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Abstract

Achieving the vision of ”smart manufacturing and “Industrie 4.0” requires building on suc-
cesses in computational control of processes to create generic approaches for management
of manufacturing operations, or smart manufacturing operations management (SMOM).
The approach to SMOM presented in this report generalizes the modeling framework of
ISA-95 with a reference model for discrete event logistics systems (DELS) that identifies
five generic operations management decisions. This report applies it in a computational
model of a large-scale, highly-automated central fill pharmacy that is the basis for a sim-
ulation testbed enabling convenient experimentation with operations management policies
and decision algorithms.
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EXECUTIVE SUMMARY

This report demonstrates a novel approach to modeling production systems, including their operational
control, with a large-scale, highly automated central fill pharmacy as the demonstration use case. The
products are: (1) the system model, authored using the OMG SysML™ language; and (2) a discrete event
simulation of the modeled central fill pharmacy, structured specifically to support convenient
experimentation with alternative operations management policies and decision algorithms.

The approach is based on a semantic reference model for discrete-event logistics systems (DELS) that
enables modelers to create a comprehensive and computational model of structure, behavior and control of
DELS. This model is described in Chapter 2 and shown to generalize the resource and process models
underlying the ISA-95 standard. A key element of the reference model is its represents operational control.
Chapter 3 discusses generic operational controller requirements, functions, and a suggested architecture.

The demonstration use case is automated central fill pharmacies (CFPs). These are described in Chapter 4,
which focuses on a particular style of CFP, and is based on a particular CFP. However, no proprietary
information is presented.

Chapter 5 applies the DELS reference model to establish some abstract components of a CFP model. This
chapter bridges the reference model of chapter 2, the specific use case of Chapter 4, and a detailed system
model, presented in Chapter 6.

The detailed model of a particular CFP is presented in Chapter 6. This model is the first such model to be
available in the public domain, as far as we know, because OMG SysML™ has almost exclusively been
applied to models of product systems, such as airplanes and space missions. The extant papers that do
address production or manufacturing present only very limited models of small systems. A major challenge
addressed in Chapter 6 is how to organize large production system models. Other challenges addressed
include representation of: order filling processes when both the number of specific drugs ordered and their
identities are not known a priori; the mechanisms by which operational controllers invoke the behaviors of
resources; and material transport and process contingencies in the operational controller.

Chapter 7 describes a simulation model reflecting the structure, behavior and control captured in the system
model of Chapter 6. Most commercial off-the-shelf discrete-event simulation packages have very limited
native capability for controller decision making, requiring the modeler to be able to code such decision
making in the underlying language and link this new code with the existing package. A key feature of the
model in Chapter 7 is support for integrating a generic simulation platform providing all the standard
discrete event simulation capabilities with a generic mathematical analysis tool in which key elements of
the controllers are implemented. Some initial results from experiments with the simulation model are
discussed.

Much has been accomplished and much has been learned in this project. However, there remain many

issues to resolve before the technology for SMOM achieves a commercially viable technical readiness level.
Chapter 8 summarizes the lessons learned and identifies key areas for further research and development.

viii



1 Introduction, Motivation and Approach

1.1 Introduction

“Smart manufacturing” represents the next major phase in the evolution of manufacturing and aims to make
the capture, dissemination, and intelligent use of information for decision-making reliable, fast, cheap, and
ubiquitous. When fully realized, smart manufacturing technologies and methods will impact every aspect
of manufacturing. Both quality and time to market will be improved—integrating product design and
product manufacturing allows product information to flow seamlessly to production and producibility
information to flow seamlessly back to design. Costs will be reduced—smart operations management
improves production resource utilization and responds faster to contingencies through sensing and real-
time decision making.

The smart manufacturing transformation extends from the decisions on the shop floor about how to
sequence tasks or respond to contingencies all the way to the executive suite where decisions are made
about products, markets and supply chains. Achieving smart manufacturing across this broad spectrum of
decision-making requires:

o Data/information interoperability: The executive suite deals with time intervals of months or years,
addresses families of products, geographical regions, and transactions with suppliers and
customers. Decisions on the shop floor deal with seconds or minutes, with specific machines,
workstations and people, and the individual operations required to transform material into product.
Across the enterprise, decision making requires information aggregation/disaggregation, which is
possible only with high-quality detailed reference models for the information being exchanged.

e Decision-support analysis automation: At all levels of the manufacturing enterprise, the
fundamental decisions are “what to do,” “how to do it” and “when to do it”. Making these decisions
requires an understanding of the alternative actions that can be taken regarding products, the
processes for their production, and the resources available to execute those processes, and the
decisions themselves must be made considering the impacts on time, quality and cost.
Automatically formulating and solving appropriate decision-support analyses is possible only with
high-quality detailed reference models for the products, processes and resources.

The research reported here addresses the second of these fundamental requirements in the context of
attempting to “enable real-time monitoring, control, and performance optimization of smart manufacturing”
(http://www.nist.gov/el/ smartcyber.cfm). Our approach is to use a single modeling language (OMG
SysML™) to construct a standard representation of the manufacturing system that explicitly formalizes
plant and control separation for the domain. The resulting architecture for smart manufacturing provides
the missing bridge between system models and data and analysis models and methods in order to enable
operations management decision support. While there are existing models that capture the structure and
behavior of the manufacturing plant, there remains a need for an explicit model of operational control that
can bridge between system models, analysis models, and execution tools.

This approach is consistent with and draws insight from the “model-based systems engineering” (MBSE)
approach that is rapidly becoming standard practice in the aerospace and defense industry, for the
development of “product” systems such as airplanes and weapons systems. Until now, MBSE has not be
developed or deployed for the design of the factories or supply chains producing these systems.



1.2 What Is the Opportunity?

Figure 1-1 illustrates the manufacturing context for control as defined by ISA-95. There is a “base system”
consisting of physical resources that convert material flows from an input state to an output state. ISA-95
addresses the decision making and execution control functions that determine the goals for the base system
and make those goals executable. To do this, ISA-95 separates the manufacturing domain into four levels:
4) Business Planning & Logistics (the domain of ERP systems), 3) Manufacturing Operations Management
(the domain of MES) 2) Manufacturing Control Systems (the domain of PLC, DCS, SCADA), and 1)
Intelligent devices. The primary focus of ISA-95 is on defining the functions required for achieving control
and the information that must be exchanged between these functions.

At ISA-95 Levels 0,1 and 2, control

consists of executing predefined
operations, such as running a part
program on a CNC mill, or
assembling a set of parts. In this
domain there is a large and robust
research and development literature
on implementing control from the
computer  science,  mechanical,
electrical, and software engineering
perspectives. With the evolution
towards advanced manufacturing
systems (AMS), much has been
accomplished in designing and
managing these complex systems,
including research in topics such as:
how is the control network organized

Information
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Scheduling, Reliability Assurance
State
Dispatched - Changes
el — ——__KPIs,etc

_ o

l — Material Flow
Results &

Capabilities

Production

Manufacturing
Operations & Control
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Batch
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Continuous
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(Dilts, Boyd, & Whorms, 1991), how
should  control  networks  be
implemented (Galloway & Hancke,
2013), how can legal sequences of
controller actions be generated
(Smith, Joshi, & Qiu, 2003)), how to generate PLC code (Vogel-Heuser, Witsch, & Katzke, 2005), and how
to use automata and formal language theory to derive the existence and structure of controllers, and how to
define a controllable language for discrete event (Davis, Jones, & Saleh, 1992). While there is always room
for advancement, this level of control appears to be reasonably well-understood, with reasonably effective
and robust solutions available in manufacturing.

Figure 1-1 Manufacturing Enterprise Context for ISA-95

ISA-95 level 4 is concerned with developing a production plan, i.e., determining what products should be
produced and when they should be available, where the time intervals of concern can be week, months, or
even quarters. Within the operations research and management science disciplines, there is a vast literature
on production planning, which tends to be focused primarily on formulating and solving large scale
mathematical optimization problems in order to find the “best” production plan—expressed as quantities
of product delivered by time period, subject to estimates of demand, production capacities, and costs of
production, warehousing and transportation, see, e.g., (Jans & Degraeve, 2008). In this literature, the
“problem is solved” when a vector of decision variable values is obtained. While research in this topic
continues apace, there also are a number of commercial software solutions that provide decision support.
In the ISA-95 framework, the resulting production plan is passed from Level 4 to Level 3.



ISA-95 Level 3 consumes the production plan, creates a production schedule, consisting of individual
processing steps, perhaps with start/finish times, and invokes the execution capabilities of Levels 2, 1 and
0. Again, within operations research and management science, there is a vast literature on production
scheduling, which assumes there is a set (or perhaps a stream) of job types with known resource
requirements, that need to be assigned to available production resources in some sequence, see, e.g., (Silver
& Peterson, 1998). This is well known to be, in most cases and from a theoretical perspective, an extremely
difficult decision problem (most likely admitting no exact computational method which can reach a
guaranteed optimum decision in time that is less than exponentially related to the problem size). In this
literature, the “problem is solved” when the dispatching or scheduling decisions have been determined,
again, typically as a vector of release or start times. Ultimately, Level 3 must translate the production
schedule into tasks or jobs that are executable by the base system, through the control actions at Levels 2,
1landO.

There is a draft proposal within ISA-95 for the control functions at level 3, as summarized in Figure 1-2
below. There are eight identified functions:

Detailed scheduling: translates the operations schedule from Level 4 into work schedules
Resource management: responsible for defining, acquiring, adjusting and retiring resources
Dispatching: assigns work scheduled to resources
Tracking: uses data collected from Level 1 and 2 to update schedule progress and provide input to
dispatching and performance analysis
Definition management: defines the work process
e Execution management: interacts with Level 1 and 2 functions to execute the defined and
dispatched work
o Data collection: aggregates data on work commenced, redirected, completed, aborted, executed or
reconciled
In this framework, there are three decision functions: scheduling, resource management, and dispatching.

Level 4 functions
Operations )'q-m olp-um scheduled,
ISA05 g
e - Level 4
gﬁn S Level 3
Work capahility tail
managed ¥ schaching A Ly
Resouros miired Testretind
nm I&mﬂ:dﬂd Tracking \
f:::i Dispatching Pﬂ;n;gs“
Work defined ¥
e pas
B Work com manced
s xm
mm oo mpleted
L Exeoution _,/‘ mmmdm
management Work rer anclled
Level 3
- T Level 2
Operations level 1/ level 2 functions
Figure 1-2 Functions and messages in Level 3
Source: https://www.isa.org/intech/20171203/




Deploying this framework in practice will require concrete implementations of the functions themselves,
and the processes for synchronizing their execution. The concrete implementation of a decision function,
e.g., Dispatching, will require converting the information available to the function, Work scheduled, Work
defined, Work dispatched, and the status of each individual Work dispatched, into a decision problem. The
decision required is the work to dispatch next. Conceptually, solving this decision problem requires, either
explicitly or implicitly, predicting the outcomes of alternative decisions. It requires an understanding, not
just of the parts of the system, but of their interactions as well. In other words, it requires an understanding
of the structure and behavior of the Level 2 controls and the base system.

While ISA-95 has defined the events and corresponding information exchanges, as well as the operational
control functions, it does not provide a mechanism for specifying the base system or the control architecture.
The opportunity addressed in this report is the development of these important aspects of ISA-95
deployment.

ISA-95 Level 3 events are discrete events. The information being exchanged represents a discrete message.
Moreover, the work being dispatched represents a discrete unit of work, with a planned and observed
start/finish time. Thus, the system represented in the ISA-95 Level 3 framework can be viewed as a Discrete
Event Logistics System (DELS), defined in (Sprock, Thiers, McGinnis, & Bock, 2019) as:

e anetwork of resources, arranged in a facility; each resource has one or more processing capabilities,
with a capacity for each capability;

e products flow through this network of resources, transformed by processes executed by the
resources; a process may require capabilities of more than one resource; processes can change
location, age, or condition of products.

The DELS reference model is developed explicitly to support specifying the parts, interfaces, and behaviors
of resources, to enable automation of decision-support analyses.

1.3 Approach

The work reported here demonstrates that the DELS reference model supports deployment of the ISA-95
Level 3 reference model. The DELS reference model supports developing a base system model expressed
in OMG SysML ™, including the specification of a control architecture conforming to ISA-95. In addition,
a generic controller architecture for DELS is used to specify ISA-95 control function implementation.

The demonstration use case is a central fill pharmacy producing approximately 30,000 prescriptions per
day using a combination of dispensing automation and manual dispensing.

The DELS model of the central fill pharmacy constitutes a design document for developing a corresponding
discrete event simulation model implemented in MATLAB/SimEvents.

1.4 Overview

Chapter 2 discusses the relationship between the ISA-95 reference model and the DELS reference model.
Chapter 3 identifies operational controller requirements, functions and a suggested architecture.

Chapter 4 provides a detailed description of the test case, the central fill pharmacy.



Chapter 5 applies the DELS reference model to define some abstract components of a CFP model. This
chapter bridges the reference model in Chapter 2, the specific use case in Chapter 4, and detailed system
model, presented in Chapter 6.

Chapter 6 presents the detailed SysML model of the demonstration case, addressing resources, processes,
and controls.

Chapter 7 describes a discrete event simulation of the modeled CFP and presents some initial results from
experimentation using the simulation.

Chapter 8 discusses the results and conclusions from this work and identifies important avenues for further
research and development.



2 ISA-95 and DELS

ISA-95 specifies a reference model for the information exchanged between the various functions required
for manufacturing enterprise planning and control. This includes information about the product the
resources available, the operations required to produce the product and schedules for production. The DELS
reference model, developed expressly to support design and operational decision making, specifies product,
process, resource, facility and control. Because the DELS reference model is used here, it is important to
understand how the two reference models are related, and in particular, any differences in how they structure
information about manufacturing operations management. The description of ISA-95 given here will
necessarily be brief and incomplete but will include the essential aspects of ISA-95 that have corresponding
elements in the DELS reference model.

2.1 DELS Overview

The basic DELS ontology is shown in Figure 2-1. Product is defined by a bill of materials identifying the
individual parts and assemblies which also may be (intermediate) Products. A Product is created by a
Process, an activity, which may employ other Processes. The Process may require inputs of Resources,
which can include Material but also ActiveResources, such as Equipment or other DELS. A Process is
executed by a capable ActiveResource which can be a collection of resources, and that execution is
authorized by a Task. Not explicit in Figure 2-1is an assumption that Task is issued by some controller
performing the ISA-95 control functions and is specific to a particular Process. The complete DELS
reference model can be found at (Sprock, Thiers, McGinnis, & Bock, 2019).

package DiscreteEventLogisticsSystems [ DELS_Ontology_extended JJ

«block= authorizedBy  targetProduct <blocke>
Task = Product
0.. 0..1 «blocks»

creates |billOfMaterial : Material [1..%] . Facility
components : Product [0..*%] requiredByProduct

authorizedBy (0..* 0..1 P

isLocatedIn |1

adiioiseitneaibn il  mstediyi- requiredInputResources [1..* contains |1..*
«blocks

«activity»
Process

Resource

requiredByProcess requiredInputResources
L.* 1.%

memberResource : Resource [0..%]

canExecute [1..* T

canBeExecutedBy (1..

«blocks=

«blocks=
ActiveResource PassiveResource

controller [0..1]
memberActiveResource : ActiveResource [0..*]{subsets memberResource,redefines flowNode,redefines node

«blocks=
Material

T requiredBryr: ‘Product [1..*]

«blocks «block=
Equipment DELS
controller : RealtimeController [1]{redefines controller] controller : OperétlénalCcntrcHer [1]

Figure 2-1 Basic DELS Semantics




In the DELS ontology, all the elements are abstract objects, i.e., they need to be specialized to specific
object types, instances and executions in an application. A very important aspect of the DELS ontology is
that every class within the ontology may have as parts other objects of the same class. Thus, a product
nests products, a process has sub-activities that are processes, a resource may contain resources, a facility
may contain facilities and a task may contain tasks.

In the DELS ontology ActiveResource has a controller part; a DELS has an OperationalController while an
equipment has a RealtimeController.  Figure 2-2 illustrates a conceptual model for the DELS
OperationalController identified in Figure 2-1. There are six specific types of decisions made by the
OperationalController:

Admission: will a received or offered task be accepted?

Sequencing: in what order will accepted tasks be executed?

Assignment: if there are alternatives, to which resource will a task be assigned?

Change State: when shall the state of a resource be changed, e.g., tooling configuration?

Process Planning: an accepted Task may have both explicit and implicit sub-tasks; the controller
must be able to identify these sub-tasks

¢ Routing: what process should be executed next?
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Figure 2-2 Conceptual Model of DELS Operational Controller




2.2 DELS to ISA-95 Correspondences

The DELS Product is a generalization of the ISA-95 Manufacturing Bill which has one or more associated
Product Segment. Essentially, the Product Segment organizes the Manufacturing Bill according to the parts
that are produced in the same or nearby locations within the same time frame. The DELS Product allows
exactly the same kind of structuring for a specific product instance. This correspondence is illustrated in
Figure 2-3below.

