

NBS MONOGRAPH 25—SECTION 19

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

Standard X-ray Diffraction Powder Patterns

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities² — Radiation Research — Chemical Physics — Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering² — Manufacturing Engineering — Building Technology — Fire Research — Chemical Engineering²

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

^{&#}x27;Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.

²Some divisions within the center are located at Boulder, CO 80303.

Standard X-ray Diffraction Powder Patterns Section 19 — Data for 51 Substances

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, and Nikos P. Pyrros

International Centre for Diffraction Data 1601 Park Lane Swarthmore, PA 19081

and

Camden R. Hubbard

National Measurement Laboratory National Bureau of Standards Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Library of Congress Catalog Card Number: 53-61386

National Bureau of Standards Monograph 25
Section 19—Data for 51 Substances
Natl. Bur. Stand. (U.S.), Monogr. 25—Sec. 19, 118 pages (Dec. 1982)
CODEN: NBSMA6

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1982

CONTENTS

	Page		Page
Introduction	1	Potassium strontium phosphate,	
D 44.1 m 44		KSrPO ₄	71
Experimental patterns:		Silver telluride (hessite), Ag ₂ Te	73
Aluminum articism artida Alvo	7	Sodium barium phosphate, NaBaPO ₄	75
Aluminum yttrium oxide, AlYO	7	Sodium strontium phosphate,	77
Aluminum yttrium oxide, Al ₂ Y ₄ O ₉	9	NaSrPO ₄	77
Aluminum yttrium oxide, Al ₅ Y ₃ O ₁₂	11	Sodium titanium phosphate,	70
Ammonium cadmium phosphate hydrate,	13	NaTi ₂ (PO ₄) ₃	79
NH ₄ CdPO ₄ ·H ₂ O Barium aluminum titanium oxide,	13	Sodium zirconium phosphate,	01
BaA1 ₆ TiO ₁₂	14	NaZr ₂ (PO ₄) ₃	81 83
Barium aluminum titanium oxide,	17	Yttrium chromium oxide, YCrO ₃	63
Ba ₃ Al ₁₀ TiO ₂₀	16	Zinc arsenate hydrate (koettigite),	85
Barium boride, BaB ₆	18	$Zn_3(AsO_4)_2 \cdot 8H_2O$	85
Barium neodymium titanium oxide,	10	ZnSO ₄ ·H ₂ O	86
BaNd ₂ Ti ₅ O ₁₄	19	211504 1120	80
Barium tungsten oxide, Ba ₃ WO ₆	21	Calculated pattern:	
Beryllium carbide, Be ₂ C	23	Carcaraced paccern.	
Cadmium iodide, α -CdI ₂	24	Phenobarbital hydrate,	
Calcium aluminum oxide hydrate,		C ₁₂ H ₁₂ N ₂ O ₃ ·H ₂ O	88
Ca ₄ A1 ₆ O ₁₃ ·3H ₂ O	25	0121121203 1120	00
Calcium aluminum silicate hydrate,	_5	Cumulative indices	
chabazite, Ca ₂ Al ₄ Si ₈ O ₂₄ ·12H ₂ O	27		
Calcium silicate (larnite),		(Circular 539, Volumes 1-10 and Monograp	h 25
β-Ca ₂ SiO ₄	29	Sections 1-19 inclusive)	11 23,
Calcium silicon fluoride hydrate,		decerons 1 17 includive)	
CaSiF ₆ ·2H ₂ O	31	1. Inorganic	90
Cesium iodide, CsI ₃	33	2. Organic formula	106
Cesium molybdenum oxide, Cs2Mo3O10	35	3. Organic name	109
Chromium boride, CrB ₂	37	4. Mineral	112
Chromium niobium oxide, CrNbO ₄	38		
Cobalt arsenate hydrate (erythrite),			
Co ₃ (AsO ₄) ₂ ·8H ₂ O	39		
Cobalt phosphate hydrate,			
Co ₃ (PO ₄) ₂ ·8H ₂ O	40		
Erbium iron, ErFe ₂	42		
Ethylenediamine Hydrochloride,			
C ₂ H ₈ N ₂ ·2HC1	43		
Ethylenediaminetetraacetic Acid,			
$C_{10}H_{12}N_2O_8$	45		
Hafnium nitride, HfN	46		
p-Iodobenzoic Acid, C ₇ H ₅ IO ₂	47		
Iron aluminum oxide (hercynite),			
FeA1 ₂ 0 ₄	48		
Iron antimony oxide, FeSbO ₄	49		
Iron chromium oxide (chromite),			
FeCr ₂ O ₄	50		
Lithium zirconium oxide, Li ₂ ZrO ₃	51		
Magnesium arsenate hydrate	E 2		
(hoernesite), Mg ₃ (AsO ₄) ₂ ·8H ₂ O	53		
Magnesium phosphate (farringtonite),			
Mg ₃ (PO ₄) ₂	55 57		
Manganese tartrate, C ₄ H ₄ MnO ₆	57 59		
Molybdenum silicide, Mo ₅ Si ₃	39		
Nickel arsenate hydrate (annabergite), Ni ₃ (AsO ₄) ₂ ·8H ₂ O	60		
Nickel molybdenum oxide, NiMoO ₄	62		
Nickel phosphate hydrate,	02		
Ni ₃ (PO ₄) ₂ ·8H ₂ O	64		
Nickel sulfate hydrate (nickel-hexa-	V-1		
hydrite), β-NiSO ₄ ·6H ₂ O	65		
Niobium, Nb	67		
Potassium barium phosphate,	· ·		
KBaPO ₄	68		
Potassium calcium phosphate,			
KCaPO ₄	70		

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Publications Available

Previous work has been published as a book entitled Powder Diffraction Data from the Joint Committee on Powder Diffraction Standards Associateship at the National Bureau of Standards (1976) (obtainable from the publisher: JCPDS--International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081, price furnished on request). The volume is sold with an accompanying search manual, and contains 949 card images of patterns of experimental data, published originally as Circular 539 (vols. 1-10) and Monograph 25, Sections 1-12, and most of Section 13.

Individual copies of the Circular and Monograph are still available and may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. If a publication listed below is identified with a number, use this number in ordering. All are available in photocopy or microfiche; the price is not fixed and will be furnished on request.

NBS Publication	Order	Number	NBS Publication	Order Number
V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	folume 1 PB 1 folume 2 PB 1 folume 3 PB 1 folume 4 PB 1 folume 5 PB 1 folume 6 PB 1 folume 7 PB 1 folume 8 PB 1 folume 9 PB 1 folume 10 PB 1	178 903 178 904 178 905 178 906 178 907 178 908 178 909 178 910	Monograph 25,	Section 1PB 178 429 Section 2PB 178 430 Section 3PB 178 431 Section 4 (order by section #) Section 5 " Section 6 " Section 7 " Section 8PB 194 872 Section 9COM 72-50002 Section 10COM 72-51079 Section 11COM 74-50183 Section 12COM 75-50162 Section 13PB 254 073 Section 14PB 272 372 Section 15PB 287 182

Also, until the present supply is exhausted, the following issues are for sale from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Order by given catalog number, and add 25% to the price, for other than U.S. mailing.

	Cat	Catalog Number		
Section	12	003-003-01376-5	\$1.50	
Section	14SN	003-003-01842-2	2.75	
Section	15SN	003-003-01986-1	4.00	
Section	16SN	003-003-02128-8	5.00	
Section	17SN	003-003-02253-5	4.50	
Section	18SN	003-003-02370-1	5.50	

ERRATA

Circular 539

Volume 8, p. 67: A least squares refinement of the d's gives results: a=6.8837(2), c=6.0197(5). Several of the hkl's need to be changed for angles higher than 100°.

Monograph 25

Section 11, p. 18: Density should be 2.197.

p. 56: Density should be 2.733.

Section 17, p. 3: The correct formula for σ_i^2 is: $\sigma_i^2 = \frac{1}{n-1} \sum_{k=1}^n \left(\Gamma_i^{rel}(k) - \langle I \rangle_i \right)^2$

p. 32: Z should be 4.

p. 34: Density should be 1.608.

Section 18, p. 3: Figure 2 is upside down.
p. 9: The value c/b should be 0.3548, and the calculated density should be 3.876.
p. 10: Add to the sample description "A final heating was made at 1350 °C for 2 days."

p. 35: The value c/b should be 0.5356.

p. 63: In the reference to Bouaziz, delete the volume number 7.

p. 63: In the table, at d=1.5509, the intensity should be 14.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 19 --- Data for 51 Substances

bv

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, and Nikos P. Pyrros JCPDS--International Centre for Diffraction Data

and

Camden R. Hubbard National Bureau of Standards

Standard x-ray powder diffraction patterns are presented for 51 substances. These patterns, useful for identification, were obtained by manual or automated diffractometer methods, or were calculated from published crystal structure data. The lattice constants from the experimental work were refined by least-squares methods, and reflections were assigned Miller indices consistent with space group extinctions. Relative intensities, calculated densities, literature references, and other relevant data are included.

Key words: Crystal structure; densities; lattice constants; powder patterns; reference intensities; standard; x-ray diffraction.

INTRODUCTION

The Powder Diffraction File (PDF) is a continuing compilation of diffraction patterns gathered from many sources. Produced and published by the JCPDS--International Centre for Diffraction Data¹, the PDF is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the JCPDS, the program at the National Bureau of Standards contributes new or improved data to the PDF. Our work also aids in the development of diffraction techniques. This report presents information for one calculated and 50 experimental patterns, and is the twenty-ninth of the series of Standard X-ray Diffraction Powder Patterns².

EXPERIMENTAL POWDER PATTERNS

Names. The nomenclature follows the current practice of the PDF. A mineral name in () indicates a synthetic sample.

CAS registry number. The Chemical Abstracts Service Registry Number is included, when available, to help identify the sample. This number forms the basis for computer aided searching of Chemical Abstracts. [Chemical Abstracts Service Registry Handbook-Number Section, 1974]

IJCPDS--International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081. This Pennsylvania non-profit corporation functions in cooperation with the American Ceramic Society, the American Crystallographic Association, the American Society for Testing and Materials, The Clay Minerals Society, The Institute of Physics, the Mineralogical Association of Canada, the Mineralogical Society of America, The Mineralogical Society of Great Britain and Ireland, the National Association of Corrosion Engineers, and the Société Française de Minéralogie et de Cristallographie.

²See previous page for other published volumes.

Sample. The samples used to make NBS patterns were obtained from a variety of sources or were prepared in small quantities in our laboratory. Appropriate annealing or recrystallization of the samples improved the quality of many of the patterns. A check of phase purity was provided by indexing the x-ray pattern and by optical examination.

Optical data. When reported, optical measurements were made by grain immersion methods, in white light, using oils standardized in sodium light, in the refractive index range 1.40 to 2.1 [Hartshorne and Stuart, 1970].

The names of the sample colors are selected from the ISCC-NBS Centroid Color Charts [1965].

Interplanar spacings. All spacing determinations were made using an internal standard mixed with the sample, packed in a shallow holder. Choice of the standard was determined by the need for low angle and unobstructed reflections. The amount of standard was estimated so that the intensity of its strongest peak would be about equal to the intensity of the strongest peak of the sample. The internal standards used were of high purity (99.99%). The lattice constants used for them at 25 °C are given in Table 1; the 20 angles were computed using cell dimensions uncorrected for index of refraction.

Standard Reference Material 640, Si powder (a=5.43088Å), was used for many patterns. This SRM is now out of stock and has been replaced by SRM 640a (a=5.430825Å), [1982; Hubbard, 1982a]. The SRM 640a lattice constant for Si was refined from multiple powder data measurements made with tungsten and silver as internal standards. Single crystal cell parameter data were also collected. The lattice parameters from the two methods agreed within three parts in 10⁵. D-spacing results using SRM 640a will be in agreement with patterns recorded in this series of Monographs since 1966.

A second internal standard, fluorophlogopite (FP), is available as Standard Reference Material 675 [1982]. The d(001) spacing was refined from multiple powder data measurements using SRM 640a (Si), and tungsten as internal standards [Hubbard, 1982b]. The calculated 2θ values of the d(00 ℓ) lines are given in Table 2.

Table 1

Cal	culated 2θ Ang	les, $CuK\alpha_1 \lambda = 1$.540598Å
hkl	a=3.16524A	Ag o a=4.08651A	Si . a=5.430825A
3	±.00004	±.00002	±.000011 (SRM 640a)
110	40.262		
111		38.112	28.443
200	58.251	44.295	
211	73.184		
220	86.996	64.437	47.304
310	100.632		
311		77.390	56.124
222	114.923	81.533	
321	131.171		
400	153.535	97.875	69.132
331		110.499	76.378
420		114.914	
422		134.871	88.033
511/333		156.737	94.955
440			106.712
531			114.096
620			127.550
533			136.900
444			158.644

Data for SRM 640 can be found in previous monographs of this series.

Table 2

SRM 675, Fluorophlogopite (FP)				
$d_{001} = 9.98104\mathring{A}$ ± 0.00007				
Calculated 20 Angles, $CuK\alpha_1$ $\lambda = 1.540598A$				
002	2θ			
1	8.853			
2	17.759			
3	26.774			
4	35.962			
5	45.397			
6	55.169			
7	65.399			
8	76.255			
10	101.025			
11	116.193			
12	135.674			

All data were collected at 25 \pm 1 °C on a diffractometer equipped with a focusing graphite crystal monochromator located between the sample

and the scintillation counter. Pulse height discrimination was used as well. The data were collected using copper radiation: $\lambda(\text{CuK}\alpha_1, \text{peak}) = 1.540598 \text{Å}$ [Deslattes and Henins, 1973].

Due to a transition from strip chart to digital recording the majority of the patterns reported in this monograph were measured both manually and automatically.

Manual patterns were measured on a diffractometer equipped with a strip chart recorder. The readings of 20 were taken at positions about 20% of the way down from the top, and in the center of the peak width. This avoided errors associated with aberrations at the very top of the peaks. The $K\alpha_2$ peaks were occasionally read to assist in establishing a $K\alpha_1$ peak position, but $K\alpha_2$ peaks are not reported.

Automatic patterns were measured with a computer controlled diffractometer. Digital data were measured on one of two diffractometers controlled by the AUTO program. [Snyder et al., 1981]. All the patterns were measured in stepscan mode with a step width of 0.01 degrees and counting times at each point greater than or equal to 3 sec.

The data were processed with the JCPDS-NBS POWPAT82 system of processing programs. First the raw data were processed by the program POWDER.PATTERN that locates peaks with the second derivative algorithm of Savitzky and Golay [1964]. A three point Newton-Gregory interpolation [Daniels, 1978] was used to locate the derivative minimum. For some patterns, weak peaks were located with the interactive graphics program PLOT.PATTERN/INT. This program displays the spectrum on a Tektronix graphic terminal. The user can locate peaks by positioning a cursor at the peak. The peak position is defined either as the position of the cursor or as the minimum of the second derivative nearest to the cursor.

All patterns were plotted on paper with the plot program PLOT. PATTERN/HRD on a scale of one degree per inch and were visually inspected. The program POWDER.REFLEC was used to calculate a polynominal correction curve from the expected and observed 20 peak positions of the internal standard reflections and to correct the observed 20 values of the sample. The program POWDER.EDTPKS was used to flag reflections to be used in the least-squares cell parameter refinement. Reflections due to $\text{CuK}\alpha_2$ radiation were excluded from the refinement.

Comparisons between the two sets of 2θ peak positions of patterns that were processed both manually and automatically showed agreement within the estimated standard deviations. In most cases the results of the digital processing are reported.

At low angles, $K\alpha_1$ and $K\alpha_2$ peaks were unresolved for both the sample and the internal standard. Internal standard corrections were established from the theoretical values for $K\alpha_1$ and were applied to the unresolved low angle peaks, as well as to the resolved $K\alpha_1$ peaks in the higher angle regions. For the manual patterns, if the internal standard correction varied along the length of the pattern, linear interpolations were used.

Structure, lattice constants. The space group symbols are given in the short Hermann-Mauguin notation. Also given are the space group numbers listed in the International Tables for X-ray Crystallography, Vol. I [1965]. When the space group symbol is not known, the lattice centering symbol or the diffraction aspect for the Laue class may be given [Donnay and Kennard, 1964; Mighell et al., 1981].

Orthorhombic cell dimensions are arranged according to the Dana convention b>a>c [Palache et al., 1944]. Monoclinic and triclinic lattice constants are transformed if necessary in order to follow the convention of Crystal Data [1973]. The lattice constant ratios, a/b, c/b, and c/a, also follow the conventions used for the determinative ratios in Crystal Data [1973].

In most cases, preliminary lattice constants were available in the literature, and were used for the initial indexing and refinement. In cases where such data were not available, other methods were tried. If suitable single crystals were available, the lattice constants were obtained by use of a four-circle diffractometer. Axial ratios and densities from Groth [1908] were sometimes useful. Cell constants were also found in some instances by use of the Visser computer program [1969].

A least squares program [Evans et al., 1963] assigned hkl's and refined the lattice constants. Cell refinement was based only upon 20 values which could be indexed without ambiguity. The program minimized the value $\Sigma(\theta_{\rm obs}\text{-}\theta_{\rm calc})^2$. Generally, when two or more calculated 20's were within 0.04 degrees of the observed 20, unique indices were not assigned. The possible multiple indices are reported. A plus sign (+) indicates more than 2 possible indices. In indexing cubic patterns, for a given reflection multiple hkl's were not utilized or reported. Instead, a single appropriate index was used.

The estimated standard deviations (e.s.d.'s) of the reciprocal cell parameters were determined from the inverse matrix of the normal equations. The program calculated the e.s.d.'s of the direct cell constants by the method of propagation of errors. Since 1973, the e.s.d.'s derived by the computer program have been increased by 50% in order to reflect more truly the uncertainty in the lattice constants. A similar increase should also be applied to all lattice constants published in this series of NBS publications prior to 1973. The e.s.d.'s in the least significant figures are given in parentheses following the lattice constants.

For each d-value, the number of significant figures was derived from the average error in $2\theta_{\rm obs}$ - $2\theta_{\rm calc}$ and the equation $\Delta d/d = -(\cot\theta)\Delta\theta$. With these conditions, the rounded value of dagrees with its appropriate 20 within the average error in 20. The value of $\Delta\theta$ varies with the symmetry and crystallinity of each sample.

<u>Densities</u>. These were calculated from the specified lattice constants, the Avogadro number 6.0220943 x 10²³ [Deslattes et al., 1974] and 1977 atomic weights published by the International Union of Pure and Applied Chemistry [1979].

Figure of merit. Several figures of merit ratings are available for assessing indexed powder data. M_{20} [de Wolff, 1968] is a criterion for the reliability of the unit cell and indexing. A value of $M_{20} > 10$ will guarantee the essential correctness of the indexing provided there are not more than 2 spurious lines ($X_{20} \le 2$) [de Wolff, 1968]. In general, patterns reported in this publication had $M_{20} > 20$ and $X_{20} = 0$. M_{20} is reported if a cell was derived only through computer indexing from powder data, without further confirmation.

The accuracy and completeness of measured interplanar spacings is conveniently reported using the format:

$$F = \text{overall value } (\overline{|\Delta 2\theta|}, N_{\text{poss}})$$
 .

The "overall" value is the figure of merit of Smith and Snyder [1979] defined by:

$$\frac{1}{|\Delta 2\theta|} \cdot \frac{N}{N_{poss}}$$
 .

N, the number of observed reflections was chosen as 30, or as the maximum number of lines of the pattern if the pattern had fewer than 30 lines. $\boxed{\Delta 20}$ is the average absolute magnitude of discrepancy between observed and calculated 20 values for each reported hkl. When multiple indices are reported for an observed reflection, then each possible $\Delta 20$ is included in the $\boxed{\Delta 20}$. Nposs is the number of diffraction lines allowed in the space group, up to the Nth observed and indexed line. Co-positional lines such as the cubic 221 and 300 are counted as one possible line.

Intensity measurements. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentage of the strongest line. It has been found that samples which give satisfactory intensity patterns usually have an average particle size smaller than 10 µm, as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see Figure 1), and the powdered sample was allowed to drift into the end opening while the holder was held in a vertical position.

Figure 1.

With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (see Figure 2).

Figure 2.

As a general practice, approximately 50 volume percent of finely ground silica-gel was added as a diluent. Occasionally, a rotating sample holder was used.

As a check on reproducibility, each sample was mounted at least 3 times. The intensity values were determined for each of the mountings. The reported I^{rel} value for each observed spacing is the average of 3 or more observations and is rounded to the nearest integer. Theta-compensating (variable divergence) slits were sometimes used to gather the intensity data. In that case, the average I(comp) for each spacing was converted to an equivalent fixed slit value, using the approximate equation:

$$I(fixed) = \frac{I(comp)}{\sin \theta}$$

The estimated standard deviation, σ , in the relative intensity values was calculated from the values of the five strongest lines, excluding the line with I^{rel}=100.

$$\sigma_{i}^{2} = \frac{1}{n-1} \sum_{k=1}^{n} \left(I_{i}^{rel}(k) - \langle I_{i} \rangle \right)^{2}$$

and

$$\sigma = \left\{ \frac{1}{m} \quad \sum_{i=1}^{m} \quad \sigma_i^2 \right\}^{\frac{1}{2}}$$

where

m is the number of strong lines
 (usually 5), and
n is the number of independent
 observations i, per line.

Where conversion of intensities for effects of theta-compensating slits was required, each σ_i was multiplied by the conversion factor

$$f = \frac{I(comp)}{I(fixed)}$$

Reference intensity ratio, $I/I_{\rm corundum}$. The reference intensity ratio, $I/I_{\rm c}$, has been defined as the direct ratio of the intensity of the strongest reflection of a sample, to the intensity of the 113 (hexagonal) reflection of corundum (α -Al₂O₃) [Visser and de Wolff, 1964]. In this publication the ratios $I/I_{\rm c}$ are tabulated for copper K α_1 radiation, for a 1:1 mixture by weight of the sample and corundum. $I/I_{\rm c}$ was determined only for very common phases.

A procedure has been adopted to achieve greater statistical accuracy [Hubbard and Smith, 1977]. For any weight fractions of sample and corundum, X_S and X_C ($X_S = 1 - X_C$), the intensities for reflection \underline{h}_1 of the sample and \underline{h}_2 of corundum were measured for several combinations of \underline{h}_1 and \underline{h}_2 usually within the same region of 20, to provide indications of possible preferred orientation, extinction, or other systematic errors. The reference intensity ratio is then given by

$$\frac{I(h_o)}{I_c(113)} = \frac{X_c}{X_s} \cdot \frac{I_c^{rel}(\underline{h}_2)}{I^{rel}(\underline{h}_1)} \cdot \frac{I(\underline{h}_1)}{I_c(\underline{h}_2)}$$

where (h_0) indicates specifically which reflection was chosen for tabulation purposes. For each of our patterns, the reflection (h_0) will be the one with I = 100 since only copper radiation was used. Typically, at least 3 sets of reflections and 2 mountings of the mixture were used to obtain 6 or more values for the reference intensity ratio, I/I_c . These values yielded the tabulated average (I/I_c) . From these data, the standard deviation, σ , was obtained from

$$\sigma^{2} = \frac{\sum_{i=1}^{n} \left((I/I_{c})_{i} - \langle I/I_{c} \rangle \right)^{2}}{n(n-1)}$$

where \underline{n} was the number of measurements of the reference intensity ratio. The standard deviation in the least significant figures is given in parentheses.

Format of tables. The printing of the data has been computerized. Superimposed reflections are treated in one of two ways. If a d-spacing has only two possible indices, an M is added to the d-spacing which is repeated on the next line, but with the second index. However, if there are more than two possible indices, a plus sign is used in like manner. In both cases, the composite intensity is printed only once and aligned with the first reflection. The symbol "1L" in the intensity column is used to indicate "less than 1".

