

Specification for the Extensible
Configuration Checklist Descriptio
(XCCDF)

N
Nationa

John W

NISTIR 7188
n Format

eal Ziring, Author,
l Security Agency

ack, NIST Editor

8

Specification for the Extensible
Configuration Checklist Descripti
(XCCDF)

Informa

Fo

Informa
National Institute of

Gai

Phillip J. Bond, Un
NATIONAL INSTITUTE

NISTIR 718
on Format

Neal Ziring, NSA Author
tion Assurance Directorate

National Security Agency
rt Meade, MD 20755-6704

John Wack, NIST Editor

Computer Security Division
tion Technology Laboratory
Standards and Technology
thersburg, MD 20988-8930

January 2005

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
der Secretary of Commerce for Technology

OF STANDARDS AND TECHNOLOGY
Hratch G. Semerjian, Acting Director

Abstract

This document specifies the data model and XML representation for the Extensible
Configuration Checklist Description Format (XCCDF). An XCCDF document is a structured
collection of security configuration rules for some set of target systems. The XCCDF
specification is designed to support information interchange, document generation,
organizational and situational tailoring, automated compliance testing, and compliance scoring.
The specification also defines a data model and format for storing results of benchmark
compliance testing. The intent of XCCDF is to provide a uniform foundation for expression of
security checklists, benchmarks, and other configuration guidance, and thereby foster more
widespread application of good security practices.

 iii

 Purpose and Scope

The Cyber Security Research and Development Act of 2002 tasks the National Institute of
Standards and Technology (NIST) to “develop, and revise as necessary, a checklist setting forth
settings and option selections that minimize the security risks associated with each computer
hardware or software system that is, or is likely to become widely used within the Federal
Government.” Such checklists, when combined with well-developed guidance, leveraged with
high-quality security expertise, vendor product knowledge, operational experience, and
accompanied with tools, can markedly reduce the vulnerability exposure of an organization.

To promote the use, standardization, and sharing of effective security checklists, NIST and NSA
have collaborated with representatives of private industry to developed the XCCDF
specification. The specification is vendor-neutral, flexible, and suited for a wide variety of
checklist applications.

 Audience

The primary audience of the XCCDF specification is government and industry security analysts,
and industry security management product developers. NIST and NSA welcome feedback from
these groups in improving the XCCDF specification.

 iv

Table of Contents
1. Introduction... 1

1.1. Background... 1
1.2. Vision for Use ... 2

2. Requirements .. 3
2.1. Structure and Tailoring Requirements .. 4
2.2. Inheritance and Inclusion Requirements... 5
2.3. Document and Report Formatting Requirements ... 6
2.4. Rule Checking Requirements ... 6
2.5. Metadata and Security Requirements ... 7

3. Data Model.. 8
3.1. Benchmark Structure .. 9
3.2. Object Detailed Contents .. 10
3.3. Processing Models .. 21

4. XML Representation.. 29
4.1. XML Document General Considerations ... 29
4.2. XML Element Dictionary ... 30
4.3. Text and String Content .. 49

5. Conclusions... 51
6. Appendix A – XCCDF Schema.. 52
7. Appendix B – Sample Benchmark File .. 71
8. References... 76

 v

Acknowledgements
The editor would like to acknowledge the following individuals who contributed to the initial
definition of XCCDF and its initial development: David Proulx, Mike Michinikov, Andrew
Buttner, Todd Wittbold, Adam Compton, George Jones, Chris Calabrese, John Banghart,
Murugiah Souppaya, John Wack, Trent Pitsenbarger, and Robert Stafford. David Waltermire of
the Center for Internet Security was instrumental in supporting the development of XCCDF; he
contributed many important concepts and constructs, performed a great deal of proofreading on
this specification document, and provided critical input based on implementation experience.
Ryan Wilson of Georgia Institute of Technology also made substantial contributions.

Trademark Information
Cisco and IOS are registered trademarks of Cisco Systems, Inc. in the USA and other countries.
Windows is a registered trademark of Microsoft Corporation in the USA and other countries.
Solaris is a registered trademark of Sun Microsystems, Inc. OVAL is a trademark of The
MITRE Corporation.

Warnings
SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 vi

1. Introduction
The security of an IT system may be measured in a variety of ways, but one way that has
worked well in practice is conformance of the system configuration to a security
benchmark. A typical benchmark includes criteria and rules for hardening a system
against the most common forms of compromise and exploitation, and for reducing the
exposed ‘attack surface’ of a system. Many different companies, government agencies,
and community groups create and disseminate security benchmarks. While these various
organizations often cooperate on the definition of the rules embodied in these consensus
benchmarks, the underlying specification, test, and report formats used for these
endeavors have been specialized and unique.
Configuring a system into conformance with a benchmark or other security specification
is a highly technical task. To aid system administrators, commercial and community
developers have created automated tools that can score a system’s conformance and
recommend corrective measures. Many of these tools are data-driven: they accept a
benchmark specification in some program-readable form, and use it to perform the
checks and tests necessary to measure conformance and generate reports. However, with
rare exceptions, none of these tools employ the same data formats, thus requiring
duplication of effort and precluding interoperability.
This note describes a data model and processing discipline for supporting secure
configuration and assessment. The requirements and goals are explained in detail below,
but may be summarized briefly as document generation, expression of policy-aware
configuration rules, support for complex and compound rules, support for compliance
scoring, and support for customization and tailoring. The model and its XML
representation are intended to be platform-independent and portable, to foster broad
adoption and sharing of rules. The processing discipline of the format requires, for some
uses, a service layer that can collect and store system information and perform simple
policy-neutral tests against the system information. These conditions are described in
detail below. The XML representation is expressed as an XML Schema in Appendix A.
This document has been prepared for use by Federal agencies. It may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright,
though attribution is desired.

1.1. Background
Today, groups promoting good security practices and system owners wishing to adopt
them face an overload in the size and complexity of their tasks. As systems get larger,
automated tools become a necessity for uniform application of security rules and
visibility into system status. These conditions have created a need for mechanisms that:

• permit faster, more cooperative, and more automated definition of security rules,
procedures, guidance documents, alerts, advisories, and remediation measures,

• permit fast, uniform, manageable administration of security checks and audits,

• permit composition of security rules and tests from different community groups
and vendors,

NISTIR 7188: XCCDF Specification 1 1

• permit scoring and reporting of security status, both over distributed systems and
over the same systems across their operational lifetimes,

• foster development of interoperable community and commercial tools for creating
and employing security benchmarks.

Today, such mechanisms exist only in some isolated niche areas (e.g. MS Windowstm
patch validation) and they support only narrow slices of security benchmark compliance
functionality. This note proposes a data model and format specification for an extensible,
interoperable benchmark ‘language’.

1.2. Vision for Use
XCCDF is designed to enable easier, more uniform creation of security benchmarks, and
allow benchmarks to be used with a variety of commercial and open tools. The
motivation for this is improvement of security for IT systems, including the Internet, by
better application of known security practices and configuration settings.
The scenarios below illustrate some uses of security benchmarks and tools that XCCDF
will foster.

• Scenario 1 –
An academic group produces a benchmark for secure configuration of a particular
server operating system version. A government organization issues a set of rules
extending the academic benchmark to meet more stringent user authorization
criteria imposed by statute. A medical enterprise downloads both the academic
benchmark and the government extension, tailors the combination to fit their
internal security policy, and applies an enterprise-wide audit using a commercial
security audit tool. Reports output by the tool include remediative measures
which the medical enterprise IT staff use to bring their systems into full internal
policy compliance.

• Scenario 2 –
A federally-funded lab issues a security advisory about a new Internet worm. In
addition to a prose description of the worm’s attack vector, they include a set of
short benchmarks in a standard format that assess vulnerability to the worm for
various operating system platforms. Organizations all over the world pick up the
advisory, and use installed tools that support the standard format to check their
status and fix vulnerable systems.

• Scenario 3 –
An industry consortium wants to produce a security checklist for a popular
commercial server. The core security settings are the same for all OS platforms
on which the server runs, but a few settings are OS-specific. The consortium can
craft one checklist in a standard format for the core settings, and then write
several OS-specific ones that incorporate the core settings by reference. Users
download the core checklist and the OS-specific checklists that apply to their
installations, and run a checking tool to score their compliance with the checklist.

NISTIR 7188: XCCDF Specification 2 2

2. Requirements
The general objective for XCCDF is to allow security analysts and IT experts to create
effective and inter-operable benchmarks, and to support use of benchmarks with a wide
variety of tools. Figure 1 shows some purposes for which a benchmark might be used.

Benchmark results

pdf

Security
Experts

and
Domain
Experts

Tailoring
Tools

Transform
Engine

Document
Generator

System
Administrator

or
Auditor

Compliance
Benchmarking

Tool

Other
Reporting

Tools

html
xsl

xml

xccdf

Security Status
Monitor or

Vulnerability Tester

System
Under
Test

Other
Tools

Benchmark Reports

Web pages

Publication
Documents

XCCDF
benchmark format

Non-compliance or
vulnerability
alerts

Formatting
information

Stylesheets

Fix scripts or updates

1

2

3

4

5

6

7

8

XML

XCCDF

XCCDF

XCCDF

XCCDF

System
tests

Figure 1 – Use Cases for XCCDF Documents

The list below describes some requirements for each of the uses.

1. Security and domain experts create a benchmark, which is an organized collection
of rules about a particular kind of system or platform. To support this use,
XCCDF must be an open, standardized format, amenable to generation and
editing with a variety of tools. It must be expressive enough to represent complex
conditions and relationships about the systems to be benchmarked, and it must
also be able to incorporate descriptive material and remediative measures.
(XCCDF benchmarks may include specification of the hardware and/or software
platforms to which they apply. The specification should be concrete and granular
enough for compliance checking tools to detect whether a rule is suited for a
target platform.)

NISTIR 7188: XCCDF Specification 3 3

2. Auditors and system administrators may employ tailoring tools to customize a
benchmark for their local environment or policies. An XCCDF document must
include the structure and interrogative text needed to guide the user in tailoring a
benchmark, and it must be able to hold or incorporate the user’s tailoring
responses.

3. In addition to supporting tailoring and security audits, an XCCDF document
should be structured to foster generation of hardcopy benchmark guides.

4. The structure of a XCCDF document should support transformation into HTML,
for posting the benchmark as a web page.

5. An XCCDF document should be transformable into (other) XML formats, to
promote portability and interoperability.

6. The primary use for an XCCDF benchmark is to drive automated security
benchmarking tools. Such tools should accept one or more XCCDF documents,
and supporting system test definitions, and check whether their rules are satisfied
by some particular target system. The XCCDF document should support
generation of a compliance report, including a weighted compliance score.

7. In addition to a benchmark report, some benchmarking tools may be capable of
generating scripts or procedures for helping to bring a system into compliance.
XCCDF must be able to hold or encapsulate the remediation scripts or texts.

8. XCCDF documents might also be used in vulnerability scanners, to test whether a
target system is vulnerable to a particular kind of attack. For this purpose, the
XCCDF document would play the role of a vulnerability alert, but with the ability
to both describe the problem and drive automated verification of its presence.

In addition to these use cases, an XCCDF document should be amenable to embedding
inside other documents, and to having data expressed in other formats embedded inside
of it. Also, as its name implies, XCCDF must be extensible – it must be possible for new
functionality and features to be added to XCCDF-capable tools and data for those new
features stored in XCCDF without breaking other tools.

2.1. Structure and Tailoring Requirements
To support tailoring by users, and generation of documents for users, XCCDF must allow
authors to impose organization on a benchmark. Benchmark authors will need to arrange
rules in order, and collect them into groups.
For benchmark structure, a benchmark author must be able to designate the order in
which rules or groups are to be processed. As the simplest case, processing order can be
simply the order in which the rules appear in the XCCDF document.
For tailoring, values, rules and groups will need descriptive and interrogative text to help
a user make tailoring decisions. Two basic kinds of tailoring will be needed:

• Selectability – a tailoring action might select or deselect a rule or group of rules
for inclusion or exclusion from the benchmark. For example, at a site where no
FTP service is used, an auditor might choose to deselect all rules about secure
configuration of the FTP server.

NISTIR 7188: XCCDF Specification 4 4

• Substitution – a tailoring action might substitute a locally-significant value for a
general value in a rule. For example, at a site where all logs are sent to a
designated logging host, the address of that log server might be substituted into a
rule about audit configuration.

Once benchmarks can be tailored, the possibility arises that some rules within the same
benchmark might conflict or be mutually exclusive. In other words, the author of a
benchmark must be able to identify particular tailoring choices as incompatible, so that
tailoring tools can take appropriate actions.
In addition to being able to specify rules, XCCDF must support structures that fosters use
and re-use of rules. To this end, XCCDF must provide a means for related rules to be
grouped together, and for sets of rules and groups which should be applied in concert to
be designated, named, and applied easily. Two realizations of this notion are benchmark
levels, as provided in benchmarks distributed by the Center for Internet Security, and
checklist baselines, as described in the NIST security checklist program [11].
For benchmark processing, there are two basic processing modes: rule checking, and
document generation. It must be possible for a benchmark author to designate the modes
under which a rule may be processed.

2.2. Inheritance and Inclusion Requirements
To support building up benchmarks from parts, XCCDF must support mechanisms for
authors to extend (inherit from) existing rules and rule groups, in addition to expressing
rules and groups in their entirety. Also, it must be possible for one benchmark to include
all or part of another. There are a couple of benchmarking use cases where inheritance
and inclusion will be needed.

• An organization might choose to define a foundational benchmark for a family of
platforms (e.g. Unixtm-like operating systems) and then extend them for specific
members of the family (e.g. Solaristm) or for specific roles (e.g. mail server).

• An analyst might choose to make an extended version of a benchmark, by adding
some new rules and adjusting some others.

• If the sets of rules that constitute a benchmark come from several sources, it will
be useful to be able to aggregate them using an inclusion mechanism.

• Within a benchmark, it might be desirable to share some of the descriptive
material among several rules. With extension, this can be accomplished by
creating a base rule, and then extending it with several different rule checks.

• For updating a benchmark, it will be convenient to be able to incorporate changes
or additions using extension.

• To allow broader site-specific or enterprise-specific customization, it should be
possible for a user to override or amend any portion of a benchmark rule.

The XCCDF specification does not include any mechanism for inclusion; instead,
implementations of XCCDF tools should support the XML Inclusion (XInclude) facility
standardized by the W3C [9].

NISTIR 7188: XCCDF Specification 5 5

2.3. Document and Report Formatting Requirements
Several of the main use cases for XCCDF benchmarks involve generation of reports or
other documents for users to read. Authors will need mechanisms for formatting text,
including images, and referencing other information resources. These mechanisms must
be separable from the text itself, so that they can be filtered out by applications that do
not support them. (XCCDF 1.0 currently satisfies these formatting requirements mainly
by allowing inclusion of XHTML markup tags [3].)
For document formatting, a benchmark should be able to include arbitrary document text
that does not contribute directly to the benchmarking process: introduction, rationale,
warnings, and references are just some of the uses for extra text.

2.4. Rule Checking Requirements
The primary use for XCCDF will be performing security and operational checks on
systems. Therefore, XCCDF must have access to very fine-grained and expressive
mechanisms for checking the state of a system against rule criteria. The community
seems to have reached an informal consensus that the model for this is to treat the state or
configuration of a system as a collection of facts, and to treat expression of conditions
and criteria as an operation or combination of operations against the collection. The
operations used have varied with different existing applications; some rule checking
systems use a database query operation model, while others use a pattern-matching
model. At the least, any rule checking mechanism used for XCCDF must satisfy the
following criteria:

• It must be able to express both positive and negative criteria -
A positive criterion means that if certain conditions are met, then the system
satisfies the benchmark, while a negative criterion means if the conditions are met
the system fails the benchmark. Experience has shown that both kinds are
necessary when crafting security benchmarks.

• It must be able to express boolean combinations of criteria -
It is often impossible to express a high-level security property as a single
quantitative or qualitative statement about a system’s state. Therefore, the ability
to combine statements with ‘and’ and ‘or’ is critical.

• It must be able to incorporate tailoring values set by the user -
As described above, substitution is important for benchmark tailoring. Any
XCCDF checking mechanism must support substitution of tailored values into its
criteria or statements as well as tailoring of the selected set of rules.

It is not clear that a single rule specification scheme can be defined that will satisfy all
uses of XCCDF. Therefore, the XCCDF definition must allow for use of different rule
checking systems, and a means for identifying the checking system used in a each rule. It
is important that the rule checking system be defined separately from XCCDF itself, so
that they can evolve separately and be used independently when necessary. This further
implies the need to cleanly define the interface between XCCDF and the rule checking
system, in terms of information passed from each to the other.

