NIST Big Data Interoperability Framework: Volume 3, Use Cases and General Requirements

Version 3

NIST Big Data Public Working Group Definitions and Taxonomies Subgroup

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-3r2

NIST Special Publication 1500-3r2

NIST Big Data Interoperability Framework: Volume 3, Use Cases and General Requirements

Version 3

NIST Big Data Public Working Group Definitions and Taxonomies Subgroup Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-3r2

October 2019

U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

National Institute of Standards and Technology (NIST) Special Publication 1500-3r2 360 pages (October 2019)

NIST Special Publication series 1500 is intended to capture external perspectives related to NIST standards, measurement, and testing-related efforts. These external perspectives can come from industry, academia, government, and others. These reports are intended to document external perspectives and do not represent official NIST positions.

Certain commercial entities, equipment, or materials may be identified in this document to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all publications during public comment periods and provide feedback to NIST. All NIST publications are available at <u>http://www.nist.gov/publication-portal.cfm</u>.

Copyrights and Permissions

Official publications of the National Institute of Standards and Technology are not subject to copyright in the United States. Foreign rights are reserved. Questions concerning the possibility of copyrights in foreign countries should be referred to the Office of Chief Counsel at NIST via email to <u>nistcounsel@nist.gov</u>.

Comments on this publication may be submitted to Wo Chang

National Institute of Standards and Technology Attn: Wo Chang, Information Technology Laboratory 100 Bureau Drive (Mail Stop 8900) Gaithersburg, MD 20899-8930 Email: <u>SP1500comments@nist.gov</u>

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at NIST promotes the U.S. economy and public welfare by providing technical leadership for the Nation's measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL's responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in federal information systems. This document reports on ITL's research, guidance, and outreach efforts in Information Technology and its collaborative activities with industry, government, and academic organizations.

Abstract

Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden, information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional technical approaches and the growth of data is outpacing scientific and technological advances in data analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) worked to develop consensus on important fundamental concepts related to Big Data. The results are reported in the NIST Big Data Interoperability Framework series of volumes. This volume, Volume 3, contains the original 51 Version 1 use cases gathered by the NBD-PWG Use Cases and Requirements Subgroup and the requirements generated from those use cases. The use cases are presented in their original and summarized form. Requirements, or challenges, were extracted from each use case, and then summarized over all the use cases. These generalized requirements were used in the development of the NIST Big Data Reference Architecture (NBDRA), which is presented in Volume 6. During the development of Version 2 of the NBDIF, the Use Cases and Requirements Subgroup and the Security and Privacy Subgroup identified the need for additional use cases to strengthen work of the NBD-PWG in Stage 3. The subgroup accepted additional use case submissions using the more detailed Use Case Template 2. The three additional use case submissions collected using Use Case Template 2 are presented and summarized in this volume.

Keywords

Big Data; Big Data Application Provider; Big Data characteristics; Big Data Framework Provider; Big Data taxonomy; Data Consumer; Data Provider; data science; Management Fabric; reference architecture; Security and Privacy Fabric; System Orchestrator; use cases.

Acknowledgements

This document reflects the contributions and discussions by the membership of the NBD-PWG, cochaired by Wo Chang (NIST ITL), Bob Marcus (ET-Strategies), and Chaitan Baru (San Diego Supercomputer Center; National Science Foundation). For all versions, the Subgroups were led by the following people: Nancy Grady (SAIC), Natasha Balac (San Diego Supercomputer Center), and Eugene Luster (R2AD) for the Definitions and Taxonomies Subgroup; Geoffrey Fox (Indiana University) and Tsegereda Beyene (Cisco Systems) for the Use Cases and Requirements Subgroup; Arnab Roy (Fujitsu), Mark Underwood (Krypton Brothers; Synchrony Financial), and Akhil Manchanda (GE) for the Security and Privacy Subgroup; David Boyd (InCadence Strategic Solutions), Orit Levin (Microsoft), Don Krapohl (Augmented Intelligence), and James Ketner (AT&T) for the Reference Architecture Subgroup; and Russell Reinsch (Center for Government Interoperability), David Boyd (InCadence Strategic Solutions), Carl Buffington (Vistronix), and Dan McClary (Oracle), for the Standards Roadmap Subgroup.

The editors for this document were the following:

- Version 1: Geoffrey Fox (Indiana University) and Wo Chang (NIST)
- Version 2: Geoffrey Fox (Indiana University) and Wo Chang (NIST)
- Version 3: Geoffrey Fox (Indiana University) and Wo Chang (NIST)

Laurie Aldape (Energetics Incorporated) and Elizabeth Lennon (NIST) provided editorial assistance across all NBDIF volumes.

NIST SP1500-3, Version 3 has been collaboratively authored by the NBD-PWG. As of the date of this publication, there are over six hundred NBD-PWG participants from industry, academia, and government. Federal agency participants include the National Archives and Records Administration (NARA), National Aeronautics and Space Administration (NASA), National Science Foundation (NSF), and the U.S. Departments of Agriculture, Commerce, Defense, Energy, Health and Human Services, Homeland Security, Transportation, Treasury, and Veterans Affairs.

NIST would like to acknowledge the specific contributions¹ to this volume, during Version 1, Version 2, and/or Version 3 activities, by the following NBD-PWG members:

Tsegereda Beyene	Nancy Grady	Ashok Malhotra
<i>Cisco Systems</i>	SAIC	Oracle Corporation
Deborah Blackstock	Jay Greenberg	Robert Marcus
MITRE Corporation	The Boeing Company	<i>ET-Strategies</i>
David Boyd	Karen Guertler	Gary Mazzaferro
InCadence Strategic Services	Consultant	AlloyCloud, Inc.
Scott Brim	Keith Hare	William Miller
Internet2	JCC Consulting, Inc.	<i>MaCT USA</i>
Pw McKenna Carey, III	Babak Jahromi	Sanjay Mishra
<i>Compliance Partners,</i>	Microsoft	Verizon
LLC/RALAND	Pavithra Kenjige	Doug Scrimager
Wo Chang	PK Technologies	Slalom Consulting
NIST	Donald Krapohl	Cherry Tom

¹ "Contributors" are members of the NIST Big Data Public Working Group who dedicated great effort to prepare and gave substantial time on a regular basis to research and development in support of this document.

IEEE-SA

Augmented Intelligence

Marge Cole *SGT*, *Inc*.

Yuri Demchenko University of Amsterdam

Safia Djennane *Cloud-Age-IT*

Geoffrey Fox *Indiana University* **Luca Lepori** Data Hold

Orit Levin *Microsoft*

Eugene Luster DISA/R2AD Wilco van Ginkel Verizon

Timothy Zimmerlin *Consultant*

Alicia Zuniga-Alvarado Consultant

TABLE OF CONTENTS

E)	ECUTIV	E SUMMARY	IX
1	INTR	ODUCTION	1
	1.1	Background	1
	1.1	SCOPE AND OBJECTIVES OF THE USE CASES AND REQUIREMENTS SUBGROUP	
	1.2	REPORT PRODUCTION	
	1.4	REPORT STRUCTURE	
2	USE	CASE SUMMARIES	6
	2.1	Use Case Development Process	
	2.2	GOVERNMENT OPERATION	
	2.2.1		
	2.2.2		
	2.2.3		
	<i>2.2.4</i> 2.3	Use Case 4: Non-Traditional Data in Statistical Survey Response Improvement (Adaptive Design) COMMERCIAL	
	2.3		-
	2.3.2		
	2.3.2		
	2.3.4	-	
	2.3.5		
	2.3.6		
	2.3.7		
	2.3.8		
	2.4	DEFENSE	
	2.4.1		
	2.4.2		
	Vide	p—Persistent Surveillance	
	2.4.3		
	2.5	HEALTH CARE AND LIFE SCIENCES.	
	2.5.1	Use Case 16: Electronic Medical Record Data	16
	2.5.2	Use Case 17: Pathology Imaging/Digital Pathology	17
	2.5.3		
	2.5.4	Use Case 19: Genomic Measurements	19
	2.5.5	Use Case 20: Comparative Analysis for Metagenomes and Genomes	19
	2.5.6	Use Case 21: Individualized Diabetes Management	20
	2.5.7	Use Case 22: Statistical Relational Artificial Intelligence for Health Care	20
	2.5.8	Use Case 23: World Population-Scale Epidemiological Study	21
	2.5.9	Use Case 24: Social Contagion Modeling for Planning, Public Health, and Disaster Management	21
	2.5.1	0 Use Case 25: Biodiversity and LifeWatch	22
	2.6	DEEP LEARNING AND SOCIAL MEDIA	
	2.6.1	5 1 5	
	2.6.2		23
	2.6.3		
	2.6.4		
	2.6.5	Use Case 30: CINET—Cyberinfrastructure for Network (Graph) Science and Analytics	25

	2.6.6	Use Case 31: NIST Information Access Division—Analytic Technology Performance Measurement.	
		ations, and Standards	
	2.6.7	Use Case 2-3: Urban context-aware event management for Smart Cities – Public safety	
2	.7 1	The Ecosystem for Research	
	2.7.1	Use Case 32: DataNet Federation Consortium	
	2.7.2	Use Case 33: The Discinnet Process	27
	2.7.3	Use Case 34: Semantic Graph Search on Scientific Chemical and Text-Based Data	28
	2.7.4	Use Case 35: Light Source Beamlines	29
2	.8 /	Astronomy and Physics	29
	2.8.1	Use Case 36: Catalina Real-Time Transient Survey: A Digital, Panoramic, Synoptic Sky Survey	29
	2.8.2	Use Case 37: DOE Extreme Data from Cosmological Sky Survey and Simulations	31
	2.8.3	Use Case 38: Large Survey Data for Cosmology	31
	2.8.4	Use Case 39: Particle Physics—Analysis of Large Hadron Collider Data: Discovery of Higgs Particle	
	2.8.5	Use Case 40: Belle II High Energy Physics Experiment	
2	.9 E	EARTH, ENVIRONMENTAL, AND POLAR SCIENCE	
-	2.9.1	Use Case 41: European Incoherent Scatter Scientific Association 3D Incoherent Scatter Radar Syst	
	2.5.1	ose cuse 41. European meonerent seatter selentijte Association 35 meonerent seatter hadar syst	
	2.9.2	Use Case 42: Common Operations of Environmental Research Infrastructure	
	2.9.2	Use Case 43: Radar Data Analysis for the Center for Remote Sensing of Ice Sheets	
			40
	2.9.4	Use Case 44: Unmanned Air Vehicle Synthetic Aperture Radar (UAVSAR) Data Processing, Data	40
		ct Delivery, and Data Services	
	2.9.5	Use Case 45: NASA Langley Research Center/ Goddard Space Flight Center iRODS Federation Test	
	2.9.6	Use Case 46: MERRA Analytic Services (MERRA/AS)	
	2.9.7	Use Case 47: Atmospheric Turbulence – Event Discovery and Predictive Analytics	44
	2.9.8	Use Case 48: Climate Studies Using the Community Earth System Model at the U.S. Department c	f
	Energ	y (DOE) NERSC Center	45
	2.9.9	Use Case 49: DOE Biological and Environmental Research (BER) Subsurface Biogeochemistry Scien	ntific
	Focus	Area	46
	2.9.10	Use Case 50: DOE BER AmeriFlux and FLUXNET Networks	47
	2.9.11		
	2.9.12		
2		ENERGY	
2	2.10.1		
3	USE C	ASE REQUIREMENTS	51
3	i.1 l	Jse Case Specific Requirements	51
З	.2 (General Requirements	51
4	ADDI	TIONAL USE CASE CONTRIBUTIONS	54
APF	PENDIX	A: USE CASE STUDY SOURCE MATERIALS	55
APF	PENDIX	B: SUMMARY OF KEY PROPERTIES	192
APF	PENDIX	C: USE CASE REQUIREMENTS SUMMARY	206
		D: USE CASE DETAIL REQUIREMENTS	
		E: USE CASE TEMPLATE 2	
APF	PENDIX	F: VERSION 2 RAW USE CASE DATA	288
F	.1 l	Jse Case 2-1: NASA Earth Observing System Data and Information System (EOSDIS)	288
-		Jse Case 2-2: Web-Enabled Landsat Data (WELD) Processing	
		JSE CASE 2-2: WEB-EINABLED EANDSAT DATA (WEED) TROCESSING	

APPENDIX G: ACRONYMS	344
APPENDIX H: BIBLIOGRAPHY	348

FIGURES

FIGURE 1: NBDIF DOCUM	JENTS NAVIGATION DIAGRAM PROVIDES CONTENT FLOW BETWEEN VOLUMES	5
FIGURE 2: CARGO SHIPPIN	NG SCENARIO	12
FIGURE 3: PATHOLOGY IN	IAGING/DIGITAL PATHOLOGY—EXAMPLES OF 2-D AND 3-D PATHOLOGY IMAGES	17
FIGURE 4: PATHOLOGY IN	IAGING/DIGITAL PATHOLOGY	18
FIGURE 5: DFC—IRODS	Architecture	27
FIGURE 6: CATALINA CRT	S: A Digital, Panoramic, Synoptic Sky Survey	
	ICS: ANALYSIS OF LHC DATA: DISCOVERY OF HIGGS PARTICLE—CERN LHC LOCATION	
	ICS: ANALYSIS OF LHC DATA: DISCOVERY OF HIGGS PARTICLE—THE MULTI-TIER LHC COMPUTING	
INFRASTRUCTURE		
FIGURE 9: EISCAT 3D IN	COHERENT SCATTER RADAR SYSTEM – SYSTEM ARCHITECTURE	35
FIGURE 10: ENVRI COM	MON ARCHITECTURE	37
FIGURE 11(A): ICOS ARC	HITECTURE	37
FIGURE 11(B): LIFEWATC	H ARCHITECTURE	
	CHITECTURE	
FIGURE 11(D): EURO-AR	RGO ARCHITECTURE	
FIGURE 11(E): EISCAT 3	D Architecture	
FIGURE 12: TYPICAL CRES	SIS RADAR DATA AFTER ANALYSIS	40
FIGURE 13: RADAR DATA	ANALYSIS FOR CRESIS REMOTE SENSING OF ICE SHEETS- TYPICAL FLIGHT PATHS OF DATA GATHERIN	G IN
SURVEY REGION		41
FIGURE 14: TYPICAL ECHO	OGRAM WITH DETECTED BOUNDARIES	41
FIGURE 15: COMBINED U	NWRAPPED COSEISMIC INTERFEROGRAMS	42
	RA/AS OUTPUT	
	A IMAGE OF TURBULENT WAVES	
	NELD/GIBS PROCESSING WORKFLOW	
	,	

TABLES

TABLE B-1: USE CASE SPECIFIC INFORMATION BY KEY PROPERTIES	
TABLE C-1: USE CASE SPECIFIC REQUIREMENTS	
TABLE D-1: DATA SOURCES REQUIREMENTS	234
Table D-2: Data Transformation	239
TABLE D-3: CAPABILITIES	243
Table D-4: Data Consumer	249
TABLE D-5: SECURITY AND PRIVACY	
TABLE D-6: LIFE CYCLE MANAGEMENT	254
TABLE D-7: OTHERS	

EXECUTIVE SUMMARY

The *NIST Big Data Interoperability Framework* (NBDIF) was released in three versions, which correspond to the three stages of the NBD-PWG work. Version 3 (current version) of the NBDIF volumes resulted from Stage 3 work with major emphasis on the validation of the NBDRA Interfaces and content enhancement. Stage 3 work built upon the foundation created during Stage 2 and Stage 1. The current effort documented in this volume reflects concepts developed within the rapidly evolving field of Big Data. The three stages (in reverse order) aim to achieve the following with respect to the NIST Big Data Reference Architecture (NBDRA).

- Stage 3: Validate the NBDRA by building Big Data general applications through the general interfaces;
- Stage 2: Define general interfaces between the NBDRA components; and
- Stage 1: Identify the high-level Big Data reference architecture key components, which are technology-, infrastructure-, and vendor-agnostic.

The *NBDIF* consists of nine volumes, each of which addresses a specific key topic, resulting from the work of the NBD-PWG. The nine volumes are as follows:

- Volume 1, Definitions [1]
- Volume 2, Taxonomies [2]
- Volume 3, Use Cases and General Requirements (this volume)
- Volume 4, Security and Privacy [3]
- Volume 5, Architectures White Paper Survey [4]
- Volume 6, Reference Architecture [5]
- Volume 7, Standards Roadmap [6]
- Volume 8: Reference Architecture Implementation [7]
- Volume 9: Adoption and Modernization [8]

During Stage 1, Volumes 1 through 7 were conceptualized, organized, and written. The finalized Version 1 documents can be downloaded from the V1.0 Final Version page of the NBD-PWG website (<u>https://bigdatawg.nist.gov/V1_output_docs.php</u>).

28 During Stage 2, the NBD-PWG developed Version 2 of the NBDIF Version 1 volumes, with the

29 exception of Volume 5, which contained the completed architecture survey work that was used to inform

30 Stage 1 work of the NBD-PWG. The goals of Stage 2 were to enhance the Version 1 content, define

31 general interfaces between the NBDRA components by aggregating low-level interactions into high-level

32 general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the

- need for NBDIF Volume 8 and NBDIF Volume 9 were identified and the two new volumes were created.
- Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final
- 35 Version page of the NBD-PWG website (<u>https://bigdatawg.nist.gov/V2_output_docs.php</u>).

This volume, *NIST Big Data Interoperability Framework: Volume 3, Use Cases and General Requirements*, was prepared by the NIST Big Data Public Working Group (NBD-PWG) Use Cases and

- Requirements Subgroup to document the collection of use cases and extraction of requirements. The
- 39 Subgroup developed the first use case template with 26 fields that were completed by 51 users in the

40 following broad areas:

- 41 Government Operations (4)
- 42 Commercial (8)

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

43 • Defense (3)

46

47

48

49

- Healthcare and Life Sciences (10)
- Deep Learning and Social Media (6)
 - The Ecosystem for Research (4)
 - Astronomy and Physics (5)
 - Earth, Environmental and Polar Science (10)
 - Energy (1)

The use cases are, of course, only representative, and do not encompass the entire spectrum of Big Data usage. All the use cases were openly submitted and no significant editing was performed. While there are differences between the use cases in scope and interpretation, the benefits of free and open submission outweighed those of greater uniformity. The Use Cases and Requirements Subgroup examined the use cases, extracted specific and general requirements, and provided input to the other subgroups to inform their work as documented in the other NBDIF Volumes.

56 During the development of Version 2 of the NBDIF, the Use Cases and Requirements Subgroup and the 57 Security and Privacy Subgroup identified the need for additional use cases to strengthen the future work 58 of the NBD-PWG. These two subgroups collaboratively created the Use Case Template 2 59 (https://bigdatawg.nist.gov/ uploadfiles/M0621 v2 7345181325.pdf), which was used to collect 60 additional use cases during Stage 2 and Stage 3 of the NBD-PWG work. The three use cases submitted 61 with the Use Case Template 2 are presented in this document. Two use cases belong to the "Earth, Environmental and Polar Science" application domain and the third use case belongs to the "Deep 62 63 Learning and Social Media" application domain.

64 This volume documents the process used by the Subgroup to collect the 51 use cases and extract 65 requirements to form the NBDRA. Included in this document are summaries of the 51 Version 1 use 66 cases, extracted requirements, the original, unedited 51 Version 1 use cases, the questions contained in 67 Use Case Template 2, and the three Template 2 use cases submitted to date. The current effort 68 documented in this volume reflects concepts developed within the rapidly evolving field of Big Data.

70 **1 INTRODUCTION**

71 1.1 BACKGROUND

There is broad agreement among commercial, academic, and government leaders about the potential of Big Data to spark innovation, fuel commerce, and drive progress. Big Data is the common term used to describe the deluge of data in today's networked, digitized, sensor-laden, and information-driven world. The availability of vast data resources carries the potential to answer questions previously out of reach, including the following:

- How can a potential pandemic reliably be detected early enough to intervene?
- Can new materials with advanced properties be predicted before these materials have ever been synthesized?
- How can the current advantage of the attacker over the defender in guarding against cybersecurity threats be reversed?

There is also broad agreement on the ability of Big Data to overwhelm traditional approaches. The growth rates for data volumes, speeds, and complexity are outpacing scientific and technological advances in data analytics, management, transport, and data user spheres.

Despite widespread agreement on the inherent opportunities and current limitations of Big Data, a lack of
 consensus on some important fundamental questions continues to confuse potential users and stymie
 progress. These questions include the following:

- How is Big Data defined?
- What attributes define Big Data solutions?
- What is new in Big Data?
- What is the difference between Big Data and *bigger data* that has been collected for years?
- How is Big Data different from traditional data environments and related applications?
- What are the essential characteristics of Big Data environments?
- How do these environments integrate with currently deployed architectures?
- What are the central scientific, technological, and standardization challenges that need to be addressed to accelerate the deployment of robust, secure Big Data solutions?

Within this context, on March 29, 2012, the White House announced the Big Data Research and
Development Initiative [9]. The initiative's goals include helping to accelerate the pace of discovery in
science and engineering, strengthening national security, and transforming teaching and learning by
improving analysts' ability to extract knowledge and insights from large and complex collections of
digital data.

Six federal departments and their agencies announced more than \$200 million in commitments spread across more than 80 projects, which aim to significantly improve the tools and techniques needed to access, organize, and draw conclusions from huge volumes of digital data. The initiative also challenged industry, research universities, and nonprofits to join with the federal government to make the most of the opportunities created by Big Data.

- 107 Motivated by the White House initiative and public suggestions, the National Institute of Standards and
- 108 Technology (NIST) accepted the challenge to stimulate collaboration among industry professionals to
- 109 further the secure and effective adoption of Big Data. As one result of NIST's Cloud and Big Data Forum
- 110 held on January 15–17, 2013, there was strong encouragement for NIST to create a public working group

77

78

79

80

81

82

83

84

88

89

90

91

92

93

94

95

111 for the development of a Big Data Standards Roadmap. Forum participants noted that this roadmap

- should define and prioritize Big Data requirements, including interoperability, portability, reusability,
- extensibility, data usage, analytics, and technology infrastructure. In doing so, the roadmap would
- accelerate the adoption of the most secure and effective Big Data techniques and technology.

115 On June 19, 2013, the NIST Big Data Public Working Group (NBD-PWG) was launched with extensive 116 participation by industry, academia, and government from across the nation. The scope of the NBD-PWG involves forming a community of interests from all sectors-including industry, academia, and 117 government—with the goal of developing consensus on definitions, taxonomies, secure reference 118 119 architectures, security and privacy, and, from these, a standards roadmap. Such a consensus would create 120 a vendor-neutral, technology- and infrastructure-independent framework that would enable Big Data stakeholders to identify and use the best analytics tools for their processing and visualization requirements 121 122 on the most suitable computing platform and cluster, while also allowing added value from Big Data 123 service providers.

The *NIST Big Data Interoperability Framework* (NBDIF) was released in three versions, which correspond to the three stages of the NBD-PWG work. Version 3 (current version) of the NBDIF volumes resulted from Stage 3 work with major emphasis on the validation of the NBDRA Interfaces and content enhancement. Stage 3 work built upon the foundation created during Stage 2 and Stage 1. The current effort documented in this volume reflects concepts developed within the rapidly evolving field of Big Data. The three stages (in reverse order) aim to achieve the following with respect to the NIST Big Data Reference Architecture (NBDRA).

- Stage 3: Validate the NBDRA by building Big Data general applications through the general interfaces;
- Stage 2: Define general interfaces between the NBDRA components; and
- Stage 1: Identify the high-level Big Data reference architecture key components, which are technology-, infrastructure-, and vendor-agnostic.

The *NBDIF* consists of nine volumes, each of which addresses a specific key topic, resulting from the work of the NBD-PWG. The nine volumes are as follows:

- Volume 1, Definitions [1]
- Volume 2, Taxonomies [2]
- Volume 3, Use Cases and General Requirements (this volume)
- Volume 4, Security and Privacy [3]
- Volume 5, Architectures White Paper Survey [4]
- Volume 6, Reference Architecture [5]
- Volume 7, Standards Roadmap [6]
- Volume 8, Reference Architecture Interfaces [7]
- Volume 9, Adoption and Modernization [8]

147 During Stage 1, Volumes 1 through 7 were conceptualized, organized, and written. The finalized Version
148 1 documents can be downloaded from the V1.0 Final Version page of the NBD-PWG website
149 (https://bigdatawg.nist.gov/V1_output_docs.php).

- 150 During Stage 2, the NBD-PWG developed Version 2 of the NBDIF Version 1 volumes, with the
- 151 exception of Volume 5, which contained the completed architecture survey work that was used to inform
- 152 Stage 1 work of the NBD-PWG. The goals of Stage 2 were to enhance the Version 1 content, define
- general interfaces between the NBDRA components by aggregating low-level interactions into high-level
- general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the
- need for NBDIF Volume 8 and NBDIF Volume 9 were identified and the two new volumes were created.
- Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final
- 157 Version page of the NBD-PWG website (<u>https://bigdatawg.nist.gov/V2_output_docs.php</u>).

131

132

133

134

135 136

137

138

139

140

141

142

143

144

145

1.2 SCOPE AND OBJECTIVES OF THE USE CASES AND REQUIREMENTS SUBGROUP

160 This volume was prepared by the NBD-PWG Use Cases and Requirements Subgroup. The effort focused 161 on forming a community of interest from industry, academia, and government, with the goal of 162 developing a consensus list of Big Data requirements across all stakeholders. This included gathering and 163 understanding various use cases from nine diversified areas (i.e., application domains.) To achieve this 164 goal, the Subgroup completed the following tasks:

- Gathered input from all stakeholders regarding Big Data requirements;
- Analyzed and prioritized a list of challenging use case specific requirements that may delay or prevent adoption of Big Data deployment;
- Developed a comprehensive list of generalized Big Data requirements;
- Collaborated with the NBD-PWG Reference Architecture Subgroup to provide input for the NBDRA;
- Collaborated with the NBD-PWG Security and Privacy Subgroup to produce the Use Case Template 2, which helped gather valuable input to strengthen the work of the NBD-PWG; and
- Documented the findings in this report.

174 **1.3 REPORT PRODUCTION**

Version 1 of this report was produced using an open collaborative process involving weekly telephone
conversations and information exchange using the NIST document system. The 51 Version 1 use cases,
included herein, came from Subgroup members participating in the calls and from other interested parties
informed of the opportunity to contribute.

The outputs from the use case process are presented in this report and online at the following locations:

- Index to all use cases: <u>https://bigdatawg.nist.gov/usecases.php</u>
- List of specific requirements versus use case: <u>https://bigdatawg.nist.gov/uc_reqs_summary.php</u>
- List of general requirements versus architecture component: https://bigdatawg.nist.gov/uc_reqs_gen.php
- List of general requirements versus architecture component with record of use cases giving requirements: <u>https://bigdatawg.nist.gov/uc_reqs_gen_ref.php</u>
- List of architecture components and specific requirements plus use case constraining the components: <u>https://bigdatawg.nist.gov/uc_reqs_gen_detail.php</u>
- General requirements: <u>https://bigdatawg.nist.gov/uc_reqs_gen.php</u>.

During development of Version 2 of this report, the subgroup focused on preparing the revised Use Case Template 2 (an outline of which is provided in Appendix E) and collaborating with other subgroups on content development for the other NBDIF volumes.

To achieve technical and high-quality document content, this document will go through a publiccomments period along with NIST internal review.

194 **1.4 REPORT STRUCTURE**

- 195 Following this introductory section, the remainder of this document is organized as follows:
- Section 2 presents the original (Version 1) 51 use cases and 2 new use cases gotten with updated Version 2 summary.
- 198
- Section 2.1 discusses the process that led to their production. of the use cases.

165

166

167 168

169

170

171

172

173

179

180

181

182

183 184

185 186

187

188

189

190

199	• Sections 2.2 through 2.10 provide summaries of the 53 use cases; each summary has
200	three subsections: Application, Current Approach, and Future. The use cases are
201	organized into the nine broad areas (application domains) listed below, with the number
202	of associated use cases in parentheses:
203	 Government Operation (4)
204	 Commercial (8)
205	 Defense (3)
206	 Healthcare and Life Sciences (10)
207	 Deep Learning and Social Media (6)
208	 The Ecosystem for Research (4)
209	 Astronomy and Physics (5)
210	 Earth, Environmental, and Polar Science (10) plus 2 additional Version 2 use
211	cases (12 total)
212	 Energy (1)
213	• Section 3 presents a more detailed analysis of requirements across use cases.
214	• Section 4 introduces the Version 2 use cases.
215	• Appendix A contains the original, unedited use cases.
216	• Appendix B summarizes key properties of each use case.
217	• Appendix C presents a summary of use case requirements.
218	• Appendix D provides the requirements extracted from each use case and aggregated general
219	requirements grouped by characterization category.
220	• Appendix E presents the structure of the revised Use Case Template 2. The fillable pdf can be
221	downloaded from https://bigdatawg.nist.gov/_uploadfiles/M0621_v2_7345181325.pdf.
222	• Appendix F contains the Version 2 use cases.
223	• Appendix G contains acronyms and abbreviations used in this document.
224	Appendix H supplies the document references.
225	While each NDDIE volume was arrested with a gradific focus within Big Data all volumes are

While each NBDIF volume was created with a specific focus within Big Data, all volumes are interconnected. During the creation of the volumes, information from some volumes was used as input for other volumes. Broad topics (e.g., definition, architecture) may be discussed in several volumes with each discussion circumscribed by the volume's particular focus. Arrows shown in Figure 1 indicate the main flow of information input and/or output from the volumes. Volumes 2, 3, and 5 (blue circles) are essentially standalone documents that provide output to other volumes (e.g., to Volume 6). These volumes contain the initial situational awareness research. During the creation of Volumes 4, 7, 8, and 9 (green circles), input from other volumes was used. The development of these volumes took into account work on the other volumes. Volumes 1 and 6 (red circles) were developed using the initial situational

awareness research and continued to be modified based on work in other volumes. The information from
 these volumes was also used as input to the volumes in the green circles.

Figure 1: NBDIF Documents Navigation Diagram Provides Content Flow Between Volumes

2 USE CASE SUMMARIES

2.1 USE CASE DEVELOPMENT PROCESS

A *use case* is a typical application stated at a high level for the purposes of extracting requirements or comparing usages across fields. In order to develop a consensus list of Big Data requirements across all stakeholders, the Subgroup began by collecting use cases. Publicly available information was collected for various Big Data architecture examples with special attention given to some areas including Healthcare and Government. After collection of 51 use cases, nine broad areas (i.e., application domains) were identified by the Subgroup members to better organize the collection of use cases. The list of application domains reflects the use cases submitted and is not intended to be exhaustive. If other application domains are proposed, they will be considered. Each example of Big Data architecture constituted one use case. The nine application domains were as follows:

- Government Operation;
- Commercial;
- Defense;
- Healthcare and Life Sciences;
- Deep Learning and Social Media;
- The Ecosystem for Research;
- Astronomy and Physics;
- Earth, Environmental, and Polar Science; and
- Energy.

As noted above, participants in the NBD-PWG Use Cases and Requirements Subgroup and other interested parties supplied the information for the use cases. The template used to collect use case information and provided at the front of Appendix A, was valuable for gathering consistent information that enabled the Subgroup to develop supporting analysis and comparison of the use cases. However, varied levels of detail and quantitative or qualitative information were received for each use case template section. The original, unedited use cases are also included in Appendix A and may be downloaded from the NIST document library (http://bigdatawg.nist.gov/usecases.php).

Beginning with Section 2.2 below, the following information is presented for each Big Data use case:

- Application: a high-level description of the use case;
- Current approach: the current manifestation of the use case; and
- Future: desired computational environment, if submitted.

For some application domains, several similar Big Data use cases are presented, providing a more complete view of Big Data requirements within that application domain.

The use cases are presented in this section with the information originally submitted. The original content has not been modified. Specific vendor solutions and technologies are mentioned in the use cases. However, the listing of these solutions and technologies does not constitute endorsement from the NBD-PWG. The front matter (page ii) contains a general disclaimer. The use cases are numbered sequentially to facilitate cross-referencing between the use case summaries presented in this section, the original use cases (Appendix A), and the use case summary tables (Appendices B, C, and D).

2.2 GOVERNMENT OPERATION

2.2.1 Use Case 1: Census 2010 and 2000—Title 13 Big Data

Submitted by Vivek Navale and Quyen Nguyen, National Archives and Records Administration (NARA)

APPLICATION

Census 2010 and 2000—Title 13 data must be preserved for several decades so they can be accessed and analyzed after 75 years. Data must be maintained 'as-is' with no access and no data analytics for 75 years, preserved at the bit level, and curated, which may include format transformation. Access and analytics must be provided after 75 years. Title 13 of the U.S. Code authorizes the U.S. Census Bureau to collect and preserve census related data and guarantees that individual and industry-specific data are protected.

CURRENT APPROACH

The dataset contains 380 terabytes (TB) of scanned documents.

<u>Future</u>

Future data scenarios and applications were not expressed for this use case.

2.2.2 Use Case 2: NARA Accession, Search, Retrieve, Preservation

Submitted by Vivek Navale and Quyen Nguyen, NARA

APPLICATION

This area comprises accession, search, retrieval, and long-term preservation of government data.

CURRENT APPROACH

The data are currently handled as follows:

- 1. Get physical and legal custody of the data
- 2. Pre-process data for conducting virus scans, identifying file format identifications, and removing empty files
- 3. Index the data
- 4. Categorize records (e.g., sensitive, non-sensitive, privacy data)
- 5. Transform old file formats to modern formats (e.g., WordPerfect to PDF)
- 6. Conduct e-discovery
- 7. Search and retrieve to respond to special requests
- 8. Search and retrieve public records by public users

Currently hundreds of TBs are stored centrally in commercial databases supported by custom software and commercial search products.

<u>Future</u>

Federal agencies possess many distributed data sources, which currently must be transferred to centralized storage. In the future, those data sources may reside in multiple cloud environments. In this case, physical custody should avoid transferring Big Data from cloud to cloud or from cloud to data center.

2.2.3 Use Case 3: Statistical Survey Response Improvement

Submitted by Cavan Capps, U.S. Census Bureau

APPLICATION

Survey costs are increasing as survey responses decline. The goal of this work is to increase the quality and reduce the cost—of field surveys by using advanced 'recommendation system techniques.' These techniques are open and scientifically objective, using data mashed up from several sources and also historical survey para-data (i.e., administrative data about the survey.)

CURRENT APPROACH

This use case handles about a petabyte (PB) of data coming from surveys and other government administrative sources. Data can be streamed. During the decennial census, approximately 150 million records transmitted as field data are streamed continuously. All data must be both confidential and secure. All processes must be auditable for security and confidentiality as required by various legal statutes. Data quality should be high and statistically checked for accuracy and reliability throughout the collection process. Software used includes Hadoop, Spark, Hive, R, SAS, Mahout, Allegrograph, MySQL, Oracle, Storm, BigMemory, Cassandra, and Pig.

FUTURE

Improved recommendation systems are needed similar to those used in e-commerce (e.g., similar to the Netflix use case) that reduce costs and improve quality, while providing confidentiality safeguards that are reliable and publicly auditable. Data visualization is useful for data review, operational activity, and general analysis. The system continues to evolve and incorporate important features such as mobile access.

2.2.4 Use Case 4: Non-Traditional Data in Statistical Survey Response Improvement (Adaptive Design)

Submitted by Cavan Capps, U.S. Census Bureau

APPLICATION

Survey costs are increasing as survey response declines. This use case has goals similar to those of the Statistical Survey Response Improvement use case. However, this case involves non-traditional commercial and public data sources from the web, wireless communication, and electronic transactions mashed up analytically with traditional surveys. The purpose of the mashup is to improve statistics for small area geographies and new measures, as well as the timeliness of released statistics.

CURRENT APPROACH

Data from a range of sources are integrated including survey data, other government administrative data, web scrapped data, wireless data, e-transaction data, possibly social media data, and positioning data from various sources. Software, visualization, and data characteristics are similar to those in the Statistical Survey Response Improvement use case.

<u>Future</u>

Analytics need to be developed that give more detailed statistical estimations, on a more near real-time basis, for less cost. The reliability of estimated statistics from such mashed-up sources still must be evaluated.

2.3 COMMERCIAL

2.3.1 Use Case 5: CLOUD ECO-System FOR FINANCIAL INDUSTRIES

Submitted by Pw Carey, Compliance Partners, LLC

APPLICATION

Use of cloud (e.g., Big Data) technologies needs to be extended in financial industries (i.e., banking, securities and investments, insurance) transacting business within the U.S.

CURRENT APPROACH

The financial industry is already using Big Data and Hadoop for fraud detection, risk analysis, assessments, as well as improving their knowledge and understanding of customers. At the same time, the industry is still using traditional client/server/data warehouse/relational database management system (RDBMS) for the handling, processing, storage, and archival of financial data. Real-time data and analysis are important in these applications.

<u>Future</u>

Security, privacy, and regulation must be addressed. For example, the financial industry must examine SEC-mandated use of XBRL (extensible business-related markup language) and use of other cloud functions.

2.3.2 Use Case 6: Mendeley—An International Network of Research

Submitted by William Gunn, Mendeley

APPLICATION

Mendeley has built a database of research documents and facilitates the creation of shared bibliographies. Mendeley collects and uses the information about research reading patterns and other activities conducted via their software to build more efficient literature discovery and analysis tools. Text mining and classification systems enable automatic recommendation of relevant research, improving research teams' performance and cost-efficiency, particularly those engaged in curation of literature on a particular subject.

CURRENT APPROACH

Data size is presently 15 TB and growing at a rate of about 1 TB per month. Processing takes place on Amazon Web Services (AWS) using the following software: Hadoop, Scribe, Hive, Mahout, and Python. The database uses standard libraries for machine learning and analytics, latent Dirichlet allocation (LDA, a generative probabilistic model for discrete data collection), and custom-built reporting tools for aggregating readership and social activities for each document.

<u>Future</u>

Currently Hadoop batch jobs are scheduled daily, but work has begun on real-time recommendation. The database contains approximately 400 million documents and roughly 80 million unique documents, and receives 500,000 to 700,000 new uploads on a weekday. Thus, a major challenge is clustering matching documents together in a computationally efficient way (i.e., scalable and parallelized) when they are uploaded from different sources and have been slightly modified via third-party annotation tools or publisher watermarks and cover pages.

Resources

- Mendeley. <u>http://mendeley.com</u>. Accessed March 3, 2015.
- Mendeley. <u>http://dev.mendeley.com</u>. Accessed March 3, 2015.

2.3.3 Use Case 7: Netflix Movie Service

Submitted by Geoffrey Fox, Indiana University

APPLICATION

Netflix allows streaming of user-selected movies to satisfy multiple objectives (for different stakeholders)—but with a focus on retaining subscribers. The company needs to find the best possible ordering of a set of videos for a user (e.g., household) within a given context in real time, with the objective of maximizing movie consumption. Recommendation systems and streaming video delivery are core Netflix technologies. Recommendation systems are always personalized and use logistic/linear regression, elastic nets, matrix factorization, clustering, LDA, association rules, gradient-boosted decision trees, and other tools. Digital movies are stored in the cloud with metadata, along with individual user profiles and rankings for small fraction of movies. The current system uses multiple criteria: a content-based recommendation system, a user-based recommendation system, and diversity. Algorithms are continuously refined with A/B testing (i.e., two-variable randomized experiments used in online marketing).

CURRENT APPROACH

Netflix held a competition for the best collaborative filtering algorithm to predict user ratings for films the purpose of which was to improve ratings by 10%. The winning system combined over 100 different algorithms. Netflix systems use SQL, NoSQL, and Map/Reduce on AWS. Netflix recommendation systems have features in common with e-commerce systems such as Amazon.com. Streaming video has features in common with other content-providing services such as iTunes, Google Play, Pandora, and Last.fm. Business initiatives such as Netflix-sponsored content have been used to increase viewership.

<u>Future</u>

Streaming video is a very competitive business. Netflix needs to be aware of other companies and trends in both content (e.g., which movies are popular) and Big Data technology.

Resources

- Building Large-scale Real-world Recommender Systems Recsys2012 tutorial. http://www.slideshare.net/xamat/building-largescale-realworld-recommender-systemsrecsys2012-tutorial. Accessed March 3, 2015.
- RAD Outlier Detection on Big Data. <u>http://techblog.netflix.com/</u>. Accessed March 3, 2015.

2.3.4 Use Case 8: Web Search

Submitted by Geoffrey Fox, Indiana University

APPLICATION

A web search function returns results in ≈ 0.1 seconds based on search terms with an average of three words. It is important to maximize quantities such as "precision@10" for the number of highly accurate/appropriate responses in the top 10 ranked results.

CURRENT APPROACH

The current approach uses the following steps:

- 1. Crawl the web
- 2. Pre-process data to identify what is searchable (words, positions)
- 3. Form an inverted index, which maps words to their locations in documents
- 4. Rank the relevance of documents using the PageRank algorithm
- 5. Employ advertising technology, e.g., using reverse engineering to identify ranking models—or preventing reverse engineering

- 6. Cluster documents into topics (as in Google News)
- 7. Update results efficiently

Modern clouds and technologies such as Map/Reduce have been heavily influenced by this application, which now comprises ~45 billion web pages total.

<u>Future</u>

Web search is a very competitive field, so continuous innovation is needed. Two important innovation areas are addressing the growing segment of mobile clients, and increasing sophistication of responses and layout to maximize the total benefit of clients, advertisers, and the search company. The "deep web" (content not indexed by standard search engines, buried behind user interfaces to databases, etc.) and multimedia searches are also of increasing importance. Each day, 500 million photos are uploaded, and each minute, 100 hours of video are uploaded to YouTube.

<u>Resources</u>

- Internet Trends D11 Conference. <u>http://www.slideshare.net/kleinerperkins/kpcb-Internet-trends-2013</u>. Accessed March 3, 2015.
- Introduction to Search Engine Technology. <u>http://webcourse.cs.technion.ac.il/236621/Winter2011-2012/en/ho_Lectures.html</u>. Accessed March 3, 2015.
- Lecture "Information Retrieval and Web Search Engines" (SS 2011). <u>http://www.ifis.cs.tu-bs.de/teaching/ss-11/irws</u>. Accessed March 3, 2015.
- Recommender Systems Tutorial (Part 1) –Introduction. <u>http://www.slideshare.net/beechung/recommender-systems-tutorialpart1intro</u>. Accessed March 3, 2015.
- The size of the World Wide Web (The Internet). <u>http://www.worldwidewebsize.com/</u>. Accessed March 3, 2015.

2.3.5 Use Case 9: Big Data Business Continuity and Disaster Recovery Within a Cloud Eco-System

Submitted by Pw Carey, Compliance Partners, LLC

APPLICATION

Business Continuity and Disaster Recovery (BC/DR) needs to consider the role that four overlaying and interdependent forces will play in ensuring a workable solution to an entity's business continuity plan and requisite disaster recovery strategy. The four areas are people (i.e., resources), processes (e.g., time/cost/return on investment [ROI]), technology (e.g., various operating systems, platforms, and footprints), and governance (e.g., subject to various and multiple regulatory agencies).

CURRENT APPROACH

Data replication services are provided through cloud ecosystems, incorporating IaaS and supported by Tier 3 data centers. Replication is different from backup and only moves the changes that took place since the previous replication, including block-level changes. The replication can be done quickly—with a five-second window—while the data are replicated every four hours. This data snapshot is retained for seven business days, or longer if necessary. Replicated data can be moved to a failover center (i.e., a backup system) to satisfy an organization's recovery point objectives (RPO) and recovery time objectives (RTO). There are some relevant technologies from VMware, NetApps, Oracle, IBM, and Brocade. Data sizes range from terabytes to petabytes.

<u>Future</u>

Migrating from a primary site to either a replication site or a backup site is not yet fully automated. The goal is to enable the user to automatically initiate the failover sequence. Both organizations must know which servers have to be restored and what the dependencies and inter-dependencies are between the primary site servers and replication and/or backup site servers. This knowledge requires continuous monitoring of both.

Resources

• Disaster Recovery. http://www.disasterrecovery.org/. Accessed March 3, 2015.

2.3.6 Use Case 10: Cargo Shipping

Submitted by William Miller, MaCT USA

APPLICATION

Delivery companies such as Federal Express, United Parcel Service (UPS), and DHL need optimal means of monitoring and tracking cargo.

CURRENT APPROACH

Information is updated only when items are checked with a bar code scanner, which sends data to the central server. An item's location is not currently displayed in real time. Figure 2 provides an architectural diagram.

FUTURE

Tracking items in real time is feasible through the Internet of Things application, in which objects are given unique identifiers and capability to transfer data automatically, i.e., without human interaction. A new aspect will be the item's status condition, including sensor information, global positioning system (GPS) coordinates, and a unique identification schema based upon standards under development (specifically International Organization for Standardization [ISO] standard 29161) from the ISO Joint Technical Committee 1, Subcommittee 31, Working Group 2, which develops technical standards for data structures used for automatic identification applications.

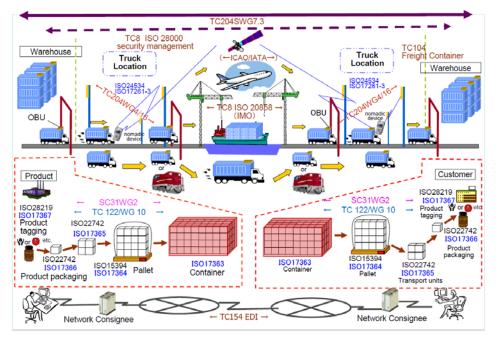


Figure 2: Cargo Shipping Scenario

2.3.7 Use Case 11: MATERIALS DATA FOR MANUFACTURING

Submitted by John Rumble, R&R Data Services

APPLICATION

Every physical product is made from a material that has been selected for its properties, cost, and availability. This translates into hundreds of billions of dollars of material decisions made every year. However, the adoption of new materials normally takes decades (usually two to three decades) rather than a small number of years, in part because data on new materials are not easily available. To speed adoption time, accessibility, quality, and usability must be broadened, and proprietary barriers to sharing materials data must be overcome. Sufficiently large repositories of materials data are needed to support discovery.

CURRENT APPROACH

Decisions about materials usage are currently unnecessarily conservative, are often based on older rather than newer materials research and development data, and do not take advantage of advances in modeling and simulation.

<u>Future</u>

Materials informatics is an area in which the new tools of data science can have a major impact by predicting the performance of real materials (in gram to ton quantities) starting at the atomistic, nanometer, and/or micrometer levels of description. The following efforts are needed to support this area:

- Establish materials data repositories, beyond the existing ones, that focus on fundamental data.
- Develop internationally accepted data recording standards that can be used by a very diverse materials community, including developers of materials test standards (e.g., ASTM International and ISO), testing companies, materials producers, and research and development labs.
- Develop tools and procedures to help organizations that need to deposit proprietary materials in data repositories to mask proprietary information while maintaining the data's usability.
- Develop multi-variable materials data visualization tools in which the number of variables can be quite high.

Resources

• The Materials Project. <u>http://www.materialsproject.org</u>. Accessed March 3, 2015.

2.3.8 Use Case 12: Simulation-Driven Materials Genomics

Submitted by David Skinner, Lawrence Berkeley National Laboratory (LBNL)

APPLICATION

Massive simulations spanning wide spaces of possible design lead to innovative battery technologies. Systematic computational studies are being conducted to examine innovation possibilities in photovoltaics. Search and simulation is the basis for rational design of materials. All these require management of simulation results contributing to the materials genome.

CURRENT APPROACH

Survey results are produced using PyMatGen, FireWorks, VASP, ABINIT, NWChem, BerkeleyGW, and varied materials community codes running on large supercomputers, such as the Hopper at the National Energy Research Scientific Computing Center (NERSC), a 150,000-core machine that produces high-resolution simulations.

<u>FUTURE</u>

Large-scale computing and flexible data methods at scale for messy data are needed for simulation science. The advancement of goal-driven thinking in materials design requires machine learning and

knowledge systems that integrate data from publications, experiments, and simulations. Other needs include scalable key-value and object store databases; the current 100 TB of data will grow to 500 TB over the next five years.

Resources

• The Materials Project. http://www.materialsproject.org. Accessed March 3, 2015.

2.4 DEFENSE

2.4.1 Use Case 13: Cloud Large-Scale Geospatial Analysis and Visualization

Submitted by David Boyd, Data Tactics

APPLICATION

Large-scale geospatial data analysis and visualization must be supported. As the number of geospatially aware sensors and geospatially tagged data sources increase, the volume of geospatial data requiring complex analysis and visualization is growing exponentially.

CURRENT APPROACH

Traditional geographic information systems (GISs) are generally capable of analyzing millions of objects and visualizing thousands. Data types include imagery (various formats such as NITF, GeoTiff, and CADRG) and vector (various formats such as shape files, KML [Keyhole Markup Language], and text streams). Object types include points, lines, areas, polylines, circles, and ellipses. Image registration transforming various data into one system—requires data and sensor accuracy. Analytics include principal component analysis (PCA) and independent component analysis (ICA) and consider closest point of approach, deviation from route, and point density over time. Software includes a server with a geospatially enabled RDBMS, geospatial server/analysis software (ESRI ArcServer or Geoserver), and visualization (either browser-based or using the ArcMap application).

<u>Future</u>

Today's intelligence systems often contain trillions of geospatial objects and must visualize and interact with millions of objects. Critical issues are indexing, retrieval and distributed analysis (note that geospatial data requires unique approaches to indexing and distributed analysis); visualization generation and transmission; and visualization of data at the end of low-bandwidth wireless connections. Data are sensitive and must be completely secure in transit and at rest (particularly on handhelds).

Resources

- OGC® Standards and Supporting Documents. <u>http://www.opengeospatial.org/standards</u>. Accessed March 3, 2015.
- GeoJSON. <u>http://geojson.org/</u>. Accessed March 3, 2015.
- Compressed ARC Digitized Raster Graphics (CADRG). <u>http://earth-</u> info.nga.mil/publications/specs/printed/CADRG/cadrg.html. Accessed March 3, 2015.

2.4.2 Use Case 14: Object Identification and Tracking from Wide-Area Large Format Imagery or Full Motion Video—Persistent Surveillance

Submitted by David Boyd, Data Tactics

APPLICATION

Persistent surveillance sensors can easily collect PB of imagery data in the space of a few hours. The data should be reduced to a set of geospatial objects (e.g., points, tracks) that can be easily integrated with other data to form a common operational picture. Typical processing involves extracting and tracking entities (e.g., vehicles, people, packages) over time from the raw image data.

CURRENT APPROACH

It is not feasible for humans to process these data for either alerting or tracking purposes. The data need to be processed close to the sensor, which is likely forward-deployed since it is too large to be easily transmitted. Typical object extraction systems are currently small (e.g., 1 to 20 nodes) graphics processing unit (GPU)-enhanced clusters. There are a wide range of custom software and tools, including traditional RDBMSs and display tools. Real-time data are obtained at Full Motion Video (FMV)—30 to 60 frames per second at full-color 1080p resolution (i.e., 1920 x 1080 pixels, a high-definition progressive scan) or Wide-Area Large Format Imagery (WALF)—1 to 10 frames per second at 10,000 pixels x 10,000 pixels and full-color resolution. Visualization of extracted outputs will typically be as overlays on a geospatial (i.e., GIS) display. Analytics are basic object detection analytics and integration with sophisticated situation awareness tools with data fusion. Significant security issues must be considered; sources and methods cannot be compromised (i.e., "the enemy" should not know what we see).

FUTURE

A typical problem is integration of this processing into a large GPU cluster capable of processing data from several sensors in parallel and in near real time. Transmission of data from sensor to system is also a major challenge.

Resources

- Persistent surveillance relies on extracting relevant data points and connecting the dots. <u>http://www.militaryaerospace.com/topics/m/video/79088650/persistent-surveillance-relies-on-extracting-relevant-data-points-and-connecting-the-dots.htm</u>. Accessed March 3, 2015.
- Wide Area Persistent Surveillance Revolutionizes Tactical ISR. <u>http://www.defencetalk.com/wide-area-persistent-surveillance-revolutionizes-tactical-isr-45745/</u>. Accessed March 3, 2015.

2.4.3 Use Case 15: Intelligence Data Processing and Analysis

Submitted by David Boyd, Data Tactics

APPLICATION

Intelligence analysts need the following capabilities:

- Identify relationships between entities (e.g., people, organizations, places, equipment).
- Spot trends in sentiment or intent for either the general population or a leadership group such as state and non-state actors.
- Identify the locations and possibly timing of hostile actions including implantation of improvised explosive devices.
- Track the location and actions of potentially hostile actors.
- Reason against and derive knowledge from diverse, disconnected, and frequently unstructured (e.g., text) data sources.
- Process data close to the point of collection, and allow for easy sharing of data to/from individual soldiers, forward-deployed units, and senior leadership in garrisons.

CURRENT APPROACH

Software includes Hadoop, Accumulo (Big Table), Solr, natural language processing (NLP), Puppet (for deployment and security), and Storm running on medium-size clusters. Data size ranges from tens of terabytes to hundreds of petabytes, with imagery intelligence devices gathering a petabyte in a few hours. Dismounted warfighters typically have at most one to hundreds of gigabytes (GBs), which is typically handheld data storage.

<u>Future</u>

Data currently exist in disparate silos. These data must be accessible through a semantically integrated data space. A wide variety of data types, sources, structures, and quality will span domains and require integrated search and reasoning. Most critical data are either unstructured or maintained as imagery or video, which requires significant processing to extract entities and information. Network quality, provenance, and security are essential.

Resources

- Program Overview: AFCEA Aberdeen Chapter Luncheon March 14th, 2012. <u>http://www.afcea-aberdeen.org/files/presentations/AFCEAAberdeen_DCGSA_COLWells_PS.pdf</u>. Accessed March 3, 2015.
- Horizontal Integration of Warfighter Intelligence Data: A Shared Semantic Resource for the Intelligence Community. <u>http://stids.c4i.gmu.edu/papers/STIDSPapers/STIDS2012_T14_SmithEtAl_HorizontalIntegration</u> OfWarfighterIntel.pdf. Accessed March 3, 2015.
- Integration of Intelligence Data through Semantic Enhancement. <u>http://stids.c4i.gmu.edu/STIDS2011/papers/STIDS2011_CR_T1_SalmenEtAl.pdf</u>. Accessed March 3, 2015.
- DCGSA Standard Cloud. <u>http://www.youtube.com/watch?v=l4Qii7T8zeg</u>. Accessed March 3, 2015.
- Distributed Common Ground System Army. <u>http://dcgsa.apg.army.mil/</u>. Accessed March 3, 2015.

2.5 HEALTH CARE AND LIFE SCIENCES

2.5.1 Use Case 16: ELECTRONIC MEDICAL RECORD DATA

Submitted by Shaun Grannis, Indiana University

APPLICATION

Large national initiatives around health data are emerging. These include developing a digital learning health care system to support increasingly evidence-based clinical decisions with timely, accurate, and up-to-date patient-centered clinical information; using electronic observational clinical data to efficiently and rapidly translate scientific discoveries into effective clinical treatments; and electronically sharing integrated health data to improve healthcare process efficiency and outcomes. These key initiatives all rely on high-quality, large-scale, standardized, and aggregate health data. Advanced methods are needed for normalizing patient, provider, facility, and clinical concept identification within and among separate health care organizations. With these methods in place, feature selection, information retrieval, and enhanced machine learning decision-models can be used to define and extract clinical phenotypes from non-standard, discrete, and free-text clinical data. Clinical phenotype data must be leveraged to support cohort selection, clinical outcomes research, and clinical decision support.

CURRENT APPROACH

The Indiana Network for Patient Care (INPC), the nation's largest and longest-running health information exchange, houses clinical data from more than 1,100 discrete logical operational healthcare sources. More than 20 TB of raw data, these data describe over 12 million patients and over 4 billion discrete clinical observations. Between 500,000 and 1.5 million new real-time clinical transactions are added every day.

<u>Future</u>

Running on an Indiana University supercomputer, Teradata, PostgreSQL, and MongoDB will support information retrieval methods to identify relevant clinical features (e.g., term frequency–inverse document frequency [tf-idf], latent semantic analysis, mutual information). NLP techniques will extract relevant clinical features. Validated features will be used to parameterize clinical phenotype decision models based on maximum likelihood estimators and Bayesian networks. Decision models will be used to identify a variety of clinical phenotypes such as diabetes, congestive heart failure, and pancreatic cancer.

Resources

 A universal code system for tests, measurements, and observations. <u>http://loinc.org/</u>. Accessed March 3, 2015.

2.5.2 Use Case 17: Pathology Imaging/Digital Pathology

Submitted by Fusheng Wang, Emory University

APPLICATION

Digital pathology imaging is an emerging field in which examination of high-resolution images of tissue specimens enables novel and more effective ways to diagnose diseases. Pathology image analysis segments massive spatial objects (e.g., millions of objects per image) such as nuclei and blood vessels, represented with their boundaries, along with many extracted image features from these objects. The derived information is used for many complex queries and analytics to support biomedical research and clinical diagnosis. Figure 3 presents examples of two- and three-dimensional (2D and 3D) pathology images.

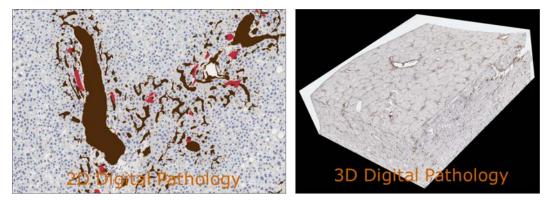


Figure 3: Pathology Imaging/Digital Pathology—Examples of 2-D and 3-D Pathology Images

CURRENT APPROACH

Each 2D image comprises 1 GB of raw image data and entails 1.5 GB of analytical results. Message Passing Interface (MPI) is used for image analysis. Data processing happens with Map/Reduce (a data processing program) and Hive (to abstract the Map/Reduce program and support data warehouse interactions), along with spatial extension on supercomputers and clouds. GPUs are used effectively for image creation. Figure 4 shows the architecture of Hadoop-GIS, a spatial data warehousing system, over Map/Reduce to support spatial analytics for analytical pathology imaging.

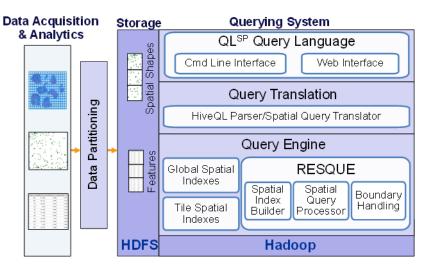


Figure 4: Pathology Imaging/Digital Pathology

<u>Future</u>

Recently, 3D pathology imaging has been made possible using 3D laser technologies or serially sectioning hundreds of tissue sections onto slides and scanning them into digital images. Segmenting 3D microanatomic objects from registered serial images could produce tens of millions of 3D objects from a single image. This provides a deep 'map' of human tissues for next-generation diagnosis. 3D images can comprise 1 TB of raw image data and entail 1 TB of analytical results. A moderated hospital would generate 1 PB of data per year.

Resources

- Pathology Analytical Imaging Standards. <u>http://openpais.org</u>. Accessed March 3, 2015.
- Hadoop-GIS: Spatial Big Data Solutions. <u>http://hadoopgis.org/</u>. Accessed March 3, 2015.

2.5.3 Use Case 18: Computational Bioimaging

Submitted by David Skinner, Joaquin Correa, Daniela Ushizima, and Joerg Meyer, LBNL

APPLICATION

Data delivered from bioimaging are increasingly automated, higher resolution, and multi-modal. This has created a data analysis bottleneck that, if resolved, can advance bioscience discovery through Big Data techniques.

CURRENT APPROACH

The current piecemeal analysis approach does not scale to situations in which a single scan on emerging machines is 32 TB and medical diagnostic imaging is annually around 70 PB, excluding cardiology. A web-based, one-stop shop is needed for high-performance, high-throughput image processing for producers and consumers of models built on bio-imaging data.

<u>Future</u>

The goal is to resolve that bottleneck with extreme-scale computing and community-focused science gateways, both of which apply massive data analysis toward massive imaging datasets. Workflow components include data acquisition, storage, enhancement, noise minimization, segmentation of regions of interest, crowd-based selection and extraction of features, and object classification, as well as organization and search. Suggested software packages are ImageJ, OMERO, VolRover, and advanced segmentation and feature detection software.

2.5.4 Use Case 19: Genomic Measurements

Submitted by Justin Zook, National Institute of Standards and Technology

APPLICATION

The NIST Genome in a Bottle Consortium integrates data from multiple sequencing technologies and methods to develop highly confident characterization of whole human genomes as reference materials. The consortium also develops methods to use these reference materials to assess performance of any genome sequencing run.

CURRENT APPROACH

NIST's approximately 40 TB network file system (NFS) is full. The National Institutes of Health (NIH) and the National Center for Biotechnology Information (NCBI) are also currently storing PBs of data. NIST is also storing data using open-source sequencing bioinformatics software from academic groups (UNIX-based) on a 72-core cluster, supplemented by larger systems at collaborators.

FUTURE

DNA sequencers can generate \approx 300 GB of compressed data per day, and this volume has increased much faster than Moore's Law gives for increase in computer processing power. Future data could include other 'omics' (e.g., genomics) measurements, which will be even larger than DNA sequencing. Clouds have been explored as a cost effective scalable approach.

RESOURCES

• Genome in a Bottle Consortium. <u>http://www.genomeinabottle.org.</u> Accessed March 3, 2015.

2.5.5 Use Case 20: Comparative Analysis for Metagenomes and Genomes

Submitted by Ernest Szeto, LBNL, Joint Genome Institute

APPLICATION

Given a metagenomic sample this use case aims to do the following:

- Determine the community composition in terms of other reference isolate genomes;
- Characterize the function of its genes;
- Begin to infer possible functional pathways;
- Characterize similarity or dissimilarity with other metagenomic samples;
- Begin to characterize changes in community composition and function due to changes in environmental pressures; and
- Isolate subsections of data based on quality measures and community composition.

CURRENT APPROACH

The current integrated comparative analysis system for metagenomes and genomes is front-ended by an interactive web user interface (UI) with core data. The system involves backend precomputations and batch job computation submission from the UI. The system provides an interface to standard bioinformatics tools (e.g., BLAST, HMMER, multiple alignment and phylogenetic tools, gene callers, sequence feature predictors).

<u>Future</u>

Management of heterogeneity of biological data is currently performed by a RDBMS (i.e., Oracle). Unfortunately, it does not scale for even the current volume, 50 TB of data. NoSQL solutions aim at

providing an alternative, but unfortunately, they do not always lend themselves to real-time interactive use or rapid and parallel bulk loading, and sometimes they have issues regarding robustness.

Resources

• IMG Data Management. <u>http://img.jgi.doe.gov.</u> Accessed March 3, 2015.

2.5.6 Use Case 21: Individualized Diabetes Management

Submitted by Ying Ding, Indiana University

APPLICATION

Diabetes is a growing illness in the world population, affecting both developing and developed countries. Current management strategies do not adequately take into account individual patient profiles, such as comorbidities and medications, which are common in patients with chronic illnesses. Advanced graph-based data mining techniques must be applied to electronic health records (EHRs), converting them into RDF (Resource Description Framework) graphs. These advanced techniques would facilitate searches for diabetes patients and allow for extraction of their EHR data for outcome evaluation.

CURRENT APPROACH

Typical patient data records are composed of 100 controlled vocabulary values and 1,000 continuous values. Most values have a timestamp. The traditional paradigm of relational row-column lookup needs to be updated to semantic graph traversal.

FUTURE

The first step is to compare patient records to identify similar patients from a large EHR database (i.e., an individualized cohort.) Each patient's management outcome should be evaluated to formulate the most appropriate solution for a given patient with diabetes. The process would use efficient parallel retrieval algorithms, suitable for cloud or high-performance computing (HPC), using the open source Hbase database with both indexed and custom search capability to identify patients of possible interest. The Semantic Linking for Property Values method would be used to convert an existing data warehouse at Mayo Clinic, called the Enterprise Data Trust (EDT), into RDF triples that enable one to find similar patients through linking of both vocabulary-based and continuous values. The time-dependent properties need to be processed before query to allow matching based on derivatives and other derived properties.

2.5.7 Use Case 22: Statistical Relational Artificial Intelligence for Health Care

Submitted by Sriram Natarajan, Indiana University

APPLICATION

The goal of the project is to analyze large, multi-modal medical data, including different data types such as imaging, EHR, and genetic and natural language. This approach employs relational probabilistic models that have the capability of handling rich relational data and modeling uncertainty using probability theory. The software learns models from multiple data types, and can possibly integrate information and reason about complex queries. Users can provide a set of descriptions, for instance: magnetic resonance imaging (MRI) images and demographic data about a particular subject. They can then query for the onset of a particular disease (e.g., Alzheimer's), and the system will provide a probability distribution over the possible occurrence of this disease.

CURRENT APPROACH

A single server can handle a test cohort of a few hundred patients with associated data of hundreds of GBs.

<u>Future</u>

A cohort of millions of patients can involve PB size datasets. A major issue is the availability of too much data (e.g., images, genetic sequences), which can make the analysis complicated. Sometimes, large amounts of data about a single subject are available, but the number of subjects is not very high (i.e., data imbalance). This can result in learning algorithms picking up random correlations between the multiple data types as important features in analysis. Another challenge lies in aligning the data and merging from multiple sources in a form that will be useful for a combined analysis.

2.5.8 Use Case 23: World Population-Scale Epidemiological Study

Submitted by Madhav Marathe, Stephen Eubank, and Chris Barrett, Virginia Tech

APPLICATION

There is a need for reliable, real-time prediction and control of pandemics similar to the 2009 H1N1 influenza. Addressing various kinds of contagion diffusion may involve modeling and computing information, diseases, and social unrest. Agent-based models can utilize the underlying interaction network (i.e., a network defined by a model of people, vehicles, and their activities) to study the evolution of the desired phenomena.

CURRENT APPROACH

There is a two-step approach: (1) build a synthetic global population; and (2) run simulations over the global population to reason about outbreaks and various intervention strategies. The current 100 TB dataset was generated centrally with an MPI-based simulation system written in Charm++. Parallelism is achieved by exploiting the disease residence time period.

<u>Future</u>

Large social contagion models can be used to study complex global-scale issues, greatly increasing the size of systems used.

2.5.9 Use Case 24: Social Contagion Modeling for Planning, Public Health, and Disaster Management

Submitted by Madhav Marathe and Chris Kuhlman, Virginia Tech

APPLICATION

Social behavior models are applicable to national security, public health, viral marketing, city planning, and disaster preparedness. In a social unrest application, people take to the streets to voice either unhappiness with or support for government leadership. Models would help quantify the degree to which normal business and activities are disrupted because of fear and anger, the possibility of peaceful demonstrations and/or violent protests, and the potential for government responses ranging from appeasement, to allowing protests, to issuing threats against protestors, to taking actions to thwart protests. Addressing these issues would require fine-resolution models (at the level of individual people, vehicles, and buildings) and datasets.

CURRENT APPROACH

The social contagion model infrastructure simulates different types of human-to-human interactions (e.g., face-to-face versus online media), and also interactions between people, services (e.g., transportation), and infrastructure (e.g., Internet, electric power). These activity models are generated from averages such as census data.

FUTURE

One significant concern is data fusion (i.e., how to combine data from different sources and how to deal with missing or incomplete data.) A valid modeling process must take into account heterogeneous features of hundreds of millions or billions of individuals, as well as cultural variations across countries. For such large and complex models, the validation process itself is also a challenge.

2.5.10 Use Case 25: Biodiversity and LifeWatch

Submitted by Wouter Los and Yuri Demchenko, University of Amsterdam

APPLICATION

Research and monitor different ecosystems, biological species, their dynamics, and their migration with a mix of custom sensors and data access/processing, and a federation with relevant projects in the area. Particular case studies include monitoring alien species, migrating birds, and wetlands. One of many efforts from the consortium titled Common Operations for Environmental Research Infrastructures (ENVRI) is investigating integration of LifeWatch with other environmental e-infrastructures.

CURRENT APPROACH

At this time, this project is in the preliminary planning phases and, therefore, the current approach is not fully developed.

<u>Future</u>

The LifeWatch initiative will provide integrated access to a variety of data, analytical, and modeling tools as served by a variety of collaborating initiatives. It will also offer data and tools in selected workflows for specific scientific communities. In addition, LifeWatch will provide opportunities to construct personalized "virtual labs," allowing participants to enter and access new data and analytical tools. New data will be shared with the data facilities cooperating with LifeWatch, including both the Global Biodiversity Information Facility and the Biodiversity Catalogue, also known as the Biodiversity Science Web Services Registry. Data include 'omics', species information, ecological information (e.g., biomass, population density), and ecosystem data (e.g., carbon dioxide [CO₂] fluxes, algal blooming, water and soil characteristics.)

2.6 DEEP LEARNING AND SOCIAL MEDIA

2.6.1 Use Case 26: Large-Scale Deep Learning

Submitted by Adam Coates, Stanford University

APPLICATION

There is a need to increase the size of datasets and models that can be tackled with deep learning algorithms. Large models (e.g., neural networks with more neurons and connections) combined with large datasets are increasingly the top performers in benchmark tasks for vision, speech, and NLP. It will be necessary to train a deep neural network from a large (e.g., much greater than 1 TB) corpus of data, which is typically comprised of imagery, video, audio, or text. Such training procedures often require customization of the neural network architecture, learning criteria, and dataset preprocessing. In addition to the computational expense demanded by the learning algorithms, the need for rapid prototyping and ease of development is extremely high.

CURRENT APPROACH

The largest applications so far are to image recognition and scientific studies of unsupervised learning with 10 million images and up to 11 billion parameters on a 64 GPU HPC Infiniband cluster. Both supervised (i.e., using existing classified images) and unsupervised applications are being investigated.

<u>Future</u>

Large datasets of 100 TB or more may be necessary to exploit the representational power of the larger models. Training a self-driving car could take 100 million images at megapixel resolution. Deep learning shares many characteristics with the broader field of machine learning. The paramount requirements are high computational throughput for mostly dense linear algebra operations, and extremely high productivity for researcher exploration. High-performance libraries must be integrated with high-level (e.g., Python) prototyping environments.

Resources

- Scientists See Promise in Deep-Learning Programs. <u>http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html.</u> Accessed March 3, 2015.
- How Many Computers to Identify a Cat? 16,000. <u>http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html.</u> Accessed March 3, 2015.
- Now You Can Build Google's \$1M Artificial Brain on the Cheap. http://www.wired.com/wiredenterprise/2013/06/andrew_ng/. Accessed March 3, 2015.
- Coates, A., Huval, B., Wang, T., Wu, D. J., Ng, A., Catanzaro, B. "Deep learning with COTS HPC systems." *Proceedings of the 30th International Conference on Machine Learning*, Atlanta, Georgia, USA, 2013. JMLR: W&CP Volume 28. <u>http://www.cs.stanford.edu/~acoates/papers/CoatesHuvalWangWuNgCatanzaro_icml2013.pdf</u>. Accessed March 3, 2015.
- Unsupervised Feature Learning and Deep Learning. http://ufldl.stanford.edu/wiki/index.php/Main_Page. Accessed March 3, 2015.
- Welcome to Deep Learning. <u>http://deeplearning.net/</u>. Accessed March 3, 2015.

2.6.2 Use Case 27: Organizing Large-Scale, Unstructured Collections of Consumer Photos

Submitted by David Crandall, Indiana University

APPLICATION

Collections of millions to billions of consumer images are used to produce 3D reconstructions of scenes—with no a priori knowledge of either the scene structure or the camera positions. The resulting 3D models allow efficient and effective browsing of large-scale photo collections by geographic position. New images can be geolocated by matching them to 3D models, and object recognition can be performed on each image. The 3D reconstruction can be posed as a robust, non-linear, least squares optimization problem: observed or noisy correspondences between images are constraints, and unknowns are six-dimensional (6D) camera poses of each image and 3D positions of each point in the scene.

CURRENT APPROACH

The current system is a Hadoop cluster with 480 cores processing data of initial applications. Over 500 billion images are currently on Facebook, and over 5 billion are on Flickr, with over 500 million images added to social media sites each day.

FUTURE

Necessary maintenance and upgrades require many analytics including feature extraction, feature matching, and large-scale probabilistic inference. These analytics appear in many or most computer vision and image processing problems, including recognition, stereo resolution, and image denoising. Other needs are visualizing large-scale, 3D reconstructions and navigating large-scale collections of images that have been aligned to maps.

Resources

• Discrete-continuous optimization for large-scale structure from motion. <u>http://vision.soic.indiana.edu/disco</u>. Accessed March 3, 2015.

2.6.3 Use Case 28: Truthy—Information Diffusion Research from Twitter Data

Submitted by Filippo Menczer, Alessandro Flammini, and Emilio Ferrara, Indiana University

APPLICATION

How communication spreads on socio-technical networks must be better understood, and methods are needed to detect potentially harmful information spread at early stages (e.g., deceiving messages, orchestrated campaigns, untrustworthy information).

CURRENT APPROACH

Twitter generates a large volume of continuous streaming data—about 30 TB a year, compressed through circulation of ≈100 million messages per day. The increase over time is roughly 500 GB data per day. All these data must be acquired and stored. Additional needs include near real-time analysis of such data for anomaly detection, stream clustering, signal classification, and online-learning; and data retrieval, Big Data visualization, data-interactive web interfaces, and public application programming interfaces (APIs) for data querying. Software packages for data analysis include Python/ SciPy/ NumPy/ MPI. Information diffusion, clustering, and dynamic network visualization capabilities already exist.

FUTURE

Truthy plans to expand, incorporating Google+ and Facebook, and so needs to move toward advanced distributed storage programs, such as Hadoop/Indexed HBase and Hadoop Distributed File System (HDFS). Redis should be used as an in-memory database to be a buffer for real-time analysis. Solutions will need to incorporate streaming clustering, anomaly detection, and online learning.

Resources

- Truthy: Information diffusion research at Indiana University. <u>http://truthy.indiana.edu/</u>. Accessed March 3, 2015.
- Truthy: Information Diffusion in Online Social Networks. <u>http://cnets.indiana.edu/groups/nan/truthy</u>. Accessed March 3, 2015.
- Detecting Early Signature of Persuasion in Information Cascades (DESPIC). <u>http://cnets.indiana.edu/groups/nan/despic</u>. Accessed March 3, 2015.

2.6.4 Use Case 29: Crowd Sourcing in the Humanities as Source for Big and Dynamic Data

Submitted by Sebastian Drude, Max-Planck-Institute for Psycholinguistics, Nijmegen, the Netherlands

APPLICATION

Information is captured from many individuals and their devices using a range of sources: manually entered, recorded multimedia, reaction times, pictures, sensor information. These data are used to characterize wide-ranging individual, social, cultural, and linguistic variations among several dimensions (e.g., space, social space, time).

CURRENT APPROACH

At this point, typical systems used are Extensible Markup Language (XML) technology and traditional relational databases. Other than pictures, not much multi-media is employed yet.

FUTURE

Crowd sourcing is beginning to be used on a larger scale. However, the availability of sensors in mobile devices provides a huge potential for collecting large amount of data from numerous individuals. This possibility has not been explored on a large scale so far; existing crowd sourcing projects are usually of a limited scale and web-based. Privacy issues may be involved because of access to individuals' audiovisual files; anonymization may be necessary but not always possible. Data management and curation are critical. With multimedia, the size could be hundreds of terabytes.

2.6.5 Use Case 30: CINET—Cyberinfrastructure for Network (Graph) Science and Analytics

Submitted by Madhav Marathe and Keith Bisset, Virginia Tech

APPLICATION

CINET provides a common web-based platform that allows the end user seamless access to the following:

- Network and graph analysis tools such as SNAP, NetworkX, and Galib;
- Real-world and synthetic networks;
- Computing resources; and
- Data management systems.

CURRENT APPROACH

CINET uses an Infiniband-connected HPC cluster with 720 cores to provide HPC as a service. The platform is being used for research and education. CINET is used in classes and to support research by social science and social networking communities

<u>FUTURE</u>

Rapid repository growth is expected to lead to at least 1,000 to 5,000 networks and methods in about a year. As more fields use graphs of increasing size, parallel algorithms will be important. Two critical challenges are data manipulation and bookkeeping of the derived data, as there are no well-defined and effective models and tools for unified management of various graph data.

Resources

• Computational Network Sciences (CINET) GRANITE system. <u>http://cinet.vbi.vt.edu/</u>. Accessed March 3, 2015.

2.6.6 Use Case 31: NIST Information Access Division—Analytic Technology Performance Measurements, Evaluations, and Standards

Submitted by John Garofolo, NIST

APPLICATION

Performance metrics, measurement methods, and community evaluations are needed to ground and accelerate development of advanced analytic technologies in the areas of speech and language processing, video and multimedia processing, biometric image processing, and heterogeneous data processing, as well as the interaction of analytics with users. Typically, one of two processing models are employed: (1) push test data out to test participants, and analyze the output of participant systems, and (2) push algorithm test harness interfaces out to participants, bring in their algorithms, and test them on internal computing clusters.

CURRENT APPROACH

There is a large annotated corpora of unstructured/semi-structured text, audio, video, images, multimedia, and heterogeneous collections of the above, including ground truth annotations for training, developmental testing, and summative evaluations. The test corpora exceed 900 million web pages occupying 30 TB of storage, 100 million tweets, 100 million ground-truthed biometric images, several hundred thousand partially ground-truthed video clips, and terabytes of smaller fully ground-truthed test collections.

<u>Future</u>

Even larger data collections are being planned for future evaluations of analytics involving multiple data streams and very heterogeneous data. In addition to larger datasets, the future includes testing of streaming algorithms with multiple heterogeneous data. The use of clouds is being explored.

Resources

• Information Access Division. <u>http://www.nist.gov/itl/iad/</u>. Accessed March 3, 2015.

2.6.7 Use Case 2-3: Urban context-aware event management for Smart Cities – Public safety

Submitted by Olivera Kotevska, Gilad Kusne, Daniel Samarov, and Ahmed Lbath.

APPLICATION

The real-world events are now being observed by multiple networked streams, where each is complementing the other with its characteristics, features, and perspectives. Many of these networked data streams are becoming digitalized, with some available to the public (open data initiative) and available for sense making.

The networked data streams provide an opportunity for their link identification, similarity, and time dynamics can aid in recognizing the evolving patterns in the inter-intra-city/community. The delivered information can help improve the understanding of how cities/communities work. The information can also be used to detect events and patterns that can facilitate a broad range of issues affecting the everyday lives of citizens and efficiency of cities. Providing the tools that can make this process easy and accessible to the city/community representatives will potentially impact traffic, event management, disaster management systems, health monitoring systems, air quality, and city/community planning.

CURRENT APPROACH

The current approach uses fixed and deployed computing clusters ranging from 10's to 100's of nodes. These employ NLP (Natural Language Processing) and custom applications in a variety of languages (e.g., R, Python, Java) using technologies such as Spark and Kafka. Visualization tools are important.

FUTURE

This type of analysis is just starting and the present vision given above is the expected future.

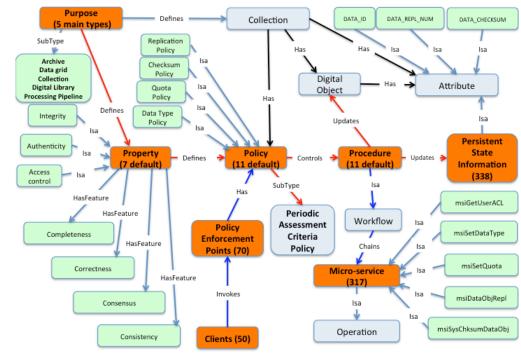
2.7 THE ECOSYSTEM FOR RESEARCH

2.7.1 Use Case 32: DATANET FEDERATION CONSORTIUM

Submitted by Reagan Moore, University of North Carolina at Chapel Hill

APPLICATION

The DataNet Federation Consortium (DFC) promotes collaborative and interdisciplinary research through a federation of data management systems across federal repositories, national academic research


initiatives, institutional repositories, and international collaborations. The collaboration environment runs at scale and includes petabytes of data, hundreds of millions of files, hundreds of millions of metadata attributes, tens of thousands of users, and a thousand storage resources.

CURRENT APPROACH

Currently, 25 science and engineering domains have projects that rely on the iRODS (Integrated Rule-Oriented Data System) policy-based data management system. Active organizations include the National Science Foundation, with major projects such as the Ocean Observatories Initiative (sensor archiving); Temporal Dynamics of Learning Center (cognitive science data grid); iPlant Collaborative (plant genomics); Drexel's engineering digital library; and H. W. Odum Institute for Research in Social Science (data grid federation with Dataverse). iRODS currently manages PB of data, hundreds of millions of files, hundreds of millions of metadata attributes, tens of thousands of users, and a thousand storage resources. It interoperates with workflow systems (e.g., National Center for Computing Applications' [NCSA's] Cyberintegrator, Kepler, Taverna), cloud, and more traditional storage models, as well as different transport protocols. Figure 4 presents a diagram of the iRODS architecture.

<u>Future</u>

Future data scenarios and applications were not expressed for this use case.

Policy-based Data Management Concept Graph (iRODS)

Figure 5: DFC—iRODS Architecture

<u>Resources</u>

• DataNet Federation Consortium. <u>http://renci.org/research/datanet-federation-consortium/</u>. Accessed March 3, 2015.

2.7.2 Use Case 33: The Discinnet Process

Submitted by P. Journeau, Discinnet Labs

APPLICATION

Discinnet has developed a Web 2.0 collaborative platform and research prototype as a pilot installation, which is now being deployed and tested by researchers from a growing number of diverse research fields. The goal is to reach a wide enough sample of active research fields, represented as clusters (i.e., researchers projected and aggregating within a manifold of mostly shared experimental dimensions) to test general, hence potentially interdisciplinary, epistemological models throughout the present decade.

CURRENT APPROACH

Currently, 35 clusters have been started, with close to 100 awaiting more resources. There is potential for many more to be created, administered, and animated by research communities. Examples of clusters include optics, cosmology, materials, microalgae, health care, applied math, computation, rubber, and other chemical products/issues.

FUTURE

Discinnet itself would not be Big Data but rather will generate metadata when applied to a cluster that involves Big Data. In interdisciplinary integration of several fields, the process would reconcile metadata from many complexity levels.

RESOURCES

• DiscInNet: Interdisciplinary Networking. http://www.discinnet.org. Accessed March 3, 2015.

2.7.3 Use Case 34: Semantic Graph Search on Scientific Chemical and Text-Based Data

Submitted by Talapady Bhat, NIST

APPLICATION

Social media-based infrastructure, terminology and semantic data-graphs are established to annotate and present technology information. The process uses root- and rule-based methods currently associated primarily with certain Indo-European languages, such as Sanskrit and Latin.

CURRENT APPROACH

Many reports, including a recent one on the Material Genome Project, find that exclusive top-down solutions to facilitate data sharing and integration are not desirable for multi-disciplinary efforts. However, a bottom-up approach can be chaotic. For this reason, there is need for a balanced blend of the two approaches to support easy-to-use techniques to metadata creation, integration, and sharing. This challenge is very similar to the challenge faced by language developers, so a recently developed method is based on these ideas. There are ongoing efforts to extend this method to publications of interest to the Material Genome Initiative [10], the Open Government movement [11], and the NIST Integrated Knowledge Editorial Net (NIKE) [12], a NIST-wide publication archive. These efforts are a component of the Research Data Alliance Metadata Standards Directory Working Group [13].

FUTURE

A cloud infrastructure should be created for social media of scientific information. Scientists from across the world could use this infrastructure to participate and deposit results of their experiments. Prior to establishing a scientific social medium, some issues must be resolved including the following:

- Minimize challenges related to establishing re-usable, interdisciplinary, scalable, on-demand, usecase, and user-friendly vocabulary.
- Adopt an existing or create new on-demand 'data-graph' to place information in an intuitive way, such that it would easily integrate with existing data-graphs in a federated environment, independently of details of data management.

• Find relevant scientific data without spending too much time on the Internet.

Start with resources such as the Open Government movement, Material Genome Initiative, and Protein Databank. This effort includes many local and networked resources. Developing an infrastructure to automatically integrate information from all these resources using data-graphs is a challenge, but steps are being taken to solve it. Strong database tools and servers for data-graph manipulation are needed.

Resources

- Facebook for molecules. <u>http://www.eurekalert.org/pub_releases/2013-07/aiop-ffm071813.php</u>. Accessed March 3, 2015.
- Chem-BLAST. <u>http://xpdb.nist.gov/chemblast/pdb.pl</u>. Accessed March 3, 2015.

2.7.4 Use Case 35: Light Source Beamlines

Submitted by Eli Dart, LBNL

APPLICATION

Samples are exposed to X-rays from light sources in a variety of configurations, depending on the experiment. Detectors, essentially high-speed digital cameras, collect the data. The data are then analyzed to reconstruct a view of the sample or process being studied.

CURRENT APPROACH

A variety of commercial and open source software is used for data analysis. For example, Octopus is used for tomographic reconstruction, and Avizo (<u>http://vsg3d.com</u>) and FIJI (a distribution of ImageJ) are used for visualization and analysis. Data transfer is accomplished using physical transport of portable media, which severely limits performance, high-performance GridFTP, managed by Globus Online, or workflow systems such as SPADE (Support for Provenance Auditing in Distributed Environments, an open source software infrastructure).

<u>FUTURE</u>

Camera resolution is continually increasing. Data transfer to large-scale computing facilities is becoming necessary because of the computational power required to conduct the analysis on timescales useful to the experiment. Because of the large number of beamlines (e.g., 39 at the LBNL Advanced Light Source), aggregate data load is likely to increase significantly over coming years, as will the need for a generalized infrastructure for analyzing GB per second of data from many beamline detectors at multiple facilities.

Resources

- Advanced Light Source. <u>http://www-als.lbl.gov/</u>. Accessed March 3, 2015.
- Advanced Photon Source. <u>http://www.aps.anl.gov/</u>. Accessed March 3, 2015.

2.8 ASTRONOMY AND PHYSICS

2.8.1 Use Case 36: Catalina Real-Time Transient Survey: A Digital, PANORAMIC, SYNOPTIC SKY SURVEY

Submitted by S. G. Djorgovski, Caltech

APPLICATION

Catalina Real-Time Transient Survey (CRTS) explores the variable universe in the visible light regime, on timescales ranging from minutes to years, by searching for variable and transient sources. It discovers a broad variety of astrophysical objects and phenomena, including various types of cosmic explosions (e.g., supernovae), variable stars, phenomena associated with accretion to massive black holes (e.g.,

active galactic nuclei) and their relativistic jets, and high proper motion stars. The data are collected from three telescopes (two in Arizona and one in Australia), with additional ones expected in the near future in Chile.

