of these documents was unknown. The Boolean model was not

included, because it was not a ranked retrieval method. In the future we plan to extend our

normalization techniques to use the Boolean results as well. Figure 1 shows our summary
official TREC results for topics 51-100 on the Wall Street Journal collection from the first

CD-ROM.

Since TREC, we have experimented with weighting the different methods combined based

on their performance with the TREC data. In other words we have attempted to determine

an upper bound for performance based on knowledge of each method's performance on the

actual test data. We used four different weighting schemes: the 11-point average,

precision at 0.00 recall, precision at 0.10 recall, and unweighted (i.e., our official TREC
results). We also tried using the five best methods, rather than the seven used for our
official results, i.e., we excluded Pnorml.5 and Pnorm2.0. None of the weights produced
better results than the unweighted scheme. This was surprising. Figure 2 shows our
summary results for CEO based on all seven methods using the 11-point average and
additional relevance judgments made by VPI&SU. Figure 3 shows the same weighting
scheme using only NIST relevance judgments.

Two immediate explanations suggest themselves. First, using overall averages may not be
too useful. Second, our simple implementation of CEO assumes independence among the

methods. To examine the first problem we intend to try weighting the methods on a topic

by topic basis rather than by overall averages. Again this would be a retrospective upper
bound experiment. In terms of the CEO approach (Thompson 1990a,b) using only overall

averages would be analogous to using only feedback from past searches, while using topic-

specific weights would correspond to receiving feedback over several iterations of the same
search. We propose to investigate the second problem by analyzing the overlap of pairs of
runs of the various methods to determine dependence and thus perform CEO without the

independence assumption.

The PRC portion of our experiments were all run on a Sun SPARCstation 2 with 16
megabytes of RAM. The CEO code was written in g++.
Top ranked evaluation

338

Run number: prceol all

Num_queries: 50
Total number of documents over all queries

Retrieved: 10000
Relevant: 4056
Rel_ret: 1666

Recall - Precision Averages:

at 0.00 0.6598

at 0.10 0.4382

at 0.20 0.3451

at 0.30 0.2536
at 0.40 0.1753

at 0.50 0.1400

at 0.60 0.1016

at 0.70 0.0489

at 0.80 0.0185

at 0.90 0.0015

at 1.00 0.0015

Average precision for all points

11-ptAvg: 0.1985
Average precision for 3 intermediate points (0.20, 0.50, 0.80)

3-ptAvg: 0.1679

Recall:

at 5 docs: 0.0379
at 15 docs: 0.1193

at 30 docs: 0.1714
at 100 docs: 0.3438

at 200 docs: 0.4557

Precision:

At 5 docs: 0.4040
At 15 docs: 0.3653
At 30 docs: 0.3033
At 100 docs: 0.2322
At 200 docs: 0.1666

Figure 1. TREC summary results without weights

339

Top ranked evaluation

Run number: 1

Num_queries: 50
Total number of documents over all queries

Retrieved: 10000
Relevant: 3901
Rel_ret: 1867

Recall - Precision Averages:

at 0.00 0.5419

at 0.10 0.3684

at 0.20 0.3239

at 0.30 0.2848

at 0.40 0.1975

at 0.50 0.1490
at 0.60 0.0933

at 0.70 0.0575

at 0.80 0.0147
at 0.90 0.0029

at 1.00 0.0006

Average precision for all points

11-ptAvg: 0.1850

Average precision for 3 intermediate points (0.20, 0.50, 0.80)

3-pt Avg: 0.1625

Recall:

Exact: 0.5400
at 5 docs: 0.0270
at 15 docs: 0.0890
at 30 docs: 0.1592
at 100 docs: 0.3603

at 200 docs: 0.5400
Precision:

Exact: 0.1867
At 5 docs: 0.2360
At 15 docs: 0.2920
At 30 docs: 0.2853
At 100 docs: 0.2234
At 200 docs: 0.1867

Figure 2. Post-TREC summary results with 11-point average weight
and additional relevance judgments

340

Top ranked evaluation

Run number: 1

Num_queries: 47
Total number of documents over all queries

Retrieved: 9400
Relevant: 3697
Rel_ret: 1366

Recall - Precision Averages:

at 0.00 0.3801

at 0.10 0.2588

at 0.20 0.2379

at 0.30 0.1638

at 0.40 0.1144

at 0.50 0.0831

at 0.60 0.0551

at 0.70 0.0363

at 0.80 0.0101

at 0.90 0.0002
at 1.00 0.0002

Average precision for all points

11-ptAvg: 0.1218

Average precision for 3 intermediate points (0.20, 0.50, 0.80)

3-ptAvg: 0.1104

Recall:

Exact: 0.4114
at 5 docs: 0.0137
at 15 docs: 0.0497
at 30 docs: 0.0800
at 100 docs: 0.2249
at 200 docs: 0.4114

Precision:

Exact: 0.1453
At 5 docs: 0.1915

At 15 docs: 0.2156
At 30 docs: 0.1879
At 100 docs: 0.1683
At 200 docs: 0.1453

Figure 3. Post-TREC summary results with 11 -point average weights
and only NIST relevance judgments

341

References

Fox, E. A.; Koushik, P.; Shaw, J.; Modlin, R.; and Rao, D. 1993. "Combining
Evidence from Multiple Searches" this proceedings.

Fox, E. A.; Nunn, G. L.; Lee, W. C. 1988. "Coefficients for Combining Concept
Classes in a Collection" Proceedings of the 11th. International Conference on Research
and Development in Information Retrieval ixme, 13-15, Grenoble, France p. 291-307.

Katzer, J.; McGill, M. J.; Tessier, J. A.; Frakes, W.; DasGupta, P. 1982. "A study of the

overlap among document representations" Information Technology: Research and
Development vol. 2 P. 261-274.

Lindley, D.V. 1983. "Reconciliation of probability distributions." Operations Research.

V. 31, no. 5, p. 866-880.

Thompson, P. 1990a. "A Combination of Expert Opinion Approach to Probabilistic

Information Retrieval, Part 1: The Conceptual Model." Information Processing and
Management, Vol. 26, No. 3, p. 371-382.

Thompson, P. 1990b. "A Combination of Expert Opinion Approach to Probabilistic

Information Retrieval, Part 2: Mathematical Treatment of CEO Model 3." Information

Processing and Management, Vol. 26, No. 3, p. 383-394.

Thompson, P. 1991. "Machine Learning in the Combination of Expert Opinion Approach
to IR" In Birnbaum, L. and Collins, G. (eds.) Machine Learning: Proceedings of the

Eighth International Workshop (ML91), San Mateo, Morgan Kaufmann, p.270-274.

342

Vector Expansion in a Large Collection

Ellen M. Voorhees and Yuan-Wang Hou
Siemens Corporate Research, Inc.

755 College Road East

Princeton, New Jersey 08540

Abstract

This paper investigates whether a completely automatic, statistical expansion technique that uses a

general-purpose thesaurus as a source of related concepts is viable for large collections. The retrieval

results indicate that the particular expansion technique used here improves the performance of some
queries, but degrades the performance of other queries. The overall effectiveness of the method is com-
petitive with other systems. The variability of the method is attributable to two main factors: the choice

of concepts that are expanded and the confounding effects expansion has on concept weights. Addressing

these problems will require both a better method for determining the important concepts of a text and

a better method for determining the correct sense of an ambiguous word.

1 Introduction

In many retrieval systems the similarity between two texts is a function of the number of word stems that

appear in both texts. While these systems are often efficient and robust, their effectiveness is depressed

by the presence of homographs (words that are spelled the same but mean different things) and synonyms

(different words that mean the same thing) in the texts. Homographs depress precision by causing false

matches. Synonyms depress recall by causing conceptual matches to be missed. That is, if a query and

a document are about the same topic, but use different words to express the idea, the document will not

be retrieved in response to the query. We are investigating how concept spaces, data structures that define

semantic relationships among ideas, can be used to mitigate the effects of synonymy and homography in

retrieval systems designed to satisfy large-scale information needs.

We impose two constraints on our research with the goal of making the resulting methods more applicable

to retrieving documents from large corpora. First, we want to keep human intervention in the indexing and

retrieval processes at a minimum; therefore, we use strictly automatic procedures. Second, even automatic

procedures need to be relatively efficient. We believe this efficiency requirement precludes the use of deep

analyses of document content for the foreseeable future, and we restrict ourselves to statistical processing of

the text and concept space.

There are effectiveness concerns when dealing with large corpora as well as efficiency concerns. Large

corpora usually imply a diverse vocabulary, and thus the synonym and homograph problems are exacerbated.

In this paper we investigate vector expansion as a solution to the synonymy problem for the large TREC
collection. As the name "vector expansion" implies, we are working within the vector space model of

information retrieval [5]: both documents and topics are represented as weighted vectors and the similarity

between two texts is computed as the inner product of their respective vectors. The vectors are expanded

by terms related to original text words in our concept space. In particular, since we are using the WordNet

lexical database as our concept space, vectors are expanded by adding selected synonyms of original text

words.

Although using thesauri to expand vectors has been done before (see, for example, [7], [2], [4]), it has

always been done on small collections. We are interested in investigating whether comparatively simple

343

statistical expansion techniques are viable for large collections. The results so far indicate that our expansion

technique can improve the performance of some queries, but is equally likely to degrade the performance

of others. The sources of this variability are described in detail below. A description of WordNet and the

expansion algorithm is given first to provide the appropriate context.

2 WordNet

WordNet is a manually-constructed lexical system developed by George Miller and his colleagues at the

Cognitive Science Laboratory at Princeton University [3]. Originating from a project whose goal was to

produce a dictionary that could be searched conceptually instead of only alphabetically, WordNet evolved into

a system that reflects current psycholinguistic theories about how humans organize their lexical memories.

The basic object in WordNet is a set of strict synonyms, called a synset. By definition, each synset a word

appears in is a different sense of that word.

There are three main divisions in WordNet, one each for nouns, verbs, and adjectives. Within a division,

synsets are organized by the lexical relationships defined on them. For nouns, the only division used in this

study, the lexical relationships include antonymy, hypernymy/hyponymy (IS-A relation) and three different

meronym/holonym (PART-OF) relations. The IS-A relation is the dominant relationship, and organizes

the synsets into a set of approximately ten hierarchies^. Examples of synsets that are the heads of hierarchies

are {entity, thing}, {psychologicalJeature], {abstraction} , and {possession}

.

The developers of WordNet specifically avoided including specialized vocabularies within WordNet; the

coverage of "standard" English is quite good. The April, 1992 version of WordNet (the version used in this

study) contains 35,155 synonym sets and 67,293 senses in the noun division. The majority of synonym sets

are quite small (one or two members), but the more common nouns (i.e., those nouns that actually get used

in documents and topics) tend to belong to the larger synsets. Example synsets from the noun division are

shown in Figure 1. The lexical relationships that the synsets participate in, especially their parents in the

IS-A hierarchy, differentiate among the senses.

We developed our own routine to access the WordNet information that differs somewhat from the access

code distributed with WordNet. In our version, the access routine takes a word (a string of characters),

converts it to lower case, and checks if the converted string occurs in the noun portion of WordNet. If the

string is found, the routine returns either the number of synsets in which the string appears, the fact that

the string is a known irregular morphological variant of a member of a synset (e.g., 'women' is an inflection

of 'woman'), or both (e.g., 'media' is both a member of {media, mass media} and an inflection of 'medium').

If the string is not found, several simple (regular) morphological variants of the word are tried. If none

are found, the routine reports the string as not found. Otherwise, the routine returns the base form. A
consequence of this simple strategy is that regular plural forms that are members of their own synsets do not

return the synsets of the base word. For example, 'arms' returns the synsets {coat_of_arms, arms, blazon,

blazonry} and {weaponry, arms, implements of war} , but not the four synsets for 'arm'.

3 Vector Expansion Procedure

For the retrieval results reported in this paper, both document and query vectors were expanded using

synonyms of original text words. The particular expansion method we used is one of the most effective vector

expansion methods among a wide variety of expansion schemes we tried on smaller collections. However, the

TREC collection is much more diverse than those collections and some other scheme may be more effective

on it. We intend to test some of those methods on the TREC collection in the near future.

We use the SMART retrieval system developed at Cornell as the basis for our retrieval system [1].

The SMART system is designed to facilitate information retrieval research by making it easy to substitute

^The actual structure is not quite a hierarchy since a few synsets have more than one parent.

344

surrogate (3 senses)

{deputy, surrogate}

{surrogate}

{alternate, proxy, stand-in, substitute, surrogate, replacement}

opinion (5 senses)

{opinion, ruling}

{opinion}

{opinion, sentiment, persuasion, view}

{judgment, judgement, opinion}

{opinion, view}

motherhood (1 sense)

{motherhood, maternity}

decision (4 senses)

{decision}

{judgment, judgement, decision, judicial decision}

{decision, deciding, decision_making}

{decision, firmness}

court (4 senses)

{court, courtyard}

{court, tennis_court}

{court, courtroom}

{court, tribunal}

Figure 1: Example Synonym Sets

customized pieces of the program without needing to modify other components. For this work, we changed

only part of the indexing module of the standard SMART system.

Indexing a piece of text proceeds as follows:

1. The text is broken into tokens by the standard SMART tokenizer.

2. Each token is passed in turn to a parser. The parser eliminates tokens designated as numbers, white

space, or punctuation; the remaining tokens are assumed to be "words".

3. Each word is looked up in the standard SMART stop word list and is eliminated if it is found there. If

the word is not a stop word, it is stemmed (using the SMART triestem stemming algorithm), assigned

a concept number, and added to the list of concepts that will form the vector.

4. A word that is not a stop word is also looked up in the noun portion of WordNet before it is stemmed. If

the word is in WordNet, the set of synonyms from all the synsets the word is a member of is produced.

The elements of this set are also stemmed and assigned concept numbers. Instead of the concepts

being inserted into the vector list, however, they are inserted into a different relative list. Relatives

that come from original text words that have only one sense in WordNet (appear in exactly one synset)

are flagged as such when they are entered into the list.

345

5. After all the words from a text have been processed, relatives that are flagged as being from a single-

sense text word and relatives that have been added to the relative list at least twice are added to the

vector list. The requirement to appear in the list at least twice if the relative is from a text word that

has multiple senses is a poor-man's attempt at sense disambiguation. The idea is that is that if two

original text terms agree on a relative, the relative is probably related to the correct sense of those text

terms.

6. To produce the final weighted vector, the term frequency of each of the concepts in the vector list

produced in step five is computed. Concepts that were added as relatives have their term frequency

weight multiplied by .8 to emphasize the original terms. The term frequency weight of each concept is

then multiplied by an inverse document frequency factor, and those weights are further normalized by

the square root of the sum of the squares of the weights (cosine normalization). This weighting scheme

is the "tfc" weights described by Salton and Buckley in [6].

As an example, take the text court opinions and decisions on surrogate motherhood (a paraphrase of

topic 70). The vector produced for this text using the synsets shown in Figure 1 would contain the stems of

court, opinion, decision, surrogate, motherhood (original text words), maternity (synonym of 'motherhood',

which has only one sense), judgment, and judgement (synonyms of both 'decision' and 'opinion').

Both documents and topic statments were indexed by the procedure described above; no special manual

processing of the topic statements was performed. The manually assigned keywords associated with some

documents were not used in the indexing. For the topic statements only the Concepts, Description, Factors,

Narrative, Nationality, and Title sections were indexed. Among those sections, no distinctions were made
regarding what section a term appeared in.

The decision to expand both documents and query vectors, as opposed to only query vectors, is based on

several factors. First, the WordNet synsets contain collocations such as 'judicial decision', but the tokenizer

used recognizes only single words. For the collocations to participate in matches, both documents and vectors

need to be expanded. Second, documents are frequently longer than topic statements. Since we require

agreement on a relative before it is added to the vector, the longer documents provide more opportunities

for a concept to be added to the vector. Third, in the experiments on smaller collections, expanding both

documents and queries was consistently more eff'ective than expanding only queries (although usually less

effective than expanding neither). Document expansion has its costs, however, even excluding the obvious

additional expense at indexing time. Longer vectors also increase storage costs and processing time at

retrieval as well. Table 1 gives a histogram of the percentage increase in vector length as compared to an

unexpanded collection for the TREC documents.

4 Experimental Results

We performed one retrieval run on the entire TREC database, retrieving documents for the 50 ad hoc queries.

The official evaluation table for this run is given in Table 2. Using a Sun IPX with 64 megabytes of RAM,
it took approximately 42 hours of processing to produce the inverted index of the document collection.

The resulting inverted index takes 947 megabytes of disk storage. It took approximately one CPU second

on average to index a topic statement and produce a query vector. The average retrieval time per query

was 15 CPU seconds.

An analysis of the retrieval results show that the expanded collection is more efl"ective than a correspond-

ing unexpanded collection for some queries^. However, the eff"ectiveness of the the expansion procedure

is very variable, and the performance of other queries was degraded by the expansion. This variability is

attributable to two main factors: the process of selecting which new concepts to add, and the confounding

effects expansion has on concept weights.

^EveJuation results for the unexpanded collection were made available through the courtesy of the SMART group at

Cornell University.

346

% Increase # Docs

0-10 15656

10-20 52568

20-30 116766

30-40 162862

40-50 163235

50-60 123943

60-70 64029

70-80 24564

80-90 8872

90-100 3333

> 100 6926

> 200 207

Mean increase: 42%

Table 1: Histogram of Percentage Increase in Document Vector Length

Expansion affects both the inverse document frequency (IDF) and the term frequency (TF) components

of the concept weights. A concept that is frequently added to documents is downweighted by its IDF factor

relative to its weight in an unexpanded collection. Such a concept is often a very general concept and the

downweighting is likely to be beneficial. Similarly, a concept that is occasionally added to documents, and

occurs infrequently in the collection otherwise, is emphasized by its IDF component. This may or may
not be beneficial, depending on the quality of the term. The aggregate TF component of a concept can

be relatively larger in an expanded collection if the concept has many synonyms. This eff"ect is common
because the same word will frequently cause the same synonyms to be added in both the document and

query vectors. Unfortunately, this effect is usually detrimental because the words occurring in large synsets

are common words that contain little content. For example, if either 'couple' and 'pair' or the Roman
numeral '11' appears in a text, then the entire synset {two, 2, it, twain, couple, pair, twosome, duo, duet,

brace, span, yoke, couplet, distich, dyad, duad, deuce, doubleton, craps, snake_eyes} is added.

The effects of the changes in weights is illustrated by the performance of topics 95 and 70, the texts of

which are given in Figures 2 and 3. Portions of the corresponding query vectors for both expanded and

unexpanded collections are given in Figure 4. Topic 95 retrieved 28 relevant documents in the expanded col-

lection; in the corresponding unexpanded collection, 17 relevant documents were retrieved. The improvement

is due to increasing the weights of central themes of the topic, both by adding additional concepts (outlaw,

constabt) and emphasizing existing concepts {law, sleuth). On the other hand, topic 70 retrieved only 32

relevant documents in the top 200 in the expanded collection while in the unexpanded collection 41 relevant

documents were retrieved. The degradation is due to the downweighting of 'surrogate', which was added to

many documents and thus has a smaller IDF weight in the expanded collection, and the increased weight

for 'mother' (compounded by the addition of 'matern'), resulting in a marked preference for documents that

contain mother, whether or not they also contain surrogate.

The major difficulty of the expansion process is controlling which original terms get expanded and which

terms they are expanded by. In our algorithm, any word can be expanded if it occurs only once in WordNet or

if there is another word that has a common synonym. Although the agreement criterion is imposed to prevent

synonyms of the wrong senses of words from being added, it is not sufficient for the task. Furthermore, to

save processing time we do not tag a word with its part of speech prior to looking it up in WordNet, so

many words that are used as verbs and adjectives in the text are nonetheless found in the noun division of

WordNet (frequently in only one sense!) and add spurious relatives. The consequence of these factors is that

in addition to the concepts that are added for marginally useful words, concepts that have no bearing on

the content of the text may also be added to its vector.

347

Top rainked evaluation

Run number: siemsl all

Num.queries : SO

Total number of documents over all querie

Retrieved: 9992

Relevant : 16400

Rel.ret: 3393

Recall - Precision Averages:

at 0.00

at 0.10

at 0.20

at 0.30

at 0.40

at 0.50

at 0.60

at 0.70

at 0.80

at 0.90

at 1.00

0.7524

0.4670

0 . 3242

0.1973

0.1179

0.0672

0.0241

0.0000

0,0000

0.0000

0.0000

Average precision for all points

11-pt Avg: 0.1773

Recall:

at 5 docs:

at 15 docs:

at 30 docs

:

at 100 docs;

at 200 docs:

0.0131

0 . 0344

0.0650

0.1687

0.2564

Precision:

At 5 docs:

At 15 docs:

At 30 docs:

At 100 docs;

At 200 docs;

0 . 5200

0.4827

0.4687

0.4100

0.3393

Table 2: Official Evaluation Results

348

Computer-aided Crime Detection

Document must describe a computer application to crime solving.

To be relevant, a document must describe either an actual or a theoretical computer

application to detective work, by the police or by another law enforcement orga-

nization. A relevant document could include techniques such as profiling criminals

and their methods of operation, identifying finger prints, spotting anomalies, etc.

1. police, detective, sleuth, enforcement agency

2. clue, records, fingerprints, methods

Figure 2: Text of Topic 95

Surrogate Motherhood
Document will report judicial proceedings and opinions on contracts for surrogate

motherhood.

A relevant document will report legal opinions, judgments, and decisions regarding

surrogate motherhood and the custody of any children which result from surrogate

motherhood. To be relevant, a document must identify the case, state the issues

which are being decided and report at least one ethical or legal question which arises

from the case.

1. surrogate, mothers, motherhood

2. judge, lawyer, court, lawsuit, custody, hearing, opinion, finding

Figure 3: Text of Topic 70

Query Vectors for Topic 95 Query Vectors for Topic 70

Expanded Unexpanded Expanded Unexpanded

Weight Concept Weight Weight Concept Weight

.20626 enforc .25682 .15901 decid .08546

.18793 fingerprint .23399 .11605 proceed .06181

.16088 print .11148 .50365 mother .48892

.40100 sleuth .27738 .14090 case .08597

.10375 law .08331 .56104 surrog .69887

.08165 felon .24603 judg .12226

.08233 crook .14946 custod .20529

.13792 constabl .10880 matern

.25840 espial .18264 judicial_decid

.16667 catch .10257 legal_act

.08366 outlaw

Fig ure 4: Query Vectors for Sample Topics

349

As an example of these effects, consider document FR89512-0147, President Bush's 1989 Mother's Day
Proclamation. This document was retrieved in response to topic 70 because it mentioned 'mother' or

'motherhood' 16 times. Figure 5 contains an excerpt of the document and a sampling of the concepts

that were added. (Words that are in boldface in the excerpt are words that caused additional concepts to be

added.) Approximately 60 of the 250 concepts in the vector were added by the expansion process. About
half of the added concepts are the result of a wrong sense or a wrong part of speech being used in support

of its addition, and another 20 of the added concepts are correct, but unimportant.

Unfortunately, the ratio of unimportant and mistaken additions to reasonable additions exhibited by

document FR89512-0147 is not unusual. WordNet — and English — are rich enough such that it is likely for

two words in a text to be synonyms of (different senses of) a third word. Using additional lexical relations

compounds this problem: the experiments we conducted on smaller collections show a marked degradation

in effectiveness if any any of the other relations represented in WordNet are used in addition to synonymy

to expand a concept.

5 Conclusion

We have demonstrated a fully automatic, statistical expansion technique that is capable of improving the

effectiveness of some queries relative to a corresponding unexpanded collection for a large, full-text collection.

The overall effectiveness of the technique is competitive with other retrieval methods. However, the technique

is hampered by its unpredictability, which has at least three sources:

• errors in selecting the correct sense, and therefore the correct relatives, of a text word,

• no determination of the relative importance of a word to the text before deciding to expand it, and

• the complex interaction between expansion and term weighting.

Since we believe the disambiguation of word senses to be the most fundamental of these three problems, and

also useful in its own right, our current research lies in this direction.

References

[1] Chris Buckley. Implementation of the SMART information retrieval system. Technical Report 85-686,

Computer Science Department, Cornell University, Ithaca, New York, May 1985.

[2] Edward A. Fox. Lexical relations: Enhancing effectiveness of information retrieval systems. SIGIR
Newsletter, 15(3), 1981.

[3] George Miller. Special Issue, WordNet: An on-line lexical database. International Journal of Lexicogra-

phy, 3(4), 1990.

[4] G. Salton and M. E. Lesk. Computer evaluation of indexing and text processing. In Gerard Salton,

editor. The SMART Retrieval System: Experiments in Automatic Document Processing, pages 143-180.

Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1971.

[5] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Communications of

the ACM, 18(ll):613-620, November 1975.

[6] Gerard Salton and Chris Buckley. Term weighting approaches in automatic text retrieval. Information

Processing and Management, 24:513-523, 1988.

[7] Yih-Chen Wang, James Vandendorpe, and Martha Evens. Relational thesauri in information retrieval.

Journal of the American Society for Information Science, 36(l):15-27, January 1985.

350

Excerpt of document:

A mother's love, while demonstrated daily in acts of tenderness and

generosity, is always a source of wonder. Who can fathom the quiet

thoughts of one who keeps in her heart a constant vigil over the child

she has carried in her womb, rocked in her arms, and watched grow,

with eyes full of worry, joy, and pride? Her devotion never fails to fill

us with gratitude and awe.

Today, we honor all those women who, by virtue of giving birth, or

through adoption or marriage, are mothers. Each of us should let our

mother know that she is ever close in our hearts, and that her many
gifts to us are cherished and remembered_not only on Mother's Day, but

throughout the year.

In recognition of the contributions of all mothers to their families and

to the Nation, the Congress, by a joint resolution approved May 8, 1914

(38 Stat. 770), has designated the second Sunday in May each year

as Mother's Day and requested the President to call for its appropriate

observance.

IN WITNESS WHEREOF, I have hereunto set my hand this tenth day

of May, in the year of our Lord nineteen hundred and eighty-nine, and

of the Independence of the United States of America the two hundred
and thirteenth.

Sample added concepts:

Reasonable additions

womb —» uterus

women ^ woman, adultJemale

birth & families—y parentage

Unimportant additions

eyes » eye, eyeball, oculus, optic, peeper, organ of sight

hundred —> hundred, 100, c, century, one_c, centred

Sunday —* sunday, sabbath, lord's_day, day_of_rest

Mistaken additions

acts y acts of the apostles

daily —>• gazette

set & families—y category, class, type

watched heart —y ticker

source witness—> informant

source birth —>^ beginning

Figure 5: Concepts Added by the Expansion Procedure

351

PROXIMITY-CORRELATION FOR DOCUMENT RANKING:
The PARA Group's TREC Experiment

by Mark Zimmermann (zimm@alumni.caltech.edu)

P.O.Box 598

Kensington, Maryland 20895-0598

USA

Abstract

The PARA Group's simple document routing method achieved surprisingly good results in the first

TREC experiment. The system works by awarding points to documents with many query terms in near

proximity to each other. The current implementation of this system is described in general terms; this

note is followed by a listing of the complete source code used to rank documents for the 50 TREC test

questions, written in Awk. Possible improvements, and directions for further research, are suggested.

Acknowledgements

The PARA Group is a loose affiliation of people with common interests in free-text information

retrieval, hypermedia, and free software. (For further information, or to join, send a message to "para-

request@cs.cmu.edu" via the Internet.) For the TREC relevance-ranking document routing test, I

consulted with other PARA Group members and implemented concepts that we discussed communally. I

would like to thank Dr. Donna Harman, NIST, for allowing me to participate in TREC and for

encouraging me to write up my results. I also thank the members of the PARA Group for their helpful

advice. I made extensive use of, and am grateful for, software from the Free Software Foundation— in

particular, the GNU Emacs text editing system, and the Gawk version of the Awk progrannming

language. (Disclaimer: My Employer Is In No Way Responsible For This Work!)

Approach

I began v^ith the subjective observation that, in my personal experience, the documents which I like

most tend to have local clusters of "interesting" words. I also began with the constraint that I had only

a few hours of programming time to invest in my TREC experiment; contrariwise, I had a NeXT
workstation with an optical disk and plenty of unused background CPU cycles available. This led me to

try a quick-and-dirty approach using the regular expression pattern-matching and other programming

facilities of Gawk, a free version of the Awk language. I decided to work on the document routing task

using the full TREC data set.

I took the 50 TREC questions and manually constructed simple regular expressions ("regexps") for each

of the key terms in them. Thus, for Topic 001, on pending antitrust cases, I had /ANTITRUST/, /CASE/,

and /PEND/; for topic 002, acquisitions or mergers involving US and foreign companies, I came up with

/ACQUISITION I BUYOUT I MERGER I TAKEOVER/, etc. For equivalent terms which were implicitly

boolean-OR'd together, I wrote a single regexp with "
I

" joining the words. I spent approximately two

minutes per TREC query writing these patterns, a total of about two hours, and used words contained in

353

the TREC topic statements plus a few obvious synonyms which occurred to me as I typed in the queries. I

converted all characters in the TREC document set to upper-case before processing, so my regexps ignored

case issues.

To handle the proximity (boolean-AND-like requirement) among separate terms, and to generate

estimated relevances, I invented a very simple scoring system. Every time a line in a document matched
one of my regexps, I added an arbitrary 5 points to that regexp's score. A line in the document got a score

equal to the product of the regexp scores for that query. When moving on to the next line of a document, I

multiplied all regexp scores by 0.9, to make them fade away with a characteristic length scale of 10

lines (= 1/(1-0.9)). The estimated relevance for a document as a whole was the maximum relevance of

any line in that document.

For terms which were to be negatively-weighted (boolean-NOT-like), as in TREC Topic 026, instead of

multiplying in the regexp's score to get a line's relevance, I multiplied in 5 minus that score. I

experimented briefly with different weights and relevance-length-scales for different terms, but

decided that there was neither sufficient time nor much benefit to be gained that way, and so I settled

on the 5-points-per-instance, 0.9 degradation-rate standard.

Implementation

I performed my TREC exp>eriments over a period of a few weeks in background on a NeXT workstation

(an old Cube), using the (rather slow) built-in writeable optical disk to hold data copied from the

TREC CD-ROMs. On the average, each TREC query took about one-third of a second per document to

execute. My implementation ran 10 queries at a time and generated a line of output for each document,

listing the document ID followed by (the integer part of) its estimated relevance, in 10 columns. I then

used additional UNIX shell scripts containing colrm and sort and head to tabulate the 200 highest-

ranked documents for each topic. A final Gawk program converted my results into the standard TREC
format. The total wall-clock computation time which I used was about 11 days for each CD-ROM of

data. Late in the process of scoring documents, I discovered that a bug in my programs caused the last

document in a data set not to be ranked — but I had no time to fix the error, and it probably did not

affect my overall results significantly.

Further Work

I believe that the proximity-correlation approach used in my TREC experiment has promise for other

relevance-ranking tasks. Almost certainly, the use of a compiled language (and perhaps a simpler,

faster pattern-matching facility) rather than Gawk would result in a speed increase of an order of

magnitude or more. Much higher speeds should be achievable by inverted-index methods. User

feedback might be valuable in modifying the default settings for term weights and relevance-lengths.

A thesaurus option to automatically generate synonyms could help automate the query-creation process.

References

[1] Mark Zimmermann. "The FreeText Project: Large-Scale Personal Information Retrieval", in Delany

& Landrow, TEXT-BASED COMPUTING IN THE HUMANITIES (to be published by MIT Press, early

1993), pps. 51-66.

354

<a X) u
rs fN fNana

a
60
d

o
a-

ou
(A

o o o o o o o
HUM
« iTt ti) r

e E E E e E

ooooooooooooooo<
U H R U H II II II II II II U II II II

(0 01 m a (0 v> (A

lOOOOOOOOOOOOOO
u in tn in

O r-l

01

UO -rH U II It

H C

o 1 to (0 ta

U 1
•

Sib

•

ml)

ml

X

:

001

lUST/

(0 A

M Ul

g
^ O a<

(0 -H la a M

,

I m u
2 5

rj O -
o i-» •

o H
t-t W 2

o o) . 5
*i W --^ M
a =1 5 ui

10

04 VI fs| r*
(0 -H to u

c e

« e

Di 0>

* a
•o -

in ^
« 6

*• E
•o -

in o

— TJ —

oooooooooo

EeSEEEEEEE

• OOOOOOOOOO' •oooooooooooooooooooo

I Xi U 10

I 1-1 i-i rs
I (0 W 0)

X) U <0 X3
<N <N f*>

to to (0 U)

U <0 X)
n «T
(0 Id ta

U 03 «

10 an to

fa £x C
£X \J SX Ki fDJDU'OaXlU'DtO'Q uoou
lnln^*vo«x>^t^p*^*^"COooffla>»*fflff^l-l^-^ o
totoiQtoiAiaiotatotQtototDioutotonto'O

U «) A
- gg

355

— 02
O 1-1

+ M CO

I o u
>- a:

p So

w o

60

: u; D
I cc u
; o —

2on — I

(X — U; .

o M 2 M :

[U M M •-• <t

CO H

< a.

i/t irt (/>

(0 io (0

(D ^ ^ ^ •8

1/1 m i/> m 1/1 u> lA

m m m u>

vo

- — — - u •

iH IS

9v O

(0

Z t- 3

< o u
o n >

E- om CO

Q cc
o 5 I u u

I Q a.

to £- D
O O

3 O M D— u p
to D U U
ID CQ O (£

356

d

a-

io
(A

o o o o o
-ooooooooooooooooooo<

(0 i3 u
inLn^ou3\or^r-r^cDa>a>inma\t->i-itH

a. a: o
V) & U

2^ CQ ^ t-
D f M
W > O
M 3 §£ X IH

rH 3

r-l ««

9s O

O 01 o
0) C O

u C
O O IN

0) o
0) 01

o o o o

— £ E E £

ooooooooooooooooooooooooooo
o o o o o o
II II II II II II

eeeeeewwoiwwmww

o o o o o

357

•o

(0 Xi u
(j\ <r\ a\
n m m

d

a-

^ Ej Q
8gS lA ZC

e- u. 3< 2 <
a. M J

o
u
U
s

If

c — — —

— 2
(0 u
<D OQ 00

1-1

|S
J z

- > o

3 2 1

W Z CO
> O O
l-H I
H E- O

u- u a:

— a* o
o 3: o.
u o <^

o o <

o X
a: —

< o

D —

U -I

m S

— ox
J a —
o O tij

a: < o
^ a. u
o o M
o a: H— o w

E- J
o J <
U D O

2 o X
m « o

^ o u.

