

NIST Technical Note 2023

Programmers Guide to the BACnet

Communications DLL

Michael A. Galler

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2023

NIST Technical Note 2023

Programmers Guide to the BACnet

Communications DLL

Michael A. Galler
Energy and Environment Division

Engineering Laboratory

This publication is available free of charge from:

https://doi.org/10.6028/NIST.TN.2023

October 2018

U.S. Department of Commerce

Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this

 document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that the

entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 2023

Natl. Inst. Stand. Technol. Tech. Note 2023, 20 pages (October 2018)

CODEN: NTNOEF

This publication is available free of charge from:

https://doi.org/10.6028/NIST.TN.2023

i

ABSTRACT

ASHRAE Standard 135- BACnet®--A Data Communication Protocol for Building

Automation and Control Networks defines a communications protocol for information

exchange between components of a distributed building automation and control system.

The proliferation of BACnet enabled heating, ventilating, and air conditioning (HVAC)

systems has enabled direct access to HVAC system data. The BACnet communications

dynamic linked library (DLL) enables researchers to implement selected BACnet

communications, creating an interface for data collection that is easy to use. The ability to

access HVAC controllers from a computer is valuable because it allows researchers,

designers, or other users to retrieve data directly from the BACnet objects on the

controllers. These data could include information on the conditions in the building space

served by the equipment, the conditions and status of the equipment, the actions the

controller is currently taking, and other values that may be set by internal program logic.

These data could then be used for a variety of research purposes, including real-time

monitoring of the HVAC system, commissioning, fault detection and diagnostics (FDD),

data logging, or other applications. Researchers can integrate the BACnet communications

DLL (BCD) into existing tools, create a new tool with the BCD, or use the BCD with

common data acquisition and analysis tools.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

Table of Contents

1 Introduction ..1

2 Usage..2

2.1 Device Address Data Structure ...2

2.2 The ReadBACnetValues Subroutine ..4

2.3 The WriteBACnetValues Subroutine ...6

2.4 The GetDevInfo Subroutine ..7

2.5 The BACnetObjectInfo Subroutine ..8

2.6 The WPCInit and WPCClose Subroutines ...10

2.7 The GetDefaultAdapter Subroutine ..11

2.8 The SetDefaultAdapter Subroutine ...12

2.9 The GetAdapterMAC Subroutine ...12

2.10 The GetAdapterIP Subroutine...13

3 Summary ..15

4 Future Work ...15

5 References ..15

ii

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

1

1 Introduction
ASHRAE Standard 135- BACnet®--A Data Communication Protocol for Building

Automation and Control Networks [1] defines a communication protocol for information

exchange between components of a distributed building automation and control system. .

The proliferation of BACnet enabled heating, ventilating, and air conditioning (HVAC)

systems has enabled direct access to HVAC system data. The ability to access HVAC

controllers from a computer is valuable because it allows researchers to retrieve data

directly from the BACnet objects on the controllers. These data could include information

on the conditions in the building space served by the equipment, the conditions and status

of the equipment, the actions the controller is currently taking, and other values that may

be set by internal program logic. These data could then be used for a variety of research

purposes, including real-time monitoring of the HVAC system, commissioning, fault

detection and diagnostics (FDD), data logging, or the application of other types of research

tools.

The BACnet communications dynamic-linked library (DLL) is designed to simplify

communications with BACnet-enabled controllers. It allows programs to read values from

and write values to objects on local BACnet-enabled controllers, and to implement a range

of BACnet commands. The BACnet Communications DLL (BCD) allows communications

to any controller accessible from a computer by a local Ethernet or BACnet/IP (IPv4 only)

connection. Since it is provided as a DLL, this capability can be integrated into research

applications with minimal effort. The BCD can also be accessed by applications commonly

used for data acquisition, which are also capable of communicating with a DLL. This

allows the same communications code to be used by multiple applications for different

purposes. The BCD is written in C++ and was developed using Microsoft Visual Studio

2015 and uses the WinPcap 4.1 library [2] for Ethernet communications. The BCD was

designed to offer a high degree of functionality and stability, while being flexible and easy

to use.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

2

2 Usage
Communications with the BCD is achieved by calling one of a number of subroutines.

Each subroutine is designed to perform a specific task with a simple, easy to use interface.

