NIST Technical Note 1875

Establishment of an International Scale for Instrumented Charpy Testing: comparison between NIST and LNE

Enrico Lucon Stéphane Lefrançois Chris N. McCowan Ray L. Santoyo

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.TN.1875

NIST Technical Note 1875

Establishment of an International Scale for Instrumented Charpy Testing: comparison between NIST and LNE

Enrico Lucon Chris N. McCowan Ray L. Santoyo Applied Chemicals and Materials Division Material Measurement Laboratory

Stéphane Lefrançois LNE, Laboratoire National de métrologie et d'Essais Paris, France

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.TN.1875

April 2015

U.S. Department of Commerce Penny Pritzker, Secretary

National Institute of Standards and Technology Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 1875 Natl. Inst. Stand. Technol. Tech. Note 1875, 40 pages (April 2015) CODEN: NTNOEF

> This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.TN.1875

Abstract

As a contribution to the establishment of an international scale for instrumented Charpy testing, aimed at ensuring that impact forces are obtained more accurately, NIST and *Laboratoire National de métrologie et d'Essais* (LNE, France) have participated in an interlaboratory comparison of instrumented impact tests on reference specimens of different energy levels from seven certified verification batches. In both locations, tests have been performed using nominally identical Charpy machines and the same instrumentation (Charpy striker and acquisition system). The comparison between NIST and LNE test results has revealed statistically significant differences, particularly in terms of absorbed energies and instrumented forces. The reasons for such discrepancies are unclear, although a malfunction of the acquisition system during the tests at LNE and possible differences in the surface finish of the machine anvils and supports in the two labs are possible contributing factors.

Keywords

Absorbed energy; instrumented Charpy testing; instrumented forces; interlaboratory comparison; lateral expansion; LNE; NIST; reference Charpy specimens; surface finish.

Table of Contents

Abstractiii
Keywordsiii
Table of Contents iv
1. Introduction
2. Description of the technical program
2.1 Materials and specimens
2.2 Test machines
2.3 Instrumented striker and acquisition system
3. Test results
3.1 NIST force verification specimens (LL-103 and HH-103)
3.1.1 Statistical analyses of the differences between NIST and LNE
3.2 NIST certified reference specimens (LL-136 and HH-140) 11
3.2.1 Statistical analyses of the differences between NIST and LNE
3.2 LNE certified reference specimens (1AD, 5AB, and 9E)
3.3.1 Statistical analyses of the differences between NIST and LNE
4. Discussion
4.1 Instrumented parameters
4.2 Absorbed energy
4.3 Lateral expansion
5. Conclusions
References

1. Introduction

Even though the Charpy impact test has already celebrated its 100th anniversary [1,2], it is still widely used in laboratories and industries all over the world to obtain information on the impact toughness of materials.

The Charpy test method was first standardized by the American Society for Testing and Materials (ASTM) in 1933 [3], followed by an International Organization for Standardization (ISO) standard published in 1983 [4].

Even though instrumented impact testing is often considered to be a relatively recent technical development of Charpy testing, the earliest known paper on the topic actually predates the first pendulum test machine publication by one year [5]. This type of test started to gain popularity in the technical community in the early 1920's, when it was considered a sort of laboratory curiosity. The first review of instrumented impact methods was published in 1926 [6], but it was during the 1960's that the volume of work on instrumented impact testing started to increase drastically.

The first attempt to standardize instrumented impact testing dates back to the 1970's, when an ASTM Technical Subcommittee was formed with the objective of producing a test method for measuring the dynamic fracture toughness of fatigue precracked Charpy specimens. This work was later abandoned, and it was only in the late 1990's that ISO started work on a test standard for instrumented impact testing. This standard (ISO 14556) was finally published in 2000 [7], and was later followed by the first edition of ASTM E2298, published in 2009 [8].

Although instrumented Charpy tests are routinely performed in many laboratories around the world and international standards are now available for the execution of the tests and the analysis of the results, there remains a need to ensure that impact forces are obtained more accurately. To accomplish this, an international scale based on SI units needs to be established to reduce bias between National Metrology Institutes (NMIs).

To this regard, during the annual meeting of ISO/TC 164 SC4 (*Mechanical Testing of Metals, Toughness Testing -- Fracture, Pendulum, Tear*) held in Paris France in 2011, multiple intercomparisons of instrumented Charpy tests between NMIs were discussed and proposed as a means to reduce bias between National Institutes.

The first step of this activity was an interlaboratory comparison of instrumented Charpy test results between NIST and the Brazilian National Institute of Metrology, Quality and Technology (Inmetro). This exercise was conducted in 2012-2013, and consisted of testing NIST reference specimens of low and high energy on nominally identical¹ impact machines available at NIST and Inmetro, equipped with the same instrumented striker. Tests were performed in four stages, two at NIST and two at Inmetro, over a period spanning from August 2012 to February 2013. NIST acted as the Pilot Laboratory for this Supplementary Comparison among the SIM.MWG7 (Inter-American Metrology Institutes - Technical Committee of Mass and Related Quantity-Working Group of Force 7), in cooperation with Inmetro for the development and the planning of this interlaboratory comparison. The results of this activity have been published jointly by NIST and Inmetro in the form of a Technical Report [9].

¹ By "nominally identical", we mean here that the two machines are from the same manufacturer, correspond to the same model, and have the same potential energy (capacity) and impact velocity.

The following stage of the project consisted in a similar interlaboratory comparison of instrumented Charpy test results between NIST and the *Laboratoire National de métrologie et d'Essais* (LNE, France). The scope of the comparison was expanded to include tests on reference specimens produced by both institutes at different absorbed energy levels, as well as instrumented and non-instrumented impact tests. The experimental activity was conducted on two nominally identical pendulum impact machines, one operated by NIST Boulder, CO (USA) and the other by LNE Trappes (France), equipped with the same instrumented striker. Signal acquisition was accomplished by means of the same instrumentation. The complete results of this activity are provided in this document.

2. Description of the technical program

2.1 Materials and specimens

Both NIST and LNE produce and sell certified reference Charpy specimens for the indirect verification of impact pendulum machines, in accordance with ASTM E23 and ISO 148 respectively.

NIST certified reference specimens cover three absorbed energy (*KV*) levels at -40 °C: low energy (≈ 15 J), high energy (≈ 100 J), and super-high energy (≈ 200 J). LNE certified reference Charpy specimens cover five absorbed energy levels at 20 °C: low energy (≈ 25 J), medium energy (≈ 80 J), high energy (≈ 120 J and ≈ 160 J), and super high energy (≈ 200 J).

Within this intercomparison between NIST and LNE, full-size Charpy specimens from the following reference lots have been tested (expanded uncertainties are also provided):

- NIST LL-103 (low energy, certified $KV = 15.3 \text{ J} \pm 0.1 \text{ J}$ at -40 °C and 18.2 J $\pm 0.1 \text{ J}$ at 21 °C)
- NIST HH-103 (high energy, $KV = 97.5 \text{ J} \pm 0.6 \text{ J}$ at -40 °C and 105.3 J $\pm 0.6 \text{ J}$ at 21 °C)
- NIST LL-136 (low energy, certified $KV = 17.1 \text{ J} \pm 0.1 \text{ J}$ at -40 °C)
- NIST HH-140 (high energy, certified $KV = 97.6 \text{ J} \pm 0.6 \text{ J}$ at -40 °C)
- LNE 1AD (certified $KV = 29.7 \text{ J} \pm 0.9 \text{ J}$ at 20 °C)
- LNE 5AB (certified $KV = 131.9 \text{ J} \pm 3.6 \text{ J}$ at 20 °C)
- LNE 9E (certified $KV = 199.1 \text{ J} \pm 4.0 \text{ J}$ at 20 °C).

Note that lots LL-103 and HH-103 (force verification specimens) have also been certified at NIST for the dynamic verification of instrumented strikers by means of an international round-robin exercise [10]. Their certified values of maximum force, F_m , at 21 °C are (expanded uncertainties are also provided):

- LL-103 F_m = 33.00 kN ± 1.86 kN
- HH-103 $F_m = 24.06$ kN ± 0.07 kN.

A total of 140 Charpy tests (70 instrumented and 70 non-instrumented) have been performed. The complete test matrix, organized in chronological fashion, is provided in Table 1.

2.2 Test machines

Two nominally identical impact pendulum machines have been used for this exercise. Both machines had the following characteristics:

- potential energy (machine capacity) = 358.63 J
- impact velocity = 5.13 m/s.

The most notable difference is the angle of taper of the anvils. The NIST machine had an angle of 10° in accordance with ASTM E23-12c, whereas the machine at LNE had an angle of 11° , which satisfies the requirements of ISO 148-2:2008 [10].

Test	Test date	Specimen	Number	Type of test
location	I est uate	lot/batch	of tests	i ype of test
		LL-103	3	
NIST	May 13 2014	HH-103	3	
	May 15, 2014	LL-136	5	
		HH-140	5	
		LL-103	3	
		HH-103	3	
		LL-136	5	Instrumented
	May 20, 2014	HH-140	5	
		1AD	5	
		5AB	5	
LNE		9E	5	
LINE		LL-103	2	
		HH-103	2	
	May 21, 2014	LL-136	10	
		HH-140	10	
		1AD	5	Non-instrumented
		5AB	5	
		9E	5	
		LL-103	2	
		HH-103	2	
	June 3, 2014	1AD	5	Instrumented
		5AB	5	
NICT		9E	5	
11151		LL-136	10	
		HH-140	10	
	June 4, 2014	1AD	5	Non-instrumented
		5AB	5	
		9E	5	

Table 1 - Test matrix of the interlaboratory comparison between NIST and LNE.