NISTIR 7188: XCCDF Specification 6 6

2.5. Metadata and Security Requirements
Security benchmarks are fairly common, and some government and volunteer
organizations have disclosed plans to create repositories of benchmarks. To facilitate
discovery and retrieval of benchmarks in repositories and on the open Internet, XCCDF
must support inclusion of metadata about a benchmark. Some of the metadata that must
be supported includes: benchmark title, name of benchmark author(s), organization
providing the benchmark, version number, release date, update URL, and a description.
A number of metadata standards already exist, it is preferable that XCCDF simply
incorporate one of them rather than defining its own metadata model.
Application of a security benchmark is a very sensitive action in the management of an
IT system. Therefore, some users may need to verify the integrity and provenance of a
benchmark before using it. Fortunately, mature standards for digital signatures already
exist that are suitable for asserting the authorship and protecting the integrity of
benchmarks. XCCDF must provide a means to hold such signatures, and a uniform
method for applying and validating them.

NISTIR 7188: XCCDF Specification 7 7

3. Data Model
The fundamental data model for XCCDF consists of four main object data types:

1. Benchmark –
An XCCDF document holds exactly one Benchmark object. A Benchmark holds
descriptive text, and acts as a container for items and other objects.

2. Item –
An Item is a named constituent of a benchmark; it has properties for descriptive
text, and can be referenced by an id. There are several derived classes of Items.

• Group –
This kind of Item can hold other Items. If a Group is unselected, then all of
the items it contains are unselected. A Group may be selected or unselected.

• Rule –
This kind of Item holds a rule checking definition, a scoring weight, and may
also hold remediation text. A Rule may be selected or unselected.

• Value –
This kind of Item is a named data value that can be substituted into other
Item’s property values. It can also have an associated data type and operator
that expresses how the value should be used and how it can be tailored.

3. Profile –
A profile is a collection of attributed references to Rule, Group, and Value
objects. It supports the requirement to allow definition of named levels or
baselines in a benchmark (see Section 2.1).

4. TestResult –
A test result object holds the results of performing a compliance test against a
single target device or system.

Figure 2, below, shows the data model relationships as a UML diagram.

Item

Rule GroupValue

Benchmark

Profile

TestResult

*

** *

Figure 2 –XCCDF High-Level Data Model

NISTIR 7188: XCCDF Specification 8 8

As shown in Figure 2, one Benchmark can hold many Items, but each Item belongs to
exactly one Benchmark. Similarly, a Group can hold many Items, but an Item may
belong to only one Group. Thus, the Items in a benchmark form a tree, where the root
node is the Benchmark, interior nodes are Groups, and the leaves are Values and Rules.
A Profile object references Rule, Value, and Group objects. A TestResult object
references Rule objects, and may also reference a Profile object.
The definition of a Value, Rule, or Group can extend another Value, Rule, or Group. The
extending item inherits property values from the extended item. This extension
mechanism is separate and independent of grouping.
Group and Rule items can be marked by a benchmark author as selected or unselected.
A Group or Rule that is not selected does not undergo processing. The author may also
stipulate, for a Group, Rule, or Value, whether the end user is permitted to tailor it.
Rule items may have a scoring weight associated with them, which can be used by a
benchmark checking tool to compute a target system’s overall compliance score. Rule
items may also hold remediation information.
Value items include information about current, default, and permissible values for the
Value. Each of these properties of a Value can have an associated selector id, which is
used when customizing the Value as part of a Profile. For example, a Value might be
used to hold a Benchmark’s lower limit for password length on some operating system.
In a Profile for that operating system to be used in a closed lab, the default value might be
5, but in a Profile for that operating system to be used on the Internet, the default value
might be 10.

3.1. Benchmark Structure
Typically, a Benchmark would hold one or more Groups, and each group would hold
some Rules, Values, and additional child Groups. Figure 3 illustrates this relationship.

Benchmark

Group (d)

Value (b)

Group (e) Rule (h)

Rule (i)
Rule (f) Rule (g)

Profile (n) Profile (o)

Value (a) Value (c)

Group (j) Rule (l)Value (k) Rule (m)

Figure 3 – Typical Structure of a Benchmark

Groups allow a benchmark author to collect related rules and values into a common
structure and provide descriptive text and references about them. Further, groups allow

NISTIR 7188: XCCDF Specification 9 9

benchmark users to select and deselect related rules together, helping to ensure
commonality among users of the same benchmark. Lastly, groups affect benchmark
compliance scoring. As explained in Section 3.3, an XCCDF compliance score is
calculated for each group, based on the rules and sub-groups in it. The overall XCCDF
score for the benchmark is computed only from the scores on the immediate Group and
Rule children of the Benchmark object. In the tiny benchmark shown in Figure 3, the
benchmark score would be computed from the scores of Group (d) and Group (j). The
score for Group (j) would be computed from Rule (l) and Rule (m).

Inheritance
The possible inheritance relations between Item object instances are constrained by the
tree structure of the benchmark, but are otherwise independent of it. In other words, all
extension relationships must be resolved before the benchmark can be used for
compliance testing. An Item may only extend another Item of the same type that is
‘visible’ from its scope. An Item X is visible from another Item Y if and only if it meets
one of the following conditions: (1) X and Y are siblings, (2) X is a sibling of some
enclosing group of Y, or (3) X is visible to the scope of the direct children of any group
extended by any enclosing group of Y.
For example, in the tiny benchmark structure shown in Figure 3, it would be legal for
Rule (g) to extend Rule (f), and legal for Rule (f) to extend Rule (h). It would not be
legal for Rule (i) to extend Rule (m), because (m) is not visible from the scope of (i). It
would not be legal for Rule (l) to extend Group (g), because they are not of the same
type.
The ability for a Rule or Benchmark to be extended by another is a convenience for
benchmark authors.

3.2. Object Detailed Contents
The tables below show the properties that make up each data type in the XCCDF data
model. Note that the properties that comprise a Benchmark or Item are an ordered
sequence of property values, and the order in which they appear determines the order in
which they are processed.
Properties with a data type of “text” are string data that can include embedded formatting
directives and hypertext links. Properties of type “string” may not include formatting.

Benchmark
Property Type Count Description

id identifier 1 benchmark identifier, mandatory

title text 0-n title of the benchmark document

description text 0-n text that describes the benchmark

version string 1 version number of the benchmark

status string+date 1 status of the benchmark (see below) and date at
which it attained that status, mandatory.

NISTIR 7188: XCCDF Specification 10 10

Property Type Count Description

notice string+id 0-n legal notices or copyright statements about this
benchmark; each notice has a string value and a
unique identifier.

front-matter text 0-n text for the front of the benchmark document

rear-matter text 0-n text for the back of the benchmark document

reference special 0-n A bibliographic reference for the benchmark
document: metadata or a simple string, plus an
optional URL.

platform-definitions special 0-1 A list of component definitions and platform
definitions, each with an id.

platform id 0-n target platform(s) for this benchmark; this
property may appear multiple times. The id
refers to a platform definition.

resolved boolean 0-1 True if benchmark has already undergone the
resolution process (see Section 3.3)

values Value 0-n Tailoring values that support rules and
descriptions in the benchmark

groups Group 0-n Groups that comprise the benchmark, each
group may contain additional values, groups,
and rules.

rules Rule 0-n Rules that comprise the benchmark

profiles Profile 0-n Profiles that reference and customize sets of
items in the Benchmark; optional

test-results TestResult 0-n Benchmark test result records (one per test);
optional

metadata special 0-n Discovery metadata for the benchmark (e.g.
compliant with Dublin Core Metadata Initiative
XML guidelines)

signature special 0-1 Digital signatures asserting authorship and
allowing verification of the integrity of the
benchmark, optional

Conceptually, a Benchmark contains Group, Rule, and Value objects, and it may also
contain Profile and TestResult objects. For ease of reading and simplicity of scoping, all
Value objects must precede all Groups and Rules, which must precede all Profiles, which
must precede all TestResults. These objects may be directly embedded in the
Benchmark, or incorporated via W3C standard XML Inclusion [9].
The platform-definitions property is a essentially a list of platforms, each with a unique
id. Benchmark, Group, Rule, and Profile objects may have platform properties that
identify the hardware and/or software products to which they apply. The Benchmark
platform-definitions and platform properties are optional. Benchmark authors should use
them to identify the systems or products to which their benchmarks apply. For more
information about platform specification, consult [12].

NISTIR 7188: XCCDF Specification 11 11

The status field consists of a status string and a date. Permissible string values are
“accepted”, “draft”, “interim”, “incomplete”, and “deprecated”. Benchmark authors
should mark their benchmarks with a status to indicate a level of maturity or concensus.
Benchmark metadata allows authorship, publisher, support, and other information to be
embedding a benchmark. Metadata should comply with existing commercial or
government metadata specifications, to allow benchmarks to be discovered and indexed.
The XCCDF data model allows multiple metadata properties for a Benchmark; each
property should provide metadata compliant with a different specification. The primary
metadata format, which should appear in all published benchmarks, is the simple Dublin
Core Elements specification, as documented in [13].
Note that a digital signature, if any, applies only to the benchmark in which it appears,
but after inclusion processing (note: it may be impractical to use inclusion and signatures
together). Any digital signature format employed for XCCDF benchmarks must be
capable of identifying the signer, storing all information needed to verify the signature
(usually, a certificate or certificate chain), and detecting any change to the content of the
benchmark. XCCDF tools should support the W3C XML-Signature standard [8]; the
XCCDF schema (Appendix A) allows only these kinds of signatures.
Legal notice text is handled specially, as discussed in Section 3.3.

Item (abstract)
Property Type Count Description

id identifier 1 unique object identifier, mandatory

title text 0-n title of the Item (for human readers)

description text 0-n text that describes the Item

warning text 0-n a cautionary note or caveat about the Item

status string+date 0-1 status of the item and date at which it attained
that status (optional)

question string 0-n interrogative text to present to the user during
tailoring (optional)

cluster-id identifier 0-1 an identifier to be used from benchmark
profiles to refer to multiple Groups and Rules,
optional

hidden boolean 0-1 whether this Item should be excluded from any
generated documents (default: false)

prohibitChanges boolean 0-1 whether tools should prohibit changes to this
item during tailoring (default: false)

abstract boolean 0-1 if true, then this Item is abstract and exists only
to be extended (default: false)

reference special 0-n a reference to a document or resource where
the user can learn more about the subject of this
Item: content is Dublin Core metadata or a
simple string, plus an optional URL

NISTIR 7188: XCCDF Specification 12 12

There are several Item properties that give the benchmark author control over how items
may be tailored and presented in documents. First, the hidden property simply prevents
an Item from appearing in generated documents. For example, an author might set the
hidden property on incomplete items in a draft benchmark. The prohibitChanges
property advises tailoring tools that the benchmark author does not wish to allow end
users to change anything about the Item. Lastly, a value of true for the abstract property
denotes an item intended only for other items to extend. In many all cases, abstract items
should also be hidden.
The cluster-id property is optional, but it provides a means to identify related Value,
Group and Rule items throughout the Benchmark. Cluster-id values do not need to be
unique: all the Items with the same cluster-id value belong to the same cluster. A selector
in a Profile can refer to a cluster, thus making it easier for authors to create and maintain
profiles in a complex benchmark.

Group :: Item
Property Type Count Description

requires identifier 0-n the id of another Group or Rule in the
benchmark that must be selected for this
Group to be applied and scored properly

conflicts identifier 0-n the id of another Group or Rule in the
benchmark that must be unselected for this
Group to be applied and scored properly

selected boolean 1 whether this Group is currently selected for
processing, default is true. This property
may be overridden by a Profile.

rationale text 0-n descriptive text giving rationale or
motivations for abiding by this Group

platform identifier 0-n A platform to which this Group applies, a
reference to a platform-definition (see [12])

cluster-id identifier 0-1 an identifier to be used from benchmark
profiles to refer to multiple Groups and
Rules, optional

extends identifier 0-1 id of a Group on which to base this Group,
optional

weight float 0-1 the relative scoring weight of this Group, for
computing a compliance score

values Value 0-n Values that belong to this Group, optional

groups Group 0-n Sub-groups under this Group, optional

rules Rule 0-n Rules that belong to this Group, optional

A Group can be based on (extend) another Group. This means that the extending Group
includes all the Items of the extended Group, plus any defined inside the extending
Group. Other properties behave differently, depending on their allowed count. For any
property that is allowed to appear more than once, the extending Group gets the sequence

NISTIR 7188: XCCDF Specification 13 13

of property values from the extended group, plus any of its own values for that property.
For any property that is allowed to appear at most once, the extending Group gets its own
value for property if one appears, otherwise it gets the extended Group’s value of that
property. Items that belong to an extended group are treated specially: the id property of
any Item copied as part of an extended group must be replaced with a new, uniquely
generated id. A Group for which the abstract property is true exists only to be extended
by other Groups, it should never appear in a generated document and none of the Rules
defined in it should be checked in a compliance test. Abstract Groups are removed
during resolution (see Section 3.3).
The platform property of a Group indicates that the Group contains platform-specific
items that apply to a some set of (usually related) platforms. First, if a Group does not
possess any platform properties, then it applies to the same set of platforms as its
enclosing Group or the Benchmark. Second, for tools that perform compliance checking
on a platform, any Group whose set of platform property values do not include the
platform on which the compliance check is being performed should be treated as if their
selected property were set to false. Third, any platform property value that appears on an
Group should be a member of the set of platform property values of the enclosing
Benchmark. Last, if no platform properties appear anywhere on a Group or its enclosing
Group or Benchmark, then the Group applies to all platforms.
The weight property denotes the importance of a Group relative to its sibling in the same
Group or its siblings in the Benchmark (for a Rule that is a child of the Benchmark).
Scoring is computed independently for each collection of sibling Groups and Rules, then
normalized as part of the overall scoring process. For more information about scoring,
see Section 3.3.
The requires and conflicts properties provide a means for benchmark authors to express
dependency among Rules and Groups. Their exact meaning depends on what sort of
processing the benchmark is undergoing, but in general the following approach should be
applied: if a Rule or Group is about to be processed, and any of the Rules or Groups
identified in a requires property have a selected property value of false or any of the
Items identified in a conflicts property have a selected property value of true, then
processing for the item should be skipped and its selected property should be set to false.

Rule :: Item
Property Type Count Description

selected boolean 1 whether this Rule is currently selected to be
part of the benchmark; an unselected rule is
not get checked and does not contribute to
the score computation. Default is true. A
Rule may also be selected or unselected by a
Profile

extends id 0-1 id of a Rule on which to base this Rule (the
id must match the id property of another Rule
object)

platform identifier 0-n A platform to which this Rule applies, a
reference to a platform-definition (see [12])

NISTIR 7188: XCCDF Specification 14 14

Property Type Count Description

requires identifier 0-n the id of another Group or Rule in the
benchmark that should be selected for this
Rule to be applied and scored properly

conflicts identifier 0-n the id of another Group or Rule in the
benchmark that should be unselected for this
Rule to applied and scored properly

check special 0-n The definition of, or a reference to, the target
system check needed to test compliance with
this Rule. A check consists of three parts:
the checking system specification on which it
is based, a list of Value objects to export, and
the content of the check itself. If a Rule has
several check properties, each must employ a
different checking system.

rationale text 0-n descriptive text giving rationale or
motivations for complying with this Rule

fixtext text 0-n text that describes how to fix the problem of
non-compliance with this rule

fix string+id 0-n command string, script, or other system
modification statement that, if executed on
the target system, can bring it into full, or at
least better, compliance with this Rule. The
id is an optional reference to a benchmark
platform-definition.

weight float 0-1 the relative scoring weight of this Rule, for
computing a compliance score

A Rule can be based on (extend) another Rule. This means that the extending Rule
inherits all the properties of the extended or base Rule, some of which it might override
with new values. For any property that is allowed to appear more than once, the
extending Rule gets the sequence of property values from the extended group, plus any of
its own values for that property. For any property that is allowed to appear at most once,
the extending Rule gets its own value for the property if one appears, otherwise it gets the
extended Rule’s value of that property. A Rule for which the abstract property is true
should not be included in any generated document, nor should it be checked in any
compliance test. Abstract rules are removed during resolution (see Section 3.3).
The weight property denotes the importance of a rule relative to its sibling in the same
Group or its siblings in the Benchmark (for a Rule that is a child of the Benchmark). For
more information about scoring, see Section 3.3.
The platform properties of a Rule indicate the platforms to which the Rule applies. First,
if a Rule does not possess any platform properties, then it applies to the same set of
platforms as its enclosing Group or Benchmark. Second, for tools that perform
compliance checking on a platform, any Rule whose set of platform property values do
not include the platform on which the compliance check is being performed should be
treated as if their selected property were set to false. Third, any platform property value

NISTIR 7188: XCCDF Specification 15 15

that appears on a Rule should be a member of the set of platform property values of the
enclosing Benchmark. Last, if no platform properties appear anywhere on a Rule or its
enclosing Group or Benchmark, then the Rule applies to all platforms.
The check property consists of the URI that designates the checking system, a set of
export declarations, and the check content. The checking system URI tells a compliance
checking tool what processing engine it must use to interpret or execute the check. The
nominal default or expected checking system is MITRE’s OVALtm system (designated by
http://oval.mitre.org/), but the XCCDF data model allows for alternative or
additional checking systems. XCCDF also supports conveyance of tailoring values from
the XCCDF processing environment down to the checking system, that is the purpose of
the export declarations. Each export declaration maps an XCCDF Value object id to an
external name or id for use by the checking system. The check content is an expression
or document in the language of the checking system; it may appear inside the XCCDF
document (an enveloped check) or it may appear as a reference (a detached check).
The properties fixtext and fix exist to allow a benchmark author to specify a way to
remediate non-compliance with a Rule. The fixtext property describes the fix that needs
to be made; in some cases this may be all that is possible to do in the benchmark (e.g. if
the fix requires manipulation of a GUI, or installation of additional software). The fix
property provides a direct means of changing the system configuration to accomplish the
necessary change (e.g. a sequence of command-line commands, or a set of lines in a
system scripting language like shell, or in a system configuration language like Windows
INF format). In case different fix scripts are required for different platforms, the fix
property may reference a platform-definition, from the platform-definitions property of
the Benchmark.