«block»

Product «block»
; properties «blocks ProductSegment
isTransformedBy : Process ManufacturingBill e

e 9 refersTo productSegment : ProductSegment [0..%]

i eferences - references od
visits : ActiveResource associatedBOM : BillOfidaterialsPkg_External ¥
values associatedRules : ProductProductionRulePkg 4 L
productiD associatedRules : ProductProductionRulePkg
associatedExtBOR : BillOfResourcePkg_External

Figure 2-3 DELS Product and ISA-95 Manufacturing Bill

The DELS Process represents the information that typically is captured in process plans and detailed work
instructions, thus Process generalizes Product Production Rule, Production Routing and Process Segment.
Product Production Rule is a detailed instruction, thus can be modeled as a SysML activity. Production
Routing is expressed through the precedence relationships in the DELS Process. Process Segment identifies
the various resources required for a Product Segment and these are defined in Process, either as inputs or
as the owner of the behavior represented by an activity. All of this information, in many instances, already
exists, or is being developed in dedicated authoring systems, so it is conceptually straightforward to extract
it to populate the Process model. These correspondences are illustrated in Figure 2-4below.
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Figure 2-4 Process in DELS and ISA-95




Note also that Product Segment identifies a particular Process Segment. The corresponding DELS Product
is created by the corresponding DELS Process.

DELS Resource models are in some respects very similar to the information contained in the 1ISA-95
Process Segment but are a generalization of the various resource categories identified in ISA-95. This is
illustrated in Figure 2-5 below. Similarly, DELS Facility is a generalization of the specific ISA-95
categories of Enterprise, Site, Area, Process Cell, Production Unit, and Production Line, as shown in Figure
2-6.
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Figure 2-5 Resource in DELS and ISA-95
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Figure 2-6 Facility in DELS and ISA-95




DELS Task is a generalization of the ISA-95 Production Schedule, Production Request, and Segment
Requirement as shown in Figure 2-7. One significant distinction in the DELS framework is that material
handling also is a Process, executed by a Resource, but one which may not be defined a priori, i.e., not
defined in Product Production Rule. For example, a Product may need to visit a Work Cell, but at the
moment it is ready to be moved, there is not space available at the target Work Cell, so the Product must
be moved to a temporary storage location, and later retrieved and moved to the target Work Cell. A
controller may need to create these kinds of Task even though they are not explicit in the process plan or
work instructions.

«blocks
ProductionSchedule

preducticnRequest :"IE’r‘ovducticnRecuest 1.4

«blocks
ProductionRequest

«blocks
Task

segmentRequirement :"S_Se-gmentRequirement [1.%9

authorizesExecution : ActiveResource

correspondsTo : Pro:'h;crtP'rbvducticnRuIePkg [1

«block»
SegmentRequirement

correspondsTd :>F;rc>c>éssSegmem 11

Figure 2-7 Authorizing Operations in DELS and ISA-95

In summary, there is a relatively straightforward mapping between DELS and ISA-95, except for controller
objects. DELS specifically identifies controllers as a part of ActiveResource. Resources in the ISA-95
Level 3 domain have L3 controllers, and resources in the ISA-95 Level 2 domain have L2 controllers. The
DELS ontology does not extend below the Level 2 controllers.
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3. Operational Controller Function and Architecture

In the DELS semantic framework a discrete event logistics system consists of an operational (ISA-95 Level
3) controller and a set of active resources within the controller’s domain, each having well defined
capabilities. The controller is responsible for operational decisions regarding the admission of new tasks
and the execution of existing tasks. This chapter explores the transition from the abstract semantics to a
concrete implementation of a controller by addressing the control requirements, control functions, and their
logical organization into an architecture.

The fundamental behavior of the operational controller is decision making, and as described in (Sprock,
Bock, & McGinnis, 2019), there are five specific kinds of operational control decisions: admission,
assignment, scheduling, routing, and active resource state change.

Figure 3-1 below presents a conceptual representation of the processes involving a DELS, its controller and
its active resource set. Conceptually, new tasks are received by the controller, which may reject them. If
they are accepted, upon completion the DELS controller reports the result. The active resources receive
tasks from the controller. There may be a failure, or a DELS active resource may reject a task (if it also is
a DELS). Otherwise, the process associated with the task is executed by some active resource, which reports
the result to the controller. If the task completed by the active resource represents the completion of a task
received by the DELS controller, the controller reports the result. Note that this is a conceptual
representation; as one example, there may be multiple active resources, so a single port is not an accurate
model. However, the model is a good starting point for discussing operational controller functions and
architecture.

{"act [Activity] DELS_Conceptual [ DELS_Conceptual ] ]

ControllerProcess ResourceSetProcess
in newTask : Tagk newTask command newTask
. 3 —_—
reject i fail
E e
out rejectTask:Task 1
| result result
complete e mm—

out completeTask : Task

Figure 3-1 DELS Controller and Base System

Given this context, what can be inferred about the functions and architecture of the operational controller?
Answering this question requires careful consideration of the definition of task, the mechanisms for
triggering controller decision-making and the nature of the decision problems which the controller must
resolve.
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3.1 Requirement: Defining Task

The fundamental requirement for an operations controller is to manage the completion of tasks it has
accepted recognizing performance objectives and task execution constraints. In (Sprock, Thiers, McGinnis,
& Bock, 2019) task is described as a cyber-physical object representing both the authorization for process
execution and the (passive) resource upon which the processes operate. In the discussion below, however,
task will refer only to the authorization component, and “releasing” a task refers to transmitting the task to
the resource that will execute the associated process. A task accepted by the controller may correspond to
a process that can be directly executed, or it may correspond to a multi-step process, in which case the
controller will release the individual sub-tasks. An accepted task is not completed until all its subtasks have
been completed. The term “task” in the following discussion may refer to the task as accepted by the
controller or to any of its constituent sub-tasks.

A task in the DELS context is the authorization of a resource to execute a process on a specific part or part
set, or “job” for the purposes of this discussion. The job and the task may arrive together, for example a
paper workorder in a bin of parts. Alternatively, the job may arrive before the task, inducing the resource
to request a task, or the task may arrive before the job, requiring the resource to match a job to a previously
received task.

In a manufacturing context, the task “produce product” corresponds to a process plan, which can be
conceptualized as a directed acyclic graph (DAG) where nodes correspond to the specification of processes
to be executed and edges correspond to precedence constraints (see, e.g., (Cho, Son, & Jones, 2006). The
process plan describes the sequence of process steps that must be accomplished and as a consequence also
identifies required capabilities of the set of resources that execute those process steps.

The DELS process that corresponds to a task can be represented using a SysML activity diagram, with call
action nodes representing directly executable processes (process steps) and control flow paths representing
precedence constraints. However, the task itself, the authorization for process execution, is not an activity,
it is better conceptualized as structured data consumed by a controller and translated by the controller into
invocations of active resource behavioral capabilities.

The traditional process plan for producing a product or service invariably specifies only the “make”
processes. For example, the process plan for a circuit card assembly will specify the manufacturing process
steps, such as clean the bare board, apply solder paste, place components, reflow, and inspect. However,
in producing the circuit card assembly, there will be a number of “move” processes, and perhaps “store”
processes as well. In addition, there may be contingencies that arise, such as failing an inspection, that
require additional process steps. Without these additional processes, the circuit card assembly cannot be
produced, but these processes are not spelled out in the process plan.

Because move, store and resolve processes are executed by active resources, their executions must be
authorized by a controller. In some fashion, the “make”-focused task, e.g., make circuit card assembly,
must be elaborated to include not only the individual make process steps but also subtasks for move, store
and resolve processes. It is perhaps worth noting that a detailed “pedigree” for a product would include not
only information corresponding to make process steps, but for every other process step. Thus, historical
data could provide a template for an extended process model, and thus for an extended task model.

A fundamental issue in designing a controller architecture is choosing the specific mechanisms by which
an accepted task is elaborated to generate the required move, store and resolve tasks. Knowledge of the
implied elaborated process can be made explicit in some way and used as input to controller functions.
Alternatively, knowledge of the extended process model could be incorporated implicitly in controller
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function computational algorithms. The added sub-tasks might be created when the task is accepted, or
they might be created on-the-fly as the subtasks are released. No matter how this issue is resolved, it should
be noted that there likely always will be disruptions, i.e., process results which have not been anticipated,
and which the controller cannot resolve based solely on the accepted task and predefined elaborations of
the task.

3.2 Function: Operational Decisions

Recall that (Sprock, Thiers, McGinnis, & Bock, 2019) identify five operational control decision types:
admission, sequencing, assignment, routing and state change. These decisions are implemented through
the execution of resource behaviors, authorized by tasks. Further, (Sprock, Thiers, McGinnis, & Bock,
2019) categorize tasks as:

“availableTasks (role played by Task) are tasks that have been accepted, admitted, and are
waiting in the availableTaskQueue to be serviced. completedTasks are tasks that have been
serviced and are stored 0 in an completedTaskQueue waiting to depart the system.
inProcessTasks are tasks currently being served by the system and located in/at some
memberResource (usually equipment).”

The tasks in the availableTaskQueue should be tasks that can be released to some active resource in the
controller’s domain, so they may represent sub-tasks of an admitted task. Only those tasks in the
availableTaskQueue with no binding precedence constraints are candidates to be released immediately by
the controller to authorize process execution. These will be referred to as readyTasks. Also, move tasks
often will authorize a material handling DELS to execute a move process, i.e., the material handling DELS
will determine, on-the-fly, exactly how to execute the authorized move, e.g., how to route the carrier.

The availableTasks have been admitted after considering both capability (does the DELS have active
resources capable of executing the task?) and capacity (can the DELS complete the task in a timely manner
without causing unacceptable delays to other already accepted tasks?). A direct consequence is that the
controller must have access to information about the set of active resources in its domain, including their
current capabilities, potential capabilities (realizable by a change state process) and current state with regard
to ability to accept a task. This kind of information constitutes a plantModel, and a key functional
requirement for the controller is maintaining this model.

The remaining operational decisions regarding availableTasks are assignment (which resource will execute
the process associated with the task), scheduling (when will the process be executed) and routing
(scheduling a supporting process not spelled out in the process plan). The controller also can decide to
change the state (e.g., the setup) of an active resource. The specific timing and sequencing of these
decisions may be different for different applications and implementations. For example, the assignment
decision might be made when the task is accepted, or it might be delayed until the task is released. Routing
decisions might be made when the task is accepted, but more realistically would be made at the time the
controller considers a readyTask.

Clearly, in order to make operational decisions about tasks, the controller must have access to information
identifying availableTasks, readyTasks, inProcessTasks, and completedTasks, i.e., to a complete
taskModel. Thus another functional requirement for the controller is maintaining this model.

Operational decision-making requires queries to the taskModel to identify a set of readyTasks, and queries

to the plantModel to identify the set of available resources for each readyTask. The assignment, scheduling
and routing decisions depend upon the query results.
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3.3 Function: Decision Triggers

A fundamental assumption about DELS is that they are event driven. Assuming the DELS is initialized
with an empty availableTaskQueue, the events that might trigger operational decision-making are those
that correspond to a state change for either the task list or some resource in the base system. These include:
(1) arrival of a new task; (2) acceptance of a new task; (3) completion of some process execution authorized
by a previously released task; and (4) resource failure. Other events, e.g., timers, might also trigger decision-
making, but the focus here will be on the task and process related events. These change the states of the
plantModel and taskModel and thus represent an opportunity to reconsider already made but not yet
executed operational decisions or to make new operational decisions. There is little motivation for decision-
making in between events since there has been no observable change in the state of the plantModel or
taskModel since the most recent decision-making triggered by an event.

The DELS L3 controller must incorporate functions for detecting and interpreting events in its domain, as
well as events associated with new task requests.

3.4 Controller Functions

From the previous discussion, the following controller functions can be identified:

e Maintaining plantModel and taskModel, i.e., updating as events occur and decisions are made
(model maintenance)

Querying plantModel and taskModel to support decision-making (model query)

Identifying required processes not spelled out in traditional process plans (task elaboration)
Detecting events and determining the appropriate response (event detection and interpretation)
Formulating a decision-problem relevant to the kind of event, and perhaps to the query results
(decision analysis problem formulation)

Solving the decision problem (decision analysis problem solution)

e Translating the decision problem solution into assignable task(s) (task definition)

e Transmitting task(s) to assigned resources (task communication)

These eight functions are required in order for the operations controller to be able to make the five kinds of
decisions identified in (Sprock, Bock, & McGinnis, 2019) and manage the corresponding tasks.

3.5 Controller Architecture

A conceptual controller architecture is illustrated in Figure 3-2. This is not claimed to be the only possible
controller architecture, but it provides a reference point for discussing how controllers might be
implemented in the DELS framework. All the functions identified above are included except task
elaboration, because it is not clear where in the functional architecture it should appear. Resolving the issue
of how to represent task elaboration requires a more in-depth investigation of process.

Parts visit active resources, where processes are executed on the part. Either explicitly or implicitly, the
active resource must induct the part in order to execute a process and once the process completes, it must
discharge the part. This can be conceptualized as a three-step process, a get operation, followed by the
process, followed by a put operation. The sequence is get-process-put. The process can be either a make
process, or a move or store process. In all cases, the fundamental sequence is the same.

The complete process for a product involves many of these get-process-put sequences as the parts and
assemblies move from one active resource to another. In fact, it will alternate between make (or store) active
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resources and material transport active resources. This is the case, regardless of the nature of the material
transport resource—it can be an automated resource such as an AGV, or it could be a workstation operator
who is moving the part to the next workstation.
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Figure 3-2 Conceptual Controller Architecture

The part must transition from one active resource to another. In the most general case, the arriving part to
be processed is in some (input) interface location, from which it is retrieved, and once the process is
complete, it is placed in some (output) interface location. The two locations could be the same. The
interface location could be either a part or a reference for the active resource, i.e., it could belong to the
active resource, or to some other active resource. Figure 3-3 illustrates one possible configuration. There
are two workstations with “work positions” where their respective processes can be executed. Workstationl
has a robot that loads parts from the workcell induction location into the work position for workstation 1,
moves the part from the work position for workstation 1 to the load/unload port for workstation 1, and
finally moves the completed part from the load/unload port for workstation 2 to the workcell discharge
location. The induction location is an interface location between the workcell and the active resource
delivering parts to the workeell; similarly for the discharge location. The robot delivers and retrieves parts
directly from the work position for workstation 1 but to a load/unload port for workstation 2. There is no
separate interface location for workstation 1, but the load/unload port is the interface location for
workstation 2. Workstation 1work position and workstation 2 load/unload port are reference properties for
the robot.

The sequence of operations for a single part going through the workcell would be:
1. Get-move-put: robot moves part from induction location to workstation 1 workposition

2. (get)-make-(put): workstation 1 executes a process on the part, but the get and put are degenerate,
as they will be performed by the workstation 1 robot.
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3. Get-move-put: robot moves part from workstation 1 work position to workstation 2 load/unload
port

4. Get-make-put: workstation 2 retrieves the part from the load/unload port, executes a process on the
part, then puts the part to the load/unload port

5. Get-move-put: robot moves part from workstation 2 load/unload port to discharge location.

Note that the workcell also might include a store resource, to provide a temporary buffer between
workstations 1 and 2, in case a part is ready to move from workstation 1, but workstation 2 is not finished
with its current operation. Note also that a part cannot be placed in the workstation 2 load/unload port if
workstation 2 is processing a part, as that would create a deadlock. This is, of course, a simple illustration
of the get-move-put and interface location concepts.
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Figure 3-3 Interface Location Example

There are several important implications from this simple example. One is that the operations controller
for the workcell must create tasks that essentially elaborate the process plan for parts going through the
workcell to include all the move processes, but in addition, it must authorize, either explicitly or implicitly
all the get and put operations. Depending upon the design of the system, move operations may require a
destination interface location to be reserved in order to avoid deadlocks, a type of constraint that may not
always be described as a simple precedence between tasks.

In the circuit card assembly example given earlier (see section 3.1) the task assembleCircuitCard is not

directly executable. It must be elaborated into its constituent subtasks, which are placed on the
availableTaskList. In fact, any task on the availableTaskList should be directly executable, i.e., it can be
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assigned to some active resource in the controller’s domain. Thus, the function of maintaining the task
model is an appropriate place to integrate the elaboration of process plans to incorporate move processes,
although the corresponding move tasks may not have a specific origin or destination, because the associated
make tasks have not yet been assigned to active resources. When a make task has been assigned to a specific
active resource, the origin for the subsequent move can be specified, but the destination may not be assigned
until the make task has been completed.

For a given make, move or store task, the assignment to a particular active resource will dictate the
associated get and put operations, i.e., whether or not they are degenerate. The corresponding get and put
tasks can be placed on the availableTask list.

Since assigning a task to a resource is an event, it can trigger the event director, which can invoke the
ModelMaintaner to update the availableTaskList. The conclusion is that the ModelMaintainer has two task
elaboration functions: (1) an arriving task is elaborated into process authorizations which can be assigned
to an active resource; and (2) whenever an availableTask is assigned to an active resource, details of
previously defined move tasks are updated, and new get and put tasks are created as appropriate.