UNITS

In this publication the Angström unit (1Å = 1000 pm) was selected for presentation of the d-spacings and lattice parameters. This maintained consistency with (a) the earlier publications of Standard X-ray Diffraction Powder Patterns [1982] (b) the publications of the International Union of Crystallography, and (c) the continuing publication of cards and search manuals of the PDF (now consisting of over 40,000 entries). The PDF search manuals are based on the d-spacings in Å of the 3 strongest lines. Consistent with the choice of the Å unit for length, the volume of the unit cell is expressed in ų (1ų = 1 x 10^{-30} m³). Densities are reported in g/cm³ (1 gm/cm³ = 10^3 kg/m³).

ACKNOWLEDGMENTS

We would like to thank Carolyn Wingo and Donna Gladhill of the JCPDS Associateship for their assistance, particularly for keyboarding the data and helping with the proofreading of this manuscript. Appreciation is also expressed to the Text Editing Facility of the National Measurement Laboratory of NBS for typing the manuscript.

REFERENCES

- Alexander, L., Klug, H. P., and Kummer, E. (1948). J. Appl. Phys., <u>19</u>, No. 8, 742.
- Chemical Abstracts Service Registry Handbook
 Number Section (1974), (The American Chemical Society, Chemical Abstracts Service, The Ohio State Univ., Columbus, OH 43210).
- Crystal Data (1973). (3rd Ed. Published jointly by the U.S. Dept. of Commerce, Natl. Bur. of Stand., Washington, D.C. 20234, and the Joint Committee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, PA 19081).
- Daniels, R. W. (1978). An Introduction to Numerical Methods and Optimization Techniques, (Elsevier North-Holland Inc., New York), 78.
- Deslattes, R. D. and Henins, A. (1973). Phys. Rev. Lett. 31, 972.
- Deslattes, R. D., Henins, A., Bowman, H. A., Schoonover, R. M., Carroll, C. L., Barnes, I. L., Machlan, L. A., Moore, L. J., and Shields, W. R. (1974). Phys. Rev. Lett. 33, 463.
- Donnay, J. D. H. and Hennard, O. (1964). Acta Crystallogr. 17, 1337.
- Evans, H. T., Jr., Appleman, D. E., and Handwerker, D. S. (1963). Report #PB216188, U.S. Dept. of Commerce, National Technical Information Center, 5285 Port Royal Rd., Springfield, VA 22151, \$3.50.
- Groth, P. (1908). <u>Chemische Kristallographie II</u>, (Engelmann, Leipzig, Germany).
- Hartshorne, N. H. and Stuart, A. (1970). <u>Crystals</u> and the <u>Polarizing Microscope</u>, (Edward Arnold and Co., London, 4th Ed.).
- Hubbard, C. R. (1982a). J. Appl. Cryst. Accepted for Publication.
- Hubbard, C. R. (1982b). J. Appl. Cryst. Submitted for Publication.
- Hubbard, C. R. and Smith, D. K. (1977). Advances in X-ray Analysis, (Plenum Publishing Corporation, 227 West 17th St., New York, NY 10011), 20, 27.
- International Tables for X-ray Crystallography, I (1965), (The Kynoch Press, Birmingham, Eng.).
- ISCC-NBS Centroid Color Charts, SRM 2106 (1965), or Color Kit, SRM 2107 (1977) which contains both SRM 2106 and Color, an NBS Special Publication #SP 440. These can be obtained from the Natl. Bur. of Stand., Office of Standard Reference Materials, Washington, DC 20234. Current prices will be quoted on request.
- Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS Technical Note 1141, U. S. Dept. of Commerce, Natl. Bur. Stand., Washington, DC 20234.
- Palache, C., Berman, H., and Frondel, C. (1944).

 <u>Dana's System of Mineralogy I</u>, (John Wiley and Sons, New York, 7th Ed.), 6.

- Savitzky, A. and Golay, M. J. E. (1964). Anal. Chem. 36, 1627.
- Smith, G. S. and Snyder, R. L. (1979). J. Appl. Crystallogr. 12, 60.
- Snyder, R. L., Hubbard, C. R., and Panagiotopoulos,
 N. C. (1981). Auto: A Real Time Diffractometer
 Control System Report, NBSIR 81-2229, U. S. Dept.
 of Commerce, Natl. Bur. Stand., Washington, DC 20234).
- Standard Reference Material 640a (1982), Silicon Powder X-ray Diffraction Standard, obtainable from the Natl. Bur. of Stand., Office of Standard Reference Materials, Washington, DC 20234. Current price will be quoted on request.
- Standard Reference Material 675 (1982), Fluorophlogopite Powder X-ray Diffraction Standard. To obtain, see procedure above for SRM 640a.
- Standard X-ray Diffraction Powder Patterns (1982), see page iv of this Monograph.
- Visser, J. W. (1969). J. Appl. Crystallogr. 2, 89.
- Visser, J. W. and de Wolff, P. M. (1964). "Absolute Intensities," Report 641.109, Technisch Physische Dienst, Delft, Netherlands.
- Wolff, de, P. M. (1968). J. Appl. Crystallogr. <u>1</u>, 108.

Synonym
Yttrium aluminate

CAS registry no. 12003-86-0

Sample

The sample was prepared at NBS. Calculated amounts of Al_2O_3 and Y_2O_3 were mixed and heated at 1675 °C for 1 day. The composition was adjusted to approach the 1:1 phase, and the mixture was reheated at 1600 °C for 4 days and at 1675 °C for 3 days. The compound was ground daily during the process.

Color Yellowish white

Structure

Orthorhombic, Pnma (62), Z=4, isostructural with $GdFeO_3$ and $YFeO_3$ (Geller and Wood, 1956). The structure of $GdFeO_3$ was determined by Geller (1956). Coppens and Eibschütz (1965) refined the centric structure of $GdFeO_3$ and $YFeO_3$. The latter was refined also in the alternative non-centrosymmetric space group $Pn2_{1a}$ (33), and that refinement showed small, possibly real, deviations from a centric structure.

Lattice constants of this sample

a = 5.3286(4)A b = 7.3706(5)

c = 5.1796(3)

a/b = 0.7230c/b = 0.7027

Volume 0 203.43 A³

Density

(calculated) 5.351 g/cm³

Polymorphism

Bertaut and Mareschal (1963) reported a hexagonal form that occurred at temperatures of 900 to 950 °C. Their powder pattern appears on PDF card 16-219.

Figure of merit $F_{30} = 92.6(0.010,33)$

Additional patterns PDF card 11-662 (Roth, 1957)

PDF card 28-37 (Abell et al., 1972). The pattern appears to contain 2nd phase lines.

Geller and Wood (1956)

Keith and Roy (1954). The pattern in table 4 labeled $3Y_2O_3 \cdot 5Al_2O_3$, YCrO $_3$ type, seems to be the phase reported here.

References

Abell, J. S., Harris, I. R., and Cockayne, B. (1972). J. Mater. Sci. 7, 1088.

Bertaut, F. and Mareschal, J. (1963). C. R. Hebd. Séances Acad. Sci. 257, 867.

Coppens, P. and Eibschütz, M. (1965). Acta Crystallogr. 19, 524.

Geller, S. (1956). J. Chem. Phys. 24, 1236.

Geller, S. and Wood, E. A. (1956). Acta Crystallogr. 9, 563.

Keith, M. L. and Roy, R. (1954). Am. Mineral. 39, 1.

Roth, R. (1957). J. Res. Natl. Bur. Stand. 58, 75.

Inter	nal standard	d Ag,	a =	4.0	8651 Å
d(A)	_I rel		hkl	<u> </u>	2θ(°
	$\sigma = \pm 2$				ì
4.233	1	0	1	1	20.97
3.711	29	1	0	1	23.96
3.685	16	0	2	0	24.13
3.317	19	1	1	1	26.86
2.664	22	2	0	0	33.62
2.617	100	1	2	1	34.24
2.589	24	0	0	2	34.62
2.505	11	2	1	0	35.82
2.368	1L	2	0	1	37.97
2.329	1	1	0	2	38.63
2.255	1	2	1	1	39.94
2.220M	9,	1	1	2	40.60
2.220M		0	3	1	40.60
2.1588	23	2	2	0	41.81
2.1192	25	0	2	2	42.63
2.0483	8	1	3	1	44.18
1.9923	2	2	2	1	45.49
1.9686	2	1	2	2	46.07
1.8565	31	2	0	2	49.03
1.8424	18	0	4	0	49.43
1.8051	9	2	3	0	50.52
1.8005	15	2	1	2	50.66
1.7055	1 L	2	3	1	53.70
1.6904	1	1	3	2	54.22
1.6579	3	2	2	2	55.37
1.6505	6	1	4	1	55.64
1.6424	6	1	0	3	55.94
1.6381	17	3	1	1	56.10
1.6030 1.5286	3 10	1	1 2	3	57.44 60.52

Aluminum Yttrium Oxide, Al $Y0_3$ - (continued)

d(Å)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 2$		
1.5155	9	2 4 0	61.10
1.5006M	32	0 4 2	61.77
1.5006M	,	1 2 3	61.77
1.4814	4	2 3 2	62.66
1.4492	1	2 0 3	64.22
1.4368	-1L	3 1 2	64.84
1.4181	1L	0 5 1	65.80
1.3869 1.3701	8 1	3 3 1 1 5 1	67.48 68.42
1.3655	1 1L	1 3 3	68.42
1.3320	2	4 0 0	70.66
1.3108	6	4 1 0	71.98
1.3082	17	2 4 2	72.15
1.2950 1.2901M	5 3	$\begin{array}{cccc} 0 & 0 & 4 \\ 4 & 0 & 1 \end{array}$	73.00 73.32
1.270111	3	4 0 1	13.34
1.2901M		2 5 0	73.32
1.2581M	1	1 0 4	75.51
1.2581M		3 3 2	75.51
1.2517	1L	2 5 1	75.96
1.2456	1L	1 5 2	76.40
1.2403	1	1 1 4	76.79
1.2281	2	0 6 0	77.69
1.2260	4	1 4 3	77.85
1.2209	6	3 1 3 4 0 2	78.24
1.1845	1	4 0 2	81.13
1.1734	3	3 2 3	82.06
1.1696	7	4 1 2	82.39
1.1663	11	1 6 1	82.67
1.1645	5 4	2 0 4 2 5 2	82.83
1.1547	4	2 5 2	83.69
1.1503	3	2 1 4	84.08
1.1391	1L	2 4 3	85.10
1.1200	1	1 3 4	86.91
1.1155 1.1102M	2 3	2 6 0 2 2 4	87.35 87.87
1.110211	3	2 2 4	01.01
1.1102M		0 6 2	87.87
1.1080	5	3 5 1	88.09
1.1056	8	3 3 3	88.33
1.0970 1.0796	1 1	1 5 3 4 4 0	89.20 91.04
1.0790	1	4 4 0	91.04
1.0671	5	4 3 2	92.42
1.0596	4	0 4 4	93.27
1.0524	2	2 3 4	94.10
1.0439M 1.0439M	1L	4 1 3 5 0 1	95.11 95.11
1.045311		J 0 1	93.11

d(A)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 2$				
1.0335M	4	5	1	1	96.37
1.0335M		2	5	3	96.37
1.0278	1L	3	4	3	97.09
1.0247	1	2	6	2	97.48
1.0170	1	1	0	5	98.48
1.0141	1	4	2	3	98.86
1.0129	1	1	7	1	99.02
1.0067	1L	3	2	4	99.84
.9966	1	4	4	2	101.24
.9918	2	3	6	1	101.91
.9885	3	4	5	0	102.38
.9842	6	2	4	4	103.01

Synonym	
Yttrium	Aluminate

Sample

The sample was made from stoichiometric amounts of Y_2O_3 and Al_2O_3 . The mixture was heated at 1600 °C for 2 days, ground and reheated at 1675 °C for 3-½ days. After adjusting the composition, the material was ground and heated periodically, 11 days at 1600 °C and finally in two stages at 1675 °C.

Color

Very pale yellowish white

Structure

Monoclinic, $P2_1/a$ (14), Z = 4 (Reed and Chase, 1962).

Comment

Reed and Chase (1962) report that due to the complexity of the monoclinic calculated pattern, they found it virtually impossible to index the powder pattern.

Lattice constants of this sample

a = 11.1156(16)A b = 10.4689(16)

b = 10.4689(16)c = 7.3791(9)

 $\beta = 108.61(1)^{\circ}$

a/b = 1.0618c/b = 0.7049

Volume

813.79 Å³

Density

(calculated) 4.518 g/cm³

Figure of merit

 $F_{30} = 22.9(0.015,86)$

Additional patterns

PDF card 22-987 (Schneider et al. 1961)

Warshaw and Roy (1959)

Abell et al. (1974)

References

Abell, J. S., Harris, I. R., Cockayne, B., and Lent, B. (1974). J. Mater. Sci. 9, 527.

Reed, J. W. and Chase, A. B. (1962). Acta Crystallogr. <u>15</u>, 812.

Schneider, S. J., Roth, R. S., and Waring, J. L. (1961). J. Res. Natl. Bur. Stand. <u>A65</u>, 345.

Warshaw, I. and Roy, R. (1959). J. Am. Ceram. Soc. 42, 434.

$CuK\alpha_1 \lambda = 1.540598 \text{ Å};$	temp. 25±1 °C
Internal standard Si,	0

d(A)	I ^{rel}	hk	2	2θ(°)
	$\sigma = \pm 1$			
7.41	17	1 1	0	11.93
6.99	1	0 0	1	12.66
5.264	3	2 0	0	16.83
5.046	1	-2 0	1	17.56
4.701	23	2 1	0	18.86
4.551	4	-2 1	1	19.49
4.188	2	0 2	1	21.20
3.713	6	2 2	0	23.95
3.682	4	2 0	1	24.15
3.494	2	0 0	2	25.47
3.470M	2	2 1	1	25.65
3.470M		-2 0	2	25.65
3.330	24	3 1	0	26.75
3.017	100	-1 2	2	29.59
2.919M	78	1 1	2	30.60
2.919M		3 2	0	30.60
2.892	9	-2 2	2	30.90
2.615	18	0 4	0	34.26
2.561	13	2 0	2	35.01
2.538M	8	1 4	0	35.34
2.538M		-1 3	2	35.34
2.527	12	-4 0	2	35.49
2.487	5	2 1	2	36.09
2.470M	7	0 3	2	36.34
2.470M		3 2	1	36.34
2.458M	6	-2 3	2	36.53
2.458M		-4 1	2	36.53
2.352	1L	4 2	0	38.23
2.325	2	-2 4	1	38.69
2.292	7	1 3	2	39.27
2.276+	6	-4 2	2	39.57
2.276+		0 1	3	39.57
2.256	2	- 3 1	3	39.93
2.210	2	-2 2	3	40.79
2.174	2	- 5 1	1	41.51
2.133M	1	-1 4	2	42.33
2.133M		2 4	1	42.33
2.129	2	0 2	3	42.43
2.095M	2	0 4	2	43.15
2.095M		1 1	3	43.15
2.088M	2	-2 4	2	43.29
2.088M		- 5 1	2	43.29
2.066	18	5 1	0	43.78
2.053 2.047M	5 9	1 5 -4 3	0 2	44.07 44.22
2.047M	2	-5 2 1 /	1	44.22
1.984	3	1 4	2	45.69
1.973M	2	-3 4 -5 2	2 2	45.97 45.07
1.973M			0	45.97 46.41
1.955	1	5 2		/, 6 /, 1

Aluminum Yttrium Oxide, $Al_2Y_4O_9$ - (continued)

0	I ^{rel}			40
d(A)	I	hkl		2θ(°)
	$\sigma = \pm 1$			
1.946	2	2 5	0	46.64
1.939M	1	0 3	3	46.82
1.939M		1 5	1	46.82
1.904	2	-4 4	1	47.74
1.885M	1	2 1	3	48.23
1.885M		4 3	1	48.23
1.875	2	- 5 3	1	48.52
1.856	4	4 4	0	49.03
1.845	19	-2 0	4	49.36
1.831M	17	5 1	1	49.75
1.831M		2 4	2	49.75
1.818+	17	-5 3	2	50.15
1.818+		-4 4	2	50.15
1.7998	4	2 2	3	50.68
1.7929M	4	- 2 5	2	50.89
1.7929M		- 6 1	2	50.89
1.7798	1L	-5 2	3	51.29
1.7562	1	6 0	0	52.03
1.7522	1L	5 2	1	52.16
1.7450	2	0 6	0	52.39
1.7410	1	0 4	3	52.52
1.7324M	6	-3 4	3	52.80
1.7324M		6 1	0	52.80
1.7248M	10	1 5	2	53.05
1.7248M		0 1	4	53.05
1.7200	10	-1 2	4	53.21
1.7180M	10	-6 2	2	53.28
1.7180M		- 3 5	2	53.28
1.6930M	1L	0 6	1	54.13
1.6930M		- 1 6	1	54.13
1.6843M	1	3 1	3	54.43
1.6843M		-6 0	3	54.43
1.6643+	1L	3 4	2	55.14
1.6643+		6 2	0	55.14
1.6588	1	0 2	4	55.34
1.6566	2	2 6	0	55.42
1.6516M	2	- 5 4	2	55.60
1.6516M		1 6	1	55.60
1.6462	1	-4 2	4	55.80
1.6386	2	4 5	0	56.08

d(A)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 1$				
1.6285	4	4	3	2	56.46
1.6235	4	3	2	3	56.65
1.6133	3	-6	3	2	57.04
1.6046	2	- 5	1	4	57.38
1.5889	1L	-2	5	3	58.00
1.5772M	9	-1	6	2	58.47
1.5772M		2	6	1	58.47
1.5670	9	1	2	4	58.89
1.5631M	12	0	3	4	59.05
1.5631M		3	6	0	59.05
1.5607M	8	0	6	2	59.15
1.5607M		- 7	1	1	59.15
1.5512M	8	-3	5	3	59.55
1.5512M		- 5	2	4	59.55
1.5293	2	4	5	1	60.49
1.5249	2	5	2	2	60.68
1.5159	2	5	4	1	61.08
1.5110	3	-7	2	1	61.30
1.5072	4	-2	4	4	61.47
1.5015	3	-6	0	4	61.73
1.4896	2	7	1	0 .	62.28
1.4859+	3	-7	1	3	62.45
1.4859+		1	3	4	62.45
1.4812M	3	3	6	1	62.67
1.4812M		1	7	0	62.67
1.4589	2	-2	1	5	63.74
1.4548	3	4	6	0	63.94
1.4386M	4	2	7	0	64.75
1.4386M		-7	3	1	64.75

Synonyms
Yttrium aluminate
Yttrogarnet

CAS registry no. 12005-21-9

Sample

The sample was prepared at NBS. Stoichiometric amounts of the constituent oxides were blended and calcined at 1650 °C for two hours. After grinding, the resultant product was placed in an iridium crucible, fused in an induction heater and several single crystal boules grown using the Czochralski technique.

Color Colorless

Structure

Cubic, Ia3d (230), Z = 8. The structure was studied by Yoder and Keith (1951). It has the garnet structure type.

Lattice constant of this sample a = 12.0089(3)A

Volume ... 1731.85 A³

Density (calculated) 4.552 g/cm³

Polymorphism

Yoder and Keith (1951) reported that yttrogarnet inverts to a high temperature form, yttroalumite, at 1970° ± 50 °C.

Figure of merit $F_{30} = 91.8(0.011,30)$

Additional patterns
PDF card 8-178 (Keith and Roy, 1954)

PDF card 30-51 (Abell et al., 1974)

References

Abell, J. S., Harris, I. R., Cockayne, B., and Lent, B. (1974). J. Mater. Sci. 9, 527.

Keith, M. L. and Roy, R. (1954). Am. Mineral. 39, 1.

Yoder, H. S. and Keith, M. L. (1951). Am. Mineral. 36, 519.

-	= 1.540598 A; standard Si,		0
A)	I ^{rel}	hkl	2θ

d(A)	I ^{rel}		hkl	,	20(9
•	$\sigma = \pm 2$				
4.905	27	2	1	1	18.07
4.247	7	2	2	0	20.90
3.210	19	3	2	1	27.77
3.002	27	4	0	0	29.74
2.687	100	4	2	0	33.32
2.561	1L	3	3	2	35.01
2.452	20	4	2	2	36.62
2.355	6	4	3	1	38.18
2.192	23	5	2	1	41.15
2.122	5	4	4	0	42.56
1.9474	26	5	3	2	46.60
1.8994	1L	6	2	0	47.85
1.8536	1L	5	4	1	49.11
1.7705	2	6	3	1	51.58
1.7330	17	4	4	4	52.78
1.6988	1L	5	4	3	53.93
1.6652	31	6	4	0	55.11
1.6338	9	7	2	1	56.26
1.6046	28	6	4	2	57.38
1.5247	4	6	5	1	60.69
1.5006	10	8	0	0	61.77
1.4780	1L	7	4	1	62.82
1.4561	1L	8	2	0	63.88
1.4352	1	6	5	3	64.92
1.4157	1	6	6	0	65.93
1.3962	1L	7	4	3	66.97
1.3598	1L	7	5	2	69.01
1.3423	7	8	4	0	70.04
1.3102	17	8	4	2	72.02
1.2949	2	7	6	1	73.01
1.2800	6	6	6	4	74.00
1.2656	1	8	5	1	74.98
1.2388	2_	9	3	2	76.90
1.2257	1L	8	4	4	77.87
1.2128	1L	9	4	1	78.86
1.2011	1L	8	6	0	79.78
1.1889	1 L	10	1	1	80.77
1.1776	2	10	2	0	81.71
1.1665	1L	9	4	3	82.65
1.1451	3	10	3	1	84.55
1.1249	1L	8	7	1	86.44
1.1151	14	10	4	0	87.39
1.1056	2	9	6	1	88.33
1.0964	6	10	4	2	89.27
1.0874	1L	9	5	4	90.21

Aluminum Yttrium Oxide, $Al_5Y_3O_{12}$ - (continued)

d(Å)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 2$				
1.0698	3	10	5	1	92.12
1.0616	6	8	8	0	93.04
1.0373	2	9	7	2	95.91
1.0298	1	10	6	0	96.84
1.0223	1L	11	4	1	97.79
1.0150	1L	10	6	2	98.74
1.0077	1L	9	6	5	99.71
1.0007	1	12	0	0	100.66
.9939	1L	9	7	4	101.62
.9872	3	12	2	0	102.58
.9805	2	11	5	2	103.55
.9741	6	10	6	4	104.51
.9676	1L	12	3	1	105.51

Sample

The sample was prepared at NBS. Water solutions of $CdCl_2$ and $(NH_4)_2HPO_4$ were mixed. NH_4OH was added to the mixture dropwise, until the pH reached 9.

Color

Colorless

Structure

Orthorhombic, $Pmn2_1$ (31), Z = 2. (Tranqui et al., 1968).

Lattice constants of this sample

a = 5.8173(10)A

b = 8.8797(8)

c = 5.0134(8)

a/b = 0.6551

c/b = 0.5646

Volume 0 258.97 Å³

Density

(calculated) 3.122 g/cm³

Figure of merit

 $F_{30} = 98.2(0.009,34)$

Additional patterns

PDF card 14-397 (Ropp et al., 1961)

Ropp and Mooney (1960)

References

Ropp, R. C. and Mooney, R. W. (1960). J. Am. Chem. Soc. 82, 4848.

Ropp, R. C., Mooney, R. W., and Hoffman, C. W. W. (1961). Anal. Chem. 33, 1687.

Tranqui, D., Durif, A., Guitel, J. C., and Averbuch-Pouchot, M. T. (1968). Bull. Soc. Chim. Fr., 1759.