2.3 Instrumented striker and acquisition system

The same instrumented striker and data acquisition system was used for all Charpy tests. This striker, designated JS-1, had a radius of the striking edge equal to 8 mm, in accordance with ASTM E23-12c. The striker was instrumented with strain-gages in a "left-right" configuration with respect to the direction of impact².

² The other common design for an instrumented striker is the so-called "top-bottom" configuration.

Before starting the intercomparison exercise, the striker had been statically calibrated at NIST using a universal testing machine. The results of the striker calibration (applied force vs. striker output) are shown in Figure 1.

The acquisition system used for the instrumented impact tests consisted of a dynamic signal conditioner and amplifier, coupled with an analog-to-digital converter. The sampling rate used ranged from 500 kHz to 1MHz.

The initial plan for the intercomparison exercise was to perform all tests as instrumented. However, during the testing phase at LNE the acquisition system started to malfunction, and consequently half of the tests conducted in this program were performed without instrumentation (see Table 1).

Figure 1 - Static calibration of the 8-mm instrumented striker used for this intercomparison.

3. Test results

3.1 NIST force verification specimens (LL-103 and HH-103)

The individual test results obtained at NIST and LNE on LL-103 and HH-103 are presented in Table 2 and Table 3, respectively. In the tables, the following parameters are reported:

- force at general yield, F_{gy} ;
- elastic compliance³, C_{el} ;
- maximum force, F_m ;
- absorbed energy calculated under the instrumented test record, W_t ;
- absorbed energy provided by the machine encoder, *KV*;
- ratio KV/W_t ;
- lateral expansion⁴, LE.

For each parameter average values, standard deviations and coefficients of variation⁵ (CV) are reported for each individual test day and considering all tests performed in one location.

Charpy	Lab	Specimen	F _{gy}	C _{el}	F _m	Wt	KV	KV /W	LE
lot	Lau	id	(kN)	(mm/kN)	(kN)	(L)	(L)	κν/νν _t	(mm)
		96	25.99	0.019	34.02	20.17	18.67	0.926	0.047
		420	27.02	0.020	33.39	19.91	18.76	0.942	0.040
	NIST (5/13/14)	938	26.02	0.018	33.70	21.13	19.89	0.941	0.055
		Average	26.34	0.019	33.70	20.40	19.33	0.942	0.048
		σ	0.586	7.00E-04	0.315	0.643	0.680	0.009	0.008
		CV, %	2.23	3.65	0.93	3.15	3.52	0.99	15.80
		186	31.71	0.021	36.01	22.86	20.61	0.902	0.066
		153	28.57	0.023	36.83	21.90	20.17	0.921	0.062
	LNE	747	29.49	0.021	39.89	24.12	20.85	0.864	0.106
	(5/20/14)	Average	29.92	0.022	37.58	22.96	20.54	0.896	0.078
		σ	1.614	1.01E-03	2.045	1.113	0.345	0.029	0.024
		CV, %	5.39	4.71	5.44	4.85	1.68	3.21	31.19
		237	30.67	0.021	34.05	21.81	19.04	0.873	0.076
11-103	INC	1162	29.82	0.021	36.53	23.83	20.93	0.878	0.105
LL 105	(5/21/14)	Average	30.25	0.021	35.29	22.82	19.99	0.876	0.091
		σ	0.601	6.51E-04	1.754	1.428	1.336	0.004	0.021
		CV, %	1.99	3.10	4.97	6.26	6.69	0.43	22.66
		639	20.25	0.037	23.98	15.31	19.89	1.299	0.052
	NIST	1144	20.31	0.032	21.36	18.91	18.67	0.987	0.044
	(6/3/14)	Average	20.28	0.034	22.67	17.11	19.28	1.143	0.048
	(0, 3, 14)	σ	0.042	4.04E-03	1.853	2.546	0.863	0.221	0.006
		CV, %	0.21	11.72	8.17	14.88	4.47	19.29	11.79
	NIST	Average	23.92	0.025	29.29	19.09	19.18	1.019	0.048
	(all)	σ	3.347	8.63E-03	6.118	2.254	0.653	0.158	0.006
	(un)	CV, %	13.99	34.16	20.89	11.81	3.40	15.52	12.66
	INF	Average	30.05	0.021	36.66	22.90	20.32	0.888	0.083
	(all)	σ	1.193	8.44E-04	2.104	1.066	0.774	0.023	0.021
	()	CV, %	3.97	3.96	5.74	4.65	3.81	2.61	25.50

Table 2 - Results of the tests performed on LL-103.

³ The elastic compliance was obtained by visually selecting the force oscillations belonging to the initial linear portion of the force-displacement curve.

⁴ Note that all lateral expansion measurements, on specimens tested both at NIST and LNE, were executed at NIST by the same operator.

⁵ The coefficient of variation is obtained, in percent, by dividing the standard deviation by the average value.

Charny		Specimen	F	C.	F	14/	κv		IE
lot	Lab	id id	/ gy (LANI)	(mm/kNI)	/m (LNI)	(I)	(1)	KV/W _t	(mm)
101		10 114	(KIN)	(IIIII/KIN)	(KIN)	(J)	(J)	0.902	(1111)
		114	23.06	0.019	27.93	122.47	109.30	0.892	1.319
		4/3	22.33	0.023	28.24	126.28	114.14	0.904	1.294
	NIST (5/13/14)	854	22.44	0.020	27.85	122.76	110.25	0.898	1.223
		Average	22.61	0.021	28.01	123.84	111.23	0.901	1.259
		σ	0.394	1.87E-03	0.206	2.121	2.565	0.006	0.050
		CV, %	1.74	8.94	0.74	1.71	2.31	0.63	3.96
		453	21.25	0.023	29.48	121.75	106.43	0.874	1.329
		988	21.66	0.023	28.96	119.46	105.44	0.883	1.293
	LNE	1058	21.09	0.024	29.56	122.05	112.35	0.921	1.425
	(5/20/14)	Average	21.33	0.023	29.33	121.09	108.07	0.892	1.349
		σ	0.294	3.09E-04	0.326	1.417	3.737	0.025	0.068
		CV, %	1.38	1.32	1.11	1.17	3.46	2.77	5.06
		525	23.85	0.019	28.69	124.90	105.26	0.843	1.286
1111 102	LNE (5/21/14)	244	23.85	0.022	28.90	128.73	109.30	0.849	1.375
HH-103		Average	23.85	0.020	28.80	126.82	107.28	0.846	1.331
		σ	0.000	2.11E-03	0.148	2.708	2.857	0.004	0.063
		CV, %	0.00	10.30	0.52	2.14	2.66	0.53	4.73
		942	16.13	0.034	24.58	130.65	106.56	0.816	1.048
		1078	15.70	0.044	23.42	121.16	115.08	0.950	1.374
		Average	15.92	0.039	24.00	125.91	110.82	0.883	1.211
	(6/3/14)	σ	0.304	7.34E-03	0.820	6.710	6.025	0.095	0.231
		CV, %	1.91	18.75	3.42	5.33	5.44	10.75	19.04
		Average	19.93	0.028	26.40	124.66	111.07	0.892	1.252
	NIST	σ	3.681	1.07E-02	2.237	3.846	3.523	0.048	0.126
	(all)	CV, %	18.47	38.06	8.47	3.08	3.17	5.42	10.07
		Average	22.34	0.022	29.12	123.38	107.76	0.874	1.342
	LNE	σ	1.394	1.89E-03	0.381	3.561	3.035	0.031	0.058
	(all)	CV, %	6.24	8.55	1.31	2.89	2.82	3.54	4.36

Table 3 - Results of the tests performed on HH-103.

The average values of absorbed energy (*KV*), lateral expansion (*LE*) and maximum force (*F_m*) obtained in the four testing rounds are compared in Figure 2 to Figure 6. For absorbed energy, the figures also indicate the certified values and the ASTM acceptability limits corresponding to \pm 1.4 J for LL-103 and \pm 5 % for HH-103. For maximum force values, certified values and expanded uncertainties are indicated. We observe that:

- *KV* average values for NIST tests are lower than LNE averages for LL-103, and higher for HH-103;
- the trends shown by lateral expansion measurements are consistent with those for *KV* for LL-103 (NIST values lower than LNE), but not for HH-103;
- F_m average values for NIST tests are lower than for LNE tests for both LL-103 and HH-103;
- regarding absorbed energy, NIST results are acceptable (*i.e.*, within ± 1.4 J of the certified value) for LL-103 but slightly too high for HH-103; LNE results are too high for LL-103 and acceptable for HH-103;
- regarding maximum force, only the LL-103 results from the first NIST round and the HH-103 results from the second round are within the expanded uncertainties, while all the remaining data are too high;
- a significant decrease in F_m for both LL-103 (-33 %) and HH-103 (-14 %) is observed between the first NIST testing round (May 13th, 2014) and the second NIST testing round (June 3rd, 2014). This should be attributed to the questionable operation of the amplifier. A comparison between selected LL-103 test records from the NIST and LNE testing rounds is presented in Figure 7.