The subroutines are divided into two categories: BACnet data transfer and configuration

data transfer. BACnet data transfer involves reading data from or writing data to BACnet

controllers. Configuration data transfer involves retrieving data about the network

configuration, the controller configuration, or program configuration. The interface

subroutines are listed in Table 2.1.

Table 2.1- BCS Subroutines

Transfer Type Available Subroutines

BACnet Data ReadBACnetValues

WriteBACnetValues

Configuration Data GetDevInfo

BACnetObjectInfo

WPCInit

WPCClose

GetDefaultAdapter

SetDefaultAdapter

GetAdapterMAC

GetAdapterIP

To use the BCD, each subroutine must be declared in the code of the calling application

using an extern statement. Example code is provided for each subroutine in the following

sections.

Some of the data transfer subroutines will create messages on the BACnet network. The

BACnet data transfer subroutines will initiate one or more BACnet ReadProperty,

WriteProperty, ReadPropertyMultiple, or WritePropertyMultiple confirmed service

messages to be sent to the appropriate controller. If a BACnet data transfer request only

has one item, then a ReadProperty or WriteProperty message will be sent. If a BACnet data

transfer request has multiple items, then a ReadPropertyMultiple or WritePropertyMultiple

message will be sent. The GetDevInfo and WPCInit subroutines will transmit BACnet

Who-Is unconfirmed service messages to the local Ethernet and BACnet/IP networks.

The BACnet data transfer subroutines use a data structure to hold device and router

network information. This data structure must also be declared in the code of the calling

application. This data structure and its use is described in the following sections.

2.1 Device Address Data Structure

2.1.1 Description

The BCD defines a data structure used to hold information about the network address of

each device and router. These data structures are used by the BACnet data transfer

subroutines to route requests. The data structure is defined in Table 2.1.1.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

3

Table 2.1.1- The Device Address Data Structure

Variable Name Description

mac_device_pr Text version of the device media access control (MAC) address. This

includes Ethernet and MS/TP addresses. This field must be filled.

mac_device Optional hexadecimal version of the MAC address. It is implemented

as an array of unsigned char with length 6, so it can hold either an

Ethernet address or an MS/TP address.

mac_device_len Optional length, in bytes, of the address entered in the mac_device

field. This would be 6 for an Ethernet address or usually 2 for a

MS/TP address.

mac_device_dec Optional decimal version if a MS/TP MAC address is used.

ip The IP address, if an UPD/IP address is being used. This is an array

of length 4. If no IP address is being used, set to 0.0.0.0. IPv6 is not

supported.

ip_port The BACnet port, usually set to 0xBAC0.

ip_or_eth Set to 1 if an IP address is being used, set to 0 if an Ethernet address

is being used.

net The BACnet network number.

Note that some of the fields are optional. When setting an IP address, the text version of

the MAC address is required. The optional fields will be filled in by the BCD when passed

into one of the BACnet data transfer subroutines.

2.1.2 Example Code

A sample implementation of the device address data structure is provided below. The

names of the variables may be changed if required by local implementation. This example

uses the names provided in Table 2.1.1. If changing the name of the structure (DevAddr in

the example), the name must also be changed when declaring the BACnet data transfer

subroutines.

