NIST Technical Note 2023

Programmers Guide to the BACnet
Communications DLL

Michael A. Galler

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2023

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

NIST Technical Note 2023

Programmers Guide to the BACnet
Communications DLL

Michael A. Galler
Energy and Environment Division
Engineering Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2023

October 2018

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.
Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 2023
Natl. Inst. Stand. Technol. Tech. Note 2023, 20 pages (October 2018)
CODEN: NTNOEF

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2023

€20Z'NL 1SIN/8209°01/61010p//:sd)y :wouy 8bieyd Jo sau) s|gejieAe si uoneolignd siy|

ABSTRACT

ASHRAE Standard 135- BACnet®--A Data Communication Protocol for Building
Automation and Control Networks defines a communications protocol for information
exchange between components of a distributed building automation and control system.
The proliferation of BACnet enabled heating, ventilating, and air conditioning (HVAC)
systems has enabled direct access to HVAC system data. The BACnet communications
dynamic linked library (DLL) enables researchers to implement selected BACnet
communications, creating an interface for data collection that is easy to use. The ability to
access HVAC controllers from a computer is valuable because it allows researchers,
designers, or other users to retrieve data directly from the BACnet objects on the
controllers. These data could include information on the conditions in the building space
served by the equipment, the conditions and status of the equipment, the actions the
controller is currently taking, and other values that may be set by internal program logic.
These data could then be used for a variety of research purposes, including real-time
monitoring of the HVAC system, commissioning, fault detection and diagnostics (FDD),
data logging, or other applications. Researchers can integrate the BACnet communications
DLL (BCD) into existing tools, create a new tool with the BCD, or use the BCD with
common data acquisition and analysis tools.

£202'NL LSIN/8209"01/610°10p//:sdny :woy a61eys Jo 931y s|gejieAe s| uonesijgnd siy |

Table of Contents

R 101 1 £ Yo [0 £ o] o USRS 1
A U L Lo TP OPUPRTOPPRURTOP 2
2.1 Device AdAress Data SITUCTUIE.........cocviei ittt 2
2.2 The ReadBACNEtValues SUDIOULINEoccvviiiiiiiiiec ettt 4
2.3 The WriteBACNetValues SUDIOULINEcceeiivieiiiii et 6
2.4 The GetDeVvINfo SUDIOULINE.........uevi i 7
2.5 The BACnetObjectinfo SUDIOULINEcoviiiiiiiiiiiice e 8
2.6 The WPClInit and WPCCI0Se SUDIOULINESccoivviieiiiiiiie it 10
2.7 The GetDefaultAdapter SUDIOULINGccoiviiiiiiiiise s 11
2.8 The SetDefaultAdapter SUDIOULINE.........cccveiiieiiiiir e 12
2.9 The GetAdapterMAC SUBIOULINEcoiiiiieeeere s 12
2.10 The GetAdapterlP SUDIOULINE.........cccoiiiiiie e 13
3 SUMMAIY .ttt b ettt e bt e b nnes 15
N e | (0TI Y40 SRR 15
LI = (=1 (=] (=] 1011 15

€20Z'NL 1SIN/8209°01/61010p//:sd)y :wouy 8bieyd Jo sau) s|gejieAe si uoneolignd siy|

1 Introduction

ASHRAE Standard 135- BACnet®--A Data Communication Protocol for Building
Automation and Control Networks [1] defines a communication protocol for information
exchange between components of a distributed building automation and control system. .
The proliferation of BACnet enabled heating, ventilating, and air conditioning (HVAC)
systems has enabled direct access to HVAC system data. The ability to access HVAC
controllers from a computer is valuable because it allows researchers to retrieve data
directly from the BACnet objects on the controllers. These data could include information
on the conditions in the building space served by the equipment, the conditions and status
of the equipment, the actions the controller is currently taking, and other values that may
be set by internal program logic. These data could then be used for a variety of research
purposes, including real-time monitoring of the HVAC system, commissioning, fault
detection and diagnostics (FDD), data logging, or the application of other types of research
tools.