Figure 2 - Average values of absorbed energy KV for LL-103. Dashed line and dotted lines indicate respectively certified value and bounds of $\pm 1.4 J$ (acceptability limits according to ASTM E23).

Figure 3 - Average values of absorbed energy KV for HH-103. Dashed line and dotted lines indicate respectively certified value and bounds of ± 5 % (acceptability limits according to ASTM E23).

Figure 4 - Average values of lateral expansion (LE) for LL-103.

Figure 5 - Average values of lateral expansion (LE) for HH-103.

Figure 6 - Average values of maximum force F_m for LL-103 and HH-103. Dashed lines and dotted lines indicate respectively certified values and bounds of the expanded uncertainty range.

Figure 7 – *Comparison between selected LL-103 test records from NIST and LNE testing rounds (NIST, 1st round: specimen 938; LNE, 1st round: specimen 186; LNE, 2nd round: specimen 237; NIST, 2nd round: specimen 639).*

3.1.1 Statistical analyses of the differences between NIST and LNE

To investigate whether the observed differences between the results obtained at NIST and at LNE are statistically significant, we have applied Student's unpaired two-sample *t*-test. This is a statistical hypothesis test which is used to determine if two independent and identically distributed sets of data are significantly different from each other.

Before the *t*-test, another statistical test (*F*-test) was performed in order to establish whether the two data sets have equal or unequal variances. The method used for calculation of the *t* parameter depends on the result of the *F*-test (equal variances: homoscedastic *t*-test; unequal variances: heteroscedastic *t*-test) [11].

The results of the statistical tests on KV, F_m and LE are presented in Table 4, Table 5, and Table 6 respectively. If the calculated value of F or t is smaller than the corresponding critical value, variances are not statistically different (*F*-test) or means are not statistically different (*t*-test) at a confidence level of 95 %. Result cells are color coded depending on the outcome of the *F*- or *t*-test.

Lot	Statistical test	Test location	Mean (J)	Variance (J)	Calculated value	Critical value	Result	
	E tost	NIST	19.18	0.43	E = 1.407	E = 6299	T7 · · · · · · · · · · · · · · · · · · ·	
TT 102	r-test	LNE	20.32	0.60	$\Gamma = 1.407$	Γ crit = 0.388	$\Gamma \operatorname{crit} = 0.300$	variances <u>are not</u> statistically afferent
LL-103	t tost	NIST	19.18	0.43	t = 2.526	$t_{\rm crit} = 2.306$	Means <u>are</u> statistically different	
	<i>i</i> -test	LNE	20.32	0.60				
	E tost	NIST	111.07	12.41	E 1247	E (200	Variances and not statistically different	
F-test	I'-test	LNE	107.76	9.21	I' = 1.347	$T_{\rm crit} = 0.300$	variances <u>are not</u> statistically afferent	
HH-103 –	t tost	NIST	111.07	12.41	t = 1 502	t = 2.206	Magna and not statistically different	
	<i>t</i> -test	LNE	107.76	9.21	l = 1.392	$l_{\rm crit} = 2.300$	Means <u>are not</u> statistically different	

Table 4 - Statistical analyses results on KV results from LL-103 and HH-103.

Lot	Statistical test	Test location	Mean (kN)	Variance (kN)	Calculated value	Critical value	Result	
LL-103	F-test	NIST	29.29	37.43	F = 9.452	E = 6299	Variances and statistically different	
		LNE	36.66	4.43	T = 0.432	$T \operatorname{crit} = 0.388$	variances <u>are</u> statistically afferent	
	<i>t</i> -test	NIST	29.29	37.43	t = 2.548	$t_{\rm crit} = 2.571$	Magne are not statistically different	
		LNE	36.66	4.43			means <u>are not</u> statistically aggerent	
	E test	NIST	26.40	5.01	E = 24.207	$F_{\rm crit} = 6.388$	Variances and statistically different	
HH-103	T-test	LNE	29.12	0.15	T = 54.577		variances <u>are</u> statistically afferent	
	t tost	NIST	26.40	5.01	t = 2.674	t = 2.776	Magne are not statistically different	
	<i>t</i> -test	LNE	29.12	0.15	i = 2.074	$l_{\rm crit} = 2.770$	Means <u>are not</u> statistically different	

Table 5 - Statistical analyses results on F_m results from LL-103 and HH-103.

Table 6 - Statistical analyses results on LE results from LL-103 and HH-103.

Lot	Statistical test	Test location	Mean (mm)	Variance (mm)	Calculated value	Critical value	Result	
LL-103 <i>F</i> -test <i>t</i> -test	E test	NIST	0.048	3.63E-05	E = 12.242	E = 6299	Variance and distinguity life	
	LNE	0.083	4.48E-04	T = 12.342	$T \operatorname{crit} = 0.388$	variances <u>are</u> sidfistically different		
	t-test	NIST	0.048	3.63E-05	t = 3.597	$t_{\rm crit} = 2.571$	Means <u>are</u> statistically different	
		LNE	0.083	4.48E-04				
	E tost	NIST	1.252	0.0159	F = 4.648	$F_{\rm crit} = 6.388$	Variances and not statistically different	
TTT 102	<i>F</i> -test	LNE	1.342	0.0034			Variances <u>are not</u> statistically afferent	
HH-103	t tost	NIST	1.252	0.0159	t = 1 118	t = 2.206	Maans are not statistically different	
	<i>t</i> -test	LNE	1.342	0.0034	l = 1.440	$t_{\rm crit} = 2.306$	Means <u>are not</u> statistically different	

While variances were found to be sometimes equal and sometimes unequal among the different data sets, the *t*-tests performed showed statistically significant differences between NIST and LNE for LL-103.

3.2 NIST certified reference specimens (LL-136 and HH-140)

The individual test results obtained at NIST and LNE on LL-136 and HH-140 are presented in Table 7 and Table 8, respectively. For each parameter average values, standard deviations and coefficients of variation (CV) are reported for each individual test day and considering all tests performed in one location. Note that tests performed in the first round at NIST and LNE were instrumented, while tests from the second round in both locations were non-instrumented.

Charpy		Specimen	Fgy	C _{el}	F _m	Wt	KV		LE
lot	Lab	id	(kN)	(mm/kN)	(kN)	(L)	(L)	KV/W _t	(mm)
		857	31.56	0.012	34.82	24.10	22.24	0.923	0.127
		1023	31.77	0.010	34.82	19.80	0.882	0.087	
		1030	31.08	0.013	34.79	22.21	20.58	0.927	0.111
	NIST (5/13/14)	1193	33.63	0.013	34.64	22.80	20.84	0.914	0.125
		2265	33.47 0.009		35.05	21.86	19.89	0.910	0.041
		Average	32.30 0.011		34.82	22.68	20.28	0.908	0.091
		σ	1.168	1.77E-03	0.147	0.863	0.983	0.018	0.036
		CV, %	3.62	15.52	0.42	3.80	4.85	1.94	39.27
		706	21.28	0.020	38.67	25.29	23.98	0.948	0.076
		709	24.63	0.024	37.87	24.28	22.13	0.911	0.099
		1050	19.05	0.019	37.99	24.24	21.54	0.889	0.128
	LNE	1114	24.61	0.020	36.22	24.33	22.06	0.907	0.176
	(5/20/14)	1867	22.82	0.023	37.99	25.10	23.31	0.929	0.056
		Average	22.48	0.021	37.75	24.65	22.60	0.917	0.107
		σ	2.371	2.38E-03	0.911	0.505	1.006	0.023	0.047
		CV, %	10.55	11.19	2.41	2.05	4.45	2.47	43.91
		782					21.14		0.217
		808					23.60		0.145
		828					23.67		0.102
		909				24.30		0.107	
		1126					22.09		0.153
		2116	NON	-INSTF		ITED	23.33		0.130
	LINE	2180					21.94		0.117
11-136	(5/21/14)	2459		TE	STS		24.43		0.128
LL-130		2498					22.32		0.120
		2623				20.85		0.117	
		Average				22.77		0.134	
		σ				1.274		0.033	
		CV, %					5.60		24.89
		1033					19.98		0.098
		947					23.38		0.068
		384					21.55		0.099
		2175					18.85		0.098
		2143					19.63		0.088
	NIST	1203	NON	-INSTF	RUMEN	ITED	20.59		0.078
	(6/4/14)	2177					20.85		0.129
	(0, -, 1-)	760			513		21.11		0.105
		997					19.55		0.113
		847					22.68		0.112
		Average					20.82		0.099
		σ					1.426		0.018
		CV, %					6.85		17.93
	LNE					Average	22.71		0.125
	(all)					σ	1.157		0.039
	()					CV, %	5.09		31.15
	NIST					Average	20.77		0.099
	(all)					σ	1.260		0.024
	· · /					CV, %	6.07		24.15

Table 7 - Results of the tests performed on LL-136.