S 3 u
it; til ui

•-• H U
u u u

ui z
^ 05 a

*J X
Z X 0

*^ V) ^ —

358

— i3 II

0 Xi

9 a

« n U

dm
I

a-

oo
u

(0 X)

H 3 13
O ce a.

o w u
o > a
a: o U[
ta o 5
Q- W g
D »-i OW Q O

O U.

§eO —
— J
o oM £5

Q w

o —
. 1

— >•
U Q

E- O UM tH O
D O <

— U QJ Q M
3 o
o u ou »-« <J CD —

3 = t3— U (-1

b Q >
Sou£ M

5 u t-1

o. ac

• O
c e

(0

" o— M ^
a

at r-i

W 3 O

O »-< <N

XI O
U (Q

(P rH CX:

£l ^ H

lOOOOOOOOO• OOOOOOOOOOOO" lOOOOOOOOOO

itauflitocouat
\ \0 \0 \0 C' r̂** O CD OO ON <

(0 ID o CO u n

xt o o o

n 00 u -a

a u :

x: c V n

o o o o

-o s s e e

359

I ? a

CO

Om

» O I

a; X I

2 til I

D kJ :

O U I

o :

M o :

E- M '

< a:
z u <

cy-

o
o
uw

u U

^ 3 o a
O U J w
o: Z w o w— UJ o 3 z

551

O J (

c u •

x: ffi (

1^
36 &i

9> O

p u ^

< J o
t-t W MQ > Ou u o:
Z Q U

E H O)— < t-i

S O —
O t-t CU
CC J J

I a.
Q a. a.
o < ^ U CD

J) J
CO I

< E- '

1 §i

I Q
O CO

' CC <
;
a. ffi

360

(D (0

in —

D XI

-ooooooooooooooooo<
o o o o

E- 3 e

H d:

: I c
I H O
3 o

n to n

o: o
>! E-

^ < ^

u <» oH C *0
E O o

c o
flj •

3 w

I ^ o
I -H U
I 3 to ' o o o o o o o <

. o o o o O (lOOOOOOOOOOOOOOOOOO o o o o o o

9s O

U E O
a C z

•o e e E E E E

361

l-i BC t

a—
oo
CO

uw

« tt

o

-H m i/t

<S o s

a

06 n
H 00
9n e

> 2
a o

OC — O OQ I

I 0) CO n

362

a Xi

« i3 u -O

M « M

d
I—

1

a-

iu

o o o o o
iOOOOOOOOOOOOOO(

<1> A O
to U M

J3 e
to —

« A

11
ja a
a —

in a>« a

a

S in
a

6

u o
>,a: ^
^ H o

^ O -H
—• W (0

0) 3 M

« a

o «

<7> O

>4-< (A

U 3 U

5& 6 (8 A
ki S O
a c z

oooooooooo
I U <0 -D ^ -O HI u « i3 (0

v> n n

NIMNUIIIIIN Q
Si u to Si u loja «i3oo u

o o o o o

r> a e a B e

363

03

d
in

a-
aJ

Ou
CO

u

f-i Ui

M O
- a X
in £-< a.
H w

ti < J
+ — u
IB O —
^ < 2
(fl ffi O

o o

n CL o ja e

9\ e

cc o
UJ s <H — w
:d w a
a. D m
z: cc H
o 5
o > o

364

Workshop on:
or Natural Language Processing at TREC

[summary by: David Lewis and Alan Smeaton]

A working group of individuals concerned with the impact and use of natural language
processing (NLP) techniques in TREC-1 met in two sessions for lively discussion. The first

question addressed was what exactly it meant to say that an information retrieval (IR) system
uses NLP. There were some interesting disagreements about which TREC systems could be
considered NLP-based. It was agreed there were a number of levels of NLP techniques that

might be used in IR systems, including traditional distinctions between lexical, morphological,
syntactic, and other levels. It was also agreed that there are many "boxes" or linguistic

processes which could be useful for information retrieval including lexicons and gazetteers,

syntactic analyzers, knowledge bases, etc. As such boxes become more robust and widely
available, one or more may be plugged into IR systems with varying degrees of attention paid

to linguistic issues, making the dividing line between NLP and non-NLP IR systems increas-

ingly fuzzy.

The second issue discussed was whether NLP techniques had had an impact on retrieval

quality in the TREC-1 experiments. The consensus was that it was impossible to tell from the

results presented. Groups did not for the most part present results on controlled comparisons
between using and not using their NLP components. Furthermore, the significant number of

alternative retrieval models (vector, probabilistic, connectionist, and other) precluded making
NLP vs. non-NLP comparisons across groups.

The discussion turned to the challenges of experimentation with NLP in the context of

TREC-1, revealing ample reasons that TREC-1 participants should not be faulted for the lack

of controlled experiments. All groups found getting their system to operate on 2 gigabytes of

text very challenging. The tight schedule and limited funding available led to a "one mistake

syndrome"—the limited amount of time available allowed groups to make only one mistake if

they were to get their results in on time. Groups using NLP techniques were doubly chal-

lenged, given that the generally higher computational costs of these methods compared to

traditional word-based indexing.

It was noted that, with the exception of the University of Massachusetts TIPSTER group,

there was little work presented on focusing NLP on queries rather than documents. This is an

area of research where the computational demands are much less than in applying NLP to

document texts, and richness and subtlety of the TREC/TIPSTER topic descriptions would

suggests that such an approach could have significant payoffs. It was agreed that this was an

important area of exploration for TREC-2.

The issue of sharing of resources among TREC participants was discussed and the con-

sensus is that although NLP work is generically similar, there do exist fine differences in NLP
approaches which makes sharing of resources like dictionaries and parsers, troublesome at

least. Still, everyone agreed that sharing is desirable when the technological and legal (copy-

right, etc.) barriers can be overcome.

Another interesting topic raised was the issue of how the effectiveness of NLP methods in

IR changes when one scales up from traditional small IR test collections to gigabyte scale

databases. Once again, the conclusion reached was that the TREC-1 results simply do not tell

us this. We were unable to distinguish the "large collection factor" from other factors like

long vs. short queries, long vs short documents and different query types, as well as other fac-

tors discussed above.

365

A tentative hypothesis put forward by some was that NLP-based methods may be best for

paragraph or sub-document retrieval (termed "nugget extraction" during discussions) and that

more traditional methods may be better for more general types of queries. It was suggested

that testing this hypothesis, and in general getting a real understanding of the effect of NLP
techniques on IR, would require a more careful analysis of the kinds of queries used (sugges-

tions were made about how the query set might be improved or augmented), as well as details

of how relevance judgments are made and what parts of documents are relevant

In conclusion, it was acknowledged that the emphasis of researchers in TREC-1 had quite

reasonably been simply on getting their systems to work at all with such a large collection of

text. It was hoped that for TREC-2 more controlled comparisons and detailed analyses of

failures and successes could be done, to give us more insight into the strengths and

weaknesses of NLP methods in IR.

366

Workshop on:

Automatically Generating Adhoc and Routing Queries

[summary by: Susan T. Dumais, Bellcore, std@bellcore.com]

About 20 people attended the two workshops on automatic query generation. Many different issues

were addressed, and I've tried to organize the important points under a few general headings.

Topic Statements:

We spent some time initially talking about how the topics statements were developed, what

retrieval scenarios they are representative of, and some consequences of this for research. The topic

statements are much more detailed, structured, and specific than queries associated with most

previous IR test collections, averaging about 150 words in length. Most topics (routing topics

001-025 and adhoc topics 051-100) require that fairly specific facts be retrieved. Routing topics

026-050 are more general. The topic statements were generated by subject domain experts and

reformulated using search results from two different retrieval systems. While this might be

characteristic of routing applications or of dedicated searchers, there was some question about how
likely more casual users would be to generate such queries. There was some interest in developing

a companion set of shorter topic descriptions that could be used to better explore the effects of term

expansion, feedback, and iterative query formulation. In contrast, there was also some interest in

having expert human searchers carry out much deeper searches for a few topics in order to cast a

wider net and increase the variety of documents retrieved.

Term Extraction:

Most of the fields in the topic description were used, and there was some evidence that the

<concept> field was the most useful. Almost all systems used a stop-list and some kind of

stemmer. A few systems recognized and tagged common abbreviations or acronyms, proper names,

company names, place names, etc. Everyone agreed that a compendium of this information would

be a valuable common resource. Many systems used differential term weighting. Typically

weights derived from a statistical analyses of the documents were also used to weight query terms.

Term weights sometimes depended on the topic field or syntactic slot the term occupied.

About half of the systems used phrases in addition to single words. Phrases were usually derived

by simple statistical means using word adjacency (or co-occurrence withing k positions), with high

thresholds on overall frequency of occurrence to limit the number of phrases. Some systems used

syntactic analysis to discover phrases, but most of these groups did not automatically generate their

queries. Phrases appeared to improve performance somewhat by increasing both precision and

(somewhat unexpectedly) recall.

Term expansion:

Term expansion has long been used to increase recall by making the search query more

comprehensive. Not all relations are equally useful in expansion, and the most commonly used

relation was synonymy. Queries were expanded using several different sources of information - a

thesaurus to generate semantic categories; a general, manually-constructed lexical system

(wordnet); associations automatically derived from an analysis of word usage in the documents or

367

smaller syntactic units; and automatic pronoun disambiguation.

Relevance feedback is closely related to term expansion. It is not fully automatic in the sense that

human judgements about the relevance of some small number of documents are required.

However, the routing queries were specifically designed to take advantage of relevance judgements

from a training corpus. More importantly, many of the same issues that arise in term expansion

also occur in the context of relevance feedback. The most common implementation of relevance

feedback was to modify the query by adding some words from relevant documents. For the TREC
experiments as few as 5 words and as many as 250 words were added, with most systems adding

from 10-30 words. Some systems also modified term weights, used information about words in

non-relevant documents, and gave less weight to added words (compared with words in the original

query).

There were few comparisons of term expansion (or feedback) compared to no expansion in the

same system. Feedback improvements were somewhat smaller than expected based on experiments

with smaller test collections. It is too early to tell for sure, but part of this may simply be that the

original queries were very good.

The single common theme in the discussion of query expansion was be carefull Results were quite

variable - appropriate term expansion can improve recall, but inappropriate expansion can just as

easily harm performance. One major problem is that expansion is not easily limited to the intended

meaning of a word. Some groups first disambiguated the word sense by hand before automatic

expansion; others used automatic heuristics for disambiguation with some success. Other methods

discussed to help limit undesirable associations included: expanding only "hot spots"; matching on

smaller subtexts; giving less weight to added words relative to original query words; limiting the

total number of words added; limiting the syntactic or semantic relations of added words; and

limiting the influence that any single word can have in overall similarity.

Miscellaneous observations:

Few systems did anything more than extract single words and phrases. A few systems removed

negated words (often by hand), and a few systems automatically generated Boolean queries.

Some groups used what might be called a "two-pass method", first using a standard global match to

obtain a smaller group of documents which then receive more detailed processing. Some of the

more detailed processing involved breaking the query down into smaller sub-units for matching.

Summary:

There were few really novel methods used for automatically generating either adhoc or routing

queries. There are now some general and fairly comprehensive lexical resources that might be

useful. The problems with over-expanding queries were quite noticeable in the TREC application.

Systems that automatically generated queries often performed quite well compared to other

systems. However, there were few direct comparisons of manual vs. automatic query generation, or

of individual components (term expansion vs no expansion) within a system, and this is what is

needed to understand the usefulness of such methods. Hopefully this will happen in TREC-2.

368

Workshop on:
Machine Learning and Relevance Feedback

[summary by: Norbert Fuhr and Stephen Robertson]

Note: This report covers the two separate workshop sessions on the topic.

A machine might use a number of different sources of information from which to learn.

One major source, but not the only one, is relevance feedback information. Others include for

example the user's selection of terms or information about the user's context or background.

One can also distinguish possible objects of a machine learning process -- what it might
learn about. First, the object may be the current topic or query only ~ this is the usual

domain of relevance feedback. Second, the machine may learn about other topics or queries.

This clearly requires a degree of abstraction. For example, the behaviour of a specific term in

respect of one query is unlikely to tell us much about its behaviour in relation to a different

query; however, it may tell us something about the behaviour of other terms sharing certain

characteristics with it.

Somewhere in between these two kinds of object is a third: the machine may learn about
this particular user, in a way that is applicable to his or her subsequent queries or uses of the

system. It is not possible to study this kind of machine learning within the framework of the

TREC experiment, because of the way in which topics and relevance judgments have been
obtained. However, there is some work on such systems.

We should also ask the purpose of machine learning. In the context of TREC, this should

presumably be the improvement of retrieval performance.

It is arguable whether some of the processes included in the above discussion actually

qualify as Machine Learning in the sense in which the phrase is usually used: for example, a

form of "learning" which affects only the next iteration of a single search hardly counts as

ML. However, in an IR context there appears to be some continuity between such systems

and those which come closer to "proper" ML.

One area of concern is the extraction of features. If there is a candidate set of features,

then relevance feedback can contribute to their selection, but the original identification of

features in text is a much more difficult task.

Another point worth noting for TREC is the desirability of considering learning methods
in the context of interactive systems. The present TREC experimental design is not suited for

evaluating interactive systems; it would be of great value in this context if the experimental

design could be adapted to allow such evaluation.

For the areas where machine learning (ML) methods can be applied within IR, one may
distinguish between models and representations. For retrieval, first representations of docu-

ments and queries (e.g. both as sets of terms) have to be formed. Based on these representa-

tions, models are applied in order to compute the retrieval status value for query-document

pairs. In order to improve the representations, learning methods may be applied e.g. for the

detection of phrases or for word sense disambiguation. Examples of learning methods used

within models are regression methods, classification trees or genetic algorithms.

The features which ML methods are based upon may be derived from the text, but also

from additional attributes (e.g. the source of a document may already indicate that it is not

relevant for certain queries). Most ML methods assume that the features to be considered

form a set, whereas tree- or graph-like structures have to be mapped onto this flat structure

369

first. The level of abstraction used in the definition of the features plays an important role for

the applicability or non-applicability of certain learning methods, since most methods require

a certain amount of data. In general, a higher level of abstraction yields more leaning data;

on the other hand, the decision resulting from the learning algorithm may become too

unspecific. For this reason, there is a need for different levels of abstraction, from which one
may choose the most appropriate one for the actual circumstances. However, for text there

are effectively only two levels of abstraction, namely either the term itself or its statistical

parameters (e.g. within-document-frequency and inverse document frequency). A possible

intermediate level would be sets of synonym terms.

In order to improve the effectiveness of ML methods for a given learning sample, prior

knowledge plays an important role. For example, we may assume that the weight of a term

with respect to a document is a monotonic function of its within-document-firequency. For
this reason, a regression method which is implicitly based on this type of prior knowledge is

more appropriate than e.g. a classification tree which makes no such assumption.

We may distinguish different sources of learning data. Most important, we have relevance

feedback data. Here one may think of different levels of response, either by using mul-

tivalued relevance scales or by indicating important paragraphs within a long document. For

some applications, it may also be necessary to get more specific feedback with respect to

internal decisions of the system. For example, for tuning a phrase detection algorithm, it

would be useful to get decisions about each specific phrase. As a third possible source of

learning data, the combination of different sources of knowledge (e.g. thesauri and corpora)

also might yield new information.

For the TREC initiative, there are two possible improvements which would ease the

further application of ML methods. First, relevance feedback data should be enriched by indi-

cating the most important paragraph of the document. As a precondition, there should some
method for identifying single paragraphs, e.g. by additional SGML-like tags. Since the asses-

sors will not give the requested type of judgements, the TREC participants would have to do
this job, and NIST should act as collector and distributor for these judgements.

370

Workshop on:
Evaluation Issues

Evaluation has two distinct but complementary purposes. The first purpose of evaluation

is to allow researchers and system developers to understand how their system is working,

hopefully to improve its performance. The second purpose is to allow groups outside a sys-

tem to understand its strengths and weaknesses and to do cross-system comparison. TREC
has a need for both types of evaluation and the workshop discussed the general issue of

evaluation and specifically how to improve evaluation in TREC-2.

The evaluation measures used in TREC-1 were standard recall and precision measures for

each set of system results, plus a listing for each topic showing the best, worst, and median
performance on that topic. These listings were helpful to TREC groups in finding which
topics were easiest (or hardest) for their systems to handle. The standard recall and precision

measures allowed some cross-system comparison, although any absolute ranking of systems is

impossible because of the different levels of user and/or developer effort that must be part of

a full evaluation.

Several improvements were suggested for TREC-2 (all of which will be implemented).

1. More documents need to be submitted for use in evaluation. The artificially low cutoff

of 200 documents meant that the recall/precision figures were accurate only to about 40%
recall, as all documents retrieved after rank 200 were marked non-relevant for evaluation

purposes. Whereas all evaluation results were equally hurt by this, a higher cutoff (500
or 1000 documents) would allow better performance measurement accuracy.

2. Better methods are needed to deal with systems working on a variable thresholding

method, where a threshold is set for each topic and far fewer than 200 documents could

be submitted for evaluation for some topics. This particularly applies to routing.

3. Clearer definitions of automatic, manual, and feedback methods for constructing queries

are needed.

Additionally several suggestions were made that are harder to implement (or possibly even to

define), but would be helpful to researchers and system developers.

1. Provide two levels of relevance judgments, with the levels being "on topic" and "meets

all criteria". The effects of the complex narrative in the topic could then be more easily

separated from searching effects. However this might cause more subjective relevance

assessment and create too many relevant documents for some topics.

2. Find some method of marking relevant paragraphs or sentences. This would be particu-

larly useful for machine learning algorithms including relevance feedback.

Finally workshop participants had several suggestions to increase the general "learning level"

of the conference.

1. Strongly urge all participants to obtain the evaluation programs from Chris Buckley to

allow more internal evaluation.

2. Strongly urge all participants to attempt to modularize their various techniques to

separate the effects of each technique. For example, it was suggested that all routing

results using any type of training also discuss their baseline performance without training.

The internal use of the TREC evaluation program could be done for this.

371

APPENDIX A

This appendix contains tables of results for all the TREC-1 participants except the TIPSTER panel, whose

tables ^pear in Appendix B. The tables in Appendix A and Appendix B show various measures of the perfor-

mance on the adhoc and routing tasks. The adhoc results come first, followed by the routing results, with the

tables in the same order as the presentation order of the papers. The definitions of the evaluation measures are

given in the Overview, section 4, and readers unfamiliar with these measures should read that section first.

Care should be taken in comparing the tables across systems. These measures show performance only, with

no measure of user or system effort. Additionally, because of misunderstandings about the query categories,

some results may reflect manual adjustments of the queries even though the results are not formally categorized

as feedback results.

The tables contain four major boxes of statistics and two graphs.

Box 1 " Summary Statistics

line 1 — unique run identifier, data subset, and query construction method used

Data subset

full (disks 1 and 2 for adhoc, disk 2 for routing)

category B (the official subset of data, 1/4 of the data using the Wall Street Journal articles)

disk 1 only

disk 2 only

wsj, disk 1 only (Wall Street Journal from disk 1)

wsj, disk 2 only (Wall Street Journal from disk 2)

Query construction method

automatic (method 1)

manual (method 2)

feedback (method 3, frozen evaluation used)

line 2 ~ Number of topics included in averages.

line 3 ~ Total number of documents retrieved over all topics. Here, "retrieved" means having a rank less 200.

line 4 -- Total number of relevant documents for all topics in the collection (whether retrieved or not).

line 5 - Total number of relevant retrieved documents for this run.

Box 2 ~ Recall Level Averages

lines 1-11 -- The average over all topics of the precision at each of the 11 recall points given. Note

that this is interpolated precision: e.g., for a particular topic, if the precision at 0.50

recall is greater than the precision at 0.40 recall, then the precision at 0.50 recall

is used for both the 0.50 and 0.40 recall levels.

line 12 -- The average precision based on the 11 recall points in lines 1-11.

line 13 -- The average precision based on 3 intermediate recall points (0.2, 0.5, and 0.8).

Box 3 " Document Level Averages

lines 1-5 ~ The average recall and precision after the given number of documents have been retrieved.

373

Box 4 - ROC Averages

lines 1-10 - The average probability of detection (recall) at a fixed probability of false alarm rate (fallout).

Ten equally sp^ed false alarm points in the high precision end of the curve were used, and for

each topic, the highest detection value in the region surrounding that false alarm point is

selected. The table shows the averages of these points across all topics.

Gr^h 1 - Recall-Precision Curve

This is a plot of the data shown in Box 2.

Graph 2 - Normal Deviate - Detection-False Alarm

This is a plot of the data shown in Box 4, but plotted on probability scales. See Overview, section 4,2 for

a reference explaining these plots.

374

OO o -rr cs o
o o c o <d>

.2

>>

3

o

a S
3 3

Oi O (M
00 O (M
05
01 O iM

. —
^ _4) Jj

cri ffi CEJ

O O t— CM CM
?0 O O ?0 CM
05 o CM

fo CM

o o o o o

CM 00 O CM
CM 05 O 05

I CM lC CM 00O O O »—I
<—

I

O O O CD O

nj cti

OllO-^t-LOtOO^t^CMh-LOfO'^'QOooocir^^
COiOt— OOOOC^IC^lfO-^

oooooooooo

oo
OCDCSOOOOOOcj

OSLOt-^OlOOOOOO0010CM0500OOOOOOOOOt^iOOOOOOOOO-CO-HOOOOOOOOooooooooooo

oooooooooooO^OfOTfLO^O^-OOOSOOOC300C30000—

<

rr.

c c
_o 'c O
'en a QO
'C o
OTr
^

.5 o
tiO o
n3
b« o

4) CM
>

C o

>
<
Q.

I

CO

375

00 <UD ^ O
o o d o o

.2
'to

«3

CD

n3

3
CD

00 O <M
01 O
00 o
01 O CO

-is _i
a> 4) 0)

tti cd cri

O O fO QO CM
i;o o t-~ ^O lit! 00 o
lO lO CO CO

o o o o o

Oi 00 CO
C-3 CI --H

I CO lO lO CMO O o —; CM

o o o o o

O (

O 1

lO 1—I CO I

o
-o

oo

c€ cti

lOLOOt— COO'^lO'—ilOCMCOTfOiTTOlOOCO^
LOt^OSOC-JCO^L-OOt--O O O 1—

I ^ '—I '—
I

'—
'
^oooooooooo

Or—icMcoTtiio^c--ooa>oo

Oh

CO"—HOioocOLOcoM't— coo^OOOiCOOC^?DLC'*'COO
ooTfcoosLO'rr''—1<— lol>;rfC^jOOOOOOOO0000000C5000

oooooooooooO'-HC^lCO-TfiOOt^OOOlOOOOOOOOOOO-H

376

00 ?0 iM

O O ci O O
.2

«3

B
S
3

C/2

3 3

Oi O --H(MOO
00 Tf< Tj<o o

-tS ^ -J
0) 4>

Di tti

a o CO o
.2
o CO Oi o o

en
0)

'2 00 CO CO CO
iC CO

bO
nj

rec C5 o o o o
ui
a;

>
«o CO IM

"a! "(S <M lO o
> o 1—

1

CO
a;

4) o o o
i-J o o o o o
a
<u

t/: COE tj U O O
3 <J o O -o -oo o -o -oo -o o o
Q o o o

lO 1—

1

CO (T)

«3 a «3
"(5

LOooLOt^^O'3'OoOTri^
OlC-l-^t^LOOOOt— lO'*'
t— OiMCOi-OOt— 000:>0
'-?'~!'^'~!~!^'^'~;^'^!oooooooooo

o ^ c^i CO rr LO ?o 'X) 05oo

01C^)(M<r<l?Dt^00rriOC0O
^Ot^O'^'—1?0<—(t^t^-^O
lOOM-rfO^O-"**'—ir-i^Ot^LOCO'-^'-^OOOOOC=5OOOOOOOOOOO

OOOOOOOOOOOOr-iMCO'^iiO^Ot^OOOlOOOOOOOOOOO—

<

^ o

c
_o
'!«

'u

-3 ^
S) S o
n3 E
(1 i_ o
>
<: .£ S

377

^ OO O C-l o
o o c o o

o

3
CD

W O

(-1 cc

0)

33
C
C S
3 3

CO CO
oo (M -rr

CO Ol o
lO lO ^

> S
> V,

-£3 -ii -J
V IV 4J

Qh Qd P:^

O CO 05
OO 50 CO TJ< TJ<
Cvl 00 lO OO CM
CO CM CM r-^ r-H

c> o o o o

CM 03 OS CO
as o lo o
1—I lO OO CMo o o ^o o o o o

o
-o

oo

crj

COOCMiiTiiOOS'—iCM«Dt^oc^ioot^-'^'^oo^'^^coTfLo^ot^ooooososoOOOOOOOOO-H
ooooc5c50c5oo

O^CMCO-rfLO^Ot^OOOloooooooooooooooooooooooooooooo00C50000000oooooooocSo

CMCOiOCMOOOJOSlO^OOOCMCMCMQOOOt^iOCOOO';ot^ocot^cocM^^oolOCMCM^OOOOOOOooociooooooo

oooooooooooo-^c^ico-^irscot^oqoiooooocsooooo^

3 C
,2 o
,22 <i

.s

4) o

378

I

o

CO

3
t/5

I

Si

B
3
C
C
3

B
3
u
O

O O lOo oo COo 0 eo

4) «
.1-4 >
is _!
lU O) 0)

Qh 0^

O O CM lO
(M O
<—I 05 M
uT> CO CO

o o o o o

CO eo --^

Cvi CO I—< O
<—

I CO 50 Oo o o ^
o o o o o

TfLOCOOQOOOt^-^OiO
fgrfTrrfosocoio-^irj
«00>'—ico-^^t^oooso
oooooooooo

O^iMC0'^L0Ot^ 000>oo00000C50000

t^OCOtOCM-^t— 051000OOO'J'O^iO'MOOOcoLO00O5-Ht— cocMOOot-;-<3;C^)^-HOOOOOOOOOOOOOOOOO

OOOOOOOOOOOO-HCMCO-^iCOt-^QOOSOOOOOOOOOOO'^

.2 '5 o
CO D-
'o 4, O

«} E -
b> d O
> *J •

<: .s S

379

>

o
o

Oh

c6

\

\\\

1 1

-

.22

>>

fl3

3

O

I

CMa

c a
3 3

O O COO O 05O T}<o <o CO

> S -^
4> 5 4J

i _1
4) 4) 4)

cti ci

O O t~ COO O 00 >—I Oi
I t~

lO lO -rf CO

O O O O O

(M ^ I ^
Tj< ^ to CO O
"-H Ol OO O O CO

o o o c> o

w o o -o

^ ^ ^ o^ lO o o
lO r-(CO •—

I

O5t~-LO00t^COi—I'^C^COLO-^COCMCMOiiO-^OOO
t— OCOLOt^OOOCMCO-*
oooooooooo

0^(MCOTfiO?Oh-000>oo

coast^-^tot^-^oit^oooOOOOCOCO-—ICMCM00050
OOCOlO'—icOOst^CM^OOl>-iOCOCS'-HOOOOOOOOOOOOOOOOO

OOOOOOOOOOO0'-iCMcoTj<ioot^ooo>oooooooooocj-H

.2 'o o

a. 5 o
S)| o
l-< (H O
4) V CM
> *^

<< .s s

380

00 rf C-1

O C5 C O O
.2

'u
a>
(-1

Oh

>.

S
S
3
CO t-. ai

<3j a;

3 3

o o ^o o o>o COO <;D CO

4> 4; 4)

0^ tti Pi

O CO CO o ^O CO 00 o>
LO LO O CO
Tj* CO

o o o o o

^ QO L_0 O
Oi OO 05 lCO C^J i-O LO LOo o o —

;

o o o o o

ct3

CO-^-^Tfi^OOOOt^-rroOOOOiOOO-—lO^C^CO^OOOOCOTj^LOt^OOOJOOO'-Hr—(.— (.—(.-Hi—

I

0C500000000

O^|^]C0-^L0^Clt^00a^oo

COC-5COCO'^OOlOOOOOOSOOOCOiOO'^'OOOOOCOi-OCOt-'^OOOOOt^TpOJ^OOOOOOOocSooooooooo

ooooooooooo0>—iCacO-*iCOt:--OOOiO
OOOOOOc5oOO'-H

CO

ion
C
'5 O

22 a OO

ec O
Q, O
<u
W)

41

lO

o
ctf c
>-i o

<b c-a
>
< o

381

oo ;o -"^ c^i o
o o c o o

.2

C/2

B
B
3

r3

(-1

0) «

I ^

c B
3 3

o oo oO

V ^ (U

i3 _!
V V a>

Oi Pi

o cc t- <M Mo (r> i/n
00 >—I iTO irs
LO LO lo eo

o o o o

00 Lo t—
cc «o «o

cc 5£> i;o «oo o o ^o o o o o

u
O
-0

oo

^ d ^ Cd

oooLooooooLOt^-^rr
t^oiM-^or^-ooo^iM
0»-h»-h»-h»-ht—<i—iC^CSIC^000000C5000

O-—iCSICO-^tOOt^OOOlooC5000000000

tOOOrf^C^l-^t^^OOOiMO;0«OOCOO«0<Mt^C>^t-00505S^0>fC00irt«^OOt-;-<3-fO^^OOOOOOOOOOOOOOOOO

oooooooooooO-HC^lCCTt^irtCOt-QOOOooooooocSoo-^

=5 C ^
,2 'o o
05 G, QO

'i
^

a.2 o'

o
fl3 E '
>- o
4) 4) CM
> *^

< .BE.

382

I

3
C/5

a

a a
S 3

O COO O —IO «5O O fO

V <o <a

Qh

O fO O OO CO
TP 05 CD •—

I

<M ^ 5©
lO LO lO CO

o o o o o

CO O O 05
05 lO CM

I CO 05 QOO O O I CM

o o o o o

Tj<oit^i:^<ocMTtiiO'<?'co
O0>—i-^COOOOt-hC^ICO'^O^.—1,-H^CMCMCSC^lC^]oooooooooo

O-^C--JC0Tt<i0OI:^000iooocS

CDCO^OCMCOOOC73-*000cooo-^LOc-J^ot^cocNOCMOcoeot^'^iOTfCMCMOt^iCCOCM^'-HOOOOOOOOOOOOOOOO

OOOOOOOOOOOO^CMCO-^LOCDt^QOOSOOOOOOOOOOO^

CO

"o o
_ a <»

w 1) o

So g o
>-i (-1 o
4» 4) CM
> *^

<; .c o

383

c6

>.

o O

3
>>
C

4J 1)

00 o
00 o ^
lO l!0

01 O

^ ^
0) 4) aj

CEj tti

O CO o- oo
to lO I >—

I

C^) CO OO
CM ^ '-H

o o o o o

lO 00 05 00 r-i

CO LO !0O --^ CM Oio o o o o
o o o o o

o

oo

eti c€

,—iI>.OOCOOOCOlOCO'-h
c;5O^LO00CMioo5CM«3CNi
.-HCMcoco-^Tr-^iOLO^ooooooooooooooooooooo

Or^CMCOTtlLOOt— 0005ooocSoooo

ocMi>-a300ooooo.—11005100000000f-CDTfOOOOOOOO
T}*.—lOOOOOOOOO00000000C500

oooooooooooo^cMco-^io^ot^oqo50ocioooooooo^

.2 'o o
'o O) o

0) o

384

I

.2

'o

u
0
u

n

M
V

U
0
.A

>.

B
B
a

o

33
S

3 3

o o
05 o oo
CJ t~
a> ^ c<t

> s
4) ^

V V V
oi Pi d

Tt< O CO «o
<o TP 00
Oi
CO CO <^^l

o o o o o

o COo o
00 CO
iTi CO
-rf SM OiO "-H I—

I

o o o o o

1^5 I—I CO --H

c€ c€ c€

coo>ait^oocsocoi>-«s
05Locs«ooooiasooL.OTrCOiOC^OOOiO'-HiMCO-^

000C5000000

0<-HC^CO-^i05Dt^0005oocSooocsooo

cu

<3"0050'>S<'-H'!j<OOOOOCOOC^iMOlOOOOOOooooosoieo^ooooo«OCO'-HOOOOOOOOooooooooooo

oooooooooooOt—iC^e0TPi0«0b-Q00>O00000000C50'-H

CO

a c
.2 o
.<£ a

a.