Value :: Item
Property Type Count Description

value string 1-n the current value of this Value

default string 0-n default value of this Value object (optional)

choices list 0-n a list of legal or suggested values for this
Value object, to be used during tailoring
and document generation (optional)

type identifier 0-1 the data type of the value: string, number,
or boolean (default: string)

operator string 0-1 the operator to be used for comparing this
Value to some part of the test system’s
configuration (see list below).

match regular expr. 0-n a regular expression, which the value must
match to be legal, optional
(for more information, see [7])

lower-bound number 0-n minimum legal value for this Value
(applies only if type is ‘number’)

upper-bound number 0-n maximum legal value for this Value
(applies only if type is ‘number’)

NISTIR 7188: XCCDF Specification 16 16

Property Type Count Description

extends identifier 0-1 id of a Value on which to base this Value
(optional)

A Value is content that can be substituted into properties of other items, including the
interior of structured check specifications and fix scripts. A tool may choose any
convenient form to store a Value’s value property, but the data type conveys how the
value should be treated during benchmark compliance testing. The data type property
may also be used to give additional guidance to the user or to validate the user’s input.
For example, if a Value object’s type property was ‘number’, then a tool might choose to
reject user tailoring input that was not composed of digits.
A Value object may extend another Value object. In such cases, the extending object
receives all the properties of the extended object, and may override them where needed.
A Value object with the abstract property true should never be included in any generated
document, and may not be exported to any compliance checking engine.
When defining a Value object, the benchmark author may specify the operator to be used
for checking compliance with the value. For example, one part of an OS benchmark
might be checking that the configuration included a minimum password length; the Value
object that holds the tailorable minimum could have type ‘number’ and operator ‘greater
than’. Exactly how Values are used in rules may depend on the capabilities of the
checking system. Tailoring tools and document generation tools may ignore the operator
property, therefore benchmark authors should included sufficient information in the
description and question properties to make the role of the Value clear. The table below
describes the operators permitted for each Value type.

Type Available Operators Remarks

number equals, not equal, less than, greater than,
less than or equal, greater than or equal

Default operator: equals

boolean equals, not equal Default operator: equals

string equals, not equal, pattern match
(pattern match means regular expression
match; should comply with [7])

Default operator: equals

If a Value’s prohibitChanges property is set to true, then it means that the Value’s value
may not be changed by the user. This might be used by benchmark authors in defining
values that are integral to compliance, such as a timeout value, or it might be used by
enterprise security officers in constraining a benchmark to more tightly reflect
organizational or site security policies. (In the latter case, a security officer could use the
extension facility to make an untailorable version of a Value object, without rewriting it.)
A Value object can have a ‘hidden’ property; if the hidden property is true, then the
Value should not appear in a generated document, but its value may still be used.
A Value object includes several properties that constrain or limit the values that the Value
may be given: value, default, match, choices, upper-bound, and lower-bound.
Benchmark authors can use these Value properties to assist users in tailoring the
Benchmark. These properties may appear more than once in a Value, and may be

NISTIR 7188: XCCDF Specification 17 17

marked with a selector tag id. At most one of instance of each may omit its selector tag.
For more information about selector tags, see the description of the Profile object below.
The default property holds a default value for the value property; tailoring tools may wish
to present the default value to end users as a suggestion.
The match property provides a regular expression pattern that a tool may apply, during
tailoring, to validate user input. The match property applies only when the Value type is
‘string’ or ‘number’. For example, if the Value type was ‘string’, but the value was
meant to be a Cisco IOStm router interface name, then the Value match property might be
set to “[A-Za-z]+ *[0-9]+(/[0-9.]+)*”. This would allow a tailoring tool to reject an
invalid user input like “f8xq+” but accept a legal one like “Ethernet1/3”.
The choices property holds a list of one or more particular values for the Value object;
the choices property also bears a boolean flag, mustMatch, which indicates that the
enumerated choices are the only legal ones (mustMatch=true) or that they are merely
suggestions (mustMatch=false). The choices property should be used when there are a
moderate number of known values that are most appropriate. For example, if the Value
were the authentication mode for a server, the choices might be “password” and “pki”.
The upper-bound and lower-bound properties constrain the choices for Value items with
a type property of ‘number’. For any other type, they are meaningless. The bounds they
indicate are always inclusive. For example, if the lower-bound property for a Value is
given as “3”, then 3 is a legal value.

Profile
Property Type Count Description

id identifier 1 unique identifier for this Profile

title string 1-n title of the Item, for human readers

description text 0-n text that describes the Profile, optional

extends identifier 0-1 id of a Profile on which to base this
Profile, optional

status string+date 0-1 status of the Profile and date at which it
attained that status, optional.

prohibitChanges boolean 0-1 whether tools should prohibit changes to
this Profile (default: false)

platform id 0-n a target platform for this Profile; this may
appear many times if the Profile applies
to several platforms. The platform id is a
reference to one listed in the Benchmark
platform-definitions property.

reference string+URL 0-n a reference to a document or resource
where the user can learn more about the
subject of this Profile: a string and
optional URL

NISTIR 7188: XCCDF Specification 18 18

Property Type Count Description

selectors special 0-n references to Groups, Rules, and Values
(the reference may be the unique id of an
Item, or a cluster id)

A Profile object is a named tailoring of a Benchmark. While a Benchmark can be
tailored in place, by setting properties of various objects, only Profiles allow one
Benchmark document to hold several independent tailorings. Each Profile contains a list
of selectors which express a particular customization or tailoring of the Benchmark.
There are three kinds of selectors:

• select - a Rule/Group selector
This selector designates a Rule, Group, or cluster of Rules and Groups. It
overrides the selected property on the designated items. It provides a means
for including or excluding rules from the Profile.

• set-value – a Value selector
This selector overrides the value property of a Value object, without
changing any of its other properties. It provides a means for directly
specifying the value of a variable to be used in compliance checking or other
benchmark processing. This selector may also be applied to the Value items
in a cluster, in which case it overrides the value properties of all of them.

• refine-value – a Value selector
This selector designates the Value constraints to be applied during tailoring,
for a Value object or the Value members of a cluster. It provides a means for
benchmark authors to impose different constraints on tailoring for different
profiles.

A Profile can extend another Profile in the same Benchmark. The set of platform,
reference, and selector properties of the extended Profile are prepended to the list of
properties of the extending Profile. Inheritance of title, description, and reference
properties are handled in the same way as for Item objects.

TestResult
Property Type Count Description

id identifier 1 identifier for this TestResults object

benchmark URI 0-1 reference to Benchmark, if this
TestResults object is in a file by itself;
optional otherwise

title string 0-n title of the test, for human readers

remark string 0-n remark the test, possibly by the the
person administering the test, optional

start-time timestamp 0-1 Time when test began, optional

end-time timestamp 1 Time when test was completed and the
results recorded, mandatory

test-system string 0-1 name of the test tool or program, optional

NISTIR 7188: XCCDF Specification 19 19

Property Type Count Description

target string 1 name of the target system whose test
results are recorded in this object,
mandatory

target-address string 0-n network address of the target

profile identifier 0-1 the identifier of the Benchmark profile
used for the test, if any

set-value string+id 0-n specific settings for Value objects used
during the test, one for each Value

rule-results special 1-n Outcomes of individual Rule tests, one
per rule instance.

score float 1 overall weighted score for this
benchmark test, mandatory

A TestResult object represents the results of a single application of the Benchmark to a
single target platform. The properties of a TestResult object include test time, the
identity of the system undergoing the test, and Benchmark information. If the test was
conducted using a specific Profile of the Benchmark, then a reference to the Profile may
be included. Also, a set-value property can be included, giving the identifier and value
for the Value that was used in the test.
The body of a TestResult object is a collection of rule-result records, each giving the
result of a single instance of a rule application against the target. A rule-result record
contains the properties listed below. For more information about benchmark application
and scoring, see page 25.

Property Type Count Description

rule-idref identifier 1 identifier of a benchmark Rule

time timestamp 0-1 time when application of this instance of
this rule was completed, optional

result string 1 result of this test: one of “pass”, “fail”,
“error”, or “unknown”.

instance string 0-n the name of the target system component
or components to which this result
applies (in the case of multiply
instantiated rules), optional

message string+code 0-1 a diagnostic message from the checking
engine, with optional severity (this would
normally appear only for results of “fail”
or “error” results)

fix string 0-1 fix script for this platform, if available
(this should appear only “fail” results)

check special 0-1 encapsulated or referenced results to
detailed testing output from the checking
engine (if any)

NISTIR 7188: XCCDF Specification 20 20

The result of a single test may be one of the following:

• pass – the target system or system component satisfied all the conditions of the
Rule; a pass result contributes to the weighted score and maximum possible score.

• fail – the target system or system component did not satisfy all the conditions of
the Rule; a fail result contributes to the maximum possible score.

• error – the checking engine encountered a system error and could not complete
the test, therefore the status of the target’s compliance with the Rule is unknown.
(This could happen, for example, if a benchmark testing tool were run with
insufficient privileges.)

• unknown – the testing tool encountered some problem and the result is unknown.
(For example, a result of ‘unknown’ might be given if the benchmark testing tool
were unable to interpret the output of the checking engine.)

The instance property specifies the name of a target subsystem or component that passed
or failed a Rule. This is important for Rules that apply to components of which a target
might have several. For example, a Rule might specify a particular setting that needs to
be applied on every interface of a firewall; for benchmark compliance results, a firewall
target with three interfaces would have three rule-result elements with the same rule id,
each with an independent value for the result property. For more discussion of multiply
instantiated rules, see page 27.
The check-results property consists of the URI that designates the checking system, and
detailed output data from the checking engine. The detailed output data can take the form
of encapsulated XML or text data, or it can be a reference to an external URI. (Note: this
is analogous to the form for referring to checking engine input defined for Rule objects.)
XCCDF is not intended to be a database format for detailed results; the TestResult object
offers a way to store the results of individual tests in modest detail, with the ability to
reference lower-level testing data.

3.3. Processing Models
The XCCDF specification is design to support automated benchmark processing by a
variety of tools. There are four basic kinds of processing that a tool might apply to a
XCCDF document:

1. Tailoring –
This kind of processing involves loading an XCCDF documents, allowing a user
to set the value property of Value items and the selected property of all Items, and
then generation of a tailored XCCDF output document.

2. Document Generation –
This kind of processing involves loading an XCCDF document and generating
non-XCCDF output, usually in a form suitable for printing or human perusal.

3. Transformation –
This is the most open-ended of the processing types: it involves transforming an
XCCDF document into a document in some other representation. Typically, a
transformation process will involve some kind of stylesheet or specification that

NISTIR 7188: XCCDF Specification 21 21

directs the transformation (e.g. an XSLT stylesheet). This kind of processing can
be used in a variety of contexts, including document generation.

4. Compliance Checking –
This is the primary form of processing for XCCDF documents. It involves
loading an XCCDF document, checking target systems or data representing them,
and generating one or more compliance reports in non-XCCDF format. One of
the reports would usually include a compliance score, and another might be a fix
script. Some tools might also generate other outputs or store compliance
information in some kind of database.

5. Test Report Generation –
This form of processing can be done only to an XCCDF document that includes
one or more TestResult objects. It involves loading the document, traversing the
list of TestResult objects, and generating non-XCCDF output about selected ones.

Tailoring, document generation, and compliance checking all share a similar processing
model consisting of two steps: loading and traversal. The processing sequence required
for loading are described in the subsection below. Note that loading must be complete
before traversal begins. When loading is complete, a Benchmark is said to be resolved.

Loading Processing Sequence
Before any loading begins, a tool should initialize an empty set of legal notices and an
empty dictionary of object ids.

Sub-Step Description

Loading.Import Import the XCCDF document into the program and build an initial
internal representation of the Benchmark object, Groups, Rules, and
other objects. If the file cannot be read or parsed, then Loading fails.
(At this time, any inclusion processing specified with XInclude
elements should be performed. The resulting XML information set,
after inclusion, should be validated against the XCCDF schema
given in Appendix A.) Go to the next step: Loading.Noticing.

Loading.Noticing For each notice property of the Benchmark object, add the notice to
the tool’s set of legal notices. If a notice with an identical id value is
already a member of the set, then replace it. If the benchmark’s
resolved property is set, then Loading succeeds, otherwise go to the
next step: Loading.Resolve.Items.

Loading.Resolve.Items For each Item in the Benchmark that has an extends property, resolve
it by using the following steps: (1) if the Item is Group, resolve all
the enclosed Items, (2) resolve the extended Item, (3) prepend the
property sequence from the extended Item to the extending Item,
(4) if the Item is a Group, assign values for the id properties of Items
copied from the extended Group, (5) remove duplicate properties,
and (6) remove the extends property. If any Item’s extends property
identifier does not match the identifier of a visible Item of the same
type, then Loading fails. If the directed graph formed by the extends
properties includes a loop, then Loading fails. Otherwise, go to
Loading.Resolve.Abstract.

NISTIR 7188: XCCDF Specification 22 22

Sub-Step Description

Loading.Resolve.Abstract For each Item in the Benchmark for which the abstract property is
true, remove the Item.

Loading.Resolve.Profiles For each Profile in the Benchmark that has an extends property,
resolve the set of properties in the extending Profile by applying the
following steps: (1) resolve the extended Profile, (2) prepend the
property sequence from the extended Profile to that of the extending
Profile, (3) remove duplicate properties. If any Profile’s extends
property identifier does not match the identifier of another Profile in
the Benchmark, then Loading fails. If the directed graph formed by
the extends properties of Profiles includes a loop, then Loading fails.
Otherwise, set the benchmark resolved property; Loading succeeds.

If the Loading step succeeds for a XCCDF document, then the internal data model should
be complete, and every Item should contain all of its own content. A XCCDF file for
that has no extends properties is called a resolved document. Only resolved XCCDF
documents should be subjected to Transformation processing.
XML Inclusion processing must happen before any validation or processing. Typically,
it will be performed by the XML parser.
Every resolved document must satisfy the condition that every id attribute is unique.
Therefore, it is very important that the Loading.Resolution step generate a fresh unique id
for any Group, Rule, or Value object that gets created through extension of its enclosing
Group. One way to do this would be do generate and assign a random unique id during
sub-step (4) of Loading.Resolve.Items. Also note that it is necessary to assign an extends
property to the newly created Items, based on the id or extends property of the Item that
was copied (if the Item being copied has an extends property, then the new Item gets the
same value for the extends property, otherwise, the new Item gets the id value of the Item
being copies as its extends property).
The second step of processing is Traversal. The concept behind Traversal is basically a
pre-order, depth-first walk through all the Items that make up a Benchmark. However,
Traversal works slightly differently for each of the three kinds of processing, as described
further below.

Benchmark Processing Algorithm
The id of a Profile may be specified as input for Benchmark processing.

Sub-Step Description

Benchmark.Front Process the properties of the Benchmark object.

Benchmark.Profile If a Profile id was specified, then apply the settings in the Profile to the
Items of the Benchmark.