CURRENT APPROACH

The survey generates up to approximately 0.1 TB on a clear night with a total of approximately 100 TB in current data holdings. The data are preprocessed at the telescope and then transferred to the University of Arizona and Caltech for further analysis, distribution, and archiving. The data are processed in real time, and detected transient events are published electronically through a variety of dissemination mechanisms, with no proprietary withholding period (CRTS has a completely open data policy). Further data analysis includes classification of the detected transient events, additional observations using other telescopes, scientific interpretation, and publishing. This process makes heavy use of the archival data (several PBs) from a wide variety of geographically distributed resources connected through the virtual observatory (VO) framework.

<u>FUTURE</u>

CRTS is a scientific and methodological test bed and precursor of larger surveys to come, notably the Large Synoptic Survey Telescope (LSST), expected to operate in the 2020s and selected as the highest-priority ground-based instrument in the 2010 Astronomy and Astrophysics Decadal Survey. LSST will gather about 30 TB per night. Figure 6 illustrates the schematic architecture for a cyber infrastructure for time domain astronomy.

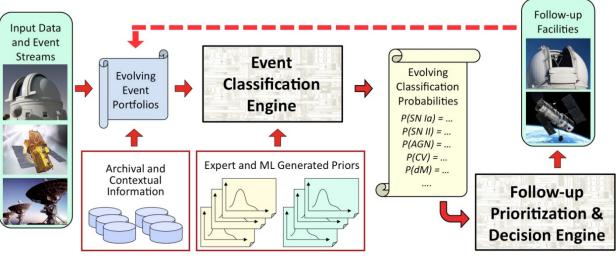


Figure 6: Catalina CRTS: A Digital, Panoramic, Synoptic Sky Survey

Survey pipelines from telescopes (on the ground or in space) produce transient event data streams, and the events, along with their observational descriptions, are ingested by one or more depositories, from which the event data can be disseminated electronically to human astronomers or robotic telescopes. Each event is assigned an evolving portfolio of information, which includes all available data on that celestial position. The data are gathered from a wide variety of data archives unified under the Virtual Observatory framework, expert annotations, etc. Representations of such federated information can be both human-readable and machine-readable. The data are fed into one or more automated event characterization, classification, and prioritization engines that deploy a variety of machine learning tools for these tasks. The engines' output, which evolves dynamically as new information arrives and is processed, informs the follow-up observations of the selected events, and the resulting data are communicated back to the event portfolios for the next iteration. Users, either human or robotic, can tap into the system at multiple points,

both for information retrieval and to contribute new information, through a standardized set of formats and protocols. This could be done in (near) real-time or in archival (i.e., not time-critical) modes.

Resources

• Flashes in a Star Stream: Automated Classification of Astronomical Transient Events. http://arxiv.org/abs/1209.1681. Accessed March 3, 2015.

2.8.2 Use Case 37: DOE EXTREME DATA FROM COSMOLOGICAL SKY SURVEY AND SIMULATIONS

Submitted by Salman Habib, Argonne National Laboratory; Andrew Connolly, University of Washington

APPLICATION

A cosmology discovery tool integrates simulations and observation to clarify the nature of dark matter, dark energy, and inflation—some of the most exciting, perplexing, and challenging questions facing modern physics, including the properties of fundamental particles affecting the early universe. The simulations will generate data sizes comparable to observation.

CURRENT APPROACH

At this time, this project is in the preliminary planning phases and, therefore, the current approach is not fully developed.

<u>Future</u>

These systems will use huge amounts of supercomputer time—over 200 million hours. Associated data sizes are as follows:

- Dark Energy Survey (DES): 4 PB per year in 2015
- Zwicky Transient Factory (ZTF): 1 PB per year in 2015
- LSST (see CRTS discussion above): 7 PB per year in 2019
- Simulations: 10 PB per year in 2017

Resources

- The New Sky. <u>http://www.lsst.org/lsst/</u>. Accessed March 3, 2015.
- National Energy Research Scientific Computing Center. <u>http://www.nersc.gov/</u>. Accessed March 3, 2015.
- Basic Research: Non-Accelerator Physics. <u>http://science.energy.gov/hep/research/basic-research/non-accelerator-physics/</u>. Accessed March 3, 2015.
- Present and Future Computing Requirements for Computational Cosmology. http://www.nersc.gov/assets/Uploads/HabibcosmosimV2.pdf. Accessed March 3, 2015.

2.8.3 Use Case 38: Large Survey Data for Cosmology

Submitted by Peter Nugent, LBNL

<u>APPLICATION</u>

For DES, the data are sent from the mountaintop, via a microwave link, to La Serena, Chile. From there, an optical link forwards them to the NCSA and to NERSC for storage and 'reduction.' Here, galaxies and stars in both the individual and stacked images are identified and catalogued, and finally their properties are measured and stored in a database.

CURRENT APPROACH

Subtraction pipelines are run using extant imaging data to find new optical transients through machine learning algorithms. Data technologies are Linux cluster, Oracle RDBMS server, Postgres PSQL, large memory machines, standard Linux interactive hosts, and the General Parallel File System (GPFS). HPC resources are needed for simulations. Software needs include standard astrophysics reduction software as well as Perl/Python wrapper scripts and Linux Cluster scheduling.

<u>Future</u>

Techniques are needed for handling Cholesky decomposition for thousands of simulations with matrices of order one million on a side and parallel image storage. LSST will generate 60 PB of imaging data and 15 PB of catalog data and a correspondingly large (or larger) amount of simulation data. In total, over 20 TB of data will be generated per night.

Resources

- Dark Energy Spectroscopic Instrument (DESI). <u>http://desi.lbl.gov</u>. Accessed March 3, 2015.
- Why is the universe speeding up? <u>http://www.darkenergysurvey.org</u>. Accessed March 3, 2015.

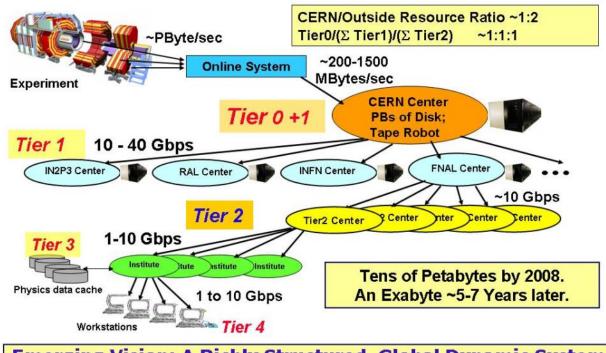
2.8.4 Use Case 39: Particle Physics—Analysis of Large Hadron Collider Data: Discovery of Higgs Particle

Submitted by Michael Ernst, Brookhaven National Laboratory (BNL); Lothar Bauerdick, Fermi National Accelerator Laboratory (FNAL); Geoffrey Fox, Indiana University; Eli Dart, LBNL

APPLICATION

Analysis is conducted on collisions at the European Organization for Nuclear Research (CERN) Large Hadron Collider (LHC) accelerator (Figure 7) and Monte Carlo producing events describing particle-apparatus interaction.

Figure 7: Particle Physics: Analysis of LHC Data: Discovery of Higgs Particle—CERN LHC Location


Processed information defines physics properties of events and generates lists of particles with type and momenta. These events are analyzed to find new effects—both new particles (e.g., Higgs), and present evidence that conjectured particles (e.g., Supersymmetry) have not been detected. A few major experiments are being conducted at LHC, including ATLAS and CMS (Compact Muon Solenoid). These experiments have global participants (e.g., CMS has 3,600 participants from 183 institutions in 38 countries), and so the data at all levels are transported and accessed across continents.

CURRENT APPROACH

The LHC experiments are pioneers of a distributed Big Data science infrastructure. Several aspects of the LHC experiments' workflow highlight issues that other disciplines will need to solve. These issues

include automation of data distribution, high-performance data transfer, and large-scale high-throughput computing. Figure 8 shows grid analysis with 350,000 cores running near-continuously—over two million jobs per day arranged in three major tiers: CERN, Continents/Countries, and Universities. The analysis uses distributed, high-throughput computing (i.e., pleasing parallel) architecture with facilities integrated across the world by the Worldwide LHC Computing Grid (WLCG) and Open Science Grid in the U.S. Accelerator data and analysis generates 15 PB of data each year for a total of 200 PB. Specifically, in 2012, ATLAS had 8 PB on Tier1 tape and over 10 PB on Tier 1 disk at BNL and 12 PB on disk cache at U.S. Tier 2 centers. CMS has similar data sizes. Over half the resources are used for Monte Carlo simulations as opposed to data analysis.

LHC Data Grid Hierarchy:

Emerging Vision: A Richly Structured, Global Dynamic System

<u>Future</u>

In the past, the particle physics community has been able to rely on industry to deliver exponential increases in performance per unit cost over time, as described by Moore's Law. However, the available performance will be much more difficult to exploit in the future since technology limitations, in particular regarding power consumption, have led to profound changes in the architecture of modern central processing unit (CPU) chips. In the past, software could run unchanged on successive processor generations and achieve performance gains that follow Moore's Law, thanks to the regular increase in clock rate that continued until 2006. The era of scaling sequential applications on an HEP (heterogeneous element processor) is now over. Changes in CPU architectures imply significantly more software parallelism, as well as exploitation of specialized floating-point capabilities. The structure and performance of HEP data processing software need to be changed such that they can continue to be adapted and developed to run efficiently on new hardware. This represents a major paradigm shift in HEP software design and implies large-scale re-engineering of data structures and algorithms. Parallelism

Figure 8: Particle Physics: Analysis of LHC Data: Discovery of Higgs Particle—The Multi-tier LHC Computing Infrastructure

needs to be added simultaneously at all levels: the event level, the algorithm level, and the sub-algorithm level. Components at all levels in the software stack need to interoperate, and therefore the goal is to standardize as much as possible on basic design patterns and on the choice of a concurrency model. This will also help to ensure efficient and balanced use of resources.

Resources

- Where does all the data come from? <u>http://grids.ucs.indiana.edu/ptliupages/publications/Where%20does%20all%20the%20data%20co</u> <u>me%20from%20v7.pdf</u>. Accessed March 3, 2015.
- Enabling high throughput in widely distributed data management and analysis systems: Lessons from the LHC. <u>http://www.es.net/assets/pubs_presos/High-throughput-lessons-from-the-LHC-experience.Johnston.TNC2013.pdf</u>. Accessed March 3, 2015.

2.8.5 Use Case 40: Belle II High Energy Physics Experiment

Submitted by David Asner and Malachi Schram, Pacific Northwest National Laboratory (PNNL)

APPLICATION

The Belle experiment is a particle physics experiment with more than 400 physicists and engineers investigating charge parity (CP) violation effects with B meson production at the High Energy Accelerator KEKB e+ e- accelerator in Tsukuba, Japan. In particular, numerous decay modes at the Upsilon(4S) resonance are sought to identify new phenomena beyond the standard model of particle physics. This accelerator has the largest intensity of any in the world, but the events are simpler than those from LHC, and so analysis is less complicated, but similar in style to the CERN accelerator analysis.

CURRENT APPROACH

At this time, this project is in the preliminary planning phases and, therefore, the current approach is not fully developed.

<u>Future</u>

An upgraded experiment Belle II and accelerator SuperKEKB will start operation in 2015. Data will increase by a factor of 50, with total integrated raw data of \approx 120 PB and physics data of \approx 15 PB and \approx 100 PB of Monte Carlo samples. The next stage will necessitate a move to a distributed computing model requiring continuous raw data transfer of \approx 20 GB per second at designed luminosity between Japan and the United States. Open Science Grid, Geant4, DIRAC, FTS, and Belle II framework software will be needed.

<u>Resources</u>

• Belle II Collaboration. <u>http://belle2.kek.jp</u>. Accessed March 3, 2015.

2.9 EARTH, ENVIRONMENTAL, AND POLAR SCIENCE

2.9.1 Use Case 41: European Incoherent Scatter Scientific Association 3D Incoherent Scatter Radar System

Submitted by Yin Chen, Cardiff University; Ingemar Häggström, Ingrid Mann, and Craig Heinselman, European Incoherent Scatter Scientific Association (EISCAT)

APPLICATION

EISCAT conducts research on the lower, middle, and upper atmosphere and ionosphere using the incoherent scatter radar technique. This technique is the most powerful ground-based tool for these research applications. EISCAT studies instabilities in the ionosphere and investigates the structure and

dynamics of the middle atmosphere. EISCAT operates a diagnostic instrument in ionospheric modification experiments with addition of a separate heating facility. Currently, EISCAT operates three of the ten major incoherent radar scattering instruments worldwide; their three systems are located in the Scandinavian sector, north of the Arctic Circle.

CURRENT APPROACH

The currently running EISCAT radar generates data at rates of terabytes per year. The system does not present special challenges.

<u>Future</u>

The design of the next-generation radar, EISCAT_3D, will consist of a core site with transmitting and receiving radar arrays and four sites with receiving antenna arrays at some 100 kilometers from the core. The fully operational five-site system will generate several thousand times the number of data of the current EISCAT system, with 40 PB per year in 2022, and is expected to operate for 30 years. EISCAT_3D data e-Infrastructure plans to use high-performance computers for central site data processing and high-throughput computers for mirror site data processing. Downloading the full data is not time-critical, but operations require real-time information about certain pre-defined events, which would be sent from the sites to the operations center, and a real-time link from the operations center to the sites to set the mode of radar operation in real time. See Figure 9.

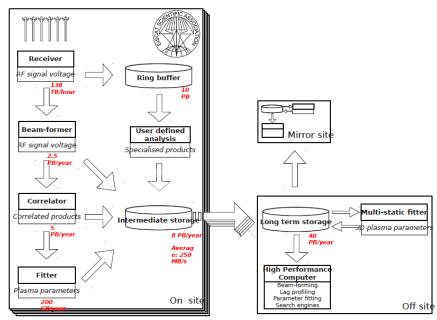


Figure 9: EISCAT 3D Incoherent Scatter Radar System – System Architecture

Resources

• EISCAT 3D. <u>https://www.eiscat3d.se/</u>. Accessed March 3, 2015.

2.9.2 Use Case 42: Common Operations of Environmental Research Infrastructure

Submitted by Yin Chen, Cardiff University

APPLICATION

ENVRI (Common Operations of Environmental Research Infrastructures) addresses European distributed, long-term, remote-controlled observational networks focused on understanding processes, trends,

thresholds, interactions, and feedbacks, as well as increasing the predictive power to address future environmental challenges. The following efforts are part of ENVRI:

- ICOS (Integrated Carbon Observation System) is a European distributed infrastructure dedicated to the monitoring of greenhouse gases (GHGs) through its atmospheric, ecosystem, and ocean networks.
- EURO-Argo is the European contribution to Argo, which is a global ocean observing system.
- EISCAT_3D (described separately) is a European new-generation incoherent scatter research radar system for upper atmospheric science.
- LifeWatch (described separately) is an e-science infrastructure for biodiversity and ecosystem research.
- EPOS (European Plate Observing System) is a European research infrastructure for earthquakes, volcanoes, surface dynamics, and tectonics.
- EMSO (European Multidisciplinary Seafloor and Water Column Observatory) is a European network of seafloor observatories for the long-term monitoring of environmental processes related to ecosystems, climate change, and geo-hazards.
- IAGOS (In-service Aircraft for a Global Observing System) is setting up a network of aircraft for global atmospheric observation.
- SIOS (Svalbard Integrated Arctic Earth Observing System) is establishing an observation system in and around Svalbard that integrates the studies of geophysical, chemical, and biological processes from all research and monitoring platforms.

CURRENT APPROACH

ENVRI develops a reference model (ENVRI RM) as a common ontological framework and standard for the description and characterization of computational and storage infrastructures. The goal is to achieve seamless interoperability between the heterogeneous resources of different infrastructures. The ENVRI RM serves as a common language for community communication, providing a uniform framework into which the infrastructure's components can be classified and compared. The ENVRI RM also serves to identify common solutions to common problems. Data sizes in a given infrastructure vary from GBs to petabytes per year.

<u>FUTURE</u>

ENVRI's common environment will empower the users of the collaborating environmental research infrastructures and enable multidisciplinary scientists to access, study, and correlate data from multiple domains for system-level research. Collaboration affects Big Data requirements coming from interdisciplinary research.

ENVRI analyzed the computational characteristics of the six European Strategy Forum on Research Infrastructures (ESFRI) environmental research infrastructures, and identified five common subsystems (Figure 10). They are defined in the ENVRI RM (<u>http://www.envri.eu/rm</u>) and below:

- Data acquisition: Collects raw data from sensor arrays, various instruments, or human observers, and brings the measurements (data streams) into the system.
- Data curation: Facilitates quality control and preservation of scientific data and is typically operated at a data center.
- Data access: Enables discovery and retrieval of data housed in data resources managed by a data curation subsystem.
- Data processing: Aggregates data from various resources and provides computational capabilities and capacities for conducting data analysis and scientific experiments.
- Community support: Manages, controls, and tracks users' activities and supports users in conduct of their community roles.

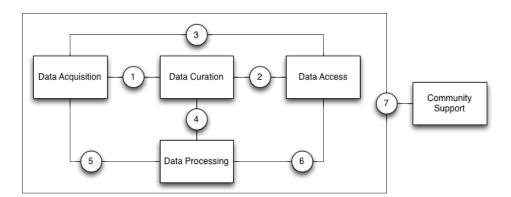


Figure 10: ENVRI Common Architecture

Figures 11(a) through 11(e) illustrate how well the five subsystems map to the architectures of the ESFRI environmental research infrastructures.

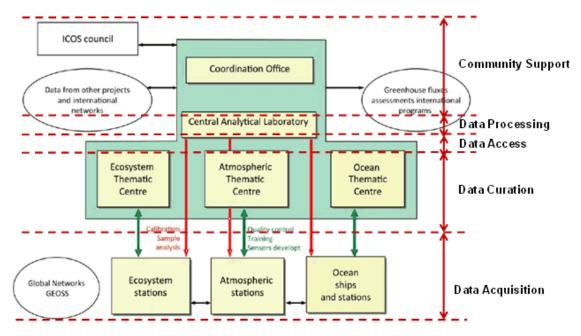


Figure 11(a): ICOS Architecture

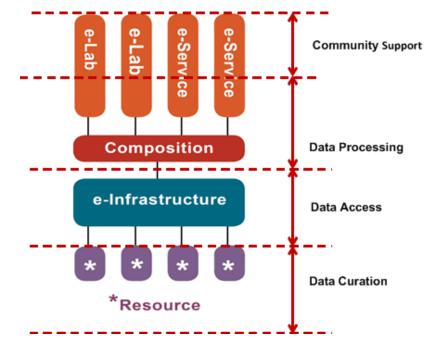


Figure 11(b): LifeWatch Architecture

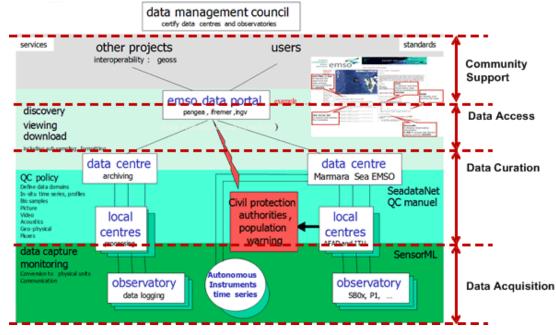


Figure 11(c): EMSO Architecture

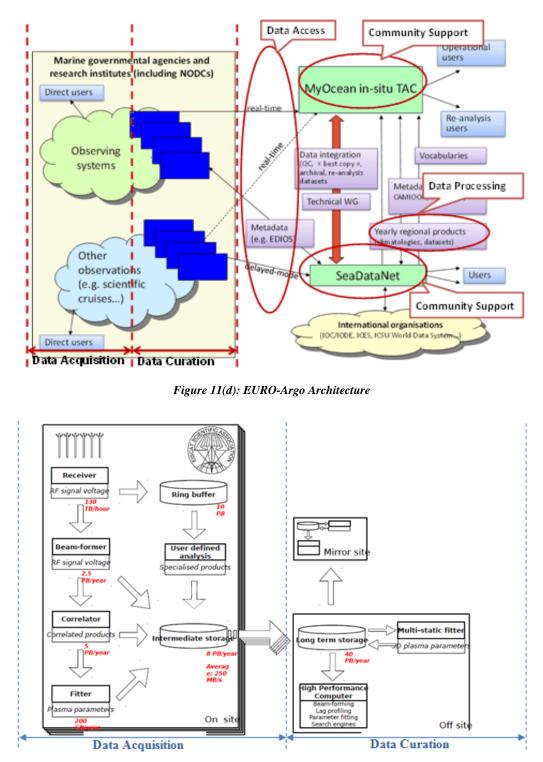


Figure 11(e): EISCAT 3D Architecture

<u>Resources</u>

- Analysis of Common Requirements for Environmental Science Research Infrastructures. http://pos.sissa.it/archive/conferences/179/032/ISGC%202013_032.pdf. Accessed March 3, 2015.
- Euro-Argo RI. <u>http://www.euro-argo.eu/</u>. Accessed March 3, 2015.
- EISCAT 3D. <u>https://www.eiscat3d.se/</u>. Accessed March 3, 2015.

- LifeWatch. http://www.lifewatch.com/. Accessed March 3, 2015.
- European Multidisciplinary Seafloor & Water Column Observatory (EMSO). <u>http://www.emso-eu.org/</u>. Accessed March 3, 2015.

2.9.3 Use Case 43: RADAR DATA ANALYSIS FOR THE CENTER FOR REMOTE Sensing of Ice Sheets

Submitted by Geoffrey Fox, Indiana University

APPLICATION

As illustrated in Figure 12, the Center for Remote Sensing of Ice Sheets (CReSIS) effort uses custom radar systems to measure ice sheet bed depths and (annual) snow layers at the North and South Poles and mountainous regions.

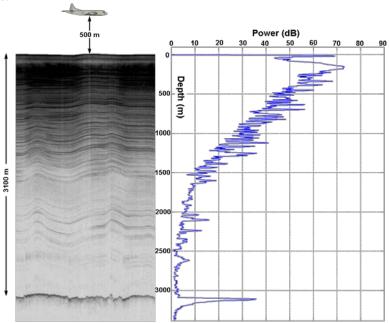


Figure 12: Typical CReSIS Radar Data After Analysis

Resulting data feed into the Intergovernmental Panel on Climate Change (IPCC). The radar systems are typically flown in by aircraft in multiple paths, as illustrated by Figure 13.

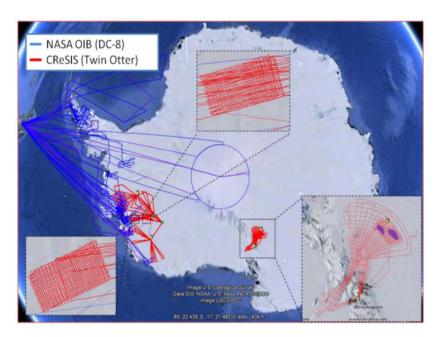


Figure 13: Radar Data Analysis for CReSIS Remote Sensing of Ice Sheets– Typical Flight Paths of Data Gathering in Survey Region

CURRENT APPROACH

The initial analysis uses MATLAB signal processing that produces a set of radar images. These cannot be transported from the field over the Internet and are typically copied onsite to a few removable disks that hold a terabyte of data, then flown to a laboratory for detailed analysis. Figure 14 illustrates image features (i.e., layers) found using image understanding tools with some human oversight. Figure 13 is a typical echogram with detected boundaries. The upper (green) boundary is between air and ice layers, while the lower (red) boundary is between ice and terrain. This information is stored in a database front-ended by a geographical information system. The ice sheet bed depths are used in simulations of glacier flow. Each trip into the field, usually lasting a few weeks, results in 50 TB to 100 TB of data.

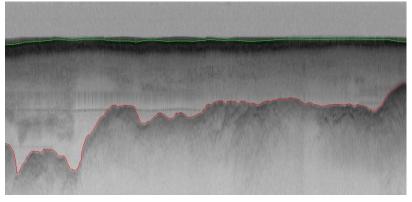


Figure 14: Typical echogram with detected boundaries

<u>Future</u>

With improved instrumentation, an order of magnitude more data (a petabyte per mission) is projected. As the increasing field data must be processed in an environment with constrained power access, low-power or low-performance architectures, such as GPU systems, are indicated.

Resources

- CReSIS. <u>https://www.cresis.ku.edu</u>. Accessed March 3, 2015.
- Polar Grid Multimedia Gallery, Indiana University. <u>http://polargrid.org/gallery.html</u> . Accessed March 3, 2015.

2.9.4 Use Case 44: UNMANNED AIR VEHICLE SYNTHETIC APERTURE RADAR (UAVSAR) DATA PROCESSING, DATA PRODUCT DELIVERY, AND DATA SERVICES

Submitted by Andrea Donnellan and Jay Parker, National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory

APPLICATION

Synthetic aperture radar (SAR) can identify landscape changes caused by seismic activity, landslides, deforestation, vegetation changes, and flooding. This function can be used to support earthquake science, as shown in Figure 14, as well as disaster management. Figure 15 shows the combined unwrapped coseismic interferograms for flight lines 26501, 26505, and 08508 for the October 2009 to April 2010 time period. End points where slip can be seen on the Imperial, Superstition Hills, and Elmore Ranch faults are noted. GPS stations are marked by dots and are labeled. This use case supports the storage, image processing application, and visualization of geo-located data with angular specification.

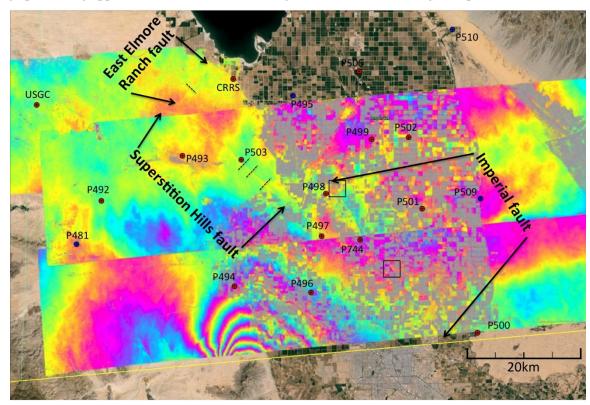


Figure 15: Combined Unwrapped Coseismic Interferograms

CURRENT APPROACH

Data from planes and satellites are processed on NASA computers before being stored after substantial data communication. The data are made public upon processing. They require significant curation owing to instrumental glitches. The current data size is approximately 150 TB.

FUTURE

The data size would increase dramatically if Earth Radar Mission launched. Clouds are suitable hosts but are not used today in production.

Resources

- Uninhabited Aerial Vehicle Synthetic Aperture Radar. <u>http://uavsar.jpl.nasa.gov/</u>. Accessed March 3, 2015.
- Alaska Satellite Facility. <u>http://www.asf.alaska.edu/program/sdc</u>. Accessed March 3, 2015.
- QuakeSim: Understanding Earthquake Processes. <u>http://quakesim.org</u>. Accessed March 3, 2015.

2.9.5 Use Case 45: NASA Langley Research Center/ Goddard Space Flight Center IRODS Federation Test Bed

Submitted by Brandi Quam, NASA Langley Research Center

APPLICATION

NASA Center for Climate Simulation and NASA Atmospheric Science Data Center have complementary datasets, each containing vast amounts of data that are not easily shared and queried. Climate researchers, weather forecasters, instrument teams, and other scientists need to access data from across multiple datasets in order to compare sensor measurements from various instruments, compare sensor measurements to model outputs, calibrate instruments, look for correlations across multiple parameters, and more.

CURRENT APPROACH

Data are generated from two products: the Modern Era Retrospective Analysis for Research and Applications (MERRA, described separately) and NASA Clouds and Earth's Radiant Energy System (CERES) EBAF-TOA (Energy Balanced and Filled–Top of Atmosphere) product, which accounts for about 420 MB, and the EBAF–Surface product, which accounts for about 690 MB. Data numbers grow with each version update (about every six months). To analyze, visualize, and otherwise process data from heterogeneous datasets is currently a time-consuming effort. Scientists must separately access, search for, and download data from multiple servers, and often the data are duplicated without an understanding of the authoritative source. Often accessing data takes longer than scientific analysis. Current datasets are hosted on modest-sized (144 to 576 cores) Infiniband clusters.

FUTURE

Improved access will be enabled through the use of iRODS. These systems support parallel downloads of datasets from selected replica servers, providing users with worldwide access to the geographically dispersed servers. iRODS operation will be enhanced with semantically organized metadata and managed via a highly precise NASA Earth Science ontology. Cloud solutions will also be explored.

2.9.6 Use Case 46: MERRA ANALYTIC SERVICES (MERRA/AS)

Submitted by John L. Schnase and Daniel Q. Duffy, NASA Goddard Space Flight Center

APPLICATION

This application produces global temporally and spatially consistent syntheses of 26 key climate variables by combining numerical simulations with observational data. Three-dimensional results are produced every six hours extending from 1979 to the present. The data support important applications such as IPCC research and the NASA/Department of Interior RECOVER wildfire decision support system; these applications typically involve integration of MERRA with other datasets. Figure 16 shows a typical MERRA/AS output.

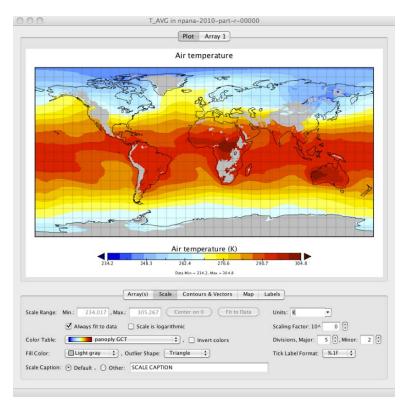


Figure 16: Typical MERRA/AS Output

CURRENT APPROACH

Map/Reduce is used to process a current total of 480 TB. The current system is hosted on a 36-node Infiniband cluster.

<u>Future</u>

Clouds are being investigated. The data is growing by one TB a month.

2.9.7 Use Case 47: Atmospheric Turbulence – Event Discovery and Predictive Analytics

Submitted by Michael Seablom, NASA headquarters

APPLICATION

Data mining is built on top of reanalysis products, including MERRA (described separately) and the North American Regional Reanalysis (NARR), a long-term, high-resolution climate dataset for the North American domain. The analytics correlate aircraft reports of turbulence (either from pilot reports or from automated aircraft measurements of eddy dissipation rates) with recently completed atmospheric reanalyses. The information is of value to aviation industry and to weather forecasters. There are no standards for reanalysis products, complicating systems for which Map/Reduce is being investigated. The reanalysis data are hundreds of terabytes, slowly updated, whereas the turbulence dataset is smaller in size and implemented as a streaming service. Figure 17 shows a typical turbulent wave image.

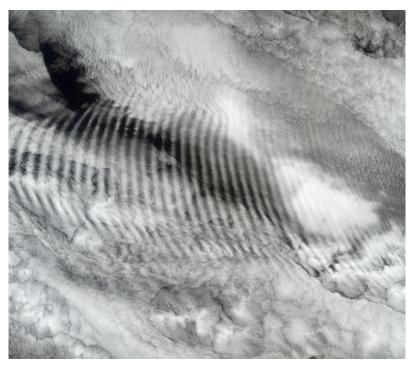


Figure 17: Typical NASA Image of Turbulent Waves

<u>CURRENT APPROACH</u>

The current 200 TB dataset can be analyzed with Map/Reduce or the like using SciDB or another scientific database.

<u>Future</u>

The dataset will reach 500 TB in five years. The initial turbulence case can be extended to other ocean/atmosphere phenomena, but the analytics would be different in each case.

Resources

- El Niño Teleconnections. <u>http://oceanworld.tamu.edu/resources/oceanography-book/teleconnections.htm</u>. Accessed March 3, 2015.
- Meet The Scientists Mining Big Data To Predict The Weather. <u>http://www.forbes.com/sites/toddwoody/2012/03/21/meet-the-scientists-mining-big-data-to-predict-the-weather/</u>. Accessed March 3, 2015.

2.9.8 Use Case 48: Climate Studies Using the Community Earth System Model at the U.S. Department of Energy (DOE) NERSC Center

Submitted by Warren Washington, National Center for Atmospheric Research

APPLICATION

Simulations with the Community Earth System Model (CESM) can be used to understand and quantify contributions of natural and anthropogenic-induced patterns of climate variability and change in the 20th and 21st centuries. The results of supercomputer simulations across the world should be stored and compared.

CURRENT APPROACH

The Earth System Grid (ESG) enables global access to climate science data on a massive scale petascale, or even exascale—with multiple petabytes of data at dozens of federated sites worldwide. The ESG is recognized as the leading infrastructure for the management and access of large distributed data volumes for climate change research. It supports the Coupled Model Intercomparison Project (CMIP), whose protocols enable the periodic assessments carried out by the IPCC.

FUTURE

Rapid growth of data is expected, with 30 PB produced at NERSC (assuming 15 end-to-end climate change experiments) in 2017 and many times more than this worldwide.

Resources

- Earth System Grid (ESG) Gateway at the National Center for Atmospheric Research. <u>http://www.earthsystemgrid.org</u>. Accessed March 3, 2015.
- Welcome to PCMDI! <u>http://www-pcmdi.llnl.gov/</u>. Accessed March 3, 2015.
- National Energy Research Scientific Computing Center. <u>http://www.nersc.gov/</u>. Accessed March 3, 2015.
- Research: Climate and Environmental Sciences Division (CESD). http://science.energy.gov/ber/research/cesd/. Accessed March 3, 2015.
- Computational & Information Systems Lab (CISL). <u>http://www2.cisl.ucar.edu/</u>. Accessed March 3, 2015.

2.9.9 Use Case 49: DOE BIOLOGICAL AND ENVIRONMENTAL RESEARCH (BER) SUBSURFACE BIOGEOCHEMISTRY SCIENTIFIC FOCUS AREA

Submitted by Deb Agarwal, LBNL

APPLICATION

A genome-enabled watershed simulation capability (GEWaSC) is needed to provide a predictive framework for understanding the following:

- How genomic information stored in a subsurface microbiome affects biogeochemical watershed functioning.
- How watershed-scale processes affect microbial functioning.
- How these interactions co-evolve.

CURRENT APPROACH

Current modeling capabilities can represent processes occurring over an impressive range of scales—from a single bacterial cell to that of a contaminant plume. Data cross all scales from genomics of the microbes in the soil to watershed hydro-biogeochemistry. Data are generated by the different research areas and include simulation data, field data (e.g., hydrological, geochemical, geophysical), 'omics' data, and observations from laboratory experiments.

<u>Future</u>

Little effort to date has been devoted to developing a framework for systematically connecting scales, as is needed to identify key controls and to simulate important feedbacks. GEWaSC will develop a simulation framework that formally scales from genomes to watersheds and will synthesize diverse and disparate field, laboratory, and simulation datasets across different semantic, spatial, and temporal scales.

2.9.10 Use Case 50: DOE BER AmeriFlux and FLUXNET Networks

Submitted by Deb Agarwal, LBNL

APPLICATION

AmeriFlux and Flux Tower Network (FLUXNET) are U.S. and world collections, respectively, of sensors that observe trace gas fluxes (e.g., CO₂, water vapor) across a broad spectrum of times (e.g., hours, days, seasons, years, and decades) and space. Moreover, such datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models.

CURRENT APPROACH

Software includes EddyPro, custom analysis software, R, Python, neural networks, and MATLAB. There are approximately 150 towers in AmeriFlux and over 500 towers distributed globally collecting flux measurements.

FUTURE

Field experiment data-taking would be improved by access to existing data and automated entry of new data via mobile devices. Interdisciplinary studies integrating diverse data sources will be expanded.

Resources

- AmeriFlux. <u>http://Ameriflux.lbl.gov</u>. Accessed March 3, 2015.
- Welcome to the Fluxdata.org web site. <u>http://www.fluxdata.org</u>. Accessed March 3, 2015.

2.9.11 Use Case 2-1: NASA Earth Observing System Data and Information System (EOSDIS)

Submitted by Christopher Lynnes

APPLICATION

The Earth Observing System Data and Information System (EOSDIS) is the main system maintained by NASA for the archive and dissemination of Earth Observation data. The system comprises 12 disciplineoriented data systems spread across the United States. This network is linked together using interoperability frameworks such as the Common Metadata Repository, a file-level database that supports one-stop searching across EOSDIS. The data consist of satellite, aircraft, field campaign, and in situ data over a variety of disciplines related to Earth science, covering the Atmosphere, Hydrosphere, Cryosphere, Lithosphere, Biosphere, and Anthroposphere. Data are distributed to a diverse community ranging from Earth science researchers to applications to citizen science and educational users.

EOSDIS faces major challenges in both Volume and Variety. As of early 2017, the cumulative archive data volume is over 20 Petabytes. Higher-resolution space-borne instruments are expected to increase that volume by two orders of magnitude (~200 PB) over the next 7 years. More importantly, the data distribution to users is equally high. In a given year, EOSDIS distributes a volume that is comparable to the overall cumulative archive volume.

Detailed topics include the following:

- Data Archiving: storing NASA's Earth Observation data;
- Data Distribution: disseminating data to end users in Research, Applications (e.g., water resource management) and Education;
- Data Discovery: search and access to Earth Observation data;
- Data Visualization: static browse images and dynamically constructed visualizations;

- Data Customization: subsetting, reformatting, regridding, mosaicking, and quality screening on behalf of end users;
- Data Processing: routine production of standard scientific datasets, converting raw data to geophysical variables; and
- Data Analytics: end-user analysis of large datasets, such as time-averaged maps and areaaveraged time series.

CURRENT APPROACH

Standard data processing converts raw data to geophysical parameters. Though much of this is heritage custom Fortran or C code running, current prototypes are using cloud computing to scale up to rapid reprocessing campaigns.

EOSDIS support of end-user analysis currently uses high-performance software, such as the netCDF Command Operators. However, current prototypes are using cloud computing and data-parallel algorithms (e.g., Spark) to achieve an order of magnitude speed-up.

<u>Future</u>

EOSDIS is beginning to migrate data archiving to the cloud to enable end users to bring algorithms to the data. We also expect to reorganize certain high-value datasets into forms that lend themselves to cloud data-parallel computing. Prototypes are under way to prove out storage schemes that are optimized for cloud analytics, such as space-time tiles stored in cloud databases and cloud file systems.

<u>Resources</u>

- NASA, Earthdata: <u>https://earthdata.nasa.gov/</u>
- NASA Earthdata, Global Imagery Browse Services (GIBS): <u>https://earthdata.nasa.gov/about/science-system-description/eosdis-components/global-imagery-browse-services-gibs</u>
- NASA Earthdata, Worldview: https://worldview.earthdata.nasa.gov/

2.9.12 Use Case 2-2: Web-Enabled Landsat Data (WELD) Processing

Submitted by Andrew Michaelis

APPLICATION

The use case shown in Figure18 is specific to the part of the project where data is available on the HPC platform and processed through the science workflow. It is a 32-stage processing pipeline of images from the Landsat 4, 5, and 7 satellites that includes two separate science products (Top-of-the-Atmosphere [TOA] reflectances and surface reflectances) as well as QA and visualization components which forms a dataset of science products of use to the land surface science community that is made freely available by NASA.

CURRENT APPROACH

This uses the High Performance Computing (HPC) system Pleiades at NASA Ames Research Center with storage in NASA Earth Exchange (NEX) NFS storage system for read-only data storage (2.5PB), Lustre for read-write access during processing (1PB), tape for near-line storage (50PB). The networking is InfiniBand partial hypercube internal interconnect within the HPC system; 1G to 10G connection to external data providers. The software is the NEX science platform for data management, workflow processing, provenance capture; the WELD science processing algorithms from South Dakota State University for visualization and time-series; the Global Imagery Browse Service (GIBS) data visualization platform; and the USGS data distribution platform. This is a custom-built application and libraries built on top of open-source libraries.

<u>Future</u>

Processing will be improved with newer and updated algorithms. This process may also be applied to future datasets and processing systems (Landsat 8 and Sentinel-2 satellites, for example).

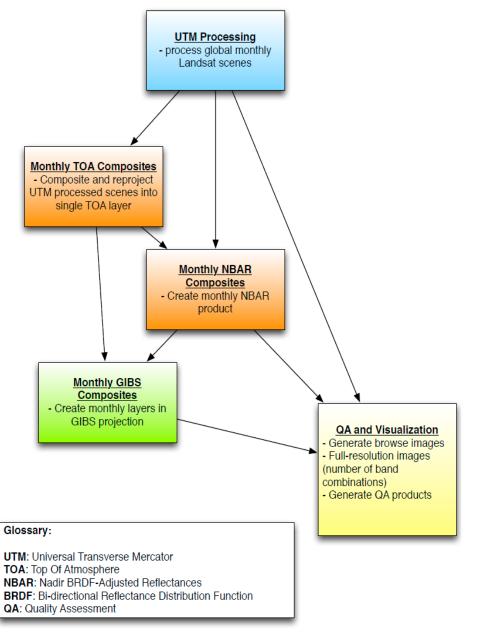


Figure 18: NASA NEX WELD/GIBS Processing Workflow

Resources

- Global Web-Enabled Landsat Data, Geospatial Sciences Center of Excellence (GSCE), South Dakota State University: <u>http://globalmonitoring.sdstate.edu/projects/weldglobal/gweld.html</u>
- Global Web-Enabled Landsat Data, U.S. Geological Survey: <u>http://globalweld.cr.usgs.gov/</u>
- NASA Earth Exchange (NEX): <u>https://nex.nasa.gov</u>
- NASA High-End Computing Capability: <u>http://www.nas.nasa.gov/hecc/resources/pleiades.html</u>

2.10 ENERGY

2.10.1 Use Case 51: Consumption Forecasting in Smart Grids

Submitted by Yogesh Simmhan, University of Southern California

APPLICATION

Smart meters support prediction of energy consumption for customers, transformers, substations and the electrical grid service area. Advanced meters provide measurements every 15 minutes at the granularity of individual consumers within the service area of smart power utilities. Data to be combined include the head end of smart meters (distributed), utility databases (customer information, network topology; centralized), U.S. Census data (distributed), NOAA weather data (distributed), micro-grid building information systems (centralized), and micro-grid sensor networks (distributed). The central theme is real-time, data-driven analytics for time series from cyber-physical systems.

CURRENT APPROACH

Forecasting uses GIS-based visualization. Data amount to around 4 TB per year for a city such as Los Angeles with 1.4 million sensors. The process uses R/Matlab, Weka, and Hadoop software. There are significant privacy issues requiring anonymization by aggregation. Real-time and historic data are combined with machine learning to predict consumption.

<u>Future</u>

Advanced grid technologies will have wide-spread deployment. Smart grids will have new analytics integrating diverse data and supporting curtailment requests. New technologies will support mobile applications for client interactions.

Resources

- USC Smart Grid. <u>http://smartgrid.usc.edu</u>. Accessed March 3, 2015.
- Smart Grid. <u>http://ganges.usc.edu/wiki/Smart_Grid</u>. Accessed March 3, 2015.
- Smart Grid L.A. <u>https://www.ladwp.com/ladwp/faces/ladwp/aboutus/a-power/a-p-smartgridla</u>. Accessed March 3, 2015.
- Cloud-Based Software Platform for Big Data Analytics in Smart Grids. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6475927. Accessed March 3, 2015.

3 USE CASE REQUIREMENTS

Requirements are the challenges limiting further use of Big Data. After collection, processing, and review
of the use cases, requirements within seven characteristic categories were extracted from the individual
use cases. These use case specific requirements were then aggregated to produce high-level, general
requirements, within the seven characteristic categories, that are vendor-neutral and technology-agnostic.
Neither the use case nor the requirements lists are exhaustive.

3.1 USE CASE SPECIFIC REQUIREMENTS

Each use case was evaluated for requirements within the following seven categories. These categories were derived from Subgroup discussions and motivated by components of the evolving reference architecture at the time. The process involved several Subgroup members extracting requirements and iterating back their suggestions for modifying the categories.

- 1. Data source (e.g., data size, file formats, rate of growth, at rest or in motion);
- 2. *Data transformation* (e.g., data fusion, analytics);
- 3. *Capabilities* (e.g., software tools, platform tools, hardware resources such as storage and networking);
- 4. Data consumer (e.g., processed results in text, table, visual, and other formats);
- 5. Security and privacy;
- 6. Life cycle management (e.g., curation, conversion, quality check, pre-analytic processing); and
- 7. Other requirements.

Some use cases contained requirements in all seven categories while others included only requirements for a few categories. The complete list of specific requirements extracted from the use cases is presented in Appendix D. Section 2.1 of the *NIST Big Data Interoperability Framework: Volume 6 Reference Architecture* maps these seven categories to terms used in the reference architecture. The categories map in a one-to-one fashion but have slightly different terminology as the use case requirements analysis was performed before the reference architecture was finalized.

3.2 GENERAL REQUIREMENTS

Aggregation of the use case-specific requirements allowed formation of more generalized requirements
 under the seven categories. These generalized requirements are listed below by category.

DATA SOURCE REQUIREMENTS (DSR)

- DSR-1: Needs to support reliable real-time, asynchronous, streaming, and batch processing to collect data from centralized, distributed, and cloud data sources, sensors, or instruments.
- DSR-2: Needs to support slow, bursty, and high-throughput data transmission between data sources and computing clusters.
- DSR-3: Needs to support diversified data content ranging from structured and unstructured text, document, graph, web, geospatial, compressed, timed, spatial, multimedia, simulation, and instrumental data.

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21 22

23

24

25

26

29

30

31

32

33

34

35

37 TRANSFORMATION PROVIDER REQUIREMENTS (TPR) 38 • TPR-1: Needs to support diversified compute-intensive,

- TPR-1: Needs to support diversified compute-intensive, statistical and graph analytic processing, and machine learning techniques.
 - TPR-2: Needs to support batch and real-time analytic processing.
 - TPR-3: Needs to support processing large diversified data content and modeling.
- TPR-4: Needs to support processing data in motion (streaming, fetching new content, tracking, etc.).

<u>CAPABILITY PROVIDER REQUIREMENTS (CPR)</u>

- CPR-1: Needs to support legacy and advanced software packages (software).
- CPR-2: Needs to support legacy and advanced computing platforms (platform).
 - CPR-3: Needs to support legacy and advanced distributed computing clusters, co-processors, input output (I/O) processing (infrastructure).
 - CPR-4: Needs to support elastic data transmission (networking).
 - CPR-5: Needs to support legacy, large, and advanced distributed data storage (storage).
- CPR-6: Needs to support legacy and advanced executable programming: applications, tools, utilities, and libraries (software).

DATA CONSUMER REQUIREMENTS (DCR)

- DCR-1: Needs to support fast searches from processed data with high relevancy, accuracy, and recall.
- DCR-2: Needs to support diversified output file formats for visualization, rendering, and reporting.
- DCR-3: Needs to support visual layout for results presentation.
- DCR-4: Needs to support rich user interface for access using browser, visualization tools.
- DCR-5: Needs to support high-resolution, multidimension layer of data visualization.
- DCR-6: Needs to support streaming results to clients.

SECURITY AND PRIVACY REQUIREMENTS (SPR)

- SPR-1: Needs to protect and preserve security and privacy of sensitive data.
- SPR-2: Needs to support sandbox, access control, and multilevel, policy-driven authentication on protected data.

LIFE CYCLE MANAGEMENT REQUIREMENTS (LMR)

- LMR-1: Needs to support data quality curation including preprocessing, data clustering, classification, reduction, and format transformation.
- LMR-2: Needs to support dynamic updates on data, user profiles, and links.
- LMR-3: Needs to support data life cycle and long-term preservation policy, including data provenance.
- LMR-4: Needs to support data validation.
- LMR-5: Needs to support human annotation for data validation.
- LMR-6: Needs to support prevention of data loss or corruption.
- LMR-7: Needs to support multisite archives.
- LMR-8: Needs to support persistent identifier and data traceability.
- `LMR-9: Needs to support standardizing, aggregating, and normalizing data from disparate sources.

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

56

57

58

59

60

61

62

63

64

65

66 67

68

69

70

71

72

73

74

75

76

77

79 OTHER REQUIREMENTS (OR)

- OR-1: Needs to support rich user interface from mobile platforms to access processed results.
- OR-2: Needs to support performance monitoring on analytic processing from mobile platforms.
- OR-3: Needs to support rich visual content search and rendering from mobile platforms.
 - OR-4: Needs to support mobile device data acquisition.
 - OR-5: Needs to support security across mobile devices.

80

81

82

83

84

4 ADDITIONAL USE CASE CONTRIBUTIONS

During the development of Version 2 of the NBDIF, the Use Cases and Requirements Subgroup and the Security and Privacy Subgroup identified the need for additional use cases to strengthen the future work of the NBD-PWG. These two subgroups collaboratively created the Use Case Template 2 with the aim of collecting specific and standardized information for each use case. In addition to questions from the original use case template, the Use Case Template 2 contains questions that provided a comprehensive view of security, privacy, and other topics for each use case.

The NBD-PWG invited the public to submit new use cases through the Use Case Template 2 PDF form (<u>https://bigdatawg.nist.gov/_uploadfiles/M0621_v2_7345181325.pdf</u>). Use cases were accepted until the end of Phase 3 work and were evaluated as they are submitted. The following three additional use cases were submitted using the new template:

- Use Case 2-1: NASA Earth Observing System Data and Information System (EOSDIS)
- Use Case 2-2: Web-Enabled Landsat Data (WELD) Processing
- Use Case 2-3: Urban context-aware event management for Smart Cities Public safety

98

99

100

Appendix A: Use Case Study Source Materials

Appendix A contains one blank use case template and the original completed use cases. The Use Case
 Studies Template 1 included in this Appendix is no longer being used to collect use case information. To
 submit a new use case, refer to Appendix E for the current Use Case Template 2.

108 These use cases were the source material for the use case summaries presented in Section 2 and the use 109 case requirements presented in Section 3 of this document. The completed use cases have not been edited 110 and contain the original text as submitted by the author(s). The use cases are as follows:

111	GOVERNMENT OPERATION> USE CASE 1: BIG DATA ARCHIVAL: CENSUS 2010 AND 2000	60
112	GOVERNMENT OPERATION> USE CASE 2: NARA ACCESSION, SEARCH, RETRIEVE, PRESERVATION	61
113	GOVERNMENT OPERATION> USE CASE 3: STATISTICAL SURVEY RESPONSE IMPROVEMENT	63
114	GOVERNMENT OPERATION> USE CASE 4: NON-TRADITIONAL DATA IN STATISTICAL SURVEY	65
115	COMMERCIAL> USE CASE 5: CLOUD COMPUTING IN FINANCIAL INDUSTRIES	67
116	COMMERCIAL> USE CASE 6: MENDELEY—AN INTERNATIONAL NETWORK OF RESEARCH	76
117	COMMERCIAL> USE CASE 7: NETFLIX MOVIE SERVICE	78
118	COMMERCIAL> USE CASE 8: WEB SEARCH	80
119	COMMERCIAL> USE CASE 9: CLOUD-BASED CONTINUITY AND DISASTER RECOVERY	82
120	COMMERCIAL> USE CASE 10: CARGO SHIPPING	87
121	COMMERCIAL> USE CASE 11: MATERIALS DATA	
122	COMMERCIAL> USE CASE 12: SIMULATION DRIVEN MATERIALS GENOMICS	91
123	DEFENSE> USE CASE 13: LARGE SCALE GEOSPATIAL ANALYSIS AND VISUALIZATION	93
124	DEFENSE> USE CASE 14: OBJECT IDENTIFICATION AND TRACKING – PERSISTENT SURVEILLANCE	95
125	DEFENSE> USE CASE 15: INTELLIGENCE DATA PROCESSING AND ANALYSIS	97
126	HEALTHCARE AND LIFE SCIENCES> USE CASE 16: ELECTRONIC MEDICAL RECORD DATA	
127	HEALTHCARE AND LIFE SCIENCES> USE CASE 17: PATHOLOGY IMAGING/DIGITAL PATHOLOGY	
128	HEALTHCARE AND LIFE SCIENCES> USE CASE 18: COMPUTATIONAL BIOIMAGING	
129	HEALTHCARE AND LIFE SCIENCES> USE CASE 19: GENOMIC MEASUREMENTS	
130	HEALTHCARE AND LIFE SCIENCES> USE CASE 20: COMPARATIVE ANALYSIS FOR (META) GENOMES	
131	HEALTHCARE AND LIFE SCIENCES> USE CASE 21: INDIVIDUALIZED DIABETES MANAGEMENT	112
132	HEALTHCARE AND LIFE SCIENCES> USE CASE 22: STATISTICAL RELATIONAL AI FOR HEALTH CARE	114
133	HEALTHCARE AND LIFE SCIENCES> USE CASE 23: WORLD POPULATION SCALE EPIDEMIOLOGY	116
134	HEALTHCARE AND LIFE SCIENCES> USE CASE 24: SOCIAL CONTAGION MODELING	118
135	HEALTHCARE AND LIFE SCIENCES> USE CASE 25: LIFEWATCH BIODIVERSITY	120
136	DEEP LEARNING AND SOCIAL MEDIA> USE CASE 26: LARGE-SCALE DEEP LEARNING	123
137	DEEP LEARNING AND SOCIAL MEDIA> USE CASE 27: LARGE SCALE CONSUMER PHOTOS ORGANIZATION	126
138	DEEP LEARNING AND SOCIAL MEDIA> USE CASE 28: TRUTHY TWITTER DATA ANALYSIS	128
139	DEEP LEARNING AND SOCIAL MEDIA> USE CASE 29: CROWD SOURCING IN THE HUMANITIES	130
140	DEEP LEARNING AND SOCIAL MEDIA> USE CASE 30: CINET NETWORK SCIENCE CYBERINFRASTRUCTURE	132
141	DEEP LEARNING AND SOCIAL MEDIA> USE CASE 31: NIST ANALYTIC TECHNOLOGY MEASUREMENT AND EVALUATIONS	
142	THE ECOSYSTEM FOR RESEARCH> USE CASE 32: DATANET FEDERATION CONSORTIUM (DFC)	
143	THE ECOSYSTEM FOR RESEARCH> USE CASE 33: THE 'DISCINNET PROCESS'	140
144	THE ECOSYSTEM FOR RESEARCH> USE CASE 34: GRAPH SEARCH ON SCIENTIFIC DATA	142
145	THE ECOSYSTEM FOR RESEARCH> USE CASE 35: LIGHT SOURCE BEAMLINES	145
146	ASTRONOMY AND PHYSICS> USE CASE 36: CATALINA DIGITAL SKY SURVEY FOR TRANSIENTS	147
147	ASTRONOMY AND PHYSICS> USE CASE 37: COSMOLOGICAL SKY SURVEY AND SIMULATIONS	150

148	ASTRONOMY AND PHYSICS> USE CASE 38: LARGE SURVEY DATA FOR COSMOLOGY	152
149	ASTRONOMY AND PHYSICS> USE CASE 39: ANALYSIS OF LHC (LARGE HADRON COLLIDER) DATA	154
150	ASTRONOMY AND PHYSICS> USE CASE 40: BELLE II EXPERIMENT	160
151	EARTH, ENVIRONMENTAL AND POLAR SCIENCE> USE CASE 41: EISCAT 3D INCOHERENT SCATTER RADAR SYSTEM	162
152	EARTH, ENVIRONMENTAL AND POLAR SCIENCE> USE CASE 42: COMMON ENVIRONMENTAL RESEARCH INFRASTRUCTURE	165
153	EARTH, ENVIRONMENTAL AND POLAR SCIENCE> USE CASE 43: RADAR DATA ANALYSIS FOR CRESIS	171
154	EARTH, ENVIRONMENTAL AND POLAR SCIENCE> USE CASE 44: UAVSAR DATA PROCESSING	173
155	EARTH, ENVIRONMENTAL AND POLAR SCIENCE> USE CASE 45: NASA LARC/GSFC IRODS FEDERATION TESTBED	175
156	EARTH, ENVIRONMENTAL AND POLAR SCIENCE> USE CASE 46: MERRA ANALYTIC SERVICES	179
157	EARTH, ENVIRONMENTAL AND POLAR SCIENCE> USE CASE 47: ATMOSPHERIC TURBULENCE—EVENT DISCOVERY	182
158	EARTH, ENVIRONMENTAL AND POLAR SCIENCE> USE CASE 48: CLIMATE STUDIES USING THE COMMUNITY EARTH SYSTEM MODEL	184
159	EARTH, ENVIRONMENTAL AND POLAR SCIENCE> USE CASE 49: SUBSURFACE BIOGEOCHEMISTRY	186
160	EARTH, ENVIRONMENTAL AND POLAR SCIENCE> USE CASE 50: AMERIFLUX AND FLUXNET	188
161	ENERGY> USE CASE 51: CONSUMPTION FORECASTING IN SMART GRIDS	190
162		

164 NBD-PWG Use Case Studies Template 1

Use Case Title		
Vertical (area)		
Author/Company/Email		
Actors/ Stakeholders		
and their roles and		
responsibilities		
Goals		
Use Case Description		
Current Solutions	Compute(System)	
	Storage	
	Networking	
	Software	
Big Data Characteristics	Data Source (distributed/centralized)	
	Volume (size)	
	Velocity (e.g. real time)	
	Variety	
	(multiple datasets,	
	mashup)	
	Variability (rate of	
	change)	
Big Data Science	Veracity (Robustness	
(collection, curation,	Issues, semantics)	
analysis,	Visualization	
action)		
,	Data Quality (syntax)	
	Data Types	
	Data Analytics	
Big Data Specific		
Challenges (Gaps)		
Big Data Specific		
Challenges in Mobility		
Security and Privacy		
Requirements		
Highlight issues for		
generalizing this use		
case (e.g. for ref.		
architecture)		
More Information		
(URLs)		
Note: <additional comme<="" td=""><td>nts></td><td></td></additional>	nts>	
Note, Sauditional confille	11.37	

165 166 167

Add picture of operation or data architecture of application below table.

168 Comments on fields

169 The following descriptions of fields in the template are provided to help with the understanding of both 170 document intention and meaning of the 26 fields and also to indicate ways that they can be improved.

- Use Case Title: Title provided by the use case author
- Vertical (area): Intended to categorize the use cases. However, an ontology was not created prior to the use case submissions so this field was not used in the use case compilation.
 - Author/Company/Email: Name, company, and email (if provided) of the person(s) submitting the use case.
 - Actors/ Stakeholders and their roles and responsibilities: Describes the players and their roles in the use case.
 - Goals: Objectives of the use case.
 - Use Case Description: Brief description of the use case.
 - **Current Solutions:** Describes current approach to processing Big Data at the hardware and software infrastructure level.
 - **Compute (System):** Computing component of the data analysis system.
 - Storage: Storage component of the data analysis system.
 - Networking: Networking component of the data analysis system.
 - Software: Software component of the data analysis system.
 - **Big Data Characteristics:** Describes the properties of the (raw) data including the four major 'V's' of Big Data described in *NIST Big Data Interoperability Framework: Volume 1, Big Data Definition* of this report series.
 - **Data Source:** The origin of data, which could be from instruments, Internet of Things, Web, Surveys, Commercial activity, or from simulations. The source(s) can be distributed, centralized, local, or remote.
 - **Volume:** The characteristic of data at rest that is most associated with Big Data. The size of data varied drastically between use cases from terabytes to petabytes for science research (100 petabytes was the largest science use case for LHC data analysis), or up to exabytes in a commercial use case.
 - **Velocity:** Refers to the rate of flow at which the data is created, stored, analyzed, and visualized. For example, big velocity means that a large quantity of data is being processed in a short amount of time.
 - Variety: Refers to data from multiple repositories, domains, or types.
 - Variability: Refers to changes in rate and nature of data gathered by use case.
 - **Big Data Science:** Describes the high-level aspects of the data analysis process
 - **Veracity:** Refers to the completeness and accuracy of the data with respect to semantic content. *NIST Big Data Interoperability Framework: Volume 1, Big Data Definition* discusses veracity in more detail.
 - **Visualization:** Refers to the way data is viewed by an analyst making decisions based on the data. Typically, visualization is the final stage of a technical data analysis pipeline and follows the data analytics stage.
 - **Data Quality:** This refers to syntactical quality of data. In retrospect, this template field could have been included in the Veracity field.
 - **Data Types:** Refers to the style of data such as structured, unstructured, images (e.g., pixels), text (e.g., characters), gene sequences, and numerical.
- 212• Data Analytics: Defined in NIST Big Data Interoperability Framework: Volume 1, Big Data213Definition as "the synthesis of knowledge from information". In the context of these use214cases, analytics refers broadly to tools and algorithms used in processing the data at any stage215including the data to information or knowledge to wisdom stages, as well as the information216to knowledge stage.

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193 194

195

196

197

198

199

200

201

202

203

204

205

206 207

208

209

210

- **Big Data Specific Challenges (Gaps):** Allows for explanation of special difficulties for processing Big Data in the use case and gaps where new approaches/technologies are used.
 - **Big Data Specific Challenges in Mobility:** Refers to issues in accessing or generating Big Data from Smart Phones and tablets.
 - Security and Privacy Requirements: Allows for explanation of security and privacy issues or needs related to this use case.
 - **Highlight issues for generalizing this use case:** Allows for documentation of issues that could be common across multiple use-cases and could lead to reference architecture constraints.
 - More Information (URLs): Resources that provide more information on the use case.
 - Note: <additional comments>: Includes pictures of use-case in action but was not otherwise used.

229 SUBMITTED USE CASE STUDIES

Government Operation> Use Case 1: Big Data Archival: Census 2010 and 2000

Use Case Title				
Vertical (area)				
Author/Company/Email	Vivek Navale and Quyen Nguyen (NARA)			
Actors/Stakeholders				
and their roles and	Public users (after 75 years)			
responsibilities				
Goals	Preserve data for a long term in order to provide access and perform analytics after			
	75 years. Title 13 of U.S. code authorizes the Census Bureau and guarantees that			
	individual and industry specific data is protected.			
Use Case Description	Maintain data "as-is". No access and no data analytics for 75 years.			
	Preserve the data at the bit-level.			
	Perform curation, which includes format transformation if necessary.			
	Provide access and analytic	s after nearly 75 years.		
Current	Compute(System)	Linux servers		
Solutions	Storage	NetApps, Magnetic tapes.		
	Networking			
	Software			
Big Data	Data Source	Centralized storage.		
Characteristics	(distributed/centralized)			
	Volume (size)	380 Terabytes.		
	Velocity	Static.		
	(e.g. real time)			
	Variety	Scanned documents		
	(multiple datasets,			
	mashup)			
	Variability (rate of	None		
	change)			
Big Data Science	Veracity (Robustness	Cannot tolerate data loss.		
(collection, curation,	Issues)			
analysis,	Visualization	TBD		
action)	Data Quality	Unknown.		
uctiony	Data Quality Data Types	Scanned documents		
Big Data Spacific	Data Analytics Preserve data for a long tim	Only after 75 years.		
Big Data Specific	Preserve data for a long tim	ie slaie.		
Challenges (Gaps)				
Big Data Specific	TBD			
Challenges in Mobility				
Security and Privacy	Title 13 data.			
Requirements				
Highlight issues for				
generalizing this use				
case (e.g. for ref.				
architecture)				
More Information				
(URLs)				

Government Operation> Use Case 2: NARA Accession, Search, Retrieve, Preservation

Use Case Title					
	Retrieve, Preservation				
Vertical (area)	Digital Archives				
Author/Company/Email	Quyen Nguyen and Vivek Navale (NARA)				
Actors/Stakeholders	Agencies' Records Managers				
and their roles and					
responsibilities	NARA's Archivists				
	Public users				
Goals	Accession, Search, Retrieva	l, and Long-Term Preservation of Big Data.			
Use Case Description					
		should avoid transferring Big Data from Cloud to Cloud			
	or from Cloud to Data Center.				
		us scan, identifying file format identification, removing			
	empty files				
	3) Index	··· ·· · · · · · · · · · · · · · · · ·			
	4) Categorize records (sensitive, unsensitive, privacy data, etc.)				
	5) Transform old file formats to modern formats (e.g. WordPerfect to PDF)				
	6) E-discovery				
		respond to special request			
		public records by public users			
Current	Compute(System)	Linux servers			
Solutions	Storage	NetApps, Hitachi, Magnetic tapes.			
	Networking				
	Software	Custom software, commercial search products,			
		commercial databases.			
Big Data	Data Source	Distributed data sources from federal agencies.			
Characteristics	(distributed/centralized)	Current solution requires transfer of those data to a			
		centralized storage.			
		In the future, those data sources may reside in different			
		Cloud environments.			
	Volume (size)	Hundreds of Terabytes, and growing.			
	Velocity	Input rate is relatively low compared to other use cases,			
	(e.g. real time)	but the trend is bursty. That is the data can arrive in			
		batches of size ranging from GB to hundreds of TB.			
	Variety	Variety data types, unstructured and structured data:			
	(multiple datasets,	textual documents, emails, photos, scanned documents,			
	mashup)	multimedia, social networks, web sites, databases, etc.			
		Variety of application domains, since records come			
		from different agencies.			
		Data come from variety of repositories, some of which			
		can be cloud-based in the future.			
	Variability (rate of	Rate can change especially if input sources are variable,			
	change)	some having audio, video more, some more text, and			
	0.,	other images, etc.			

Government Operation> Use Case 2: NARA Accession, Search, Retrieve, Preservation

Use Case Title	National Archives and Reco	rds Administration Accession NARA Accession, Search,
	Retrieve, Preservation	
Big Data Science	Veracity (Robustness Search results should have high relevancy and high	
(collection, curation,	Issues)	recall.
analysis,		Categorization of records should be highly accurate.
action)	Visualization	TBD
	Data Quality	Unknown.
	Data Types	Variety data types: textual documents, emails, photos, scanned documents, multimedia, databases, etc.
	Data Analytics	Crawl/index; search; ranking; predictive search.
		Data categorization (sensitive, confidential, etc.)
		Personally Identifiable Information (PII) data detection
		and flagging.
Big Data Specific	Perform preprocessing and manage for long-term of large and varied data.	
Challenges (Gaps)	Search huge amount of data	
	Ensure high relevancy and recall.	
	Data sources may be distributed in different clouds in future.	
Big Data Specific	Mobile search must have si	milar interfaces/results
Challenges in Mobility		
Security and Privacy	Need to be sensitive to data	a access restrictions.
Requirements		
Highlight issues for		
generalizing this use		
case (e.g. for ref.		
architecture)		
More Information		
(URLs)		

Government Operation> Use Case 3: Statistical Survey Response Improvement

Use Case Title	Statistical Survey Response Improvement (Adaptive Design)	
Vertical (area)	Government Statistical Logistics	
Author/Company/Email	Cavan Capps: U.S. Census Bureau/cavan.paul.capps@census.gov	
Actors/Stakeholders	U.S. statistical agencies are charged to be the leading authoritative sources about the	
and their roles and	nation's people and economy, while honoring privacy and rigorously protecting	
responsibilities	confidentiality. This is done by working with states, local governments and other	
	government agencies.	
Goals	To use advanced methods,	that are open and scientifically objective, the statistical
	agencies endeavor to impro	ove the quality, the specificity and the timeliness of
	statistics provided while reducing operational costs and maintaining the	
	confidentiality of those measured.	
Use Case Description		as survey response declines. The goal of this work is to
	use advanced "recommend	lation system techniques" using data mashed up from
	several sources and historic	cal survey para-data to drive operational processes in an
	effort to increase quality ar	nd reduce the cost of field surveys.
Current	Compute(System)	Linux systems
Solutions	Storage	SAN and Direct Storage
	Networking	Fiber, 10 gigabit Ethernet, Infiniband 40 gigabit.
	Software	Hadoop, Spark, Hive, R, SAS, Mahout, Allegrograph,
		MySQL, Oracle, Storm, BigMemory, Cassandra, Pig
Big Data	Data Source	Survey data, other government administrative data,
Characteristics	(distributed/centralized)	geographical positioning data from various sources.
	Volume (size)	For this particular class of operational problem
		approximately one petabyte.
	Velocity	Varies, paradata from field data streamed continuously,
	(e.g. real time)	during the decennial census approximately 150 million
		records transmitted.
	Variety	Data is typically defined strings and numerical fields.
	(multiple datasets,	Data can be from multiple datasets mashed together for
	mashup)	analytical use.
	Variability (rate of	Varies depending on surveys in the field at a given time.
	change)	High rate of velocity during a decennial census.
Big Data Science	Veracity (Robustness	Data must have high veracity and systems must be very
(collection, curation,	Issues, semantics)	robust. The semantic integrity of conceptual metadata
analysis,	,,	concerning what exactly is measured and the resulting
action)		limits of inference remain a challenge
	Visualization	Data visualization is useful for data review, operational
		activity and general analysis. It continues to evolve.
	Data Quality (syntax)	Data quality should be high and statistically checked for
		accuracy and reliability throughout the collection
		process.
	Data Types	Pre-defined ASCII strings and numerical data
	Data Analytics	Analytics are required for recommendation systems,
		continued monitoring and general survey improvement.
Big Data Specific	Improving recommendation	n systems that reduce costs and improve quality while
Challenges (Gaps)		feguards that are reliable and publicly auditable.
Big Data Specific	Mobile access is important.	
Challenges in Mobility		
Security and Privacy	All data must he both confi	dential and secure. All processes must be auditable for
Security and Filvacy	7 in data mast be both com	actual and secure. All processes must be additable for

Government Operation> Use Case 3: Statistical Survey Response Improvement

Requirements	security and confidentiality as required by various legal statutes.
Highlight issues for	Recommender systems have features in common to e-commerce like Amazon,
generalizing this use	Netflix, UPS etc.
case (e.g. for ref.	
architecture)	
More Information	
(URLs)	

Government Operation> Use Case 4: Non-Traditional Data in Statistical Survey

	-		
Use Case Title	Non-Traditional Data in Statistical Survey Response Improvement (Adaptive Design)		
Vertical (area)	Government Statistical Logistics		
Author/Company/Email	Cavan Capps: U.S. Census Bureau / <u>cavan.paul.capps@census.gov</u>		
Actors/Stakeholders	U.S. statistical agencies are charged to be the leading authoritative sources about the		
and their roles and	nation's people and economy, while honoring privacy and rigorously protecting		
responsibilities	confidentiality. This is done by working with states, local governments and other		
	government agencies.		
Goals	To use advanced methods,	that are open and scientifically objective, the statistical	
	agencies endeavor to impro	ove the quality, the specificity and the timeliness of	
	statistics provided while reducing operational costs and maintaining the		
	confidentiality of those measured.		
Use Case Description		as survey response declines. The potential of using non-	
		public data sources from the web, wireless	
		transactions mashed up analytically with traditional	
		s for small area geographies, new measures and to	
	improve the timeliness of r		
Current	Compute(System)	Linux systems	
Solutions	Storage	SAN and Direct Storage	
	Networking	Fiber, 10 gigabit Ethernet, Infiniband 40 gigabit.	
	Software	Hadoop, Spark, Hive, R, SAS, Mahout, Allegrograph,	
		MySQL, Oracle, Storm, BigMemory, Cassandra, Pig	
Big Data	Data Source	Survey data, other government administrative data, web	
Characteristics	(distributed/centralized)	scrapped data, wireless data, e-transaction data,	
		potentially social media data and positioning data from	
		various sources.	
	Volume (size)	TBD	
	Velocity	TBD	
	(e.g. real time)		
	Variety	Textual data as well as the traditionally defined strings	
	(multiple datasets,	and numerical fields. Data can be from multiple datasets	
	mashup)	mashed together for analytical use.	
	Variability (rate of	TBD.	
Die Date Calar	change)	Data must have high uses its and existence was to	
Big Data Science (collection, curation,	Veracity (Robustness	Data must have high veracity and systems must be very	
•	Issues, semantics)	robust. The semantic integrity of conceptual metadata concerning what exactly is measured and the resulting	
analysis, action)		limits of inference remain a challenge	
action)	Visualization	Data visualization is useful for data review, operational	
	visualization	activity and general analysis. It continues to evolve.	
	Data Quality (syntax)	Data quality should be high and statistically checked for	
	Data Quality (Syntax)	accuracy and reliability throughout the collection	
		process.	
	Data Types	Textual data, pre-defined ASCII strings and numerical	
		data	
	Data Analytics	Analytics are required to create reliable estimates using	
		data from traditional survey sources, government	
		administrative data sources and non-traditional sources	
		from the digital economy.	

Government Operation> Use Case 4: Non-Traditional Data in Statistical Survey

Big Data Specific	Improving analytic and modeling systems that provide reliable and robust statistical
Challenges (Gaps)	estimated using data from multiple sources that are scientifically transparent and
	while providing confidentiality safeguards that are reliable and publicly auditable.
Big Data Specific	Mobile access is important.
Challenges in Mobility	
Security and Privacy	All data must be both confidential and secure. All processes must be auditable for
Requirements	security and confidentiality as required by various legal statutes.
Highlight issues for	Statistical estimation that provide more detail, on a more near real time basis for less
generalizing this use	cost. The reliability of estimated statistics from such "mashed up" sources still must
case (e.g. for ref.	be evaluated.
architecture)	
More Information	
(URLs)	

Use Case Title	This use case represents one approach to implementing a BD (Big Data) strategy, within	
	a Cloud Eco-System, for FI (Financial Industries) transacting business within the United	
	States.	
Vertical (area)	The following lines of business (LOB) include:	
	Banking, including: Commercial, Retail, Credit Cards, Consumer Finance, Corporate	
	Banking, Transaction Banking, Trade Finance, and Global Payments.	
	Securities and Investments, such as; Retail Brokerage, Private Banking/Wealth	
	Management, Institutional Brokerages, Investment Banking, Trust Banking, Asset	
	Management, Custody and Clearing Services	
	Insurance , including; Personal and Group Life, Personal and Group Property/Casualty,	
	Fixed and Variable Annuities, and Other Investments	
	Please Note: Any Public/Private entity, providing financial services within the	
	regulatory and jurisdictional risk and compliance purview of the United States, are	
	required to satisfy a complex multilayer number of regulatory governance, risk	
	management, and compliance (GRC)/ confidentiality, integrity, and availability (CIA)	
	requirements, as overseen by various jurisdictions and agencies, including; Fed., State,	
	Local and cross-border.	
Author/Company/Email	Pw Carey, Compliance Partners, LLC, <u>pwc.pwcarey@email.com</u>	
Actors/Stakeholders	Regulatory and advisory organizations and agencies including the; SEC (Securities	
and their roles and	and Exchange Commission), FDIC (Federal Deposit Insurance Corporation), CFTC	
responsibilities	(Commodity Futures Trading Commission), US Treasury, PCAOB (Public Company	
	Accounting and Oversight Board), COSO, CobiT, reporting supply chains and	
	stakeholders, investment community, shareholders, pension funds, executive	
	management, data custodians, and employees.	
	At each level of a financial services organization, an inter-related and inter-	
	dependent mix of duties, obligations and responsibilities are in-place, which are	
	directly responsible for the performance, preparation and transmittal of financial data,	
	thereby satisfying both the regulatory GRC and CIA of their organizations financial data.	
	This same information is directly tied to the continuing reputation, trust and	
	survivability of an organization's business.	
Goals	The following represents one approach to developing a workable BD/FI strategy	
	within the financial services industry. Prior to initiation and switch-over, an	
	organization must perform the following baseline methodology for utilizing BD/FI	
	within a Cloud Eco-system for both public and private financial entities offering	
	financial services within the regulatory confines of the United States; Federal, State,	
	Local and/or cross-border such as the UK, EU and China.	
	Each financial services organization must approach the following disciplines	
	supporting their BD/FI initiative, with an understanding and appreciation for the impact	
	each of the following four overlaying and inter-dependent forces will play in a workable	
	implementation.	
	These four areas are:	
	1. People (resources),	
	2. Processes (time/cost/ROI),	
	3. Technology (various operating systems, platforms and footprints) and	
	4. Regulatory Governance (subject to various and multiple regulatory agencies).	
	In addition, these four areas must work through the process of being; identified,	
	analyzed, evaluated, addressed, tested, and reviewed in preparation for attending to	
	the following implementation phases:	
	1. Project Initiation and Management Buy-in	
	2. Risk Evaluations and Controls	
	3. Business Impact Analysis	
	J. Busilless illipact Allarysis	

		ent and Testing of the Business Continuity Strategies	
		se and Operations (aka; Disaster Recovery)	
		plementing Business Continuity Plans	
	7. Awareness and Tra		
	-	ercising Business Continuity, (aka: Maintaining Regulatory	
	Currency)		
		appropriate, these eight areas should be tailored and	
	modified to fit the requirements of each organizations unique and specific corporate		
	culture and line of financial		
Use Case Description		Google was intended to serve as an Internet Web site	
	• .	ort, shuffle, categorize and label the Internet. At the	
		a replacement for legacy information technology (IT) data	
		in-off development within OpenGroup and Hadoop, Big	
		ust data analysis and storage tool that is still undergoing	
		he end, Big Data is still being developed as an adjunct to	
		big iron data warehouse architectures which is better at	
	-	ne data warehouse environments, but not others.	
		adoop is used for fraud detection, risk analysis and	
	-	oving the organizations knowledge and understanding of	
		known as'know your customer', pretty clever, eh?	
		ill must be following a well thought out taxonomy that	
		and individual requirements. One such strategy is the	
	-	gy which address two fundamental yet paramount	
	questions; "What are we doing"? and "Why are we doing it"?		
	1). Policy Statement/Project Charter (Goal of the Plan, Reasons and		
	Resourcesdefine each),		
	2). Business Impact Analysis (how does effort improve our business services),		
	3). Identify System-wide Policies, Procedures and Requirements,		
	4). Identify Best Practices for Implementation (including Change Management/		
	Configuration Management) and/or Future Enhancements,		
	5). Plan B-Recovery Strategies (how and what will need to be recovered, if		
	necessary),		
	6). Plan Development (Write the Plan and Implement the Plan Elements),		
	7). Plan buy-in and Testing (important everyone Knows the Plan, and Knows What to		
	Do), and		
	8). Implement the Plan (then identify and fix gaps during first 3 months, 6 months,		
	and annually after initial	• •	
	, , ,	uous monitoring and updates to reflect the current	
	enterprise environment)		
Current	10). Lastly, System Retire Compute(System)		
Current Solutions	compute(system)	Currently, Big Data/Hadoop within a Cloud Eco-system within the FI is operating as part of a hybrid system, with	
Solutions		BD being utilized as a useful tool for conducting risk and	
		fraud analysis, in addition to assisting in organizations in	
		the process of ('know your customer'). These are three	
		areas where BD has proven to be good at;	
		1. detecting fraud,	
		 detecting fraud, associated risks and a 	
		 associated risks and a 'know your customer' strategy. 	
		At the same time, the traditional client/server/data	
		warehouse/RDBMS are used for the handling, processing,	
		warehouse/Rubivis are used for the handling, processing,	

	omputing in rinancial muustries
	storage and archival of the entities financial data. Recently the SEC has approved the initiative for requiring the FI to submit financial statements via the XBRL (extensible Business-Related Markup Language), as of May 13 th , 2013.
Storage	The same Federal, State, Local and cross-border legislative and regulatory requirements can impact any and all geographical locations, including; VMware, NetApps, Oracle, IBM, Brocade, et cetera. Please Note: Based upon legislative and regulatory concerns, these storage solutions for FI data must ensure this same data conforms to US regulatory compliance for GRC/CIA, at this point in time. For confirmation, please visit the following agencies web sites: SEC (U.S. Security and Exchange Commission), CFTC (U.S. Commodity Futures Trading Commission), FDIC (U.S. Federal Deposit Insurance Corporation), DOJ (U.S.
Networking	Department of Justice), and my favorite the PCAOB (Public Company Accounting and Oversight Board). Please Note: The same Federal, State, Local and cross- border legislative and regulatory requirements can impact
	any and all geographical locations of HW/SW, including but not limited to; WANs, LANs, MANs WiFi, fiber optics, Internet Access, via Public, Private, Community and Hybrid Cloud environments, with or without VPNs. Based upon legislative and regulatory concerns, these networking solutions for FI data must ensure this same data conforms to US regulatory compliance for GRC/CIA, such as the US Treasury Dept., at this point in time. For confirmation, please visit the following agencies web sites: SEC, CFTC, FDIC, US Treasury Dept., DOJ, and my favorite the PCAOB (Public Company Accounting and Oversight Board).
Software	Please Note: The same legislative and regulatory obligations impacting the geographical location of HW/SW, also restricts the location for; Hadoop, Map/Reduce, Open-source, and/or Vendor Proprietary such as AWS (Amazon Web Services), Google Cloud Services, and Microsoft Based upon legislative and regulatory concerns, these software solutions incorporating both SOAP (Simple Object Access Protocol), for Web development and OLAP (online analytical processing) software language for databases, specifically in this case for FI data, both must ensure this same data conforms to US regulatory compliance for GRC/CIA, at this point in time. For confirmation, please visit the following agencies web sites: SEC, CFTC, U.S. Treasury, FDIC, DOJ, and my favorite the PCAOB (Public Company Accounting and Oversight Board).

Big Data	Data Source (distributed/	Please Note: The same legislative and regulatory
Characteristics	centralized)	obligations impacting the geographical location of
		HW/SW, also impacts the location for; both
		distributed/centralized data sources flowing into HA/DR
		Environment and HVSs (Hosted Virtual Servers), such as
		the following constructs: DC1> VMWare/KVM (Clusters,
		w/Virtual Firewalls), Data link-Vmware Link-Vmotion Link-
		Network Link, Multiple PB of NaaS (Network as a Service),
		DC2>, VMWare/KVM (Clusters w/Virtual Firewalls),
		DataLink (Vmware Link, Vmotion Link, Network Link),
		Multiple PB of NaaS, (Requires Fail-Over Virtualization),
		among other considerations.
		Based upon legislative and regulatory concerns, these
		data source solutions, either distributed and/or
		centralized for FI data, must ensure this same data
		conforms to US regulatory compliance for GRC/CIA, at this
		point in time.
		For confirmation, please visit the following agencies
		web sites: SEC, CFTC, US Treasury, FDIC, DOJ, and my
		favorite the PCAOB (Public Company Accounting and
		Oversight Board).
	Volume (size)	Tera-bytes up to Peta-bytes.
	volume (Size)	Please Note: This is a 'Floppy Free Zone'.
	Velocity	Velocity is more important for fraud detection, risk
	(e.g. real time)	assessments and the 'know your customer' initiative
	(e.g. rear time)	within the BD FI.
		Please Note: However, based upon legislative and
		regulatory concerns, velocity is not at issue regarding BD
		solutions for FI data, except for fraud detection, risk
		analysis and customer analysis.
		Based upon legislative and regulatory restrictions, velocity is not at issue, rather the primary concern for FI
		data, is that it must satisfy all US regulatory compliance
	Variatu	obligations for GRC/CIA, at this point in time.
	Variety	Multiple virtual environments either operating within
	(multiple datasets, mash-	a batch processing architecture or a hot-swappable
	up)	parallel architecture supporting fraud detection, risk
		assessments and customer service solutions.
		Please Note: Based upon legislative and regulatory
		concerns, variety is not at issue regarding BD solutions for
		FI data within a Cloud Eco-system, except for fraud
		detection, risk analysis and customer analysis.
		Based upon legislative and regulatory restrictions,
		variety is not at issue, rather the primary concern for FI
		data, is that it must satisfy all US regulatory compliance
	V · 1 · 1 ·	obligations for GRC/CIA, at this point in time.
	Variability (rate of	Please Note: Based upon legislative and regulatory
	change)	concerns, variability is not at issue regarding BD solutions
		for FI data within a Cloud Eco-system, except for fraud
		detection, risk analysis and customer analysis.

		Based upon legislative and regulatory restrictions,
		variability is not at issue, rather the primary concern for
		FI data, is that it must satisfy all US regulatory compliance
		obligations for GRC/CIA, at this point in time.
		Variability with BD FI within a Cloud Eco-System will
		depending upon the strength and completeness of the
		SLA agreements, the costs associated with (CapEx), and
Die Dete Geiener	Mana atta (Dalamata and	depending upon the requirements of the business.
Big Data Science	Veracity (Robustness	Please Note: Based upon legislative and regulatory
(collection, curation,	lssues)	concerns, veracity is not at issue regarding BD solutions
analysis,		for FI data within a Cloud Eco-system, except for fraud
action)		detection, risk analysis and customer analysis.
		Based upon legislative and regulatory restrictions,
		veracity is not at issue, rather the primary concern for FI
		data, is that it must satisfy all US regulatory compliance
		obligations for GRC/CIA, at this point in time.
		Within a Big Data Cloud Eco-System, data integrity is
		important over the entire life cycle of the organization
		due to regulatory and compliance issues related to
		individual data privacy and security, in the areas of CIA
		and GRC requirements.
	Visualization	Please Note: Based upon legislative and regulatory
		concerns, visualization is not at issue regarding BD
		solutions for FI data, except for fraud detection, risk
		analysis and customer analysis, FI data is handled by
		traditional client/server/data warehouse big iron servers.
		Based upon legislative and regulatory restrictions,
		visualization is not at issue, rather the primary concern
		for FI data, is that it must satisfy all US regulatory
		compliance obligations for GRC/CIA, at this point in time.
		Data integrity within BD is critical and essential over
		the entire life-cycle of the organization due to regulatory
		and compliance issues related to CIA and GRC
		requirements.
	Data Quality	Please Note: Based upon legislative and regulatory
	Data Quality	concerns, data quality will always be an issue, regardless
		of the industry or platform.
		Based upon legislative and regulatory restrictions,
		data quality is at the core of data integrity, and is the
		primary concern for FI data, in that it must satisfy all US
		regulatory compliance obligations for GRC/CIA, at this
		point in time.
		For BD/FI data, data integrity is critical and essential
		For BD/FI data, data integrity is critical and essential over the entire life-cycle of the organization due to
		For BD/FI data, data integrity is critical and essential over the entire life-cycle of the organization due to regulatory and compliance issues related to CIA and GRC
		For BD/FI data, data integrity is critical and essential over the entire life-cycle of the organization due to regulatory and compliance issues related to CIA and GRC requirements.
	Data Types	For BD/FI data, data integrity is critical and essential over the entire life-cycle of the organization due to regulatory and compliance issues related to CIA and GRC requirements. Please Note: Based upon legislative and regulatory
	Data Types	For BD/FI data, data integrity is critical and essential over the entire life-cycle of the organization due to regulatory and compliance issues related to CIA and GRC requirements. Please Note: Based upon legislative and regulatory concerns, data types are important in that it must have a
	Data Types	For BD/FI data, data integrity is critical and essential over the entire life-cycle of the organization due to regulatory and compliance issues related to CIA and GRC requirements. Please Note: Based upon legislative and regulatory concerns, data types are important in that it must have a degree of consistency and especially survivability during
	Data Types	For BD/FI data, data integrity is critical and essential over the entire life-cycle of the organization due to regulatory and compliance issues related to CIA and GRC requirements. Please Note: Based upon legislative and regulatory concerns, data types are important in that it must have a

	Data Analytics	and a forensic investigation when passed through multiple cycles. For BD/FI data, multiple data types and formats, include but is not limited to; flat files, .txt, .pdf, android application files, .wav, .jpg and VOIP (Voice over IP) Please Note: Based upon legislative and regulatory
		concerns, data analytics is an issue regarding BD solutions for FI data, especially in regards to fraud detection, risk analysis and customer analysis. However, data analytics for FI data is currently handled by traditional client/server/data warehouse big iron servers which must ensure they comply with and satisfy all United States GRC/CIA requirements, at this point in time. For BD/FI data analytics must be maintained in a format that is non-destructive during search and analysis
		processing and procedures.
Big Data Specific Challenges (Gaps)	include the aggregating and	ncern associated with BD/FI with a Cloud Eco-system, storing of data (sensitive, toxic and otherwise) from and does create administrative and management problems
	 Management/Adm 	inistration
	 Data entitlement al 	
	Data ownership	
	However, based upon cur and are being addressed at SDLC/HDLC (Software Devel	rrent analysis, these concerns and issues are widely known this point in time, via the Research and Development opment Life Cycle/Hardware Development Life Cycle) gy. Please stay tuned for future developments in this
Big Data Specific		growing layer of technical complexity; however, not all Big
Challenges in Mobility	dependent parties who requised solution, the FI business side lexicon, taxonomy and approbligated to satisfy, these te Both sides in this collaboration FI data considerations: Inconsistent categor	technical in nature. There are two interrelated and co- uired to work together to find a workable and maintainable e and IT. When both are in agreement sharing a, common eciation and understand for the requirements each is echnical issues can be addressed. twe effort will encounter the following current and on-going ory assignments ration systems over time
	 Use of multiple over 	-
	 Different categoriza 	
	In addition, each of these satisfy the following data ch isolation, durability (ACID):	changing and evolving inconsistencies, are required to aracteristics associated with atomicity, consistency,
		vork in a transaction completes (commit) or none of it
		mittal transforms the database from one consistent state ent state. Consistency is defined in terms of constraints.