CuK $lpha_1$	$\lambda = 1.540598$	3 A;	tem	p. 2	5±1 °C
Inter	nal standard	Si,	a =	5.4	30825 Å
d(Å)	I ^{rel}		hk	. L	2θ(°
	$\sigma = \pm 3$				
8.87	100	0	1	0	9.96
4.868	4	1	1	0	18.21
4.436	11	0	2	0	20.00
4.367	13	0	1	1	20.32
3.799	13	1	0	1	23.40
3.528	7	1	2	0	25.22
3.493	38	1	1	1	25.48
3.324	3	0		1	26.80
2.957	1L	0	3	0	30.20
2.908	36	2	0	0	30.72

d(Å)	I ^{rel}		hk	r.l	2θ(°)
	$\sigma = \pm 3$				
2.885	63	1	2	1	30.97
2.764	10	2	1	Ō	32.37
2.637	3	1	3	Ö	33.97
2.549	5	ō	3	1	35.18
2.506	6	0	0	2	35.80
2.433	7	2	2	0	36.92
2.420	8	2	1	1	37.12
2.413	7	0	1	2	37.24
2.334 2.2187	18 2	1	3	<u>1</u> 0	38.54 40.63
2.2107	_		7	U	40.05
2.1883	9	2	2	1	41.22
2.1822	10	0	2	2	41.34
2.0738M	8	2	3	0	43.61
2.0738M	•	1		0	43.61
2.0435	2	1	2	2	44.29
2.0300	1	0	4	1	44.60
1.9164M	13	2	3	1	47.40
1.9164M		1	4	1	47.40
1.9122	10	0	3	2	47.51
1.8991	7	2	0	2	47.86
1.8568	0	2	,	2	/0.00
1.8169	8 3	2	1 3	2 2	49.02
1.7753	3 7	0	5	0	50.17 51.43
1.7456	5	2	2	2	52.37
1.6982	3	1	5	0	53.95
1 (7//)	0	•	•		-/ -70
1.6744M	8	3	2	1	54.78
1.6744M	2	0	5	1	54.78
1.6624	3	0	4	2	55.21
1.6224 1.5984M	2 5	3	3	0	56.69
1.5984M	5	2	3	2	57.62
1.5984M		1	4	2	57.62
1.5809	3 3	1	1	3	58.32
1.5434	3	3	3	1	59.88
1.5161	3	2	5	0	61.07
1.4802	1L	0	6	0	62.72
1.4599	1	3	4	0	63.69
1.4508	4	2	5	1	64.14
1.4344	2	1	6	ō	64.96
1.4193	2	ō	6	1	65.74
1.4070	1	1	5	2	66.39
1 (010	•	_	,		
1.4019	2	3	4	1	66.66
1.3789	3	1	6	1	67.92
1.3196	1L	2	6	0	71.43
1.3097	1L	3	5	0	72.05
1.2978	2	2	5	2	72.82
1.2760	2	2	6	1	74.27

Synonym

Barium aluminum titanate

CAS registry no. 58834-02-9

Sample

The sample was synthesized by melting, then very slowly cooling, stoichiometric amounts of BaTiO₃, Al₂O₃, and TiO₂. After heating at 1275 °C for 16.5 days, the sample was reheated at 1350 °C for 23 days. The material was ground every 24 hours.

Color Colorless

Structure

Orthorhombic, Pn*n, Z = 2. The structure studied by Roth et al. (1981) was based on single crystal precession data.

Lattice constants of this sample

a = 7.1375(3) Ab = 13.5978(8)

c = 4.8651(2)

a/b = 0.5249c/b = 0.3578

Volume 6 472.18 Å³

Density

(calculated) 3.792 g/cm³

Figure of merit

 $F_{30} = 152.7(0.006,36)$

Additional pattern

PDF card 29-147 (Guha et al., 1976)

References

Guha, J. P., Kolar, D., and Volavšek, B. (1976). J. Solid State Chem. <u>16</u>, 49.

Roth, R. S., Parker, H. S., and Koob, M. M. (1981). 12th Intl. Congress of Cryst. Ottawa, C-167.

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C Internal standard Ag, a = 4.08651 Å								
d(Å)	I ^{rel}		hk	.L	2θ(°)			
	σ = ±2							
6.799	22	0	2	0	13.01			
6.316	2	1	1	0	14.01			
4.581	15	0	1	1	19.36			
4.021	2	1	0	1	22.09			
3.828	15	1	3	0	23.22			
3.570	9	2	0	0	24.92			
3.462	82	1	2	1	25.71			
3.401	4	0	4	0	26.18			
3.318	51	0	3	1	26.85			
3.161	100	2	2	0	28.21			

d(A)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 2$		
2.8152	50	2 1 1	31.76
2.6506	2	2 2 1	33.79
2.5954	80	1 4 1	34.53
2.5412	17	1 5 0	35.29
2.4610	3	2 4 0	36.48
2.4010	3	2 - 0	30.40
2.4333	24	0 0 2	36.91
2.3738	2	0 5 1	37.87
2.3440	11	3 1 0	38.37
2.3025	8	1 0 2	39.09
2.2901	6	0 2 2	39.31
2.2702	22	1 1 2	39.67
2.2663	22	0 6 0	39.74
2.2527	17	1 5 1	39.99
2.1965	10	2 4 1	41.06
2.1373	11	3 0 1	42.25
2.1064	8	3 3 0	42.90
2.0532	5	1 3 2	44.07
2.0391	6	3 2 1	44.39
2.0103	12	2 0 2	45.06
1.9886	6	2 1 2	45.58
1.9763	24	2 5 1	45.88
1.9743	24	1 6 1	45.93
1.9275	33	2 2 2	47.11
1.8748	5	1 7 0	48.52
1.8095	39	3 4 1	50.39
1.7906	6	3 5 0	50.96
1.7844	9	4 0 0	51.15
1.7798	7	2 6 1	51.29
1.7569	11	1 5 2	52.01
1.7300	4	2 4 2	52.88
1.7258	4	4 2 0	53.02
1.6996	2	0 8 0	53.90
1.6875	1	3 1 2	54.32
1.6627	5	4 1 1	55.20
1.6579	11	0 6 2	55.37
1 6067	,	/ ₂ 2 1	56.53
1.6267 1.6154	1 1	4 2 1 1 6 2	56.96
1.6154 1.6100M	3	0 1 3	57.17
1.6100M	J	2 7 1	57.17
1.5924	11	3 3 2	57.86
1.5799	2	4 4 0	58.36
1.5716M	6	1 1 3	58.70
1.5716M	c	4 3 1	58.70
1.5655	6	1 8 1 3 6 1	58.95
1.5550	24	3 6 1	59.39
1.5404	7	1 2 3	60.01
1.5346	16	2 8 0	60.26
1.5268	6	0 3 3	60.60
1.5046M	2	3 7 0	61.59
1.5046M		2 6 2	61.59

Barium Aluminum Titanium Oxide, $BaAl_6TiO_{12}$ - (continued)

d(Å)	I ^{rel}			hkl	2θ(°)
	$\sigma = \pm 2$				
	U = 12				
1.5028	1	4	4	1	61.67
1.4844	2	1	7	2	62.52
1.4678	5	2	1	3	63.31
1.4428+	6	0	-	1	64.54
1.4428+		2	2	3	64.54
1.4388	15	4	0	2	64.74
1.4337	20	1	4	3	65.00
1.4260	8	4	5	1	65.39
1.4195	2 4	5 4	1 2	0 2	65.73 66.35
1.40//	•	4	2	2	00.55
1.4040	4	2	3	3	66.55
1.4015	4	4	6	0	66.68
1.3929M	4	0	8	2	67.15
1.3929M 1.3711	2	0	5	3 2	67.15 68.36
1.3/11	_	4	3	_	00.30
1.3696	2	5	0	1	68.45
1.3598M	5	3	6	2	69.01
1.3598M 1.3428	7	0	10	0 1	69.01 70.01
1.3428	7 2	5 4	2	2	70.01
1.3232	-	7	-	_	71.00
1.3146	3	3	2	3	71.74
1.2978M	18	2	8	2	72.82
1.2978M		2	5	3	72.82
1.2880	2	1	10	1	73.46
1.2797	3	3	7	2	74.02
1.2754	3	3	9	0	74.31
1.2706M	9	2	10	0	74.64
1.2706M		5	4	1	74.64
1.2639	2 3	5	5	0	75.10
1.2466	3	3	4	3	76.33
1.2307M	1	5	0	2	77.50
1.2307M		4	8	0	77.50
1.2235	2	5	5	1	78.04
1.2162	3	0	0	4	78.60
1.2148	4	4	6	2	78.71
1.2079	1L	2	9	2	79.24
1.1991	1L	1	0	4	79.94
1.1956	2	4	1	3	80.22
1.1942	1L	1	1	4	80.34
1.1896	3	6	0	0	80.71
1.1869	3	0	10	2	80.93
1.1721M	3	5	6	1	82.17
1.1721M		6	2	0	82.17
1.1602	3	4	3	3	83.20
1.1576M	2	1	8	3	83.43
1.1576M		5	4	2	83.43
1.1533	2	3	6	3	83.81
1.1514M	3	6	1	1	83.98
1.1514M	9	2	0	4	83.98
1.1473M	2	3	10	1	84.35
1.1473M		2	1	4	84.35

Synonym

Barium aluminum titanate

CAS registry no. 58834-01-8

Sample

The sample was synthesized by melting together, then very slowly cooling stoichiometric amounts of BaTiO₃, Al₂O₃, and TiO₂. The sample was heated at 1000 °C for 20 hours, then at 1275 °C for 14 days and finally at 1350 °C for 23 days. The material was ground after each 24 hour period.

Color

Colorless

Structure

Monoclinic, $I^*/^*$, Z = 2. The structure studied by Roth et al. (1981) was based on single crystal precession data.

Lattice constants of this sample

a = 14.8884(12)A

b = 11.3676(13)

c = 4.9781(5)

 $\beta = 90.84(1)^{\circ}$

a/b = 1.3097

c/b = 0.4379

Volume

842.43 A³

Density

(calculated) 4.138 g/cm³

Figure of merit

 $F_{30} = 53.24(0.010,55)$

Additional pattern

PDF card 29-148 (Guha et al., 1976)

References

Guha, J. P., Kolar, D., and Volavšek, B. (1976). J. Solid State Chem. <u>16</u>, 49.

Roth, R. S., Parker, H. S., and Koob, M. M. (1981). 12th Intl. Congress of Cryst. Ottawa, C-167.

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C Internal standard Ag, a = 4.08651 Å						
d(A)	I ^{rel}		hk	·L	2θ(°)	
	$\sigma = \pm$	3				
5.683	23	0	2	0	15.58	
4.741	2	-1	0	1	18.70	
4.560	34	0	1	1	19.45	
3.912	1	-2	1	1	22.71	
3.869	1	2	1	1	22.97	

d(A)	I ^{rel}		hkl	2θ(°)
	$\sigma = \pm 3$			
3.723 3.673 3.642 3.541 3.490	5 5 5 6 8	1 -1 -3	0 0 3 0 2 1 0 1	23.88 24.21 24.42 25.13 25.50
3.113 3.015M 3.015M 2.974 2.903	57 100 38 30	0	2 0 3 1 3 0 2 1 1 1	28.65 29.61 29.61 30.02 30.77
2.882 2.865 2.842 2.805 2.787	14 28 8 22 9	-2	1 0 1 1 4 0 3 1 3 1	31.01 31.19 31.45 31.88 32.09
2.572 2.538 2.489 2.432 2.404	2 1L 25 7 8	5 0	0 1 0 1 0 2 4 1 1 2	34.86 35.33 36.05 36.93 37.37
2.352M 2.352M 2.334 2.280 2.259	17 1L 9 7	2 4 0	3 1 0 2 3 1 2 2 4 0	38.24 38.24 38.55 39.49 39.88
2.204 2.1707M 2.1707M 2.0906 2.0824	20 7 20 11	2 3 7	4 1 2 2 1 2 1 0 0 2	40.91 41.57 41.57 43.24 43.42
2.0675M 2.0675M 1.9948 1.9903 1.9670	18 2 3 8	3 -2 2	5 1 5 0 5 1 5 1 0 1	43.75 43.75 45.43 45.54 46.11
1.9562 1.9455 1.9326 1.9271 1.9100	13 4 8 7 7	7 4 -3	2 2 0 1 2 2 3 2 3 2	46.38 46.65 46.98 47.12 47.57
1.8942M 1.8942M 1.8719 1.8697M 1.8697M	12 6 5	5 0 5	6 0 4 1 4 2 1 2 4 0	47.99 47.99 48.60 48.66 48.66
1.8600 1.8572 1.8547 1.8403 1.8125	8 7 8 7 10	-7 7 7	0 0 2 1 3 0 2 1 5 1	48.93 49.01 49.08 49.49 50.30
1.8031 1.7692M 1.7692M 1.7591 1.7444	3 1 1L 3	-6 8 -1	5 1 0 2 2 0 6 1 0 2	50.58 51.62 51.62 51.94 52.41

Γ	d(Å)	Irel		hk	L	2θ(°)
		$\sigma = \pm 3$				
-						
	1.7309	1	-8	1	1	52.85
	1.6950	1L	5 4	3	2	54.06
	1.6881 1.6798	5 5	-4	6 4	0 2	54.30 54.59
	1.6702M	5	-3	6	1	54.93
	1.0/0211	3	,	Ū	•	34.75
	1.6702M		-1	5	2	54.93
	1.6652M	6	4	4	2	55.11
	1.6652M		3	6	1	55.11
	1.6416	2	0	1	3	55.97
	1.6367	2	9	1	0	56.15
	1.6167	19	-7	4	1	56.91
	1.6051	16	7	4	1	57.36
	1.5949	5	-3	5	2	57.76
	1.5894M	8	-8	3	1	57.98
	1.5894M		7	1	2	57.98
	1.5854M	9	-1	2	3	58.14
	1.5854M	,	3	5	2	58.14
	1.5807M	3	1	2	3	58.33
	1.5807M		-3	0	3	58.33
	1.5665	2	3	0	3	58.91
	1 5501		-	_	•	FO / 7
	1.5531	1 3	7 0	5 7	0 1	59.47
	1.5436M 1.5436M	3	3	7	0	59.87 59.87
	1.5225	3	-3	2	3	60.79
	1.5193+	8	-3	3	3	60.73
			Ĭ	J		30.70
	1.5193+		-9	2	1	60.93
	1.5101+	11	2	7	1	61.34
	1.5101+	11	-4	1 6	3	61.34 61.48
	1.5070M 1.5070M	11	0 9	2	1	61.48
	1.507011		7	_	1	01.40
	1.5006	5	-8	0	2	61.77
	1.4965	5	- 7	3	2	61.96
	1.4935M	8	4	1	3	62.10
	1.4935M		-2	3	3	62.10
	1.4800M	5	-2	6	2	62.73
	1.4800M		8	0	2	62.73
	1.4783	5	7	3	2	62.81
	1.4514	1	-8	2	2	64.11
	1.4402M	2	5	0	3	64.67
	1.4402M		10	2	0	64.67
	1.4282M	8	-4	7	1	65.28
	1.4282M	· ·	-1	4	3	65.28
	1.4245M	9	1	4	3	65.47
	1.4245M		4	7	1	65.47
	1.4206M	9	0	8	0	65.67
	1 /000					(5. (5.
	1.4206M	2	-10	1	1	65.67 66.25
	1.4096 1.4015	2 2	10 -4	6	2	66.68
	1.4015	1	-4 4	6	2	67.14
	1.3770	1L	-9	1	2	68.03
ŀ						
	1.3720	2	3	4	3	68.31
	1.3641	2	-7	6	1	68.76
	1.3608	1	-1	8	1	68.95

Synonym
Barium hexaboride

Sample
The sample was obtained from Alfa Products,
Thiokol/Ventron Division, Danvers, MA.

Color Very dark gray

Structure
Cubic, Pm3m (221), Z = 1, isostructural with CaB₆. The structure was determined by Stackelberg and Neumann (1932). Keissling (1950) and Bertaut and Blum (1954) studied the hexaborides.

Lattice constant of this sample a = 4.2624(1)A

Volume 77.44 A³

Density (calculated) 4.336 g/cm³

Figure of merit $F_{24} = 106.1(0.009,24)$

Additional pattern
PDF card 11-213 (Amendola, Polytechnic Inst.
of Brooklyn, N.Y., 1959)

References
Bertaut, F. and Blum, P. (1954). Acta
Crystallogr. 7, 81.

Kiessling, R. (1950). Acta. Chem. Scand.
4, 209.

Stackelberg, M. V. and Neumann, F. (1932). Z. Phys. Chem. B, <u>19</u>, 314.

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C Internal standard Si, a = 5.430825 Å W, a = 3.16524 Å

d(A)	I ^{rel}	············	h	kl	2θ(°)
	$\sigma = \pm 3$	3			
4.261	54	1	0	0	20.83
3.014	100	1	1	0	29.62
2.462	45	1	1	1	36.47
2.1311	21	2	0	0	42.38
1.9069	48	2	1	0	47.65
1.7404	24	2	1	1	52.54
1.5072	9	2	2	0	61.47
1.4206	25	3	0	0	65.67
1.3480	20	3	1	0	69.70
1.2850	11	3	1	1	73.66
1.2304	2	2	2	2	77.52
1.1822	7	3	2	0	81.32
1.1393	13	3	2	1	85.08
1.0657	2	4	0	0	92.57
1.0338	10	4	1	0	96.34
1.0047	9	3	3	0	100.12
.9780	3	3	3	1	103.93
.9532	5	4	2	0	107.82
.9301	12	4	2	1	111.83
.9088	4	3	3	2	115.91
.8701	2	4	2	2	124.58
.8524	3	5	0	0	129.28
.8359	13	5	1	0	134.31
.8203	6	5	1	1	139.79

Synonym
Barium neodymium titanate

Sample

The sample was prepared at NBS from a mixture of BaO, Nd_2O_3 , and TiO_2 (rutile). The mixture was heated at 1250 °C for 1 day. After being ground, the sample was heated further at 1350 °C for 4 days, ground, and heated at 1365 °C for 6 days.

Two known phases, rutile and $Ba_2Ti_9O_{20}$, were present as impurities. Corrections were made for the overlap of intensities.

Color Colorless

Structure

Orthorhombic, Pbam (55) or Pba2 (32). The space group symmetry was determined from a single crystal by Kolar et al. (1981). Z = 4 is consistent with the density of 5.44, measured by Kolar et al. (1981).

Lattice constants of this sample

 $a = 12.1983(13)\mathring{A}$

b = 22.347(3)c = 3.8403(6)

a/b = 0.5459c/b = 0.1718

Volume 0 1046.8 A³

Density

(calculated) 5.643 g/cm³ (measured) 5.44 g/cm³ (Kolar et al., 1981)

Figure of merit $F_{30} = 50.1(0.012,50)$

Additional pattern Kolar et al. (1981)

Reference

Kolar, D., Gaberšček, S., Volavšek, B., Parker, H. S., and Roth, R. S. (1981). J. Solid State Chem. 2, 89.

CuKa	$\lambda = 1.54059$	98 Å;	tem	p. 2	5±1 °C
Inter	rnal standar	d Ag,	a =	4.0	8651 A
d(A)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 4$				
11.20	12	0	2	0	7.89
10.73	5	1	1	0	8.23
8.25	1L	1	2	0	10.71
6.36	3	1	3	0	13.91
6.10	1	2	0	0	14.51

d(Å)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 4$		
5.359	3	2 2 0	16.53
5.081	18	1 4 0	17.44
4.719	4	2 3 0	18.79
4.197	12	1 5 0	21.15
4.003	7	3 1 0	22.19
3.842	15	0 0 1	23.13
3.821	11	3 2 0	23.26
3.635	4	0 2 1	24.47
3.607 3.565M	4	2 5 0 3 3 0	24.66 24.96
3.565M	4	1 6 0	24.96
3.484 3.250	6 14	1 2 1 2 0 1	25.55 27.42
3.230	6	2 1 1	27.42
3.179	16	2 6 0	28.05
3.089	12	1 7 0	28.88
3.063	44	1 7 0 1 4 1	29.13
2.980	12	2 3 1	29.96
2.942	20	4 2 0	30.36
2.832	100	1 5 1	31.57
2.826	85	2 7 0	31.63
2.771	28	3 1 1	32.28
2.708	58	3 2 1	33.05
2.676M	13	4 4 0	33.46
2.676M		0 6 1	33.46
2.628	18	2 5 1	34.09
2.613M	27	3 3 1	34.29
2.613M		1 6 1	34.29
2.540	4	2 8 0	35.31
2.518	3	4 5 0	35.63
2.497	3	3 4 1	35.93
2.384	1	5 2 0	37.71
2.376	1L	4 1 1	37.84
2.336	6	4 2 1	38.51
2.300	8	2 9 0	39.14
2.276M	26	2 7 1	39.56
2.276M		4 3 1	39.56
2.258	1	0 8 1	39.90
2.221 2.195	4 11	1 8 1 4 4 1	40.59 41.08
		7 7 1	
2.142	6	5 5 0	42.15
2.118M	10	3 9 0	42.65
2.118M 2.098	18	2 8 1 2 10 0	42.65 43.08
2.033	1L	6 0 0	44.53
2 002	0	1 11 0	45.24
2.003 1.999	8 7	1 11 0 6 2 0	45.24 45.32
1.9730	3	2 9 1	45.96
1.9605	9	6 3 0	46.27
1.9380	8	5 7 0	46.84

Barium Neodymium Titanium Oxide, $BaNd_2Ti_5O_{14}$ - (continued)

d(Å)	I ^{rel}	hkl	,	2θ(°
	$\sigma = \pm 4$			
1.9195	40	0 0	2	47.32
1.9103	16	6 4	0	47.56
1.8701M	4	5 5	1	48.65
1.8701M		1 2	2	48.65
1.8501	5	6 5	0	49.21
1.8410M	2	2 10	1	49.47
1.8410M		1 12	0	49.47
1.8309	1L	2 0	2	49.76
1.8172	3	3 11	0	50.16
1.7965M	5	6 0	1	50.78
1.7965M		1 4	2	50.78
1.7750	14	6 2	1	51.44
1.7463M	5	6 3	1	52.35
1.7463M		1 5	2	52.35
1.7306M	17	3 1	2	52.86
1.7306M		5 7	1	52.86
1.7215+	9	7 2	0	53.16
1.7215+		4 9	1	53.16
1.7167	7	3 2	2	53.32
1.7108	1L	6 4	1	53.52
1.6959M	2	7 3	0	54.03
1.6959M		2 5	2	54.03
1.6758	6	0 12	1	54.73
1.6599	6	1 12	1	55.30
1.6437+	5	6 8	0	55.89
1.6437+		2 6	2	55.89
1.6309M	2	4 10	1	56.37
1.6309M		1 7	2	56.37
1.6240M	3	4 0	2	56.63
1.6240M		7 5	0	56.63
1.6079	6	4 2	2	57.25
1.5874	30	4 3	2	58.06
1.5841M	33	5 9	1	58.19
1.5841M		3 13	0	58.19
1.5706	11	7 2	1	58.74
1.5602M	4	5 11	0	59.17
1.5602M		4 4	2	59.17
1.5564	5	1 13	1	59.33
1.5526	4	7 3	1	59.49
1.5316	1	. 2 8	2	60.39
1.5279	1	4 5	2	60.55
1.5249M	1L	3 7	2	60.68
1.5249M		8 0	0	60.68
1.5039	1L 1	6 10 8 3	0	61.62 62.09
1.4937				

d(Å)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 4$		
1.4859	3	3 14 0	62.45
1.4741+	3	0 14 1	63.01
1.4741+		2 9 2	63.01
1.4686	3	4 12 1	63.27
1.4559+	1	0 10 2	63.89
1.4559+		6 9 1	63.89
1.4429	1L	8 5 0	64.53
1.4293	1	5 5 2	65.22
1.4235	1	3 9 2	65.52
1.3962M	2	0 16 0	66.97
1.3962M		6 0 2	66.97
1.3856M	8	3 14 1	67.55
1.3856M		6 2 2	67.55
1.3761	4	8 7 0	68.08
1.3722	6	6 3 2	68.30
1.3640	4	5 7 2	68.77
			8

Synonyms

Barium tungstate

Tribarium tungstate

Sample

The sample was prepared at NBS by T. Negas from spectrographic grade $BaCO_3$ and WO_3 (73:27 mol ratio). It was heated in a Aucrucible in air at 950 °C for 48 hours. This sample is approximately 2 mol % richer in WO_3 than the true 3:1 oxide.