Example 1: Sample implementation of the device address data structure
typedef struct tagdevAddr {
 unsigned char mac_device[6];
 int mac_device_len;
 int mac_device_dec;
 char mac_device_pr[15];
 unsigned char ip[4];
 int ip_port;
 char ip_or_eth;
 int net;
} DevAddr;

DevAddr myDev;
DevAddr myRouter;

Example 2: Device uses Ethernet address, Router not used
memset(&myDev, 0, sizeof(DevAddr)); // zero out all fields
strcpy(myDev.mac_device_pr, ”A1B2C3D4E5F6”);
myDev.ip_or_eth = 0;// set to use Ethernet
myDev.net = 42;
memset(&myRouter, 0, sizeof(DevAddr)); // no router

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

4

Example 3: Device uses Ethernet address, Router uses IP address
memset(&myDev, 0, sizeof(DevAddr)); // zero out all fields
myDev.ip_or_eth = 0;// set to use Ethernet
strcpy(myDev.mac_device_pr, ”0A”);
myDev.net = 42;

memset(&myRouter, 0, sizeof(DevAddr)); // zero out all fields
strcpy(myRouter.mac_device_pr, ”A1B2C3D4E5F6”);
myRouter.ip[0] = 192;
myRouter.ip[1] = 168;
myRouter.ip[2] = 0;
myRouter.ip[3] = 1;
myRouter.ip_port = 0xBAC0;
myRouter.ip_or_eth = 1;// set to use BACnet/IP
myRouter.net = 10;

2.2 The ReadBACnetValues Subroutine

2.2.1 Description

Requests for retrieval of the values of properties of BACnet objects are implemented by

calling the ReadBACnetValues subroutine. Multiple values (up to 250) can be queried with

one call to the subroutine. All queries must be directed to the same BACnet device. Any

data that is from a supported object type as shown in Table 2.2.2, and is of type REAL,

Unsigned Integer, BACnetBinaryPV, CharacterString or BOOLEAN, can be retrieved.

2.2.2 Declaration

The declaration in the calling program for the ReadBACnetValues subroutine:
extern "C" __declspec(dllimport) int ReadBACnetValues(int count, int *obj, int *inst,
int *prop, char **bv, int *err, DevAddr *dev, DevAddr *rtr);

2.2.3 Arguments and Return Value

The arguments used in the ReadBACnetValues subroutine are described in Table 2.2.1.

Table 2.2.1- Explanation of Arguments to ReadBACnetValues

Argument Description

count An integer in the range 1 to 250 used to indicate the number of values in the

request and the size of the remaining array parameters.

obj An array of integers representing the BACnet object type of a query (see

Table 2.2.2). The values correspond to the values in the BACnetObjectType

enumeration.

inst An array of integers representing the instance number of the BACnet object

being queried.

prop An array of integers representing the BACnetPropertyIdentifier being read.

bv An array of strings containing the response to the read requests (or an error

message if there was an error for a specific request). Each string should be

allocated to a length of 20 or larger.

err An array of integers representing the error status of each request, 1 for no error

or 0 for an error.

dev A DevAddr structure configured with the network information for the BACnet

device being queried.

rtr A DevAddr structure configured with the network information for the router

to the BACnet device being queried, if a router is required.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

5

Table 2.2.2- Valid Values For obj Arguments for the ReadBACnetValue Subroutine

Object Type Argument Value

Analog Input (AI) 0

Analog Output (AO) 1

Analog Value (AV) 2

Binary Input (BI) 3

Binary Output (BO) 4

Binary Value (BV) 5

Multi-State Input (MI) 13

Multi-State Output (MO) 14

Multi-State Value (MV) 19

The return values for ReadBACnetValues are described in Table 2.2.3. Note that if any of

the values can not be read, the return value will indicate an error. Other values will be

returned as available. The err array must be examined to determine which return values are

valid.

Table 2.2.3- Return Values for the ReadBACnetValues Subroutine

Return Value Description

1 No errors returned.

0 One or more errors returned. Examine the err array to determine which

request returned an error.

2.2.4 Example Code

Below are samples of code showing how this subroutine might be implemented. This code

is provided for demonstration purposes only.