	 Isolated- The results of any changes made during a transaction are not visible 	
	until the transaction has committed.	
	 Durable- The results of a committed transaction survive failures. 	
	When each of these data categories is satisfied, well, it's a glorious thing.	
	Unfortunately, sometimes glory is not in the room, however, that does not mean we	
	give up the effort to resolve these issues.	
Security and Privacy	No amount of security and privacy due diligence will make up for the innate	
Requirements	deficiencies associated with human nature that creep into any program and/or	
Requirements	strategy. Currently, the BD/FI must contend with a growing number of risk buckets,	
	such as:	
	AML-Anti-Money Laundering	
	CDD- Client Due Diligence	
	Watch-lists	
	 FCPA – Foreign Corrupt Practices Act 	
	to name a few.	
	For a reality check, please consider Mr. Harry M. Markopolos' nine-year effort to get	
	the SEC among other agencies to do their job and shut down Mr. Bernard Madoff's	
	billion dollar Ponzi scheme.	
	However, that aside, identifying and addressing the privacy/security requirements of	
	the FI, providing services within a BD/Cloud Eco-system, via continuous improvements	
	in:	
	1. technology,	
	2. processes,	
	3. procedures,	
	4. people and	
	5. regulatory jurisdictions	
	is a far better choice for both the individual and the organization, especially when	
	considering the alternative.	
	Utilizing a layered approach, this strategy can be broken down into the following sub	
	categories:	
	1. Maintaining operational resilience	
	2. Protecting valuable assets	
	3. Controlling system accounts	
	4. Managing security services effectively, and	
	5. Maintaining operational resilience	
	For additional background security and privacy solutions addressing both security	
	and privacy, we'll refer you to the two following organizations:	
	 ISACA (International Society of Auditors and Computer Analysts) 	
	isc2 (International Security Computer and Systems Auditors)	
Highlight issues for	Areas of concern include the aggregating and storing data from multiple sources can	
generalizing this use case	create problems related to the following:	
(e.g. for ref.	Access control	
architecture)	Management/Administration	
	Data entitlement and	
	Data ownership	
	·	
	Each of these areas is being improved upon, yet they still must be considered and	
	addressed, via access control solutions, and SIEM (Security Incident/Event	
	Management) tools.	

	I don't believe we're there yet, based upon current security concerns mentioned whenever Big Data/Hadoop within a Cloud Eco-system is brought up in polite	
	conversation.	
	Current and on-going challenges to implementing BD Finance within a Cloud Eco, as	
	well as traditional client/server data warehouse architectures, include the following	
	areas of Financial Accounting under both US GAAP (U.S. Generally Accepted Accounting	
	Practices) or IFRS (International Financial Reporting Standards):	
	XBRL (extensible Business-Related Markup Language)	
	Consistency (terminology, formatting, technologies, regulatory gaps)	
	SEC mandated use of XBRL (extensible Business-Related Markup Language) for	
	regulatory financial reporting.	
	SEC, GAAP/IFRS and the yet to be fully resolved new financial legislation impacting	
	reporting requirements are changing and point to trying to improve the	
	implementation, testing, training, reporting and communication best practices	
	required of an independent auditor, regarding:	
	Auditing, Auditor's reports, Control self-assessments, Financial audits, GAAS / ISAs,	
	Internal audits, and the Sarbanes–Oxley Act of 2002 (SOX).	
More Information (URLs)	1. Cloud Security Alliance Big Data Working Group, "Top 10 Challenges in Big Data	
	Security and Privacy", 2012.	
	2. The IFRS, Securities and Markets Working Group, <u>http://www.xbrl-eu.org</u>	
	3. IEEE Big Data conference	
	http://www.ischool.drexel.edu/bigdata/bigdata2013/topics.htm	
	 Map/Reduce <u>http://www.mapreduce.org</u>. 	
	5. PCAOB <u>http://www.pcaob.org</u>	
	6. <u>http://www.ey.com/GL/en/Industries/Financial-Services/Insurance</u>	
	7. <u>http://www.treasury.gov/resource-center/fin-mkts/Pages/default.aspx</u>	
	8. CFTC <u>http://www.cftc.org</u>	
	9. SEC <u>http://www.sec.gov</u>	
	10. FDIC <u>http://www.fdic.gov</u>	
	11. COSO <u>http://www.coso.org</u>	
	12. isc2 International Information Systems Security Certification Consortium, Inc.:	
	http://www.isc2.org	
	13. ISACA Information Systems Audit and Control Association: http://www.isca.org	
	14. IFARS <u>http://www.ifars.org</u>	
	15. Apache http://www.opengroup.org	
	16. http://www.computerworld.com/s/article/print/9221652/IT must prepare for H	
	adoop security issues?tax	
	17. "No One Would Listen: A True Financial Thriller" (hard-cover book). Hoboken, NJ:	
	John Wiley & Sons. March 2010. Retrieved April 30, 2010. ISBN 978-0-470-55373-2	
	18. Assessing the Madoff Ponzi Scheme and Regulatory Failures (Archive of:	
	Subcommittee on Capital Markets, Insurance, and Government Sponsored	
	Enterprises Hearing) (<u>http://financialserv.edgeboss.net/wmedia/</u>	
	financialserv/hearing020409.wvx) (Windows Media). U.S. House Financial Services	
	Committee. February 4, 2009. Retrieved June 29, 2009.	
	19. COSO, The Committee of Sponsoring Organizations of the Treadway Commission	
	(COSO), Copyright© 2013, http://www.coso.org.	
	20. (ITIL) Information Technology Infrastructure Library, Copyright© 2007-13 APM	
	Group Ltd. All rights reserved, Registered in England No. 2861902, http://www.itil-	
	officialsite.com.	
	21. CobiT, Ver. 5.0, 2013, ISACA, Information Systems Audit and Control Association, (a	
	framework for IT Governance and Controls), <u>http://www.isaca.org</u> .	

22	. TOGAF, Ver. 9.1, The Open Group Architecture Framework (a framework for IT
	architecture), <u>http://www.opengroup.org</u> .
23	. ISO/IEC 27000:2012 Info. Security Mgt., International Organization for
	Standardization and the International Electrotechnical Commission,
	http://www.standards.iso.org/
Note: Please feel free to impro	ove our INITIAL DRAFT, Ver. 0.1, August 25 th , 2013as we do not consider our
efforts to be pearls, at this poi	nt in timeRespectfully yours, Pw Carey, Compliance Partners,
LLC pwc.pwcarey@gmail.com	

Commercial> Use Case 6: Mendeley—An International Network of Research

Use Case Title	Mendeley – An Internation	al Network of Research	
Vertical (area)	Mendeley – An International Network of Research Commercial Cloud Consumer Services		
Author/Company/Email			
	William Gunn / Mendeley / <u>william.gunn@mendeley.com</u>		
Actors/Stakeholders and their roles and	Researchers, librarians, publishers, and funding organizations.		
responsibilities			
Goals		vancement in scientific research by enabling researchers	
	-	brarians to understand researcher needs, publishers to	
		more quickly and broadly, and funding organizations to	
		act of the projects they fund.	
Use Case Description	-	ase of research documents and facilitates the creation of	
		deley uses the information collected about research	
		activities conducted via the software to build more	
		y and analysis tools. Text mining and classification	
		recommendation of relevant research, improving the	
		search teams, particularly those engaged in curation of	
	-	bject, such as the Mouse Genome Informatics group at	
		arge team of manual curators who scan the literature.	
		abling publishers to more rapidly disseminate	
		search institutions and librarians with data management	
		ling funders to better understand the impact of the work	
Current		a on the access and use of funded research. Amazon EC2	
Current Solutions	Compute(System)	HDFS Amazon S3	
Solutions	Storage		
	Networking	Client-server connections between Mendeley and end	
		user machines, connections between Mendeley offices and Amazon services.	
	Software		
Dia Data		Hadoop, Scribe, Hive, Mahout, Python	
Big Data	Data Source	Distributed and centralized	
Characteristics	(distributed/centralized)	1FTD presently growing about 1 TD/month	
	Volume (size)	15TB presently, growing about 1 TB/month	
	Velocity	Currently Hadoop batch jobs are scheduled daily, but	
	(e.g. real time)	work has begun on real-time recommendation	
	Variety	PDF documents and log files of social network and client	
	(multiple datasets,	activities	
	mashup)	Currently a high rate of growth as more recearchers sign	
	Variability (rate of	Currently a high rate of growth as more researchers sign	
	change)	up for the service, highly fluctuating activity over the course of the year	
Big Data Science	Veracity (Robustness	Metadata extraction from PDFs is variable, it's	
(collection, curation,	lssues)	challenging to identify duplicates, there's no universal	
analysis,	issuesj	identifier system for documents or authors (though	
action)		ORCID proposes to be this)	
action	Visualization	Network visualization via Gephi, scatterplots of	
	visualization	readership vs. citation rate, etc.	
	Data Quality	-	
	Data Quality	90% correct metadata extraction according to comparison with Crossref, Pubmed, and Arxiv	
	Data Turaa		
	Data Types	Mostly PDFs, some image, spreadsheet, and procontation files	
		presentation files	

Commercial> Use Case 6: Mendeley—An International Network of Research

	Data Analytics	Standard libraries for machine learning and analytics,
	-	LDA, custom built reporting tools for aggregating
		readership and social activities per document
Big Data Specific	The database contains ≈400	DM documents, roughly 80M unique documents, and
Challenges (Gaps)	receives 5-700k new upload	ds on a weekday. Thus, a major challenge is clustering
	matching documents toget	her in a computationally efficient way (scalable and
	parallelized) when they're u	uploaded from different sources and have been slightly
	modified via third-part anno	otation tools or publisher watermarks and cover pages
Big Data Specific	Delivering content and serv	ices to various computing platforms from Windows
Challenges in Mobility	desktops to Android and iO	S mobile devices
Security and Privacy	Researchers often want to keep what they're reading private, especially industry	
Requirements	researchers, so the data ab	out who's reading what has access controls.
Highlight issues for	This use case could be gene	ralized to providing content-based recommendations to
generalizing this use	various scenarios of information	ation consumption
case (e.g. for ref.		
architecture)		
More Information	http://mendeley.com http:/	//dev.mendeley.com
(URLs)		

Use Case Title	Netflix Movie Service		
Vertical (area)	Commercial Cloud Consumer Services		
Author/Company/Email	Geoffrey Fox, Indiana University gcf@indiana.edu		
Actors/Stakeholders	Netflix Company (Grow sustainable Business), Cloud Provider (Support streaming		
and their roles and	and data analysis), Client user (Identify and watch good movies on demand)		
responsibilities			
Goals	-	ected movies to satisfy multiple objectives (for different	
		etaining subscribers. Find best possible ordering of a set	
		old) within a given context in real time; maximize movie	
	consumption.		
Use Case Description	-	Id with metadata; user profiles and rankings for small	
		user. Use multiple criteria – content based recommende	
	-	ender system; diversity. Refine algorithms continuously	
	with A/B testing.		
Current	Compute(System)	Amazon Web Services AWS	
Solutions	Storage	Uses Cassandra NoSQL technology with Hive, Teradata	
	Networking	Need Content Delivery System to support effective	
		streaming video	
	Software	Hadoop and Pig; Cassandra; Teradata	
Big Data	Data Source	Add movies institutionally. Collect user rankings and	
Characteristics	(distributed/centralized)	profiles in a distributed fashion	
	Volume (size)	Summer 2012. 25 million subscribers; 4 million ratings	
		per day; 3 million searches per day; 1 billion hours	
		streamed in June 2012. Cloud storage 2 petabytes (Jur	
		2013)	
	Velocity	Media (video and properties) and Rankings continually	
	(e.g. real time)	updated	
	Variety	Data varies from digital media to user rankings, user	
	(multiple datasets,	profiles and media properties for content-based	
	mashup)	recommendations	
	Variability (rate of	Very competitive business. Need to aware of other	
	change)	companies and trends in both content (which Movies	
		are hot) and technology. Need to investigate new	
D' D I C I		business initiatives such as Netflix sponsored content	
Big Data Science	Veracity (Robustness	Success of business requires excellent quality of servic	
(collection, curation,	lssues)		
analysis,	Visualization	Streaming media and quality user-experience to allow	
action)	Data Quality	choice of content	
	Data Quality	Rankings are intrinsically "rough" data and need robus	
	Data Turaa	learning algorithms	
	Data Types	Media content, user profiles, "bag" of user rankings	
	Data Analytics	Recommender systems and streaming video delivery.	
		Recommender systems are always personalized and	
		use logistic/linear regression, elastic nets, matrix	
		factorization, clustering, latent Dirichlet allocation,	
		association rules, gradient boosted decision trees and	
		others. Winner of Netflix competition (to improve ratings by 10%) combined over 100 different	

Commercial> Use Case 7: Netflix Movie Service

Commercial> Use Case 7: Netflix Movie Service

Big Data Specific	Analytics needs continued monitoring and improvement.	
Challenges (Gaps)		
Big Data Specific	Mobile access important	
Challenges in Mobility		
Security and Privacy	Need to preserve privacy for users and digital rights for media.	
Requirements		
Highlight issues for	Recommender systems have features in common to e-commerce like Amazon.	
generalizing this use	Streaming video has features in common with other content providing services like	
case (e.g. for ref.	iTunes, Google Play, Pandora and Last.fm	
architecture)		
More Information	http://www.slideshare.net/xamat/building-largescale-realworld-recommender-	
(URLs)	systems-recsys2012-tutorial by Xavier Amatriain	
	http://techblog.netflix.com/	

Commercial> Use Case 8: Web Search

Use Case Title			
OSC Case Thic	Web Search (Bing, Google, Yahoo)		
Vertical (area)	Commercial Cloud Consumer Services		
Author/Company/Email	Geoffrey Fox, Indiana University gcf@indiana.edu		
Actors/Stakeholders	Owners of web information being searched; search engine companies; advertisers;		
and their roles and	users		
responsibilities			
Goals	Return in ≈0.1 seconds, the results of a search based on average of 3 words;		
		cision@10"; number of great responses in top 10 ranked	
	results		
Use Case Description	1) Crawl the web; 2) Pre-process data to get searchable things (words, positions);		
	3) Form Inverted Index map	ping words to documents; 4) Rank relevance of	
	documents: PageRank; 5) Lo	ts of technology for advertising, "reverse engineering	
	ranking" "preventing reverse	e engineering"; 6) Clustering of documents into topics (as	
	in Google News) 7) Update r	esults efficiently	
Current	Compute(System)	Large Clouds	
Solutions	Storage	Inverted Index not huge; crawled documents are	
		petabytes of text – rich media much more	
	Networking	Need excellent external network links; most operations	
		pleasingly parallel and I/O sensitive. High performance	
		internal network not needed	
	Software	Map/Reduce + Bigtable; Dryad + Cosmos. PageRank.	
		Final step essentially a recommender engine	
Big Data	Data Source	Distributed web sites	
Characteristics	(distributed/centralized)		
	Volume (size)	45B web pages total, 500M photos uploaded each day,	
		100 hours of video uploaded to YouTube each minute	
	Velocity	Data continually updated	
	(e.g. real time)		
	Variety	Rich set of functions. After processing, data similar for	
	(multiple datasets,	each page (except for media types)	
	mashup)		
	Variability (rate of	Average page has life of a few months	
	change)		
Big Data Science	Veracity (Robustness	Exact results not essential but important to get main	
(collection, curation,	lssues)	hubs and authorities for search query	
analysis,	Visualization	Not important although page layout critical	
action)	Data Quality	A lot of duplication and spam	
	Data Types	Mainly text but more interest in rapidly growing image	
		and video	
	Data Analytics	Crawling; searching including topic based search;	
		ranking; recommending	
		mation behind query front ends)	
		ve to intrinsic value (as in Pagerank) as well as	
	advertising value		
	Link to user profiles and soci		
	Mobile search must have sin	nilar interfaces/results	
Challenges in Mobility			
	Need to be sensitive to crawling restrictions. Avoid Spam results		
Requirements			

Commercial> Use Case 8: Web Search

Highlight issues for generalizing this use case (e.g. for ref. architecture)	Relation to Information retrieval such as search of scholarly works.
More Information	http://www.slideshare.net/kleinerperkins/kpcb-Internet-trends-2013
(URLs)	http://webcourse.cs.technion.ac.il/236621/Winter2011-2012/en/ho_Lectures.html
	http://www.ifis.cs.tu-bs.de/teaching/ss-11/irws
	http://www.slideshare.net/beechung/recommender-systems-tutorialpart1intro
	http://www.worldwidewebsize.com/

Use Case Title	laaS (Infrastructure as a Service) Big Data BC/DR Within a Cloud Eco-System provided		
	by Cloud Service Providers (CSPs) and Cloud Brokerage Service Providers (CBSPs)		
Vertical (area)	Large Scale Reliable Data Storage		
Author/Company/Email	Pw Carey, Compliance Partners, LLC, <u>pwc.pwcarey@email.com</u>		
Actors/Stakeholders	Executive Management, Data Custodians, and Employees responsible for the integrity,		
and their roles and	protection, privacy, confidentiality, availability, safety, security and survivability of a		
responsibilities	business by ensuring the 3-As of data accessibility to an organizations services are		
	satisfied; anytime, anyplace and on any device.		
Goals	The following represents one approach to developing a workable BC/DR strategy.		
	Prior to outsourcing an organizations BC/DR onto the backs/shoulders of a CSP or CBSP,		
	the organization must perform the following Use Case, which will provide each		
	organization with a baseline methodology for BC/DR best practices, within a Cloud Eco-		
	system for both Public and Private organizations.		
	Each organization must approach the ten disciplines supporting BC/DR, with an		
	understanding and appreciation for the impact each of the following four overlaying		
	and inter-dependent forces will play in ensuring a workable solution to an entity's		
	business continuity plan and requisite disaster recovery strategy. The four areas are;		
	people (resources), processes (time/cost/ROI), technology (various operating systems,		
	platforms and footprints) and governance (subject to various and multiple regulatory		
	agencies).		
	These four concerns must be; identified, analyzed, evaluated, addressed, tested,		
	reviewed, addressed during the following ten phases:		
	1. Project Initiation and Management Buy-in		
	2. Risk Evaluations and Controls		
	3. Business Impact Analysis		
	4. Design, Development and Testing of the Business Continuity Strategies		
	5. Emergency Response and Operations (aka; Disaster Recovery		
	6. Developing and Implementing Business Continuity Plans		
	7. Awareness and Training Programs		
	8. Maintaining and Exercising Business Continuity Plans, (aka: Maintaining		
	Currency)		
	9. Public Relations (PR) and Crises Management Plans		
	10. Coordination with Public Agencies		
	Please Note: When appropriate, these ten areas can be tailored to fit the		
	requirements of the organization.		
Use Case Description	Big Data as developed by Google was intended to serve as an Internet Web site		
	indexing tool to help them sort, shuffle, categorize and label the Internet. At the outset,		
	it was not viewed as a replacement for legacy IT data infrastructures. With the spin-off		
	development within OpenGroup and Hadoop, Big Data has evolved into a robust data		
	analysis and storage tool that is still undergoing development. However, in the end, Big		
	Data is still being developed as an adjunct to the current IT client/server/big iron data		
	warehouse architectures which is better at some things, than these same data		
	warehouse environments, but not others.		
	As a result, it is necessary, within this business continuity/disaster recovery use case,		
	we ask good questions, such as; why are we doing this and what are we trying to		
	accomplish? What are our dependencies upon manual practices and when can we		
	leverage them? What systems have been and remain outsourced to other		
	organizations, such as our Telephony and what are their DR/BC business functions, if		
	any? Lastly, we must recognize the functions that can be simplified and what are the		

		ake that do not have a high cost associated with them such
	as simplifying business practices.	
	We must identify what are the critical business functions that need to be recovered,	
	1st, 2nd, 3 rd in priority, or at a later time/date, and what is the Model of a Disaster	
	we're trying to resolve, what are the types of disasters more likely to occur realizing	
	that we don't need to resolve all types of disasters. When backing up data within a	
	Cloud Eco-system is a good solution, this will shorten the fail-over time and satisfy the	
		n addition, there must be 'Buy-in', as this is not just an IT
	-	vices problem as well, requiring the testing of the Disaster
	-	hs, et cetera. There should be a formal methodology for
		cluding: 1). Policy Statement (Goal of the Plan, Reasons and
		Business Impact Analysis (how does a shutdown impact
		otherwise), 3). Identify Preventive Steps (can a disaster be
		teps), 4). Recovery Strategies (how and what you will need
		pment (Write the Plan and Implement the Plan Elements),
		very important so that everyone knows the Plan and knows
	what to do during its execution), and 7). Maintenance (Continuous changes to reflect the current enterprise environment)	
Current	Compute(System)	Cloud Eco-systems, incorporating laaS (Infrastructure as a
Solutions	compute(system)	Service), supported by Tier 3 Data CentersSecure Fault
5010110113		Tolerant (Power) for Security, Power, Air Conditioning
		et ceterageographically off-site data recovery
		centersproviding data replication services, Note:
		Replication is different from Backup. Replication only
		moves the changes since the last time a replication,
		including block level changes. The replication can be done
		quickly, with a five second window, while the data is
		replicated every four hours. This data snap shot is
		retained for seven business days, or longer if necessary.
		Replicated data can be moved to a Fail-over Center to
		satisfy the organizations RPO (Recovery Point Objectives)
		and RTO
	Storage	VMware, NetApps, Oracle, IBM, Brocade,
	Networking	WANs, LANs, WiFi, Internet Access, via Public, Private,
	Networking	Community and Hybrid Cloud environments, with or
		without VPNs.
	Software	Hadoop, Map/Reduce, Open-source, and/or Vendor
	Solution	Proprietary such as AWS (Amazon Web Services), Google
		Cloud Services, and Microsoft
Big Data	Data Source (distributed	Both distributed/centralized data sources flowing into
Characteristics	/centralized)	HA/DR Environment and HVSs, such as the following:
	, contrainical	DC1> VMWare/KVM (Clusters, w/Virtual Firewalls),
		Data link-VMware Link-Vmotion Link-Network Link,
		Multiple PB of NaaS, DC2>, VMWare/KVM (Clusters
		w/Virtual Firewalls), DataLink (VMware Link, Motion Link,
		Network Link), Multiple PB of NaaS, (Requires Fail-Over
		Virtualization)
	Volume (size)	Terabytes up to Petabytes
	volunic (312e)	

-		
	Velocity (e.g. real time) Variety (multiple datasets, mash-	Tier 3 Data Centers with Secure Fault Tolerant (Power) for Security, Power, and Air Conditioning. IaaS (Infrastructure as a Service) in this example, based upon NetApps. Replication is different from Backup; replication requires only moving the CHANGES since the last time a REPLICATION was performed, including the block level changes. The Replication can be done quickly as the data is Replicated every four hours. These replications can be performed within a 5 second window, and this Snap Shot will be kept for seven business days, or longer if necessary to a Fail-Over Centerat the RPO and RTO Multiple virtual environments either operating within a bach processing architecture or a hot-swappable parallel
	up)	architecture.
	Variability (rate of	Depending upon the SLA agreement, the costs (CapEx)
	change)	increases, depending upon the RTO/RPO and the requirements of the business.
Big Data Science	Veracity (Robustness	Data integrity is critical and essential over the entire life-
(collection, curation,	lssues)	cycle of the organization due to regulatory and
analysis,	1054(25)	compliance issues related to data CIA and GRC data
action)		requirements.
	Visualization	Data integrity is critical and essential over the entire life- cycle of the organization due to regulatory and compliance issues related to data CIA and GRC data
		requirements.
	Data Quality	Data integrity is critical and essential over the entire life- cycle of the organization due to regulatory and compliance issues related to data CIA and GRC data requirements.
	Data Types	Multiple data types and formats, including but not limited
		to; flat files, .txt, .pdf, android application files, .wav, .jpg and VOIP (Voice over IP)
	Data Analytics	Must be maintained in a format that is non-destructive
		during search and analysis processing and procedures.
Big Data Specific Challenges (Gaps)	-	with migrating from a Primary Site to either a Replication ully automated at this point in time. The goal is to enable
		tiate the Fail Over Sequence, moving Data Hosted within
	management. In addition, b restored and what are the d	d and continuously monitored server configuration oth organizations must know which servers have to be ependencies and inter-dependencies between the Primary and/or Backup Site servers. This requires a continuous
	monitoring of both, since th dealing with servers housing	ere are two solutions involved with this process, either s stored images or servers running hot all the time, as in h hot-swappable functionality, all of which requires
Big Data Specific Challenges in Mobility	DR/BC solutions are technication together to find a solution, t	owing layer of technical complexity; however, not all al in nature, as there are two sides required to work he business side and the IT side. When they are in issues must be addressed by the BC/DR strategy

Receivery		
Security and Privacy	 implemented and maintained by the entire organization. One area, which is not limited to mobility challenges, concerns a fundamental issue impacting most BC/DR solutions. If your Primary Servers (A, B, C) understand X, Y, Zbut your Secondary Virtual Replication/Backup Servers (a, b, c) over the passage of time, are not properly maintained (configuration management) and become out of sync with your Primary Servers, and only understand X, and Y, when called upon to perform a Replication or Back-up, well "Houston, we have a problem" Please Note: Over time all systems can and will suffer from sync-creep, some more than others, when relying upon manual processes to ensure system stability. Dependent upon the nature and requirements of the organization's industry verticals, 	
Requirements	such as; Finance, Insurance, and Life Sciences including both public and/or private entities, and the restrictions placed upon them by; regulatory, compliance and legal jurisdictions.	
Highlight issues for	Challenges to Implement BC/DR, include the following:	
generalizing this use	1) Recognition, a). Management Vision, b). Assuming the issue is an IT issue, when it is	
case (e.g. for ref.	not just an IT issue, 2). People: a). Staffing levels - Many SMBs are understaffed in IT for	
architecture)	their current workload, b). Vision - (Driven from the Top Down) Can the business and IT resources see the whole problem and craft a strategy such a 'Call List' in case of a Disaster, c). Skills - Are there resources that can architect, implement and test a BC/DR Solution, d). Time - Do Resources have the time and does the business have the Windows of Time for constructing and testing a DR/BC Solution as DR/BC is an additional Add-On Project the organization needs the time and resources. 3). Money - This can be turned in to an OpEx Solution rather than a CapEx Solution which and can be controlled by varying RPO/RTO, a). Capital is always a constrained resource, b). BC Solutions need to start with "what is the Risk" and "how does cost constrain the solution"? 4). Disruption - Build BC/DR into the standard "Cloud" infrastructure (IaaS) of the SMB, a). Planning for BC/DR is disruptive to business resources, b). Testing BC is also disruptive	
More Information	1. <u>http://www.disasterrecovery.org/</u> , (March 2013).	
(URLs)	2. BC_DR From the Cloud, Avoid IT Disasters EN POINTE Technologies and dinCloud,	
	 Webinar Presenter Barry Weber, <u>http://www.dincloud.com</u>. COSO, The Committee of Sponsoring Organizations of the Treadway Commission 	
	 (COSO), Copyright© 2013, <u>http://www.coso.org</u>. ITIL Information Technology Infrastructure Library, Copyright© 2007-13 APM 	
	Group Ltd. All rights reserved, Registered in England No. 2861902, http://www.itil-	
	officialsite.com.	
	5. CobiT, Ver. 5.0, 2013, ISACA, Information Systems Audit and Control Association, (a	
	framework for IT Governance and Controls), http://www.isaca.org .	
	6. TOGAF, Ver. 9.1, The Open Group Architecture Framework (a framework for IT	
	architecture), <u>http://www.opengroup.org</u> .	
	7. ISO/IEC 27000:2012 Info. Security Mgt., International Organization for	
	Standardization and the International Electrotechnical Commission, <u>http://www.standards.iso.org/</u> .	
	 PCAOB, Public Company Accounting and Oversight Board, 	
	http://www.pcaobus.org.	
Note: Please feel free to i	mprove our INITIAL DRAFT, Ver. 0.1, August 10 th , 2013as we do not consider our	
	s point in timeRespectfully yours, Pw Carey, Compliance Partners,	
LLC pwc.pwcarey@gmail		

Commercial> Use Case 10: Cargo Shipping

Use Case Title	Cargo Shipping		
Vertical (area)	Industry		
Author/Company/Email	William Miller/MaCT USA/mact-usa@att.net		
Actors/Stakeholders	End-users (Sender/Recipients)		
and their roles and	Transport Handlers (Truck/Shi		
responsibilities	Telecom Providers (Cellular/SATCOM)		
	Shippers (Shipping and Receiving)		
Goals	Retention and analysis of item		
Use Case Description	The following use case defines the overview of a Big Data application related to the shipping industry (i.e., FedEx, UPS, DHL, etc.). The shipping industry represents possible the largest potential use case of Big Data that is in common use today. It relates to the identification, transport, and handling of item (Things) in the supply chain. The identification of an item begins with the sender to the recipients and for all those in between with a need to know the location and time of arrive of the items while in transport. A new aspect will be status condition of the items which will include sensor information, GPS coordinates, and a unique identification schema based upon a new ISO 29161 standards under development within ISO JTC1 SC31 WG2. The data is in near real time being updated when a truck arrives at a depot or upon delivery of the item to the recipient. Intermediate conditions are not currently known; the location is not updated in real time, items lost in a warehouse or while in shipment represent a problem potentially for homeland security. The records are		
Current	retained in an archive and can Compute(System)	be accessed for xx days.	
Solutions			
50.410115	Storage	Unknown	
	Networking LAN/T1/Internet Web Pages		
	Software	Unknown	
Big Data	Data Source	Centralized today	
Characteristics	(distributed/centralized)		
	Volume (size)	Large	
	Velocity	The system is not currently real time.	
	(e.g. real time)		
	Variety Updated when the driver arrives at the depot and (multiple datasets, mashup) download the time and date the items were picked up. This is currently not real time.		
	Variability (rate of change)	Today the information is updated only when the items that were checked with a bar code scanner are sent to the central server. The location is not currently displayed in real time.	
Big Data Science	Veracity (Robustness		
(collection, curation,	lssues)		
analysis,	Visualization	NONE	
action)	Data Quality	YES	
	Data Types	Not Available	
	Data Analytics	YES	
Big Data Specific Challenges (Gaps)	Provide more rapid assessment of the identity, location, and conditions of the shipments, provide detailed analytics and location of problems in the system in real time.		

Commercial> Use Case 10: Cargo Shipping

Big Data Specific	Currently conditions are not monitored on-board trucks, ships, and aircraft
Challenges in Mobility	
Security and Privacy	Security need to be more robust
Requirements	
Highlight issues for	This use case includes local data bases as well as the requirement to synchronize
generalizing this use	with the central server. This operation would eventually extend to mobile device and
case (e.g. for ref.	on-board systems which can track the location of the items and provide real-time
architecture)	update of the information including the status of the conditions, logging, and alerts
	to individuals who have a need to know.
More Information	
(URLs)	

See Figure 1: Cargo Shipping – Scenario.

Commercial>	Use	Case	11:	Materials	Data
-------------	-----	------	-----	-----------	------

Use Case Title	Materials Data		
Vertical (area)	Manufacturing, Materials Research		
Author/Company/Email	John Rumble, R&R Data Services; jumbleusa@earthlink.net		
Actors/Stakeholders	Product Designers (Inputters of materials data in CAE)		
and their roles and	Materials Researchers (Generators of materials data; users in some cases)		
responsibilities	Materials Testers (Generato	rs of materials data; standards developers)	
	Data distributors (Providers	of access to materials, often for profit)	
Goals	Broaden accessibility, quality, and usability; Overcome proprietary barriers to sharing materials data; Create sufficiently large repositories of materials data to support discovery		
Use Case Description	Every physical product is made from a material that has been selected for its properties, cost, and availability. This translates into hundreds of billion dollars of material decisions made every year.		
		als Genome Initiative has so effectively pointed out, the	
	number of years, in part bec	ormally takes decades (two to three) rather than a small cause data on new materials is not easily available. erials life cycle today have access to very limited	
	quantities of materials data,	thereby resulting in materials-related decision that are costly. While the Materials Genome Initiative is	
	-	nportant aspect of the issue, namely the fundamental	
		design and test materials computationally, the issues	
	-	ments on physical materials (from basic structural and	
	thermal properties to complex performance properties to properties of novel		
	(nanoscale materials) are not being addressed systematically, broadly (cross-		
	discipline and internationally), or effectively (virtually no materials data meetings,		
	standards groups, or dedicated funded programs).		
	One of the greatest challenges that Big Data approaches can address is predicting		
	the performance of real materials (gram to ton quantities) starting at the atomistic,		
	nanometer, and/or micrometer level of description.		
		onsiderations, decisions about materials usage are	
		often based on older rather than newer materials	
	-	data, and not taking advantage of advances in modeling	
	-	nformatics is an area in which the new tools of data	
	science can have major impa	act.	
Current	Compute(System)	None	
Solutions	Storage	Widely dispersed with many barriers to access	
	Networking	Virtually none	
	Software	Narrow approaches based on national programs (Japan,	
		Korea, and China), applications (EU Nuclear program),	
		proprietary solutions (Granta, etc.)	
Big Data	Data Source	Extremely distributed with data repositories existing	
Characteristics	(distributed/centralized)	only for a very few fundamental properties	
	Volume (size)	It has been estimated (in the 1980s) that there were	
		over 500,000 commercial materials made in the last	
		fifty years. The last three decades has seen large	
		growth in that number.	
	Velocity	Computer-designed and theoretically design materials	
	(e.g. real time)	(e.g., nanomaterials) are growing over time	

	Variety	Many datasets and virtually no standards for mashups	
	(multiple datasets,		
	mashup)		
	Variability (rate of	Materials are changing all the time, and new materials	
	change)	data are constantly being generated to describe the	
		new materials	
Big Data Science	Veracity (Robustness	More complex material properties can require many	
(collection, curation,	Issues)	(100s?) of independent variables to describe	
analysis,		accurately. Virtually no activity no exists that is trying to	
action)		identify and systematize the collection of these	
		variables to create robust datasets.	
	Visualization	Important for materials discovery. Potentially	
		important to understand the dependency of properties	
		on the many independent variables. Virtually	
		unaddressed.	
	Data Quality	Except for fundamental data on the structural and	
		thermal properties, data quality is poor or unknown.	
		See Munro's NIST Standard Practice Guide.	
	Data Types	Numbers, graphical, images	
	Data Analytics	Empirical and narrow in scope	
Big Data Specific	1. Establishing materials data repositories beyond the existing ones that focus on		
Challenges (Gaps)	fundamental data		
	2. Developing internationally-accepted data recording standards that can be used		
	by a very diverse materials community, including developers materials test		
	-	A and ISO), testing companies, materials producers, and	
	research and developm		
	-	b help organizations wishing to deposit proprietary	
	-	tories to mask proprietary information, yet to maintain	
	the usability of data		
		s data visualization tools, in which the number of	
Dig Data Spacific	variables can be quite h	IKII	
Big Data Specific	Not important at this time		
Challenges in Mobility	Due mietem metros ef m		
Security and Privacy	Proprietary nature of many	uata very sensitive.	
Requirements	Dovelopment of standards	development of large coale repositories, involving	
Highlight issues for	-	development of large scale repositories; involving	
generalizing this use case (e.g. for ref.	industrial users; integration with CAE (don't underestimate the difficulty of this –		
architecture)	materials people are generally not as computer savvy as chemists, bioinformatics people, and engineers)		
More Information	people, and engineers		
(URLs)			

Commercial> Use Case 11: Materials Data

Commercial> Use Case 12: Simulation Driven Materials Genomics

Use Case Title	Simulation driven Materials Genomics		
Vertical (area)	Scientific Research: Materia	ls Science	
Author/Company/Email	David Skinner/LBNL/deskinner@lbl.gov		
Actors/Stakeholders	Capability providers: National labs and energy hubs provide advanced materials		
and their roles and		computing and data as instruments of discovery.	
responsibilities		stry and academic researchers as a user community	
	seeking capabilities for rapid innovation in materials.		
Goals			
	Speed the discovery of advanced materials through informatically driven simulation surveys.		
Use Case Description		ologies through massive simulations spanning wide	
	-	stematic computational studies of innovation	
		Rational design of materials based on search and	
	simulation.		
Current		Honnor parse gov (1EOK coroc) amiss like data	
Current Solutions	Compute(System)	Hopper.nersc.gov (150K cores), omics-like data	
Solutions	Charges	analytics hardware resources.	
	Storage	GPFS, MongoDB	
	Networking	10Gb	
	Software	PyMatGen, FireWorks, VASP, ABINIT, NWChem,	
		BerkeleyGW, varied community codes	
Big Data	Data Source	Gateway-like. Data streams from simulation surveys	
Characteristics	(distributed/centralized) driven on centralized peta/exascale systems. Widely		
	distributed web of dataflows from central gateway to		
		users.	
	Volume (size)	100TB (current), 500TB within 5 years. Scalable key-	
		value and object store databases needed.	
	Velocity	High throughput computing (HTC), fine-grained tasking	
	(e.g. real time)	and queuing. Rapid start/stop for ensembles of tasks.	
		Real-time data analysis for web-like responsiveness.	
	Variety	Mashup of simulation outputs across codes and levels	
	(multiple datasets,	of theory. Formatting, registration and integration of	
	mashup)	datasets. Mashups of data across simulation scales.	
	Variability (rate of	The targets for materials design will become more	
	change)	search and crowd-driven. The computational backend	
		must flexibly adapt to new targets.	
Big Data Science	Veracity (Robustness	Validation and UQ of simulation with experimental data	
(collection, curation,	Issues, semantics)	of varied quality. Error checking and bounds estimation	
analysis,	from simulation inter-comparison.		
action)	Visualization	Materials browsers as data from search grows. Visual	
···· ·		design of materials.	
	Data Quality (syntax)	UQ in results based on multiple datasets.	
		Propagation of error in knowledge systems.	
	Data Types Key value pairs, JSON, materials file formats Data Analytics Map/Reduce and search that join simulation and		
	Data Analytics	experimental data.	
Big Data Specific	HTC at scale for simulation s	ccience. Flexible data methods at scale for messy data.	
Challenges (Gaps)	Machine learning and knowledge systems that integrate data from publications,		
Di- D-4- 0 10	experiments, and simulations to advance goal-driven thinking in materials design.		
Big Data Specific	Potential exists for widespread delivery of actionable knowledge in materials		
Challenges in Mobility	science. Many materials genomics "apps" are amenable to a mobile platform.		

Commercial> Use Case 12: Simulation Driven Materials Genomics

Security and Privacy	Ability to "sandbox" or create independent working areas between data
Requirements	stakeholders. Policy-driven federation of datasets.
Highlight issues for	An OSTP blueprint toward broader materials genomics goals was made available in
generalizing this use	May 2013.
case (e.g. for ref.	
architecture)	
More Information	http://www.materialsproject.org
(URLs)	

Defense> Use Case 13: Large Scale Geospatial Analysis and Visualization

Use Case Title	Large Scale Geospatial Analysis and Visualization		
Vertical (area)	Defense – but applicable to many others		
Author/Company/Email	David Boyd/Data Tactics/ <u>dboyd@data-tactics.com</u>		
Actors/Stakeholders	Geospatial Analysts		
and their roles and	Decision Makers		
responsibilities	Policy Makers		
Goals	•	al data analysis and visualization.	
Use Case Description		ly aware sensors increase and the number of	
Use case Description			
	geospatially tagged data sources increases the volume geospatial data requiring		
	complex analysis and visualization is growing exponentially. Traditional GIS systems		
		lyzing millions of objects and easily visualizing	
		nce systems often contain trillions of geospatial objects	
		lize and interact with millions of objects.	
Current	Compute(System)	Compute and Storage systems - Laptops to Large	
Solutions		servers (see notes about clusters)	
		Visualization systems - handhelds to laptops	
	Storage	Compute and Storage - local disk or SAN	
		Visualization - local disk, flash ram	
	Networking	Compute and Storage - Gigabit or better LAN	
		connection	
		Visualization - Gigabit wired connections, Wireless	
		including WiFi (802.11), Cellular (3g/4g), or Radio Relay	
	Software	Compute and Storage – generally Linux or Win Server	
		with Geospatially enabled RDBMS, Geospatial	
		server/analysis software – ESRI ArcServer, Geoserver	
		Visualization – Windows, Android, IOS – browser based	
		visualization. Some laptops may have local ArcMap.	
Big Data	Data Source Very distributed.		
Characteristics	(distributed/centralized)	very distributed.	
Characteristics		Imagene 100s of Terrelytes	
	Volume (size)	Imagery – 100s of Terabytes	
		Vector Data – 10s of GBs but billions of points	
	Velocity	Some sensors delivery vector data in NRT. Visualization	
	(e.g. real time)	of changes should be NRT.	
	Variety	Imagery (various formats NITF, GeoTiff, CADRG)	
	(multiple datasets,	Vector (various formats shape files, kml, text streams:	
	mashup)		
		circles, ellipses.	
	Variability (rate of	Moderate to high	
	change)		
Big Data Science	Veracity (Robustness	Data accuracy is critical and is controlled generally by	
(collection, curation,	lssues)	three factors:	
analysis,		1. Sensor accuracy is a big issue.	
action)		2. datum/spheroid.	
		3. Image registration accuracy	
	Visualization	Displaying in a meaningful way large datasets (millions	
		of points) on small devices (handhelds) at the end of	
		low bandwidth networks.	

Defense> Use Case 13: Large Scale Geospatial Analysis and Visualization

	Data Quality	The typical problem is visualization implying	
		quality/accuracy not available in the original data. All	
		data should include metadata for accuracy or circular	
		error probability.	
	Data Types	Imagery (various formats NITF, GeoTiff, CADRG)	
		Vector (various formats shape files, kml, text streams:	
		Object types include points, lines, areas, polylines,	
		circles, ellipses.	
	Data Analytics	Closest point of approach, deviation from route, point	
	-	density over time, PCA and ICA	
Big Data Specific	Indexing, retrieval and distri	buted analysis	
Challenges (Gaps)	Visualization generation and transmission		
Big Data Specific	Visualization of data at the end of low bandwidth wireless connections.		
Challenges in Mobility			
Security and Privacy	Data is sensitive and must be completely secure in transit and at rest (particularly on		
Requirements	handhelds)		
Highlight issues for	Geospatial data requires unique approaches to indexing and distributed analysis.		
generalizing this use			
case (e.g. for ref.			
architecture)			
More Information	Applicable Standards: http://www.opengeospatial.org/standards		
(URLs)	http://geojson.org/		
	http://earth-info.nga.mil/pu	ublications/specs/printed/CADRG/cadrg.html	
	Geospatial Indexing: Quad T	rees, Space Filling Curves (Hilbert Curves) – You can	
	google these for lots of refe	rences.	
Note: There has been som		o this problem set. Specifically, the DCGS-A standard	
cloud (DSC) stores, indexe	loud (DSC) stores, indexes, and analyzes some Big Data sources. However, many issues remain with		
visualization.			
b			

Defense > Use Case 14: Object I dentification and Tracking – Persistent Surveillance

Use Case Title	-	cking from Wide Area Large Format Imagery (WALF)	
	Imagery or Full Motion Vide	o (FMV) – Persistent Surveillance	
Vertical (area)	Defense (Intelligence)		
Author/Company/Email	David Boyd/Data Tactics/dboyd@data-tactics.com		
Actors/Stakeholders	1. Civilian Military decision	n makers	
and their roles and	2. Intelligence Analysts		
responsibilities	3. Warfighters		
Goals	To be able to process and extract/track entities (vehicles, people, packages) over time from the raw image data. Specifically, the idea is to reduce the petabytes of data generated by persistent surveillance down to a manageable size (e.g. vector tracks)		
Use Case Description		ors can easily collect petabytes of imagery data in the space	
		le for this data to be processed by humans for either	
		s. The data needs to be processed close to the sensor which	
		nce it is too large to be easily transmitted. The data should	
		patial object (points, tracks, etc.) which can easily be	
	-	o form a common operational picture.	
Current	Compute(System)	Various – they range from simple storage capabilities	
Solutions		mounted on the sensor, to simple display and storage, to	
		limited object extraction. Typical object extraction	
		systems are currently small (1-20 node) GPU enhanced	
		clusters.	
	Storage	Currently flat files persisted on disk in most cases.	
		Sometimes RDBMS indexes pointing to files or portions of	
		files based on metadata/telemetry data.	
	Networking	Sensor comms tend to be Line of Sight or Satellite based.	
	Software	A wide range custom software and tools including	
		traditional RDBMS and display tools.	
Big Data	Data Source	Sensors include airframe mounted and fixed position	
Characteristics	(distributed/centralized)	optical, IR, and SAR images.	
	Volume (size)	FMV – 30 to 60 frames per/sec at full color 1080P	
		resolution.	
		WALF – 1 to 10 frames per/sec at 10Kx10K full color	
		resolution.	
	Velocity	Real Time	
	(e.g. real time)	Dete Terrier III. entete in energy and the Little	
		Data Typically exists in one or more standard imagery or	
	(multiple datasets,	video formats.	
	mashup)		
	Variability (rate of	Little	
	change)	The compative of extremented philotheric sufficient of the second	
Big Data Science	Veracity (Robustness	The veracity of extracted objects is critical. If the system	
(collection, curation,	lssues)	fails or generates false positives people are put at risk.	
analysis,	Visualization Visualization of extracted outputs will typically be as		
action)		overlays on a geospatial display. Overlay objects should	
		be links back to the originating image/video segment.	
	Data Quality	Data quality is generally driven by a combination of sensor	
		characteristics and weather (both obscuring factors -	
		dust/moisture and stability factors – wind).	

Defense > Use Case 14: Object Identification and Tracking – Persistent Surveillance

	Data Types	Standard imagery and video formats are input. Output	
	Data Types	should be in the form of OGC compliant web features or	
		standard geospatial files (shape files, KML).	
	Data Analytics	1. Object identification (type, size, color) and tracking.	
	Data Analytics	 Pattern analysis of object (did the truck observed 	
		every Weds. afternoon take a different route today or	
		is there a standard route this person takes every day).	
		 Crowd behavior/dynamics (is there a small group 	
		attempting to incite a riot. Is this person out of place	
		in the crowd or behaving differently?	
		4. Economic activity	
		a. is the line at the bread store, the butcher, or the	
		ice cream store,	
		b. are more trucks traveling north with goods than trucks going south	
		trucks going south c. Has activity at or the size of stores in this market	
		place increased or decreased over the past year.	
		5. Fusion of data with other data to improve quality and	
		confidence.	
Big Data Specific	Processing the volume of da	ita in NRT to support alerting and situational awareness.	
Challenges (Gaps)	The support are time and a walleness.		
Big Data Specific	Getting data from mobile sensor to processing		
Challenges in Mobility	0		
Security and Privacy	Significant – sources and methods cannot be compromised the enemy should not be		
Requirements	able to know what we see.		
Highlight issues for		sing fits well into massively parallel computing such as	
generalizing this use		roblem is integration of this processing into a larger cluster	
case (e.g. for ref.	capable of processing data f	rom several sensors in parallel and in NRT.	
architecture)	Transmission of data from s	ensor to system is also a large challenge.	
More Information		http://www.gwg.nga.mil/misb/	
(URLs)	Some of many papers on ob		
()		u/~hbling/publication/SPIE12 Dismount Formatted v2 B	
	W.pdf		
		h/library/Tracking/Orten.2005.pdf	
		om/science/article/pii/S0031320305004863	
	General Articles on the need		
		ace.com/topics/m/video/79088650/persistent-surveillance-	
		t-data-points-and-connecting-the-dots.htm	
		m/wide-area-persistent-surveillance-revolutionizes-tactical-	
	isr-45745/	· · · · · · · · · · · · · · · · · · ·	
		m/wide-area-persistent-surveillance-revolutionizes-tactical-	

Defense > Use Case 15: Intelligence Data Processing and Analysis

Use Case Title	Intelligence Data Processing and Analysis		
Vertical (area)	Defense (Intelligence)		
Author/ Company/Email	David Boyd/Data Tactics/dboyd@data-tactics.com		
Actors/Stakeholders	Senior Civilian/Military Lead	dership	
and their roles and	Field Commanders		
responsibilities	Intelligence Analysts		
	Warfighters		
Goals	1. Provide automated ale	rts to Analysts, Warfighters, Commanders, and Leadership	
	based on incoming inte	elligence data.	
	2. Allow Intelligence Anal	ysts to identify in Intelligence data	
	a. Relationships betv	veen entities (people, organizations, places, equipment)	
	b. Trends in sentime	nt or intent for either general population or leadership	
	group (state, non-	state actors).	
	c. Location of and po	ossibly timing of hostile actions (including implantation of	
	IEDs).		
	d. Track the location	and actions of (potentially) hostile actors	
	3. Ability to reason agains	st and derive knowledge from diverse, disconnected, and	
	frequently unstructure	d (e.g. text) data sources.	
	4. Ability to process data	close to the point of collection and allow data to be	
	shared easily to/from in	ndividual soldiers, forward deployed units, and senior	
	leadership in garrison.		
Use Case Description	1. Ingest/accept data from a wide range of sensors and sources across intelligence		
	disciplines (IMINT, MASINT, GEOINT, HUMINT, SIGINT, OSINT, etc.)		
	2. Process, transform, or align date from disparate sources in disparate formats into		
	a unified data space to permit:		
	a. Search		
	b. Reasoning	b. Reasoning	
	c. Comparison		
		of significant changes in the state of monitored entities or	
	significant activity with		
		the edge for the Warfighter (in this case the edge would	
	go as far as a single soldier on dismounted patrol)		
Current	Compute(System) Fixed and deployed computing clusters ranging from		
Solutions		1000s of nodes to 10s of nodes.	
	Storage	10s of Terabytes to 100s of Petabytes for edge and fixed	
		site clusters. Dismounted soldiers would have at most 1-	
		100s of GBs (mostly single digit handheld data storage	
		sizes).	
	Networking	Networking with-in and between in garrison fixed sites is	
		robust. Connectivity to forward edge is limited and often	
		characterized by high latency and packet loss. Remote	
		comms might be Satellite based (high latency) or even	
		limited to RF Line of sight radio.	

	Software	Currently baseline leverages:
		1. Hadoop
		2. Accumulo (Big Table)
		3. Solr
		4. NLP (several variants)
		5. Puppet (for deployment and security)
		6. Storm
		7. Custom applications and visualization tools
Big Data	Data Source	Very distributed
Characteristics	(distributed/centralized)	
characteristics	Volume (size)	Some IMINT sensors can produce over a petabyte of
	volume (size)	data in the space of hours. Other data is as small as
		infrequent sensor activations or text messages.
	Velocity	Much sensor data is real time (Full motion video, SIGINT)
	(e.g. real time)	other is less real time. The critical aspect is to be able
		ingest, process, and disseminate alerts in NRT.
	Variety	Everything from text files, raw media, imagery, video,
	(multiple datasets,	audio, electronic data, human generated data.
	mashup)	
	Variability (rate of	While sensor interface formats tend to be stable, most
	change)	other data is uncontrolled and may be in any format.
		Much of the data is unstructured.
Big Data Science	Veracity (Robustness Data provenance (e.g. tracking of all transfers and	
collection, curation,	Issues, semantics) transformations) must be tracked over the life of the	
analysis,	data.	
action)		Determining the veracity of "soft" data sources
· · · · · ,	(generally human generated) is a critical requirement.	
	Visualization	Primary visualizations will be Geospatial overlays and
	Visualization	network diagrams. Volume amounts might be millions of
		points on the map and thousands of nodes in the
	Data Quality (auntary)	network diagram.
	Data Quality (syntax)	Data Quality for sensor generated data is generally
		known (image quality, sig/noise) and good.
		Unstructured or "captured" data quality varies
		significantly and frequently cannot be controlled.
	Data Types	Imagery, Video, Text, Digital documents of all types,
		Audio, Digital signal data.
	Data Analytics	1. NRT Alerts based on patterns and baseline changes.
		2. Link Analysis
		3. Geospatial Analysis
		4. Text Analytics (sentiment, entity extraction, etc.)
Big Data Specific	1. Big (or even moderate size data) over tactical networks	
Challenges (Gaps)		
,	semantically integrated data space.Most critical data is either unstructured or imagery/video which requires	
	significant processing to extract entities and information.	
	The outputs of this analysis and information must be transmitted to or accessed by	
Big Data Specific		and information must be transmitted to or accessed by
Big Data Specific hallenges in Mobility	the dismounted forward so	

Defense > Use Case 15: Intelligence Data Processing and Analysis

Defense> Use Case 15: Intelligence Data Processing and Analysis

Security and Privacy	Foremost. Data must be protected against:
Requirements	1. Unauthorized access or disclosure
	2. Tampering
Highlight issues for	Wide variety of data types, sources, structures, and quality which will span domains
generalizing this use	and requires integrated search and reasoning.
case (e.g. for ref.	
architecture)	
More Information	http://www.afcea-
(URLs)	aberdeen.org/files/presentations/AFCEAAberdeen DCGSA COLWells PS.pdf
	http://stids.c4i.gmu.edu/papers/STIDSPapers/STIDS2012 T14 SmithEtAl Horizontall
	ntegrationOfWarfighterIntel.pdf
	http://stids.c4i.gmu.edu/STIDS2011/papers/STIDS2011 CR T1 SalmenEtAl.pdf
	http://www.youtube.com/watch?v=I4Qii7T8zeg
	http://dcgsa.apg.army.mil/

Healthcare and Life Sciences> Use Case 16: Electronic Medical Record Data

Use Case Title	Electronic Medical Record (EMR) Data		
Vertical (area)	Healthcare		
Author/Company/Email	Shaun Grannis/Indiana University/sgrannis@regenstrief.org		
Actors/Stakeholders	Biomedical informatics research scientists (implement and evaluate enhanced		
and their roles and	methods for seamlessly integrating, standardizing, analyzing, and operationalizing		
responsibilities	-	volume clinical data streams); <u>Health services</u>	
		ated and standardized EMR data to derive knowledge	
		on and evaluation of translational, comparative	
		red outcomes research); <u>Healthcare providers –</u>	
	-	ealth officials (leverage information and knowledge	
	derived from integrated and standardized EMR data to support direct patient care		
	and population health)		
Goals		normalizing patient, provider, facility and clinical concept	
Guais		ong separate health care organizations to enhance	
		acting clinical phenotypes from non-standard discrete	
		ing feature selection, information retrieval and machine	
		everage clinical phenotype data to support cohort	
	_	research, and clinical decision support.	
Use Case Description			
Use case Description		asingly gather and consume EMR data, large national	
		e such data are emerging, and include developing a	
		ystem to support increasingly evidence-based clinical	
		te and up-to-date patient-centered clinical information;	
		al clinical data to efficiently and rapidly translate	
	scientific discoveries into effective clinical treatments; and electronically sharing integrated health data to improve healthcare process efficiency and outcomes.		
	These key initiatives all rely on high-quality, large-scale, standardized and aggregate		
	-	health data. Despite the promise that increasingly prevalent and ubiquitous EMR	
		data hold, enhanced methods for integrating and rationalizing these data are needed for a variety of reasons. Data from clinical systems evolve over time. This is because	
	the concept space in healthcare is constantly evolving: new scientific discoveries lead		
	to new disease entities, new diagnostic modalities, and new disease management		
	approaches. These in turn lead to new clinical concepts, which drive the evolution of health concept ontologies. Using heterogeneous data from the Indiana Network for		
		on's largest and longest-running health information	
	exchange, which includes more than 4 billion discrete coded clinical observations		
	from more than 100 hospitals for more than 12 million patients, we will use		
	information retrieval techniques to identify highly relevant clinical features from		
	electronic observational data. We will deploy information retrieval and natural		
	language processing techniques to extract clinical features. Validated features will be		
	used to parameterize clinical phenotype decision models based on maximum		
	likelihood estimators and Bayesian networks. Using these decision models we will		
	identify a variety of clinical phenotypes such as diabetes, congestive heart failure, and pancreatic cancer.		
Current	-	Pig Pod II, a now Cray suppresentation at 111	
Current Solutions	Compute(System)	Big Red II, a new Cray supercomputer at I.U. Teradata, PostgreSQL, MongoDB	
Solutions	Storage		
	Networking	Various. Significant I/O intensive processing needed.	
	Software	Hadoop, Hive, R. Unix-based.	

Healthcare and Life Sciences> Use Case 16: Electronic Medical Record Data

Pig Data	Data Source	Clinical data from more than 1,100 discrete logical
Big Data Characteristics	(distributed/centralized)	Clinical data from more than 1,100 discrete logical,
Characteristics	(distributed/centralized)	operational healthcare sources in the Indiana Network
		for Patient Care (INPC) the nation's largest and longest-
		running health information exchange.
	Volume (size)	More than 12 million patients, more than 4 billion
		discrete clinical observations. > 20 TB raw data.
	Velocity	Between 500,000 and 1.5 million new real-time clinical
	(e.g. real time)	transactions added per day.
	Variety	We integrate a broad variety of clinical datasets from
	(multiple datasets,	multiple sources: free text provider notes; inpatient,
	mashup)	outpatient, laboratory, and emergency department
		encounters; chromosome and molecular pathology;
		chemistry studies; cardiology studies; hematology
		studies; microbiology studies; neurology studies;
		provider notes; referral labs; serology studies; surgical
		pathology and cytology, blood bank, and toxicology
		studies.
	Variability (rate of	Data from clinical systems evolve over time because
	change)	the clinical and biological concept space is constantly
	change)	evolving: new scientific discoveries lead to new disease
		-
		entities, new diagnostic modalities, and new disease
		management approaches. These in turn lead to new
		clinical concepts, which drive the evolution of health
		concept ontologies, encoded in highly variable fashion.
Big Data Science	Veracity (Robustness	Data from each clinical source are commonly gathered
(collection, curation,	Issues, semantics)	using different methods and representations, yielding
analysis,		substantial heterogeneity. This leads to systematic
action)		errors and bias requiring robust methods for creating
		semantic interoperability.
	Visualization	Inbound data volume, accuracy, and completeness
		must be monitored on a routine basis using focus
		visualization methods. Intrinsic informational
		characteristics of data sources must be visualized to
		identify unexpected trends.
	Data Quality (syntax)	A central barrier to leveraging EMR data is the highly
		variable and unique local names and codes for the
		same clinical test or measurement performed at
		different institutions. When integrating many data
		sources, mapping local terms to a common
		standardized concept using a combination of
		probabilistic and heuristic classification methods is
		necessary.
	Data Types	Wide variety of clinical data types including numeric,
	Data Types	structured numeric, free-text, structured text, discrete
		nominal, discrete ordinal, discrete structured, binary
		large blobs (images and video).
		ומוצב הוסהג (וווומצבי מווע אועבט).

Healthcare and Life Sciences> Use Case 16: Electronic Medical Record Data

	Data Analytics	Information retrieval methods to identify relevant clinical features (tf-idf, latent semantic analysis, mutual information). Natural Language Processing techniques to extract relevant clinical features. Validated features will be used to parameterize clinical phenotype decision models based on maximum likelihood estimators and Bayesian networks. Decision models will
		be used to identify a variety of clinical phenotypes such
		as diabetes, congestive heart failure, and pancreatic cancer.
Big Data Specific	Overcoming the systematic	errors and bias in large-scale, heterogeneous clinical data
Challenges (Gaps)	to support decision-making	in research, patient care, and administrative use-cases
	requires complex multistage processing and analytics that demands substantial	
	computing power. Further, t	he optimal techniques for accurately and effectively
	deriving knowledge from observational clinical data are nascent.	
Big Data Specific	Biological and clinical data are needed in a variety of contexts throughout the	
Challenges in Mobility	healthcare ecosystem. Effectively delivering clinical data and knowledge across the	
	healthcare ecosystem will be facilitated by mobile platform such as mHealth.	
Security and Privacy	Privacy and confidentiality of individuals must be preserved in compliance with	
Requirements	federal and state requirements including HIPAA. Developing analytic models using	
	comprehensive, integrated of	clinical data requires aggregation and subsequent de-
	identification prior to applying complex analytics.	
Highlight issues for	Patients increasingly receive health care in a variety of clinical settings. The	
generalizing this use	subsequent EMR data is fragmented and heterogeneous. In order to realize the	
case (e.g. for ref.	-	n Care system as advocated by the National Academy of
architecture)		Medicine, EMR data must be rationalized and integrated.
	The methods we propose in this use-case support integrating and rationalizing	
	clinical data to support decision-making at multiple levels.	
More Information		<pre>/www.regenstrief.org); Logical observation identifiers</pre>
(URLs)		vw.loinc.org); Indiana Health Information Exchange
		ute of Medicine Learning Healthcare System
	(http://www.iom.edu/Activi	ties/Quality/LearningHealthcare.aspx)

Healthcare and Life Sciences> Use Case 17: Pathology Imaging/Digital Pathology

Use Case Title	Pathology Imaging/digital pathology		
Vertical (area)	Healthcare		
Author/Company/Email	Fusheng Wang/Emory University/fusheng.wang@emory.edu		
Actors/Stakeholders		ranslational research; hospital clinicians on imaging	
and their roles and	guided diagnosis		
responsibilities			
Goals	Develop high performance i	mage analysis algorithms to extract spatial information	
	from images; provide efficient spatial queries and analytics, and feature clustering		
	and classification		
Use Case Description	Digital pathology imaging is	an emerging field where examination of high resolution	
	images of tissue specimens	enables novel and more effective ways for disease	
	diagnosis. Pathology image a	analysis segments massive (millions per image) spatial	
	objects such as nuclei and b	lood vessels, represented with their boundaries, along	
	with many extracted image	features from these objects. The derived information is	
	used for many complex que	ries and analytics to support biomedical research and	
	clinical diagnosis. Recently, 3	3D pathology imaging is made possible through 3D laser	
	technologies or serially secti	ioning hundreds of tissue sections onto slides and	
	scanning them into digital in	nages. Segmenting 3D microanatomic objects from	
	registered serial images cou	Id produce tens of millions of 3D objects from a single	
	image. This provides a deep	"map" of human tissues for next generation diagnosis.	
Current	Compute(System) Supercomputers; Cloud		
Solutions	Storage	SAN or HDFS	
	Networking Need excellent external network link		
	Software MPI for image analysis; Map/Reduce + Hive with spatial		
		extension	
Big Data	Data Source	Digitized pathology images from human tissues	
Characteristics	(distributed/centralized)		
	Volume (size)	1GB raw image data + 1.5GB analytical results per 2D	
		image; 1TB raw image data + 1TB analytical results per	
		3D image. 1PB data per moderated hospital per year	
	Velocity	Once generated, data will not be changed	
	(e.g. real time)		
	Variety	Image characteristics and analytics depend on disease	
	(multiple datasets,	types	
	mashup)		
	Variability (rate of	No change	
	change)	ů.	
Big Data Science	Veracity (Robustness	High quality results validated with human annotations	
(collection, curation,	lssues)	are essential	
analysis,	Visualization	Needed for validation and training	
action)	Data Quality	Depend on preprocessing of tissue slides such as	
	chemical staining and quality of image analysis		
		algorithms	
	Data Types	Raw images are whole slide images (mostly based on	
	,p	BIGTIFF), and analytical results are structured data	
		(spatial boundaries and features)	
	Data Analytics	Image analysis, spatial queries and analytics, feature	
	2	clustering and classification	
		0	

Healthcare and Life Sciences> Use Case 17: Pathology Imaging/Digital Pathology

Big Data Specific	Extreme large size; multi-dimensional; disease specific analytics; correlation with	
Challenges (Gaps)	other data types (clinical data, -omic data)	
Big Data Specific	3D visualization of 3D pathology images is not likely in mobile platforms	
Challenges in Mobility		
Security and Privacy	Protected health information has to be protected; public data have to be de-	
Requirements	identified	
Highlight issues for	Imaging data; multi-dimensional spatial data analytics	
generalizing this use		
case (e.g. for ref.		
architecture)		
More Information	https://web.cci.emory.edu/confluence/display/PAIS	
(URLs)	(URLs) <u>https://web.cci.emory.edu/confluence/display/HadoopGIS</u>	
See Figure 2: Pathology Imaging/Digital Pathology – Examples of 2-D and 3-D pathology images.		
See Figure 3: Pathology Imaging/Digital Pathology – Architecture of Hadoop-GIS, a spatial data		
warehousing system, over MapReduce to support spatial analytics for analytical pathology imaging.		

Healthcare and Life Sciences> Use Case 18: Computational Bioimaging

Use Case Title	Computational Bioimaging	
Vertical (area)	Scientific Research: Biological Science	
Author/Company/Email	David Skinner ¹ , deskinner@	<u>Olbl.gov</u>
	Joaquin Correa ¹ , <u>JoaquinCo</u>	orrea@lbl.gov
	Daniela Ushizima ² , <u>dushizin</u>	na@lbl.gov
	Joerg Meyer ² , joergmeyer@lbl.gov	
	¹ National Energy Scientific Computing Center (NERSC), Lawrence Berkeley National	
	Laboratory, USA	
	² Computational Research D	Division, Lawrence Berkeley National Laboratory, USA
Actors/Stakeholders	Capability providers: Bioima	aging instrument operators, microscope developers,
and their roles and		nathematicians, and data stewards.
responsibilities	User Community: DOE, indu	ustry and academic researchers seeking to collaboratively
	build models from imaging	
Goals		maging is increasingly automated, higher resolution, and
		ed a data analysis bottleneck that, if resolved, can
		scovery through Big Data techniques. Our goal is to solve
	that bottleneck with extrem	
		quire more than computing. It will require building
		esources and providing advanced algorithms for massive
		mance computational solutions can be harnessed by
	-	e gateways to guide the application of massive data
	-	aging datasets. Workflow components include data
		cement, minimizing noise, segmentation of regions of
	interest, crowd-based selection and extraction of features, and object classification,	
	and organization, and search.	
Use Case Description	Web-based one-stop-shop for high performance, high throughput image processing	
	for producers and consumers of models built on bio-imaging data.	
Current	Compute(System)	Hopper.nersc.gov (150K cores)
Solutions	Storage Database and image collections Networking 10Gb, could use 100Gb and advanced networking (SDN)	
	Software	ImageJ, OMERO, VolRover, advanced segmentation and
		feature detection methods from applied math
Dia Data	Data Cauraa	researchers
Big Data Characteristics	Data Source	Distributed experimental sources of bioimages
Characteristics	(distributed/centralized)	(instruments). Scheduled high volume flows from
		automated high-resolution optical and electron
	Volume (size)	microscopes. Growing very fast. Scalable key-value and object store
	volume (size)	databases needed. In-database processing and analytics.
		50TB here now, but currently over a petabyte overall. A
	501B here now, but currently over a petabyte overall. A single scan on emerging machines is 32TB	
	Velocity High throughput computing (HTC), responsive analysis	
	(e.g. real time)	
	Variety	Multi-modal imaging essentially must mash-up disparate
	(multiple datasets,	channels of data with attention to registration and
	mashup)	dataset formats.
	Variability (rate of	Biological samples are highly variable and their analysis
	change)	workflows must cope with wide variation.
	change/	

Healthcare and Life Sciences> Use Case 18: Computational Bioimaging

Die Dete Calence	Mana site (Dalassata and	Data is many successful as is taxining all sufficient
Big Data Science	Veracity (Robustness	Data is messy overall as is training classifiers.
(collection, curation,	Issues, semantics)	
analysis,	Visualization	Heavy use of 3D structural models.
action)	Data Quality (syntax)	
	Data Types	Imaging file formats
	Data Analytics	Machine learning (SVM and RF) for classification and
		recommendation services.
Big Data Specific	HTC at scale for simulation	science. Flexible data methods at scale for messy data.
Challenges (Gaps)	Machine learning and knowledge systems that drive pixel based data toward	
	biological objects and models.	
Big Data Specific		
Challenges in Mobility		
Security and Privacy		
Requirements		
Highlight issues for	There is potential in generalizing concepts of search in the context of bioimaging.	
generalizing this use		
case (e.g. for ref.		
architecture)		
More Information		
(URLs)		

Healthcare and Life Sciences> Use Case 19: Genomic Measurements

Use Case Title	Genomic Measurements		
Vertical (area)	Healthcare		
Author/Company/Email	Justin Zook/NIST/jzook@nist.gov		
Actors/Stakeholders	NIST/Genome in a Bottle Consortium – public/private/academic partnership		
and their roles and			
responsibilities			
Goals	Develop well-characterized Reference Materials, Reference Data, and Reference		
	Methods needed to assess p	performance of genome sequencing	
Use Case Description	Integrate data from multiple	e sequencing technologies and methods to develop highly	
	confident characterization o	f whole human genomes as Reference Materials, and	
	develop methods to use these Reference Materials to assess performance of any		
	genome sequencing run		
Current	Compute(System)	72-core cluster for our NIST group, collaboration with	
Solutions		>1000 core clusters at FDA, some groups are using	
		cloud	
	Storage	≈40TB NFS at NIST, PBs of genomics data at NIH/NCBI	
	Networking	Varies. Significant I/O intensive processing needed	
	Software	Open-source sequencing bioinformatics software from	
	continuite	academic groups (UNIX-based)	
Big Data	Data Source Sequencers are distributed across many laboratories,		
Characteristics	(distributed/centralized)	though some core facilities exist.	
characteristics	Volume (size)	40TB NFS is full, will need >100TB in 1-2 years at NIST;	
	volume (size)	Healthcare community will need many PBs of storage	
	Velocity	DNA sequencers can generate ≈300GB compressed	
	(e.g. real time)	data/day. Velocity has increased much faster than	
	(e.g. rear time)	Moore's Law	
	Variety	File formats not well-standardized, though some	
	(multiple datasets,	standards exist. Generally structured data.	
	mashup)	Standards Exist. Generally structured data.	
	Variability (rate of Sequencing technologies have evolved very rapidly, and		
Big Data Science	change) new technologies are on the horizon.		
(collection, curation,	Veracity (Robustness All sequencing technologies have significant systematic		
analysis,	Issues) errors and biases, which require complex analysis methods and combining multiple technologies to		
analysis, action)		understand, often with machine learning	
action	Visualization	"Genome browsers" have been developed to visualize	
	Visualization	processed data	
	Data Quality	Sequencing technologies and bioinformatics methods	
	Data Quality		
	Data Turas	have significant systematic errors and biases	
	Data Types	Mainly structured text	
	Data Analytics	Processing of raw data to produce variant calls. Also,	
		clinical interpretation of variants, which is now very	
Dia Data Cassifia	challenging.		
Big Data Specific	Processing data requires significant computing power, which poses challenges		
Challenges (Gaps)	especially to clinical laboratories as they are starting to perform large-scale		
	sequencing. Long-term storage of clinical sequencing data could be expensive.		
	Analysis methods are quickly evolving. Many parts of the genome are challenging to		
	analyze, and systematic errors are difficult to characterize.		
Big Data Specific	Physicians may need access to genomic data on mobile platforms		
Challenges in Mobility			

Healthcare and Life Sciences> Use Case 19: Genomic Measurements

Security and Privacy	Sequencing data in health records or clinical research databases must be kept	
Requirements	secure/private, though our Consortium data is public.	
Highlight issues for	I have some generalizations to medical genome sequencing above, but focus on	
generalizing this use	NIST/Genome in a Bottle Consortium work. Currently, labs doing sequencing range	
case (e.g. for ref.	from small to very large. Future data could include other 'omics' measurements,	
architecture)	which could be even larger than DNA sequencing	
More Information	Genome in a Bottle Consortium: <u>http://www.genomeinabottle.org</u>	
(URLs)		

Healthcare and Life Sciences> Use Case 20: Comparative Analysis for (meta) Genomes

Use Case Title	Comparative analysis for metagenomes and genomes		
Vertical (area)	Scientific Research: Genomics		
Author/Company/Email	Ernest Szeto / LBNL / <u>eszeto@lbl.gov</u>		
Actors/Stakeholders	Joint Genome Institute (JGI) Integrated Microbial Genomes (IMG) project. Heads:		
and their roles and		ikos C. Kyrpides. User community: JGI, bioinformaticians	
responsibilities	and biologists worldwide.	······································	
Goals	-	arative analysis system for metagenomes and genomes.	
Cours	This includes interactive Web UI with core data, backend precomputations, batch job		
	computation submission fro		
Use Case Description		le, (1) determine the community composition in terms of	
Ose case Description			
	_	omes, (2) characterize the function of its genes, (3) begin	
	-	pathways, (4) characterize similarity or dissimilarity with	
		s, (5) begin to characterize changes in community	
		ue to changes in environmental pressures, (6) isolate sub-	
		uality measures and community composition.	
Current	Compute(System)	Linux cluster, Oracle RDBMS server, large memory	
Solutions		machines, standard Linux interactive hosts	
	Storage	Oracle RDBMS, SQLite files, flat text files, Lucy (a	
		version of Lucene) for keyword searches, BLAST	
		databases, USEARCH databases	
	Networking	Provided by NERSC	
	Software	Standard bioinformatics tools (BLAST, HMMER, multiple	
		alignment and phylogenetic tools, gene callers,	
		sequence feature predictors), Perl/Python wrapper	
		scripts, Linux Cluster scheduling	
Big Data	Data Source	Centralized.	
Characteristics	(distributed/centralized)		
	Volume (size)	50tb	
	Velocity	Front end web UI must be real time interactive. Back	
	(e.g. real time)	end data loading processing must keep up with	
	(e.g. rear time)	exponential growth of sequence data due to the rapid	
	Mantata	drop in cost of sequencing technology.	
	Variety	Biological data is inherently heterogeneous, complex,	
	(multiple datasets,	structural, and hierarchical. One begins with sequences,	
	mashup)	followed by features on sequences, such as genes,	
		motifs, regulatory regions, followed by organization of	
		genes in neighborhoods (operons), to proteins and	
		their structural features, to coordination and	
		expression of genes in pathways. Besides core genomic	
		data, new types of "Omics" data such as	
		transcriptomics, methylomics, and proteomics	
		describing gene expression under a variety of	
	conditions must be incorporated into the comparative		
		analysis system.	
	Variability (rate of	The sizes of metagenomic samples can vary by several	
	change)	orders of magnitude, such as several hundred thousand	
	0.7	genes to a billion genes (e.g., latter in a complex soil	
		sample).	
		······································	

Healthcare and Life Sciences> Use Case 20: Comparative Analysis for (meta) Genomes

Big Data Science	Veracity (Robustness	Metagenomic sampling science is currently preliminary
(collection, curation,	Issues)	and exploratory. Procedures for evaluating assembly of
analysis,	1354637	highly fragmented data in raw reads are better defined,
action)		but still an open research area.
actiony	Visualization	Interactive speed of web UI on very large datasets is an
	visualization	
		ongoing challenge. Web UI's still seem to be the
		preferred interface for most biologists. It is use for
		basic querying and browsing of data. More specialized
		tools may be launched from them, e.g. for viewing
		multiple alignments. Ability to download large amounts
		of data for offline analysis is another requirement of
		the system.
	Data Quality	Improving quality of metagenomic assembly is still a
		fundamental challenge. Improving the quality of
		reference isolate genomes, both in terms of the
		coverage in the phylogenetic tree, improved gene
		calling and functional annotation is a more mature
		process, but an ongoing project.
	Data Types	Cf. above on "Variety"
	Data Analytics	Descriptive statistics, statistical significance in
		hypothesis testing, discovering new relationships, data
		clustering and classification is a standard part of the
		analytics. The less quantitative part includes the ability
		to visualize structural details at different levels of
		resolution. Data reduction, removing redundancies
		through clustering, more abstract representations such
		as representing a group of highly similar genomes in a
		pangenome are all strategies for both data
		management as well as analytics.
Big Data Specific	The biggest friend for dealin	g with the heterogeneity of biological data is still the
Challenges (Gaps)		bes not scale for the current volume of data. NoSQL
5 (1 /	-	n alternative. Unfortunately, NoSQL solutions do not
		eal time interactive use, rapid and parallel bulk loading,
		regarding robustness. Our current approach is currently
		nly on the Linux cluster and the file system to supplement
		om solution oftentimes rely in knowledge of the
		wing us to devise horizontal partitioning schemes as well
	as inversion of data organiza	
Big Data Specific	No special challenges. Just v	
Challenges in Mobility		
Security and Privacy	No special challenges. Data	is either public or requires standard login with password.
Requirements		
Highlight issues for	A replacement for the RDBN	IS in Big Data would be of benefit to everyone. Many
generalizing this use	-	fill this role, but have their limitations.
case (e.g. for ref.		
architecture)		
More Information	http://img.igi.doo.gov	
	http://img.jgi.doe.gov	
(URLs)		

Healthcare and Life Sciences> Use Case 21: Individualized Diabetes Management

Use Case Title		Individualized Diabetes Management	
Vertical (area)	Healthcare		
Author/Company/Email		ı, Geoffrey Fox, David Wild at Mayo Clinic, Indiana	
	University, UIC; dingying@i		
Actors/Stakeholders	Mayo Clinic + IU/semantic i	-	
and their roles and	UIC/semantic graph mining		
responsibilities	IU cloud and parallel comp	-	
Goals	Develop advanced graph-based data mining techniques applied to EHR to search for these cohorts and extract their EHR data for outcome evaluation. These methods will push the boundaries of scalability and data mining technologies and advance knowledge and practice in these areas as well as clinical management of complex diseases.		
Use Case Description	Diabetes is a growing illness in world population, affecting both developing and developed countries. Current management strategies do not adequately take into account of individual patient profiles, such as co-morbidities and medications, which are common in patients with chronic illnesses. We propose to approach this shortcoming by identifying similar patients from a large Electronic Health Record (EHR) database, i.e., an individualized cohort, and evaluate their respective management outcomes to formulate one best solution suited for a given patient with diabetes. Project under development as below		
	 Stage 1: Use the Semantic Linking for Property Values method to convert an existing data warehouse at Mayo Clinic, called the Enterprise Data Trust (EDT), into RDF triples that enables us to find similar patients much more efficiently through linking of both vocabulary-based and continuous values, Stage 2: Needs efficient parallel retrieval algorithms, suitable for cloud or HPC, using open source Hbase with both indexed and custom search to identify patients of possible interest. Stage 3: The EHR, as an RDF graph, provides a very rich environment for graph pattern mining. Needs new distributed graph mining algorithms to perform pattern analysis and graph indexing technique for pattern searching on RDF triple graphs. Stage 4: Given the size and complexity of graphs, mining subgraph patterns could generate numerous false positives and miss numerous false negatives. Needs robust statistical analysis tools to manage false discovery rate and determine true subgraph significance and validate these through several clinical use cases. 		
Current		supercomputers; cloud	
Solutions	Storage	HDFS	
	Networking	Varies. Significant I/O intensive processing needed	
	Software	Mayo internal data warehouse called Enterprise Data	
	Solution	Trust (EDT)	
Big Data	Data Source	distributed EHR data	
Characteristics	(distributed/centralized)		
	Volume (size)	The Mayo Clinic EHR dataset is a very large dataset containing over 5 million patients with thousands of properties each and many more that are derived from primary values.	
	Velocity	not real time but updated periodically	
	(e.g. real time)		

Healthcare and Life Sciences> Use Case 21: Individualized Diabetes Management

	Variety	Structured data, a patient has controlled vocabulary
	(multiple datasets,	(CV) property values (demographics, diagnostic codes,
	mashup)	medications, procedures, etc.) and continuous property
		values (lab tests, medication amounts, vitals, etc.). The
		number of property values could range from less than
		100 (new patient) to more than 100,000 (long term
		patient) with typical patients composed of 100 CV values
		and 1000 continuous values. Most values are time
		based, i.e., a timestamp is recorded with the value at
		the time of observation.
	Variability (rate of	Data will be updated or added during each patient visit.
	change)	
Big Data Science	Veracity (Robustness	Data are annotated based on domain ontologies or
(collection, curation,	Issues)	taxonomies. Semantics of data can vary from labs to
analysis,		labs.
action)	Visualization	no visualization
	Data Quality	Provenance is important to trace the origins of the data
		and data quality
	Data Types	text, and Continuous Numerical values
	Data Analytics	Integrating data into semantic graph, using graph
		traverse to replace SQL join. Developing semantic graph
		mining algorithms to identify graph patterns, index
		graph, and search graph. Indexed Hbase. Custom code
		to develop new patient properties from stored data.
Big Data Specific	For individualized cohort, w	ve will effectively be building a datamart for each patient
Challenges (Gaps)	since the critical properties	and indices will be specific to each patient. Due to the
	number of patients, this be	comes an impractical approach. Fundamentally, the
	paradigm changes from rela	ational row-column lookup to semantic graph traversal.
Big Data Specific	Physicians and patient may	need access to this data on mobile platforms
Challenges in Mobility		
Security and Privacy	Health records or clinical re	search databases must be kept secure/private.
Requirements		
Highlight issues for	-	us values, ontological annotation, taxonomy
generalizing this use	Graph Search: indexing and	
case (e.g. for ref.	Validation: Statistical valida	tion
architecture)		
More Information		
(URLs)		

Healthcare and Life Sciences> Use Case 22: Statistical Relational Artificial Intelligence for Health Care

Use Case Title	Statistical Relational Artifici	al Intelligence for Health Care
Vertical (area)	Healthcare	
Author/Company/Email		a University <u>/natarasr@indiana.edu</u>
Actors/Stakeholders	Researchers in Informatics, medicine and practitioners in medicine.	
and their roles and		
responsibilities		
Goals	The goal of the project is to	analyze large, multi-modal, longitudinal data. Analyzing
Could		s imaging, EHR, genetic and natural language data
		on. This approach employs the relational probabilistic
		pility of handling rich relational data and modeling
	-	ty theory. The software learns models from multiple data
		grate the information and reason about complex queries.
Use Case Description		lescriptions – say for instance, MRI images and
·	-	particular subject. They can then query for the onset of a
		eimer's) and the system will then provide a probability
	distribution over the possib	le occurrence of this disease.
Current	Compute(System)	A high performance computer (48 GB RAM) is needed to
Solutions		run the code for a few hundred patients. Clusters for
		large datasets
	Storage	A 200 GB to 1 TB hard drive typically stores the test
		data. The relevant data is retrieved to main memory to
		run the algorithms. Backend data in database or NoSQL
		stores
	Networking	Intranet.
	Software	Mainly Java based, in house tools are used to process
		the data.
Big Data	Data Source	All the data about the users reside in a single disk file.
Characteristics	(distributed/centralized)	Sometimes, resources such as published text need to be
		pulled from IInternet.
	Volume (size)	Variable due to the different amount of data collected.
		Typically can be in 100s of GBs for a single cohort of a
		few hundred people. When dealing with millions of
		patients, this can be in the order of 1 petabyte.
	Velocity	Varied. In some cases, EHRs are constantly being
	(e.g. real time)	updated. In other controlled studies, the data often
		comes in batches in regular intervals.
	Variety	This is the key property in medical datasets. That data is
	(multiple datasets,	typically in multiple tables and need to be merged in
	mashup)	order to perform the analysis.
	Variability (rate of change)	The arrival of data is unpredictable in many cases as they arrive in real time.
Big Data Science	Veracity (Robustness	Challenging due to different modalities of the data,
(collection, curation,	Issues, semantics)	human errors in data collection and validation.
analysis,	Visualization	The visualization of the entire input data is nearly
action)	impossible. But typically, partially visualizable. The	
		models built can be visualized under some reasonable
		assumptions.
	Data Quality (syntax)	· ·

Healthcare and Life Sciences> Use Case 22: Statistical Relational Artificial Intelligence for Health Care

	Data Types	EHRs, imaging, genetic data that are stored in multiple databases.
	Data Analytics	
Big Data Specific Challenges (Gaps)	Data is in abundance in ma possibly be too much data analysis complicated. The r multiple sources in a form t other issue is that sometim subject but the number of s This can result in learning a multiple data types as impor methods that can faithfully aspect of data imbalance is incidence of certain disease	ny cases of medicine. The key issue is that there can (as images, genetic sequences etc.) that can make the eal challenge lies in aligning the data and merging from that can be made useful for a combined analysis. The es, large amount of data is available about a single subjects themselves is not very high (i.e., data imbalance). Igorithms picking up random correlations between the ortant features in analysis. Hence, robust learning model the data are of paramount importance. Another the occurrence of positive examples (i.e., cases). The es may be rare making the ratio of cases to controls t possible for the learning algorithms to model noise
Big Data Specific Challenges in Mobility		
Security and Privacy Requirements	Secure handling and proces	ssing of data is of crucial importance in medical domains.
Highlight issues for generalizing this use case (e.g. for ref. architecture)	other populations with dive	et of populations cannot be easily generalized across erse characteristics. This requires that the learned models ned according to the change in the population
More Information (URLs)		