Color

Colorless

Structure

Cubic, Fm3m (225), Z = 32. Negas (private communication, 1982).

Lattice constants of this sample a = 17.1765(5)A

Comment

There are 4 lines with I $_{re1} \approx 1$ that do not index satisfactorily on this unit cell. Several unit cells have been reported in the literature for $\mathrm{Ba_3W0_6}$; Kreidler (1972), Kovba et al. (1971), and Steward and Rooksby (1951). None of the unit cell values reported by these authors will adequately index their data. Some of these patterns appear to be mixed with the off stoichiometric phase reported here. Structural data for the true 3:1 oxide have not been published.

Volume 5067.6 A³

Density (calculated) 7.254 g/cm³ (based on 3:1 ratio)

Figure of merit $F_{30} = 68.2(0.012,38)$

Additional patterns PDF card 25-82 (Kreidler, 1972)

PDF card 26-195 (Kovba et al., 1971)

Chang et al., (1966)

References

Chang, L. L. Y., Scroger, M. G., and Phillips, B. (1966). J. Am. Ceram. Soc. <u>49</u>, No. 7.

Kovba, L. M., Lykova, L. N., and Shevchenko, N. N. (1971). Russ. J. Inorg. Chem. <u>16</u>, 1150.

Kreidler, E. (1972). J. Am. Chem. Soc. 55, No. 10.

Steward, E. G. and Rooksby, H. P. (1951). Acta Crystallogr. 4, 503.

_	$\lambda = 1.540598$ al standard				0
d(A)	I ^{rel}		h	k.l	2θ(°)
	$\sigma = \pm 2$				
9.89	2	1	1	1	8.93
6.075	2	2	2	0	14.57
4.962	9	2		2	17.86
4.296 3.942	5 3	4 3	0 3	0 1	20.66 22.54
3.509	5	4	2	2	25.36
3.307	25	5	1	1	26.94
3.036	100	4		0	29.40
2.905	1	5		1	30.75
2.863	3	6	0	0	31.22
2.716	1	6	2	0	32.95
2.620	2	5		3	34.20
2.590	8	6	2	2	34.60
2.405	3	5	5	1	37.36
2.236	14	7	3	1	40.30
2.146	17	8	0	0	42.07
2.084	1L	6		4	43.39
2.024	3	6		0	44.73
1.9841	5	7	5	1	45.69
1.9694	5	6	6	2	46.05
1.9206	4	8	4	0	47.29
1.8850	1	7	5	3	48.24
1.8737	2	8		2	48.55
1.8306	1L 4	6 9	6 3	4 1	49.77
1.8005	4	9	3	1	50.66
1.7522	21	8	4	4	52.16
1.7261	1	7	7	1	53.01
1.6840	2 9	10	2	0	54.44 55.29
1.6602 1.6522	6	9 10	5 2	1 2	55.58
	Ü				
1.6018	1	9	5	3	57.49
1.5949	1L	10	4	0	57.76
1.5486	1L	7	7	5	59.66
1.5179	7	8 9	8	0	60.99
1.5009	1	9	5	5	61.76
1.4952	1L	10	4	4	62.02
1.4567	3	9	7	3	63.85
1.4516	7	10	6	2	64.10
1.4313	2	12	0	0	65.12
1.4166	1	11	5	1	65.88
1.3934	3	10	6	4	67.12
1.3797	1L	11	5	3	67.88
1.3457	7	9	9	1	69.84
1.3415	1L	10	8	0	70.09
1.3134	2	13	1	1	71.82

Barium Tungsten Oxide, Ba_3WO_6 - (continued)

d(Å)	Ire	l		hkl	2θ(°)
	σ = :	<u>±2</u>			
1.3097	2	10	6	6	72.05
1.2840	1	13	3	1	73.73
1.2665	1	12	6	2	74.92
1.2564	2	13	3	3	75.63
1.2397	2	8	8	8	76.83
1.2301	1	13	5	1	77.54
1.2145	1L	10	10	0	78.73
1.2055	1	13	5	3	79.43
1.2024	4	10	10	2	79.68
1.1908	1	12	8	0	80.61
1.1826	2	11	9	3	81.29
1.1797	1	14	4	0	81.53
1.1687	1	14	4	2	82.46
1.1607	1	13	7	1	83.16
1.1476	3	12	8	4	84.32
1.1401	2	15	1	1	85.01
1.1277	1	14	6	Ō	86.17
1.1181	4		_	_	
1.1181	4	14	6	2	87.09

CAS registry no. 506-66-1

Sample

The compound was obtained from Alfa Products, Thiokol/Ventron Division, Beverly, MA.

Color

Grayish yellow brown

Structure

Cubic, Fm3m (225), Z = 4. The structure was determined qualitatively by Stachelberg and Quantran (1934).

Lattice constant of this sample

a = 4.3422(1) A

Volume 81.872 A3

Density

(calculated) 2.437 g/cm³

Figure of merit

 $F_{10} = 152.3(0.007,10)$

Additional pattern

PDF card 9-196 (Staritzky, 1956)

References

Stachelberg, M. v. and Quantran, F. (1934). Z. Phys. Chem. Leipzig <u>B27</u>, 50.

Staritzky, E. (1956). Anal. Chem. 28, 915.

d(Å)	I ^{rel}		hkl	2θ(°)		
	$\sigma = \pm 2$					
2.5069	100	1	1	1	35.79	
2.1712	1L	2	0	0	41.56	
1.5355	75		2		60.22	
1.3092	12	3	1	1	72.08	
1.2537	1L	2	2	2	75.82	
1.0856	10	4	0	0	90.40	
.9961	6	3	3	1	101.30	
.9709	1L	4	2	0	105.00	
.8864	31	4	2	2	120.69	
.8356	7	5	1	1	134.39	

CAS registry no. 7790-80-9

Sample

The sample was obtained from J. T. Baker Chemical Co., Phillipsburg, N.J.

Color

Colorless

Structure

Hexagonal, $P6_{3}mc$ (186), Z = 2. The structure was qualitatively done by Mitchell (1965). This is the 4H polytype encountered most frequently.

Lattice constants of this sample

a = 4.2481(3)Ac = 13.7265(8)

c/a = 3.2312

Volume

214.53 A³

Density

(calculated) 5.669 g/cm³

Polymorphism

Mitchell (1965) reports the existence of 32 polytypes. Structural data have been reported for 10 polytypes from 2H to 14H where the number indicates the number of iodine layers within the repeat distance above the c axis.

Figure of merit

 $F_{30} = 26.2(0.012,92)$

Additional patterns

PDF card 3-470 (Dow Chemical Co., Midland, MI)

PDF card 12-573 (Institute of Physics, University College, Cardiff, Wales, 1962)

Reference

Mitchell, R. S. (1965). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 108, 296.

CuK $lpha_1$	$\lambda = 1.54059$	98 Å;	ter	ap.	25±1 °C
_	nal standard				0
d(Å)	I ^{rel}		hk	e	2θ(°)
	$\sigma = \pm 3$				
6.87	100	0	0	2	12.88
3.433	40	0	0	4	25.93
3.245	38	1	0	2	27.46
2.868	16	1	0	3	31.16
2.287	7	0	0	6	39.36
2.201	7	1	0	5	40.97
2.124	91	1	1	0	42.52
2.030	16	1	1	2	44.61
1.9435	3	1	0	6	46.70
1.8061	15	1	1	4	50.49
1.7779	8	2	0	2	51.35
1.7159	19	0	0	8	53.35
1.5564	3	1	1	6	59.33
1.3725	2	0	0	10	68.28
1.3622	5	2	1	2	68.87
1.3347	20	1	1	8	70.50
1.2859	1L	1	0	10	73.60
1.2263	6	3	0	0	77.83
1.1820	2	1	0	11	81.34
1.1530	2	1	1	10	83.84
1.1441	1L	0	0	12	84.64
1.0621	3	2	2	0	92.98
1.0146	1	2	2	4	98.79
1.0070	3	1	1	12	99.80
. 9977	4	3	0	8	101.08
.9806	1L	0	0	14	103.54
.9780	1L	3	1	4	103.93
.9474	1L	1	0	14	108.79
.9030	2	2	2	8	117.09

1L

0 0 16

127.79

.8578

Synonym						
Tetracalcium trialuminate trihydrate	CuK $lpha_1$	$\lambda = 1.54059$	8 Å;	tem	p. 25	S±1 °C
CAS registry no. 12355-68-9	Intern	nal standard	Si,	a =	5.43	3088 Å
	d(A)	Irel		hkl		2θ(°)
Sample The sample was made by J. Waring by hydro- thermal reaction in an autoclave at 375 °C		$\sigma = \pm 4$				
for 4 days. It had a few percent of impurity;	4.432	5	0		2	20.02
therefore, the intensities may be slightly in	3.639	38		2		24.44
error.	3.602M 3.602M	100		0		24.70 24.70
Color	3.493	17	1		2	25.48
Colorless		0.6	0	2	,	07.05
Structure	3.270	86 2	2	3 4	1	27.25 27.87
Orthorhombic, Ab2a (41), Z = 4. (Percival and	3.141	14		2		28.39
Taylor, 1961).	3.103	1	4	0		28.75
	3.028	44	3	0	2	29.48
Lattice constants of this sample	2.846	46	2	4	0	31.41
a = 12.422(3)A	2.820	72	3	3		31.70
b = 12.803(3) c = 8.862(2)	2.805	83	_	1	3	31.88
C = 0.002(2)	2.797	81	4	2		31.97
a/b = 0.9702	2.734	4	3	2	2	32.73
c/b = 0.6922	2.612	21	2	1	3	34.31
V. 1	2.594	13		4		34.55
Volume 0 1409.45 A ³	2.541M	31		0		35.29
1407.43 A	2.541M		1	4	2	35.29
Density	2.416	15	4	3	1	37.18
(calculated) 2.753 g/cm ³	2.392	11	2	4	2	37.57
Figure of monit	2.383	11		3		37.72
Figure of merit $F_{30} = 52.8(0.014,41)$	2.364	8		2	2	38.04
130 52.0(0.014,41)	2.351	8	5	_	1	38.25
Additional patterns	2.287	38	2	5	1	39.36
PDF card 14-464 (Pistorius, 1962)	2.261	2	2	3	3	39.83
DDF 1 1(/0 (D:11 T1 10(1)	2.229	33		4		40.44
PDF card 16-49 (Percival and Taylor, 1961)	2.216	9	0	0	4	40.69
PDF card 24-178 (Ponomarer et al., 1970)	2.199	1	3	4	2	41.02
	2.181	7	1	0	4	41.36
Johnson and Thorvaldson, (1943)	2.167	14	5	0	2	41.64
References	2.133	5	0	6		42.33
Johnson, H. and Thorvaldson, T. (1943). Can.	2.115	2	3	5		42.72
J. Res. <u>B21</u> , 236.	2.094M 2.094M	38	3	3 2	3	43.17 43.17
Percival, A. and Taylor, H. F. W. (1961).	2					
Acta Crystallogr. 14, 324.	2.087M	44.	5	_	1	43.32
<u>_</u> ,	2.087M	16	2	0		43.32
Pistorius, C. W. F. T. (1962). Amer. J. Sci.	2.069	16 17	1	2		43.71 43.80
<u>260</u> , 221.	2.019	1L	2	6		44.85
Ponomarer, V. I., Litvin, B. N., and Belov,	1 005	/.	2	2	1.	45 67
N. V. (1970). Inorg. Mater. Engl. Transl.	1.985	4 3	2 6	2	4 0	45.67 46.03
6, 1459.	1.928	6	4	5		47.11
	1.913M	11	4		3	47.49
	1.913M		1	5	3	47.49

Calcium Aluminum Oxide Hydrate, $Ca_4Al_6O_{13} \cdot 3H_2O$ - (continued)

d(Å)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 4$				
1.875	1	6	0	2	48.51
1.8368	5	2	6	2	49.59
1.8237	1	6	3	1	49.97
1.8005	9	5	4	2	50.66
1.7737	2	1	7	1	51.48
1.7435	8	3	6	2	52.44
1.7395M	11	6	4	0	52.57
1.7395M		1	1	5	52.57
1.7245	2	7	1	1	53.06

Calcium Aluminum Silicate Hydrate,
Synonym Calcium aluminosilicate hexahydrate
CAS registry no. 12251-32-0
Sample The sample, a natural mineral, from Wasson's Bluff, Nova Scotia, Canada, was obtained from F. G. Gardinier.
Chemical Analysis (wt. %) Ca 6.12%, Al 9.67%, Si 22.17%, Na 0.55%, K 0.86%, Sr 0.10%, Fe 0.043%, H ₂ O 22.48%
Colorless to salmon pink
Rhombohedral, R3m (166) (Calligaris et al., 1982). Single crystal studies (Himes and Mighell, 1981) were carried out on a clear single crystal selected from the sample. A primitive cell was determined without lattice parameters: a = 9.3799(14)A, b = 9.3926(14), c = 3918(14), α = 94.263(12)°, β = 94.408(12), γ = 94.469(12). This cell differs only slightly from the reduced form of the hexagonal cell given below.
Lattice constants of this sample Hexagonal axes
$a = 13.784(2)\mathring{A}$ c = 14.993(3)
c/a = 1.0877 $Z = 3$
Volume 0 2467.0 A ³
Density (calculated) 2.045 g/cm ³ (observed) 2.05(2) (Himes and Mighell, 1981)
Figure of merit $F_{30} = 65.0(0.012,38)$
Additional pattern PDF card 19-208 (Gude and Sheppard, 1966)
References Calligaris, M., Nardin, G., Randaccio, L., and Chiaramonti, P. C. (1982). Acta Crystallogr. <u>B38</u> , 602.
Gude, A. J. and Sheppard, R. A. (1966). Amer. Mineral. <u>51</u> , 909.

Himes, V. and Mighell, A. (1981). Private communication.

d(A)	I ^{rel} hkl				
, ,	$\sigma = \pm 3$				200
9.34	54	1	0	1	9.4
6.89	13	1	1	0	12.8
6.36	7	0	1		13.9
5.552 5.001	26 29	0 0	0	1 3	15.9 17.7
4.667	6	2	0	2	19.0
4.323	100	2	1	1	20.5
4.053	2	1	1	3	21.9
3.978	4	3	0		22.3
3.865	21	1	2	2	22.9
3.576	42	1	0		24.8
3.446	19	2	2	0	25.8
3.236 3.176	5 11	1 0	3		27.5 28.0
2.927	93	4	0		30.5
2.908	21	0	1	5	30.7
2.882	45	2	1	4	31.0
2.838	6	2	2	3	31.5
2.775	4	0	4	2	32.2
2.693	4	3	2	1	33.2
2.678	9	2	0	5	33.4
2.606 2.572	20	4 2	1	0 2	34.3 34.8
2.372 2.497M	4 21	0	0	6	35.9
2.497M	2.	1	2	5	35.9
2.351	3	1	1	6	38.2
2.310	4	4	1	3	38.9
2.298	5 3	3 5			39.1 39.5
2.275 2.231	3 1L	2	0 4	2	40.4
2.159	2 ′	4	2	2	41.8
2.122	1	5	1	1	42.5
2.087	9	3	3	3	43.3
2.060	1	1	5	2	43.9
2.013	1	0	5	4	44.9
1.9455	1L	4	3	1	46.6
1.9126	2 9	5 5	2	0 5	47.5
1.8515	4	0	1	э 8	49.1
1.8035M	18	4	1	6	50.5
1.8035M		4	2	5	50.5
1.7857	2	5	2	3	51.1
1.7689	3	6	1	2	51.6
1.7306 1.7236	6 10	1	2	8	52.8 53.0

Calcium Aluminum Silicate Hydrate, Chabazite, $Ca_2Al_4Si_8O_{24} \cdot 12H_2O$ - (continued)

d(Å)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 3$				
1.6921	4	3	3	6	54.16
1.6660	4	0	0	9	55.08
1.6454	7	6	2	1	55.83
1.5864	2	0	4	8	58.10
1.5559M	7	6	0	6	59.35
1.5559M		6	1	5	59.35
1.5204	3	5	4	1	60.88
1.5155	4	5	1	7	61.10

Synonyms Beta dicalcium silicate Belite
CAS registry no. 10034-77-2
Sample The sample was made at the Portland Cement Association Laboratory. CaCO ₃ and SiO ₂ with 0.5% B ₂ O ₃ were heated at 900 °C for 20 minutes, raised to 1450 °C over 45 minutes, heated for 20 minutes and air quenched. PCA #102381-1.
Chemical analysis Wt%: SiO ₂ , 34.56; Al ₂ O ₃ , 0.17; Fe ₂ O ₃ , 0.03; CaO, 64.24; SO ₃ , 0.18; Na ₂ O, 0.33; K ₂ O, 0.01; TiO ₂ , 0.01; B ₂ O ₃ , 0.18.
Colorless
Structure Monoclinic, $P2_1/n$ (14), $Z = 4$. The structure of β -Ca ₂ SiO ₄ was determined by Midgley (1952).
Lattice constants of this sample a = 9.310(2)Å b = 6.7565(10) c = 5.5059(11) β = 94.46(2)° a/b = 1.3779 c/b = 0.8149
Volume 345.29 A ³
Density (calculated) 3.313 g/cm ³
Polymorphism There are a number of forms of Ca_2SiO_4 . The beta form is unstable when it is pure. The present sample was stabilized by 0.18% B_2O_3 .
Figure of merit $F_{30} = 54.5(0.013,43)$
Additional patterns PDF card 9-351 (Yannaquis, 1955)
PDF card 29-371 (Smith and Fausey, 1977) (calculated)
Brownmiller and Bogue, (1930)
References Brownmiller, T. and Bogue, R. H. (1930). Amer. J. Sci. 20, 241.
Midgley, C. (1952). Acta Crystallogr. 5, 307.
Smith, D. and Fausey, (1977). Annual Report to the Joint Committee on Powder Diffraction Standards.

1 -	λ = 1.54059				25±1 °C
Inter	nal standard	i Si,	a ≖	5.	43088 A
d(Å)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 1$				
4.892	3	-1	0	1	18.12
4.641	9	2	0	0	19.11
3.824 3.786	5 5	2 1	1 1	0 1	23.24 23.48
3.378	7	ō	2	0	26.36
3.241	6	-2	1	1	27.50
3.176	5	1	2	0	28.07
3.049	9	2	1	1	29.27
2.877	21	0	2	1	31.06
2.814	22	3	1	0	31.77
2.790	. 97	-3	0	1	32.05
2.783 2.745	100 83	-1	2	1	32.14
2.743	30	0 1	0 2	2	32.59 32.93
2.610	42	3	0	1	34.33
2.545	9	0	1	2	35.24
2.448	12	-2	0	2	36.68
2.433	9	3	1	1	36.91
2.410	13	1	1	2	37.28
2.403	18	2	2	1	37.40
2.323	2	4	0	0	38.74
2.301 2.281	4 22	-2	1 2	2	39.12
2.189	51	3 1	3	0	39.48 41.21
2.165	13	2	1	2	41.69
2.129	7	0	2	2	42.42
2.103	1	-1	2	2	42.97
2.091	6	-4	1	1	43.24
2.083 2.050	6 14	0 1	3	1 2	43.40 44.15
	14		_	_	
2.037	9	-3	1	2	44.43
2.027 2.020	15 15	2 1	3	0	44.68 44.83
1.987	20	4	1	1	45.61
1.982	24	-2	2	2	45.75
1.9115	6	4	2	0	47.53
1.8979	9	3	1	2	47.89
1.8935	11	2	2	2	48.01
1.8441 1.8441M	4	-4 -4	0 2	2 1	49.38 49.38
1.8210	3	3	3	0	50.05
1.8051	9	-3	2	2	50.52
1.8018	9	-5	0	1	50.62
1.7899	7	5	1	0	50.98
1.7657	1	0	1	3	51.73
					•

Yannaquis, N. (1955). Rev. Mater. Constr. Trav. Publics 1955, 213.

Standards.

Calcium Silicate, (Larnite), β -Ca₂SiO₄ - (continued)

d(Å)	I ^{rel}		hkl	2θ(°)	
	$\sigma = \pm 1$				
1.7270	5	-1	3	2	52.98
1.7067	10	3	2	2	53.66
1.6964	5	1	3	2	54.01
1.6889	5	0	4	0	54.27
1.6282	12	5	2	0	56.47
1.6146	8	0	4	1	56.99
1.6110	10	2	1	3	57.13
1.6040M	11	2	3	2	57.40
1.6040M		-1	2	3	57.40
1.5874	6	2	4	0	58.06
1.5839	7	1	4	1	58.20
1.5738	5	-4	3	1	58.61

Calcium fluorosilicate dihydrate

CAS registry no.

16961-80-1

Sample

The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA.

Color

Colorless

Structure

Monoclinic, $P2_1/n$ (14), Z = 4. The cell was obtained by using the Visser program (1969). The space group was assumed by a study of the extinctions.

Lattice constants of this sample

a = 10.477(2)A

b = 9.1771(13)

c = 5.7281(13)

 $\beta = 98.98(2)^{\circ}$

a/b = 1.1416

c/b = 0.6242

Volume

543.99 A³

Density

(calculated) 2.664 g/cm³

Figure of merit

 $F_{30} = 47.1(0.013,49)$

 $M_{20} = 29.4$

Additional pattern

PDF card 1-227 (Hanawalt et al., 1938)

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Visser, J. W. (1969). J. Appl. Crystallogr. 2, 89.