The BACnet communications dynamic-linked library (DLL) is designed to simplify
communications with BACnet-enabled controllers. It allows programs to read values from
and write values to objects on local BACnet-enabled controllers, and to implement a range
of BACnet commands. The BACnet Communications DLL (BCD) allows communications
to any controller accessible from a computer by a local Ethernet or BACnet/IP (IPv4 only)
connection. Since it is provided as a DLL, this capability can be integrated into research
applications with minimal effort. The BCD can also be accessed by applications commonly
used for data acquisition, which are also capable of communicating with a DLL. This
allows the same communications code to be used by multiple applications for different
purposes. The BCD is written in C++ and was developed using Microsoft Visual Studio
2015 and uses the WinPcap 4.1 library [2] for Ethernet communications. The BCD was
designed to offer a high degree of functionality and stability, while being flexible and easy
to use.

€20Z'NL 1SIN/8209°01/61010p//:sd)y :wouy 8bieyd Jo sau) s|gejieAe si uoneolignd siy|

2 Usage

Communications with the BCD is achieved by calling one of a number of subroutines.
Each subroutine is designed to perform a specific task with a simple, easy to use interface.
The subroutines are divided into two categories: BACnet data transfer and configuration
data transfer. BACnet data transfer involves reading data from or writing data to BACnet
controllers. Configuration data transfer involves retrieving data about the network
configuration, the controller configuration, or program configuration. The interface
subroutines are listed in Table 2.1.

Table 2.1- BCS Subroutines

Transfer Type Available Subroutines
BACnet Data ReadBACnetValues
WriteBACnetValues

Configuration Data | GetDevinfo
BACnetObjectinfo
WPClInit
WPCClose
GetDefaultAdapter
SetDefaultAdapter
GetAdapterMAC
GetAdapterlIP

To use the BCD, each subroutine must be declared in the code of the calling application
using an extern statement. Example code is provided for each subroutine in the following
sections.

Some of the data transfer subroutines will create messages on the BACnet network. The
BACnet data transfer subroutines will initiate one or more BACnet ReadProperty,
WriteProperty, ReadPropertyMultiple, or WritePropertyMultiple confirmed service
messages to be sent to the appropriate controller. If a BACnet data transfer request only
has one item, then a ReadProperty or WriteProperty message will be sent. If a BACnet data
transfer request has multiple items, then a ReadPropertyMultiple or WritePropertyMultiple
message will be sent. The GetDeviInfo and WPClInit subroutines will transmit BACnet
Who-Is unconfirmed service messages to the local Ethernet and BACnet/IP networks.

The BACnet data transfer subroutines use a data structure to hold device and router
network information. This data structure must also be declared in the code of the calling
application. This data structure and its use is described in the following sections.

2.1 Device Address Data Structure

2.1.1 Description

The BCD defines a data structure used to hold information about the network address of
each device and router. These data structures are used by the BACnet data transfer
subroutines to route requests. The data structure is defined in Table 2.1.1.

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

Table 2.1.1- The Device Address Data Structure

Variable Name

Description

mac_device_pr

Text version of the device media access control (MAC) address. This
includes Ethernet and MS/TP addresses. This field must be filled.

mac_device

Optional hexadecimal version of the MAC address. It is implemented
as an array of unsigned char with length 6, so it can hold either an
Ethernet address or an MS/TP address.

mac_device_len

Optional length, in bytes, of the address entered in the mac_device
field. This would be 6 for an Ethernet address or usually 2 for a
MS/TP address.

mac_device_dec

Optional decimal version if a MS/TP MAC address is used.

Ip

The IP address, if an UPD/IP address is being used. This is an array
of length 4. If no IP address is being used, set to 0.0.0.0. IPv6 is not
supported.

ip_port The BACnet port, usually set to OxBACO.

ip_or_eth Set to 1 if an IP address is being used, set to 0 if an Ethernet address
is being used.

net The BACnet network number.

Note that some of the fields are optional. When setting an IP address, the text version of
the MAC address is required. The optional fields will be filled in by the BCD when passed
into one of the BACnet data transfer subroutines.

2.1.2 Example Code
A sample implementation of the device address data structure is provided below. The
names of the variables may be changed if required by local implementation. This example
uses the names provided in Table 2.1.1. If changing the name of the structure (DevAddr in
the example), the name must also be changed when declaring the BACnet data transfer

subroutines.