Charmen		C	г	C	r	147	10.1		15
Charpy	Lab	Specimen	г _{gy}	C el	r _m	vv _t	ĸv	κν/w₊	LE
lot		id	(kN)	(mm/kN)	(kN)	(kN) (J)			(mm)
		552	24.54	0.010	28.32	118.58	101.81	0.859	1.323
		553	25.01	0.009	28.50	118.86	101.62	0.855	1.384
		556	23.86	0.011	28.24	121.82	106.82	0.877	1.611
	NIST (5/13/14)	557	24.00	0.009	28.10	119.68	104.64	0.874	1.433
		558	24.40	0.009	28.20	115.99	100.20	0.864	1.394
		Average	24.36	0.010	28.27	118.99	103.02	0.868	1.456
		σ	0.457	1.13E-03	0.150	2.102	2.666	0.010	0.109
		CV, %	1.88	11.84	0.53	1.77	2.59	1.11	7.50
		546	22.70	0.026	29.89	124.50	104.64	0.840	1.358
		547	22.20	0.030	29.24	119.58	103.03	0.862	1.294
		548	23.70	0.025	29.94	120.25	106.68	0.887	1.216
	LNE	549	22.63	0.023	29.21	120.44	101.95	0.846	1.305
	(5/20/14)	960	21.22	0.031	29.18	122.68	109.94	0.896	1.405
		Average	22.49	0.027	29.49	121.49	105.25	0.866	1.316
		σ	0.898	3.50E-03	0.387	2.047	3.171	0.025	0.071
		CV, %	3.99	12.97	1.31	1.69	3.01	2.83	5.41
		541					108.98		1.362
		542					109.18		1.387
		543				105.78		1.402	
		544				N/A		1.331	
		545					107.69		1.426
		955	NON	-INSTR		ITED	110.26		1.565
		956					100.56		1.298
HH-140	(5/21/14)	957		TES	STS		109.94		1.433
111-140		958					105.00		1.336
		959					104.80		1.412
		Average				106.91		1.395	
		σ				3.165		0.074	
		CV, %				2.96		5.33	
		945				102.98		1.337	
		944					104.97		1.343
		943					101.28		1.248
		942					101.66		1.298
		941					103.65		1.381
		551	NON	INSTR		ITED	100.52		1.219
	NIST	560		-1110 1 1			103.74		1.427
	(6/4/14)	554		TES	STS		106.01		1.178
		555					106.58		1.123
		559					100.71		1.186
		Average					103.21		1.274
		σ					2.171		0.099
		CV, %					2.10		7.75
	1.615					Average	106.32		1.369
						σ	3.153		0.081
	(IVIay 14)					CV, %	2.97		5.90
	NIST					Average	103.15		1.326
	(May/Jun					σ	2.252		0.124
	14)					CV, %	2.18		9.36

Table 8 - Results of the tests performed on HH-140.

The average values of KV, LE and F_m obtained in the four testing rounds are compared in Figure 8 to Figure 12.

Figure 8 - Average values of absorbed energy KV for LL-136.

Figure 9 - Average values of absorbed energy KV for HH-140.

Figure 10 - Average values of lateral expansion (LE) for LL-136.

Figure 11 - Average values of lateral expansion (LE) for HH-140.

Figure 12 - Average values of maximum force F_m for LL-136 and HH-140.

We observe that:

- average values of KV and F_m for NIST tests are lower than LNE averages for both materials;
- the trends for maximum forces confirm those observed on LL-103 and HH-103;
- lateral expansion measurements show different trends than absorbed energy.

Selected instrumented curves for LL-136 and HH-140 tested at NIST and LNE are shown in Figure 13 and Figure 14, respectively.

Figure 13 - Selected instrumented curves from LL-136 tested at NIST (specimen 1030) and LNE (specimen 709).

Figure 14 - Selected instrumented curves from HH-140 tested at NIST (specimen 552) and LNE (specimen 546).

3.2.1 Statistical analyses of the differences between NIST and LNE

In addition to analyzing the statistical differences between the mean values of the test results obtained at NIST and at LNE, we have also applied the same procedure (F-test to investigate the equality of the variances, and t-test for the difference between means) to test absorbed energy and lateral expansion results obtained at the same location in two different test days. The results of these preliminary analyses are listed in Table 9 (NIST tests) and Table 10 (LNE tests), which show no statistical difference between tests performed on different days.

Table 9 - Statistical analyses on KV results obtained at NIST from LL-136 and HH-140.

Lot	Statistical test	Test date	Mean (J)	Variance (J)	Calculated value	Critical value	Result	
	E test	5/13/14	20.67	0.97	E = 2.102	$E_{\rm c} = 5.000$	Variances and not statistically different	
11 126	r-test	6/4/14	20.82	2.03	F = 2.102	Γ crit = 3.999	variances <u>are not</u> statistically afferent	
LL-130	4 tost	5/13/14	20.67	0.97	4-0.204	4 - 2160	Magua and not statistically different	
	<i>i</i> -test	6/4/14	20.82	2.03	l = 0.204	$l_{\rm crit} = 2.100$	Means <u>are not</u> statistically afferent	
	E tost	5/13/14	103.02	7.11	E = 1.508	F = -3.633	Variances are not statistically different	
UU 140	I'-test	6/4/14	103.21	4.72	T = 1.508	$T_{\rm crit} = 5.055$	variances <u>are not</u> statistically afferent	
пп-140	t tost	5/13/14	111.07	12.41	t = 0.150	t = 2.160	Manual and statistically different	
	<i>i</i> -test	6/4/14	107.76	9.21	l = 0.130	$l_{\rm crit} = 2.100$	Means <u>are not</u> statistically afferent	

Table 10 - Statistical analyses on KV results obtained at LNE from LL-136 and HH-140.												
Lot	Statistical test	Test date	Mean (J)	Variance (J)	Calculated value	Critical value	Result					
LL-136 -	F-test	5/20/14	22.60	1.01	E = 1.605	$E_{\rm c} = 5.000$	Variances and not statistically different					
		5/21/14	22.77	1.62	1 - 1.005	Γ crit = 3.999	variances <u>are not</u> statistically afferent					
	<i>t</i> -test	5/20/14	22.60	1.01	<i>t</i> = 0.248	$t_{\rm crit} = 2.160$	Maans and not statistically different					
		5/21/14	22.77	1.62			means <u>are not</u> statistically afferent					
	E test	5/20/14	106.91	10.02	E = 1.004	E 2.020	Variances and not statistically different					
HH-140	r-test	5/21/14	105.25	10.06	r = 1.004	Γ crit $= 3.030$	variances <u>are noi</u> statistically afferent					
	<i>t</i> -test	5/20/14	106.91	10.02	4 - 0.041	4 - 2,170	Magna and not statistically different					
		5/21/14	105.25	10.06	l = 0.941	$t_{\rm crit} = 2.1/9$	Means <u>are not</u> statistically different					

The results of the statistical tests on KV, F_m and LE are presented in Table 11, Table 12, and Table 13 respectively.

Table 11 - Statistical analyses results on KV results from LL-136 and HH-140.

Lot	Statistical test	Test location	Mean (J)	Variance (J)	Calculated value	Critical value	Result		
	E tost	NIST	20.77	1.59	E = 1.196	E = -2.492	Variances and not statistically different		
TT 126	r-test	LNE	22.71	1.34	F = 1.100	Γ crit = 2.465	$\Gamma \operatorname{crit} = 2.465$	r = 1.180 $r = 2.483$	variances <u>are not</u> statistically afferent
LL-130	t-test	NIST	20.77	1.59	t = 4.404	$t_{\rm crit} = 2.048$	Means <u>are</u> statistically different		
		LNE	22.71	1.34					
	E tost	NIST	103.15	5.07	E 1.0(1	E 0.507	Variante and statistically life		
F-te	r-test	LNE	106.32	9.94	F = 1.901	$\Gamma \operatorname{crit} = 2.307$	variances <u>are not</u> statistically afferent		
HH-140	4 tost	NIST	103.15	5.07	4 - 2 122	4 2.052	Magua and statistically different		
	<i>t</i> -test	LNE	106.32	9.94	l = 5.155	$t_{\rm crit} = 2.052$	Means <u>are</u> statistically different		

Lot	Statistical test	Test location	Mean (kN)	Variance (kN)	Calculated value	Critical value	Results	
	E tost	NIST	34.82	0.02	E = 0.026	E = 0.157	Variances and not statistically different	
LL-136	I-test	LNE	37.75	0.83	F = 0.020	$\Gamma \operatorname{crit} = 0.137$	variances <u>are not</u> statistically different	
LL-130	t-test	NIST	34.82	0.02	t = 7.080	t = 2.206	Means are statistically different	
		LNE	37.75	0.83	1 = 7.089	$l_{\rm crit} = 2.300$		
	E tost	NIST	28.27	0.02	E = 0.150	$E_{\rm r} = 0.157$	Variances are not statistically differen	
HH-140	T-test	LNE	29.49	0.15	T = 0.150	$T_{\rm crit} = 0.137$	variances <u>are noi</u> statistically afferent	
	t-test –	NIST	28.27	0.02	t = 6 570	t 2 206	Maans and statistically different	
		LNE	29.49	0.15	l = 0.370	$l_{\rm crit} = 2.300$	Means <u>are</u> statistically afferent	

Table 12 - Statistical analyses results on F_m results from LL-136 and HH-140.

Table 13 - Statistical analyses results on LE results from LL-136 and HH-140.