	$\lambda = 1.540$ nal standa				0
d(A)	I^{rel} $\sigma = \pm 2$	-	hkl		2θ(°)
6.85 5.323 5.166 4.810 4.598M	16 43 5 23 16	-1	0 0 1	0 1 0 1 1	12.91 16.64 17.15 18.43 19.29

d(A)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 2$		
4.598M		0 2 0	19.29
4.503	9	2 1 0	19.70
4.195	27	1 2 0	21.16
4.160	21	1 1 1	21.34
3.783	19	-2 1 1	23.50
3.432	100	2 2 0	25.94
3.311 3.271	41 13	$\begin{array}{cccc} 2 & 1 & 1 \\ 1 & 2 & 1 \end{array}$	26.91 27.24
3.271	3	3 1 0	27.61
3.172	17	-3 0 1	28.11
3.079	12	-2 2 1	28.98
3.000	13	-3 1 1	29.76
2.932	4	1 3 0	30.46
2.757M	5	3 0 1 3 2 0	32.45
2.757M		3 2 0	32.45
2.717 2.703	9 11 ·	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32.94 33.11
2.703	10	0 1 2	33.28
2.652	10	-1 3 1	33.77
2.633	3	2 3 0	34.02
2.559M	2	1 3 1	35.04
2.559M		-2 1 2	35.04
2.491	4	4 1 0	36.03
2.417M 2.417M	6	-1 2 2 -4 1 1	37.17 37.17
2.41/n		-4 1 1	37.17
2.334	7	2 0 2	38.55
2.318	6	2 3 1	38.82
2.303M 2.303M	15	-2 2 2 -3 1 2	39.08 39.08
2.293	14	0 4 0	39.25
2.279	6	1 2 2 2 1 2	39.51
2.261 2.252	20 14	2 1 2 4 2 0	39.83 40.00
2.239	23	1 4 0	40.24
2.199	8	-4 2 1	41.01
2.164	1	4 1 1	41.71
2.127	4	0 4 1	42.47
2.110	24	-3 2 2	42.83
2.084 2.079M	2 3	-1 3 2 2 2 2	43.39 43.50
	.		
2.079M	2	-4 0 2	43.50
2.060 2.049M	3 13	1 4 1 -5 0 1	43.92 44.16
2.049H	13	3 3 1	44.16
2.020	4	5 1 0	44.84
2.009M	13	- 2 3 2	45.09
2.009M		-2 4 1	45.09
1.992	13	1 3 2	45.50
1.976 1.9103	15 26	4 3 0 3 4 0	45.89 47.56
1.9103	20	3 4 0	47.30

Calcium Silicon Fluoride, Hydrate, CaSiF $_6 \cdot 2H_2O$ - (continued)

d(Å)	I ^{rel}	hkl		2θ(°)
	$\sigma = \pm 2$			
1.8865	17	5 2	0	48.20
1.8777	13	-3 3	2	48.44
1.8711	11	- 5 2	1	48.62
1.8614	9	3 2	2	48.89
1.8565	4	2 3	2	49.03
1.7998	19	4 3	1	50.68
1.7860	2	-1 4	2	51.10
1.7760+	10	- 5 1	2	51.41
1.7760+		4 0	2	51.41
1.7638	6	3 4	1	51.79
1.7438+	13	0 2	3	52.43
1.7438+		4 1	2	52.43
1.7285	11	1 4	2	52.93
1.7144	9	5 3	0	53.40
1.7034	6	- 5 3	1	53.77
1.6944M	16	3 3	2	54.08
1.6944M		6 1	0	54.08
1.6921	14	-4 4	1	54.16
1.6566M	1	4 2	2	55.42
1.6566M		-3 2	3	55.42
1.6312	3	2 5	1	56.36
1.5947	2	-2 3	3	57.77
1.5849M	5	2 2	3	58.16
1.5849M		5 3	1	58.16
1.5597	5	6 1	1	59.19
1.5554M	3	3 0	3	59.37
1.5554M		1 3	3	59.37
1.5288M	4	- 5 4	1	60.51
1.5288M		3 5	1	60.51
1.5117	3	- 2 5	2	61.27
1.4998	1	-6 2	2	61.81
1.4424	5	2 5	2	64.56
1.4354	4	-2 6	1	64.91
1.4145M	5	-1 1	4	65.99
1.4145M		0 0	4	65.99
1.4045+	1	2 6	1	66.52
1.4045+		4 4	2	66.52
1.3871M	3	-7 1	2	67.47
1.3871M		3 3	3	67.47
1.3756	3	-4 5	2	68.11
1.3638M	3	3 5	2	68.78
1.3638M		7 1	1	68.78
		_		
·				

Cesium triiodide

CAS registry no. 12527-22-9

Sample

The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA. The sample decomposed slowly in the open air.

Color

Unground: dark purplish blue. Ground: dark grayish reddish brown.

Structure

Orthorhombic, Pbnm (62), Z = 4. The structure was determined by Tasman and Boswijk (1955).

Lattice constants of this sample

a = 10.0289(9)A

b = 11.0869(9)

c = 6.8457(8)

a/b = 0.9062

c/b = 0.6186

Volume . 761.17 A³

Density

(calculated) 4.482 g/cm³

Figure of merit

 $F_{30} = 83.5(0.007,50)$

Reference

Tasman, H. A. and Boswijk, K. W. (1955). Acta Crystallogr. 8, 59.

	-	$\lambda = 1.540598$ rnal standard				0
Ī	d(A)	Irel		hk	l	2θ(°)
		$\sigma = \pm 3$				
1	5.658	5	1	0	1	15.65
ı	5.542	4	0	2	0	15.98
ı	5.035	7	1	1	1	17.60
١	3.959	36	1	2	1	22.44
ı	3.800	43	2	1	1	23.39
ļ	2 700	15	2	2	0	23.90
1	3.720	15	2 1	2	_	
I	3.468	20			0	25.67
1	3.423	79	0		2	26.01
İ	3.268	100	2	2	1	27.27
ı	3.093	10	1	3	1	28.84
	3.004	10	3	0	1	29.72
1	2.899	11	3	1	1	30.82
	2.863	14	3	2	0	31.22
	2.826	4	2	0	2	31.63
	2.772	12	0	4	0	32.27

d(Å)	I ^{rel}	hkP	2r(°)
	$\sigma = \pm 3$		
2.729	30	2 3	1 32.79
2.671	9		0 33.52
2.5687	5	0 4	1 34.90
2.5185	9		2 35.62
2.4781	1	3 3	0 36.22
2.4461	13	4 1	0 36.71
2.4372	12		2 36.85
2.4264	5		0 37.02
2.3312	4		1 38.59
2.3036	2	4 1	1 39.07
2.2846M	2		1 39.41
2.2846M			0 39.41
2.1960	10		2 41.07
2.1662M 2.1662M	10		1 41.66 0 41.66
2.1544	10		2 41.90
2.1339	5		0 42.32
2.1060	8		2 42.91
2.0751 2.0652M	5 6		0 43.58 3 43.80
2.005211	O	1 2	3 43.00
2.0652M			1 43.80
2.0417	7		3 44.33
2.0231	2		2 44.76
2.0082	1		2 45.11
1.9898	12	4 1	2 45.55
1.9853	11		1 45.66
1.9796	5		2 45.80
1.9451M	17		3 46.66
1.9451M	_		1 46.66
1.9248	5	5 0	1 47.18
1.9054	3		3 47.69
1.9002	4		2 47.83
1.8957	4		1 47.95
1.8850M	5		0 48.24
1.8850M		3 0	3 48.24
1.8575	3		3 49.00
1.8476M	1		0 49.28
1.8476M			0 49.28
1.8295	6		2 49.80
1.8172M	5	5 2	50.16
1.8172M			50.16
1.8105M	10		2 50.36
1.8105M			3 50.36
1.7945	11		50.84
1.7847M	5	3 2	3 51.14
1.7847M	_		51.14
1.7737	3		2 51.48
1.7566	7		1 52.02
1.7336	2 8		0 52.76
1.7111	8	0 0	4 53.51
l .			

Cesium Iodide, CsI_3 - (continued)

d(Å)	I ^{rel}			hkℓ	2θ(°
	$\sigma = \pm 3$				
1.6607	2	4	5	0	55.27
1.6524M	4	6	1	0	55.57
1.6524M		5	2	2	55.57
1.6144+	2	4	2	3	57.00
1.6144+		4	5	1	57.00
1.6064	3	6	1	1	57.31
1.5809	2	5	4	1	58.32
1.5465	2	2	6	2	59.75
1.5346M	2	4	3	3	60.26
1.5346M		1	3	4	60.26
1.5247	2	1	7	1	60.69
1.5068	2	5	0	3	61.49
1.4945	3	4	5	2	62.05
1.4881+	4	6	1	2	62.35
1.4881+		5	5	0	62.35
1.4753	1	2	7	1	62.95
1.4688	2	3	2	4	63.26
1.4561	2	0	4	4	63.88
1.4530M	1	5	5	1	64.03
1.4530M		4	6	1	64.03
1.4500	1	6	2	2	64.18
1.4416M	5	4	4	3	64.60
1.4416M		1	4	4	64.60
1.4360M	6	3	5	3	64.88
1.4360M		0	6	3	64.88
1.4212M	3	1	6	3	65.64
1.4212M		7	1	0	65.64
1.4015M	4	4	1	4	66.68
1.4015M		3	7	1	66.68

Synonyms Cesium molybdate Dicesium trimolybdate

Sample

The sample was prepared using cesium carbonate and molybdic anhydride. Appropriate amounts were blended by grinding in an agate mortar under acetone. The dried mixture was heated at 500 °C for a total of 16 hours with periodic grinding. After the last heating, the sample was ground to pass a 100 mesh sieve, and the resulting powder was annealed at 240 $^{\rm o}{\rm C}$ for 19 hours.

Color Colorless

Structure

Monoclinic, C2/c (15), Z = 4, isostructural with K2Mo3O10. The structure of K2Mo3O10 was determined by Gatehouse and Leverett (1968).

Lattice constants of this sample

a = 14.469(2)A

b = 8.4022(9)c = 9.4609(14)

 $\beta = 97.73(1)^{\circ}$

a/b = 1.7220c/b = 1.1260

Volume 1139.7 A3

Density (calculated) 4.159 g/cm³

Figure of merit $F_{30} = 94.2(0.008,42)$

Additional pattern PDF card 24-277 (Salmon and Caillet, 1969)

References Gatehouse, B. M. and Leverett, P. (1968). J. Chem. Soc. A, 1398.

Salmon, R. and Caillet, P. (1969). Bull. Soc. Chim. Fr., 1569.

_	λ = 1.54059			0
	nal standard	l Si, a	= 5.	43088 Å
d(Å)	I ^{rel}	ŀ	nk.l	2θ(°)
	$\sigma = \pm 4$			
7.237	17	1	1 0	12.22
5.933 5.552	18 19	-1 1	1 1 1 1	14.92 15.95
4.199	47	0	2 0	21.14
4.155	18	3	1 0	21.37
4.064	8	-1	1 2	21.85
3.975 3.823	13 100	-3 1	1 1 1 2	22.35 23.25
3.699	34	2	0 2	24.04
3.644	88	3	1 1	24.41
3.625	35	2	2 0	24.54
3.586	15	4	0 0	24.81
3.462 3.306M	93 14	-2 -3	2 1 1 2	25.71 26.95
3.306M	17	2	2 1	26.95
3.127	19	0	2 2	28.52
3.052	50	-4	0 2	29.24
2.966 2.942M	45 41	-2 -1	2 2 1 3	30.11 30.36
2.942M	41	3	1 2	30.36
2.801	2	1	1 3	31.93
2.778 2.749	2 5	2 1	2 2 3 0	32.20 32.55
2.727	18	4	2 0	32.82
2.715	32	5	1 0	32.97
2.694	4	-4	2 1	33.23
2.657 2.620	3 11	-1 1	3 1 3 1	33.71 34.20
2.548	3	4	2 1	35.20
2.470	7	-4	2 2	36.35
2.451	4	-2	2 3	36.64
2.416 2.3903	1 5	3 6	3 0 0 0	37.18 37.60
2.3903	20	3	0 0 3 1	39.08
2.2762	25	-1	1 4	39.56
2.2565	12	-6	0 2	39.92
2.2287	5	5	1 2	40.44
2.1909 2.1868	1L 2	- 5 1	1 3 1 4	41.17 41.25
2.1677	13	-4	2 3	41.63
2.1514	6	-3	1 4	41.96
2.1456	8	2	0 4	42.08
2.0902M 2.0902M	6	-1 3	3 3 3 2	43.25 43.25
2.0801	7	-6	2 1	43.47

Cesium Molybdenum Oxide, $Cs_2Mo_3O_{10}$ - (continued)

d(Å)	I ^{rel}		hkl		2θ(°)
u(A)			цкх		20(3)
	σ =	: ±4			
2.0497	11	0	4	1	44.15
2.0457	3	0	2	4	44.24
2.0382	29	1	3	3	44.41
2.0223	10	6	0	2	44.78
2.0167	6	2	4	0	44.91
1.9994M	19	- 7	1	1	45.32
1.9994M		-5	3	1	45.32
1.9861M	10	-6	2	2	45.64
1.9861M	•	-2	4	1	45.64
1.9562	8	2	4	1	46.38
1.9463	6	3	1	4	46.63
1.9310	7	5	1	3	47.02
1.9225	11	5	3	1	47.24
1.8972M	4	-5	1	4	47.91
1.8972M		7	1	1	47.91
1.8773	3	-2	4	2	48.45
1.8515M	8	3	3	3	49.17
1.8515M		4	0	4	49.17
1.8312	2	-6	2	3	49.75
1.8268	2	2	4	2	49.88
1.8122	1L	4	4	0	50.31
1.7978	4	-6	0	4	50.74
1.7873M	7	- 7	1	3	51.06
1.7873M		1	1	5	51.06
1.7644	1	- 5	3	3	51.77
1.7622	1	1	3	4	51.84
1.7512	3	7	1	2	52.19
1.7129M	1L	-2	2	5	53.45
1.7129M		0	2	5	53.45
1.6938	4	4	2	4	54.10
1.6596M	8	-7	3	1	55.31
1.6596M		-8	2	1	55.31
1.6538M	11	-6	2	4	55.52
1.6538M		7	3	0	55.52
1.6489M	9	8	2	0	55.70
1.6489M		-1	5	1	55.70
1.6435M	5	6	2	3	55.90
1.6435M		- 5	1	5	55.90
1.6193M	7	-8	2	2	56.81
1.6193M		5	3	3	56.81
1.6162	15	-4	4	3	56.93
1.5987M	8	- 5	3	4	57.61
1.5987M		7	3	1	57.61
1.5896	4	8	2	1	57.97
1.5854	4	3	5	0	58.14
1.5787M	6	-6	4	1	58.41
1.5787M	_	-9	1	1	58.41
1.5643M	7	1	5	2	59.00
1.5643M 1.5516	6	0 3	5	4	59.00 59.53
1.5510	J	J	J	•	33.33

d(Å)	Irel		hkl		2θ(°)
	$\sigma = \pm 4$				
1.5476	5	-9	1	2	59.70
1.5385	6	-8	2	3	60.09
1.5332M	10	6	4	1	60.32
1.5332M		-3	_	5	60.32
1.5227+	5	-3	5	2	60.78
1.5227+		-3	1	6	60.78
1.5114	2	9	1	1	61.28
1.4982	1	8	2	2	61.88
1.4853	3	2	0	6	62.48
1.4816M	5	-1	5	3	62.65
1.4816M		3	5	2	62.65
1.4718M	1L	-2	2	6	63.12
1.4718M		6	2	4	63.12
1.4634M	4	-7	1	5	63.52
1.4634M		1	5	3	63.52
1.4612	4	- 6	4	3	63.63
1.4496	1L	5	5	0	64.20
1.4398	1	- 3	5	3	64.69

Synonym Chromium diboride

CAS registry no. 12007-16-8

Sample

The sample was obtained from the Metallurgy group at NBS. A small admixture of Cr was removed by sieving.

Color

Olive gray

Structure

Hexagonal, P6/mmm (191), Z = 1, (PDF card 8-119).

Lattice constants of this sample

 $a = 2.9730(13) \mathring{A}$ c = 3.0709(2)

c/a = 1.0329

Volume 23.506 Å³

Density

(calculated) 5.200 g/cm³

Figure of merit $F_{20} = 94.4(0.011,20)$

Additional pattern

PDF card 8-119 (Paretzkin, 1956, Polytechnic Institute of Brooklyn, Brooklyn, NY.)

CuKα ₁ Inter	CuK α_1 λ = 1.540598 Å; temp. 25±1 °C Internal standard W, a = 3.16524 Å							
d(Å)	I ^{rel}		h	kl	2θ(°)			
	$\sigma = \pm 1$							
3.071	20	0	0	1	29.05			
2.574	57	1	0	0	34.82			
1.9730	100	1	0	1	45.96			
1.5355	10	0	0	2	60.22			
1.4866	25	1	1	0	62.42			
1.3380	14	1	1	1	70.30			
1.3191	15	1	0	2	71.46			
1.2871	7	2	0	0	73.52			
1.1874	16	2	0	1	80.89			
1.0682	16	1	1	2	92.29			
1.0238	1	0	0	3	97.60			
.9865	8	2	0	2	102.67			
.9732	6	2	1	0	104.65			
.9512	9	1	0	3	108.15			
.9277	20	2	1	1	112.26			
.8582	7	3	0	0	127.67			
.8430	4	1	1	3	132.05			
.8265	4	3	0	1	137.50			
. 8220	11	2	1	2	139.15			
.8012	8	2	0	3	148.09			

Niobium chromium oxide Chromium niobate

CAS registry no. 58500-35-9

Sample

Made by heating Cr_2O_3 and Nb_2O_5 at 1000 °C for 24 hours. The sample contained some Cr_2O_3 .

Color

Gray olive

Structure

Tetragonal, $P4_2/mnm$ (136), Z = 1. Rutile structure (Brandt, 1943). The structure of $CrNbO_4$ is discussed by Khazai et al. (1981).

Lattice constants of this sample

a = 4.6443(2)Ac = 3.0125(3)

c/a = 0.6486

Volume 64.977 A³

Density

(calculated) 5.338 g/cm³

Figure of merit

 $F_{28} = 60.94(0.013,36)$

Additional patterns

PDF card 20-311 (Young, Battelle Mem. Inst., 1964)

PDF card 31-927 (Ben-Dor and Shimony, 1978). The composition of this phase is $Cr_{0.4}Nb_{0.6}O_2$.

References

Ben-Dor, L. and Shimony, Y. (1978). J. Cryst. Growth 34, 1.

Brandt, K. (1943). Ark. Kemi Mineral. Geol. 17A, 15.

Khazai, B., Kershaw, R., Dwight, K., and Wold, A. (1981). J. Solid State Chem. 39, 395.

1	$\lambda = 1.5409$				0
d(Å)	I ^{rel}		hk	e L	2θ(°)
	$\sigma = \pm i$	1			
3.283	100	1	1	0	27.14
2.528	65	1	0	1	35.48
2.322	15	2	0	0	38.75
2.220	11	1	1	1	40.60
2.077	4	2	1	0	43.54

d(A)	I ^{rel}		hk	l	2θ(°)
	$\sigma = \pm 1$				
1.7102	62	2	1	1	53.54
1.6421	18	2	2	0	55.95
1.5066	7	0	0	2	61.50
1.4690	13	3	1	0	63.25
1.4419	1L	2	2	1	64.58
1.3772	17	3	0	1	68.02
1.3696	12	1	1	2	68.45
1.3204	1	3	1	1	71.38
1.2638	3	2	0	2	75.11
1.2190	1	2	1	2	78.38
1.1845	6	3	2	1	81.13
1.1614	2	4	0	0	83.10
1.1100	6	2	2	2	87.89
1.0945	3	3	3	0	89.46
1.0551	7	4	1	1	93.79
1.0516	8	3	1	2	94.19
1.0384	3	4	2	0	95.77
.9816M	2	4	2	1	103.39
.9816M		1	0	3	103.39
.9289	1	4	3	0	112.05
.9108	1L	5	1	0	115.51
.9039	3	2	1	3	116.90
.8875	4	4	3	1	120.43
. 8854	4	3	3	2	120.91

Cobalt orthoarsenate octahydrate

CAS registry no. 54496-59-2

Sample

The sample was made by slowly adding 2 grams of $Na_2HAsO_4 \cdot 7H_2O$ dissolved in 1 liter of H_2O to 2 grams of $CoSO_4$ in 3 liters of H_2O . The liquid was kept at about 70 °C for 40 days.

Spectrographic analysis

Major impurities

0.02 to 0.1% Ni 0.01 to 0.05% Cu,Si 0.005 to 0.025% Al,Fe 0.002 to 0.01% Mn,Sn,Zn <0.005% Ag,Mg

Color

Medium purplish pink

Structure

Monoclinic, I2/m (12), Z = 2. Vivianite structure (Wolfe, 1940). The structure of vivianite, Fe₃(PO₄)₂·8H₂O, was discussed by Mori and Ito (1950).

Lattice constants of this sample

a = 10.118(5) Å b = 13.433(4) c = 4.762(2) $\beta = 101.90(3)^{\circ}$

a/b = 0.7532c/b = 0.3545

Volume 633.32 A³

Density

(calculated) 3.140 g/cm³

Comment

Note the similarity between the data above, and the data for the phase $Zn_3(AsO_4)_2 \cdot 8H_2O$, also appearing in this Monograph.

Figure of merit $F_{30} = 43.0(0.013,53)$

Additional pattern

PDF card 11-626 (U.S. Bureau of Mines, Albany, OR)

References

Mori, H. and Ito, T. (1950). Acta Crystallogr. $\underline{3}$, 1.

Wolfe, C. W. (1940). Am. Mineral. 25, 787.

_	$\lambda = 1.540$ nal standa				0
d(Å)	I ^{rel}		h	kl	2θ(°)
	σ = ±	:1			
7.96	26	1	1	0	11.11
6.72	100	0	2	0	13.17
4.951	9	2 -1	0	0	17.90
4.602	2 19	0	0 1	1	19.27 20.15
4.403	19	U	1	1	20.13
4.081	5	1	3	0	21.76
3.978	7	2	2	0	22.33
3.916	12	1	0	1	22.69
3.787	· 2	-1	2	1	23.47
3.663	7	-2	1	1	24.28
3.381	3	1	2	1	26.34
3.357	4	0	4	0	26.53
3.227	42	0	3	1	27.62
3.003	47	-3		1	29.73
2.779	9	2	4	0	32.18
2.740	30	-3		1	32.66
2.712	24	-1		1	33.00
2.658	14	3	3	0	33.69
2.593	1	1	5	0	34.56
2.549	9	1	4	1	35.18
2.463	18	3	0	1	36.45
2.327	17	0	5	1	38.66
2.238M	3	0	6	0	40.26
2.238M		-3	4	1	40.26
2.196	9	-2	5	1	41.06
2.094	7	-3	1	2	43.17
2.083	9	3	5	0	43.41
2.040	2	2	6	0	44.36
2.012	2 3 5	-1	6	1	45.02
1.987	5	3	4	1	45.61
1.954	7,	1	3	2	46.44
1.9172	8	-3	3	2	47.38

Cobalt orthophosphate octahydrate

CAS registry no. 10294-50-5

Sample

The sample was prepared by dissolving stoichiometric amounts of CoSO₄ and Na₂HPO₄ in water and letting the solution partly evaporate at room temperature.

Color

Unground: deep red

Ground: moderate pale red

Structure

Monoclinic, I2/m (12), Z = 2. The pattern was indexed by analogy with the pattern of the corresponding iron compound vivianite. The structure of vivianite was discussed by Mori and Ito (1950).

Lattice constants of this sample

a = 9.9265(14)A

b = 13.3360(14)

c = 4.6786(7)

 $\beta = 102.310(12)^{\circ}$

a/b = 0.7443

c/b = 0.3508

Volume

605.11 A³

Density

(calculated) 2.804 g/cm³

Figure of merit

 $F_{30} = 97.0(0.007,43)$

Additional pattern

PDF card 1-0121 (Hanawalt et al., 1938)

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. <u>10</u>, 457.

Mori, H. and Ito, T. (1950). Acta Crystallogr. $\underline{3}$, 1.