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-3r2 281 282 283

Healthcare and Life Sciences> Use Case 23: World Population Scale Epidemiology

Use Case Title	World Population Scale Epid	lemiological Study
Vertical (area)	Epidemiology, Simulation Social Science, Computational Social Science	
Author/Company/Email	Madhav Marathe Stephen Eubank or Chris Barrett/ Virginia Bioinformatics Institute,	
	Virginia Tech, mmarathe@v	bi.vt.edu, seubank@vbi.vt.edu or cbarrett@vbi.vt.edu
Actors/Stakeholders	Government and non-profit institutions involved in health, public policy, and disaster	
and their roles and	mitigation. Social Scientist who wants to study the interplay between behavior and	
responsibilities	contagion.	
Goals	(a) Build a synthetic global population. (b) Run simulations over the global	
		outbreaks and various intervention strategies.
Use Case Description		ndemic similar to the 2009 H1N1 influenza.
Current	Compute(System)	Distributed (MPI) based simulation system written in
Solutions		Charm++. Parallelism is achieved by exploiting the
		disease residence time period.
	Storage	Network file system. Exploring database driven
	0	techniques.
	Networking	Infiniband. High bandwidth 3D Torus.
	Software	Charm++, MPI
Big Data	Data Source	Generated from synthetic population generator.
Characteristics	(distributed/centralized)	Currently centralized. However, could be made
		distributed as part of post-processing.
	Volume (size)	100TB
	Velocity	Interactions with experts and visualization routines
	(e.g. real time)	generate large amount of real time data. Data feeding
	,	into the simulation is small but data generated by
		simulation is massive.
	Variety	Variety depends upon the complexity of the model
	(multiple datasets,	over which the simulation is being performed. Can be
	mashup)	very complex if other aspects of the world population
		such as type of activity, geographical, socio-economic,
		cultural variations are taken into account.
	Variability (rate of	Depends upon the evolution of the model and
	change)	corresponding changes in the code. This is complex and
		time intensive. Hence low rate of change.
Big Data Science	Veracity (Robustness	Robustness of the simulation is dependent upon the
(collection, curation,	Issues, semantics)	quality of the model. However, robustness of the
analysis,		computation itself, although non-trivial, is tractable.
action)	Visualization	Would require very large amount of movement of data
		to enable visualization.
	Data Quality (syntax)	Consistent due to generation from a model
	Data Types	Primarily network data.
	Data Analytics	Summary of various runs and replicates of a simulation
Big Data Specific		on is both compute intensive and data intensive.
Challenges (Gaps)	Moreover, due to unstructured and irregular nature of graph processing the problem	
	is not easily decomposable. Therefore it is also bandwidth intensive. Hence, a	
	supercomputer is applicable	
Big Data Specific	None	
Challenges in Mobility		
	4	

Healthcare and Life Sciences> Use Case 23: World Population Scale Epidemiology

Security and Privacy	Several issues at the synthetic population-modeling phase (see social contagion
Requirements	model).
Highlight issues for	In general contagion diffusion of various kinds: information, diseases, social unrest
generalizing this use	can be modeled and computed. All of them are agent-based model that utilize the
case (e.g. for ref.	underlying interaction network to study the evolution of the desired phenomena.
architecture)	
More Information	
(URLs)	

Healthcare and Life Sciences> Use Case 24: Social Contagion Modeling

Use Case Title	Social Contagion Modeling	
Vertical (area)		ational security, public health, viral marketing, city
	planning, disaster preparedr	
Author/Company/Email	Madhav Marathe or Chris Ku	uhlman /Virginia Bioinformatics Institute, Virginia Tech
	<u>mmarathe@vbi.vt.edu</u> or <u>ck</u>	uhlman@vbi.vt.edu
/Actors/Stakeholders		
and their roles and		
responsibilities		
Goals	Provide a computing infrastr	ructure that models social contagion processes.
	The infrastructure enables d	lifferent types of human-to-human interactions (e.g.,
	face-to-face versus online m	edia; mother-daughter relationships versus mother-
	coworker relationships) to b	e simulated. It takes not only human-to-human
	interactions into account, bu	ut also interactions among people, services (e.g.,
	transportation), and infrastr	ucture (e.g., Internet, electric power).
Use Case Description	Social unrest. People take to	the streets to voice unhappiness with government
	leadership. There are citizen	is that both support and oppose government. Quantify
	the degrees to which norma	I business and activities are disrupted owing to fear and
	anger. Quantify the possibili	ty of peaceful demonstrations, violent protests. Quantify
	the potential for governmer	nt responses ranging from appeasement, to allowing
	protests, to issuing threats a	gainst protestors, to actions to thwart protests. To
	address these issues, must h	nave fine-resolution models and datasets.
Current	Compute(System)	Distributed processing software running on commodity
Solutions		clusters and newer architectures and systems (e.g.,
		clouds).
	Storage	File servers (including archives), databases.
	Networking	Ethernet, Infiniband, and similar.
	Software	Specialized simulators, open source software, and
		proprietary modeling environments. Databases.
Big Data	Data Source	Many data sources: populations, work locations, travel
Characteristics	(distributed/centralized)	patterns, utilities (e.g., power grid) and other man-
		made infrastructures, online (social) media.
	Volume (size)	Easily 10s of TB per year of new data.
	Velocity	During social unrest events, human interactions and
	(e.g. real time)	mobility key to understanding system dynamics. Rapid
		changes in data; e.g., who follows whom in Twitter.
	Variety	Variety of data seen in wide range of data sources.
	(multiple datasets,	Temporal data. Data fusion.
	mashup)	Data fusion a higissue. How to combine data from
		Data fusion a big issue. How to combine data from
		different sources and how to deal with missing or incomplete data? Multiple simultaneous contagion
		processes.
	Variability (rate of	Because of stochastic nature of events, multiple
	change)	instances of models and inputs must be run to ranges
	change)	in outcomes.
Big Data Science	Veracity (Robustness	Failover of soft real-time analyses.
(collection, curation,	Issues, semantics)	anover of soft real time analyses.
(concention, curation,	issues, semantics)	

Healthcare and Life Sciences> Use Case 24: Social Contagion Modeling

analysis,	Visualization	Large datasets; time evolution; multiple contagion
action)		processes over multiple network representations.
		Levels of detail (e.g., individual, neighborhood, city,
		state, country-level).
	Data Quality (syntax)	Checks for ensuring data consistency, corruption.
		Preprocessing of raw data for use in models.
	Data Types	Wide-ranging data, from human characteristics to
		utilities and transportation systems, and interactions
		among them.
	Data Analytics	Models of behavior of humans and hard
		infrastructures, and their interactions. Visualization of
		results.
Big Data Specific	How to take into account heterogeneous features of 100s of millions or billions of	
Challenges (Gaps)	individuals, models of cultural variations across countries that are assigned to	
	individual agents? How to validate these large models? Different types of models	
	(e.g., multiple contagions): c	disease, emotions, behaviors. Modeling of different
	urban infrastructure system	s in which humans act. With multiple replicates required
	to assess stochasticity, large	e amounts of output data are produced; storage
	requirements.	
Big Data Specific	How and where to perform these computations? Combinations of cloud computing	
Challenges in Mobility	and clusters. How to realize most efficient computations; move data to compute	
	resources?	
Security and Privacy	Two dimensions. First, priva	cy and anonymity issues for individuals used in modeling
Requirements	(e.g., Twitter and Facebook	users). Second, securing data and computing platforms
	for computation.	
Highlight issues for		es. Different datasets must be combined depending on
generalizing this use		v to quickly develop, verify, and validate new models for
case (e.g. for ref.		ppropriate level of granularity to capture phenomena of
architecture)		sults sufficiently quickly; i.e., how to achieve a scalable
	solution. Data visualization a	and extraction at different levels of granularity.
More Information		
(URLs)		

Healthcare and Life Sciences> Use Case 25: LifeWatch Biodiversity

Use Case Title	LifeWatch – E-Science European Infrastructure for Biodiversity and Ecosystem		
	Research		
Vertical (area)	Scientific Research: Life Science		
Author/Company/Email		ko (<u>y.demchenko@uva.nl</u>), University of Amsterdam	
Actors/Stakeholders	End-users (biologists, ecologists, field researchers)		
and their roles and	-	managers, e-Science Infrastructure managers, EU states	
responsibilities	national representatives		
Goals		erent ecosystems, biological species, their dynamics and	
	migration.		
Use Case Description		ative intends to provide integrated access to a variety of	
	-	ng tools as served by a variety of collaborating initiatives.	
		with data and tools in selected workflows for specific	
		ddition, LifeWatch will provide opportunities to construct	
	-	also allowing to enter new data and analytical tools.	
		th the data facilities cooperating with LifeWatch.	
		nitoring alien species, monitoring migrating birds,	
	wetlands		
	-	Biodiversity Information facility and Biodiversity	
		ty Science Web Services Catalogue	
Current	Compute(System)	Field facilities TBD	
Solutions		Data center: General Grid and cloud based resources	
		provided by national e-Science centers	
	Storage	Distributed, historical and trends data archiving	
	Networking	May require special dedicated or overlay sensor	
		network.	
	Software	Web Services based, Grid based services, relational	
		databases	
Big Data	Data Source	Ecological information from numerous observation and	
Characteristics	(distributed/centralized)	monitoring facilities and sensor network, satellite	
		images/information, climate and weather, all recorded	
		information.	
		Information from field researchers	
	Volume (size)	Involves many existing datasets/sources	
		Collected amount of data TBD	
	Velocity	Data analyzed incrementally, processes dynamics	
	(e.g. real time)	corresponds to dynamics of biological and ecological	
		processes.	
		However may require real-time processing and analysis in case of the natural or industrial disaster.	
	Variaty	May require data streaming processing.	
	Variety (multiple datasets,	Variety and number of involved databases and observation data is currently limited by available tools;	
	(multiple datasets, mashup)	in principle, unlimited with the growing ability to	
	mashup)		
		process data for identifying ecological changes, factors/reasons, species evolution and trends.	
		See below in additional information.	
	Variability (rate of	Structure of the datasets and models may change	
	Variability (rate of		
	change)	depending on the data processing stage and tasks	

Healthcare and Life Sciences> Use Case 25: LifeWatch Biodiversity

Big Data Science	Veracity (Robustness	In normal monitoring mode are data are statistically
(collection, curation,	Issues)	processed to achieve robustness.
analysis,		Some biodiversity research is critical to data veracity
action)		(reliability/trustworthiness).
		In case of natural and technogenic disasters data
		veracity is critical.
	Visualization	Requires advanced and rich visualization, high definition
		visualization facilities, visualization data
		4D visualization
		Visualizing effects of parameter change in
		(computational) models
		Comparing model outcomes with actual
		observations (multi-dimensional)
	Data Quality	Depends on and ensued by initial observation data.
		Quality of analytical data depends on used mode and
		algorithms that are constantly improved.
		Repeating data analytics should be possible to re-
		evaluate initial observation data.
	Dete Truce	Actionable data are human aided.
	Data Types	Multi-type.
		Relational data, key-value, complex semantically rich
	Data Analytics	data Parallel data streams and streaming analytics
Big Data Specific	Data Analytics	Parallel data streams and streaming analytics QL and no-SQL, distributed multi-source data.
Challenges (Gaps)		
Chanenges (Gaps)	Visualization, distributed sensor networks. Data storage and archiving, data exchange and integration; data linkage: from the	
	 initial observation data to processed data and reported/visualized data. Historical unique data 	
	 Curated (authorized) reference data (i.e., species names lists), algorithms, 	
	software code, workflows	
	 Processed (secondary) 	data serving as input for other researchers
	Provenance (and persis	data serving as input for other researchers stent identification (PID)) control of data, algorithms, and
Big Data Specific	 Provenance (and persis workflows 	stent identification (PID)) control of data, algorithms, and
Big Data Specific Challenges in Mobility	 Provenance (and persis workflows 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers
	 Provenance (and persist workflows Require supporting mobile (both for information feed) 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search)
	 Provenance (and persist workflows Require supporting mobile (both for information feed) 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers
	 Provenance (and persis workflows Require supporting mobile (both for information feed) Instrumented field veh tagging on organisms 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor
	 Provenance (and persis workflows Require supporting mobile (both for information feed) Instrumented field veh 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor ecording
Challenges in Mobility	 Provenance (and persis workflows Require supporting mobile (both for information feed) Instrumented field veh tagging on organisms Photos, video, sound re Data integrity, referral integrity 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor ecording
Challenges in Mobility Security and Privacy	 Provenance (and persis workflows Require supporting mobile (both for information feed) Instrumented field veh tagging on organisms Photos, video, sound re Data integrity, referral integred Federated identity manage 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor ecording grity of the datasets.
Challenges in Mobility Security and Privacy	 Provenance (and persis workflows Require supporting mobile (both for information feed a) Instrumented field veh tagging on organisms Photos, video, sound re Data integrity, referral integret Federated identity manage Confidentiality, access cont 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor ecording grity of the datasets. ment for mobile researchers and mobile sensors
Challenges in Mobility Security and Privacy	 Provenance (and persis workflows Require supporting mobile (both for information feed a) Instrumented field veh tagging on organisms Photos, video, sound re Data integrity, referral integret Federated identity manage Confidentiality, access cont 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor ecording grity of the datasets. ment for mobile researchers and mobile sensors crol and accounting for information on protected species, ce images, climate information.
Challenges in Mobility Security and Privacy Requirements	 Provenance (and persis workflows Require supporting mobile (both for information feed at Instrumented field veh tagging on organisms Photos, video, sound re Data integrity, referral integ Federated identity manage Confidentiality, access cont ecological information, space Support of distributed 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor ecording grity of the datasets. ment for mobile researchers and mobile sensors crol and accounting for information on protected species, ce images, climate information.
Challenges in Mobility Security and Privacy Requirements Highlight issues for	 Provenance (and persis workflows Require supporting mobile (both for information feed) Instrumented field veh tagging on organisms Photos, video, sound re Data integrity, referral integ Federated identity manage Confidentiality, access cont ecological information, span Support of distributed Multi-type data combined 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor ecording grity of the datasets. ment for mobile researchers and mobile sensors rrol and accounting for information on protected species, ce images, climate information. sensor network
Challenges in Mobility Security and Privacy Requirements Highlight issues for generalizing this use	 Provenance (and persis workflows Require supporting mobile (both for information feed) Instrumented field veh tagging on organisms Photos, video, sound re Data integrity, referral integ Federated identity manage Confidentiality, access cont ecological information, span Support of distributed Multi-type data combined 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor ecording grity of the datasets. ment for mobile researchers and mobile sensors crol and accounting for information on protected species, ce images, climate information. sensor network nation and linkage; potentially unlimited data variety
Challenges in Mobility Security and Privacy Requirements Highlight issues for generalizing this use case (e.g. for ref.	 Provenance (and persis workflows Require supporting mobile (both for information feed a Instrumented field veh tagging on organisms Photos, video, sound re Data integrity, referral integ Federated identity manage Confidentiality, access cont ecological information, span Support of distributed Multi-type data combined Data life cycle managed identification 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor ecording grity of the datasets. ment for mobile researchers and mobile sensors crol and accounting for information on protected species, ce images, climate information. sensor network nation and linkage; potentially unlimited data variety
Challenges in Mobility Security and Privacy Requirements Highlight issues for generalizing this use case (e.g. for ref.	 Provenance (and persis workflows Require supporting mobile (both for information feed a Instrumented field veh tagging on organisms Photos, video, sound re Data integrity, referral integ Federated identity manage Confidentiality, access cont ecological information, span Support of distributed Multi-type data combined Data life cycle managed identification 	stent identification (PID)) control of data, algorithms, and sensors (e.g. birds migration) and mobile researchers and catalogue search) icles, Ships, Planes, Submarines, floating buoys, sensor ecording grity of the datasets. ment for mobile researchers and mobile sensors crol and accounting for information on protected species, ce images, climate information. sensor network nation and linkage; potentially unlimited data variety ment: data provenance, referral integrity and of multiple distributed databases

Note:	
Variety	of data used in Biodiversity research
	(genomic) diversity
	DNA sequences and barcodes
	Metabolomics functions
Species	information
-	species names
	occurrence data (in time and place)
	species traits and life history data
	host-parasite relations
	collection specimen data
	al information
	biomass, trunk/root diameter and other physical characteristics
	population density etc.
	habitat structures
	C/N/P etc. molecular cycles
	em data
•	species composition and community dynamics
	remote and earth observation data
	CO2 fluxes
-	Soil characteristics
	Algal blooming
	Marine temperature, salinity, pH, currents, etc.
	em services
-	productivity (i.e, biomass production/time)
	fresh water dynamics
	erosion
	climate buffering
	genetic pools
Data co	
	conceptual framework of each data
	ontologies
	provenance data
	ms and workflows
-	software code and provenance
	tested workflows
	e sources of data and information
-	cimen collection data
-	servations (human interpretations)
	isors and sensor networks (terrestrial, marine, soil organisms), bird etc. tagging
	ial and satellite observation spectra
	d * Laboratory experimentation
	lar and LiDAR
	neries and agricultural data ceases and epidemics

Deep Learning and Social Media> Use Case 26: Large-scale Deep Learning

Use Case Title	Large-scale Deep Learning		
Vertical (area)	Machine Learning/ artificial intelligence		
Author/Company/Email	Adam Coates / Stanford University / <u>acoates@cs.stanford.edu</u>		
Actors/Stakeholders	Machine learning researchers and practitioners faced with large quantities of data		
and their roles and		ks. Supports state-of-the-art development in computer	
responsibilities		riving, speech recognition, and natural language	
	processing in both academi		
Goals		s and models that can be tackled with deep learning	
		e.g., neural networks with more neurons and connections)	
	combined with large datasets are increasingly the top performers in benchmark tasks		
	for vision, speech, and NLP.		
Use Case Description		nine learning practitioner wants to train a deep neural	
		B) corpus of data (typically imagery, video, audio, or text).	
		ten require customization of the neural network	
	_	ia, and dataset preprocessing. In addition to the	
		nanded by the learning algorithms, the need for rapid	
•		velopment is extremely high.	
Current	Compute(System)	GPU cluster with high-speed interconnects (e.g.,	
Solutions		Infiniband, 40gE)	
	Storage	100TB Lustre filesystem	
	Networking	Infiniband within HPC cluster; 1G ethernet to outside	
		infrastructure (e.g., Web, Lustre).	
	Software	In-house GPU kernels and MPI-based communication	
		developed by Stanford CS. C++/Python source.	
Big Data	Data Source	Centralized filesystem with a single large training	
Characteristics	(distributed/centralized)	dataset. Dataset may be updated with new training	
		examples as they become available.	
	Volume (size)	Current datasets typically 1 TB to 10 TB. With increases in	
		computation that enable much larger models, datasets of	
		100TB or more may be necessary in order to exploit the	
		representational power of the larger models. Training a	
		self-driving car could take 100 million images.	
	Velocity	Much faster than real-time processing is required.	
	(e.g. real time)	Current computer vision applications involve processing	
		hundreds of image frames per second in order to ensure	
		reasonable training times. For demanding applications	
		(e.g., autonomous driving) we envision the need to process many thousand high-resolution (6 megapixels or	
		more) images per second.	
	Variety	Individual applications may involve a wide variety of	
	(multiple datasets,	data. Current research involves neural networks that	
	(multiple datasets, mashup)	actively learn from heterogeneous tasks (e.g., learning to	
	masnup)	perform tagging, chunking and parsing for text, or	
		learning to read lips from combinations of video and	
		audio).	
	Variability (rate of	Low variability. Most data is streamed in at a consistent	
	change)	pace from a shared source. Due to high computational	
	change)	requirements, server loads can introduce burstiness into	
		data transfers.	

Deep Learning and Social Media> Use Case 26: Large-scale Deep Learning

Big Data Science	Veracity (Robustness	Datasets for ML applications are often hand-labeled and		
(collection, curation,	Issues, semantics)	verified. Extremely large datasets involve crowd-sourced		
analysis,		labeling and invite ambiguous situations where a label is		
action)		not clear. Automated labeling systems still require		
		human sanity-checks. Clever techniques for large dataset		
		construction is an active area of research.		
	Visualization Visualization of learned networks is an open area of			
	research, though partly as a debugging technique. Some			
		visual applications involve visualization predictions on		
		test imagery.		
	Data Quality (syntax)	Some collected data (e.g., compressed video or audio)		
		may involve unknown formats, codecs, or may be		
		corrupted. Automatic filtering of original source data		
	removes these.			
	Data Types Images, video, audio, text. (In practice: almost anything.)			
	Data Analytics	Small degree of batch statistical preprocessing; all other		
	Data Analytics	data analysis is performed by the learning algorithm		
		itself.		
Big Data Specific	Processing requirements fo	r even modest quantities of data are extreme. Though the		
Challenges (Gaps)	trained representations can make use of many terabytes of data, the primary			
	challenge is in processing all of the data during training. Current state-of-the-art deep			
	learning systems are capable of using neural networks with more than 10 billion free			
	parameters (akin to synapses in the brain), and necessitate trillions of floating point			
	operations per training example. Distributing these computations over high-			
	performance infrastructure is a major challenge for which we currently use a largely			
	custom software system.			
Big Data Specific	After training of large neural networks is completed, the learned network may be			
Challenges in Mobility	copied to other devices with dramatically lower computational capabilities for use in			
	making predictions in real time. (E.g., in autonomous driving, the training procedure is			
	performed using a HPC cluster with 64 GPUs. The result of training, however, is a			
		es the necessary knowledge for making decisions about		
		ance. This network can be copied to embedded hardware		
	in vehicles or sensors.)			
Security and Privacy	None.			
Requirements				
	1			

Deep Learning and Social Media> Use Case 26: Large-scale Deep Learning

Highlight issues for	Deep Learning shares many characteristics with the broader field of machine learning.
generalizing this use	The paramount requirements are high computational throughput for mostly dense
case (e.g. for ref.	linear algebra operations, and extremely high productivity. Most deep learning
architecture)	systems require a substantial degree of tuning on the target application for best
architecturej	performance and thus necessitate a large number of experiments with designer
	intervention in between. As a result, minimizing the turn-around time of experiments
	and accelerating development is crucial.
	These two requirements (high throughput and high productivity) are dramatically in
	contention. HPC systems are available to accelerate experiments, but current HPC
	software infrastructure is difficult to use which lengthens development and debugging
	time and, in many cases, makes otherwise computationally tractable applications
	infeasible.
	The major components needed for these applications (which are currently in-house
	custom software) involve dense linear algebra on distributed-memory HPC systems.
	While libraries for single-machine or single-GPU computation are available (e.g., BLAS,
	CuBLAS, MAGMA, etc.), distributed computation of dense BLAS-like or LAPACK-like
	operations on GPUs remains poorly developed. Existing solutions (e.g., ScaLapack for
	CPUs) are not well-integrated with higher level languages and require low-level
	programming which lengthens experiment and development time.
More Information	Recent popular press coverage of deep learning technology:
(URLs)	http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-
	learning-a-part-of-artificial-intelligence.html
	http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-
	evidence-of-machine-learning.html
	http://www.wired.com/wiredenterprise/2013/06/andrew_ng/
	A recent research paper on HPC for Deep Learning:
	http://www.stanford.edu/~acoates/papers/CoatesHuvalWangWuNgCatanzaro_icml2
	013.pdf Widely used tutorials and references for Deep Learning:
	Widely-used tutorials and references for Deep Learning: http://ufldl.stanford.edu/wiki/index.php/Main_Page
	http://deeplearning.net/
	http://deeplearning.net/

Deep Learning and Social Media> Use Case 27: Large Scale Consumer Photos Organization

	Organizing large coole, und	runtured collections of consumer photos	
Use Case Title	Organizing large-scale, unstructured collections of consumer photos		
Vertical (area)	(Scientific Research: Artificial Intelligence)		
Author/Company/Email	David Crandall, Indiana University, <u>djcran@indiana.edu</u>		
Actors/Stakeholders		rs (to push forward state of art), media and social network	
and their roles and		e large-scale photo collections), consumers (browsing	
responsibilities	both personal and public photo collections), researchers and others interested in		
		s (archaeologists, architects, urban planners, interior	
	designers)		
Goals		s of scenes using collections of millions to billions of	
	consumer images, where neither the scene structure nor the camera positions are		
	known a priori. Use resultin	ng 3d models to allow efficient and effective browsing of	
	large-scale photo collection	ns by geographic position. Geolocate new images by	
	matching to 3d models. Perform object recognition on each image.		
Use Case Description	3d reconstruction is typical	ly posed as a robust non-linear least squares optimization	
	problem in which observed	(noisy) correspondences between images are constraints	
	and unknowns are 6-d cam	era pose of each image and 3-d position of each point in	
	the scene. Sparsity and larg	e degree of noise in constraints typically makes naïve	
	techniques fall into local mi	inima that are not close to actual scene structure. Typical	
	-	cting features from images, (2) matching images to find	
		tructures, (3) estimating an initial solution that is close to	
	-	nera parameters, (4) optimizing non-linear objective	
		(1) is embarrassingly parallel. (2) is an all-pairs matching	
	-		
	problem, usually with heuristics to reject unlikely matches early on. We solve (3) using discrete optimization using probabilistic inference on a graph (Markov Random Field) followed by robust Lovenberg Marguardt in continuous space. Others solve (2)		
	Field) followed by robust Levenberg-Marquardt in continuous space. Others solve (3) by solving (4) for a small number of images and then incrementally adding new		
	images, using output of last round as initialization for next round. (4) is typically		
	solved with Bundle Adjustment, which is a non-linear least squares solver that is		
		r constraint structure that occurs in 3d reconstruction	
		on problems are typically embarrassingly parallel, although	
	learning object models involves learning a classifier (e.g. a Support Vector Machine),		
Comment	a process that is often hard	•	
Current Solutions	Compute(System)	Hadoop cluster (about 60 nodes, 480 core)	
Solutions	Storage Networking	Hadoop DFS and flat files Simple Unix	
	Software		
	Software	Hadoop Map-reduce, simple hand-written	
		multithreaded tools (ssh and sockets for	
		communication)	
Big Data	Data Source	Publicly-available photo collections, e.g. on Flickr,	
Characteristics	(distributed/centralized)	Panoramio, etc.	
	Volume (size)	500+ billion photos on Facebook, 5+ billion photos on	
		Flickr.	
	Velocity	100+ million new photos added to Facebook per day.	
	(e.g. real time)		
	Variety	Images and metadata including EXIF tags (focal distance,	
	(multiple datasets,	camera type, etc.),	
	mashup)		

Deep Learning and Social Media> Use Case 27: Large Scale Consumer Photos Organization

	Variability (rate of	Rate of photos varies significantly, e.g. roughly 10x	
	change)	photos to Facebook on New Year's versus other days.	
		Geographic distribution of photos follows long-tailed	
		distribution, with 1000 landmarks (totaling only about	
		100 square km) accounting for over 20% of photos on	
		Flickr.	
Big Data Science	Veracity (Robustness	Important to make as accurate as possible, subject to	
(collection, curation,	Issues)	limitations of computer vision technology.	
analysis,	Visualization	Visualize large-scale 3-d reconstructions, and navigate	
action)		large-scale collections of images that have been aligned	
		to maps.	
	Data Quality	Features observed in images are quite noisy due both to	
		imperfect feature extraction and to non-ideal properties	
		of specific images (lens distortions, sensor noise, image	
		effects added by user, etc.)	
	Data Types	Images, metadata	
	Data Analytics		
Big Data Specific	Analytics needs continued monitoring and improvement.		
Challenges (Gaps)			
Big Data Specific	Many/most images are captured by mobile devices; eventual goal is to push		
Challenges in Mobility	reconstruction and organiz	reconstruction and organization to phone to allow real-time interaction with the	
	user.		
Security and Privacy	Need to preserve privacy for users and digital rights for media.		
Requirements			
Highlight issues for	Components of this use case including feature extraction, feature matching, and		
	-		
generalizing this use	-	e including feature extraction, feature matching, and erence appear in many or most computer vision and	
	large-scale probabilistic info		
generalizing this use	large-scale probabilistic info	erence appear in many or most computer vision and	
generalizing this use case (e.g. for ref.	large-scale probabilistic info image processing problems	erence appear in many or most computer vision and s, including recognition, stereo resolution, image	

Deep Learning and Social Media> Use Case 28: Truthy Twitter Data Analysis

	T 11 1 C 11 11C 1	
Use Case Title	Truthy: Information diffusion research from Twitter Data	
Vertical (area)	Scientific Research: Complex Networks and Systems research	
Author/Company/Email	Filippo Menczer, Indiana University, <u>fil@indiana.edu</u> ;	
	Alessandro Flammini, Indiana University, aflammin@indiana.edu;	
	Emilio Ferrara, Indiana University, ferrarae@indiana.edu;	
Actors/Stakeholders	Research funded by NFS, D	ARPA, and McDonnel Foundation.
and their roles and		
responsibilities		
Goals	Understanding how comm	unication spreads on socio-technical networks. Detecting
	potentially harmful information spread at the early stage (e.g., deceiving messages,	
	orchestrated campaigns, untrustworthy information, etc.)	
Use Case Description	(1) Acquisition and storage of a large volume of continuous streaming data from	
Ose case Description		ages per day, ≈500GB data/day increasing over time);
	-	
		of such data, for anomaly detection, stream clustering,
		ine-learning; (3) data retrieval, Big Data visualization,
		aces, public API for data querying.
Current	Compute(System)	Current: in-house cluster hosted by Indiana University.
Solutions		Critical requirement: large cluster for data storage,
		manipulation, querying and analysis.
	Storage	Current: Raw data stored in large compressed flat files,
		since August 2010. Need to move towards
		Hadoop/IndexedHBase and HDFS distributed storage.
		Redis as an in-memory database as a buffer for real-time
	analysis.	
	Networking 10GB/Infiniband required.	
	Software Hadoop, Hive, Redis for data management.	
	Python/SciPy/NumPy/MPI for data analysis.	
Big Data	Data Source	Distributed – with replication/redundancy
Characteristics	(distributed/centralized)	
	Volume (size)	≈30TB/year compressed data
	Velocity (e.g. real time)	Near real-time data storage, querying and analysis
	Variety (multiple	Data schema provided by social media data source.
	datasets, mashup)	
	uatasets, mashup)	Currently using Twitter only. We plan to expand
		incorporating Google+, Facebook
	Variability (rate of	Continuous real-time data stream incoming from each
	change)	source.
Big Data Science	Veracity (Robustness	99.99% uptime required for real-time data acquisition.
(collection, curation,	Issues, semantics)	Service outages might corrupt data integrity and
analysis,		significance.
action)	Visualization	Information diffusion, clustering, and dynamic network
		visualization capabilities already exist.
	Data Quality (syntax)	Data structured in standardized formats, the overall
		quality is extremely high. We generate aggregated
		statistics; expand the features set, etc., generating high-
		quality derived data.
	Data Types	Fully-structured data (JSON format) enriched with users'
	Data . , peo	meta-data, geo-locations, etc.

Deep Learning and Social Media> Use Case 28: Truthy Twitter Data Analysis

	Data Analytics	Stream clustering: data are aggregated according to topics, meta-data and additional features, using ad hoc online clustering algorithms. Classification: using multi- dimensional time series to generate, network features, users, geographical, content features, etc., we classify information produced on the platform. Anomaly detection: real-time identification of anomalous events (e.g., induced by exogenous factors). Online learning: applying machine learning/deep learning methods to real-time information diffusion patterns analysis, users profiling, etc.
Big Data Specific	Dealing with real-time analysis of large volume of data. Providing a scalable	
Challenges (Gaps)	infrastructure to allocate resources, storage space, etc. on-demand if required by	
	increasing data volume over time.	
Big Data Specific	Implementing low-level data storage infrastructure features to guarantee efficient,	
Challenges in Mobility	mobile access to data.	
Security and Privacy	Twitter publicly releases data collected by our platform. Although, data-sources	
Requirements	incorporate user meta-data (in general, not sufficient to uniquely identify	
	individuals) therefore some policy for data storage security and privacy protection	
	must be implemented.	
Highlight issues for	Definition of high-level data schema to incorporate multiple data-sources providing	
generalizing this use	similarly structured data.	
case (e.g. for ref.		
architecture)		
More Information	http://truthy.indiana.edu/	
(URLs)	http://cnets.indiana.edu/gi	
	http://cnets.indiana.edu/gi	roups/nan/despic

Deep Learning and Social Media> Use Case 29: Crowd Sourcing in the Humanities

	1	
Use Case Title	Crowd Sourcing in the Hum	anities as Source for Big and Dynamic Data
Vertical (area)	Humanities, Social Sciences	
Author/Company/Email	Sebastian Drude < <u>Sebastian.Drude@mpi.nl</u> >, Max Planck Institute for	
	Psycholinguistics	
Actors/Stakeholders	Scientists (Sociologists, Psy	chologists, Linguists, Politic Scientists, Historians, etc.),
and their roles and	data managers and analyst	
responsibilities	The general public as data	
Goals		ally entered, recorded multimedia, reaction times,
	pictures, sensor information) from many individuals and their devices. Thus capture wide ranging individual, social, cultural and linguistic variation among	
	several dimensions (space, social space, time).	
Use Case Description		e cases: get recordings of language usage (words,
Use case Description		otions, etc.), answers to surveys, info on cultural facts,
		nd texts correlate these with other phenomena, detect
0		avior, values and believes, discover individual variation
Current	Compute(System)	Individual systems for manual data collection (mostly
Solutions		Websites)
	Storage	Traditional servers
	Networking	barely used other than for data entry via web
	Software	XML technology, traditional relational databases for
	storing pictures, not much multi-media yet.	
Big Data	Data Source	Distributed, individual contributors via webpages and
Characteristics	(distributed/centralized) mobile devices	
	Volume (size) Depends dramatically, from hundreds to millions of data	
	records.	
	Depending on data-type: from GBs (text, surveys,	
	experiment values) to hundreds of terabytes	
	(multimedia)	
	Velocity Depends very much on project: dozens to thousands of	
	(e.g. real time)	new data records per day
	Data has to be analyzed incrementally.	
	Variety so far mostly homogeneous small datasets; expected	
	(multiple datasets, large distributed heterogeneous datasets which have to	
	mashup) be archived as primary data	
	Variability (rate of	Data structure and content of collections are changing
	change) during data life cycle.	
	There is no critical variation of data producing speed, or	
	runtime characteristics variations.	
Big Data Science	Veracity (Robustness	Noisy data is possible, unreliable metadata,
(collection, curation,	Issues)	identification and pre-selection of appropriate data
analysis,	Visualization	
action)	Visualization important for interpretation, no special visualization techniques	
action	Data Quality	
	Data Quality	validation is necessary; quality of recordings, quality of
	- · -	content, spam
	Data Types	individual data records (survey answers, reaction times);
		text (e.g., comments, transcriptions,);
		multi-media (pictures, audio, video)

Deep Learning and Social Media> Use Case 29: Crowd Sourcing in the Humanities

	Data Analytics	pattern recognition of all kind (e.g., speech recognition,
		automatic A&V analysis, cultural patterns), identification
		of structures (lexical units, linguistic rules, etc.)
Big Data Specific	Data management (metada	ta, provenance info, data identification with PIDs)
Challenges (Gaps)	Data curation	
	Digitizing existing audio-vid	eo, photo and documents archives
Big Data Specific	Include data from sensors of	of mobile devices (position, etc.);
Challenges in Mobility	Data collection from expeditions and field research.	
Security and Privacy	Privacy issues may be involved (A/V from individuals), anonymization may be	
Requirements	necessary but not always possible (A/V analysis, small speech communities)	
	Archive and metadata integrity, long term preservation	
Highlight issues for	Many individual data entries from many individuals, constant flux of data entry,	
generalizing this use	metadata assignment, etc.	
case (e.g. for ref.	Offline vs. online use, to be synchronized later with central database.	
architecture)	Giving significant feedback to contributors.	
More Information		
(URLs)		
Note: Crowd sourcing has been barely started to be used on a larger scale.		
With the availability of mobile devices, now there is a huge potential for collecting much data from many		
individuals, also making use of sensors in mobile devices. This has not been explored on a large scale so far;		
existing projects of crowd sourcing are usually of a limited scale and web-based.		

Deep Learning and Social Media> Use Case 30: CINET Network Science Cyberinfrastructure

Use Case Title	CINET: Cyberinfrastructure f	or Network (Graph) Science and Analytics
Vertical (area)	Network Science	
Author/Company/Email		and comprising of researchers from Indiana University,
		Carolina AT, Jackson State University, University at
	Houston Downtown, Argonr	ne National Laboratory
	Point of Contact: Madhav M	arathe or Keith Bisset, Network Dynamics and Simulation
	Science Laboratory, Virginia	Bio-informatics Institute Virginia Tech,
	mmarathe@vbi.vt.edu / kbisset@vbi.vt.edu	
Actors/Stakeholders	Researchers, practitioners, e	educators and students interested in the study of
and their roles and	networks.	
responsibilities		
Goals		iddleware to support network science. This middleware
		ioners, teachers and students access to a computational
	-	r research, education and training. The user interface
	-	tworks and network analysis modules (implemented
	-	ysis). A user, who can be a researcher in network science
		e networks and analysis them with the available network
		A user can also generate random networks following
	various random graph models. Teachers and students can use CINET for classroom use to demonstrate various graph theoretic properties and behaviors of various algorithms. A user is also able to add a network or network analysis module to the system. This feature of CINET allows it to grow easily and remain up-to-date with the latest algorithms. The goal is to provide a common web-based platform for accessing various (i) network and graph analysis tools such as SNAP, NetworkX, Galib, etc. (ii) real-	
	(i) network and graph analysis tools such as SNAP, NetworkX, Galib, etc. (ii) real- world and synthetic networks, (iii) computing resources and (iv) data management	
	systems to the end-user in a	
Use Case Description		tructural or dynamic analysis on a set of selected
	networks. The domain specific language allows users to develop flexible high level	
	workflows to define more co	
Current	Compute(System)	
Solutions		named Shadowfax, of 60 compute nodes and 12
		processors (Intel Xeon X5670 2.93GHz) per compute
		node with a total of 720 processors and 4GB main
		memory per processor.
		Shared memory systems ; EC2 based clouds are also
		used
		Some of the codes and networks can utilize single node
		systems and thus are being currently mapped to Open
		Science Grid
	Storage	628 TB GPFS
	Networking	Internet, infiniband. A loose collection of
	- •	supercomputing resources.
	Software	Graph libraries: Galib, NetworkX.
		Distributed Workflow Management: Simfrastructure,
		databases, semantic web tools

Deep Learning and Social Media> Use Case 30: CINET Network Science Cyberinfrastructure

Dia Data	Data Causa	A single water out as a single state fit as a single state fit.
Big Data	Data Source	A single network remains in a single disk file accessible
Characteristics	(distributed/centralized)	by multiple processors. However, during the execution
		of a parallel algorithm, the network can be partitioned
		and the partitions are loaded in the main memory of
		multiple processors.
	Volume (size)	Can be hundreds of GB for a single network.
	Velocity	Two types of changes: (i) the networks are very
	(e.g. real time)	dynamic and (ii) as the repository grows, we expect at
		least a rapid growth to lead to over 1000-5000
		networks and methods in about a year
	Variety	Datasets are varied: (i) directed as well as undirected
	(multiple datasets,	networks, (ii) static and dynamic networks, (iii) labeled,
	mashup)	(iv) can have dynamics over these networks,
	Variability (rate of	The rate of graph-based data is growing at increasing
	change)	rate. Moreover, increasingly other life sciences
		domains are using graph-based techniques to address
		problems. Hence, we expect the data and the
		computation to grow at a significant pace.
Big Data Science	Veracity (Robustness	Challenging due to asynchronous distributed
(collection, curation,	Issues, semantics) computation. Current systems are designed for real-	
analysis,		time synchronous response.
action)	Visualization	As the input graph size grows the visualization system
,		on client side is stressed heavily both in terms of data
		and compute.
	Data Quality (syntax)	
	Data Types	
	Data Analytics	
Big Data Specific	Parallel algorithms are nece	ssary to analyze massive networks. Unlike many
Challenges (Gaps)	structured data, network da	ta is difficult to partition. The main difficulty in
	partitioning a network is that	t different algorithms require different partitioning
	schemes for efficient operat	ion. Moreover, most of the network measures are global
	in nature and require either	i) huge duplicate data in the partitions or ii) very large
	communication overhead re	sulted from the required movement of data. These
	issues become significant ch	allenges for big networks.
	Computing dynamics over networks is harder since the network structure often interacts with the dynamical process being studied. CINET enables large class of operations across wide variety, both in terms of structure and size, of graphs. Unlike other compute + data intensive systems, such as parallel databases or CFD, performance on graph computation is sensitive to underlying architecture. Hence, a unique challenge in CINET is manage the mapping between workload (graph type + operation) to a machine whose architecture and runtime is conducive to the system.	
		keeping of the derived for users is another big challenge
		there is no well-defined and effective models and tools
	-	graph data in a unified fashion.
	U	
Big Data Specific		
Big Data Specific Challenges in Mobility		
Challenges in Mobility		
. .		

Deep Learning and Social Media> Use Case 30: CINET Network Science Cyberinfrastructure

Highlight issues for generalizing this use	HPC as a service. As data volume grows increasingly large number of applications such as biological sciences need to use HPC systems. CINET can be used to deliver
0 0	the compute resource necessary for such domains.
More Information (URLs)	http://cinet.vbi.vt.edu/cinet_new/

Deep Learning and Social Media> Use Case 31: NIST Analytic Technology Measurement and Evaluations

		··· · · · · · · · · · · · · · · · · ·	
Use Case Title		vision analytic technology performance measurement,	
	evaluations, and standards		
Vertical (area)		mance measurement and standards for government,	
	industry, and academic stakeholders		
Author/Company/Email	John Garofolo (john.garofo		
Actors/Stakeholders	-	ement methods, data contributors, analytic algorithm	
and their roles and	developers, users of analytic technologies for unstructured, semi-structured data,		
responsibilities	and heterogeneous data across all sectors.		
Goals		nt of advanced analytic technologies for unstructured,	
		ogeneous data through performance measurement and	
		ties of interest on analytic technology challenges of	
		sus-driven measurement metrics and methods for	
		valuate the performance of the performance metrics and	
	-	de evaluations which foster knowledge exchange and	
		uild consensus towards widely-accepted standards for	
	performance measurement		
Use Case Description		ics, measurement methods, and community evaluations	
		ne development of advanced analytic technologies in the	
		ge processing, video and multimedia processing,	
	biometric image processing, and heterogeneous data processing as well as the		
		n users. Typically employ one of two processing models: 1)	
		articipants and analyze the output of participant systems,	
	2) Push algorithm test harness interfaces out to participants and bring in their		
	algorithms and test them on internal computing clusters. Developing approaches to		
	support scalable Cloud-based developmental testing. Also perform usability and utility testing on systems with users in the loop		
	utility testing on systems with users in the loop.		
Current	Compute (System)	Linux and OS-10 clusters; distributed computing with	
Solutions		stakeholder collaborations; specialized image processing	
		architectures.	
	Storage RAID arrays, and distribute data on 1-2TB drives, and occasionally FTP. Distributed data distribution with		
	stakeholder collaborations.		
	Networking Fiber channel disk storage, Gigabit Ethernet for system-		
		system communication, general intra- and Internet	
		resources within NIST and shared networking resources	
	Coffiguration	with its stakeholders. PERL, Python, C/C++, Matlab, R development tools.	
	Software		
Big Data	Data Source	Create ground-up test and measurement applications. Large annotated corpora of unstructured/semi-	
Big Data Characteristics	(distributed/centralized)	structured text, audio, video, images, multimedia, and	
Characteristics	(distributed/centralized)	-	
	heterogeneous collections of the above including		
	ground truth annotations for training, developmental testing, and summative evaluations.		
	Volume (size)	The test corpora exceed 900M Web pages occupying 30	
	volume (size)	TB of storage, 100M tweets, 100M ground-truthed	
		biometric images, several hundred thousand partially ground-truthed video clins, and terrabytes of smaller	
		ground-truthed video clips, and terabytes of smaller	
		fully ground-truthed test collections. Even larger data	
		collections are being planned for future evaluations of	

Deep Learning and Social Media> Use Case 31: NIST Analytic Technology Measurement and Evaluations

		analytics involving multiple data streams and very heterogeneous data.
	Velocity	Most legacy evaluations are focused on retrospective
	-	
	(e.g. real time)	analytics. Newer evaluations are focusing on simulations
		of real-time analytic challenges from multiple data
		streams.
	Variety	The test collections span a wide variety of analytic
	(multiple datasets,	application types including textual search/extraction,
	mashup)	machine translation, speech recognition, image and
		voice biometrics, object and person recognition and
		tracking, document analysis, human-computer dialogue,
		and multimedia search/extraction. Future test
		collections will include mixed type data and applications.
	Variability (rate of	Evaluation of tradeoffs between accuracy and data rates
	change)	as well as variable numbers of data streams and variable
	change)	
Dia Data Cala	Mana aitu (Dahuatu	stream quality.
Big Data Science	Veracity (Robustness	The creation and measurement of the uncertainty
(collection, curation,	Issues, semantics)	associated with the ground-truthing process – especially
analysis,		when humans are involved – is challenging. The manual
action)		ground-truthing processes that have been used in the
		past are not scalable. Performance measurement of
		complex analytics must include measurement of
		intrinsic uncertainty as well as ground truthing error to
		be useful.
	Visualization	Visualization of analytic technology performance results
		and diagnostics including significance and various forms
		of uncertainty. Evaluation of analytic presentation
		methods to users for usability, utility, efficiency, and
		accuracy.
	Data Quality (syntax)	The performance of analytic technologies is highly
		impacted by the quality of the data they are employed
		against with regard to a variety of domain- and
		application-specific variables. Quantifying these
		variables is a challenging research task in itself. Mixed
		sources of data and performance measurement of
		analytic flows pose even greater challenges with regard
		to data quality.
	Data Types	Unstructured and semi-structured text, still images,
	2414 . , peo	video, audio, multimedia (audio+video).
	Data Analytics	Information extraction, filtering, search, and
	Data Analytics	summarization; image and voice biometrics; speech
		recognition and understanding; machine translation;
		video person/object detection and tracking; event
		detection; imagery/document matching; novelty
		detection; a variety of structural/semantic/temporal
Dia Data Cracifia	Cooling groups describing to	analytics and many subtypes of the above.
Big Data Specific		larger data, intrinsic and annotation uncertainty
Challenges (Gaps)		e measurement for incompletely annotated data,
	measuring analytic perform	nance for heterogeneous data and analytic flows involving

Deep Learning and Social Media> Use Case 31: NIST Analytic Technology Measurement and Evaluations

	users.			
Big Data Specific	Moving training, development, and test data to evaluation participants or moving			
Challenges in Mobility	evaluation participants' analytic algorithms to computational testbeds for			
	performance assessment. Providing developmental tools and data. Supporting agile			
	developmental testing approaches.			
Security and Privacy	Analytic algorithms working with written language, speech, human imagery, etc.			
Requirements	must generally be tested against real or realistic data. It's extremely challenging to			
	engineer artificial data that sufficiently captures the variability of real data involving			
	humans. Engineered data may provide artificial challenges that may be directly or			
	indirectly modeled by analytic algorithms and result in overstated performance. The			
	advancement of analytic technologies themselves is increasing privacy sensitivities.			
	Future performance testing methods will need to isolate analytic technology			
	algorithms from the data the algorithms are tested against. Advanced architectures			
	are needed to support security requirements for protecting sensitive data while			
	enabling meaningful developmental performance evaluation. Shared evaluation			
	testbeds must protect the intellectual property of analytic algorithm developers.			
Highlight issues for	Scalability of analytic technology performance testing methods, source data			
generalizing this use	creation, and ground truthing; approaches and architectures supporting			
case (e.g. for ref.	developmental testing; protecting intellectual property of analytic algorithms and PII			
architecture)	and other personal information in test data; measurement of uncertainty using			
	partially-annotated data; composing test data with regard to qualities impacting			
	performance and estimating test set difficulty; evaluating complex analytic flows			
	involving multiple analytics, data types, and user interactions; multiple			
	heterogeneous data streams and massive numbers of streams; mixtures of			
	structured, semi-structured, and unstructured data sources; agile scalable			
	developmental testing approaches and mechanisms.			
More Information	http://www.nist.gov/itl/iad/			
(URLs)				

The Ecosystem for Research> Use Case 32: DataNet Federation Consortium (DFC)

	1		
Use Case Title	DataNet Federation Consor		
Vertical (area)	Collaboration Environment	S	
Author/Company/Email	Reagan Moore / University of North Carolina at Chapel Hill / rwmoore@renci.org		
Actors/Stakeholders	National Science Foundatio	n research projects: Ocean Observatories Initiative	
and their roles and	(sensor archiving); Tempora	al Dynamics of Learning Center (Cognitive science data	
responsibilities	grid); the iPlant Collaborative (plant genomics); Drexel engineering digital library;		
	Odum Institute for social science research (data grid federation with Dataverse).		
Goals		ture (collaboration environments) that enables	
		through shared collections and shared workflows. Provide	
		nent systems that enable the formation of collections,	
		rchives, and processing pipelines. Provide interoperability	
		existing data repositories, information catalogs, and web	
	services with collaboration		
Use Case Description		interdisciplinary research through federation of data	
		ss federal repositories, national academic research	
		ositories, and international collaborations. The	
		runs at scale: petabytes of data, hundreds of millions of	
		of metadata attributes, tens of thousands of users, and a	
	thousand storage resources.		
Current	Compute(System)	Interoperability with workflow systems (NCSA	
Solutions		Cyberintegrator, Kepler, Taverna)	
	Storage	Interoperability across file systems, tape archives, cloud	
		storage, object-based storage	
	Networking	Interoperability across TCP/IP, parallel TCP/IP, RBUDP,	
		НТТР	
	Software	Integrated Rule Oriented Data System (iRODS)	
Big Data	Data Source	Manage internationally distributed data	
Characteristics	(distributed/centralized)		
	Volume (size)	Petabytes, hundreds of millions of files	
	Velocity	Support sensor data streams, satellite imagery,	
	(e.g. real time)	simulation output, observational data, experimental	
	(10) 11 1,	data	
	Variety	Support logical collections that span administrative	
	(multiple datasets,	domains, data aggregation in containers, metadata, and	
	mashup)	workflows as objects	
		Support active collections (mutable data), versioning of	
	change)	data, and persistent identifiers	
Big Data Science	Veracity (Robustness	Provide reliable data transfer, audit trails, event	
(collection, curation,			
analysis,	Issues) tracking, periodic validation of assessment criteria (integrity, authenticity), distributed debugging		
action)	Viewelinetier		
action)	Visualization	Support execution of external visualization systems	
		through automated workflows (GRASS)	
	Data Quality	Provide mechanisms to verify quality through	
		automated workflow procedures	
	Data Types	Support parsing of selected formats (NetCDF, HDF5,	
		Dicom), and provide mechanisms to invoke other data	
		manipulation methods	

The Ecosystem for Research> Use Case 32: DataNet Federation Consortium (DFC)

•		
	Data Analytics	Provide support for invoking analysis workflows,
		tracking workflow provenance, sharing of workflows,
		and re-execution of workflows
Big Data Specific	Provide standard policy sets that enable a new community to build upon data	
Challenges (Gaps)	management plans that address federal agency requirements	
Big Data Specific		d for data manipulation, and apply resulting procedures
Challenges in Mobility	at either the storage location	
Security and Privacy	_	thentication environments through Generic Security
Requirements		uthentication Modules (GSI, Kerberos, InCommon,
	Shibboleth). Manage access	s controls on files independently of the storage location.
Highlight issues for	Currently 25 science and en	gineering domains have projects that rely on the iRODS
generalizing this use	policy-based data managem	nent system:
case (e.g. for ref.	Astrophysics	Auger supernova search
architecture)	Atmospheric science	NASA Langley Atmospheric Sciences Center
	Biology	Phylogenetics at CC IN2P3
	Climate	NOAA National Climatic Data Center
	Cognitive Science	Temporal Dynamics of Learning Center
	Computer Science	GENI experimental network
	Cosmic Ray	AMS experiment on the International Space Station
	Dark Matter Physics	Edelweiss II
	Earth Science	NASA Center for Climate Simulations
	Ecology	CEED Caveat Emptor Ecological Data
	Engineering	CIBER-U
	High Energy Physics	BaBar
	Hydrology	Institute for the Environment, UNC-CH; Hydroshare
	Genomics	Broad Institute, Wellcome Trust Sanger Institute
	Medicine	Sick Kids Hospital
	Neuroscience	International Neuroinformatics Coordinating Facility
	Neutrino Physics	T2K and dChooz neutrino experiments
	Oceanography	Ocean Observatories Initiative
	Optical Astronomy	National Optical Astronomy Observatory
	Particle Physics	Indra
	Plant genetics	the iPlant Collaborative
	Quantum Chromodynamics	IN2P3
	Radio Astronomy	Cyber Square Kilometer Array, TREND, BAOradio
	Seismology	Southern California Earthquake Center
	Social Science	Odum Institute for Social Science Research, TerraPop
More Information	The DataNet Federation Co	nsortium: <u>http://www.datafed.org</u>
(URLs)	iRODS: <u>http://www.irods.org</u>	
Note: A major challenge is	s the ability to capture knowl	edge needed to interact with the data products of a
research domain. In policy	/-based data management sy	stems, this is done by encapsulating the knowledge in
procedures that are controlled through policies. The procedures can automate retrieval of data from external		
repositories, or execute processing workflows, or enforce management policies on the resulting data products.		

A standard application is the enforcement of data management plans and the verification that the plan has been successfully applied.

301 See Figure 4: DataNet Federation Consortium DFC – iRODS architecture.

302

The Ecosystem for Research> Use Case 33: The 'Discinnet Process'

Use Case Title	The 'Discinnet process' me	tadata <-> Big Data global experiment	
Vertical (area)	Scientific Research: Interdisciplinary Collaboration		
Author/Company/Email	P. Journeau / Discinnet Labs / phjourneau@discinnet.org		
Actors/Stakeholders	Actors Richeact, Discinnet Labs and I4OpenResearch fund France/Europe. American		
and their roles and	equivalent pending. Richeact is fundamental research and development		
responsibilities			
responsibilities	profit warrant.	os applied in web 2.0 <u>http://www.discinnet.org</u> , I4 non-	
Goals		reach productive interdisciplinant model of research	
Guais	Richeact scientific goal is to reach predictive interdisciplinary model of research fields' behavior (with related meta-grammar). Experimentation through global		
	sharing of now multidisciplinary, later interdisciplinary Discinnet process/web		
	sharing of now multidisciplinary, later interdisciplinary Discinnet process/web mapping and new scientific collaborative communication and publication system.		
		educing uncertainty and time between theoretical,	
	applied, technology researc		
Use Case Description		d, close to 100 awaiting more resources and potentially	
Use case Description	-	on, administration and animation by research	
	-	age from optics, cosmology, materials, microalgae, health	
	-	tion, rubber and other chemical products/issues.	
	How does a typical case cur	-	
		oup wants to see how a research field is faring and in a	
		e field on Discinnet as a 'cluster'	
		her 5 to 10 mn to parameter the first/main dimensions,	
		ent units and categories, but possibly later on some	
	variable limited time for more dimensions		
	 Cluster then may be filled either by doctoral students or reviewing 		
	researchers and/or communities/researchers for projects/progress		
	Already significant value but now needs to be disseminated and advertised although		
	maximal value to come from interdisciplinary/projective next version. Value is to		
	detect quickly a paper/project of interest for its results and next step is trajectory of		
	the field under types of interactions from diverse levels of oracles (subjects/objects)		
	+ from interdisciplinary context.		
Current	Compute(System)	Currently on OVH (Hosting company	
Solutions		http://www.ovh.co.uk/) servers (mix shared +	
		dedicated)	
	Storage	OVH	
	Networking	To be implemented with desired integration with others	
	Software	Current version with Symfony-PHP, Linux, MySQL	
Big Data	Data Source	Currently centralized, soon distributed per country and	
Characteristics	(distributed/centralized)	even per hosting institution interested by own platform	
	Volume (size)	Not significant : this is a metadata base, not Big Data	
	Velocity	Real time	
	(e.g. real time)		
	Variety	Link to Big data still to be established in a Meta<->Big	
	(multiple datasets, relationship not yet implemented (with experimental		
	mashup) databases and already 1 st level related metadata)		
	Variability (rate of Currently real time, for further multiple locations and		
	change)	distributed architectures, periodic (such as nightly)	
Big Data Science	Veracity (Robustness	Methods to detect overall consistency, holes, errors,	
	Iccuse companties)	misstatements, known but mostly to be implemented	
(collection, curation, analysis,	Issues, semantics) Visualization	misstatements, known but mostly to be implemented Multidimensional (hypercube)	

The Ecosystem for Research> Use Case 33: The 'Discinnet Process'

action)	Data Quality (syntax)	A priori correct (directly human captured) with sets of	
		checking + evaluation processes partly implemented	
	Data Types	'cluster displays' (image), vectors, categories, PDFs	
	Data Analytics		
Big Data Specific	Our goal is to contribute to	Big 2 Metadata challenge by systematic reconciling	
Challenges (Gaps)	between metadata from m	any complexity levels with ongoing input from	
	researchers from ongoing r	esearch process.	
	Current relationship with R	icheact is to reach the interdisciplinary model, using	
	meta-grammar itself to be	experimented and its extent fully proven to bridge	
	efficiently the gap between	as remote complexity levels as semantic and most	
	elementary (big) signals. Ex	ample with cosmological models versus many levels of	
	intermediary models (partion	cles, gases, galactic, nuclear, geometries). Others with	
	computational versus sema	intic levels.	
Big Data Specific	Appropriate graphic interface power		
Challenges in Mobility			
Security and Privacy	Several levels already available and others planned, up to physical access keys and		
Requirements	isolated servers. Optional anonymity, usual protected exchanges		
Highlight issues for	Through 2011-2013, we have shown on http://www.discinnet.org that all kinds of		
generalizing this use	research fields could easily	get into Discinnet type of mapping, yet developing and	
case (e.g. for ref.	filling a cluster requires tim	e and/or dedicated workers.	
architecture)			
More Information	On <u>http://www.discinnet.o</u>	rg the already started or starting clusters can be watched	
(URLs)	in one click on 'cluster' (fiel	d) title and even more detail is available through free	
	registration (more resource available when registering as researcher (publications) or		
	pending (doctoral student)		
		free for contributing researchers in order to protect	
	communities but available	to external observers for symbolic fee: all suggestions for	
	improvements and better s	haring welcome.	
	We are particularly open to	provide and support experimental appropriation by	
	doctoral schools to build and study the past and future behavior of clusters in Earth		
	sciences, Cosmology, Water, Health, Computation, Energy/Batteries, Climate models,		
	Space, etc		
		both global, regional and local versions of the platform	
(for instance by research institutions, publishers, networks with desirable maximal data sharing for the greatest			
benefit of advancement of science.			

The Ecosystem for Research> Use Case 34: Graph Search on Scientific Data

Use Case Title	Enabling Face-Book like Semantic Graph-search on Scientific Chemical and Text- based Data		
Vertical (area)	Management of Information from Research Articles		
Author/Company/Email	Talapady Bhat, <u>bhat@nist.gov</u>		
Actors/Stakeholders	Chemical structures, Protein Data Bank, Material Genome Project, Open-GOV		
and their roles and	initiative, Semantic Web, Integrated Data-graphs, Scientific social media		
responsibilities	, , ,		
Goals	Establish infrastructure, terminology and semantic data-graphs to annotate and present technology information using 'root' and rule-based methods used primarily by some Indo-European languages like Sanskrit and Latin.		
Use Case Description	Social media hype		
	 Social media hype Internet and social media play a significant role in modern information exchange. Every day most of us use social-media both to distribute and receive information. Two of the special features of many social media like Face-Book are the community is both data-providers and data-users they store information in a pre-defined 'data-shelf' of a data-graph Their core infrastructure for managing information is reasonably language free What this has to do with managing scientific information? During the last few decades science has truly evolved to become a community activity involving every country and almost every household. We routinely 'tune-in' to Internet resources to share and seek scientific information. What are the challenges in creating social media for science Creating a social media of scientific information needs an infrastructure where many scientists from various parts of the world can participate and deposit results of their experiment. Some of the issues that one has to resolve prior to establishing a scientific social media are: How to minimize challenges related to local language and its grammar? How to determining the 'data-graph' to place an information in an intuitive way without knowing too much about the data management? 		
	 How to find relevant scientific data without spending too much time on the internet? 		
	the Internet? Approach: Most languages and more so Sanskrit and Latin use a novel 'root'-based method to facilitate the creation of on-demand, discriminating words to define concepts. Some such examples from English are Bio-logy, Bio-chemistry. Youga, Yogi, Yogendra, Yogesh are examples from Sanskrit. Genocide is an example from Latin. These words are created on-demand based on best-practice terms and their capability to serve as node in a discriminating data-graph with self-explained meaning.		
Current	Compute(System)	Cloud for the participation of community	
Solutions	Storage	Requires expandable on-demand based resource that is	
50.40015	Storage	suitable for global users location and requirements	
	Networking	Needs good network for the community participation	
	Software	Good database tools and servers for data-graph	
	Suitware	• •	
D:- D-+-	Data Causa	manipulation are needed	
Big Data	Data Source	Distributed resource with a limited centralized	
Characteristics	(distributed/centralized)	capability	
	Volume (size)	Undetermined. May be few terabytes at the beginning	

The Ecosystem for Research> Use Case 34: Graph Search on Scientific Data

	Velocity	Evolving with time to accommodate new best-practices
	(e.g. real time)	
	Variety	Wildly varying depending on the types available
	(multiple datasets,	technological information
	mashup)	
	Variability (rate of	Data-graphs are likely to change in time based on
	change)	customer preferences and best-practices
Big Data Science	Veracity (Robustness	Technological information is likely to be stable and
(collection, curation,	Issues)	robust
analysis,	Visualization	Efficient data-graph based visualization is needed
action)	Data Quality	Expected to be good
	Data Types	All data types, image to text, structures to protein
		sequence
	Data Analytics	Data-graphs is expected to provide robust data-analysis
	-	methods
Big Data Specific	This is a community effort similar to many social media. Providing a robust, scalable,	
Challenges (Gaps)	on-demand infrastructures i	n a manner that is use-case and user-friendly is a real
	challenge by any existing conventional methods	
Big Data Specific	A community access is requi	red for the data and thus it has to be media and location
Challenges in Mobility	independent and thus requi	res high mobility too.
Security and Privacy	None since the effort is initia	ally focused on publicly accessible data provided by
Requirements	open-platform projects like open-gov, MGI and protein data bank.	
Highlight issues for	This effort includes many local and networked resources. Developing an	
generalizing this use	infrastructure to automatically integrate information from all these resources using	
case (e.g. for ref.	data-graphs is a challenge that we are trying to solve.	
architecture)		
More Information	http://www.eurekalert.org/	pub_releases/2013-07/aiop-ffm071813.php
(URLs)	http://xpdb.nist.gov/chemblast/pdb.pl	
	http://xpdb.nist.gov/chemb	
Neter Many reports including a report and an Anterial Company Draight finds that evaluation tan down solutions		

Note: Many reports, including a recent one on Material Genome Project finds that exclusive top-down solutions to facilitate data sharing and integration are not desirable for federated multi-disciplinary efforts. However, a bottom-up approach can be chaotic. For this reason, there is need for a balanced blend of the two approaches to support easy-to-use techniques to metadata creation, integration and sharing. This challenge is very similar to the challenge faced by language developer at the beginning. One of the successful effort used by many prominent languages is that of 'roots' and rules that form the framework for creating on-demand words for communication. In this approach a top-down method is used to establish a limited number of highly re-usable words called 'roots' by surveying the existing best practices in building terminology. These 'roots' are combined using few 'rules' to create terms on-demand by a bottom-up step.

Y(uj) (join), O (creator, God, brain), Ga (motion, initiation) –leads to 'Yoga' in Sanskrit, English

Geno (genos)-cide-race based killing - Latin, English

Bio-technology – English, Latin

Red-light, red-laser-light –English.

A press release by the American Institute of Physics on this approach is at

http://www.eurekalert.org/pub_releases/2013-07/aiop-ffm071813.php

Our efforts to develop automated and rule and root-based methods (Chem-BLAST -.

<u>http://xpdb.nist.gov/chemblast/pdb.pl</u>) to identify and use best-practice, discriminating terms in generating semantic data-graphs for science started almost a decade back with a chemical structure database. This database has millions of structures obtained from the Protein Data Bank and the PubChem used world-wide. Subsequently we extended our efforts to build root-based terms to text-based data of cell-images. In this work

The Ecosystem for Research> Use Case 34: Graph Search on Scientific Data

we use few simple rules to define and extend terms based on best-practice as decided by weaning through millions of popular use-cases chosen from over hundred biological ontologies.

Currently we are working on extending this method to publications of interest to Material Genome, Open-Gov and NIST-wide publication archive - NIKE. - <u>http://xpdb.nist.gov/nike/term.pl</u>. These efforts are a component of Research Data Alliance Working Group on Metadata <u>https://www.rd-alliance.org/filedepot_download/694/160</u> and <u>https://rd-alliance.org/poster-session-rda-2nd-plenary-meeting.html</u>

The Ecosystem for Research> Use Case 35: Light Source Beamlines

Use Case Title	Light source beamlines		
Vertical (area)	Research (Biology, Chemistry, Geophysics, Materials Science, others)		
Author/Company/Email	Eli Dart, LBNL (<u>eddart@lbl.gov</u>)		
Actors/Stakeholders	Research groups from a variety of scientific disciplines (see above)		
and their roles and	hesedren groups norm a variety of selentine disciplines (see above)		
responsibilities			
Goals	Use of a variety of experi	imental techniques to determine structure, composition,	
	behavior, or other attributes	s of a sample relevant to scientific enquiry.	
Use Case Description		X-rays in a variety of configurations depending on the	
	experiment. Detectors (essentially high-speed digital cameras) collect the data. The data		
	are then analyzed to reconstruct a view of the sample or process being studied. The		
	reconstructed images are us		
Current	Compute(System)	Computation ranges from single analysis hosts to high-	
Solutions		throughput computing systems at computational facilities	
	Storage	Local storage on the order of 1-40TB on Windows or Linux	
		data servers at facility for temporary storage, over 60TB on	
		disk at NERSC, over 300TB on tape at NERSC	
	Networking	10Gbps Ethernet at facility, 100Gbps to NERSC	
	Software	A variety of commercial and open source software is used	
		for data analysis – examples include:	
		Octopus (<u>http://www.inct.be/en/software/octopus</u>)	
		for Tomographic Reconstruction	
		• Avizo (<u>http://vsg3d.com</u>) and FIJI (a distribution of	
		ImageJ; http://fiji.sc) for Visualization and Analysis	
		Data transfer is accomplished using physical transport of	
		portable media (severely limits performance) or using high-	
		performance GridFTP, managed by Globus Online or	
		workflow systems such as SPADE.	
Big Data	Data Source	Centralized (high resolution camera at facility). Multiple	
Characteristics	(distributed/centralized)	beamlines per facility with high-speed detectors.	
	Volume (size)	3GB to 30GB per sample – up to 15 samples/day	
	Velocity	Near real-time analysis needed for verifying experimental	
	(e.g. real time)	parameters (lower resolution OK). Automation of analysis	
		would dramatically improve scientific productivity.	
	Variety	Many detectors produce similar types of data (e.g. TIFF	
	(multiple datasets,	files), but experimental context varies widely	
	mashup)		
	Variability (rate of	Detector capabilities are increasing rapidly. Growth is	
	change)	essentially Moore's Law. Detector area is increasing	
		exponentially (1k x 1k, 2k x 2k, 4k x 4k,) and readout is	
		increasing exponentially (1Hz, 10Hz, 100Hz, 1kHz,).	
		Single detector data rates are expected to reach 1 GB per	
		second within 2 years.	
Big Data Science	Veracity (Robustness	Near real-time analysis required to verify experimental	
(collection, curation,	Issues) parameters. In many cases, early analysis can dramatically		
analysis,		improve experiment productivity by providing early	
action)		feedback. This implies high-throughput computing, high-	
		performance data transfer, and high-speed storage are	
		routinely available.	

The Ecosystem for Research> Use Case 35: Light Source Beamlines

	Visualization	Visualization is key to a wide variety of experiments at all		
		light source facilities		
	Data Quality	Data quality and precision are critical (especially since		
		beam time is scarce, and re-running an experiment is often		
		impossible).		
	Data Types	Many beamlines generate image data (e.g., TIFF files)		
	Data Analytics	Volume reconstruction, feature identification, others		
Big Data Specific	Rapid increase in camera ca	apabilities, need for automation of data transfer and near-		
Challenges (Gaps)	real-time analysis.			
Big Data Specific	Data transfer to large-scale computing facilities is becoming necessary because of the			
Challenges in Mobility	computational power required to conduct the analysis on time scales useful to the			
	experiment. Large number of beamlines (e.g., 39 at LBNL ALS) means that aggregate data			
	load is likely to increase significantly over the coming years.			
Security and Privacy	Varies with project.			
Requirements				
Highlight issues for	There will be significant need for a generalized infrastructure for analyzing GBs per			
generalizing this use	second of data from many beamline detectors at multiple facilities. Prototypes exist now,			
case (e.g. for ref.	but routine deployment will require additional resources.			
architecture)				
More Information	http://www-als.lbl.gov/			
(URLs)	http://www.aps.anl.gov/			
	https://portal.slac.stanford.	edu/sites/lcls_public/Pages/Default.aspx		

Astronomy and Physics> Use Case 36: Catalina Digital Sky Survey for Transients

Use Case Title	Catalina Real-Time Transier	nt Survey (CRTS): a digital, panoramic, synoptic sky survey
Vertical (area)	Scientific Research: Astrono	
Author/Company/Email		
Actors/Stakeholders	S. G. Djorgovski / Caltech /	
and their roles and		essing, quality control, analysis and interpretation,
	publishing, and archiving.	research groups world wide, further work on data
responsibilities		research groups world-wide: further work on data
		, follow-up observations, and publishing. above, plus the astronomical community world-wide:
	-	sis and interpretation, follow-up observations, and
	publishing.	sis and interpretation, follow-up observations, and
Goals		iable universe in the visible light regime, on time scales
Godis		ars, by searching for variable and transient sources. It
		f astrophysical objects and phenomena, including various
		(e.g., Supernovae), variable stars, phenomena associated
		lack holes (active galactic nuclei) and their relativistic jets,
	high proper motion stars, e	
Use Case Description	• • •	1 3 telescopes (2 in Arizona and 1 in Australia), with
		the near future (in Chile). The original motivation is a
) and potential planetary hazard (PHO) asteroids, funded
		a group at the Lunar and Planetary Laboratory (LPL) at
		hat is the Catalina Sky Survey proper (CSS). The data
		rs for the purposes for exploration of the variable
	-	system, led by the Caltech group. Approximately 83% of
	-	eyed through multiple passes (crowded regions near the
		eas near the celestial poles are excluded).
		at the telescope, and transferred to LPL/UA, and hence to
	Caltech, for further analysis	s, distribution, and archiving. The data are processed in
	real time, and detected trai	nsient events are published electronically through a
	variety of dissemination me	echanisms, with no proprietary period (CRTS has a
	completely open data polic	y).
	Further data analysis includ	les automated and semi-automated classification of the
	detected transient events, a	additional observations using other telescopes, scientific
	interpretation, and publishi	ing. In this process, it makes a heavy use of the archival
	data from a wide variety of	geographically distributed resources connected through
	the Virtual Observatory (VC	D) framework.
		are accumulated for \approx 500 million sources detected in the
	-	ndred data points on average, spanning up to 8 years, and
	0 0	to the community from the archives at Caltech, and
		This is an unprecedented dataset for the exploration of
		in terms of the temporal and area coverage and depth.
		hodological testbed and precursor of the grander surveys
		Synoptic Survey Telescope (LSST), expected to operate in
	2020's.	
Current	Compute(System)	Instrument and data processing computers: a number of
Solutions		desktop and small server class machines, although more
		powerful machinery is needed for some data analysis
		tasks. This is not so much a computationally intensive project
		This is not so much a computationally-intensive project,
		but rather a data-handling-intensive one.

Astronomy and Physics> Use Case 36: Catalina Digital Sky Survey for Transients

	Storage	Several multi-TB / tens of TB servers.
	Networking	Standard inter-university Internet connections.
	Software	Custom data processing pipeline and data analysis
	Solthare	software, operating under Linux. Some archives on
		Windows machines, running a MS SQL server databases.
Big Data	Data Source	Distributed:
Characteristics	(distributed/centralized)	1. Survey data from 3 (soon more?) telescopes
Characteristics	(uistributed) tentralized)	2. Archival data from a variety of resources
		connected through the VO framework
		3. Follow-up observations from separate
		telescopes
	Volume (size)	The survey generates up to ≈ 0.1 TB per clear night; \approx
	volume (size)	100 TB in current data holdings. Follow-up observational
		data amount to no more than a few % of that.
		Archival data in external (VO-connected) archives are in
		PBs, but only a minor fraction is used.
	Velocity	Up to ≈ 0.1 TB / night of the raw survey data.
	(e.g. real time)	
	Variety	The primary survey data in the form of images,
	(multiple datasets,	processed to catalogs of sources (db tables), and time
	mashup)	series for individual objects (light curves).
		Follow-up observations consist of images and spectra.
		Archival data from the VO data grid include all of the
		above, from a wide variety of sources and different
		wavelengths.
	Variability (rate of	Daily data traffic fluctuates from ≈ 0.01 to ≈ 0.1 TB / day,
	change)	not including major data transfers between the principal
		archives (Caltech, UA, and IUCAA).
Big Data Science	Veracity (Robustness	A variety of automated and human inspection quality
(collection, curation,	Issues, semantics)	control mechanisms is implemented at all stages of the
analysis,		process.
action)	Visualization	Standard image display and data plotting packages are
		used. We are exploring visualization mechanisms for
		highly dimensional data parameter spaces.
	Data Quality (syntax)	It varies, depending on the observing conditions, and it
		is evaluated automatically: error bars are estimated for
		all relevant quantities.
	Data Types	Images, spectra, time series, catalogs.
	Data Analytics	A wide variety of the existing astronomical data analysis
		tools, plus a large amount of custom developed tools
		and software, some of it a research project in itself.
Big Data Specific	Development of machine le	earning tools for data exploration, and in particular for an
Challenges (Gaps)	automated, real-time classi	fication of transient events, given the data sparsity and
	heterogeneity.	
	Effective visualization of hy	per-dimensional parameter spaces is a major challenge
	for all of us.	
Big Data Specific	Not a significant limitation	at this time.
Challenges in Mobility		

Astronomy and Physics> Use Case 36: Catalina Digital Sky Survey for Transients

Security and Privacy	None.
Requirements	
Highlight issues for	Real-time processing and analysis of massive data streams from a distributed
generalizing this use	sensor network (in this case telescopes), with a need to identify, characterize,
case (e.g. for ref.	and respond to the transient events of interest in (near) real time.
architecture)	
architecturej	Use of highly distributed archival data resources (in this case VO-connected archivas) for data analysis and interpretation
	archives) for data analysis and interpretation.
	Automated classification given the very sparse and heterogeneous data, dynamically evolving in time as more data some in and follow up desiring
	dynamically evolving in time as more data come in, and follow-up decision
	making given limited and sparse resources (in this case follow-up observations
	with other telescopes).
More Information	CRTS survey: <u>http://crts.caltech.edu</u>
(URLs)	CSS survey: <u>http://www.lpl.arizona.edu/css</u>
	For an overview of the classification challenges, see, e.g.,
	http://arxiv.org/abs/1209.1681
	For a broader context of sky surveys, past, present, and future, see, e.g., the review
	http://arxiv.org/abs/1209.1681 s a good precursor to the astronomy's flagship project, the Large Synoptic Sky Survey
night, tens of PB over the	g), now under development. Their anticipated data rates (≈ 20TB to 30 TB per clear duration of the survey) are directly on the Moore's law scaling from the current CRTS
	nd many technical and methodological issues are very similar.
-	eal-time data mining and knowledge discovery in massive data streams, with
distributed data sources a	nd computational resources.
ee Figure 5: Catalina Cl	RTS: A Digital, Panoramic, Synoptic Sky Survey
stronomy. Transient ever ground or in space, and the lepositories, from which elescopes. Each event is available data on that cell Observatory framework, both human-readable and characterization, classific	ssible schematic architecture for a cyber-infrastructure for time domain ent data streams are produced by survey pipelines from the telescopes on the he events with their observational descriptions are ingested by one or more they can be disseminated electronically to human astronomers or robotic assigned an evolving portfolio of information, which would include all of the estial position, from a wide variety of data archives unified under the Virtual expert annotations, etc. Representations of such federated information can be anachine-readable. They are fed into one or more automated event cation, and prioritization engines that deploy a variety of machine learning tools
nforms the follow-up ob	put, which evolves dynamically as new information arrives and is processed, servations of the selected events, and the resulting data are communicated back or the next iteration. Users (human or robotic) can tap into the system at multiple
s une event portionos, re	in the next netation. Users (numarior robotic) can tap into the system at multiple

 points, both for an information retrieval, and to contribute new information, through a standardized set of

formats and protocols. This could be done in a (near) real time, or in an archival (not time critical) modes.

Astronomy and Physics> Use Case 37: Cosmological Sky Survey and Simulations

Use Case Title	DOF Extreme Data from Cos	mological Sky Survey and Simulations
Vertical (area)	Scientific Research: Astroph	
Author/Company/Email	-	e National Laboratory; Andrew Connolly, University of
, athor, company, chian	Washington	e Hateriai Euberatory, Anarew Connolly, Oniversity of
Actors/Stakeholders	Researchers studying dark	matter, dark energy, and the structure of the early
and their roles and	universe.	
responsibilities		
Goals	perplexing, and challenging	tter, dark energy, and inflation, some of the most exciting, questions facing modern physics. Emerging, unanticipated toward a need for physics beyond the successful Standard
Use Case Description	This investigation requires a	an intimate interplay between Big Data from experiment
	and simulation as well as ma	assive computation. The melding of all will
	1) Provide the direct mea	ns for cosmological discoveries that require a strong
	connection between theory	and observations ('precision cosmology');
	2) Create an essential 'tool	of discovery' in dealing with large datasets generated by
	complex instruments; and,	
		ults from high-fidelity simulations that are necessary to
	understand and control syst	ematics, especially astrophysical systematics.
Current	Compute(System)	Hours: 24M (NERSC / Berkeley Lab), 190M (ALCF /
Solutions		Argonne), 10M (OLCF / Oak Ridge)
	Storage	180 TB (NERSC / Berkeley Lab)
	Networking	ESNet connectivity to the national labs is adequate
		today.
	Software	MPI, OpenMP, C, C++, F90, FFTW, viz packages, python, FFTW, numpy, Boost, OpenMP, ScaLAPCK, PSQL and MySQL databases, Eigen, cfitsio, astrometry.net, and Minuit2
Big Data	Data Source	Observational data will be generated by the Dark Energy
Characteristics	(distributed/centralized)	Survey (DES) and the Zwicky Transient Factory in 2015
		and by the Large Synoptic Sky Survey starting in 2019. Simulated data will generated at DOE supercomputing centers.
	Volume (size)	DES: 4 PB, ZTF 1 PB/year, LSST 7 PB/year, Simulations >
		10 PB in 2017
	_	LSST: 20 TB/day
	(e.g. real time)	1) Data from also survey 2) Down of the state
	Variety	1) Raw Data from sky surveys 2) Processed Image data
	(multiple datasets,	3) Simulation data
	mashup)	Observations are taken nightly suggesting simulations
	Variability (rate of	Observations are taken nightly; supporting simulations
	change)	are run throughout the year, but data can be produced sporadically depending on access to resources
Rig Data Salarsa	Voracity (Pobustness	sporadically depending on access to resources
Big Data Science	Veracity (Robustness	
(collection, curation,	lssues)	
analysis,		
action)	Visualization	Interpretation of regults from detailed simulations
	Visualization	Interpretation of results from detailed simulations requires advanced analysis and visualization techniques
		requires auvanceu analysis and visualization techniques

Astronomy and Physics> Use Case 37: Cosmological Sky Survey and Simulations

	Data Quality	and capabilities. Supercomputer I/O subsystem limitations are forcing researchers to explore "in-situ" analysis to replace post-processing methods.
	Data Types	Image data from observations must be reduced and compared with physical quantities derived from simulations. Simulated sky maps must be produced to match observational formats.
	Data Analytics	
Big Data Specific	Storage, sharing, and analys	is of 10s of PBs of observational and simulated data.
Challenges (Gaps)		
Big Data Specific	LSST will produce 20 TB of d	ata per day. This must be archived and made available to
Challenges in Mobility	researchers world-wide.	
Security and Privacy		
Requirements		
Highlight issues for		
generalizing this use		
case (e.g. for ref.		
architecture)		
More Information	http://www.lsst.org/lsst/	
(URLs)	http://www.nersc.gov/	
	http://science.energy.gov/h	ep/research/non-accelerator-physics/
	http://www.nersc.gov/asset	s/Uploads/HabibcosmosimV2.pdf

Astronomy and Physics> Use Case 38: Large Survey Data for Cosmology

Use Case Title	Large Survey Data for Cosm	nology
Vertical (area)	Scientific Research: Cosmic	Frontier
Author/Company/Email	Peter Nugent / LBNL / penu	igent@lbl.gov
Actors/Stakeholders	-	nergy Spectroscopic Instrument, Large Synoptic Survey
and their roles and		LBNL and SLAC: Create the instruments/telescopes, run
responsibilities	the survey and perform the	
Goals		otometric data in real time for supernova discovery and
	follow-up and to handle the simulation data) to reduce	e large volume of observational data (in conjunction with systematic uncertainties in the measurement of the a baryon acoustic oscillations, galaxy cluster counting and
Use Case Description	For DES the data are sent fi	rom the mountaintop via a microwave link to La Serena,
	Chile. From there, an optica	al link forwards them to the NCSA as well as NERSC for
	storage and "reduction". Su	ubtraction pipelines are run using extant imaging data to
	find new optical transients	through machine learning algorithms. Then galaxies and
	stars in both the individual	and stacked images are identified, catalogued, and finally
	their properties measured	
Current	Compute(System)	Linux cluster, Oracle RDBMS server, large memory
Solutions		machines, standard Linux interactive hosts. For
		simulations, HPC resources.
	Storage	Oracle RDBMS, Postgres psql, as well as GPFS and Lustre
		file systems and tape archives.
	Networking	Provided by NERSC
	_	
	Software	Standard astrophysics reduction software as well as
		Perl/Python wrapper scripts, Linux Cluster scheduling
		and comparison to large amounts of simulation data via
		techniques like Cholesky decomposition.
Big Data	Data Source	Distributed. Typically between observation and
Characteristics	(distributed/centralized)	simulation data.
	Volume (size)	LSST will generate 60 PB of imaging data and 15 PB of catalog data and a correspondingly large (or larger) amount of simulation data. Over 20 TB of data per night.
	Velocity	20TB of data will have to be subtracted each night in as
	(e.g. real time)	near real time as possible in order to maximize the
	(0.8.1001 (0.110)	science for supernovae.
	Variety	While the imaging data is similar, the analysis for the 4
	(multiple datasets,	different types of cosmological measurements and
	mashup)	comparisons to simulation data is quite different.
	Variability (rate of	Weather and sky conditions can radically change both
	change)	the quality and quantity of data.
Big Data Science	Veracity (Robustness	Astrophysical data is a statistician's nightmare as the
(collection, curation,	Issues)	both the uncertainties in a given measurement change
analysis,	1550(5)	from night-to-night in addition to the cadence being
action)		highly unpredictable. Also, most all of the cosmological
action		measurements are systematically limited, and thus
		understanding these as best possible is the highest
		priority for a given survey.