Lot	Statistical test	Test location	Mean (mm)	Variance (mm)	Calculated value	Critical value	Results
	E tost	NIST	0.099	5.67E-04	F = 2.663	$E_{1} = 2.484$	Varianças ara statistically different
LL-136	1-1031	LNE	0.125	1.51E-03	T = 2.003	$T \operatorname{crit} = 2.464$	variances <u>are</u> statistically afferent
	t-test	NIST	0.099	5.67E-04	t - 2 221	t = -2.060	Means are statistically different
		LNE	0.125	1.51E-03	l = 2.221	$l_{\rm crit} = 2.009$	incuns <u>urc</u> statistically afferent
	E tost	NIST	1.326	0.015	E = 2.361	E = -2.484	Variances are not statistically different
HH-140 -	I'-test	LNE	1.369	0.007	T = 2.301	$T_{\rm crit} = 2.464$	variances <u>are not</u> statistically afferent
	t tost	NIST	1.326	0.015	t = 1.125	t = -2.048	Maans are not statistically different
	<i>t</i> -test	LNE	1.369	0.007	i = 1.123	icrit – 2.040	means <u>are not</u> sufficiently afferent

Test results for absorbed energy KV and maximum force F_m were found to be statistically different between NIST and LNE for both steels, while in terms of lateral expansion a statistically significant difference was observed for LL-136 but not for HH-140.

3.2 LNE certified reference specimens (1AD, 5AB, and 9E)

The individual test results obtained at NIST and LNE on lot 1AD (30 J), lot 5AB (120 J), and lot 9E (200 J) are presented in Table 14, Table 15 and Table 16, respectively. For each parameter average values, standard deviations and coefficients of variation (CV) are reported for each individual test day and for all tests performed in one location. Note that tests performed in the first round at NIST and LNE were instrumented, while tests from the second round in both locations were non-instrumented.

Charpy	Lah (Data	Specimen	Fgy	C _{el}	Fm	Wt	KV		LE
lot	Lab/Date	id	(kN)	(mm/kN)	(kN)	(L)	(L)	<i>KV / VV</i> _t	(mm)
		M52	30.70	0.023	43.28	33.99	30.57	0.899	0.163
		D59	26.06	0.024	42.55	33.51	N/A	N/A	0.106
		J40	16.94	0.024	45.26	31.91	30.01	0.940	0.086
	LNE	N38	27.78	0.022	44.89	33.96	30.53	0.899	0.153
	(5/20/14)	E67	24.61	0.022	45.15	34.46	31.38	0.911	0.146
		Average	25.22	0.023	44.23	33.57	30.64	0.917	0.123
		σ	5.153	7.65E-04	1.232	0.985	0.566	0.019	0.033
		CV, %	20.43	3.34	2.78	2.93	1.85	2.13	26.97
		H24					30.25		0.092
		A65					30.23		0.052
		P69				29.50		0.118	
	LNE	G83	NON	-INSTF	RUMEN	31.15		0.158	
	(5/21/14)	112		TES	STS		29.35		0.093
		Average		\		30.10		0.103	
		σ				0.718		0.039	
		CV, %					2.39		37.97
	INE					Average	30.33		0.117
	(all)					σ	0.675		0.037
140	(all)					CV, %	2.22		31.86
IND		143	22.95	0.033	31.08	25.17	29.62	1.177	0.144
		P25	23.14	0.031	27.96	22.56	28.56	1.266	0.382
		J18	21.77	0.033	27.13	20.95	28.64	1.367	0.131
	NIST	H89	24.79	0.033	27.66	22.64	29.26	1.292	0.091
	(6/3/14)	L58	33.10	0.019	38.07	29.89	29.26	0.979	0.141
		Average	25.15	0.030	30.38	24.24	29.07	1.226	0.178
		σ	4.573	5.82E-03	4.567	3.500	0.453	0.149	0.116
		CV, %	18.18	19.57	15.03	14.44	1.56	12.16	65.30
		J77					28.65		0.050
		B75					28.83		0.089
		K43	NON	INCT		ITED	29.09		0.084
	NIST	H59	NUN	-111317	COWER	TED	29.27		0.136
	(6/4/14)	N53		TES	STS		29.89		0.032
		Average					29.15		0.078
		σ					0.478		0.040
		CV, %					1.64		51.23
	NIST					Average	29.11		0.128
	(all)					σ	0.441		0.097
	(311)					CV, %	1.51		75.99

Table 14 - Results of the tests performed on 1AD.

Charpy	Lah/Date	Specimen	Fgy	C _{el}	F _m	W _t	ΚV	KV /W	LE
lot	Lab/Date	id	(kN)	(mm/kN)	(kN)	(L)	(L)	κν/νν _t	(mm)
		P33	19.41	0.024	29.04	145.70	127.72	0.877	1.630
		C98	20.67	0.024	29.38	150.21	129.95	0.865	1.564
		K77	21.81	0.021	28.75	151.03	129.31	0.856	1.538
	LNE	G30	20.33	0.022	29.31	146.66	124.76	0.851	1.501
	(5/20/14)	N19	26.30	0.019	29.09	149.83	127.03	0.848	1.519
		Average	21.70	0.022	29.11	148.69	127.76	0.855	1.531
		σ	2.709	2.19E-03	0.249	2.353	2.045	0.012	0.050
		CV, %	12.48	9.83	0.85	1.58	1.60	1.37	3.28
		M74					128.82		1.509
		E89					134.95		1.714
		D14					127.56		1.552
	LNE	L09	NON	-INSTR	UMEN	133.76		1.532	
	(5/21/14)	C37		TES	STS	129.15		1.673	
		Average				130.85		1.596	
		σ				3.283		0.091	
		CV, %					2.51		5.73
	INF					Average	129.30		1.573
	(all)					σ	3.051		0.074
5AB	(un)					CV, %	2.36		4.68
5,15		J57	22.22	0.021	28.01	130.71	117.64	0.900	1.570
		F33	21.23	0.021	27.61	129.07	122.38	0.948	1.429
		K08	22.11	0.022	27.97	143.47	130.80	0.912	1.560
	NIST	N55	21.70	0.021	27.66	130.73	119.25	0.912	1.577
	(6/3/14)	G71	21.08	0.022	27.47	132.90	122.76	0.924	1.480
		Average	21.67	0.021	27.74	133.38	122.57	0.919	1.523
		σ	0.510	4.12E-04	0.236	5.804	5.078	0.018	0.066
		CV, %	2.35	1.94	0.85	4.35	4.14	1.99	4.30
		114					121.93		1.454
		B15					122.59		1.557
		N73	NON	INSTE		ITED	119.09		1.469
	NIST	D60	NON	-1113 F		TED	116.24		1.503
	(6/4/14)	P95		TES	STS		125.81		1.486
		Average					121.13		1.494
		σ					3.631		0.040
		CV, %				3.00		2.66	
	NIST					Average	121.85		1.509
	(all)					σ	4.230		0.053
	· /					CV, %	3.47		3.54

Table 15 - Results of the tests performed on 5AB.

		J36	26.86	0.023	39.63	225.66	197.32	0.874	2.126
		M33	29.69	0.020	38.87	222.14	191.85	0.864	1.837
		L56	32.15	0.021	38.85	202.47	185.33	0.915	1.949
	LNE	H52	27.55	0.021	38.72	225.92	202.36	0.896	1.841
	(5/20/14)	B55	25.24	0.021	38.32	197.86	191.29	0.967	1.905
		Average	28.30	0.021	38.88	214.81	193.63	0.910	1.883
		σ	2.681	9.63E-04	0.475	13.550	6.468	0.041	0.118
		CV, %	9.47	4.54	1.22	6.31	3.34	4.48	6.28
		H70					192.49		1.720
		F41					184.58		1.857
		K28					179.84		1.822
	LNE	M61	NON	-INSTR	UMEN	ITED	179.91		1.837
	(5/21/14)	101		TES	STS		189.73		1.857
		Average					185.31		1.819
		σ					5.716		0.057
		CV, %				3.08		3.14	
						189.47		1.875	
					7.235		0.106		
05	(all)					3.82		5.65	
9E		134	29.60	0.023	38.36	198.95	182.91	0.919	1.717
		J69	29.97	0.024	38.21	210.43	186.18	0.885	1.752
		M19	29.46	0.024	38.65	215.42	194.39	0.902	1.781
	NIST	A33	29.47	0.023	38.68	209.96	186.45	0.888	2.015
	(6/3/14)	C43	29.54	0.024	38.82	206.66	183.18	0.886	1.901
		Average	29.61	0.024	38.54	208.28	186.62	0.890	1.833
		σ	0.210	6.31E-04	0.251	6.085	4.642	0.015	0.123
		CV, %	0.71	2.64	0.65	2.92	2.49	1.66	6.71
		G08					173.59		1.421
		F51					177.63		1.583
		B15					187.02		1.924
	NIST	A45	NON	-INSTR	RUMEN	ITED	181.11		1.984
	(6/4/14)	C81		TES	STS		171.47		1.617
		Average					178.16		1.706
		σ					6.187		0.239
		CV, %					3.47		14.03
	NIST					Average	182.39		1.770
	(2011)					σ	6.816		0.192
	(all)					CV, %	3.74		10.82

Table 16 - Results of the tests performed on 9E.

The average values of *KV*, *LE* and F_m obtained in the four testing rounds are compared in Figure 15 to Figure 21. For absorbed energy, Figure 15 to Figure 17 also indicate the certified values of *KV* and the acceptability limits in accordance with ISO 148:2, *i.e.*, ± 4 J (below 40 J) and ± 15 % (above 40 J). Comparisons between selected instrumented curves from tests performed at LNE and NIST are given in Figure 22 (1AD), Figure 23 (5AB), and Figure 24 (9E).