Example 1: Sample implementation of the device address data structure

typedef struct tagdevAddr {
unsigned char mac_device[6];

int mac_device len;
int mac_device_dec;
char mac_device_pr[15];
unsigned char ip[4];
int ip_port;
char ip_or_eth;
int net;

} DevAddr;

DevAddr myDev;
DevAddr myRouter;

Example 2: Device uses Ethernet address, Router not used

memset(&myDev, @, sizeof(DevAddr)); // zero out all fields
strcpy(myDev.mac_device_pr, ”A1B2C3D4E5F6”);
myDev.ip_or_eth = 0;// set to use Ethernet

myDev.net = 42;

memset (&myRouter, @, sizeof(DevAddr)); // no router

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

Example 3: Device uses Ethernet address, Router uses IP address

memset (&myDev, O, sizeof(DevAddr)); // zero out all fields
myDev.ip or_eth = @;// set to use Ethernet
strcpy(myDev.mac_device _pr, ”0A”);

myDev.net = 42;

memset (&myRouter, 0, sizeof(DevAddr)); // zero out all fields
strcpy(myRouter.mac_device_pr, *A1B2C3D4E5F6”);

myRouter.ip[@] = 192;
myRouter.ip[1] = 168;
myRouter.ip[2] = 0;
myRouter.ip[3] = 1;

)
myRouter.ip_port = OxBACO;
myRouter.ip _or_eth = 1;// set to use BACnet/IP
myRouter.net = 10;

2.2 The ReadBACnetValues Subroutine

2.2.1 Description

Requests for retrieval of the values of properties of BACnet objects are implemented by
calling the ReadBACnetValues subroutine. Multiple values (up to 250) can be queried with
one call to the subroutine. All queries must be directed to the same BACnet device. Any
data that is from a supported object type as shown in Table 2.2.2, and is of type REAL,

Unsigned Integer, BACnetBinaryPV, CharacterString or BOOLEAN, can be retrieved.

2.2.2 Declaration
The declaration in the calling program for the ReadBACnetValues subroutine:

extern "C"

int *prop, char **bv, int *err, DevAddr *dev, DevAddr *rtr);

declspec(dllimport) int ReadBACnetValues(int count, int *obj, int *inst,

2.2.3 Arguments and Return Value
The arguments used in the ReadBACnetValues subroutine are described in Table 2.2.1.

Table 2.2.1- Explanation of Arguments to ReadBACnetValues

Argument Description

count An integer in the range 1 to 250 used to indicate the number of values in the
request and the size of the remaining array parameters.

obj An array of integers representing the BACnet object type of a query (see
Table 2.2.2). The values correspond to the values in the BACnetObjectType
enumeration.

inst An array of integers representing the instance number of the BACnet object
being queried.

prop An array of integers representing the BACnetPropertyldentifier being read.

bv An array of strings containing the response to the read requests (or an error
message if there was an error for a specific request). Each string should be
allocated to a length of 20 or larger.

err An array of integers representing the error status of each request, 1 for no error
or 0 for an error.

dev A DevAddr structure configured with the network information for the BACnet
device being queried.

rtr A DevAddr structure configured with the network information for the router
to the BACnet device being queried, if a router is required.

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

Table 2.2.2- Valid Values For obj Arguments for the ReadBACnetValue Subroutine

Object Type Argument Value
Analog Input (Al) 0
Analog Output (AO) 1
Analog Value (AV) 2
Binary Input (BI) 3
Binary Output (BO) 4
Binary Value (BV) 5
Multi-State Input (MI) 13
Multi-State Output (MO) 14
Multi-State Value (MV) 19

The return values for ReadBACnetValues are described in Table 2.2.3. Note that if any of
the values can not be read, the return value will indicate an error. Other values will be
returned as available. The err array must be examined to determine which return values are

valid.

Table 2.2.3- Return Values for the ReadBACnetValues Subroutine

Return Value

Description

1

No errors returned.

0

One or more errors returned. Examine the err array to determine which
request returned an error.

2.2.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This code
is provided for demonstration purposes only.