Benchmark.Content For each Item in the Benchmark object’s items property, initiate
Item.Process.

Benchmark.Back Perform any additional processing of the Benchmark object properties.

NISTIR 7188: XCCDF Specification 23 23

The sub-steps Front and Back will be different for each kind of processing, and each tool
may perform specialized handling of Benchmark properties. For document generation,
Profiles may be processed separately as part of Benchmark.Back, to generate part of the
output document.

Item Processing Algorithm
Sub-Step Description

Item.Process Check the contents of the requires and conflicts properties, and if any
required Items are unselected or any conflicting Items are selected, then
set the selected and allowChanges properties to false.

Item.Select If any of the following conditions holds, cease processing of this Item.
1. If the processing type is Tailoring, and the optional property and
selected property are both false.
2. If the processing type is Document Generation, and the hidden
property is true.
3. If the processing type is Compliance Checking, and the selected
property is false.
4. If the processing type is Compliance Checking, and the current
platform (if known by the tool) is not a member of the set of platforms
for this Item.

Group.Front If the Item is a Group, then process the properties of the Group.

Group.Content If the Item is a Group, then for each Item in the Group’s items property,
initiate Item.Process.

Rule.Content If the Item is a Rule, then process the properties of the Rule.

Value.Content If the Item is a Value, then process the properties of the Value.

Processing the properties of an Item is the core of Benchmark processing. The list below
describes some of the processing in more detail.

• For Tailoring, the key to processing is to query the user and incorporate their
response into the data. For a Group or Rule, the user should be given a yes/no
choice if the optional property is true. For a Value item, the user should be given
a chance to supply a string value, possibly validated using the type property. The
output of a tailoring tool will usually be another XCCDF file.

• For Document Generation, the key to processing is to generate an output stream
that can be formatted as a readable or printable document. The exact formatting
discipline will depend on the tool and the target output format. In general, the
selected and optional properties are not germaine to Document Generation. The
platform properties may be used during Document Generation for generation of
platform-specific versions of a document.

• For Compliance Checking, the key to processing is applying the Rule checks to
the target system. Tools will vary in how they do this, and in how they generate
output reports. It is also possible that some Rule checks will need to be applied to

NISTIR 7188: XCCDF Specification 24 24

multiple contexts or features of the target system, generating multiple pass or fail
results for a single Rule object.

Note that it is possible (though inadvisable) for a benchmark author to set up circular
dependencies or conflicts using the requires and conflicts properties. To prevent
ambiguity, tools must process the items of the benchmark in order, and must not change
the selected property of any single item more than once during a processing session.

Substitution Processing
XCCDF supports the notion of named parameters, Value objects, that can be set by a user
during the tailoring process, and then substituted into content specified elsewhere in the
benchmark. As described in the next section, a substitution is always indicated by a
reference to a particular Value object.
During Tailoring and Document Generation, a tool should substitute the title property of
the Value object for the reference in any text shown to the user or included in the
document. At the tool author’s discretion, the title may be followed by the Value object’s
value property, in parentheses, if the value is not empty. Any appearance of the instance
element in the content of a fix element should be replaced by a locale-appropriate string
to represent a target system instance name.
During Compliance Checking, Value objects designated for export to the checking
system are passed to it. In general, the interface between the XCCDF checking tool and
the underlying checking system or engine must support passing the following properties
of the Value: value, type, and operator.
During creation of TestResult objects on conclusion of Compliance Checking, any fix
elements present in applied Rules, and matching the platform to which the compliance
test was applied, should be subjected to substitution and the resulting string used as the
value of the fix element for the rule-result element. Each sub element should be replaced
by the value of the referenced Value object actually used during the test. Each instance
element should be replaced by the value of the rule-result instance element.

Rule Application and Compliance Scoring
When a benchmark compliance checking tool performs a compliance run against a
system, it accepts as inputs the state of the system and a Benchmark, and produces some
outputs, as shown below.

Benchmark Reports

Fix scripts or updates

Benchmark results

Benchmark
Compliance

Checking Tool

xml
System
Under
Test

XCCDF

state

rules

Figure 4 – Workflow for Checking Benchmark Compliance

NISTIR 7188: XCCDF Specification 25 25

• Benchmark Report – a human-readable report about compliance, including the
compliance score, and a listing of which rules which passed and failed in the
system. If a given rule applies to multiple parts or components of the system,
then multiple pass/fail entries may appear on this list; multiply-instantiated rules
are discussed in more detail below. The report may also include recommended
steps for improving compliance. The format of the benchmark report is not
specified here; but might be some form of formatted or rich text (e.g. HTML).

• Benchmark results – a machine-readable file about compliance, meant for storage,
long-term tracking, or incorporation into other reports (e.g. a site-wide
compliance report). This file may be in XCCDF, using the TestResult object, or it
may be in some tool-specific XML format.

• Fix scripts – machine-readable files, usually text, the application of which will
remediate some or all of the non-compliance issues found by the tool. These
scripts may be included in XCCDF TestResult objects.

Scoring and Results Model
The output or result of a single benchmark compliance test consists of four parts:

1. Rule result list – a vector V of result elements E, each is a 5-tuple E={r, p, I, t, f},
where:
• r is the Rule id
• p is the test result, one of {pass, fail, error, unknown}. A test whose result p

is ‘error’ or ‘unknown’ is treated as ‘fail’ for the purposes of scoring; tool
developers may wish to alert the user to erroneous and unknown test results.

• I is the instance name, identifying the system component, file, interface, or
subsystem to which the Rule was applied. I must be null for tests that are not
multiply instantiated (see below).

• t is the instant of time at which the result of the Rule application was decided.
• f is the fix script, from the Rule’s fix property, that should bring the target

system into compliance (or at least closer to compliance) with the rule. f may
be null if the Rule did not possess an applicable fix property, and must be
null when p is equal to pass.

2. Score – a real number S, normalized to the range 0 and 100 inclusive, reflecting
the degree of compliance.

3. Identification – a vector of strings identify the Benchmark, Profile (if any), and
target system to which the benchmark was applied.

4. Timestamps – two timestamp recording the beginning and the end of the interval
when the benchmark was applied and the results compiled.

Each element of the pass/fail list V conveys the compliance of the system under test, or
one component of it, with one rule of benchmark. Each rule has a weight, title, and other
attributes as described above. Each element of V may include an instance name, which
gives the name of a system component to which the pass or fail designation applies.

NISTIR 7188: XCCDF Specification 26 26

The XCCDF score is based on relative weights of sibling rules, as described in the next
sub-section. Compliance checking tools must compute the XCCDF score, and may
compute additional scoring values.
Computation of the XCCDF score proceeds independently for each collection of siblings
in each Group, and then for the siblings within the Benchmark. This relative-to-siblings
weighted scoring model is designed for flexibility and to foster independent authorship of
collections of rules. Benchmark authors must keep the model in mind when assigning
weights to Groups and Rules. For a very simple Benchmark consisting only of Rules and
no Groups, weights may be omitted.
The fix script should be built from the fix properties of the rules in elements of V where p
is False. The exact manner in which a compliance tool builds the script is system
dependent. In the simplest cases, the tool may simply perform Value substitution on each
rule’s fix property and concatenate the results.

Score Computation Algorithm
The objects of an XCCDF benchmark form the nodes of a tree. The score computation
algorithm simply computes a normalized weighted sum at each node, omitting Rules and
Groups that are not selected, and Groups that have no selected Rules under them. The
algorithm at each selected node is:

Sub-Step Description

Score.Rule If the node is a Rule, then assign a count of 1, and if the test result is
‘pass’ assign the node a score of 100, otherwise assign a score of 0.

Score.Group.Init If the node is a Group or the Benchmark, assign a count of 0, a score
of 0, and an accumulator of 0.

Score.Group.Recurse For each selected child of this Group or Benchmark do the following
(1) compute the count and weighted score for the child using this
algorithm, (2) if the child’s count value is not 0, then add the child’s
weighted score to this node’s score, add 1 to this node’s count, and
add the child’s weight value to the accumulator.

Score.Group.Normalize Normalized this node’s score: compute score <= score/accumulator

Score.Weight Assign this node a weighted score equal to the product of its weight
and its score.

The final test score is the normalized score value on the root node of the tree, which is the
Benchmark object.

Multiply-Instantiated Rules
A security auditor applying a security benchmark to a system typically wants to know
two things: how well does the system comply, and how can non-compliant items be
reconciled (either fixed or determined not to be salient)?
Many benchmarks include rules that apply to system components. For example, a host
OS benchmark would probably contain rules that apply to all users, and a router
benchmark will contain rules that apply to all network interfaces. When the system holds

NISTIR 7188: XCCDF Specification 27 27

many of such components, it is not adequate for a tool to inform the administrator or
auditor that the rule failed, it should report exactly which components failed the rule.
A processing engine that performs a benchmark compliance test may deliver zero or
more pass/fail triples, as described above. In the most common case, each compliance
test rule will yield one result element. In a case where the a rule was applied multiple
times to multiple components of the system under test, a single rule could yield multiple
result elements. If each of multiple relevant components passes the rule, the processing
engine may deliver a single result element with an instance value I=null. For the
purposes of scoring, a rule contributes to the positive score only if all instances of that
rule have a test result of ‘pass’. (This is sometimes called “strict scoring”. If any
component of the target system fails a rule, then the entire rule is said to fail.)

NISTIR 7188: XCCDF Specification 28 28

4. XML Representation
This section defines a concrete representation of the XCCDF data model in XML, using
both core XML syntax and XML Namespaces.

4.1. XML Document General Considerations
The basic document format consists of a root “Benchmark” element, representing a
Benchmark object. Its child elements are the contents of the benchmark object, as
described in Section 3.2.
All the XCCDF elements in the document will belong to the XCCDF namespace,
including the root element. The namespace URI corresponding to this version of the
specification is “http://checklists.nist.gov/xccdf/1.0”. The namespace of the root
Benchmark element serves to identify the XCCDF version for a document. Applications
that process XCCDF can use the namespace URI to decide whether they can process a
given document. If a namespace prefix is used, the suggested prefix string is “cdf”.
XCCDF attributes are not namespace qualified. All attributes are lowercase, except that
the Benchmark may also have an “Id” attribute for compatibility with XML Digital
Signatures and other standards.
The example below illustrates the outermost structure of an XCCDF XML document.

Example 1 – Top-Level XCCDF XML

<?xml version=”1.0” ?>
<cdf:Benchmark id=”example1” xml:lang=”en”
 xmlns:htm=”http://www.w3.org/1999/xhtml”
 xmlns:cdf=”http://checklists.nist.gov/xccdf/1.0”
 xmlns:cdfp=”http://www.cisecurity.org/xccdf/platform/0.2.3”/>
 <cdf:status date=”2004-10-12”>draft</cdf:status>
 <cdf:title>Example Benchmark File</cdf:title>
 <cdf:description>
 A <htm:b>Small</htm:b> Example
 </cdf:description>
 <cdf:version>0.2</cdf:version>
 <cdf:reference href=”http://www.ietf.org/rfc/”>
 Internet RFCs
 </cdf:reference>
</cdf:Benchmark>

Validation is strongly suggested but not required for tools that process XCCDF
documents. The XML Schema attribute “schemaLocation” may be used to refer to the
XCCDF Schema (see Appendix A).
Properties of XCCDF objects marked as type ‘text’ in Section 3.2 may contain embedded
formatting, presentation, and hyperlink structure. XHTML Basic tags must be used to
express formatting, presentation, and hyperlink structure for XCCDF XML document. In
particular, the core modules noted in the XHMTL Basic Recommendation are permitted
in XCCDF documents, plus the Image module and the Presentation module. How an

NISTIR 7188: XCCDF Specification 29 29

XCCDF processing tool handles embedded XHTML content in XCCDF text properties is
implementation-dependent, but at the least every tool must be able to process XCCDF
files even when embedded XHTML elements are present. Tools that perform document
generation processing should attempt to preserve the formatting semantics implied by the
Text and List modules, support the link semantics implied by the Hypertext module, and
incorporate the images referenced via the Image module.

4.2. XML Element Dictionary
This subsection describes each of the elements and attributes of XCCDF XML. Each
description includes the parent elements feasible for that element, as well as the child
elements it might normally contain. Most elements are in the XCCDF namespace, which
for version 1.0 is “http://checklists.nist.gov/xccdf/1.0”. For a more precise definition,
consult Appendix A.
Many of the elements listed below are described as containing formatted text (type ‘text’
in Section 3.2). These elements may contain Value substitutions, and formatting
expressed as described in Section 4.3.
XML is case-sensitive. The XML syntax for XCCDF follows a common convention for
representing object-oriented data models in XML: elements that correspond directly to
object classes in the data model have names with initial caps. Mandatory attributes and
elements are shown in bold. Child elements are listed in the order in which they must
appear. Elements which are not part of the XCCDF namespace are shown in italics.

<Benchmark>
This is the root element of the XCCDF document, it must appear exactly once. It
encloses the entire benchmark, and contains both descriptive information and benchmark
structural information. The id attribute must be a unique identifier.

Content: elements
Cardinality: 1
Parent Element: none
Attributes: id, resolved,

Id (note: “Id” is needed only for digital signature security)
Child Elements: status, title, description, notice, front-matter, rear-matter, reference,

platform-definitions, platform, version, metadata, Profile, Value,
Group, Rule, signature

Note that the order of Group and Rule child elements may matter for the appearance of a
generated document. Therefore, Group and Rule children may be freely intermingled.
All the other children must appear in the order shown, and multiple instances of a child
element must be adjacent.

<Group>
A Group element contains descriptive information about a portion of a benchmark, as
well as Rules, Values, and other Groups. A Group must have a unique id attribute in
order to be referenced from other XCCDF documents or extended by other Groups. The

NISTIR 7188: XCCDF Specification 30 30

id attribute must be a unique identifier. The extends attribute, if present, must have a
value equal to the id attribute of another Group. The cluster-id attribute is an id, it
designates membership in a ‘cluster’ of Items, which are used for controlling Items via
Profiles. The hidden and allowChanges attributes are of boolean type and default to
false. The weight attribute is a positive real number.

Content: elements
Cardinality: 0-n
Parent Elements: Benchmark, Group
Attributes: id, cluster-id, extends, hidden, prohibitChanges, selected, weight
Child Elements: status, title, description, warning, question, reference, rationale,

platform, requires, conflicts, Value, Group, Rule

A Group must have an id attribute. All child elements are optional, but every group
should have a title. Group and Rule children may be freely intermingled. All the other
children must appear in the order shown, and multiple instances of a child element must
be adjacent.
The extends attribute allows a benchmark author to define a group as an extension of
another group. The example XML fragment below shows an example of an extended and
extending Group.

Example 2 – A Simple XCCDF Group

 <cdf:Group id=”basegrp” selected=”0” hidden=”1”>
 <cdf:title>Example Base Group</cdf:title>
 <cdf:reference>Consult the vendor documentation.</cdf:reference>
 </cdf:Group>
 <cdf:Group extends=”basegrp” id=”fileperm” selected=”1” hidden=0”>
 <cdf:title>File Permissions</cdf:title>
 <cdf:description>
 Rules related to file access control and
 user permissions.
 </cdf:description>
 <cdf:question>
 Include checks for file access controls?
 </cdf:question>
 <cdf:reference href=”http://www.vendor.com/docs/perms.html”>
 Administration manual, permissions settings reference
 </cdf:reference>
 . . .
 </cdf:Group>

An XCCDF Group may only extend a Group that is within its visible scope. The visible
scope includes sibling elements, siblings of ancestor elements, and the visible scope of
any Group that an ancestor Group extended.
Note that circular dependencies of extension are not permitted.

NISTIR 7188: XCCDF Specification 31 31

<Rule>
A Rule element defines a single item to be checked as part of benchmark, or an
extendable base definition for such items. A Rule must have a unique id attribute in
order to be referenced from other XCCDF documents or extended by other Rules.
The id attribute must be a unique identifier. The extends attribute, if present, must have a
value equal to the id attribute of another Rule. The weight attribute must be a positive
real number. The other attributes are all boolean. Rules may not be nested.

Content: elements
Cardinality: 0-n
Parent Elements: Benchmark, Group
Attributes: id, cluster-id, extends, hidden, prohibitChanges, selected, weight
Child Elements: status, title, description, warning, question, reference, rationale,

platform, requires, conflicts, fixtext, fix, check

The check child of a Rule is the vital piece that specifies how to check compliance with a
security practice or guideline, see the description of the check element below for more
information. Example 3 shows a very simple Rule element.