Example 1: Request single value:
DevAddr myDev;
DevAddr myRouter;
// Not shown: myDev and myRouter must be configured properly
int obj[1] = { 1 }; // Analog Output
int inst[1] = { 5 }; // Instance number 5 (AO5)
int prop[1] = { 85 }; // present-value property
char **bv; // must be allocated, code not shown
int err[1];

int i = ReadBACnetValues(1, obj, inst, prop, bv, err, &myDev, &myRouter);
// Not shown: check the return value of i

Example 2: Request multiple values:
DevAddr myDev;
DevAddr myRouter;
// Not shown: myDev and myRouter must be configured properly
int obj[4] = { 1, 2, 1, 2 }; // Analog Outputs and Analog Values
int inst[4] = { 5, 6, 5, 6 }; // Instance numbers (AO5, AV6, AO5, AV6)
int prop[4] = { 81, 81, 85, 85 }; // out-of-service and present-value
char **bv; // must be allocated, code not shown
int err[4];

int i = ReadBACnetValues(4, obj, inst, prop, bv, err, &myDev, &myRouter);
// Not shown: check the return value of i and the value stored in bv.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

6

2.3 The WriteBACnetValues Subroutine

2.3.1 Description

Requests for writing the values of properties to BACnet objects are implemented by calling

the WriteBACnetValues subroutine. Multiple values (up to 250) can be sent with one call

to the subroutine. All writes must be directed to the same BACnet device. Any data that is

of a supported object type as shown in Table 2.2.2, and is of type REAL, Unsigned Integer,

BACnetBinaryPV, CharacterString or BOOLEAN, can be sent. Values can be written with

a priority by adding a semicolon and the priority value after the property value.

2.3.2 Declaration

The declaration in the calling program for the WriteBACnetValues subroutine:
extern "C" __declspec(dllimport) int WriteBACnetValues(int count, int *obj, int *inst,
int *prop, char **bv, int *err, DevAddr *dev, DevAddr *rtr);

2.3.3 Arguments and Return Value

The arguments used in the WriteBACnetValues subroutine are described in Table 2.3.1.

Table 2.3.1- Explanation of Arguments to WriteBACnetValues

Argument Description

count An integer in the range 1 to 250 used to indicate the number of values in the

request and the size of the remaining array parameters.

obj An array of integers representing the BACnet object type of a write request

(see Table 2.2.2).

inst An array of integers representing the instance number of the BACnet object

being written to.

prop An array of integers representing the BACnetPropertyIdentifier being written.

bv An array of strings containing the response to the read requests (or an error

message if there was an error for a specific request). Each string should be

allocated to a length of 20 or larger.

err An array of integers representing the error status of each request, 1 for no error

or 0 for an error.

Dev A DevAddr structure configured with the network information for the BACnet

device being written to.

Rtr A DevAddr structure configured with the network information for the router

to the BACnet device being written to, if a router is required.

The return values for WriteBACnetValues are described in Table 2.3.2. Note that a return

value indicating an error does not mean that no values were written, but that one or more

values could not be written.

Table 2.3.2- Return Values for the WriteBACnetValues Subroutine

Return Value Description

1 No errors returned.

0 One or more errors returned. Examine the err array to determine which

request returned an error.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

7

2.3.4 Example Code

Below are sample implementations of the WriteBACnetValues subroutine. This code is

provided for demonstration purposes only.

Example 1: Write a single value with priority level 8:
DevAddr myDev;
DevAddr myRouter;
// Not shown: myDev and myRouter must be configured properly
int obj[1] = { 0 }; // Analog Input
int inst[1] = { 5 }; // Instance number 5 (AI5)
int prop[1] = { 85 }; // present-value property
char **bv; // must be allocated, code not shown
int err[1];
float overrideTemp = 75;

sprintf(bv[0], ”%5.2f:8”,overrideTemp);

int i = WriteBACnetValues(1, obj, inst, prop, bv, err, &myDev, &myRouter);
// Not shown: check the return value of i

Example 2: Write multiple values:
DevAddr myDev;
DevAddr myRouter;
// Not shown: myDev and myRouter must be configured properly
int obj[4] = { 1, 2, 1, 2 }; // Analog Outputs and Analog Values
int inst[4] = { 5, 6, 5, 6 }; // Instance numbers (AO5, AV6, AO5, AV6)
int prop[4] = { 81, 81, 85, 85 }; // out-of-service and present-value
char **bv; // must be allocated, code not shown
int err[4];
float newValues[4] = { 1, 1, 0.2, 55 };

for(int iter=0; iter<4; iter++) sprintf(bv[iter],”5.2f”,newValues);

int i = WriteBACnetValues(4, obj, inst, prop, bv, err, &myDev, &rtr);
// Not shown: check the return value of i