2

V 4)

385

n3

>.

a
B
S
3

a S
3 3

O OS
05 O CO
05 ^
05 CO C^l

3 1 ^
a> v 4>

C£i

O O fO O 05
CM t— —^ CO
eo 00 rr o
rf CO CO fO «N

o o o o o

lC Oi ^ CO lO
00 CM Ol COo CM CO oo o o --I

O O C3 O O

o

oo

flj

<—toO'^coaioocoLooicMr^COOOOOOOOOlOCOrJ*
COTfii.OCOOOOiOiO'—ICMOOOOOOO"—ii—I"—

I

000C5000000

O"—iCMCO-^iOCOt^OOOJoooooooooooooooooooooooooooooo00000000C50oooooooooo

OOt— O-^OOOOOOOOTfcO-HCM-'^OOOOOO>i^<COlOlOCMOOOOOO
coco-—lOOOOOOOO0C3000000000

oooooooooooO^CMCO-^iOCOt^OOOlOOOOOCDOOOOO-H

CO

all

poi

Oo
(-1

1—

1

o
3
.2
'35

Average

preci

11-pt

Avg

CO

3 3^
.2 'o O
CO a, Qo

1 ^

M) g O
ii (_ o
Hi 0) CM
>
< .5 S

o
o

386

o> 00 -I* (M p« o> 00 -; o q
d> <6 d <6 di a

00 «0 TJ> C^)

o o c o o
_o

3

W CO

n3

3
a

>>

o

w
I

03
<J

4)

£ ii

3 3

o COM cc
CO C<1

.1 >
£-1 4^

cd cd

c<i cc <s OiO 00
lO sO
•<s; -^r fo

o o o o o

^ OO Oi lO 00
CM CO «?>

fC o> <o lO oo o ^ cc

o o o o o

o
-o

oo

d ci si si si

TTLCC^-HOOOO-^Ot^-^lOOO—i^OOt^OlOiiO

oooocSooooo

O—iCMf0'<9"L0Ot^0C05ooOOOOOOC>OOC5

^OiOO—<t--COfOiOOOOootoc^it^or^fooooo
•<3<<r^C0Ot:— -^CO-HOOO
t^iO-^ffOCMCM—<ooooC5C3000000000

ooooooooooo
0-HirqeO-^LO<Ot:— ooo^oOOOGSOCJOOOO—

<

c: CO

3 C ^
.2 © o
'0

4, O

-S

L< L, O

387

oo

o

«5
c5

«3

o

o

CD

>>
(-1

16

3
CD

0) 4J

c S

O 00Oo CO
lO CO

> S
4) 5 4)

-£3 ^ _3
<U V V

Qh Cci

o o 00
CM O oo oo CM
CO CO o 00
«o LO -rr CO CM

o c> o o o

LO O lO JO
?0 lO
«0 CO ^ CM 00O --H CM <S< lO

o o o o o

o <

O T

lO >—
I CO >—

I

o
-o

oo

TPCOiOOSt^COtO-^OOOOt^OC^lO-HCOt^TtiJD
ocMiooo^co-'^'Loooos^r-I^T-HCMCMCMCMCMC^OOOOOOOOOC5

O—<CMCO-^iO;Of-000>oo

OOCM'^OCMOCOt^O'—ICOCOOirfCMCMOOOCOOOOOOSCOOt^OCO—^t—OiOCOCOi—

I

t^tOiOTfcOCMCMi-HOOOOOOOOOOCDOOO

oooooooooooO-MCMCOTfiLOOt^OOOlOOOOOOOOOOOr-^

c a
.2 o
.22

«3 E
(-1 ll

>
< .s

388

I

00 O (M O
O O £3 o o

'to

z

O
V
bO

"o
Q
(0

g
V

or

V
hi

u
0M
ta

a
s
3

,1'

PQ

o
60

V
CO
CO
o

a §

a S

o 00 ?o
CO r-H IM

CO lO
CO 1—

4

3 I ^
&> a> a>

ce;

a o O o o
.2
o

(» 'ai
• 1—

1

OS
CO

W)
n3

<J
a; o O o o o

*-i

V
>
< lO o 05 CO

(M o> lO
> o CO o i-Ho <—

1

o o c> o o
a

CO CO
CO CO w w

E o o o
3 O O o -a
OC o

-o
o -o o o

Q lO o o o
lO I—

I

CO I—

(

CM
+i -t^ -u -1-3

ed 03

O-—lOSinOCOOi/SCOi—
•^OJr-Hb-OOOSiOCO'CO^OJ^^CvlCMCMCMCOCOCO'^CO00000C500000

OCS-^OOOOiMTfCOOOOoooooi-Hi-Hi—ii—(.—i(r<ioo

OOOCOOOiOCMOOOOGfiitO
t~-t^t>0505oo?oooiooco
OSCiOOCOiCOl-^t^OO'^'-H
t~-50iOTj<eoc^c^'-Hooo
oc5<=jc3ooooooo

ooooooooooo0<-HC^COTriOOh-;00 05 0OOOOOOOOOOt-h

CO
-J

.2 'o o
in o. °0

1

&I d
>H M O
4) 4)
> -fi

<J .S 3

389

00 o o
o o e o o

.2
'to

'u
V
Oh

>>
id

£
S
3
CO

Co

.4)

PQ

o
4)

o
I

O OO CM
i-H 00

CM CO lO
lO C5 >—

I

4> 4> a>

pci p:^ cc?

t— CMO OO lO
I>- T—H r—

f O
lO M

o o o o o

05 CM OS
00 t- CO
CO CM CCi

CM «5
O O O O O

^ d d

QOiO^iOCMOiOt^'—it^^OCOt^i—lOOO'^iOO^CO^COOiOt^C^COtOOOt^OOCM
^C^CMCMeOCCiCOCOfOTf<Tj<ooooocSooooo

OCMTfOOOOCM-^OOOOOOCDOO'-Hi-Hr—(i-Hr—(CMoooooooooooooooooooooo00000C500000OOOOOOOOOOC5

CMLOiOi^OCMOOOseOOOSO^fOOCMt^^OOOOOO
CMOS'—itvi;O-<*00O5CM?OCMOOO^O-^SOfCCM.—i^OOooooooooooo

oooooooooooO^CMCO-^iOCOt^QOOiOOOOOOOOOOCS-H

CO
-u
e

r

all

poii

.3634

c2 o
c
.2
'to

Average

preci

11-pt

Avg

.2 o

.52 ci.

4> ^

fl3 S -

o
lit)

<V 4>

< .S

390

s
s
3
CO

b3

B
o

>.
(-1

o
M)
-(J

V

-5 -C

c S
3 3

O QO ^
OO ^ O
OtJ CO
Tfl CO t-l

'5 J
<U V

(xi Pi ffi

O O O O CM
00 O CM CM
?0 CM CO r-H CO
lO CO CM

<d> d S <di S

CO 00 O^ CM ?o LO as
CO 00 CO CMo ^ I CO

d d <£ d d

o o o -o

-§ o^ lO o o
LO <—I CO >—

I

<^

coooo«0'-HC^)aio>'^ooot^oscM^oiOTPost^
irOt^«0005CM'-H--iTj<LOrt^-—iCMi—IC^JCMC^CMC^J

o^CMeo'<?'iO«oi--ooo>oo
(d<d>ci<d>c><d>S<dSci

O^O'—iiOO"—It— 100500
.eo<—los^iot— -^ocMoo
ooc<ioooocooo-^t~-c<ioot^OTl^COC^i-HT-HOOOO

OOOOOOOOOOOO'-hCJCO'^lOCOO-QOOIO

CO
-4^

c c
.2 'oa 00
'G
<i)

d

ge

pr

ledia
0.50,

d
CM

>
.s
d

391

oo «D <rg o
o o c o o

.2

>,

3
(X!

3

m
>.

o
bc
vJ

4J <U

o 00 00

CO 05

4) -g

-tS Jii J
a> 0) V
Oh Ph

CM «o
OO —1
CO as

o o o o o

05
(^^ CM

O r-H

O CO
lO CO

CM CO

o o o o o

n3 cti

"fcooit^io^oioot-oslOOOCOCMOCOCOCO'—l'^
t^OSCMCMCOLOCOCOt^iO

OOOOc3oOC500

O^CMCO-^iOCOt— Q0O5oooooooooooooooooooooooooooooo0000C500000OOOOOOOCDOO

00 00CMCMCM0S0500OOOCOiOCMCOOOOS^iOCOOOt-HOOt^OeOiO'S'OOOOb-TTCOCM^OOOOOOooooooocSooo

ooooooooooo
0'-<CMfO'*if5COt~-00050
OOOOCSCDOOOO-^

a a ^
.2 '3 o

ts E -
•h (_ O
4) 0) CM

.s s

392

o

o
0)

Oh

>>

10

13
M

u
O

>>

3
CD

n3

CO

o
bO
t>

ci
<j

I

CO
l-H

'3
>>
c

C3 fc!

3 3

05 oo as
00 I CO

CO o
CO ^

'5 J
<U V V

(3i Pi ai

o t-- to oo
?D O ^-^ t--
CO Oi 1—

^ 05 O
lC (M

O O O O O

r-H

05 CO

O ^
00 00
r-H O

l>- 05 05
05 CO

o o o o o

W O O
-§ ^ ^ o^ lO o o
lO >—I CO T—

I

cS d

OlLO^-^O^O-^COOlrr
00l>-<^0500?0iOC0OC<l
C^lLOt^LOOOO><r^Or-HTj<
1—It-Hr-Hr-Hi-Hi—(CVlC^JCslC^oooooooooo

O-—iCMCO-^iO^Ot— OOOloo

Oh

OOf<10i001iO'-HO«000CD050C005000501000COiOiOC^OCOQOiOOOOt^iO^COC^-HOOOOO000000000C30

o o o o o o oo --H CM CO T}< lif i;o
o o o o
i>- 00 oi ooooooooooo

c c
,2 -o

< .s

4) o

393

I—
I 00 «o c-j o

o o c o o
.2

>.

3

a
c S
3 3

O <MO ^-o ^O —

I

-is ^ J
4) 4) 0)

Pi Cli Pi

o cc CO ooO 05 lO <—I f—
«0 O O CM
CO CO CO CS --H

o o o o o

^ o
CS ^ Oi CO

lO lo 00 a>O >—I CS lO

O O C5 O O

(t3 c€

05 00 05 -"t
t- CO o o o
Tf 1^5 05 i-HO O O O -H

r—
I CO LO Ol

?0 >—
I
I—

I CS >—

I

<-H CO CO CO

oooooooooo

o^csco-^LOot^ooasooocS

rfLO'^COOSCS-—ICOCO^-^^CO-^-^t— OCDOOCSCO'-HI^LOOO-^^OCSlOOCOCS^Lorrcococscs^^ooo000000C3000CD

oooooooooooo^csco-^LOot^oooso
CDCDOOOOOOOCD-H

c c
,2 o
,2 o-

60 S

.s

394

tn

s
3

C/2

S 3
2 cr

3 3

o o 00O O -"J*O COO O (M

-is -J
a> V a>

Ph Pd

o o 00 00
oi O Oi
CM 05 >—I CO

CO CO CM

O O O C5 o

CM O CO iC 00o 00 00 ?o
I CM t-H toO O O >—I —

I

O O C5 O O

fl3 fli c€

Tr05«000505?Ot^CM05OiDOO^Oih-LOCOOSCO"^llOOOOOOOiO'—Ir-HCMOOOOOO"— l>-Hr—

I

OOCDOOOOOOO

O-—tCMCO-'S'iOOt^OOOSooooooooooooooooooooooooooooooOOCDOOOC5C500
OOOOOOcic5C30

OL0050-<a<^ioooooO5^oo«ot^oot~ooooTfiO'-H-<S<CMOOOOOOCDCOt-hOOOOOOOO0000C3000000

oooooooooooO^CMCOTfiinOt-;000>0oooooooooo-^

Co o
4) o

<; .2

395

o o o ^O O -HO Oo CM

^ _i
V V
0d CZ^

CO O O >—

I

lO 00 >—

I

CO o o
TP CO c<i

o o o o o

Ol Oi CO CM r-HO 00 lO CO CO
r-H CM lO '—

I

O O O I—I I—

I

O O C5 o o

^ ^

OiO-^^OlCOOO^OJOOI^CMCO^OO^O-^CD^OOOOOO^CMCMCM
oooooooooo

O'^CMCO-'^'iOCOt^OOOloo

i;DTj<iCCMCMt^OOOOOCOCOCMTTOl-^CMOOOO•^OOCOt^T—Ir-Hr—lOOOOt-.CMr-HOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOr-HCMCOTfiOCOt^OOOO
OOOOOOOCDOOi-H

.2 o

.22 ^

a.

2

V <v

< .s

396

OO CO IM O
o o a o o

.2

M
u
9)

>
a

a

13

a

w
0)

u
oM
-0
es

B
S
3
CD

S i
2

a S

o o oo o ^O ^O 50 (T^

-is ^ _i
<U V V
Ph

O O t— CM O
(M CM CO CO I

a> ko t- —1
CO fC CO CM CM

o o o o o

05 O I o
OO >-< CM lOO CM O lOO O O I 1—

I

O O CD o c5

ci2 n3

C0005COO'—iiOOOCO"—

I

1—ICO-—iCOl—lOt^COCOOCO'CfiCOh-OOOOiO^CMOOOOCDOO^'-Hr-Jooooc5ooooc5

O-—iCMCO-^iOCOt^OOOlooooooooooooooooooooooooooooooCDOOOOOOOOO
G500CD0CD0000

Oh

OO'^iOOOSCMCMOOOOcoco-^'-Ht-miooooo^co^oo'^'-HoooooCOCM'-HOOOOOOOCSOOOOOOCDOOOO

o o o oO "-H CM CO
o o o o o o o
Tf< lO CO t— 00 05 ooooooooooo^

CO

c
.2
'55

"o

So g o
IH tH O
4> 4) CM

a Qo

4> O

fl o

397

dJ 00 -"T lO Q
o> o> 00 in ^4 o o

ovj 6 d 6 o S o

1-H 00 O TT c^j o
o o a o o

.2

a

a

V
fi

n

O
.£1

«

IS CO

mani
quer

1
13

CO
>
o

CO

«3

clar

ments

CD
>> 3

mmai

of

do<

Su »->

o;

-Q
fi

nurn

tal

nui

s E
3 3

e2

O O 05o o oO «^' TTo ;o

•c ^ 1_s ^
v V a>

c o <n o o 05

.2
CO o
lO
<o
o

ages

[co «o eo
'o
V
tl
o o o O o

tion «o lO CM CO o
CU

cc cc iM

rages

<j 05 iM ;o 00 05 o <—

1

CS
> o I—

(

I—

t

I—

1

I—

(

CS CS

lO <r <D o o o o <=> o o c5 o o
>

o «o Q
00 00

a; <=> o o >
o o o O o < S

OC
o (M CO la «o 00S

CO
u

CO
u

o o o o o o o o o oV
CO
fj

o o o o o o o o o o
s CO

U
O O o o o o o o o o o o

3 o O -o -o
alse

o o o o o o o o o a>

OC O -o -o o o o o o o o o o o o o
Q o o o

lO t-H

<6 (6 cS

Oi^05t^'^-*eo05000O50050r-HCS«DOOO
OiOW^'-jOCDOCDOOoooooocioooo

ooooooooooo
o^cseo'>!rLft«ot-;oqoi©oooooooooci'-H

tl

3, w
a a ^
.2 *o o

>i hi o
« « cs

.s s

398

>

O
a
o

o

I

I-H

CO

a
U

M CO

O O 05o ooo i;©

is ^ ^
V a> ii>

n Oh

O t~ O 00 05o o o o o-^ oi 00 t>-^ CO CO CO

O C5 O O <=5

t~ 50 r-l t~-
05 CO «0 COO <M »0 <MO O O .-H

o o o o o

cti c€ Cti flS

"^(M^t^OOOO-HCO—

1

tooooast^oiOTfiMoCO^OOlOCMCOiOOt^OO
oooooooooo

Ot—(C-JCO-rfiO^Ot— ooo>oo

coooiOTfc^ooo-—iTToio05«D0500;OCS<^COOt^OLOcocooioot—LocOl—loo50C0CNOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOo-—ic^co-^ic^ot^-ooojoOOOOOOOOOO^

'*i CO

.2 'o o

.22 D.
'o 4, o

So ^ o
tH «- O
4) 4) (M
>

399

T
1

00 o
o o c o o

.2

0

V
5
O"
a
0

3
M

U
O
JS

«

CO

!3

:3

I

03a
o

0) V

o o oo o oO T}<o ;o CO

i3 ^ -J
V a> V
od oi

O CO o o
eo O
t~ t~

lO cc

o o o o o

CO o
o o

ec --H o
CO ?oO 05O CM

o o o o o

c6 cti c4 c6

OOOOOi«OSMiOO'-H

OOOOOOOOCSO

oo

t^^OQOOO^CMCM-^COt^O
OfCiMO«Or-(ooi;oc^'^oOOLOCOCS>-Hr-HOOOOO00000C500000

ooooooooooo0'-HCSfo-^ur5ix>N;000>o
C>OOOc5c50000^

CO

c c ^
.2 'o o
CO a, *^

&I o
o

01 0) CM

.s s

400

00 o o
O O £3 O O

.2

«3

s
s

lO o eo
50 o <o
eo -"S* CO

«o ec

3 ^ ^
4> U 4J

PC5

O fCo o>
?D I—I lO
«0 «D IC

00 COO <o

o o o o o

cc lOO I CM—t rfo o o
CO CM
—I lO
00
r-H CM

o o o o o

^ d

•^iOCM'*00'-HCOCMOi«0
CMCOiOiOOlCOCOOOO'COOOCOiOOOOOlOO^O'— —ii—i^-Hi—iC^lC^lC^loooooooooo

o^cscoTfiO'Ot^ooosooC>0O0C50OOOO

cmoo-^cm^ocmlocmooo
ooioio?oa5C<ioi'—tooo
i;dc<1i—<iOt—iiocO'—loooOOiOeO^'-iOOOOOOOOOOOOOOOOO

OOOOOOOOO
CMCC-'J'iO^Ot—OOOlOOOOOOOOOOO-^

CO

3
.2 'o o
TO a.

& g o
t-< Ii o
V 4) CM
> ^

401

>
l-l

3
o
a
o

>>

E
E
s

O
W)

V OP

5 a
2 cr

c S
3 3

O O 05o 00

00 50

I >

4J V V
0^

Ph

O 00
00 ic

ec 00 05
lO CM 00
t~- ;0 «0
LO Tfi e<5

o o o o o

00 OS

o o
00 (M

00O —

I

o o o o o

o o

o oo o

c\3 fl3

t^OfO-^OOCMCMTjioOOlOSSOOTfOJOt—(CSOTj^oo^poiiTiooooso^ir^Oi—ii—1<—ii—ii—ii—iCMCMC^loooooooooo

OT-(c^fOTPiO';oi>-ooo>ooocSoo

o^Dt^'vreocoiO'-HOOO^TjOrr,—i(rg05T}<000t^ocooot^-^ooooQOilOCO^^OOOOOOooooooooooo

ooooooooooo
O^CSe0-«3<i05£>l:^0001OOOOOOOOOOO'-H

.2 © o
'w o) o
a.2 o

2 0 o-
4) V CM

CO

402

.—
I 00 CM O

O O Ci o o
.2

CD

M

>

(0

V
u
o
o

s
£
3
CD

-o

'a
>

o o Io lo r~O O COo ^

3 ^
a> 4) 4>

csS

o o o <—!

CO^ 1—I t-- (M CO
CO <M >—< 1—I »—

I

o o o o o

CO O CO O <—

I

'Jl Tf lO 00
CO 00 o -rfO O O C^l

O O O O C5

o o o -o

-§ ^ ^ o^ lO o o
lO f—I CO i-H

£Tj

r—(CMoicMirtcor— cot^-HOliOSNCMOl^OCOt^CO
CO-^lOlOlO«0;OCOCOCOoooooooooooooooooooo

Or-icjcOTfiiOcot^oocr)oo

co^ooiooocot^oO'-HCMCM
iO-*O10000-<3^CMCOI>-C-JCM
T—lOOOOCMOSt— lOCOCMCaiMlOC^'-J'-JOOOOOOO00000000C300

oooooooooooo>—icMco"^iocot^ooa>ooooocSoocsoo^

CO

e
poil

"(3 CO
i-H

o
c
.2

Average

preci

11-pt

Avg

c
.2 'o o
"co a 00
'o 4) o
4)

a o
4)

lO
4> o
s
I-I o

4> 4> CM
>

C o

403

>

U
c
o

o
as
u
O
XI
a
hi

H
O

V)

o

CS

CD
>1
1-1

S
S
3

w o
Is lO

S
O

n3

3
c
c S
3 3
Pi ^

O OO lO «oO O lCo ^

I >
-2i J

V a> V
Pi

0)

c o CS
_o 00 00 lO

CO
OJ !S

o m 00 CS LO
CO CS

bC
cS

'w
V
(-4

o o o o o
t-t

0) Oh
>

CS CO CO
OO CO

> O CS
0) V o 1—

(

1—

1

CO
ai o o o o o

(/) (/I

a m <J

u o o
3 o O o -o -oo o -o -o
O -o o o
Q o o o

lO T-H r—i CS
+J -tJ *J
n3 n3 n3

CSO-HOLO-^CS»TfOOt^t^cs^ooLOeoTfoos^looo^-—irrco'j't^io
oooooooooo

o^csco-^in^ot— 00O5ooOOOOCDOOOOO

CSOOOO-^OiOOlCO-^tCiiO
OS^Ot^OO'—ilOLO^Ot^OlO

C^ Oi 1—
I Oi 1—

I o<0-^COCS^'-H>-H0000OOOOOCDOOOOO

OOOOOOOOOOOo»—icsco-^LOi^f^oooioOOOOOOOOOO'-H a B

<1 .s

404

>
t-l

a
O
c
_o

OS
1 1

3

o o

c S
3 3

O (M OOo t— 00O r-H -Ho c-^

o t— ?o 00
Tfi r~ r~ oo
05 i;o 00 —

1

cc CO ^ ^
o o o o o

O irt O CM
05 O lO >—I «0
lO lO CO rf COO LO

o o o o c5

to "-^ CO ^
^

CMOOCOCO-^OOOO—lOc^LOt^t^oaiLOLOc^r^^or^oooooi—ijoco-^-^OOOOO—

;

OC5O00OOOC5O

o^cMco'^iooc^ooasoo

OO-'^'CMOO^t^t^OCOCMC^COCOQO-^lOOCMOOO—i05iO^lO'—il005'«?"0«OCOOLorrcococ^'-i'-i^oooooooooooooo

oooooooooooO-—iCOCO'^LOOt^OOOlOoooooooooo—-

2 © o

'S
°

b. o
4) 4) eg
> —

:

< .s s

405

00 CO o
o o c o o

'tn

to

V
h
U
0

(0

CO

>>
f-i

3
CO

I
o

1—1 lO
o

i-i CO

V

cr

S
3

o ?o «oO lO COO O COo ^

If ^

i ^
V 0) a;

p:^

O CO CO CO
tT lO CC CS COO CO O CO CO

CO CO ^o o o o o

05 CO -rP 00 t—
t~- oi t-H CO
CO —t lOO <—t •—I CO

o o o o o

cti cti

OOtTCSOCOCO^C^COCOoocoooosLO-^o^coTfiCOLOLOCOt^OlOiOOr-

1

OOOOOOO"—tf—ii—

I

oooooooooo

O^CMCO'^'iOCOt^OOOloociooo

Oh

oocsii—icocoocoosLOiinio
OiOOlrtCOlOOr-HOOCXSr-Hr-llOCO-^iOt^TfOTP^OO
CO-rfeOC^^'—i^OOOOooooc5ooooc5o

oooooooooooOr-HCMCOrTLOCOOQOOSOoooooooooo--^ IS g

<^ .s

406

Oi 00 -r <o o« o
Oi 00 in ^ o p

o>o (5 <6 di d> di ci

00 «D O
O O C5 O O

.2

en
>>

IS

-u to

a
o
3

CM O CO
Oi O OS

CO
05 «D CO

^ J
V V V
Pi K K

C3 o o CO
o o oo o

CO
v

iisi; (M oo i-H CO
CO

bO
(S

4>
(-1

o o o o o
i-(

0) eu
>
< r—

(

o t—
"(3 CO lO oo CO

> o r-H CO CO LO
0) O o o
O o C5 o o

c
CO CO

CO CO <J
S m <J w o o

u o o -0 -o
O -o -o

o -o o o
Q o o o

CO T—

I

c6 n3 n3

OOl-^OlOOiOiOh-rtift)
COiOOlCOiOt^t^Oll^COCOOs-^COiOCOI^OOOlO

ooooocSoooo

O^CMCO'^iOCOt^OOOioo0000C500000

^OCMCOOSC^rMOOOOCMt^Tj<t^t^t^^OOOOioco(r^05'-(coirjoooot^-^co^^-^ooooooooooooocSooo

oooooooooooO"—iCMCO'<*iiOCDt>-00010
0000C>00000'-<

CO

a a ^
.2 "o o
_oo Q, oq
'O 4) O

C« S '
t-i h o
4) 4) CM

^ .s s

407

T—I QO <o rfi C^J o
o o c o o

.2

<u

Oh

a
o
-0

c
o

>

u

a

3
O
u

w o
n3

(X)

3

4) 4J

a;

O 05 «5o LO 00O TJ< CMO LO CO

3 1 -J
4) O) 0)

oi Pi

o CO CO ^
00 lO 00^ o
lO lO lO

CO
CO

O O O O O

CO CM '^O CO I—

I

^ lO lO 0>^ CO !0 COO O O ^ C-J

o o o o o

o
-o

oo

t— t^COOOCMt-'LOCM'^r-lOlOOOC-I'^'lOlOCO'-h
JOQO^CM'^tlLO'Ot— 00O5OO—Ir-H^r-Hr-Hr-H—I,—

(

oooooooooo

OT-HCMCO-^LOOt^OOOloo
C=5C=>OCDOOOC50CO

0';cicococMioiooooo
t— ^lO^C^JO^OOOOOOOOOiO^OOOOOl>-lOCM^OOOOOOC5OOOOOOOOOOO

oooooooooooO^CMCO-^lOOC^QOOIOOOOOOOOOOOt-h

CO

ion
c
"o oa 00

rec

o
ex o
D
(50

lO
a; o
s
(-1 o

CM
>

C3

408

1—I oo o CM o
o o a o o

'S

C/3

W O
n3

<—I lO t—O Tf CM
O- lO --H

^ J3

(S

O CO CM
CM ^ CM O
lO O '-H CM

CO CM CM <—

I

C5 c5 o C3 o

05 OlO CO OOO ^ CO t-- ooo o o o o
O C5 o o o

lO "-H CO "-H

£^

-H^CM^OC^JOOiOCOOtOCOOlCOOi-^OCOt^^
C'jcocoTr-^io^D^o^ot—ooooooooooooooooooocs

O^C^CO-^iOOt^QOOloocioocSoo

iO«0—lOOOOOOOOOOO'^OOOOOOOOCMOOiOOOOOOOOO10-HOOC3C5C50000cSoooooooocDO

OOOOOOOOOOOO-HCMCOrriO^Ot-^OOOiCSOOOOOOOOOCS-^

-4-3

.2 'o o

I - °^

«3 £ -
li 1^ O
1) 4) CM
> -^

409

^ OO O TT <M O
O O C O O

.2

v

CO

>>

n3

3

w o
IlO

S
O
3
«3

O 05 CT)O iC CT.o -"f COo ic eo

S ^ «

'B ^
<u <u

(2i ffJ ffS

O CO CC (M 05
CO ^ lO OS

i;0 CO I—
I Tj< CO

lO lO CO

o o o o c3

Oi O O >—

I

'—
I Tj^ ^ OS OS
fo <D ;oo o o —

<

o o o o o

OS ^ o
t— O
CO OSo o ^

CO t~ CO CM 00 50 00^ 00 ^ (M CM r-l

CO lO t~ OO OS o^ ^ ^ ^ -H —I CMoooooooooo

o^cMcoTriioot^ooosoo

00CM00C0t^Q0i»OOOOOSOt^CMtfrroOOOOt^'-^CMOO?OCMOOOOOt--iOCO^OOOOC5C50
ocDCSGscscicioooo

oooooooooooO^CMCO-^iOOt^OOOSOOOOOOOOOOOr-H

CO

CO

a a
o 'o O

'o) a oo
'fj

<u c5
(1a o
<y
bO C5
n3 s
i-i o

0) CM
>
< .s

o

410

I

00 <0 iM O
O O C O O

.2

u
0
Q
*»
V
(S

K
h
V
>

a

M
V
u
to
G

S
0
u

-4-9

3
CD

V OP

O 0> --HO iC CMO CMO TT

^ -ii -J
a> V 4>

oi d pci

s o o 00
o o CM CM

CO
a;

isi(
o o CO CM

CO lO
bO
rt3

rec o o cs o o
ti

Oh
>
< 00 o 00 t—

(

CM CD 00 C^I

> u CO o t-H

a; o o CM fO

o o o d> o

<n cn

CO cn W w
s m <J O o
3 U O O -o -ou
O

O
-o

-o -o o o
Q O o o

t-H CO t—

t

CM
*J -»J

te n3 (C n3 «3

CMOOt^OS^t^OiiTicOO
a5CMLOt~o^co-<TiLO<oO ^ --H ^ CM C^l CM CM M CMoooooooooo

O'-HC-ifc-^LOot—ooosooooooooooooooooooooooooooooooOCDCDOOOOOOOoooooooooo

oecosoicocococDOOOcoioc^oooo^oecoooO-—IC^JOCOLOCMOOOOf-O-^fO-HOOOOOOc5c5ooooooooo

ooooooooooo
O'-<CMC«?-<^iC«0t^000iOOCSOOOOOOOO^

ion
e© o
a 00

o
a o
a>
60

lO

o
nj S

(.« CD
CM

>
< .s

o

411

00 o CM o
O O S3 o o

.2

o

u

0

>

hi

a

o

3

c

c s
3 3

Oi 0> fO
Oi lO lO

CM
05 lO '—

I

• f-l »>

-J
4) <u 4;

Pi Pi Pi

O O O CO
OO O CO lO
<^< C^l OS lO CM

C^J •—I r-(I

O O O O C5

t—I .-H CM o rri
-H 05 O OO r—

I
I LO 00o o o o o

o o o o o

^ o
lO o o

lO '—
f CO ^

-(-3 -(-3 -*J

c'S fl3 cC

?ouoo-^cMrt?o^cMr-'-HOlLO<OCMt--OiOOOO
>— tCMCMCOCO-^-^-^LOCDOOOOOOOOOC3000000CD00

Or-iCMCOTflOOt— 0005oooooooooooooooooooooooooooooo0000C500000oooooooooo

lOTf-^OOOOOOOO
T—ITTiOOOOOOOOO-*0'-H00000000^--HOOOOOOOOOocioooooooocS

oooooooooooO^CMCOTfiC^Dt^OOOiOoooooooooo^

412

a a ^
.2 © o
tn a,

^
a.2 <=

&I o
tH IH OU 4) CM

>
3
o
o

£13

cd

9)
u
0
u

PQ

(0

O

r3
+^
CO
>>

s
s
3

4) <u

H cr

c S
3 3

O OSO lO COOO

> 5
4) 5 4)

^ _i
41 4) 4>

Cd

O CO COO Ol iM CO
>—

I 00 iC O C'J
rri CO CO CO

o o o o o

50 » O CO t—o oo o
<—

I C<! lO 00O O O -H

o o o o o

-§ ^ ^ o
LC o o

lO •—I CO •—

I

Cti flj Cti <Tj

OOCOOJOOt^OlOOliMO
'-H'—I.—lCSt^Ot^lO--HOO
^lOt^OOOJOt-HfTJCOCOOOOOO^—I—I—1^oooooooooo

O^CNlcO-rtiLOOt^QOOJoo

co^^coot^oooooc^^ooot^t^oooooCOOOiOOCOOOOOOOJDCO-HOOOOOOOO000000C30000

oooooooooooo—<c^coTfi050t^ooa50OOOOOOOOOO'-H

.2 'o o

s ^

&I o
•i o
4) 4) CM
>

413

00 O C-1 o
o o a o o

.2

v
u
0
u

"a!