Example 3 – A Simple XCCDF Rule

 <cdf:Rule id=”pwd-perm” selected=”1” weight=”6.5”>
 <cdf:title>Password File Permission</cdf:title>
 <cdf:description>Check the access control on the password
 file. Normal users should not be able to write to it.
 </cdf:description>
 <cdf:requires idref=”passwd-exists”/>
 <cdf:fixtext>
 Set permissions on the passwd file to owner-write, world-read
 </cdf:fixtext>
 <cdf:fix>chmod 644 /etc/passwd</cdf:fix>
 <cdf:check system=”http://www.mitre.org/XMLSchema/oval”>
 <cdf:check-content-ref href=”ovaldefs.xml” name=”OVAL123”/>
 </cdf:check>
 </cdf:Rule>

An XCCDF Rule may only extend a Rule that is within its visible scope. The visible
scope includes sibling Rules, Rules that are siblings of ancestor Groups, and the visible
scope of any Group that an ancestor Group extended.
Circular dependencies of extension are not permitted.

<Value>
A Value element represents a named parameter whose title or value may be substituted
into other strings in the benchmark (depending on the form of processing to which the
benchmark is being subjected), or it may represent a basis for the definition of such
parameters via extension. A Value object must have a unique id attribute in order to
referenced for substitution or extension or for inclusion into another benchmark.

NISTIR 7188: XCCDF Specification 32 32

A Value object may appear as a child of the Benchmark, or as a child of a Group. Value
objects may not be nested. The value and default child elements must appear first.

Content: elements
Cardinality: 0-n
Parent Elements: Benchmark, Group
Attributes: id, cluster-id, extends, hidden, prohibitChanges, operator, type,
Child Elements: status, title, description, warning, question, reference, value,

default, match, lower-bound, upper-bound, choices

The type attribute is optional, but if it appears it must be one of ‘number’, ‘string’, or
‘boolean’. A tool performing tailoring processing may use this type name to perform
user input validation. Example 4, below, shows a very simple Value element.

Example 4 – Example of a Simple XCCDF Value

 <cdf:Value id=”web-server-port” type=”number” operator=”equals”>
 <cdf:title>Web Server Port</cdf:title>
 <cdf:description>TCP port on which the server listens
 </cdf:description>
 <cdf:value>12080</cdf:value>
 <cdf:default>80</cdf:default>
 <cdf:lower-bound>0</cdf:lower-bound>
 <cdf:upper-bound>65535</cdf:upper-bound>
 </cdf:Value>

(Note that the match element applies only for validation during XCCDF tailoring, while
the operator attribute applies only for rule checking. Do not get them confused.)

<Profile>
A Profile element encapsulates a tailoring of the Benchmark. It consists of an id,
descriptive text properties, and zero or more selectors that refer to Group, Rule, and
Value objects in the Benchmark. There are three selector elements: select, set-value, and
refine-value.
Profile elements may only appear as direct children of the Benchmark element. A Profile
may be defined as extending another Profile, using the extends attribute.

Content: elements
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: id, extends, prohibitChanges
Child Elements: status, title, description, reference, platform, select,

set-value, refine-value

Profiles are designed to support encapsulation of a set of tailorings. A Profile implicitly
includes all the Groups and Rules in the Benchmark, and the select element children of
the Profile affect which Groups and Rules are selected for processing when the Profile is
in effect. The example below shows a very simple Profile.

NISTIR 7188: XCCDF Specification 33 33

Example 5 – Example of a Simple XCCDF Profile

 <cdf:Profile id=”strict” prohibitChanges=”1” extends=”lenient”>
 <cdf:title>Strict Security Settings</cdf:title>
 <cdf:description>
 Strict lockdown rules and values, for hosts deployed to
 high-risk environments.
 </cdf:description>
 <cdf:select idref=”password-len-rule” selected=”1”/>
 <cdf:select idref=”audit-cluster” selected=”1”/>
 <cdf:select idref=”telnet-disabled-rule” selected=”1”/>
 <cdf:select idref=”telnet-settings-cluster” selected=”0”/>
 <cdf:set-value idref=”password-len”>10</cdf:set-value>
 <cdf:refine-value idref=”session-timeout” selector=”quick”/>
</cdf:Value>

<TestResult>
The TestResult object encapsulates the result of applying a Benchmark to one target
system. The TestResult element normally appears as the child of the Benchmark
element, although it may also as the top-level element of a file.

Content: elements
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: id, start-time, end-time
Child Elements: title, remark, profile, target, target-address, value, rule-result, score

The id attribute is a mandatory unique-id for a test result. The start-time and end-time
attributes must have the format of a timestamp; the end-time attribute is mandatory, and
gives the time that the application of the benchmark completed.
The example below shows a TestResult object with a couple of rule-result children.

Example 6 – Example of XCCDF Benchmark Test Results

 <cdf:TestResult id="ios-test-5"
 xmlns:cdf="http://checklists.nist.gov/xccdf/1.0"
 end-time="2004-09-25T13:45:02-04:00">
 <cdf:benchmark href="ios-sample-12.4.xccdf.xml"/>
 <cdf:title>Sample Results Block</cdf:title>
 <cdf:remark>Test run by Bob on Sept 25</cdf:remark>
 <cdf:target>lower.test.net</cdf:target>
 <cdf:target-address>192.168.248.1</cdf:target-address>
 <cdf:target-address>2001:8::1</cdf:target-address>
 <cdf:set-value idref="exec-timeout-time">10</cdf:set-value>
 <cdf:rule-result idref ="ios12-no-finger-service"
 time="2004-09-25T13:45:00-04:00">
 <cdf:result>pass</cdf:result>
 </cdf:rule-result>

NISTIR 7188: XCCDF Specification 34 34

 <cdf:rule-result idref ="req-exec-timeout"
 time="2004-09-25T13:45:06-04:00">
 <cdf:result>fail</cdf:result>
 <cdf:instance>console</cdf:instance>
 <cdf:fix>line console
 exec-timeout 10 0
 </cdf:fix>
 </cdf:rule-result>
 <cdf:score>67.5</cdf:score>
</cdf:TestResult>

<benchmark>
This simple element may only appear as the child of a TestResult. It indicates the
Benchmark for which the TestResult records results. It has one attribute, which gives the
URI of the benchmark XCCDF document. It must be an empty element.

Content none
Cardinality: 0-1
Parent Elements: TestResult
Attributes: href
Child Elements: none

The benchmark element should be used only in a standalone TestResult file (an XCCDF
document file whose root element is TestResult).

<check>
This element holds a specification for how to check compliance with a Rule. It may only
appear as a child of a Rule element. The child elements of this element specify the
Values to pass to a checking engine, and the logic for the checking engine to apply. The
logic may be embedded directly as inline text or XML data, or may be a reference to an
element of an external file indicated by a URI. If the compliance checking system uses
XML namespaces, then the system attribute for the system should be its namespace. The
default or nominal content for a check element is a compliance test expressed as an
OVAL definition or a reference to an OVAL definition, with the system attribute set to
the OVAL namespace. The check element is also used as part of a TestResult rule-result
element, in that case it holds or refers to detailed output from the checking engine.

Content: mixed
Cardinality: 0-n
Parent Elements: Rule, rule-result
Attributes: system
Child Elements: check-export, check-content, check-content-ref

Several check elements may appear as children of the same Rule element. Sibling check
elements must have different values for their system attribute. A tool processing the

NISTIR 7188: XCCDF Specification 35 35

benchmark for compliance checking must pick at most one check element to process for
each Rule.
The check element may contain zero or more check-export elements, and must contain
either one check-content or one check-content-ref element. When a check element is a
child of a TestResult object, check-export elements should not appear, and any present
must be ignored.

<check-export>
This element specifies a mapping from an XCCDF Value object to a checking system
variable. The value-id attribute must match the id attribute of some Value object in the
document.

Content: none
Cardinality: 0-n
Parent Elements: check
Attributes: value-id, export-name
Child Elements: none

<check-content>
This element holds the actual code of a benchmark compliance check, in the language or
system specified by the check element’s system attribute. Exactly one of check-content
or check-content-ref must appear in each check element. The body of this element can be
any XML, but cannot contain any XCCDF elements. XCCDF tools are not required to
process this element; typically it will be passed to a checking system or engine.

Content: any non-XCCDF
Cardinality: 0-1
Parent Elements: check
Attributes: none
Child Elements: special

<check-content-ref>
This element points to a benchmark compliance check, in the language or system
specified by the check element’s system attribute. Exactly one of check-content or
check-content-ref must appear in each check element. The href attribute identifies the
document, and the optional name attribute may be used to refer to a particular part,
element, or component of the document.

Content: none
Cardinality: 0-1
Parent Elements: check
Attributes: href, name
Child Elements: none

NISTIR 7188: XCCDF Specification 36 36

<choices>
The choices element may be a child of a Value, and it enumerates one or more legal
values for the Value. If the boolean mustMatch attribute is true, then the list represents
all the legal values; if mustMatch is absent or false, then the list represents suggested
values but other values might also be legal (subject to the parent Value’s upper-bound,
lower-bound, or match attributes). The choices element may have a selector attribute that
is used for tailoring via a Profile. The list given by this element is intended for use during
tailoring and document generation, it has no role in benchmark compliance checking.

Content: elements
Cardinality: 0-1
Parent Elements: Value
Attributes: mustMatch, selector
Child Elements: choice

<choice>
This string element is used to hold a possible legal value for a Value object. It must
appear as the child of a choices element, and has no attributes or child elements.

Content: string
Cardinality: 1-n
Parent Elements: choices
Attributes: none
Child Elements: none

<conflicts>
The conflicts element may be a child of any Group or Rule, and it specifies the id
property of another Group, Rule, or Value whose selection conflicts with this one. Each
conflicts specifies a single conflicting Item using its idref attribute; if the semantics of the
benchmark need multiple conflicts, then multiple conflicts elements may appear. A
conflicts element must be empty.

Content: none
Cardinality: 0-n
Parent Elements: Group, Rule
Attributes: idref
Child Elements: none

<default>
This string element is used to hold the default or reset value of a Value object. It must
appear as the child of a Value element, and has no child elements. This element may
have a selector attribute, which may be used to designate different defaults for different
benchmark Profiles.

NISTIR 7188: XCCDF Specification 37 37

Content: string
Cardinality: 0-n
Parent Elements: Value
Attributes: selector
Child Elements: none

<description>
This element provides the descriptive text for a Benchmark, Rule, Group, or Value. It
has no attributes. Multiple description elements may appear with different values for
their xml:lang attribute (see also next section).

Content: mixed
Cardinality: 0-n
Parent Elements: Benchmark, Group, Rule, Value, Profile
Attributes: xml:lang
Child Elements: sub, xhtml elements

<fix>
This element may appear as the child of a Rule element, or a rule-result element. When it
appears as a child of a Rule element, contains it string data for a command, script, or
procedure that should bring the target into compliance with the Rule. It may not contain
XHTML formatting. The fix element may contain XCCDF Value substitutions specified
with the sub element, or instance name substitution specified with an instance element.

Content mixed
Cardinality: 0-n
Parent Elements: Rule
Attributes: platform
Child Elements: instance, sub

The plaform attribute defines which platform the fix is intended for, if its parent Rule
applied to multiple platforms. The value of the platform attribute should be one of the
platform strings defined for the benchmark. If the fix’s platform attribute is not given,
then the fix applies to all platforms to which its enclosing Rule applies.
This fix element may also appear as a child of a rule-result element in a TestResult. In
this case, it may not have any attributes and its content must be a simple string. When a
fix element is the child of rule-result, it is assumed to have been ‘instantiated’ by the
testing tool, and any substitutions or platform selection already made.

Content string
Cardinality: 0-1
Parent Elements: rule-result
Attributes: none

NISTIR 7188: XCCDF Specification 38 38

Child Elements: none

<fixtext>
This element, which may only appear as a child of a Rule element, provides text that
explains how to bring a target system into compliance with the Rule. Multiple instances
may appear in a Rule, with different xml:lang attribute values.

Content: mixed
Cardinality: 0-n
Parent Elements: Rule
Attributes: xml:lang
Child Elements: sub, xhtml elements

<front-matter>
This element contains textual content intended for use during Document Generation
processing only; it is introductory matter that should appear at or near the beginning of
the generated document. Multiple instances may appear with different xml:lang values.

Content: mixed
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: xml:lang
Child Elements: sub, xhtml elements

<instance>
The instance element may appear in two situations. First, it may be appear as part of a
TestResult, as a child of a rule-result element; in that situation it contains the name of a
target component to which a Rule was applied, in the case of multiply-instantiated rules.

Content: string
Cardinality: 0-n
Parent Elements: rule-result
Attributes: none
Child Elements: none

Second, the instance element may appear as part of a Rule, as a child of the fix element.
In that situation it represents a place in the fix text where the name of a target component
should be substituted, in the case of multiply-instantiated rules.

Content: none
Cardinality: 0-n
Parent Elements: fix
Attributes: none
Child Elements: none

NISTIR 7188: XCCDF Specification 39 39

<lower-bound>
This element may appear zero or more times as a child of a Value element. It is used to
constrain value input during tailoring, when the Value’s type is “number”. It contains a
number; values supplied by the user for tailoring the benchmark must be no less than this
number. This element may have a selector tag attribute, which identifies it for Value
refinement by a Profile. If more than one lower-bound element appears as the child of a
Value, at most one may omit the selector attribute.

Content: number
Cardinality: 0-n
Parent Elements: Value
Attributes: selector
Child Elements: none

<match>
This element may appear zero or more times as a child of a Value element. It is used to
constrain value input during tailoring. It contains a regular expression that a user’s input
for the value must match. This element may have a selector tag attribute, which identifies
it for Value refinement by a Profile. If more than one match element appears as the child
of a Value, at most one may omit the selector attribute.

Content: string
Cardinality: 0-n
Parent Elements: Value
Attributes: selector
Child Elements: none

<message>
This element may appear one or more times as a child of a rule-result element inside a
TestResult object. It holds a single informational or error message from the checking
engine.

Content: string
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: severity
Child Elements: none

The severity attribute denotes the seriousness or conditions of the message. In XCCDF
1.0 there are three severity values: “error”, “warning”, and “info”. These elements do
not affect scoring, they are present merely to convey diagnostic information from the
checking engine. XCCDF tools that deal with TestResult data may choose to display
these messages to the user.

NISTIR 7188: XCCDF Specification 40 40

<metadata>
The metadata element may appear one or more times as a child of the Benchmark
element. It contains docment metadata expressed in XML. The default format for
Benchmark document metadata is the Dublin Core Metadata Initiative (DCMI) Simple
DC Element specification, as described in [10] and [13]. Tools, especially document
generation tools, should be prepared to process Dublin Core metadata in this element.

Content: element
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: none
Child Elements: non-XCCDF

(Dublin Core elements recommended)

Another suitable metadata format for XCCDF benchmarks is the XML description format
mandated by NIST for its Security Configuration Checklist Program [11].

Example 7 – Example of Benchmark Metadata Expressed with Dublin Core Elements

 <cdf:metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>Security Benchmark for Ethernet Hubs</dc:title>
 <dc:creator>James Smith</dc:creator>
 <dc:publisher>Center for Internet Security</dc:publisher>
 <dc:subject>network security for layer 2 devices</dc:subject>
 </cdf:metadata>

<notice>
This string element may only appear as the child of a Benchmark element, and supplies
legal notice or copyright text about the benchmark document. It may not contain any
child elements. The id attribute must be a unique identifier.

Content: mixed
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: id
Child Elements: xhtml elements

The notice element may contain XHTML markup to give it internal structure.

<platform>
The platform element specifies a target platform for which the benchmark will work.
The value of this element must be a string; it may not contain any child elements.
Multiple platform elements may appear as children of a Benchmark, Group, or Rule, if
the benchmark or item is suitable for multiple kinds of target systems.

Content: string
Cardinality: 0-n

NISTIR 7188: XCCDF Specification 41 41

Parent Elements: Benchmark, Group, Rule, Value
Attributes: none
Child Elements: none

The platform element is optional. It refers to a platform defined in a platform-definitions
element of the Benchmark. The structure of a platform definition is specified in the
XCCDF platform schema (see [12]).

<platform-definitions>
This element contains a set of platform component and platform definitions. It may
appear at most once, as a child of the Benchmark element. The platform definitions
listed under this element each have unique ids. Platform id are used in platform and fix
elements to designate the system or product to which a portion of a Benchmark applies.

Content: elements
Cardinality: 0-1
Parent Elements: Benchmark
Attributes: none
Child Elements: special

The platform-definitions element is optional. It is defined in the XCCDF platform
schema, and it belongs to the xccdf-platform namespace (see [12]).

<profile>
This element specifies the Benchmark Profile used in applying a benchmark; it can
appear only as a child of a TestResult element.