1	$\lambda = 1.540$ nal standa				0
d(A)	I^{rel} $\sigma = \pm 3$		hkl		2θ(°)
7.852 6.667 4.849 4.521 4.323	23 100 25 15 6	1 0 2 -1 0		0	11.26 13.27 18.28 19.62 20.53

d(A)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 3$		
4.042	15	1 3 0	21.97
3.832	23	1 0 1	23.19
3.609	5	-2 1 1	24.65
3.320	5	1 2 1	26.83
3.187	31	0 3 1	27.97
3.141	4	3 1 0	28.39
2.946	32	2 1 1	30.31
2.866	2	-2 3 1	31.18
2.749	5	2 4 0	32.55
2.698	27	-3 2 1	33.18
2.683	23	-1 4 1	33.37
2.615	11	3 3 0	34.27
2.572	5	1 5 0	34.86
2.5150	18	1 4 1	35.67
2.4981	8	2 3 1	35.92
2.4082 2.3036M 2.3036M 2.2647 2.2104	17 13 4 12	3 0 1 0 5 1 -1 1 2 3 2 1 -3 4 1	37.31 39.07 39.07 39.77 40.79
2.1727	11	-2 5 1	41.53
2.1628	6	0 2 2	41.73
2.1417	3	-2 2 2	42.16
2.0985	1	1 1 2	43.07
2.0842	2	-4 3 1	43.38
2.0576	8	3 5 0	43.97
2.0214	1	2 6 0	44.80
1.9953	3	-1 6 1	45.42
1.9530	3	4 1 1	46.46
1.9222	8	1 6 1	47.25
1.9176	11	1 3 2	47.37
1.8909	7	-3 3 2	48.08
1.8701	5	1 7 0	48.65
1.8632	2	-5 2 1	48.84
1.8424	1	2 2 2	49.43
1.8051M 1.8051M 1.7785 1.7686 1.7581M	3 2 5 5	4 3 1 -4 2 2 5 3 0 -4 5 1 0 7 1	50.52 50.52 51.33 51.64 51.97
1.7581M 1.6671 1.6635M 1.6635M 1.6440	9 11 8	-1 5 2 0 8 0 5 0 1 1 5 2 -3 5 2	51.97 55.04 55.17 55.17 55.88
1.6154	2	6 0 0	56.96
1.5904	5	3 3 2	57.94
1.5866	5	4 5 1	58.09
1.5765	2	2 8 0	58.50
1.5706	7	6 2 0	58.74

Cobalt Phosphate Hydrate, $Co_3(P0_4)_2 \cdot 8H_20$ - (continued)

d(Å)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 3$	22.00	20()
	0 - ±3		
1.5694	7	5 5 0	58.79
1.5645	5	-1 8 1	58.99
1.5581	2	- 5 3 2	59.26
1.5367	3	-6 3 1	60.17
1.5281	3	1 8 1	60.54
1.5103	4	4 0 2	61.33
1.5079	4	-3 0 3	61.44
1.4883	2	5 4 1	62.34
1.4766	6	- 6 0 2	62.89
1.4728	4	4 2 2	63.07
1.4647	3	-2 3 3	63.46
1.4518	3	2 6 2	64.09
1.4418M	2	-6 2 2	64.59
1.4418M		0 3 3	64.59
1.4352	1L	3 5 2	64.92
1.4247	2	1 2 3	65.46
1.4187	1	1 7 2	65.77
1.4115M	3	-7 0 1	66.15
1.4115M		- 5 5 2	66.15
1.4094	3	0 9 1	66.26
1.3958	2	-6 5 1	66.99
1.3711M	2	4 7 1	68.36
1.3711M	_	3 8 1	68.36
1.3465M	1	3 9 0	69.79
1.3465M		0 8 2	69.79
1.3406	3	-2 5 3	70.14
1.3334	4	0 10 0	70.58
1.3299	4	2 9 1	70.79
1.3233M	3	0 5 3	71.20
1.3233M	-	7 3 0	71.20
L			

Synonym Erbium diiron

CAS registry no. 12060-15-4

Sample

The sample was obtained from the Solid State Physics Division at NBS.

Color

Dark grayish olive

Structure

Cubic, Fd3m (227), Z = 8. The structure was determined by Wernick and Geller (1960).

Lattice constant of this sample a = 7.2777(2) A

Volume 385.46 Å³

Density (calculated) 9.614 g/cm³

Figure of merit F₂₃ = 63.8(0.014,26)

Additional pattern
PDF card 17-32 Dwight, Met. Div., Argonne
Nat. Lab., Argonne, IL.

Reference
Wernick, J. H. and Geller, S. (1960).
Trans. AIME 218, 866.

Internal standard Ag, a = 4.08651 A						
d(Å)				kl	20(
	$\sigma = \pm 3$					
4.201	9	1	1	1	21.13	
2.572	54	2	2	0	34.85	
2.193	100	3	1	1	41.13	
2.101	18	2	2	2	43.0	
1.8193	1L	4	0	0	50.10	
1.6699	5	3	3	1	54.94	
1.4861	26	4	2	2	62.4	
1.4006	32	5	1	1	66.73	
1.2862	20	4	4	0	73.5	
1.2305	3	5	3	1	77.5	
1.1509	13	6	2	0	84.0	
1.1098	12	5	3	3	87.9	
1.0971	6	6	2	2	89.19	
1.0504	1L	4	4	4	94.3	
1.0190	2	5	5	1	98.2	
.9726	12	6	4	2	104.7	
.9476	20	7	3	1	108.7	
.9096	6	8	0	0	115.75	
.8892	1L	7	3	3	120.0	
.8576	8	6	6	0	127.8	
.8403	12	7	5	1	132.8	
.8349	4	6	6	2	134.63	
.7988	2	9	1	1	149.2	

1,2-Ethanediamine dihydrochloride 1,2-Diaminoethane dihydrochloride Ethylene diammonium chloride

CAS registry no. 20273-40-9

Sample

The sample was obtained from Sigma Chemical Co., St. Louis, MO. It was recrystallized from water.

Color

Colorless

Structure

Monoclinic, $P2_1/a$ (14), Z = 2. The structure was determined by Ashida and Hirokawa (1963).

Lattice constants of this sample

a = 9.9683(13)A

b = 6.8913(12)

c = 4.4293(6)

 $\beta = 91.311(12)^{\circ}$

a/b = 1.4465

c/b = 0.6427

Volume 0 304.19 A³

Density

(calculated) 1.452 g/cm³

Figure of merit

 $F_{30} = 57.8(0.011,49)$

Additional patterns

PDF card 9-580 (Brock and Hannum, 1955)

PDF card 20-1692 (Gatte, Penn. State Univ., 1967)

References

Ashida, T. and Hirokawa, S. (1963). Acta Crystallogr. <u>16</u>, 841.

Brock, M. J. and Hannum, M. J. (1955). Anal. Chem. <u>27</u>, 1374.

	$(\alpha_1 \lambda = 1.5)$ ternal stan				0
d(Å)	I ^{rel}		hk	.l	2θ(°)
	σ = ±	3			
5.669	1	1	1	0	15.62
4.427	5	0	0	1	20.04
3.725	15	0	1	1	23.87
3.466	100	1	1		25.68
3.350	89	-2	0	1	26.59

d(A)	I ^{rel}		hkl	2θ(°)
	$\sigma = \pm 3$			
3.256	59	1	2 0	27.37
3.012	47	-2	1 1	29.64
2.993	86	3	1 0	29.83
2.956	59	2	1 1	30.21
2.836	25	2	2 0	31.52
2.719	47	0	2 1	32.91
2.633	10	-1	2 1	34.02
2.504	9	-3	1 1	35.83
2.491	8		0 0	36.03
2.458	17	3	1 1	36.53
2.401	15	-2	2 1	37.43
2.373	1L	2	2 1	37.88
2.343	20	4	1 0	38.38
2.215	6	0	0 2	40.71
2.151	9	4	0 1	41.96
2.118	6	-3	2 1	42.65
2.107	6	0	1 2	42.89
2.086	25	2	3 0	43.34
2.0715	8	-1	1 2	43.66
2.0541M	17	1	1 2	44.05
2.0541M		4	1 1	44.05
2.0404M	10		0 2	44.36
2.0404M		0	3 1	44.36
2.0066	5		0 2	45.15
1.9577	2	-2	1 2	46.34
1.9145	3	5	1 0	47.45
1.8799	13	2	3 1	48.38
1.8504	3	-4	2 1	49.20
1.8375	4	-1	2 2	49.57
1.8244M	5	1	2 2	49.95
1.8244M		4	2 1	49.95
1.7972	2	-3	1 2	50.76
1.7721	13	- 5	1 1	51.53
1.7252	4	5	2 0	53.04
1.6982	,6	1	4 0	53.95
1.6881	6		3 0	54.30
1.6750	1L		0 2	54.76
1.6610	4		0 0	55.26
1.6381	11	-3	2 2	56.10
1.6264	3	-4	1 2	56.54
1.6118	7		2 2	57.10
1.5969	16		2 1	57.68
1.5934	17		3 2	57.82
1.5859	18		3 1	58.12
1.5691M	4	1	3 2	58.80
1.5691M			3 1	58.80
1.5665	3		0 1	58.91
1.5436	4		0 1	59.87
1.5284	1		1 1	60.53
1.5249M	2	-2	3 2	60.68

Ethylenediamine Hydrochloride, $C_2H_8N_2 \cdot 2HCl$ - (continued)

d(Å)	Irel		hk	e	2θ(°)
	$\sigma = \pm 3$				
1.5249M		2	4	1	60.68
1.5117	3	2	3	2	61.27
1.5061+	5	6	1	1	61.52
1.5061+		-4	2	2	61.52
1.4958	1	6	2	0	61.99
1.4776	2	4	2	2	62.84
1.4643	1	- 5	1	2	63.48
1.4502	1	-3	4	1	64.17
1.4434	2	0	1	3	64.51
1.4414	3	3	4	1	64.61
1.4327+	2	-1	1	3	65.05
1.4327+		-5	3	1	65.05
1.4235M	1	-2	0	3	65.52
1.4235M		1	1	3	65.52

N,N'-1,2-Ethanediylbis[N-(carboxymethyl) glycine]
Edetic Acid

EDTA Versene

CAS registry no. 60-00-4

Sample

The sample was prepared at NBS and recrystallized from water.

Color

Colorless

Structure

Monoclinic, A2/a (15), Z = 4. The structure was determined by Lu and Shao (1962).

Lattice constants of this sample

a = 16.112(3)A

b = 5.5774(15)

c = 13.287(3)

 $\beta = 96.30(2)^{\circ}$

a/b = 2.8890

c/b = 2.3825

Volume 0 1186.8 A³

Density

(calculated) 1.636 g/cm³

Figure of merit

 $F_{30} = 47.7(0.013,50)$

Additional pattern

PDF card 27-1927 (Wang, P., Polytechnic Institute of Brooklyn, Brooklyn, N.Y.)

Reference

Lu, Y. T. and Shao, M. C. (1962). Sci. Sin. 9, 469.

CuK $lpha_1$	$\lambda = 1.540$	598 Å;	tem	p. 2	25±1 °C
Intern	nal standa	rd Ag,	a =	4.0	08651 A
d(Å)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 4$				
8.01	17	2	0	0	11.04
6.59	23	0	0	2	13.42
5.394	13	-2	0	2	16.42
5.142	12	0	1	1	17.23
4.960	40	-1	1	1	17.87
4.847M	4	2	0	2	18.29
4.847M		1	1	1	18.29
4.412	32	-2	1	1	20.11
4.003	100	4	0	0	22.19
3.783	12	- 3	1	1	23.50

d(A)	I ^{rel}]	hkl			2θ(°)
	$\sigma = \pm 4$					
3.603	81	-4	0	2		24.69
3.443	21	-1	1	3		25.86
3.323	25	1	1	3		26.81
3.276	9	-2	1	3		27.20
3.180	11	-2	0	4		28.04
3.079	22	2	1	3		28.98
3.021	22	-3	1	3		29.54
2.940	7	2 -5	6 1	4 1		30.38
2.773 2.696	24 9	-3 -4	0	4		32.26 33.20
2.669M	5	6	0	0		33.55
2.669M	3	5	1	1		33.55
2.632	4	2	2	o		34.04
2.574	8	-6	0	2		34.82
2.518	4	1	2	2		35.62
2.511	4	4	1	3		35.73
2.477	7	-2	2	2		36.24
2.456	2	- 5	1	3		36.55
2.416	23	2	2	2		37.18
2.398	9	-1	1	5		37.48
2.385	8	6	0	2		37.68
2.353M	1	-3	2	2		38.21
2.353M		-2	1	5		38.21
2.328	1	1	1	5	•	38.65
2.288	2	4	2	0		39.35
2.227	5	2	1	5		40.48
2.201	12	0	0	6		40.97
2.131M	6	- 1	2	4		42.38
2.131M		0	2	4		42.38
2.125	4	- 7	1	1		42.51
2.093	6	1	2	4		43.20
2.065	7	2	0	6		43.81
2.024M	2	-4	0	6		44.73
2.024M	,	2	2	4		44.73
2.012	4	- 5	1	5		45.03
1.977	4	-8	0	2		45.87
1.973	4	6	0	4		45.95
1.964	6	5	2	2		46.18
1.929	4	6	2	0		47.07
1.8593	1	8	0	2		48.95
1.8389	4	8	1	1		49.53
1.8025	7	-8	0	4		50.60

Hafnium mononitride

CAS registry no. 25817-87-2

Sample

The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA.

Color

Dark olive brown

Structure

Cubic, Fm3m (225), Z = 4. Glaser et al. (1953).

Lattice constant of this sample a = 4.5253(4)A

Volume 92.67 A³

Density

(calculated) 13.797 g/cm³

Figure of merit $F_{10} = 63.3(0.016,10)$

Additional pattern

PDF card 25-1410 (Fiala, Central Research Institute, Skoda, Czechoslovakia, 1973).

Reference

Glaser, F. W., Moscowitz, D., and Post, B. (1953). J. Metals $\underline{5}$, 1119.

Inter	nal standa	ard Ag,	a =	4.0	8651 Å
d(A)	Ire	l	h	kl	2θ(°)
	σ = :	±1			
2.612	100	1	1	1	34.31
2.262	62	2	0	0	39.82
1.6002	37	2	2	0	57.55
1.3641	33	3	1	1	68.76
1.3061	9	2	2	2	72.28
1.1314	4	4	0	0	85.82
1.0379	8		3	1	95.84
1.0120	10		2	0	99.13
.9237	7		2	2	113.01
.8710	7	5	1	1	124.36

CAS registry no. 691-58-9

Sample

The sample was obtained from Eastman Organic Chemicals, Rochester, NY. It was recrystallized from ethanol.

Color

Colorless

Structure

Monoclinic, $P2_1/n$ (14), Z = 4. The structure was determined qualitatively by Toussaint (1950, 1952).

Lattice constants of this sample

a = 30.087(5)A

b = 6.0346(12)

c = 4.1563(9)

 $\beta = 90.55(2)^{\circ}$

a/b = 4.9857

c/b = 0.6887

Volume

754.60 A³

Density

(calculated) 2.183 g/cm³

Figure of merit

 $F_{30} = 42.1(0.010,69)$

Additional pattern

PDF card 11-828 (Cherin, Polytechnic Institute of Brooklyn, 1960)

References

Toussaint, J. (1950). Congr. Nat. Sci. Bruxelles Radiologie, p. 169.

Toussaint, J. (1952). Mem. Soc. Roy. Sci. Liège 12, 1.

d(A)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 3$				
15.07	100	2	0.	0	5.86
7.53	8	4	0	0	11.75
5.604	8		1		15.80
5.175	3	3	1	0	17.12
4.706	57	4	1	0	18.84
4.261	4	5	1	0	20.83
4.124	8	-1	0	1	21.53
3.855M	61	6	1	0	23.05
3.855M		-3	0	1	23.05
3.764	7	8	0	0	23.62

d(Å)	I ^{rel}	hks	<u> </u>	2θ(°)
,	$\sigma = \pm 3$			
3.501	4	7 1	0	25.42
3.399	36	1 1	1	26.20
3.334	5	2 1	. 1 . 1	26.72
3.228 3.191	15 25	3 1 8 1	0	27.61 27.94
3.191	25	0 1	U	21.94
3.109	3	4 1	1	28.69
3.009	16	10 0	0	29.67
2.974	18	7 0	1	30.02
2.964	19	5 1	1	30.13
2.892	2	3 2	0	30.90
2.801	3	4 2	0	31.93
2.690	8	-7 1	1	33.28
2.667	3	7 1	1	33.58
2.593	5	9 0	1	34.56
2.507	4	12 0	0	35.79
2.433	5	1 2	1	36.92
2.401	7	-9 1	1	37.43
2.382	6	9 1	1	37.73
2.374	6	-3 2	1	37.86
2.295	2	-11 0	1	39.23
2.267	4	- 5 2	1	39.72
2.257	3	5 2	ī	39.92
2.241	1	9 2	0	40.20
2.1480	6	14 0	0	42.03
2.1301M	8	10 2	0	42.40
2.1301M		11 1	1	42.40
2.1168	4	7 2	1	42.68
2.0257M	3	11 2	0	44.70
2.0257M		14 1	0	44.70
2.0142	3	13 0	1	44.97
2.0074M	3	-4 0	2	45.13
2.0074M	3	1 3	ō	45.13
1.9650M	6,	9 2	1	46.16
1.9650M		0 1	2	46.16
1.9498	5	-2 1	2	46.54
1.9435	6	4 3	0	46.70
1.9252+	5	- 6 0	2	47.17
1.9252+	_	3 1	2	47.17
1.9134	4	6 0	2	47.48
1.8806	1L	16 0	0	48.36
1.8737	1L	- 5 1	2	48.55
1.8672	2	6 3	0	48.73
1.8632	2	5 1	2	48.84
1.8213	2	7 3	0	50.04
1.8166	3	11 2	1	50.18
1.8122M	3	-15 0	1	50.31
1.8122M		8 0	2	50.31
1.7952	2	16 1	ō	50.82
1.7737	1	8 3	0	51.48
1.7503	1	14 2	0	52.22
1.7478	1	-8 1	2	52.30
1.7478	1 2	15 1	1	53.03
11/23	•	13 1		55.55

Synonym
Iron aluminate

CAS registry no. 12068-49-4

Sample

The sample was prepared by grinding under acetone stoichiometric amounts of $\alpha\text{-Fe}_2\text{O}_3$ and $\gamma\text{-Al}_2\text{O}_3$ in an agate mortar. After drying, the mixture was transferred to an iron crucible for heat treatment in controlled atmosphere. The sample was heated at 1200 °C for 8 hours in an oxygen pressure $\leq 10^{-16}$ atm. followed by grinding and reheating for 8 hours at 1300 °C for 8 hours in an oxygen pressure $\leq 10^{-16}$ atm.

Color Greenish gray

Structure Cubic F

Cubic, Fd3m (227), Z = 8. Isostructural with spinel (Holgersson, 1927). The structure of spinel was determined by Bragg (1915) and Nishikawa (1915).

Lattice constant of this sample a = 8.1534(1)A

Volume 542.03 Å³

Density (calculated) 4.260 g/cm³

Figure of merit F₂₇ = 112.33(0.008,32)

Additional patterns PDF card 3-894 (Dow Chemical Co., Midland, MI)

Clark, et al. (1931)

Fischer and Hoffmann (1955)

Krause and Thiel (1932)

References

Bragg, W. H. (1915). Nature London 95, 561.

Clark, G. L., Ally, A., and Badger, A. E. (1931). Am. J. Sci. 22, 539.

Fischer, W. A. and Hoffmann, A. (1955). Arch. Eisenhuettenw <u>26</u>, 43.

Holgersson, S. (1927). Lunds Univ. Arsskr. Avd. $\underline{2}$, 23 No. 9.

Krause, O. and Thiel, W. (1932). Z. Anorg. Allgem. Chem. 203, 120.

Nishikawa, S. (1915). Proc. Tokyo Math. Phys. Soc. 8, 199.

d(A)	I ^{rel}		h	kl	2θ(
- ()	$\sigma = \pm 2$				(
4.709	3	1	1	1	18.8:
2.883	58	2	2	0	30.99
2.460	100	3	1	1	36.5
2.0382	17	4	0	0	44.4
1.8711	5	3	3	1	48.6
1.6649	16	4	2	2	55.1
1.5691	36	5	1	1	58.8
1.4414	42	4	4	0	64.6
1.2892	5	6	2	0	73.3
1.2434	8	5	3	3	76.5
1.2293	3	6	2	2	77.6
1.1769	2	4	4	4	81.7
1.1417	1	5	5	1	84.8
1.0897	5	6	4	2	89.9
1.0614	10	7	3	1	93.0
1.0191	5	8	0	0	98.2
.9962	1L	7	3	3	101.2
. 9608	3	6	6	0	106.5
.9415	5	7	5	1	109.8
.9353	1	6	6	2	110.8
.9116	3	8	4	0	115.3
.8949	2	9	1	1	118.8
.8691	2	6	6	4	124.8
.8547	5	9	3	1	128.6
.8321	10	8	4	4	135.5
.8195	1	7	7	1	140.1

Iron antimonate

Sample

The sample was prepared at NBS.

Chemical analysis

Chemical analysis showed 22.94 weight percent Fe, 49.47 weight percent Sb, and by difference, 27.59 weight percent oxygen. On this basis, the composition most nearly corresponds to the formula FeSbO₄.

Color

Medium yellowish brown

Structure

Tetragonal, $P4_2/mnm$ (136), Z = 1, isostructural with rutile (Brandt, 1943).

Lattice constants of this sample

a = 4.6352(2) A

c = 3.0733(2)

c/a = 0.6630

Volume

66.030 A³

Density

(calculated) 6.076 g/cm³

Figure of merit

 $F_{30} = 61.2(0.011,43)$

Comment

PDF card 7-349 (Mason and Vitaliano, 1953) requires the value of c = 9.14 only because of its first reflection. The pattern may be a mixture of the rutile and trirutile phases of $\operatorname{Fe}_{x} \operatorname{S}_{y} \operatorname{O}_{4}$.

References

Brandt, K. (1943). Ark. Kemi Mineral. Geol. <u>17A</u>, 15.

Mason, B. and Vitaliano, C. J. (1953). Mineral. Mag. 30, 100.

d(Å)	I ^{rel}		h	kl	20(
u(A)	$\sigma = \pm 2$		11	.K.E	20(
					· . · · · · · · · · · · · · · · · · · ·
3.279	100	1	1	0	27.1
2.562	71	1	0	1	34.9
2.318	17	2		0	38.8
2.242	8	1	1	1	40.1
2.0720	3	2	1	0	43.6
1.7185	56	2	1	1	53.2
1.6386	14	2	2	0	56.0
1.5367	6	0	0	2	60.1
1.4655	10	3	1	0	63.4
1.3912	12	1	1	2	67.2
1.3802	14	3	0	1	67.8
1.3231	1L	3	1	1	71.2
1.2806	4	2	0	2	73.9
1.2344	1L	2	1	2	77.2
1.1858	7	3	2	1	81.0
1.1585	3	4	0	0	83.3
1.1211	4	2	2	2	86.8
1.0925	3	3	3	0	89.6
1.0606	5	3	1	2	93.1
1.0559	5	4	1	1	93.6
1.0364	2	4	2	0	96.0
1.0004	2	1	0	3	100.7
.9253	2	4	0	2	112.7
.9183	4	2	1	3	114.0
.9091	2	5	1	0	115.8
.8903	3	3	3	2	119.8
.8877	5	4	3	1	120.4
.8593	3	4	2	2	127.3
.8538	2	3	Õ	3	128.8
.8288	4	5	2	1	136.6
.8194	1L	4	4	0	140.1
.8012	2	3	2	3	148.0

Iron chromite

CAS registry no. 12068-77-8

Sample

The sample was prepared from a 1:2 molar ratio of Fe_2O_3 and Cr_2O_3 in a controlled atmosphere furnace. The procedure adopted from Katsura and Muan (1964) was followed.

Color

Dark reddish brown

Structure

Cubic, Fd3m (227), Z = 8. Isostructural with spinel, Holgersson (1927).

Lattice constant of this sample a = 8.3790(2)A

Volume o 588.27 A³

Density

(calculated) 5.055 g/cm³

Polymorphism

Francombe (1958) reports a distorted tetragonal polymorph that exists below -90 °C.