Example 1: Request single value:

DevAddr myDev;

DevAddr myRouter;

// Not shown: myDev and myRouter must be configured properly
int obj[1] = { 1 }; // Analog Output

{ 5 };, // Instance number 5 (AO5)

int prop[1] = { 85 }; // present-value property

char **bv; // must be allocated, code not shown

int inst[1]

int err[1];

int i = ReadBACnetValues(1l, obj, inst, prop, bv, err, &myDev, &myRouter);
// Not shown: check the return value of i

Example 2: Request multiple values:

DevAddr myDev;

DevAddr myRouter;

// Not shown: myDev and myRouter must be configured properly

int obj[4] = { 1, 2, 1, 2 }; // Analog Outputs and Analog Values

int inst[4] = { 5, 6, 5, 6 }; // Instance numbers (AO5, AV6, AO5, AV6)
int prop[4] = { 81, 81, 85, 85 }; // out-of-service and present-value
char **bv; // must be allocated, code not shown

int err[4];

int i = ReadBACnetValues(4, obj, inst, prop, bv, err, &myDev, &myRouter);
// Not shown: check the return value of i and the value stored in bv.

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

2.3 The WriteBACnetValues Subroutine

2.3.1 Description

Requests for writing the values of properties to BACnet objects are implemented by calling
the WriteBACnetValues subroutine. Multiple values (up to 250) can be sent with one call
to the subroutine. All writes must be directed to the same BACnet device. Any data that is
of a supported object type as shown in Table 2.2.2, and is of type REAL, Unsigned Integer,
BACnetBinaryPV, CharacterString or BOOLEAN, can be sent. Values can be written with
a priority by adding a semicolon and the priority value after the property value.

2.3.2 Declaration
The declaration in the calling program for the WriteBACnetValues subroutine:

extern "C" _ declspec(dllimport) int WriteBACnetValues(int count, int *obj, int *inst,
int *prop, char **bv, int *err, DevAddr *dev, DevAddr *rtr);

2.3.3 Arguments and Return Value
The arguments used in the WriteBACnetValues subroutine are described in Table 2.3.1.

Table 2.3.1- Explanation of Arguments to WriteBACnetValues

Argument Description

count An integer in the range 1 to 250 used to indicate the number of values in the
request and the size of the remaining array parameters.

obj An array of integers representing the BACnet object type of a write request
(see Table 2.2.2).

inst An array of integers representing the instance number of the BACnet object
being written to.

prop An array of integers representing the BACnetPropertyldentifier being written.

bv An array of strings containing the response to the read requests (or an error
message if there was an error for a specific request). Each string should be
allocated to a length of 20 or larger.

err An array of integers representing the error status of each request, 1 for no error
or 0 for an error.

Dev A DevAddr structure configured with the network information for the BACnet
device being written to.

Rtr A DevAddr structure configured with the network information for the router
to the BACnet device being written to, if a router is required.

The return values for WriteBACnetValues are described in Table 2.3.2. Note that a return
value indicating an error does not mean that no values were written, but that one or more
values could not be written.

Table 2.3.2- Return Values for the WriteBACnetValues Subroutine

Return Value Description

1

No errors returned.

0

One or more errors returned. Examine the err array to determine which
request returned an error.

2.3.4 Example Code
Below are sample implementations of the WriteBACnetValues subroutine. This code is
provided for demonstration purposes only.

Example 1: Write a single value with priority level 8:

DevAddr myDev;

DevAddr myRouter;

// Not shown: myDev and myRouter must be configured properly
int obj[1] = { @ }; // Analog Input

int inst[1] { 5 };, // Instance number 5 (AI5)

int prop[1] { 85 }; // present-value property

char **bv; // must be allocated, code not shown

int err[1];

float overrideTemp = 75;

sprintf(bv[@], ”%5.2f:8”,overrideTemp);

int i = WriteBACnetValues(1, obj, inst, prop, bv, err, &myDev, &myRouter);
// Not shown: check the return value of i

Example 2: Write multiple values:

DevAddr myDev;

DevAddr myRouter;