3.6 Summary
The key take-aways from this chapter are:

e Operations control invokes the behavior of active resources that make, move, store, or measure
product

e The transfer of product between active resources occurs through an interface location and involves
a get-process-put sequence of behaviors

e Control decisions are based on the state of accepted tasks and active resources in the controlled
domain

e Control decisions are triggered by events.
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4. Central-Fill Pharmacy Case Study

A central fill pharmacy (CFP) is “a pharmacy which is permitted by the state in which it is located to prepare
controlled substances orders for dispensing pursuant to a valid prescription transmitted to it by a registered
retail pharmacy and to return the labeled and filled prescriptions to the retail pharmacy for delivery to the
ultimate user*t. The main advantages of a CFP include cost reduction, through inventory consolidation and
improved resource utilization, and giving pharmacists in local pharmacies the flexibility to focus on
customers. The disadvantage is the delay associated with sending a prescription to the CFP, and the
transport cost and delay associated with the physical delivery to the local pharmacy or direct to the patient.
This delay is not critical for “routine” refills.

A high-volume CFP (HVCFP) uses automation to speed the filling of prescriptions, further improving labor
productivity and substantially reducing the cycle time and cost for fulfililment. Fundamental challenges in
designing and operating a highly automated CFP include: (1) selecting the right portfolio of automation
technologies; (2) designing the material handling automation to integrate the drug dispensing technologies;
(3) assigning drugs to dispensing technologies, and perhaps configuring the technologies for operation; and
(4) operational control to achieve goals regarding accuracy, cost, throughput and response time.

This case study identifies the “product” produced by a HVCFP, the processes required to produce that
product, the resources used to execute the required processes, and the organization of resources into a
facility. It also identifies the control functions of the HVCFP, using the ISA-95 standard architecture as a
framework. The system description is based on a particular HVCFP architecture and the case study is for a
specific instantiation of that architecture. However, the system model and simulation model contain
elements that are reusable for other HVCFP architectures, although new model elements might have to be
developed for those architectures.

4.1 Concept of Operation

A HVCFP will be capable of filling prescriptions, or “scripts,” for many drugs, perhaps several thousand,
and the demand rates for these drugs will differ significantly. Drugs are identified by their National Drug
Code, or NDC. The NDC Pareto curve may be extremely skewed, with the top 2 or 3 percent of the NDCs
accounting for 70% of the scripts filled. Generally, the most often dispensed drugs will be for controlling
blood pressure or cholesterol level, or for diabetes.

The HVCFP receives orders via the internet from local pharmacies. In one operational protocol, these
orders may be transmitted at any time; orders received when the HVCFP is not operating are accumulated
for the following day and available orders not completed in one day are carried over to the next day. All
orders from a particular customer (pharmacy) completed during the HVCFP daily operation will be
accumulated for delivery overnight. Other protocols are possible, such as guaranteeing that orders received
before a designated cutoff time will be filled on the day received and delivered overnight. In another
scenario orders may arrive with due dates, and can be filled and delivered earlier. There are many possible
variations.

A given HVCFP will serve a large number of local pharmacies, perhaps several hundred. The populations
served by these local pharmacies may differ demographically, and if so, their ordering patterns may be quite

121 CFR 1300.01 (44) [Title 21 Food and Drugs; Chapter 11 Drug Enforcement Administration, Department of Justice;
Part 1300 Definitions]
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different. The HVCFP will see significant day-to-day variability in the volume of scripts and mix of drugs
ordered. The average volume and the mix of drugs ordered also may change depending on the season, and
even the time of the month. The total number of scripts to be fulfilled, as well as the mix of drugs will
change over time, driven by both demographic changes and advances in medicine.

4.2 HVCFP Product

A HVCFP produces batches of patient-specific orders ready for delivery to the originating local pharmacy.
At regular intervals, e.g., the end of each working day, these batches will be loaded into a delivery vehicle
for transport to the local pharmacies. In a particular pharmacy’s batch, each individual patient’s order will
consist of one or more NDCs in appropriate packaging—Vvials for pills, bottles for liquids, and various unit-
of-use packages. These NDCs must be packaged together, along with necessary paperwork, for delivery to
the individual at the originating pharmacy.

Each NDC can be characterized as “dispensable” or “manual”. Scripts for dispensable drugs—typically in
pill form—can be filled using automation, whereas scripts for manual drugs must be filled by a human
operator. The latter might correspond to liquids to be measured, items that come prepackaged in a form
not suitable for automation (“unit of use”), drugs requiring refrigeration, etc. An order for a particular
patient may include both dispensable and manual drugs.

4.3 HVCFP Processes

There are three phases of operation in a HVCFP. The first phase is the dispensing of individual drugs. The
second phase is assembling individual patients’ orders, which may consist of multiple scripts. The third
phase is assembling all the orders for a specific pharmacy and delivering them. Note that dispensing drugs
to fill a script and accumulating scripts to complete an order are referred to as the “fulfillment” function of
the HVCFP. Accumulating the orders by pharmacy is referred to as the “delivery function”. There are four
fundamental processes for dispensing a drug, four fundamental processes for completing an individual’s
order, and three fundamental processes for completing a pharmacy’s delivery.

To dispense a drug (dispense phase):

1. Prepare an appropriate container into which the drug will be dispensed. If the drug is prepackaged

as a “unit of use” this process is not required.

Dispense the drug. This involves counting pills, measuring liquids, or retrieving a unit of use.

3. Verify the drug and quantity. In HVCFP facilities, this process is a regulatory requirement to insure
patient safety.

4. Seal the container. Once a drug has been dispensed and verified, the container must be sealed. For
prepacked unit-of-use drugs, this process is not required.

N

To complete an individual’s order (order accumulation phase):

1. Accumulate all scripts for the individual order. Individual scrips in the order may be filled using
different technologies, but all scripts must be brought together to complete the order.

2. Add each script’s container to customer-specific packaging, typically a plastic bag.

3. Add drug-specific instructions, required notifications and other documentation.

4. Seal individual order.

To complete a pharmacy’s delivery (pharmacy accumulation phase):
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Accumulate all the individual orders for the specific pharmacy.

Seal the pharmacy order

3. Deliver the pharmacy order to a shipping dock, load into a delivery vehicle and transport to the
pharmacy.

n

Of course, there are other related processes in a HVCFP. For example, inventory processes for storing
drugs prior to use in filling orders, refrigeration processes, replenishing automation, etc. However, this case
focuses specifically on the operational processes in supplying individual orders to pharmacies.

4.4 HVCFP Resources

Over the past twenty years, a number of drug dispensing automation technologies have been developed,
and HVCFP solutions are offered by several suppliers (see, e.g., http://www.computertalk.com/feature-
stories/cover-story-september-october-2014-the-evolution-of-central-fill or
http://www.mckesson.com/about-mckesson/our-company/businesses/mckesson-high-volume-solutions/) .

4.4.1 Dispense Phase Resources

For dispense phase processes, there are essentially four kinds of automation resources. The first is
automation resources for dispensing, labeling, weighing and capping vials, which [will] contain pills. For
example, dispensing, labelling and weighing empty vials may be combined into a single automated process,
where the weighing determines a tare weight, used later to verify the dispensed pill count. There also may
be stand-alone resources for weighing or capping vials.

Second, there are resources that can automatically dispense a
specific number of pills from a drug-specific canister into a
vial. The automation technologies for dispensing drugs in pill
form essentially use gravity to remove pills from an inverted
canister, along with a mechanism that counts the number of
pills dispensed and stops the flow when the required number
of pills have been dispensed. There are two variations of this
technology, which might be termed “high speed” and “high
flexibility”. A high speed resource will receive empty, but
labeled and tared vials transported in a “puck” on a conveyor,
see Figure 4-1. The puck will be moved under a dispenser,
the vial filled with pills, and then moved in the puck to stations
for verification, weighing, and capping. The vial never leaves
the puck. A single dispensing machine might have, say, six -

dispensers, and machines can be “ganged” together to provide . N

a rﬁultiple of six dispensers, allgser%/ed bygthe sam% puck Figure 4-1 Vial in Puck
conveyor. Clearly, high speed dispensing technologies
require considerable integration of all the individual resources
and the puck conveyor, but can be very effective for

http://www.mckesson.com/pharmacies
/mail-order/central-fill/

dispensing drugs for which there is a high demand rate.
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A high flexibility resource operates quite differently. It is essentially a robotic workstation, which may
have as many as 200 or more canisters, or pill types. Labeled and tare weighed vials may be delivered to
the workstation via pucks and the vials removed from the pucks by the robot. Alternatively, the workstation
may have its own capability to dispense, label and tare weigh vials. Figure 4-2 shows a robot holding a vial
under a dispensing canister. For high flexibility workstations with vial dispensing capability, the filled
vials are dropped into totes moved on a tote conveyor. There can be multiple high-flexibility workstations,
as well as manual fill stations integrated via the tote conveyor. This technology can be effective for drugs
that are ordered often enough to keep the robot reasonably busy. Extremely rarely ordered drugs are
probably most economically handled manually.

As a comparison, a high speed technology might be
capable of fulfilling 18 different drugs, each at a rate of
3 scripts/minute (for a total of 54 scripts/minute) and a
capital cost of $175,000, while a high flexibility
technology might be capable of fulfilling any one of
200 different drugs at a total rate 2 scripts/minute and a
capital cost of $200,000. These are illustrations only,
and do not define the complete range of automated
solution capabilities and costs.

The third kind of technology for the dispense phase is
visual verification, which involve imaging the

dispensed pills in the vial, and having the image | Figure 4-2 Robotic Workstation
verified by a pharmacist.

https://www.youtube.com/watch?v=cBUig
Finally, there is transport technology for moving vials | y| Aoxg

between dispensing processes.  For high speed
dispensing or high flexibility dispensing with separate
vial dispense, label and tare weigh, the pucks must be transported between the various stations or
technologies that are performing the necessary dispensing, labeling, and other processes. For high flexibility
dispensing with built-in capability for vial dispense, label and tare weigh, the robot provides all the needed
transport of the vials between operations.

4.4.2 Order Accumulation Phase Resources

In the order accumulation phase, there are four basic technologies. There is the technology of accumulating
the scripts in a customer order, which is accomplished by delivering the scrips to a bagging station that can,
itself, be completely manual, partly automated or completely automated. The scripts can be delivered to
the bagging station via a puck conveyor, if all the scripts in the order are filled from the high-speed
technology. When some scripts are filled from manual workstations, or from the high-flexibility technology
workstations with built-in vial dispense, label and tare weigh, then they are delivered to bagging in a tote
via a tote conveyor, and they are accumulated in the tote as the tote travels to each dispense workstation
along the tote conveyor. There is a special case of orders, called “combo orders” that have at least one script
filled from the high-speed technology, and one script filled manually or from tote-based high-flexibility
technology. In this case, one or more scripts filled from the high-speed technology, and contained in a puck
must be transferred to the tote containing the rest of the scripts for the combo order. This can be
accomplished by a vial transfer station (VTS), a robotic cell that removes vials from pucks, places them in
temporary storage, then when the target tote is available, retrieves the pucks and deposits them into a tote,
where the other items in the order are already accumulated.
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4.4.3  Pharmacy Accumulation Phase Resources

Multiple orders from a given local pharmacy may be filled throughout the day and appear somewhat at
random in the stream of orders coming from the fulfillment system. These orders must be accumulated into
a pharmacy-specific container for delivery. Atany time during the day, the stream of orders being delivered
to the order consolidation process might contain orders for any of the customer pharmacies. Thus, the order
consolidation process requires some form of sortation and accumulation by pharmacy. In a HVCFP
processing tens of thousands of orders per day, automation is likely to be required, and there are a number
of technological alternatives. All of them, however, have a similar functional form, i.e., the bagged orders
are oriented on a conveyor, scanned to determine the destination pharmacy, conveyed past accumulation
“lanes” and individual bags are diverted to the lane corresponding to their destination pharmacy. Figure
4-3 illustrates a portion of such a system, where there are accumulation lanes on either side of the sortation
conveyor. An accumulation lane is assigned to a particular pharmacy and orders for that pharmacy are
discharged from the sort conveyor and fall into the bin. When the bin is full, it is sealed and moved to a
staging are prior to loading into a delivery vehicle.

When the number of pharmacy customers is large, in the hundreds, it may not be possible to dedicate an
accumulation lane to each pharmacy; rather some operational policy may be necessary to permit
accumulation lanes to be shared by multiple

pharmacies. This policy may address both the
way that orders are released for fulfillment and * 1 \'\ L1
the way the sortation/accumulation system is 3
managed. A fundamental challenge with shared
accumulation lanes is that bagged orders for a
pharmacy may arrive to a lane that is shared, but
not currently assigned to that pharmacy. This
possibility dictates the need for a “sort error”
lane, where such sort failures can be
accumulated for later disposition. This
disposition may involve running these orders
through the sorter again, if there are many, or
perhaps manually sorting them, if there are not
SO many.

4.5 Facility

LR

|

"x
[

The order fulfillment resources in the HVCFP
are organized logically into seven subsystems:

Figure 4-3 Order Sortation System

e High speed dispense system that
employs a range of fast dispense https://www.youtube.com/watch?v=VdHcq0_zq_M

resources, as well as resources for

dispensing and tare weighing vials, verifying dispense quantity and NDC, capping and bagging

e Puck conveyor system that provides all product movement through the high speed dispense system

e High flexibility dispense system that consists of a range of automated and manual workstations to
dispense drugs that either cannot be automatically dispensed, or are ordered often enough to justify
automated dispensing, but not often enough for high speed dispensing

e Tote conveyor system that provides all product movement through the high flexibility dispense
system

e Vial transfer system that moves vials from the high speed system to the high flexibility system
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e Take-away conveyor system that removes bagged orders from both high speed and high flexibility
systems
e Order sortation/accumulation system that sorts orders by ordering pharmacy

4.6 Operational Control

The control processes can be distinguished according to the ISA 95 standard, which is illustrated in Figure
4-4. In level 3, manufacturing operations management, decisions will be made such as the release of orders
to the fulfillment process, or management of the sorting capabilities. Level 2 is where operations
management decisions are translated into execution by production resources, e.g., controlling the movement
of a package on a conveyor, based on level 3 routing decisions. Deciding when a manual station should
be staffed and by whom would be an operational decision. Lower level control decisions focus on data
acquisition, and managing the execution of predefined behaviors in automation. In this case study, the
focus is on operational control, i.e., level 3.

Business
Planning & Logistics
Plant Production Scheduling,
Operational Management, etc,

Manufacturing
Operations Management
Dispatching Production,
Detailed Production,
Scheduling, Reliability

Basic Control, Supervisory
Control, Process Sensing,
Process Manipulation

Figure 4-4 I1SA-95 Control Hierarchy

http://www.mdpi.com/1999-5903/9/3/35/htm

For the HVCEFP, the level 3 control decisions will include:

o Whether to accept an offered order
e When to release each of the scripts in an accepted order for fulfillment
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o If multiple resources are available to execute a given fulfillment process, the assignment of process
step to resource
e Ifaresource must be re-configured to execute a process, when to change the resource configuration

It is important to be able to judge whether or not a control system is performing well. In the case of the
CFP, criteria might include:

e Maximum achievable rate of order fulfillment, measured in scripts per hour
¢ Distribution of fulfillment cycle time, from order release to bagging
e Resource utilization distributions

Other criteria might be defined. In general, what a system owner will care about is system cost (investment
and operating), system service level (fraction of accepted orders filled on time), and capacity margin (room
for demand growth).

4.7 System Summary

A HVCEFP represents a significant investment and promises significant operational cost savings over stand-
alone local pharmacy operations. Realizing these potential savings depends on making good decisions
about the selection of technologies, planning, and executing operations for a system that has many
individual components, and large amounts of data related to capabilities, capacities and daily demand. This
is an ideal setting in which to apply the principles and methods of Model-Based Systems Engineering
(MBSE).
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5. Model-Based Systems Engineering for the HVCFP?

A fundamental goal in applying MBSE is to provide a single “source of truth” for the system definition to
be used by the various decision-makers involved in designing, planning, managing and controlling the
system of interest, in this case a central fill pharmacy. In order to do this, there must be a shared definition
of the system that includes all the information needed by those decision makers. Thus, a common semantic
model or reference model is required for the system model. A common practice in developing and applying
such reference models is a layered approach, as in (Sprock, Thiers, McGinnis, & Bock, 2019). At the
highest level of abstraction is the fundamental “language” being used, in this case it is OMG SysML™,
Using, e.g., SysML, an upper level ontology applicable to a broad range of systems is defined, in this case,
Discrete Event Logistics Systems, or DELS. The DELS ontology can be refined for a subset of DELS that
is central fill pharmacies, or CFPs and then further refined for the subset of CFPs that is high volume CFPs,
or HVCFPs. Finally, the lower level ontology can be used to create a specification of the particular system
of interest, a particular HVCFP. This chapter addresses the upper level abstractions that provide the
reference model for use in developing a system model for a particular CFP. The following chapter will use
these abstractions to create a detailed system model for the kind of CFP described in chapter 4.