Although clear and consistent trends are not visible, a general tendency is observed for average values obtained at LNE to be higher than average values obtained at NIST. The largest discrepancy can be noted for F_m values measured on 1AD (see Figure 21 and Figure 22).

Figure 15 - Average values of absorbed energy (KV) for 1AD. Dashed line and dotted lines indicate respectively the certified value and $\pm 4 J$ bounds (acceptability limits according to ISO 148:2).

Figure 16 - Average values of absorbed energy (KV) for 5AB. Dashed line and dotted lines indicate respectively the certified value and \pm 10 % bounds (acceptability limits according to ISO 148:2).

Figure 17 - Average values of absorbed energy (KV) for 9E. Dashed line and dotted lines indicate respectively the certified value and \pm 10 % bounds (acceptability limits according to ISO 148:2).

Figure 18 - Average values of lateral expansion (LE) for 1AD.

Figure 19 - Average values of lateral expansion (LE) for 5AB.

Figure 20 - Average values of lateral expansion (LE) for 9E.

Figure 22 - Selected instrumented curves from 1AD tested at LNE (specimen M52) and NIST (specimen H89).

Figure 23 - Selected instrumented curves from 5AB tested at LNE (specimen P33) and NIST (specimen G71). NOTE: the shape of the LNE test record indicates a malfunction of the acquisition system.

Figure 24 - Selected instrumented curves from 9E tested at LNE (specimen M33) and NIST (specimen A33).

3.3.1 Statistical analyses of the differences between NIST and LNE

The results of the statistical tests (*F*-test and *t*-test) conducted to establish possible differences between absorbed energy values obtained in the first and second day at LNE and NIST are shown in Table 17 and Table 18, respectively. Only in one case (lot 9E tested at NIST) were the mean values obtained in the two testing rounds statistically different.

Lot	Statistical test	Test date	Mean (J)	Variance (J)	Calculated value	Critical value	Results	
	<i>E</i> _test	5/20/14	30.62	0.32	F = 1.612	$E_{\text{out}} = 9.117$	Variances are not statistically different	
140	1-030	5/21/14	30.10	0.52	1 = 1.012	1 cm = 9.117	variances <u>are not</u> statistically afferent	
	t tost	5/20/14	30.62	0.32	t = 1.104	t · - 2 265	Maans are not statistically different	
	<i>i</i> -test	5/21/14	30.10	0.52	l = 1.194	$l_{\rm crit} = 2.303$	Means <u>are not</u> sufficiently afferent	
	F-test	5/20/14	127.75	4.18	E = 2.577	E _ 6 200	Variances and not statistically different	
5AD		5/21/14	130.85	10.78	$\Gamma = 2.377$	$\Gamma_{\rm crit} = 0.300$	variances <u>are not</u> statistically apperent	
SAB	4 tost	5/20/14	127.75	4.18	4 - 1 790	4 - 2 206	Manual management of a finding life life and	
	<i>i</i> -test	5/21/14	130.85	10.78	l = 1.789	$l_{\rm crit} = 2.500$	Means <u>are not</u> statistically afferent	
	Etert	5/20/14	193.63	41.84	E 1 1 29	E (200	Variance and statistically different	
9E -	r-test	5/21/14	185.31	32.68	F = 1.128	$\Gamma_{\rm crit} = 0.388$	variances <u>are not</u> statistically afferent	
		5/20/14	193.63	41.84	4 2 155	, 2200		
	t-test	5/21/14	185.31	32.68	t = 2.155	$t_{\rm crit} = 2.306$	Means are not statistically different	

Table 17 - Statistical analyses on KV results obtained at LNE from 1AD, 5AB, and 9E.

Table 18 - Statistical analyses on KV results obtained at NIST from 1AD, 5AB, and 9E.

Lot	Statistical test	Test date	Mean (J)	Variance (J)	Calculated value	Critical value	Results	
	F_test	6/3/14	29.07	0.20	F = 1.116	$E_{1} = 6.388$	Variances are not statistically different	
140	I -test	6/4/14	29.15	0.23	<i>T</i> = 1.110	<i>I</i> crit = 0.300	variances <u>are not</u> statistically afferent	
	t test	6/3/14	29.07	0.20	t = 0.268	t = -2.306	Maans are not statistically different	
	<i>i</i> -test	6/4/14	29.15	0.23	1 - 0.208	icrit – 2.300	Means <u>are not</u> statistically afferent	
	F-test	6/3/14	122.57	25.78	E = 1.055	E = -6.388	Variances are not statistically different	
5AD		6/4/14	121.13	13.19	T = 1.955	T crit $= 0.388$	sunsneury ufferen	
SAD	t tost	6/3/14	122.57	25.78	t = 0.514	t = 2.206	Magne and not statistically different	
	<i>i</i> -test	6/4/14	121.13	13.19	l = 0.514	$l \operatorname{crit} = 2.300$	Means <u>are not</u> statistically afferent	
	E tost	6/3/14	186.62	21.55	E = 1.776	E = 6200	Variances and not statistically different	
9E -	r-test	6/4/14	178.16	38.28	r = 1.770	Γ crit = 0.300	variances <u>are not</u> statistically afferent	
	4 tost	6/3/14	186.62	21.55	4 - 2.455	4 2 206	Maans and statistically different	
	<i>t</i> -test	6/4/14	178.16	38.28	t = 2.455	$l_{\rm crit} = 2.500$	means <u>are</u> statistically afferent	

The results of the statistical tests on KV, F_m and LE are presented in Table 19, Table 20, and Table 21 respectively.

Lot	Statistical test	Test location	Mean (J)	Variance (J)	Calculated value	Critical value	Results
	<i>F</i> -test	LNE	30.33	0.46	F - 2.341	$F_{\text{orit}} = 3.230$	Variances are not statistically different
1AD	1 1051	NIST	29.11	0.19	1 - 2.541	1 cm = 5.250	ranances <u>are nor</u> statistically afferent
	t tost	LNE	30.33	0.46	t = 4.725	t = 2.110	Means are statistically different
	<i>i</i> -test	NIST	29.11	0.19	l = 4.723	$l_{\rm crit} = 2.110$	means <u>are</u> statistically afferent
	F-test	LNE	129.30	17.89	E = 1.022	$E_{-} = 2.170$	Variances and not statistically different
5 A D		NIST	121.85	9.31	I' = 1.922	$T_{\rm crit} = 3.179$	variances <u>are not</u> statistically afferent
SAB	t tost	LNE	129.30	17.89	t = 1 518	t = 2.110	Magne and statistically different
	<i>i</i> -test	NIST	121.85	9.31	1 = 4.518	$l_{\rm crit} = 2.110$	Means <u>are</u> statistically aggerent
	E tost	LNE	189.47	52.35	E = 1.127	E = 2.170	Variances and not statistically different
9E -	r-test	NIST	182.39	46.46	$\Gamma = 1.127$	$T \operatorname{crit} = 5.179$	Variances <u>are not</u> statistically afferent
	4 tost	LNE	189.47	52.35	t = 2.251	4 - 2110	Magua and statistically different
	<i>t</i> -test	NIST	182.39	46.46		$l_{\rm crit} = 2.110$	means <u>are</u> statistically different

Table 19 - Statistical analyses on KV results from 1AD, 5AB, and 9E.

Table 20 - Statistical analyses on F_m results from 1AD, 5AB, and 9E.

Lot	Statistical test	Test location	Mean (kN)	Variance (kN)	Calculated value	Critical value	Results
	<i>F</i> -test	LNE	44.23	20.86	F = 0.073	$F_{\text{orb}} = 0.157$	Variances are not statistically different
140	1 1051	NIST	30.38	1.52	1 = 0.075	1 cm = 0.157	ranances <u>are nor</u> statistically aggerent
	t tost	LNE	44.23	20.86	t = 6.545	t = -2.306	Maans are statistically different
	<i>i</i> -test	NIST	30.38	1.52	1 - 0.545	$i_{\rm crit} = 2.500$	means <u>are</u> statistically aggerent
	F-test	LNE	29.11	0.06	F = 1.116	E = -6.388	Variances are not statistically different
5 A D		NIST	27.74	0.06	I' = 1.110	$T \operatorname{crit} = 0.300$	ranances <u>are not</u> statistically afferent
SAB	t tost	LNE	29.11	0.06	t = 8 040	t = 2.306	Magne and statistically different
	<i>i</i> -test	NIST	27.74	0.06	l = 0.940	$l_{\rm crit} = 2.300$	Means <u>are</u> statistically afferent
	E tost	LNE	38.88	0.23	F = 1.127	E = 2.170	Variances are not statistically different
9E -	r-test	NIST	38.54	0.06	$\Gamma = 1.127$	$F \operatorname{crit} = 5.179$	variances <u>are not</u> statistically afferent
	t tost	LNE	38.88	0.23	t = 1 200	t = 2.306	Magna and not statistically different
	<i>t</i> -test	NIST	38.54	0.06	t = 1.390	$l \operatorname{crit} = 2.500$	Means <u>are not</u> statistically different

Table 21 - Statistical analyses on LE results from 1AD, 5AB, and 9E.