Content: none
Cardinality: 0-1
Parent Elements: TestResult
Attributes: idref
Child Elements: none

<question>
This element specifies an interrogatory string with which to prompt the user during
tailoring. It may also be included into a generated document. Note that this element may
not contain any XCCDF child elements nor may it contain XHTML formatting elements.
Multiple instances may appear with different xml:lang attributes.

Content: string
Cardinality: 0-n
Parent Elements: Group, Rule, Value
Attributes: xml:lang
Child Elements: none

NISTIR 7188: XCCDF Specification 42 42

For Rule and Group objects, the question text should be simple binary (yes/no) question,
because tailoring for Rules and Groups is for selection only. For Value objects, the
question should reflect the designed data value needed for tailoring.

<rationale>
This element, which may appear as a child of a Group or Rule element, provides text that
explains why that Group or Rule is important to the security of a target platform.

Content: mixed
Cardinality: 0-n
Parent Elements: Group, Rule
Attributes: xml:lang
Child Elements: sub, xhtml elements

<rear-matter>
This element contains textual content intended for use during Document Generation
processing only; it is concluding material that should appear at or near the end of the
generated document. Multiple instances may appear with different xml:lang attributes.

Content: mixed
Cardinality: 0-n
Parent Elements: Benchmark
Attributes: xml:lang
Child Elements: sub, xhtml elements

<reference>
This element provides supplementary descriptive text for a Benchmark, Rule, Group, or
Value. It may have a simple string value, or a value consisting of simple Dublin Core
elements as described in [13]. It may also have an attribute, href, giving a URL for the
referenced resource. Multiple reference elements may appear; a document generation
processing tool may concatenate them, or put them into a reference list, and may choose
to number them.

Content: string or elements
Cardinality: 0-n
Parent Elements: Benchmark, Group, Rule, Value, Profile
Attributes: xml:lang, href
Child Elements: none or Dublin Core Elements

References should be given as Dublin Core descriptions, a bare string is allowed for
simplicity. If a bare string appears, then it is taken to be the string content for a Dublin
Core ‘title’ element. For more information, consult [10].

NISTIR 7188: XCCDF Specification 43 43

<refine-value>
This element specifies the selector tag to be applied when tailoring a Value during use of
a particular Profile. It has two mandatory attributes: the id of a Value or item cluster, and
the id of a Value selector tag.

Content: none
Cardinality: 0-n
Parent Elements: Profile
Attributes: idref, selector
Child Elements: none

The idref attribute must match the id attribute of a Value, or a cluster-id of one or more
Items in the Benchmark. The idref attribute values of sibling refine-value element
children of a Profile must be different.
Selector tags apply to the following child elements of Value: choices, default, value,
match, lower-bound, and upper-bound. If the selector tag specified in a refine-value
element in a Profile does not match any of the selectors specified on any of the Value
children, then the child with no selector tag is used. The example below illustrates how
selector tags and the refine-value element work.

Example 8 – Example of Profile refine-value Selector Tags

 <cdf:Value id="pw-length" type="number" operator="equals">
 <cdf:title>Minimum password length policy</cdf:title>
 <cdf:value>8</cdf:value>
 <cdf:value selector="high">14</cdf:value>
 <cdf:lower-bound>8</cdf:lower-bound>
 <cdf:lower-bound selector="high">12</cdf:lower-bound>
 </cdf:Value>
 <cdf:Profile id="enterprise-internet">
 <cdf:title>Enterprise internet server profile</cdf:title>
 <cdf:refine-value idref="pw-length" selector="high"/>
 </cdf:Profile>
 <cdf:Profile id="home">
 <cdf:title>Home host profile</cdf:title>
 </cdf:Profile>

<remark>
The remark element may appear only as the child of a TestResult element; it contains a
textual remark about the test.

Content: string
Cardinality: 0-n
Parent Elements: TestResult
Attributes: xml:lang
Child Elements: none

NISTIR 7188: XCCDF Specification 44 44

The remark content may not contain any XHTML tags, it must be a plain string.

<requires>
The requires element may be a child of any Group or Rule, and it specifies the id property
of another Group, Rule, or Value which must be selected in order for this one to be
selected. In a sense, the requires element is the opposite of the conflicts element. Each
requires element specifies a single required Item by its id, using the idref attribute; if the
semantics of the benchmark need multiple required items, then multiple requires elements
may appear. A requires element must be empty.

Content: none
Cardinality: 0-n
Parent Elements: Group, Rule
Attributes: idref
Child Elements: none

<result>
This simple element holds the verdict of apply a Benchmark Rule to a target or
component of a target. It may have only one of four values: “pass”, “fail”, “error”, or
“unknown”.

Content: string
Cardinality: 1
Parent Elements: rule-result
Attributes: none
Child Elements: none

<rule-result>
This element holds the result of applying a Rule from the benchmark to a target system or
component of a target system. It may only appear as the child of a TestResult element.

Content: elements
Cardinality: 0-n
Parent Elements: TestResult
Attributes: idref, time
Child Elements: result, message, instance, fix, check

The idref property of a rule-result element must refer to a Rule element in the
Benchmark. The result child element expresses the result (pass/fail/error) of apply the
Rule to the target system. If the Rule is multiply instantiated, the instance element
specifies the name of the component instance.

NISTIR 7188: XCCDF Specification 45 45

<score>
This element contains the weighted score for a benchmark test, as a real number. The
scoring model is defined in Section 3.3. This element may only appear as a child of a
TestResult element.

Content: string (non-negative number)
Cardinality: 1
Parent Elements: TestResult
Attributes: none
Child Elements: none

<select>
This element is part of a Profile; it overrides the selected attribute of a Rule or Group.
Two attributes must be given with this element: the id of a Rule or Group (idref), and a
boolean value (selected). If the boolean value is given as true, then the Rule or Group is
selected in this Profile, otherwise it is unselected for this Profile.

Content: none
Cardinality: 0-n
Parent Elements: Profile
Attributes: idref, selected
Child Elements: none

The idref attribute must match the id attribute of a Group or Rule in the Benchmark, or
the cluster id assigned to one or more Rules or Groups. The idref attribute values of
sibling select element children of a Profile must be different.

<set-value>
This element specifies a value for a Value object. It may appear as part of a Profile, in
that case it overrides the value property of a Value object. It may appear as part of a
TestResult, in that case it supplies the value used in the test. This element has one
mandatory attributes and no child elements.

Content: string
Cardinality: 0-n
Parent Elements: Profile, TestResult
Attributes: idref
Child Elements: none

In the content of a Profile, the identifier given for the idref attribute may be a cluster id,
in which case it applies only to the Value item members of the cluster; in the context of a
TestResult, the identifier must match the id of a Value object in the Benchmark. The
idref attribute values of sibling set-value element children of a Profile must be different.

NISTIR 7188: XCCDF Specification 46 46

<signature>
This element can hold an enveloped digital signature expressed according to the XML
Digital Signature standard [8]. This element takes no attributes, and must contain exactly
one element from the XML-Signature namespace.

Content: elements
Cardinality: 0-1
Parent Elements: Benchmark
Attributes: none
Child Elements Signature (in XML-Signature namespace, see [8])

At most one enveloped signature can appear in an XCCDF benchmark document. If
multiple signatures are needed, others must be detached signatures.

<status>
This element provides a revision or standardization status for a benchmark, along with a
date at which the benchmark attained that status. It must appear once in a Benchmark
object, and may appear once in any Item. If an Item does not have its own status
element, its status is that of its parent element. The permitted string values for status are
“accepted”, “deprecated”, “draft”, “interim” and “incomplete”.

Content: string (enumerated choices)
Cardinality: 0-1
Parent Elements: Benchmark, Rule, Group, Value
Attributes: date
Child Elements: none

<sub>
This element represents a reference to a parameter value that may be set during tailoring.
The element never has any content, and must have its single attribute, value. The value
attribute must equal the id attribute of some Value object in the benchmark.

Content: none
Cardinality: 0-n
Parent Elements: description, fix, fixtext, front-matter, rationale, rear-matter, title,

warning
Attributes: idref
Child Elements: none

<target>
This element gives the name or description of a target system to which a Benchmark test
was applied. It may only appear as a child of a TestResult element.

Content: string
Cardinality: 1

NISTIR 7188: XCCDF Specification 47 47

Parent Elements: TestResult
Attributes: none
Child Elements: none

<target-address>
This element gives the network address of a target system to which a Benchmark test was
applied. It may only appear as a child of a TestResult element.

Content: string
Cardinality: 0-n
Parent Elements: TestResult
Attributes: none
Child Elements: none

<title>
This element provides the descriptive title for a Benchmark, Rule, Group, or Value. It
has no attributes. Multiple instances may appear with different languages (different
values of the xml:lang attribute).

Content: string
Cardinality: 0-n
Parent Elements: Benchmark, Value, Group, Rule, Profile, TestResult
Attributes: xml:lang
Child Elements: none

This element may not contain XHTML markup.

<upper-bound>
This element may appear zero or more times as a child of a Value element. It is used to
constrain value input during tailoring, when the Value’s type is “number”. It contains a
number; values supplied by the user for tailoring the benchmark must be no greater than
this number. This element may have a selector tag attribute, which identifies it for Value
refinement by a Profile. If more than one upper-bound element appears as the child of a
Value, at most one may omit the selector attribute.

Content: number
Cardinality: 0-n
Parent Elements: Value
Attributes: selector
Child Elements: none

NISTIR 7188: XCCDF Specification 48 48

<value>
This string element is used to hold the value of a Value object. It must appear as the
child of a Value element, and no child elements. This element may have a selector tag
attribute, which identifies it for Value refinement by a Profile. This element may appear
more than once, but at most one of the sibling instances of this element may omit the
selector tag.

Content: string
Cardinality: 1-n
Parent Elements: Value
Attributes: selector
Child Elements: none

<warning>
This element provides supplementary descriptive text for a Benchmark, Rule, Group, or
Value. It has no attributes. Multiple warning elements may appear; processing tools
should concatenate them for generating reports or documents (see also next section).

Content: mixed
Cardinality: 0-n
Parent Elements: Benchmark, Group, Rule, Value
Attributes: xml:lang
Child Elements: sub, xhtml elements

This element is intended to convey important cautionary information for the benchmark
user (e.g. “Complying with this rule will cause the system to reject all IP packets”).
Processing tools may wish to present this information specially in generated documents.

4.3. Text and String Content
Some text-valued XCCDF elements may contain formatting specified with elements from
the XHTML Core Recommendation.
Many of the string and textual elements of the XCCDF are listed as appearing multiple
times under the same parent element. These element, listed below, may have an xml:lang
attribute that specifies the natural language locale for which they are written (e.g. “en” for
English, “fr” for French, etc.). A processing tool should employ these attributes when
possible during tailoring, document generation, and producing compliance reports, to
create localized output. An example of using the xml:lang attribute is shown below.

Example 9 – A Simple Value Object with Questions in Different Languages

 <cdf:Value id=”webport” type=”number”>
 <cdf:title>Web Server Port</cdf:title>
 <cdf:question xml:lang=”en”>
 What is the web server’s TCP port?
 </cdf:question>

NISTIR 7188: XCCDF Specification 49 49

 <cdf:question xml:lang=”fr”>
 Quel est le port du TCP du web serveur?
 </cdf:question>
 <cdf:value>80</cdf:value>
</cdf:Value>

Multiple values for the same property in a single object are handled differently, as
described below. Multiple instances with different values of their xml:lang attribute are
always permitted; an item with no value for the xml:lang attribute are taken to have the
same language as the benchmark itself (as given by the xml:lang attribute on the
Benchmark element).

description, title, fixtext, rationale,
question, front-matter, rear-matter

At most one instance per language; inherited
instances get replaced.

warning, reference Multiple instances treated as an ordered list;
inherited instances prepended to the list.

notice Multiple instances treated as an ordered list.

The platform element may also appear multiple times, each with a different id, to express
the notion that a Rule, Group, Benchmark, or Profile applies to several different products
or systems.

NISTIR 7188: XCCDF Specification 50 50

5. Conclusions
The XCCDF specification defines a means for expressing security benchmarks in a way
that should foster development of interoperable tools and content. It is designed to
permit the same document to serve in several roles:

• source code for generation of publication documents and hardcopy,

• script for eliciting local security policy settings and values from a user,

• structure for containing and organizing code that drives system analysis and
configuration checking engines,

• source code for text to appear in security policy compliance reports,

• a record of a benchmark test, including the results of applying various rules,

• structure for expressing compliance scoring/weighting decisions.
Adoption of a common format should permit security professionals, security tool
vendors, and system auditors to exchange information more quickly and precisely, and
also permit greater automation of security testing and configuration checking.

NISTIR 7188: XCCDF Specification 51 51

6. Appendix A – XCCDF Schema
The XML Schema below describes XCCDF in a manner that should allow automatic
validation of most aspects of the format. It is not possible to express all of the constraints
that XCCDF imposes in a Schema, unfortunately, and a few of the constraints that it is
possible to express have been omitted for simplicity.
Whether to validate is an implementation decision left to tool developers, but it is
strongly recommended.

XCCDF Schema 1.0

<?xml version="1.0" encoding="UTF-8"?>
<!-- Begin definition of XCCDF schema -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:cdf="http://checklists.nist.gov/xccdf/1.0"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:cdfp="http://www.cisecurity.org/xccdf/platform/0.2.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"
 targetNamespace="http://checklists.nist.gov/xccdf/1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This schema defines the eXtensible Configuration Checklist
 Description Format (XCCDF), a data format for defining
 security benchmarks and checklists, and for recording
 the results of applying such benchmarks.
 For more information, consult the specification
 document, "Specification for the Extensible Configuration
 Checklist Description Format", version 1.0.

 This schema was developed by Neal Ziring, with
 assistance from David Waltermire. The following
 individuals contributed ideas to the construction
 of this schema: David Proulx, Andrew Buttner, and
 Ryan Wilson.
 <version date="7 December 2004">1.0</version>
 </xsd:documentation>
 </xsd:annotation>

 <!-- Import base XML namespace -->
 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="xml.xsd">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Import the XML namespace because this schema uses
 the xml:lang and xml:base attributes.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

NISTIR 7188: XCCDF Specification 52 52

 <!-- Import Dublin Core metadata namespace -->
 <xsd:import namespace="http://purl.org/dc/elements/1.1/"
 schemaLocation="simpledc20021212.xsd">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Import the simple Dublin Core namespace because
 this schema uses it for benchmark metadata and for
 references.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <!-- Import CIS platform specification namespace -->
 <xsd:import namespace="http://www.cisecurity.org/xccdf/platform/0.2.3"
 schemaLocation="platform-0.2.3.xsd">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Import the CIS platform schema, which we use for
 describing target IT platforms in the Benchmark.
 The CIS platform schema was designed by David
 Waltermire.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:import>

 <!-- ** -->
 <!-- ***************** Benchmark Element ************************ -->
 <!-- ** -->
 <xsd:element name="Benchmark">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The benchmark tag is the top level element representing a
 complete security checklist, including descriptive text
 and test items.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="cdf:status" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="title" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="description" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="notice" type="cdf:noticeType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="front-matter" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="rear-matter" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="reference" type="cdf:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="cdfp:platform-definitions"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="platform" type="cdf:idrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="version" type="xsd:string"/>

NISTIR 7188: XCCDF Specification 53 53

 <xsd:element name="metadata" type="cdf:metadataType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="cdf:Profile"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="cdf:Value"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="cdf:Group"/>
 <xsd:element ref="cdf:Rule"/>
 </xsd:choice>
 <xsd:element ref="cdf:TestResult"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="signature" type="cdf:signatureType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:NCName" use="optional"/>
 <!-- the 'Id' attribute is needed for XML-Signature -->
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="resolved" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute ref="xml:lang"/>
 </xsd:complexType>

 <xsd:key name="noticeIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Legal notices must have unique id values.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="cdf:notice"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="itemIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Items must have unique id values.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Value|.//cdf:Group|.//cdf:Rule"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="valueIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Value item ids are special keys, need this for
 the valueIdKeyRef keyref below.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Value"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="ruleIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Rule items have a unique key, we need
 this for the ruleIdKeyRef keyref below.
 (Rule key refs are used by rule-results.)
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Rule"/>
 <xsd:field xpath="@id"/>

NISTIR 7188: XCCDF Specification 54 54

 </xsd:key>

 <xsd:key name="selectableItemIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Group and Rule item ids are special keys, we
 need this for the requiresIdKeyRef keyref below.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Group | .//cdf:Rule"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="profileIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Profile objects have a unique id, it is used
 for extension, too.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="./cdf:Profile"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:key name="platformDefnKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Platform-definitions have a unique id, it is used
 from the platform element and fix element.
 </xsd:documentation></xsd:annotation>
 <xsd:selector
 xpath="./cdfp:platform-definitions/cdfp:platform-definition"/>
 <xsd:field xpath="@id"/>
 </xsd:key>