CQ

9
M

-ti>

2

B
£
3

o

t- CO

I S

C C
3 3

O 05O lO MO cX)O lO ^

> S
4, 5 4,

-is _!
a> 4j u
Oh 0^ 0^

o o I— 00 t—
CM <0 O
05 cc o Tf 00

CO ITJ

O O O O C5

o CO as o oo
00 ^ o ^ 00O CM CO Oi COo o o o
C5 o o o o

^ O O "O

-§ o^ lO O O
lO CO —I

cti cti

osr^-^osoooi^oiMOsot^coooscDfoasi^^t^(MTfiiOiOOt^t^QOOJOSoooooooooooooooooooo

O^iMCOTfiO^DI^OOOloo

COTfiOCOfMOSOOOOOCOCOCMCOh-COOOOOOO—i^iOOOOOOOO;OCM—HOOOOOOOOooooooooooo

oooooooooooO—iCMCOTfiOOt^OOOiO
OOOOOOC3000'-3

CO
(-1

.2 'o <=>

n3 S '
i fc> o
4> 4) CM
>

414

>

o
o

o
4)

cn

CD
>.

s
s

J3 -7-

O O --Ho «oO
lO CO ^

CO CO O <M
.—

I 00 -rf

OS 'M 05 Ol
lO CO

o o o o o

00 O
00 CO «5
(M -rf

(M -"^i lO

o o o o o

u O O -O

^ ^ o
LO o o

lO >—
I CO >—

<

<^ £^

OlCOt^OiO-^-^^OOlOlO < I—
(^ iM C^) CM (M (M (M0000C500000

O ^ C-) CO lO «0 I— 00 05oo

oo50oocoooiOTrt--c<i'<*^
r-iiot— t--'*05-HCMcooa5
OiC^lcOCO^OCOOO^O'-iOOCOf-COLOTfCOCOC-J^'-HOOOOOOOOOOOOO

OOOOOOOOOOOO'-HC'JC0'*iC<Ot^000iOOOOOOOOOOO-H

.2 "o o
CO Q. OO

So g o
u< O

< .s s.

415

oo

o

CO

o

o

o

en

>>

P

s
3

2 cr

3 3

O O 05O CO COO t— lO
LO CO --H

> S
4) 5 0)

^ ^ _J
0) V 4;

O:^ Oh 0:^

Oh

O CO O CO 00O LO O COO (M O
CO CO lO CO

o o o o o

CO oo C<l 05 00O lO
CO CO 00O --I 'M lO

o o o o o

^ cti

cO-^-^-^00'—ilO-—luorfOOOh- --H—HOOOiOl^OO-Hcoaioscot^oiO'—I—

<

oooooooooo

O'-H!MC0-<*'iOC0t^0005oo

OOCa^S>Q-—((MOIOOOlO-^
CMOOOO-^t^CMt— oc^oo^••fLCiOO'-irr'OOC^Ol'^OOCOLO'^TfcOCOCM'-HOOOOOOOOOOOOO

OOOOOOOOOOOo^iMeoTfLOcot^oqoo
OOOOOOOOOC5'-<

c d
,2 o
22 a
J!

*^

a.

2

Ik's

41 41

< .s

416

>
3
u
o

1)

1 1

\

Oh

U
0)

>
'a

u

3
(0

bO
a

3
O
u

n3

s
O

>>

ow

I

3
C
C S
3 3

o oO Oo 00
LO CO

1) « a;

3 _i J
0^ Pi

O O t— O OOo CO 00 t~ o
CO 05 C^) CO
CO CM C<l 1

o o o o o

00 '—I oo
CO ^ 00
CO CO O —

I 05O O O
o o o o o

flj

^-t^COOOCS^CMOlCOOOOlCOCOOlCOOt^OlcOO
C0L0COCOt^ 0000000:)OOOOOOOOOO—

;

oooooooooo

O'-i.?^C0Tfii0C0t^000>oocso

»—lOOCO'^LO^LO-^'^OO05r-iTji^;0000iOOOO
COCOOOCOOTf(M'-<'-HOO
lOCOt—I.—i-HOOOOOOOOOOOOOOOOO

OOOOOOOOOOOO-—ICMCO-<*'lOCOt>;000>0ooocioooooo^

00o

c c
,2 o

a.

2

-o

(d C
I- 1^
V <u

< .s

>
<
a
CO

417

O) 00 <r (O oO 00 lO f-< o o
!6 6 6 6 d d 6

00 O (Tl o
o o c o o

.2

C/2

3

£
o

pa'

O

3 3

o ;do <o oO

> 2
a ± Z\
4J V 0)

Di cxi

O O M O 00O 00 CO o o
>r> o OS QO
(M <M --H »—I I

o o o o o

^ OO Oi I «o
CI iC o^ CO lO COo o o ^o o o o o

o
-o

oo

C^d

a
.2 OO CO t— CO CO o 00

CO (M CO 00 CO CO o
1/3

1—1 <M <M cs CO CO lO
H)J o o o o o o o o o o
OJ o o o o o o o o o o

n3 Q
>
< c
u lar o CM CO lO CO 00

o o o o o o o o o o o
<; o o o o o o o o o o

ai o o o o o o o o o o
False

o o o o o o o o o o
o o o o o o o o o

OOOCOOlOiOiOOOOO^OIOIOOOOCOOOOOOCM^C^^COCOOOOOOOLOC-J-HOOOCDOOOOooooooooooo

oooooooooooO-—iiMCO-^iOCOt— 00 03 000000530000^

CO
t-l

c c
.2 o

1 ^

< .s

418

>.

a
s
3

3

>>
i-i

o
<u

03
u

I

n3

-D
«l

TJ

4J 4J

00 «0 IM
05 <0

lO

> S
4» 5 4)

J
a> u V

Cd K

0-

O CO
00 «0 05 Tf rf
?D Tf —1
1—I 1—I F-H »-H I—

(

o o o o o

00 o t— ^
CM CO

--H C-) ri< ^ r~O O O —H
'-Jo o o o o

ci d d d

0001iOO5'O'^05t^L0-H
CMCOCM-^COCO-^iOiCiOoooooooooooooooooooo

O-—iCMCO-^LOOt^OOOSoo000C5000000

OiOOOt^cOt^'—i-HOOOOOO'-HiOCMOOiOOOOooinsMostococoooooCO-H-HOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOO'^CMCOTj'iO^Ot^OOOSOOOOOOOOOOO-H

CO

a c
.2 o
cn a.

I -
a.

2

nS E
V (U

419

s
erie

O 3

tt

Is
CO t-l

cn
(J >. >

atisti tegor
nts

o

<v

B
>>

1 3

a

mar

dsba!

f
doc

c o
Su

a>

-2

§ = nu

a B O3 3 H

'^5 OS

lO
CO

-is J
cri

o CO o 00O t— lO QO ^
'M ^ O —

I

1—I
1

1
7—1 <—\ ^

o o o o o

lO ^ ' ooO CO h-O ^ CO 05 t--O O O O '-H

o o o o o

o o
-o -o

LO O
,—1 CO

o
-o

oo

cti cS cS cS tti

OC^l-^'-HOOOOt— CO^OOOOt^oOCOLOt^OJ^OiMO T-H r-H r-H I^] C^] eg r-H CO00C50000000oooooooooo

o^oco-^LOoi>-ooajoo

Cl,

OO CO >—< 00
iM O lO

CO CM CO
CO ^ o o

00 to <o o o o o
CO 00 --H r-H O O O
CO —

I
r-H O O Oo o o o o o oooooooooooo

o o o oO ^ M CO
O O O O o o o

lO «5 OO Oi Ooooooooooo-^

o oa <»

o

(-< i-i o
>
< .s s.

420

I

I 00 c^j

o o c o o
.2
'35

'<j

4J
t-i

Oh

0

M
d
.2

u
a

S
a
0
O

to
a

a

o
u

-a
hi

(A

:3
M
V
u
to
a

o
u

>.
i-i

S
S
3
CD

C

S

I

o

a

r-H Oi 00
CO lO «2
lO ^
00 lO CO

> 5 -1^

v ? 4)

^ _J
<u <v <u

cd »i ccj

CL,

O CO ^ 00
C^l OO >—

I 00 o
t~ t~ O >—

I

^ ^ ^ CO

o o o o o

CO <—
I o

OiO <M lOo o o
l>~ oo

r-H CM

o o o o o

o O O -O

-§ ^ ^ o
lO o o

lO •—
I CO ^

cti

t^-^-^t^OOLOOlt^OO-^lO-^OOCOOOOiOJOOO-^LOOOOCMCO-^LOOt^-OO

oooooooooo

O^CSCO'^lOOO-OOOIoo

OOt^CMOJOS'^OOOOOl^OCOCOt^OOOOO
^O^OOOCOOOr-i^OOOOcDTfirg^oooooooooooooooooo

oooooooooooO^CMCO-rT'LOOt^OOOiOOOOOOOOOOO'-^

CO

c5 CO

ion UIO o"
a OO

'u CZ5
I)
t-i

Q. O
01

bjO

lO

o
«J S
f-t o
oj 4)
>

C5

bC
>

421

01 00 •<f <C CM O
0> O) 00 >n --I O O

o>o 6 d 6 d 6 d

I 00 «0

O O c O O
.2
'(^

"o
0)
(-1

Oh

S
g
3
00

O

a
o

c e
3 3

QO OiO lO o
05 lC

-o

4> 4J 4J

ffj ffj

o o o oO 00 O o
«5 «0 C^J Oi^ CO C-J

o o o o o

LO o r~ 05
(M CO CO 00 o
I—

I CO i-O CO •—

I

O O O —H eg

o o o o o

CO

OOO^OOCOt^QOC^COtOOOOOf-t— ^CO'—lO«500050^iMCO-^LO«?OOO^'-H'—;r-H^^^ooooooc>ooo

O^C-JCO'^'LOOt^OOOloo

^ooir<iO'-<c^)t~ooooocor-H<r<it-'^cooooot^COCOCOCOiMC^JOOOO«5^':^j^oooooooooooooooooo

oooooooooooOt-HClCO-^iOOt^-OOOlOOOOOOOOOOO'-H

C

a

for

al
0.14]

.2

Average

preci

1

1-pt

Avg

P "S o
a.

a .5 o
&| o
1- j-i o

422

QO «0 Tfi iTJ

O O C O O

C/5

>>

3

I ^

c s
3 3

O 0> 05oO -"T —

1

O ut> CM

a; g -£
•—I l> Ui

-ts -J
<U 4) (U

0d

O O fC ?o Ol
?0 CM iC CO

>—I ^ t~— >—

I

CM CC CM CM

o c> o o o

05 lO t-- CM Ol
lO O 00 O 05O CM OO O O
o o o o o

£^

CMCOintOt^OOOOOSOOOOOOOOOO-H—

;

c5oOOC500000

o^CMcciTTLOor-oocsoo

OC^COTfOOOOOOOCC-HCOCJ5t^OOOOOOt^t^OeO-HOOOOOOTfC^J^OOOOOOOCSOOOOOOOOOOO

OOOOOOOOOOOO-—iCMeO-«fiO;Dh-00010OOOOOOOOOCS^

c c
.2 o
.2 Q,

> *^

423

00 o c-j

o o c o o
.2

91

>
a

a

a
u
(6

3
(A

0)

S
O

cn
*^

CO
>.u

CD

j2 -r

3 3

O OiO lOOO lO

> S ---^

? V
.-< >
-is ^ _i
O) 4)

cii Di cd

o o o o
(M 'M O iM^ CO —^

lO <^"

lC lO lO CO

o o r> o o

O O lO 00 '-H^ O C3
CO O t-- lOo o o ^o o o o o

O (

O T

lO ^ —

I

u
o
-o

oo

crj clu cd

^a>iOLO^'^«oooLOfo

oooooooooo

O^C-lCO-^LOOt^OOO^oo

OiLOromOOSOOOOOt^-V^iMOOiOOOOOO<5'<M'S<-^<OCMOOOOOt^lOCO(MOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOo-^<McO'^io?or~oooioOOOOOOOCSOO-^

c2 «5

ion
c
'o oa 00

'w o
a o
(ac

lO

o
«3 E
bd (i o

4) f-1
> -t^

s o

424

>
3
o
c
o

o

as

t-l

(6

3

1§
a
n3

ai 2

Oi OO^ lO o
COO CO

^ g -£

_^]

1> u <u

Qd 0^ Oh

O O O 00
00 -"S* 00 oO OO rr COO lO lO CO

o o o o o

CO a> o CO
CO Irt C-l —

I

^ CO ir- COo o o ^O C5 C5 o c>

£^ n2

TfCMTTOOOOliMOOLO
t^ooo5LO<r<iLO--Ht--^o<OOCOuOt— 0005050^
oooooooooo

o^c^Jco'^LO^or— oooloo

-^COt^-^OCOlO'—lOOOOTroo<Moot^t— ooooOiM'^OC^C^^OOOOOOlOCOC^OOOOOOOooooocSooooo

oooooooooooo^(Mco-«fiO!Ot~-;QoaiOoooooooooo^

o
o

.2 -3 -
en G. 00

-5

nj £ -
ui iH O

< .S £

425

00 o
o o c o o

.2
'35

e
B

CM
-o

o
bC

4> 4)

C 4)

S 3
C ^
C S
3 3

o as ^
(T-l lO OO
00 LO

lO cc

. -H »>

-is ^ _1
4) OJ t>

cd crj tti

O CC iM ^
00 00 LO 00
OO CCi Ol ?0 lO
?0 CD lO Tf CO

o o o o o

CO
t-lo o

(M CM CO
lO CO CO
r- 00 CDO ^ CM

o o o o o

c€ ct! (ti

CO ^- rr 05 CO
00 ^ CM -"f COo CO 00 05O ^ '—* T-H ^ T—

(

05 C^l^ C^l t— CDO >—I >—I CM
CM CM CMoooooooooo

O-^C^lCO-^LOCOt^OOOlooocSoooo

t^iOOlOOOJOSt^OOOOCOC^^—iCOOliOOOOO
CO lO C^l 00 C-1 ^ O O o oOOlOCOCMOOOOOOOOCOOOOOOOOOO

OOOOOOOOOOO
OT-HC-ico-sfLOcor^QOCftoOOOOOOOOOO^

cn

"o <=>

a
4) O
TO O

4) y,& ^ o
>H O
4> 4» C>-1> *J .

426

00 ?o

o o c o o

>

Q
a

Q,
Oi

>
9)

Q

a
ca

CO

Vw
CO

>.
cn

V

0
hi

r3

>>

S
E
3

C/5

IS
a

V 0)

2 cr

c E

0 05 0
to lO o
00 c<i

«0 lO

> S
4> 5 lU

is _1
4j a; OI

0^4 Od

O t— CO
CO lO 05 O—

I lo <r<i

CO lo to eo

o o o o o

^ 00 o 00
00 iM l>- CO

>—I CO CO COo o o ^o o o o o

(ti

iMLO-^-^^COCOOOiCCOOiCOOCOOOCOCO—I'Tt-OCOirtCOt— OOOOO
oooooooooo

O ^ IM CO i-O CO 00 Oioo

'^OOl^CO-'fTfOOOOOO00-*L0^C0t^05OOOO
(MC^r-HOOh--^—lOOOO
QOiOCO'—lOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOO"—lOJCO-^iOCOt^OOOlOOOOOOOOOOO—^

c c ^
.2 © o
CO OO

So S <=
ft C '
L> l_ O
4) 4) CM
>

427

OO O C'J

o o d o o
.2

"o
a>
i-i

c6

in
>>

s
£

«3

CQ

V 0)

c c

o o ^O O (Mo t— ^
lO CO —

<

0* "!=;

D 5 t,

_j2 I

ffi cd cd

O O O O 00
«o 00 o CO
lO Tfi (M ^ (7-5^ ^ ^ CO C-J

o o o o o

O 00 ^ o o
r-H (^D O

CO Ol lO ^o o —H CO T}<

o o o o o

fl^

>—ico'*«ooioi05<r](M-<ti•^lOOS^OOl^OSCOCOCO^OOOO-—iCM-^iOLOt^OOOOt-^r-lr-lr-<r^,-H,-H,-Hooooooocioo

O-—iC<ICO'<*<LO«Ot^0005oo000000C5000

OS'—I-—iSMC0^-05C^0000Oco^-0'*'l0ocol00(^^oCOOOOOsOlt— JOCOiM^Ot^-^COCSlM^OOOOOooooooooooo

o oo ooooooooo'MCO-^iOOt^OOOiOoooooooooo^

c c ^
.2 © <=
CO O, 00

'i

a.2 o'

(t s -
ii u. O
4) 01 C-J

428

3

4; O)

3 3

CO 05 fC
CO lO o
OO rr lO
00 lO CO

is ^ _!
4) 4) 1)

ci cii oi

O CO CO
C-l «5 O^ CO t— lO
lO lO lO •"^ CO

o o o o o

T—
I CO CO lO CO
lO Ol CM lO

>—
I CO O 00 lOO O O ^ C^l

o o o o o

ei ^ ^ ci

aiooot^ooooooo^'*'
Oi <M lO 05 OO C^l lO CO —

1

t^i—iCO-^COt^OiO—ic^jO —< —I —H —I ^ iMOOOOOOOOOO

O —
I (M CO lO O t- 00OO

TfOOCOCOt—C^t^OOOOOOOOOCO-^OOOOOOO
ysc^i'^cococo—loooot--Loco(rJoooooooooooooocsooo

oooooooooooO^'I^lCO-^lO^t^OOOlOOOOOOOOOOO—"
<

CO

.2 'o o
(2 0.00
'y 4) o

&I d
I-H Ul O
>
<C .£ S

429

APPENDIX B

This appendix contains tables of results for the TIPSTER panel. The tables have the same descriptions as

those in Appendix A. The results in this appendix represent a second round of work on this task, as a previous

evaluation of TIPSTER results had taken place in September. The TIPSTER contractors were able to use some

(minimal) failure analyis to correct some of the easier problems found in that evaluation in time for these

results. Whereas these results cannot be compared directly with the TREC-1 results, they represent what can be

accomplished in only one month of additional tuning for the task.

431

r-H OO O 'M

o o c o o

1/3

>>

c
S

O

2

5 3

c £
3 3

O O COO O OO ^ lOO O ^

"^3 ^
O) 5 O)

-£3 ^ ^
0) 4) 0)

Di (2i

O CO O <0 COo
IM OO lO lO

<o lo

o o o o o

Ol (M ^ CO
00 05 lO^ lO 'rf lOO O O C-1 CO

O O O O cz>

O O
o -a -o

lO ^ CO

(/3 CO

o o
o -c -o

o oo o

CTj

o-rrt— coctjooocm'sPcoLOLOLOOOt— COOOOJ'H
I r-H C<1 <M (M CO <M iM COoooooooooo

o^c^icoTfioor-ooosoo

oO'^ot—oocoi^O'—it--Tro^OiLOOO-HC^ICOCOh-O^t^C-lOO^OlOCO^OOOiOfOr-Hi—lOOOOOOOOOOOOOOOO

oooooooooooOr-HC^COTflLOOI:^C»OiO
CSOOOOOOOOOr-H

+^a
c 3
_o 'o o
'!« a OO
'o o
a o
0)

bC

lO

o
«j E
t-i o

CO
>
< o

>
<
a
CO

432

(-1

«3

s
s

CO
(I CO

c fc:

c^i —

1

00 <—

I

01 Tf
OS o c<i

> c
V ^ V

14)

0) 0) O
oi od

Oh

o 00 ^O <M OO ^
rt< 00 CO^ CO CO c^i

o o o o o

05 00 00 Oi
OO LO Ol o

I t— OO O O CO

o o o o o

cn
o
o
-a

o
CO

cti cd

i:Dh-a5t^'-HOOt^t--t^iO(Tjocoooo^r— coioolt^-oioc^coiooooooos00--4-Hr^—I—(^^^oooooooooo

O'-ilMCO'^iO^Ot^QOOSoo

Oh

OlOOLO-HOC^tOOOl-—<ooOt^OCO-^iOCOOOC^iMlOOOCOlOOSCO'-h^OO(©^COCM^OOOOOOOOOOOOOOOOO

OOOOOOOOOOO
0<-<C^COTj<u^<Ot>;00050OOOOOOOOOO'-H

CO
(-1

.2 "o o
'o 1, o

nj E -
<-i _, o
>

<t;
.c o

433

00 «D O
O O C O O

«3

3

I
I

O

4; <U

S %

3 3

O OSO iMO irtO lO

C
4) 5 4)

is
<U O) 01

0^

o eo CO 00
00 o> OS t— (Mo 00 Tf
1^- CO ?0 lO

o o o o o

(M (M 00O x}< o
CM lO 05 ?>1O O O CM CO

o o o o o

o
-o

oo

flj flj

«5-^COOO';D-HCOt--0505
-HiOOOOCM'^iit)?Ot^OO

oooooooooo

O-—i<MCO-^iOOI>-OOOSoo

OOO^lOOCOI^IOOOOOOt^CN—lOO-rfOOOOiDt^COiOOt^COOOOOOOCOlOCO-hoOOOOO000000000C50

oooooooooooO^CMCO-^lOOI^OOOSOooooc5ooooo-<

c c
.2 o

«3 C
1) a>
> *^

< .5

434

APPENDIX C

This appendix contains the sui^lemental forms filled out by each group about their system. These forms

are meant to supplement the papers and contain a standarded and formatted description of system features and

timing aspects.

435

System Summary and Timing

City University, London

General Coirunenis

The timings should be tlie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. Tliis sometimes will be difficult, such as getting total time for document indexing of huge

text sections, or manuiilly building a knowledge ba.se. Please do your best.

I. Construction of indices, knowledge bases, and other data structures (please describe all data structures that

your system needs for .seiirching)

A. Which of tlie following were used to build your data structures?

1. slopword list ye.s

a. how many words in list?

126 general .stop words + 6 function word.s. Excluded from indexes and

queries. Semi-stopword H.st of 256 words and phrases. Tlie.se are not used

in query expansion following relevance feedback unle.ss they occur in the

original query.

2. is a controlled vixabuhuy used? No. But see I C 1 h.

3. steiruning yes

a. stiuidiud steiruning cilgoritlims

A moderately weak suffixing algorithm based on M. F. Porter, "An
algorithm for suffix stripping." Program, 14(3), .lul 1980, 130-137. We also

use a degree of British/American spelling conflation.

b. morphological analysis no

4. tenn weighting No. Query terms are weighted, but not index terms.

5. phra.se di.scovery no

6. syntactic parsing no

7. word sense disambiguation no

8. heuri.stic as.sociations no

9. spelling checking (with inanual conection) no

10. spelling correction no

11. proper noun identification filgorillim no

12. tokenizer (recognizes dates, phone numbers, common patterns) no

13. aie the mrinuiUly-indexed terms used? no

B. Statistics on data structures built from TREC text (plea.se fill out each applicable section)

1. inverted index

a. total iunount of storage (megabytes) 810

b. total computer tijne to build (approxijuate number of hours) 43

c. is the process completely automatic? yes

d. iue term positions within d(K"uments stored? No. Insufficient disk .space to do thi.s.

e. single terms only? Single terms and pre-specitled phrases (.see I C 1 b below)

C. Data built from sources other thiui tlie input text

1. internally-built auxiliiuy liles One manually-built tile.

a. domain independent or domain specific (if two .separate files, plea.se fill out one set

of questions for each file) Loo.sely domain-dependent

b. type of file (llie.saurus, knowledge base, lexicon, etc.)

Small quasi-thesaurus containing synonym cla.sses, prefixes, go phra.ses.

436

stopwords, function words and semi-stopwords (see I A 1 a for

semi-stopwords).

c. total ajnouiii ot storage (megabytes) 0.013

d. totiil nuinber ot concepts represented About 15(M)

e. type of representation (frames, semantic nets, rules, etc.) Simple I(M)kup table

f. total computer time to build (approximate number of hours)

Manually built. Structured at runtime, time negligible.

g. total m;uiual time to build (approximate number of hours)

Perhaps 8 pers()n-hours. Several iterations, based on frequency counts from

indexing runs, other similar files, TREC queries and documents.

h. use of manual labor

(4) otlier (describe) Manually built using text editor

2. extenially-built auxiliary tile no

II. Query construction

(please till out a section for each query construction metliod used)

A. Automatically built queries (ad hoc)

1. topic fields used

Concepts. Other fields were tried but gave overall (though not uniformly) worse

results.

2. total computer time to build query (cpu seconds)

i)A)2 seconds/query to parse topic and extract

3. which of the following were used?

j. other (describe)

Concept terms processed and weighted.

Term weight = constant * log(((r+c)/(R-r+l-c)) / ((n-r+c)/(N-n-R+r+l-c)))

where N is the number of indexed documents, n the number of documents

containing the term, R the number of known relevant documents, r the

number of known relevant documents containing the term, c = 0.5. Weights

rounded to nearest integer.

B. Manually constructed queries (ad hex)

1. topic fields used Any: searchers' free choice.

2. average time to build query (minutes) About 40 minutes (often including trial searches)

3. type of query builder

Six searchers were used. None was a domain expert. Two might be described as

experts on the search .system.

4. tools used to build query

C. other lexical tools (identify) Trial lookups giving frequency. Trial searches.

5. which of the following were u.sed?

a. term weighting As in II A 3 j above

b. Boolean connectors (AND, OR, NOT)
All available. AND and OR were used in a number of searches,

d. addition of terms not included in topic

(1) source of terms

Searchers' world knowledge and terms from relevant documents

found in trial .searches.

C. Feedback (ad hoc)

1. initial query built by meiliod 1 or methcxl 2? Method 2

2. type of person doing feedback

Searchers were Masters students in Information Science and two people working on

the TREC project.

437

3. average time to do complete feedback

a. cpu time (total cpu seconds lor all iterations) About 20 seconds

b. ckK'k time from initiiil construction of query to completion of final query (minutes)

About 20 minutes

4. average number of iterations One
a. average number of d(Kuments examined per iteration About 20

5. minimum number of iterations One
6. maximum number of iterations One
7. what determines the end of an iteration?

Searchers were recommended to stop after assessing 20 documents or when they had

found 10 relevant documents. These guidelines were not always adhered to.

8. feedback metiiods used

b. automatic query expansion from relevant documents

(2) only top X terms added (what is X)

Term p(Mil was all query terms + all non>semi-stop terms from relevant

documents. The former were given an R-value of R + 3 and an r-value of

r + 2. Top 20 terms were used, selected in descending order of

(term_weight * r) and weighted using the formula given previously.

See section IIA3,j&IAla for "R", "r", "semi-stop".

D. Automatically built queries (routing)

1. topic fields used Concepts

2. total computer time to build query (cpu seconds)

Depended strongly on number of known relevant documents in training set and their

length. Average perhaps 10 minutes.

3. which of the following were used in building the query?

a. terms selected from

(1) topic

(3) only documents with relevance judgments

b. term weighting

As in II A 3 j above except R = R + 10 and r = r + 10 for concept terms.

III. Searching

A. Totiil computer time to search (cpu seconds)

1. retrieval tijne (total cpu seconds between when a query enters the system until a list of

document numbers are obtained)

Typical figure for 12-term search producing output list of 350,000 document

identifiers: 45 seconds (note that in an interactive production system we would use

a weight threshold which would reduce this by perhaps 50%).

2. ranking time (total cpu seconds to sort d(x:ument list)

For list above: about 65 seconds (weight threshold would reduce by 50-90%).

B. Which methods best describe your machine searching methods?

2. probabilistic model

C. What factors are included in your ranking?

2. inverse document frequency

Inverse document frequency and relevance information when available (see above

for weighting scheme).

IV. What machine did you conduct the TREC experiment on?

Sun SPARC Server 4/330 with Sun IPC as fileserver

How much RAM did it have? 16 megabytes

438

Whal was the clock rate ol Qie CPU? Not .specified. Sun claims 16 Mips.

Some systems are research prototypes and others ;ire cominercijiJ.

To help ct)mpare Uiese systems:

1 . How much "software engineering" went into the development of your system?

System is non-commerciul. It has undergone continual modification since 1982 to

meet the requirements of a number of different research projects, mainly on

end-user bibliographic searching.

2. Given appropriate resources, could your system be made to run faster? By how much
(estimate)?

Faster hardware would of course increase speed. Main bottleneck is disk & network

I/O. Very large amounts of RAM ((»f the order of a gigabyte per process—or could

be shared between processes searching the same database) would greatly reduce I/O

dependence. On the software side, earlier versions of the system were often optimised

for speed at some cost in added complexity and reduced flexibility. This optimisation

has been removed from the version produced for TREC, partly because interactive

searching by general users was not envisaged.

It is impossible to give definite estimates on speed improvements. It would not be

unreasonable to expect an order of magnitude improvement within current hardware

and software constraints.

3. What features is your system missing that it would benefit by if it had them?

Given enough disk we would have stored positional information in the indexes, and

probably used it to modify document weights, perhaps by giving weight bonuses for

term proximity. This would have increased inversion storage overheads to a little

over 100% of bibliographic tile size. (This is not really a "missing feature," because

the system does have the capability.)

We might have considered some form of weight adjustment for document length.

This would involve a modification of the index structure which might just have lieen

feasible within the disk constraints.

Other possibilities worth investigating include phrase discovery and term dependency

statistics.

439

System Summary and Timing

University of Pittsburgh

General Cominenis

The timings should be Uie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometimes will be difficult, such as getting total time for document indexing of huge

text sections, or manuiilly building a knowledge ba.se. Please do your best.

I. Construction of indices, knowledge bases, and other data structures (please de.scribe all data structures tliat

your system needs for .searching)

A. Which of tlie following were u.sed to build your data sU-uctures?

I. stopword li.st

a. how many words in list? 2,529 words on the list, including digital (0-9).

3. stemming

a. stcUidard stemming iilgoritlims

We use Porter stemming algorithm and it was implemented by C. Fox, using

C programs.

4. tenn weighting

5. phrase di.scovery

6. syntactic pi'U"sing

7. word .sen.se di.siunbiguation

8. heuristic associations

9. spelling checking (with manual correction)

10. spelling correction

II. proper noun identification Jilgoritlim

12. tokenizer (recognizes dates, phone numbers, common patterns)

13. are the mcUiuiUly-indexed terms used?

14. other techniques used to build diita structures (brief description)

B. Stiitistics on data structures built from TREC text (please fill out each applicable section)

1. inverted index

a. total amount of storage (megabytes)

For the storage space information, only the data on disk one Ls available.

Following table provides the data in Megabytes unit.

DOE AP ZIFF WS.J

Inverted files 162.3 199.8 143.7 223.4

Indexed files 3A) 2.2 2.4 2.1

Addre.ss files 4.3 1.7 1.7 2.6

Note: * Data on FR is also not available (loaded into tape.s);

* Addre.ss tiles are the indexed tiles which include document

numbers and their offspring in the text files where the document

stored.

b. total computer tijne to build (approximate number of hours)

Please refer to Table 1 in our paper.

c. is the pnx;ess completely automatic? yes

440

(J. iire term posilions wiUiiii documenls stored? no

e. single terms only? yes

C. Data built from sources other than tlie input text --no

II. Query consuuction

(please fill out a section tor each query construction method used)

A. Automatically built queries (ad hoc)

1. topic fields used

Training queries: Title and concepts are used. However, the nationality might he

included if it's necessary to meet the narrative item.

Routing queries: The routing queries are the final converged queries from the

training queries. There is no modification.

Ad hoc queries: Title, concepts are used, and some keywords from narrative items

are added.

2. total computer tijiie to build query (cpu seconds)

Computing time to build queries is not available.

3. which of the following were used?

a. term weighting witli weights based on terms in topics

Term weighting for queries is assigned by the system. It is our research

topic on term weights moditlcation. Note the stemming algorithm used on

document processing was also used on query terms.

Training queries: All term weights were assigned automatically by the

system and also adjusted by the system using feedback information.

Routing queries: The term weights are those from the last generation of the

training queries. No changes are applied.

Ad h()c queries: F(»r one query individual the term weights were assigned

manually by the researchers. The other query individuals' term weights

were generated by the system. (Note: our system uses 10 query individuals

searching d(»cuments simultane«>usly.) Also the term weights were adjusted

by using the feedback information.

C. Feedback (ad hoc)

1. initial query built by metliod 1 or methcxl 2?

Initial queries were built by method 1 (automatic).

2. type of person doing feedback Evaluation is done by our researchers.

3. average time to do complete feedback Please refer to Table 2 in our paper.

4. average number of iterations 3 iterations on average.

5. minimum number of iterations 0

6. maximum number of iterations 9

7. what determines the end of an iteration?

No more relevant documents are retrieved or it Is not valuable to do more feedback

due to the time constraint.

8. feedback methods used

Query terms are automatically modified by the system using the genetic algorithm

in our system.

III. Searching

A. Total computer time to seiuch (cpu .seconds)

1. reu-ieval time (total cpu seconds between when a query enters the system until a list of

document numbers are obtained) Plea.se refer to Table 2 in our paper.

2. ranking time (total cpu seconds to sort d(x:ument list) not available

441

B. Which methods best describe your machine se.'irching methods?

1. vector space m(xlei A distance function (Lp metric) is used as similarity measurement.

C. What factors iu"e included in your ranking?

15. other (specify)

Document ranking bases on the distance. The shorter the distance, the high the

rank. That is, the document with the shortest distance is put on the top of the list.

IV. What machine did you conduct the TREC experiment on?

How much RAM did it have?

What was the clock rate of tlie CPU?
Two types of systems are used.

Sun-670: 32 MB RAM and 40 MHz CPU clock rate;

Sun SPARC/IPC: 24 MB RAM and 25 MHz clock rate.

V. Some systems are research prototypes and others are commercial.

To help comp.'ire tlie.se systems:

1. How much "software engineering" went into the development of your system?

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

If our sy.stem can be implemented on a parallel machine, the retrieval could be 10

times faster.