5.1 Upper Level Ontology—Generic CFP

Since the CFP is an example of a discrete event logistics system (DELS), we can employ the semantics
defined for DELS (Sprock, Thiers, McGinnis, & Bock, 2019). Figure 5-1 expands on the DELS reference
model presented in chapter 2. The terms “product”, “process” and “resource” have the meaning as defined
earlier for the HVCFP, but the DELS reference model and Figure 5-1 add semantics. Resources can contain
other resources (memberResource). As an example, the High Speed Fill System is a resource, and it
contains a number of other resources such as vial dispense and labeler, etc. As SysML blocks, resources
can be connected to one another, and this is how a model represents potential for product to flow through

the system.

“Process” defines how a product is produced. Because process is modeled as a SysML activity, it can
contain other processes (activities). As an example, the process for filling a prescription can be modeled
using process models (activities) for dispensing and labeling a vial, dispensing pills, and capping the vial,
and precedences between these processes can be modeled using control flows. In general, the “Process”
will describe a generic way of producing a product. For example, if there are multiple resources capable of
executing a particular production step, the “Process” model typically will not specify which resource is to
be used; rather, that decision is made by an operational controller.

Figure 5-1 adds two objects to the DELS reference model, Controller and PlantModel. A controller issues
the tasks that authorize execution of processes, and it uses data from a plant model in order to make
decisions about which tasks to issue and when to issue them. Clearly, the controller must have, either
implicitly or explicitly, knowledge about the processes required to produce a product, the resources within
its control domain and their process capabilities. It should be noted that while a task authorizes the execution
of a process, the task is received by the active resource that has the capability for and actually executes the
process.

2 All SysML diagrams come from the HVCFP.mdzip model
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bdd [Package] 00.DELS_Abstractions [ FrameworkJJ

capability (1..*

«blocks | representsStateOf «blocks
Facility PlantModel
usesDataFrom
.. contains [1..*
visits v
«block» 1 ? «block»
Product * ActiveResource
executedBy
. ; «block»
isReceivedBy Controller

creptedBy ;;Zt:g: authorizesExecution

«block»
Task

issues

Figure 5-1 Common Semantics for Discrete Event Logistics Systems

A DELS controller makes decisions that manage the operations of the DELS resources. According to
(Sprock, Bock, & McGinnis, 2019), there are essentially five kinds of decisions the controller may need to

make:
¢ Admission: whether or not to accept a task
e Sequence: the sequence of task execution
e Assignment: the resource to be used to execute a task
e Routing: identifying the next process to execute
e Setup: changing the capability state of a resource

Not every DELS will make all five kinds of decisions, as will be illustrated in the HVCFP.

The remaining sections of this section will present key elements of a SysML-based system model for the

class of central fill pharmacies described in chapter 4.

5.2 CFP Context

The CFP serves a population of local pharmacies,
or “stores” by fulfilling individual customer

CustomerQOrder

ReplenishmentOrder

orders, consisting of one or more prescriptions.
The CFP, in turn, is served by a population of
suppliers, who provide the drugs that are dispensed |
by the CFP. This is illustrated in Figure 5-2. This

:ACFPSysteE |:‘:|: Supplier

StoreShipment

‘ | ReplenishmentShipment

study focuses on the customer order fulfillment
only; the replenishment processes and resources
are not considered.

Figure 5-2 CFP Context
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5.3 Defining Product

The “product” for the CFP is the batch of fulfilled customer orders to be delivered to a particular pharmacy
at the end of a particular day. This product, identified in Figure 5-3 as one or more StoreTotes, aggregates
the BaggedOrders for individual CustomerOrders, which themselves contain the NDCPackage for each
script defined by an OrderLine in a CustomerOrder. Thus, producing the CFP “product” requires first
fulfilling the customer order lines, then assembling them into bagged orders, which fulfill the individual
customer order, then assembling bagged orders into
store specific totes to fulfill the store order.

bdd [Package] 01.01.Product| CFP_ProductlJ

There is not a “bill of materials” for a generic store

catalog of drugs that can be provided by the CFP. In
a given day, the CFP might produce several identical
orders, e.g., 90 doses of Benecar 20 mg. However, T e
there also will be many unique customer orders,
consisting of multiple drugs. The generic bill of Figure 5-3 CFP "Product™
materials simply states that a customer order consists
of one or more lines, and each line specifies an NDC
and a quantity or amount.

quantity : Number
measure : String
NDC

order. In fact, not all the customer orders in a (Requests for ulfiment \l (Units of fuffiment ‘l
particular store order typically will be known at the ' { ! |
same time. Some customer orders from the store may : I [u== | | e |
R . . . . | |1 | 1.* |StoreTote
come in overnight, while others may come in during | belongsTo |1 I contamean[i |
the day. If the CFP specifies a “cutoff time”, i.e., a (- : | _ :
time after which received customer orders are not sl S TR ke £
A . . . | ablocks | ¥ [ ablocks | I
promised for delivery overnight, then that cutoff time | |Customerorder [T {1 |Baggedorder | |
is the first point at which the CFP might know all the | omer[.o'i String i '
. . - upplier : Stri
customer orders in a particular store order. It is | Ea:"e‘igiﬁtedstéﬁmg : | :
- - - - - - atesen’ rin
conceivable that in the lifetime of the CFP, it will | customer: Srng (! |
never produce two identical store orders for any store. e : | :
| |
Similarly, there is not a “bill of materials” for a (Ot I contains [ 1. |
- | shiocks fufils | | filedBy [ piocke [
generic customer order. Rather, a customer order | [Omertine T ipGeackage | |
consists of some number of drugs, chosen from the | [namestrng . s [
linelD : String [ ; |
| |
| l | l
J J

5.4 Defining Process

Process models specify the transformations required to create the product, in this case, the store orders. For
the definition of a Process to be useful, the DELS must contain some Resource with a behavior that can be
invoked by a Task to execute the Process. A Process may be associated with an aggregate Resource, i.e.,
a Resource that nests other MemberResources, in which case it will be an aggregate Process and will need
to be refined into its constituent Processes executed by the corresponding MemberResources.

It is worth noting that the number of distinct “products” (StoreOrders) of the CFP is practically infinite.
Considering just individual CustomerOrders, the number of unique orders is basically:

>
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where M is the number of different drugs available in the CFP and N is the maximum number of scripts in
a customer order. Note that M is typically in the range of several thousand and a practical limit for N is
perhaps five; the number of different 5-script orders is greater than 2.65 x 10'4. Thus, it should be clear
that a Process is not going to be defined a priori for every possible customer order.

The generic process for filling a customer order is shown in Figure 5-4. Order lines can be filled in any
sequence. After they are filled, they are accumulated. Once all the lines in an order are accumulated, the
order is bagged. In general, the number of lines is not known a priori.

FillLine1 — — — = AccumulateLinel p — — — — —
|
|
FillLine2 — — — = AccumulatelLine2 | _ _ _ _ |
[
T
e BagOrder
T
° |
L J |
|
FillLineN — — — = AccumulateLineN |— — — — — — -

Figure 5-4 Generic Order Fulfillment Process

Since a process is not created explicitly for each individual customer order, it must be created “on-the-fly”
by the CFP operational control system. Note also that while the process for filling a line may be precisely
defined, there can be “exceptions” requiring special processing, e.g., incorrect pill count or failed capping.
This also must be handled by operational control on-the-fly.

Although there is no single “order assembly process” there is structure for the process of producing an
order, as illustrated in Figure 5-5. Producing a customer order requires filling each of the associated order
lines, accumulating each of the order lines, bagging the order and sorting the order to a store tote. The
definition of the process for filling order lines will differ with the nature of the drug—is automated dispense
possible—and the nature of its packaging—is it a unit of use item, or must it be dispensed into a generic
container? However, as with order filling, there is a generic structure, as shown in Figure 5-6. Every order

bdd [Package] 01.02.Process| PrcduceOrderL‘
«activitys
ProduceOrder
«activity»
AssembleOrder
11.* gt 11 11
«activity» «activitys «activitys eactivitys
DispenseOrderLine || AccumLine BagOrder SortOrder2Store
muithllow mustPrer:ede

Figure 5-5 Order Filling Structure
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line must be dispensed in some way, verified for drug and quantity, and accumulated. But dispensing a
package (e.g., a vial), labeling, tare weighing and sealing are only necessary for drugs that are measured or
counted from a bulk quantity or amount into an order specific quantity or amount.

In the context of Figure 5-2, the CFP itself has the capability to bad Package] 0102 Prosess [ FilinsProcess ]
produce a StoreOrder. It does that by first assembling customer
orders (in bags) and then assembling store orders (by sorting the =
customer orders). This process is summarized in the activity FillorderLine
diagram of Figure 5-7. Both the order assembly and store order
assembly processes must be further refined, recognizing the T
structure illustrated in Figure 5-5 and Figure 5-6. Figure 5-7 0.1 |DispensePkg
shows a stream of bagged orders going directly from the order [ activiys
assembly process to the store order assembly (sorting) process. 0.1 EEEETRO
The implication of this is that there is an actual handoff of the RS
« 5y 0.1 TarePkg
bagged order” between these two systems, and therefore that
the associated material handling is part of one of the two o
systems. If that material handling is a separate system, then the ===
material handling process also should be included in the activity | wactivitys
diagram to support object flow between the two assembly 1 e
processes. [ <activitys
1 | VerifyQty
With figures 4.5-4.7, we have the abstract definition of the e
fundamental processes in assembling customer and store orders 0.1 | SealPkg
as well as the abstract definition of CFP processes. Further i
fining and elaborating these processes requires identifying the T |AccumulatePkg
CFP resources that will be used and how they will be controlled.
This discussion will be deferred until resources have been
defined. Figure 5-6 Line Filling Structure
(‘act [Activity] CFPProcess| CFPProcess [ b
This iz a capability of the CFP as a whole.
The controller manages the processes via the release of fill, bag, reset, sort and seal tasks. The fulfilment of the tasks must
trigger a state change in the contreller's plant model, so that tasks can be properly synchronized.
orderin resetTask
{stream} {stream}
) t;?rgeg% M sedledTofe
B AssembleOrderL CFP: AssmStoreTote l:l {stream; out storeTote : StoreTote
ba{gs?t?edgm} . th {stream}
| A\
Assembled orders leave bagging lj Bagged orders arrive to the sortation system, which lj
stations in either the puck system or accumulates orders into store-zpecific totes. At the end
the tote system. . of the day, totes are sent to loading dock.
Figure 5-7 CFP Fulfillment Process
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5.5 Defining Resource

In the DELS framework, active resources have capabilities to execute processes, and thereby create
products. Resource models must identify active resources, their capabilities, their memberResources if any,
and their process capabilities. Central fill pharmacies will utilize some generic and some specialized
resources. These resources must be carefully defined to support system design and operational decision
making. In particular, resources must be characterized in terms of capabilities, i.e., the processes that they
can execute, and capacities, i.e., the throughput rates for those processes when executed. Additional
attributes may be needed as well, for example, footprint and required clearances, utility requirements,
maintenance schedules, etc.

Figure 5-8 illustrates the main subsystems of a CFP and their key components. There is an OrderFillsystem
with multiple fulfillment workstations, and a SortSystem with multiple sort lanes. The details of these
resources will differ with different technologies for dispensing drugs and sorting bagged orders, but the
fundamental system architecture is as shown in Figure 5-8. These are active resources.

bdd [Package] ActiveResources | CFPJ_J

«blocks
CFP

«blocks

. "
orderFjllzystem wblocks FulFillmenti's FulFillmentWs

OrderFillSystem 1.x

dispenser [1..4]

interfacelLocn

softSystem xblocks sortLane wblocks
SortSystem 1.* SortLane

cFPController «blocks
CFPControlier

Figure 5-8 CFP Subsystems and Components

A CFP also uses a number of passive resources, primarily packaging for dispensed drugs or carriers for
transported order lines or orders being assembled. These include but may not be limited to bottles, boxes,
vials, pucks, and totes.

5.6 Defining Control

At the level of the CFP, there are only two control decisions, Admission and Sequencing. A CFP controller
will have three part properties representing aspects of a plant model: an AdmittedOrderSet is a set of
admitted customer orders, a Batchsize, or the number of orders released to the OrderFillSystem at one time,
and a TaskSet, representing authorizations for the order fill system to execute processes necessary to fill
customer orders. The CFP controller makes an admission decision about customer orders, it batches
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customer orders for fulfillment, and it translates customer orders into fulfillment tasks, i.e., into
authorizations for processes that actually produce filled customer orders.

Figure 5-9 illustrates the controller process for admitting a new customer order. The input to the process is
the CustomerOrder being evaluated. There is an AdmissionDecision which returns a Boolean; if the value
is 1 the new order is added to the AdmittedOrderSet and if O, the new order is rejected. The details of
implementing the decision algorithm and the information processing associated with the AdmittedOrderSet
will depend on the details of the target application.

("act [Activity] OrderScreen [ OrderScreen lJ

addOrder

{stream}

in newOrder : CustomerOrder —

=1

yesNo

i

newOrderin .
<. admit

admission :
AdmitDecision

/
/
£

I newOrder
(CFPController:}
- T
/

add the newOrder to
the existing
AdmittedOrderSet.
Implementation will
determine process
details.

out rejectedOrder : CustomerOrder
{atream}

| -0
|
Application details will determine
how this decision is made
'
®

Figure 5-9 Order Screening Process for CFP Controller

The CFP controller also will release batches of orders for fulfillment, which means it must select a subset
of all the accepted orders to release in a batch. The decision process for selecting the orders to batch
together may well depend upon the state of the fulfillment resources, in terms of already released workload,
as well as the overall operational strategy for the CFP. Thus, it is reasonable to expect that the batching
decision is made with recognition of the tasks corresponding to the selected orders. In other words, between
the admission decision and the batching decisions, customer orders are translated into tasks. The structure
of the tasks is illustrated in Figure 5-10 but it is important to note that the details of translating orders to
tasks will necessarily depend upon the specific process steps required in a particular implementation. In
particular, DispenseTask may involve several steps for pill dispensing. Also, there will be material handling
tasks associated with moving pucks or totes among the various fulfillment workstations.

In a similar fashion Figure 5-11 illustrates the sequencing process for the CFP controller, which conforms

to the definition in (Sprock, Bock, & McGinnis, 2019). The method for computing the sort index will
depend on the application. The orders selected will be the first batchSize orders in the sorted TaskSet.
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bdd [Package] TaskDefs [ TaskDef1 JJ

«blocks

«blocks

CustomerOrder OrderLine
references

references

belongsTo : StoreOrder [1]
consistsOf : OrderLine [1..]
filedBy : BaggedOrder [1]

belongsTo : CustomerOrder [1]
filledBy : NDCPackage [1]

values

values 2
orderiD : String '.‘.::g 5 Stt::;:g
supplier : String. ity Nugmber
datelssued : S_tnng measure" Strin
dateSent : String ST
customer : String

storelD
fulfills
fulfills
basisFor basisFor
«blocks ‘partOf filLineTask «block»
FillOrderTask 1.* |FillLineTask | _.~c
IOrderT gm0 |partOf |1 valves ‘
fllorderTa pa — n
quantity
dispenseTask |1
«blocks
- sk| A Task dispenseTask ) «blocks
o mustPrecede DispenseTask
bagOrderTask «block»s
1 BagOrderTask

sortBagTask ablocks
SortBagTask

Figure 5-10 Task Structure for CFP

For a generic CFP, the Assign decision is degenerate—all orders go to the OrderFillSystem—and the
Routing decisions are made within the OrderFillSystem. Also, there is no operational StateChange decision,

(‘act [Activity] OrderBatch[ OrderBatch ]J

\
. Computation of index will depend or\q

the application and the decision logic.|
[ — .
-

T (A

7 ~, outindex

" computelndex ( sortTasks: '
“ (CFPController::) \ SequenceTaskSet J

. -
) BatchSi o= N
in batchSize : Integer |l 3ICT>Z8 (= BatchDecision |— P3SN0 o utBatch : Batch
. " /
= C;)

(S J

partition TaskSet into TaskSet and
Batch. The first batchSize tasks go into
Batch and are removed from TaskSet.

Figure 5-11 Order Batching Process for CFP Controller
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the most relevant state change would be the NDC assigned to a particular dispense workstation, and that is
more a planning decision than an operational decision.

5.7 Summary

This chapter provides the basic semantics for a central fill pharmacy. These semantics must be elaborated,
e.g., for specific resource types, specific process steps and specific control processes and decisions. This
elaboration will be illustrated in the following chapter, using the example CFP from Chapter 4 as the
specific application.

The key take-aways from this chapter are:

Adding task and controller to the basic DELS framework

Defining the CFP context

Defining CFP product in terms of requests for fulfillment and units of fulfillment

Identifying the fundamental challenge of explicit fulfillment process models and suggesting a
response to this challenge by defining the structure of fulfillment processes

Identifying the CFP-level processes and resource organization

¢ Identifying CFP level order screening and batching

o Identifying the task structure for the CFP
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6 Demonstration CFP System Model

In this chapter, the semantic definitions in Chapter 5 are extended and applied to the Demonstration CFP
(subsequently abbreviated to DemoCFP) described in Chapter 4 to create a detailed system model
specifying products, processes, resources, facilities and operational control. The intent for this system
model is to provide a system specification sufficient to support the development of a discrete event
simulation model for testing alternative decision processes for the various DELS and equipment controllers.