 <xsd:keyref name="valueIdKeyRef" refer="cdf:valueIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Check-export elements must reference existing values.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:check/cdf:check-export"/>
 <xsd:field xpath="@value-id"/>
 </xsd:keyref>

 <xsd:keyref name="subValueKeyRef" refer="cdf:valueIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 Sub elements must reference existing Value ids.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:sub"/>
 <xsd:field xpath="@value"/>
 </xsd:keyref>

 <xsd:keyref name="ruleIdKeyRef"
 refer="cdf:ruleIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 The rule-result element idref must refer to an
 existing Rule.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="./cdf:TestResult/cdf:rule-result"/>
 <xsd:field xpath="@idref"/>
 </xsd:keyref>

NISTIR 7188: XCCDF Specification 55 55

 <xsd:keyref name="requiresIdKeyRef"
 refer="cdf:selectableItemIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 The requires element idref must refer to an existing
 Group or Rule.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:requires"/>
 <xsd:field xpath="@idref"/>
 </xsd:keyref>

 <xsd:keyref name="profileIdKeyRef"
 refer="cdf:profileIdKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 The requires a profile element in a TestResult
 element to refer to an existing Profile
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath="./cdf:TestResult/cdf:profile"/>
 <xsd:field xpath="@idref"/>
 </xsd:keyref>

 <xsd:keyref name="platformIdKeyRef"
 refer="cdf:platformDefnKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 The platform element idref attribute must refer to
 an existing cdfp:platform-definition.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:platform"/>
 <xsd:field xpath="@idref"/>
 </xsd:keyref>

 <xsd:keyref name="fixPlatformIdKeyRef"
 refer="cdf:platformDefnKey">
 <xsd:annotation><xsd:documentation xml:lang="en">
 The fix element attribute platform must refer to an
 existing platform-definition.
 </xsd:documentation></xsd:annotation>
 <xsd:selector xpath=".//cdf:Rule/cdf:fix"/>
 <xsd:field xpath="@platform"/>
 </xsd:keyref>

 </xsd:element>

 <xsd:complexType name="noticeType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for legal notice element that has text
 content and a unique id attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="http://www.w3.org/1999/xhtml"
 minOccurs="0" maxOccurs="unbounded"
 processContents="skip"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:NCName"/>
 <xsd:attribute ref="xml:base"/>

NISTIR 7188: XCCDF Specification 56 56

 <xsd:attribute ref="xml:lang"/>
 </xsd:complexType>

 <xsd:complexType name="referenceType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for a reference citation, an href
 URL attribute (optional), with content of text
 or simple Dublin Core elements.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="http://purl.org/dc/elements/1.1/"
 processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="href" type="xsd:anyURI"/>
 </xsd:complexType>

 <xsd:complexType name="signatureType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 XML-Signature over the Benchmark; note that this
 will always be an 'enveloped' signature, so the
 single element child of this element should be
 dsig:Signature.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="http://www.w3.org/2000/09/xmldsig#"
 processContents="skip"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="metadataType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Metadata for the Benchmark, should be Dublin Core
 or some other well-specified and accepted metadata
 format. If Dublin Core, then it will be a sequence
 of simple Dublin Core elements.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:choice minOccurs="1" maxOccurs="1">
 <xsd:any namespace="http://purl.org/dc/elements/1.1/"
 minOccurs="1" maxOccurs="unbounded"/>
 <!-- the namespace URI below is from a draft version of the
 schema designed to support the checklist metadata
 requirements from NIST special pub 800-70.
 -->
 <xsd:any namespace="http://checklists.nist.gov/sccf/0.1"
 processContents="skip"
 minOccurs="1" maxOccurs="unbounded"/>
 </xsd:choice>

NISTIR 7188: XCCDF Specification 57 57

 </xsd:sequence>
 </xsd:complexType>

 <!-- ** -->
 <!-- ****************** global elements ************************* -->
 <!-- ** -->
 <xsd:element name="status">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The acceptance status of an Item with an optional date attribute
 that signifies the date of the status change.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="cdf:statusType">
 <xsd:attribute name="date" type="xsd:date"
 use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:simpleType name="statusType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The possible status codes for an Benchmark or Item to be
 inherited from the parent element if it is not defined.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="accepted"/>
 <xsd:enumeration value="deprecated"/>
 <xsd:enumeration value="draft"/>
 <xsd:enumeration value="incomplete"/>
 <xsd:enumeration value="interim"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- ** -->
 <!-- ******************** Text Types **************************** -->
 <!-- ** -->
 <xsd:complexType name="textType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with an xml:lang attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute ref="xml:lang"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="htmlTextType" mixed="true">

NISTIR 7188: XCCDF Specification 58 58

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with XHTML elements and xml:lang attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="http://www.w3.org/1999/xhtml"
 minOccurs="0" maxOccurs="unbounded"
 processContents="skip"/>
 </xsd:sequence>
 <xsd:attribute ref="xml:lang"/>
 </xsd:complexType>

 <xsd:complexType name="htmlTextWithSubType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with embedded Value substitutions
 and XHTML elements, and an xml:lang attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="sub" type="cdf:idrefType"/>
 <xsd:any namespace="http://www.w3.org/1999/xhtml"
 processContents="skip"/>
 </xsd:choice>
 <xsd:attribute ref="xml:lang"/>
 </xsd:complexType>

 <xsd:complexType name="textWithSubType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with embedded Value substitutions
 and XHTML elements, and an xml:lang attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="sub" type="cdf:idrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute ref="xml:lang"/>
 </xsd:complexType>

 <xsd:complexType name="idrefType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for elements that have no content,
 just a mandatory id reference.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="idref" type="xsd:NCName" use="required"/>
 </xsd:complexType>

 <!-- ** -->
 <!-- **************** Item Element (Base Class) ****************** -->
 <!-- ** -->

NISTIR 7188: XCCDF Specification 59 59

 <xsd:element name="Item" type="cdf:itemType" >
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type element type imposes constraints shared by all
 Groups, Rules and Values. The itemType is abstract, so
 the element Item can never appear in a valid XCCDF document.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="itemType" abstract="1">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This abstract item type represents the basic data shared by all
 Groups, Rules and Values
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="cdf:status" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="title" type="cdf:textWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="description" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="warning" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="question" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="reference" type="cdf:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:NCName" use="required"/>
 <xsd:attribute name="hidden" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute name="prohibitChanges" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute name="abstract" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute name="extends" type="xsd:NCName"
 default="false" use="optional"/>
 <xsd:attribute name="cluster-id" type="xsd:NCName"
 use="optional"/>
 <xsd:attribute ref="xml:lang"/>
 <xsd:attribute ref="xml:base"/>
 </xsd:complexType>

 <!-- ** -->
 <!-- ************ Selectable Item Type (Base Class) ************** -->
 <!-- ** -->
 <xsd:complexType name="selectableItemType" abstract="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This abstract item type represents the basic data shared by all
 Groups and Rules. It extends the itemType given above.
 </xsd:documentation>
 </xsd:annotation>

NISTIR 7188: XCCDF Specification 60 60

 <xsd:complexContent>
 <xsd:extension base="cdf:itemType">
 <xsd:sequence>
 <xsd:element name="rationale" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="platform" type="cdf:idrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="requires" type="cdf:idrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="conflicts" type="cdf:idrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="selected" type="xsd:boolean"
 default="true" use="optional"/>
 <xsd:attribute name="weight" type="cdf:weightType"
 default="1.0" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ** -->
 <!-- ********************** Group Element *********************** -->
 <!-- ** -->
 <xsd:element name="Group" type="cdf:groupType"/>

 <xsd:complexType name="groupType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the Group element that represents a grouping of
 Groups, Rules and Values.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:selectableItemType">
 <xsd:sequence>
 <xsd:element ref="cdf:Value"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="cdf:Group"/>
 <xsd:element ref="cdf:Rule"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ** -->
 <!-- ******************** Rule Element ************************** -->
 <!-- ** -->
 <xsd:element name="Rule" type="cdf:ruleType" />
 <xsd:complexType name="ruleType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the Rule element that represents a
 specific benchmark test.

NISTIR 7188: XCCDF Specification 61 61

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:selectableItemType">
 <xsd:sequence>
 <xsd:element name="fixtext" type="cdf:htmlTextWithSubType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="fix" type="cdf:fixType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="check" type="cdf:checkType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ** -->
 <!-- ***************** Rule-related Types ************************ -->
 <!-- ** -->
 <xsd:complexType name="fixType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a string with embedded Value and instance
 substitutions and an optional platform id ref attribute, but
 no embedded XHTML markup.
 The platform attribute should refer to a platform-definition
 element in the platform-definitions child of the Benchmark.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="sub" type="cdf:idrefType"/>
 <xsd:element name="instance">
 <xsd:complexType/>
 </xsd:element>
 </xsd:choice>
 <xsd:attribute name="platform" type="xsd:NCName" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="checkType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the check element, a checking system
 specification URI, and XML content.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="check-export" type="cdf:checkExportType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice minOccurs="1" maxOccurs="1">
 <xsd:element name="check-content"
 type="cdf:checkContentType"/>
 <xsd:element name="check-content-ref"
 type="cdf:checkContentRefType"/>
 </xsd:choice>
 </xsd:sequence>

NISTIR 7188: XCCDF Specification 62 62

 <xsd:attribute name="system" type="xsd:string" use="required"/>
 <xsd:attribute ref="xml:base"/>
 </xsd:complexType>

 <xsd:complexType name="checkExportType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the check-export element, which
 specifies a mapping between an XCCDF internal Value
 id and a value name to be used by the checking
 system or processor.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="value-id" type="xsd:NCName" use="required"/>
 <xsd:attribute name="export-name" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="checkContentRefType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the check-content-ref element, which
 points to the code for a detached check in another file.
 This element has no body, just a couple of attributes:
 href and name. The name is optional, if it does not appear
 then this reference is to the entire other document.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="href" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="checkContentType" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the check-content element, which holds
 the actual code of an enveloped check in some other
 (non-XCCDF) language. This element can hold almost
 anything; XCCDF tools do not process its content directly.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:any namespace="##other" processContents="skip"/>
 </xsd:choice>
 </xsd:complexType>

 <xsd:simpleType name="weightType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for a Rule's weight, a non-negative real number.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:decimal">
 <xsd:minExclusive value="0.0"/>
 <xsd:totalDigits value="3"/>
 </xsd:restriction>

NISTIR 7188: XCCDF Specification 63 63

 </xsd:simpleType>

 <!-- ** -->
 <!-- ******************* Value Element ************************** -->
 <!-- ** -->
 <xsd:element name="Value" type="cdf:valueType">
 <xsd:unique name="valueSelectorKey">
 <xsd:selector xpath="./cdf:value"/>
 <xsd:field xpath="@selector"/>
 </xsd:unique>
 <xsd:unique name="defaultSelectorKey">
 <xsd:selector xpath="./cdf:default"/>
 <xsd:field xpath="@selector"/>
 </xsd:unique>
 </xsd:element>

 <xsd:complexType name="valueType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the Value element that represents
 a tailorable string, numeric, or boolean value in
 the Benchmark.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="cdf:itemType">
 <xsd:sequence>
 <xsd:element name="value" type="cdf:selStringType"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="default" type="cdf:selStringType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="match" type="cdf:selStringType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="lower-bound" type="cdf:selNumType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="upper-bound" type="cdf:selNumType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="choices" type="cdf:selChoicesType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="cdf:valueTypeType"
 default="string" use="optional"/>
 <xsd:attribute name="operator"
 type="cdf:valueOperatorType"
 default="equals" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- ** -->
 <!-- *************** Value-related Types ************************ -->
 <!-- ** -->
 <xsd:complexType name="selChoicesType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

NISTIR 7188: XCCDF Specification 64 64

 The choice element specifies a list of legal or
 suggested choices for a Value object. It holds
 one or more choice elements, a mustMatch attribute,n
 and a selector attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="choice" type="xsd:string"
 minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="mustMatch" type="xsd:boolean" use="optional"/>
 <xsd:attribute name="selector" default=""
 type="xsd:string" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="selStringType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type is for an element that has string content
 and a selector attribute. It is used for some of
 the child elements of Value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="selector" default=""
 type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="selNumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type is for an element that has numeric content
 and a selector attribute. It is used for two of
 the child elements of Value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="selector" default=""
 type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:simpleType name="valueTypeType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed data types for Values, just string, numeric,
 and true/false.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="number"/>

NISTIR 7188: XCCDF Specification 65 65

 <xsd:enumeration value="string"/>
 <xsd:enumeration value="boolean"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="valueOperatorType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed operators for Values. Note that most of
 these are valid only for numeric data, but the
 schema doesn't enforce that.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="equals" />
 <xsd:enumeration value="not equal" />
 <xsd:enumeration value="greater than" />
 <xsd:enumeration value="less than" />
 <xsd:enumeration value="greater than or equal" />
 <xsd:enumeration value="less than or equal" />
 <xsd:enumeration value="pattern match" />
 </xsd:restriction>
 </xsd:simpleType>

 <!-- ** -->
 <!-- ******************* Profile Element ************************ -->
 <!-- ** -->
 <xsd:element name="Profile" type="cdf:profileType">
 <!-- selector key constraints -->
 <xsd:unique name="itemSelectKey">
 <xsd:selector xpath="./cdf:select"/>
 <xsd:field xpath="@idref"/>
 </xsd:unique>
 <xsd:unique name="refineValueKey">
 <xsd:selector xpath="./cdf:refine-value"/>
 <xsd:field xpath="@idref"/>
 </xsd:unique>
 <xsd:unique name="setValueKey">
 <xsd:selector xpath="./cdf:set-value"/>
 <xsd:field xpath="@idref"/>
 </xsd:unique>
 </xsd:element>

 <xsd:complexType name="profileType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the Profile element, which holds a
 specific tailoring of the Benchmark.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="cdf:status" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="title" type="cdf:textWithSubType"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="description" type="cdf:htmlTextWithSubType"

NISTIR 7188: XCCDF Specification 66 66

 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="reference" type="cdf:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="platform" type="cdf:idrefType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="select" type="cdf:profileSelectType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="set-value" type="cdf:profileSetValueType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="refine-value"
 type="cdf:profileRefineValueType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:NCName" use="required"/>
 <xsd:attribute name="prohibitChanges" type="xsd:boolean"
 default="false" use="optional"/>
 <xsd:attribute name="extends" type="xsd:NCName" use="optional"/>
 <xsd:attribute ref="xml:base"/>
 </xsd:complexType>

 <!-- ** -->
 <!-- *************** Profile-related Types *********************** -->
 <!-- ** -->
 <xsd:complexType name="profileSelectType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for the select element in a Profile; all it has
 are two attributes, no content. The two attributes
 are 'idref' which refers to a Group or Rule, and
 'selected' which is boolean.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="idref"
 type="xsd:NCName" use="required"/>
 <xsd:attribute name="selected"
 type="xsd:boolean" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="profileSetValueType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for the set-value element in a Profile; it
 has one attribute and string content. The
 attribute is 'idref' which refers to a Value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="idref" type="xsd:NCName"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="profileRefineValueType">
 <xsd:annotation>

NISTIR 7188: XCCDF Specification 67 67

 <xsd:documentation xml:lang="en">
 Type for the refine-value element in a Profile; all
 it has are two attributes, no content. The two
 attributes are 'idref' which refers to a Value
 and 'selector' which designates certain element
 children of the Value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="idref"
 type="xsd:NCName" use="required"/>
 <xsd:attribute name="selector"
 type="xsd:string" use="required"/>
 </xsd:complexType>

 <!-- ** -->
 <!-- ******************* TestResult Element ********************* -->
 <!-- ** -->
 <xsd:element name="TestResult" type="cdf:testResultType"/>

 <xsd:complexType name="testResultType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Data type for the TestResult element, which holds
 the results of one application of the Benchmark.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="benchmark" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:attribute name="href" type="xsd:anyURI"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="title" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="remark" type="cdf:textType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="profile" type="cdf:idrefType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="target" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="target-address" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="set-value" type="cdf:profileSetValueType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="rule-result" type="cdf:ruleResultType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="score" type="xsd:decimal"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:NCName" use="required"/>
 <xsd:attribute name="start-time" type="xsd:dateTime" use="optional"/>
 <xsd:attribute name="end-time" type="xsd:dateTime" use="required"/>
 </xsd:complexType>

NISTIR 7188: XCCDF Specification 68 68

 <xsd:complexType name="ruleResultType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This element holds all the information about the
 application of one rule to a target. It may only
 appear as part of a TestResult object.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="result" type="cdf:resultEnumType"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="message" type="cdf:messageType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="instance" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="fix" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="check" type="cdf:checkType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="idref" type="xsd:NCName" use="required"/>
 <xsd:attribute name="time" type="xsd:dateTime" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="messageType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type for a message generated by the checking
 engine or XCCDF tool during benchmark testing.
 Content is string plus required severity attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="severity" type="cdf:msgSevEnumType"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:simpleType name="msgSevEnumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Allowed values for message severity.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="error"/>
 <xsd:enumeration value="warning"/>
 <xsd:enumeration value="info"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="resultEnumType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

NISTIR 7188: XCCDF Specification 69 69

 Allowed result indicators for a test, just four
 possibilities:
 pass = the test passed, target complies w/ benchmark
 fail = the test failed, target does not comply
 error= an error occurred and test could not complete,
 or the test does not apply to this plaform
 unknown= could not tell what happened
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="pass"/>
 <xsd:enumeration value="fail"/>
 <xsd:enumeration value="error"/>
 <xsd:enumeration value="unknown"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

Testing
The XCCDF 1.0 schema has been checked for syntax and tested with the Apache
Xerces 2.6 schema-validating parser.