3. What features is your system missing that it would benefit by if it had them?

There are a lot of parameters which can l)e adjusted to make our system more

flexible and more adaptive. We need to build a good user interface on which several

parameters can be controlled and manipulated by the asers.

442

System Summary and Timing

Cornell University

Run 1: Single tenn automatic ad hoc run (global/local match)

General Comments

The timings should be tlie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometijnes will be ditlicult, such as getting totiil time tor document indexing ot huge
text sections, or mjinually building a knowledge base. Plea.se do your best.

Construction of indices, knowledge bases, and other data structures (please describe all data smjctures that

your system needs for .searching)

A. Which of tlie following were used to build your data structures?

1. stopword list

a. how many words in list? 570

2. is a controlled vcKabulary used? no

3. stemming yes

a. standard stemming aJgoritlims

which ones? SMART
4. tenn weighting

In docs, tf * idf, co.sine normalization (ntc)

In t]uerie.s, tf * idf, cosine normalization (ntc)

In .sentence.s, tf * idf, no normalization (ntn>

5. phra,se discovery

6. syntactic parsing

7. word .sen.se di.sambiguaiion

8. heuristic as.sociations

9. spelling checking (with manual correction)

10. spelling correction

11. proper noun identification algorithm

12. tokenizer (recognizes dates, phone numbers, cominon patterns)

13. are the manually-indexed terms used?

14. other techniques u.sed to build data structures (brief description)

B. Statistics on diita structures built from TREC text (please fill out each applicable section)

1. inverted index

a. total amount of storage (megabytes) 690

b. total computer time to build (approximate number of hours)

4.7 hours to create doc vectors from text

0.7 hours to reweight doc vectors and produce inverted file

c. is the pr(Kess completely automatic? yes

d. are term positions witiiin d(x:uments stored? no

e. single terms only? yes

5. other data structures built from TREC text (what?)

Map from docid to text location (also gives title for each doc)

a. totiil amount of storage (megabytes) 68 Mbytes.

b. total computer time to build (approximate number of hours)

Time to create included in inverted file creation above.

c. is the prtKess completely automatic? Automatic

443

d. brief description of methods used

other data structures built from TREC text (what?)

Map from internal concept to token string

a. total amount of storage (megabytes) 18 Mbytes

b. total computer time to build (approximate number of hours)

Time to create included in inverted tile creation above.

c. is the process coinpletely automatic? Automatic

d. brief description of methods used

C. Data built from sources other th;in the input text

None, other than stopword file.

II. Query consu-uction

(please fill out a section for each query constiuction method used)

A. Automatically built queries (ad hoc)

1. topic fields used Topic, Nationality, Narrative, Concepts, Factors, Description

2. totiil computer tijne to build query (cpu seconds) 1.5 seconds for all queries

3. which of the following were used?

a. term weighting witii weights based on tenns in topics (idf)

III. Searching

A. Total computer time to search (cpu seconds)

1465 seconds (includes retrieval + ranking + indexing 500 docs per query).

1. retrieval time (totiil cpu seconds between when a query enters the system until a list of

document numbers are obtained)

2. ranking time (totid cpu seconds to sort dcKument list)

B. Which methods best describe your machine seiirching metiiods?

1. vector .space mcxlel

C. What factors iire included in youi" ranking?

1. tenn frequency

2. inverse dcKument frequency

7. proxijnity of terms within .sentence needed for local .sim.

8. infonnation theoretic weights

9. docujnent length

IV. What machine did you conduct tlie TREC experiment on? Sun SPARC 2

How much RAM did it have? 64 MB
What was die clock rate of tlie CPU? 40 MHz

V. Some systems are research prototypes and others are commercial.

To help compare these systems:

1. How much "softwjire engineering" went into the development of your system?

About 3 person-years for the SMART system itself

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

Of course!

Retrieval local sirrjilarity needed lo index 500 docs per query; this could all be done

in advance if a single local approach had been decided on.

444

Reduce retrieval time l)y u factor of 5.

A 6 machine tlistrihuted version of SMART should he faster by a fact«>r of 3 for

hoth indexing and retrieval.

3. What features is your system missing that it would benefit by it it had them?

Distributed version has not fully been implemented yet.

445

System Summary and Timing

Cornell University

Run 2: Phrase automatic ad hoc (Cornell Global/Local)

General Comments

The timings should be the time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This .sometimes will be difficult, such as getting total time for d(x;ument indexing of huge

text sections, or manually building a knowledge ba.se. Plea.se do your best.

L: , Construction of indices, knowledge bases, and other data structures (plea.se describe all data structures that

your system needs for searching)

A. Which of tlie following were u.sed to build your data sU-uctures?

1. stopword list

a. how many words in list? 570

2. is a controlled vocabuhiry used?

* Not tor single term.s.

A plira.se list was automatically con.structed from phra.se.s occurring 25 times or more
in the first doc set (Dl). Only tho.se phra.ses were u.sed.

3. stemming yes

a. standard stemming algoriilims

which ones? SMART
4. tenn weighting

In docs, tf * idf, cosine normalization over length of single term.s (ntc)

In querie.s, tf idf, cosine normalization over length of .single terms (ntc)

In .sentence.s, tf idf, no normalization (ntn)

Phra.ses weighted using their natural tf^idf, cosine normalized by length of single

terms, and divided by sqrt(2). [Phrase match worth 0.5 of .single term match]

5. phrase di.scovery

a. what kind of phrase?

Adjacent non-stopwords, components .stemmed, that occurred at least 25

times in the Dl document .set.

6. syntactic parsing

7. word .sen.se disambiguation

8. heuristic as.sociations

9. spelling checking (with manual correction)

10. spelling correction

11. proper noun identification jilgorithm

- 12. tokenizer (recognizes dates, phone numbers, common patterns)

13. are the manually-indexed terms used?

14. other techniques used to build data structures (brief description)

B. Statistics on data structures built from TREC text (plea,se till out each applicable section)

1. inverted index

a. totiU amount of storage (megabytes) 840

b. total computer time to build (approximate number of hours)

9.7 hours to create doc vectors from text

0.9 hours to reweight doc vectors and produce inverted file

c. is the prtKess completely automatic? yes

d. are tenn positions within dcKuments stored? no

446

e. single terms only? no

5. other data structures built troin TREC text (what?)

Map from docid to text locution (also gives title for each doc)

a. total lunounl ot storage (megabytes) 68 Mbytes.

b. total computer time to build (approximate number of hours)

Time to create included in inverted file creation above.

c. is the process completely automatic? Automatic

other data structures built from TREC text (what?)

Map from internal concept to token string

a. total iunount ot storage (megabytes) 25 Mbytes
b. total computer time to build (approximate number of hours)

Time to create included in inverted tile creation above.

c. is the prcK-ess completely automatic? Automatic

other data structures built from TREC text (what?)

Phrase dictionary (controlled vocabulary)

Phrases were adjacent non-stopwords, comp<ments stemmed, that occurred at least

25 times in the Dl document set.

a. total simount of storage (megabytes) 14 Mbytes to store dictionary.

b. toUil computer tijne to build (approximate number of hours)

It took 5.8 CPU hours to index Dl, finding 4,7(M>,000 phrases and their

collection stats. Of those phrases 158,()(M) occurred at least 25 times.

c. is the process completely automatic?

C. Data built from sources other thfin ilie input text

None, other than stopword tile.

II. Query construction

(please till out a section for each query construction method used)

A. Automatically built queries (ad hoc)

1. topic fields used Topic, Nationality, Narrative, Concepts, Factors, Description

2. total computer lime to build query (cpu seconds) 2.7 seconds for all 50 queries

3. which of the following were used?

a. term weighting witli weights bitsed on tenns in topics (idf)

b. phrase extiaclion from topics yes, using controlled list of phrases

III. Searching

A. Total computer time to search (cpu seconds)

2405 seconds (includes retrieval + ranking + indexing 5(M) docs/query).

1. retrieval time (total cpu seconds between when a query enters the system until a list of

document numbers iire obtained)

2. ranking time (total cpu seconds to sort document list)

B. Which methods best describe your machine seiirching methods?

1. vector space intxlel

C. What factors are included in your ranking?

1. tenn frequency

2. inverse dtKument frequency

7. proximity of terms for phrases and for local similarity between sentences

9. document length

447

IV. What machine did you conduct tlie TREC experiment on? Sun SPARC 2

How much RAM did it have? 64 MB
What was the clock rate of tlie CPU? 40 Mhz

V. Some systems are research prototypes and others are commercial.

To help compare these systems:

1. How much "software engineering" went into the development of your system?

About 3 person-years for the SMART sy.stem itself

2. Given appropriate resources, could your system be made to run faster? By how much
(estimate)? Of course!

3. What features is your system missing that it would benefit by if it had them?

448

System Summary and Timing

Cornell University

Run 3: Automatic routing (Cornell Ide feedback)

General Comments

The timings should be Uie time to replicate runs trom scratch, not including trial runs, etc. The tiities should also

be reasonably accurate. This .sometimes will be ditticult, such as getting totiil time lor d(x:ument indexing of huge

text sections, or manuidly building a knowledge base. Plea.se do your best.

I. Construction of indices, knowledge bases, and other data structures (please describe all data structures that

your system needs for searching)

A. Which of Uie following were used to build your data structures?

1. stopword list

a. how many words in list? 570

2. is a controlled vcx'abulary used? no

3. stemming yes

a. struidju"d stemming algoriilims

which ones? SMART
b. morphological aiuilysis

4. tenn weighting

In docs + querie.s, tf° U\f, cosine normalization (ntc) (in docs idf is based on

collection frequency within doc set Dl only)

5. phrase discovery

6. syntactic pru'sing

7. word .sense disambiguation

8. heuristic as.sociations

9. spelling checking (with manual correction)

10. spelling correction

11. proper noun identification algoritlim

12. tokenizer (recognizes dates, phone numbers, common patterns)

13. are the manually-indexed terms used?

14. other techniques used to build diita structures (brief description)

B. Statistics on data structures built from TREC text (plea.se till out each applicable section)

1. inverted index

a. total amount of storage (megabytes) 275

b. total computer time to build (approximate number of hours)

1.9 hours (not including time to index Dl to obtain collection frequency info)

c. is the process completely automatic? yes

d. iu"e term positions within dcKuments stored? no

e. single terms only? yes

5. other data structures built from TREC text (what?)

Map from docid to text location (also gives title for each doc)

a. total amount of storage (megabytes) 24 Mbytes.

b. tot;\l computer time to build (approximate number of hours)

Time to create included in inverted file creation above.

c. is the prcKess completely automatic? Automatic

otlier data structures built from TREC text (what?)

449

Map from internal concept to token string

a. toLil lunount ot storage (megabytes) 13 Mbytes

b. total computer time to build (approximate number of hours)

Time to create included in inverted tile creation for Dl
c. is the pnKess completely automatic? Automatic

C. Data built from sources other th;iii ilie input text

None, other tlian stopword tile.

II. Query consuuction

(please fill out a section lor each query construction method used)

D. Automatically built queries (routing)

1. topic tields used Topic, Nationality, Narrative, Concepts, Factors, Description

2. total computer time to build query (cpu seconds) 306

3. which of the following were used in building the query?

a. terms selected from

(1) topic

; (3) only documents with relevance judgments

b. tenn weighting

(1) with weights based on terms in topics

(2) with weights based on terms in all training documents

(3) with weights based on terms from documents with relevance judgments

i. expansion of queries using previously-constructed data structure (from part I)

(1) which suucture? 30 best terms from relevant docs

III. Searching

A. Total computer tune to seiirch (cpu seconds) 293 seconds (includes retrieval + ranking).

1. retiieval tijne (total cpu seconds between when a query enters the system until a list of

document numbers juc obtained)

2. ranking time (totiiJ cpu seconds to sort document list)

B. Which methods best describe your machine seiirching inethods?

1. vector space model

C. What factors are included in youi- ranking?

1. tenn frequency

2. inverse dcKument frequency

9. document length

IV. What machine did you conduct tlie TREC experiment on? Sun SPARC 2

How much RAM did it have? 64 MB
What was the clock rate of Uie CPU? 40 Mhz

V. Some systems are research prototypes and others are commerciiU.

To help compare tliese systems:

1. How much "softwaie engineering" went into the development of your system?

About 3 person-years for the SMART .sy.stem itself

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)? Of course!

450

What features is your system missing that it would benefit by il it had them

451

System Summary and Timing

University of California, Berkeley

General Corrunents

The timings should be the time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometimes will be difficult, such as getting total time for d(x;ument indexing of huge

text sections, or manually building a knowledge ba.se. Please do your best.

I. Consu-uction of indices, knowledge ba.ses, and other data structures (please describe all data structures that

your system needs for .searching)

A. Which of tlie following were u.sed to build your data sU'uctures?

1. stopword li.st Yes, augmented SMART st(»plist

a. how many words in list? Aliout 6(M)

2. is a controlled vocabuhiry u.sed? no

3. stemming

a. stiuidfud sieimning rdgoritlims yes

which ones? SMART system (Version 10) .stemmer

b. moiphological mnilysis none

4. tenn weighting

yes. Weights determined fr»)m various frequency statistics by logistic regression

,S. phrase di.scovery none

6. syntactic piusing none

7. word sense di.srunbiguation none

8. heuristic associations none

9. spelling checking (with manual coirection) none

10. spelling correction none

11. proper noun identification cUgorillim none

12. tokenizer (recognizes dates, phone numbers, comnon patterns) none

13. are the mjuiually-indexed terms used? no

14. other techniques u.sed to build diita structures (brief description)

B. Statistics on diita structures built from TREC text (plea.se fill out each apphcable section)

1. inverted index

a. total junount of storage (megabytes)

Ranges from 70 to 180 mh for each of the five collections

b. tot^d computer time to build (approximate number of hours)

Ranges from 6 to 14 hours for each of the five collections

c. is the process completely automatic? yes

d. are term positions wiiliin dcKuments stored? no

e. single terms only? yes

C. Data built from souices other th;ui tiie input text —no

II. Query construction

(plea.se fill out a section for each query consU'uction method u.sed)

A. Automatically built queries (ad hoc)

452

1. topic fields used all

2. total computer time to build query (cpu seconds) uround 3 seconds total per (juery

3. which of the following were used?

a. term weighting wilJi weights based on tenns in topics

j. other (describe)

Al)s«ilute and relative frequency of each stem in query were used to weight

the stems, using a formula obtained by logistic regression from the WSJ
relevance data.

III. Searching

A. Total computer time to seiuch (cpu seconds)

1. reti'ieval tijne (total cpu seconds between when a query enters ilie system until a list of

document numbers :ue obtained)

2. ranking time (total cpu seconds to sort document list)

B. Which methods best describe your machine semching metliods?

2. probabilistic model

Yes, probabilistic searching based on linked dependence assumption and two stages

of logistic regression as described in Proceedings ACM/SIGIR Copenhagen June

1992.

C. What factors are included in youi- ranking?

1. tenn frequency

2. inverse document frequency

3. other term weights (where do they come from?) see 15. below

5. position in document stem occurrence frequencies in titles were doubled in some collections.

9. docujnent lenglJi

15. other (.specify)

variables used were:

absolute and relative frequency of stem in query

ab.solute and relative frequency of stem in document

inverse document frequency of stem in cidlection

global relative frequency of stem in all document texts

document length measured in stem-occurrences.

IV. What machine did you conduct tlie TREC experitnent on?

Three different machines:

1. DECStation 5(MM)/125 with 16 Megabytes RAM for most work.

2. DECStation 5000/125 with 64 Megabytes RAM for a little.

3. IBM Model M)9i) for the logistic regre.ssion analysis.

How much RAM did it have?

What was the clock rate of tlie CPU?
25 MHz for the 16 Megabyte DECStation. This was used for the timed retrieval

runs.

40 MHz f(jr the 64 Megabyte DECStation.

V. Some sy.stems are research prototypes and others lue commerci:il.

To help compiue tliese systeins:

1. How much "softwiue engineering" went into the development of your system?

None except for the novel two-stage probabilistic logic. The Berkeley system is an

experimental prototype only, programmed as a minimal modification of the SMART

453

system.

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

Yes, see discussion in SMART'S documentation: SMART is "not strongly optimized

for any one particular use." The Berkeley system has roughly the same efTiciency

characteristics as SMART.
3. What features is your system missing that it would benefit by if it had them?

Would probably benefit from a conflator, a thesaurus, a disambiguator, phrase

discovery, stem proximity detection, etc. The Berkeley system is a bare-bones design,

intended only to explore the workability of staged logistic regression.

454

System Summary and Timing

Universitaet Dortmund

Single term automatic ad hoc run (Fuhr learning)

General Comments

The timings should be Uie time to replicate runs from scratch, not including trial runs, etc. The limes should also

be reasonably accurate. This sometimes will be diilicult, such as getting tot.-U time for d(x.ument indexing of huge
text sections, or manuidly building a knowledge base. Please do your best.

I. Construction of indices, knowledge bases, and other data su-uctures (please describe all data structures that

your system needs for searching)

A. Which of tlie following were u.sed to build your daui sQ-uctures?

1. stopword list

a. how many words in list? 570

2. is a controlled vwabuljiry used? no

3. steiTuning yes

a. standiud stemming idgoriilims

which ones? SMART
b. morphological ;ui:ilysis

4. tenn weighting

In docs, linear combination of several factors

In queries, tf * idf, cosine normalization (ntc)

5. phra.se discovery no

6. syntactic piu^sing no

7. word sen.se di.siunbiguaiion no

8. heuristic as.sociations no

9. spelling checking (with manual correction) no

10. spelling correction no

11. proper noun identitication iilgoritiim no

12. tokenizer (recognizes dales, phone numbers, common patterns) no

13. are the manually-indexed terms used? no

14. other techniques used to build diita structures (brief description)

Coefticients for linear combinations used in weighting were determined automatically

using Q],Dl,Judgments of Ql on Dl. This took 1.7 hours (not including 2.6 hours

to index Q1,D1).

B. Statistics on iiaUi structuies built from TREC text (please till out each applicable section)

1. inverted index

a. total amount of storage (megabytes) 690

b. total computer time to build (approximate number of hours)

4.7 hours to create doc vectors from text

1.7 hours to reweight doc vectors and produce inverted file

c. is the process completely automatic? yes

d. term positions witiiin d(x:uments stored? no

e. single terms only? yes

5. other data su-uciures built from TREC text (what?)

Map from docid to text location (also gives title for each doc)

a. total amount of storage (megabytes) 68 Mbytes.

b. toLal computer time to build (approximate number of hours)

455

Time to create included in inverted tile creation above.

c. is the process completely automatic? yes

other data structures built from TREC text (what?)

Map from internal concept to token string

a. total ajnount ot storage (megabytes) 18 Mbytes

b. total computer tijne to build (approxijnate number of hours)

Time to create included in inverted file creation above.

c. is the process completely automatic? yes

C. Data built from sources other thrui the input text

None, other than stopword file.

II. Query construction

(please fill out a section tor each query consU"uction method used)

A. Automaticjilly built queries (ad hoc)

1. topic fields used Topic, Nationality, Narrative, Concepts, Factors, Description

2. total computer tijne to build query (cpu seconds) 1.5 seconds

3. which of the following were used?

a. term weighting witii weights based on tenns in topics (idf)

III. Searching

A. Total computer time to seru"ch (cpu .seconds) 383 seconds (includes retrieval + ranking).

1. retjieval lime (total cpu .seconds between when a query enters the system until a list of

document numbers 'Me obtained)

2. ranking time (totril cpu .seconds to sort d(x:ument list)

B. Which methods best describe your machine seiuching metliods?

1. vector .space mcxlel

2. probabilistic model

C. What factors ivm included in your ranking?

1. tenn frequency

2. inverse dcK'ument frequency

8. infonnation theoretic weight.s

9. document length

IV. What machine did you conduct tlie TREC experiment on? Sun SPARC 2

How much RAM did it have? 64 MB
What was the clock rate of the CPU? 40 Mhz

V. Some systems are research prototypes and others aie commercial.

To help compare lliese systems:

1. How much ".software engineering" went into the development of your system?

About 3 person-years for the SMART system itself

2 person-weeks for the Fuhr weighing code

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

Of course!

A 6 machine distributed version of SMART should be faster by a factor of 3 for

both indexing and retrieval.

456

What features is your system missing tliat it would benefit by if it had them

Distributed version has not fully been implemented yet.

457

System Summary and Timing

Universitaet Dortmund

Phrase automatic ad hoc (Fuhr learning)

General Comments

The timings should be ilie lime to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometijnes will be difficult, such as getting totiil time for dcKument indexing of huge

text sections, or mjuiujilly building a knowledge base. Plea.se do your best.

I. Consti uction of indices, knowledge bases, and other data structures (plea.se describe all data structures that

your system needs for searching)

A. Which of die following were used to build your data structures?

1. stopword list

a. how many words in list? 570

2. is a controlled vocabuhuy u.sed?

Not tor single terms.

A phrase list was automatically constructed from plirases occurring 25 times or more

ill the tlrst doc set (Dl). Only tho.se phrases were u.sed.

3. steimning yes

' a. stiind;u"d stemming algoritlims

which ones? SMART
b. moiphological aiiidysis

4. tenn weighting

In docs, linear combination of .several factors

In queries, tf * idf, cosine normalization (ntc)

5. phra.se discovery

a. what kind of phra.se?

Adjacent non-stopwords, components stemmed, that occurred at least 25

times in the Dl document set.

b. using statistical methcxls

c. using syntactic methods

6. syntactic piu^sing no

7. word .sense disambiguation no

8. heuristic associations no

9. spelling checking (with manual correction) no

10. spelling correction no

11. proper noun identification jilgorillim no

12. tokenizer (recognizes dates, phone numbers, common patterns) no

13. iue the mmiually-indexed terms used? no

14. other techniques used to build diita structures (brief description)

Coefticients for linear combinations used in weighting were determined automatically

using Ql,Dl,.Iudgments of Ql on Dl. This took 2.4 hours (not including 5.6 hours

to index Q1,D1).

B. Statistics on data structures built from TREC text (plea.se fill out each applicable section)

1. inverted index

a. total amount of storage (megabytes) 840

b. total computer titne to build (approximate number of hours)

9.7 hours to create doc vectors from text

458

2.9 hours to reweijjjlit doc vectors and produce inverted file

c. is the prcKcss completely automatic? yes

d. are term positions vviUiin Uocumems stored? no

e. single terms only? no

5. other data structures huilt Irom 1 REC text (what?)

Map from docid to text location (also gives title for each doc)

a. total iunouni ol storage (megabytes) 6S Mbytes.

b. total computer time to build (approxijnate number of hours)

Time to create included in inverted file creation above.

c. is the process completely automatic? yes

other data structures built from TREC text (what?)

Map from internal concept to token string

a. toial iunount of storage (megabytes) 25 Mbytes

b. totiil computer time to build (approximate number of hours)

Time to create included in inverted file creation above.

c. is the pr(x:ess completely automatic? yes

other data structures built from TREC text (what?)

Phrase dictionary (c«»ntrolled vocabulary)

Phrases were adjacent non-stopwords, components stemmed, that occurred at least

25 times in the Dl document set.

a. total iunount of storage (megabytes) 14 Mbytes to store dictionary.

b. total computer tijne to build (approximate number of hours)

It took 5.8 hours to index Dl, finding 4,7()<),<HH> phrases and their collection

stats. Of those phrases 158,(MH) occurred at least 25 times.

c. is the pr(K"ess completely automatic?

C. Data built from sources other thiui tiie input text

None, other than stopword file.

II. Query construction

(please fill out a section for each query construction method used)

A. Automatically built queries (ad hoc)

1. topic fields used Topic, Nationality, Narrative, Concepts, Factors, Description

2. total computer tiine to build query (cpu seconds) 2.7 seconds

3. which of the following were used?

a. term weighting witJi weigiits based on tenns in topics (idf)

b. phrase extraction from topics yes, using controlled list of phrases

III. Searching

A. Totid computer time to search (cpu seconds)

374 seconds (includes retrieval + ranking).

1. retiieval tijne (total cpu seconds between when a query enters the system until a list of

document numbers are obtained)

2. ranking time (total cpu seconds to sort d(Kument list)

B. Which methods best describe your machine searching methods?

1. vector space m(xlel

2. probabilistic model

C. What factors lu-e included in your ranking?

459

1. tenn trequency

2. inverse document frec|uency

7. proxunity of terms (for phrases)

8. infonnalioii theoretic weights

9. document lengtli

IV. What machine did you conduct iJie TREC experijnent on? Sun SPARC 2
How much RAM did it have? 64 MB
What was the clock rale ol" Uie CPU? 40 MHz

V. Some systems are resemch prototypes and others ;ue commerciaJ.
To help compjire iJiese systems:

1. Mow much "sottwiire engineering" went into the development of your system?
About 3 person-years for the SMART system itself

2 person-weeks for the Fuhr weighing code
2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

Of course!

Can speed up phrase indexing by 40% by algorithm change (speed up has been done
for single terms, but not for phrases)

3. What features is your system missing that it would benefit by if it had tliem?

460

System Summary and Timing

Universitaet Dortmund

Automiitic routing (RPI feedback)

General Comments

The timings should be die time to replicate runs from scratch, not including trial runs, etc. The tijnes should also

be reasonably accurate. This sometimes will be difficult, such as getting lotid time lor d(x:ument indexing of huge
text sections, or miuiually building a knowledge base. Please do your best.

I. Construction of indices, knowledge bases, and other datii structures (please describe all data structures that

your system needs for searching)

A. Which of ilie following were used to build your data structures?

1. stopword list

a. how many words in list? 570

2. is a controlled vcK-abuiiuy used? no

3. stemming yes

a. stiuidiud stemming iilgorilhms

which ones? SMART
b. morphological analysis

4. tenn weighting

In docs + querie.s, tf * idf, cosine normalizution (ntc) (in docs idf is l)a.sed on

collection frequency within doc set Dl only)

5. phrase discoveiy no

6. syntactic parsing no

7. word sense disiunbiguation no

8. heuristic associations no

9. spelling checking (with manual correction) no

10. spelling correction no

11. proper noun identification aJgoriilim no

12. tokenizer (recognizes dates, phone numbers, common patterns) no

13. iue the m;uiurilly-indexed terms u.sed? no

14. other techniques used to build data structures (brief description) n(»

B. Statistics on data structuies built from TREC text (please fill out each applicable .section)

1. inverted index

a. total junount of storage (megabytes) 275

b. total computer lime to build (approximate number of hours)

1.9 hours (not including time to index Dl to obtuin collection frequency info)

c. is the process completely automatic? yes

d. iue term positions williin documeiils stored? no

e. single terms only? yes

5. other data suuctures built from TREC text (what?)

Miip from docid to text location (also gives title for each doc)

a. total iunount of storage (megabytes) 24 Mbytes.

b. total computer time to build (approximate number of hours)

Time to create included in inverted file creation above.

c. is the process completely automatic? yes

other data structures built from TREC text (what?)

461

Map from internul concept to token string

a. total lunouiit of storage (megabytes) 13 Mbytes

b. total computer time to build (approximate number of hours)

Time to create included in inverted tile creation of Dl.

c. is the pnK'ess completely automatic? yes

C. Data built from sources other thjui ilie input text

None, other than stopword tile.

II. Query construction

(please fill out a section for each query construction method used)

D. Automatically built queries (routing)

1. topic fields used all

2. total computer time to build query (cpu seconds)

13(H) seconds, not including time to index Dl (3.0 hours)

3. which of the following were used in building the query?

a. terms selected from

(1) topic

b. tenn weighting

(1) with weights based on terms in topics

(2) with weights based on terms in all training documents

(3) with weights based on terms from documents witli relevance judgments

III. Searching

A. Totid computer tijne to se;u"ch (cpu seconds) 312 seconds (includes retrieval + ranking).

1. reuieval tijne (total cpu seconds between when a query enters the system until a list of

document numbers me obtained)

2. ranking time (totiU cpu seconds to sort document list)

B. Which methods best describe your machine seiuching methods?

1 . vector space model

2. probabilistic model

C. What factors iU"e included in your ranking?

1. tenn frequency

2. inverse d(K'ument frequency

8. infonnation theoretic weights

9. document length

IV. What machine did you conduct tJie TREC experiment on? Sun SPARC 2

How much RAM did it have? 64 MB
What was the clock rate of Uie CPU? 4» MHz

V. Some systems cire reseiuch prototypes and others lue commerciiU.

To help compiire tJiese systems:

1. How much "softwiue engineering" went into the development of your system?

About 3 person-years for the SMART .system itself

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

Of course!

Due to algorithm flaw, CPU time for constructing routing query is about a factor of

462

5 too much (Algorithm found best terms to expand by even though we had requested

expansion by i) terms).

3. What leatuies is your system missing that it would beiiclit by il it liad tlicm?

463

System Summary and Timing

University of Illinois at Chicago

General Coininents

The timings should be Uie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometimes will be ditlicult, such as getting total time for document indexing of huge

text sections, or manually building a iaiowledge base. Plea.se do your best.

I. Construction of indices, knowledge ba.ses, and other data structures (please describe all data structures that

your system needs for .searching)

Each document Is represented as a set <>f word pairs. Pairs were ftirmed from all adjacent

word.s, plus all words .separated liy one and two intermediate words. Documents were the

unit of organization for the data structure. If a pair occurred only once in a document it was

dropped from the data structure for that document only.

A sample record is as follows:

MULTIMEDIA ENCYCLOPEDIA 2 WSJ880818-()014

The numl>er of times the pair occurred in the document appears in the third field, just before

the document id.

A. Which of tlie following were used to build your data structures?

1. stopword list

The stopword list from SMART version 1() was u.sed. Some additional stop words

from TREC markup codes were used.

a. how many words in list? The total size of the stoplist was 631 words.

2. is a controlled v(x:abuhiry used? none

3. stemming none

a. stiuidiu^d stemming algorillims

which ones?

Some small stemming experiments were later performed using the code from

SMART version 10 and three training queries. For query 002 stemming

had no effect, while for query 026 it resulted in a 43% increa.se in recall,

and for query 049 a 73% improvement in recall.

b. moiphological luuilysis none

4. tenn weighting

None. Weighting was planned but could not be implemented given .limitatioas that

arose.

5. phrase di.scovery

a. what kind of plirase?

Word pairs occurring within three word positions of one another.

b. using statistical methods All such pairs were identified.

c. using syntactic methods

6. syntactic pitfsing none

7. word .sen.se disiunbiguation none

8. heuristic associations

a. short detlnition of the.se as.sociations Only the basic pairing as.sociations used.

9. spelling checking (with manual correction) none

10. spelling correction none

464

11. proper noun identification ;iJgontJiin none

12. tokenizer (recognizes dales, phone numbers, common pallenis) none
13. me the m;uiu:tJly-indexed terms used? none

14. other techniques used lo build diila structures (brief description) none

B. Statistics on d^ita structures built from TREC text (please fill out each applicable .section)

1. inverted index Based only on pairs, not individual terms.

a. total iunount of storage (megabytes) 819 Megabytes
b. total computer tijne to build (approximate number of hours) 1(M> hours

c. is the puKess completely automatic? yes

d. are term positions wiiliin documents stored? no

e. single terms only? none

2. n-gnuns, suffix arrays, .signature files See Bl.

C. Data built from .sources other th;m tJie input text --no

II. Query construction

(plea.se fill out a .section for each query consuuction method u.sed)

A. Automatically built queries (ad hoc)

1. topic fields u.sed Title, Description, Narrative, and Concepts (only first two.)

2. total computer time to build query (cpu .seconds) 0.26 second.

3. which of the following were used? none

D. Automaticiilly built queries (routing)

1. topic fields used Title, Description, Narrative, Concepts (first two).

2. total coinpuler time to build query (cpu .seconds) 55 seconds

3. which of the following were used in building tlie query?

c. phiuse extraction

(2) from ;ill tr;uning documents

Word pairs occurring in the relevant training documents for the

query hut not in the irrelevant documents were u.sed.

III. Searching

A. Total computer time to .seiu'ch (cpu seconds)

1. retrieval time (total cpu seconds between when a query enters ilie system until a list of

document numbers ;ue obtained)

This was not optimized for the current experiments. Run time was approximately

20 minutes per .search. Proper optimization will reduce this time.

2. ranking time (total cpu seconds lo sort dcK'ument list) .22 seconds

B. Which methods best describe your machine .seiirching melliods?

4. n-gnuB matching

C. What factors me included in your ranking?

11. n-gnun frequency

IV. What machine did you conduct tiie TREC experiment on? IBM 3090/300.J

How much RAM did it have? 16 Meg for a virtual machine.

What was the clock rate of tlie CPU? 14.5 nanoseconds, or 69 MHz.

V. Some systems are re.semch prototypes and others ;ire commerci;d.

To help compme llie.se systems:

465

1. How much "softwiire engineering" went into the development of your system?
40 hours of new development, l)eyond using word pairing t(»oIs that were developed
earlier over a period of years.

2. Given appropriate resources, could your system be made to run taster? By how much
(estimate)?

Yes, search time could he reduced, hut a reliahle estimate of how much cannot be
made at this time.

3. What features is your system missing that it would benefit by if it had them?
Phrase weighting

Term weighting and auxiliary single term search

Stemming

Removal of pair order effects

Shortest path network search

466

System Summary and Timing

Bellcore

General Comments

The timings should be tlie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometimes will be ditticult, such as getting toliil time lor document indexing ol huge
text sections, or manujilly building a knowledge ba.se. Plea.se do your best.