// Not shown: myDev and myRouter must be configured properly

int obj[4] = { 1, 2, 1, 2 }; // Analog Outputs and Analog Values

int inst[4] = { 5, 6, 5, 6 }; // Instance numbers (AO5, AV6, AO5, AV6)
int prop[4] = { 81, 81, 85, 85 }; // out-of-service and present-value
char **bv; // must be allocated, code not shown

int err[4];

float newValues[4] = { 1, 1, 0.2, 55 };

for(int iter=0; iter<4; iter++) sprintf(bv[iter],”5.2f”,newValues);

int i = WriteBACnetValues(4, obj, inst, prop, bv, err, &myDev, &rtr);
// Not shown: check the return value of i

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

2.4 The GetDevInfo Subroutine

2.4.1 Description

This subroutine is used to get information about the network addressing of BACnet
controllers on the local network. This subroutine will transmit BACnet Who-Is
unconfirmed service messages to the local Ethernet and BACnet/IP networks. The network
information of responding controllers will be passed back from this subroutine. Note that
the BCD begins collecting this information when the subroutine WPClnit is first called.
This network information can then be used in subsequent calls to the BACnet data transfer
subroutines, or other subroutines requiring network information.

2.4.2 Declaration
The declaration in the calling program for the GetDevInfo subroutine:

extern "C" __ declspec(dllimport) int GetDevInfo(int maxcount, DevAddr *dev, DevAddr
*rtr);

2.4.3 Arguments and Return Value
The arguments to GetDevInfo are described in Table 2.4.1.

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

Table 2.4.1- GetDevInfo Subroutine Arguments
Argument Description
maxcount | The maximum number of devices the dev and rtr arrays can hold. This
should be sized to the requirements of the local network.
dev An array of DevAddr of length maxcount. This will hold device
configuration data. Valid returned values can be used with the BACnet data
transfer subroutines, or other subroutines requiring network information.
rtr An array of DevAddr of length maxcount. This will hold router
configuration data. VValid returned values can be used with the BACnet data
transfer subroutines, or other subroutines requiring network information.

Table 2.4.2- Return Values for the GetDevInfo Subroutine

Return Value Description
>1 The number of BACnet controllers found.
0 No controllers found.
<0 There was an error. Examine the input parameters.

2.4.4 Example Code
Below is a sample implementation of the GetDevinfo subroutine. This code is provided for
demonstration purposes only.

Example 1: Read local network information:

DevAddr dev[10];
DevAddr rtr[10];

int i = GetDevInfo(10, dev, rtr);
// Not shown: check the return value of i and use dev, rtr if valid

2.5 The BACnetObjectinfo Subroutine

2.5.1 Description

This subroutine is used to obtain information about BACnet object types supported by the
BCD and their properties. It returns information on the set of objects and properties
supported by the current version of the BCD. This is useful to ensure compatibility, as the
BCD does not support every possible BACnet object type and property. Note that future
versions of the BCD may have support for draft versions of new BACnet objects, to help
fulfill its mission as a research tool. The information that is available includes the number
of BACnet object types, the names of the BACnet objects, and the count and names of the
properties of each object type. Note that this subroutine does not give information or values
from any controllers on the network, or from any specific instance of an object or property
on a controller. Use of this subroutine does not generate any messages on the network or
rely on information previously gathered from the network. Information about BACnet
objects located on a specific controller can instead be obtained using the
ReadBACnetValues subroutine.

2.5.2 Declaration
The declaration in the calling program for the BACnetObjectinfo subroutine:

extern "C" _ declspec(dllimport) int BACnetObjectInfo (int reqObject, int reqProp, char
*propName) ;

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

2.5.3 Arguments and Return Value
The arguments to BACnetObjectInfo are described in Table 2.5.1.

Table 2.5.1- BACnetObjectIinfo Subroutine Arguments

Argument | Value Description

name
reqObject <0 | Returns the number of BACnet objects.
>0 | If regProp is < O, returns the number of properties for the
indicated object, and copies the text name of the indicated object
to propName.
If regProp is > 0, returns the value 1 and copies the text name of
the indicated property to propName.
Note that the numbering for BACnet objects starts at 0. If there
are N objects, the last one is specified by the value N-1. This is
also valid for properties. This is standard for C and C++
programming.
If reqObject is a number greater than the number of BACnet
objects, an error value of -1 will be returned.
regProp <0 | Only evaluated if reqObject refers to a valid object. Returns
property count for reqObject.
>0 | Only evaluated if reqObject is set to a valid object. Returns text
label of regProp in the propName parameter. If reqProp is a
number greater than the number of properties for the indicated
BACnet object, an error value of -2 will be returned.
propName This variable is only used to return text labels of objects or
properties. It should be initialized as an array of characters at least
40 characters long.