Lot	Statistical test	Test location	Mean (mm)	Variance (mm)	Calculated value	Critical value	Results	
	E-test	LNE	0.117	1.38E-03	F = 6.843	$F_{\text{arriv}} = 3.179$	Variances are statistically different	
140	1-1051	NIST	0.128	9.46E-03	1 = 0.045	$I \operatorname{crit} = 5.177$	variances <u>are</u> stansnearly afferent	
	t tost	LNE	0.117	1.38E-03	(0.242	t = 2.170	Mague and not statistically different	
	<i>i</i> -test	NIST	0.128	9.46E-03	l = 0.343	$l_{crit} = 2.179$	means <u>are not</u> sidistically different	
	F-test	LNE	1.573	5.42E-03	E = 1.800	$E_{-} = 2.170$	Variances and not statistically different	
5 A D		NIST	1.509	2.85E-03	$\Gamma = 1.099$	Γ crit = 5.179	variances <u>are not</u> statistically apperent	
SAD	t tost	LNE	1.573	5.42E-03	t - 2.250	t = 2.101	Moans and statistically different	
	<i>i</i> -test	NIST	1.509	2.85E-03	l = 2.230	$l_{\rm crit} = 2.101$	Means <u>are</u> statistically afferent	
	E test	LNE	1.875	1.12E-02	E - 2 272	E = 2.170	Variances and not statistically different	
9E -	r-test	NIST	1.770	3.67E-02	F = 5.272	$\Gamma_{\rm crit} = 5.179$	variances <u>are not</u> statistically afferent	
	t tost	LNE	1.875	1.12E-02	t = 1.526	t = 2.145	Maans and not statistically different	
	t-test	NIST	1.770	3.67E-02	i = 1.320	$l_{crit} = 2.143$	Means <u>are not</u> statistically different	

In most cases, the test results obtained at NIST and LNE were found to be statistically different, with the exception of F_m for lot 9E and *LE* for lots 1AD and 9E.

4. Discussion

Table 22 summarizes the comparison between NIST and LNE, based on average values of F_m , KV, and LE for all the reference materials tested. In Table 22, the cells corresponding to the largest average value between NIST and LNE are shaded in light blue and in **bold** font.

Table 22 -	Summary	of the	comparison	between	NIST	and	LNE :	in ter	ms of	[°] maximum	force,	absorbed	energy	and
lateral exp	ansion.													

Specimen	Testing		F_m		KV	LE		
lot	lab		(k N)		(\mathbf{J})	(mm)		
LL 102	NIST	29.29	Statistically	19.18	Statistically	0.048	Statistically	
LL-105	LNE	36.66	DIFFERENT	20.32	DIFFERENT	0.083	DIFFERENT	
UU 102	NIST	26.40	Statistically	111.07	Statistically	1.252	Statistically	
пп-105	LNE	29.12	NOT DIFFERENT	107.76	NOT DIFFERENT	1.342	NOT DIFFERENT	
LL 126	NIST	34.82	Statistically	20.77	Statistically	0.099	Statistically	
LL-136	LNE	37.75	DIFFERENT	22.71	DIFFERENT	0.125	DIFFERENT	
<u>ин</u> 140	NIST	28.27	Statistically	103.15	Statistically	1.326	Statistically	
1111-140	LNE	29.49	DIFFERENT	106.32	DIFFERENT	1.369	NOT DIFFERENT	
14D	NIST	30.38	Statistically	29.11	Statistically	0.128	Statistically	
IAD	LNE	44.23	DIFFERENT	30.33	DIFFERENT	0.117	NOT DIFFERENT	
5 A D	NIST	27.74	Statistically	121.85	Statistically	1.509	Statistically	
JAD	LNE	29.11	DIFFERENT	129.30	DIFFERENT	1.573	DIFFERENT	
0E	NIST	38.54	Statistically	182.39	Statistically	1.770	Statistically	
7E	LNE	38.88	NOT DIFFERENT	189.47	DIFFERENT	1.875	NOT DIFFERENT	

Examination of the information presented in Table 22 leads to the following observations.

- (1) <u>Maximum force, F_m </u>: for all the materials considered, F_m values from NIST tests are lower than those from LNE tests. Statistically, the difference is significant in all cases but two (HH-103 and 9E). In two cases, the difference is large (7.37 kN for LL-103, 13.85 kN for 1AD).
- (2) <u>Absorbed energy, KV</u>: average values of KV for NIST tests are lower than for LNE tests except in one case (HH-103). However, this is the only instance when the difference is statistically not significant. Therefore, we can state that the LNE machine tends to provide higher absorbed energy values than the NIST machine.
- (3) <u>Lateral expansion</u>, *LE*: similar to *KV*, NIST average values of lateral expansion are systematically lower than LNE average values, except in one case (1AD). However, in most cases (4 lots out of 7), differences are not statistically different.

4.1 Instrumented parameters

For instrumented parameters, Table 23 shows the comparison of average values for two characteristic force values (F_{gy} and F_m), the elastic slope of the instrumented test record (C_{el}), and the absorbed energy calculated under the force-displacement curve (W_t). Again, the largest average values for each parameter are shaded in light blue and in **bold** font.

No systematic trend can be observed in Table 23. Only 4 out of 7 lots (57 %) have the same relation between NIST and LNE average force values for both F_{gy} and F_m (*i.e.*, NIST < LNE or vice versa). Furthermore, since overestimating forces has a relatively minor effect on

displacements⁶, and time values are assumed identical, one would expect that higher F_{gy} always corresponds to a lower elastic slope, C_{el} : based on Table 23, this is true in 71 % of cases (5 out of 7), the exceptions being lots 5AB and 9E. However, for these two latter lots NIST and LNE average values are only marginally different ($|\Delta F_{gy}| = 0.03$ kN and $|\Delta C_{el}| = 0.00105$ mm/kN for lot 5AB; $|\Delta F_{gy}| = 1.31$ kN and $|\Delta C_{el}| = 0.00269$ mm/kN for lot 9E).

Considering that:

- all tests used the same instrumented striker (with the same calibration function, see Figure 1), the same acquisition system (amplifier/conditioner, A/D converter, PC) and the same acquisition software; and
- all tests were analyzed by the same person by means of the same analysis software,

the observed behavior and differences (in terms of instrumented parameters) cannot be easily explained. However, the malfunctioning of the acquisition system during the tests performed at LNE (already mentioned in section 2.3), might have been the cause of the erratic behavior observed.

Specimen	Testing	F_{gy}	Fm	Cel	Wt
lot	lab	(kN)	(kN)	(mm/kN)	(J)
LL-103	NIST	23.92	29.29	0.02528	19.09
	LNE	30.05	36.66	0.02131	22.90
HH-103	NIST	19.93	26.40	0.02820	124.66
	LNE	22.34	29.12	0.02216	123.88
LL-136	NIST	32.30	34.82	0.01139	22.68
	LNE	22.48	37.75	0.02123	24.65
HH-140	NIST	24.36	28.27	0.00957	118.99
	LNE	22.36	29.49	0.02701	121.49
1AD	NIST	25.15	30.38	0.02973	24.24
	LNE	25.22	44.23	0.02292	33.57
5AB	NIST	21.67	27.74	0.02125	133.48
	LNE	21.70	29.11	0.02230	148.69
9E	NIST	29.61	38.54	0.02389	208.28
	LNE	28.30	38.88	0.02120	214.81

Table 23 - Comparison between NIST and LNE instrumented impact tests in terms of force at general yield, maximum force, elastic slope and calculated absorbed energy.

4.2 Absorbed energy

For absorbed energy, we already remarked that the tendency is for LNE values to be higher than NIST values. From Table 24, the same tendency is also observed for average calculated energy values, W_t . Also, the difference in terms of W_t is mostly larger than for KV, which would indicate larger forces and displacements. However, the ratio between ΔW_t and ΔKV ranges from a minimum of 0.4 (lot HH-103) to a maximum of 5.9 (lot 1AD), with an average of 2.4. This confirms the erratic behavior already remarked above.

⁶Displacement values are calculated by double numerical integration of force and time measurements.

Specimen	KV _{LNE} - KV _{NIST}	$W_{t,LNE} - W_{t,NIST}$
lot	(J)	(J)
LL-103	1.14	3.82
HH-103	-3.31	-1.29
LL-136	2.33	1.96
HH-140	2.23	2.50
1AD	1.57	9.32
5AB	5.20	15.31
9E	7.01	6.53
Average	2.31	5.45

Table 24 - Differences between average values of absorbed (KV) and calculated (W_t) energy for NIST and LNE tests.

Although the NIST and LNE impact machines were nominally identical and the same instrumented striker was used for all the tests, the anvil/support blocks were different between the two labs, since NIST tests in accordance with ASTM E23 and LNE tests in accordance with ISO 148. The two standards feature different requirements only in terms of:

- angle of taper of the anvils $(10^{\circ} \pm 2^{\circ} \text{ for ASTM}, 11^{\circ} \pm 1^{\circ} \text{ for ISO} \text{see also Section 2.2});$
- surface finish of the anvils and supports ($R_a 0.1 \mu m$ or better for ASTM, not specified for ISO).

All other characteristics (*i.e.*, anvil radius and anvil spacing or span) are identical between the two standards.