I. Construction of indices, knowledge bases, and other data structures (please de.scribe all data structures that

your system needs for .seiirching)

A. Which of tlie following were used to build your daui structures?

1. slopword list yes (though .some experiments without stoplist)

a. how many words in iisl? n=439; standard SMART list, I think

2. is a controlled v(x:abul;uy u.sed? no

3. stemjning none (except truncation at 20 characters/wd)

4. tenn weighting ye.s, log(tf)*(l -entropy)

5. phra.se di.scovery no

6. syntactic p;u"sing no

7. word .sen.se disiunbiguation no

8. heuristic as.sociations no

9. spelling checking (with manual correction) no

10. spelling collection

no (not directly, hut the LSI analyses does .some of this for free)

11. proper noun identification iilgoriLlim no

12. tokenizer (recognizes dates, phone numbers, coimnon patterns)

13. are the miuiuiilly-indexed terms used? no

14. other techniques used to build diita structures (brief description)

LSI/SVD analysis of term-hy-document matrix. Takes raw term-by-doc matrix;

transforms entries using log entropy term weightings; calculates be.st

"reduced-dimensional" approximation to transformed matrix using SVD. Number
of dimen.si<ms 25(^35(>. Does all query-doc matching in this reduced-dimension

vector .space.

B. Statistics on ckita structures built from TREC text (plea.se fill out each applicable section)

5. other data su^uctures built from TREC text (what?)

LSI/SVD u.ses reduced-dimensional vectors (see below for de.scription of how they are

derived). The number <»f dims was between 235 and 250. There is one such vector

for each term and for each document. Queries are also represented as vectors and

compared to every document,

a. total iunount of storage (megabytes)

All reduced dimensional vectors are stored in a binary databa.se. Databa.se

consi.sts of a vector for every d(»c and every term occurring in more than

one doc. The vectors currently consist of single precision real values. For

TREC, we built one databa.se for each c<»llection.

Approx. 50<MM) docs are .sampled. Terms that occur in more than one of

the.se documents are u.sed in the SVD analysis. The remaining docs are

added to the databa.se.

DOEl - docs: 226087, terms: 42221, ndim: 250 -> 262 meg db

467

WSJl - docs: 99111, terms: 70019, ndim: 250 -> 169 meg db
API - docs: 84930, terms: 78167, ndim: 250 -> 163 meg dh

ZIFFl - docs: 751 8(>, terms: 60565, ndim: 250 -> 135 meg db

FRl - docs: 26207, terms: 54713, ndim: 250 -> 80 meg db

WSJ2 - docs: 74520, terms: 76080, ndim: 235 -> 141 meg db

AP2 - docs: 79923, terms: 82997, ndim: 235 -> 153 meg db

zn<V2 - docs: 5692(>, terms: 72197, ndim: 235 -> 121 meg db
FR2 - docs: 2(H08, terms: 48728, ndim: 235 -> 64 meg db

Used 250 dims for routing and 235 dims for ad hoc queries.

In general, database size will be: (ndocs+nterms)*ndim*4

The totals here are 1288 meg (75(K)0(> docs and 585000 terms).

If a single database had been used, the total would have been smaller

because of term overlap—currently, many of the terms are represented in

more than one database; there are only 200000 unique terms.

b. total computer tune to build (approximate number of hours)

Four main stages:

1. indexing (extracting keys; calculating wts; etc.)

2. SVD (number of dimensions extracted ranged from 235-310)

NOTE 1: only 235-250 dims were actually used for retrieval. I don't have

timing data for extracting only this smaller number of dimensions,

but I'd estimate that the numbers for API, ZIFFl and FRl could

be reduced by about 20%.

NOTE 2: initial indexing and SVD are typically done on a subset of -50(M)0

docs and nterms

3. various i/o translations (much of this will go away soon)

4. adding new docs to dbase (if sub-sampled for SVD).

SVD done on -50000 docs; the remaining docs are indexed and added to the

database after the SVD.

all times in MINUTES (SVD run on DEC5000; rest on SPARC2)
DOEl - index: 49 SVD: 1219 io: 194 add: 591 SUM: 2053 mins

WSJl - index: 241 SVD: 1474 io: 174 add: 404 SUM: 2293 mins

API - index: 271 SVD: 1644 io: 214 add: 455 SUM: 2584 mins

ZIFFl - index: 241 SVD: 1359 io: 156 add: 352 SUM: 2108 mins

FRl - index: 241 SVD: 939 io: 133 add: 0 SUM: 1313 mins

WS.I2 - index: 427 SVD: 1382 io: 22(^ add: 461 SUM: 2490 mins

AP2 - index: 338 SVD: 1210 io: 218 add: 273 SUM: 2039 mins

ZIFF2 - index: 260 SVD: 1452 io: 208 add: 0 SUM: 1920 mins

FR2 - index: 187 SVD: 486 io: 105 add: 0 SUM: 778 mins

c. is the process completely automatic? YES
d. brief description ot methods used

LSI/SVD analysis of document collection

1. creates raw term-by-doc matrix; transforms entries using log entropy

term weightings

2. calculates best "reduced-dimensional" approximation to transformed

matrix using SVD. Number of dimensions in the SVD calculations ranged

from 235 to 310. BUT, only 235 or 250 were used for the comparisons.

Fewer dims could have been calculated, so some reported SVD times are

higher than necessary. I'd estimate about 20% reductions in SVD times for

API, ZIFFl, and FRl.

3. perform various database translations. Current SVD program outputs

vectors in a different format and order than we need for the database. It

468

will eventually output vectors in the appropriate data!)a.se format, and this

entire step can i)e omitted.

4. SVD calculations usually run on ~5(>,(*<>'' docs x nterms matrices. The
remaining docs (if any) were indexed and added to the database here,

C. Data built liom sources other th;ui tJic input text -no

II. Query coiistiuction

(please till out a section for each query conslruction method used)

A. Automatically built queries (ad hoc) yes

submitted two sets of ad hoc queries; queries were the same in both cases; only difference

was how information from different sub-collections was combined

1. topic fields used

all (except NO manually indexed terms used)

2. total computer tijne to build query (cpu seconds)

Queries are vector sums of constituent term vectors

Separate query vectcu- created for matching against each of 9 databases (DOE,

WS.I1, API, FRl, Zn<Fl, WS.I2, AP2, FR2, Zn<F2)

Time = .4 sec/query/datal)ase -> 3.6 sees/query

NOTE: These times simulate handling each query separately (so there Is no i/o

buttering). There are big improvements if you initially read in all the term vectors

and create all the ad hoc queries at once.

3. which of the following were used?

a. term weighting wiili weights based on tenns in topics

term weighting, but weights based on term usage in document collections

h. expansion of queries using previously-constructed d:ita structure (from piirt I)

not really

D. Automatically built queries (routing) yes

submitted two sets of routing queries. Both were automatically created from

1) the text of the topics and

2) the relevant documents

1. topic fields used

all (except NO manually indexed terms) tor both 1) and 2)

2. total computer time to build query (cpu seconds)

Queries are vector sums of constituent term vectors [case 1)] or document vectors

[case 2)].

Separate query vector created for matching against each of 4 separate databases

(WS.I1, API, FRl, ZIFFl)

Time = .4 sec/query/database in case 1) -> 1.6 sees/query

Time = .1 sec/query/database in case 2) -> 0.4 secs/t|uery

NOTE: These times simulate handling each query separately (so there is no i/o

buttering).

3. which of the following were used in building Llie query?

a. terms selected from

(1) topic case 1)

(3) only documents with relevance judgments case 2)

b. tenn weighting

(2) with weights based on terms in all training documents

III. Searching

469

A. Total computer time to seiuch (cpu seconds)

1. retrieval time (total cpu seconds between when a query enters tlie system until a list of

document numbers lue obtained)

Time — ~5(MH)(> query-d()C comparisons/minute when all vectors are pre-loaded.

Currently, we compare ALL docs to each query.

For ad hoc queries, the time to compare a query to the 75(>,(HH) docs is ~12 minutes

For routing queries, the time to compare a query (new doc) to the profiles (50

profiles in each of 4 databases) is about .3 sec

2. ranking time (total cpu seconds to sort d(K'ument list)

none; it's included in the times given in L Currently both comparisons and ranking

are done in the same routine

B. Which methods best describe your machine searching metliods?

1. vector space model

' C. What factors ;ue included in your ranking?

Hum, not sure I get this. Similarity l)etween a query and a document is the cosine between

the query vector and the document vector. This cosine determines the rank.

Term weights are used to determine the location of the query vector. The query is located

at the weighted vector sum of its constituent terms.

' 1. lenn frequency l(»g(tf)*(l -entropy) term weight; so there's a tf part

3. other term weights (where do they come from?)

log entropy; weight come from training docs (diskl) for routing queries, and from

both the training and test docs for ad hoc queries

4. semimtic closeness (as in semantic net distance)

sort of; if you think of term vector locations as reflecting semantic associations. But

these locations are auto derived from the SVD analysis

8. infonnaiion theoretic weights h)g (tf) * (1-entropy)

IV. What machine did you conduct tlie TREC experiment on?

How much RAM did it have?

What was the clock rale of iJie Ci^U?

SVDs run on DECSOOO w/ ~4(M) meg; clock is ??? MHz
all else run on SPARC 2 w/ 384 meg; dock is 25 MHz (I think)

V. Some systems iue reseiuch prototypes and others lue commerciiil.

To iiclp compare tliese systems:

1. How much "softwiue engineering" went into the development of your system?

Real hard. The system was built as a research prototype to l(M)k at many different

issues. I'd say about 1-2 person-years, but this is much more than would have been

required if specs had been fixed at the beginning.

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

Tile existing t«)ols were used pretty much as is for TREC, even though they were

developed to work with much smaller databases. Also, there are far more

parameters and options than we typically use. Almost no effort went into

re-engineering for large databases or to more efficiently handle what we now use as

default parameters.

Time in query c<mstruction and retrieval are spent:

1) seeking for vectors in a single large database of term and doc vectors.

The database could easily be split.

2) many calculations (scalings of various sorts) are done on the fly. This

could be eliminated if one knew that users wanted to retrieve only

470

dttcuments, tor exumple. Currently both terms and docs tan he

retrieved with the same programs and scaling Isn't done until we

see that the user wants retrieved.

3) all calculations are done in floating point. Could he done with integers.

4) each ad hoc query was compared to EVERY d(K:ument. This can he

speeded up hy some document clustering algorithms that we have

lo(»ked at. This can also be speeded up tremendously hy using more

than one machine or hy using a parallel machine. All vectors are

independent, so it's trivial to split query processing.

I'd guess that improvements of a factor of 2-5 could he obtained just by tweaking

items 1), 2) and 3).

Parallel query matching is the way to go. For example, we got speed-ups of 5()-l(M)

times using a MasPar for query storage and processing with no attempt to optimize.

In terms of pre-processing and SVD analyses:

1) about 10% of the time is spent in unnecessary I/O translation (because

we've patched together pre-existing tools). Much of this will

eventually go away.

2) more than 5i)% of the time is spent in the SVD. These algorithms get

better and faster all the time (the algorithm we now use is about

100 times faster than what we used initially). There are

speed-memory tradeoffs in different SVD algorithms, so time can

probably be decreased by a factor of 2 or 3 by using more memory.

Parallel algorithms will help some, but probably only by a factor or

2 or 3.

These are one-time costs for relatively stable domains. We've f<»und that new items

can be added to the existing solutions without redoing the scaling for a while.

Others ???

What tealures is your system missing that it would benefit by it it had them?

Precision would probably be increased by many of the standard things—phrases,

pn>per noun identification, tokenizer (for dates, phone numbers, addresses, etc.), and

some better handling of negation and union.

Some form of literal string matching might be useful to use in combination with LSI

for some types of queries.

Others ???

471

System Summary and Timing

Queens College, CUNY

General Comments

The timings should be tlie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometijnes will be dilticull, such as getting total time tor document indexing of huge

text sections, or miuiuiilly building a knowledge ba.se. Please do your best.

I. Construction of indices, knowledge bases, and other data structures (please describe all daUi structures that

your system needs for semching)

A. Which of Llie following were used to build your data structures?

1. stopword list yes

a. how many words in list? 595

2. is a controlled v(x:abul;uy used? no

3. steiruning

a. st;indiu"d steiruning algoritlims yes

which ones ' Porter's Algorithm

b. moiphological iuialysis no

4. tenn weighting yes

5. phrase di.scovei^ no

6. syntactic pjusing no

7. word sense disajnbiguation no

8. heuristic as.sociations no

9. spelling checking (with manual coneciion) no

10. spelling coirection no

11. proper noun identification lUgoriLlim no

12. tokenizer (recognizes dates, phone numbers, coirunon patterns) no

13. iue the manually-indexed terms used? no

14. other techniques used lo build d;ila structures (brief description)

A table of 396 manually created 2-word phrase.s. When these are identifled in

adjacent positions in documents or queries, they are u.sed as additional index terms.

B. Suitistics on diita structuies built from Tl^C text (please fill out each applicable section)

1. inverted index

a. total ajnount of storage (megabytes) 378

b. total computer time to build (approximate number of hours)

95+ll-l-2=l(»8 for 5(M)MB. clock time

c. is tlie process completely automatic? Ye.s, if sufficient disk. Not in tlii.s experiment.

if not, approximately how many hours of manual labor? 0.5

d. iue term positions wiiliin documents stored?

No, hut .sentence yes. Can modify to capture word positions.

e. single terms only? Yes, except for I.A.14.

4. special routing structures (what?) See I.B.5

Netw(»rk node, edge files. Routing using network node and edge files i.s

.straightforward.

a. total iunount of storage (megabytes)

Node tile: 4x7.5 Edge tile: 4x4

Network .segmented into 4, becau.se of insufficient ram.

b. total computer tijne to build (approximate number of hours)

472

4(>+5+l+4x(>.2=46.8, starting from text file.

c. is the pnxess completely automatic? yes if sufficient ram and disk space.

d. brief description of methods used

1. Process (old) collection A.

2. Process queries against collection A.

3. Process new collection B as if they were ijueries—to make use of collection

A statistics.

4. Combine queries, (old) dictionary and collection B into network for

retrieval.

5. otlier data structures built from TREC text (what?)

1. Suhdocument file

2. Coded tile

3. Docid checking file

4. Termid checking file

5. Docnum tile

6. Termnum (dictionary) tile

7. Direct tile

8. Index to direct file

9. Node file

10. Edge tile

a. total iunount of stonige (megabytes)

1. 481 2. 324

3. 7 4. 4

5. 11 6. 6

7. 372 8. 19

9. 4x14 10. 4x9

System was developed for experimental research, with flexihility to generate

other data. Some of the files are n<»t necessary for retrieval.

b. total computer tijne to build (approxijnate number of hours)

1. 1.5

2,3,4,5,6. 95

7,8. 11

9,10. 4x(K25=l

c. is the process completely automatic?

Yes if sufficient RAM and disk space. For this experiment, no.

if not, approximately how many hours of manual labor? 2

d. brief description of methods used

raw text --> suhdocument file

suhdocument —> coded file, docid file, termid file, docnum file, termnum

(dictionary) file.

Zipf-law program truncates dictionary via user assigned limits.

Coded, termnum --> direct file with index

direct --> inverted file

direct, inverted --> node, edge files.

C. Data built from sources other thaii tlie input text

1. intenially-built auxilimy files

a. domain independent or domiiin specific (if two sepsu-ate tiles, please fill out one set

of questions for each file) phrase file

b. type of file (thesaurus, knowledge base, lexicon, etc.) word pair

c. total amount of storage (megabytes) ().005

d. total number of concepts represented 396

f totid computer time to build (approximate number of hours)

0 (this is a file created via editor).

473

g. total miuiual tune to build (approximate number of hours) 16

h. use ot manual labor

(4) oilier (describe) Search tor WSJ terminoh)gy in library and from topics.

2. extenially-built auxiliiuy file no

II. Query construction

(please fill out a section for each query construction method used)

A. Automaticidly built queries (ad hoc)

1. topic fields used <TITLE>, <DESC>, <NARR>, <CON>
2. total computer time to build query (cpu seconds) 5 (average for each query).

3. which of the following were used?

a. term weighting witli weights based on terms in topics yes + others

h. expiuision of queries using previously-constructed diita structure (from part I) yes

(1) which stiucture? word-pair phrase tile

B. Manually consuucted queries (ad hoc)

1. topic fields used <TITLE>, <DESC>, <NARR>, <CON>
2. average tijne to build query (minutes) 300 minutes for 25 queries

3. type of query builder

b. computer system expert

4. tools used to build query

a. word frequency list sometimes

b. knowledge base browser (knowledge base described in pait I) no

c. other lexicid tools (identify) no

5. which of the following were used?

a. term weighting

b. Boolean connectors (AND, OR, NOT)
d. addition of terms not included in topic

(1) source of terms word-pair phrase tile

C. Feedback (ad hoc)

1. initial query built by metliod I or method 2? method 1

2. type of pers(Mi doing feedback

b. system expert

3. average time to do complete feedback

a. cpu time (total cpu seconds for all iterations)

12 per query per iteration—no expansion

50 " " " " —with expansion

b. cl(K-k time from initiiU construction of query to completion of final query (minutes)

6() per query to do relevance judgment

4. average number of iterations 1

a. average number of documents examined per iteration 10

5. minimum number of iterations 1

6. m<'iximum number of iterations 1

7. what determines the end of an iteration? deadline + lack of manpower

8. feedback methods used

a. automatic tenn reweighiing I'rom relevant documents

b. automatic query expiuision from releviuit documents

(2) only top X terms added (what is X)

Top 20 most 'activated' terms that have document frequency <

2000 were used. Because many were already in query, about 12 on

the average were new and added per query.

474

c. olher automatic methods

brief (Jesciiplion feedback is based on sub-documents

D. Automatically built queries (routing)

1. topic fields used <Tn LE>, <DESC>, <NARR>, <CON>
2. total computer time to build query (cpu seconds) 5 (average for each query)

3. which of the following were used in building llie query?

a. terms selected from

(1) topic

b. term weighting

(1) with weights based on terms in topics

(2) with weights based on terms in all training documents

(3) witii weights based on terms from documents with relevance judgments

i. expansion of queries using previously-constructed dat;i structure (from part I)

(1) which sljucture? word-pair phrase file

E. Manually constructed queries (routing)

1. topic tlelds used <TITLE>, <DESC>, <NARR>, <C()N>
2. average time to build query (minutes) 300 minutes for 25 queries

3. type of query builder

b. system expert

4. data used for building query

a. from trixining topic

5. tools used to build query

a. word frequency list sometimes

6. which of the following were used?

a. term weighting

b. Boolean connectors (AND, OR, NOT)

III. Searching

A. Total computer time to se;u"ch (cpu seconds)

1. retrieval tijne (total cpu seconds between when a query enters tlie system until a list of

document numbers sue obtained)

8-20 per query without soft-Boolean (combine 2 method.s).

20-60 " " with " " (combine 3 methods).

2. ranking lime (totiil cpu seconds to sort document list) 4-12 per query

B. Which methods best describe your machine sesuching melliods?

2. probabilistic model

8. neunil networks

C. What factors included in youi" ranking?

1. tenn frequency

3. other term weights (where do they come from?)

inverse collection term fre(|uency total word occurrences

y. document lengLli

IV. What machine did you conduct ilie TREC experiment on? SPARC-2GS
How much RAM did it have? 48 MB
What was the clock rale of Uie CPU? 4i) MHz

V. Some systems jue reseiuch prototypes and others lue commercisU.

To help compiue tiiese systems:

475

1. How much "softwiire engineering" went into the development of your system?

Not much, time was spent to truncate rec»)rd size.s to save space and fit certain

structures in memory; replace some linked lists with arrays.

2. Given appropriate resources, could your system be made to run taster? By how much
(estimate)?

Yes. 5i)-H){)%. Lots of code was translated from PASCAL to C and used as is.

3. What features is your system missing that it would benefit by if it had them?
Dedicated SPARCstation.

More RAM.
More disk space.

476

System Summary and Timing

New York University

General Comments

The timings should be tlie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometimes will be dilticult, such as getting total time tor document indexing ol huge

text sections, or manu;illy building a knowledge base. Please do your best.

Construction of indices, knowledge bases, and other data structures (please describe all data structures that

your system needs for seiirching)

A. Which of Uie following were used to build youi" data stiuctures?

1. stopword list yes

a. how many words in list? 380

2. is a controlled v(x:abuUuy used? no

3. stemming ye.s

a. st;uidcU"d stemming algoritlims no

b. moiphological ;ui;ilysis yes

4. tenn weighting yes

5. phrase discovei^ yes

a. what kind of phra.se? NP's VP's, others

b. using statistical methods partially

c. using syntactic methods yes

6. syntactic pausing yes

7. word sen.se disiunbigualion no

8. heuristic associations yes

a. short definition of these associations synonymy, specializatioas

9. spelling checking (with manual conection) no

10. spelling conection no

11. proper noun identification algorillim partial

12. tokenizer (recognizes dales, phone numbers, coirunon patterns) no

13. iue the manu;illy-indexed terms used? no

14. other techniques u.sed to build data structures (brief description)

B. Statistics on diita structures buih from TREC text (please fill out each applicable section)

1. inverted index

a. total iunount of storage (megabytes) 290 MB (0.5 Ghyte txt)

b. total computer time to build (approximate number of hours) 250

c. is the process completely automatic? yes

d. iU'e term positions wiliiin documents stored? yes

e. single terms only? no

3. knowledge bases yes

a. total iUTiount of storage (megabytes) i).5

b. total number of concepts represented 3262

c. type of representation (Inunes, semantic nets, rules, etc.) a.ssociations

d. total computer time to build (approximate number of hours) 175

e. total iniuiual time to build (approxijnate number of hours) 0

f. use of manual labor none

g. auxiliiiry tiles needed for machine u.se

(1) machine-readable diction:uy (which one?) OALD

477

C. Data built from sources other tlKUi the input text —no

II. Query construction

(please lill out a section lor each query construction method used)

A. Automalic;iJly built queries (ad hoc) yes

1. topic fields used <nuni> <title> <desc> and <narr>

2. total computer time to build query (cpu seconds) 3.0

3. which of the following were used?

b. phrase extraction from topics

c. syntactic pru"sing of topics

e. proper noun identification algorithm partial

g. heuristic associations to add terms

h. expansion of queries using previously-constructed data structure (from part I)

(1) which structure? term clusters

j. other (describe) syntactic phrases

D. Automaticiilly built queries (routing)

1. topic fields used same as in ad hoc

2. total computer time to build query (cpu seconds) 3.2

3. which of the following were used in building die query?

a. terms selected from

(2) iill trciining documents

b. term weighting

(2) with weights based on terms in all training documents

c. phrase extraction

(1) trom topics

(2) from idl iniining documents

d. syntactic piusing

(1) of topics

(2) of all iriiining documents

f. proper noun identiilcation iUgoiithm

(1) from topics partial

(2) from idl training documents partial

h. heuristic associations to add terms

(2) from training documents

i. expansion of queries using previously-consu-ucted data structure (from part I)

(1) which structure? clusters from training data

III. Searching

A. Total computer time to .semch (cpu .seconds)

1. retrieval tijne (totrd cpu .seconds between when a query enters the system until a list

document numbers iu'e obtained)

TOTAL TEVIE (CPU + I/O) .search and ranking is about 60 minutes per query

2. ranking time (totid cpu seconds to sort dcKument list)

B. Which methods best describe your machine .searching metJiods?

1. vector space m(xlel

C. What factors ;ue included in your ranking?

1. tenn frequency

2. inverse d(Kument frequency

478

IV. What machine did you conduct Uie TREC experijneni on?

How much RAM did it have? 56 Mbytes

What was the clock rate of Uie CPU? 28 MIPS

V. Some systems iire research prototypes and others jue commerciiil.

To help compare tliese systems:

1. How much "soltwjire engineering" went into the development of your system? A lot

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)? Iiase IR system is very ineftlcient now
3. What features is your system missing that it would benefit by if it had them?

There is still a lot of room for improvement of NLP programs; more time and

experiments are retfuired

479

System Summary and Timing

University of Central Florida

General Comments

The timings should be tlie tijne to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometijnes will be ditficult, such as getting totid time for document indexing of huge

text sections, or mmiurdly building a knowledge base. Please do your best.

I. Construction t)f indices, knowledge bases, and other data structures (please describe all data structures that

your system needs for searching)

A. Which of tlie following were used to build youi" datii structures?

I. stopword list ye.s

a. how many words in list?

166 stop words, 122 abhreviatioii.s, 47 hyphenated word.s, 24 entries for

abbreviations and alternate notions for months, 35 entries for legitimate

words not to l>e prefixed, and 6 entries for legitimate prefixe.s.

, - . . 2. is a controlled v(K"abul;u"y used? no

3. stemming yes

a. stt'uidiud stemming idgoriLlims

which ones? J.B. Lovins' Stemming Algorithm (modified).

b. moiphological mirilysis none
- 4. tenn weighting yes

5. phrase discovery no

6. syntactic piusing no

7. word sense dis:unbiguation

Yes. The .semantic lexicon we used is based on word .sen.ses found in Roget's

The.saurus.

8. heuristic associations no

9. spelling checking (with manual conection) no

10. spelling correction no

II. proper noun identification algoritlim no

12. tokenizer (recognizes dales, phone numbers, conunon patterns) yes

a. which patterns ;u"e tokenized?

The QA System recognizes dates. But we felt it was not useful for the NIST
experiment so we removed this feature to improve text proce.s.sing speed.

13. iire the miuiuiilly-indexed terms used? no

14. other techniques used to build diita ,siructui"es (brief description)

The QA System uses R-tree storage structures for inverted index file access and

.semantic lexicon access. Rut for the NIST experiments, we used the QA System text

.scanning ability and coupled it with hash table acce.ss (replacing the B-tree acce.s.s)

and the use of 32-bit codes for text .strings.

B. Stiitistics t)n diita structures built from TREC text (please fill out each applicable section)

1. inverted index yes

a. total lunount of storage (megabytes)

For V(d. 1 the index storage was 385 megabytes.

b. total computer time to build (approximate number of hours)

73 hours using nine IBM 50 MHz 486 PCs running in parallel.

c. is the pr(K"ess completely automatic? yes

480

d. lire term positions witJiin documents stored? no

e. single terms only? yes

C. Data built Irom sources other tlijui liie input text yes

1. intenuiJly-buill auxili;u-y tiles yes, a semantic lexicon

a. domain independent or domain specific (if two separate tiles, please till out one set

of questions for each file) Domain independent

b. type of file (thesaurus, knowledge base, lexicon, etc.)

Semantic lexicon built by examination of Roget's Thesaurus.

c. total ajnount of storage (megabytes) 0.34 megabytes.

d. total number of concepts represented

There are 36 semantic categories and there are approximately 24,(K)(> words

in two lexicons with the categories they trigger. The probability of each

triggered category is also stored.

e. type of representation (frames, semantic nets, rules, etc.) It could be viewed as rules.

f. total computer time to build (approxijnate number of hours)

(1) if already built, how much tijne to modify for TREC?
Since the 1911 edition of Roget's Thesaurus became public domain

recently, we spent approximately 16 hours creating the software to

process the 1911 Thesaurus. Approximately 6 hours of processing

time was required to automatically extract 2(),<K)() lexicon entries.

However, we did not have time to explore the use of the.se entries.

g. total m;inual tijne to build (approximate number of hours)

(1) if ah-eady built, how much tijne to modify for TREC?
Prior to TREC, there were 3,(MK) entries in the lexicon established

by manual processing of approximately 6,000 words in 300 hours.

For TREC, we made 1,{)W) new entries (in 85 hours) by examination

of 1,700 frequently occurring words found in the training topics and

the training text. So, the lexicon we used had 4,0(M) entries in it.

h. use of manual labor

(4) oilier (describe) Refer to (f) and (g).

2. externally-built auxiiiiuy tile no

II. Query construction

(please till out a section for each query construction method u.sed)

A. Automatically built queries (ad hoc) yes

1. topic fields used All fields

2. total computer time to build query (cpu seconds) 1 .second

3. which of the following were used?

f. tokenizer (recognizes dates, phone numbers, common patterns)

Dates recognizable but not used,

h. expansion of queries using previously-constructed data structure (from part I)

(1) which structure? Semantic lexicon de.scribed in I.C.I,

j. other (describe) Term weighting based on terms in training text.

D. Automatically built queries (routing) yes

1. topic fields used All fields

2. total computer time to build query (cpu second.s) 1 second.

3. which of the following were used in building llie query?

a. tenns selected from

(1) topic

b. tenn weighting

(2) with weights based on terms in all training documents

481

g. tokenizer (recognizes dates, phone numbers, coiiunon patterns)

Dates are recognized by the QA System but were not used for the TREC
experuiients.

i. expansion of t|ueries using previously-constructed data structure (from part I)

(1) which structure? Semantic lexic(m described in I.C.I.

III. Searching

A. Total computer time to seru-ch (cpu seconds) 3-10 minutes per c|uery to retrieve and rank.

1. reuieva! time (total cpu sec()nds between when a query enters tlie system until a list of

document numbers iu"e obtained)

2. ranking time (total cpu seconds to sort document list)

B. Which methods best describe your machine searching methods?

1. vector space mcxlel

C. What factors lue included in your ranking?

1. tenn frequency

2. inverse d(K'ument frequency

9. document length

IV. What machine did you conduct tlie TREC experijnent on?

We used nine IBM PS/2 Model 95 computers. These were 50 MHz 486 computers with 8

megabytes of RAM. Two of them liad 16 megabytes of RAM. A 33 MHz 486 PC was u.sed

to distribute text to the nine IBM PCs for indexing and query processing.

How much RAM did it have?

What was the clock rate of tiie CPU?

V. Some systems me resetirch prototypes and others lue commerci;il.

To help compiue lliese systems:

1. How much "softwiue engineering" went into the developinent of your system?

Our QA System (built for NASA and restricted to an IBM compatible PC platform

running under DOS and using no other license agreement commercial .software such

as a DOS extender) is a prototype and has l)een under development for one and a

half years. Approximately 2,000 hours of programming have been used to develop

the current software. The system is implemented in C and u.ses B-tree structures for

the inverted file structure. We felt our system was not fast enough to appear

reasonable for TREC, so we designed a separate .system without a pleasant u.ser

interface which used a hashing scheme to establish codes for strings to cut down on

storage space; we also eliminated the u.se of B-trees in this .separate system. We
custom built a system for TREC during July and August; approximately 400 hours

of programming and del)ugging went into this effort. The cu.stom sy.stem generated

the results which we sent in. H(»wever, we are now trying to produce .some .semantic

results using the original QA System.

•2. Given appropriate resources, could your system be made to mn faster? By how much
(estimate)?

Assuming we stay with DOS then we could easily run 8 to 16 times faster u.sing the

following:

Hardware Impr<»vements:

1. New 66 MHz PCs now on the market.

2. Multiple hard drives.

3. 16 or 32 megabytes of RAM instead of 8 megabytes to be used for a larger disk

cache and for our hashing algorithms.

482

Softwure Improvements:

1. Proper use of RAM t\ir hushing.

2. Use of a DOS extender or switch to an OS/2 or UNIX envinmment.

What features is your system missing that it would benefit by if it had them?

The following software improvements would itenetlt the retrieval performance:

1. Relevance Feedback

2. Larger Semantic Lexicon

3. Breakdown of Lexicon into noun, verb, adjective, adverb, preposition,

conjunction, interjection, use coupled with a part of speech tagger.

483

System Summary and Timing

Advanced Decision Systems

General Comineiits

The timings should be tlie tijne to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. Tliis sometijnes will be dilficult, such as getting total time tor d(X'ument indexing of huge

text sections, or manually building a knowledge ba.se. Plea.se do your best.

I. Construction of indices, knowledge bases, and other data structures (plea.se describe all data structures that

your system needs for se;uching)

A. Which of tlie following were u.sed to build your data structures?

1. stopword list yes

a. how many words in list? 421

2. is a controlled v(Kabuhuy u.sed? no

3. steimning no

4. tenn weighting no

5. phrase discovei'y no

6. syntactic pi'U"sing no

7. word .sen.se di.sambigualion no

8. heuristic as.sociations no

9. spelling checking (with manual coneclion) no

10. spelling collection no

1 1. proper noun identification iilgorilinn no

12. tokenizer (recognizes dates, phone numbers, comjnon patterns) no

13. iu'e the m;mu;illy-indexed terms used? no

14. other techniques u.sed to build diita structures (brief de.scription)

yes—l)inary cla.ssificuti<»n trees built automatically from the original documents and

topic .statements

B. Statistics on diila structures built Irom TREC text (plea.se fill out each applicable section)

3. other data su-uciures built from TREC text (what?)

yes—classification vectors; actually integer arrays

a. total amount of storage (megabytes)

Only a tew Kbytes for the training .sets u.sed for the official .scores—vectors

generated on the fly for routing the test data.

b. total computer tijne to build (approxijnate number of hours)

Feature extraction takes le.ss than 10 seconds per document.

c. is the process completely automatic? yes

d. brief description of methods u.sed

Give a specification of a set (»f feature.s, for example, a li.st of word tokens;

the document is searched for the number of occurrences of each feature.