2.4 The GetDevInfo Subroutine

2.4.1 Description

This subroutine is used to get information about the network addressing of BACnet

controllers on the local network. This subroutine will transmit BACnet Who-Is

unconfirmed service messages to the local Ethernet and BACnet/IP networks. The network

information of responding controllers will be passed back from this subroutine. Note that

the BCD begins collecting this information when the subroutine WPCInit is first called.

This network information can then be used in subsequent calls to the BACnet data transfer

subroutines, or other subroutines requiring network information.

2.4.2 Declaration

The declaration in the calling program for the GetDevInfo subroutine:
extern "C" __declspec(dllimport) int GetDevInfo(int maxcount, DevAddr *dev, DevAddr
*rtr);

2.4.3 Arguments and Return Value

The arguments to GetDevInfo are described in Table 2.4.1.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

8

Table 2.4.1- GetDevInfo Subroutine Arguments

Argument Description

maxcount The maximum number of devices the dev and rtr arrays can hold. This

should be sized to the requirements of the local network.

dev An array of DevAddr of length maxcount. This will hold device

configuration data. Valid returned values can be used with the BACnet data

transfer subroutines, or other subroutines requiring network information.

rtr An array of DevAddr of length maxcount. This will hold router

configuration data. Valid returned values can be used with the BACnet data

transfer subroutines, or other subroutines requiring network information.

Table 2.4.2- Return Values for the GetDevInfo Subroutine

Return Value Description

≥ 1 The number of BACnet controllers found.

0 No controllers found.

< 0 There was an error. Examine the input parameters.

2.4.4 Example Code

Below is a sample implementation of the GetDevInfo subroutine. This code is provided for

demonstration purposes only.

Example 1: Read local network information:
DevAddr dev[10];
DevAddr rtr[10];

int i = GetDevInfo(10, dev, rtr);
// Not shown: check the return value of i and use dev, rtr if valid

2.5 The BACnetObjectInfo Subroutine

2.5.1 Description

This subroutine is used to obtain information about BACnet object types supported by the

BCD and their properties. It returns information on the set of objects and properties

supported by the current version of the BCD. This is useful to ensure compatibility, as the

BCD does not support every possible BACnet object type and property. Note that future

versions of the BCD may have support for draft versions of new BACnet objects, to help

fulfill its mission as a research tool. The information that is available includes the number

of BACnet object types, the names of the BACnet objects, and the count and names of the

properties of each object type. Note that this subroutine does not give information or values

from any controllers on the network, or from any specific instance of an object or property

on a controller. Use of this subroutine does not generate any messages on the network or

rely on information previously gathered from the network. Information about BACnet

objects located on a specific controller can instead be obtained using the

ReadBACnetValues subroutine.

2.5.2 Declaration
The declaration in the calling program for the BACnetObjectInfo subroutine:
extern "C" __declspec(dllimport) int BACnetObjectInfo (int reqObject, int reqProp, char
*propName);

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

9

2.5.3 Arguments and Return Value
The arguments to BACnetObjectInfo are described in Table 2.5.1.

Table 2.5.1- BACnetObjectInfo Subroutine Arguments

Argument

name

Value Description

reqObject < 0 Returns the number of BACnet objects.

≥ 0 If reqProp is < 0, returns the number of properties for the

indicated object, and copies the text name of the indicated object

to propName.

If reqProp is > 0, returns the value 1 and copies the text name of

the indicated property to propName.

Note that the numbering for BACnet objects starts at 0. If there

are N objects, the last one is specified by the value N-1. This is

also valid for properties. This is standard for C and C++

programming.

If reqObject is a number greater than the number of BACnet

objects, an error value of -1 will be returned.

reqProp < 0 Only evaluated if reqObject refers to a valid object. Returns

property count for reqObject.