The context and product definitions from Chapter 5 serve adequately to describe the context and products
for DemoCFP, recognizing that there are several hundred stores being served, around 2000 NDCs being
dispensed, and approximately 30,000 orders processed each day.

An important consideration in developing
detailed models for large-scale complex
systems is the organization of the model itself. in= 02.DemoCFP

Poorly organized SysML models are difficult to Eié (?‘Tlg:f::CFPProduct
navigate effectively, thus difficult to validate & 0 02 DemoGEPResource

and difficult to understand. At this writing, 4 Relations

there is not a legacy of production system 201 HFFillSystem

SysML models from which to derive best # Relations

modeling practices. The practice that will be 01 01.HFFillSystemProduct
followed in presenting the DemoCFP model is 0 02 HFFillSystemResources

. . . . 81 03.HFFillSystemProcess
illustrated in Figure 6-1.  The primary . HFFiIISistemControl

organizing concept is active resource and in = HFFillSystem

general an active resource is defined in a &-01 HSFillSystem

package of the same name. The SysML &-01 SortSystem

package DemoCFP captures the specification B-EVTS

of the DemoCFP. The DemoCFP package -0 03.DemoCFPProcess

contains four other packages, one each for T 04.DemoCFPControl
! -7 Relations

DemoCFP, the resources contained in 501 Processes
DemoCFP, the process capabilities of -0 TaskDefs
DemoCFP, and the control of DemoCFP. In -1 ControlSystemModeling
this case the DemoCFP has four part properties =~ DemoCFPController

. = DemoCFP
which are themselves DELS and thus are % Relations

[:

modeling the product or service produced by t£1 Decisions
E
E

modeled with the same package structure. The | % DemoCFP

DemoCFPController also has its own package, &l DemoCFPLayout

which contains three additional packages where —CA VTS : 02.DemoCFP::02.DemoCFPResource:VTS:V"
decisions, control processes and task 2 toteSystem : 02.DemoCFP::02.DemoCFPResource::F

—® sortSystem : 02.DemoCFP::02.DemoCFPResource::<
= puckSystem : 02.DemoCFP::02.DemoCFPResource::
2 demoCFPContreller : 02.DemoCFP::04.DemoCFPCo

definitions are modeled. The decision package
addresses the five types of decisions for DELS

controllers. The process paCkage a(_jdresses all B-C processOrder( newOrder : 01.CFP_Abstractions::01.(
the non-decision processes required by a
controller, such as maintaining information Figure 6-1 System Model Organization

about tasks or invoking behaviors of owned

resources. The task definition package defines the tasks which the controller can assigned to owned
resources.
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The sequencing of packages within an active resource package is in the easiest order of presentation and
explanation. Products and resources need to be identified to support process models, and some control
models are best understood after resources and processes have been defined. It is the case, however, that
in any interesting system model, there will inevitably be “forward references” in describing the products,
resources, processes and controls.

The general modeling principles are:

e Any active resource or controller is modeled in its own package. Exceptions can be made for active
resources having no owned resources and whose process model and operations can be modeled
within the active resource block (for an example, see the robot arm of the VTS)

e An active resource package contains other packages specifying products/services produced,
process capabilities, owned parts, and controls

e A controls package contains other packages specifying decisions, non-decision control processes,
and task definitions for called behaviors.

6.1 DemoCFP Package

The DemoCFP, as shown in Figure 6-1, has five part properties and one operation. The five part properties
represent the four subsystems—the high speed fill system, the vial transfer system, the high flexibility fill
system and the sort system—and the CFP controller. In this model, DemoCFP has no value properties, but
there could be value properties for site-specific information, such as location, etc.

6.1.1 DemoCFP Product
As shown in Figure 6-2, the DemoCFP is capable of producing two products, a CFPCustomerOrder which

is a kind of CustomerQOrder, and a CFStoreOrder which is a sealed tote containing customer orders from a
particular store.

&1 02.DemoCFP
7 Relations
=-01 01.DemoCFPProduct
E CFPCustomerOrder
E CFPStoreOrder
£-00 02.DemoCFPProcess
& InboundOrderProcess( NewOrders : CustomerOrder, responseOrder )
74 ShipStoreOrder( storeOrder : StoreOrder )

Figure 6-2 DemoCFP Product and Process

6.1.2 DemoCFP Resource

DemoCFP is composed from four active resource subsystems as illustrated in the block definition diagram
in Figure 6-3, which also shows the major owned resources of the subsystems. The four major subsystems
are:

e HSFillSystem, the puck conveyor based system with dedicated dispensers

e HFFillSystem, the tote conveyor based system with shared dispenser automation and manual
dispensing
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e VTS: the vial transfer systemn that bridges between the tote and puck systems, and
e SortSystem: the system that takes bagged orders from HSFillSystem and HFFillSystem and
assembles the store totes.

bdd [Block] DemoCFP[ DemoCFPlJ

puckSystem takeAwayHS
? «blocks
HSFillSystem

g «block»
“|PuckConveyorSystem
. blocks |

vTSPick | . ©
ablocks T PTRE ST BuckiFPosn

DemoCFP i ‘:’,".’rcsf“ 1
1 ST

. ad SPUt:J «blocks

TotelFPosn

ablocks HEEEY
HEFillSyst | ‘| ToteConveyorSystem
toteSystem» HSystem i keAwayHF _—
takeéwandnveyor

takeAwayCpnveyor

vTSPick

vTSPut

i «block»
TakeAwayConveyor

5 «Bic ck»
StoreToteBuffer
«blocks
sortSystem «blocks - SortationConveyor

SortSystem
g «blocks
‘| IncomingBagBuffer
. «blocks
SealedToteStore

Figure 6-3 DemoCFP System Structure

The vTSPick and vTSPut reference properties for VTS are associations of the PuckConveyorSystem and
ToteConveyorSystem, respectively, and are the locations where the VTSRobot can access pucks and totes.
In a less precise representation, the HSFillSystem and the HFFillSystem both have the TakeAwayConveyor
as a reference property, because their respective bagging stations deposit bagged customer orders on a
segment of the TakeAwayConveyor. The PuckConveyorSystem is a part property of the HSFillSystem and
ToteConveyorSystem is a part property of HFFillSystem. There are many interfaces between the conveyor
systems and the parts of the fill systems, corresponding to locations where pucks or totes can be delivered
to dispensing workstations. These will be defined in more detail when the subsystem models are presented.

The fifth major component of DemoCFP, not shown in Figure 6-3 is the controller, DemoCFPController.

The DemoCFP’s four major subsystems—HSFillSystem, HFFillSystem, VTS, and SortationConveyor— are
DELS because all four systems, at some point, require logistical decisions to be made, and thus have L3
controllers.

The internal block diagram of Figure 6-4 corresponds to the block definition diagram in Figure 6-3 and
shows the flows among the major subsystems. The details of each of the four major subsystems will be
presented in subsequent sections.
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ibd [Block] DemoCFP[ DemoCFPLayoutlJ

puckSystem : H5Fill System EIS BRSO S YS e th

BaggedOrder

: PuckConveyorSystem

- : TakeAwayConveyor : IncomingBagBuffer

Ll
HSBaggedOrdg

w

BaggedOrder

: SortationConveyor

StoreTote

%]

Y
VTS:VTs HSCappedVi oreTote

th

vTSRobot : VTSRobot |

: StoreToteBuffer

A J
StoreTote

tote System : HFFillSystem : SealedToteStore
th

HSCappedVi

: ToteConveyorSystem

______ I

- .
Ll
HFBaggedOrge

Figure 6-4 Flows in DemoCFP

Vials which are part of a combo order flow from the PucklFPosn to the VTSRobot, and from the VTSRobot
to the TotelFPosn. Bagged orders flow from both HSFillSystem and HFFillSystem to the
TakeAwayConveyor; from there to the IncomingBagBuffer, after which the sorting process takes place.
Partially full StoreTotes are removed from the SortationConveyor when their lane is reassigned and placed
into a temporary StoreToteBuffer. Full StoreTotes are sealed and put into a SealedToteBuffer to await

loading into a delivery vehicle.

6.1.3 DemoCFP Process

DemoCFP has two process capabilities that are relevant in its context, one corresponding to the processing
of incoming customer orders and one corresponding to delivering store orders at the end of the day.

The InboundOrderProcess represents the admission/rejection of a customer order. It is exposed to stores
via the processOrder operation listed in Figure 6-1. An admitted order will subsequently be fulfilled by
other processes invoked either by the InboundOrderProcess or by processes of the CFPController and
become part of a CFPStoreOrder. The ShipStoreOrder process is not explicitly exposed to the stores but
represents the DemoCFP’s contractual agreement to ship store orders the end of the day.

The InboundOrderProcess is shown in Figure 6-5. Orders are received via the internet at any time, and if
the DemoCFP is not operating, these orders go into a buffer. When the DemoCFP is operating, customer
orders are considered in first-come-first-served sequence and evaluated to see if all the order lines can be
fulfilled, i.e., if the requested NDCs all are available. If not, the order is rejected, otherwise it is accepted.
In either case, there is a response to the submitting store. An admitted order is evaluated and assigned an
order type—HSFillSystem only, HFFillSystem only, or combo order—and given a wave assignment
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corresponding to the store’s assigned wave. The augmented order is added to a database of open orders,
the OpenOrderTable, which will be used by subsequent DemoCFP control processes.

act [Activity] InboundOrderProcess [ InboundOrderProcess L’ g
DemoCFPControl
: determineOrderType j | OrderOut
'& ] (DemoCFPController::) L
7 Orderin
[ JOrderin
[ 1accepted0rder ]
; : . newOrder : ‘ et
| in NewOrders : CustomerOrder N g el e o ave ;
“L—| (DemoCFPController::) | {DemoCFPController::) |
{stream} l SaE = S
A o = Tord
B tatutiers responseOrder OrderOut

ReceivedOrders

«blocks

[out responsébrdér : ﬁesponseéuétomerdrdér \ | Ppendiderfable : WorkingOrder

{stream}
|

Figure 6-5 Inbound Order Process

The ShipStoreOrder process has not been modeled.

6.1.4 DemoCFP Control

DemoCFP control, up to the bagging of orders is summarized in Figure 6-6. The DemoCFPController has
two key operations management functions. Orders are screened for admission and prepared for fulfillment
by the InboundOrderProcess and released to the two fulfillment systems by the BatchRelease . Further
control within the fulfillment resources is required to fill customer orders. Once orders are bagged, there
is subsequent control to sort them to store totes which is not modeled here. Note that fillPuckBatch is a
called behavior of the HSFillSystem and fillToteBatch is a called behavior of the HFFillSystem.

In the InboundOrderProcess, only the order admission constitutes a decision, and even that is a relatively
trivial decision. The other actions are essentially administrative processes of the CFPController.

BatchRelease selects a batch of orders from the OpenQOrderTable to release for fulfillment and converts the
orders in this batch into tasks suitable for release to the two fill systems. This process is illustrated in
Figure 6-7.  The actions highlighted in green represent control decisions:  selectWaveSet,
selectReleaseBach, sequence represent schedule or sequence decisions, and assignDispenser represents a
resource assignment. The fillToteBatch call operation action uses an exposed process of the HFFillSystem
and the fillPuckBatch call operation action uses an exposed process of the HSFillSystem. The remaining
call operation actions in the figure are data preparation functions performed by the DemoCFPController.
The activity uses two accept event actions corresponding to the two fill systems completing all the currently
released orders and requesting a new batch.
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Recall from Figure 6-4 that order lines from a combo order that are filled in the HSFillSystem must go
through the VTS to be combined with lines filled in the HFFillSystem. This requires some synchronization
between the two systems. Part of the synchronization is realized in Figure 6-7, where for a given release
batch, the combo lines are sequenced first for the HSFillSystem and last for the HFFillSystem. If it happens
that a required vial has not yet reached the VTS by the time the corresponding order tote arrives, then an
error has occurred, and the tote simply recirculates to try again, until the vial has arrived.

(‘act [Activity] DemoCFPControl [ DemoCFPControl 1)

in Order : RecdCugtomefOrder
= MewCrder
o E {stream}
% =] | tInboundCrderProcess | | :*BatchRelease |
58 | -
=g h )™ 7 th )
E % sponsedrder |
E {stream} |
[
= |

out response0rder : ResgonseCQustomerOrder r |

batchin

(" fillPuckBatch |
| (HSFillSystem::} |

zallocates
HSFillSystem

batchiN

" fillToteBatch
| (HFFillSystem: ) | S e e

bag

zallocates
HFFillSystemn

Figure 6-6 DemoCFP Control up to Bagging
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("act [Activity] BatchRelease [ BatchRelease lJ

use values of batchSize and currentWaveSet
to select and remove batchsize orders from
currentWaveSet orders in OpenOrderTable.
NB: batchsize also could refer to the number of
orderlines.

assignSortLane
(DemoCFPController::)

‘selectReleaseBatch
| (DemoCFPController::)

|
| ——
% selectWaveSet
(DemoCFPController::)
7/

set values of currentWaveSet; these are the waves from
which orders will be selected for release to fulfillment.
NB: _when the wave set selection changes, the sort lane

must be changed. This process has not
been medeled.

firstBatch

(DemoCFPController::)

DemoCFPControl

concatenate
(DemoCFPController::)

fillToteBatch
(HFFillSystem::)

an exposed
process of the
HFFlISystem

partitionReleaseBatch
(DemoCFPController::)

- . orderBatch
[ ignDisp L]
moCFPController::
G . atchOut

Clone PuckCombo lines to create
ToteComboLines, then partition by puck vs
tote and combo vs non-combo, to allow
sequencing combo orders differently on
the puck and tote systems. The
dispenseriD for ToteCombo lines will
correspond to VTS.

an exposed
process of the
HSFillSystem

concatenate
(DemoCFPController::)

fillPuckBatch
(HSFillSystem::)

Concatenate should be a generic process on batches. fillPuckBatch
should expect a puck release batch, which is generalized from batch.
But these types are incompatible (from more general to more
specialized. Need a way to resolve this so that filPuckBatch doesnt
have to test incoming batch validity.

Figure 6-7 DemoCFP Batch Release to Fulfillment
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The specific control decisions and control

processes for DemoCFP that are used in | -1 04.DemoCFPControl

Figures 6-6 through 6-8 are identified in & Relations

Figure 6-8. These decisions align with the £ Decisions
five decision types defined in the DELS e-T AdmitNewOrder( newQOrder : CustomerOrder, acceptec
specification: e-T: AssignDispenser( orderBatchin, orderBatchOut : Batch
-6 SelectReleaseBatch( releaseBatch : ReleaseBatch )
e AdmitNewOrder: admission —% SelectWaveSet
e AssignDispenser: resource =% Sequence( inBatch : ReleaseBatch, outBatch : Releas
assignment - SortLaneAssignment( batchin : ReleaseBatch, batchOt

SelectReleaseBatch: sequencing
SelectWaveSet: sequencing
Sequence: sequencing
SortLaneAssignment: resource

It is interesting to note that the process of
partitioning the release batch, and
concatenating the partitions differently for
the puck line and tote line also is a type of
sequencing, but it is a completely mechanical
operation on the incoming order batch, based
only on the order type.

Processes

-5 Processes
-7 Relations

e AssignOrderType( Orderln : CustomerOrder, OrderOut

-7 AssignWaveNumber( Orderln : CustomerOrder, Order(

. e-26 BatchRelease(context DemoCFPController)

assignment e Concatenate( firstBatch : Batch, secondBatch : Batch,

E

E

E

B

+7s DemoCFPControl( Order : RecdCustomerOrder, respo
+4 PartitionReleaseBatch( orderBatch : Batch, puckBatch
+7 ResetSorter( resetSortTask )
+ SorterSetup( Order )

Figure 6-8 DemoCFP Control Decisions and Control

In the DELS framework, task is the authorization to execute
a process for a specific product and is identified as a
distinct object. In the DemoCFP, task takes two forms: (1)
a parameter in a call behavior action; and (2) a signal. The
“PuckDry” and “ToteDry” signals inform BatchRelease to
process and release a new batch of orders. Every other
process has a set of input and output parameters, and those
parameters constitute the information that would be
conveyed in an explicit task. The invocation of the
behavior, along with the parameter set is the authorization
for executing the associated process. In this sense, the task
definitions are simply the specification of the parameters
themselves, which are summarized in Figure 6-9. Figure
6-10 shows how the various tasks are related to one another
and to the generic tasks identified in the CFP_Abstractions
package.
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B/ Relations

—lz TaskDefs

e-H PuckComboReleaseBatch
e-H PuckReleaseBatch

e-EH RecdCustomerOrder

e-EH ReleaseBatch

e-EH ResponseCustomerOrder
e-EH ToteComboReleaseBatch
e-H ToteReleaseBatch
e-E WorkingLine
e-E WorkingOrder

Figure 6-9 Task Definitions for
DemoCFP Controller




bdd [Package] TaskDefs [ TaskDefs JJ
«blocks belongsTo consistsOf | «blocks
«block» CustomerOrder |q 1.+ |OrderLine
Batch 1& FaY
Ay
«block»
«blocks RecdCustomerOrder
PuckReleaseBatch dateRec d é_tn:ing
AN
«block» «block»
| |PuckComboReleaseBatch ResponseCustomerOrder
decision : St'rinm
«block»
ToteReleaseBatch xblocks R
WorkingOrder | workingLine |  WorkingLine
«blocky values 1. values
— orderType : String dispenser : String
ToteComboReleaseBatch waveNumber : Integer accumStation : String
\va release |1..*
«blocks
ReleaseBatch

Figure 6-10 Structure of DemoCFP TaskDefs

The structure of the DemoCFPController is displayed
in Figure 6-11. Note that DemoCFPController has as
part properties several data objects. The data objects,
NDCLocnTable and WaveTable represent information
that is the result of planning processes, namely the | DemocFPeontrolier
e-E NDCLocnRecord
assignment of NDCs to dispense locations and the -2 NDCLocnTable
assignment of stores to sort waves, respectively. 4-E OpenOrderTable
OpenOrderTable is the set of received and admitted —E WaveTable
customer orders that are available to be released for [~ batchSize  Integer

é_g DemoCF-F'ControIIer
#-7 Relations

fulfillment. The value property batchSize is assumed = openOrderTable : 02.DemoCF?:
here to be a constant, also determined by a planning
decision (although in a more advanced controller it
might be an operational decision). The currentWaveSet
is the result of a DemoCFPController decision and
specifies the waves from which orders will be chosen
from the OpenOrderTable for release to fulfillment.