C. Data built from sources other th;ui tlie input text —no

II. Query construction

(plea.se fill out a section for each query construction method used)

D. Automatically built queries (routing)

484

1. topic fields used <de.sc>, <nai-r>, <c()n>, <det>

2. total computer tune to build query (cpu seconds)

takes less thun 30 seconds to build the classitlcation tree including feature extraction-

-tliis does depend on the size of the training set though

3. which of the following were used in building iJie query?

a. terms selected Irom

(1) topic yes

(2) iill training documents no

(3) only documents with relevance judgments

yes—including some additional judgments generated by us

k. other (brief description)

feature counts—in this case these are just word counts

III. Searching

A. Total computer time to seiu^ch (cpu seconds)

1. reaieval tijne (total cpu seconds between when a query enters tlie system until a list of

document numbers ju'e obtained)

approximately 20 hours (sic) of elapsed time on the WSJ test set—no accurate

measures of CPU time available to us

2. ranking time (totid cpu seconds to sort document list)

approximately 5 minutes of elapsed time—no accurate measures of CPU time

available to us

B. Which methods best describe your machine searching metliods?

10. other (describe)

binary classification algorithm based on counts of feature occurrence in the TES
document

C. What factors are included in your ranking?

15. other (.specify)

.statistical estimate of the mi.scla.ssitlcation rate (probability) of the classifier

IV. What machine did you conduct tlie TREC experiment on?

Sun SPARCstation IPC

How much RAM did it have?

24Mb
What was the clock rate ot tlie CPU?

20MHz

V. Some systems are reseiirch prototypes and others iu"e commerciiil.

To help compjire tJiese systeins:

1. How much ".softwiire engineering" went into the development of your system?

approximately 4 per.son-weeks for the TREC infrastructure—the CART algorithm

implementation used was "off the shelf"

2. Given appropriate re.sources, could your system be made to run faster? By how much

(estimate)?

Absolutely! The feature extraction algorithms were not optimized for speed, and no

database or indexes were built to do the testing. With faster algorithms and a set

of inverted indexes, we estimate a document could be classified in less than 1 second.

3. What features is your system missing that it would benefit by if it had them?

We would like to experiment with "off the shelF' tools to assist in feature

485

specification and extraction, for example: a part of speech tagger, a tokenizer, a
proper name recognizer. We also did not explore the use of concept-based techniques
(e.g., RUBRIC/TOPIC) to provide low-level concepts as features.

486

System Summary and Timing

CITRI, Royal Melbourne Institute of Technology
We are providing 2 reports on tlie sysieiii. This is because we liave tried experiments on two very different systems,

and tested quite different hypotJieses.

Project: retrieval from a compressed database using the cosine measure ruid approximate represenLntions of dtKument

lengths

General Conunents

The timings should be tJie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This .sometijnes will be difficult, such as getting totid time for dcKument indexing of huge

text sections, or manually building a knowledge ba.se. Please do your best.

I. Construction of indices, knowledge ba.ses, and other data structures (please describe all data structures that

your system needs for setuching)

A. Which of tlie following were u.sed to build your data structures?

1. stopword list n«

2. is a controlled v(x:abulary used? no

3. stenuning yes, tor con.struction of index

a. stiuid;u"d stemming aigoritlims

which ones? Lovins' 1968 alj^orithm

4. tenn weighting no

5. phrase di.scovei7 no

6. syntactic piu'sing no

7. word .sen.se di.siunbiguation no

8. heuristic associations no

9. spelling checking (with manual coirection) no

10. spelling correction no

11. proper noun identification idgoritlim no

12. tokenizer (recognizes dates, phone numbers, common patterns) no

13. iu"e the miuiually-indexed terms used? no

14. other techniques u.sed to build data structures (brief description)

no, but see di.scu.s.sion of compre.ssion below

B. Smtistics on diUa structures built from TREC text (please fill out each applicable section)

1. inverted index

a. total amount of storage (megabytes)

5(K7 Mb (37.9 Mb for p<»inters, 12.8 Mb for frequencies)

b. total computer time to build (approximate number of hours)

4.2(> cpu hours, once a vocabulary lia.s been built

c. is the pr(x:ess completely automatic? ye.s

d. are term positions witliin d(Kuments stored?

no, but term frequency within document is stored

e. single terms only? yes

5. other data structures built from TREC text (what?)

model for subsequent compre.ssion of text

a. total amount of storage (megabytes) 2.4 Mb
b. total computer tijne to build (approximate number of hours) 2.54 hours

c. is the prcxress completely automatic? ye.s

487

d. brief description of methods used

count word and non-word frequencies using splay tree

oilier data structures built from I REC text (what?)

a single file of the text itself, compressed

a. total lUiiount of storage (megabytes) 253.2 Mb
b. total computer time to build (approximate number of hours) 3.10 cpu hours

c. is the pr(Kess completely automatic? yes

d. brief description of methods used

zer<»-order word-based model using Huffman coding

other data structures built from TREC text (what?)

a tile of document addresses and document lengths (for cosine)

a. total lunount of storage (megabytes) 1.8 Mb
b. total computer time to build (approxijnate number of hours) negligible

other data structures built from TREC text (what?) vocabulary for inverted index

a. total lunount of storage (megabytes) 3.6 Mb
b. total computer lijne to build (approxijnate number of hours) 2.41 cpu hours

c. is the prcKess completely automatic? yes

d. brief descriptioji of methods used count stemmed word frequencies using splay tree

other datii structuies built from TREC text (what?) a file of inverted index entry addresses

a. total iunount of storage (megabytes) 1.2 Mb
b. total computer tijne to build (approximate number of hours) negligible

other data structures built from TREC text (what?)

a tile of approximate document lengths

a. total lunount of storage (megabytes) 0.2 Mb
b. total computer time to build (approximate number of hours) negligible

C. Data built from sources other th;ui tJie input text —no

II. Query construction

(please fill out a section for each query constfuction method used)

A. Automaticsdiy built queries (ad hoc)

1. topic fields used all

2. total computer time to build query (cpu seconds) less than one second

3. which of the following were used?

a. tenn weighting witli weights based on tenns in topics yes, as in cosine measure

j. other (describe)

used stop words to eliminate common w«>rds from query

eliminated SGML tags and all punctuation

III. Searching

A. Total computer tijne to .search (cpu .seconds)

1 & 2 were not timed separately; 35 .seconds per query to identify the top 200 ranked items

further 4.6 seconds of cpu decompre.ss the top 200 items, 18.6 seconds in total including

retrieval time

1. retrieval time (total cpu seconds between when a query enters the system until a list of

document numbers jue obtained)

2. ranking time (totiil cpu .seconds to sort d(x:ument list)

488

B. Which methods best describe your machine seiuchiiig methods?

1. vector space model cosine meusure

C. What factors rue included in your rankinj;?

1. tenn frequency

2. inverse document frequency

9. document length approximate document lengths were used to reduce memory requirements

IV. What machine did you conduct Uie TREC experiment on? Sun SPARC 2

How much RAM did it have? 128 Mb
What was the clock rate of Uie CPU? 25 MIP

V. Some systems lire resctirch prototypes and others lue commerciid.

To help compriie tJiese systems:

1. How much "softwiue engineering" went into the development of your system?

very little

2. Given appropiiate resources, could your system be made to run faster? By how much

(estimate)?

processing to rank items can be 30-50% faster; retrieval and decompression of text

are currently limited by characteristics of the disk and the UNIX operating system

3. What features is your system missing that it would benefit by if it had them?

current transformation of topics into queries is simple-minded

the database is static

489

System Summary and Timing

CITRI, Royal Melbourne Institute ol' Technology

We are providing 2 reports on ihe sysiein. This is because we have tried experiments on two veiy different systems,

and tested quite different hypotheses.

Project: retrieval from a compressed database using the cosine measure and approximate representations of document

lengths

General Comments

The timings should be the time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometimes will be difficult, such as getting total time for document indexing of huge

text sections, or manu:\lly building a knowledge base. Plea.se do your best.

1. ConsU'uction of indices, knowledge bases, and other data su uctures (please describe all data structures that

your system needs lor seiuching)

A. Which of tlie following were used to build your data structures?

1. stopword list

a. how many words in list? 420

2. is a controlled vtxabuiary u.sed? no

3. stemming

a. standcU'd steiruning algoritiims

which ones? Lovins' 1968 algorithm

b. morphological luialysis no

4. tenn weighting tf.idf

5. phrase di.scovery

a. what kind of phrase? Adjacent pairs

b. using statistical meth(xls ye.s

c. using syntactic methods no

6. syntactic parsing no

7. word .sen.se disambiguation no

8. heuristic associations no

9. spelling checking (with manual correction) queries only

10. spelling correction queries only

11. proper noun identification algorithm no

12. tokenizer (recognizes dates, phone numbers, common patterns) no

13. MC the msuiually-indexed terms used? they were not di.scarded

14. other techniques u.sed to build d;ita structures (brief de.scription)

B. Stiitistics on data structures built from TREC text (plea.se fill out each applicable section)

2. n-grams, suffix lurays, signature tiles

a. total iunount of storage (megabytes)

Data (compressed) 22(hTi

Index 313m
b. total computer time to build (approximate number of hours) 23 hrs

c. brief de.scription of metiiods u.sed multi-organisational signature FILE
d. is the process completely automatic? yes

C. Data built from .souices otlier than the input text —no

490

II. Query construction

(please till out a section for each query construction method used)

A large number of techniques were tried.

A. AutomaticsUly built queries (ad hoc)

1. topic fields used

Boolean queries were constructed from a variety of the topic fields. The queries

were then ranked possibly using different fields.

2. total computer time to build query (cpu seconds) ~W
3. which of the following were used?

a. term weighting wiLli weights based on (enns in topics

b. phrase exUaction from topics

i. automatic addition of B(xilean connectors or proximity operators

III. Searching

A. Total computer time to search (cpu seconds)

1. reuieval time (total cpu seconds between when a query enters tlie system until a list of

docuinent numbers ;ue obtained)

2. ranking time (total cpu seconds to sort document list)

These operations occurred together. It t(M)k 6 hrs to obtain a ranked list of 1,000 documents
for each of the 50 queries.

B. Which methods best describe your machine searching meiiiods?

1. vector space m(xlel

C. What factors ixre included in your ranking?

1. tenn frequency

2. inverse d(x:ument frequency

7. proximity of terms

9. document lengtli

15. other (specify)

The location of the term in the query. A variety of models were tried.

IV. What machine did you conduct tiie TREC experiment on? Sun SPARC 2

How much RAM did it have? 128 Mb
What was the clock rate of the CPU? 25 MIP

V. Some systems are research prototypes and others are commercial.

To help compare tliese systems:

1. How much ".software engineering" went into the development of your system?

The system is a robust research tool. Limited effort has been put into speed.

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

Considerably faster, but we estimate it would twice as fast if we changed the

architecture (we u.se UNIX pipes to communicate). It Ls unclear what other

speed-ups can occur.

3. What features is your system missing that it would benefit by if it had them?

All sorts of things would be nice! A good form of transaction management would

be the most useful to transform the system into a commercial product

491

System Summary and Timing

Australian Computing and Communications Institute

General Comments

The timings should be tlie time to replicate runs Irom scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometimes will be dil ticult, such as getting total time for document indexing of huge

text sections, or mtuiuiilly building a knowledge base. Please do your best.

I. Construction of indices, knowledge bases, and other datii structures (please describe all data structures that

your system needs for serirching)

The software does not invert the text. It inverts the queries (or filters) and pa.sses the text

through the combined index formed from the queries.

II. Query construction

(plea.se fill out a .section for each query consuuction method u.sed)

D. Automaticidly built queries (routing)

1. topic fields used Concept tield used

2. total computer tijne to build query (cpu .seconds) < 5 seconds

3. which of the following were used in building liie query?

a. terms .selected from

(1) topic

b. tenn weighting

(3) with weights ba.sed on terms from documents with relevance judgments

Terms weighted with weights ha.sed on terms from documents with

relevance judgments, and dynamically modified through the

training set and the test .set.

c. phrase extraction

(1) from topics

j. automatic addition of Bcxilean connectors or proximity operators

(1) using information from tlie topics

E. Manually constructed queries (routing)

1. topic fields used All topic fields u.sed

2. average time to build query (minutes) 30 minutes

3. type of query builder

b. system expert

4. data used for building query

a. from training topic

6. which of the following were u.sed?

b. Boolean connectors (AND, OR, NOT)
c. proximity operators

III. Searching

A. Total computer time to search (cpu seconds)

One me.ssage through 2(K) filters per second. This includes searching and ranking.

1. reu-ieval time (total cpu seconds between when a query enters the system until a list of

document numbers are obtained)

492

2. ranking time (toliil cpu seconds lo sort document list)

B. Which methods best describe your machine se.'irching meiJiods?

6. tuzzy logic (include your deHnition)

10. oilier (describe) Software uses a fuzzy AND and Proximity measure to rank documents.

C. What factors are included in your ranking?

1. tenn frequency

5. position in document

7. proximity of terms

IV. What machine did you conduct the TREC experijnent on?

How much RAM did it have?

What was the clock rate of tlie CPU?
The experiments were run on an HP 486/33 with 8 Mbytes under SCO UNIX. The CD ROM
drive was accessed via NFS.

V. Some systems are research prototypes and others sue commerciid.

To help compare tliese systems:

1. How much "softwiue engineering" went into the development of your system?

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

3. What lealures is your system missing that it would benefit by if it had them?

AMR is commercial strength software developed by Computer Power Group. Its

coiniiiercialisation software engineering phase took some three person-years.

493

System Summary and Timing

Carnegie Mellon University

General Comments

The timings sliould be tJie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometimes will be ditficull, such as getting total time tor document indexing of huge

text sections, or mtmujilly building a knowledge base. Plea.se do your best.

I. Construction ot indices, knowledge bases, and other data structures (please describe all data structures that

your system needs lor seaiching)

A. Which of the following were used to build your data structures?

1. stopword list

No. But the NLP/morphoIogical-analysis components of the system do limit the

po.ssihle lexical categories of .some English words to eliminate u.seles$ ambiguities.

For example, "hut" is given lexical category "cnj" (conjunction) and not alternative,

po.ssihle categories, such as "sn" (singular-noun); "can" is limited to category

"auxm" (modal-auxiliary-verh) and not "sn"; etc. Such .selective restrictions have

.some of the effects of "stop-word" lists, since spurious (or irrelevant) categories will

not enter into later indexing stages.

Furthermore, the NLP/parsing components of the system return simplex noun

phra.ses (NPs) as candidate terms in which some components of the NP are

eliminated, such as quantifiers (e.g., "many", "one", etc.), determiners (e.g., "the",

"a", etc.), and conjunctions (e.g., "and", "or", etc.). In addition, in normal CLARIT
NP processing, the parser does not return prepositions, non-NP adverbs, and

extra-NP elements. This practice, therefore, also has the effect of eliminating items

that normally appear on "stop-word" Usts. It clearly goes beyond that practice in

eliminating all extra-NP words as well,

a. how many words in list?

Approximately 100 lexical items have been given re.strictive syntactic

treatment, in addition to the words with unambiguously empty categories.

2. is a controlled v(X'abulary u.sed? No
3. stemming No

a. standitfd stemming iilgoritlims

which ones?

b. morphological analysis

Yes. The Morph component of the system provides for comprehensive

inflectional-morphological analysis. In practice, the morph-normal form of

nouns and adjectives is used in the NP-based terms of the system.

Participles are not morphologically reduced (though it is possible to do so).

Derivational-morphological analysis is not used. A lexicon of approximately

97,(M)0 'root-form' items (English words) is the principal resource u.sed by

Morph in addition to its morphological rule .set.

4. tenn weighting

Ye.s/No. The CLARIT proce.ss u.ses NLP to identify candidate terms in route to

indexing, development of associated resources (e.g., thesauri), and analysis of queries

or topics. These are taken as the 'information units' of interest and are analyzed

statistically and heuristically. 'Weights' are a.ssociated with terms at various stages

of processing. In indexing TREC documents, for example, an IDF/TF score was

a.s.sociated with terms for each document. In the ca.se of multi-word terms (the

494

norm), the terms are assigned IDF/TF scores, and each word in the term Is l)roken

out and assigned an independent IDF/TF score.

5. phrase discovery Yes

a. what kind ot phrase?

Simplex noun phrases (= all modifiers and the head of the NI* but no
determiners, quantitiers, or post-head-positi«)n modifying phrases or

clauses).

b. using statistical methods

No. NPs retained tor thesaurus creation are scored using statistically-based

measures of expected 'rarity' (based on component words), distribution,

frequency, and coverage. But NPs are not identified in texts based on

statistical parsing, for example.

c. using syntactic methods

Yes. NPs are discovered using a parser that implements a 'heuristic'

grammar. In particular, following word-for-word morphological analysis

(resulting in a set of syntactic-category tags for each word encountered in

a text), the parser identifies the subsequences that form NPs. Identification

of NPs is based on rules that perform NP-boundary-condition tests.

6. syntactic piirsing Yes (see above). A single-pass parser follows morphological analysis.

7. word sense disambiguation

No. No attempt is made to control for word senses in morphoh>gical or syntactic

analysis. As noted above, disambiguation of grammatical categories Is facilitated by

restricting possible categories for selective items. In addition, absolute preferences

are established for grammatical categories appearing in noun phrases.

8. heuristic associations

a. short definition ot these associations

Yes. The principal relation the system currently uses is that of 'similarity'

of terms. 'Similarity' is determined by different procedures in different

contexts. For example, partial or 'fuzzy' matching of terms Is facilitated by

noting whether terms share words or attested subphrases. For example, in

vector-space modeling of documents, the contained words of all terms (in the

document vector as well as the query vector) are broken out, giving, in

effect, the possibility of matching parts of terms (though, technically, the

individual words are realized as independent dimensions of the space). In

addition, in nominating terms for inclusion in thesauri and in matching

terms to thesauri, CLARIT processing takes account of contained words and

attested subphrases.

9. spelling checking (with manual conection) No
10. spelling correction No
11. proper noun identification aJgoritJim

Yes/No. The .system provides for identification of 'candidate proper nouns' based

on morphological analysis. (Essentially, since the morphological analysis is virtually

exhaastive for English, words that cannot be mapped to specific lexical items are

given the provisional label "cpn"—'candidate proper noun'—and parsing proceeds

accordingly.) There is a facility in CLARIT for highly-reliable proper name

(including acronym) identification, but it was not u.sed in this round of TREC
proce.ssing.

12. tokenizer (recognizes dates, phone numbers, common patterns)

a. which patterns are tokenized?

Certain common abbreviations are included in the lexicon and, under

morphological proce.ssing, are rendered into normalized forms. The system

can utilize—and even partially discover-supplemental lexicons of

domain-specific abbreviations and other phrasal-lexical patterns, but this

facility was not used for TREC processing.

495

13. are the injuiually-indexed lenns used?

Yes/No. The manuully-indexed terms were treated as additional text and processed

(for NPs) along with the other sections of the topic statement. They may or many
not have survived review; they were not given special treatment except as potential

sources of NPs for the topic.

14. other techniques used to build dxita structures (brief description)

The CLARIT system has facilities for the discovery of 'first-order' thesauri (= a list

of important and characteristic terms) over collections of documents. The technique

requires that documents in the collection he from the same 'domain' or 'topic'

(broadly conceived) and is reliable only if the document set is large enough (e.g.,

minimally 2-3 megabytes). TREC topics—even when supplemented by sets of

relevant documents—fall far short of the minimal size required, .so general CLARIT
the.saurus discovery could not be u.sed in preparing topics or to support the indexing

of texts. However, one effect of the CLARIT the.saurus-di.scover procedure is to

rank terms in a collection based on their frequency, distribution, and 'rarity' .scores.

In preparing sets of terms to a.ssi.st in partitioning the TREC corpus (to identify a

sub.set of documents with the be.st candidates under any topic), we produced

p.seudo-the.sauri for each topic by using CLARIT the.saurus-di.scovery modules. In

particular, the process produced a list of terms from the available topic-relevant

documents (or from a small sample of relevant documents that we may have found)

and automatically chose the top (approximately 20%) ranked terms to supplement

the original query (as derived from the topic statement) to produce a

"routing/partitioning the.saurus" for the topic. (The u.se of this resource is described

below.)

Furthermore, in developing extended queries for our final proce.ssing step (= a

vector-space retrieval), we supplemented the original .set of terms for the topic with

all of the terms from the small set of top-ranking documents (as determined by

routing/partitioning score) for each topic.

B. Statistics on data structures built from TREC text (plea.se fill out each applicable section)

4. .special routing structures (what?)

Yes. Each topic text was automatically analyzed by CLARIT to extract NPs. Terms
nominated by parsing were reviewed by members of the CLARIT team for

appropriatene.ss (and retained or eliminated) and given a weight of "1", "2", or "3"

to quantify relevance. Available topic-relevant documents were proce.ssed for

supplemental terms (each given a fractional weight, e.g., "0.3"). The combined

list—terms from the topic text and terms from the topic-relevant documents—formed

a "routing/partitioning the.saurus" for the topic.

Each TREC document was 'scored' against the routing/partitioning the.saurus for

each topic. In particular, every NP in each document was matched against the NPs
(terms) in the routing thesaurus; partial matches were allowed; a formula yielded

a composite .score for the document based on the number of exact and partial hits

as a function of document length and term 'value'.

In the first round (first 50 topics) of proce.ssing, this approach was used to identify

the highest-.scoring 2(M)0 documents for each topic.

a. total ajnount ot storage (megabytes)

{).6 megabytes for the merged 50 routing structures, i.e., the 50

"routing/partitioning thesauri" for the 50 topics.

b. total computer time lo build (approxiinate number ot hours)

5 minutes of real time—exclusive of the preparatory time to parse, build a

simple index, find some relevant documents, review them, and combine them

into an input tile.

c. is the prcx'ess completely automatic?

The manual review and weighting of terms from the topic statement took

496

approximately 5 minutes per topic. All additional steps were performed

automatically,

d. brief description ol inelhods used (See above.)

5. other data stiuctures buiii from TREC text (what?)

Each TREC document had to be formatted for CLARIT processing, by making the

unique text ID accessible to CLARIT as a special field and by delimiting the

beginning and end of each text in a tile. Intermediate (but unretained) files

generated in CLARIT processing include a file of the words in each text, in their

original order, annotated with morphological categories. Other files contain the

output of the parser, as a list of NPs in the order in which they occurred in each

text. The parsed representation of the text was retained and used at all subsequent

steps of processing.

a. total iunount of storage (megabytes)

Processing steps are piped through the system; intermediate files are not

retained. The parsed representation of all the texts takes up approximately

98% of the space occupied by the original text.

b. total computer time to build (approxijnaie number of hours)

The total time to transform the original 2-gigabytes of text into parsed text

takes ab(»ut 10 real hours, with processing distributed over 5 machines.

c. is the prcxess completely automatic? Yes

d. brief description of methods used

A 'lex' program was used to reformat the TREC text to CLARIT format.

The English morphological analyzer is written in C, and utilizes the lexicon

of 91,i)i){) items (mentioned above and further described below).

The noun phrase parser, also written in C, uses the grammatical categories

supplied by the morphological analysis and an ATN-style rule set to extract

noun phrases.

C. Data built from sources other th;ui liie input text

1. internally-built auxiliiuy files

a. domain independent or domain specific (if two sepiaate files, please till out one set

of questions for each file) Domain independent

b. type of file (thesaurus, knowledge base, lexicon, etc.)

c. total mnount of storage (megabytes)

CLARIT Lexicon (2 megabytes)

English-word statistics derived from the Grolier's Encyclopedia (2

megabytes)

d. total number of concepts represented

97,000 words (CLARIT Lexicon)

139,000 words (Grolier's list)

e. type of representation (friunes, semantic nets, rules, etc.)

Lexicon: A sorted word list, giving for each word its possible grammatical

categories and category-dependent normalization.

Grolier's: A list of w(»rds with distribution and frequency counts

f. totril computer tijne to build (approxijnate number of hours)

(1) if already built, how much time to modify for TREC?
Already built-Not modified for TREC

g. total manual time to build (approximate number of hours)

(1) if aheady built, how much time to modify for TREC?
Already built-Not modified for TREC

h. use of manual labor

(1) mostly miuiually built using speci.'iJ interface

(2) mostly machine built witJi manual conection

(3) initiid core majiu;dly built to "bootsu-ap" for completely machine-built

497

completion

(4) otiier (describe)

Initially derived from on-line sources hut substantially modified and
maintained manually

2. extenially-built auxiliruy tile

a. type of file (Treebank, WordNet, etc.) None
b. totxil amount of storage (megabytes)

c. totiU number of concepts represented

d. type of representation (friunes, semantic nets, rules, etc.)

II. Query consU^uction

(please till out a sectioii for each query construction method u.sed)

B. Manually consU"ucted queries (ad hoc)

Note, as described below, tiiere were only two steps in the CLARIT process that required

non-automatic proce.ssing: (1) initial review and weighting of the index terms

automatically-nominated and derived for the topic and (2) review of Ist-pass retrieved

documents to identify 5-10 relevant ones for "feedback".

1. topic fields used <title>, <desc>, <narr>, <con>, <fac>, <det>

2. average tiine to build query (minutes)

5 minutes—average time to review & weight automatically-nominated terms

3. type of query builder Graduate .students

4. tools used to build query

c. other lexiciil tools (identify)

CLARIT noun-phrase parsing (extraction) nominated query terms from the

textual de.scriptions of topics.

5. which of the following were used?

a. term weighting

Ye.s. Graduate students weighted terms with weights of "3", "2", or "1",

according to whether the extracted term was central or peripheral to the

topic. (Some extracted noun phrases were di.scarded as irrelevant or

ill-formed; the vast majority were retained.)

c. proximity operators

No. Though proximity plays an implicit role when noun phrases are u.sed as

terms.

d. addition of terms not included in topic

(1) source of terms N«)t in the first round of routing

e. other (describe)

The ad hoc queries for the second fifty topics were formed in three stages.

The first stage was the construction of a topic-derived routing/partitioning

thesaurus.

The routing/partitioning thesaurus was generated by CLARIT from the

method described above, using only text fields of the topics. The

automatically derived noun phrases were hand-weighted by graduate

.students with weights of "3", "2", or "1", according to whether the

extracted term was central or peripheral to the topic. Some extraneous

terms were deleted.

The routing/partitioning thesaurus was passed over the parsed

representation of original 1.2 gigabyte training .set, inducing a ranking of all

5(KI,(MH> documents using a scoring method taking account of exact and

partial matches and document length. The top Si) documents were retained,

for the next stage. These documents were manually judged by graduate

498

students, stuitin^ from the highest scored downward until 5-10 relevant

documents were found. In effect, this represented a "relevance-feedback"

step in the retrieval process.

In the next stage, the 5-10 "relevant" d<»cuments were used to produce a

CLARIT-derived pseudo-thesaurus for the topic. (As described above, this

consists of a list of prominent terms in the collection of documents, based

on frequency, distribution, and "rarity" scores.) To this thesaurus were

added the terms retained from the hand-weighting of the original topics.

This thesaurus formed the second routing/partitioning thesaurus. The entire

2-gigabyte TREC collection was rescored against this second

routing/partitioning thesaurus and the highest ranking 2000 documents were

selected for the llnal-query stage.

The third, or final-query, stage involved, first, calculating an IDF/TF score

for each term and all term-contained words in the 2000-document set for

the t(»pic. The query for that topic was created by taking the IDF/TF
weightings of the terms from the originally chosen 5-10 relevant documents

and automatically forming a query by combining all these terms along with

the topic-derived terms into a I«»ng query vector. A vector-space

representation of the 200() documents was generated; the query vector was

used to identify the final set of 200 ranked documents for each topic based

on cosine similarity measures.

D. Autoinaticiilly built queries (routing)

1. topic fields used <title>, <desc>, <narr>, <con>, <fac>, <defl>

2. total computer time to build t|uei"y (cpu seconds) (K03 cpu seconds

3. which of the following were used in building tJie query?

a. terms selected Irom

(1) topic

(3) only documents with relevance judgments

b. term weighting

(1) with weights based on terms in topics

Yes. Topic terms were initially hand weighted.

c. phrsLse extraction

(1) from topics

(3) from d(K;uments with releviuice judgments

d. syntactic piu"sing

(1) of topics

(2) of ;ill iriiining d(xuments

(3) of documents wiLli relevance judgments

g. tokenizer (recognizes dates, phone numbers, coirunon patterns)

(1) which patterns ;ue tokenized?

Only simple acronyms such as "I.B.M." were automatically

recognized as a unit,

k. other (brief description)

The routing queries were formed in two stages.

The first stage was the construction of a routing/partitioning

thesaurus.

The routing/partitioning thesaurus was generated by CLARIT from

the supplied list of relevant documents per topic. The text of the

topic fields was parsed and added to the pseudo-thesaurus derived

from the relevant documents. (Each pseudo-thesaurus consists of

automatically chosen noun phrases scoring above a certain

threshold, when scored for rarity, distribution, and frequency in the

relevant document set.) Partial noun phrases, derived from

499

thesaurus entries, and attested in the documents, were also added

to the thesaurus with a partial score.

The routing/partitioning thesaurus was passed over the parsed

representation of 1.2-gigabyte training set, inducing a ranking of all

5(M),()(M) documents. The top 2(M)0 documents were retained for the

next stage.

The next stage of construction of each topic's routing/partitioning

query began Ijy calculating the IDF/TF score of all the terms and

their contained words in the 2<MM) retained documents for that topic.

The IDF/TF-weighted terms from the 5 relevant documents that

were ranked highest in the previous stage were added to the

original hand-weighted query terms, forming the final query.

For the second 9()0-megahyte data set, the routing/partitioning

thesaurus developed in the Urst stage of processing (as described

above) was used to select the 2(MM) highest-ranked documents.

The tmal query produced in the second stage (above) was used as

a vector-space query (with partial matching) over the 2000

documents to produce a final set of 200 ranked documents for each

topic.

III. Searching

A. Total computer tune to seiirch (cpu seconds)

1. retrieval time (total cpu seconds between when a query enters the system until a list of

document numbers ;ue obtained)

The final set of 2(HM» documents for each topic was collected by the use of the

routing/partitioning thesaurus (described above). This process was done

simultaneously for all queries and took about 6 hours for the complete corpus.

2. ranking time (totid cpu seconds to sort document list)

Once the vector-space matrix for the final set of 2000 documents was constructed,

the actual comparison of the query vector to all other vectors in the matrix took on

the order of 10-20 seconds.

B. Which methods best describe your machine semching methods?

1. vector space mtxlel

Yes. Using whole and partial matching on IDF/TF-weighted terms.

C. What factors <u"e included in youi" ranking?

1. tenn frequency

2. inverse d(x:ument frequency

3. other term weights (where do they come from?)

Topic terms were given additional factors of "1", "2", or "3".

7. proxijnity ot terms

Parts of noun phrases are close. Our partial matching of noun phrases implicitly

includes proximity.

9. document lenglli

IV. What machine did you conduct tlie TREC experiment on?

How much RAM did it have?

What was the clock rate of Uie CPU?
Total available machines, used variously:

1 DFXstation 5HH) (64-Meg RAM)
2 DECstation 500(> (32-Meg RAM)

500

1 DECstation 5(KK> (24-Meg KAM)
3 DECstation 3100 (24-Meg RAM)

Some systems are research prototypes and otliers ;ue commercial.

To help compiire tliese systems;

1. How much "software engineering" went into the development of your system?

The CLAKIT system is a research prototype and has l)een under development for

4 years. The original system was implemented in Lisp; the current system has been

re-engineered into C in the past 12 months.

The specific configuration of the system used in the TREC experiments was

produced in less than a week.

As a research prototype, the system has minimal true "software engineering".

2. Given appropriate resources, could your system be made to mn faster? By how much

(estimate)?

Size constraints and the lack of global methods of attack caused us to duplicate work
(both human and computer). Gh)bal methods that are smarter about resource

consumption could make an order of magnitude difference. Almost all CLARIT
processing is modular and separable; results of processes are additive/composable.

Splitting the process across machines—or running in parallel—would greatly speed

up the system.

3. What features is your system missing that it would benefit by if it had them?

User interface.

Some database mechanism for document storage.

Potential "next features'' include the following:

- automatic spelling correction

- integrated proper noun recognition

- programmable token recognition

- programmable / automated category assignment (guessing)

- programmable / automated document structure analysis

- automated synonym / related word discovery and use

- database support for domains and thesauri, contexts, etc.

- an integrated interface for both database construction and query

elaboration

501

System Summary and Timing

ConQuest Software, Inc.

General Comments

The timings should be the time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometijnes will be ditticult, such as getting total time for document indexing of huge

text sections, or manuiilly building a knowledge base. Please do your best.