≥ 0 Only evaluated if reqObject is set to a valid object. Returns text

label of reqProp in the propName parameter. If reqProp is a

number greater than the number of properties for the indicated

BACnet object, an error value of -2 will be returned.

propName This variable is only used to return text labels of objects or

properties. It should be initialized as an array of characters at least

40 characters long.

The meaning of the return value depends on which arguments are used. If the reqObject

parameter is negative, the return value will be the number of BACnet object types

supported. If reqObject is larger than the number of BACnet object types supported, an

error value of -1 will be returned. If reqObject is valid and reqProp is negative, the return

value will be the number of properties supported by the BACnet object indicated by

reqObject. If reqProp is a valid property number, the property name requested will be

copied to propName and a value of 1 will be returned. If reqProp is larger than the valid

range, an error value of -2 will be returned. The return values are described in Table 2.5.2.

Table 2.5.2- Return Values for the BACnetObjectInfo Subroutine

Return Value Description

> 0 The request was returned successfully.

-1 There was an error with the reqObject parameter.

-2 There was an error with the reqProp parameter.

2.5.4 Example Code

Below are sample implementations of the BACnetObjectInfo subroutine. This code is

provided for demonstration purposes only.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

10

Example 1: Retrieve the number of BACnet object types supported:
char opname[40];

int i = BACnetObjectInfo(-1,0,opname);
// note that the value of reqProp will not be evaluated
printf(“There are %d BACnet object types supported.”,i);

Example 2: Retrieve the name of, and the number of properties supported by BACnet,

object type 0:
// Note: BACnet object type 0 is analog-input
i = BACnetObjectInfo(0,-1,opname);
//NOTE- opname == “analog-input”
printf(“BACnet object type 0 is named %s”,opname);
printf(“BACnet object type 0 has %d properties.”,i);

Example 3: Retrieve the name of a specific property of BACnet object type 0 (analog-

input):
i = BACnetObjectInfo(0, 5, opname);
// Note: opname == “status-flags”
printf(“Property 5 of BACnet object type 0 is labeled ‘%s’.”,opname);

2.6 The WPCInit and WPCClose Subroutines

2.6.1 Description

The WPCInit subroutine is used to explicitly initialize the WinPCap connection. If this

function is not called explicitly by the calling program, it will be called by the first BACnet

data transfer subroutine called. The benefit of calling this subroutine explicitly is that when

called it will return the number of network adapters present on the computer. If there are

multiple adapters present, it will also select the first one with a valid Ethernet address as

the default adapter. Note that it will automatically skip modems and some virtual network

adapters. A virtual network adapter can be set as the default adapter by calling the

SetDefaultAdapter subroutine with the appropriate adapter identifier. If a user experiences

network connectivity problems, this subroutine and the GetDefaultAdapter and

SetDefaultAdapter subroutines could be used to investigate and solve them.

The WPCClose subroutine is used to close the WinPCap connections. It will be called

automatically by the BCD when it closes, but it may also be called explicitly. This might

be useful if a program does not need to send or receive further BACnet packets, but has

other processing to finish.

2.6.2 Declaration

The declaration in the calling program for the WPCInit subroutine:
extern "C" __declspec(dllimport) int WPCInit(void);

The declaration in the calling program for the WPCClose subroutine:
extern "C" __declspec(dllimport) void WPCClose(void);

2.6.3 Arguments and Return Value

There are no arguments passed to the WPCInit subroutine. The return values are described

in Table 2.7.1.

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

11

Table 2.7.1- Return Values for the WPCInit Subroutine

Return Value Description

< 0 An error occurred with WinPCap.

≥ 0 The count of adapters found on the system.

There are no arguments to or return values from the WPCClose subroutine.

2.6.4 Example Code

Below is a sample implementation of the WPCInit and WPCClose subroutines. This code

is provided for demonstration purposes only.