The meaning of the return value depends on which arguments are used. If the reqObject
parameter is negative, the return value will be the number of BACnet object types
supported. If reqObject is larger than the number of BACnet object types supported, an
error value of -1 will be returned. If reqObject is valid and regProp is negative, the return
value will be the number of properties supported by the BACnet object indicated by
reqObject. If reqProp is a valid property number, the property name requested will be
copied to propName and a value of 1 will be returned. If reqProp is larger than the valid
range, an error value of -2 will be returned. The return values are described in Table 2.5.2.

Table 2.5.2- Return Values for the BACnetObjectinfo Subroutine

Return Value Description
>0 The request was returned successfully.
-1 There was an error with the reqObject parameter.
-2 There was an error with the reqProp parameter.

2.5.4 Example Code
Below are sample implementations of the BACnetObjectinfo subroutine. This code is
provided for demonstration purposes only.

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

Example 1: Retrieve the number of BACnet object types supported:

char opname[40];

int i = BACnetObjectInfo(-1,0,opname);
// note that the value of reqProp will not be evaluated
printf(“There are %d BACnet object types supported.”,i);

Example 2: Retrieve the name of, and the number of properties supported by BACnet,
object type 0:

// Note: BACnet object type © is analog-input

i = BACnetObjectInfo(®,-1,opname);

//NOTE- opname == “analog-input”

printf(“BACnet object type @ is named %s”,opname);
printf(“BACnet object type © has %d properties.”,i);

Example 3: Retrieve the name of a specific property of BACnet object type 0 (analog-
input):

i = BACnetObjectInfo(®, 5, opname);
// Note: opname == “status-flags”
printf(“Property 5 of BACnet object type © is labeled ‘%s’.””,opname);

2.6 The WPClInit and WPCClose Subroutines

2.6.1 Description

The WPClnit subroutine is used to explicitly initialize the WinPCap connection. If this
function is not called explicitly by the calling program, it will be called by the first BACnet
data transfer subroutine called. The benefit of calling this subroutine explicitly is that when
called it will return the number of network adapters present on the computer. If there are
multiple adapters present, it will also select the first one with a valid Ethernet address as
the default adapter. Note that it will automatically skip modems and some virtual network
adapters. A virtual network adapter can be set as the default adapter by calling the
SetDefaultAdapter subroutine with the appropriate adapter identifier. If a user experiences
network connectivity problems, this subroutine and the GetDefaultAdapter and
SetDefaultAdapter subroutines could be used to investigate and solve them.

The WPCClose subroutine is used to close the WinPCap connections. It will be called
automatically by the BCD when it closes, but it may also be called explicitly. This might
be useful if a program does not need to send or receive further BACnet packets, but has
other processing to finish.

2.6.2 Declaration
The declaration in the calling program for the WPClnit subroutine:

Iextern "C" declspec(dllimport) int WPCInit (void);

The declaration in the calling program for the WPCClose subroutine:

I extern "C" _ declspec(dllimport) void WPCClose (void) ;

2.6.3 Arguments and Return Value
There are no arguments passed to the WPCInit subroutine. The return values are described
in Table 2.7.1.

10

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

Table 2.7.1- Return Values for the WPClInit Subroutine

Return Value Description
<0 An error occurred with WinPCap.
>0 The count of adapters found on the system.

There are no arguments to or return values from the WPCClose subroutine.

2.6.4 Example Code
Below is a sample implementation of the WPClInit and WPCClose subroutines. This code
is provided for demonstration purposes only.

Example 1: Initialize WinPCap and get the number of adapters:

int count = WPCInit();

if(count < 0){ printf(“There was an error initializing WinPCap.\n”);
} else { printf(“There are %d adapters on this computer\n”, count);}
/* ...Note: your program goes here... */

WPCClose();

2.7 The GetDefaultAdapter Subroutine

2.7.1 Description
The GetDefaultAdapter subroutine is used to get the identifier for the current default
adapter. Note that numbering starts at 0.