—C2 waveTable : 02.DemcCFP::04.D:
2 nDCLocnTable : 02 DemoCFP::C
= releaseBatch : 02.DemoCFP::04.
E-0¥ currentWaveSet : String [1..7]

Figure 6-11 DemoCFP Controller

This completes the modeling of the DemoCFP. The following sections will take a similar approach to
describing the modeling of each of DemoCFP ’s subsystems.
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6.2 HSFillSystem Package

In the HSFillSystem only order lines for the most frequently ordered drugs are dispensed and the primary
function of the system is to dispense drugs into vials and accumulate the vials for merging into a customer
order. Vials are transported in pucks to individual workstations for dispensing a single NDC, verifying the
NDC and quantity, capping and accumulation. Accumulation is at a bagger workstation for orders that can
be filled completely in the HSFillSystem and in the VTS for combo order lines.

6.2.1 HSFillSystem Product

As shown in Figure 6-12, the only products of the
HSFillSystem are a bagged customer order, deposited on the £ HSFillSystem
take-away conveyor to the order-to-store sorting system, or a

- o # Relations
combo line deposited in the VTS. ”

=01 01.HSFillSystemProduct
E HSBaggedOrder
E HSCappedVial

Figure 6-12 HSFillSystem Products

6.2.2 HSFillSystem Resource

The_ aCtive reS(')UrC-eS in HSFIIISyStem bdd [Block] HSFillSystem[ HSFilISystemlJ
are illustrated in Figure 6-13. On the
1 1 «blocks «block»
left side of the figure are the il :
resources involved in dispensing pills T
- . . . Sy
into vials, verifying the NDC and ':Ti‘c—k—»n R
count,  capping  vials  and VTS 1 I
accumulating vials in order to bag , =
N N vDWS «block»
customer orders. On the right side of *|VialDispense System
the figure are blocks representing ViaDispenseWs [1. —
elements of two conveyor systems— ablocks -
. VialDi WS
the puck conveyor that moves vials Viispenso
among the workstations shown on the ffe Hsois::::':ﬁnger
left, and the take-away conveyor that A
- e displF;
removes bagged orders. T et *
HSDispenseCell
. . WS capWSF
The vial transfer system, VTS, is a WS [ ebiocks |
CapWws
reference property rather than a part. e e xceptonits T
Note that the puck conveyor, which is v 1
a part property of HSFillSystem, o e |
provides an interface position at the *|PuckBaggerSystem
VTS. In a similar fashion, the take- Baggerws [1.* PBWSF
away conveyor, which is not a part e 1
property of HSFillSystem, provides
an interface position to each of the fakeAway el
bagger workstations. VTS is modeled

in more detail in section 6.4.
Figure 6-13 HSFillSystem Resources

43



The VialDispenseSystem consists of one or more
VialDispenseWS, or workstations. Each is capable of dispensing
and labeling a vial and depositing it in an empty puck. The
VialDispenseSystem exposes a single callable operation,
dispenseVial whose  method is the  process
DispenseVialMarryPuck . This process calls the dispenseVial,
labelVial, and insertVial operations of a VialDispenseWS as well
as the selectWsS operation of the VialDispenseController.

The HSDispenseFinger consists of multiple HSDispenseCells,
each of which can dispense a single NDC into a vial presented by
a puck at its designated PucklFPosn. It also has as part properties
an ImageWs and a ScaleWs. Figure 6-15 shows an example of a
HSDispenseFinger with eight dispense cells. Note that every part
of the finger that performs an operation involving a vial in a puck
has as a reference property a corresponding PucklFPosn which is
a part property of the associated FingerSpur conveyor part. The
HSFillSystem may have several HSDispenseFingers.

In this model there is a single CapWS where vials in pucks are
capped and a single ExceptionWS which resolves errors that may
have occurred for a puck at any of the previously visited
workstations.

&5 VialDispenseSystem

7 Relations
[0 01.VialDispenseProduct

-0 02.VialDispenseResources
# Relations
=-H VialDispenseSystemController
Lo selectws()
=E VialDispenseWSs
# Relations
@ vDWSIF : 02.DemoCFP::02.C
< insertVial()
< dispenseVial()
< labelVial()
=01 03.VialDispenseProcess
L) DispenseVialMarryPuck
— 04.VialDispenseControl
=-H VialDispenseSystem
@ VialDispenseWsS : 02.DemoCFF
< dispenseVial()

Figure 6-14 VialDispenseSystem

Model

bdd [Bleck] HSDispenseFinger01[ HSDispenseFinger(1 LI
«block» Fi «biocsk» v
HSDispenseFinger01 REropy
displF |1..*
«block» «block»
cello0| yspispensecell | €100 displF00 | PuckIFPosn
celio1 cello1 dispIF01
celio2 cello2 displF02
cello3 cello3 displF03
cello4 celi04 displF04
cellos cell0s displF0S
celloé cell0é dispIF06
celo? celo7  dispIFO7
imageWS01 «block» image01 imagelF01
ImageWs
scaleWSO1: «blocks scale01 scalelF01
ScaleWs

Figure 6-15 HSDispenseFinger Example

44



Finally, the PuckBaggerSystem consists of multiple BaggerWS where customer orders are collected and
when complete are placed in a bag along with all required documentation. Figure 6-16 illustrates a puck
bagger system with two bagger stations. A BaggerWs has an associated interface position from both the
puck conveyor system and the tote conveyor system.

bdd [Block] PuckBaggerSystem[ PuckBaggerSystemJJ

«block» «block» «block»

BaggerSpur PuckBaggerSystem TakeAwayConveyor
* pBagger00 lﬁag er01 pBaglF

baglF %aggeroo biock

«block puckiF00 «blocky bagF00 B; |FPo: =
PuckIFPosn pBagger00 BaggerWs pBagger01 g

puckiF01
bagIF01
pBagger01

Figure 6-16 PuckBaggerSystem Example

The organization of the resources in HSFillSysem is summarized in Figure 6-17. For every major
component, except ExceptionsWS there is a spur conveyor which provides some queuing at the
workstation. The MainPuckLoop provides overall puck circulation. Both the VTS and
TakeAwayConveyor are reference properties, thus shown with dashed borders.

ibd [Block] HSFillSystem [ HSFillSystem lJ

pBSys : PuckBaggerSSystem I_talaaAv_vayEoﬁe;)r :_Tak_e;\\;ayEo;ey_or —I
I B}
|bagw5:Eagge|‘w5[1..‘] }7 | [ pBagiF : BagiFPosn | BREvTS |
| .
____________ J
: PuckConveyorSystem
th
baggerSpur : BaggerSpur [1..7] vTSSpur: PuckV SS5pur
baglF : PuckIFPosn [*] | vTSPick : PuckIFPosn [1] |

mainPuckLoop : MainPuckLoop
XWSIF : PuckIFPosn

puck( : EmptyPuck(l finger : FingerSpur [1..7] capperSpur : CapperSpur

|viaIDisp: PuckIFPosn ['] | |dispIF: PuckIFPosn [1.7] | |capWSIF: PuckIFPosn [*] |

|vDWS.ViaIDiapenaeWS:ViaIDiapenaeWS .1 | |finger: HSDispenseFinger [1.] | capWs : CapWs R P oS

Figure 6-17 Flows in HSFillSystem
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6.2.3  HSFillSystem Process

The HSFillSystem has four processes that either are exposed to the DemoCFP or directly impact a
HSFillSystem owned resource. The PuckFillOrderBatch process is exposed to the DemoCFP as the call
operation action fillPuckBatch of the HSFillSystem and is shown in Figure 6-18.

A batch of augmented orders, created by the BatchReleaseProcess of DemoCFPControl, is the input to the
PuckFillOrderBatch process. This batch is added to a data store, ActiveBatch which is a part property of
the HSFillSystemController. All these orders are marked as “open”, i.e., they are available to release for
fulfillment.

A mechanism is needed to meter pucks into the HSFillSystem so that congestion on the conveyor or at
heavily used workstations is avoided. The mechanism illustrated in Figure 6-18 is based on the number of
pucks currently in process with a vial. When this “work in process” or puck WIP is below a target level, a
new order can be released and as its order lines are released, the puck WIP will increase. If there is an open
order that has not yet been released, it will be selected and two actions follow: (1) check the puck WIP until
it falls below the puck WIP target (because vials are being accumulated either at the VTS or at a bagger
workstation); and (2) fill the order using the process appropriate to the type of order.

The difference between the two puck order fill processes is that combo order lines are accumulated in the
VTS and thus do not require bagging, while non-combo lines are accumulated at a bagger station and when
complete, must be bagged. Figure 6-20 shows the process for filling a combo order and Figure 6-19 shows
the process for non-combo orders.
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Figure 6-18 Puck Fill Order Batch Process
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Figure 6-20 Puck Line Fill Non-combo Order Process

Both Figure 6-20 and Figure 6-19 have a call behavior action referring to the HSFillSystem operation
puckDispenseLineProcess whose method is PuckDispenseLineProcess. This process is described in Figure
6-21 and involves the HSFillSystemController, the puck conveyor and the dispense resources of the
HSFillSystem. The proper sequencing of process steps is managed through the execution of this process.
Note that the process can terminate in two ways: (1) vial is successfully capped; or (2) an exception is
resolved. Exceptions occur when there is an error in any of the dispense processes, from vial dispense
through capping. For simplicity, it is assumed that resolving an exception results in a capped vial with the
correct quantity of the correct NDC. Thus, when this process terminates, the line filled is ready to be
accumulated. Where it is to be accumulated is determined by the type of order, as illustrated in Figure 6-18
and Figure 6-20.
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Figure 6-21 HSFillSystem Dispense Line Process
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6.2.4 HSFillSystem Control

As shown in Figure 6-18, the HSFillSystemController receives a batch of orders when its
PuckFillOrderProcess is invoked by the DemoCFPController call to the fillPuckBatch operation of
HSFillSystem. In Figure 6-22, the associated decisions, processes and tasks definitions are identified. There
are three control decisions listed:

. & | '
e HSSelectBagger:  associates  a 04'HSF'"S3’5temC°"tr°'

! Ciates | o
particular bagger workstation with an 7 Relations

order; the simplest decision process - Decisions
’ i -7 HSSelectBagger( baggerlD )(context HSFillSysten
would be round-robin, although least gger( baggerD ) )

-7 HSSelectOpenLine( fillOrderLine : WorkingLine )(c
work or other rules could be used; P ( S !

—i& HSSelectOpenOrder
e HSSelectOpenOrder: from the B0 Processes
PuckReleaseBatch, select the next | DecrementWIP
order to process; the simplest rule is to

— IncrementWIP
use the sequence of orders in the batch;
e HSSelectOpenLine: for the open order
currently being filled, select which line
to fill next; the simplest rule is to use

—% MarkOrderClosed(context HSFillSystemController)
—* MarkOrderLineActive(context HSFillSystemContro
—% MarkOrderLineClosed(context HSFillSystemContre
E-T: MarryPuckVial( pucklD, linelD )

Lo All needed task defs can be found in DemoCFP. Tz

the sequence of lines in the order. TD TaskDefs

Additional control decisions are illustrated in
Figure 6-18 through Figure 6-21, where there
are simple logical branches for type of order, or
presence of an order, or occurrence of an
exception event. In each case the decision is a
simple branching, based on state. .

Figure 6-22 HSFillSystemControl Decisions,
Processes and Task Definitions

The processes listed in Figure 6-22 all are information management processes necessary to support the
decisions. The tasks defined for the DemoCFPController are sufficient for the HSFillSystemController.

6.3 HFFillSystem Package

The HFFillSystem is capable of dispensing any NDC that is available in the DemoCFP. It is comprised of
manual workstations, automated dispensers for certain unit-of-use drugs, and robotic workstations
employing automated dispensers that are similar to or identical with those used in the HSFillSystem. While
the HSFillSystem may have capability for fewer than 100 NDCs, the HFFillSystem may have capability for
several thousand NDCs.

6.3.1 HFFillSystem Product

The product of the HFFillSystem is a bagged

customer order, placed on the TakeAwayConveyor. )
0O HFFillSystem

+ Relations
-0 01.HFFillSystemProduct
Lg HFBaggedOrder

Fiaure 6-23 HFFillSvstem Product
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6.3.2 HFFillSystem Resource

The resource organization for HFFillSystem is illustrated in Figure 6-24. The major components are shown
on the left side of the diagram and all are part properties except for VTS which is a reference property. The
ToteConveyorSystem is a part property, and it also is a DELS. Its components include the seven spurs
shown, and each of them provides an interface position for some dispense resource. Note that all the
dispense resources may have multiple instances in a given system configuration and the ToteBaggerSystem
may have multiple ToteBagger workstations.
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Figure 6-24 HFFillSystem Structure

The structure of the HFFillSystem is further elaborated in Figure 6-25. As in the PuckConveyorSystem, the
ToteConveyorSystem provides a spur for each major dispense resource and an interface position where the
resource can access the tote to deposit a line item.
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Figure 6-25 Flows in HFFillSystem

6.3.3 HFFillSystem Process

HFFillSystem has two defined processes. FillToteBatch is exposed to DemoCFP through calls to the
fillToteBatch operation of HFFillSystem which has FillToteBatch as a method. Similarly, FillToteOrder is
invoked by FillToteBatch through a call operation action on fillOrder operation of HFFillSystem which has
FillToteOrder as a method.

FillToteBatch is shown in Figure 6-27 and is very similar to PuckFillOrder Batch, except that there is only
one process for filling a tote order. Because FillToteOrder is exposed as an operation of
HFFillSystemController, the parameter batchIN provides the input of the ToteReleaseBatch directly to the
HFFillSystemController where it goes into the datastore for subsequent manimpulation by the controller.
The selectOrder decision can be quite simple, e.g., preserving the order sequence in the ToteReleaseBatch,
or it could be more complex, depending on the implementation. When the selected order is “null” (i.e., no
more orders in the data store) the controller signals that HFFillSystem is ready for another batch.

FillToteBatch invokes the FillToteOrder process by a call to fillOrder, an operation of HFFillSystem which
has FillToteOrder as its method. As shown in Figure 6-26, the parameter ToteOrder provides the order to
be filled, WorkingOrder directly to the HFFillSystemController, which first assigns it to a specific tote via
the marryToteOrder operation which has the process Marry as its method. Once the order is married to a
tote, the value of wliP is incremented and the tote is routed to a series of stations corresonding to the NDCs
identified in the order lines. Once the “next line” is “null”, a bagger is selected and the routed to the bagger.
A simple method for choosing the bagger station is round-robin, but other rules could be implemented.
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6.3.4 HFFillSystem Control
HFFillSystemController makes three decisions that are modeled as activities:

e HFSelectBagger simply determines which of the available baggers on the tote line will bag the
order contained in a tote. The rule could be as simple as round robin, or could be more complex,
e.g., bagger with fewest queued totes.

e HFSelectOrder determines the next order to remove from the ToteReleaseBatch, which could be
as simple as using the sequence in the ToteReleaseBatch.

o HFSelectWs determines the next order line to fill and the corresponding workstation; this could be
as simple as taking the next order line in sequence and looking up the workstation for the
corresponding NDC, or it could determine the line whose corresponding workstation is closest to
the current location of the tote.

As with the HSFillSystemController there are a number of control decisions that are simple binary choices
based on the state of a query to a data store, WIP level relative to WIP target, or occurrence of a dispense
error. Similarly, the HSFillSystemController has

6.4 VTS Package

The VTS plays a key role in filling combo orders. For the VTS to function properly, and for the DemoCFP
to be able to successfully fill combo orders, the design of the VTS must be integrated with the design of the
rest of the DemoCFP.