Astronomy and Physics> Use Case 38: Large Survey Data for Cosmology

	Visualization Data Quality	Interactive speed of web UI on very large datasets is an ongoing challenge. Basic querying and browsing of data to find new transients as well as monitoring the quality of the survey is a must. Ability to download large amounts of data for offline analysis is another requirement of the system. Ability to combine both simulation and observational data is also necessary. Understanding the systematic uncertainties in the
		observational data is a prerequisite to a successful cosmological measurement. Beating down the
		uncertainties in the simulation data to under this level is
		a huge challenge for future surveys.
	Data Types	Cf. above on "Variety"
	Data Analytics	
Big Data Specific	New statistical techniques	for understanding the limitations in simulation data would
Challenges (Gaps)	be beneficial. Often it is the	e case where there is not enough computing time to
	generate all the simulations	s one wants and thus there is a reliance on emulators to
	bridge the gaps. Technique simulations with matrices of	s for handling Cholesky decomposition for thousands of of order 1M on a side.
Big Data Specific	Performing analysis on both	h the simulation and observational data simultaneously.
Challenges in Mobility		
Security and Privacy	No special challenges. Data	is either public or requires standard login with password.
Requirements		
Highlight issues for		ould handle imaging data would be an interesting avenue
generalizing this use	for future research.	
case (e.g. for ref.		
architecture)		
More Information	http://www.lsst.org/lsst, ht	ttp://desi.lbl.gov, and http://www.darkenergysurvey.org
(URLs)		

Use Case Title		LHC (Large Hadron Collider) Data (Discovery of Higgs
	particle)	
Vertical (area)	Scientific Research: Physics	
Author/Company/Emai		<u>gov</u> , Lothar Bauerdick <u>bauerdick@fnal.gov</u> based on an
I	-	offrey Fox, Indiana University <u>gcf@indiana.edu</u> , Eli Dart,
	LBNL <u>eddart@lbl.gov</u> ,	
Actors/Stakeholders	Physicists(Design and Ident	ify need for Experiment, Analyze Data) Systems Staff
and their roles and	(Design, Build and Support	distributed Computing Grid), Accelerator Physicists
responsibilities	(Design, Build and Run Acce	elerator), Government (funding based on long term
	importance of discoveries in	n field))
Goals	Understanding properties of	of fundamental particles
Use Case Description	• • •	onte Carlo producing events describing particle-apparatus
		mation defines physics properties of events (lists of
		nenta). These events are analyzed to find new effects;
		and present evidence that conjectured particles
	(Supersymmetry) not seen.	
Current	Compute(System)	WLCG and Open Science Grid in the US integrate
Solutions	compute(system)	
Solutions		computer centers worldwide that provide computing
		and storage resources into a single infrastructure
		accessible by all LHC physicists.
		350,000 cores running "continuously" arranged in 3 tiers
		(CERN, "Continents/Countries". "Universities"). Uses
		"Distributed High Throughput Computing (DHTC)";
		200PB storage, >2million jobs/day.
		2001 D Storuge, - 21111101 Jobs, ddy.
	Storage	ATLAS:
		 Brookhaven National Laboratory Tier1 tape:
		10PB ATLAS data on tape managed by HPSS
		(incl. RHIC/NP the total data volume is 35PB)
		 Brookhaven National Laboratory Tier1 disk:
		11PB; using dCache to virtualize a set of ≈60
		heterogeneous storage servers with high-
		density disk backend systems
		US Tier2 centers, disk cache: 16PB
		CMS:
		Fermilab US Tier1, reconstructed, tape/cache:
		20.4PB
		US Tier2 centers, disk cache: 7PB
		US Tier3 sites, disk cache: 1.04PB
	Networking	 As experiments have global participants (CMS
		has 3600 participants from 183 institutions in
		38 countries), the data at all levels is
		transported and accessed across continents.
		Large scale automated data transfers occur
		over science networks across the globe.
		LHCOPN and LHCONE network overlay provide
		dedicated network allocations and traffic
		isolation for LHC data traffic

	<i>, 2</i> 414	
	Software	 ATLAS Tier1 data center at BNL has 160Gbps internal paths (often fully loaded). 70Gbps WAN connectivity provided by ESnet. CMS Tier1 data center at FNAL has 90Gbps WAN connectivity provided by ESnet Aggregate wide area network traffic for LHC experiments is about 25Gbps steady state worldwide The scalable ATLAS workload/workflow management system PanDA manages ≈1 million production and user analysis jobs on globally distributed computing resources (≈100 sites) per day. The new ATLAS distributed data management system Rucio is the core component keeping track of an inventory of currently ≈130PB of data distributed across grid resources and to orchestrate data movement between sites. The data volume is expected to grow to exascale size in the next few years. Based on the xrootd system ATLAS has developed FAX, a federated storage system that allows remote data access. Similarly, CMS is using the OSG glideinWMS infrastructure to manage its workflows for production and data analysis the PhEDEx system to orchestrate data movements, and the AAA/xrootd system to allow remote data access. Experiment-specific physics software including simulation packages, data processing, advanced statistic
		packages, etc.
Big Data Characteristics	Data Source (distributed/centralized)	 High speed detectors produce large data volumes: ATLAS detector at CERN: Originally 1 PB/sec raw data rate, reduced to 300MB/sec by multi-stage trigger. CMS detector at CERN: similar Data distributed to Tier1 centers globally, which serve as
	\/_l	data sources for Tier2 and Tier3 analysis centers
	Volume (size) Velocity	 15 Petabytes per year from Detectors and Analysis Real time with some long LHC "shut downs" (to
	(e.g. real time)	 Real time with some long LHC shut downs (to improve accelerator and detectors) with no data except Monte Carlo.
		 Besides using programmatically and dynamically replicated datasets, real-time remote I/O (using XrootD) is increasingly used by analysis which requires reliable high- performance networking capabilities to reduce file copy and storage system overhead
	Variety	Lots of types of events with from 2- few hundred final particle but all data is collection of particles after initial

	(multiple datasets,	analysis. Events are grouped into datasets; real detector
	mashup)	data is segmented into ≈20 datasets (with partial
		overlap) on the basis of event characteristics determined
		through real-time trigger system, while different
		simulated datasets are characterized by the physics
		process being simulated.
	Variability (rate of	Data accumulates and does not change character. What
	change)	you look for may change based on physics insight. As
	change)	
		understanding of detectors increases, large scale data
		reprocessing tasks are undertaken.
Big Data Science	Veracity (Robustness	One can lose modest amount of data without much pain
(collection, curation,	Issues)	as errors proportional to 1/SquareRoot(Events
analysis,		gathered), but such data loss must be carefully
action)		accounted. Importance that accelerator and
		experimental apparatus work both well and in
		understood fashion. Otherwise data too "dirty" /
		"uncorrectable".
	Visualization	Modest use of visualization outside histograms and
		model fits. Nice event displays but discovery requires
		lots of events so this type of visualization of secondary
		importance
	Data Quality	Huge effort to make certain complex apparatus well
	,	understood (proper calibrations) and "corrections"
		properly applied to data. Often requires data to be re-
		analyzed
	Data Types	Raw experimental data in various binary forms with
	Bata Types	conceptually a name: value syntax for name spanning
		"chamber readout" to "particle momentum".
		Reconstructed data is processed to produce dense data
		formats optimized for analysis
	Data Analytics	Initial analysis is processing of experimental data specific
	Data Analytics	
		to each experiment (ALICE, ATLAS, CMS, LHCb)
		producing summary information. Second step in analysis
		uses "exploration" (histograms, scatter-plots) with
		model fits. Substantial Monte-Carlo computations are
		necessary to estimate analysis quality.
		A large fraction (≈60%) of the available CPU resources
		available to the ATLAS collaboration at the Tier-1 and
		the Tier-2 centers is used for simulated event
		production. The ATLAS simulation requirements are
		completely driven by the physics community in terms of
		analysis needs and corresponding physics goals. The
		current physics analyses are looking at real data samples
		of roughly 2 billion (B) events taken in 2011 and 3B
		events taken in 2012 (this represents ≈5 PB of
		experimental data), and ATLAS has roughly 3.5B MC
		events for 2011 data, and 2.5B MC events for 2012 (this
		represents ≈ 6 PB of simulated data). Given the resource
		requirements to fully simulate an event using the GEANT

	, 200	
		4 package, ATLAS can currently produce about 4 million
		events per day using the entire processing capacity
		available to production worldwide.
		Due to its high CPU cost, the outputs of full Geant4
		simulation (HITS) are stored in one custodial tape copy
		on Tier1 tapes to be re-used in several Monte-Carlo re-
		processings. The HITS from faster simulation flavors will
		be only of transient nature in LHC Run 2.
Big Data Specific	The translation of scient	tific results into new knowledge, solutions, policies and
Challenges (Gaps)		the science mission associated with LHC data analysis and
Chanenges (Gaps)		
	_	hile advances in experimental and computational
	-	exponential growth in the volume, velocity, and variety
		fic discovery, advances in technologies to convert this data
		have fallen far short of what the HEP community needs to
		tely impacting outcomes. Acceleration of the scientific
		ss is essential if DOE scientists are to continue making
	major contributions in HEP.	
	Today's worldwide anal	ysis engine, serving several thousand scientists, will have
	to be commensurately exte	nded in the cleverness of its algorithms, the automation
	of the processes, and the re	each (discovery) of the computing, to enable scientific
	understanding of the detail	ed nature of the Higgs boson. E.g. the approximately forty
	different analysis methods	used to investigate the detailed characteristics of the
	Higgs boson (many using ma	achine learning techniques) must be combined in a
		shion to have an agreed upon publishable result.
		erated semantic discovery: Interfaces, protocols and access to, use of, and interoperation across federated sets
		managed by a mix of different policies and controls that
	_	ing and "at rest" data sources. These include: models,
		ference implementations for a distributed non-
	-	ce; semantics, methods, interfaces for life-cycle
		capture, provenance, assessment, validation, rejection)
		stributed tools, services and resources; a global
	_	in the face of failures and outages; and flexible high-
		oing beyond schema driven) that scale and are friendly to
	interactive analytics	
	Pocourco decorintian	d understanding: Distributed methods and
	-	d understanding: Distributed methods and
	-	resources (people, software, computing incl. data) to
		nction for use by diverse clients. Mechanisms to handle
		niform and common framework – including complex types
		a, incomplete and evolving information, and rapidly
		puting, storage and other computational resources.
	-	d file-based data movement over the WAN/LAN and on
		low for real-time, collaborative decision making for
	scientific processes.	
Big Data Specific		propriate available resources and to ensure that all data
Challenges in Mobility		able at that resource is fundamental to future discoveries
		purce" has a broad meaning and includes data and people
	as well as computing and ot	ther non-computer based entities: thus, any kind of data—

	raw data, information, knowledge, etc., and any type of resource—people, computers, storage systems, scientific instruments, software, resource, service, etc. In order to make effective use of such resources, a wide range of management capabilities must be provided in an efficient, secure, and reliable manner, encompassing for example collection, discovery, allocation, movement, access, use, release, and reassignment. These capabilities must span and control large ensembles of data and other resources that are constantly changing and evolving, and will often be in-deterministic and fuzzy in many aspects. <i>Specific Challenges: Globally optimized dynamic allocation of resources:</i> These need to take account of the lack of strong consistency in knowledge across the entire system.
	need to take account of the lack of strong consistency in knowledge across the entire
	<i>Minimization of time-to-delivery of data and services:</i> Not only to reduce the time to delivery of the data or service but also allow for a predictive capability, so physicists working on data analysis can deal with uncertainties in the real-time decision making processes.
Security and Privacy Requirements	While HEP data itself is not proprietary unintended alteration and/or cyber- security related facility service compromises could potentially be very disruptive to the analysis process. Besides the need of having personal credentials and the related virtual organization credential management systems to maintain access rights to a certain set of resources, a fair amount of attention needs to be devoted to the development and operation of the many software components the community needs to conduct computing in this vastly distributed environment. The majority of software and systems development for LHC data analysis is carried out inside the HEP community or by adopting software components from other parties which involves numerous assumptions and design decisions from the early design stages throughout its life cycle. Software systems make a number of assumptions about their environment - how they are deployed, configured, who runs it, what sort of network is it on, is its input or output sensitive, can it trust its input, does it preserve privacy, etc.? When multiple software components are interconnected, for example in the deep software stacks used in DHTC, without clear understanding of their security assumptions, the security of the resulting system
	becomes an unknown. A trust framework is a possible way of addressing this problem. A DHTC trust framework, by describing what software, systems and organizations provide and expect of their environment regarding policy enforcement, security and privacy, allows for a system to be analyzed for gaps in trust, fragility and fault tolerance.
Highlight issues for	Large scale example of an event based analysis with core statistics needed. Also
generalizing this use	highlights importance of virtual organizations as seen in global collaboration.
case (e.g. for ref.	The LHC experiments are pioneers of distributed Big Data science infrastructure,
architecture)	and several aspects of the LHC experiments' workflow highlight issues that other
	disciplines will need to solve. These include automation of data distribution, high performance data transfer, and large-scale high-throughput computing.
More Information (URLs)	http://grids.ucs.indiana.edu/ptliupages/publications/Where%20does%20all%20the% 20data%20come%20from%20v7.pdf http://www.es.net/assets/pubs_presos/High-throughput-lessons-from-the-LHC-
	experience.Johnston.TNC2013.pdf
ote:	experience.joiniston.rwczo15.pdi

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 3, USE CASES AND GENERAL REQUIREMENTS

Use Case Stages	Data Sources	Data Usage	Transformations (Data Analytics)	Infrastructure	Security and Privacy
	sis of LHC Large Hadron				
Record Raw Data	CERN LHC Accelerator	This data is staged at CERN and then distributed across the globe for next stage in processing	LHC has 10 ⁹ collisions per second; the hardware + software trigger selects "interesting events". Other utilities distribute data across the globe with fast transport	Accelerator and sophisticated data selection (trigger process) that uses ≈7000 cores at CERN to record ≈100-500 events each second (≈1 megabyte each)	N/A
Process Raw Data to Information	Disk Files of Raw Data	and checking of analysis which has for example "heuristic" track finding algorithms. Produce "large" full physics files and stripped down Analysis Object Data (AOD) files that are ≈10% original size	Full analysis code that builds in complete understanding of complex experimental detector. Also Monte Carlo codes to produce simulated data to evaluate efficiency of experimental detection.	≈300,000 cores arranged in 3 tiers. Tier 0: CERN Tier 1: "Major Countries" Tier 2: Universities and laboratories. Note processing is compute and data intensive	N/A
Physics Analysis Information to Knowledge/Discovery	Disk Files of Information including accelerator and Monte Carlo data. Include wisdom from lots of physicists (papers) in analysis choices	Use simple statistical techniques (like histogramming, multi-variate analysis methods and other data analysis techniques and model fits to discover new effects (particles) and put limits on effects not seen	Data reduction and processing steps with advanced physics algorithms to identify event properties, particle hypothesis etc. For interactive data analysis of those reduced and selected datasets the classic program is Root from CERN that reads multiple event (AOD, NTUP) files from selected datasets and use physicist generated C++ code to calculate new quantities such as implied mass of an unstable (new) particle	resources. Data transfer is done using ATLAS and CMS DDM	Physics discoveries and results are confidential until certified by group and presented at meeting/journal. Data preserved so results reproducible

328 See Figure 6: Particle Physics: Analysis of LHC Data: Discovery of Higgs Particle – CERN LHC
 329 location.

See Figure 7: Particle Physics: Analysis of LHC Data: Discovery of Higgs Particle – The multi-tier LHC
 computing infrastructure.

Astronomy and Physics> Use Case 40: Belle II Experiment

Use Case Title	Belle II Experiment	
Vertical (area)	Scientific Research: High Energy Physics	
Author/Company/Email	David Asner and Malachi Schram, PNNL, <u>david.asner@pnnl.gov</u> and	
	malachi.schram@pnnl.gov	
Actors/Stakeholders	David Asner is the Chief Sci	entist for the US Belle II Project
and their roles and		etwork and data transfer coordinator and the PNNL Belle
responsibilities	II computing center manage	er
Goals	Perform precision measure	ments to search for new phenomena beyond the
	Standard Model of Particle	Physics
Use Case Description	Study numerous decay mod	des at the Upsilon(4S) resonance to search for new
	phenomena beyond the Sta	andard Model of Particle Physics
Current	Compute(System)	Distributed (Grid computing using DIRAC)
Solutions	Storage	Distributed (various technologies)
	Networking	Continuous RAW data transfer of ≈20Gbps at designed
	5	luminosity between Japan and US
		Additional transfer rates are currently being investigated
	Software	Open Science Grid, Geant4, DIRAC, FTS, Belle II
		framework
Big Data	Data Source Distributed data centers	
Characteristics	(distributed/centralized)	Primary data centers are in Japan (KEK) and US (PNNL)
Characteristics	Volume (size)	Total integrated RAW data ≈120PB and physics data
	volume (size)	≈15PB and ≈100PB MC samples
	Velocity	Data will be re-calibrated and analyzed incrementally
	(e.g. real time)	Data will be re-calibrated and analyzed incrementally
	(e.g. real tille)	
	Variaty	luminosity
	Variety (multiple datasets,	Data will be re-calibrated and distributed incrementally.
	mashup)	Collicions will prograssively increase until the designed
	Variability (rate of	Collisions will progressively increase until the designed
	change)	luminosity is reached (3000 BB pairs per sec).
Die Dete Geienen	Mana situ (Dalavata asa	Expected event size is ≈300kB per events.
Big Data Science	Veracity (Robustness	Validation will be performed using known reference
(collection, curation,	lssues)	physics processes
analysis,	Visualization	N/A
action)	Data Quality	Output data will be re-calibrated and validated
		incrementally
	Data Types	Tuple based output
	Data Analytics	Data clustering and classification is an integral part of
		the computing model. Individual scientists define event
	-	level analytics.
Big Data Specific	Data movement and bookk	eeping (file and event level meta-data).
Challenges (Gaps)	-	
Big Data Specific	Network infrastructure required for continuous data transfer between Japan (KEK)	
Challenges in Mobility	and US (PNNL).	
Security and Privacy	No special challenges. Data	is accessed using grid authentication.
Requirements		
Highlight issues for		
generalizing this use		
case (e.g. for ref.		
architecture)		

Astronomy and Physics> Use Case 40: Belle II Experiment

	More Information	http://belle2.kek.jp
	(URLs)	
333		

Earth, Environmental and Polar Science> Use Case 41: EISCAT 3D Incoherent Scatter Radar System

Use Case Title	EISCAT 3D incoherent scatt	er radar system	
Vertical (area)	Environmental Science		
Author/Company/Email	Yin Chen /Cardiff University		
	Ingemar Häggström, Ingrid		
	EISCAT Science Association/{Ingemar.Haggstrom, Ingrid.mann,		
	Craig.Heinselman}@eiscat.se		
Actors/Stakeholders		iation is an international research organization operating	
and their roles and	-	stems in Northern Europe. It is funded and operated by	
responsibilities	research councils of Norway, Sweden, Finland, Japan, China and the United Kingdom		
	(collectively, the EISCAT Associates). In addition to the incoherent scatter radar		
	-	nospheric Heater facility, as well as two Dynasondes.	
Goals	· ·	nerent <i>Scat</i> ter Scientific Association, is established to	
		wer, middle and upper atmosphere and ionosphere using	
		r technique. This technique is the most powerful ground-	
		ch applications. EISCAT is also being used as a coherent	
		nstabilities in the ionosphere, as well as for investigating	
	-	s of the middle atmosphere and as a diagnostic instrument	
		experiments with the Heating facility.	
Use Case Description	0	eration incoherent scatter radar system, EISCAT_3D,	
		physicists to explore many new research fields. On the	
	-	es significant challenges in handling large-scale	
		ill be massively generated at great speeds and volumes.	
		eferred to as a Big Data problem and requires solutions	
C		es of conventional database technologies.	
Current	Compute(System)	EISCAT 3D data e-Infrastructure plans to use the high	
Solutions		performance computers for central site data processing	
		and high throughput computers for mirror sites data	
	processing		
	Storage	32TB The estimated data rates in local networks at the active	
	Networking	site run from 1 GB/s to 10 GB/s. Similar capacity is	
		needed to connect the sites through dedicated high-	
		speed network links. Downloading the full data is not	
		time critical, but operations require real-time	
		information about certain pre-defined events to be sent	
		from the sites to the operation centre and a real-time	
		link from the operation centre to the sites to set the	
	mode of radar operation on with immediate action.		
	Software	Mainstream operating systems, e.g., Windows,	
		Linux, Solaris, HP/UX, or FreeBSD	
		 Simple, flat file storage with required capabilities 	
		e.g., compression, file striping and file journaling	
		 Self-developed software 	
		 Control and monitoring tools including, system 	
		configuration, quick-look, fault reporting, etc.	
		 Data dissemination utilities 	
		 O User software e.g., for cyclic buffer, data 	
		cleaning, RFI detection and excision, auto-	
		correlation, data integration, data analysis,	
		conclution, data integration, data analysis,	

Earth, Environmental and Polar Science> Use Case 41: EISCAT 3D Incoherent Scatter Radar System

	,	
		event identification, discovery and retrieval,
		calculation of value-added data products,
		ingestion/extraction, plot
		 User-oriented computing
		 APIs into standard software environments
		 Data processing chains and workflow
Big Data	Data Source	EISCAT_3D will consist of a core site with a transmitting
Characteristics	(distributed/centralized)	and receiving radar arrays and four sites with receiving
		antenna arrays at some 100 km from the core.
	Volume (size)	• The fully operational 5-site system will generate 40
		PB/year in 2022.
		• It is expected to operate for 30 years, and data
		products to be stored at less 10 years
	Velocity	At each of 5-receiver-site:
	(e.g. real time)	 each antenna generates 30 Msamples/s (120MB/s);
	(eigi real time)	 each antenna group (consists of 100 antennas) to
		form beams at speed of 2 Gbit/s/group;
		 these data are temporary stored in a ringbuffer: 160 groups >125 TP /b
	Maniatra	groups ->125 TB/h.
	Variety	 Measurements: different versions, formats,
	(multiple datasets,	replicas, external sources
	mashup)	• System information: configuration, monitoring,
		logs/provenance
		 Users' metadata/data: experiments, analysis,
		sharing, communications
	Variability (rate of	In time, instantly, a few ms.
	change)	Along the radar beams, 100ns.
Big Data Science	Veracity (Robustness	 Running 24/7, EISCAT_3D have very high demands
(collection, curation,	Issues)	on robustness.
analysis,		 Data and performance assurance is vital for the
action)		ring-buffer and archive systems. These systems
		must be able to guarantee to meet minimum data
		rate acceptance at all times or scientific data will be
		lost.
		 Similarly, the systems must guarantee that data
		held is not volatile or corrupt. This latter
		requirement is particularly vital at the permanent
		archive where data is most likely to be accessed by
		scientific users and least easy to check; data
		corruption here has a significant possibility of being
		non-recoverable and of poisoning the scientific
		literature.
	Visualization	• Real-time visualization of analyzed data, e.g., with a
		figure of updating panels showing electron density,
		temperatures and ion velocity to those data for
		each beam.
		 Non-real-time (post-experiment) visualization of the
		physical parameters of interest, e.g.,
		• by standard plots,
<u> </u>		o by standard piots,

	itel Radal System	•
	Data Quality Data Types	 using three-dimensional block to show to spatial variation (in the user selected cuts), using animations to show the temporal variation, allow the visualization of 5 or higher dimensional data, e.g., using the 'cut up and stack' technique to reduce the dimensionality, that is take one or more independent coordinates as discrete; or volume rendering technique to display a 2D projection of a 3D discretely sampled dataset. (Interactive) Visualization. E.g., to allow users to combine the information on several spectral features, e.g., by using color coding, and to provide real-time visualization facility to allow the users to link or plug in tailor-made data visualization functions, and more importantly functions to signal for special observational conditions. Monitoring software will be provided which allows The Operator to see incoming data via the Visualization system in real-time and react appropriately to scientifically interesting events. Control software will be developed to time-integrate the signals and reduce the noise variance and the total data throughput of the system that reached the data archive.
	Data Analytics	Pattern recognition, demanding correlation routines,
		high level parameter extraction
Big Data Specific		a for reduction into higher levels.
Challenges (Gaps)	· •	ul insights from low-value-density data needs new
		p, complex analysis e.g., using machine learning,
		aph algorithms etc. which go beyond traditional
	approaches to the space	
Big Data Specific	Is not likely in mobile platfo	orms
Challenges in Mobility		
Security and Privacy		rictions for 1 year within the associate countries. All data
Requirements	open after 3 years.	
Highlight issues for	EISCAT 3D data e-Infrastructure shares similar architectural characteristics with other	
generalizing this use	ISR radars, and many existing Big Data systems, such as LOFAR, LHC, and SKA	
case (e.g. for ref.		
architecture)		
More Information	https://www.eiscat3d.se/	
(URLs)		
	D Incoherent Scatter Radar	: System – System architecture.
Tigure 0. Liberii Ji	- moonerent Deutter Rauar	System System arounceture.

Earth, Environmental and Polar Science> Use Case 41: EISCAT 3D Incoherent Scatter Radar System

335 336

Use Case Title	ENVRI (Common Operations of Environmental Research Infrastructure)		
Vertical (area)	Environmental Science		
Author/Company/Email	Yin Chen/ Cardiff University / <u>ChenY58@cardiff.ac.uk</u>		
Actors/Stakeholders	The ENVRI project is a collaboration conducted within the European Strategy Forum		
and their roles and	on Research Infrastructures (ESFRI) Environmental Cluster. The ESFRI Environmental		
responsibilities	research infrastructures involved in ENVRI including:		
	ICOS is a European distributed infrastructure dedicated to the monitoring of		
	greenhouse gases (GHG) through its atmospheric, ecosystem and ocean		
	networks.		
	 EURO-Argo is the European contribution to Argo, which is a global ocean 		
	observing system.		
	• EISCAT-3D is a European new-generation incoherent-scatter research radar for		
	upper atmospheric science.		
	• LifeWatch is an e-science Infrastructure for biodiversity and ecosystem research.		
	• EPOS is a European Research Infrastructure on earthquakes, volcanoes, surface		
	dynamics and tectonics.		
	• EMSO is a European network of seafloor observatories for the long-term		
	monitoring of environmental processes related to ecosystems, climate change		
	and geo-hazards.		
	ENVRI also maintains close contact with the other not-directly involved ESFRI		
	Environmental research infrastructures by inviting them for joint meetings. These		
	projects are:		
	IAGOS Aircraft for global observing system		
	SIOS Svalbard arctic Earth observing system		
	ENVRI IT community provides common policies and technical solutions for the		
	research infrastructures, which involves a number of organization partners including,		
	Cardiff University, CNR-ISTI, CNRS (Centre National de la Recherche Scientifique),		
	CSC, EAA (Umweltbundesamt Gmbh), EGI, ESA-ESRIN, University of Amsterdam, and		
	University of Edinburgh.		
Goals	The ENVRI project gathers 6 EU ESFRI environmental science infra-structures		
	(ICOS, EURO-Argo, EISCAT-3D, LifeWatch, EPOS, and EMSO) in order to develop		
	common data and software services. The results will accelerate the construction of		
	these infrastructures and improve interoperability among them.		
	The primary goal of ENVRI is to agree on a reference model for joint operations.		
	The ENVRI RM is a common ontological framework and standard for the description		
	and characterisation of computational and storage infrastructures in order to		
	achieve seamless interoperability between the heterogeneous resources of different		
	infrastructures. The ENVRI RM serves as a common language for community		
	communication, providing a uniform framework into which the infrastructure's		
	components can be classified and compared, also serving to identify common		
	solutions to common problems. This may enable reuse, share of resources and		
	experiences, and avoid duplication of efforts.		
Use Case Description	ENVRI project implements harmonized solutions and draws up guidelines for the		
•	common needs of the environmental ESFRI projects, with a special focus on issues as		
	architectures, metadata frameworks, data discovery in scattered repositories,		
	visualization and data curation. This will empower the users of the collaborating		
	environmental research infrastructures and enable multidisciplinary scientists to		
	access, study and correlate data from multiple domains for "system level" research.		
	ENVRI investigates a collection of representative research infrastructures for		
	Envirantes agares a concentration of representative research infrastructures for		

Current Solutions	they have; identifying in pa the <u>analysis evidence</u> , the E developed using ISO standa model serves to provide a u common technical challeng infrastructures. By drawing model and the actual eleme	d provides a projection of Europe-wide requirements rticular, requirements they have in common. Based on ENVRI Reference Model (<u>http://www.envri.eu/rm</u>) is and Open Distributed Processing. Fundamentally the universal reference framework for discussing many es facing all of the ESFRI-environmental research analogies between the reference components of the ents of the infrastructures (or their proposed designs) as s and points of overlap can be identified. File systems and relational databases
	Software	Own
Big Data	Data Source	Most of the ENVRI Research Infrastructures (ENV RIs)
Characteristics	(distributed/centralized)	 are distributed, long-term, remote controlled observational networks focused on understanding processes, trends, thresholds, interactions and feedbacks and increasing the predictive power to address future environmental challenges. They are spanning from the Arctic areas to the European Southernmost areas and from Atlantic on west to the Black Sea on east. More precisely: <i>EMSO</i>, network of fixed-point, deep-seafloor and water column observatories, is geographically distributed in key sites of European waters, presently consisting of thirteen sites. <i>EPOS</i> aims at integrating the existing European facilities in solid Earth science into one coherent multidisciplinary RI, and to increase the accessibility and usability of multidisciplinary data from seismic and geodetic monitoring networks, volcano observatories, laboratory experiments and computational simulations enhancing worldwide interoperability in Earth Science. <i>ICOS</i> dedicates to the monitoring of greenhouse gases (GHG) through its atmospheric, ecosystem and ocean networks. The ICOS network includes more than 30 atmospheric and more than 30 ecosystem primary long term sites located across Europe, and additional secondary sites. It also includes three Thematic Centres to process the data from all the stations from each network, and provide access to these data. <i>LifeWatch</i> is a "virtual" infrastructure for biodiversity and ecosystem research with services
		mainly provided through the Internet. Its Common Facilities is coordinated and managed at a central European level; and the <i>LifeWatch Centres</i> serve as specialized facilities from member countries

		(regional partner facilities) or research
		communities.
		• Euro-Argo provides, deploys and operates an array
		of around 800 floats contributing to the global array
		(3,000 floats) and thus provide enhanced coverage
		in the European regional seas.
		• EISCAT- 3D , makes continuous measurements of
		the geospace environment and its coupling to the
		Earth's atmosphere from its location in the auroral
		zone at the southern edge of the northern polar
		vortex, and is a distributed infrastructure.
	Volume (size)	Variable data size. e.g.,
	volume (size)	_
		 The amount of data within the EMSO is depending on the instrumentation and configuration of the
		on the instrumentation and configuration of the
		observatory between several MBs to several GB per
		dataset.
		• Within <i>EPOS</i> , the EIDA network is currently
		providing access to continuous raw data coming
		from approximately more than 1000 stations
		recording about 40GB per day, so over 15 TB per
		year. EMSC stores a Database of 1.85 GB of
		earthquake parameters, which is constantly
		growing and updated with refined information.
		 222705 – events
		- 632327 – origins
		 642555 – magnitudes
		• Within <i>EISCAT 3D</i> raw voltage data will reach
		40PB/year in 2023.
	Velocity	Real-time data handling is a common request of the
	(e.g. real time)	environmental research infrastructures
	Variety	Highly complex and heterogeneous
	(multiple datasets,	
	mashup)	
	Variability (rate of	Relative low rate of change
	change)	
Big Data Science	Veracity (Robustness	Normal
(collection, curation,	Issues, semantics)	
analysis,	Visualization	Most of the projects have not yet developed the
action)		visualization technique to be fully operational.
		EMSO is not yet fully operational, currently only
		simple graph plotting tools.
		 Visualization techniques are not yet defined for
		EPOS.
		• Within <i>ICOS</i> Level-1.b data products such as near
		real time GHG measurements are available to users
		via ATC web portal. Based on Google Chart Tools, an
		interactive time series line chart with optional
		annotations allows user to scroll and zoom inside a
		time series of CO2 or CH4 measurement at an ICOS
L		time series of CO2 of CH4 measurement at an ICO3

		Atmospheric station. The short is rendered within
		Atmospheric station. The chart is rendered within the browser using Flash. Some Level-2 products are
		also available to ensure instrument monitoring to
		Pls. It is mainly instrumental and comparison data
		plots automatically generated (R language and
		Python Matplotlib 2D plotting library) and daily
		pushed on ICOS web server. Level-3 data products
		such as gridded GHG fluxes derived from ICOS
		observations increase the scientific impact of ICOS.
		For this purpose ICOS supports its community of
		users. The Carbon portal is expected to act as a
		platform that will offer visualization of the flux
		products that incorporate ICOS data. Example of
		candidate Level-3 products from future ICOS GHG
		concentration data are for instance maps of
		European high-resolution CO2 or CH4 fluxes
		obtained by atmospheric inversion modellers in
		Europe. Visual tools for comparisons between
		products will be developed by the Carbon Portal.
		Contributions will be open to any product of high
		scientific quality.
		LifeWatch will provide common visualization
		techniques, such as the plotting of species on maps.
		New techniques will allow visualizing the effect of
		changing data and/or parameters in models.
	Data Quality (syntax)	Highly important
	Data Types	Measurements (often in file formats),
		• Metadata,
		Ontology,
	Data Analytica	Annotations
	Data Analytics	Data assimilation, (Statistics)) and hairs
		(Statistical) analysis, Data mining
		Data mining,Data extraction,
		 Scientific modeling and simulation,
		 Scientific workflow
Big Data Specific	Real-time handling of e	extreme high volume of data
Challenges (Gaps)		-
	 Data staging to mirror archives Integrated Data access and discovery 	
	 Data processing and ar 	
Big Data Specific		high performance mobile detectors and instrumentation is
Challenges in Mobility	common:	
/	In ICOS, various mobile instruments are used to collect data from marine	
		eric observations, and ecosystem monitoring.
	• In Euro-Argo, thousand	ds of submersible robots to obtain observations of all of
	the oceans	
	In Lifewatch, biologists	use mobile instruments for observations and
Security and Privacy	measurements.	the open data sharing policy. E.g.,

Requirements	• The vision of EMSO is to allow scientists all over the world to access
	observatories data following an open access model.
	• Within EPOS, EIDA data and Earthquake parameters are generally open and free
	to use. Few restrictions are applied on few seismic networks and the access is
	regulated depending on email based authentication/authorization.
	• The ICOS data will be accessible through a license with full and open access. No
	particular restriction in the access and eventual use of the data is anticipated,
	expected the inability to redistribute the data. Acknowledgement of ICOS and
	traceability of the data will be sought in a specific, way (e.g. DOI of dataset). A
	large part of relevant data and resources are generated using public funding
	from national and international sources.
	• LifeWatch is following the appropriate European policies, such as: the European
	Research Council (ERC) requirement; the European Commission's open access
	pilot mandate in 2008. For publications, initiatives such as Dryad instigated by
	publishers and the Open Access Infrastructure for Research in Europe
	(OpenAIRE). The private sector may deploy their data in the LifeWatch
	infrastructure. A special company will be established to manage such
	commercial contracts.
	• In EISCAT 3D , lower level of data has restrictions for 1 year within the associate
	countries. All data open after 3 years.
Highlight issues for	Different research infrastructures are designed for different purposes and evolve
generalizing this use	over time. The designers describe their approaches from different points of view, in
case (e.g. for ref.	different levels of detail and using different typologies. The documentation provide
architecture)	is often incomplete and inconsistent. What is needed is a uniform platform for
	interpretation and discussion, which helps to unify understanding.
	In ENVRI, we choose to use a standard model, Open Distributed Processing (ODP), to
	interpret the design of the research infrastructures, and place their requirements
	into the ODP framework for further analysis and comparison.
More Information	ENVRI Project website: <u>http://www.envri.eu</u>
(URLs)	ENVRI Reference Model <u>http://www.envri.eu/rm</u>
	ENVRI deliverable D3.2: Analysis of common requirements of Environmental
	Research Infrastructures
	ICOS: http://www.icos-infrastructure.eu/
	Euro-Argo: <u>http://www.euro-argo.eu/</u>
	EISCAT 3D: http://www.eiscat3d.se/
	LifeWatch: <u>http://www.lifewatch.com/</u>
	 EPOS: <u>http://www.epos-eu.org/</u>
	 EMSO <u>http://www.epso-eu.org/management/</u>
	• LWSO <u>http://www.emso-eu.org/management/</u>

341 See Figure 10(b): LifeWatch architecture

- 342 See Figure 10(c): EMSO architecture
- 343 See Figure 10(d): EURO-Argo architecture
- 344 See Figure 10(e): EISCAT 3D architecture

Earth, Environmental and Polar Science> Use Case 43: Radar Data Analysis for CReSIS

Use Case Title	Radar Data Analysis for CReSIS		
Vertical (area)	Scientific Research: Polar Science and Remote Sensing of Ice Sheets		
Author/Company/Email	Geoffrey Fox, Indiana University gcf@indiana.edu		
Actors/Stakeholders		I NASA with relevance to near and long term climate	
and their roles and	-	novel radar with "field expeditions" for 1-2 months to	
responsibilities		y scientists building models and theories involving Ice	
	Sheets	,	
Goals	Determine the depths of glaciers and snow layers to be fed into higher level scientific		
000.0	analyses		
Use Case Description		e piloted aircraft; overfly remote sites (Arctic, Antarctic,	
		at experiments configured correctly with detailed	
		a by air-shipping disk as poor Internet connection. Use	
		/snow sheet depths. Use depths in scientific discovery of	
	melting ice caps etc.	show sheet depths. Ose depths in scientific discovery of	
Current	Compute(System)	Field is a low power cluster of rugged laptops plus	
Solutions	compare(system)	classic 2-4 CPU servers with \approx 40 TB removable disk	
5010110113		array. Off line is about 2500 cores	
	Storage	Removable disk in field. (Disks suffer in field so 2 copies	
	Storage	made) Lustre or equivalent for offline	
	Notworking		
	Networking	Terrible Internet linking field sites to continental USA.	
	Software Radar signal processing in Matlab. Image analysis is		
	Map/Reduce or MPI plus C/Java. User Interface is a		
	Geographical Information System		
Big Data	Data Source Aircraft flying over ice sheets in carefully planned paths		
Characteristics	(distributed/centralized)	with data downloaded to disks.	
	Volume (size)	≈0.5 Petabytes per year raw data	
	Velocity	All data gathered in real time but analyzed	
	(e.g. real time)	incrementally and stored with a GIS interface	
	Variety	Lots of different datasets – each needing custom signal	
	(multiple datasets,	processing but all similar in structure. This data needs	
	mashup) to be used with wide variety of other polar data.		
	Variability (rate of Data accumulated in ≈100 TB chunks for each		
	change)	expedition	
Big Data Science	Veracity (Robustness	Essential to monitor field data and correct instrumental	
(collection, curation,	lssues)	problems. Implies must analyze fully portion of data in	
analysis,	field		
action)	Visualization	Rich user interface for layers and glacier simulations	
	Data Quality	Main engineering issue is to ensure instrument gives	
	quality data		
	Data Types Radar Images		
	Data Analytics	Sophisticated signal processing; novel new image	
		processing to find layers (can be 100's one per year)	
Big Data Specific	Data volumes increasing. Sh	ipping disks clumsy but no other obvious solution. Image	
Challenges (Gaps)	processing algorithms still v		
Big Data Specific	Smart phone interfaces not essential but LOW power technology essential in field		
Challenges in Mobility			
Security and Privacy	Himalaya studies fraught with political issues and require UAV. Data itself open after		
Requirements	initial study		
qui ciricitto	initial study		

Earth, Environmental and Polar Science> Use Case 43: Radar Data Analysis for CReSIS

generalizir case (e arc	.g. for ref. hitecture)	Loosely coupled clusters for signal processing. Must support Matlab.				
(URLs) <u>https</u>		https:	ttp://polargrid.org/polargrid ttps://www.cresis.ku.edu/ ee movie at <u>http://polargrid.org/polargrid/gallery</u>			
Use Case Stages	Data Sou		Data Usage	Transformations (Data Analytics)	Infrastructure	Security and Privacy
Raw Data: Field Trip	Raw Data from instrument on Plane/Vehicle	n Radar	Check Data to monitor instruments.	Robust Data Copying Utilities. Version of Full Analysis to check data.	Rugged Laptops with small server (≈2 CPU with ≈40TB removable disk system)	N/A
Information: Offline Analysis L1B	Transported D copied to (LUS File System		as radar images	Matlab Analysis code running in parallel and independently on each data sample	≈2500 cores running standard cluster tools	N/A except results checked before release on CReSI: web site
Information: L2/L3 Geolocation and Layer Finding	Radar Images L1B	from	database with GIS	GIS and Metadata Tools Environment to support automatic and/or manual layer determination	GIS (Geographical Information System). Cluster for Image Processing.	As above
Knowledge, Wisdom, Discovery: Science	GIS interface t data	o L2/L3	Polar Science Research integrating multiple data sources e.g. for Climate change. Glacier bed data used in simulations of glacier flow		Exploration on a cloud style GIS supporting access to data. Simulation is 3D partial differential equation solver on large cluster.	Varies according t science use. Typically results open after researc complete.

347 See Figure 11: Radar Data Analysis for CReSIS Remote Sensing of Ice Sheets– Typical CReSIS radar
 348 data after analysis.

349 See Figure 12: Radar Data Analysis for CReSIS Remote Sensing of Ice Sheets– Typical flight paths of
 350 data gathering in survey region.

See Figure 13: Radar Data Analysis for CReSIS Remote Sensing of Ice Sheets – Typical echogram with
 detected boundaries. The upper (green) boundary is between air and ice layers, while the lower (red)
 boundary is between ice and terrain.

Earth, Environmental and Polar Science> Use Case 44: UAVSAR Data Processing

Use Case Title	UAVSAR Data Processing, Data Product Delivery, and Data Services	
Vertical (area)	Scientific Research: Earth Science	
Author/Company/Email	Andrea Donnellan, NASA JPL, <u>andrea.donnellan@jpl.nasa.gov</u> ; Jay Parker, NASA JPL,	
	jay.w.parker@jpl.nasa.gov	
Actors/Stakeholders		QuakeSim team, ASF (NASA SAR DAAC), USGS, CA
and their roles and	Geological Survey	
responsibilities		
Goals	Use of Synthetic Aperture F	Radar (SAR) to identify landscape changes caused by
		deforestation, vegetation changes, flooding, etc.;
	increase its usability and accessibility by scientists.	
Use Case Description		udy the after effects of an earthquake examines multiple
•		de available by NASA. The scientist may find it useful to
		ded by intermediate projects that add value to the official
	data product archive.	
Current	Compute(System)	Raw data processing at NASA Ames Pleiades, Endeavour.
Solutions		Commercial clouds for storage and service front ends
		have been explored.
	Storage	File based.
	Networking	Data require one time transfers between instrument and
		JPL, JPL and other NASA computing centers (NASA Ames),
		and JPL and ASF.
	Individual data files are not too large for individual users	
	to download, but entire dataset is unwieldy to transfer.	
	This is a problem to downstream groups like QuakeSim	
		who want to reformat and add value to datasets.
	Software	ROI_PAC, GeoServer, GDAL, GeoTIFF-supporting tools.
Big Data	Data Source Data initially acquired by unmanned aircraft. Initially	
Characteristics	(distributed/centralized)	processed at NASA JPL. Archive is centralized at ASF
		(NASA DAAC). QuakeSim team maintains separate
		downstream products (GeoTIFF conversions).
	Volume (size)	Repeat Pass Interferometry (RPI) Data: ≈ 3 TB. Increasing
		about 1-2 TB/year.
		Polarimetric Data: ≈40 TB (processed)
		Raw Data: 110 TB
		Proposed satellite missions (Earth Radar Mission,
		formerly DESDynI) could dramatically increase data
		volumes (TBs per day).
	Velocity RPI Data: 1-2 TB/year. Polarimetric data is faster.	
	(e.g. real time)	
	Variety	Two main types: Polarimetric and RPI. Each RPI product
	(multiple datasets,	is a collection of files (annotation file, unwrapped, etc.).
	mashup)	Polarimetric products also consist of several files each.
	Variability (rate of	Data products change slowly. Data occasionally get
	change)	reprocessed: new processing methods or parameters.
		There may be additional quality assurance and quality
		control issues.

Earth, Environmental and Polar Science> Use Case 44: UAVSAR Data Processing

Big Data Science	Veracity (Robustness	Provenance issues need to be considered. This	
(collection, curation,	Issues, semantics)	provenance has not been transparent to downstream	
analysis,	consumers in the past. Versioning used now; versions		
action)	described in the UAVSAR web page in notes.		
	Visualization	Uses Geospatial Information System tools, services,	
		standards.	
	Data Quality (syntax)	Many frames and collections are found to be unusable	
		due to unforeseen flight conditions.	
	Data Types	GeoTIFF and related imagery data	
	Data Analytics	Done by downstream consumers (such as edge	
		detections): research issues.	
Big Data Specific	Data processing pipeline requires human inspection and intervention. Limited		
Challenges (Gaps)	downstream data pipelines for custom users.		
	Cloud architectures for distributing entire data product collections to downstream		
	consumers should be invest	tigated, adopted.	
Big Data Specific	Some users examine data in the field on mobile devices, requiring interactive		
Challenges in Mobility	reduction of large datasets to understandable images or statistics.		
Security and Privacy	Data is made immediately public after processing (no embargo period).		
Requirements			
Highlight issues for	Data is geolocated, and ma	y be angularly specified. Categories: GIS; standard	
generalizing this use	instrument data processing	pipeline to produce standard data products.	
case (e.g. for ref.			
architecture)			
More Information		. http://www.asf.alaska.edu/program/sdc,	
(URLs)	http://quakesim.org		
See Figure 14: UAVSAR Data Processing, Data Product Delivery, and Data Services – Combined			
	unwrapped coseismic interferograms for flight lines 26501, 26505, and 08508 for the October 2009-April		
2010 time period. End points where slip can be seen on the Imperial, Superstition Hills, and Elmore			

Ranch faults are noted. GPS stations are marked by dots and are labeled.

Use Case Title	NASA LaRC/GSFC iRODS Federation Testbed		
Vertical (area)	Earth Science Research and		
Author/Company/Email			
Author/ company/ cman	_	VASA Langley Research Center (LaRC) /	
		er.A.Dubois@nasa.gov, Brandi.M.Quam@NASA.gov,	
		ov, and <u>Andrei.A.Vakhnin@NASA.gov</u>	
	Thany.J.Mathews@NAJA.g	ov, and <u>Andrei.A.vakinin@NASA.gov</u>	
	John Schnase, Daniel Duffy, Glenn Tamkin, Scott Sinno, John Thompson, and Mark		
	-	Space Flight Center (GSFC) / John.L.Schnase@NASA.gov,	
	Daniel.Q.Duffy@NASA.gov, Glenn.S.Tamkin@nasa.gov. Scott.S.Sinno@nasa.gov,		
	John.H.Thompson@nasa.gov, and Mark.Mcinerney@nasa.gov		
Actors/Stakeholders		e Data Center (ASDC) at Langley Research Center (LaRC)	
and their roles and	-	e Center for Climate Simulation (NCCS) at Goddard Space	
responsibilities		gest, archive, and distribute data that is essential to	
		limate research community, science applications	
	_	community of government and private-sector customers	
	who have a need for atmosp		
Goals		tion ability to improve and automate the discovery of	
	-	se data transfer latency, and meet customizable criteria	
	_	quality, metadata, and production.	
		ons and customers that require the integration of	
	multiple heterogeneous data collections.		
Use Case Description	ASDC and NCCS have complementary datasets, each containing vast amounts of data		
	that is not easily shared and	queried. Climate researchers, weather forecasters,	
	instrument teams, and othe	r scientists need to access data from across multiple	
	datasets in order to compare	e sensor measurements from various instruments,	
	compare sensor measureme	ents to model outputs, calibrate instruments, look for	
	correlations across multiple	parameters, etc. To analyze, visualize and otherwise	
	process data from heteroge	neous datasets is currently a time consuming effort that	
	requires scientists to separately access, search for, and download data from multiple		
	servers and often the data is duplicated without an understanding of the		
	authoritative source. Many scientists report spending more time in accessing data		
	than in conducting research. Data consumers need mechanisms for retrieving		
	heterogeneous data from a single point-of-access. This can be enabled through the		
	use of iRODS, a Data grid so	ftware system that enables parallel downloads of	
	-	ca servers that can be geographically dispersed, but still	
	-	de. Using iRODS in conjunction with semantically	
		ed via a highly precise Earth Science ontology, the	
		e (DPO) will be federated with the data at the NASA	
		on (NCCS) at Goddard Space Flight Center (GSFC). The	
		ts at these two NASA facilities are being semantically	
	-	oncepts from the NASA Earth Science ontology. The	
		hable the iRODS system to identify complementary	
		from these disparate sources, facilitating data sharing	
		forecasters, Earth scientists, and scientists from other	
	-	cience data. The iRODS data federation system will also	
		rocessing services in the Amazon Web Services (AWS)	
^	cloud.	NASA Contor for Climate Simulation (NCCC) and	
Current	Compute (System)	NASA Center for Climate Simulation (NCCS) and	

Solutions		NASA Atmospheric Science Data Contor (ASDC): Two
Solutions		NASA Atmospheric Science Data Center (ASDC): Two GPFS systems
	Starage	The ASDC's Data Products Online (DPO) GPFS File
	Storage	system consists of 12 x IBM DC4800 and 6 x IBM
		•
		DCS3700 Storage subsystems, 144 Intel 2.4 GHz cores,
		1,400 TB usable storage. NCCS data is stored in the
		NCCS MERRA cluster, which is a 36 node Dell cluster,
		576 Intel 2.6 GHz SandyBridge cores, 1,300 TB raw storage, 1,250 GB RAM, 11.7 TF theoretical peak
	Networking	compute capacity.
	Networking	A combination of Fibre Channel SAN and 10GB LAN.
		The NCCS cluster nodes are connected by an FDR
	Cathuran	Infiniband network with peak TCP/IP speeds >20 Gbps.
	Software	SGE Univa Grid Engine Version 8.1, iRODS version 3.2
		and/or 3.3, IBM General Parallel File System (GPFS)
D!- D :	Data Car	version 3.4, Cloudera version 4.5.2-1.
Big Data	Data Source	iRODS will be leveraged to share data collected from
Characteristics	(distributed/centralized)	CERES Level 3B data products including: CERES EBAF-
		TOA and CERES-Surface products. Surface fluxes in EBAF-Surface are derived from two
		CERES data products: 1) CERES SYN1deg-Month Ed3 -
		which provides computed surface fluxes to be adjusted
		and 2) CERES EBAF-TOA Ed2.7 – which uses
		observations to provide CERES-derived TOA flux
		constraints. Access to these products will enable the
		NCCS at GSFC to run data from the products in a
		simulation model in order to produce an assimilated flux.
		The NCCS will introduce Modern-Era Retrospective
		Analysis for Research and Applications (MERRA) data to
		the iRODS federation. MERRA integrates observational
		data with numerical models to produce a global
		temporally and spatially consistent synthesis of 26 key
		climate variables. MERRA data files are created from
		the Goddard Earth Observing System version 5 (GEOS-
		5) model and are stored in HDF-EOS and (Network
		Common Data Form) NetCDF formats.
		Spatial resolution is $1/2^{\circ}$ latitude × $2/3^{\circ}$ longitude ×
		72 vertical levels extending through the stratosphere.
		Temporal resolution is 6-hours for three-dimensional,
		full spatial resolution, extending from 1979-present,
		nearly the entire satellite era.
		Each file contains a single grid with multiple 2D and
		3D variables. All data are stored on a longitude-latitude
		grid with a vertical dimension applicable for all 3D
		variables. The GEOS-5 MERRA products are divided into
		25 collections: 18 standard products, chemistry
		products. The collections comprise monthly means files
		and daily files at six-hour intervals running from 1979 –
		and daily mes at six nour meet als fulling from 1975 -

		2012. MERRA data are typically packaged as multi-
		dimensional binary data within a self-describing NetCDF
		file format. Hierarchical metadata in the NetCDF
		header contain the representation information that
		allows NetCDF- aware software to work with the data.
		It also contains arbitrary preservation description and
		policy information that can be used to bring the data
		into use-specific compliance.
	Volume (size)	Currently, Data from the EBAF-TOA Product is about
		420MB and Data from the EBAF-Surface Product is
		about 690MB. Data grows with each version update
		(about every six months). The MERRA collection
		represents about 160 TB of total data (uncompressed);
		compressed is ≈80 TB.
	Velocity	Periodic since updates are performed with each new
	(e.g. real time)	version update.
	Variety	There is a need in many types of applications to
	(multiple datasets,	combine MERRA reanalysis data with other reanalyses
	mashup)	and observational data such as CERES. The NCCS is
		using the Climate Model Intercomparison Project
		(CMIP5) Reference standard for ontological alignment
		across multiple, disparate datasets.
	Variability (rate of	
		The MERRA reanalysis grows by approximately one TB
	change)	per month.
Big Data Science	Veracity (Robustness	Validation and testing of semantic metadata, and of
(collection, curation,	Issues)	federated data products will be provided by data
analysis,		producers at NASA Langley Research Center and at
action)		Goddard through regular testing. Regression testing
		will be implemented to ensure that updates and
		changes to the iRODS system, newly added data
		sources, or newly added metadata do not introduce
		errors to federated data products. MERRA validation is
		provided by the data producers, NASA Goddard's
		Global Modeling and Assimilation Office (GMAO).
	\r/r	
	Visualization	There is a growing need in the scientific community for
		data management and visualization services that can
		aggregate data from multiple sources and display it in a
		single graphical display. Currently, such capabilities are
		hindered by the challenge of finding and downloading
		comparable data from multiple servers, and then
		transforming each heterogeneous dataset to make it
		usable by the visualization software. Federation of
		NASA datasets using iRODS will enable scientists to
		quickly find and aggregate comparable datasets for use
		with visualization software.
	Data Quality	For MERRA, quality controls are applied by the data
		producers, GMAO.
	Data Types	See above.
	Data Analytics	Pursuant to the first goal of increasing accessibility and
L	-	

	discoverability through innovative technologies, the ASDC and NCCS are exploring a capability to improve data access capabilities. Using iRODS, the ASDC's Data Products Online (DPO) can be federated with data at GSFC's NCCS creating a data access system that can serve a much broader customer base than is currently being served. Federating and sharing information will enable the ASDC and NCCS to fully utilize multi-year and multi-instrument data and will improve and automate the discovery of heterogeneous data, increase data transfer latency, and meet customizable criteria based on data content, data quality, metadata, and production.		
Big Data Specific Challenges (Gaps)			
Big Data Specific Challenges in Mobility	A major challenge includes defining an enterprise architecture that can deliver real- time analytics via communication with multiple APIs and cloud computing systems. By keeping the computation resources on cloud systems, the challenge with mobility resides in not overpowering mobile devices with displaying CPU intensive visualizations that may hinder the performance or usability of the data being presented to the user.		
Security and Privacy Requirements			
Highlight issues for generalizing this use case (e.g. for ref. architecture)	This federation builds on several years of iRODS research and development performed at the NCCS. During this time, the NCCS vetted the iRODS features while extending its core functions with domain-specific extensions. For example, the NCCS created and installed Python-based scientific kits within iRODS that automatically harvest metadata when the associated data collection is registered. One of these scientific kits was developed for the MERRA collection. This kit in conjunction with iRODS bolsters the strength of the LaRC/GSFC federation by providing advanced search capabilities. LaRC is working through the establishment of an advanced architecture that leverages multiple technology pilots and tools (access, discovery,		
	architecture that leverages multiple technology pilots and tools (access, discovery, and analysis) designed to integrate capabilities across the earth science community – the research and development completed by both data centers is complementary and only further enhances this use case.		
	Other scientific kits that have been developed include: NetCDF, Intergovernmental Panel on Climate Change (IPCC), and Ocean Modeling and Data Assimilation (ODAS). The combination of iRODS and these scientific kits has culminated in a configurable technology stack called the virtual Climate Data Server (vCDS), meaning that this runtime environment can be deployed to multiple destinations (e.g., bare metal, virtual servers, cloud) to support various scientific needs. The vCDS, which can be viewed as a reference architecture for easing the federation of disparate data repositories, is leveraged by but not limited to LaRC and GSFC.		
More Information (URLs)	Please contact the authors for additional information.		

Earth, Environmental and Polar Science> Use Case 46: MERRA Analytic Services

Use Case Title	MERRA Analytic Services (N		
Vertical (area)	Scientific Research: Earth Science		
Author/Company/Email	John L. Schnase and Daniel Q. Duffy / NASA Goddard Space Flight Center		
	John.L.Schnase@NASA.gov, Daniel.Q.Duffy@NASA.gov		
Actors/Stakeholders	NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA)		
and their roles and	integrates observational data with numerical models to produce a global temporally		
responsibilities	and spatially consistent synthesis of 26 key climate variables. Actors and		
	stakeholders who have an i	interest in MERRA include the climate research	
	community, science applications community, and a growing number of government		
	and private-sector customers who have a need for the MERRA data in their decision		
	support systems.		
Goals	Increase the usability and u	se of large-scale scientific data collections, such as	
	MERRA.		
Use Case Description	MERRA Analytic Services er	nables Map/Reduce analytics over the MERRA collection.	
· · ·	-	f cloud-enabled climate analytics as a service (CAaaS),	
	-	eeting the Big Data challenges of climate science through	
	the combined use of 1) high	n performance, data proximal analytics, (2) scalable data	
	management, (3) software	appliance virtualization, (4) adaptive analytics, and (5) a	
	domain-harmonized API. Th	ne effectiveness of MERRA/AS is being demonstrated in	
	several applications, includ	ing data publication to the Earth System Grid Federation	
	(ESGF) in support of Intergo	overnmental Panel on Climate Change (IPCC) research, the	
	NASA/Department of Interi	or RECOVER wild land fire decision support system, and	
	data interoperability testbe	ed evaluations between NASA Goddard Space Flight	
	Center and the NASA Langley Atmospheric Data Center.		
Current			
Solutions	Storage	The MERRA Analytic Services Hadoop Filesystem (HDFS)	
		is a 36 node Dell cluster, 576 Intel 2.6 GHz SandyBridge	
		cores, 1300 TB raw storage, 1250 GB RAM, 11.7 TF	
		theoretical peak compute capacity.	
	Networking	Cluster nodes are connected by an FDR Infiniband	
	-	network with peak TCP/IP speeds >20 Gbps.	
	Software	Cloudera, iRODS, Amazon AWS	
Big Data	Data Source MERRA data files are created from the GEOS-5 model		
Characteristics	(distributed/centralized) and are stored in HDF-EOS and NetCDF formats. Spatial		
		resolution is 1/2 °latitude ×2/3 °longitude × 72 vertical	
		levels extending through the stratosphere. Temporal	
		resolution is 6-hours for three-dimensional, full spatial	
		resolution, extending from 1979-present, nearly the	
		entire satellite era. Each file contains a single grid with	
		multiple 2D and 3D variables. All data are stored on a	
		longitude latitude grid with a vertical dimension	
		applicable for all 3D variables. The GEOS-5 MERRA	
		products are divided into 25 collections: 18 standard	
		products, 7 chemistry products. The collections	
		comprise monthly means files and daily files at six-hour	
		intervals running from 1979–2012. MERRA data are	
		typically packaged as multi-dimensional binary data	
		within a self-describing NetCDF file format. Hierarchical	
		metadata in the NetCDF header contain the	
<u>L</u>			

Earth, Environmental and Polar Science> Use Case 46: MERRA Analytic Services

		representation information that allows NetCDF aware
		software to work with the data. It also contains arbitrary
		preservation description and policy information that can
		be used to bring the data into use-specific compliance.
	Volume (size)	480TB
	Velocity	Real-time or batch, depending on the analysis. We're
	(e.g. real time)	developing a set of "canonical ops" -early stage, near-
		data operations common to many analytic workflows.
		The goal is for the canonical ops to run in near real-time.
	Variety	There is a need in many types of applications to
	(multiple datasets,	combine MERRA reanalysis data with other re-analyses
	mashup)	and observational data. We are using the Climate Model
		Inter-comparison Project (CMIP5) Reference standard
		for ontological alignment across multiple, disparate
		datasets.
	Variability (rate of	The MERRA reanalysis grows by approximately one TB
	change)	per month.
Big Data Science	Veracity (Robustness	Validation provided by data producers, NASA Goddard's
(collection, curation,	Issues, semantics)	Global Modeling and Assimilation Office (GMAO).
analysis,	Visualization There is a growing need for distributed visualization of	
action)	analytic outputs.	
,	Data Quality (syntax)	Quality controls applied by data producers, GMAO.
	Data Types	See above.
	Data Analytics	In our efforts to address the Big Data challenges of
	climate science, we are moving toward a notion of	
	climate analytics-as-a-service. We focus on analytics,	
	because it is the knowledge gained from our	
	interactions with Big Data that ultimately produce	
	societal benefits. We focus on CAaaS because we	
		believe it provides a useful way of thinking about the
		problem: a specialization of the concept of business
		process-as-a-service, which is an evolving extension of
		IaaS, PaaS, and SaaS enabled by Cloud Computing.
Big Data Specific	• •	e cloud computing to enable better use of climate
Challenges (Gaps)		oute and data resources. Cloud Computing is providing for
		rvices stack —a cloud-based layer where agile
		nterprise-level products are transformed to meet the
		f applications and consumers. It helps us close the gap
		tional, high-performance computing, which, at least for
		ed climate modeling environment at the enterprise level
	-	nose expectations and manner of work are increasingly
	influenced by the smart mobility megatrend.	
Big Data Specific	Most modern smartphones, tablets, etc. actually consist of just the display and user	
Challenges in Mobility	interface components of sophisticated applications that run in cloud data centers.	
Constitution 1 D 1		CAaaS is intended to accommodate.
Security and Privacy	No critical issues identified at this time.	
Requirements		- demonstrative second stars as 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
Highlight issues for	Map/Reduce and iRODS fundamentally make analytics and data aggregation easier;	
generalizing this use	our approach to software appliance virtualization in makes it easier to transfer	

Earth, Environmental and Polar Science> Use Case 46: MERRA Analytic Services

case (e.g. for ref. architecture)	capabilities to new users and simplifies their ability to build new applications; the social construction of extended capabilities facilitated by the notion of canonical operations enable adaptability; and the Climate Data Services API that we're developing enables ease of mastery. Taken together, we believe that these core technologies behind CAaaS creates a generative context where inputs from diverse people and groups, who may or may not be working in concert, can contribute		
	capabilities that help address the Big Data challenges of climate science.		
More Information (URLs)	Please contact the authors for additional information.		
See Figure 15: MERRA	ee Figure 15: MERRA Analytic Services MERRA/AS – Typical MERRA/AS output.		

Earth, Environmental and Polar Science> Use Case 47: Atmospheric Turbulence—Event Discovery

Use Case Title	Atmospheric Turbulence - Event Discovery and Predictive Analytics		
Vertical (area)	Scientific Research: Earth Science		
Author/Company/Email	Michael Seablom, NASA Headquarters, michael.s.seablom@nasa.gov		
Actors/Stakeholders	Researchers with NASA or NSF grants, weather forecasters, aviation interests (for the		
and their roles and		cher who has a role in studying phenomena-based	
responsibilities	events).	, 01	
Goals		-impact phenomena contained within voluminous Earth	
	Science data stores and which are difficult to characterize using traditional numerical		
	methods (e.g., turbulence). Correlate such phenomena with global atmospheric re-		
	analysis products to enhance predictive capabilities.		
Use Case Description		turbulence (either from pilot reports or from automated	
		dy dissipation rates) with recently completed	
		the entire satellite-observing era. Reanalysis products	
		Regional Reanalysis (NARR) and the Modern-Era	
		esearch (MERRA) from NASA.	
Current	Compute(System)	NASA Earth Exchange (NEX) - Pleiades supercomputer.	
Solutions		Re-analysis products are on the order of 100TB each;	
Solutions	Storage		
	N - to constitue of	turbulence data are negligible in size.	
	Networking	Re-analysis datasets are likely to be too large to	
		relocate to the supercomputer of choice (in this case	
	NEX), therefore the fastest networking possible would		
	be needed.		
	Software Map/Reduce or the like; SciDB or other scientific		
	database.		
Big Data	Data Source	Distributed	
Characteristics	(distributed/centralized)		
	Volume (size)	200TB (current), 500TB within 5 years	
	Velocity	Data analyzed incrementally	
	(e.g. real time)		
	Variety Re-analysis datasets are inconsistent in format,		
	(multiple datasets,	resolution, semantics, and metadata. Likely each of	
	mashup)	these input streams will have to be	
		interpreted/analyzed into a common product.	
	Variability (rate of	Turbulence observations would be updated	
	change)	continuously; re-analysis products are released about	
		once every five years.	
Big Data Science	Veracity (Robustness	Validation would be necessary for the output product	
(collection, curation,	lssues)	(correlations).	
analysis,	Visualization	Useful for interpretation of results.	
action)	Data Quality	Input streams would have already been subject to	
	quality control.		
	Data Types	Gridded output from atmospheric data assimilation	
		systems and textual data from turbulence	
	observations.		
	Data Analytics Event-specification language needed to perform data		
	Data / Indry 100	mining / event searches.	
Big Data Specific	Semantics (interpretation of multiple reanalysis products); data movement;		
Challenges (Gaps)	database(s) with optimal structuring for 4-dimensional data mining.		
chaneliges (Gaps)	Chanenges (Gaps) atabase(s) with optimal structuring for 4-dimensional data mining.		

Earth, Environmental and Polar Science> Use Case 47: Atmospheric Turbulence—Event Discovery

Die Date Grasifie					
Big Data Specific	Development for mobile platforms not essential at this time.				
Challenges in Mobility					
Security and Privacy	No critical issues identified.				
Requirements					
Highlight issues for	Atmospheric turbulence is only one of many phenomena-based events that could be				
generalizing this use	useful for understanding anomalies in the atmosphere or the ocean that are				
case (e.g. for ref.	connected over long distances in space and time. However the process has limits to				
architecture)	extensibility, i.e., each phenomena may require very different processes for data				
	mining and predictive analysis.				
More Information	http://oceanworld.tamu.edu/resources/oceanography-book/teleconnections.htm				
(URLs)	http://www.forbes.com/sites/toddwoody/2012/03/21/meet-the-scientists-mining-				
	big-data-to-predict-the-weather/				
See Figure 16: Atmospheric Turbulence – Event Discovery and Predictive Analytics (Section 2.9.7) –					
	Typical NASA image of turbulent waves				

Earth, Environmental and Polar Science> Use Case 48: Climate Studies using the Community Earth System Model

Use Case Title Climate Studies using the Community Earth System Model at DOE's NERSC center						
Vertical (area)	Research: Climate					
Author/Company/Email	PI: Warren Washington, NCAR					
	-					
Actors/Stakeholders	Climate scientists, U.S. poli	cy makers				
and their roles and						
responsibilities						
Goals	The goals of the Climate Change Prediction (CCP) group at NCAR are to understand					
	and quantify contributions of natural and anthropogenic-induced patterns of climate					
		e 20th and 21st centuries by means of simulations with				
	the Community Earth Syste					
Use Case Description		ons, researchers are able to investigate mechanisms of				
	-	ge, as well as to detect and attribute past climate				
		d predict future changes. The simulations are motivated				
	-	st and are widely used by the national and international				
	research communities.					
Current	Compute(System)	NERSC (24M Hours), DOE LCF (41M), NCAR CSL (17M)				
Solutions	Storage	1.5 PB at NERSC				
	Networking	ESNet				
	Software	NCAR PIO library and utilities NCL and NCO, parallel				
		NetCDF				
Big Data	Data Source	Data is produced at computing centers. The Earth				
Characteristics	(distributed/centralized)	Systems Grid is an open source effort providing a robust,				
		distributed data and computation platform, enabling				
		world wide access to Peta/Exa-scale scientific data. ESGF				
	manages the first-ever decentralized database for					
	handling climate science data, with multiple petabytes					
	of data at dozens of federated sites worldwide. It is					
	recognized as the leading infrastructure for the					
		management and access of large distributed data				
		volumes for climate change research. It supports the				
		Coupled Model Intercomparison Project (CMIP), whose				
		protocols enable the periodic assessments carried out				
		by the Intergovernmental Panel on Climate Change				
		(IPCC).				
	Volume (size)	30 PB at NERSC (assuming 15 end-to-end climate change				
		experiments) in 2017; many times more worldwide				
	Velocity	42 GB/s are produced by the simulations				
	(e.g. real time)	+2 Objectic produced by the simulations				
	Variety	Data must be compared among those from				
	•					
	(multiple datasets, observations, historical reanalysis, and a number of					
	mashup) independently produced simulations. The Program for					
		Climate Model Diagnosis and Intercomparison develops methods and tools for the diagnosis and inter-				
		comparison of general circulation models (GCMs) that				
		simulate the global climate. The need for innovative				
		analysis of GCM climate simulations is apparent, as				
		increasingly more complex models are developed, while				
		the disagreements among these simulations and relative				
	to climate observations remain significant and poorly					

Earth, Environmental and Polar Science> Use Case 48: Climate Studies using the Community Earth System Model

		understood. The nature and causes of these		
		disagreements must be accounted for in a systematic		
		fashion in order to confidently use GCMs for simulation		
		of putative global climate change.		
	Variability (rate of	Data is produced by codes running at supercomputer		
	change)	centers. During runtime, intense periods of data i/O		
		occur regularly, but typically consume only a few		
		percent of the total run time. Runs are carried out		
		routinely, but spike as deadlines for reports approach.		
Big Data Science	Veracity (Robustness	Data produced by climate simulations is plays a large		
(collection, curation,	Issues) and Quality	role in informing discussion of climate change		
analysis,		simulations. Therefore, it must be robust, both from the		
action)		standpoint of providing a scientifically valid		
		representation of processes that influence climate, but		
		also as that data is stored long term and transferred		
		world-wide to collaborators and other scientists.		
	Visualization	Visualization is crucial to understanding a system as		
		complex as the Earth ecosystem.		
	Data Types	Earth system scientists are being inundated by an		
	explosion of data generated by ever-increasing			
	resolution in both global models and remote sensors.			
	Data Analytics There is a need to provide data reduction and analysis			
	web services through the Earth System Grid (ESG). A			
	pressing need is emerging for data analysis capabilities			
	closely linked to data archives.			
Big Data Specific	The rapidly growing size of	datasets makes scientific analysis a challenge. The need		
Challenges (Gaps)		ons is outpacing supercomputers' ability to accommodate		
enancingeo (eapo)	this need.			
Big Data Specific		observations must be shared among a large widely		
Challenges in Mobility	distributed community.			
Security and Privacy				
Requirements				
Highlight issues for	ESGE is in the early stages of	of being adapted for use in two additional domains:		
generalizing this use		design and development) and energy (infrastructure for		
case (e.g. for ref.				
architecture)	California Energy Systems for the 21st Century (CES21)).			
More Information	http://esgf.org/			
(URLs)	http://www-pcmdi.llnl.gov	/		
	http://www.nersc.gov/	L		
	http://science.energy.gov/	her/research/cesd/		
	http://www2.cisl.ucar.edu/			
L		-		

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-3r2

Earth, Environmental and Polar Science> Use Case 49: Subsurface Biogeochemistry

	-			
Use Case Title	DOE-BER Subsurface Biogeochemistry Scientific Focus Area			
Vertical (area)	Research: Earth Science			
Author/Company/Email	Deb Agarwal, Lawrence Berkeley Lab. daagarwal@lbl.gov			
Actors/Stakeholders	LBNL Sustainable Systems S	SFA 2.0, Subsurface Scientists, Hydrologists, Geophysicists,		
and their roles and	Genomics Experts, JGI, Clim	nate scientists, and DOE SBR.		
responsibilities				
Goals	The Sustainable Systems Sc	ientific Focus Area 2.0 Science Plan ("SFA 2.0") has been		
	developed to advance pred	lictive understanding of complex and multiscale terrestrial		
	environments relevant to the	he DOE mission through specifically considering the		
	scientific gaps defined abov	/e.		
Use Case Description	Development of a G enome	-Enabled Watershed Simulation Capability (GEWaSC) that		
	will provide a predictive fra	mework for understanding how genomic information		
	stored in a subsurface micr	obiome affects biogeochemical watershed functioning,		
	how watershed-scale proce	esses affect microbial functioning, and how these		
	interactions co-evolve. Whi	ile modeling capabilities developed by our team and		
	others in the community ha	ave represented processes occurring over an impressive		
	range of scales (ranging fro	m a single bacterial cell to that of a contaminant plume),		
		n devoted to developing a framework for systematically		
		ded to identify key controls and to simulate important		
		mework that formally scales from genomes to watersheds		
	is the primary focus of this			
Current	Compute(System)	NERSC		
Solutions	Storage	Storage NERSC		
	Networking ESNet			
	Software PFLOWTran, postgres, HDF5, Akuna, NEWT, etc.			
Big Data	Data Source Terabase-scale sequencing data from JGI, subsurface			
Characteristics	(distributed/centralized) and surface hydrological and biogeochemical data from			
	a variety of sensors (including dense geophysical			
	datasets) experimental data from field and lab analysis			
	Volume (size)			
	Velocity			
	(e.g. real time)			
	Variety	Data crosses all scales from genomics of the microbes in		
	(multiple datasets,	the soil to watershed hydro-biogeochemistry. The SFA		
	mashup)	requires the synthesis of diverse and disparate field,		
		laboratory, and simulation datasets across different		
		semantic, spatial, and temporal scales through GEWaSC.		
		Such datasets will be generated by the different		
		research areas and include simulation data, field data		
		(hydrological, geochemical, geophysical), 'omics data,		
		and data from laboratory experiments.		
	Variability (rate of change)	Simulations and experiments		
Big Data Science	Veracity (Robustness	Each of the sources samples different properties with		
(collection, curation,	Issues) and Quality	different footprints – extremely heterogeneous. Each of		
analysis,		the sources has different levels of uncertainty and		
action)		precision associated with it. In addition, the translation		
	across scales and domains introduces uncertainty as			
		across scales and domains introduces uncertainty as		

Earth, Environmental and Polar Science> Use Case 49: Subsurface Biogeochemistry

	Visualization	Visualization is crucial to understanding the data.		
	Data Types Described in "Variety" above.			
	Data Analytics Data mining, data quality assessment, cross-correlation			
		across datasets, reduced model development, statistics,		
		quality assessment, data fusion, etc.		
Big Data Specific	Translation across diverse a	and large datasets that cross domains and scales.		
Challenges (Gaps)				
Big Data Specific	Field experiment data taking would be improved by access to existing data and			
Challenges in Mobility	automated entry of new da	ta via mobile devices.		
Security and Privacy				
Requirements				
Highlight issues for	A wide array of programs ir	n the earth sciences are working on challenges that cross		
generalizing this use	the same domains as this p	roject.		
case (e.g. for ref.				
architecture)				
More Information	Under development			
(URLs)				

Earth, Environmental and Polar Science> Use Case 50: AmeriFlux and FLUXNET

Use Case Title DDC-BER Amerifiux and FUUXIET Networks Vertical (area) Research: Earth Science Author/Company/Email Deb Agarwal, Lawrence Berkeley Lab. daagarwal@lbl.gov Actors/Stakeholders Amerifiux scientists, Data Management Team, ICOS, DOE TES, USDA, NSF, and and their roles and responsibilities Amerifiux scientists, Data Management Team, ICOS, DOE TES, USDA, NSF, and Goals Amerifiux adentists, Data Management Team, ICOS, DOE TES, USDA, NSF, and and climate modelers. Imminimation of the science Goald Amerifiux adentists, Data Management Team, ICOS, DOE TES, USDA, NSF, and and climate modelers. Imminimation of the science growing body of synthesis and modeling analyses. Imminimation of synthesis and modeling analyses. Use Case Description Ameriflux and FUUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies - and climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Compute(System) NERSC Solutions Storage NERSC Networking ESNet Intworking Goald Lower (distributed/centralized) distributed globally collecting flux measurements. Volume (size)<					
Author/Company/Email Deb Agarwal, Lawrence Berkeley Lab. daagarwal@ibl.gov Actors/Stakeholders AmeriFlux scientists, Data Management Team, ICOS, DOE TES, USDA, NSF, and climate modelers. Goals AmeriFlux Network and FLUXNET measurements provide the crucial linkage between organisms, ecosystems, and process-scale studies at climate-relevant scales of landscapes, regions, and continents, which can be incorporated in to biogeochemical and climate models. Results from individual flux sites provide the foundation for a growing body of synthesis and modeling analyses. Use Case Description AmeriFlux network observations enable scaling of trace gas fluxes (CO2, water vapor) across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisme, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Compute[System] NERSC Solutions Storage NERSC Big Data Data Source at 50 towers in AmeriFlux and over 500 towers distributed globally collecting flux measurements. Velocity Velocity The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science (collection, curation, analysis, action) Veracity	Use Case Title	DOE-BER AmeriFlux and FLUXNET Networks			
Actors/Stakeholders AmeriFlux scientists, Data Management Team, ICOS, DOE TES, USDA, NSF, and Climate modelers. Goals AmeriFlux Network and FLUXNET measurements provide the crucial linkage between organisms, ecosystems, and process-scale studies at climate-relevant scales of landscapes, regions, and continents, which can be incorporated into biogeochemical and climate models. Results from individual flux sites provide the foundation for a growing body of synthesis and modeling analyses. Use Case Description AmeriFlux network observations enable scaling of trace gas fluxes (CO2, water vapor) across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Compute(System) NERSC Solutions Storage NERSC Big Data Data Source EddyPro, Custom analysis software, R, python, neural networks, Matlab. Big Data Data Source Valoume (size) Variety Welocity (e.g. real time) -150 towers in AmeriFlux and over 500 towers distributed globally collecting flux measurements. Volume (size) Variety The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data		Research: Earth Science			
and their roles and responsibilities Climate modelers. Goals AmeriFlux Network and FLUXNET measurements provide the crucial linkage between organisms, ecosystems, and process-scale studies at climate-relevant scales of landscapes, regions, and continents, which can be incorporated into biogeochemical and climate models. Results from individal flux sites provide the foundation for a growing body of synthesis and modeling analyses. Use Case Description AmeriFlux network observations enable scaling of trace gas fluxes (CO2, water vapor) across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Compute[System] NERSC Solutions Storage NERSC Solutions Software EddyPro, Custom analysis software, R, python, neural networks, Matlab. Big Data Characteristics Data Source +150 towers in AmeriFlux and over 500 towers distributed globally collecting flux measurements. Volume (size) Variety (e.g. real time) The flux data is relatively uniform, however, the biological, disturbance, and other anclilary data needed varies widely. Merging this data with the flux data is exhallenging in today's systems. Big Data Science (collection, curation, analysis, action) Veracity (Robustness Issues) and Quality assessement. Thousands of users	Author/Company/Email	Deb Agarwal, Lawrence Berkeley Lab. <u>daagarwal@lbl.gov</u>			
responsibilities Goals AmeriFlux Network and FLUXNET measurements provide the crucial linkage between organisms, ecosystems, and process-scale studies at climate-relevant scales of landscapes, regions, and continents, which can be incorporated into biogeochemical and climate models. Results from individual flux sites provide the foundation for a growing body of synthesis and modeling analyses. Use Case Description AmeriFlux network observations enable scaling of trace gas fluxes (CO2, water vapor) across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Compute(System) NERSC Solutions Storage NERSC Big Data Data Source =105 toware Characteristics (distributed/centralized) iditibuted globally collecting flux measurements. Velocity (e.g. real time) Velocity (e.g. real time) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science (collection, curation, analysis, action) Veracity (Robustness Issues) and Quality assessment. Thousands of users Each site has unique measurement and data processi	Actors/Stakeholders	AmeriFlux scientists, Data M	lanagement Team, ICOS, DOE TES, USDA, NSF, and		
Goals AmeriFlux Network and FLUXNET measurements provide the crucial linkage between organisms, ecosystems, and process-scale studies at climate-relevant scales of landscapes, regions, and continents, which can be incorporated into biogeochemical and climate models. Results from individual flux sites provide the foundation for a growing body of synthesis and modeling analyses. Use Case Description AmeriFlux network observations enable scaling of trace gas fluxes (CO2, water vapor) across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Compute(System) NERSC Solutions Software EddyPro, Custom analysis software, R, python, neural networks, Matiab. Big Data Characteristics Data Source (distributed/centralized) Velocity (e.g. real time) ~150 towers in AmeriFlux and over 500 towers distributed globally collecting flux measurements. Volume (size) Velocity (e.g. real time) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science (collection, curation, analysis, action) Veracity (Robustness Issues) and Quality assessment. Thousands of users Big Data Specific Challenges (Gaps) Transalation across diverse datasets that cross domains and scales. </th <th>and their roles and</th> <th>Climate modelers.</th> <th></th>	and their roles and	Climate modelers.			
organisms, ecosystems, and process-scale studies at climate-relevant scales of landscapes, regions, and continents, which can be incorporated into biogeochemical and climate models. Results from individual flux sites provide the foundation for a growing body of synthesis and modeling analyses. Use Case Description AmeriFlux network observations enable scaling of trace gas fluxes (CO2, water vapor) a cross a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies – at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Compute(System) NERSC Solutions Storage NERSC Solutions Storage NERSC Big Data Characteristics Data Source #ISD towers in AmeriFlux measurements. Velocity (e.g. real time) Intelfux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Veracity (Robustness) (collection, curation, analysis, action Veracity (Robustness) Issues) and Quality assessment. Thousands of users Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, aprilling, and quality assessment. Thousands of users. Big Data Specific Challenges (Gaps) </th <th>responsibilities</th> <th></th> <th></th>	responsibilities				
Iandscapes, regions, and continents, which can be incorporated into biogeochemical and climate models. Results from individual flux sites provide the foundation for a growing body of synthesis and modeling analyses. Use Case Description AmeriFlux network observations enable scaling of trace gas fluxes (CO2, water vapor) across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Compute[System] NERSC Solutions Storage NERSC Solutions Storage NERSC Characteristics NERSC NERSC Characteristics Outure (size) distributed/centralized) Velocity e.150 towers in Ameriflux mad over 500 towers (distributed/centralized) distributed, distributed, distributed, set set size and varies widely. Merging this data with the flux data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science Veracity (Robustness) Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing aprilling, and quality assessment. Thousands of users Big Data Science Variability (rate of change)	Goals	AmeriFlux Network and FLU	XNET measurements provide the crucial linkage between		
and climate models. Results from individual flux sites provide the foundation for a growing body of synthesis and modeling analyses.Use Case DescriptionAmeriFlux network observations enable scaling of trace gas fluxes (CO2, water vapor) across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate modelsCurrent SolutionsCurrent Compute(System)NERSC EddyPro, Custom analysis software, R, python, neural networks, Matlab.Big Data CharacteristicsData Source (distributed/centralized) (le.g. real time)<		organisms, ecosystems, and	process-scale studies at climate-relevant scales of		
growing body of synthesis and modeling analyses.Use Case DescriptionAmeriFlux network observations enable scaling of trace gas fluxes (CO2, water vapor) across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate modelsCurrent SolutionsCompute(System)NERSCNetworking (distributed/centralized)NERSCSolutionsSoftwareEddyPro, Custom analysis software, R, python, neural networks, Matlab.Big Data CharacteristicsData Source150 towers in AmeriFlux and over 500 towers distributed globally collecting flux measurements.Volume (size)Velocity (e.g. real time)Variability (rate of change)The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems.Big Data Science (collection, curation, a analysis, action)Variability (rate of change)Big Data Specific (collection, curation, a analysis, action)VisualizationGraphs and 3D Surfaces are used to visualize the data. Data AnalyticsData Analytics, action, arises and analytics, action, action, security and carces diverse datasets that cross domains and scales.Big Data Specific Challenges (Gaps)Translation across diverse datasets that cross domains and scales.Big Data Specif		landscapes, regions, and cor	ntinents, which can be incorporated into biogeochemical		
Use Case Description AmeriFlux network observations enable scaling of trace gas fluxes (CO2, water vapor) across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, Ameriflux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Solutions Compute(System) NERSC Networking ESNet EddyPro, Custom analysis software, R, python, neural networks, Matlab. Big Data Data Source ±150 towers in AmeriFlux and over 500 towers distributed/centralized Volume (size) Velocity (e.g. real time) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science (collection, curation, analysis, action) Variability (rate of change) Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of users Big Data Specific (challenges (Gaps) Translation across diverse datasets that cross domains and scales. Big Data Specific Challenges (Gaps) Field experiment data taking would be improved by access to existing data and dustate end entry of new data via mobile devices.		and climate models. Results	from individual flux sites provide the foundation for a		
across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Solutions Storage NERSC Networking ESNet EddyPro, Custom analysis software, R, python, neural networks, Matlab. EddyPro, Custom analysis Networking EddyPro, Custom analysis, action Big Data Science (collection, curation, analysis, action) Visualization Each site has unique measurement and data processing Sig Data Specific Challenges (Gaps) Big Data Specific Challenges (Gaps) Field experiment dat taking would be improved by access to existing data and automated entry of new data via mobile devices. Security and Privacy		growing body of synthesis a	nd modeling analyses.		
across a broad spectrum of times (hours, days, seasons, years, and decades) and space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Solutions Storage NERSC Networking ESNet EddyPro, Custom analysis software, R, python, neural networks, Matlab. EddyPro, Custom analysis software, R, python, neural networks, Matlab. EddyPro, Custom analysis software, R, python, neural networks, Matlab. Characteristics (distributed/centralized) Volume (size) Volume (size) Volume (size) Volume (size) Variety (multiple datasets, mashup) Big Data Science (collection, curation, analysis, action) Big Data Specific (collection, curation, analysis, action) Big Data Specific Challenges (Gaps) Big Data Specific Challenges (Gaps) Big Data Specific Challenges (Gaps) Big Data Specific Challenges (Gaps) Field experiment data taking would be improved by access to existing data and automate dentry of new data via mobile devices. Security and Privacy	Use Case Description	AmeriFlux network observat	tions enable scaling of trace gas fluxes (CO2, water vapor)		
space. Moreover, AmeriFlux and FLUXNET datasets provide the crucial linkages among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Solutions Storage NERSC Networking ESNet Software EddyPro, Custom analysis software, R, python, neural networks, Matlab. Software EddyPro, Custom analysis software, R, python, neural networks, Matlab. Characteristics Characteristics (distributed/centralized) Characteristics (distributed/centralized) Volume (size) Volume (size) Volume (size) Volume (size) Volume (size) Volume (size) Volume (size) Volume (size) Variability (rate of change) Big Data Science (collection, curation, analysis, action) Sissues) and Quality Visualization (sissues) and Quality Data Analytics Big Data Specific Challenges (Gaps) Big Data Specific Challenges (Gaps) Big Data Specific Challenges (Gaps) Big Data Specific Challenges in Mobility Security and Privacy	-				
among organisms, ecosystems, and process-scale studies—at climate-relevant scales of landscapes, regions, and continents—for incorporation into biogeochemical and climate models Current Compute(System) NERSC Solutions Storage NERSC Big Data Networking ESNet Characteristics Ciditributed/centralized) distributed globally collecting flux measurements. Volume (size) Velocity distributed globally collecting flux measurements. Volume (size) Velocity Velocity (multiple datasets, mashup) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science (collection, curation, analysis, action) Variability (rate of change) Each site has unique measurement and data processing terforms a common processing, gap-filling, and quality assessment. Thousands of users Big Data Science Visualization Graphs and 3D surfaces are used to visualize the data. Usta Statizetic Data Types Described in "Variatey" above. Data Analytics Graphs and 3D surfaces are used to visualize the data. Big Data Science Visualization Graphs and 3D surfaces are used to visualize the data.		-			
of landscopes, regions, and continents—for incorporation into biogeochemical and climate models Current Compute(System) NERSC Solutions Storage NERSC Solutions Networking ESNet Big Data Data Source #350 towers Characteristics (distributed/centralized) distributed globally collecting flux measurements. Volume (size) Velocity (e.g. real time) Velocity (e.g. real time) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science (collection, curation, analysis, action) Variability (rate of change) Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of users Obtat Types Described in "Variety" above. Data Analytics Data mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc. Big Data Specific Translation across diverse datasets that cross domains and scales. Challenges (Gaps) Field experiment data taking would be improved by access to existing data and automated		-			
climate models Current Solutions Compute(System) Storage NERSC Solutions Storage NERSC Networking ESNet EddyPro, Custom analysis software, R, python, neural networks, Matlab. Big Data Characteristics Data Source (distributed/centralized) distributed globally collecting flux measurements. Volume (size) Velocity (e.g. real time) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science (collection, curation, analysis, action) Veracity (Robustness Issues) and Quality Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of users Big Data Specific (collection, curation, analysis, action) Data Types Described in "Variety" above. Big Data Specific (challenges (Gaps) Translation across diverse datasets, data assimilation, data interpolation, across			-		
Solutions Storage NERSC Networking ESNet EddyPro, Custom analysis software, R, python, neural networks, Matlab. Big Data Characteristics Data Source <2150 towers in AmeriFlux and over 500 towers (distributed/centralized) distributed globally collecting flux measurements. Velocity (e.g. real time) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science (collection, curation, analysis, action) Veracity (Robustness Issues) and Quality Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of users Visualization Graphs and 3D surfaces are used to visualize the data. Data Types Described in "Variety" above. Data Analytics Data mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data interpolation, statistics, quality assessment, data fusion, etc. Big Data Specific Challenges (Gaps) Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.					
Solutions Storage NERSC Networking ESNet EddyPro, Custom analysis software, R, python, neural networks, Matlab. Big Data Characteristics Data Source <2150 towers in AmeriFlux and over 500 towers (distributed/centralized) distributed globally collecting flux measurements. Velocity (e.g. real time) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science (collection, curation, analysis, action) Veracity (Robustness Issues) and Quality Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of users Visualization Graphs and 3D surfaces are used to visualize the data. Data Types Described in "Variety" above. Data Analytics Data mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data interpolation, statistics, quality assessment, data fusion, etc. Big Data Specific Challenges (Gaps) Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.	Current	Compute(System)	NERSC		
NetworkingESNetSoftwareEddyPro, Custom analysis software, R, python, neural networks, Matlab.Big Data CharacteristicsData Source<150 towers in AmeriFlux and over 500 towers (distributed/centralized)Volume (size)Velocity (e.g. real time)Velocity (e.g. real time)The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems.Big Data Science (collection, curation, analysis, action)Veracity (Robustness Issues) and Quality techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of usersBig Data Specific Challenges (Gaps)Visualization Biel Data Specific Challenges in MobilitoBig Data Specific Challenges in MobilitoTranslation across diverse datasets that cross domains and scales.Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.Security and PrivacyField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.					
SoftwareEddyPro, Custom analysis software, R, python, neural networks, Matlab.Big DataData Source<150 towers in AmeriFlux and over 500 towersCharacteristics(distributed/centralized)distributed globally collecting flux measurements.Volume (size)VelocityVelocity(e.g. real time)VarietyThe flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems.Big Data Science (collection, curation, analysis, action)Veracity (Robustness Issues) and Quality VisualizationVisualizationGraphs and 3D surfaces are used to visualize the data. Data TypesData TypesDescribed in "Variety" above.Big Data Specific Challenges (Gaps)Translation across diverse datasets that cross domains and scales.Big Data Specific Challenges in MobilityTranslation across diverse datasets that cross domains and scales.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.					
Big Data CharacteristicsData Source (distributed/centralized)networks, Matlab.CharacteristicsCharacteristics<150 towers in AmeriFlux and over 500 towers distributed globally collecting flux measurements.Volume (size)Velocity (e.g. real time)VarietyThe flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems.Big Data Science (collection, curation, analysis, action)Veracity (Robustness Issues) and Quality assesment. Thousands of usersVisualizationGraphs and 3D surfaces are used to visualize the data. Data TypesData TypesDescribed in "Variety" above.Big Data Specific Challenges (Gaps)Translation across diverse disets that cross domains and scales.Big Data Specific Challenges in MobilityTranslation across diverse disets that cross to existing data and automated entry of new data via mobile devices.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.Security and PrivacyField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.					
Big Data Characteristics Data Source (distributed/centralized) ≈150 towers in AmeriFlux and over 500 towers distributed globally collecting flux measurements. Volume (size) Velocity (e.g. real time) distributed globally collecting flux measurements. Variety (e.g. real time) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Variability (rate of change) Veracity (Robustness Issues) and Quality Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of users Visualization Graphs and 3D surfaces are used to visualize the data. Data Types Described in "Variety" above. Data Analytics Data mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc. Big Data Specific Challenges in Mobility Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.		00111111			
Characteristics(distributed/centralized)distributed globally collecting flux measurements.Volume (size)VelocityVelocity(e.g. real time)(multiple datasets, (multiple datasets, mashup)The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems.Big Data Science (collection, curation, analysis, action)Veracity (Robustness Issues) and Quality assessment. Thousands of usersVisualizationGraphs and 3D surfaces are used to visualize the data.Data TypesDescribed in "Variety" above.Big Data Specific Challenges (Gaps)Translation across diverse datasets that cross domains and scales.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data with met flux of a and automated entry of new data with the flux data is conserved.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data with the flux data interpolation, statistics, quality assessment, data fusion, etc.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data with the flux data and automated entry of new data with the flux data and automated entry of new data with the flux data interpolation.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data an	Big Data	Data Source			
Volume (size) Velocity (e.g. real time) Velocity (e.g. real time) Variety (multiple datasets, mashup) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Variability (rate of change) Veracity (Robustness Issues) and Quality analysis, action Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of users Visualization Graphs and 3D surfaces are used to visualize the data. Data Types Described in "Variety" above. Big Data Specific Challenges (Gaps) Translation across diverse datasets that cross domains and scales. Big Data Specific Challenges in Mobility Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.					
Velocity (e.g. real time) The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems. Big Data Science (collection, curation, analysis, action) Veracity (Robustness Issues) and Quality Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of users Big Data Specific Challenges (Gaps) Translation across diverse datasets that cross domains and scales. Big Data Specific Challenges in Mobility Translation across diverse datasets that cross domains and scales. Big Data Specific Challenges in Mobility Translation across diverse datasets that cross domains and scales. Big Data Specific Challenges in Mobility Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.	Characteristics				
(e.g. real time)The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems.Big Data Science (collection, curation, analysis, action)Veracity (Robustness Issues) and Quality VisualizationEach site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of usersBig Data Specific Challenges (Gaps)Translation across diverse data sets that cross domains and scales.Big Data Specific Challenges in MobilityTranslation across diverse data sets that cross domains and scales.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.					
Variety (multiple datasets, mashup)The flux data is relatively uniform, however, the biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems.Big Data Science (collection, curation, analysis, action)Veracity (Robustness Issues) and Quality assessment. Thousands of usersEach site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of usersVisualizationGraphs and 3D surfaces are used to visualize the data. Data TypesData TypesDescribed in "Variety" above.Big Data Specific Challenges (Gaps)Translation across diverse datasets that cross domains and scales.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.					
(multiple datasets, mashup)biological, disturbance, and other ancillary data needed to process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems.Big Data Science (collection, curation, analysis, action)Variability (rate of change)Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of usersVisualizationGraphs and 3D surfaces are used to visualize the data.VisualizationData TypesDescribed in "Variety" above.Data AnalyticsData mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc.Big Data Specific Challenges (Gaps)Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.			The flux date is valatively uniferent because the		
mashupto process and to interpret the data is extensive and varies widely. Merging this data with the flux data is challenging in today's systems.Variability (rate of change)Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of usersNote:NetworkVeracity (Nobustness (collection, curation, analysis, action)Each site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of usersVisualizationGraphs and 3D surfaces are used to visualize the data.Data TypesDescribed in "Variety" above.Data AnalyticsData mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc.Big Data Specific Challenges (Gaps)Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.Security and PrivacyField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.		-			
Variability (rate of change)varies widely. Merging this data with the flux data is challenging in today's systems.Big Data Science (collection, curation, analysis, action)Veracity (Robustness Issues) and Quality Issues) and Quality erforms a common processing, gap-filling, and quality assessment. Thousands of usersMethodVisualization of raphs and 3D surfaces are used to visualize the data.Data Types Ibig Data Specific Challenges (Gaps)Data Analytics ranslation across diverse data exists that cross domains and scales.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.Security and PrivaceField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.			-		
Image: security and PrivaceImage: security and PrivaceImage		masnup)			
Variability (rate of change)Big Data Science (collection, curation, analysis, action)Veracity (Robustness Issues) and Quality Issues) and Quality erforms a common processing, gap-filling, and quality assessment. Thousands of usersOvisualizationGraphs and 3D surfaces are used to visualize the data.Data TypesDescribed in "Variety" above.Data AnalyticsData mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.Security and PrivacyEither of the work					
Big Data Science (collection, curation, analysis, action)Veracity (Robustness Issues) and Quality Issues) and Quality erforms a common processing, gap-filling, and quality assessment. Thousands of usersVisualizationGraphs and 3D surfaces are used to visualize the data.Data TypesDescribed in "Variety" above.Data AnalyticsData mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc.Big Data Specific Challenges (Gaps)Translation across diverse datasets that cross domains and scales.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.			challenging in today s systems.		
Big Data Science (collection, curation, analysis, action)Veracity (Robustness Issues) and QualityEach site has unique measurement and data processing techniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of usersVisualizationGraphs and 3D surfaces are used to visualize the data.Data TypesDescribed in "Variety" above.Data AnalyticsData mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.					
(collection, curation, analysis, action)Issues) and Qualitytechniques. The network brings this data together and performs a common processing, gap-filling, and quality assessment. Thousands of usersaction)VisualizationGraphs and 3D surfaces are used to visualize the data.Data TypesDescribed in "Variety" above.Data AnalyticsData mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc.Big Data Specific Challenges (Gaps)Translation across diverse datasets that cross domains and scales.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.Security and Privacy					
analysis, action)performs a common processing, gap-filling, and quality assessment. Thousands of usersVisualizationGraphs and 3D surfaces are used to visualize the data.Data TypesDescribed in "Variety" above.Data AnalyticsData mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc.Big Data Specific Challenges (Gaps)Translation across diverse datasets that cross domains and scales.Big Data Specific Challenges in MobilityField experiment data takim would be improved by access to existing data and automated entry of new data via mobile devices.Security and Privacy	_				
action)assessment. Thousands of usersVisualizationGraphs and 3D surfaces are used to visualize the data.Data TypesDescribed in "Variety" above.Data AnalyticsData mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc.Big Data Specific Challenges (Gaps)Translation across diverse datasets that cross domains and scales.Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.Security and Privacy		issues) and Quality			
Visualization Graphs and 3D surfaces are used to visualize the data. Data Types Described in "Variety" above. Data Analytics Data mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc. Big Data Specific Challenges (Gaps) Translation across diverse datasets that cross domains and scales. Big Data Specific Challenges in Mobility Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices. Security and Privacy Event of the specific Challenges in Mobility	-				
Data Types Described in "Variety" above. Data Analytics Data mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc. Big Data Specific Challenges (Gaps) Translation across diverse datasets that cross domains and scales. Big Data Specific Challenges in Mobility Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices. Security and Privacy Event State	action)				
Data Analytics Data mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc. Big Data Specific Challenges (Gaps) Translation across diverse datasets that cross domains and scales. Big Data Specific Challenges in Mobility Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices. Security and Privacy Image: Challenge state			· · ·		
Big Data Specific across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc. Big Data Specific Translation across diverse datasets that cross domains and scales. Challenges (Gaps) Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices. Security and Privacy Event of the security o					
Big Data Specific Challenges (Gaps) Translation across diverse datasets that cross domains and scales. Big Data Specific Challenges in Mobility Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices. Security and Privacy Enter the security of the s		Data Analytics			
Big Data Specific Challenges (Gaps) Translation across diverse datasets that cross domains and scales. Big Data Specific Challenges in Mobility Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices. Security and Privacy Field experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.			· · · ·		
Challenges (Gaps)Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.Security and PrivacyField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.					
Big Data Specific Challenges in MobilityField experiment data taking would be improved by access to existing data and automated entry of new data via mobile devices.Security and Privacy		Translation across diverse d	atasets that cross domains and scales.		
Challenges in Mobilityautomated entry of new data via mobile devices.Security and Privacy					
Security and Privacy					
	Challenges in Mobility	automated entry of new data via mobile devices.			
Requirements	Security and Privacy				
	Requirements				