NISTIR 7188: XCCDF Specification 70 70

7. Appendix B – Sample Benchmark File
The sample below illustrates some of the concepts of XCCDF. It gives a few simple
rules about configuration of a Cisco IOS router, based on material from the publicly
available NSA router security configuration guide.

<?xml version="1.0" encoding="UTF-8"?>
<cdf:Benchmark id="ios-test-6" resolved="0" xml:lang="en"
 xmlns:cdf="http://checklists.nist.gov/xccdf/1.0"
 xmlns:cdfp="http://www.cisecurity.org/xccdf/platform/0.2.3"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:htm="http://www.w3.org/1999/xhtml"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="http://checklists.nist.gov/xccdf/1.0 xccdf-1.0.xsd
http://www.cisecurity.org/xccdf/platform/0.2.3 platform-0.2.3.xsd">

 <cdf:status date="2004-09-24">draft</cdf:status>
 <cdf:title>XCCDF Sample for Cisco IOS</cdf:title>
 <cdf:description>
 This document defines a small set of rules for securing Cisco
 IOS routers. The set of rules constitute a <htm:i>benchmark</htm:i>.
 A benchmark usually represents an industry consensus of best
 practices. It lists steps to be taken as well as rationale for
 them. This example benchmark is merely a small subset of the
 rules that would be necessary for securing an IOS router.
 </cdf:description>

 <cdf:notice id="Sample-Terms-Of-Use" xml:lang="en">
 This document may be copied and used subject to the NIST terms
 of use (http://www.nist.gov/public_affairs/disclaim.htm) and NSA
 Legal Notice (http://www.nsa.gov/notices/notic00004.cfm?Address=/).
 </cdf:notice>
 <cdf:front-matter>
 <htm:p>This benchmark assumes that you are running IOS 11.3 or later.
 </htm:p>
 </cdf:front-matter>
 <cdf:reference href="http://www.nsa.gov/ia/">
 NSA Router Security Configuration Guide, Version 1.1b
 </cdf:reference>
 <cdf:reference>
 <dc:title>Hardening Cisco Routers</dc:title>
 <dc:creator>Thomas Akin</dc:creator>
 <dc:publisher>O'Reilly and Associates</dc:publisher>
 <dc:identifier>http://www.ora.com/</dc:identifier>
 </cdf:reference>

 <cdfp:platform-definitions>
 <cdfp:os id="os-cisco-ios12">
 <cdfp:title>Cisco IOS 12.x</cdfp:title>
 <cdfp:remark xml:lang="en">All IOS up through 12.3</cdfp:remark>
 <cdfp:vendor>Cisco Systems</cdfp:vendor>
 <cdfp:family>IOS</cdfp:family>
 <cdfp:level>12</cdfp:level>
 <cdfp:version-range>

NISTIR 7188: XCCDF Specification 71 71

 <cdfp:min-inclusive>12.3.1</cdfp:min-inclusive>
 <cdfp:max-inclusive>12.3.8</cdfp:max-inclusive>
 </cdfp:version-range>
 </cdfp:os>
 <cdfp:hardware id="hwr-routers">
 <cdfp:title>Cisco routers</cdfp:title>
 <cdfp:vendor>Cisco Systems</cdfp:vendor>
 <cdfp:family>router</cdfp:family>
 </cdfp:hardware>
 <cdfp:platform-definition id="cisco-ios-12-routers">
 <cdfp:title>Cisco IOS version 12 for Routers</cdfp:title>
 <cdfp:logical-operator operator="and">
 <cdfp:product idref="os-cisco-ios12"/>
 <cdfp:product idref="hwr-routers"/>
 </cdfp:logical-operator>
 </cdfp:platform-definition>
 </cdfp:platform-definitions>

 <cdf:platform idref="cisco-ios-12-routers"/>
 <cdf:version>0.1.12</cdf:version>

 <cdf:Profile id="profile1" prohibitChanges="1">
 <cdf:title>Sample Profile No. 1</cdf:title>
 <cdf:select idref="mgmt-plane" selected="0"/>
 <cdf:select idref="ctrl-plane" selected="1"/>
 <cdf:select idref="finger" selected="1"/>
 <cdf:set-value idref="exec-timeout-time">30</cdf:set-value>
 <cdf:refine-value idref="buffered-logging-level"
 selector="lenient"/>
 </cdf:Profile>
 <cdf:Profile id="profile2" extends="profile1">
 <cdf:title>Sample Profile No. 1</cdf:title>
 <cdf:select idref="mgmt-plane" selected="1"/>
 <cdf:select idref="data-plane" selected="1"/>
 <cdf:refine-value idref="buffered-logging-level" selector="strict"/>
 </cdf:Profile>

 <cdf:Value id="exec-timeout-time" type="number"
 operator="less than or equal">
 <cdf:title>IOS - line exec timeout value</cdf:title>
 <cdf:description>
 The length of time, in minutes, that an interactive session
 should be allowed to stay idle before being terminated.
 </cdf:description>
 <cdf:question>Session exec timeout time (in minutes)</cdf:question>
 <cdf:value>10</cdf:value>
 <cdf:default>15</cdf:default>
 <cdf:lower-bound>1</cdf:lower-bound>
 <cdf:upper-bound>60</cdf:upper-bound>
 </cdf:Value>

 <cdf:Group id="mgmt-plane" selected="1" prohibitChanges="1" weight="3">
 <cdf:title>Management Plane Rules</cdf:title>
 <cdf:description>
 Services, settings, and data streams related tosetting up
 and examining the static configuration of the router, and the

NISTIR 7188: XCCDF Specification 72 72

 authentication and authorization of administrators/operators.
 </cdf:description>
 <cdf:requires idref="no-directed-broadcast"/>
 <cdf:Rule id="no-finger-service-base" selected="0" weight="5.0"
 prohibitChanges="1" hidden="1" abstract="1" cluster-id="finger">
 <cdf:title>IOS - no IP finger service</cdf:title>
 <cdf:description>
 Disable the finger service, it can reveal information
 about logged in users to unauthorized parties.
 </cdf:description>
 <cdf:question>Prohibit the finger service</cdf:question>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL1002"/>
 </cdf:check>
 </cdf:Rule>

 <cdf:Rule id="ios11-no-finger-service"
 selected="0" prohibitChanges="1"
 hidden="0" weight="5" extends="no-finger-service-base">
 <cdf:title>IOS 11 - no IP finger service</cdf:title>
 <cdf:fix>no service finger</cdf:fix>
 </cdf:Rule>

 <cdf:Rule id="ios12-no-finger-service"
 selected="0" prohibitChanges="1"
 hidden="0" weight="5" extends="no-finger-service-base">
 <cdf:title>IOS 12 - no IP finger service</cdf:title>
 <cdf:fix>no ip finger</cdf:fix>
 </cdf:Rule>

 <cdf:Rule id="req-exec-timeout" selected="1" weight="8.3">
 <cdf:title>Require exec timeout on admin sessions</cdf:title>
 <cdf:description>
 Configure each administrative access line to terminate idle
 sessions after a fixed period of time determined by local policy
 </cdf:description>
 <cdf:question>Require admin session idle timeout</cdf:question>
 <cdf:fix>
 line vty 0 4
 exec-timeout <cdf:sub idref="exec-timeout-time"/>
 </cdf:fix>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-export value-id="exec-timeout-time"
 export-name="var-2"/>
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL708"/>
 </cdf:check>
 </cdf:Rule>
 </cdf:Group>

 <cdf:Group id="ctrl-plane" selected="1" prohibitChanges="1" weight="3">
 <cdf:title>Control Plane Rules</cdf:title>
 <cdf:description>
 Services, settings, and data streams that support the
 operation and dynamic status of the router.
 </cdf:description>
 <cdf:question>Check rules related to system control</cdf:question>

NISTIR 7188: XCCDF Specification 73 73

 <cdf:Value id="buffered-logging-level" type="string"
 operator="equals" prohibitChanges="0">
 <cdf:title>Logging level for buffered logging</cdf:title>
 <cdf:description>
 Logging level for buffered logging; this setting is
 a severity level. Every audit message of this
 severity or more (worse) will be logged.
 </cdf:description>
 <cdf:question>Select a buffered logging level</cdf:question>
 <cdf:value selector="strict">informational</cdf:value>
 <cdf:value selector="lenient">warning</cdf:value>
 <cdf:value>notification</cdf:value>
 <cdf:choices mustMatch="1">
 <cdf:choice>warning</cdf:choice>
 <cdf:choice>notification</cdf:choice>
 <cdf:choice>informational</cdf:choice>
 </cdf:choices>
 </cdf:Value>

 <cdf:Rule id="no-tcp-small-servers" selected="1"
 prohibitChanges="1" weight="7">
 <cdf:title>Disable tcp-small-servers</cdf:title>
 <cdf:description>
 Disable unnecessary services such as echo, chargen, etc.
 </cdf:description>
 <cdf:question>Prohibit TCP small services</cdf:question>
 <cdf:fixtext>
 Disable TCP small servers in IOS global config mode.
 </cdf:fixtext>
 <cdf:fix>no service tcp-small-servers</cdf:fix>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL1000"/>
 </cdf:check>
 </cdf:Rule>

 <cdf:Rule id="no-udp-small-servers" selected="1"
 prohibitChanges="1" weight="5.7">
 <cdf:title>Disable udp-small-servers</cdf:title>
 <cdf:description>
 Disable unnecessary UDP services such as echo, chargen, etc.
 </cdf:description>
 <cdf:question>Forbid UDP small services</cdf:question>
 <cdf:fixtext>
 Disable UDP small servers in IOS global config mode.
 </cdf:fixtext>
 <cdf:fix>no service udp-small-servers</cdf:fix>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL1001"/>
 </cdf:check>
 </cdf:Rule>

 <cdf:Rule id="set-buffered-logging-level" selected="1"
 prohibitChanges="0" weight="8.5">
 <cdf:title xml:lang="en">Set the buffered logging level</cdf:title>
 <cdf:description>

NISTIR 7188: XCCDF Specification 74 74

 Set the buffered logging level to one of the appropriate
 levels, Warning or higher. Log level should be set explicitly.
 </cdf:description>
 <cdf:question>Check the buffered logging level</cdf:question>
 <cdf:fix>
 logging buffered <cdf:sub idref="buffered-logging-level"/>
 </cdf:fix>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-export value-id="buffered-logging-level"
 export-name="var-4"/>
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL1301"/>
 </cdf:check>
 </cdf:Rule>
 </cdf:Group>

 <cdf:Group id="data-plane" selected="1" prohibitChanges="1" weight="2">
 <cdf:title>Data Plane Level 1</cdf:title>
 <cdf:description>
 Services and settings related to the data passing through
 the router (as opposed to directed to it). Basically, the
 data plane is for everything not in control or mgmt planes.
 </cdf:description>
 <cdf:question>Check rules related to data flow</cdf:question>

 <cdf:Group id="routing-rules" selected="1" prohibitChanges="1">
 <cdf:title>Routing Rules</cdf:title>
 <cdf:description>
 Rules in this group affect traffic forwarded through the
 router, including router actions taken on receipt of
 special data traffic.
 </cdf:description>
 <cdf:question>Apply standard forwarding protections</cdf:question>

 <cdf:Rule id="no-directed-broadcast" weight="7"
 selected="1" prohibitChanges="1">
 <cdf:title>IOS - no directed broadcasts</cdf:title>
 <cdf:description>
 Disable IP directed broadcast on each interface.
 </cdf:description>
 <cdf:question>Forbid IP directed broadcast</cdf:question>
 <cdf:fixtext>
 Disable IP directed broadcast on each interface
 using IOS interface configuration mode.
 </cdf:fixtext>
 <cdf:fix>
 interface <cdf:instance/>
 no ip directed-broadcast
 </cdf:fix>
 <cdf:check system="http://oval.mitre.org/XMLSchema/oval">
 <cdf:check-content-ref href="iosDefns.xml" name="OVAL1101"/>
 </cdf:check>
 </cdf:Rule>
 </cdf:Group>
 </cdf:Group>

</cdf:Benchmark>

NISTIR 7188: XCCDF Specification 75 75

8. References
[1] Fallside, David C., XML Schema Part 0: Primer, W3C Recommendation,

2 May 2001. (http://www.w3.org/)
[2] Buttner, Andrew, “<Oval SQL=’false’>”, presentation, The MITRE

Corporation, Oct 2003.
[3] Baker, Mark et al, XHTML Basic, W3C Recommendation, Dec 2000.

(http://www.w3.org/)
[4] Bray, Tim et al, Namespaces in XML, W3C Recommendation, Jan 1999.

(http://www.w3.org/)
[5] Jones, George, “Introduction to RAT”, presentation, Center for Internet

Security, Oct 2003.
[6] Calabrese, Chris, “VulnTrack”, presentation, Oct 2003.
[7] Davis, Mark “Unicode Regular Expressions”, Unicode Technical

Recommendation No. 18, version 9, Jan 2004.
[8] Bartel et al, “XML – Signature Syntax and Processing”, W3C

Recommendation, Feb 2002. (http://www.w3.org/)
[9] Marsh, J. and Orchard, D. “XML Inclusions (XInclude) Version 1.0”,

W3C Candidate Recommendation, April 2004. (http://www.w3.org/)
[10] Hillmann, Diane, “Using Dublin Core”, DCMI, Aug 2003.
[11] “Security Configuration Checklists Program for IT Products”, NIST

Special Publication 800-70, Aug 2004. (http://checklists.nist.gov/)
[12] Waltermire, David “XCCDF Platform Specification”, Center for Internet

Security, Sep 2004.
[13] Johnston, P. and Powell, A. “Guidelines for implementing Dublin Core in

XML”, DCMI, Apr 2003.

NISTIR 7188: XCCDF Specification 76 76

	Introduction
	Background
	Vision for Use

	Requirements
	Structure and Tailoring Requirements
	Inheritance and Inclusion Requirements
	Document and Report Formatting Requirements
	Rule Checking Requirements
	Metadata and Security Requirements

	Data Model
	Benchmark Structure
	Inheritance

	Object Detailed Contents
	Processing Models
	Substitution Processing
	Rule Application and Compliance Scoring
	Scoring and Results Model
	Score Computation Algorithm
	Multiply-Instantiated Rules

	XML Representation
	XML Document General Considerations
	XML Element Dictionary
	<Benchmark>
	<Group>
	<Rule>
	<Value>
	<Profile>
	<TestResult>
	<benchmark>
	<check>
	<check-export>
	<check-content>
	<check-content-ref>
	<choices>
	<choice>
	<conflicts>
	<default>
	<description>
	<fix>
	<fixtext>
	<front-matter>
	<instance>
	<lower-bound>
	<match>
	<message>
	<metadata>
	<notice>
	<platform>
	<platform-definitions>
	<profile>
	<question>
	<rationale>
	<rear-matter>
	<reference>
	<refine-value>
	<remark>
	<requires>
	<result>
	<rule-result>
	<score>
	<select>
	<set-value>
	<signature>
	<status>
	<sub>
	<target>
	<target-address>
	<title>
	<upper-bound>
	<value>
	<warning>

	Text and String Content

	Conclusions
	Appendix A – XCCDF Schema
	Testing

	Appendix B – Sample Benchmark File
	References

		Superintendent of Documents
	2022-04-13T07:17:23-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