Figure of merit F₂₇ = 87.8(0.009,34)

Additional patterns PDF card 3-873 (Clark and Ally, 1932)

Holgersson (1927)

Hilty, et al. (1955)

References

Clark, G. L. and Ally, A. (1932). Am. Mineral. 17, 66.

Francombe, M. H. (1958). XVIéme Congr. internation. Chim. pure appl., Paris, 1957, Mém. Sect. Chim. Minér., Sedes, Paris, 129.

Hilty, D. C., Forgeng, W. D., and Folkman, R. L. (1955). J. Metals, N.Y. 7, 253.

Holgersson, S. (1927). Lunds Univ. Arsskr., Avd. <u>2</u>, 23, No. 9.

Katsura, T. and Muan, A. (1964). Trans. AIME 230, 77.

d(A)	I ^{rel}		h	kl	20(
	$\sigma = \pm 3$				
4.839	13	1	1	1	18.3
2.962	33	2	2	0	30.1
2.526	100	3	1	1	35.5
2.418	7	2	2	2	37.1
2.0943	22	4	0	0	43.1
1.7105	11	4	2	2	53.5
1.6125	39	5	1	1	57.0
1.4812	48	4	4	0	62.6
1.4162	2	5	3	1	65.9
1.3247	3	6	2	0	71.1
1.2777	10	5	3	3	74.
1.2632	5	6	2	2	75.1
1.2095	3	4	4	4	79.1
1.1734	1	7	1	1	82.0
1.1197	4	6	4	2	86.9
1.0907	12	7	3	1	89.8
1.0476	5	8	0	0	94.6
.9873	2	8 .		2	102.5
.9675	10	7	5	1	105.5
.9612	2	6	6	2	106.5
.9367	2	8	4	0	110.6
.8931	1	6	6	4	119.1
.8783	5	9	3	1	122.5
.8552	12	8	4	4	128.5
.8217	1	10	2	0	139.2
.8101	7 .	9	5	1	143.9
.8063	1L	10	2	2	145.6

Lithium zirconate
Dilithium zirconium trioxide

CAS registry no. 12031-83-3

Sample

The sample was prepared by L. Martel at NBS. Equimolar amounts of $\mathrm{Li_2CO_3}$ and $\mathrm{ZrO_2}$ were calcined at 700 °C for one day, then heated to 1000 °C for 16 hours and finally heated to 1400 °C for several hours in a tightly covered platinum crucible.

Color

Colorless

Structure

Monoclinic, C2/c (15), Z = 4. The structure was determined by Dittrich and Hoppe (1969) and redetermined by Hodeau et al. (1982).

Lattice constants of this sample

a = 5.4266(5)A

b = 9.0310(8)c = 5.4227(7)

 $\beta = 112.720(8)^{\circ}$

a/b = 0.6009

c/b = 0.6005

Volume 0 245.13 A³

Density

(calculated) 4.148 g/cm³

Figure of merit

 $F_{30} = 62.6(0.011,43)$

Additional pattern

PDF card 23-372 (Dittrich and Hoppe, 1969)

References

Dittrich, G. and Hoppe, R. R. O. (1969). Z. Anorg. Allg. Chem., <u>371</u>, 306.

Hodeau, J. L., Marezio, M., Santoro, A., and Roth, R. S. (1982). Accepted for publication in the J. Solid State Chem., October 1982.

d(A)	I ^{rel}		h	kl	2θ(°
	$\sigma = \pm 4$				
4.512	18	0	2	0	19.66
4.377	100	1	1	0	20.27
4.037	39	-1	1	1	22.00
3.351	56	0	2	1	26.58
2.852	13	1	1	1	31.34
2.580M	23	1	3	0	34.74
2.580M		-1	1	2	34.74
2.504+	24	-1	3	1-	35.84
2.504+		2	0	0	35.84
2.313	19	-2	2	1	38.90
2.258M	33	-2	0	2	39.90
2.258M		0	4	0	39.90
2.189M	7	2	2	0	41.21
2.189M		0	2	2	41.21
2.127	46	1	3	1	42.46
2.0590	17	0	4	1	43.94
2.0197	4	-2	2	2	44.84
2.0070	1L	-1	3	2	45.14
1.9115	12	1	1	2	47.53
1.7952	9	2	2	1	50.82
1.7702M	5	-3	1	1	51.59
1.7702M		-1	1	3	51.59
1.7300	4	-2	4	1	52.88
1.6991M	20	-3	1	2	53.92
1.6991M		1	5	0	53.92
1.6764+	10	-1	5	1	54.71
1.6764+		2	4	0	54.71
1.6408M	8	3	1	0	56.00
1.6408M		1	3	2	56.00
1.6151	13	-2	2	3	56.97
1.5969	3,	-2	4	2	57.68
1.5643	7	0	2	3	59.00
1.5481+	32	-3	3	1	59.68
1.5481+		1	5	1	59.68
1.5048	10	ō	6	0	61.58
1.5019	13	2	0	2	61.71
1.4998M	10	-3	3	2	61.81
1.4998M		-1	5	2	61.81
1.4849	2	-3	1	3	62.50
1.4785	5	2	4	1	62.80
1.4414	1L	0	6	1	64.61
1.4257	1	2	2	2	65.41
1.4237 1.4081M	3	3	1	1	66.33
1.4081M	9	1	1	3	66.33
1.3727	5	-2	4	3	68.27

Lithium Zirconium Oxide, Li_2ZrO_3 - (continued)

d(A)	I ^{rel}			hkl	2θ(°)
	$\sigma = \pm 4$				
1.3463M	5	- 3	3	3	69.80
1.3463M		-4	0	2	69.80
1.3413	4	0	4	3 2	70.10
1.3268M	8	1	-5		70.98
1.3268M		-1	1	4	70.98
1.3138	1L	-2	6	1	71.79
1.2889M	9	3	3	1	73.40
1.2889M		1	3	3	73.40
1.2867	8	-4	2	1	73.55
1.2766M	1	- 3	5	1	74.23
1.2766M		-1	5	3	74.23
1.2526	15	-2	6	2	75.90
1.2492+	13	-3	5	2	76.14
1.2492+		1	7	0	76.14
1.2405	2	-1	7	1	76.77
1.2257	3	3	5	0	77.87
1.2153	2	-4	2	3	78.67
1.2059	1	4	2	0	79.40
1.1854	2	1	7	1	81.06
1.1814	3	3	1	2	81.39
1.1632M	1	-3	3	4	82.94
1.1632M		-1	7	2	82.94
1.1564M	3	-3	5	3	83.54
1.1564M		-4	4	2	83.54
1.1535	4	-4	4	1	83.79
1.1521	4	2	2	3	83.92

Synonym Magnesium arsenate octahydrate	d(Å)	I ^{rel}	hk	·L	2θ(°)
		$\sigma = \pm 3$			
CAS registry no. 37541-75-6	2.706	17	1 0	•	00 / 0
37341-73-0	3.786 3.655	17		1	23.48 24.33
Sample	3.367	17	-2 1 0 4	_	
A dilute solution of Na ₂ HAsO ₄ was dropped into	3.212	13 50	0 4 3 1		26.45 27.75
a dilute solution of MgSO ₄ with a small amount	3.002	58		1	29.74
of NaOH. The precipitate was left in the mother	3.002	30	-5 0	1	29.14
liquor for 3 days at about 80 °C. It was then	2.784	11	2 4	0	32.13
filtered and washed with ethanol.	2.740	42	-3 2		32.65
	2.714	30	-1 4		32.98
Color	2.664	14	3 3		33.61
Colorless	2.596	3	1 5	0	34.52
Structure	2.554	19	1 4	1	35.11
Monoclinic, I2/m (12), Z = 2. Isostructural	2.480	18	4 0		36.19
with vivianite. (Wolfe, 1940) The structure	2.468	21	3 0		36.38
of vivianite, Fe ₃ (PO ₄) ₂ ·8H ₂ O, is discussed by	2.341	17		2	38.42
Mori and Ito (1950).	2.331M	14	0 5	1	38.60
Lattice constants of this sample	2.331M		/. 2	0	20 60
0	2.33111	5	4 2 -2 0		38.60
a = 10.137(2)A	2.244	5 5	0 6		39.23 40.16
b = 13.455(2)	2.238	4	-3 4	1	40.16
c = 4.7542(10)	2.199M	7	0 2	2	41.02
$\beta = 101.73(2)^{\circ}$	2.13311	•	0 2	_	41.02
a/b = 0.7530	2.199M			1	41.02
c/b = 0.3533	2.170	2	-2 2	2	41.58
5,2 5,5555	2.090	17	-3 1		43.26
Volume o	2.042	4	2 6		44.32
634.9 Å ³	2.030	4	2 5	1	44.59
Density	2.015	7	-1 6	1	44.96
(calculated) 2.589 g/cm ³	1.992	7		1	45.50
(5475474554) 21.555 8/ 544	1.964	9	5 1	0	46.19
Figure of merit	1.955	7	1 3	2	46.42
$F_{30} = 32.0(0.019,45)$	1.916M	11	-3 3	2	47.42
Additional pattern	1.916M		0 4	2	47.42
PDF card 19-752 (Koritnij and Susse, 1966)	1.882	1	2 2		48.32
	1.846	3	4 3		49.32
References	1.796	1	- 3 6		50.81
Koritnij, S. and Süsse, P. (1966). Neues	1.792	1	-4 5	1	50.92
Jahrb. Mineral. Monatsh. 349.				_	
	1.776	3	0 7		51.41
Mori, H. and Ito, T. (1950). Acta	1.730	2	3 1		52.88
Crystallogr. 3, 1.	1.704M	4	5 0 -5 4		53.74
	1.704M 1.688	10	1 5		53.74
Wolfe, C. W. (1940). Am. Mineral. <u>25</u> , 787.	1.000	10	1 5	2	54.29
	1.683	11	0 8		54.48
0.70.	1.660	15	3 6		55.29
$CuK\alpha_1 \lambda = 1.540598 \text{ A; temp. } 25\pm1 \text{ °C}$	1.657	16	-6 1		55.39
Internal standard Si, a = 5.43088 A	1.6180	4	4 5	1	56.86
0	1.6154	5	0 6	2	56.96
d(Å) I ^{rel} hkl 2θ(°)	1.6071	4	6 2		57.28
$\sigma = \pm 3$	1.5643M	4	- 6 3		59.00
	1.5643M	,	-2 1		59.00
7.97 31 1 1 0 11.09	1.5457	4	1 8		59.78
6.73 100 0 2 0 13.14	1.5413M	4	0 1	3	59.97
4.399 48 0 1 1 20.17	1.5/101		1 0	2	E0 07
3.992 26 2 2 0 22.25	1.5413M	0	-1 2		59.97
3.916 16 1 0 1 22.69	1.5297	2	-3 0 5 4		60.47
	1.5204	5 8	5 4 -6 0		60.88
	1.4995	8 5	-6 0 -1 7		61.82
	1.4939	3	-1 /	2	62.08

Magnesium Arsenate Hydrate (Hoernesite), ${\rm Mg_3(AsO_4)_2\cdot 8H_2O}$ - (continued)

d(Å)	I ^{rel}		:	hkl	2θ(°)
	$\sigma = \pm 3$	3			
1.4855	5	-2	3	3	62.47
1.4659	7	0	3	3	63.40
1.4502	4	-4	6	2	64.17
1.4476	4	-4	1	3	64.30
1.4305	4	- 5	5	2	65.16
1.4191	3	-6	5	1	65.75
1.3909M	5	-2	9	1	67.26
1.3909M		3	8	1	67.26
1.3811	1	5	7	0	67.80
1.3694	2	- 6	4	2	68.46
1.3577	4	5	6	1	69.13
1.3516	4	7	3	0	69.49
1.3457	5	0 :	10	0	69.84
1.3440	5	0	5	3	69.94

Synonyms Magnesium orthophosphate Trimagnesium biphosphate
CAS registry no. 10043-83-1
Sample The sample was obtained from the Research Organic/Inorganic Chemical Corp., Sun Valley, CA. It was heated at NBS at 800 °C for 18 hours.
Color Colorless
Structure Monoclinic, $P2_1/n$ (14), $Z = 2$. The structure of $Mg_3(P0_4)_3$ was determined by Nord and Kierkegaard (1968).
Lattice constants of this sample a = 7.5995(8) Å b = 8.2355(8) c = 5.0762(5) β = 94.062(9)°
a/b = 0.9228 c/b = 0.6164
Volume 317.42 A ³
Density (calculated) 2.750 g/cm ³
Polymorphism Berak (1958) suggests a second form of ${\rm Mg_3(PO_4)_2}$ stable above about 1000 °C.
Figure of merit F ₃₀ = 57.0(0.011,47)
Additional patterns PDF card 13-554 (Du Fresne and Roy, 1961)
PDF card 25-1373 (Nord and Kierkegaard, 1968)
References Berak, J. (1958). Rocz. Chem. 32, 19.
Du Fresne, E. R. and Roy, S. K. (1961). Geochim. Cosmochim. Acta <u>24</u> , 198.
Nord, A. G. and Kierkegaard, P. (1968). Acta Chem. Scand. <u>22</u> , 1466.

_		98 A;	ten	mp.	25±1 °C
Intern	nal standar				0
d(A)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 1$				
5.576	10	1	1	0	15.88
4.356	30	-1	0	1	20.37
4.312	24	0	1	1	20.58
4.118 4.077	30 28	0 1	2 0	0 1	21.56 21.78
3.852	84	-1	1	1	23.07
3.792	6	2	0	0	23.44
3.657	28	1	1	1	24.32
3.619	6	1	2	0	24.58
3.443	100	2	1	0	25.86
3.195	14	0	2	1	27.90
2.992	21	-1		1	29.84
2.896 2.790	4 16	1 2	2	1 0	30.85 32.05
2.764	3	2	1	1	32.36
2.533	22	0	0	2	35.41
2.498	23	-2		1	35.92
2.414M	32	3		0	37.22
2.414M		0	3	1	37.22
2.322	8	-1	3	1	38.75
2.240	5	-3		1	40.22
2.222	4	2	3	0	40.57
2.177 2.158	3 1L	-2 0	0	2	41.45 41.83
2.125	22	3	1	1	42.51
2.108	9	-1	2	2	42.87
2.0679	10	-2		1	43.74
2.0599	8	0	4	0	43.92
2.0417	13	1	2	2	44.33
1.9866	2,	1	4	0	45.63
1.9256	3	-2	2	2	47.16
1.9077	2 7	0	4	1	47.63
1.8950 1.8597	7	4 3	0 3	0	47.97 48.94
1.8275	9	2	2	2	49.86
1.8108	1L	-3	1	2	50.35
1.7860	3	1	3	2	51.10
1.7753	8	-3	3	1	51.43
1.7224M 1.7224M	7	-2 4	4 2	1 0	53.13 53.13
1.6976	4	4	1	1	53.97
1.6918M	10	-3	2	2	54.17
1.6918M		3	1	2	54.17
- 1010	1L	2	4	1	54.37 54.84
1.6860 1.6727	1L	-1	0	3	

Magnesium Phosphate (Farringtonite), $Mg_3(PO_4)_2$ - (continued)

d(Å)	Irel	hkl	2θ(°)
	$\sigma = \pm 1$		
1.6394	7	-1 1 3	56.05
1.6094	3	1 5 0	57.19
1.5982	1L	4 2 1	57.63
1.5619	10	0 2 3	59.10
1.5502M	1L	-1 2 3	59.59
1.5502M		1 4 2	
1.5373	11	-3 3 2	
1.5103M	6	2 5 0	61.33
1.5103M		1 2 3	61.33
1.5026	6	3 4 1	61.68
1.4911	2	5 1 0	
1.4780M	2	-2 2 3	62.82
1.4780M		2 1 3	
1.4674M	1	-4 2 2	
1.4674M		4 0 2	63.33
1.4587M	1	-2 5 1	
1.4587M		- 5 1 1	63.75
1.4488	3	2 4 2	64.24
1.4366	4	2 5 1	64.85
1.4249	1	5 0 1	65.45
1.4043	1L	5 1 1	
1.3947M	1	4 4 (67.05
1.3947M		-5 2 1	67.05
1.3798	1	3 5 0	67.87
1.3724M	1	0 6 0	68.29
1.3724M	1	-2 3 3	
1.3638	1	-4 3 2	
1.3509	1	1 6 (
1.3270M	1	5 3 (
1.3270M		4 4 1	70.97
1.3181M	1	3 5 1	
1.3181M		2 3 3	71.52
1.2770	1L	-5 2 2	
1.2745	3	1 4 3	
1.2513	3	0 1 4	75.99
1.2066+	1	0 6 2	
1.2066+		-5 3 2	
1.1854	1	1 6 2	
1.1683	1		82.50
1.1582	1	-5 1 3	83.38

Sample

The sample was prepared at NBS. It contained a very small amount of tartaric acid as a second phase which did not interfere with measurements.

Color

Pale greenish yellow

Structure

Orthorhombic, possibly Pnnm (58), Z assumed to be 4. The cell constants were determined by use of the Visser (1969) program. Absent reflections suggested the space group assignment which was used for the data analysis that follows.

Lattice constants of this sample

a = 9.4388(8)A

b = 11.6925(13)

c = 5.0706(4)

a/b = 0.8073

c/b = 0.4337

Volume 559.61 A³

Density

(calculated) 2.410 g/cm³, assuming Z = 4.

Figures of merit

 $F_{30} = 57.1(0.011,49)$

 $M_{20} = 40.5$

Additional pattern

PDF card 1-343 (Hanawalt et al., 1938)

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Visser, J. W. (1969). J. Appl. Crystallogr. $\underline{2}$, 89.

0	1				
d(A)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 2$				
7.34	14	1	1	0	12.04
5.843	65	0	2	0	15.15
4.716	12	2	0	0	18.80
4.653	53	0	1	1	19.06
4.467	100	1	0	1	19.86
3.673	57	2	2	0	24.21
3.604	20	1	3	0	24.68
3.549	98	1	2	1	25.07
3.313	18	2	1	1	26.89
3.092	3	0	3	1	28.85

d(A)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 2$		
3.008	1L	2 3 0	29.68
2.923	8	0 4 0	30.56
2.794	1L	1 4 0	32.01
2.673	27	3 0 1	33.50
2.585	49	2 3 1	34.67
2.536	4	0 0 2	35.36
2.485	16	2 4 0	36.12
2.446M	72	3 3 0	36.71
2.446M		1 4 1	36.71
2.430	31	3 2 1	36.96
2.398	5	1 1 2	37.48
2.359	1L	4 0 0	38.12
2.327	2	0 2 2	38.66
2.270 2.233M	11 16	1 5 0 2 0 2	39.68 40.36
	10		
2.233M	-	2 4 1	40.36
2.188	5	4 2 0	41.23
2.124 2.105	3 10	0 5 1 4 1 1	42.52 42.94
2.086	29	2 2 2	43.34
2.0733M	14	1 3 2	43.62
2.0733M	14	1 5 1	43.62
1.9727	8	3 4 1	45.97
1.9466	13	3 1 2	46.62
1.9361	19	2 5 1	46.89
1.9153	14	0 4 2	47.43
1.8755M	12	3 5 0	48.50
1.8755M	_	4 3 1	48.50
1.8361 1.7857	7 1	4 4 0 1 6 1	49.61 51.11
	•	1 0 1	31.11
1.7744	3	2 4 2	51.46
1.7699	3	5 0 1	51.60
1.7606M 1.7606M	6	3 3 2 3 5 1	51.89
1.7000H	16	4 0 2	51.89 52.97
	10		
1.7273M	10	4 4 1	52.97
1.6985 1.6927	10 14	5 3 0 5 2 1	53.94 54.14
1.6638	3	1 0 3	55.16
1.6563M	4	3 6 0	55.43
1.6563M		4 2 2	55.43
1.6446	8	1 7 0	55.86
1.6000	7	1 2 3	57.56
1.5861M	7	0 7 1	58.11
1.5861M		5 4 0	58.11
1.5780	6	4 5 1	58.44
1.5735	5	6 0 0	58.62
1.5509	2	0 3 3	59.56
1.5450 1.5191	1L 4	0 6 2 6 2 0	59.81 60.94
1.3191	4	0 2 0	00.94

Manganese Tartrate, $C_4H_4MnO_6$ - (continued)

d(Å)	I ^{rel}	hk	e	2θ(°)
	$\sigma = \pm 2$			
1.5128	7	5 4	1	61.22
1.5090	8	3 5 2 7	2	61.39
1.5037	6		1	61.63
1.4904	2	6 1	1	62.24
1.4891	3	3 0	3	62.30
1.4732	5	2 3	3	63.05
1.4688M	4	5 5	0	63.26
1.4688M		2 6	2	63.26
1.4460	4	1 4	3	64.38
1.4021	3	6 3	1	66.65
1.3887M	3	4 5	2	67.38
1.3887M		1 8	1	67.38
1.3852	2	6 4	0	67.57
1.3697	2	0 5	3	68.44
1.3396	2	7 1	0	70.20
1.3265	1L	3 4	3	71.00
1.3160M	5	4 7	1	71.65
1.3160M		2 5	3	71.65
1.3033M	5	7 0	1	72.46
1.3033M		6 2	2	72.46
1.2927	1L	4 6	2	73.15
1.2870	1L	1 9	0	73.53
1.2746M	7	3 7	2	74.36
1.2746M		7 3	0	74.36
1.2711	4	5 5	2	74.60
1.2675	3	0 0	4	74.85
1.2642M	2	6 3	2	75.08
1.2642M		6 5	1	75.08
1.2589M	4	5 0	3	75.45
1.2589M		0 9	1	75.45
1.2388	2	0 2	4	76.90
1.2308	2 3	5 2	3	77.49
1.2155M	3	2 9	1	78.65
1.2155M		6 4	2	78.65

CAS registry no. 12033-40-8

Sample

Stoichiometric amounts of Mo and $\mathrm{Si}_3\mathrm{N}_4$ were mixed, pelleted and heated in a crucible to 1600 °C for 1 hour while lying on a pellet of previously made $\mathrm{Mo}_5\mathrm{Si}_3$ which was put on a piece of Mo.

Color

Olive black

Structure

Tetragonal I4/mcm (140), Z = 4. The structure was determined qualitatively by Aronsson (1955).

Lattice constants of this sample

a = 9.6483(6) Ac = 4.9135(5)

c/a = 0.5093

Volume 6 457.40 Å³

Density (calculated) 8.190 g/cm³

Figure of merit $F_{30} = 98.6(0.009,35)$

Additional patterns PDF card 8-429 (Schachner et al. 1954)

Nowotny et al. (1956)

References

Aronsson, B. (1955). Acta Chem. Scand. 9, 1107.

Nowotny, H., Lux, B., and Kudielka, H. (1956) Monatsh. Chem. <u>87</u>, 462.

Schachner, H., Cerwenka, E., and Nowotny, H. (1954). Monatsh. Chem. <u>85</u>, 245.