Earth, Environmental and Polar Science> Use Case 50: AmeriFlux and FLUXNET

Highlight issues for	
generalizing this use	
case (e.g. for ref.	
architecture)	
More Information	http://Ameriflux.lbl.gov
(URLs)	http://www.fluxdata.org

Energy> Use Case 51: Consumption Forecasting in Smart Grids

Use Case Title	Consumption forecasting in Smart Grids				
Vertical (area)	Energy Informatics				
Author/Company/Email	Yogesh Simmhan, University of Southern California, simmhan@usc.edu				
Actors/Stakeholders	Electric Utilities, Campus Mi	croGrids, Building Managers, Power Consumers, Energy			
and their roles and	Markets				
responsibilities					
Goals	Develop scalable and accurate forecasting models to predict the energy consumption				
	(kWh) within the utility serv	ice area under different spatial and temporal			
	granularities to help improve grid reliability and efficiency.				
Use Case Description	Deployment of smart me	ters are making available near-realtime energy usage			
	data (kWh) every 15-mins at	t the granularity individual consumers within the service			
	area of smart power utilities	s. This unprecedented and growing access to fine-grained			
	energy consumption inform	ation allows novel analytics capabilities to be developed			
	for predicting energy consur	nption for customers, transformers, sub-stations and the			
	utility service area. Near-ter	m forecast can be used by utilities and microgrid			
	managers to take preventive	e action before consumption spikes cause			
	brown/blackouts through de	emand-response optimization by engaging consumers,			
	bringing peaker units online	, or purchasing power from the energy markets. These			
	form an OODA feedback loo	p. Customers can also use them for energy use planning			
	and budgeting. Medium- to	long-term predictions can help utilities and building			
		apacity, renewable portfolio, energy purchasing			
	contracts and sustainable bu	•			
		Data Collection and Storage: time-series data from			
		rt meters in near real time, features on consumers,			
		er forecasts, archival of data for training, testing and			
	validating models; 2) Data Cleaning and Normalization: Spatio-temporal				
	normalization, gap filling/Interpolation, outlier detection, semantic annotation; 3)				
	Training Forecast Models: Using univariate timeseries models like ARIMA, and data-				
	-	dels like regression tree, ANN, for different spatial			
		d temporal (15-min, 24-hour) granularities; 4) Prediction:			
	-	erent spatio-temporal granularities and prediction			
	-	e and historic data fed to the forecast model with			
	thresholds on prediction late				
Current	Compute(System)	Many-core servers, Commodity Cluster, Workstations			
Solutions	Storage	SQL Databases, CSV Files, HDFS, Meter Data			
		Management			
	Networking	Gigabit Ethernet			
	Software	R/Matlab, Weka, Hadoop			
Big Data	Data Source	Head-end of smart meters (distributed), Utility			
Characteristics	(distributed/centralized)	databases (Customer Information, Network topology;			
	centralized), US Census data (distributed), NOAA				
	weather data (distributed), Microgrid building				
	information system (centralized), Microgrid sensor				
	network (distributed)				
	Volume (size)	10 GB/day; 4 TB/year (City scale)			
	Velocity	Los Angeles: Once every 15-mins (≈100k streams);			
	(e.g. real time)	Once every 8-hours (≈1.4M streams) with finer grain			
		data aggregated to 8-hour interval			

	Variety	Tuple-based: Timeseries, database rows; Graph-based:			
	(multiple datasets,	Network topology, customer connectivity; Some			
	mashup)	semantic data for normalization.			
	Variability (rate of	Meter and weather data change, and are			
	change)	collected/used, on hourly basis. Customer/building/gri			
		topology information is slow changing on a weekly			
		basis			
Big Data Science	Veracity (Robustness	Versioning and reproducibility is necessary to			
(collection, curation,	Issues, semantics)	validate/compare past and current models. Resilience			
analysis,		of storage and analytics is important for operational			
action)		needs. Semantic normalization can help with inter-			
		disciplinary analysis (e.g. utility operators, building			
		managers, power engineers, behavioral scientists)			
	Visualization	Map-based visualization of grid service topology, stress			
		Energy heat-maps; Plots of demand forecasts vs.			
		capacity, what-if analysis; Realtime information display			
		Apps with push notification of alerts			
	Data Quality (syntax)	Gaps in smart meters and weather data; Quality issues			
		in sensor data; Rigorous checks done for "billing			
		quality" meter data;			
	Data Types	Timeseries (CSV, SQL tuples), Static information (RDF,			
		XML), topology (shape files)			
	Data Analytics	Forecasting models, machine learning models, time			
		series analysis, clustering, motif detection, complex			
		event processing, visual network analysis,			
Big Data Specific	Scalable realtime analytics of	lytics over large data streams			
Challenges (Gaps)	Low-latency analytics for op	erational needs			
	Federated analytics at utility	and microgrid levels			
	Robust time series analytics	over millions of customer consumption data			
	Customer behavior modelin	g, targeted curtailment requests			
Big Data Specific	Apps for engaging with cust	omers: Data collection from customers/premises for			
Challenges in Mobility	behavior modeling, feature	extraction; Notification of curtailment requests by			
	utility/building managers; Su	uggestions on energy efficiency; Geo-localized display of			
	energy footprint.				
Security and Privacy	Personally identifiable custo	omer data requires careful handling. Customer energy			
Requirements	usage data can reveal behav	vior patterns. Anonymization of information. Data			
	aggregation to avoid custom	ner identification. Data sharing restrictions by federal and			
	state energy regulators. Sur	veys by behavioral scientists may have IRB (Institutional			
	Review Board) restrictions.				
Highlight issues for	Realtime data-driven analyt	ics for cyber-physical systems			
generalizing this use					
case (e.g. for ref.					
architecture)					
	http://smartgrid.usc.edu				
More Information					
More Information (URLs)	http://ganges.usc.edu/wiki/	<u>'Smart Grid</u>			
		<u>'Smart Grid</u> dwp/faces/ladwp/aboutus/a-power/a-p-smartgridla			

Energy> Use Case 51: Consumption Forecasting in Smart Grids

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-3r2

Appendix B: Summary of Key Properties

Information related to five key properties was extracted from each use case. The five key properties were three Big Data characteristics (volume, velocity, and variety), software related information, and associated analytics. The extracted information is presented in Table B-1. The use case number listed in the first column corresponds to the use case number used in this report. The use case number in the second column (e.g., M0147) corresponds to the document number on the NIST Big Data Public Working Group Document Repository (https://bigdatawg.nist.gov/show_InputDoc.php).

Table B-1: Use Case Specific Information by Key Properties

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
1	<u>M0147</u> Census 2000 and 2010	380 TB	Static for 75 years	Scanned documents	Robust archival storage	None for 75 years
2	<u>M0148</u> NARA: Search, Retrieve, Preservation	Hundreds of terabytes, and growing	Data loaded in batches, so bursty	Unstructured and structured data: textual documents, emails, photos, scanned documents, multimedia, social networks, web sites, databases, etc.	Custom software, commercial search products, commercial databases	Crawl/index, search, ranking, predictive search; data categorization (sensitive, confidential, etc.); personally identifiable information (PII) detection and flagging
3	<u>M0219</u> Statistical Survey Response Improvement	Approximately 1 PB	Variable, field data streamed continuously, Census was ≈150 million records transmitted	Strings and numerical data	Hadoop, Spark, Hive, R, SAS, Mahout, Allegrograph, MySQL, Oracle, Storm, BigMemory, Cassandra, Pig	Recommendation systems, continued monitoring

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
4	M0222 Non-Traditional Data in Statistical Survey Response Improvement	-	_	Survey data, other government administrative data, web- scraped data, wireless data, e-transaction data, (potentially) social media data and positioning data from various sources	Hadoop, Spark, Hive, R, SAS, Mahout, Allegrograph, MySQL, Oracle, Storm, BigMemory, Cassandra, Pig	New analytics to create reliable information from non-traditional disparate sources
5	M0175 Cloud Eco- System for Finance	-	Real time	-	Hadoop RDBMS XBRL	Fraud detection
6	<u>M0161</u> Mendeley	15 TB presently, growing about 1 TB per month	Currently Hadoop batch jobs scheduled daily, real-time recommended in future	PDF documents and log files of social network and client activities	Hadoop, Scribe, Hive, Mahout, Python	Standard libraries for machine learning and analytics, LDA, custom-built reporting tools for aggregating readership and social activities per document
7	<u>M0164</u> Netflix Movie Service	Summer 2012 – 25 million subscribers, 4 million ratings per day, 3 million searches per day, 1 billion hours streamed in June 2012; Cloud storage – 2 petabytes in June 2013	Media (video and properties) and rankings continually updated	Data vary from digital media to user rankings, user profiles, and media properties for content- based recommendations	Hadoop and Pig; Cassandra; Teradata	Personalized recommender systems using logistic/linear regression, elastic nets, matrix factorization, clustering, LDA, association rules, gradient-boosted decision trees, and others; streaming video delivery
8	<u>M0165</u> Web Search	45 billion web pages total, 500 million photos uploaded each day, 100 hours of video uploaded to YouTube each minute	Real-time updating and real-time responses to queries	Multiple media	Map/Reduce + Bigtable; Dryad + Cosmos; PageRank; final step essentially a recommender engine	Crawling; searching, including topic-based searches; ranking; recommending

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
9	M0137 Business Continuity and Disaster Recovery Within a Cloud Eco- System	Terabytes up to petabytes	Can be real time for recent changes	Must work for all data	Hadoop, Map/Reduce, open source, and/or vendor proprietary such as AWS, Google Cloud Services, and Microsoft	Robust backup
10	<u>M0103</u> Cargo Shipping	-	Needs to become real time, currently updated at events	Event-based	_	Distributed event analysis identifying problems
11	<u>M0162</u> Materials Data for Manufacturing	500,000 material types in 1980s, much growth since then	Ongoing increase in new materials	Many datasets with no standards	National programs (Japan, Korea, and China), application areas (EU nuclear program), proprietary systems (Granta, etc.)	No broadly applicable analytics
12	M0176 Simulation- Driven Materials Genomics	100 TB (current), 500 TB within five years, scalable key- value and object store databases needed	Regular data added from simulations	Varied data and simulation results	MongoDB, GPFS, PyMatGen, FireWorks, VASP, ABINIT, NWChem, BerkeleyGW, varied community codes	Map/Reduce and search that join simulation and experimental data
13	M0213 Large-Scale Geospatial Analysis and Visualization	Imagery – hundreds of terabytes; vector data – tens of GBs but billions of points	Vectors transmitted in near real time	Imagery, vector (various formats such as shape files, KML, text streams) and many object structures	Geospatially enabled RDBMS, Esri ArcServer, Geoserver	Closest point of approach, deviation from route, point density over time, PCA and ICA
14	M0214 Object Identification and Tracking	FMV – 30 to 60 frames per second at full-color 1080P resolution; WALF – 1 to 10 frames per second at 10,000 x 10,000 full-color resolution	Real time	A few standard imagery or video formats	Custom software and tools including traditional RDBMS and display tools	Visualization as overlays on a GIS, basic object detection analytics and integration with sophisticated situation awareness tools with data fusion

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
15	M0215 Intelligence Data Processing and Analysis	Tens of terabytes to hundreds of petabytes, individual warfighters (first responders) would have at most one to hundreds of GBs	Much real-time, imagery intelligence devices that gather a petabyte of data in a few hours	Text files, raw media, imagery, video, audio, electronic data, human- generated data	Hadoop, Accumulo (BigTable), Solr, NLP, Puppet (for deployment and security) and Storm; GIS	Near real-time alerts based on patterns and baseline changes, link analysis, geospatial analysis, text analytics (sentiment, entity extraction, etc.)
16	<u>M0177</u> EMR Data	12 million patients, more than 4 billion discrete clinical observations, > 20 TB raw data	0.5 to 1.5 million new real-time clinical transactions added per day	Broad variety of data from doctors, nurses, laboratories and instruments	Teradata, PostgreSQL, MongoDB, Hadoop, Hive, R	Information retrieval methods (tf-idf), NLP, maximum likelihood estimators, Bayesian networks
17	M0089 Pathology Imaging	1 GB raw image data + 1.5 GB analytical results per 2D image, 1 TB raw image data + 1 TB analytical results per 3D image, 1 PB data per moderated hospital per year	Once generated, data will not be changed	Images	MPI for image analysis, Map/Reduce + Hive with spatial extension	Image analysis, spatial queries and analytics, feature clustering and classification
18	M0191 Computational Bioimaging	Medical diagnostic imaging around 70 PB annually, 32 TB on emerging machines for a single scan	Volume of data acquisition requires HPC back end	Multi-modal imaging with disparate channels of data	Scalable key-value and object store databases; ImageJ, OMERO, VolRover, advanced segmentation and feature detection methods	Machine learning (support vector machine [SVM] and random forest [RF]) for classification and recommendation services
19	M0078 Genomic Measurements	>100 TB in 1 to 2 years at NIST, many PBs in healthcare community	≈300 GB of compressed data/day generated by DNA sequencers	File formats not well- standardized, though some standards exist; generally structured data	Open-source sequencing bioinformatics software from academic groups	Processing of raw data to produce variant calls, clinical interpretation of variants

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
20	M0188 Comparative Analysis for Metagenomes and Genomes	50 TB	New sequencers stream in data at growing rate	Biological data that are inherently heterogeneous, complex, structural, and hierarchical; besides core genomic data, new types of omics data such as transcriptomics, methylomics, and proteomics	Standard bioinformatics tools (BLAST, HMMER, multiple alignment and phylogenetic tools, gene callers, sequence feature predictors), Perl/Python wrapper scripts	Descriptive statistics, statistical significance in hypothesis testing, data clustering and classification
21	M0140 Individualized Diabetes Management	5 million patients	Not real time but updated periodically	100 controlled vocabulary values and 1,000 continuous values per patient, mostly time- stamped values	HDFS supplementing Mayo internal data warehouse (EDT)	Integration of data into semantic graphs, using graph traverse to replace SQL join; development of semantic graph-mining algorithms to identify graph patterns, index graph, and search graph; indexed Hbase; custom code to develop new patient properties from stored data
22	M0174 Statistical Relational Artificial Intelligence for Health Care	Hundreds of GBs for a single cohort of a few hundred people; possibly on the order of 1 PB when dealing with millions of patients	Constant updates to EHRs; in other controlled studies, data often in batches at regular intervals	Critical feature – data typically in multiple tables, need to be merged to perform analysis	Mainly Java-based, in- house tools to process the data	Relational probabilistic models (Statistical Relational Artificial Intelligence) learned from multiple data types
23	M0172 World Population- Scale Epidemiological Study	100 TB	Low number of data feeding into the simulation, massive amounts of real-time data generated by simulation	Can be rich with various population activities, geographical, socio- economic, cultural variations	Charm++, MPI	Simulations on a synthetic population

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
24	<u>M0173</u> Social Contagion Modeling for Planning	Tens of terabytes per year	During social unrest events, human interactions and mobility leads to rapid changes in data; e.g., who follows whom in Twitter	Big issues – data fusion, combining data from different sources, dealing with missing or incomplete data	Specialized simulators, open source software, proprietary modeling environments; databases	Models of behavior of humans and hard infrastructures, models of their interactions, visualization of results
25	<u>M0141</u> Biodiversity and LifeWatch	N/A	Real-time processing and analysis in case of natural or industrial disaster	Rich variety and number of involved databases and observation data	RDBMS	Requires advanced and rich visualization
26	<u>M0136</u> Large-Scale Deep Learning	Current datasets typically 1 TB to 10 TB, possibly 100 million images to train a self-driving car	Much faster than real-time processing; for autonomous driving, need to process thousands of high-resolution (six megapixels or more) images per second	Neural net very heterogeneous as it learns many different features	In-house GPU kernels and MPI-based communication developed by Stanford, C++/Python source	Small degree of batch statistical preprocessing, all other data analysis performed by the learning algorithm itself
27	M0171 Organizing Large-Scale Unstructured Collections of Consumer Photos	500+ billion photos on Facebook, 5+ billion photos on Flickr	Over 500 million images uploaded to Facebook each day	Images and metadata including EXIF (Exchangeable Image File) tags (focal distance, camera type, etc.)	Hadoop Map/Reduce, simple hand-written multi-threaded tools (Secure Shell [SSH] and sockets for communication)	Robust non-linear least squares optimization problem, SVM

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
28	<u>M0160</u> Truthy Twitter Data	30 TB/year compressed data	Near real-time data storage, querying and analysis	Schema provided by social media data source; currently using Twitter only; plans to expand, incorporating Google+ and Facebook	Hadoop IndexedHBase and HDFS; Hadoop, Hive, Redis for data management; Python: SciPy NumPy and MPI for data analysis	Anomaly detection, stream clustering, signal classification, online learning; information diffusion, clustering, dynamic network visualization
29	M0211 Crowd Sourcing in Humanities	GBs (text, surveys, experiment values) to hundreds of terabytes (multimedia)	Data continuously updated and analyzed incrementally	So far mostly homogeneous small datasets; expected large distributed heterogeneous datasets	XML technology, traditional relational databases	Pattern recognition (e.g., speech recognition, automatic audio-visual analysis, cultural patterns), identification of structures (lexical units, linguistic rules, etc.)
30	M0158 CINET for Network Science	Can be hundreds of GBs for a single network, 1,000 to 5,000 networks and methods	Dynamic networks, network collection growing	Many types of networks	Graph libraries (Galib, NetworkX); distributed workflow management (Simfrastructure, databases, semantic web tools)	Network visualization
31	M0190 NIST Information Access Division	>900 million web pages occupying 30 TB of storage, 100 million tweets, 100 million ground- truthed biometric images, hundreds of thousands of partially ground- truthed video clips, terabytes of smaller fully ground-truthed test collections	Legacy evaluations mostly focused on retrospective analytics, newer evaluations focused on simulations of real- time analytic challenges from multiple data streams	Wide variety of data types including textual search/extraction, machine translation, speech recognition, image and voice biometrics, object and person recognition and tracking, document analysis, human-computer dialogue, multimedia search/extraction	PERL, Python, C/C++, Matlab, R development tools; create ground-up test and measurement applications	Information extraction, filtering, search, and summarization; image and voice biometrics; speech recognition and understanding; machine translation; video person/object detection and tracking; event detection; imagery/document matching; novelty detection; structural semantic temporal analytics
32	<u>M0130</u> DataNet (iRODS)	Petabytes, hundreds of millions of files	Real time and batch	Rich	iRODS	Supports general analysis workflows

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
33	M0163 The Discinnet Process	Small as metadata to Big Data	Real time	Can tackle arbitrary Big Data	Symfony-PHP, Linux, MySQL	
34	<u>M0131</u> Semantic Graph- Search	A few terabytes	Evolving in time	Rich	Database	Data graph processing
35	M0189 Light Source Beamlines	50 to 400 GB per day, total ≈400 TB	Continuous stream of data, but analysis need not be real time	Images	Octopus for Tomographic Reconstruction, Avizo (<u>http://vsg3d.com</u>) and FIJI (a distribution of ImageJ)	Volume reconstruction, feature identification, etc.
36	<u>M0170</u> Catalina Real- Time Transient Survey	≈100 TB total increasing by 0.1 TB a night accessing PBs of base astronomy data, 30 TB a night from successor LSST in 2020s	Nightly update runs processes in real time	Images, spectra, time series, catalogs	Custom data processing pipeline and data analysis software	Detection of rare events and relation to existing diverse data
37	M0185 DOE Extreme Data from Cosmological Sky Survey	Several petabytes from Dark Energy Survey and Zwicky Transient Factory, simulations > 10 PB	Analysis done in batch mode with data from observations and simulations updated daily	Image and simulation data	MPI, FFTW, viz packages, numpy, Boost, OpenMP, ScaLAPCK, PSQL and MySQL databases, Eigen, cfitsio, astrometry.net, and Minuit2	New analytics needed to analyze simulation results

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
38	M0209 Large Survey Data for Cosmology	Petabytes of data from Dark Energy Survey	400 images of 1 GB in size per night	Images	Linux cluster, Oracle RDBMS server, Postgres PSQL, large memory machines, standard Linux interactive hosts, GPFS; for simulations, HPC resources; standard astrophysics reduction software as well as Perl/Python wrapper scripts	Machine learning to find optical transients, Cholesky decomposition for thousands of simulations with matrices of order 1 million on a side and parallel image storage
39	M0166 Particle Physics at LHC	15 PB of data (experiment and Monte Carlo combined) per year	Data updated continuously with sophisticated real- time selection and test analysis but all analyzed "properly" offline	Different format for each stage in analysis but data uniform within each stage	Grid-based environment with over 350,000 cores running simultaneously	Sophisticated specialized data analysis code followed by basic exploratory statistics (histogram) with complex detector efficiency corrections
40	M0210 Belle II High Energy Physics Experiment	Eventually 120 PB of Monte Carlo and observational data	Data updated continuously with sophisticated real- time selection and test analysis but all analyzed "properly" offline	Different format for each stage in analysis but data uniform within each stage	DIRAC Grid software	Sophisticated specialized data analysis code followed by basic exploratory statistics (histogram) with complex detector efficiency corrections
41	M0155 EISCAT 3D incoherent scatter radar system	Terabytes/year (current), 40 PB/year starting ≈2022	Data updated continuously with real-time test analysis and batch full analysis	Big data uniform	Custom analysis based on flat file data storage	Pattern recognition, demanding correlation routines, high-level parameter extraction
42	M0157 ENVRI Environmental Research Infrastructure	Low volume (apart from EISCAT 3D given above), one system EPOS ≈15 TB/year	Mainly real-time data streams	Six separate projects with common architecture for infrastructure, data very diverse across projects	R and Python (Matplotlib) for visualization, custom software for processing	Data assimilation, (statistical) analysis, data mining, data extraction, scientific modeling and simulation, scientific workflow

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
43	M0167 CReSIS Remote Sensing	Around 1 PB (current) increasing by 50 to 100 TB per mission, future expedition ≈1 PB each	Data taken in ≈two-month missions including test analysis and then later batch processing	Raw data, images with final layer data used for science	Matlab for custom raw data processing, custom image processing software, GIS as user interface	Custom signal processing to produce radar images that are analyzed by image processing to find layers
44	M0127 UAVSAR Data Processing	110 TB raw data and 40 TB processed, plus smaller samples	Data come from aircraft and so incrementally added, data occasionally get reprocessed: new processing methods or parameters	Image and annotation files	ROI_PAC, GeoServer, GDAL, GeoTIFF- supporting tools; moving to clouds	Process raw data to get images that are run through image processing tools and accessed from GIS
45	M0182 NASA LaRC/GSFC iRODS	MERRA collection (below) represents most of total data, other smaller collections	Periodic updates every six months	Many applications to combine MERRA reanalysis data with other reanalyses and observational data such as CERES	SGE Univa Grid Engine Version 8.1, iRODS Version 3.2 and/or 3.3, IBM GPFS Version 3.4, Cloudera Version 4.5.2-1	Federation software
46	<u>M0129</u> MERRA Analytic Services	480 TB from MERRA	Increases at ≈1 TB/month	Applications to combine MERRA reanalysis data with other re-analyses and observational data	Cloudera, iRODS, Amazon AWS	CAaaS
47	<u>M0090</u> Atmospheric Turbulence	200 TB (current), 500 TB within 5 years	Data analyzed incrementally	Re-analysis datasets are inconsistent in format, resolution, semantics, and metadata; interpretation/analysis of each of these input streams into a common product	Map/Reduce or the like, SciDB or other scientific database	Data mining customized for specific event types

NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 3, USE CASES AND GENERAL REQUIREMENTS

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
48	M0186 Climate Studies	Up to 30 PB/year from 15 end-to-end simulations at NERSC, more at other HPC centers	42 GB/second from simulations	Variety across simulation groups and between observation and simulation	National Center for Atmospheric Research (NCAR) PIO library and utilities NCL and NCO, parallel NetCDF	Need analytics next to data storage
49	M0183 DOE-BER Subsurface Biogeochemistry	_	-	From omics of the microbes in the soil to watershed hydro- biogeochemistry, from observation to simulation	PFLOWTran, postgres, HDF5, Akuna, NEWT, etc.	Data mining, data quality assessment, cross- correlation across datasets, reduced model development, statistics, quality assessment, data fusion
50	M0184 DOE-BER AmeriFlux and FLUXNET Networks	_	Streaming data from ≈150 towers in AmeriFlux and over 500 towers distributed globally collecting flux measurements	Flux data merged with biological, disturbance, and other ancillary data	EddyPro, custom analysis software, R, Python, neural networks, Matlab	Data mining, data quality assessment, cross- correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion
51	M0223 Consumption forecasting in Smart Grids	4 TB/year for a city with 1.4 million sensors, such as Los Angeles	Streaming data from millions of sensors	Tuple-based: timeseries, database rows; graph- based: network topology, customer connectivity; some semantic data for normalization	R/Matlab, Weka, Hadoop; GIS-based visualization	Forecasting models, machine learning models, time series analysis, clustering, motif detection, complex event processing, visual network analysis

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
No. 2-1	Use Case M0633 NASA Earth Observing System Data and Information System (EOSDIS)	Volume Data size is 22PB corresponding to Total Earth Observation Data managed by NASA EOSDIS accumulated since 1994. Higher resolution spaceborne instruments are expected to increase that volume by two orders of magnitude (~200 PB) over the next 7 years. In a given year, EOSDIS distributes a volume that is comparable to the overall cumulative archive	Velocity This is now an archive of 23 years data but is continually increasing in both gathered and distributed data. In a given year, EOSDIS distributes a volume that is comparable to the overall cumulative archive volume.	Variety EOSDIS'S Common Metadata Repository includes over 6400 EOSDIS data collections as of June 2017, providing significant challenges in data discovery. CMR and other interoperability frameworks (metrics, browse imagery, governance) knit together 12 different archives, each with a different implementation. Nearly all Earth science disciplines are represented in EOSDIS.	Software EOSDIS uses high- performance software, such as the netCDF Command Operators. However, current prototypes are using cloud computing and data-parallel algorithms (e.g., Spark) to achieve an order of magnitude speed-up. Cloud storage and database schemes are being investigated. Python, Fortran, C languages. Visualization through tools such as Giovanni.	Analytics used includes: (1) computing statistical measures of Earth Observation data across a variety of dimensions (2) examining covariance and correlation of a variety of Earth observations (3) assimilating multiple data variables into a model using Kalman filtering (4) analyzing time series.
		distributes a volume that is comparable to the overall		are represented in EOSDIS.	Visualization through tools such as	

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
2-2	<u>M0634</u>	The data represent	Data was collected	None. This use case	NEX science platform	There are number of
	Web-Enabled	the operational time	over a period of 27	basically deals with a	– data management,	analytics processes
	Landsat Data	period of 1984 to	years and is being	single dataset.	workflow processing,	throughout the processing
	(WELD)	2011 for the Landsat	processed over a		provenance capture;	pipeline. The key analytics is
	Processing	4, 5, and 7 satellites	period of 5 years.		WELD science	identifying best available
		and corresponds to	Based on		processing algorithms	pixels for spatio-temporal
		30PB of processed	programmatic		from South Dakota	composition and spatial
		data through the	goals of processing		State University	aggregation processes as a
		pipeline (1PB inputs,	several iterations		(SDSU), browse	part of the overall QA. The
		10PB intermediate,	of the final		visualization, and	analytics algorithms are
		6PB outputs)	product over the		time-series code;	custom developed for this
			span of the		Global Imagery	use case.
			project, 150TB/day		Browse Service (GIBS)	
			is processed per		data visualization	
			day during		platform; USGS data	
			processing time		distribution platform.	
			periods.		Custom-built	
					application and	
					libraries built on top	
					of open-source	
					libraries.	

No.	Use Case	Volume	Velocity	Variety	Software	Analytics
2-3	M0676 Urban context- aware event management for Smart Cities – Public safety	Depending on the sensor type and data type, some sensors can produce over a gigabyte of data in the space of hours. Other data is as small as infrequent sensor activations or text messages.	New records were gathered per week or when available, except for city events when the data was gathered once per month and social media when data was gathered every day.	Everything from text files, raw media, imagery, electronic data, human- generated data all in various formats. Heterogeneous datasets are fused together for analytical use.	Currently, baseline leverages 1. NLP (several variants); 2. R/R Studio/Python/Java; 3. Spark/Kafka; 4. Custom applications and visualization tools.	 Pattern detection, Link analysis, Sentiment analysis, Time-series forecasting Pattern recognition of all kind (e.g., event behavior automatic analysis, cultural patterns). Classification: event type, classification, using multivariate time series to generate network, content, geographical features and so forth. Clustering: per topic, similarity, spatial-temporal, and additional features. Text Analytics (sentiment, entity similarity) Link Analysis: using similarity and statistical techniques Online learning: real-time information analysis. Multiview learning: data fusion feature learning Anomaly detection: unexpected event behavior Visualizations based on patterns, spatial-temporal changes.

Appendix C: Use Case Requirements Summary

Requirements were extracted from each Version 1 use case (the Version 2 use cases were not included) within seven characteristic categories introduced in Section 3.1. The number of requirements within each category varied for each use case. Table C-1 contains the use case specific requirements.

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
1	M0147 Census 2010 and 2000	1. Large document format from centralized storage		1. Large centralized storage (storage)		1. Title 13 data	 Long-term preservation of data as-is for 75 years Long-term preservation at the bit level Curation process including format transformation Access and analytics processing after 75 years No data loss 	
2	M0148 NARA: Search, Retrieve, Preservatio n	 Distributed data sources Large data storage Bursty data ranging from GBs to hundreds of terabytes Wide variety of data formats including unstructured and 	 Crawl and index from distributed data sources Various analytics processing including ranking, data categorization, detection of PII data Data preprocessing 	 Large data storage Various storage systems such as NetApps, Hitachi, magnetic tapes 	1. High relevancy and high recall from search 2. High accuracy from categorization of records 3. Various storage systems such as NetApps,	1. Security policy	 Pre-process for virus scan File format identification Indexing Records categorization 	1. Mobile search with similar interfaces/ results from desktop

Table C-1: Use Case Specific Requirements

386

387

388 389

390

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
		structured data 5. Distributed data sources in different clouds	 4. Long-term preservation management of large varied datasets 5. Huge numbers of data with high relevancy and recall 		Hitachi, magnetic tapes			
3	M0219 Statistical Survey Response Improveme nt	1. Data size of approximately one petabyte	1. Analytics for recommendation systems, continued monitoring, and general survey improvement	1. Hadoop, Spark, Hive, R, SAS, Mahout, Allegrograph, MySQL, Oracle, Storm, BigMemory, Cassandra, Pig	1. Data visualization for data review, operational activity, and general analysis; continual evolution	1. Improved recommendatio n systems that reduce costs and improve quality while providing confidentiality safeguards that are reliable and publicly auditable 2. Confidential and secure data; processes that are auditable for security and confidentiality as required by various legal statutes	1. High veracity on data and very robust systems (challenges: semantic integrity of conceptual metadata concerning what exactly is measured and the resulting limits of inference)	1. Mobile access
4	<u>M0222</u> Non- Traditional Data in		 Analytics to create reliable estimates using data from 	1. Hadoop, Spark, Hive, R, SAS, Mahout, Allegrograph,	1. Data visualization for data review,	 Confidential and secure data; processes that are 	1. High veracity on data and very robust systems (challenges: semantic integrity of	

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
	Statistical Survey Response Improveme nt		traditional survey sources, government administrative data sources, and non- traditional sources from the digital economy	MySQL, Oracle, Storm, BigMemory, Cassandra, Pig	operational activity, and general analysis; continual evolution	auditable for security and confidentiality as required by various legal statutes	conceptual metadata concerning what exactly is measured and the resulting limits of inference)	
5	M0175 Cloud Eco- System for Finance	1. Real-time ingestion of data	1. Real-time analytics			1. Strong security and privacy constraints		1. Mobile access
6	Mondeley	 File-based documents with constant new uploads Variety of file types such as PDFs, social network log files, client activities images, spreadsheet, presentation files 	 Standard machine learning and analytics libraries Efficient scalable and parallelized way to match between documents Third-party annotation tools or publisher watermarks and cover pages 	 Amazon Elastic Compute Cloud (EC2) with HDFS (infrastructure) S3 (storage) Hadoop (platform) Scribe, Hive, Mahout, Python (language) Moderate storage (15 TB with 1 TB/ month) Batch and real- time processing 	 Custom- built reporting tools Visualization tools such as networking graph, scatterplots, etc. 	1. Access controls for who reads what content	 Metadata management from PDF extraction Identification of document duplication Persistent identifier Metadata correlation between data repositories such as CrossRef, PubMed, and Arxiv 	1. Windows Android and iOS mobile devices for content deliverables from Windows desktops
7	M0164 Netflix Movie Service	1. User profiles and ranking information	 Streaming video contents to multiple clients Analytic processing for matching client interest in movie selection 	 Hadoop (platform) Pig (language) Cassandra and Hive Huge numbers of subscribers, ratings, and 	1. Streaming and rendering media	1. Preservation of users, privacy and digital rights for media	1. Continued ranking and updating based on user profile and analytic results	1. Smart interface accessing movie content on mobile platforms

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
			 Various analytic processing techniques for consumer personalization Robust learning algorithms Continued analytic processing based on monitoring and performance results 	searches per day (DB) 5. Huge amounts of storage (2 PB) 6. I/O intensive processing				- -
8	M0165 Web Search	 Distributed data sources Streaming data Multimedia content 	 Dynamic fetching content over the network Linking of user profiles and social network data 	1. Petabytes of text and rich media (storage)	 Search time of ≈0.1 seconds Top 10 ranked results Page layout (visual) 	1. Access control 2. Protection of sensitive content	 Data purge after certain time interval (a few months) Data cleaning 	1. Mobile search and rendering
9	M0137 Business Continuity and Disaster Recovery Within a Cloud Eco- System		 Robust backup algorithm Replication of recent changes 	 Hadoop Commercial cloud services 		1. Strong security for many applications		
10	M0103 Cargo Shipping	1. Centralized and real-time distributed sites/sensors	1. Tracking items based on the unique identification with its sensor information, GPS	1. Internet connectivity	-	1. Security policy		

No.	Use Case	Data Sources	Data Transformation coordinates 2. Real-time updates on	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
11	M0162 Materials Data for Manufactur ing	 Distributed data repositories for more than 500,000 commercial materials Many varieties of datasets Text, graphics, and images 	tracking items 1. Hundreds of independent variables need to be collected to create robust datasets		1. Visualization for materials discovery from many independent variables 2. Visualization tools for multi- variable materials	1. Protection of proprietary sensitive data 2. Tools to mask proprietary information	1. Handle data quality (currently poor or no process)	
12	M0176 Simulation- Driven Materials Genomics	 Data streams from peta/exascale centralized simulation systems Distributed web dataflows from central gateway to users 	 High-throughput computing real- time data analysis for web-like responsiveness Mashup of simulation outputs across codes Search and crowd-driven with computation backend, flexibility for new targets Map/Reduce and search to join simulation and experimental data 	 Massive Massive Massive Monog Dasset Monog DB Monog DB	1. Browser- based search for growing materials data	 Sandbox as independent working areas between different data stakeholders Policy-driven federation of datasets 	 Validation and uncertainty quantification (UQ) of simulation with experimental data UQ in results from multiple datasets 	1. Mobile applications (apps) to access materials genomics information

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
				 6. Large storage (storage) 7. Scalable key- value and object store (platform) 8. Data streams from peta/exascale centralized simulation systems 				
13	M0213 Large-Scale Geospatial Analysis and Visualizatio n	1. Unique approaches to indexing and distributed analysis required for geospatial data	1. Analytics: closest point of approach, deviation from route, point density over time, PCA and ICA 2. Unique approaches to indexing and distributed analysis required for geospatial data	1. Geospatially enabled RDBMS, geospatial server/analysis software, e.g., ESRI ArcServer, Geoserver	1. Visualization with GIS at high and low network bandwidths and on dedicated facilities and handhelds	1. Complete security of sensitive data in transit and at rest (particularly on handhelds)		
14	M0214 Object Identificatio n and Tracking	1. Real-time data FMV (30 to 60 frames/ second at full-color 1080P resolution) and WALF (1 to 10 frames/ second at 10,000 x 10,000 full-color resolution)	1. Rich analytics with object identification, pattern recognition, crowd behavior, economic activity, and data fusion	1. Wide range of custom software and tools including traditional RDBMSs and display tools 2. Several network requirements 3. GPU usage important	1. Visualization of extracted outputs as overlays on a geospatial display; links back to the originating image/video segment as overlay	1. Significant security and privacy issues; sources and methods never compromised	1. Veracity of extracted objects	

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
					objects 2. Output the form of Open Geospatial Consortium (OGC)- compliant web features or standard geospatial files (shape files, KML)			
15	M0215 Intelligence Data Processing and Analysis	 Much real-time data with processing at near-real time (at worst) Data in disparate silos, must be accessible through a semantically integrated data space Diverse data: text files, raw media, imagery, video, audio, electronic data, human-generated data 	1. Analytics: Near Real Time (NRT) alerts based on patterns and baseline changes	1. Tolerance of unreliable networks to warfighter and remote sensors 2. Up to hundreds of petabytes of data supported by modest to large clusters and clouds 3. Hadoop, Accumulo (Big Table), Solr, NLP (several variants), Puppet (for deployment and security), Storm, custom applications, visualization tools	1. Geospatial overlays (GIS) and network diagrams (primary visualizations)	1. Protection of data against unauthorized access or disclosure and tampering	1. Data provenance (e.g. tracking of all transfers and transformations) over the life of the data	

No.	Use Case	Data	Data	Capabilities	Data	Security and	Life Cycle	Other
		Sources	Transformation		Consumer	Privacy	Management	
16	M0177 EMR Data	1. Heterogeneous, high-volume, diverse data sources 2. Volume: > 12 million entities (patients), > 4 billion records or data points (discrete clinical observations), aggregate of > 20 TB raw data 3. Velocity: 500,000 to 1.5 million new transactions per day 4. Variety: formats include numeric, structured numeric, free- text, structured text, discrete nominal, discrete ordinal, discrete structured, binary large blobs (images and video) 5. Data evolve over time in a	1. A comprehensive and consistent view of data across sources and over time 2. Analytic techniques: information retrieval, NLP, machine learning decision models, maximum likelihood estimators, Bayesian networks	 Hadoop, Hive, R. Unix-based Cray supercomputer Teradata, PostgreSQL, MongoDB Various, with significant I/O intensive processing 	1. Results of analytics provided for use by data consumers/ stakeholders, i.e., those who did not actually perform the analysis; specific visualization techniques	 Data consumer direct access to data as well as to the results of analytics performed by informatics research scientists and health service researchers Protection of all health data in compliance with governmental regulations Protection of data in accordance with data providers, policies. Security and privacy policies unique to a data subset Robust security to prevent data breaches 	1. Standardize, aggregate, and normalize data from disparate sources 2. Reduce errors and bias 3. Common nomenclature and classification of content across disparate sources— particularly challenging in the health IT space, as the taxonomies continue to evolve— SNOMED, International Classification of Diseases (ICD) 9 and future ICD 10, etc.	1. Security across mobile devices

No.	Use Case	Data Sources highly variable	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
17	M0089 Pathology Imaging	fashion 1. High-resolution spatial digitized pathology images 2. Various image quality analyses algorithms 3. Various image data formats, especially BigTIFF with structured data for analytical results 4. Image analysis, spatial queries and analytics, feature clustering, and classification	1. High- performance image analysis to extract spatial information 2. Spatial queries and analytics, feature clustering and classification 3. Analytic processing on huge multi-dimensional large dataset; correlation with other data types such as clinical data, omic data	 Legacy system and cloud (computing cluster) Huge legacy and new storage such as storage area network (SAN) or HDFS (storage) High- throughput network link (networking) MPI image analysis, Map/Reduce, Hive with spatial extension (software packages) 	1. Visualization for validation and training	1. Security and privacy protection for protected health information	1. Human annotations for validation	1. 3D visualization and rendering on mobile platforms
18	M0191 Computatio nal Bioimaging	 Distributed multi-modal high- resolution experimental sources of bioimages (instruments) 50 TB of data in formats that include images 	 High-throughput computing with responsive analysis Segmentation of regions of interest; crowd-based selection and extraction of features; object classification, and organization; and search 	1. ImageJ, OMERO, VolRover, advanced segmentation and feature detection methods from applied math researchers; scalable key-value and object store databases needed	1. 3D structural modeling	1. Significant but optional security and privacy including secure servers and anonymization	1. Workflow components including data acquisition, storage, enhancement, minimizing noise	

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
			3. Advanced biosciences discovery through Big Data techniques / extreme-scale computing; in- database processing and analytics; machine learning (SVM and RF) for classification and recommendation services; advanced algorithms for massive image analysis; high- performance computational solutions 4. Massive data analysis toward massive imaging datasets.	2. NERSC's Hopper infrastructure 3. database and image collections 4. 10 GB and future 100 GB and advanced networking (software defined networking [SDN])				
19	M0078 Genomic Measureme nts	 High- throughput compressed data (300 GB/day) from various DNA sequencers Distributed data source (sequencers) Various file 	 Processing raw data in variant calls Challenge: characterizing machine learning for complex analysis on systematic errors from sequencing technologies 	 Legacy computing cluster and other PaaS and IaaS (computing cluster) Huge data storage in PB range (storage) Unix-based 	1. Data format for genome browsers	1. Security and privacy protection of health records and clinical research databases		1. Mobile platforms for physicians accessing genomic data (mobile device)

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
		formats with both structured and unstructured data	-	legacy sequencing bioinformatics software (software package)				
20	M0188 Comparativ e Analysis for Metageno mes and Genomes	 Multiple centralized data sources Proteins and their structural features, core genomic data, new types of omics data such as transcriptomics, methylomics, and proteomics describing gene expression Front real-time web UI interactive; backend data loading processing that keeps up with exponential growth of sequence data due to the rapid drop in cost of sequencing technology 4. 	2. Scalable RDBMS for heterogeneous biological data 2. Real-time rapid and parallel bulk loading 3. Oracle RDBMS, SQLite files, flat text files, Lucy (a version of Lucene) for keyword searches, BLAST databases, USEARCH databases 4. Linux cluster, Oracle RDBMS server, large memory machines, standard Linux interactive hosts 5. Sequencing and comparative analysis techniques for highly complex data 6. Descriptive statistics	1. Huge data storage	 Real-time Interactive parallel bulk loading capability Interactive Web UI, backend precomputations, batch job computation submission from the UI. Download of assembled and annotated datasets for offline analysis Ability to query and browse data via interactive web UI Visualize data structure at different levels of resolution; ability to view abstract 	1. Login security: username and password 2. Creation of user account to submit and access dataset to system via web interface 3. Single sign- on capability (SSO)	 Methods to improve data quality Data clustering, classification, reduction Integration of new data/content into the system's data store and data annotation 	

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
		Heterogeneous, complex, structural, and hierarchical biological data 5. Metagenomic samples that can vary by several orders of magnitude, such as several hundred thousand genes to a billion genes			representation s of highly similar data			
21	M0140 Individualiz ed Diabetes Manageme nt	1. Distributed EHR data 2. Over 5 million patients with thousands of properties each and many more derived from primary values 3. Each record: a range of 100 to 100,000 data property values, average of 100 controlled vocabulary values, and average of 1,000 continuous values 4. No real-time, but data updated	 Data integration using ontological annotation and taxonomies Parallel retrieval algorithms for both indexed and custom searches; identification of data of interest; patient cohorts, patients' meeting certain criteria, patients sharing similar characteristics Distributed graph mining algorithms, pattern analysis and graph indexing, pattern 	 1. data warehouse, open source indexed Hbase 2. supercomputers, cloud and parallel computing 3. I/O intensive processing 4. HDFS storage 5. custom code to develop new properties from stored data. 	1. Efficient data graph- based visualization needed	 Protection of health data in accordance with privacy policies and legal requirements, e.g., HIPAA. Security policies for different user roles 	 Data annotated based on domain ontologies or taxonomies Traceability of data from origin (initial point of collection) through use Data conversion from existing data warehouse into RDF triples 	1. Mobile access

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
		periodically; data timestamped with the time of observation (time the value is recorded) 5. Two main categories of structured data about a patient: data with controlled vocabulary (CV) property values and data with continuous property values (recorded/ captured more frequently) 6. Data consist of text and continuous numerical values	searching on RDF triple graphs 4. Robust statistical analysis tools to manage false discovery rates, determine true sub-graph significance, validate results, eliminate false positive/false negative results 5. Semantic graph mining algorithms to identify graph patterns, index and search graph 6. Semantic graph traversal					
22	M0174 Statistical Relational Artificial Intelligence for Health Care	 Centralized data, with some data retrieved from Internet sources Range from hundreds of GBs for a sample size to 1 PB for very large studies Both constant 	1. Relational probabilistic models/ probability theory; software that learns models from multiple data types and can possibly integrate the information and reason about	 Java, some in house tools, [relational] database and NoSQL stores Cloud and parallel computing High- performance computer, 48 GB 	1. Visualization of very large data subsets	1. Secure handling and processing of data	 Merging multiple tables before analysis Methods to validate data to minimize errors 	

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
		updates/additions (to data subsets) and scheduled batch inputs 4. Large, multi- modal, longitudinal data 5. Rich relational data comprising multiple tables, different data types such as imaging, EHR, demographic, genetic, and natural language data requiring rich representation 6. Unpredictable arrival rates, often real time	complex queries 2. Robust and accurate learning methods to account for data imbalance (where large numbers of data are available for a small number of subjects) 3. Learning algorithms to identify skews in data, so as to not to (incorrectly) model noise 4. Generalized and refined learned models for application to diverse sets of data 5. Challenge: acceptance of data in different modalities (and from disparate sources)	RAM (to perform analysis for a moderate sample size) 4. Dlusters for large datasets 5. 200 GB–1 TB hard drive for test data				
23	M0172 World Population Scale Epidemiolo gical Study	 File-based synthetic population, either centralized or distributed sites Large volume of real-time output data 	 Compute- intensive and data- intensive computation, like supercomputer performance Unstructured and irregular 	 Movement of very large volume of data for visualization (networking) Distributed MPI-based simulation system 	1. Visualization	 Protection of PII on individuals used in modeling Data protection and secure platform 	1. Data quality, ability to capture the traceability of quality from computation	

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
		3. Variety of output datasets depending on the model's complexity	nature of graph processing 3. Summary of various runs of simulation	 (platform) 3. Charm++ on multi-nodes (software) 4. Network file system (storage) 5. Infiniband network (networking) 		for computation		
24	M0173 Social Contagion Modeling for Planning	 Traditional and new architecture for dynamic distributed processing on commodity clusters Fine-resolution models and datasets to support Twitter network traffic Huge data storage supporting annual data growth 	 Large-scale modeling for various events (disease, emotions, behaviors, etc.) Scalable fusion between combined datasets Multilevel analysis while generating sufficient results quickly 	 Computing infrastructure that can capture human-to-human interactions on various social events via the Internet (infrastructure) File servers and databases (platform) Ethernet and Infiniband networking (networking) Specialized simulators, open source software, and proprietary modeling (application) Huge user accounts across country 	1. Multilevel detailed network representation s 2. Visualization with interactions	1. Protection of PII of individuals used in modeling 2. Data protection and secure platform for computation	 Data fusion from variety of data sources (i.e., Stata data files) Data consistency and no corruption Preprocessing of raw data 	1. Efficient method of moving data

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
				boundaries (networking)				
25	M0141 Biodiversity and LifeWatch	 Special dedicated or overlay sensor network Storage: distributed, historical, and trends data archiving Distributed data sources, including observation and monitoring facilities, sensor network, and satellites Wide variety of data: satellite images/ information, climate and weather data, photos, video, sound recordings, etc. Multi-type data combination and linkage, potentially unlimited data variety Data streaming 	 Web-based services, grid- based services, relational databases, NoSQL Personalized virtual labs Grid- and cloud- based resources Data analyzed incrementally and/or in real time at varying rates owing to variations in source processes A variety of data and analytical and modeling tools to support analytics for diverse scientific communities Parallel data streams and streaming analytics Access and integration of multiple distributed databases 	1. Expandable on- demand-based storage resource for global users 2. Cloud community resource required	1. Access by mobile users 2. Advanced/ rich/high- definition visualization 3. 4D visualization computational models	1. Federated identity management for mobile researchers and mobile sensors 2. Access control and accounting	1. Data storage and archiving, data exchange and integration 2. Data life cycle management: data provenance, referral integrity and identification traceability back to initial observational data 3. Processed (secondary) data storage (in addition to original source data) for future uses 4. Provenance (and persistent identification [PID]) control of data, algorithms, and workflows 5. Curated (authorized) reference data (e.g. species name lists), algorithms, software code, workflows	

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
26	M0136 Large-Scale Deep Learning			1. GPU 2. High- performance MPI and HPC Infiniband cluster 3. Libraries for single-machine or single-GPU computation – available (e.g., BLAS, CuBLAS, MAGMA, etc.); distributed computation of dense BLAS-like or LAPACK-like operations on GPUs – poorly developed; existing solutions (e.g., ScaLapack for CPUs) – not well-integrated with higher-level languages and require low-level programming, lengthening experiment and development time				
27	M0171 Organizing Large-Scale Unstructure	1. Over 500 million images uploaded to social	1. Classifier (e.g. an SVM), a process that is often hard to parallelize	1. Hadoop or enhanced Map/Reduce	1. Visualize large-scale 3D reconstruction s; navigate	1. Preserve privacy for users and		

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
	d Collections of Consumer Photos	media sites each day	2. Features seen in many large-scale image processing problems		large-scale collections of images that have been aligned to maps	digital rights for media		
28	M0160 Truthy Twitter Data	 Distributed data sources Large volume of real-time streaming data Raw data in compressed formats Fully structured data in JSON, user metadata, geo- location data Multiple data schemas 	1. Various real- time data analysis for anomaly detection, stream clustering, signal classification on multi-dimensional time series, online learning	 Hadoop and HDFS (platform) IndexedHBase, Hive, SciPy, NumPy (software) In-memory database, MPI (platform) High-speed Infiniband network (networking) 	 Data retrieval and dynamic visualization Data-driven interactive web interfaces API for data query 	1. Security and privacy policy	1. Standardized data structures/ formats with extremely high data quality	1. Low-level data storage infrastructur e for efficient mobile access to data
29	M0211 Crowd Sourcing in Humanities		 Digitize existing audio-video, photo, and documents archives Analytics: pattern recognition of all kinds (e.g., speech recognition, automatic A&V analysis, cultural patterns), identification of structures (lexical 		-	1. Privacy issues in preserving anonymity of responses in spite of computer recording of access ID and reverse engineering of unusual user responses		

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
			units, linguistic rules, etc.)					
30	M0158 CINET for Network Science	 A set of network topologies files to study graph theoretic properties and behaviors of various algorithms Asynchronous and real-time synchronous distributed computing 	 Environments to run various network and graph analysis tools Dynamic growth of the networks Asynchronous and real-time synchronous distributed computing Different parallel algorithms for different partitioning schemes for efficient operation 	 Large file system (storage) Various network connectivity (networking) Existing computing cluster EC2 computing cluster Various graph libraries, management tools, databases, semantic web tools 	1. Client-side visualization			
31	M0190 NIST Information Access Division	1. Large amounts of semi- annotated web pages, tweets, images, video 2. Scaling ground- truthing to larger data, intrinsic and annotation uncertainty measurement, performance measurement for incompletely annotated data, measuring	1. Test analytic algorithms working with written language, speech, human imagery, etc. against real or realistic data; challenge: engineering artificial data that sufficiently captures the variability of real data involving humans	1. PERL, Python, C/C++, Matlab, R development tools; creation of ground-up test and measurement applications	1. Analytic flows involving users	1. Security requirements for protecting sensitive data while enabling meaningful developmental performance evaluation; shared evaluation testbeds that protect the intellectual property of analytic		

No.	Use Case	Data Sources analytic performance for heterogeneous data and analytic flows involving users	Data Transformation	Capabilities	Data Consumer	Security and Privacy algorithm developers	Life Cycle Management	Other
32	M0130 DataNet (iRODS)	1. Process key format types NetCDF, HDF5, Dicom 2. Real-time and batch data	1. Provision of general analytics workflows needed	 iRODS data management software interoperability across storage and network protocol types 	1. General visualization workflows	1. Federate across existing authentication environments through Generic Security Service API and pluggable authentication modules (GSI, Kerberos, InCommon, Shibboleth) 2. Access controls on files independent of the storage location		
33	M0163 The Discinnet Process	 Integration of metadata approaches across disciplines 		1. Software: Symfony-PHP, Linux, MySQL		1. Significant but optional security and privacy including secure servers and anonymization	 Integration of metadata approaches across disciplines 	

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
34	<u>M0131</u> Semantic Graph- Search	1. All data types, image to text, structures to protein sequence	 Data graph processing RDBMS 	1. Cloud community resource required	 Efficient data-graph- based visualization needed 			
35	M0189 Light source beamlines	 Multiple streams of real- time data to be stored and analyzed later Sample data to be analyzed in real time 	1. Standard bioinformatics tools (BLAST, HMMER, multiple alignment and phylogenetic tools, gene callers, sequence feature predictors, etc.), Perl/Python wrapper scripts, Linux Cluster scheduling	1. High-volume data transfer to remote batch processing resource		1. Multiple security and privacy requirements to be satisfied		
36	M0170 Catalina Real-Time Transient Survey	 ≈0.1 TB per day at present, will increase by factor of 100 	 A wide variety of the existing astronomical data analysis tools, plus a large number of custom developed tools and software programs, some research projects in and of themselves Automated classification with machine learning tools given the very sparse and heterogeneous 		1. Visualization mechanisms for highly dimensional data parameter spaces			

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
			data, dynamically evolving in time as more data come in, with follow-up decision making reflecting limited follow-up resources					
37	M0185 DOE Extreme Data from Cosmologic al Sky Survey	 ≈1 PB/year becoming 7 PB/year of observational data 	1. Advanced analysis and visualization techniques and capabilities to support interpretation of results from detailed simulations	1. MPI, OpenMP, C, C++, F90, FFTW, viz packages, Python, FFTW, numpy, Boost, OpenMP, ScaLAPCK, PSQL and MySQL databases, Eigen, cfitsio, astrometry.net, and Minuit2 2. Methods/ tools to address supercomputer I/O subsystem limitations	1. Interpretation of results using advanced visualization techniques and capabilities			
38	M0209 Large Survey Data for Cosmology	1. 20 TB of data/day	 Analysis on both the simulation and observational data simultaneously Techniques for handling Cholesky decomposition for thousands of simulations with 	 Standard astrophysics reduction software as well as Perl/Python wrapper scripts Oracle RDBMS, Postgres psql, GPFS and Lustre file systems and 			1. Links between remote telescopes and central analysis sites	

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
			matrices of order 1 million on a side	tape archives 3. Parallel image storage				
39	M0166 Particle Physics at LHC	 Real-time data from accelerator and analysis instruments Asynchronization data collection Calibration of instruments 	 Experimental data from ALICE, ATLAS, CMS, LHB Histograms, scatter-plots with model fits Monte-Carlo computations 	 Legacy computing infrastructure (computing nodes) Distributed cached files (storage) Object databases (software package) 	1. Histograms and model fits (visual)	1. Data protection	1. Data quality on complex apparatus	
40	M0210 Belle II High- Energy Physics Experiment	1. 120 PB of raw data		 1. 120 PB raw data International distributed computing model to augment that at accelerator (Japan) Data transfer of ≈20 GB/ second at designed luminosity between Japan and United States Software from Open Science Grid, Geant4, DIRAC, FTS, Belle II framework 		1. Standard grid authentication		

No.	Use Case	Data	Data	Capabilities	Data	Security and	Life Cycle	Other
41	M0155 EISCAT 3D Incoherent Scatter Radar System	Sources 1. Remote sites generating 40 PB data/year by 2022 2. Hierarchical Data Format (HDF5) 3. Visualization of high-dimensional (≥5) data	Transformation 1. Queen Bea architecture with mix of distributed on-sensor and central processing for 5 distributed sites 2. Real-time monitoring of equipment by partial streaming analysis 3. Hosting needed for rich set of radar image processing services using machine learning, statistical modelling, and graph algorithms	1. Architecture compatible with ENVRI	Consumer 1. Support needed for visualization of high- dimensional (≥5) data		Management 1. Preservation of data and avoidance of lost data due to instrument malfunction	1. Support needed for real-time monitoring of equipment by partial streaming analysis
42	M0157 ENVRI Environme ntal Research Infrastructu re	 Huge volume of data from real- time distributed data sources Variety of instrumentation datasets and metadata 	1. Diversified analytics tools	 Variety of computing infrastructures and architectures (infrastructure) Scattered repositories (storage) 	 Graph plotting tools Time series interactive tools Brower- based flash playback Earth high- resolution map display Visual tools for quality comparisons 	1. Open data policy with minor restrictions	 High data quality Mirror archives Various metadata frameworks Scattered repositories and data curation 	1. Various kinds of mobile sensor devices for data acquisition

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
43	M0167 CReSIS Remote Sensing	 Provision of reliable data transmission from aircraft sensors/ instruments or removable disks from remote sites Data gathering in real time Varieties of datasets 	 Legacy software (Matlab) and language (C/Java) binding for processing Signal processing and advanced image processing to find layers needed 	 ≈0.5 PB/year of raw data Transfer content from removable disk to computing cluster for parallel processing Map/Reduce or MPI plus language binding for C/Java 	 GIS user interface Rich user interface for simulations 	 Security and privacy on sensitive political issues Dynamic security and privacy policy mechanisms 	1. Data quality assurance	1. Monitoring data collection instruments/ sensors
44	M0127 UAVSAR Data Processing	1. Angular and spatial data 2. Compatibility with other NASA radar systems and repositories (Alaska Satellite Facility)	 Geolocated data that require GIS integration of data as custom overlays Significant human intervention in data processing pipeline Hosting of rich set of radar image processing services ROI_PAC, GeoServer, GDAL, GeoTIFF- supporting tools 	1. Support for interoperable Cloud-HPC architecture 2. Hosting of rich set of radar image processing services 3. ROI_PAC, GeoServer, GDAL, GeoTIFF- supporting tools 4. Compatibility with other NASA radar systems and repositories (Alaska Satellite Facility)	1. Support for field expedition users with phone/tablet interface and low-resolution downloads		 Significant human intervention in data processing pipeline Rich robust provenance defining complex machine/human processing 	1. Support for field expedition users with phone/tablet interface and low- resolution downloads
45	M0182 NASA LaRC/ GSFC iRODS	1. Federate distributed heterogeneous datasets	1. CAaaS on clouds	 Support virtual climate data server (vCDS) GPFS parallel file system integrated with 	1. Support needed to visualize distributed heterogeneou s data			

No.	Use Case	Data Sources	Data Transformation	Capabilities Hadoop	Data Consumer	Security and Privacy	Life Cycle Management	Other
46	M0129 MERRA Analytic Services	 Integrate simulation output and observational data, NetCDF files Real-time and batch mode needed Interoperable use of AWS and local clusters iRODS data management 	1. CAaaS on clouds	 iRODS NetCDF aware software Map/Reduce Interoperable use of AWS and local clusters 	1. High-end distributed visualization			 Smart phone and tablet access required iRODS data management
47	M0090 Atmospheri c Turbulence	1. Real-time distributed datasets 2. Various formats, resolution, semantics, and metadata	 Map/Reduce, SciDB, and other scientific databases Continuous computing for updates Event specification language for data mining and event searching Semantics interpretation and optimal structuring for 4D data mining and predictive analysis 	 Other legacy computing systems (e.g. supercomputer) high throughput data transmission over the network 	1. Visualization to interpret results		1. Validation for output products (correlations)	
48	M0186 Climate Studies	 ≈100 PB data in 2017 streaming at high data rates from large 	1. Data analytics close to data storage	1. Extension of architecture to several other fields	1. Worldwide climate data sharing			1. Phone- based input and access

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
		supercomputers across the world 2. Integration of large-scale distributed data from simulations with diverse observations 3. Linking of diverse data to novel HPC simulation			2. High-end distributed visualization			
49	M0183 DOE-BER Subsurface Biogeoche mistry	1. Heterogeneous diverse data with different domains and scales, translation across diverse datasets that cross domains and scales 2. Synthesis of diverse and disparate field, laboratory, omic, and simulation datasets across different semantic, spatial, and temporal scales 3. Linking of diverse data to novel HPC simulation		1. Postgres, HDF5 data technologies, and many custom software systems	1. Phone- based input and access			1. Phone- based input and access

No.	Use Case	Data Sources	Data Transformation	Capabilities	Data Consumer	Security and Privacy	Life Cycle Management	Other
50	M0184 DOE-BER AmeriFlux and FLUXNET Networks	 Heterogeneous diverse data with different domains and scales, translation across diverse datasets that cross domains and scales Link to many other environment and biology datasets Link to HPC climate and other simulations Link to European data sources and projects Access to data from 500 distributed sources 	1. Custom software such as EddyPro, and custom analysis software, such as R, Python, neural networks, Matlab	1. Custom software, such as EddyPro, and custom analysis software, such as R, Python, neural networks, Matlab 2. Analytics including data mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc.	1. Phone- based input and access			1. Phone- based input and access
51	M0223 Consumpti on Forecasting in Smart Grids	 Diverse data from smart grid sensors, city planning, weather, utilities Data updated every 15 minutes 	1. New machine learning analytics to predict consumption	1. SQL databases, CVS files, HDFS (platform) 2. R/Matlab, Weka, Hadoop (platform)		1. Privacy and anonymization by aggregation		1. Mobile access for clients

Appendix D: Use Case Detail Requirements

This appendix contains the Version 1 use case specific requirements and the aggregated general requirements within each of the following seven characteristic categories:

- Data sources
- Data transformation
- Capabilities
- Data consumer
- Security and privacy
- Life cycle management
- Other

Within each characteristic category, the general requirements are listed with the use cases to which that requirement applies. The use case IDs, in the form of MNNNN, contain links to the use case documents in the NIST document library (http://bigdatawg.nist.gov/usecases.php).

After the general requirements, the use case specific requirements for the characterization category are listed by use case. If requirements were not extracted from a use case for a particular characterization category, the use case will not be in this section of the table.

TABLE D-1: DATA SOURCES REQUIREMENTS

G	ENERAL REQUIREMENTS
l time,	Applies to 28 use cases: MOC

Needs to support reliable real time, asynchronous, streaming, and batch processing to collect data from centralized, distributed, and cloud data sources, sensors, or instruments.	Applies to 28 use cases: <u>M0078</u> , <u>M0090</u> , <u>M0103</u> , <u>M0127</u> , <u>M0129</u> , <u>M0140</u> , <u>M0141</u> , <u>M0147</u> , <u>M0148</u> , <u>M0157</u> , <u>M0160</u> , <u>M0160</u> , <u>M0162</u> , <u>M0165</u> , <u>M0166</u> , <u>M0166</u> , <u>M0167</u> , <u>M0172</u> , <u>M0173</u> , <u>M0174</u> , <u>M0176</u> , <u>M0177</u> , <u>M0183</u> , <u>M0184</u> , <u>M0186</u> , <u>M0188</u> , <u>M0191</u> , <u>M0215</u>
Needs to support slow, bursty, and high- throughput data transmission between data sources and computing clusters.	Applies to 22 use cases: M0078, M0148, M0155, M0157, M0162, M0165, M0167, M0170, M0171, M0172, M0174, M0176, M0177, M0184, M0185, M0186, M0188, M0191, M0209, M0210, M0219, M0223
Needs to support diversified data content: structured and unstructured text, document, graph, web, geospatial, compressed, timed, spatial, multimedia, simulation, instrumental data.	Applies to 28 use cases: M0089, M0090, M0140, M0141, M0147, M0148, M0155, M0158, M0160, M0161, M0162, M0165, M0166, M0167, M0171, M0172, M0173, M0177, M0183, M0184, M0186, M0188, M0190, M0191, M0213, M0214, M0215, M0223

USE CASE SPECIFIC REQUIREMENTS FOR DATA SOURCES

- 1 M0147 Census 2010 and 2000
 - Needs to support large document format from a centralized storage.

394

395

396

397

398

399

400

401

402

403

404

405 406

407

408

	TABLE D-1: DATA SOURCES REQUIREMENTS
2	 M0148 NARA: Search, Retrieve, Preservation Needs to support distributed data sources. Needs to support large data storage. Needs to support bursty data ranging from a GB to hundreds of terabytes. Needs to support a wide variety of data formats including unstructured and structured data. Needs to support distributed data sources in different clouds.
3	 M0219 Statistical Survey Response Improvement Needs to support data size of approximately one petabyte.
5	 M0175 Cloud Eco-System for Finance Needs to support real-time ingestion of data.
6	 M0161 Mendeley Needs to support file-based documents with constant new uploads. Needs to support a variety of file types such as PDFs, social network log files, client activities images spreadsheets, presentation files.
7	 M0164 Netflix Movie Service Needs to support user profiles and ranking information.
8	 M0165 Web Search Needs to support distributed data sources Needs to support streaming data. Needs to support multimedia content.
10	 M0103 Cargo Shipping Needs to support centralized and real-time distributed sites/sensors.
11	 M0162 Materials Data for Manufacturing Needs to support distributed data repositories for more than 500,000 commercial materials. Needs to support many varieties of datasets. Needs to support text, graphics, and images.
12	 M0176 Simulation-Driven Materials Genomics Needs to support data streams from peta/exascale centralized simulation systems. Needs to support distributed web dataflows from central gateway to users.
13	 M0213 Large-Scale Geospatial Analysis and Visualization Needs to support geospatial data that require unique approaches to indexing and distributed analysis.
14	 M0214 Object identification and tracking Needs to support real-time data FMV (30 to 60 frames per second at full-color 1080P resolution) and WALF (1 to 10 frames per second at 10,000 x 10,000 full-color resolution).
15	 M0215 Intelligence Data Processing and Analysis Needs to support real-time data with processing at (at worst) near-real time. Needs to support data that currently exist in disparate silos that must be accessible through a semantically integrated data space. Needs to support diverse data: text files, raw media, imagery, video, audio, electronic data, human-generated data.

	TABLE D-1: DATA SOURCES REQUIREMENTS
16	 M0177 EMR Data Needs to support heterogeneous, high-volume, diverse data sources. Needs to support volume of > 12 million entities (patients), > 4 billion records or data points (discrete clinical observations), aggregate of > 20 TB of raw data. Needs to support velocity: 500,000 to 1.5 million new transactions per day. Needs to support variety: formats include numeric, structured numeric, free-text, structured text, discrete nominal, discrete ordinal, discrete structured, binary large blobs (images and video). Needs to support data that evolve in a highly variable fashion. Needs to support a comprehensive and consistent view of data across sources and over time.
17	 M0089 Pathology Imaging Needs to support high-resolution spatial digitized pathology images. Needs to support various image quality analysis algorithms. Needs to support various image data formats, especially BigTIFF, with structured data for analytical results. Needs to support image analysis, spatial queries and analytics, feature clustering, and classification.
18	 M0191 Computational Bioimaging Needs to support distributed multi-modal high-resolution experimental sources of bioimages (instruments). Needs to support 50 TB of data in formats that include images.
19	 M0078 Genomic Measurements Needs to support high-throughput compressed data (300 GB per day) from various DNA sequencers. Needs to support distributed data source (sequencers). Needs to support various file formats for both structured and unstructured data.
20	 M0188 Comparative Analysis for Metagenomes and Genomes Needs to support multiple centralized data sources. Needs to support proteins and their structural features, core genomic data, and new types of omics data such as transcriptomics, methylomics, and proteomics describing gene expression. Needs to support front real-time web UI interactive. Backend data loading processing must keep up with the exponential growth of sequence data due to the rapid drop in cost of sequencing technology. Needs to support heterogeneous, complex, structural, and hierarchical biological data. Needs to support metagenomic samples that can vary by several orders of magnitude, such as several hundred thousand genes to a billion genes.
21	 M0140 Individualized Diabetes Management Needs to support distributed EHR data. Needs to support over 5 million patients with thousands of properties each and many more that are derived from primary values. Needs to support each record, a range of 100 to 100,000 data property values, an average of 100 controlled vocabulary values, and an average of 1,000 continuous values. Needs to support data that are updated periodically (not real time). Data are timestamped with the time of observation (the time that the value is recorded). Needs to support structured data about patients. The data fall into two main categories: data with controlled vocabulary (CV) property values and data with continuous property values (which are recorded/captured more frequently).

• Needs to support data that consist of text and continuous numerical values.

	TABLE D-1: DATA SOURCES REQUIREMENTS
22	 M0174 Statistical Relational Artificial Intelligence for Health Care Needs to support centralized data, with some data retrieved from Internet sources. Needs to support data ranging from hundreds of GBs for a sample size to one petabyte for very large studies. Needs to support both constant updates/additions (to data subsets) and scheduled batch inputs. Needs to support large, multi-modal, longitudinal data. Needs to support rich relational data comprising multiple tables, as well as different data types such a imaging, EHR, demographic, genetic and natural language data requiring rich representation. Needs to support unpredictable arrival rates; in many cases, data arrive in real-time. M0172 World Population-Scale Epidemiological Study
	 Needs to support file-based synthetic populations on either centralized or distributed sites. Needs to support a large volume of real-time output data. Needs to support a variety of output datasets, depending on the complexity of the model.
24	 M0173 Social Contagion Modeling for Planning Needs to support traditional and new architecture for dynamic distributed processing on commodity clusters. Needs to support fine-resolution models and datasets to support Twitter network traffic. Needs to support huge data storage per year.
25	 M0141 Biodiversity and LifeWatch Needs to support special dedicated or overlay sensor network. Needs to support storage for distributed, historical, and trends data archiving. Needs to support distributed data sources and include observation and monitoring facilities, sensor network, and satellites. Needs to support a wide variety of data, including satellite images/information, climate and weather data, photos, video, sound recordings, etc. Needs to support multi-type data combinations and linkages with potentially unlimited data variety. Needs to support data streaming.
27	 M0171 Organizing Large-Scale Unstructured Collections of Consumer Photos Needs to support over 500 million images uploaded to social media sites each day.
28	 M0160 Truthy Twitter Data Needs to support distributed data sources. Needs to support large data volumes and real-time streaming. Needs to support raw data in compressed formats. Needs to support fully structured data in JSON, user metadata, and geo-location data. Needs to support multiple data schemas.
30	 M0158 CINET for Network Science Needs to support a set of network topologies files to study graph theoretic properties and behaviors of various algorithms. Needs to support asynchronous and real-time synchronous distributed computing.
31	 M0190 NIST Information Access Division Needs to support large amounts of semi-annotated web pages, tweets, images, and video. Needs to support scaling of ground-truthing to larger data, intrinsic and annotation uncertainty measurement, performance measurement for incompletely annotated data, measurement of analytic performance for heterogeneous data, and analytic flows involving users.
32	 M0130 DataNet (iRODS) Needs to support process key format types: NetCDF, HDF5, Dicom. Needs to support real-time and batch data.
33	 M0163 The Discinnet Process Needs to support integration of metadata approaches across disciplines.

	TABLE D-1: DATA SOURCES REQUIREMENTS
34	 M0131 Semantic Graph-Search Needs to support all data types, image to text, structures to protein sequence.
25	
35	 M0189 Light Source Beamlines Needs to support multiple streams of real-time data to be stored and analyzed later. Needs to support sample data to be analyzed in real time.
36	 M0170 Catalina Real-Time Transient Survey Needs to support ≈0.1 TB per day at present; the volume will increase by a factor of 100.
37	 M0185 DOE Extreme Data from Cosmological Sky Survey Needs to support ≈1 PB per year, becoming 7 PB per year, of observational data.
38	 M0209 Large Survey Data for Cosmology Needs to support 20 TB of data per day.
39	 M0166 Particle Physics at LHC Needs to support real-time data from accelerator and analysis instruments. Needs to support asynchronization data collection. Needs to support calibration of instruments.
40	 M0210 Belle II High Energy Physics Experiment Needs to support 120 PB of raw data.
41	 M0155 EISCAT 3D Incoherent Scatter Radar System Needs to support remote sites generating 40 PB of data per year by 2022. Needs to support HDF5 data format. Needs to support visualization of high-dimensional (≥5) data.
42	 M0157 ENVRI Environmental Research Infrastructure Needs to support a huge volume of data from real-time distributed data sources. Needs to support a variety of instrumentation datasets and metadata.
43	 M0167 CReSIS Remote Sensing Needs to provide reliable data transmission from aircraft sensors/instruments or removable disks from remote sites. Needs to support data gathering in real time. Needs to support varieties of datasets.
44	 M0127 UAVSAR Data Processing Needs to support angular and spatial data. Needs to support compatibility with other NASA radar systems and repositories (Alaska Satellite Facility).
45	 M0182 NASA LaRC/GSFC iRODS Needs to support federated distributed heterogeneous datasets.
46	 M0129 MERRA Analytic Services Needs to support integration of simulation output and observational data, NetCDF files. Needs to support real-time and batch mode. Needs to support interoperable use of AWS and local clusters. Needs to support iRODS data management.
47	 M0090 Atmospheric Turbulence Needs to support real-time distributed datasets. Needs to support various formats, resolution, semantics, and metadata.

	TABLE D-1: DATA SOURCES REQUIREMENTS					
48	 M0186 Climate Studies Needs to support ≈100 PB of data (in 2017) streaming at high data rates from large supercomputers across the world. Needs to support integration of large-scale distributed data from simulations with diverse observation Needs to link diverse data to novel HPC simulation. 					
49	 M0183 DOE-BER Subsurface Biogeochemistry Needs to support heterogeneous diverse data with different domains and scales, and translation across diverse datasets that cross domains and scales. Needs to support synthesis of diverse and disparate field, laboratory, omic, and simulation datasets across different semantic, spatial, and temporal scales. Needs to link diverse data to novel HPC simulation. 					
50	 M0184 DOE-BER AmeriFlux and FLUXNET Networks Needs to support heterogeneous diverse data with different domains and scales, and translation across diverse datasets that cross domains and scales. Needs to support links to many other environment and biology datasets. Needs to support links to HPC for climate and other simulations. Needs to support links to European data sources and projects. Needs to support access to data from 500 distributed sources. 					
51	 M0223 Consumption Forecasting in Smart Grids Needs to support diverse <u>data from smart grid sensors, city planning, weather, and ut</u>ilities. Needs to support data from updates every 15 minutes. 					
	TABLE D-2: DATA TRANSFORMATION					
	GENERAL REQUIREMENTS					

1. Needs to support diversified compute- intensive, analytic processing, and machine learning techniques.	Applies to 38 use cases: M0078, M0089, M0103, M0127, M0129, M0140, M0141, M0148, M0155, M0157, M0158, M0160, M0161, M0164, M0164, M0166, M0166, M0167, M0170, M0171, M0172, M0173, M0174, M0176, M0177, M0182, M0185, M0186, M0190, M0191, M0209, M0211, M0213, M0214, M0215, M0219, M0222, M0223
2. Needs to support batch and real-time analytic processing.	Applies to 7 use cases: <u>M0090</u> , <u>M0103</u> , <u>M0141</u> , <u>M0155</u> , <u>M0164</u> , <u>M0165</u> , <u>M0188</u>
3. Needs to support processing of large diversified data content and modeling.	Applies to 15 use cases: <u>M0078</u> , <u>M0089</u> , <u>M0127</u> , <u>M0140</u> , <u>M0158</u> , <u>M0162</u> , <u>M0165</u> , <u>M0166</u> , <u>M0166</u> , <u>M0167</u> , <u>M0171</u> , <u>M0172</u> , <u>M0173</u> , <u>M0176</u> , <u>M0213</u>

4, Needs to support processing of data in motion Applies to 6 use cases: <u>M0078</u>, <u>M0090</u>, <u>M0103</u>, <u>M0164</u>, (streaming, fetching new content, tracking, etc.)