Example 1: Initialize WinPCap and get the number of adapters:
int count = WPCInit();
if(count < 0){ printf(“There was an error initializing WinPCap.\n”);
} else { printf(“There are %d adapters on this computer\n”, count);}
/* ...Note: your program goes here... */
WPCClose();

2.7 The GetDefaultAdapter Subroutine

2.7.1 Description

The GetDefaultAdapter subroutine is used to get the identifier for the current default

adapter. Note that numbering starts at 0.

2.7.2 Declaration

The declaration in the calling program for the GetDefaultAdapter subroutine:
extern "C" __declspec(dllimport) int GetDefaultAdapter(void);

2.7.3 Arguments and Return Value

There are no arguments passed to GetDefaultAdapter. The return values are described in

Table 2.8.1.

Table 2.8.1- Return Values for the GetDefaultAdapter Subroutine

Return Value Description

< 0 The default adapter has not been set.

≥ 0 The identifier of the default adapter.

2.7.4 Example Code

Below is a sample implementation of the WinPCap subroutine. This code is provided for

demonstration purposes only.

Example 1: Initialize WinPCap and get default adapter identifier:
int count = WPCInit();

if(count < 0){
printf(“There was an error initializing WinPCap.\n”);
} else {
 printf(“There are %d adapters on this computer\n”, count);
}

Int adapter_id = GetDefaultAdapter();
printf(“The default adapter ID is %d\n”, adapter_id);
// Note that adapter_id will be 0 if there is only one adapter

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

12

2.8 The SetDefaultAdapter Subroutine

2.8.1 Description

The SetDefaultAdapter subroutine is used to select the identifier for the current default

adapter. Note that numbering starts at 0.

2.8.2 Declaration

The declaration in the calling program for the SetDefaultAdapter subroutine:
extern "C" __declspec(dllimport) int SetDefaultAdapter(int i);

2.8.3 Arguments and Return Value

There is one argument passed to SetDefaultAdapter, which is the ID of the new default

adapter. This must be a valid adapter ID, which is a nonnegative integer, and less than the

adapter count as returned by WPCInit. The return values are described in Table 2.9.1.

Table 2.9.1- Return Values for the SetDefaultAdapter Subroutine

Return Value Description

0 There was an error setting the default adapter.

1 The default adapter was set to the new value.

2.8.4 Example Code

Below is a sample implementation of the SetDefaultAdapter subroutine. This code is

provided for demonstration purposes only.

Example 1: Initialize WinPCap and set default adapter ID
int count;
int adapter_id;
int status;

count = WPCInit();

if(count < 0){
printf(“There was an error initializing WinPCap.\n”);
} else {
 printf(“There are %d adapters on this computer\n”, count);
}

adapter_id = GetDefaultAdapter();
printf(“The default adapter ID is %d\n”, adapter_id);
// Note that adapter_id will be 0 if there is only one adapter
// For this example, let count=3, and the default adapter is 0
status = SetDefaultAdapter(1);
if(status == 1){
printf(“The default adapter was changed successfully\n”);
} else {
printf(“There was an error setting the default adapter\n”);
}

2.9 The GetAdapterMAC Subroutine

2.9.1 Description

The GetAdapterMAC subroutine is used to obtain the MAC address of a network adapter.

2.9.2 Declaration

The declaration in the calling program for the GetAdapterMAC subroutine:
extern "C" __declspec(dllimport) int GetAdapterMAC(int id, unsigned char *label);

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

13

2.9.3 Arguments and Return Value

The GetAdapterMAC subroutine requires two parameters. The first parameter specifies

which adapter is being queried. If this parameter is passed as -1, then the default adapter is

used. The second parameter is an output parameter and will have the MAC address of the

adapter copied to it by the GetAdapterMAC subroutine. There must be enough space

allocated for a MAC address to be copied to this parameter. Note that the MAC address

type is unsigned char, not in human readable format, and will only require a string length

of 6 unsigned chars to be allocated. The return values for the GetAdapterMAC subroutine

are summarized in Table 2.10.1.

Table 2.10.1- Return Values for the GetAdapterMAC Subroutine

Return Value Description

0 There was an error with an input parameter: the adapter id was

out of range, or the label parameter was not allocated.