I. ConsU"uction of indices, knowledge bases, and other data structures (please describe all data structures that

your system needs for seiirching)

A. Which of tlie following were used to build your data structures?

1. stopword list yes

, ; a. how many words in list? 70

2. is a controlled v(x:abul;u"y used? no

3. stemjning

a. st;u»d;u"d stemming iilgoritiims no

V b. moiphological iuialysis yes

4. tenn weighting yes

5. phrase discovery yes

a. what kind of phrase? Paraphrase of Query

b. using statistical meth(xls Statistical proximity match

c. using syntactic methods Limited

6. syntactic parsing Limited-POS assignment

7. word sense disambiguation In query by user, & in explosion of terms

8. heuristic associations yes

a. short definition of these associations Terms associated via .semantic net

9. .spelling checking (with manual correction) In query only

^ 10. spelling correction no

11. proper noun identification algorlilim If identified by lexicon

12. tokenizer (recognizes dates, phone numbers, common patterns)

a. which patterns are tokenized? Many
13. 'Mt the mmiurdly-indexed terms used? no

14. other techniques used to build diita structures (brief description)

Index organized hierarchically so that best documents (based on a coarse grained

ranking algorithm) are returned to user while search continues on very large

datal)ases. Linked lists are used to connect and identify idioms. Semantic network

term explosion is controlled by "weighted" links where weights are selected as either

numerical or fuzzy sets based upon the link source and relationship.

B. Statistics on diita structures built Irom TREC text (please fill out each applicable section)

1. inverted index

a. total lunount of storage (megabytes) 1.2 Gb for 2.3 Gb text, 52%
b. totxd computer time to build (approximate number of hours) 150

c. is the prcKess completely automatic? yes

if not, approximately how many hours of manual labor? Setup"4 hours

d. are term positions wiliiin d(x:uments stored? yes

e. single terms only? no

3. knowledge bases

a. total amount of storage (megabytes) 12 Mbytes

502

b. toL'il number ol concepts represented 25(),(KM>+ concepts, 1.5M links

c. type of representation (fnunes, sern;uitic nets, rules, etc.) Weij>hted semantic network

d. total computer lime to build (approximate number of hours) 0, already had it

e. total m;uiu;iJ time to build (approximate number of hours) 0

f. use of manual labor

(2) mostly machine built willi inanu;d correction

yes—but prior to TRKC, not l)U specific

g. auxili;u"y files needed for machine use

(1) inachine-readable dictionsiry (which one?) Merriam Webster (abridged)

(2) oLlier (identify) Word Net, plus several thesaurus tiles

C. Data built from sources other ihiui tlie input text See 3(g) above

1. intenially-built auxilimy files Semantic Network

a. domain independent or domain specific (if two sepimite files, please fill out one set

of questions for each file)

b. type of tile (thesaurus, knowledge base, lexicon, etc.) All in one

c. total iunount of storage (megabytes) 12

d. total number of concepts represented 250,(MMt+

e. type of representation (friunes, semantic nets, rules, etc.) Semantic net

f. total computer time to build (approximate number of hours) Already had

(1) if aheady built, how much time to modify for TREC? None

g. total miuiual time to build (approximate number of hours) Already had

(1) if aheady built, how much time to modify for TREC? None

h. use of manual labor

(2) mostly machine built with manual correction

II. Query construction

(plea.se fill out a section for each query consu-uction method used)

A. Automaticiilly built queries (ad hoc)

1. topic fields u.sed Used entire t()pic with some simple filtering

2. total computer tijne to build query (cpu seconds) unknown, est. < 0.1 .sec. ea.

3. which of the following were u.sed?

a. term weighting witii weights based on tenns in topics

b. phra.se extraction from topics

c. syntactic parsing of topics

d. word sen.se di.siunbiguation

e. proper noun identification algoritJim (look up)

f. tokenizer (recognizes dates, phone numbers, common patterns)

(1) which patterns are tokenized? many

h. expmision of queries using previously-constmcted d^ita structure (from part I)

(1) which stiucture? Tapered window

B. Manually constructed queries (ad h(x;)

1. topic fields u.sed User judgment

2. average tijne to build query (minutes) 1-5 minutes

3. type of query builder

b. computer system expert

4. tools used to build query

a. word frequency list yes

b. knowledge base browser (knowledge ba.se described in part I) yes

(1) which stiucture from p;ut I

c. other lexical tools (identify) Lexicon

5. which of the following were u.sed?

503

a. term weighting yes

b. Boolean connectors (AND, OR, NOT) Available. Not used.

c. proximity operators Automatic

(J. addition of terms not included in topic yes—based on user judgment

(1) source of terms

e. other (describe)

C. Feedback (ad hoc) Available. Not submitted in TREC.

D. Automatic;Jly built queries (routing) Available. Not submitted in TREC.

E. Manually constructed queries (routing) Available. Not submitted in TREC.

III. Searching

A. Total computer time to semch (cpu seconds) 2-10 seconds, dep. on query

1. reuieval time (total cpu seconds between when a query enters tlie system until a list of

document numbers ^ue obtained) see above

2. ranking time (tot;il cpu seconds to sort d(K'ument list) included in number above

B. Which methods best describe your machine seaiching metliods?

1. vector space m(xlel Some techniques used

2. probabilistic model Some probability used in ranking

5. Boolean matching Available. Not used in TREC.
6. fuzzy logic (include youi" definition) Fuzzy semantic net links used in term explosion.

8. neural networks No—see 6

9. conceptuid graph matching Yes-query concept created by explosion

C. What factors iue included in your ranking?

1. tenn frequency

2. inverse dcKument frequency Available. Not used in TREC.
3. other term weights (where do they come from?) Manual

4. semiuitic closeness (as hi semantic net distance) yes

5. position in document Available. Not used in TREC.
6. syntactic clues (slate how) Available. Not used in TREC.
7. proximity of terms

9. document lengili

10. completeness (what "/c of the query terms tue present)

15. other (specify) User chooses-programmable

IV. What machine did you conduct the TREC experiment on? Sun SPARC II

How much RAM did it have? 64 Mbytes

What was the clock rate of die CPU? 5(> MHz

V. Some systems are research prototypes and others iu^e commercial.

To help compare the.se systems:

1. How much ".softWtire engineering" went into the development of your system?

The underlying "engine" used for TREC is also u.sed in a commercial product

(C«mQue.st)—hence, lots of SAV engineering is behind it.

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)? Yes—at least a factor of 2

3. What features is your system mi.ssing that it would benefit by if it had them?

Subject domain add-on dictionary.

504

System Summary and Timing

GE Research and Development Center

General Comments

The timings should be tlie time to replicate runs from scratch, not including trial runs, etc. The times should Jilso

be reasonably accurate. This sometijnes will be diilicult, such its getting totsd time for document indexing of huge

text sections, or manually building a knowledge base. Please do your best.

I. Construction of indices, knowledge bases, and other datii structures (please describe all data structures that

your system needs for .searching)

We did no pre-indexing of the data

B. Statistics on diita structuies built from TREC text no data provided

C. Data built from .sources other th;ui ilie input text -no

II. Query construction

(plea.se fill out a section for each query construction method used)

B. Manuiilly consU^ucted queries (ad h(K-)

1. topic fields u.sed Mo.stly description, narrative, and concepts

2. average time lo build query (minutes) About 20 minutes for initial query

3. type of query builder

b. computer system expert

4. tools used to build query

b. knowledge ba.se brow.ser (knowledge base described in part I)

(1) which sU"ucture from pi\rt I inverted samples of corpus

5. which of the following were u.sed?

b. Boolean connectors (AND, OR, NOT)
c. proximity operators

d. addition of terms not included in topic

(1) .source of terms

system lexicon, statistical analy.sis of samples matched by initial

queries

C. Feedback (ad hoc) We did not do feedback, hut we did query refinement

E. Manually constructed queries (routing) Ad hoc and routing were done using the same method

1. topic fields u.sed

2. average time to build query (minutes) About 20 minutes for initial query

3. type of query builder

b. system expert

4. data u.sed for building query

b. from all trtiining documents stati.stical analy.sis of .samples retrieved

c. from documents with relevance judgments

used tor training, testing, and word frequency analysis

5. tools used to build query

d. machine iuuilysis of uaining documents

(1) describe

Word weighting analysis to determine what terms to add to queries

505

6. which of the following were used?

b. Boolean connectors (AND, OR, NOT)
c. proximity operators

e. other (brief description)

system lexicon, statistical analysis of samples matched by initial queries

III. Searching

A. TotiU coinputer tune to seruch (cpu seconds)

1. reuieval tijne (total cpu seconds between when a query enters the system until a list of

document numbers rue obtained)

About 20 hours = 72(>()() CPU seconds. As the documents are not pre-indexed, this

includes all operations on all documents

2. ranking time (lot;il cpu seconds to sort document list) About 300 CPU seconds

B. Which methods best describe your machine setirching metJiods?

5. Boolean matching

7. free text scanning

C. What factors iire included in your ranking?

5. position in document

15. other (specify) Number of hits on topic description

IV. What machine did you conduct tlie TREC experijnent on? SUN SPARCstation-2

How much RAM did it have? 48 Meg
What was the clock rate of tlie CPU? standard

V. Some systems tire reseiuch prototypes and others lue commerciiil.

To help comp;ue tliese systems:

Our system used a pattern matcher and lexicon that have been commercially developed, but

the basic Boolean document processing engine was deveh)ped for TREC in a few days

1. How much "software engineering" went into the development of your system?

2 days for the basic engine

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

Processing time per document could easily be improved by a factor of 2. Processing

time for ad hoc retrieval could be improved by a factcir of about 100,000 by using

an inverted indexing strategy, at a cost of additional storage and indexing time for

the corpus.

3. What features is your system missing that it would benefit by if it had them?

Automatic query generation, aids for compiling queries from higher-level

J
' descripticms

506

System Summary and Timing

TRW

General Comments

The timings should be tlie time to replicate runs IVoin scratch, not including trial runs, etc. The tijnes should also

be reasonably accurate. This sometimes will be diHicult, such as getting total time lor document indexing ot huge

text sections, or mjuiusdly building a knowledge base. Please do your best.

I. Construction ot indices, knowledge bases, and other data structures (please describe all datii structures that

your system needs lor seiuching)

A. Which ot" tlie following were u.sed to build your datii stiuctures?

None—we used a free text scunnin^ approach. CD-ROM data was decompres.sed and loaded

onto magnetic disk in raw form.

B. Statistics on data structures built from TREC text (plea.se till out each applicable .section) -none

C. Data built iiom .sources other th;ui liie input text -none

II. Query construction

(please fill out a section for each query construction method u.sed)

A. Automatically built queries (ad hoc)

We performed some initial trials with building queries based on word frequency taken from

documents from the initial relevance judgments supplied by NIST. Unfortunately, this

appeared to lead us down a blind alley, perhaps hecau.se the initial judgments were not all

that good. We are planning to try this again with the new judgments.

B. Manuidly constructed queries (ad h(K:) We primarily used this method for the TREC queries.

1. topic fields u.sed

2. average time to build query (minutes)

The initial query would take a couple of minutes to manually form by cutting and

pasting from the topic descriptions with a text editor. "Feedback" was the human
looking at the retrieved documents, comparing with the .sample good documents

supplied by NIST making independent judgments on document relevance, and

refining the query in an iterative manner.

3. type of query builder

b. computer system expert

4. tools u.sed to build query no special tools

a. word frequency list

b. knowledge base brow.ser (knowledge base described in part I)

(1) which stiucture from pmt I

c. other lexical tools (identify)

5. which of the following were used?

b. Boolean connectors (AND, OR, NOT)
c. proximity operators

d. addition of terms not included in topic

(1) .source of terms

Additional terms were supplied by human based on outside

knowledge or from reading the text.

507

C. Feedback (ad hoc)

1. initi;iJ query built by incUiod 1 or inclliod 2?

Initial queries were liuilt by humun from subset of topic keywords.

2. type of person doing leedback

b. system expert computer system analyst

3. average liine to do complete leedback We did this manually.

a. cpu time (total cpu seconds I'or all iterations)

A human refining the queries for an hour might use 10 minutes of FDF
time.

b. ckKk lime from initial construction of query to completion of final query (minutes)

Feedback/query refinement was done manually. Some topics were fairly

easy, with reasonable results being achieved in less than an hour. Others,

took several hours.

4. average number of iterations

a. average nmnber of d(x:uments examined per iteration Typically 20-30.

5. minimum number of iterations Maybe 10.

6. miiximuin number of iterations Maybe 100.

7. what determines the end of an iteration?

Each iteration is (1) the human updates the queries, (2) the machine executes, (3) the

human reviews the retrieved documents.

We stopped working on a topic when it seemed that the results were converging to

practical limit for our approach, i.e., adding additional synonym keywords, or

changing the query structure, wasn't going to produce more reasonable results.

8. feedback meiiiods used

d. mmiual methods

(1) using individual judgment with no set idgoritlim

After working through the first dozen or s(» topics, we started to fall

into a semi-routine. We are still thinking about the nature of this

"routine" and what types of tools could help automate it.

E. Manually constructed queries (routing)

Same answers as for ad hoc. If fact, given our query language approach, final ad hoc queries

and routing queries are the same.

Searching

A. Totid computer time to search (cpu seconds)

1. retrieval time (total cpu seconds between when a query enters tlie system until a list of

document numbers lu'e obtained)

Time to process a single set of topic queries against 1.2GB is 2-3 minutes.

Time to load tlie tipster corpus (read from CD-ROM, decompress, and load onto

FDF's disk) was less than 8 hours.

2. ranking time (totiil cpu seconds to sort d(K'ument list) 1-2 seconds

B. Which inethods best describe your machine serirching metliods?

7. free text scanning

To perform the actual searches, we used the fast data finder (FDF) text search

hardware. The FDF implements a wide variety of pattern matching functions

including word/string/phrase matching, fuzzy matches. Boolean logic, proximity

operators, term counting, term completeness, and numeric ranging.

C. What factors iue included in your ranking?

5. position in document

7. proximity of terms

508

9. document lengili

10. completeness (what % of the query terms ina present)

12. word specificity (i.e., iuiimai vs. dog vs. poodle)

To provide a coarse-grain ranking we ran several queries per topic, to provide

increasing levels of recall. The five methods above were u.sed in addition to Boolean

logic, numeric ranging, and word oj der.

IV. What machine did you conduct tJie TREC experiment on? Sun-3/16() with FUF2(M>(> and C-51 disk array

How much RAM did it have? 8 MB
What wiLs the clock rate ot tiie CPU?

A Sun-3/16(^ is a couple of Mips. Note that the Sun is just the host, the FDF does

the actual pattern matching. The FDF2(MK) model used for TREC clocks at around

12 MHz.

V. Some systems jire resesirch prototypes and others ;u"e commerciiil.

To help compare tliese systems:

1. How much ".sottwiire engineering" went into the development of your system?

No special programming was done for the TREC conference. The FDF system itself

was the result of extensive prior development.

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

How fast would you like it to go? The .system used to execute the TREC queries was

20% of a full-up system. We're currently working on software that will

automatically coordinate multiple FDF systems to w<»rking in parallel. We're also

considering faster FDF chips and data transfer methods.

3. What features is your system missing that it would benefit by if it had them?

The next generation of FDF systems have an in-hardware term weighting capability

that can be used, in combination with the existing features, to return a numeric score

for a document. This w()uld allow for finer grain in ranking. New model prototypes

were not available for this effort.

509

System Summary and Timing

VPI & su

General Coininents

The timings should be llie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometijnes will be dilficult, such as getting totril time tor document indexing of huge

text sections, or mrmually building a knowledge base. Please do your best.

I. Construction of indices, knowledge bases, and other data structures (please describe all data structures that

your system needs for seiirching)

A. Which of tlie following were used to build your data structures?

1. slopword list yes

a. how many words in list? 418

2. is a controlled vocabulary used? no

3. stemming no

4. term weighting

Vector and p-norm runs Mere done with no term weights. Vector run.s were also

performed with aug_norm * idf weighting.

5. phrase di.scovery no

6. syntactic prusing no

7. word sen.se di.siunbiguation no

8. heuristic associations no

9. spelling checking (with manual conection) no

10. spelling conection no

11. proper noun identification iilgorillim As provided in SMART
12. tokenizer (recognizes dates, phone numbers, common patterns) As provided in SMART
13. ;u"e the miuiually-indexed terms used? not used as suggested in guideline.s

14. other techniques u.sed to build data structures (brief description)

1983 version of SMART, enhanced with VPI&SU r(»utines

B. Statistics on diita structures built from TREC text (please fill out each applicable section)

Except if you want us to answer under 4 here re the knowledge base used to help build our

Boolean queries, plea.se advise.

5. otlier data structures built from TREC text (what?) Document vector tile and term dictionary

a. tola! iunouni of storage (niegahyies)

Approx. ISMIi for the dictionary and 121 MB for the Document vector file

for the entire Wall Street .lournal collection.

b. total computer lime lo build (approximate number of hours)

. Appnix. time to huild ab(»ve 10 hours on ccrdl (DECstation 5(K)0 Model 25,

i.e., a MIPS RMHH) chip running at 25MHz)
c. is the prcKCss completely automatic? yes

d. brief description of methods u.sed

The document text is tokenized, stop words are thrown out, and non-noi.se

words are kept in the term dictionary along with its occurrence frequency.

Each term in the dictionary has a unique identification number. The vector

tile contains for each document its unitjue ID, and a vector of term ID and

weights for the term. The weighting .scheme is flexible and can be changed

to one of several schemes after the indexing is complete. (If necessary we

can till in details here. Please advise.)

510

C. Data built from sources oilier Hum Uie input text -no

II. Query construction

(please fill out a section tor each query constjuction method used)

A. Automat iciilly built queries (ad hoc)

1. topic fields used Description, Narrative, and Concepts.

2. total computer tijne to build query (cpu seconds) Vector queries-SO seconds for 50 topics

3. which of the following were used?

a. term weighting witli weights bitsed on tenns in topics

Term weightinj:; was used for vector queries.

e. proper noun identification algorillim As provided in SMART
f. tokenizer (recognizes diiies, phone numbers, coirunon patterns)

As provided in SMART

B. Manually consuucted queries (ad h(x-)

1. topic fields used Description, Narrative, and Concepts.

2. average time to build query (minutes) 3 mins/query

3. type of query builder

b. computer system expert

4. tools used to build query

b. knowledge base browser (knowledge base described in p;u t I)

(1) which suucture from p;ut I

for some of <)ur work we l)uild a knowledge base to help suggest

hroader/narrower terms—added information can he provided if

appropriate

c. other lexiciil tools (identity) vi (editor)

5. which of the following were used?

b. Boolean connectors (AND. OR, N(Jn
d. addition of terms not included in topic

(1) .source of terms diuiiain knowledge of experts

III. Searching

A. Total computer lijne to seiu"ch (cpu .seconds)

Approx. 4 minutes for each topic.

We did a full .sequential pass through documents for this since we did not have enough disk

space for the inverted file.

1. reuieval tijne (total cpu .seconds between when a query enters Llie system until a list of

document numbers ;ue obtained)

2. ranking lime (totJiJ cpu .seconds to sort document list)

B. Which methods best describe your machine se;u"ching metliods?

Methods: We used three main methods, and a .scheme for combining the results from those

runs

1. vector .space model

5. Boolean matching

6. fuzzy logic (include your definition) p-norm matching

C. What factors ;ue included in your ranking?

We used several weighting methods in combination with the methods, to get a total of 8 runs

that were the basis for our submission. We used binary weights, as well as:

1. tenn frequency

2. inverse document frequency

511

3. other term weights (wliere do they come from?)

aug_norni, computed by SMART using the above factors

IV. What machine did you conduct llie TREC experijnent on? DECstation 5(MM> Model 25

How much RAM did it have? 4(>M bytes

What was the clock rate ot Uie CPU? MIPS R30(M> at 25MHz
At the end of our work for the submission, we tinally had 3GI>ytes of disk storage to work
with.

V. Some systems lue reseaich prototypes and others iue commercial.

To help compare tlie.se systems:

1. How much ".soltwiue engineering" went into the development of your system?

We began with the 1983 version of SMART, and have enhanced it. We tried to use

the new version of SMART on an RS/60(M) but could n<>t get reliable results and so

went back to our older versi(»n. We underwent extensive .software development since

May but due to lack to disk space could not u.se most of what we developed for the

sul)mi.s.sion.

2. Given appropriate resources, could your system be made to run faster? By how much
(estimate)?

With more disk space we could have used the inverted tile option and that would

have made things much faster. That would have allowed real time interactive

searching. Also, with more disk space, we could have used an RS/6000, assuming

SMART could lie ported and made fully operational.

3. What features is your system missing that it would benefit by if it had them?

Because of the disk space problem we were not able to do many of the efforts we

wanted to do. Work will continue this fall if disks are received in time. Among the

features:

- phrase identification and matching

- building "decision trees" after training with a sufficient .set of relevance

judgments

- implementing the CEO model of P. Thompson and trying it out in a

variety of ways to combine results from a variety of runs and

indexing schemes (that could include stemming and/or

morphological analysis).

512

System Summary and Timing

GTE Laboratories

General CoinineiiLs

The timings should be tlie time to replicate runs Irom scratch, not including trial runs, etc. The tijnes should also

be reasonably accurate. Tliis sometimes will be dit'ticult, such as getting tot;\l time tor document indexing of huge

text sections, or manu^illy building a knowledge base. Please do your best.

I. Construction of indices, knowledge bases, and other data structures (please describe jdl datii structures that

your system needs for seiuching)

A. Which of tlie following were used to build your data sU'uctures?

1. stopword list

a. how many words in lislV 280 words

2. is a controlled vocabulary used? no

3. stemming

a. stiuidmd stemming ^dgoritlims

which ones? Paice contlutioii

b. moiphological iniidysis no

4. tenn weighting yes

5. phrase discovei7 no

6. syntactic pjirsing no

7. word sense dis;imbiguation no

8. heuristic associations no

9. spelling checking (with manual conection) no

10. spelling conection no

11. proper noun identification idgoriUim no

12. tokenizer (recognizes dates, phone numbers, common patterns) no

13. are the manuidly-indexed terms used? no

14. other techniques used to build d:ila structures (brief description)

B. Statistics on data structures built from TREC text (please fill out each applicable section)

1. inverted index

a. total lunount of storage (megabytes) 336(» (for the 24(M) MB of text)

b. total computer time to build (approxijnate number of hours) 672

c. is the process completely automatic? yes

d. iue term positions widiin d(K~uinenls stored? yes

e. single terms only? yes

5. other data suuctures built from TREC text (what?) statistics files

a. total iunount of storage (megabytes) 4<M)

b. total computer time to build (approxijnate number of hours) 24

c. is the process completely automatic? yes

d. brief description of methods used

Index is stunned for frequency, location, popularity and record size

statistics. The results are used in normalizing the weighting attril)ute.s.

C. Data built from sources other thiui die input text -no

II. Query construction

(please fill out a section for each query construction method u.sed)

513

A. AutoinatiaUly built queries (ad hoc)

1. topic fields used Topic, Description, Narrative

2. total computer tijne to build query (cpu seconds) 2 seconds

3. which of the following were used?

a. term weighting wiili weights based on tenns in topics

c. syntactic piusing of topics

i. automatic addition of B(K)lean connectors or proximity operators

D. Auiomaticidly built queries (routing)

1. topic fields used Topic, Description, Narrative

2. total computer time to build query (cpu seconds) 2 seconds

3. which of the following were used in building the query?

a. terms selected from

(1) topic

b. tenn weighting

(1) with weights based on terms in topics

d. syntactic p;using

(1) of topics

j. automatic addition of Boolean connectors or proximity operators

(1) using information I rom tlie topics

III. Searching

A. Totiil computer lime to se;uch (cpu seconds) /* all topics */ 1()S(MM)

1. reuieval time (total cpu seconds between when a query enters tJie system until a list of

document numbers lue obtained) -72000

2. ranking time (total cpu seconds to sort d(x:ument list) ~36000

B. Which methods best describe your machine searching metliods?

10. other (describe) multi-level attribute weighting

C. What factors jue included in your ranking?

1. tenn frequency

2. inverse d(H:ument frequency

3. other term weights (where do they come from?) explicit term weighting by u.ser

5. position in document

7. proximity of terms

9. document lenglli

10. completeness (what % of the query terms lue present)

15. other (specify) record (document) id

IV. What machine did you conduct die TREC experiment on? IBM RS/6000 320

How much RAM did it have? 32 MR
What was the clock rate of Uie CPU? 25 MHz

V. Some systems tire reseiuch prototypes and others ;u"e commercial.

To help compjue tliese systems:

1. How much ".softwjue engineering" went into the development of your system?

This is a prototype.

2. Given appropriate resources, could your system be made to run faster? By how much

(estimate)?

yes, given faster hardware and more RAM, we can probably double the

514

performunce.

3. What features is your system missing that it would benellt by if it had them?

Variable sized buckets to implement linked lists.

Improved ranking attribute range calculation.

Spelling correction.

515

System Summary and Timing

Siemens Coiporate Research, Inc.

General Coiiunents

The timings should be Uie time to replicate runs from scratch, not including trial runs, etc. The times should also

be reasonably accurate. This sometijnes will be ditlicult, such as getting totid time tor document indexing of huge

text sections, or m;uiu;iily building a knowledge base. Please do your best.

Summary of method: Completely automatic vector matching where both document and query vectors have

been expanded using synonyms extracted from WordNet.

I. Consu uciion of indices, knowledge bases, and odier data sU^uctures (please describe all data structures that

your system needs for .seiuvhing)

A. Which of die following were u.sed to build your data sU'uctures?

1. stopword list

a. how many words in list?

' 571 word stopword list used (standard SMART stopword list)

2. is a controlled v(x:abuhiry u.sed? no

3. stemming

a. st;uid;u"d stemming idgoritlnns

which ones?

b. moiphological ;malysis

Extremely simple suffix stripper to look words up in WordNet. (Checks for

one of 22 suffixes and possibly modifies end of stem if a matching suffix is

found. This was in code I inherited—I don't know the .source of the suffix

list, but the list is a subset of that used by SMART, .so it probably comes

from some "standard" algorithm.) All words also pass through the

"triestem" stemmer of SMART. This stemmer was originally ba.sed on

Lovin's CACM article, but has evolved over the years.

4. tenn weighting

A tf*idf weight is used for l)oth query and document terms, where the weight is

further normalized so that an inner product computation produces the cosine ("tfc"

weights using tiie terminohtgy of "Term Weighting Approaches in Automatic Text

Retrieval" l)y Salton and Huckley). A term is counted as appearing in a document

(for idf purposes) if it was in the original text (u- if it was added as a .synonym. The

tf*idf portion of an added term's weight is multiplied by .8 to produce its final

weight.

5. phra.se discove 17

a. what kind of phrase?

b. using statistical methods

c. using syntactic methods

WordNet contains collocations as meml)ers of synonym .sets, .so some phrases

may be added as synonyms. However, such a coMocation is a.s.signed a

uni(|ue concept number and will only match that exact collocation (.so I

don't consider it to be "phrasing"). No other phrasing u.sed.

6. syntactic piusing no

7. word .sen.se di.s;unbiguation

No specific sen.se disambiguation procedure used. If a term occurs in more than one

WordNet synonym set (which, by definition, means that it is polysemoas), the

synonyms from all of its senses may potentially be added to the vector. The

516

al^(»ritlim requires that at least two original text words agree on a synonym before

it is added to the vector.

The effect of this is to do a poor man's version of sense disambiguation for the

synonyms.

8. heuristic associations

a. short deliiiition of tliese associations

WordNet synonymy relation only association used.

9. spelling checking (with manual conection) no

10. spelling correction no

11. proper noun identification iilgoritJiin no

12. tokenizer (recognizes dates, phone numbers, coimnon patterns) no

13. are the manuiilly-indexed terms used? no

14. other techniques used to build diita structures (brief description) no

B. Statistics on diita structures built from TREC text (plea.se fill out each applicable .section)

1. inverted index

a. total iunount of storage (megabytes) 947 megabytes of disk storage

b. total computer time to build (approxijnate nuinber of hours)

5 hours to build index given document vectors; document vectors took 37

hours to build from text. Thus, approximately 42 hours to go from text to

inverted index.

c. is the pr(K'ess completely automatic? yes

d. aie term positions witJiin documents stored?

No term position information maintained.

e. single terms only?

Single terms only (although, as .stated al)ove, a single term from WordNet
may be a collocation such as 'electrical_discharge').

2. n-grajns, suffix anays, signature files

N-grams and signature tiles not u.sed. SMART stemmer algorithm incorporates a

(.static) trie of suffixe.s.

3. knowledge ba.ses

No knowledge ha.se used other than WordNet (described under I.C.2).

C. Data built from sources other ihmi llie input text

1. intenuilly-built auxiliiuy tiles none

2. externally-built auxiliajy file

a. type of file (Treebank, WordNet, etc.) WordNet (noun portion only)

b. total iunount ol storage (megabytes) 5 megabytes

c. total number of concepts represented 35,155 synonym sets (67,293 word .senses)

d. type of representation (frames, semiuilic nets, rules, etc.)

We used only the synonymy relation that WordNet contains. However,

WordNet contains many other lexical relationships making it similar to a

semantic net.

II. Query construction

(please fill out a .section for each query consuuction method used)

[We submitted one set of results; those results were for automatically built ad hoc queries.]

A. Automatict'dly built queries (ad hoc)

1. topic fields u.sed

Concepts (<con>), Description (<de.sc>), Factors (<fac>). Narrative (<narr>),

Nationality (<nat>), Title (<title>)

2. total computer time to build query (cpu seconds)

1 second, on average (50 seconds to index 50 queries)

517

3. which ol' ihe following were used?

a. term weighliiig wiUi weights bused on tenns in topics Yes, as described above

d. word sense disambiguation

Only as described al)<)ve (two original query terms must agree on a synonym
to be added).

h. expmision ot queries using previously-constiucted diita slructuie (from part I)

(1) which sU'uclure? WordNet.

III. Searching

A. Totid computer time to setuch (cpu seconds)

1. reLiieval time (tot;il cpu seconds between when a query enters tlie system until a list of

document numbers ;u"e obtained)

15 cpu seconds, on average (756.4 cpu seconds to pr«>cess 5i) queries)

2. ranking time (totiil cpu seconds to sort d(x:ument list)

not applicable: list of top 2(K) similarities maintained while searching

B. Which methods best describe your machine seiuching melliods?

1. vector space model

C. What factors lue included in your ranking?

1. tenn frequency

2. inverse document frequency

4. semjuitic closeness (as in semantic net distance) (synonyms)

9. document lengtli

13. word sense frequency

(nouns with only one sense in WordNet get all their .synonyms added)

IV. What machine did you conduct the TRl'C cxperiinenl on? Sun IPX

How much RAM did it have? 64 megabytes

What was the clock rate of die Cini ' 4(>MH/

V. Some systems iue re,se;uch prototypes and others ;ue commerciiil.

To help comp;ue tliese systems:

1. How much ".software engineering" went into the development of your system?

Our system is a version of SMART with modified indexing code. SMART has been

well-engineered (but its main goal is tiexibility, not raw speed). Little time was spent

optimizing our modifications.

2. Given appropiiate resources, could your system be made to run faster? By how much

(estimate)?

SMART could probably be made to run somewhat faster if it were made less

flexible, that is, if we coded a version that performed only the .sorts of runs we made
here. I doubt the difference would be dramatic. Preproce.ssing steps performed on

WordNet could improve the efficiency of the expansion code.

3. What features is your system missing that it would benefit by if it had them?

Incorporating part-of-speech tagging so that we could knctw if the term is a noun

before looking it up in WordNet should be beneficial (we didn't do this for TREC
because the tagger we have is fairly sl()w). In the .same vein, a true sen.se

disambiguat<»r~a way of picking the correct WordNet syn<»nym .set—would clearly

help, but I don't know of a way of doing that automatically yet (it is part of our

research).

518 *U.S. G.P.O. :1993-341-931 :82636

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

i T X kJ JL Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology— Reports NIST
research and development in those disciplines of the physical and engineering sciences in which
the Institute is active. These include physics, chemistry, engineering, mathematics, and computer
sciences. Papers cover a broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization. Also included from time to time
are survey articles on topics closely related to the Institute's technical and scientific programs.
Issued six times a year.

Nonperiodicals

Monographs— Major contributions to the technical literature on various subjects related to the
Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes)
developed in cooperation with interested industries, professional organizations, and regulatory
bodies.

Special Publications— Include proceedings of conferences sponsored by NIST, NIST annual
reports, and other special publications appropriate to this grouping such as wall charts, pocket
cards, and bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and studies of special interest to

physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others
engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed
under a worldwide program coordinated by NIST under the authority of the National Standard
Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data
(JPCRD) is published bimonthly for NIST by the American Chemical Society (ACS) and the
American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from
ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series— Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes— Studies or reports which are complete in themselves but restrictive in their

treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive

in treatment of the subject area. Often serve as a vehicle for final reports of work performed at

NIST under the sponsorship of other government agencies.

Voluntary Product Standards— Developed under procedures published by the Department of

Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all concerned interests with a basis

for common understanding of the characteristics of the products. NIST administers this program
in support of the efforts of private-sector standardizing organizations.

Consumer Information Series — Practical information, based on NIST research and experience,

covering areas of interest to the consumer. Easily understandable language and illustrations

provide useful background knowledge for shopping in today's technological marketplace.

Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information

Se'vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB) -Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves

as the official source of information in the Federal Government regarding standards issued by

NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,

dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)-A special series of interim or final reports on work

performed by NIST for outside sponsors (both government and non-government). In general,

initial distribution is handled by the sponsor; public distribution is by the National Technical

Information Service, Springfield, VA 22161, in paper copy or microfiche form.

		Superintendent of Documents
	2022-04-16T02:59:25-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