The influence of the angle of taper of the anvils on the absorbed energy of Charpy specimens of three energy levels (30 J, 100 J, and 160 J) was investigated by Yamaguchi and coworkers [12]. They concluded that KV tends to decrease with increasing angle of taper at all energy levels, even though the effect is statistically significant (at 95 % confidence level) only at 100 J and 160 J. However, in our investigation the opposite effect was observed for 6 of the 7 lot tested (KV is higher for LNE, that uses 11 °, than for NIST, that uses 10 °). Therefore, the angle of taper of the anvils cannot explain the trends observed.

Regarding surface finish (roughness) of the anvils and supports, its influence on Charpy absorbed energy was studied by Ruth and coworkers [13]. They observed that for low-energy specimens ($KV \approx 17$ J), which tend to exit the machine in a direction opposite to the pendulum swing, the effect of surface finish is negligible because the broken specimen halves have limited contact with anvils, supports and striker. On the contrary, high-energy specimens ($KV \approx 90$ J) exit the machine in the same direction of the pendulum swing and the friction between specimen, anvils and supports increases with increasing roughness and tends to produce higher absorbed energy. NIST anvils and supports were in compliance with ASTM E23 ($R_a \le 0.1 \,\mu$ m), whereas it is possible that the roughness of LNE anvils/supports was higher at the time the interlaboratory tests were performed. According to Ruth *et al.*, the average difference in KV at the high-energy level between polished ($R_a = 0.05 \,\mu$ m) and unpolished ($R_a = 0.25 \,\mu$ m) anvils/supports is in the order of 0.4 J (approximately 0.44 % of 90 J). The differences we observed in our investigation were typically much higher, and therefore surface finish could explain only a small part of the differences between NIST and LNE.

4.3 Lateral expansion

Absorbed energy and lateral expansion are two of the fundamental test parameters commonly measured from a conventional (*i.e.*, non-instrumented) Charpy test, along with Shear Fracture Appearance. Both quantities are related to the amount of ductility exhibited by the material at the test temperature, and many correlations between *KV* and *LE* have been published, showing that the two parameters are linearly correlated for a given material, see for example [14-16].

One would therefore expect to find a reasonable correlation between $\Delta KV_{\text{LNE-NIST}}$ and $\Delta LE_{\text{LNE-NIST}}$ for the seven reference lots investigated. Figure 25 shows that a strong positive linear relationship (coefficient of correlation r = 0.84) is obtained when HH-103 is excluded. The correlation coefficient drops to 0.23 (weak linear relationship) when HH-103 is included. Note that HH-103 was also the only lot for which average energy values were higher for NIST tests than LNE tests, albeit with a statistically insignificant difference (see Table 22).

Figure 25- Relationship between differences in absorbed energy and lateral expansion between NIST and LNE tests.

5. Conclusions

In the framework of a collaborative effort aimed at establishing an international scale for instrumented impact testing, NIST and *Laboratoire National de métrologie et d'Essai* (LNE, France) performed instrumented Charpy tests on seven certified reference materials, produced by both institutes. The tests were carried out at both locations (Boulder, Colorado and Trappes, France) on two nominally identical impact machines equipped with the same instrumented striker and the same signal conditioning and acquisition system.

The results from the tests performed at NIST and LNE were compared in terms of both non-instrumented parameters (absorbed energy, KV, and lateral expansion, LE) and instrumented parameters (maximum force, F_m , and calculated energy, W_t). The statistical significance of the differences between average values obtained at NIST and LNE on each material was assessed by means of the unpaired two-sample *t*-test.

While no significant difference was observed between tests performed on different days at the same location, most of the differences between NIST and LNE in terms of F_m and KV were found to be statistically significant at the 95 % confidence level. For all reference lots except HH-103, for which results were not statistically different between the two institutes, tests performed at LNE exhibit systematically higher maximum forces and higher absorbed energies. This confirms results from previous intercomparisons, where LNE absorbed energies were found to be systematically higher than NIST absorbed energies, even when striker, anvil and supports for the LNE machine were in compliance with ASTM E23 [17]. The bias in terms of W_t showed a similar trend, although the magnitude of the difference was typically larger than for KV. On the other hand, measurements of lateral expansion were generally equivalent between NIST and LNE and no specific trend was observed.

The source of the disagreement between the two sets of results is unclear. The difference in the angle of taper of the anvils (10 ° for NIST, 11 ° for LNE) is unlikely to affect the results significantly, and according to a published study, a larger taper angle should induce a decrease, rather than an increase of absorbed energy. In addition, a possible difference in the surface finish of machine anvils and supports might be invoked, considering that the LNE machine complies with ISO 148, which does not require a specific surface finish, whereas NIST complies with ASTM E23, which prescribes a surface finish of 0.1 μ m or better. Rougher anvils and supports cause more energy dissipation due to greater friction for ductile specimens that exit the machine in the same direction of the pendulum swing. This factor, however, appears insufficient to fully explain the observed bias. Furthermore, for 3 of the 7 lots investigated (low-energy specimens), friction is not expected to play any role.

Even though the reasons of the observed differences are not apparent, some discrepancies between Charpy results from different reference specimen producers have already been reported [17]. The results presented here reinforce the need for further collaborations among National Institutes, with the aim of establishing an international scale for instrumented Charpy testing.

References

- "Pendulum Impact Testing A Century of Progress," ASTM STP 1380, T. A. Siewert and M. P. Manahan, Eds., American Society for Testing and Materials, West Conshohocken, PA., 2000.
- [2] "From Charpy to Present Impact Testing," ESIS Publication 30, D. François and A. Pineau, Eds., Elsevier, 2002.
- [3] ASTM E23, "Standard Test Methods for Notched Bar Impact Testing of Metallic Materials," ASTM Book of Standards 03.01.
- [4] ISO 148-1, "*Metallic materials Charpy pendulum impact test Part 1: Test method*," International Standards Organization, Geneva (Switzerland).
- [5] M. P. Manahan and T. A. Siewert, "*The History of Instrumented Impact Testing*," Journal of ASTM International, Vol. 3, Issue 2, February 2006.
- [6] F. Korber and A. A. Storp, "On the Force Progress during Impact Testing," Mittelugen aus dem Kaiser Wilhelm Institut für Eisenforschung, Vol. 8, 1926, p. 8.
- [7] ISO 14556, "Steel Charpy V-notch pendulum impact test Instrumented test method," International Standards Organization, Geneva (Switzerland).
- [8] ASTM E2298, "Standard Test Method for Instrumented Impact Testing of Metallic Materials," ASTM Book of Standards 03.01.
- [9] Bureau International des Poids et Mesures, Key and supplementary comparisons, SIM.M.F-S3, "Comparison of Instrumented Charpy Tests," 2012-2013, Report in progress, Draft B.
- [10] ISO 148-2, "Metallic materials Charpy pendulum impact test Part 2: Verification of testing machines," International Standards Organization, Geneva (Switzerland).
- [11] J. Y. Zhang, "Confidence interval and the Student's t-test," at <u>http://projectile.sv.cmu.edu/research/public/talks/t-test.htm#types</u>, retrieved 12/3/2014.
- [12] Y. Yamaguchi, S. Takagi, and H. Nakano, "Effects of Anvil Configurations on Absorbed Energy," in "Pendulum Impact Testing – A Century of Progress," ASTM STP 1380, T. A. Siewert and M. P. Manahan, Eds., American Society for Testing and Materials, West Conshohocken, PA., 2000, pp. 164-180.
- [13] E. A. Ruth, D. P. Vigliotti, and T. A. Siewert, "Effect of Surface Finish of Charpy Anvils and Striking Bits on Absorbed Energy," in "Pendulum Impact Machines – Procedures and Specimens for Verification," ASTM STP 1248, T. A. Siewert and A. K. Schmieder, Eds., American Society for Testing and Materials, Philadelphia, PA., 1995, pp. 164-180.
- [14] R. K. Nanstad and M. A. Sokolov, "Charpy Impact Test Results on Five Materials and NIST Verification Specimens Using Instrumented 2-mm and 8-mm Strikers," in "Pendulum Impact Machines – Procedures and Specimens for Verification," ASTM STP 1248, T. A. Siewert and A. K. Schmieder, Eds., American Society for Testing and Materials, Philadelphia, PA., 1995, pp. 111-139.
- [15] M. Tanaka, Y. Ohno, H. Horigome, H. Tani, K. Shiota, and A. Misawa, "Effects of the Striking Edge Radius and Asymmetrical Strikes on Charpy Impact Test Results," in "Pendulum Impact Machines – Procedures and Specimens for Verification," ASTM STP 1248, T. A. Siewert and A. K. Schmieder, Eds., American Society for Testing and Materials, Philadelphia, PA., 1995, pp. 153-170.

- [16] K. Wallin, T. Planman, and M. Valo, "Fracture Mechanics Based Scaling Criteria for Miniature and Sub-Size Charpy-V Specimens," in "From Charpy to Present Impact Testing," ESIS Publication 30, D. François and A. Pineau, Eds., Elsevier, 2002, pp. 279-288.
- [17] C. McCowan, J. Pauwels, G. Revise, and H. Nakano, "International Comparison of Impact Verification Programs," in "Pendulum Impact Testing – A Century of Progress," ASTM STP 1380, T. A. Siewert and M. P. Manahan, Eds., American Society for Testing and Materials, West Conshohocken, PA., 2000, pp. 73-89.