6.4.1 VTS Product

The only product of the VTS is a vail corresponding to an order line, deposited into a tote corresponding to
the order containing the order line.

6.4.2 VTS Resource

The VTS has two main components, a robot and a vial store. The robot in this application is simply an
equipment (with its own L2 controller) that executes vial transfers on command. The transfers are from a

puck to the vial store, or from the vial store to a tote. The vial store is simply a set of slots where a vial can
be deposited and later retrieved by the robot.
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The components of the VTS are summarized in

Figure 6-28. The VTSPick and vTSPut reference (53d PRSI VISTVTS )
properties are for the conveyor interface
locations where the robot, respectively, can pick g

a vial from a puck and put a vial to a tote.
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controller and the robot controller. The VTSis a VTSSiot | VialSlot 1.7
DELS, and has an ISA-95 Level 3 controller,
because it must determine which of the conveyor
interfaces will be served next whenever the robot Figure 6-28 VTS Structure
completes a move, as well as which vial slot will
be involved. The robot, in contrast, only executes the moves determined by the VTS controller, so it is an
equipment, and has an ISA-95 Level 2 controller.

An important observation regarding the structure of
VTS is that at most one puck can occupy vTSPick ibd [Block] VTS [ VTS Structure ]]
and at most one tote can occupy VTSPut.

6.4.3 VTS Process

‘ controller : VTSController |

~ vTSRobot : VTSRobot
VTS has two operational processes, VTSGetVial | robotController : RobotController |
and VTSPutVial. VTSGetVial is exposed to B
HSFillSystem via the vTSGetVial operation of the - { RebotArm: RobotArm | >
VTS which has VTSGetVial as its method. 8 e
Similarly, VTSPutVial is exposed to HFFillSystem
via the VTSPutVial operation of the VTS which has VISPick: PuckiFPosn [1] | {1Vl [ vTsPut:TotelFPosn |
VTSPutVial as its method. S m— ——

i vTSStore : VTSStore \
The design of the VTS is predicated upon a key ' | VTSSlot: VialSlot [1.] |
assumption about the way HSFillSystem and '
HFFilSystem interact with VTS. In particular,
vTSGetVial is not called until the puck conveyor
has delivered the target puck to vTSPick, and Figure 6-29 VTS Internal Structure
likewise, vTSPutVial is not called until the tote
conveyor has delivered the target tote to vTSPut.

6.4.4 VTS Control

When the VTS operation vTSGetVial is called by HSFillSystem the corresponding FillOrderLine is added
to PickTaskTable a part property of the VTSController. Similarly, when the VTS operation vTSPutVial is
called by HFFillSystem the corresponding FillOrderLine is added to PutTaskTable, a part property of the
VTSController.

The controller process VTS_Control is illustrated in Figure 6-30.
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Figure 6-30 VTS Control Process
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Once the control process is initiated it runs continuously. The VTS operates in one of two regimes, serving
either the puck conveyor or the tote conveyor. In either regime, it focuses on the corresponding interface
location until a decision is made to change regime. To illustrate, at the beginning of the day, since combo
orders are run first on HSFillSystem, it would make sense for the VTS to focus on picking vials from the
puck conveyor. At some point, it would make sense for the VTS to switch regime and begin to put vials in
to totes on HFFillSystem. The setRegime operation of the VTSController has as its method the SetRegime
decision process. There are a number of ways to make the decision in SetRegime, for example, alternating,
or first-come-first-served. One might even contemplate a SetRegime process that takes into account the
numbers of combo orders in a batch, or currently active plus not yet released, etc.

In a similar fashion, the selectSlot operation has as its method the SelectSlot decision activity. The slot
selection might attempt to minimize robot travel, for example.

The other decision processes for VTSController essentially are administrative functions in support of either
decision making or the execution of vial transfers.

Note that the design decision to augment the FillOrder and FillOrderLine with additional information
makes it possible for the VTS to control itself, based on nothing more than the tasks specified in calls to
vTSGetVial and vTSPutVial. It knows the order line ID for a vail being retrieved from a puck, and it decides
the slot in the VialStore and can associate the order line ID with that slot. When there is a subsequent call
to retrieve a vial, that call specifies the FillOrderLine which allows VTSController to match it with the
correct vial storage slot.

6.5 SortSystem Package

The SortSystem plays a key role in DemoCFP by assembling the StoreTotes containing customer orders for
a particular store.

6.5.1 SortSystem Product

The product of the SortationSystem is the sealed store totes.

6.5.2 SortSystem Resource

The major components of the SortSystem are shown in Figure 6-3, and the flows are shown in Figure 6-31.
As bagged orders reach the SortSystem, they are scanned to identify the baglD and thus the corresponding
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Figure 6-31 Flows in the Sortsystem
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store ID, then diverted to the appropriate sort lane. Because the SortationConveyor may have some lanes
re-assigned during the day, partially filled StoreTotes may be placed temporarily in the StoreToteBuffer and
then returned to the SortationConveyor when a subsequent re-assignment gives their store a sort lane. At
the end of the day, StoreTotes are sealed for shipment to the corresponding stores.

6.5.3 SortSystem Process

The fundamental process is Sort as shown in Figure 6-32. Streams of bagged orders enter the
TakeAwayConveyor from the HSFillSystem and the HFFillSystem, and are conveyed to a scanner that reads
the bag ID, Based on the bag ID, the SortationController determines the assigned sort lane, and then the
SortationConveyor conveys the bag to its designated sort lane and diverts it.
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Figure 6-32 Sort Process

6.5.4 SortSystem Control

The only local control decision made in the SortSystem is the assignment of an incoming bagged order to a
specific sort lane. This is determined by the setup of the SortSystem which is determined by the
DemoCFPController. The model presented here does not address this configuration management issue.

6.6 Modeling Summary

A careful reading of this chapter will reveal some modeling practices that have been followed. As
pointed out earlier, there currently are no significant SysML-based system models of production systems
of a meaningful scale, so there are no “best practices” to follow. The practices followed here may be
good, but there may be better practices. Nevertheless, here is a summary of the most significant modeling

practices followed here:

e An active resource that has capabilities, modeled as activities, exposes its capabilities through its
operations, which can become call operation actions in the behavior of owning or referencing
active resources. The signature for these operations is defined in the activity which is the method
of the operation. This approach allows the activity model to be modified in any way that does not
change its signature, without impacting the called operation actions, which may appear in many
places in the system model.
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A corollary is that operations should have methods which are activities. The activity referenced in
an operation can be updated, improved, or replaced without changing the way the owning
resource’s capabilities are accessed.
An active resource is defined in a package, where the block representing it specifies its parts,
references, values and operations (and maybe state) along with a bdd and ibd to understand the
organization and interactions of its owned resources. In addition, a good practice is to have
owned packages that define:
o its context and requirements, i.e., what products/services it provides to its users and its
capacities (execution rate) for each product/service
o Its owned active resources; note that if these resources also have owned parts, then they
will require their own set of defining packages. An exception can be made for “leaf”
active resources, where the creation of a package of packages may be less understandable
than simply adding all the model elements to the block representing the active resource.
o Its processes, or how its capabilities are realized. These processes define the “signature”
of the operation used for invoking the capability
o lts controls, including the controller with all its value, part and reference properties, and
operations, along with owned packages addressing the decision processes (modeled as
activities), other control processes (modeled as activities) and task definitions. The latter
correspond to the parameters required in any call operation action of a control decision or
other control process.
Many of the process models presented in this chapter use swim lanes. While swim lanes may
make it look like actions are being performed by resources, in fact, the “resource” swim lanes
often model the call behavior action that invokes the behavior of the resource.
Finally, the controller is a part property of a DELS or equipment. It does not have a co-equal
status, rather it is a co-equal to any of the owned resources of the DELS or equipment.
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7 Simulating the DemoCFP

The purpose that drives the development of a model like the one presented in Chapter 6 is to support
decision making in both system design and system operation. The SysML model itself primarily captures
decisions about resource structure and behavior and about control architecture and decision-making. The
focus in this report is on smart operations management, and the appropriate mechanism for evaluating and
improving a proposed Level 3 control system is discrete event simulation (DES). This chapter describes a
DES model based on the DemoCFP SysML model presented in Chapter 6 and intended to support
experimentation with alternative operational control policy parameters and decision algorithms. This is not
a detailed documentation of the simulation model, but rather a description of how it represents the
DemoCFP, some initial experimental results, and issues that arise id developing such a DES model.

7.1 The Simulation Platform

There are many different DES platforms that might have been used, and each offers advantages and
disadvantages. The chosen platform is Simevents™ and MATLAB™ from MATHWORKS. Simevents
provides a fairly typical visual editor for constructing the part of the simulation model representing the flow
of entities through a system of resources. Like most DES platforms, Simevents supports a variety of queue
dispatch disciplines and routing switches but has limited capability for tracking system state or modeling
complex control decisions. What Simevents does provide is a mechanism to “escape” from Simevents into
MATLAB for computations that are difficult or impossible to implement directly in Simevents, such as
maintaining a state database or executing complex decision logic. The escape mechanism is used
extensively in the simulated DemoCFP as it allows the maintenance of system state information and
decisions that are more than simple queue dispatching.

Examples of state information include the orders that have been accepted but not released in a batch and
the orders that have been released and are being processed in the fulfiliment systems. This kind of
information simply cannot be represented using standard simulation modeling constructs. A number of
decisions in the DemoCFP are very different from queue dispatching, including the decision to switch
waves, the batching decisions, and the tote routing decision.

7.2 What is Simulated?

The DemoCFP simulation model discussed below corresponds to the left hand side of the system illustrated
in Figure 6-6 and the control decisions illustrated in Figure 6-6, i.e., it includes the accept/reject decision
for incoming orders, and all the fulfillment operations up to the point where a bagged customer order is
placed on the take-away conveyor to the sorting process. Sorting and the accumulation of customer orders
in store-specific totes is not included.

7.3 Overview of the Simulation Model

The simulated order stream is based on data for two months of operations for a specific CFP. The data is in
the form of a table in which each record corresponds to an order line, with an order ID, a line ID, an NDC,
the arrival time of the order and other attributes. The simulation model uses this table to create simulation
entities corresponding to each order line and releases these order lines to the simulated DemoCFP at the
simulated time of the actual order arrivals.
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The simulation model uses MATLAB function blocks to gain access to the capabilities of generic
MATLAB for storing and manipulating data and for implementing control decision algorithms. Figure 7-1
illustrates this for the accept/reject decision. The block labelled “Attribute Function™ accesses a MATLAB
function that compares the NDC in the order line entity to the NDC’s in a preloaded NDCMaster and routes
the entity to the appropriate port, i.e., either rejected or admitted.

false p———2 »
o>— fﬂ@ o EntitylN OrdersOut_Rejected
Ordersin true
Adtribute Function 69 QOrde rsOut_Ad mitted

Figure 7-1 Accept/Reject Decision

Admitted order entities are assigned a wave ID attribute, corresponding to the originating store, and then
the attributes of the entities are used to create entries in the pending order table, as illustrated in Figure 7-2.
Note that MATLAB functions are used both to assign the wave ID to the entity and to create the entries in
the pending order table, which is persistent in the MATLAB workspace. Once the entry in the pending
order table is created, the store order entity is discarded.

This MATLAB function adds
the new order to the
pendina order table

SourceStorelD

This MATLAB block SourceStorelD
simply assigns the StoreOrderlD StoreOrderlD
wave to the
simulation entity. NDC »NDC
Quantity Quantity
N - N fillOrderlD > FillOrderlD 4
: & Arrival TimeAtCFP ArrivalﬁmeAl@ﬁBrder
StoreOrdersin ] )
assignWave SequencingWaveAssignment SequencingWaveAssignment
+ ToHighSpeedLine » ToHighSpeedLine
- ToHighFlexLine ToHighFlexLine
— MATLAB Function

Get Attribute

Figure 7-2 Creating the Pending Order Table

The structure and flow of the DemoCFP simulation model closely follows the system model presented in
Chapter 6, although there are some differences. The basic structure of the simulation is shown in Figure
7-3 below. There are two controllers, shown on the left side of the figure. The Batch Controller releases
batches of customer orders to fulfillment. The Fulfillment Controller releases individual orders and order
lines to the high flex and high speed fulfillment subsystems, respectively.

The Batch Controller in Figure 7-3 corresponds to the BatchRelease activity shown in Figure 6-7. The
implementation of the Batch Controller is somewhat different from Figure 6-7, however. The approach
taken in Figure 6-7 is to release separate order batches to the puck and tote systems, by duplicating the
combo lines in the tote orders, and also sequencing the released orders so that combo lines in the puck
system are done first and combo lines in the tote system are done last. The release rate is controlled by
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limiting the number of pucks and totes with assigned order lines or orders. The implementation of the Batch
Controller in Figure 7-3 simply selects the first b order lines from the pending orders table, plus any
remaining order lines to complete an order. The batch is released to the Fulfillment Controller, where
sequencing decisions are made. The resource assignment decision (in the case of multiple feeders with the
same NDC) are made in the simulation model Batch Controller as they are in the system model
BatchRelease.
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Figure 7-3 Structure of the DemoCFP Simulation

Finally, before releasing the batch, the Batch Controller assigns the feeder for each of the lines in the batch,
based on the assignment of NDC to feeders. If the specified NDC for a puck line is available in multiple
feeders, the feeder with the least pending work is selected.

The Fulfillment Controller takes the batch of pending orders and releases them in FIFO sequence. The tote
system lines are combined into a single simulation entity and released to the HighFlex block and the puck
system lines are converted, one-by-one into simulation entities and released to the HighSpeed block. In
effect, all the lines in the batch of pending orders are released at the same time, and the two fulfillment
systems manage the assignment of lines to pucks and totes.

The next three sections address, in turn, the HighSpeed, HighFlex and Merge HighSpeedToHighFlex
models.

7.3.1 HighSpeed Model

The HighSpeed block explicitly represents the fulfillment resources identified in Chapter 6, using library
blocks developed specifically for modeling central fill pharmacy resources. The library for HighSpeed

blocks is shown in Figure 7-4. Note that many of these blocks are subsystem masks, meaning they contain
a subsystem model and specify parameters that can be set for the subsystem.

62



HIGH-SPEED LIME (e.q. Puck Line)

FillOrderiN  PullSignalQUT @ PuckViallN PuckVialOUT ks
Capper
PuckIM Puck\VialQUT
Labeler A PuckViallN PuckVialOUT
PuckViallN PuckVialOUT Exceptions
IsCususFull i
TareWeigh
9 FillOrderOUT
# Puck\iallN
. PuckQUT &
< Downstream_Puck\ialOUTDownstream_PuckViallM g
PuckVialOUT &
Bagger
# Upstream_PuckViallN Upstream_PuckVialQUT g
- - false
FastFillMachine H EntityIN
true
RoutingDecision_

k3

A PuckViallN PuckVialQUT ByMatchinglntattribute

- falsep
FastFillChannel H EntitylN
true
&4 PuckVialOUT Puck\ViallM g F‘Weﬁsicm_
ByBoolAttribute
Vori Aln
rify PuckVialOUT
Aln2
RoutingMerge

Input  Chudput

3 Slot Puck Conveyar Taloe b
3 EntityIni

brise B

RaoutingDecision_
By MaichingAtinbute_
AndByQueusBlockSiatus

Figure 7-4 High Speed Resource Library

The HighSpeed subsystem models both the flow of pucks through fulfillment resources and control
decisions associated with sequencing release of order lines and their association with specific pucks. The
puck conveyor system is modeled not as a single unified subsystem, but as individual conveyor components
connecting fulfillment resources, that execute transport, divert and merge operations on individual pucks.
This is possible because once a puck is assigned an order line, it is given a set of attribute values
corresponding to the locations it must visit, including whether it goes to a bagger or to the VTS. At each
possible divert, the attributes are read, and if the attribute associated with that divert is set, the puck is
diverted.

Figure 7-5 shows the HighSpeed subsystem model. Pucks flow from the labeler to the FillSystem,
CappingSystem, ExceptionsSystem, and to a routing switch, where they either continue to the
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BaggingSystem or are diverted to the VTS. Operational control in the HighSpeed subsystem consists of
assigning order lines to the LabelingSystem to dispense and label a vial, insert it into a puck and tare weigh
the puck. The LabelingSysem “pulls” orders from the OpCONTROL_HighSpeedSystem whenever one of
the labelers is idle. In the current implementation, order lines are selected in the sequence released by the
FulfillmentController although other logic could be implemented.
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Figure 7-5 HighSpeed Subsystem Model

The model of the BaggingSystem allows for an assigned bagging station to be blocked, i.e., its associated
puck queue is full, so pucks would recirculate through the FillSystem, CappingSystem, etc, returning to the
bagging station until the queue has available capacity.