USE CASE SPECIFIC REQUIREMENTS FOR DATA TRANSFORMATION

1. <u>M0148</u> NARA: Search, Retrieve, Preservation **Transformation Requirements:**

- Needs to support crawl and index from distributed data sources.
- Needs to support various analytics processing including ranking, data categorization, and PII data detection.
- Needs to support preprocessing of data.
- Needs to support long-term preservation management of large varied datasets. Needs to support a huge amount of data with high relevancy and recall.
- 2. <u>M0219</u> Statistical Survey Response Improvement **Transformation Requirements**:

409

TABLE D-2: DATA TRANSFORMATION	
	 Needs to support analytics that are required for recommendation systems, continued monitoring, and general survey improvement.
3.	 M0222 Non-Traditional Data in Statistical Survey Response Improvement Transformation Requirements: Needs to support analytics to create reliable estimates using data from traditional survey sources, government administrative data sources, and non-traditional sources from the digital economy.
4.	 M0175 Cloud Eco-System for Finance Transformation Requirements: Needs to support real-time analytics.
5.	 M0161 Mendeley Transformation Requirements: Needs to support standard machine learning and analytics libraries. Needs to support efficient scalable and parallelized ways of matching between documents. Needs to support third-party annotation tools or publisher watermarks and cover pages.
6.	 M0164 Netflix Movie Service Transformation Requirements: Needs to support streaming video contents to multiple clients. Needs to support analytic processing for matching client interest in movie selection. Needs to support various analytic processing techniques for consumer personalization. Needs to support robust learning algorithms. Needs to support continued analytic processing based on the monitoring and performance results.
7.	 M0165 Web Search Transformation Requirements: Needs to support dynamic fetching content over the network. Needs to link user profiles and social network data.
8.	 M0137 Business Continuity and Disaster Recovery within a Cloud Eco-System Transformation Requirements: Needs to support a robust backup algorithm. Needs to replicate recent changes.
9.	 M0103 Cargo Shipping Transformation Requirements: Needs to support item tracking based on unique identification using an item's sensor information and GPS coordinates. Needs to support real-time updates on tracking items.
10.	 M0162 Materials Data for Manufacturing Transformation Requirements: Needs to support hundreds of independent variables by collecting these variables to create robust datasets.
11.	 M0176 Simulation-Driven Materials Genomics Transformation Requirements: Needs to support high-throughput computing real-time data analysis for web-like responsiveness. Needs to support mashup of simulation outputs across codes. Needs to support search and crowd-driven functions with computation backend flexibility for new targets. Needs to support Map/Reduce and search functions to join simulation and experimental data.
12.	 M0213 Large-Scale Geospatial Analysis and Visualization Transformation Requirements: Needs to support analytics including closest point of approach, deviation from route, point density over time, PCA, and ICA. Needs to support geospatial data that require unique approaches to indexing and distributed analysis.
13.	 M0214 Object Identification and Tracking Transformation Requirements: Needs to support rich analytics with object identification, pattern recognition, crowd behavior, economic activity, and data fusion.
	 M0215 Intelligence Data Processing and Analysis Transformation Requirements: Needs to support analytics including NRT alerts based on patterns and baseline changes. M0177 EMR Data Transformation Requirements:

TABLE D-2: DATA TRANSFORMATION		
	 Needs to support a comprehensive and consistent view of data across sources and over time. Needs to support analytic techniques: information retrieval, natural language processing, machine learning decision models, maximum likelihood estimators, and Bayesian networks. 	
16.	 M0089 Pathology Imaging Transformation Requirements: Needs to support high-performance image analysis to extract spatial information. Needs to support spatial queries and analytics, and feature clustering and classification. Needs to support analytic processing on a huge multi-dimensional dataset and be able to correlate with other data types such as clinical data and omic data. 	
17.	 M0191 Computational Bioimaging Transformation Requirements: Needs to support high-throughput computing with responsive analysis. Needs to support segmentation of regions of interest; crowd-based selection and extraction of features; and object classification, organization, and search. Needs to support advanced biosciences discovery through Big Data techniques/extreme-scale computing, in-database processing and analytics, machine learning (SVM and RF) for classification and recommendation services, advanced algorithms for massive image analysis, and high-performance computational solutions. Needs to support massive data analysis toward massive imaging datasets. 	
18.	 M0078 Genomic Measurements Transformation Requirements: Needs to support processing of raw data in variant calls. Needs to support machine learning for complex analysis on systematic errors from sequencing technologies, which are hard to characterize. 	
19.	 M0188 Comparative Analysis for Metagenomes and Genomes Transformation Requirements: Needs to support sequencing and comparative analysis techniques for highly complex data. Needs to support descriptive statistics. 	
20.	 M0140 Individualized Diabetes Management Transformation Requirements: Needs to support data integration using ontological annotation and taxonomies. Needs to support parallel retrieval algorithms for both indexed and custom searches and the ability to identify data of interest. Potential results include patient cohorts, patients meeting certain criteria, and patients sharing similar characteristics. Needs to support distributed graph mining algorithms, pattern analysis and graph indexing, and pattern searching on RDF triple graphs. Needs to support robust statistical analysis tools to manage false discovery rates, determine true sub-graph significance, validate results, and eliminate false positive/false negative results. Needs to support semantic graph mining algorithms to identify graph patterns, index, and search graphs. 	
	 M0174 Statistical Relational Artificial Intelligence for Health Care Transformation Requirements: Needs to support relational probabilistic models/probability theory. The software learns models from multiple data types and can possibly integrate the information and reason about complex queries. Needs to support robust and accurate learning methods to account for data imbalance, i.e., situations in which large amounts of data are available for a small number of subjects. Needs to support learning algorithms to identify skews in data, so as to not—incorrectly—model noise. Needs to support learned models that can be generalized and refined to be applied to diverse sets of data. Needs to support acceptance of data in different modalities and from disparate sources. 	
22.	 M0172 World Population-Scale Epidemiological Study Transformation Requirements: Needs to support compute-intensive and data-intensive computation, like a supercomputer's performance. Needs to support the unstructured and irregular nature of graph processing. Needs to support summaries of various runs of simulation. 	

	TABLE D-2: DATA TRANSFORMATION
23.	 M0173 Social Contagion Modeling for Planning Transformation Requirements: Needs to support large-scale modeling for various events (disease, emotions, behaviors, etc.). Needs to support scalable fusion between combined datasets. Needs to support multilevels analysis while generating sufficient results quickly.
24.	 M0141 Biodiversity and LifeWatch Transformation Requirements: Needs to support incremental and/or real-time data analysis; rates vary because of variations in source processes. Needs to support a variety of data, analytical, and modeling tools to support analytics for diverse scientific communities. Needs to support parallel data streams and streaming analytics. Needs to support access and integration of multiple distributed databases.
25.	 M0171 Large-Scale Deep Learning Transformation Requirements: Needs to support classifier (e.g., an SVM), a process that is often hard to parallelize. Needs to support features seen in many large-scale image processing problems.
26.	 M0160 Truthy Twitter Data Transformation Requirements: Needs to support various real-time data analyses for anomaly detection, stream clustering, signal classification on multi-dimensional time series, and online learning.
27.	 M0211 Crowd Sourcing in Humanities Transformation Requirements: Needs to support digitization of existing audio-video, photo, and document archives. Needs to support analytics including pattern recognition of all kinds (e.g., speech recognition, automatic A&V analysis, cultural patterns) and identification of structures (lexical units, linguistics rules, etc.).
28.	 M0158 CINET for Network Science Transformation Requirements: Needs to support environments to run various network and graph analysis tools. Needs to support dynamic growth of the networks. Needs to support asynchronous and real-time synchronous distributed computing. Needs to support different parallel algorithms for different partitioning schemes for efficient operation.
29.	 M0190 NIST Information Access Division Transformation Requirements: Needs to support analytic algorithms working with written language, speech, human imagery, etc. The algorithms generally need to be tested against real or realistic data. It is extremely challenging to engineer artificial data that sufficiently capture the variability of real data involving humans.
30.	 M0130 DataNet (iRODS) Transformation Requirements: Needs to provide general analytics workflows.
31.	 M0131 Semantic Graph-Search Transformation Requirements: Needs to support data graph processing. Needs to support RDBMS.
32.	 M0189 Light Source Beamlines Transformation Requirements: Needs to support standard bioinformatics tools (BLAST, HMMER, multiple alignment and phylogenetic tools, gene callers, sequence feature predictors, etc.), Perl/Python wrapper scripts, and Linux Cluster scheduling.
33.	 M0170 Catalina Real-Time Transient Survey Transformation Requirements: Needs to support a wide variety of the existing astronomical data analysis tools, plus a large number of custom-developed tools and software programs, some of which are research projects in and of themselves. Needs to support autometed elegsification with machine learning tools given your energy and
	 Needs to support automated classification with machine learning tools given very sparse and heterogeneous data, dynamically evolving as more data are generated, with follow-up decision making reflecting limited follow up resources.

	TABLE D-2: DATA TRANSFORMATION
	• Needs to support interpretation of results from detailed simulations. Interpretation requires advanced analysis and visualization techniques and capabilities.
35.	 M0209 Large Survey Data for Cosmology Transformation Requirements: Needs to support analysis on both the simulation and observational data simultaneously. Needs to support techniques for handling Cholesky decomposition for thousands of simulations with matrices of order 1 million on a side.
36.	 M0166 Particle Physics at LHC Transformation Requirements: Needs to support experimental data from ALICE, ATLAS, CMS, and LHb. Needs to support histograms and scatter-plots with model fits. Needs to support Monte Carlo computations.
37.	 M0155 EISCAT 3D Incoherent Scatter Radar System Transformation Requirements: Needs to support Queen Bea architecture with mix of distributed on-sensor and central processing for 5 distributed sites. Needs to support real-time monitoring of equipment by partial streaming analysis. Needs to host rich set of radar image processing services using machine learning, statistical modelling, and graph algorithms.
38.	 M0157 ENVRI Environmental Research Infrastructure Transformation Requirements: Needs to support diversified analytics tools.
39.	 M0167 CReSIS Remote Sensing Transformation Requirements: Needs to support legacy software (Matlab) and language (C/Java) binding for processing. Needs signal processing and advanced image processing to find layers.
40.	 M0127 UAVSAR Data Processing Transformation Requirements: Needs to support geolocated data that require GIS integration of data as custom overlays. Needs to support significant human intervention in data-processing pipeline. Needs to host rich sets of radar image processing services. Needs to support ROI_PAC, GeoServer, GDAL, and GeoTIFF-supporting tools.
41.	M0182 NASA LaRC/GSFC iRODS Transformation Requirements: • Needs to support CAaaS on clouds.
42.	 M0129 MERRA Analytic Services Transformation Requirements: Needs to support CAaaS on clouds.
43.	 M0090 Atmospheric Turbulence Transformation Requirements: Needs to support Map/Reduce, SciDB, and other scientific databases. Needs to support continuous computing for updates. Needs to support event specification language for data mining and event searching. Needs to support semantics interpretation and optimal structuring for 4D data mining and predictive analysis.
44.	 M0186 Climate Studies Transformation Requirements: Needs to support data analytics close to data storage.
45.	 M0184 DOE-BER AmeriFlux and FLUXNET Networks Transformation Requirements: Needs to support custom software, such as EddyPro, and custom analysis software, such as R, python, neural networks, Matlab.
46.	 M0223 Consumption Forecasting in Smart Grids Transformation Requirements: Needs to support new machine learning analytics to predict consumption.
	TABLE D-3: CAPABILITIES

GENERAL REQUIREMENTS

	TABLE D-3: CAPABILITIES		
	eeds to support legacy and advanced ware packages (subcomponent: SaaS).	Applies to 30 use cases: <u>M0078</u> , <u>M0089</u> , <u>M0127</u> , <u>M0136</u> , <u>M0140</u> , <u>M0141</u> , <u>M0158</u> , <u>M0160</u> , <u>M0161</u> , <u>M0164</u> , <u>M0164</u> , <u>M0166</u> , <u>M0167</u> , <u>M0172</u> , <u>M0173</u> , <u>M0174</u> , <u>M0176</u> , <u>M0177</u> , <u>M0183</u> , <u>M0188</u> , <u>M0191</u> , <u>M0209</u> , <u>M0210</u> , <u>M0212</u> , <u>M0213</u> , <u>M0214</u> , <u>M0215</u> , <u>M0219</u> , <u>M0219</u> , <u>M0223</u>	
	eeds to support legacy and advanced uputing platforms (subcomponent: PaaS).	Applies to 17 use cases: <u>M0078</u> , <u>M0089</u> , <u>M0127</u> , <u>M0158</u> <u>M0160</u> , <u>M0161</u> , <u>M0164</u> , <u>M0164</u> , <u>M0171</u> , <u>M0172</u> , <u>M0173</u> , <u>M0177</u> , <u>M0182</u> , <u>M0188</u> , <u>M0191</u> , <u>M0209</u> , <u>M0223</u>	
dist	eeds to support legacy and advanced ibuted computing clusters, co-processors, I/O processing (subcomponent: IaaS).	Applies to 24 use cases: <u>M0015</u> , <u>M0078</u> , <u>M0089</u> , <u>M0090</u> <u>M0129</u> , <u>M0136</u> , <u>M0140</u> , <u>M0141</u> , <u>M0155</u> , <u>M0158</u> , <u>M0161</u> , <u>M0164</u> , <u>M0164</u> , <u>M0166</u> , <u>M0167</u> , <u>M0173</u> , <u>M0174</u> , <u>M0176</u> , <u>M0177</u> , <u>M0185</u> , <u>M0186</u> , <u>M0191</u> , <u>M0214</u> , <u>M0215</u>	
	eeds to support elastic data transmission ocomponent: networking).	Applies to 4 use cases: <u>M0089</u> , <u>M0090</u> , <u>M0103</u> , <u>M0136</u> , <u>M0141</u> , <u>M0158</u> , <u>M0160</u> , <u>M0172</u> , <u>M0173</u> , <u>M0176</u> , <u>M0191</u> , <u>M0210</u> , <u>M0214</u> , <u>M0215</u>	
5. Needs to support legacy, large, and advanced distributed data storage (subcomponent: storage).		Applies to 35 use cases: <u>M0078</u> , <u>M0089</u> , <u>M0127</u> , <u>M0140</u> , M0147, <u>M0147</u> , <u>M0148</u> , <u>M0148</u> , <u>M0155</u> , <u>M0157</u> , <u>M0157</u> , M0158, <u>M0160</u> , <u>M0161</u> , <u>M0164</u> , <u>M0164</u> , <u>M0165</u> , <u>M0166</u> , M0167, <u>M0c170</u> , <u>M0171</u> , <u>M0172</u> , <u>M0173</u> , <u>M0174</u> , <u>M0176</u> , M0176, <u>M0182</u> , <u>M0185</u> , <u>M0188</u> , <u>M0209</u> , <u>M0209</u> , <u>M0210</u> , M0210, <u>M0215</u> , <u>M0219</u>	
exe	eeds to support legacy and advanced cutable programming: applications, tools, ies, and libraries.	Applies to 13 use cases: <u>M0078</u> , <u>M0089</u> , <u>M0140</u> , <u>M0164</u> <u>M0c166</u> , <u>M0167</u> , <u>M0174</u> , <u>M0176</u> , <u>M0184</u> , <u>M0185</u> , <u>M0190</u> <u>M0214</u> , <u>M0215</u>	
	USE CASE SPECIFIC RE	QUIREMENTS FOR CAPABILITIES	
1.	 M0147 Census 2010 and 2000 Capability Re Needs to support large centralized storag 	•	
2.	 M0148 NARA: Search, Retrieve, Preservation Needs to support large data storage. Needs to support various storages such as 		
3.	 M0219 Statistical Survey Response Improvement Capability Requirements: Needs to support the following software: Hadoop, Spark, Hive, R, SAS, Mahout, Allegrograph, MySQL, Oracle, Storm, BigMemory, Cassandra, and Pig. 		
4.	 M0222 Non-Traditional Data in Statistical Survey Response Improvement Capability Requirements: Needs to support the following software: Hadoop, Spark, Hive, R, SAS, Mahout, Allegrograph, MySQL, Oracle, Storm, BigMemory, Cassandra, and Pig. 		
5.	M0161 Mendeley Capability Requirements:		

- Needs to support EC2 with HDFS (infrastructure).
- Needs to support S3 (storage).
- Needs to support Hadoop (platform).
- Needs to support Scribe, Hive, Mahout, and Python (language).
- Needs to support moderate storage (15 TB with 1 TB/month).
- Needs to support batch and real-time processing.

	TABLE D-3: CAPABILITIES		
6.	 M0164 Netflix Movie Service Capability Requirements: Needs to support Hadoop (platform). Needs to support Pig (language). Needs to support Cassandra and Hive. Needs to support a huge volume of subscribers, ratings, and searches per day (DB). Needs to support huge storage (2 PB). Needs to support I/O-intensive processing. 		
7.	 M0165 Web Search Capability Requirements: Needs to support petabytes of text and rich media (storage). 		
8.	 M0137 Business Continuity and Disaster Recovery within a Cloud Eco-System Capability Requirements: Needs to support Hadoop. Needs to support commercial cloud services. 		
9.	 M0103 Cargo Shipping Capability Requirements: Needs to support Internet connectivity. 		
10.	 M0176 Simulation-Driven Materials Genomics Capability Requirements: Needs to support massive (150,000 cores) of legacy infrastructure (infrastructure). Needs to support GPFS (storage). Needs to support MonogDB systems (platform). Needs to support 10 GB of networking data. Needs to support various analytic tools such as PyMatGen, FireWorks, VASP, ABINIT, NWChem, BerkeleyGW, and varied community codes. Needs to support large storage (storage). Needs to support scalable key-value and object store (platform). Needs to support data streams from peta/exascale centralized simulation systems. 		
11.	 M0213 Large-Scale Geospatial Analysis and Visualization Capability Requirements: Needs to support geospatially enabled RDBMS and geospatial server/analysis software (ESRI ArcServer, Geoserver). 		
12.	 M0214 Object Identification and Tracking Capability Requirements: Needs to support a wide range of custom software and tools including traditional RDBMS and display tools. Needs to support several network capability requirements. Needs to support GPU usage. 		
13.	 M0215 Intelligence Data Processing and Analysis Capability Requirements: Needs to support tolerance of unreliable networks to warfighter and remote sensors. Needs to support up to hundreds of petabytes of data supported by modest to large clusters and clouds. Needs to support the following software: Hadoop, Accumulo (Big Table), Solr, NLP (several variants), Puppet (for deployment and security), Storm, and custom applications and visualization tools. 		
14.	 M0177 EMR Data Capability Requirements: Needs to support Hadoop, Hive, and R Unix-based. Needs to support a Cray supercomputer. Needs to support teradata, PostgreSQL, MongoDB. Needs to support various capabilities with significant I/O-intensive processing. 		
15.	 M0089 Pathology Imaging Capability Requirements: Needs to support legacy systems and clouds (computing cluster). Needs to support huge legacy and new storage such as SAN or HDFS (storage). Needs to support high-throughput network links (networking). Needs to support MPI image analysis, Map/Reduce, and Hive with spatial extension (software packages). 		

	TABLE D-3: CAPABILITIES
16.	 M0191 Computational Bioimaging Capability Requirements: Needs to support ImageJ, OMERO, VolRover, advanced segmentation, and feature detection methods from applied math researchers. Scalable key-value and object store databases are needed. Needs to support NERSC's Hopper infrastructure Needs to support database and image collections. Needs to support 10 GB and future 100 GB and advanced networking (SDN).
17.	 M0078 Genomic Measurements Capability Requirements: Needs to support legacy computing cluster and other PaaS and IaaS (computing cluster). Needs to support huge data storage in the petabyte range (storage). Needs to support Unix-based legacy sequencing bioinformatics software (software package).
18.	 M0188 Comparative Analysis for Metagenomes and Genomes Capability Requirements: Needs to support huge data storage. Needs to support scalable RDBMS for heterogeneous biological data. Needs to support real-time rapid and parallel bulk loading. Needs to support Oracle RDBMS, SQLite files, flat text files, Lucy (a version of Lucene) for keyword searches, BLAST databases, and USEARCH databases. Needs to support Linux cluster, Oracle RDBMS server, large memory machines, and standard Linux interactive hosts.
19.	 M0140 Individualized Diabetes Management Capability Requirements: Needs to support a data warehouse, specifically open source indexed Hbase. Needs to support supercomputers with cloud and parallel computing. Needs to support I/O-intensive processing. Needs to support HDFS storage. Needs to support custom code to develop new properties from stored data.
20.	 M0174 Statistical Relational Artificial Intelligence for Health Care Capability Requirements: Needs to support Java, some in-house tools, a relational database, and NoSQL stores. Needs to support cloud and parallel computing. Needs to support a high-performance computer with 48 GB RAM (to perform analysis for a moderate sample size). Needs to support clusters for large datasets. Needs to support 200 GB to 1 TB hard drive for test data.
21.	 M0172 World Population-Scale Epidemiological Study Capability Requirements: Needs to support movement of very large numbers of data for visualization (networking). Needs to support distributed an MPI-based simulation system (platform). Needs to support Charm++ on multi-nodes (software). Needs to support a network file system (storage). Needs to support an Infiniband network (networking).
22.	 M0173 Social Contagion Modeling for Planning Capability Requirements: Needs to support a computing infrastructure that can capture human-to-human interactions on various social events via the Internet (infrastructure). Needs to support file servers and databases (platform). Needs to support Ethernet and Infiniband networking (networking). Needs to support specialized simulators, open source software, and proprietary modeling (application). Needs to support huge user accounts across country boundaries (networking).
23.	 M0141 Biodiversity and LifeWatch Capability Requirements: Needs to support expandable on-demand-based storage resources for global users. Needs to support cloud community resources.

	TABLE D-3: CAPABILITIES		
24.	 M0136 Large-scale Deep Learning Capability Requirements: Needs to support GPU usage. Needs to support a high-performance MPI and HPC Infiniband cluster. Needs to support libraries for single-machine or single-GPU computation (e.g., BLAS, CuBLAS, MAGMA, etc.). Needs to support distributed computation of dense BLAS-like or LAPACK-like operations on GPUs, which remains poorly developed. Existing solutions (e.g., ScaLapack for CPUs) are not well integrated with higher-level languages and require low-level programming, which lengthens experiment and development time. 		
25.	 M0171 Organizing Large-Scale Unstructured Collections of Consumer Photos Capability Requirements: Needs to support Hadoop or enhanced Map/Reduce. 		
	 M0160 Truthy Twitter Data Capability Requirements: Needs to support Hadoop and HDFS (platform). Needs to support IndexedHBase, Hive, SciPy, and NumPy (software). Needs to support in-memory database and MPI (platform). Needs to support high-speed Infiniband network (networking). M0158 CINET for Network Science Capability Requirements: 		
21.	 Needs to support a large file system (storage). Needs to support various network connectivity (networking). Needs to support an existing computing cluster. Needs to support an EC2 computing cluster. Needs to support various graph libraries, management tools, databases, and semantic web tools. 		
28.	 M0190 NIST Information Access Division Capability Requirements: Needs to support PERL, Python, C/C++, Matlab, and R development tools. Needs to support creation of a ground-up test and measurement applications. 		
29.	 M0130 DataNet (iRODS) Capability Requirements: Needs to support iRODS data management software. Needs to support interoperability across storage and network protocol types. 		
30.	 M0163 The Discinnet Process Capability Requirements: Needs to support the following software: Symfony-PHP, Linux, and MySQL. 		
31.	 M0131 Semantic Graph-Search Capability Requirements: Needs to support a cloud community resource. 		
32.	 M0189 Light Source Beamlines Capability Requirements: Needs to support high-volume data transfer to a remote batch processing resource. 		
33.	 M0185 DOE Extreme Data from Cosmological Sky Survey Capability Requirements: Needs to support MPI, OpenMP, C, C++, F90, FFTW, viz packages, Python, FFTW, numpy, Boost, OpenMP, ScaLAPCK, PSQL and MySQL databases, Eigen, cfitsio, astrometry.net, and Minuit2. Needs to address limitations of supercomputer I/O subsystem. 		
34.	 M0209 Large Survey Data for Cosmology Capability Requirements: Needs to support standard astrophysics reduction software as well as Perl/Python wrapper scripts. Needs to support Oracle RDBMS and Postgres psql, as well as GPFS and Lustre file systems and tape archives. Needs to support parallel image storage. 		
35.	 M0166 Particle Physics at LHC Capability Requirements: Needs to support legacy computing infrastructure (computing nodes). Needs to support distributed cached files (storage). 		

• Needs to support object databases (software package).

	TABLE D-3: CAPABILITIES
36.	 M0210 Belle II High Energy Physics Experiment Capability Requirements: Needs to support 120 PB of raw data. Needs to support an international distributed computing model to augment that at the accelerator in Japan. Needs to support data transfer of ≈20 BG per second at designed luminosity between Japan and the United States.
	 Needs to support software from Open Science Grid, Geant4, DIRAC, FTS, and the Belle II framework.
37.	 M0155 EISCAT 3D Incoherent Scatter Radar System Capability Requirements: Needs to support architecture compatible with the ENVRI collaboration.
38.	 M0157 ENVRI Environmental Research Infrastructure Capability Requirements: Needs to support a variety of computing infrastructures and architectures (infrastructure). Needs to support scattered repositories (storage).
39.	 M0167 CReSIS Remote Sensing Capability Requirements: Needs to support ≈0.5 PB per year of raw data. Needs to support transfer of content from removable disk to computing cluster for parallel processing. Needs to support Map/Reduce or MPI plus language binding for C/Java.
40.	 M0127 UAVSAR Data Processing Capability Requirements: Needs to support an interoperable cloud–HPC architecture. Needs to host rich sets of radar image processing services. Needs to support ROI_PAC, GeoServer, GDAL, and GeoTIFF-supporting tools. Needs to support compatibility with other NASA radar systems and repositories (Alaska Satellite Facility).
41.	 M0182 NASA LaRC/GSFC iRODS Capability Requirements: Needs to support vCDS. Needs to support a GPFS integrated with Hadoop. Needs to support iRODS.
42.	 M0129 MERRA Analytic Services Capability Requirements: Needs to support NetCDF aware software. Needs to support Map/Reduce. Needs to support interoperable use of AWS and local clusters.
43.	 M0090 Atmospheric Turbulence Capability Requirements: Needs to support other legacy computing systems (e.g., a supercomputer). Needs to support high-throughput data transmission over the network.
44.	 M0186 Climate Studies Capability Requirements: Needs to support extension of architecture to several other fields.
45.	 M0183 DOE-BER Subsurface Biogeochemistry Capability Requirements: Needs to support Postgres, HDF5 data technologies, and many custom software systems.
46.	 M0184 DOE-BER AmeriFlux and FLUXNET Networks Capability Requirements: Needs to support custom software, such as EddyPro, and analysis software, such as R, Python, neural networks, and Matlab. Needs to support analytics: data mining, data quality assessment, cross-correlation across datasets, data assimilation, data interpolation, statistics, quality assessment, data fusion, etc.
47.	 M0223 Consumption Forecasting in Smart Grids Capability Requirements: Needs to support SQL databases, CVS files, and HDFS (platform). Needs to support R/Matlab, Weka, and Hadoop (platform).

TABLE D-4: DATA CONSUMER

GENERAL REQUIREMENTS

	CENERAL I	
	Needs to support fast searches from processed a with high relevancy, accuracy, and high recall.	
	Needs to support diversified output file formats visualization, rendering, and reporting.	Applies to 16 use cases: <u>M0078</u> , <u>M0089</u> , <u>M0090</u> , M0157, <u>M0c161</u> , <u>M0164</u> , <u>M0164</u> , <u>M0165</u> , <u>M0166</u> , M0166, <u>M0167</u> , <u>M0167</u> , <u>M0174</u> , <u>M0177</u> , <u>M0213</u> , <u>M0214</u>
	Needs to support visual layouts for results esentation.	Applies to 2 use cases: M0165, M0167
	Needs to support rich user interfaces for access ng browsers, visualization tools.	Applies to 1 use cases: <u>M0089</u> , <u>M0127</u> , <u>M0157</u> , <u>M0160</u> , <u>M0162</u> , <u>M0167</u> , <u>M0167</u> , <u>M0183</u> , <u>M0184</u> , <u>M0188</u> , <u>M0190</u>
	Needs to support a high-resolution multi- nension layer of data visualization.	Applies to 21 use cases: <u>M0129</u> , <u>M0155</u> , <u>M0155</u> , M0158, M0161, M0162, M0171, M0172, M0173, M0177, M0179, M0182, M0185, M018c6, M0188, M0191, M0213, M0214, M02c15, M0219, M0222
6. I	Needs to support streaming results to clients.	Applies to 1 use case: M0164
	USE CASE SPECIFIC REQUIR	EMENTS FOR DATA CONSUMERS
1. 2.	 M0148 NARA: Search, Retrieve, Preservation D Needs to support high relevancy and high relevancy and high relevancy and high relevancy from categor Needs to support various storages such as N M0219 Statistical Survey Response Improveme Needs to support evolving data visualization 	ecall from search. orization of records. letApps, Hitachi, and magnetic tapes.
3.	M0222 Non-Traditional Data in Statistical Surve Requirements: Needs to support evolving data visualization 	y Response Improvement Data Consumer n for data review, operational activity, and general analysis.
4.	 M0161 Mendeley Data Consumer Requirement Needs to support custom-built reporting too Needs to support visualization tools such as 	pls.
5.	M0164 Netflix Movie Service Data Consumer F • Needs to support streaming and rendering m	Requirements:
6.	 M0165 Web Search Data Consumer Requirem Needs to support search times of ≈0.1 secor Needs to support top 10 ranked results. Needs to support appropriate page layout (v 	nds.
7.	 M0162 Materials Data for Manufacturing Data C Needs to support visualization for materials Needs to support visualization tools for multiple for multine for multiple for multiple for multiple for multine for multi	discovery from many independent variables.
8.		
9.	M0213 Large-Scale Geospatial Analysis and Vi	

	TABLE D-4: DATA CONSUMER
10.	 M0214 Object Identification and Tracking Data Consumer Requirements: Needs to support visualization of extracted outputs. These will typically be overlays on a geospatial display. Overlay objects should be links back to the originating image/video segment. Needs to output the form of OGC-compliant web features or standard geospatial files (shape files, KML).
11.	 M0215 Intelligence Data Processing and Analysis Data Consumer Requirements: Needs to support primary visualizations, i.e., geospatial overlays (GIS) and network diagrams.
12.	 M0177 EMR Data Data Consumer Requirements: Needs to provide results of analytics for use by data consumers/stakeholders, i.e., those who did not actually perform the analysis. Needs to support specific visualization techniques.
13.	 M0089 Pathology Imaging Data Consumer Requirements: Needs to support visualization for validation and training.
14.	 M0191 Computational Bioimaging Data Consumer Requirements: Needs to support 3D structural modeling.
15.	 M0078 Genomic Measurements Data Consumer Requirements: Needs to support data format for genome browsers.
16.	 M0188 Comparative Analysis for Metagenomes and Genomes Data Consumer Requirements: Needs to support real-time interactive parallel bulk loading capability. Needs to support interactive web UI, backend pre-computations, and batch job computation submission from the UI. Needs to support download assembled and annotated datasets for offline analysis. Needs to support ability to query and browse data via interactive web UI. Needs to support visualized data structure at different levels of resolution, as well as the ability to via abstract representations of highly similar data.
17.	 M0174 Statistical Relational Artificial Intelligence for Health Care Data Consumer Requirements: Needs to support visualization of subsets of very large data.
18.	 M0172 World Population-Scale Epidemiological Study Data Consumer Requirements: Needs to support visualization.
19.	 M0173 Social Contagion Modeling for Planning Data Consumer Requirements: 1. Needs to support multilevel detail network representations. Needs to support visualization with interactions.
20.	 M0141 Biodiversity and LifeWatch Data Consumer Requirements: Needs to support advanced/rich/high-definition visualization. Needs to support 4D visualization.
	 M0171 Organizing Large-Scale Unstructured Collections of Consumer Photos Data Consumer Requirements: Needs to support visualization of large-scale 3D reconstructions and navigation of large-scale collections of images that have been aligned to maps.
22.	 M0160 Truthy Twitter Data Data Consumer Requirements: Needs to support data retrieval and dynamic visualization. Needs to support data-driven interactive web interfaces. Needs to support API for data query.
23.	 M0158 CINET for Network Science Data Consumer Requirements: Needs to support client-side visualization.
24.	 M0190 NIST Information Access Division Data Consumer Requirements: Needs to support analytic flows involving users.

	TABLE D-4: DATA CONSUMER
25.	 M0130 DataNet (iRODS) Data Consumer Requirements: Needs to support general visualization workflows.
26.	 M0131 Semantic Graph-Search Data Consumer Requirements: Needs to support efficient data-graph-based visualization.
27.	 M0170 Catalina Real-Time Transient Survey Data Consumer Requirements: Needs to support visualization mechanisms for highly dimensional data parameter spaces.
28.	 M0185 DOE Extreme Data from Cosmological Sky Survey Data Consumer Requirements: Needs to support interpretation of results using advanced visualization techniques and capabilities.
29.	 M0166 Particle Physics at LHC Data Consumer Requirements: Needs to support histograms and model fits (visual).
30.	 M0155 EISCAT 3D Incoherent Scatter Radar System Data Consumer Requirements: Needs to support visualization of high-dimensional (≥5) data.
31.	 M0157 ENVRI Environmental Research Infrastructure Data Consumer Requirements: Needs to support graph-plotting tools. Needs to support time series interactive tools. Needs to support browser-based flash playback. Needs to support earth high-resolution map displays. Needs to support visual tools for quality comparisons.
32.	 M0167 CReSIS Remote Sensing Data Consumer Requirements: Needs to support GIS user interface. Needs to support rich user interface for simulations.
33.	 M0127 UAVSAR Data Processing Data Consumer Requirements: Needs to support field expedition users with phone/tablet interface and low-resolution downloads.
34.	 M0182 NASA LaRC/GSFC iRODS Data Consumer Requirements: Needs to support visualization of distributed heterogeneous data.
35.	 M0129 MERRA Analytic Services Data Consumer Requirements: Needs to support high-end distributed visualization.
36.	 M0090 Atmospheric Turbulence Data Consumer Requirements: Needs to support visualization to interpret results.
37.	 M0186 Climate Studies Data Consumer Requirements: Needs to support worldwide climate data sharing. Needs to support high-end distributed visualization.
38.	 M0183 DOE-BER Subsurface Biogeochemistry Data Consumer Requirements: Needs to support phone-based input and access.
39.	 M0184 DOE-BER AmeriFlux and FLUXNET Networks Data Consumer Requirements: Needs to support phone-based input and access.
	TABLE D-5: SECURITY AND PRIVACY

GENERAL REQUIREMENTS

1. Needs to protect and preserve security and	Applies to 32 use cases: M0078, M0089, M0103,
privacy for sensitive data.	<u>M0140, M0141, M0147, M0148, M0157, M0160,</u>
	<u>M0162</u> , <u>M0164</u> , <u>M0165</u> , <u>M0166</u> , <u>M0166</u> , <u>M0167</u> ,
	<u>M0167, M0171, M0172, M0173, M0174, M0176,</u>
	<u>M0177, M0190, M0191, M0210, M0211, M0213,</u>
	<u>M0214, M0215, M0219, M0222, M0223</u>

TABLE D-5: SECURITY AND PRIV.	ACY
-------------------------------	-----

2. Needs to support sandbox, access control, and multilevel policy-driven authentication on protected data.

Applies to 13 use cases: <u>M0006</u>, <u>M0078</u>, <u>M0089</u>, <u>M0103</u>, <u>M0140</u>, <u>M0161</u>, <u>M0165</u>, <u>M0167</u>, <u>M0176</u>, M0177, M0188, M0210, M0211

data	a. $M0177, M0188, M0210, M0211$
	USE CASE SPECIFIC REQUIREMENTS FOR SECURITY AND PRIVACY
1.	 M0147 Census 2010 and 2000 Security and Privacy Requirements: Needs to support Title 13 data.
2.	 M0148 NARA: Search, Retrieve, Preservation Security and Privacy Requirements: Needs to support security policy.
3.	 M0219 Statistical Survey Response Improvement Security and Privacy Requirements: Needs to support improved recommendation systems that reduce costs and improve quality while providing confidentiality safeguards that are reliable and publicly auditable. Needs to support confidential and secure data. All processes must be auditable for security and confidentiality as required by various legal statutes.
4.	 M0222 Non-Traditional Data in Statistical Survey Response Improvement Security and Privacy Requirements: Needs to support confidential and secure data. All processes must be auditable for security and confidentiality as required by various legal statutes.
5.	 M0175 Cloud Eco-System for Finance Security and Privacy Requirements: Needs to support strong security and privacy constraints.
6.	 M0161 Mendeley Security and Privacy Requirements: Needs to support access controls for who is reading what content.
7.	 M0164 Netflix Movie Service Security and Privacy Requirements: Needs to support preservation of users' privacy and digital rights for media.
8.	 M0165 Web Search Security and Privacy Requirements: Needs to support access control. Needs to protect sensitive content.
9.	 M0137 Business Continuity and Disaster Recovery within a Cloud Eco-System Security and Privacy Requirements: Needs to support strong security for many applications.
10.	
11.	 M0162 Materials Data for Manufacturing Security and Privacy Requirements: Needs to support protection of proprietary sensitive data. Needs to support tools to mask proprietary information.
12.	 M0176 Simulation-Driven Materials Genomics Security and Privacy Requirements: Needs to support sandbox as independent working areas between different data stakeholders. 2. Needs to support policy-driven federation of datasets.
13.	 M0213 Large-Scale Geospatial Analysis and Visualization Security and Privacy Requirements: Needs to support complete security of sensitive data in transit and at rest (particularly on handhelds).
14.	 M0214 Object Identification and Tracking Security and Privacy Requirements: Needs to support significant security and privacy; sources and methods cannot be compromised. The enemy should not be able to know what the user sees.
15.	 M0215 Intelligence Data Processing and Analysis Security and Privacy Requirements: Needs to support protection of data against unauthorized access or disclosure and tampering.

	TABLE D-5: SECURITY AND PRIVACY				
16.	 M0177 EMR Data Security and Privacy Requirements: Needs to support direct consumer access to data, as well as referral to results of analytics performed by informatics research scientists and health service researchers. Needs to support protection of all health data in compliance with government regulations. Needs to support protection of data in accordance with data providers' policies. Needs to support security and privacy policies, which may be unique to a subset of the data. Needs to support robust security to prevent data breaches. 				
17.	 M0089 Pathology Imaging Security and Privacy Requirements: Needs to support security and privacy protection for protected health information. 				
18.	 M0191 Computational Bioimaging Security and Privacy Requirements: Needs to support significant but optional security and privacy, including secure servers and anonymization. 				
19.	 M0078 Genomic Measurements Security and Privacy Requirements: Needs to support security and privacy protection of health records and clinical research databases. 				
20.	 M0188 Comparative Analysis for Metagenomes and Genomes Security and Privacy Requirements: Needs to support login security, i.e., usernames and passwords. Needs to support creation of user accounts to access datasets, and submit datasets to systems, via a web interface. Needs to support single sign-on (SSO) capability. 				
21.	 M0140 Individualized Diabetes Management Security and Privacy Requirements: Needs to support protection of health data in accordance with privacy policies and legal security and privacy requirements, e.g., HIPAA. Needs to support security policies for different user roles. 				
22.	 M0174 Statistical Relational Artificial Intelligence for Health Care Security and Privacy Requirements: Needs to support secure handling and processing of data. 				
23.	 M0172 World Population-Scale Epidemiological Study Security and Privacy Requirements: Needs to support protection of PII on individuals used in modeling. Needs to support data protection and a secure platform for computation. 				
24.	 M0173 Social Contagion Modeling for Planning Security and Privacy Requirements: Needs to support protection of PII on individuals used in modeling. Needs to support data protection and a secure platform for computation. 				
25.	 M0141 Biodiversity and LifeWatch Security and Privacy Requirements: Needs to support federated identity management for mobile researchers and mobile sensors. Needs to support access control and accounting. 				
26.	 M0171 Organizing Large-Scale Unstructured Collections of Consumer Photos Security and Privacy Requirements: Needs to preserve privacy for users and digital rights for media. 				
27.	 M0160 Truthy Twitter Data Security and Privacy Requirements: Needs to support security and privacy policy. 				
28.	 M0211 Crowd Sourcing in Humanities Security and Privacy Requirements: Needs to support privacy issues in preserving anonymity of responses in spite of computer recording of access ID and reverse engineering of unusual user responses. 				
29.	 M0190 NIST Information Access Division Security and Privacy Requirements: Needs to support security and privacy requirements for protecting sensitive data while enabling meaningful developmental performance evaluation. Shared evaluation testbeds must protect the intellectual property of analytic algorithm developers. 				

	TABLE D-5: SECURITY AND PRIVACY
30.	 M0130 DataNet (iRODS) Security and Privacy Requirements: Needs to support federation across existing authentication environments through Generic Security Service API and pluggable authentication modules (GSI, Kerberos, InCommon, Shibboleth). Needs to support access controls on files independent of the storage location.
31.	 M0163 The Discinnet Process Security and Privacy Requirements: Needs to support significant but optional security and privacy, including secure servers and anonymization.
32.	 M0189 Light Source Beamlines Security and Privacy Requirements: Needs to support multiple security and privacy requirements.
33.	 M0166 Particle Physics at LHC Security and Privacy Requirements: Needs to support data protection.
34.	 M0210 Belle II High Energy Physics Experiment Security and Privacy Requirements: Needs to support standard grid authentication.
35.	 M0157 ENVRI Environmental Research Infrastructure Security and Privacy Requirements: Needs to support an open data policy with minor restrictions.
36.	 M0167 CReSIS Remote Sensing Security and Privacy Requirements: Needs to support security and privacy on sensitive political issues. Needs to support dynamic security and privacy policy mechanisms.
37.	 M0223 Consumption Forecasting in Smart Grids Security and Privacy Requirements: Needs to support privacy and anonymization by aggregation.

TABLE D-6: LIFE CYCLE MANAGEMENT

GENERAL REQUIREMENTS

1. Needs to support data quality curation including preprocessing, data clustering, classification, reduction, and format transformation.	Applies to 20 use cases: <u>M0141</u> , <u>M0147</u> , <u>M0148</u> , <u>M0157</u> , <u>M0160</u> , <u>M0161</u> , <u>M0162</u> , <u>M0165</u> , <u>M0166</u> , <u>M0167</u> , <u>M0172</u> , <u>M0173</u> , <u>M0174</u> , <u>M0177</u> , <u>M0188</u> , <u>M0191</u> , <u>M0214</u> , <u>M0215</u> , <u>M0219</u> , <u>M0222</u>)
2. Needs to support dynamic updates on da user profiles, and links.	ta, Applies to 2 use cases: <u>M0164</u> , <u>M0209</u>)
3. Needs to support data life cycle and long- term preservation policy, including data provenance.	 Applies to 6 use cases: <u>M0141</u>, <u>M0c147</u>, <u>M0155</u>, <u>M0163</u>, <u>M0164</u>, <u>M0165</u>
4. Needs to support data validation.	Applies to 4 use cases: M0090, M0161, M0174, M0175
5. Needs to support human annotation for d validation.	ata Applies to 4 use cases: <u>M0089</u> , <u>M01c27</u> , <u>M0140</u> , <u>M0188</u>
6. Needs to support prevention of data loss corruption.	or Applies to 3 use cases: <u>M0147</u> , <u>M0155</u> , <u>M0173</u>)
7. Needs to support multisites archival.	Applies to 1 use case: M0157
8. Needs to support persistent identifier and data traceability.	Applies to 2 use cases: M0140, M0161)
9. Needs to standardize, aggregate, and normalize data from disparate sources.	Applies to 1 use case: M0177)

USE CASE SPECIFIC REQUIREMENTS FOR LIFE CYCLE MANAGEMENT

	TABLE D-6: LIFE CYCLE MANAGEMENT
1.	 M0147 Census 2010 and 2000 Life Cycle Requirements: Needs to support long-term preservation of data as-is for 75 years. Needs to support long-term preservation at the bit level. Needs to support the curation process, including format transformation. Needs to support access and analytics processing after 75 years. Needs to ensure there is no data loss.
2.	 M0148 NARA: Search, Retrieve, Preservation Life Cycle Requirements: Needs to support pre-process for virus scans. Needs to support file format identification. Needs to support indexing. Needs to support record categorization.
3.	 M0219 Statistical Survey Response Improvement Life Cycle Requirements: Needs to support high veracity of data, and systems must be very robust. The semantic integrity of conceptual metadata concerning what exactly is measured and the resulting limits of inference remain a challenge.
4.	 M0222 Non-Traditional Data in Statistical Survey Response Improvement Life Cycle Requirements: Needs to support high veracity of data, and systems must be very robust. The semantic integrity of conceptual metadata concerning what exactly is measured and the resulting limits of inference remain a challenge.
5.	 M0161 Mendeley Life Cycle Requirements: Needs to support metadata management from PDF extraction. Needs to support identify of document duplication. Needs to support persistent identifiers. Needs to support metadata correlation between data repositories such as CrossRef, PubMed and Arxiv.
6.	 M0164 Netflix Movie Service Life Cycle Requirements: Needs to support continued ranking and updating based on user profiles and analytic results.
7.	 M0165 Web Search Life Cycle Requirements: Needs to support purge data after a certain time interval (a few months). Needs to support data cleaning.
8.	 M0162 Materials Data for Manufacturing Life Cycle Requirements: Needs to support data quality handling; current process is poor or unknown.
9.	 M0176 Simulation-Driven Materials Genomics Life Cycle Requirements: Needs to support validation and UQ of simulation with experimental data. Needs to support UQ in results from multiple datasets.
10.	 M0214 Object Identification and Tracking Life Cycle Requirements: Needs to support veracity of extracted objects.
11.	 M0215 Intelligence Data Processing and Analysis Life Cycle Requirements: Needs to support data provenance (e.g., tracking of all transfers and transformations) over the life or the data.
12.	 M0177 EMR Data Life Cycle Requirements: Needs to standardize, aggregate, and normalize data from disparate sources. Needs to reduce errors and bias. Needs to support common nomenclature and classification of content across disparate sources.
13.	 M0089 Pathology Imaging Life Cycle Requirements: Needs to support human annotations for validation.

	TABLE D-6: LIFE CYCLE MANAGEMENT
14.	 M0191 Computational Bioimaging Life Cycle Requirements: Needs to support workflow components include data acquisition, storage, enhancement, and noise minimization.
15.	 M0188 Comparative Analysis for Metagenomes and Genomes Life Cycle Requirements: Needs to support methods to improve data quality. Needs to support data clustering, classification, and reduction. Needs to support integration of new data/content into the system's data store and annotate data.
16.	 M0140 Individualized Diabetes Management Life Cycle Requirements: Needs to support data annotation based on domain ontologies or taxonomies. Needs to ensure traceability of data from origin (initial point of collection) through use. Needs to support data conversion from existing data warehouse into RDF triples.
17.	 M0174 Statistical Relational Artificial Intelligence for Health Care Life Cycle Requirements: Needs to support merging multiple tables before analysis. Needs to support methods to validate data to minimize errors.
18.	 M0172 World Population-Scale Epidemiological Study Life Cycle Requirements: Needs to support data quality and capture traceability of quality from computation.
19.	 M0173 Social Contagion Modeling for Planning Life Cycle Requirements: Needs to support data fusion from variety of data sources. Needs to support data consistency and prevent corruption. Needs to support preprocessing of raw data.
20.	 M0141 Biodiversity and LifeWatch Life Cycle Requirements: Needs to support data storage and archiving, data exchange, and integration. Needs to support data life cycle management: data provenance, referral integrity, and identification traceability back to initial observational data. Needs to support processed (secondary) data (in addition to original source data) that may be stored for future uses. Needs to support provenance (and PID) control of data, algorithms, and workflows. Needs to support curated (authorized) reference data (i.e., species name lists), algorithms, software code, and workflows.
21.	 M0160 Truthy Twitter Data Life Cycle Requirements: Needs to support standardized data structures/formats with extremely high data quality.
22.	 M0163 The Discinnet Process Life Cycle Requirements: Needs to support integration of metadata approaches across disciplines.
23.	 M0209 Large Survey Data for Cosmology Life Cycle Requirements: Needs to support links between remote telescopes and central analysis sites.
24.	 M0166 Particle Physics at LHC Life Cycle Requirements: Needs to support data quality on complex apparatus.
25.	 M0155 EISCAT 3D Incoherent Scatter Radar System Life Cycle Requirements: Needs to support preservation of data and avoid data loss due to instrument malfunction.
26.	 M0157 ENVRI Environmental Research Infrastructure Life Cycle Requirements: Needs to support high data quality. Needs to support mirror archives. Needs to support various metadata frameworks. Needs to support scattered repositories and data curation.
27.	 M0167 CReSIS Remote Sensing Life Cycle Requirements: Needs to support data quality assurance.

TABLE D-6: LIFE CYCLE MANAGEMENT

28.	M0127 UAVSAR Data Processing Life Cycle Requirements:
	N. A. C. S. C. M. L. S.

- Needs to support significant human intervention in data processing pipeline.
- Needs to support rich robust provenance defining complex machine/human processing.
- 29. M0090 Atmospheric Turbulence Life Cycle Requirements:
 - Needs to support validation for output products (correlations). •

TABLE D-7: OTHERS

	GENERA	AL REQUIREMENTS	
	leeds to support rich user interfaces from bile platforms to access processed results.	Applies to 6 use cases: <u>M0078</u> , <u>M0127</u> , <u>M0129</u> , <u>M0148</u> , <u>M0160</u> , <u>M0164</u>	
	leeds to support performance monitoring on lytic processing from mobile platforms.	Applies to 2 use cases: M0155, M0167	
	leeds to support rich visual content search rendering from mobile platforms.	Applies to 13 use cases: <u>M0078</u> , M0089, <u>M0161</u> , <u>M0164</u> , <u>M0165</u> , <u>M0166</u> , <u>M0176</u> , <u>M0177</u> , <u>M0183</u> , <u>M0184</u> , <u>M0186</u> , <u>M0219</u> , <u>M0223</u>	
	leeds to support mobile device data uisition.	Applies to 1 use case: M0157	
	leeds to support security across mobile ices.	Applies to 1 use case: M0177	
		REQUIREMENTS FOR OTHERS	
1.	M0148 NARA: Search, Retrieve, Preservation • Needs to support mobile search with sim	-	
2.	 M0219 Statistical Survey Response Improve Needs to support mobile access. 	ement Other Requirements:	
3.	 M0175 Cloud Eco-System for Finance Othe Needs to support mobile access. 	er Requirements:	
4.	M0161 Mendeley Other Requirements: • Needs to support Windows Android and desktops.	d iOS mobile devices for content deliverables from Windows	
5.	 M0164 Netflix Movie Service Other Requirements: Needs to support smart interfaces for accessing movie content on mobile platforms. 		
6.	M0165 Web Search Other Requirements: • Needs to support mobile search and rem	idering.	
7.	M0176 Simulation-Driven Materials Genomi • Needs to support mobile apps to access	•	
8.	M0177 EMR Data Other Requirements:		

9. M0089 Pathology Imaging Other Requirements: • Needs to support 3D visualization and rendering on mobile platforms.

Needs to support security across mobile devices.

- 10. <u>M0078</u> Genomic Measurements **Other Requirements**: Needs to support mobile platforms for physicians accessing genomic data (mobile device). • 11. M0140 Individualized Diabetes Management Other Requirements:
 - Needs to support mobile access.

- 12. M0173 Social Contagion Modeling for Planning Other Requirements:
 - Needs to support an efficient method of moving data.

	TABLE D-7: OTHERS
13.	 M0141 Biodiversity and LifeWatch Other Requirements: Needs to support access by mobile users.
14.	 M0160 Truthy Twitter Data Other Requirements: Needs to support a low-level data storage infrastructure for efficient mobile access to data.
15.	 M0155 EISCAT 3D Incoherent Scatter Radar System Other Requirements: Needs to support real-time monitoring of equipment by partial streaming analysis.
16.	 M0157 ENVRI Environmental Research Infrastructure Other Requirements: Needs to support various kinds of mobile sensor devices for data acquisition.
17.	 M0167 CReSIS Remote Sensing Other Requirements: Needs to support monitoring of data collection instruments/sensors.
18.	 M0127 UAVSAR Data Processing Other Requirements: Needs to support field expedition users with phone/tablet interface and low-resolution downloads.
19.	 M0129 MERRA Analytic Services Other Requirements: Needs to support smart phone and tablet access. Needs to support iRODS data management.
20.	 M0186 Climate Studies Other Requirements: Needs to support phone-based input and access.
21.	 M0183 DOE-BER Subsurface Biogeochemistry Other Requirements: Needs to support phone-based input and access.
22.	 M0184 DOE-BER AmeriFlux and FLUXNET Networks Other Requirements: Needs to support phone-based input and access.
23.	 M0223 Consumption Forecasting in Smart Grids Other Requirements: Needs to support mobile access for clients.

417 Appendix E: Use Case Template 2

418 Use Case Template 2 was used to gather information on additional use cases, which were incorporated

419 into the work of the NBDIF. Appendix E contains an outline of the questions in the Use Case Template 2

420 and is provided for the readers' reference. The fillable PDF form of Use Case template 2can be

421 downloaded from the NBD-PWG website at

422 https://bigdatawg.nist.gov/_uploadfiles/M0621_v2_7345181325.pdf.

423 424

BIG DATA USE CASE TEMPLATE 2

NIST Big Data Public Working Group

This template was designed by the NIST Big Data Public Working Group (NBD-PWG) to gather Big
Data use cases. The use case information you provide in this template will greatly help the NBD-PWG in
the next phase of developing the NIST Big Data Interoperability Framework. We sincerely appreciate
your effort and realize it is nontrivial.

432 The template can also be completed in the Google Form for Use Case Template 2: <u>http://bit.ly/1ff7iM9.</u>

433 More information about the NBD-PWG and the NIST Big Data Interoperability Framework can be found 434 at <u>http://bigdatawg.nist.gov</u>.

TEMPLATE OUTLINE

437	1 OV	ERALL PROJECT DESCRIPTION	
438	1.1	Use Case Title *	
439	1.2	Use Case Description *	
440	1.3	Use Case Contacts *	
441	1.4	Domain ("Vertical") *	
442	1.5	APPLICATION *	
443	1.6	CURRENT DATA ANALYSIS APPROACH *	
444	1.7	FUTURE OF APPLICATION AND APPROACH *	
445	1.8	Actors / Stakeholders	
446	1.9	PROJECT GOALS OR OBJECTIVES	
447	1.10	Use Case URL	
448	1.11	Pictures and Diagrams?	267
449	2 BIG	G DATA CHARACTERISTICS	
450	2.1	Data Source	
451	2.2	DATA DESTINATION	
452	2.3	Volume	
453	2.4	VELOCITY	
454	2.5	VARIETY	
455	2.6	VARIABILITY	
456	3 BIG	G DATA SCIENCE	
457	3.1	VERACITY AND DATA QUALITY	
458	3.2	VISUALIZATION	
459	3.3	Data Types	
460	3.4	Метадата	
461	3.5	CURATION AND GOVERNANCE	
462	3.6	DATA ANALYTICS	269
463	4 GE	NERAL SECURITY AND PRIVACY	
464	4.1	CLASSIFIED DATA, CODE OR PROTOCOLS	
465	4.2	Does the System Maintain Personally Identifiable Information (PII)? *	
466	4.3	PUBLICATION RIGHTS	

467	4.4	IS THERE AN EXPLICIT DATA GOVERNANCE PLAN OR FRAMEWORK FOR THE EFFORT?	270
468	4.5	DO YOU FORESEE ANY POTENTIAL RISKS FROM PUBLIC OR PRIVATE OPEN DATA PROJECTS?	270
469	4.6	CURRENT AUDIT NEEDS *	270
470	4.7	UNDER WHAT CONDITIONS DO YOU GIVE PEOPLE ACCESS TO YOUR DATA?	270
471	4.8	UNDER WHAT CONDITIONS DO YOU GIVE PEOPLE ACCESS TO YOUR SOFTWARE?	270
472	5 CL/	ASSIFY USE CASES WITH TAGS	271
473	5.1	DATA: Application Style and Data Sharing and Acquisition	271
474	5.2	DATA: MANAGEMENT AND STORAGE	271
475	5.3	DATA: DESCRIBE OTHER DATA ACQUISITION/ ACCESS/ SHARING/ MANAGEMENT/ STORAGE ISSUES	271
476	5.4	ANALYTICS: DATA FORMAT AND NATURE OF ALGORITHM USED IN ANALYTICS	
477	5.5	ANALYTICS: DESCRIBE OTHER DATA ANALYTICS USED	272
478	5.6	PROGRAMMING MODEL	272
479	5.7	OTHER PROGRAMMING MODEL TAGS	272
480	5.8	Please Estimate Ratio I/O Bytes/Flops	272
481	5.9	DESCRIBE MEMORY SIZE OR ACCESS ISSUES	273
482	6 OV	ERALL BIG DATA ISSUES	273
483	6.1	Other Big Data Issues	273
484	6.2	User Interface and Mobile Access Issues	
485	6.3	LIST KEY FEATURES AND RELATED USE CASES	
486		DRKFLOW PROCESSES	-
487	7.1	Please comment on workflow processes	-
488	7.1	VORKFLOW DETAILS FOR EACH STAGE *	
489	7.2		
490	7.2	, , , ,	
491	7.2		
492	7.2		
493	7.2		
494		TAILED SECURITY AND PRIVACY	
495	8.1	Roles	
495 496	8.1 <i>8.1</i>		
490 497	8.1 8.1		
498	8.1 8.1	5	
499	8.1 8.1		
500	8.1 8.1		
500	8.1 8.1		
502	8.1		
502	8.1	•	
503 504	8.1		
505	-	.10 Role-based Access to Data *	
505	8.2	Personally Identifiable Information (PII)	
507	8.2		
508	8.2	-	
508 509	0.2 8.2		
510	8.2 8.2		
511	8.2 8.2		
512	8.3	COVENANTS, LIABILITY, ETC.	
512	8.3		
514	8.3		
515	8.4	Ownership, Identity and Distribution	

516	8.4.1	Publication rights	
517	8.4.2	Chain of Trust	
518	8.4.3	Delegated Rights	
519	8.4.4	Software License Restrictions	
520	8.4.5	Results Repository	
521	8.4.6	Restrictions on Discovery	
522	8.4.7	Privacy Notices	
523	8.4.8	Key Management	
524	8.4.9	Describe the Key Management Practices	
525	8.4.10	, •	
526	8.4.11	CAC / ECA Cards or Other Enterprise-wide Framework	
527	8.4.12		
528	8.4.13		
529	8.5 F	Risk Mitigation	
530	8.5.1	Are measures in place to deter re-identification? *	
531	8.5.2	Please describe any re-identification deterrents in place	
532	8.5.3	Are data segmentation practices being used?	
533	8.5.4	Is there an explicit data governance plan or framework for the effort?	
534	8.5.5	Privacy-Preserving Practices	
535	8.5.6	Do you foresee any potential risks from public or private open data projects?	
536		Provenance (Ownership)	
537	8.6.1	Describe your metadata management practices	
538	8.6.2	If a metadata management system is present, what measures are in place to verify an	
539		ity?	•
540	8.6.3	Describe provenance as related to instrumentation, sensors or other devices.	
540 541		Data Life Cycle	
542	8.7.1	Describe Archive Processes	
542 543	8.7.1 8.7.2		
545 544		Describe Point in Time and Other Dependency Issues	
544 545	<i>8.7.3</i> 8.8 A	Compliance with Secure Data Disposal Requirements	
546 547	8.8.1	Current audit needs *	
	8.8.2	Auditing versus Monitoring	
548	8.8.3	System Health Tools	
549	8.8.4	What events are currently audited? *	
550		APPLICATION PROVIDER SECURITY	
551	8.9.1	Describe Application Provider Security *	
552		RAMEWORK PROVIDER SECURITY	
553	8.10.1		
554		YSTEM HEALTH	
555	8.11.1		
556		PERMITTED USE CASES	
557	8.12.1		
558	8.12.2	Paywall	
559	1 OVER	ALL PROJECT DESCRIPTION	
560	1.1 l	Jse Case Title *	
561	1.2 L	Jse Case Description *	
562	1.3 L	Jse Case Contacts *	
563		Domain ("Vertical") *	
564		APPLICATION *	
565		Current Data Analysis Approach *	
566		UTURE OF APPLICATION AND APPROACH *	
567		Actors / Stakeholders	

568		1.9	PROJECT GOALS OR OBJECTIVES	327
569		1.10	Use Case URL(s)	-
570		1.10	PICTURES AND DIAGRAMS?	
	-			
571	2	BIG	DATA CHARACTERISTICS	
572		2.1	DATA SOURCE	
573		2.2	DATA DESTINATION	328
574		2.3	VOLUME	
575		2.4	VELOCITY	
576		2.5	VARIETY	
577		2.6	VARIABILITY	
578	3	BIG	DATA SCIENCE	
579		3.1	VERACITY AND DATA QUALITY	
580		3.2	VISUALIZATION	
581		3.3	DATA TYPES	
582		3.4	METADATA	
583		3.5	CURATION AND GOVERNANCE	
584		3.6	DATA ANALYTICS	
585	4	GEN	ERAL SECURITY AND PRIVACY	
586		4.1	CLASSIFIED DATA, CODE OR PROTOCOLS	330
587		4.1	Does the System Maintain Personally Identifiable Information (PII)? *	
588		4.2	PUBLICATION RIGHTS	
589		4.4	IS THERE AN EXPLICIT DATA GOVERNANCE PLAN OR FRAMEWORK FOR THE EFFORT?	
590		4.5	DO YOU FORESEE ANY POTENTIAL RISKS FROM PUBLIC OR PRIVATE OPEN DATA PROJECTS?	
591		4.6	CURRENT AUDIT NEEDS *	
592		4.7	UNDER WHAT CONDITIONS DO YOU GIVE PEOPLE ACCESS TO YOUR DATA?	
593		4.8	UNDER WHAT CONDITIONS DO YOU GIVE PEOPLE ACCESS TO YOUR SOFTWARE?	
594	5	CLAS	SIFY USE CASES WITH TAGS	
595		5.1	DATA: APPLICATION STYLE AND DATA SHARING AND ACQUISITION	
596		5.2	DATA: MANAGEMENT AND STORAGE	
597		5.3	DATA: DESCRIBE OTHER DATA ACQUISITION/ ACCESS/ SHARING/ MANAGEMENT/ STORAGE ISSUES	
598		5.4	ANALYTICS: DATA FORMAT AND NATURE OF ALGORITHM USED IN ANALYTICS	
599		5.5	ANALYTICS: DESCRIBE OTHER DATA ANALYTICS USED	
600		5.6	PROGRAMMING MODEL	
601		5.7	OTHER PROGRAMMING MODEL TAGS	
602		5.8	PLEASE ESTIMATE RATIO I/O BYTES/FLOPS	
603		5.9	DESCRIBE MEMORY SIZE OR ACCESS ISSUES	
604	6	OVE	RALL BIG DATA ISSUES	
605		6.1	Other Big Data Issues	333
606		6.2	USER INTERFACE AND MOBILE ACCESS ISSUES	
607		6.3	LIST KEY FEATURES AND RELATED USE CASES	
	-			
608	7		RKFLOW PROCESSES	
609 610		7.1	PLEASE COMMENT ON WORKFLOW PROCESSES	
610		7.2	WorkFlow Details for Each stage *	
611		7.2.1		
612		7.2.2	-)	
613		7.2.3	- , ,	
614		7.2.4	Workflow Details for Stage 4	

615	7.2.5 Workflow Details for Stages 5 and any further stages	
616	DETAILED SECURITY AND PRIVACY	
617	8.1 ROLES	
618	8.1.1 Identifying Role	
619	8.1.2 Investigator Affiliations	
620	8.1.3 Sponsors	
621	8.1.4 Declarations of Potential Conflicts of Interest	
622	8.1.5 Institutional S/P duties	
623	8.1.6 Curation	
624	8.1.7 Classified Data, Code or Protocols	
625	8.1.8 Multiple Investigators Project Leads *	
626	8.1.9 Least Privilege Role-based Access	
627	8.1.10 Role-based Access to Data *	
628	8.2 PERSONALLY IDENTIFIABLE INFORMATION (PII)	
629	8.2.1 Does the System Maintain PII? *	
630	8.2.2 Describe the PII, if applicable	
631	8.2.3 Additional Formal or Informal Protections for PII	
632	8.2.4 Algorithmic / Statistical Segmentation of Human Populations	
633	8.2.5 Protections afforded statistical / deep learning discrimination	
634	8.3 COVENANTS, LIABILITY, ETC.	
635	8.3.1 Identify any Additional Security, Compliance, Regulatory Requirements *	
636	8.3.2 Customer Privacy Promises	
637	8.4 Ownership, Identity and Distribution	
638	8.4.1 Publication rights	
639	8.4.2 Chain of Trust	
640	8.4.2 Chain of Trast	
641	8.4.4 Software License Restrictions	
642	8.4.4 Software License Restrictions	
643		
644 644	8.4.6 Restrictions on Discovery 8.4.7 Privacy Notices	
645	-	
646	8.4.8 Key Management	
	8.4.9 Describe the Key Management Practices	
647	8.4.10 Is an identity framework used?	
648	8.4.11 CAC / ECA Cards or Other Enterprise-wide Framework	
649	8.4.12 Describe the Identity Framework	
650	8.4.13 How is intellectual property protected?	
651	8.5 RISK MITIGATION	
652	8.5.1 Are measures in place to deter re-identification? *	
653	8.5.2 Please describe any re-identification deterrents in place	
654	8.5.3 Are data segmentation practices being used?	
655	8.5.4 Is there an explicit data governance plan or framework for the effort?	
656	8.5.5 Privacy-Preserving Practices	
657	8.5.6 Do you foresee any potential risks from public or private open data projects?	
658	8.6 PROVENANCE (OWNERSHIP)	
659	8.6.1 Describe your metadata management practices	
660	8.6.2 If a metadata management system is present, what measures are in place to verify	
661	integrity?	
662	8.6.3 Describe provenance as related to instrumentation, sensors or other devices	
663	8.7 DATA LIFE CYCLE	
664	8.7.1 Describe Archive Processes	
665	8.7.2 Describe Point in Time and Other Dependency Issues	
666	8.7.3 Compliance with Secure Data Disposal Requirements	

8.8 Audit and Traceability	
8.8.1 Current audit needs *	
8.8.2 Auditing versus Monitoring	
8.8.3 System Health Tools	
8.8.4 What events are currently audited? *	
8.9 Application Provider Security	
8.9.1 Describe Application Provider Security *	
8.10 FRAMEWORK PROVIDER SECURITY	
8.10.1 Describe the framework provider security *	
8.11 System Health	
8.11.1 Measures to Ensure Availability *	
8.12 Permitted Use Cases	
8.12.1 Describe Domain-specific Limitations on Use	
8.12.2 Paywall	
·	

683 General Instructions:

Brief instructions are provided with each question requesting an answer in a text field. For the questionsoffering check boxes, please check any that apply to the use case.

686 No fields are required to be filled in. Please fill in the fields that you are comfortable answering. The

687 fields that are particularly important to the work of the NBD-PWG are marked with *.

688 Please email the completed template to Wo Chang at wchang@nist.gov.

<u>NOTE</u>: No proprietary or confidential information should be included.

690

689

691

694

695

696 697

699

700 701

702 703

704

705

706 707

OVERALL PROJECT DESCRIPTION

692 1.1 Use Case Title *

693 Please limit to one line. A description field is provided below for a longer description.

1.2 Use Case Description *

Summarize all aspects of use case focusing on application issues (later questions will highlight technology).

698

1.3 Use Case Contacts *

Add names, phone number, and email of key people associated with this use case. Please designate who is authorized to edit this use case.

Name	Phone	Email	PI / Author	Edit rights?	Primary

1.4 Domain ("Vertical") *

What application area applies? There is no fixed ontology. Examples: Health Care, Social Networking, Financial, Energy, etc.

1.5 Application *

Summarize the use case applications.

709 710

711

712 713

714

715

708

1.6 Current Data Analysis Approach *

Describe the analytics, software, hardware approach used today. This section can be qualitative with details given in Section 3.6.

1.7 Future of Application and Approach *

716 Describe the analytics, software, hardware, and application future plans, with possible increase in data
 717 sizes/velocity.

718

719 1.8 Actors / Stakeholders

Please describe the players and their roles in the use case. Identify relevant stakeholder roles and
 responsibilities. Note: Security and privacy roles are discussed in a separate part of this template.

1.9 Project Goals or Objectives

724 Please describe the objectives of the use case.

1.10 Use Case URL

Include any URLs associated with the use case. Please separate with semicolon (;).

1.11 Pictures and Diagrams?

Please email any pictures or diagrams with this template.

BIG DATA CHARACTERISTICS

Big Data Characteristics describe the properties of the (raw) data including the four major 'V's' of Big Data described in NIST Big Data Interoperability Framework: Volume 1, Big Data Definition.

1.12 Data Source

Describe the origin of data, which could be from instruments, Internet of Things, Web, Surveys, Commercial activity, or from simulations. The source(s) can be distributed, centralized, local, or remote.

1.13 Data Destination

If the data is transformed in the use case, describe where the final results end up. This has similar characteristics to data source.

1.14 Volume

Size	
Units	
Time Period	
Proviso	
Cinc. Our stitutions	lume of data handled in the use case

Size: Quantitative volume of data handled in the use case

745 Units: What is measured such as "Tweets per year", Total LHC data in petabytes, etc.?

Time Period: Time corresponding to specified size.

Proviso: The criterion (e.g. data gathered by a particular organization) used to get size with units in time period in
 three fields above

749 **1.15 Velocity**

Enter if real-time or streaming data is important. Be quantitative: this number qualified by 3 fields below:

units, time period, proviso. Refers to the rate of flow at which the data is created, stored, analyzed, and

visualized. For example, big velocity means that a large quantity of data is being processed in a short

amount of time.

Unit of measure	
Time Period	
Proviso	
	aite of Valenity nize given above. What is measured such as "New Twents gethered per accord"

Unit of Measure: Units of Velocity size given above. What is measured such as "New Tweets gathered per second", etc.?

Time Period: Time described and interval such as September 2015; items per minute

Proviso: The criterion (e.g., data gathered by a particular organization) used to get Velocity measure with units in time period in three fields above

1.16 Variety

Variety refers to data from multiple repositories, domains, or types. Please indicate if the data is from multiple datasets, mashups, etc.

1.17 Variability

Variability refers to changes in rate and nature of data gathered by use case. It captures a broader range of changes than Velocity which is just change in size. Please describe the use case data variability.

766

754

755

756

757

758

759 760

761

762

763

764

765

767

768

769 770

771

772

775

BIG DATA SCIENCE

1.18 Veracity and Data Quality

This covers the completeness and accuracy of the data with respect to semantic content as well as syntactical quality of data (e.g., presence of missing fields or incorrect values).

1.19 Visualization

773 Describe the way the data is viewed by an analyst making decisions based on the data. Typically,
774 visualization is the final stage of a technical data analysis pipeline and follows the data analytics stage.

776 **1.20 Data Types**

Refers to the style of data, such as structured, unstructured, images (e.g., pixels), text (e.g., characters),
 gene sequences, and numerical.

780 1.21 Metadata

781 Please comment on quality and richness of metadata.

783 1.22 Curation and Governance

Note that we have a separate section for security and privacy. Comment on process to ensure good data quality and who is responsible.

1.23 Data Analytics

In the context of these use cases, analytics refers broadly to tools and algorithms used in processing the data at any stage including the data to information or knowledge to wisdom stages, as well as the information to knowledge stage. This section should be reasonably precise so quantitative comparisons with other use cases can be made. Section 1.6 is qualitative discussion of this feature.

791 792

793

801

782

784

785

786

787 788

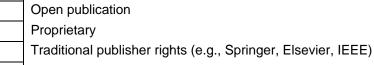
789

790

GENERAL SECURITY AND PRIVACY

794 The following questions are intended to cover general security and privacy topics. Security and privacy 795 topics are explored in more detail in Section 8. For the questions with checkboxes, please select the 796 item(s) that apply to the use case.

797 1.24 Classified Data, Code or Protocols


- Intellectual property protections
- Military classifications, e.g., FOUO, or Controlled Classified
- Not applicable
 - Creative commons/ open source
- Other:

1.25 Does the System Maintain Personally Identifiable Information (PII)? *

Yes, PII is part of this Big Data system No, and none can be inferred from 3rd party sources No, but it is possible that individuals could be identified via third party databases Other:

800 1.26 Publication rights

Open publisher; traditional publisher; white paper; working paper

- "Big Science" tools in use
- Other:

1.27 Is there an explicit data governance plan or framework for the effort?

B04 Data governance refers to the overall management of the availability, usability, integrity, and security of
 the data employed in an enterprise.

Explicit data governance plan

No data governance plan, but could use one

Data governance does not appear to be necessary

Other:

1.28 Do you foresee any potential risks from public or private open data projects?

Transparency and data sharing initiatives can release into public use datasets that can be used to undermine privacy (and, indirectly, security.)

	Risks are known.
	Currently no known risks, but it is conceivable.
	Not sure
	Unlikely that this will ever be an issue (e.g., no PII, human-agent related data or subsystems.)
	Other:
-	

810 1.29 Current audit needs *

	We have third party registrar or other audits, such as for ISO 9001
	We have internal enterprise audit requirements
	Audit is only for system health or other management requirements
	No audit, not needed or does not apply
	Other:

1.30 Under what conditions do you give people access to your data?

813 814 1.31 Under what conditions do you give people access to 815 your software?

816 817

811

812

806

807

808

CLASSIFY USE CASES WITH TAGS 818

- The questions below will generate tags that can be used to classify submitted use cases. See 819
- 820 http://dsc.soic.indiana.edu/publications/OgrePaperv11.pdf (Towards an Understanding of Facets and
- Exemplars of Big Data Applications) for an example of how tags were used in the initial 51 use cases. 821
- 822 Check any number of items from each of the questions.

1.32 DATA: Application Style and Data Sharing and 823 Acquisition 824

- **Uses Geographical Information Systems?**
- Use case involves Internet of Things?
- Data comes from HPC or other simulations?
- Data Fusion important?
- Data is Real time Streaming?
- Data is Batched Streaming (e.g. collected remotely and uploaded every so often)?
- Important Data is in a Permanent Repository (Not streamed)?
- Transient Data important?
- Permanent Data Important?
- Data shared between different applications/users?
- Data largely dedicated to only this use case?

1.33 DATA: Management and Storage 825

Application data system based on Files? Application data system based on Objects? Uses HDFS style File System? Uses Wide area File System like Lustre? Uses HPC parallel file system like GPFS? Uses SQL? Uses NoSQL? Uses NewSQL? Uses Graph Database?

1.34 DATA: Describe Other Data Acquisition/ Access/ 826 Sharing/ Management/ Storage Issues

1.35 ANALYTICS: Data Format and Nature of Algorithm used in Analytics

Data regular?
Data dynamic?
Algorithm O(N^2)?
Basic statistics (regression, moments) used?
Search/Query/Index of application data Important?
Classification of data Important?
Recommender Engine Used?
Clustering algorithms used?
Alignment algorithms used?
(Deep) Learning algorithms used?
Graph Analytics Used?

1.36 ANALYTICS: Describe Other Data Analytics Used

Examples include learning styles (supervised) or libraries (Mahout).

1.37 PROGRAMMING MODEL

	Pleasingly parallel Structure? Parallel execution over independent data. Called Many Task or high throughput computing. MapReduce with only Map and no Reduce of this type
	Use case NOT Pleasingly Parallel Parallelism involves linkage between tasks. MapReduce (with Map and Reduce) of this type
	Uses Classic MapReduce? such as Hadoop
	Uses Apache Spark or similar Iterative MapReduce?
	Uses Graph processing as in Apache Giraph?
	Uses MPI (HPC Communication) and/or Bulk Synchronous Processing BSP?
	Dataflow Programming Model used?
	Workflow or Orchestration software used?
	Python or Scripting front ends used? Maybe used for orchestration
	Shared memory architectures important?
	Event-based Programming Model used?
	Agent-based Programming Model used?
	Use case I/O dominated? I/O time > or >> Compute time
	Use case involves little I/O? Compute >> I/O

1.38 Other Programming Model Tags

836 Provide other programming style tags not included in the list above.

1.39 Please Estimate Ratio I/O Bytes/Flops

839 Specify in text box with <u>units</u>.

832 833

835

840

1.40 Describe Memory Size or Access issues 841

842 Specify in text box with any quantitative detail on memory access/compute/I/O ratios.

843

845

846 847

848

849

850 851

852 853

854 855

856

861

862 863

864 865

866

867

868

844

OVERALL BIG DATA ISSUES

1.41 Other Big Data Issues

Please list other important aspects that the use case highlights. This question provides a chance to address questions which should have been asked.

1.42 User Interface and Mobile Access Issues

Describe issues in accessing or generating Big Data from clients, including Smart Phones and tablets.

1.43 List Key Features and Related Use Cases

Put use case in context of related use cases. What features generalize and what are idiosyncratic to this use case?

WORKFLOW PROCESSES

857 Please answer this question if the use case contains multiple steps where Big Data characteristics, 858 recorded in this template, vary across steps. If possible, flesh out workflow in the separate set of 859 questions. Only use this section if your use case has multiple stages where Big Data issues differ significantly between stages. 860

1.44 Please comment on workflow processes

Please record any overall comments on the use case workflow.

1.45 Workflow details for each stage *

Description of table fields below:

- Data Source(s): The origin of data, which could be from instruments, Internet of Things, Web, Surveys, Commercial activity, or from simulations. The source(s) can be distributed, centralized, local, or remote. Often data source at one stage is destination of previous stage with raw data driving first stage.
- 869 Nature of Data: What items are in the data?
- 870 Software Used: List software packages used
- 871 Data Analytics: List algorithms and analytics libraries/packages used
- 872 Infrastructure: Compute, Network and Storage used. Note sizes infrastructure -- especially if "big".
- 873 Percentage of Use Case Effort: Explain units. Could be clock time elapsed or fraction of compute cycles
- 874 Other Comments: Include comments here on items like veracity and variety present in upper level but omitted in 875 summary.

WORKFLOW DETAILS FOR STAGE 1 1.45.1

Stage 1 Name	
Data Source(s)	
Nature of Data	
Software Used	
Data Analytics	
Infrastructure	
Percentage of Use Case Effort	
Other Comments	

1.45.2 WORKFLOW DETAILS FOR STAGE 2 877

Stage 2 Name	
Data Source(s)	
Nature of Data	
Software Used	
Data Analytics	
Infrastructure	
Percentage of Use Case Effort	
Other Comments	

1.45.3 Workflow Details for Stage 3

Stage 3 Name	
Data Source(s)	
Nature of Data	
Software Used	
Data Analytics	
Infrastructure	
Percentage of Use Case Effort	
Other Comments	

1.45.4 Workflow Details for Stage 4

Stage 4 Name	
Data Source(s)	
Nature of Data	
Software Used	
Data Analytics	
Infrastructure	
Percentage of Use Case Effort	
Other Comments	

881 **1.45.5** Workflow Details for Stages 5 and any further stages

882 If you have more than five stages, please put stages 5 and higher here.

Stage 5 Name	
Data Source(s)	
Nature of Data	
Software Used	
Data Analytics	
Infrastructure	
Percentage of Use Case Effort	
Other Comments	

DETAILED SECURITY AND PRIVACY

Questions in this section are designed to gather a comprehensive image of security and privacy aspects
(e.g., security, privacy, provenance, governance, curation, and system health) of the use case. Other
sections contain aspects of curation, provenance, and governance that are not strictly speaking only
security and privacy considerations. The answers will be very beneficial to the NBD-PWG in
understanding your use case. However, if you are unable to answer the questions in this section, the NBDPWG would still be interested in the information gathered in the rest of the template. The security and
privacy questions are grouped as follows:

- Roles
- Personally Identifiable Information
- Covenants and Liability
- Ownership, Distribution, Publication
- Risk Mitigation
- Audit and Traceability
- Data Life Cycle
- Dependencies
- Framework provider S&P
- Application Provider S&P
- Information Assurance | System Health
- Permitted Use Cases

1.46 Roles

Roles may be associated with multiple functions within a big data ecosystem.

1.46.1 IDENTIFYING ROLE

908 Identify the role (e.g., Investigator, Lead Analyst, Lead Scientists, Project Leader, Manager of Product
 909 Development, VP Engineering) associated with identifying the use case need, requirements, and
 910 deployment.

911

913 914

912 **1.46.2** INVESTIGATOR AFFILIATIONS

This can be time-dependent and can include past affiliations in some domains.

915 **1.46.3 Sponsors**

916 Include disclosure requirements mandated by sponsors, funders, etc.

917

918 **1.46.4 DECLARATIONS OF POTENTIAL CONFLICTS OF INTEREST**

919

920 **1.46.5 INSTITUTIONAL S/P DUTIES**

921 List and describe roles assigned by the institution, such as via an IRB (Institutional Review Board).

922

884

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

1.46.6 CURATION 923

924 List and describe roles associated with data quality and curation, independent of any specific Big Data 925 component. Example: Role responsible for identifying U.S. government data as FOUO or Controlled 926 Unclassified Information, etc.

927

929

931

932

934

1.46.7 CLASSIFIED DATA, CODE OR PROTOCOLS 928

- Intellectual property protections
- Military classifications, e.g., FOUO, or Controlled Classified Not applicable Creative commons/ open source
- Other:

1.46.8 **MULTIPLE INVESTIGATORS | PROJECT LEADS ***

- Only one investigator | project lead | developer
- Multiple team members, but in the same organization
- Multiple leads across legal organizational boundaries
 - Multinational investigators | project leads
- Other:

1.46.9 LEAST PRIVILEGE ROLE-BASED ACCESS 930

Least privilege requires that a user receives no more permissions than necessary to perform the user's duties.

Yes, roles are segregated and least privilege is enforced We do have least privilege and role separation but the admin role(s) may be too all-inclusion Handled at application provider level Handled at framework provider level There is no need for this feature in our application Could be applicable in production or future versions of our work Other:

1.46.10 **ROLE-BASED ACCESS TO DATA*** 933

Please describe the level at which access to data is limited in your system.

Dataset Data record / row Data element / field Handled at application provider level Handled at framework provider level Other:

935 **1.47 Personally Identifiable Information (PII)**

936 **1.47.1 DOES THE SYSTEM MAINTAIN PII?***

Yes, PII is part of this Big Data system.

No, and none can be inferred from third-party sources.

No, but it is possible that individuals could be identified via third-party databases. Other:

1.47.2 Describe the PII, if Applicable

Describe how PII is collected, anonymized, etc. Also list disclosures to human subjects, interviewees, or web visitors.

1.47.3 Additional Formal or Informal Protections for PII

1.47.4 Algorithmic / Statistical Segmentation of Human

POPULATIONS

Yes, doing segmentation, possible discrimination issues if abused. Please also answer the next question.

Yes, doing segmentation, but no foreseeable discrimination issues.

Does not apply to this use case at all (e.g., no human subject data). Other:

1.47.5 PROTECTIONS AFFORDED STATISTICAL / DEEP LEARNING

DISCRIMINATION

Identify what measures are in place to address this concern regarding human populations, if it applies. Refer to the previous question.

1.48 Covenants, Liability, Etc.

951 **1.48.1 IDENTIFY ANY ADDITIONAL SECURITY, COMPLIANCE, REGULATORY** 952 **REQUIREMENTS** *

953 Refer to 45 CFR 46: http://1.usa.gov/1bg6JQ2

FTC regulations apply
HHS 45 CFR 46
HIPAA
EU General Data Protection (Reference: <u>http://bit.ly/1Ta8S1C</u>)
СОРРА
Other Transborder issues
Fair Credit Reporting Act (Reference: <u>http://bit.ly/1Ta8XSN</u>)
Family Educational Rights and Protection (FERPA)

937

938 939

940

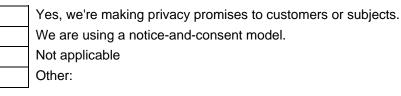
941 942

943

944

945

946 947


948

949

None apply Other:

954 1.48.2 Customer Privacy Promises

955 Select all that apply,e.g., RadioShack promise that is subject of this DOJ ruling: http://bit.ly/1f0MW9t

956 **1.49 Ownership, Identity and Distribution**

1.49.1 PUBLICATION RIGHTS

958 Open publisher; traditional publisher; white paper; working paper

Open publication
Proprietary
Traditional publisher rights (e.g., Springer, Elsevier, IEEE)
"Big Science" tools in use
Other:

1.49.2 Chain of Trust

Identify any chain-of-trust mechanisms in place (e.g., ONC Data Provenance Initiative). Potentially very domain-dependent; see the ONC event grid, for instance. Reference: <u>http://bit.ly/1f0PGDL</u>

962

959

960 961

963 964

965

967 968

957

1.49.3 DELEGATED RIGHTS

Example of one approach: "Delegation Logic: A Logic-based Approach to Distributed Authorization", Li, N., Grosof, B.N., Feigenbaum, J.(2003) https://www.cs.purdue.edu/homes/ninghui/papers/thesis.pdf

966

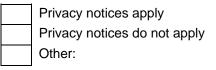
1.49.4 Software License Restrictions

Identify proprietary software used in the use case Big Data system which could restrict use, reproducibility, results, or distribution.

969 970

971 **1.49.5 RESULTS REPOSITORY**

972 Identify any public or private / federated consortia maintaining a shared repository.


973

974 **1.49.6 Restrictions on Discovery**

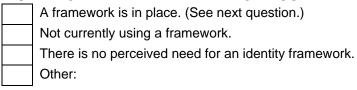
975 Describe restrictions or protocols imposed on discoverable end points.

977 **1.49.7 PRIVACY NOTICES**

978 Indicate any privacy notices required / associated with data collected for redistribution to others,

979 **1**

1.49.8 Key MANAGEMENT


A key management scheme is part of our system.	
We are using public key infrastructure.	
We do not use key management, but it could have been u	ıseful.
No readily identifiable use for key management.	
Other:	

980 **1.49.9 DESCRIBE THE KEY MANAGEMENT PRACTICES**

981

982

1.49.10 Is an identity framework used?

983 **1.49.11**

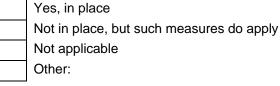
CAC / ECA Cards or Other Enterprise-wide Framework

Using an externally maintained enterprise-wide identity framework. Could be used, but none are available. Not applicable

984 **1.49.12 DESCRIBE THE IDENTITY FRAMEWORK.**

985

986


1.49.13 How is intellectual property protected?

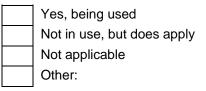
Login screens advising of IP issues
 Employee or team training
 Official guidelines limiting access or distribution
 Required to track all access to, distribution of digital assets
 Does not apply to this effort (e.g., public effort)
 Other:

1.50 Risk Mitigation 987

988

1.50.1 ARE MEASURES IN PLACE TO DETER RE-IDENTIFICATION? *

1.50.2 PLEASE DESCRIBE ANY RE-IDENTIFICATION DETERRENTS IN PLACE


989 990

991 992

993

1.50.3 **ARE DATA SEGMENTATION PRACTICES BEING USED?**

Data segmentation for privacy has been suggested as one strategy to enhance privacy protections. Reference: http://bit.ly/1P3h12Y

994 995

998 999

1.50.4 IS THERE AN EXPLICIT DATA GOVERNANCE PLAN OR FRAMEWORK FOR THE EFFORT?

996 Data governance refers to the overall management of the availability, usability, integrity, and security of 997 the data employed in an enterprise.