1 No error- the MAC address was copied to the output parameter.

2.9.4 Example Code

Below is a sample implementation of the GetAdapterMAC subroutine. This code is

provided for demonstration purposes only.

Example 1: Initialize WinPCap and get the MAC address for the default adapter:
int count, adapter_id, status;
unsigned char label[6];

count = WPCInit();
if(count < 0){
printf(“There was an error initializing WinPCap.\n”);
} else {
 printf(“There are %d adapters on this computer\n”, count);
}

adapter_id = GetDefaultAdapter();
printf(“The default adapter ID is %d\n”, adapter_id);
// Note the adapter ID will be 0 if there is only one adapter
status = GetAdapterMAC(adapter_id, &label);
if(status == 1) printf(“The adapter MAC address was retrieved\n”);
else printf(“There was an error getting the adapter MAC address.\n”);

2.10 The GetAdapterIP Subroutine

2.10.1 Description

The GetAdapterIP subroutine is used to obtain the IP address of a network adapter.

2.10.2 Declaration

The declaration in the calling program for the GetAdapterIP subroutine:
extern "C" __declspec(dllimport) int GetAdapterIP(int id, unsigned char *label);

2.10.3 Arguments and Return Value

The GetAdapterIP subroutine requires two parameters. The first parameter specifies which

adapter is being queried. If this parameter is passed as -1, then the default adapter is used.

The second parameter is an output parameter and will have the IP address of the adapter

copied to it by the GetAdapterIP subroutine. There must be enough space allocated for a

IP address to be copied to this parameter. Note that the IP address type is unsigned char,

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

14

not in human readable format, and will only require a string length of 4 unsigned chars to

be allocated. The return values for the GetAdapterIP subroutine are summarized in Table

2.10.1.

Table 2.10.1- Return Values for the GetAdapterIP Subroutine

Return Value Description

0 There was an error with an input parameter: the adapter id was out of

range, or the label parameter was not allocated.

1 No error- the IP address was copied to the output parameter.

2.10.4 Example Code

Below is a sample implementation of the GetAdapterIP subroutine. This code is provided

for demonstration purposes only.

Example 1: Initialize WinPCap and get the IP address for the default adapter:
int count, adapter_id, status;
unsigned char label[4];

count = WPCInit();
if(count < 0){
printf(“There was an error initializing WinPCap.\n”);
} else {
 printf(“There are %d adapters on this computer\n”, count);
}

adapter_id = GetDefaultAdapter();
printf(“The default adapter ID is %d\n”, adapter_id);
// Note adapter_id will be 0 if there is only one adapter
status = GetAdapterIP(adapter_id, &label);
if(status == 1) printf(“The adapter IP address was retrieved\n”);
else printf(“There was an error retrieving the adapter IP address.\n”);

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

15

3 Summary
The BACnet Communications DLL enables programmers of HVAC-related computer

programs to easily incorporate BACnet communications into their tools. It supports a

command set that enables the most common types of communications used in data

acquisition, monitoring, FDD, or other activities that require communicating with a

BACnet enabled device. Use of the BACnet DLL removes a significant barrier for users

who wish to write tools but do not have the programming experience to implement the

BACnet protocol. The BACnet DLL is currently incorporated into several applications

created at the National Institutes of Standards and Technology (NIST), and which are used

both on the NIST campus and at other locations.

4 Future Work
While the BCD is already capable of being useful in a wide variety of applications, as

BACnet expands there will be more applications where the BCD can be used. Some

planned extensions of the BCD are inclusion of a Web Services interface, addition of new

BACnet objects and properties, and extensions of the simplified interface to include new

functionality.

5 References
[1] ASHRAE, ANSI/ASHRAE 135-2016, BACnet: A Data Communication Protocol for

Building Automation and Control Networks. American Society of Heating, Refrigerating,

and Air-Conditioning Engineers Inc. Atlanta, GA.

[2] http://www.winpcap.org

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.2023

		Superintendent of Documents
	2022-04-17T03:42:12-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