2.7.2 Declaration
The declaration in the calling program for the GetDefaultAdapter subroutine:

extern "C" _ declspec(dllimport) int GetDefaultAdapter(void);

2.7.3 Arguments and Return Value
There are no arguments passed to GetDefaultAdapter. The return values are described in
Table 2.8.1.

Table 2.8.1- Return Values for the GetDefaultAdapter Subroutine

Return Value Description
<0 The default adapter has not been set.
>0 The identifier of the default adapter.

2.7.4 Example Code
Below is a sample implementation of the WinPCap subroutine. This code is provided for
demonstration purposes only.

Example 1: Initialize WinPCap and get default adapter identifier:

int count = WPCInit();

if(count < 0){
printf(“There was an error initializing WinPCap.\n”);
} else {
printf(“There are %d adapters on this computer\n”, count);
}

Int adapter_id = GetDefaultAdapter();
printf(“The default adapter ID is %d\n”, adapter_id);
// Note that adapter_id will be @ if there is only one adapter

11

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

2.8 The SetDefaultAdapter Subroutine

2.8.1 Description

The SetDefaultAdapter subroutine is used to select the identifier for the current default
adapter. Note that numbering starts at 0.

2.8.2 Declaration
The declaration in the calling program for the SetDefaultAdapter subroutine:

extern "C" __declspec(dllimport) int SetDefaultAdapter(int i);

2.8.3 Arguments and Return Value

There is one argument passed to SetDefaultAdapter, which is the ID of the new default
adapter. This must be a valid adapter ID, which is a nonnegative integer, and less than the
adapter count as returned by WPClInit. The return values are described in Table 2.9.1.

Table 2.9.1- Return Values for the SetDefaultAdapter Subroutine

Return Value Description
0 There was an error setting the default adapter.
1 The default adapter was set to the new value.

2.8.4 Example Code
Below is a sample implementation of the SetDefaultAdapter subroutine. This code is
provided for demonstration purposes only.

Example 1: Initialize WinPCap and set default adapter ID

int count;
int adapter_id;
int status;

count = WPCInit();

if(count < 0){
printf(“There was an error initializing WinPCap.\n”);
} else {
printf(“There are %d adapters on this computer\n”, count);
}

adapter_id = GetDefaultAdapter();

printf(“The default adapter ID is %d\n”, adapter_id);

// Note that adapter_id will be @ if there is only one adapter
// For this example, let count=3, and the default adapter is ©
status = SetDefaultAdapter(1);

if(status == 1){

printf(“The default adapter was changed successfully\n”’);

} else {

printf(“There was an error setting the default adapter\n”);

}

2.9 The GetAdapterMAC Subroutine

2.9.1 Description
The GetAdapterMAC subroutine is used to obtain the MAC address of a network adapter.

2.9.2 Declaration
The declaration in the calling program for the GetAdapterMAC subroutine:

| extern "C" __declspec(dllimport) int GetAdapterMAC(int id, unsigned char *label);

12

€20Z'NL LSIN/8209°01/610"10p//:sd)y :woly ab1eyd Jo 9814 s|qe|ieAe si uoieslignd siy |

2.9.3 Arguments and Return Value

The GetAdapterMAC subroutine requires two parameters. The first parameter specifies
which adapter is being queried. If this parameter is passed as -1, then the default adapter is
used. The second parameter is an output parameter and will have the MAC address of the
adapter copied to it by the GetAdapterMAC subroutine. There must be enough space
allocated for a MAC address to be copied to this parameter. Note that the MAC address
type is unsigned char, not in human readable format, and will only require a string length
of 6 unsigned chars to be allocated. The return values for the GetAdapterMAC subroutine
are summarized in Table 2.10.1.

Table 2.10.1- Return Values for the GetAdapterMAC Subroutine

Return Value Description
0 There was an error with an input parameter: the adapter id was
out of range, or the label parameter was not allocated.
1 No error- the MAC address was copied to the output parameter.