Γ		Explicit data governance plan	
	No data governance plan, but could use one		
		Data governance does not appear to be necessary	
		Other:	

PRIVACY-PRESERVING PRACTICES 1.50.5

Identify any privacy-preserving measures that are in place.

1.50.6 DO YOU FORESEE ANY POTENTIAL RISKS FROM PUBLIC OR PRIVATE **OPEN DATA PROJECTS?**

Transparency and data sharing initiatives can release into public use datasets that can be used to undermine privacy (and, indirectly, security).

Risks are known. Currently no known risks, but it is conceivable. Not sure Unlikely that this will ever be an issue (e.g., no PII, human-agent related data or subsystems). Other:

1005 **1.51 Provenance (Ownership)**

Provenance viewed from a security or privacy perspective. The primary meaning for some domains isdigital reproducibility, but it could apply in simulation scenarios as well.

1.51.1 DESCRIBE YOUR METADATA MANAGEMENT PRACTICES

Yes, we have a metadata management system.

There is no need for a metadata management system in this use case.

It is applicable but we do not currently have one.

Other:

1.51.2 IF A METADATA MANAGEMENT SYSTEM IS PRESENT, WHAT MEASURES ARE IN PLACE TO VERIFY AND PROTECT ITS INTEGRITY?

1.51.3 DESCRIBE PROVENANCE AS RELATED TO INSTRUMENTATION, SENSORS OR OTHER DEVICES.

- We have potential machine-to-machine traffic provenance concerns.
- Endpoint sensors or instruments have signatures periodically updated.
- Using hardware or software methods, we detect and remediate outlier signatures.
- Endpoint signature detection and upstream flow are built into system processing.
- We rely on third-party vendors to manage endpoint integrity.
- We use a sampling method to verify endpoint integrity.
- Not a concern at this time.
- Other:

1014 **1.52 Data Life Cycle**

1015 **1.52.1**

Describe Archive Processes

Our application has no separate "archive" process.
We offload data using certain criteria to removable media which are taken offline.
We use a multi-stage, tiered archive process.
We allow for "forgetting" of individual PII on request.
Have ability to track individual data elements across all stages of processing, including archive.
Additional protections, such as separate encryption, are applied to archival data.
Archived data is saved for potential later use by applications or analytics yet to be built.
Does not apply to our application.
Other:

1008

1009

1010 1011

1012

1016 **1.52.2 Describe Point in Time and Other Dependency Issues**

Some data is valid only within a point in time,

Some data is only valid with other, related data is available or applicable, such as the existence of a building, the presence of a weather event, or the active use of a vehicle.

There are specific events in the application that render certain data obsolete or unusable.

Point and Time and related dependencies do not apply.

Other:

1.52.3 COMPLIANCE WITH SECURE DATA DISPOSAL REQUIREMENTS

Per NCSL: "at least 29 states have enacted laws that require entities to destroy, dispose. . ." http://www.ncsl.org/research/telecommunications-and-information-technology/privacy-and-security.aspx

We are required to destroy or otherwise dispose of data.
 Does not apply to us.
 Not sure
 Other:

1020 **1.53 Audit and Traceability**

Big Data use case: SEC Rule 613 initiative

1022 **1.53.1 CURRENT AUDIT NEEDS ***

We have third-party registrar or other audits, such as for ISO 9001.
We have internal enterprise audit requirements.
Audit is only for system health or other management requirements.
No audit, not needed or does not apply.
Other:

1023 **1.53.2**

AUDITING VERSUS MONITORING

We rely on third-party or O.S. tools to audit, e.g., Windows or Linux auditing.
There are built-in tools for monitoring or logging that are only used for system or application health monitoring.
Monitoring services include logging of role-based access to assets such as PII or other resources.
The same individual(s) in the enterprise are responsible for auditing as for monitoring.
This aspect of our application is still in flux.
Does not apply to our setting.

Other:

1024 **1.53.3**

System Health Tools

 We rely on system-wide tools for health monitoring.

 We built application health tools specifically to address integrity, performance monitoring, and related concerns.

 There is no need in our setting.

 Other:

1017 1018

1019

1025 **1.53.4 WHAT EVENTS ARE CURRENTLY AUDITED?***

 All data access must be audited.

 Only selected / protected data must be audited.

 Maintenance on user roles must be audited (new users, disabled user, updated roles or permissions).

 Purge and archive events.

 Domain-dependent events (e.g., adding a new sensor).

 REST or SOAP events

 Changes in system configuration

 Organizational changes

 External project ownership / management changes

 Requirements are externally set, e.g., by PCI compliance.

 Domain-specific events (patient death in a drug trial)

 Other:

1026 **1.54 Application Provider Security**

1027 1.54.1 DESCRIBE APPLICATION PROVIDER SECURITY *

1028 One example of application layer security is the SAP ERP application.

There is a security mechanism implemented at the application level.
The app provider level is aware of PII or privacy data elements.
The app provider implements audit and logging.
The app provider security relies on framework-level security for its operation.
Does not apply to our application.
Other:

1029 **1.55 Framework Provider Security**

One example is Microsoft Active Directory as applied across LANs to Azure, or LDAP mapped to Hadoop. Reference: <u>http://bit.ly/1f0VDR3</u>

1.55.1 DESCRIBE THE FRAMEWORK PROVIDER SECURITY *

- Security is implemented at the framework level.
- Roles can be defined at the framework level.
- The framework level is aware of PII or related sensitive data.
- Does not apply in our setting.
- Is provided by the Big Data tool.
- Other:

1033 **1.56 System Health**

1034 Also included in this grouping: Availability, Resilience, Information Assurance

1035 **1.56.1 Measures to Ensure Availability ***

Deterrents to man-in-the-middle attacks
 Deterrents to denial of service attacks
 Replication, redundancy or other resilience measures
 Deterrents to data corruption, drops or other critical big data components
 Other:

1.57 Permitted Use Cases

Beyond the scope of S&P considerations presented thus far, please identify particular domain-specific limitations

1.57.1 Describe Domain-specific Limitations on Use

1040

1.57.2 PAYWALL A paywall is in use at some stage in the workflow.

Not applicable

1042

1036

1037

1038

1039

1043 Description of NIST Public Working Group on Big Data

1044 NIST is leading the development of a Big Data Technology Roadmap. This roadmap will define and prioritize
 1045 requirements for interoperability, portability, reusability, and extendibility for Big Data analytic techniques and
 1046 technology infrastructure in order to support secure and effective adoption of Big Data. To help develop the
 1047 ideas in the Big Data Technology Roadmap, NIST created the Public Working Group for Big Data.

Scope: The focus of the NBD-PWG is to form a community of interest from industry, academia, and government, with the goal of developing consensus definitions, taxonomies, secure reference architectures, and a technology roadmap. The aim is to create vendor-neutral, technology- and infrastructure-agnostic deliverables to enable Big Data stakeholders to pick and choose best analytics tools for their processing and

1052 visualization requirements on the most suitable computing platforms and clusters while allowing value-added 1053 from Big Data service providers and flow of data between the stakeholders in a cohesive and secure manner.

1054 For more, refer to the website at <u>http://bigdatawg.nist.gov.</u>

Appendix F: Version 2 Raw Use Case Data

This appendix contains the raw data from the three Template 2 use cases that have been submitted to date. Summaries of these use cases are included in Section 2. The first two use cases were submitted in an earlier version of Template 2. The third use case (Use Case 2-3) was submitted with a later version of Template 2. The difference between the two Template 2 versions are the location of the Detailed Security and Privacy section (Section 8 in the later version) and the addition of a General Security and Privacy Section in the later version. The later Template 2 version is the current version and should be used for submitted use cases from this point forward.

F.1 Use Case 2-1: NASA Earth Observing System Data and Information System (EOSDIS)

1 Overall Project Description Use Case 2-1

030		
1.1	Use Case Title *	NASA Earth Observing System Data and Information System (EOSDIS)
1.2	Use Case Description	The Earth Observing System Data and Information System (EOSDIS) is the main system maintained by NASA for the archive and dissemination of Earth Observation data. The system comprises 12 discipline-oriented data systems spread across the United States. This network is linked together using interoperability frameworks such as the Common Metadata Repository, a file-level database that supports one-stop searching across EOSDIS. The data consist of satellite, aircraft, field campaign and in situ data over a variety of disciplines related to Earth science, covering the Atmosphere, Hydrosphere, Cryosphere, Lithosphere, Biosphere, and Anthroposphere. Data are distributed to a diverse community ranging from Earth science researchers to applications to citizen science and educational users. EOSDIS faces major challenges in both Volume and Variety. As of early 2017, the cumulative archive data volume is over 20 Petabytes. Higher resolution spaceborne instruments are expected to increase that volume by two orders of magnitude (~200 PB) over the next 7 years. More importantly, the data distribution to users is equally high. In a given year, EOSDIS distributes a volume that is comparable to the overall cumulative archive volume.

1056

1057

1058

1059

1060

1061

1062

1063 1064

1065

1066

1067

1 Overall Project Description			
1 Overall Project Description Use Case 2-1			
1.3 Use Case Contacts *			
Name	Christopher Lynnes		
PI or Author	Author		
Edit Privileges?	Yes		
Primary author?	Yes		
	Earth Science		
1.4 Domain ("Vertical") *1.5 Application *	Data Archiving: storing NASA's Earth Observation dataData		
	Distribution: disseminating data to end users in Research, Applications (e.g., water resource management) and EducationData Discovery: search and access to Earth Observation dataData Visualization: static browse images and dynamically constructed visualizationsData Customization: subsetting, reformatting, regridding, mosaicking, and quality screening on behalf of end usersData Processing: routine production of standard scientific datasets, converting raw data to geophysical variables.Data Analytics: end-user analysis of large datasets, such as time- averaged maps and area-averaged time series		
1.6 Current Data Analysis Approach *	Standard data processing converts raw data to geophysical parameters. Though much of this is heritage custom Fortran or C code running, current prototypes are using cloud computing to scale up to rapid reprocessing campaigns.EOSDIS support of end-user analysis currently uses high-performance software, such as the netCDF Command Operators. However, current prototypes are using cloud computing and data-parallel algorithms (e.g., Spark) to achieve an order of magnitude speed-up.		
1.7 Future of Application and Approach *	EOSDIS is beginning to migrate data archiving to the cloud in order to enable end users to bring algorithms to the data. We also expect to reorganize certain high-value datasets into forms that lend themselves to cloud data-parallel computing. Prototypes are underway to prove out storage schemes that are optimized for cloud analytics, such as space-time tiles stored in cloud databases and cloud filesystems.		
1.8 Actors / Stakeholders	Science Research Users consume the data and apply their analysis techniques to derive knowledge of Earth System Science.Applications users consume the data for real-world practical use, such as hazard mitigation or resource management.Educational users and citizen scientists consume the data in order to understand more about the world in which they live.Satellite project and science teams use EOSDIS as a data archive and dissemination agent.		

1 Overall Project Description Use Case 2-1	
1.9 Project Goals or Objectives	The objectives are to distribute useful and usable science data and information relating to Earth system science to a diverse community.
1.10 Use Case URL(s)	https://earthdata.nasa.gov

1069

2 Big Data Characteristics Use Case 2-1		
2.1	Data Source	The two most voluminous sources are:1. high spatial resolution satellite-borne instruments; and 2. long-time-series models assimilating data from satellites and instruments. Most of the Variety comes from the many field campaigns that are run to validate satellite data and explore questions that cannot be answered by spaceborne instruments alone.
2.2	Data Destination	Final results most often end up in science research papers. Data consumed by Applications users may end up in Decision Support Systems, systems that Applications users employ to properly digest and infer information from the data.
2.3	Volume	
Size		22 PB
Units		Total Earth Observation Data managed by NASA EOSDIS
Time F	Period	Accumulated since 1994
Proviso		
2.4	Velocity	
Unit of	f measure	
Time F	Period	
Provis	60	
2.5	Variety	EOSDIS's Common Metadata Repository includes over 6400 EOSDIS data collections as of June 2017, providing significant challenges in data discovery. CMR and other interoperability frameworks (metrics, browse imagery, governance) knit together 12 different archives, each with a different implementation. Nearly all Earth science disciplines are represented in EOSDIS.
2.6	Variability	Data latency varies from Near Real Time (within 3-5 hours) to research-scale times (days to weeks time lag). Datasets also vary widely in size from small to multi-terabyte size. (Future radar data will be petabyte-scale.)

3.1 Qual	Veracity and Data ity	Satellite data typically undergo extensive validation with data from aircraft, in situ, and other satellite data. In addition, the processing algorithms usually specify a quality flag for each data point, indicating a relative estimate of quality.
3.2	Visualization	Many datasets are represented in EOSDIS's Global Imagery Browse System, which supports highly interactive exploration through the Worldview imagery browser (https://worldview.earthdata.nasa.gov). In addition, dynamic customized visualization of many data types is available through tools such as Giovanni (https://giovanni.gsfc.nasa.gov/)
3.3	Data Types	Datatypes include raster images, vector data, ASCII tables, geospatial grids of floating point values, and floating point values in satellite coordinates.
3.4	Metadata	Metadata about the data collections and their constituent file are maintained in EOSDIS Common Metadata Repository. Als the standard data formats include self-describing formats suc as Hierarchical Data Format (HDF) and network Common Data Form (netCDF), which include detailed metadata for individua variables inside the data files, such as units, standard name, fi value, scale and offset.
3.5 Gove	Curation and ernance	EOSDIS maintains an active metadata curation team that coordinates the activities of the data centers to help ensure completeness and consistency of metadata population. EOSD also maintains an EOSDIS Standards Office (ESO) to vet standards on data format and metadata. In addition, the 12 discipline data archives are coordinated through the Earth Science Data and Information Systems project at NASA, which oversees interoperability efforts.
3.6	Data Analytics	Analytics sometimes consists of:(1) computing statistical measures of Earth Observation data across a variety of dimensions(2) examining covariance and correlation of a variety of Earth observations(3) assimilating multiple data variables into a model using Kalman filtering(4) analyzing time series.

4 Security and Privacy Use Case 2-1	
4.1 Roles	
4.1.1 Identifying Role	System Architect
<i>4.1.2 Investigator</i> <i>Affiliations</i>	NASA

4 Security and Privacy		
Use Case 2-1		
4.1.3 Sponsors	NASA Program Executive for Earth Science Data Systems	
<i>4.1.4 Declarations of</i> <i>Potential Conflicts of</i> <i>Interest</i>		
<i>4.1.5 Institutional S/P duties</i>		
4.1.6 Curation	Distributed Active Archive Center Manager	
<i>4.1.7 Classified Data, Code or Protocols</i>		
Intellectual property protections	Yes	
Military classifications, e.g., FOUO, or Controlled Classified	Yes	
Not applicable		
Other:		
Other text		
4.1.8 Multiple Investigators Project Leads *		
Only one investigator project lead developer		
Multiple team members, but in the same organization		
Multiple leads across legal organizational boundaries	Yes	
Multinational investigators project leads		
Other:		
Other text		
4.1.9 Least Privilege Role- based Access		
Yes, roles are segregated and least privilege is enforced	Yes	
We do have least privilege and role separation but the admin role(s) may be too all-inclusion		
Handled at application provider level		
Handled at framework provider level		
There is no need for this feature in our application		
Could be applicable in production or future versions of our work		
Other:		
Other text		

1 Coourity and Driv	
4 Security and Priv	vacy
Use Case 2-1 4.1.10 Role-based Access to	
Data *	
Dataset	Yes
Data record / row	
Data element / field	
Handled at application provider level	
Handled at framework provider level	
Other:	
Other text	
4.2 Personally Identifiable Information (PII)	
4.2.1 Does the System Maintain PII? *	
Yes, PII is part of this Big Data system	
No, and none can be inferred from 3rd party sources	Yes
No, but it is possible that individuals could be identified via third party databases	
Other:	
Other text	
4.2.2 Describe the PII, if applicable	
4.2.3 Additional Formal or Informal Protections for PII	
<i>4.2.4 Algorithmic / Statistical Segmentation of Human Populations</i>	
Yes, doing segmentation, possible discrimination issues if abused. Please also answer the next question.	
Yes, doing segmentation, but no foreseeable discrimination issues.	
Does not apply to this use case at all (e.g., no human subject data)	Yes
Other:	
Other text	

4 Security and Pri	vacy
Use Case 2-1	Vacy
4.2.5 Protections afforded	
statistical / deep learning	
discrimination	
4.3 Covenants, Liability,	
Etc.	
4.3.1 Identify any Additional	
Security, Compliance,	
Regulatory Requirements *	
FTC regulations apply	
HHS 45 CFR 46	
НІРАА	
EU General Data Protection	
(Reference: http://bit.ly/1Ta8S1C)	
СОРРА	
Other Transborder issues	
Fair Credit Reporting Act	
(Reference: http://bit.ly/1Ta8XSN	
1	
Family Educational Rights and	
Protection (FERPA) None apply	
Other:	Yes
Other text	
	HSPD-12
<i>4.3.2 Customer Privacy</i> <i>Promises</i>	
Yes, we're making privacy	
promises to customers or subjects	
We are using a notice-and-	Yes
consent model	
Not applicable	
Other:	
Other text	
4.4 Ownership, Identity	
and Distribution	
4.4.1 Publication rights	
Open publication	Yes
Proprietary	
Traditional publisher rights (e.g., Springer, Elsevier, IEEE)	
"Big Science" tools in use	

4 Security and Priv	vacv
Use Case 2-1	y
Other:	
Other text	
4.4.2 Chain of Trust	
4.4.3 Delegated Rights	
<i>4.4.4 Software License Restrictions</i>	Patents are applicable in some cases. Off-the-shelf commercial analysis packages are also used. Software which has not passed through NASA Software Release process is not eligible for public distribution.
4.4.5 Results Repository	PubMed Central (PMC)
4.4.6 Restrictions on Discovery	
4.4.7 Privacy Notices	
Privacy notices apply	
Privacy notices do not apply	Yes
Other:	
Other text	
4.4.8 Key Management	
A key management scheme is part of our system	
We are using public key infrastructure.	Yes
We do not use key management, but it could have been useful	
No readily identifiable use for key management	
Other:	
Other text	
4.4.9 Describe and Key Management Practices	
<i>4.4.10 Is an identity framework used?</i>	
A framework is in place. (See next question.)	Yes
Not currently using a framework.	
There is no perceived need for an identity framework. Other:	
Other text	
4.4.11 CAC / ECA Cards or Other Enterprise-wide Framework	

4 Security and Privacy Use Case 2-1 Using an externally maintained Yes enterprise-wide identity framework Could be used, but none are available Not applicable 4.4.12 Describe the Identity Framework. 4.4.13 How is intellectual property protected? Login screens advising of IP issues Employee or team training **Official guidelines limiting access** or distribution Required to track all access to, distribution of digital assets Does not apply to this effort (e.g., Yes public effort) Other: Other text 4.5 Risk Mitigation 4.5.1 Are measures in place to deter re-identification? * Yes, in place Not in place, but such measures do apply Not applicable Yes Other: Other text 4.5.2 Please describe any re-identification deterrents in place 4.5.3 Are data segmentation practices being used? Yes, being used Not in use, but does apply Not applicable Yes Other: Other text 4.5.4 Is there an explicit governance plan or framework for the effort?

4 Security and Pri	vacv
Use Case 2-1	
Explicit governance plan	Yes
No governance plan, but could	
use one	· · · · · · · · · · · · · · · · · · ·
I don't think governance contributes anything to this	
project	
Other:	
Other text	
4.5.5 Privacy-Preserving	A privacy assessment is performed for each new publicly
Practices	accessible NASA system and tracked in a NASA-wide database.
4.5.6 Do you foresee any	
potential risks from public or	
private open data projects?	
Risks are known.	
Currently no known risks, but it is	
conceivable.	
Not sure	
Unlikely that this will ever be an issue (e.g., no PII, human-agent	Yes
related data or subsystems.)	
Other:	
Other text	
4.6 Provenance	
(Ownership)	
4.6.1 Describe your	
metadata management	
practices	
Yes, we have a metadata	Yes
management system. There is no need for a metadata	·
management system in this use	
case	
It is applicable but we do not	
currently have one. Other:	
Other text	
4.6.2 If a metadata	
management system is present, what measures are	
in place to verify and protect	
its integrity?	
4.6.3 Describe provenance	
as related to	

instrumentation, sensors or	
other devices.	

We have potential machine-tomachine traffic provenance concerns. Endpoint sensors or instruments have signatures periodically updated Using hardware or software methods, we detect and remediate outlier signatures Endpoint signature detection and upstream flow are built into system processing

We rely on third party vendors to manage endpoint integrity

We use a sampling method to verify endpoint integrity

Not a concern at this time

Other:

Yes
Yes

Yes

4 Security and Privacy Use Case 2-1 4.7.2 Describe Point in Time and Other Dependency Issues Some data is valid only within a point in time, Some data is only valid with other, related data is available or applicable, such as the existence of a building, the presence of a weather event, or the active use of a vehicle There are specific events in the application that render certain data obsolete or unusable Point and Time and related Yes dependencies do not apply Other: Other text 4.7.3 Compliance with Secure Data Disposal Requirements We are required to destroy or otherwise dispose of data Does not apply to us Yes Not sure Other: Other text 4.8 Audit and Traceability 4.8.1 Current audit needs * We have third party registrar or Yes other audits, such as for ISO 9001 We have internal enterprise audit Yes requirements Audit is only for system health or other management requirements No audit, not needed or does not apply Other: Other text 4.8.2 Auditing versus Monitoring Yes

We rely on third-party or O.S. Y tools to audit, e.g., Windows or Linux auditing

4 Security and Privacy	
Use Case 2-1	
There are built-in tools for monitoring or logging that are only used for system or application health monitoring	Yes
Monitoring services include logging of role-based access to assets such as PII or other resources	
The same individual(s) in the enterprise are responsible for auditing as for monitoring	
This aspect of our application is still in flux	
Does not apply to our setting	
Other:	
Other text	
4.8.3 System Health Tools	
We rely on system-wide tools for health monitoring	Yes
We built application health tools specifically to address integrity, performance monitoring and related concerns	Yes
There is no need in our setting	
Other:	
Other text	
4.8.4 What events are currently audited? *	
All data access must be audited	
Only selected / protected data must be audited	Yes
Maintenance on user roles must be audited (new users, disabled user, updated roles or permissions)	Yes
Purge and archive events	
Domain-dependent events (e.g., adding a new sensor)	
REST or SOAP events	
Changes in system configuration	Yes
Organizational changes	
External project ownership / management changes	
Requirements are externally set, e.g., by PCI compliance	

4 Security and Pri Use Case 2-1	vacy
Domain-specific events (patient death in a drug trial)	
Other:	
Other text	
4.9 Application Provider Security	
4.9.1 Describe Application Provider Security *	
There is a security mechanism implemented at the application level	
The app provider level is aware of PII or privacy data elements	
The app provider implements audit and logging	
The app provider security relies on framework-level security for its operation	
Does not apply to our application	Yes
Other:	
Other text	
4.10 Framework Provider	
Security	
4.10.1 Describe the	
framework provider security	
Security is implemented at the framework level	
Roles can be defined at the framework level	
The framework level is aware of PII or related sensitive data	
Does not apply in our setting	Yes
Is provided by the Big Data tool	
Other:	
Other text	
4.11 System Health	
4.11.1 Measures to Ensure Availability *	
Deterrents to man-in-the-middle attacks	
Deterrents to denial of service attacks	

4 S	ecurity and Privacy
Use	Case 2-1
	ation, redundancy or other nce measures
Deterr	ents to data corruption,
-	or other critical big data
compo Other:	
Other t	ext
4 1 2	Permitted Use Cases

4.12.1	Describe
Domain-sp	ecific Limitations
on Use	
4.12.2	Paywall
A paywall is in use at some stage	
in the workflow	

Not applicable

1072

5 Classify Use Cases with Tags Use Case 2-1

5.1 DATA: Application Style and Data sharing and acquisition	
Uses Geographical Information Systems?	Yes
Use case involves Internet of Things?	
Data comes from HPC or other simulations?	Yes
Data Fusion important?	Yes
Data is Real time Streaming?	
Data is Batched Streaming (e.g. collected remotely and uploaded every so often)?	Yes
Important Data is in a Permanent Repository (Not streamed)?	Yes
Transient Data important?	Yes
Permanent Data Important?	Yes
Data shared between different applications/users?	Yes
Data largely dedicated to only this use case?	
5.2 DATA: Management and Storage	

5 Classify Use Cases with Tags Use Case 2-1

Yes
Yes
Yes
Yes
Yes
Yes
Yes

5 Classify Use Cases with Tags Use Case 2-1

Yes
Yes
Yes
Yes
Yes

1073

6 Overall Big Data Issues Use Case 2-1

6.1 Other Big Data Issues	Currently, the Variety in Big Data is producing a set of data discovery issues for the end users. Searching for datasets turns out to be different from searching for documents in a variety of subtle, but important, ways.
6.2 User Interface and Mobile Access Issues	
6.3 List Key Features and Related Use Cases	
6.4 Project Future	More data will be stored in the cloud, likely with copies in some cases of reorganized data in order to make them more tractable to data-parallel algorithms. More analysis support will also be offered to users that want to run analyses of data n the cloud.

7 Workflow Proce	esses
Use Case 2-1	
7.1 Please comment on workflow processes	Satellite Data Processing commonly goes through the following processing steps: Level 0 - raw data in files, de-duplicatedLevel 1 - calibrated data with geolocation Level 2 - inferred geophysical measurements, in sensor coordinates Level 3 - geophysical measurements Level 4 - model output (usually done outside EOSDIS)The characteristics of the data, especially their geolocations vary significantly from L0 to L1, and from L2 to L3. The usability to various audiences crosses a significant border between L1 and L2.
7.2 Workflow details for each stage *	
7.2.1 Workflow Details for Stage 1	
Stage 1 Name	Level 0 Processing
Data Source(s)	Satellite downlink station
Nature of Data	Packets of raw data
Software Used	Custom software
Data Analytics	Reordering of packets into time order, deduplication
Infrastructure	Local servers
Percentage of Use Case Effort	
Other Comments	
7.2.2 Workflow Details for Stage 2	
Stage 2 Name	Level 1b Processing
Data Source(s)	EOS Data Operations System (Level 0 processor)
Nature of Data	Files of cleaned-up raw data
Software Used	Instrument-specific calibration codes

sses
Geolocation and calibration of raw data
Multiple local servers
Level 2 Processing
Level 1B processing system
Level 1B geolocated, calibrated data
Scientist-authored physical retrieval code
Transform calibrated data (radiances, waveforms,) into geophysical measurements
Large compute clusters
Level 3 Processing
Level 2 Processor
Geophysical variables in sensor coordinates
Scientist-authored gridding code
Data projection and aggregation over space and/or time
Compute clusters with large amounts of disk space

F.2 Use Case 2-2: Web-Enabled Landsat Data (WELD) Processing

1 Overall Project Description Use Case 2-2		
1.1 Use Case Title *	Web-Enabled Landsat Data (WELD) Processing	
1.2 Use Case Description *	The use case is specific to the part of the project where data is available on the HPC platform and processed through the science workflow. It is a 32-stage processing pipeline that includes two separate science products (Top-of-the-Atmosphere (TOA) reflectances and surface reflectances) as well as QA and visualization components.	
1.3 Use Case Contacts *		
	Andrew Michaelis	
	Author	
	Yes	
	Yes	
1.4 Domain ("Vertical") *	Land use science: image processing	
1.5 Application *	The product of this use case is a dataset of science products of use to the land surface science community that is made freely available by NASA. The dataset is produced through processing of images from the Landsat 4, 5, and 7 satellites.	
1.6 Current Data Analysis Approach *	 >> Compute System: Shared High Performance Computing (HPC) system at NASA Ames Research Center (Pleiades) >> Storage: NASA Earth Exchange (NEX) NFS storage system for read-only data storage (2.5PB), Lustre for read-write access during processing (1PB), tape for near-line storage (50PB) >> Networking: InfiniBand partial hypercube internal interconnect within the HPC system; 1G to 10G connection to external data providers >> Software: NEX science platform – data management, workflow processing, provenance capture; WELD science processing algorithms from South Dakota State University (SDSU), browse visualization, and time-series code; Global Imagery Browse Service (GIBS) data visualization platform; USGS data distribution platform. Custom-built application and libraries built on top of open-source libraries. 	
1.7 Future of Application and Approach *	Processing will be improved with newer and updated algorithms. This process may also be applied to future datasets and processing systems (Landsat 8 and Sentinel-2 satellites, for example)	

1 Overall Project Description

Use Case 2-2

1.8 Actors / Stakeholders	South Dakota State University – science, algorithm development, QA, data browse visualization and distribution framework; NASA Advanced Supercomputing Division at NASA Ames Research Center – data processing at scale; USGS – data source and data distribution; NASA GIBS – native resolution data visualization; NASA HQ and NASA EOSDIS – sponsor.
1.9 Project Goals or Objectives	The WELD products are developed specifically to provide consistent data that can be used to derive land cover as well as geophysical and biophysical products for assessment of surface dynamics and to study Earth system functioning. The WELD products are free and are available via the Internet. The WELD products are processed so that users do not need to apply the equations and spectral calibration coefficients and solar information to convert the Landsat digital numbers to reflectance and brightness temperature, and successive products are defined in the same coordinate system and align precisely, making them simple to use for multi-temporal applications.
1.10 Use Case URL(s)	http://globalmonitoring.sdstate.edu/projects/weldglobal/gweld.html http://globalweld.cr.usgs.gov/ https://nex.nasa.gov http://www.nas.nasa.gov/hecc/resources/pleiades.html https://earthdata.nasa.gov/about/science-system- description/eosdis-components/global-imagery-browse-services-gibs https://worldview.earthdata.nasa.gov/

1078

2 Big Data Characteristics Use Case 2-2

2.1	Data Source	Satellite Earth observation data from Landsat 4, 5, and 7 missions. The data source is remote and centralized – distributed from USGS EROS Center.
2.2	Data Destination	The final data is distributed by USGS EROS Center – a remote centralized data system. It is also available on the NEX platform for further analysis and product development.
2.3	Volume	
Size		30PB of processed data through the pipeline (1PB inputs, 10PB intermediate, 6PB outputs)
Units		Petabytes of data that flow through the processing pipeline
Time	Period	Data was collected over a period of 27 years and is being processed over a period of 5 years

2 Big Data Characteristics Use Case 2-2

Proviso	The data represent the operational time period of 1984 to 2011 for the Landsat 4, 5, and 7 satellites
2.4 Velocity	
Unit of measure	Terabytes processed per day during processing time periods: 150 TB/day
Time Period	24 hours
Proviso	Based on programmatic goals of processing several iterations of the final product over the span of the project. Observed run-time and volumes during processing
2.5 Variety	This use case basically deals with a single dataset.
2.6 Variability	Not clear what the difference is between variability and variety. This use case basically deals with a single dataset.

	3 Big Data Science Use Case 2-2		
3.1 Qua	Veracity and Data lity	This data dealt with in this use case are a high-quality, curated dataset.	
3.2	Visualization	Visualization is not used in this use case per se, but visualization is important in QA processes conducted outside of the use case as well as in the ultimate use by scientists of the product datasets that result from this use case	
3.3	Data Types	structured image data	
3.4	Metadata	Metadata adhere to accepted metadata standards widely used in the earth science imagery field.	
3.5 Gove	Curation and ernance	Data is governed by NASA data release policy; data is referred to by the DOI and the algorithms have been peer-reviewed. The data distribution center and the PI are responsible for science data support.	
3.6	Data Analytics	There are number of analytics processes throughout the processing pipeline. The key analytics is identifying best available pixels for spatio-temporal composition and spatial aggregation processes as a part of the overall QA. The analytics algorithms are custom developed for this use case.	

1079

4.1 Roles	
4.1.1 Identifying Role	PI; Project sponsor (NASA EOSDIS program)
<i>4.1.2 Investigator</i> <i>Affiliations</i>	Andrew Michaelis, NASA, NEX Processing Pipeline Development and Operations David Roy, South Dakota State University, Project PI Hankui Zhang, South Dakota State University, Science Algorithm Development Adam Dosch, South Dakota State University, SDSU operations/data management Lisa Johnson, USGS, Data Distribution Matthew Cechini, Ryan Boller, Kevin Murphy, NASA, GIBS project
4.1.3 Sponsors	NASA EOSDIS project
<i>4.1.4 Declarations of Potential Conflicts of Interest</i>	None
<i>4.1.5 Institutional S/P duties</i>	None
4.1.6 Curation	Joint responsibility of NASA, USGS, and Principal Investigator
4.1.7 Classified Data, Code or Protocols	
Intellectual property protections	Off
Military classifications, e.g., FOUO, or Controlled Classified	Off
Not applicable	Yes
Other:	Off
Other text	
4.1.8 Multiple Investigators Project Leads *	
Only one investigator project lead developer	Off
Multiple team members, but in the same organization	Off
Multiple leads across legal organizational boundaries	Yes
Multinational investigators project leads	Off
Other:	Off
Other text	
<i>4.1.9 Least Privilege Role- based Access</i>	

Use Case 2-2	
Yes, roles are segregated and least privilege is enforced	Off
We do have least privilege and role separation but the admin role(s) may be too all-inclusion	Off
Handled at application provider level	Off
Handled at framework provider level	Off
There is no need for this feature in our application	Off
Could be applicable in production or future versions of our work	Off
Other:	Yes
Other text	Not used
<i>4.1.10 Role-based</i> <i>Access to Data</i> *	
Dataset	Yes
Data record / row	Off
Data element / field	Off
Handled at application provider level	Off
Handled at framework provider level	Off
Other:	Off
Other text	
4.2 Personally Identifiable Information (PII)	
<i>4.2.1 Does the System</i> <i>Maintain PII?</i> *	
Yes, PII is part of this Big Data system	Off
No, and none can be inferred from 3rd party sources	Yes
No, but it is possible that individuals could be identified via third party databases	Off
Other:	Off
Other text	
<i>4.2.2 Describe the PII, if applicable</i>	

Use Case 2-2	
4.2.3 Additional Formal or Informal Protections for PII	
	<u>.</u>
<i>4.2.4 Algorithmic / Statistical Segmentation of</i>	
Human Populations	
Yes, doing segmentation,	Off
possible discrimination issues if	
abused. Please also answer the	
next question. Yes, doing segmentation, but no	Off
foreseeable discrimination	OII
issues.	
Does not apply to this use case	Yes
at all (e.g., no human subject data)	
Other:	Off
Other text	
4.2.5 Protections afforded	Not applicable to this use case.
statistical / deep learning	
discrimination	
4.3 Covenants, Liability,	
Etc.	
4.3.1 Identify any	
Additional Security,	
Compliance, Regulatory	
Requirements *	<u>0</u> (
FTC regulations apply	Off
HHS 45 CFR 46	Off
НІРАА	Off
EU General Data Protection	Off
(Reference: http://bit.ly/1Ta8S1C	
I COPPA	Off
Other Transborder issues	Off
Fair Credit Reporting Act	Off
(Reference: http://bit.ly/1Ta8XSN	
1	
Family Educational Rights and Protection (FERPA)	Off
None apply	Yes
Other:	Off
Other text	

Use case z-z	
<i>4.3.2 Customer Privacy</i> <i>Promises</i>	
Yes, we're making privacy promises to customers or subjects	Off
We are using a notice-and- consent model	Off
Not applicable	Yes
Other:	Off
Other text	
4.4 Ownership, Identity and Distribution	
4.4.1 Publication rights	
Open publication	Off
Proprietary	Off
Traditional publisher rights (e.g., Springer, Elsevier, IEEE)	Off
"Big Science" tools in use	Off
Other:	Yes
Other text	Datasets produced are available to the public with a requirement for appropriate citation when used.
4.4.2 Chain of Trust	None
4.4.3 Delegated Rights	None
4.4.4 Software License Restrictions	None
4.4.5 Results Repository	The datasets produced from this dataset are distributed to the public from repositories at the USGS EROS Center and the NASA EOSDIS program.
4.4.6 Restrictions on Discovery	None
4.4.7 Privacy Notices	
Privacy notices apply	Off
Privacy notices do not apply	Yes
Other:	Off
Other text	
4.4.8 Key Management	
A key management scheme is part of our system	Off
We are using public key infrastructure.	Off

Use Case 2-2	
We do not use key management, but it could have been useful	Off
No readily identifiable use for key management	Yes
Other:	Off
Other text	
4.4.9 Describe and Key Management Practices	
4.4.10 Is an identity framework used?	
A framework is in place. (See next question.)	Off
Not currently using a framework.	Off
There is no perceived need for an identity framework.	Yes
Other:	Off
Other text	
<i>4.4.11 CAC / ECA Cards or Other Enterprise-wide Framework</i>	
Using an externally maintained enterprise-wide identity framework	Off
Could be used, but none are available	Off
Not applicable	Yes
4.4.12 Describe the Identity Framework.	
<i>4.4.13 How is intellectual property protected?</i>	
Login screens advising of IP issues	Off
Employee or team training	Off
Official guidelines limiting access or distribution	Off
Required to track all access to, distribution of digital assets	Off
Does not apply to this effort (e.g., public effort)	Off
Other:	Yes

Other text	Believe there are standards for citation of datasets that apply to use of the datasets from the USGS or NASA repositories.
4.5 Risk Mitigation	
4.5.1 Are measures in place to deter re-identification? *	
Yes, in place	Off
Not in place, but such measures do apply	Off
Not applicable	Yes
Other:	Off
Other text	
<i>4.5.2 Please describe any re-identification deterrents in place</i>	
<i>4.5.3 Are data segmentation practices being used?</i>	
Yes, being used	Off
Not in use, but does apply	Off
Not applicable	Yes
Other:	Off
Other text	
<i>4.5.4 Is there an explicit governance plan or framework for the effort?</i>	
Explicit governance plan	Off
No governance plan, but could use one	Off
I don't think governance contributes anything to this project	Off
Other:	Yes
Other text	Resulting datasets are governed by the data access policies of the USGS and NASA.
4.5.5 Privacy-Preserving Practices	None
<i>4.5.6 Do you foresee any potential risks from public or private open data projects?</i>	
Risks are known.	Off

Use Case 2-2	
Currently no known risks, but it is conceivable.	Off
Not sure	Yes
Unlikely that this will ever be an issue (e.g., no PII, human-agent related data or subsystems.)	Off
Other:	Off
Other text	
4.6 Provenance (Ownership)	
<i>4.6.1 Describe your metadata management practices</i>	
Yes, we have a metadata management system.	Off
There is no need for a metadata management system in this use case	Off
It is applicable but we do not currently have one.	Off
Other:	Yes
Other text	There is no metadata management system within this use case, but the resultant datasets' metadata is managed as NASA EOSDIS datasets.
4.6.2 If a metadata	
 management system is present, what measures are in place to verify and protect its integrity? 4.6.3 Describe provenance as related to instrumentation, sensors or 	
 present, what measures are in place to verify and protect its integrity? 4.6.3 Describe provenance as related to instrumentation, sensors or other devices. We have potential machine-to- machine traffic provenance 	Off
present, what measures are in place to verify and protect its integrity? 4.6.3 Describe provenance as related to instrumentation, sensors or other devices. We have potential machine-to-	Off
present, what measures are in place to verify and protect its integrity?4.6.3 Describe provenance as related to instrumentation, sensors or other devices.We have potential machine-to- machine traffic provenance concerns.Endpoint sensors or instruments have signatures	

Use Case 2-2	
We rely on third party vendors to manage endpoint integrity	Off
We use a sampling method to verify endpoint integrity	Off
Not a concern at this time	Off
Other:	Off
Other text	
4.7 Data Life Cycle	
<i>4.7.1 Describe Archive Processes</i>	
Our application has no separate "archive" process	Off
We offload data using certain criteria to removable media which are taken offline	Off
we use a multi-stage, tiered archive process	Off
We allow for "forgetting" of individual PII on request	Off
Have ability to track individual data elements across all stages of processing, including archive	Off
Additional protections, such as separate encryption, are applied to archival data	Off
Archived data is saved for potential later use by applications or analytics yet to be built	Off
Does not apply to our application	Off
Other:	Yes
Other text	Resultant datasets are not archived per se, but the repositories do have a stewardship responsibility.
<i>4.7.2 Describe Point in Time and Other Dependency Issues</i>	
Some data is valid only within a point in time,	Off
Some data is only valid with other, related data is available or applicable, such as the existence of a building, the	Off

existence of a building, the

presence of a weather event, or the active use of a vehicle

Use Case 2-2	
There are specific events in the application that render certain data obsolete or unusable	Off
Point and Time and related dependencies do not apply	Off
Other:	Yes
Other text	Data are relevant and valid independent of when accessed/used, but all data have a specific date/time/location reference that is part of the metadata.
<i>4.7.3 Compliance with Secure Data Disposal Requirements</i>	
We are required to destroy or otherwise dispose of data	Off
Does not apply to us	Yes
Not sure	Off
Other:	Off
Other text	
4.8 Audit and Traceability	
4.8.1 Current audit needs *	
We have third party registrar or other audits, such as for ISO 9001	Off
We have internal enterprise audit requirements	Off
Audit is only for system health or other management requirements	Off
No audit, not needed or does not apply	Yes
Other:	Off
Other text	
<i>4.8.2 Auditing versus</i> <i>Monitoring</i>	
We rely on third party or O.S. tools to audit, e.g., Windows or Linux auditing	Off
There are built-in tools for monitoring or logging that are only used for system or application health monitoring	Off

Use Case 2-2	
Monitoring services include logging of role-based access to assets such as PII or other resources	Off
The same individual(s) in the enterprise are responsible for auditing as for monitoring	Off
This aspect of our application is still in flux	Off
Does not apply to our setting	Yes
Other:	Off
Other text	
4.8.3 System Health Tools	
We rely on system-wide tools for health monitoring	Off
We built application health tools specifically to address integrity, performance monitoring and related concerns	Off
There is no need in our setting	Off
Other:	Yes
Other text	Systems employed in the use case are operated and maintained by the NASA Advanced Supercomputing Division and the use case staff do not have to deal with system health. Repositories for the resultant data are operated and maintained under the auspices of NASA and the USGS.
4.8.4 What events are currently audited? *	
All data access must be audited	Off
Only selected / protected data must be audited	Off
Maintenance on user roles must be audited (new users, disabled user, updated roles or permissions)	Off
Purge and archive events	Off
Domain-dependent events (e.g., adding a new sensor)	Off
REST or SOAP events	Off
REST of SOAP events	
Changes in system configuration	Off
Changes in system	-

Use Case 2-2	
Requirements are externally set, e.g., by PCI compliance	Off
Domain-specific events (patient death in a drug trial)	Off
Other:	Yes
Other text	None
4.9 Application Provider Security	
4.9.1 Describe Application Provider Security *	
There is a security mechanism implemented at the application level	Off
The app provider level is aware of PII or privacy data elements	Off
The app provider implements audit and logging	Off
The app provider security relies on framework-level security for its operation	Off
Does not apply to our application	Yes
Other:	Off
Other text	
4.10 Framework	
Provider Security	
4.10.1 Describe the framework provider security *	
Security is implemented at the framework level	Off
Roles can be defined at the framework level	Off
The framework level is aware of PII or related sensitive data	Off
Does not apply in our setting	Yes
Is provided by the Big Data tool	Off
Other:	Off
Other text	
4.11 System Health	
4.11.1 Measures to Ensure Availability *	

Deterrents to man-in-the-middle attacks	Off
Deterrents to denial of service attacks	Off
Replication, redundancy or other resilience measures	Off
Deterrents to data corruption, drops or other critical big data components	Off
Other:	Yes
Other text	System resources are provided by the NASA Advanced Supercomputing Division (NAS) for the use case; NAS has responsibility for system availability.
4.12 Permitted Use Cases	
<i>4.12.1 Describe Domain-specific Limitations on Use</i>	None
4.12.2 Paywall	
A paywall is in use at some stage in the workflow	Off
Not applicable	Yes

1081

5 Classify Use Cases with Tags Use Case 2-2

5.1 DATA: Application Style and Data sharing and acquisition

Uses Geographical Information Systems?	Off
Use case involves Internet of Things?	Off
Data comes from HPC or other simulations?	Off
Data Fusion important?	Off
Data is Real time Streaming?	Off
Data is Batched Streaming (e.g. collected remotely and uploaded every so often)?	Yes
Important Data is in a Permanent Repository (Not streamed)?	Off
Transient Data important?	Off
Permanent Data Important?	Yes

5 Classify Use Cases with Tags Use Case 2-2

Use case 2-2	
Data shared between different applications/users?	Yes
Data largely dedicated to only this use case?	Off
5.2 DATA: Management and Storage	
Application data system based on Files?	Yes
Application data system based on Objects?	Off
Uses HDFS style File System?	Off
Uses Wide area File System like Lustre?	Yes
Uses HPC parallel file system like GPFS?	Off
Uses SQL?	Off
Uses NoSQL?	Off
Uses NewSQL?	Off
Uses Graph Database?	Off
5.3 DATA: Describe Other Data Acquisition/ Access/ Sharing/	

Management/ Storage Issues

5.4 ANALYTICS: Data Format and Nature of Algorithm used in Analytics

Data regular?YesData dynamic?Off	
Data dynamic? Off	
-	
Algorithm O(N^2) ? Off	
Basic statistics (regression, moments) used? Off	
Search/Query/Index of application data Important? Off	
Classification of data Important? Yes	
Recommender Engine Used? Off	
Clustering algorithms used? Off	
Alignment algorithms used? Off	
(Deep) Learning algorithms used? Off	
Graph Analytics Used? Off	
5.5 ANALYTICS: Describe Other Data None Analytics Used	
5.6 PROGRAMMING MODEL	

5 Classify Use Cases with Tags Use Case 2-2

Off
Off
Do not have the data to develop this ratio.
None

1082

6 Overall Big Data Issues Use Case 2-2

6.1 Other Big Data Issues

6.2 User Interface and Mobile Access Issues	No mobile access is applicable to this use case.
6.3 List Key Features and Related Use Cases	
6.4 Project Future	Processing will be improved with newer and updated algorithms. This process may also be applied to future datasets and processing systems (Landsat 8 and Sentinel-2 satellites, for example).

1083

7	Workflow	Processes
Us	e Case 2-2	

7.1 Please comment on	The processing for this use case is a 32-stage pipeline. The WELD-
workflow processes	Overview diagram presents a five-stage high-level workflow.
•	Workflow details are not available at this time, but may be
	provided in the future if time allows. A top-level workflow
	diagram is being emailed separately.

7.2 Workflow details for each stage *

7.2.1 Workflow Details for Stage 1

Stage 1 Name
Data Source(s)
Nature of Data
Software Used
Data Analytics
Infrastructure
Percentage of Use Case Effort
Other Comments
7.2.2 Workflow Details for Stage 2
Stage 2 Name
Data Source(s)
Nature of Data
Software Used
Data Analytics
Infrastructure
Percentage of Use Case Effort
Other Comments
7.2.3 Workflow Details for Stage 3
Stage 3 Name
Data Source(s)

Nature of Data	
Software Used	
Data Analytics	
Infrastructure	
Percentage of Use (Case Effort
Other Comments	
7.2.4 Workflow	Details for Stage 4
Stage 4 Name	
Data Source(s)	
Nature of Data	
Software Used	
Data Analytics	
Infrastructure	
Percentage of Use (Case Effort
Other Comments	
7.2.5 Workflow	Details for Stages 5 and any further stages
Stage 5 Name	
Data Source(s)	
Nature of Data	
Software Used	
Data Analytics	
Infrastructure	
Percentage of Use (Case Effort
Other Comments	

F.3 Use Case 2-3: Urban context-aware event 1086 management for Smart Cities – Public safety 1087

1088

1089 1090

1091 1092

1093

1094

1095

OVERALL PROJECT DESCRIPTION

Use Case Title * 1.1

Urban context-aware event management for Smart Cities - Public safety

Use Case Description * 1.2

The real-world events are now being observed by multiple networked streams, where each is complementing the other with his or her characteristics, features, and perspectives. Many of these networked data streams are becoming digitalized, and some are available in public (open data initiative) and available for sense-making.

The networked data streams provide an opportunity for their link identification, similarity, and time dynamics to recognize the evolving patterns in the inter-intra-city/community. The delivered information can help to understand better how cities/communities work (some situations, behavior or influence) and detect events and patterns that can be remedied a broad range of issues affecting the everyday lives of citizens and efficiency of cities. Providing the tools that can make this process easy and accessible to the city/community representatives will potentially impact traffic, event management, disaster management systems, health monitoring systems, air quality, and city/community planning.

Current Solutions:

- Computer(System): Fixed and deployed computing clusters ranging from 10s of nodes to 100s of nodes.
- Storage: Traditional servers
- Networking: Gigabit wired connections, Wireless including WiFi (802.11), Cellular (3g/4g), or • Radio Relay.
- Software: Currently, baseline leverages 1. NLP (several variants); 2. R/Python/Java; 3. • Spark/Kafka; 4. Custom applications and visualization tools
- Big Data Specific Challenges (Gaps): Data that currently exists must be accessible through a • semantically integrated data space. Some data are unstructured which requires significant processing to extract entities and information. Improving analytic and modeling systems that provide reliable and robust statistical estimated using data from multiple sources.
- Big Data Specific Challenges in Mobility: The outputs of this analysis and intelligence can be • transmitted onto or accessed by the city representatives.
- Security & Privacy Requirements: Open data web portals and social networks like Twitter publicly • release their data. Although, data-sources incorporate IoT meta-data, therefore, some policy for security and privacy protection must be implemented as required by various legal statutes.
- Highlight issues for generalizing this use case (e.g., for ref. architecture): Definition of high-level • data schema to incorporate multiple data sources and types providing structured data format. Therefore, it requires integrated complex event processing and event-based methods that will span domains.

Use Case Contacts * 1.3 1124

1125

1123

Name	PI / Author	Primary	
Olivera Kotevska	PI	Yes	
Gilad Kusne	Author	No	

1104

1105

Da	aniel Samarov	Author	No
A	hmed Lbath	Author	No

Domain ("Vertical") * 1.4 1126

1127 Smart Communities and Cities

Application * 1.5 1128

Public Safety, City Awareness, City Events Monitoring 1129

Current Data Analysis Approach * 1.6

- Analytics: Pattern detection, Link analysis, Sentiment analysis, Time-series forecasting •
- Software: R and R Studio •
- Hardware: Laptop Dell Latitude E7440 •

Future of Application and Approach * 1.7

- Analytics: Graph analysis •
- Software: SparkR •
- Hardware: Supercomputer

1.8 Actors / Stakeholders

Decision Makers - To make decision where to allocate resources in order to increase city safety 1139

1140 Policy Makers - To make recommendation for long term decisions to be implemented ti order to increase 1141 city safety based on the results from the analytics

Project Goals or Objectives 1.9

To use advanced methods to analyze complex data streams from socio-technical networks to improve the quality of urban applications.

- Detect events from various network streams •
- Ability of intelligent data integration and structuring in the common format for diverse data • streams
- Relationship analysis between entities in the network •
- Reasoning from varied and complex data streams •
- Trends in sentiment for text data streams •
- Understanding how communication spreads over networks
- Support for visualization

1.10 Use Case URL(s)

We do not have at this point.

1.11 Pictures and Diagrams?

1156 None

1130

1131

1132

1133

1138

1142

1145

1146

1149

1150

1151

1152

1153 1154

BIG DATA CHARACTERISTICS

1158 **1.12 Data Source**

1159 The data sources are distributed for example:

- Police reports for various city situations such as crime and traffic violations. (https://www.data.gov/safety/)
- Web scrapped data for city events such as concerts, festivals, art exhibits, and sport games. (https://www.montgomerycountymd.gov/mcg/calendar.html)
- Social media data and positioning data from different sources. (www.twitter.com)
- Distributed IoT sensors (Physical devices that contain electronics, sensors, actuators and software, and that can collect and exchange data about and in some cases, interact with the physical environment.) such as weather sensors. (https://www.wunderground.com/)
- Demographics reports for each city of interest. (www.census.gov)

1.13 Data Destination

After the data is collected it is saved on the file system - one file per data source.

1171 **1.14 Volume**

Size	Depending on the sensor type and data type, some sensors can produce over a gigabyte of data in the space of hours. Other data is as small as infrequent sensor activations or text messages.
Units	
Time Period	
Proviso	

Size: Quantitative volume of data handled in the use case

Units: What is measured such as "Tweets per year", Total LHC data in petabytes, etc.?

Time Period: Time corresponding to specified size.

Proviso: The criterion (e.g. data gathered by a particular organization) used to get size with units in time period in three fields above

1.15 Velocity

1178

1172

1173

1174

1175

1176

1177

1179 1180

1181

1182

1183

Unit of measure	New records were gathered per week or when available, except for city events when the data was gathered once per month and social media when data was gathered every day.
Time Period	
Proviso	
Unit of Measure: Units of Velocity size given above. What is measured such as "New Tweets gathered per second",	

etc.?

Time Period: Time described and interval such as September 2015; items per minute

Proviso: The criterion (e.g., data gathered by a particular organization) used to get Velocity measure with units in time period in three fields above

1184 **1.16 Variety**

1185 Everything from text files, raw media, imagery, electronic data, human-generated data all in various

1186 formats. Heterogeneous datasets are fused together for analytical use.

1160

1161

1162

1163

1164

1165

1166

1167 1168

1169

1187 **1.17 Variability**

- 1188 Continuous data streams are coming from each source. Sensor interface formats tend to be stable, while
- 1189 the human-based data may be in any format. Much of the data is unstructured. There is no critical
- 1190 variation of data producing speed or runtime characteristics variations.

BIG DATA SCIENCE

1.18 Veracity and Data Quality

- Veracity: Identification and selection of appropriate uncertain and noisy data are possible. The semantic integrity of conceptual meta-data concerning what exactly is measured.
- Data Quality: Data Quality for sensor-generated data is known. Unstructured data quality varies and cannot be controlled.

1.19 Visualization

Displaying in a meaningful way complex data sets using tables, geospatial maps, time-based network graph model, and visualization techniques.

1.20 Data Types

Semi-structured datasets like numeric data (various sensors)

1202 Unstructured datasets like text (e.g., social networks, police reports, digital documents), multimedia1203 (pictures, digital signal data);

1.21 Metadata

There was a lack of metadata description but some of the datasets were easy to understand such as social media and city events.

1.22 Curation and Governance

1.23 Data Analytics

- Pattern recognition of all kind (e.g., event behavior automatic analysis, cultural patterns).
- Classification: event type, classification, using multivariate time series to generate network, content, geographical features and so forth.
- Clustering: per topic, similarity, spatial-temporal, and additional features.
- Text Analytics (sentiment, entity similarity)
- Link Analysis: using similarity and statistical techniques
- Online learning: real-time information analysis.
- Multiview learning: data fusion feature learning
- Anomaly detection: unexpected event behavior
- Visualizations based on patterns, spatial-temporal changes.

GENERAL SECURITY AND PRIVACY 1220

1.24 Classified Data, Code or Protocols 1221

- Intellectual property protections
- Military classifications, e.g., FOUO, or Controlled Classified
- Not applicable
- Creative commons/ open source
- Other:

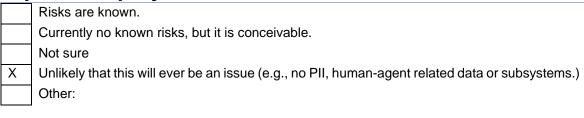
Х

1.25 Does the System Maintain Personally Identifiable 1222 Information (PII)? * 1223

Yes, PII is part of this Big Data system Х No, and none can be inferred from 3rd party sources No, but it is possible that individuals could be identified via third party databases Other:

1.26 Publication rights 1224

Х	Open publication
	Proprietary
	Traditional publisher rights (e.g., Springer, Elsevier, IEEE)
	"Big Science" tools in use
	Other:


1.27 Is there an explicit data governance plan or framework

Х

for the effort?

Explicit data governance plan No data governance plan, but could use one Data governance does not appear to be necessary Other:

1.28 Do you foresee any potential risks from public or private open data projects?

1229 1.29 Current audit needs *

We have third party registrar or other audits, such as for ISO 9001

We have internal enterprise audit requirements

Audit is only for system health or other management requirements

X No audit, not needed or does not apply

Other:

1.30 Under what conditions do you give people access to your data?

The data is publicly available for everyone to use it. We can share the links to the data sources.

1.31 Under what conditions do you give people access to your software?

The software can be shared on request to everyone. Soon would be published on-line.

CLASSIFY USE CASES WITH TAGS

1.32 DATA: Application Style and Data sharing and

acquisition

- Uses Geographical Information Systems? X Use case involves Internet of Things?
- Data comes from HPC or other simulations?
- X Data Fusion important?
- Data is Real time Streaming?
- X Data is Batched Streaming (e.g. collected remotely and uploaded every so often)?
- X Important Data is in a Permanent Repository (Not streamed)?
- Transient Data important?
- X Permanent Data Important?
 - Data shared between different applications/users?
 - Data largely dedicated to only this use case?

1230

1231

1232

1233

1234

1235 1236

1237

1238

1240 **1.33 DATA: Management and Storage**

- X Application data system based on Files?
 - Application data system based on Objects?
 - Uses HDFS style File System?
 - Uses Wide area File System like Lustre?
 - Uses HPC parallel file system like GPFS?
 - Uses SQL?
 - Uses NoSQL?
 - Uses NewSQL?
 - Uses Graph Database?

1.34 DATA: Describe Other Data Acquisition/ Access/ Sharing/ Management/ Storage Issues

1.35 ANALYTICS: Data Format and Nature of Algorithm used in Analytics

Х	Data regular?
	Data dynamic?
	Algorithm O(N^2)?
Х	Basic statistics (regression, moments) used?
	Search/Query/Index of application data Important?
Х	Classification of data Important?
	Recommender Engine Used?
Х	Clustering algorithms used?
	Alignment algorithms used?
	(Deep) Learning algorithms used?
Х	Graph Analytics Used?

1246 1247

1.36 ANALYTICS: Describe Other Data Analytics Used

1241

1242 1243

1244

1.37 PROGRAMMING MODEL 1248

	Pleasingly parallel Structure? Parallel execution over independent data. Called Many Task or high throughput computing. MapReduce with only Map and no Reduce of this type
	Use case NOT Pleasingly Parallel Parallelism involves linkage between tasks. MapReduce (with Map and Reduce) of this type
	Uses Classic MapReduce? such as Hadoop
	Uses Apache Spark or similar Iterative MapReduce?
	Uses Graph processing as in Apache Giraph?
	Uses MPI (HPC Communication) and/or Bulk Synchronous Processing BSP?
Х	Dataflow Programming Model used?
	Workflow or Orchestration software used?
	Python or Scripting front ends used? Maybe used for orchestration
	Shared memory architectures important?
Х	Event-based Programming Model used?
	Agent-based Programming Model used?
	Use case I/O dominated? I/O time > or >> Compute time
	Use case involves little I/O? Compute >> I/O

1.38 Other Programming Model Tags

Web scraping with R

1.39 Please Estimate Ratio I/O Bytes/Flops

1.40 Describe Memory Size or Access issues

1253 1254

OVERALL BIG DATA ISSUES

1.41 Other Big Data Issues

1.42 User Interface and Mobile Access Issues

1.43 List Key Features and Related Use Cases

WORKFLOW PROCESSES

1.44 Please comment on workflow processes

1263 1264

1265 1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1262

1.45 Workflow details for each stage *

Description of table fields below:

- Data Source(s): The origin of data, which could be from instruments, Internet of Things, Web, Surveys, Commercial activity, or from simulations. The source(s) can be distributed, centralized, local, or remote. Often data source at one stage is destination of previous stage with raw data driving first stage.
- Nature of Data: What items are in the data?

Software Used: List software packages used

- Data Analytics: List algorithms and analytics libraries/packages used
- Infrastructure: Compute, Network and Storage used. Note sizes infrastructure -- especially if "big".

Percentage of Use Case Effort: Explain units. Could be clock time elapsed or fraction of compute cycles

Other Comments: Include comments here on items like veracity and variety present in upper level but omitted in summary.

1277 **1.45.1 WORKFLOW DETAILS FOR STAGE 1**

Stage 1 Name	Data Collection
Data Source(s)	Public safety dataset (crime, traffic violations) and census dataset were downloaded manually from the source. Weather, city community events, social media datasets we collected by developed script.
Nature of Data	Text, Numeric, Geo-tagged
Software Used	We developed a script for data collection in R Studio and used rvest, rcurl, twitteR, tm libraries for web scraping.
Data Analytics	
Infrastructure	
Percentage of Use Case Effort	
Other Comments	Datasets were saved in .csv format on file system.

1.45.2

1278

WORKFLOW DETAILS FOR STAGE 2

Stage 2 Name	Data preprocessing
Data Source(s)	Social media, City events (web scraping), Public safety - police reports
Nature of Data	Text, Numeric, Geo-tagged
Software Used	Developed a code for formatting the data entries (date, time, location), selecting the entries of interest from each dataset, and group them by date, time, location.
Data Analytics	
Infrastructure	
Percentage of Use	
Case Effort	
Other Comments	

1279

1.45.3 WORKFLOW DETAILS FOR STAGE 3

Stage 3 Name	Data analysis - Event detection
Data Source(s)	Social media, City events (web scraping), Public safety - police reports
Nature of Data	Text
Software Used	Developed a code for event detection based on topic model, frequent word and associations, classification approach. Used libraries such as wordcloud, hclust, kmeans, topicmodels, randomForest, ctree, e1071.
Data Analytics	
Infrastructure	
Percentage of Use Case Effort	
Other Comments	

1280 **1.45.4**

WORKFLOW DETAILS FOR STAGE 4

Stage 4 Name	Data analysis - Link analysis
Data Source(s)	Social media, City events (web scraping), Public safety - police reports
Nature of Data	Text, Numeric, Geo-tagged
Software Used	Developed a code for event relationship analysis. Libraries used igraph, Rgraphiviz, arules, apriori, arulesViz, cmdscale, Imtest, vars, Hmisc, corrplot.
Data Analytics	
Infrastructure	
Percentage of Use Case Effort	
Other Comments	

1281

1282

1.45.5 Workflow Details for Stages 5 and any further stages

Stage 5 Name	Data analysis - Prediction and Visualization
Data Source(s)	Social media, City events (web scraping), Public safety - police reports
Nature of Data	Text, Numeric, Geo-tagged
Software Used	Developed a code for event prediction and visualization of the results. Libraries used forecast, arima, dtw, ggplot.
Data Analytics	
Infrastructure	
Percentage of Use Case Effort	
Other Comments	

1283 DETAILED SECURITY AND PRIVACY

1284 **1.46 Roles**

- 1285 **1.46.1 IDENTIFYING ROLE**
- 1286 **1.46.2 INVESTIGATOR AFFILIATIONS**
- 1287 **1.46.3 SPONSORS**
- 1288 **1.46.4 DECLARATIONS OF POTENTIAL CONFLICTS OF INTEREST**
- 1289 **1.46.5 INSTITUTIONAL S/P DUTIES**
- 1290 **1.46.6 CURATION**

1.46.7 CLASSIFIED DATA, CODE OR PROTOCOLS Intellectual property protections Intellectual property protections Military classifications, e.g., FOUO, or Controlled Classified Not applicable X Creative commons/ open source Other:

1292 **1.46.8**

MULTIPLE INVESTIGATORS | PROJECT LEADS *

- Only one investigator | project lead | developer
- X Multiple team members, but in the same organization
 - Multiple leads across legal organizational boundaries
 - Multinational investigators | project leads
- Other:

1.46.9

LEAST PRIVILEGE ROLE-BASED ACCESS

- Yes, roles are segregated and least privilege is enforced
- We do have least privilege and role separation but the admin role(s) may be too all-inclusion
- Handled at application provider level
- Handled at framework provider level
- X There is no need for this feature in our application
- X Could be applicable in production or future versions of our work
 - Other:

1291

1294 **1.46.10 ROLE-BASED ACCESS TO DATA ***

- Dataset
- Data record / row
- Data element / field
- Handled at application provider level
- Handled at framework provider level
- X Other: Not applicable at this stage.

1295 **1.47 Personally Identifiable Information (PII)**

1.47.1 DOES THE SYSTEM MAINTAIN PII? *

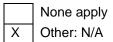
- Yes, PII is part of this Big Data system.
- No, and none can be inferred from third-party sources.
 - No, but it is possible that individuals could be identified via third-party databases. Other:
- 1297 **1.47.2 DESCRIBE THE PII, IF APPLICABLE**
- 1298 **1.47.3** Additional Formal or Informal Protections for PII

1299 **1.47.4** Algorithmic / Statistical Segmentation of Human

POPULATIONS

Х

Yes, doing segmentation, possible discrimination issues if abused. Please also answer the next question.
 Yes, doing segmentation, but no foreseeable discrimination issues.
 X Does not apply to this use case at all (e.g., no human subject data).
 Other:


1301**1.47.5PROTECTIONS AFFORDED STATISTICAL / DEEP LEARNING**1302**DISCRIMINATION**

1303 **1.48 Covenants, Liability, Etc.**

13041.48.1IDENTIFY ANY ADDITIONAL SECURITY, COMPLIANCE, REGULATORY1305REQUIREMENTS *

	FTC regulations apply
	HHS 45 CFR 46
	HIPAA
	EU General Data Protection (Reference: http://bit.ly/1Ta8S1C)
	СОРРА
	Other Transborder issues
	Fair Credit Reporting Act (Reference: http://bit.ly/1Ta8XSN)
	Family Educational Rights and Protection (FERPA)

1300

Х

1306 **1.48.2**

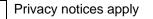
1308

CUSTOMER PRIVACY PROMISES

Yes, we're making privacy promises to customers or subjects. We are using a notice-and-consent model. Not applicable Other:

1307 **1.49 Ownership, Identity and Distribution**

1.49.1 PUBLICATION RIGHTS


Х	Open publication
	Proprietary
	Traditional publisher rights (e.g., Springer, Elsevier, IEEE)
	"Big Science" tools in use
	Other:

- 1309 **1.49.2** Chain of Trust
- 1310 **1.49.3 DELEGATED RIGHTS**

1.49.4 Software License Restrictions

- Open source software and libraries we used.
- The application was tested multiple times on different platforms and the reproducibility was proven.
- 1315 **1.49.5 RESULTS REPOSITORY**
- 1316 **1.49.6 RESTRICTIONS ON DISCOVERY**

1317 **1.49.7 PRIVACY NOTICES**

X Privacy notices do not apply Other:

1318 **1.49.8 Key Ma**

Х

A key management scheme is part of our system.

We are using public key infrastructure.

We do not use key management, but it could have been useful.

No readily identifiable use for key management.

1319 **1.49.9 Describe the Key Management Practices**

Other:

1311 1312

1313

1320 **1.49.10 I**S AN IDENTITY FRAMEWORK USED?

A framework is in place. (See next question.)

- Not currently using a framework.
- X There is no perceived need for an identity framework.

Other:

1.49.11 CAC / ECA Cards or Other Enterprise-wide Framework

Using an externally maintained enterprise-wide identity framework.

Could be used, but none are available.

Not applicable

1322 **1.49.12 DESCRIBE THE IDENTITY FRAMEWORK**

1323 **1.49.13**

Х

1321

3 How is intellectual property protected?

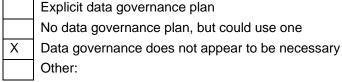
Login screens advising of IP issues
 Employee or team training
 Official guidelines limiting access or distribution
 Required to track all access to, distribution of digital assets
 X Does not apply to this effort (e.g., public effort)
 Other:

1324 **1.50 Risk Mitigation**

1325 **1.50.1**

ARE MEASURES IN PLACE TO DETER RE-IDENTIFICATION? *

Yes, in place Not in place, but such measures do apply Not applicable Other:


1326 **1.50.2 PLEASE DESCRIBE ANY RE-IDENTIFICATION DETERRENTS IN PLACE**

1327 **1.50.3**

ARE DATA SEGMENTATION PRACTICES BEING USED?

- Yes, being used
- Not in use, but does apply
- X Not applicable
 - Other:

13281.50.4Is there an explicit data governance plan or framework for1329THE EFFORT?Surplicit data governance plan

1330 **1.50.5 PRIVACY-PRESERVING PRACTICES**

1331 **1.50.6 D**O YOU FORESEE ANY POTENTIAL RISKS FROM PUBLIC OR PRIVATE 1332 OPEN DATA PROJECTS?

Risks are known.

Currently no known risks, but it is conceivable.

- Not sure
- X Unlikely that this will ever be an issue (e.g., no PII, human-agent related data or subsystems). Other:

1333 **1.51 Provenance (Ownership)**

1334 **1.51.1 DESCRIBE YOUR METADATA MANAGEMENT PRACTICES**

Yes, we have a metadata management system.

- There is no need for a metadata management system in this use case.
- It is applicable but we do not currently have one.
- Other:

Х

1335**1.51.2IF A METADATA MANAGEMENT SYSTEM IS PRESENT, WHAT MEASURES**1336ARE IN PLACE TO VERIFY AND PROTECT ITS INTEGRITY?

1.51.3 DESCRIBE PROVENANCE AS RELATED TO INSTRUMENTATION,

 SENSORS OR OTHER DEVICES.

 We have potential machine-to-machine traffic provenance concerns.

 Endpoint sensors or instruments have signatures periodically updated.

 Using hardware or software methods, we detect and remediate outlier signatures.

 Endpoint signature detection and upstream flow are built into system processing.

 We rely on third-party vendors to manage endpoint integrity.

 We use a sampling method to verify endpoint integrity.

 X
 Not a concern at this time.

 Other:

1339 **1.52 Data Life Cycle**

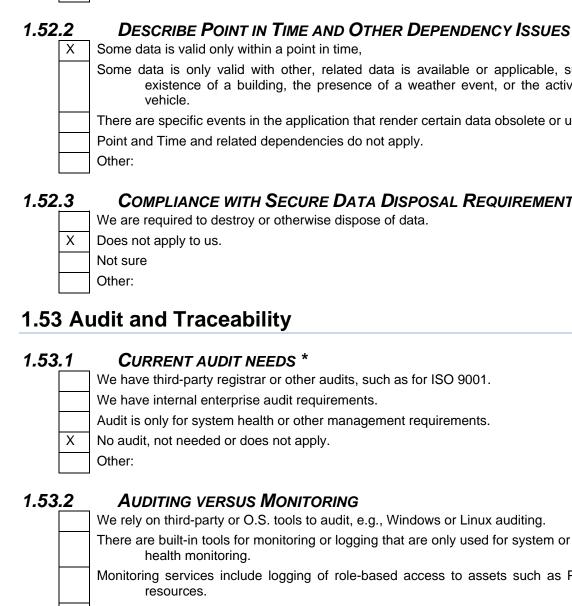
1340 **1.52.1**

52.1 Describe Archive Processes

Our application has no separate "archive" process.

We offload data using certain criteria to removable media which are taken offline.

X We use a multi-stage, tiered archive process.


We allow for "forgetting" of individual PII on request.

Have ability to track individual data elements across all stages of processing, including archive.

Additional protections, such as separate encryption, are applied to archival data.

Archived data is saved for potential later use by applications or analytics yet to be built.

1337

- Х Does not apply to our setting.

1.53.3 SYSTEM HEALTH TOOLS

We rely on system-wide tools for health monitoring. We built application health tools specifically to address integrity, performance monitoring, and related concerns. Х There is no need in our setting. Other:

1341

- Some data is only valid with other, related data is available or applicable, such as the existence of a building, the presence of a weather event, or the active use of a
- There are specific events in the application that render certain data obsolete or unusable.
- Point and Time and related dependencies do not apply.

Does not apply to our application.

Other:

COMPLIANCE WITH SECURE DATA DISPOSAL REQUIREMENTS

We are required to destroy or otherwise dispose of data.

1343

Audit is only for system health or other management requirements.

No audit, not needed or does not apply.

There are built-in tools for monitoring or logging that are only used for system or application

Monitoring services include logging of role-based access to assets such as PII or other

- The same individual(s) in the enterprise are responsible for auditing as for monitoring.
- This aspect of our application is still in flux.

Other:

1347 **1.53.4** What events are currently audited? *

All data access must be audited.

Only selected / protected data must be audited.

Maintenance on user roles must be audited (new users, disabled user, updated roles or permissions).

Purge and archive events.

Domain-dependent events (e.g., adding a new sensor).

REST or SOAP events

Changes in system configuration

Organizational changes

External project ownership / management changes

Requirements are externally set, e.g., by PCI compliance.

Domain-specific events (patient death in a drug trial)

X Other: Do not have at this stage.

1348 **1.54 Application Provider Security**

1349 **1.54.1**

Describe Application Provider Security*

There is a security mechanism implemented at the application level.

The app provider level is aware of PII or privacy data elements.

The app provider implements audit and logging.

The app provider security relies on framework-level security for its operation.

Does not apply to our application.

X Other: Do not have at this stage.

1350 **1.55 Framework Provider Security**

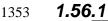
1351 **1.55.1**

Describe the framework provider security *

Security is implemented at the framework level.

Roles can be defined at the framework level.

The framework level is aware of PII or related sensitive data.


Does not apply in our setting.

Is provided by the Big Data tool.

X Other: Do not have at this stage.

1352 **1.56 System Health**

Х

Measures to Ensure Availability *

Deterrents to man-in-the-middle attacks

Deterrents to denial of service attacks

Replication, redundancy or other resilience measures

Deterrents to data corruption, drops or other critical big data components

Other: Do not have at this stage.

1354 **1.57 Permitted Use Cases**

1355 **1.57.1 Describe Domain-specific Limitations on Use**

1356 **1.57.2 PAYWALL**

A paywall is in use at some stage in the workflow. Not applicable

Appendix G: Acronyms 1359

	1360	2D and 3D	two- and three-dimensional
	1361	6D	six-dimensional
	1362	AOD	Analysis Object Data
Ţ	1363	API	application programming interface
SiL	1364	ASDC	Atmospheric Science Data Center
pd	1365	AWS	Amazon Web Services
bli	1366	BC/DR	business continuity and disaster recovery
Ca	1367	BD	Big Data
This publication is	1368	BER	Biological and Environmental Research
<u> </u>	1369	BNL	Brookhaven National Laboratory
a)	1370	CAaaS	climate analytics as a service
ai.	1371	CBSP	Cloud Brokerage Service Provider
ab	1372	CCP	Climate Change Prediction
0	1373	CERES	Clouds and Earth's Radiant Energy System
fre	1374	CERN	European Organization for Nuclear Research
Ô	1375	CES21	California Energy Systems for the 21 st Century
ofo	1376	CESM	Community Earth System Model
ha	1377	CFTC	U.S. Commodity Futures Trading Commission
llG	1378	CIA	confidentiality, integrity, and availability
e fr	1379	CMIP	Coupled Model Intercomparison Project
NO.	1380	CMIP5	Climate Model Intercomparison Project
	1381	CMS	Compact Muon Solenoid
available free of charge from: https://doi.org/10.6028/NIST.SP.15	1382	CNRS	Centre National de la Recherche Scientifique
.:S(1383	COSO	Committee of Sponsoring Organizations
/dd	1384	СР	charge parity
<u>0</u> .0	1385	CPR	Capability Provider Requirements
g	1386	CPU	central processing unit
10	1387	CReSIS	Center for Remote Sensing of Ice Sheets
.6(1388	CRTS	Catalina Real-Time Transient Survey
228	1389	CSP	cloud service provider
Ň	1390	CSS	Catalina Sky Survey proper
5	1391	CV	controlled vocabulary
	1392	DCR	Data Consumer Requirements
Ď	1393	DES	Dark Energy Survey
$\overline{\sigma}$	1394	DFC	DataNet Federation Consortium
500-3r2	1395	DHTC	Distributed High Throughput Computing
မှု	1396	DOE	U.S. Department of Energy
Ň	1397	DOJ	U.S. Department of Justice
	1398	DPO	Data Products Online
	1399	DSR	Data Source Requirements
	1400	EBAF-TOA	Energy Balanced and Filled–Top of Atmosphere
	1401	EC2	Elastic Compute Cloud
	1402	EDT	Enterprise Data Trust
	1403	EHR	electronic health record
	1404	EMR	electronic medical record

1405	EMSO	European Multidisciplinary Seafloor and Water Column Observatory
1406	ENVRI	Common Operations of Environmental Research Infrastructures
1407	ENVRI RM	ENVRI Reference Model
1408	EPOS	European Plate Observing System
1409	ERC	European Research Council
1410	ESFRI	European Strategy Forum on Research Infrastructures
1411	ESG	Earth System Grid
1412	ESGF	Earth System Grid Federation
1413	FDIC	U.S. Federal Deposit Insurance Corporation
T 1413	FI	Financial Industries
2 1415	FLUXNET	AmeriFlux and Flux Tower Network
<u> </u>	FMV	full motion video
<u>a</u> 1417	FNAL	Fermi National Accelerator Laboratory
<u>o</u> 1418	GAAP	U.S. Generally Accepted Accounting Practices
1419	GB	gigabyte
ມ 1420	GCM	general circulation model
ฏิ 1421	GEOS-5	Goddard Earth Observing System version 5
1415 1416 1417 1418 1418 1419 1420 1421 1422 1423	GEWaSC	Genome-Enabled Watershed Simulation Capability
n 1423	GHG	greenhouse gas
free 1424 1425	GISs	geographic information systems
۳ 1425	GMAO.	Global Modeling and Assimilation Office
1426	GPFS	General Parallel File System
charace from: https://doi.org/10.602	GPS	global positioning system
<u> </u>	GPU	graphics processing unit
₱ 1429	GRC	governance, risk management, and compliance
<u>0</u> 1430	GSFC	Goddard Space Flight Center
1431	HDF5	Hierarchical Data Format
1432	HDFS	Hadoop Distributed File System
1433	HPC	high-performance computing
1434	HTC	high-throughput computing
<u> </u>	HVS	hosted virtual server
g 1436	I/O	input output
i 1437	IaaS	Infrastructure as a Service
1438	IAGOS	In-service Aircraft for a Global Observing System
§ 1439	ICA	independent component analysis
	ICD	International Classification of Diseases
8/NIST SP 1440 1441 1442 1443 1444 1444 1445 1445 1445 1446 1447	ICOS	Integrated Carbon Observation System
1442	IMG	Integrated Microbial Genomes
<u> 1443</u>	INPC	Indiana Network for Patient Care
1444	IPCC	Intergovernmental Panel on Climate Change
50 1445	iRODS	Integrated Rule-Oriented Data System
2 1446	ISACA	International Society of Auditors and Computer Analysts
3 1447	isc2	International Security Computer and Systems Auditors
1448	ISO	International Organization for Standardization
1449	ITIL	Information Technology Infrastructure Library
1450	ITL	Information Technology Laboratory
1451	JGI	Joint Genome Institute
1452	KML	Keyhole Markup Language
1453	kWh	kilowatt-hour
1454	LaRC	Langley Research Center
1455	LBNL	Lawrence Berkeley National Laboratory

	1456	LDA	latent Dirichlet allocation
	1457	LHC	Large Hadron Collider
	1458	LMR	Life cycle Management Requirements
	1459	LOB	lines of business
	1460	LPL	Lunar and Planetary Laboratory
	1461	LSST	Large Synoptic Survey Telescope
	1462	MERRA	Modern Era Retrospective Analysis for Research and Applications
	1463	MERRA/AS	MERRA Analytic Services
This	1464	MPI	Message Passing Interface
SII.	1465	MRI	magnetic resonance imaging
hd	1466	NARA	National Archives and Records Administration
blio	1467	NARR	North American Regional Reanalysis
Cat	1468	NaaS	Network as a Service
ior	1469	NASA	National Aeronautics and Space Administration
S.	1470	NBD-PWG	NIST Big Data Public Working Group
a	1471	NBDRA.	NIST Big Data Reference Architecture
publication is available	1472	NCAR	National Center for Atmospheric Research
ab	1473	NCBI	National Center for Biotechnology Information
Ð	1474	NCCS	NASA Center for Climate Simulation
fre	1475	NEO	near-Earth
e O	1476	NERSC	National Energy Research Scientific Computing Center
of	1477	NetCDF	Network Common Data Form
ha	1478	NEX	NASA Earth Exchange
rge	1479	NFS	network file system
e fr	1480	NIKE	NIST Integrated Knowledge Editorial Net
no	1481	NIST	National Institute of Standards and Technology
1:	1482	NLP	natural language processing
lttp	1483	NRT	Near Real Time
S(1484	NSF	National Science Foundation
//dc	1485	ODAS	Ocean Modeling and Data Assimilation
<u>9</u> .0	1486	ODP	Open Distributed Processing
, DJC	1487	OGC	Open Geospatial Consortium
free of charge from: https://doi.org/10.6	1488	OLAP	online analytical processing
	1489	OpenAIRE	Open Access Infrastructure for Research in Europe
028	1490	OR	Other Requirements
28/NIST.SP.1500-3r2	1491	PB	petabyte
IS.	1492	PCA	principal component analysis
	1493	PCAOB	Public Company Accounting and Oversight Board
P	1494	PHO	planetary hazard
5	1495	PID	persistent identification
00	1496	PII	Personally Identifiable Information
μ	1497	PNNL	Pacific Northwest National Laboratory
Ń	1498	PR	Public Relations
	1499	RDBMS	relational database management system
	1500	RDF	Resource Description Framework
	1501	ROI	return on investment
	1502	RPI	Repeat Pass Interferometry
	1503	RPO	Recovery Point Objective
	1504	RTO	Response Time Objective
	1505	SAN	storage area network
	1506	SAR	Synthetic aperture radar

	1507	SAR	Synthetic Aperture Radar
	1508	SDLC/HDLC	Software Development Life Cycle/Hardware Development Life Cycle
	1509	SDN	software-defined networking
	1510	SEC	U.S. Securities and Exchange Commission
	1511	SFA 2.0	Scientific Focus Area 2.0 Science Plan
	1512	SIEM	Security Incident/Event Management
	1513	SIOS	Svalbard Integrated Arctic Earth Observing System
	1514	SOAP	Simple Object Access Protocol
Ļ	1515	SOX	Sarbanes–Oxley Act of 2002
5	1516	SPADE	Support for Provenance Auditing in Distributed Environments
	1517	SPR	Security and Privacy Requirements
2	1518	SSH	Secure Shell
	1519	SSO	Single sign-on capability
) 	1520	tf-idf	term frequency-inverse document frequency
)]	1521	TPR	Transformation Provider Requirements
2	1522	UA	University of Arizona
5	1523	UAVSAR	Unmanned Air Vehicle Synthetic Aperture Radar
2	1524	UI	user interface
	1525	UPS	United Parcel Service
5	1526	UQ	uncertainty quantification
<u>۱</u>	1527	vCDS	virtual Climate Data Server
5	1528	VO	Virtual Observatory
2	1529	VOIP	Voice over IP
2	1530	WALF	Wide Area Large Format Imagery
) ±า	1531	WLCG	Worldwide LHC Computing Grid
5	1532	XBRL	extensible Business Related Markup Language
	1533	XML	Extensible Markup Language
<u>}</u>	1534	ZTF	Zwicky Transient Factory
2	1535		

Appendix H: Bibliography 1536

1537 1538 1539 1540	[1]	W. L. Chang (Co-Chair), N. Grady (Subgroup Co-chair), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 1, Big Data Definitions (NIST SP 1500-1 VERSION 3)," Gaithersburg MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-1r2
1541 1542 1543 1544	[2]	W. L. Chang (Co-Chair), N. Grady (Subgroup Co-chair), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 2, Big Data Taxonomies (NIST SP 1500-2 VERSION 3)," Gaithersburg, MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-2r2
1545 1546 1547 1548	[3]	W. L. Chang (Co-Chair), A. Roy (Subgroup Co-chair), M. Underwood (Subgroup Co-chair), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 4, Big Data Security and Privacy (NIST SP 1500-4 VERSION 3)," Gaithersburg, MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-4r2
1549 1550 1551	[4]	W. L. Chang (Co-Chair), S. Mishra (Editor), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 5, Big Data Architectures White Paper Survey (NIST SP 1500-5 VERSION 1)," Sep. 2015.
1552 1553 1554 1555	[5]	W. L. Chang (Co-Chair), D. Boyd (Subgroup Co-chair), O. Levin (Version 1 Subgroup Co-Chair), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 6, Big Data Reference Architecture (NIST SP 1500-6 VERSION 3)," Gaithersburg MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-6r2
1556 1557 1558 1559 1560	[6]	W. L. Chang (Co-Chair), R. Reinsch (Subgroup Co-chair), D. Boyd (Version 1 Subgroup Co- chair), C. Buffington (Version 1 Subgroup Co-chair), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 7, Big Data Standards Roadmap (NIST SP 1500-7 VERSION 3)," Gaithersburg, MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-7r2
1561 1562 1563 1564	[7]	W. L. Chang (Co-Chair), G. von Laszewski (Editor), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 8, Big Data Reference Architecture Interfaces (NIST SP 1500-9 VERSION 2)," Gaithersburg, MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-9r1
1565 1566 1567 1568	[8]	W. L. Chang (Co-Chair), R. Reinsch (Subgroup Co-chair), C. Austin (Editor), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 9, Adoption and Modernization (NIST SP 1500-10 VERSION 2)," Gaithersburg, MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-10r1
1569 1570	[9]	T. White House Office of Science and Technology Policy, "Big Data is a Big Deal," <i>OSTP Blog</i> , 2012. [Online]. Available: http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal.

1571		[Accessed: 21-Feb-2014]
1572 1573	[10]	Multiple Federal Agencies, "Materials Genome Initiative," <i>The White House, President Barak Obama</i> , 2011. [Online]. Available: https://www.mgi.gov/. [Accessed: 15-Dec-2014]
1574 1575	[11]	Multiple Federal Agencies, "Open Government Initiative," <i>The White House, President Barak Obama</i> , 2013. [Online]. Available: https://www.whitehouse.gov/open
1576 1577 1578 1579	[12]	N. Allmang and J. A. Remshard, "NIKE: Integrating workflow, digital library, and online catalog systems," in <i>Proceedings of the ACM IEEE International Conference on Digital Libraries, JCDL 2004</i> , 2004, p. 399 [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-4944260950&partnerID=40&md5=565b010c0090e6f46b42e6b992996737
1580 1581 1582	[13]	J. Greenberg, K. Jeffery, R. Koskela, and A. Ball, "Metadata Standards Directory WG," <i>Research Data Alliance</i> . [Online]. Available: https://rd-alliance.org/group/metadata-standards-directory-working-group.html. [Accessed: 28-Sep-2014]