The model in Figure 7-5 may seem simple, but that is because the FillSystem block is itself a rather complex
subsystem, as shown in Figure 7-6. It consists of three “fingers” or conveyor spurs, each containing three
machines, and each machine containing of six individual feeders. Each feeder has a small queue for pucks
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waiting for their vials to be filled. The attributes associated with a puck entity allow the entity to be routed
to the appropriate finger, and then routed to the appropriate feeder within the finger. If the queue for that

Figure 7-6 HighSpeed FillSystem Model

feeder is at capacity, the puck will recirculate in the finger, if possible, but if the entire finger is blocked,
the puck will recirculate all the way through the bagger stations and back to the FillSystem.

7.3.2 HighFlex Model

As with the HighSpeed subsystem, the HighFlex subsystem explicitly represents the fulfillment resources
identified in Chapter 6, using library blocks developed specifically for modeling central fill pharmacy
resources. The library for HighFlex blocks is shown in Figure 7-7. Note that many of these blocks are
subsystem masks, meaning they contain a subsystem model and specify parameters that can be set for the
subsystem.

The HighFlex subsystem models both the flow of totes through the fulfillment resources and the control
decisions that associate a tote with a specific customer order. Note that there is no sequencing decision for
the HighFlex subsystem because customer orders are released one at a time by the Fulfillment Controller.
As with the HighSpeed subsystem, the tote conveyor is not modeled as a unified subsystem, but rather as
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individual conveyor components connecting fulfillment resources. When an order line is assigned to a tote,
the tote entity is given a set of attributes indicating the stations it must visit and what must be dispensed at
each station, including the vial transfer system. At each conveyor segment that represents a potential divert,
the attributes of the tote entity are read, and if one of them indicates the tote should be diverted then it is
diverted.
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Figure 7-7 HighFlex Resource Library

The HighFlex subsystem model does not have the same kind of hierarchical structure as the HighSpeed
subsystem. In the DemoCFP there are 34 different fulfillment stations, counting the robotic stations, the
manual fill stations, the pharmacist stations and the bagging stations. There also is the interface to the vial
transfer system. Figure 7-8 shows the two “ends” of the HighFlex subsystem, simply to illustrate the basic
flow structure. Empty totes are married to customer order at the right side of the figure and basically flow
in a clockwise loop through the fulfillment stations. At the left end of the figure is a spur that goes to the
vial transfer station. At every fulfillment station, there is a tote queue, which a tote bypasses if it does not
need to visit the station or if the queue is full.
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7.3.3 Vial Transfer System Model

The Merge_HighSpeedToHighFlex model is a simplified implimentation of the VTS model in Chapter 6.
There is no explicit vial store, but rather a table that records which order lines are currently stored in the
VTS. The maximum size of the table is an input parameter. The robot operations are modeled as a simple
delay. There is a finite queue for tote entities but an infinite queue for puck entities. The puck and tote
entities are served in FCFS sequence.

7.4 Initial Experimentation

This project has been fortunate to have access to almost 9 weeks of operational data on customer orders
and the timing of receipt and other key operations including labeling and bagging. As always, there have
been challenges with using “real” data. Simple issues, such as multiple NDCs for the same drug, can present
major challenges to a research team with limited access to the data sources.

The arrival rate of orders has a significant impact on operational performance and should be a significant
consideration in designing the control system. An analysis of the nine weeks of data regarding the
distribution of arrival times is summarized in Figure 7-9. A relatively small fraction of orders are received
overnight, but there is a significant “surge” of orders shortly after daily operations begin. The consequence
is that the observed workload during the period from 9 am to 11 am is perhaps 2.5 times the observed
workload for the remainder of the day. What this suggests is the need for an operations management
strategy that can smooth the workload over the day without jeopardizing the service level, i.e., the fraction
of eligible orders that are completed in time to be shipped to the store on the same day.
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Figure 7-9 Distribution of Order Received Time

Not surprisingly, because the existing system basically releases orders as fast as possible, the average cycle
time is relatively larger early in the day and diminishes over the day as order volume subsides. This is
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illustrated in Figure 7-10. Not only does the arrival rate of order diminish over the day, the large work in
process due to the surge of orders from the early part of the shift gets worked down. Again, this suggest a
need for an operations management approach that can balance the workload over the day.
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Figure 7-10 Cycle Time vs Received Time

The desire to exploit this large realistic dataset prompted the development of a Python-based GUI to
simplify the specification of parameters, selection of datasets and assembly of computational results. One
study looked at all 50+days (the CFP did not operate on Saturdays), ran the simulation for the arriving
orders and compiled cycle time data as illustrated in Figure 7-11. A few of the daily results are eliminated
from the chart because of simulation issues, specifically that a significant number of orders did not exit the
system. An interesting observation is the four outlier points where cycle time is two to three times larger

than other cycle times for the same
throughput.  Closer examination

reveals that these four days all are Cycle Time vs Throughput

Sundays, and the increased cycle 200

time is due to orders on the HighFlex 180 .
system, where there are manual Y
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likely applies, cycle time increases as Figure 7-11 Simulated Cycle Time vs Throughput

throughput increases, as one would
expect.
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The simulation model allows the user to specify the numbers of pucks and totes in the system. These are
expected to have at least some influence on cycle time and perhaps on throughput as well. One set of
experiments looked at the impact of varying the numbers of pucks and totes. Figure 7-12 illustrates the

impact of varying the number of
pucks in the HighSpeed system and
represents a simulation over a fixed
period of time with the number of
totes in the HighFlex system fixed at
200. If there are not enough pucks,
the work-in-process is limited and for
a given capacity, the throughput also
is limited. As the figure shows,
throughput (during the fixed time
interval) will increase as more pucks
are added, up to a saturation level, in
this case, around 400 pucks.
Interestingly, the figure also indicates
that throughput might actually decline
if there are too many pucks in the
system, as they all must be
somewhere, and create congestion.

The impact of increasing the number
of totes is shown in Figure 7-13.
When there are 250 totes, increasing
the number of pucks beyond the
saturation level of 400 actually
causes throughput to become erratic.
While it is not completely clear why
this would happen, it likely is a
consequence of interaction between
the numbers of carriers in the system,
the size of the order release batches,
and the mechanism for releasing
each individual order into the
fulfillment processes.

Clearly, there is a great deal that
might be learned from more
extensive experimentation with the
DemoCFP simulation.

7.5 Modeling Issues
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Figure 7-13 Throughput vs Number of Pucks; 250 Totes

There are a number of challenges in transitioning from the relatively platform independent system model,
rendered in a standardized system modeling language to the relatively platform specific simulation model

rendered in a particular DES language.
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In the system model, there are both object flows and control flows between activities. In Simevents, object
flows are represented as entity flows, and there can be a very close correspondence between object flows
modeled as blocks and entity flows modeled as entities. Control flows from the system model also become
entity flows in the Simevents model, and typically require “splitting” an entity representing either an object
or another control flow into two entities, one still representing the original entity flow and the other
representing the desired control flow.

A related issue is the representation of controller behavior. In the system model, a controller is an object
(block) with its own identity and sets of behaviors—modeled as activities—representing decision-making
or state model management. These behaviors can be invoked by calling an operation of the controller for
which the activity is a method and these invocations can appear in multiple process models with no
ambiguity or confusion; every invocation refers to the same controller block and the associated decision
logic or plant model manipulation can be arbitrarily intricate. In Simevents, simple control decisions, such
as queue dispatching, are associated with a specific queue. If you want to change the controller logic, you
must locate every corresponding queue and modify it. Controller decisions that are more than local queue
dispatching and plant model maintenance processes can be modeled only by escaping to MATLAB. In the
current implementation of the DemoCFP simulation, each controller behavior is a stand-alone MATLAB
function, i.e., there is not a “controller object” in Simevents that corresponds to the controller block in the
system model. As a consequence, the controller model is fragmented as MATLAB escapes and may appear
in many locations. Unless a very disciplined block naming convention is followed, it can be challenging
to determine exactly what controller is being invoked by one of these escapes.

Similarly, modeling the transforming behavior of active resources is straightforward if the transformation
is merely a delay, and can be modeled with one of the standard “queue” blocks. However, if the
transformation requires changing the plant model, e.g., availability of resources or changing the identity of
a part, then several steps are involved. The entity representing the input to the process is split, creating a
control flow that is used to invoke a MATLAB escape where the plant model can be updated, or a new
entity created with new attributes.

Conveyor modeling presents some particular challenges, not just for Simevents but for almost all COTS
simulation languages. The behavior of a conveyor in the DemoCFP system model is simply an activity,
move(origin, destination) and that captures the general capability of the conveyor. In the simulation model,
representing that behavior must represent both the location state change and the time required for the state
change. In the current version of the DemoCFP simulation model, conveyor segments are represented by
an “N server queue” where N represents the number of flow entities that can be in motion at one time and
the server processing time is the time to traverse the conveyor segment. It should be noted that the original
development of the DemoCFP was started in a version of Simevents that now is two major releases out of
date. Inthe most recent version of Simevents there is a standard library object modeling conveyor segments
with fixed speed, fixed carrier size and fixed interval between carriers.  Any revision or further
development of the DemoCFP as a testbed should explore this newer modeling capability.

A further issue related to the modeling of conveyors is that in the system model, carriers always remain on
the conveyor, and when a conveyor move operation is completed the appropriate controller is notified and
invokes the desired behavior at the workstation to which the carrier has been delivered. This architecture
allows for operations management decisions that can consider the states of system parts other than the
conveyor and the workstation to which the carrier has been delivered. In contrast, the implementation in
the DemoCFP simulation has the entity corresponding to the carrier (either puck or tote) exchanged between
blocks representing the conveyor and the workstation, and the only information the workstation has is
contained in the attributes of the carrier entity. This significantly limits the scope of any decision making
at the workstation.
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7.6 Future Simulation Model Development

The DemoCFP simulation is a large and complicated simulation. It has been developed over a period of
three years, with significant contributions from at least five developers. While it goes a long way to ward
the goal of creating a testbed for experimenting with smart operations management, there are a number of
opportunities for improvement.

An obvious improvement would be to upgrade the model to the latest release of the modeling platform,
which would provide some improved modeling capabilities and also probably significantly improve the
runtime performance.

Improvements to the Python-based user interface would significantly reduce the time and effort required to
conduct parametric studies of key design parameters, such as carrier counts, batch sizes, VTS capacity, etc.

Finally, there is need for a simulation modeling approach that mirrors the active resource modeling
approach in the DemoCFP system model. There an active resource has both resource and controller part
properties. There are clearly identified interfaces for the active resource in terms of both object flows and
control flows. This enables a nicely object-oriented approach to system specification. This is missing in
the current implementation of DemoCFP where there is not a unified representation of active resources that
integrates their resource and control parts. With such a unified representation, it also should be possible to
have the Matlab escapes for control decision making more closely conform to the control decision
framework outlined in (Sprock, Bock, & McGinnis, 2019).
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8 Conclusions

The fundamental thesis of the research reported here is that achieving the full realization of smart
manufacturing operations management will remain elusive until two fundamental requirements are met:

1. The manufacturing system can be specified with the same degree of completeness and precision as
can the products that it produces, and

2. There is a generic and broadly reusable architecture or pattern for the structure and behavior of
manufacturing operational controllers.

Meeting the first requirement requires a manufacturing system reference model providing both an
ontology and a syntax enabling the creation of computational representations of manufacturing systems.
Meeting the second requires developing and demonstrating smart manufacturing operations controllers.

The work reported here does not completely meet these two requirements, but it makes a significant
contribution toward them. The approach and some of the tools employed have been motivated by,
informed by, and significantly improved by recent developments in Model-Based Systems Engineering as
applied to the design and development of space missions ( (Bayer) and aircraft programs ( (Sheeleey,
2014). The foundation for the work includes the ISA-95 standard for planning and control ( (The
International Society of Automation, 2019) and two recent dissertations ( (Thiers, 2014), (Sprock T. A.,
2016)).

Chapter 2 briefly introduces the concept of discrete event logistics systems, the basic elements of the
reference model, and the conceptual framework for a generic operational controller. Much more detail
may be found in (Sprock, Thiers, McGinnis, & Bock, 2019). The chapter also demonstrates the
relationship between the DELS reference model and the basic elements of the modeling framework
supporting the ISA95 specification, in particular, that the DELS reference model generalizes some of the
key elements of the ISA95 reference model. This is important, because it establishes the DELS reference
model not as replacing ISA95 but as extending it.

Chapter 3 is a deeper dive into the implications for operational controller requirements, functions and
architecture. Key elements include the notion of event-driven control decisions, fundamental behavior of
active resources, the fundamental concepts behind transfer of product between active resources, and the
importance of a plant model in the controller architecture.

The demonstration use case is presented in Chapter 4. It is a large-scale, highly automated central fill
pharmacy. The presentation is based on publicly available information, and is the basis for the particular
CFP, referred to as DemoCFP that is subsequently modeled and simulated.

Chapters 5 and 6 use the OMG SysML™ as implemented in MagicDraw™ to create a computational
representation of the DemoCFP system that explicitly represents the product flowing through the system,
the active resources that transform the product, including material transport, and the operational
controllers responsible for batching orders, releasing orders and managing transportation. It appears that
this is the only such production system model currently available in the public domain. There are a
number of journal and conference papers that mention SysML and manufacturing, but the focus is almost
always on a specific manufacturing process, rather than operational control of the entire system, or
addresses the issue at a very high level of abstraction. Among the contributions of these two chapters are:
(1) areusable pattern for organizing the DELS model; (2) the explicit and formal integration of activity
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models of processes, and invocable behaviors of resources and controllers; (3) the controller as a part
property of the active resource (domain) whose part property active resources are managed by the
controller.

Chapter 7 presents a discrete-event simulation model for DemoCFP, rendered in the
SimEvents™/MATLAB™ platform, and based on the SysML model from Chapter 6. The simulation
model allows experimentation with some parametric aspects of the DemoCFP specification, such as batch
sizes, numbers of material transport carriers, and capacity of some active resources. The chapter contains
some observations about the challenges of going from a computational but analysis-agnostic system
model to a simulation analysis specific model.

These chapters break new ground in the ongoing development of smart manufacturing and provide
important contributions to addressing the two fundamental requirements—manufacturing system
modeling and generic operational controller architecture. Much remains to be done. The current state of
DELS system modeling does not yet have a “best practice” for handling the transition from defining a
class of systems to defining particular systems. More DELS use cases are needed addressing other types
of DELS, including fabrication, assembly and services. The shortcomings of available COTS discrete
event simulation packages in modeling control need to be more fully catalogued and defined, leading to
improved simulation tools and perhaps to automation in creating simulation models from system models.

74



9 References

Bayer, T. J. (n.d.). Model Based Systems Engineering on the Europa Mission Concept Study. Retrieved
from https://trs.jpl.nasa.gov/bitstream/handle/2014/45000/11-5594 Alb.pdf?sequence=1

Cho, H., Son, Y., & Jones, A. (2006). Design and conceptual development of shop-floor controllers through
the manipulation of process plans. International Journal of Computer Integrated Manufacturing,
359-376.

Davis, W., Jones, A., & Saleh, a. A. (1992). Generic architecture for intelligent control systems. Computer
Integrated Manufacturing Systems, 105-113.

Dilts, D., Boyd, N., & Whorms, H. (1991). The evolution of control architectures for automated
manufacturing systems. Journal of manufacturing systems, 79-93.

Galloway, B., & Hancke, G. (2013). Introduction to industrial control networks. Communications Surveys
& Tutorials, IEEE, 860-880.

Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review. International Journal
of Production Research, 1619-1643.

Sheeleey, B. ,. (2014). MBSE Implementation Across Diverse Domains at The Boeing Company. Retrieved
from https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:02-iw14-mbse_workshop-
mbse_implementation_across_diverse_domains_at_boeing-carsonmalonepalmersheeley.pptx

Silver, E., & Peterson, R. (1998). Inventory management and production planning and scheduling. John
Wiley and Sons.

Smith, J., Joshi, S., & Qiu, a. R. (2003). Message-based Part State Graphs (MPSG): a formal model for.
International journal of production research, 1739-1764.

Sprock, T. A. (2016). A Metamodel of Operational Control for Discrete Event Logistics Systems. Retrieved
from https://smartech.gatech.edu/handle/1853/54946

Sprock, T., Bock, C., & McGinnis, a. L. (2019). Survey and classification of operational control problems
in discrete event logistics systems (DELS). International Journal of Production Research, 5215-
5238.

Sprock, T., Thiers, G., McGinnis, L., & Bock, C. (2019). Theory of Discrete Event Logistics Systems
(DELYS) Specification. NIST Interagency/Internal Report. Retrieved from
https://doi.org/10.6028/NIST.IR.8262

The International Society of Automation. (2019, November 21). ISA95, Enterprise-Control System
Integration. Retrieved from https://www.isa.org/isa95/

Thiers, G. G. (2014). A Model-Based Systems Engineering Methodology to Make Engineering Analysis of

Discrete-Event Logistics Systems More Cost-Accessible. Retrieved from
https://smartech.gatech.edu/bitstream/handle/1853/52259/THIERS-DISSERTATION-2014.pdf

75



Vogel-Heuser, B., Witsch, D., & Katzke, U. (2005). Automatic code generation from a UML model to IEC
61131-3 and system configuration tools. ICCA’05. International Conference on Control and
Automation, 1034-1039.

76



		Superintendent of Documents
	2022-04-20T01:47:57-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office