2.9.4 Example Code
Below is a sample implementation of the GetAdapterMAC subroutine. This code is
provided for demonstration purposes only.

Example 1: Initialize WinPCap and get the MAC address for the default adapter:

int count, adapter_id, status;
unsigned char label[6];

count = WPCInit();
if(count < 0){
printf(“There was an error initializing WinPCap.\n”);
} else {
printf(“There are %d adapters on this computer\n”, count);
}

adapter_id = GetDefaultAdapter();

printf(“The default adapter ID is %d\n”, adapter_id);

// Note the adapter ID will be © if there is only one adapter

status = GetAdapterMAC(adapter_id, &label);

if(status == 1) printf(“The adapter MAC address was retrieved\n”);
else printf(“There was an error getting the adapter MAC address.\n”);

2.10 The GetAdapterIP Subroutine

2.10.1 Description
The GetAdapterlIP subroutine is used to obtain the IP address of a network adapter.

2.10.2 Declaration
The declaration in the calling program for the GetAdapterlIP subroutine:

extern "C" _ declspec(dllimport) int GetAdapterIP(int id, unsigned char *1label);

2.10.3 Arguments and Return Value

The GetAdapterIP subroutine requires two parameters. The first parameter specifies which
adapter is being queried. If this parameter is passed as -1, then the default adapter is used.
The second parameter is an output parameter and will have the IP address of the adapter
copied to it by the GetAdapterlP subroutine. There must be enough space allocated for a
IP address to be copied to this parameter. Note that the IP address type is unsigned char,

13

€20Z'NL 1SIN/8209°01/61010p//:sd)y :wouy 8bieyd Jo sau) s|gejieAe si uoneolignd siy|

not in human readable format, and will only require a string length of 4 unsigned chars to
be allocated. The return values for the GetAdapterIP subroutine are summarized in Table
2.10.1.

Table 2.10.1- Return Values for the GetAdapterIP Subroutine

Return Value Description

0 There was an error with an input parameter: the adapter id was out of
range, or the label parameter was not allocated.

1 No error- the IP address was copied to the output parameter.

2.10.4 Example Code
Below is a sample implementation of the GetAdapterlIP subroutine. This code is provided
for demonstration purposes only.

Example 1: Initialize WinPCap and get the IP address for the default adapter:

int count, adapter_id, status;
unsigned char label[4];

count = WPCInit();
if(count < 0){
printf(“There was an error initializing WinPCap.\n”);
} else {
printf(“There are %d adapters on this computer\n”, count);

}

adapter_id = GetDefaultAdapter();

printf(“The default adapter ID is %d\n”, adapter_id);

// Note adapter_id will be @ if there is only one adapter

status = GetAdapterIP(adapter_id, &label);

if(status == 1) printf(“The adapter IP address was retrieved\n”’);

else printf(“There was an error retrieving the adapter IP address.\n”);

14

€20Z'NL 1SIN/8209°01/61010p//:sd)y :wouy 8bieyd Jo sau) s|gejieAe si uoneolignd siy|

3 Summary

The BACnet Communications DLL enables programmers of HVAC-related computer
programs to easily incorporate BACnet communications into their tools. It supports a
command set that enables the most common types of communications used in data
acquisition, monitoring, FDD, or other activities that require communicating with a
BACnet enabled device. Use of the BACnet DLL removes a significant barrier for users
who wish to write tools but do not have the programming experience to implement the
BACnet protocol. The BACnet DLL is currently incorporated into several applications
created at the National Institutes of Standards and Technology (NIST), and which are used
both on the NIST campus and at other locations.

4 Future Work

While the BCD is already capable of being useful in a wide variety of applications, as
BACnet expands there will be more applications where the BCD can be used. Some
planned extensions of the BCD are inclusion of a Web Services interface, addition of new
BACnet objects and properties, and extensions of the simplified interface to include new
functionality.

5 References

[1] ASHRAE, ANSI/ASHRAE 135-2016, BACnet: A Data Communication Protocol for
Building Automation and Control Networks. American Society of Heating, Refrigerating,
and Air-Conditioning Engineers Inc. Atlanta, GA.

[2] http://www.winpcap.org

15

		Superintendent of Documents
	2022-04-17T03:42:12-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