CuKa ₁	$\lambda = 1.540598$	Å;	tem	р.	25±1 °	C.	
	nal standard					A	
d(A)	I ^{rel}		h	kl	-	26)(°)
	$\sigma = \pm 2$						
6.820	1	1	1	0			.97
4.826	2 5	2	0	0			.37
3.413	25	2	2	0			. 09
3.052	21	3	1	0			. 24
2.457	25	0	0	2			.54
2.412	16	4	0	0			. 25
2.351 2.311	71 12	3	2	1 2			. 26
2.2740	10	3	3	0			60
2.1903	38	2	0	2		41.	
2.1578	59	4	2	0			.83
2.1130 1.9940	100 57	4 2		1 2		45	. 76
1.7955	2	4	3	1		50	
1.7209	2	4	0	2		53	
1.6835	8	5	2	1		54.	
1.6544 1.6087	1 2	5 6		0		55. 57.	
1.5314	4	2	1	3		60	
1.5254	10	6	2	0		60.	
1.5103 1.4991	1L 11	6 5	1	1		61.	
1.4406	11	5		2		61. 64.	
1.4012	11	4	4	2		66.	
1.3971	18	3	2	3		66.	
1.3804 1.3724	12 11	6	3	1 2		67. 68.	
1.3643	17	5 7	1	0		68.	
1.3453	24	6	0	2		69.	
1.3418	33	4	1	3		70.	
1.2797 1.2283	2 9	7	2	1 4		74. 77.	
1.2086M	2	1	1	4		79.	
1.2086M		5	2	3		79.	
1.1979	1	6	5	1		80.	
1.1932 1.1751	6 11	7 6	1 4	2		80. 81.	
1.1698	10	8	2	0		82.	
1.1631	2	7	4	1		82.	95
1.1391M	3	3	1	4		85.	
1.1391M 1.1369	8	6	1 6	0		85. 85.	
1.1259	4	7	3	2		86.	
1.1087	4	5	4	3		88.	02
1.1004	11	8	3	1		88.	
1.0945	4	4	0	4		89.	46

Nickel orthoarsenate octahydrate

CAS registry no. 54469-74-1

Sample

The sample was prepared at NBS. A solution of 2 gms $Ni(NO_3)_2 \cdot 6H_2O$ in 1 liter H_2O was added dropwise to a solution of 2 gms Na_2HAsO_4 in $1\frac{1}{2}$ liters of warm H_2O . The combined solution was held at 70 to 80 °C for 3 weeks. The crystals were filtered off and washed with H_2O and C_2H_5OH .

Color

Light yellow green

Structure

Monoclinic, I2/m (12), Z = 2 (Barth, 1937). It is isostructural with vivianite, $Fe_3(PO_4)_2 \cdot 8H_2O$. The structure of vivianite was discussed by Mori and Ito (1950).

Lattice constants of this sample

a = 10.054(2) A

b = 13.303(3) c = 4.7159(10)

 $\beta = 102.10(2)^{\circ}$

a/b = 0.7558c/b = 0.3545

Volume 616.73 A³

Density

(calculated) 3.221 g/cm³

Figure of merit

 $F_{30} = 55.6(0.012,44)$

Additional pattern

PDF card 11-625 (U.S. Bureau of Mines, Albany, Oregon)

References

Barth, T. F. W. (1937). Am. Mineral. 22, 325.

Mori, H. and Ito, T. (1950). Acta Crystallogr. $\underline{3}$, 1.

 $CuK\alpha_1^{\lambda} = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$ Internal std. Fluorophlogopite SRM 675

d(A)	I ^{rel}		h	kl	20(
	$\sigma = \pm 1$				
7.91	33	1	1	0	11.17
6.66	100	0	2	0	13.29
4.919	11	2	0	0	18.02
4.562	4	-1	0	1	19.4
4.363	20	0	1	1	20.3
4.044	6	1	3	0	21.9
3.954	8	2	2	0	22.4
3.879	16	1	0	1	22.9
3.765	3	-1	2	1	23.6
3.639	8	-2	1	1	24.4
3.347	5	1	2	1	26.6
3.326	4	0	4	0	26.7
3.198	43	0	3	1	27.8
2.982M	52	-3 2	0	1	29.9
2.982M		2	1	1	29.9
2.756	12	2	4	0	32.4
2.721	30	-3	2	1	32.8
2.687	21	-1	4	1	33.3
2.635	14	3	3	0	34.0
2.568	1	1	5	0	34.9
2.523	8	1	4	1	35.5
2.440	17	3	0	1	36.8
2.321	10	-1	1	2	38.7
2.304M	16	4	2	0	39.0
2.304M		0	5	1	39.0
2.217	3	0	6	0	40.6
2.178M	8	0	2	2	41.4
2.178M		-2	5	1	41.4
2.155	1	-2	2	2	41.8
2.102	1	-4	3	1	43.0
2.079	7	-3	1	2	43.4
2.066	8	3	5	0	43.7
2.021	1	2	6	0	44.8
1.9919	2	-1	6	1	45.5
1.9678	3	3	4	1	46.0
1.9463	6	5	1	0	46.6
1.9322	6	1	3	2	46.9
1.9006	9	-3	3	,2	47.8
1.8240	3 2	4 -4	3 5	1	49.9 51.4
1.7756	2	-4	Э	1	51.4
1.7572	3	0	7	1	52.0
1.6915	1	-5	4	1	54.1
1.6713	8	1	5	2	54.8
1.6629	10	0	8	0	55.1
1.6505	11	-3	5	2	55.6

Nickel Arsenate Hydrate (Annabergite), $Ni_3(AsO_4)_2 \cdot 8H_20$ - (continued)

d(Å)	I ^{rel}	-		hkl	2θ(°)
	$\sigma = \pm 1$	L			
1.6405	11	3	6	1	56.01
1.6066	4	3	3	2	57.30
1.6002	5	4	5	1	57.55
1.5909	4	6	2	0	57.92
1.5807	2	5	5	0	58.33
1.5519M	2	-2	1	3	59.52
1.5519M		-6	3	1	59.52
1.5281M	3	1	8	1	60.54
1.5281M		-1	2	3	60.54
1.5191	2	-3	0	3	60.94
1.5028	3	5	4	1	61.67
1.4902	5	4	2	2	62.25
1.4791	4	-1	7	2	62.77

Molybdenum nickel tetraoxide Nickel molybdate

Sample

The sample was prepared at NBS. Stoichiometric amounts of NiO and MoO_3 were heated at 800 °C for 2 hours, then ground and reheated at 800 °C for 6 hours.

Color

Brilliant yellow green

Structure

Monoclinic, I2/m (12), Z = 8, isostructural with low temperature $CoMoO_4$ (Smith, 1962).

Lattice constants of this sample

a = 9.509(2)A

b = 8.759(2)

c = 7.6678(15)

 $\beta = 113.13(2)^{\circ}$

a/b = 1.0856

c/b = 0.8754

Volume o 587.3 A³

Density

(calculated) 4.946 g/cm³

Polymorphism

Sleight and Chamberland (1968) report 3 polymorphs. The one described here occurs at low temperature when the heated reactants are cooled slowly. A second polymorph exists only at temperatures above 690 °C, and is isostructural with MnMoO₄. A third polymorph, isostructural with NiWO₄, can be prepared hydrothermally at 700 °C with pressures above 3 kbars.

Figure of merit

 $F_{30} = 27.7(0.017,63)$

Additional patterns

PDF card 18-879 (Wetzlar, DEW-Technische Berichte, 1964)

PDF card 31-902 (Union Science and Technology Division, Union Oil Co. of California, Brea, CA 92621)

References

Sleight, A. W. and Chamberland, B. L. (1968). Inorg. Chem. 7, 1672.

Smith, G. W. (1962). Acta Crystallogr. <u>15</u>, 1054.

-	$\lambda = 1.54059$				0
d(Å)	I ^{rel}		hkl	,	2θ(°)
	$\sigma = \pm 2$				
6.19	80	1	1	0	14.29
5.50	4	0	1	1	16.11
4.665	11	1	0	1	19.01
4.373M	1	0	2	0	20.29
4.373M		2	0	0	20.29
4.085	3	-2	1	1	21.74
3.711	15	-1	2	1	23.96
3.513	48	-1	1	2	25.33
3.166	5	-3	0	1	28.16
3.095	100	2	2	0	28.82
3.002	2	2	1	1	29.74
2.769M	15	1	3	0	32.31
2.769M		3	1	0	32.31
2.746	46	0	2	2	32.58
2.727	36	-3	1	2	32.82
2.465	1L	-2	3	1	36.42
2.331M	8	2	0	2	38.59
2.331M		-3	0	3	38.59
2.323	10	-1	3	2	38.74
2.307	4	-4	0	2	39.01
2.284	1	-4	1	1	39.42
2.188M	14	0	4	0	41.23
2.188M		4	0	0	41.23
2.154	1L	2	3	1	41.90
2.094	5	3	2	1	43.17
2.090	5	-1	4	1	43.26
2.062	45	3	3	0	43.87
1.998	1	-4	1	3	45.36
1.982	3	1	4	1	45.74
1.957M	4	2	4	0	46.37
1.957M		4	2	0	46.37
1.916	24	-2	0	4	47.40
1.847M	1	-5	1	2	49.30
1.847M		4	1	1	49.30
1.836	3	-1	1	4	49.60
1.828	2	-3	1	4	49.85
1.801	2	-3	4	1	50.63
1.759	1L	2	1	3	51.94
1.727	2	-5	2	1	52.98
	4	- 3	_	-	34.70

Nickel Molybdenum Oxide, NiMoO₄ - (continued)

d(Å)	I ^{rel}		hkl		20(°
	$\sigma = \pm 2$				
1.7002	1	0	5	1	53.88
1.6789	1L	-4	3	3	54.62
1.6560	1 L	-1	4	3	55.44
1.6456	1	- 5	2	3	55.82
1.6357	9	0	2	4	56.19
1.6232	9	-4	2	4	56.66
1.5969+	11	3	3	2	57.68
1.5969+		2	4	2	57.68
1.5869M	9	- 5	3	2	58.08
1.5869M		4	3	1	58.08
1.5602	1L	5	0	1	59.17
1.5472	1	4	4	0	59.72
1.5295M	1L	2	3	3	60.48
1.5295M		-6	1	1	60.48
1.4991	13	1	5	2	61.84
1.4954	10	-3	5	2	62.01
1.4900	8	-6	2	2	62.26
1.4583	5	-4	1	5	63.77
1.4418M	3	-2	4	4	64.59
1.4418M		-3	2	5	64.59
1.4394	2	-2	5	3	64.71
1.4293	1	-1	6	1	65.22
1.4094	8	1	3	4	66.26
1.3982M	6	-5	0	5	66.86
1.3982M		- 5	3	4	66.86
1.3834	1	6	2	0	67.67
1.3711	1L	-6	3	1	68.36

Nickel orthophosphate octahydrate

CAS registry no. 19033-89-7

Sample

The sample was made by adding a dilute solution of Na_2HPO_4 to dilute solution of $NiSO_4$ to which a small amount of NaOH had been added.

Color

Very light yellowish green.

Structure'

Monoclinic, I2/m (12), $\dot{Z}=2$. Vivianite structure, from the similarity of cell size, space group and chemistry. The structure of vivianite, $Fe_3(PO_4)_2 \cdot 8H_2O$, is discussed by Mori and Ito (1950).

Lattice constants of this sample

a = 9.846(4) Ab = 13.203(4)

b = 13.203(4)c = 4.6342(15)

 $\beta = 102.27(3)^{\circ}$

a/b = 0.7457c/b = 0.3510

Volume o 588.67 A³

Density

(calculated) 2.878 g/cm³

Figure of merit

 $F_{30} = 31.9(0.016,58)$

Additional pattern

PDF card 1-0126 (Hanawalt et al., 1938).

References

Hanawalt, J. D., Rinn, H. W. and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Mori, H. and Ito, T. (1950). Acta Crystallogr. 3, 1.

 $CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$ Internal standard Ag, a = 4.08651 Å

d(A)	I ^{rel}		h	kl.	20(
	$\sigma = \pm 3$	3			
7.77	36	1	1	0	11.3
6.62	100	0	2	0	13.3
4.808	61	2	0	0	18.4
4.480	32	-1	0	1	19.8
4.277	10	0	1	1	20.7
4.005	20	1	3	0	22.1
3.799	50	1	0	1	23.4
3.576	8	-2	1	1	24.8
3.297	2	0	4	0	27.0
3.159	33	0	3	1	28.2
2.924	72	-3	0	1	30.5
2.722	6	2	4	0	32.8
2.675	46	-3		1	33.4
2.657	35	-1	4	1	33.7
2.591	10	3	3	0 .	34.5
2.548	2	1	5	0	35.1
2.491	19	1	4	1 -	36.0
2.389	27	3	0	1	37.6
2.283M	17	-1	1	2	39.4
2.283M		0	5	1	39.4
2.241	2	-2	0	2	40.2
2.189	18	-3	4	1	41.2
2.153	14	-2		1	41.9
2.122	5	-2	2	2	42.5
2.079	3	1	1	2	43.4
2.039	11	3	5	0	44.3
1.975	1	-1	6	1	45.9
1.938	3	4	1	1	46.8
1.901	19	1	3	2	47.8
1.872	6	-3	3	2	48.6
1.857	5	-4	0	2	49.0
1.789	3	4	3	1	51.0
	5	0	8	0	55.6
1.6503M 1.6503M		5	0	1	55.6

Nickel sulfate hexahydrate

CAS registry no. 10101-97-0

Sample

The sample was prepared by slow evaporation from a solution of nickel sulfate in an aqueous solution of H₃PO₄.

Color

Strong green

Structure

Monoclinic, A2/a (15), Z = 8. Isostructural with other divalent hexahydrate sulfates (Sutor, 1959). The structure of MgSO₄·6H₂O was discussed by Ide (1938).

Lattice constants of this sample

a = 24.188(5)A

b = 7.2410(14)

c = 9.895(2)

 $\beta = 98.41(2)^{\circ}$

a/b = 3.3404

c/b = 1.3665

Volume ... 1714.4 A³

Density

(calculated) 2.037 g/cm³

Polymorphism

NiSO₄·6H₂O also occurs in a tetragonal form as the mineral retgersite.

Figure of merit

 $F_{30} = 52.3(0.013,45)$

Additional patterns

PDF card 18-891 (Oleinikov et al., 1965)

PDF card 26-1288 (Nawaz, 1973)

References

Ide, K. H. (1938). Naturwissenschaften, <u>26</u>, 411.

Nawaz, R. (1973). Mineral. Mag. 39, 246.

Oleinikov, B. V., Shvartsev, S. L., Mandrikova, N. T., and Oleinikova, N. N. (1965). Zap. Vses. Mineral, O-Va. 94, 534.

Sutor, D. J. (1959). Acta Crystallogr. <u>12</u>, 72.

$CuK\alpha_1 \lambda = 1.540598 A$	temp. 25±1 °C
Internal standard Si,	

d(Å)	I ^{rel}		hkl		2θ(°	
	$\sigma = \pm 3$					
5.98	5	4	0	0	14.80	
5.824	20	0	1	1	15.20	
5.538	6	1	1	1	15.99	
5.424	21	-2	1	1	16.33	
5.061	21	2	1	1	17.51	
4.900M	51	-3	1	1	18.09	
4.900M		0	0	2	18.09	
4.782	24	-2	0	2	18.54	
4.519	6	3	1	1	19.63	
4.367	100	-4	1	1	20.32	
4.314	21	2	0	2	20.57	
4.096	22	-4	0	2	21.68	
4.003	60	4	1	1	22.19	
3.865	4	- 5	1	1	22.99	
3.625	14	0	2	0	24.54	
3.576	9	1	2	0	24.88	
3.544M	20	5	1	1	25.11	
3.544M		4	0	2	25.11	
3.466	3	2	2	0	25.68	
3.432	8	- 6	1	1	25.94	
3.340	8	-6	0	2	26.67	
3.162	7	6	1	1	28.20	
3.068	2	-7	1	1	29.08	
3.001	6	-1	1	3	29.75	
2.992	11	8	0	0	29.84	
2.979	17	-2	1	3	29.97	
2.916M	26	-1	2	2	30.63	
2.916M		-3	1	3	30.63	
2.890M	38	6	0	2	30.92	
2.890M		5	2	0	30.92	
2.860	1	1	2	2	31.25	
2.818	8	-4	1	3	31.73	
2.801	1	2	1	3	31.92	
2.774	9	2	2	2	32.25	
2.737	2	-8	0	2	32.69	
2.711	1L	-4	2	2	33.02	
2.690	5	- 5	1	3	33.28	
2.681	5	6	2	0	33.39	
2.660	5	3	2	2	33.66	
2.588	1L	- 5	2	2	34.63	
2.570	9	8	1	1	34.88	
2.553	2	-6	1	3	35.12	
2.471	12	-2	0	4	36.33	
2.454	3	-6	2	2	36.59	
2.408	2	-7	1	3	37.31	

Nickel Sulfate Hydrate (Nickel-hexahydrite), β -NiSO₄·6H₂O - (continued)

d(Å)	I ^{rel}		hkl		2θ(°
	$\sigma = \pm 3$				
2.392M	3	10	0	0	37.57
2.392M		-4	0	4	37.57
2.342+	1	0	3	1	38.41
2.342+		9	1	1	38.41
2.331	1	2	0	4	38.59
2.306	5	8	2	0	39.03
2.285+	4	-10	0	2	39.41
2.285+		2	3	1	39.41
2.272	13	-3	3	1	39.64
2.246	5	6	1	3	40.12
2.229	2	3	3	1	40.44
2.209	5	-4	3	1	40.82
2.183	3	-8	2	2	41.32
2.157M	3	4	0	4	41.85
2.157M		4	3	1	41.85
2.135	1	- 5	3	1	42.30
2.098	1L	-11	1	1	43.08
2.076	1	5	3	1.	43.57
2.052M	4	-9	2	2	44.09
2.052M		-6	3	1	44.09
2.047	3	-8	0	4	44.22
2.041M	2	-1	2	4	44.35
2.041M		-2	2	4	44.35
2.028	3 7	0	2	4	44.64
1.995M	/	-4	2	4	45.43
1.995M		12	0	0	45.43
1.990	10	6	3	1	45.55
1.981M	12	11	1	1	45.76
1.981M	_	8 -5	1 2	3 4	45.76
1.954	5	- 5	2	4	46.43
1.9199	3	1	3	3	47.31
1.9092	5	-2	1	5	47.59
1.8901M	7	0	1	5	48.10
1.8901M	,	2	3	3	48.10
1.8791M	4	-4	1	5	48.40
1.8791M		-11	1	3	48.40
1.8769	4	-8	3	1	48.46
	14	4	2	4	49.11
1.8536 1.8378	4	12	1	1	49.56

Synonym Columbium

CAS registry no. 7440-03-1

Sample

The sample was obtained from Fansteel Products Co., N. Chicago, IL.

Color Dark gray

Structure

Cubic, Im3m, Z = 2. The structure was determined by McLennan and Monkman (1929), Hägg (1930), and others.

Lattice constant of this sample a = 3.30332(13)A

Volume . 36.046 A³

Density (calculated) 8.560 g/cm³

Figure of merit $F_8 = 102.8(0.010,8)$

Additional patterns PDF card 16-1 (Hanawalt et al., 1938)

Nadler and Kempter (1959)

References

Hägg, G. (1930). Z. Phys. Chem. B 11, 433.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

McLennan, J. C. and Monkman, R. J. (1929). Trans. R. Soc. Can. Sec. 3 23, 255.

Nadler, M. R. and Kempter, C. P. (1959). Anal. Chem. 31 1922.

CuK α_1	$\lambda = 1.54059$	98 A;	tem	p. 25	±1 °C
Inter	nal standard	i W, a	=	3.165	24 A
d(Å)	I ^{rel}		h	kl	2θ(°
	$\sigma = \pm 1$				
2.336	100	1	1	0	38.51
1.6519	18	2	0	0	55.59
1.3484	28	2	1	1	69.68
1.1678	8	2	2	0	82.54
1.0446	11	3	1	0	95.02
.9535	3		2		107.78
.8830	13	3	2	1	121.48
.8258	2	4	0	0	137.74

Synonym
Potassium barium orthophosphate

CAS registry no. 25640-29-3

Sample

The sample was made by heating a 1:1 molar mixture of Ba(OH)₂ and KH₂PO₄ at 750 °C for 2 days, regrinding and heating to 900 °C for 1 hour.

Color .
Colorless

Structure Orthorhombic, Pnam (62), Z = 4. (Struck and White, 1962). Isostructural with β - K_2 SO₄, arcanite.

Lattice constants of this sample

a = 7.7084(5) A b = 9.9783(8) c = 5.6649(5)

a/b = 0.7725c/b = 0.5677

Volume 6 435.73 A³

Density (calculated) 4.137 g/cm³

Polymorphism

KBaPO₄ is reported to have a high temperature form which is hexagonal (Klement and Uffelmann, 1941). This is questioned by Struck and White (1962).

Figure of merit $F_{30} = 111.6(0.008,35)$

Additional patterns
PDF card 14-229 (Struck and White, 1962)

Wanmaker and Spier (1962)

Majling, et al. (1979) calculated pattern

References

Klement, R. and Uffelmann, R. (1941). Naturwissenschaften 29, 300.

Majling, J., Raninec, Š., and Ďurovič, S. (1979). Calculated Powder Diffraction Patterns for Anhydrous Phosphates (Veda, Bratislova, Czechoslovakia.)

Struck, C. W. and White, J. (1962). Acta Crystallogr. 15, 290.

Wanmaker, W. L. and Spier, H. L. (1962). J. Electrochem. Soc. 109, 109.

$CuK\alpha_1 \lambda = 1.540598$	Å; temp. 25±1 °C
Internal standard S	i, a = 5.430825 A

d(Å)	I ^{rel}		h	kl	2θ(°)
	$\sigma = \pm 2$				
6.100	8	1	1	0	14.51
4.990	18	0	2	0	17.76
4.927	33	0	1	1	17.99
4.189	4	1	2	0	21.19
4.153	3	1	1	1	21.38
3.854	6	2	0	0	23.06
3.594	4	2	1	0	24.75
3.368	40	1	2	1	26.44
3.186	3	2	0	1	27.98
3.052M	94	1	3	0	29.24
3.052M		2	2	0	29.24
3.036	100	2	1	1	29.40
2.868	41	0	3	1	31.16
2.832	39	0	0	2	31.57
2.685M	4	1	3	1	33.34
2.685M		2	2	1	33.34
2.569	6	1	1	2	34.90
2.518	4	2	3	0	35.63
2.488	19	3	1	0	36.07
2.463	2	0	2	2	36.45
2.3732	2	1	4	0	37.88
2.3464	3	1	2	2	38.33
2.3008	5	2	3	1	39.12
2.2823M	14	3	2	0	39.45
2.2823M		2	0	2	39.45
2.2768	13	3	1	1	39.55
2.2250	7	2	1	2	40.51
2.1888	33	1	4	1	41.21
2.1187	3	3	2	1	42.64
2.0939	4	2	4	0	43.17
2.0765M	54	1	3	2	43.55
2.0765M	.	2	2	2	43.55
2.0335	15	3	3	0	44.52
1.9646	1L	2	4	1	46.17
1.9318	14	1	5	0	47.00
1.9271	14	4	0	0	47.12
1.9134	1L	3	3	1	47.48
1.8817M	4	Ō	5	1	48.33
1.8817M		2	3	2	48.33
1.8693	7	3	1	2	48.67
1.8557	4	0	1	3	49.05
1.8237	1L	4	0	1	49.97
1.7942	16	4	1	1	50.85
1.7724	1L	2	5	0	51.52
			2	3	53.15

Potassium Barium Phosphate, KBaPO₄ - (continued)

d(Å)	I ^{rel}		h	kl 2θ(°)
	$\sigma = \pm 2$			
1.7067	19	3		1 53.66
1.6719	12	2		3 54.87
1.6516	6	3		2 55.60
1.6424	6	0		55.94
1.6000	7	4	3	1 57.56
1.5962	17	1		2 57.71
1.5929	11	4		57.84
1.5765 1.5626	2 7	3 1		0 58.50 1 59.07
1.5268	7	2		60.60
1.5182	1	4	2 :	2 60.98
1.4776	9	1		3 62.84
1.4738	9	2		1 63.02
1.4554	1	3		63.91
1.4368	1	4		2 64.84
1.4255	3	5	2	1 65.42
1.4164	5 2	0	0	4 65.89
1.4017		1		66.67
1.3984	3	5		66.85
1.3823	6	0	7	1 67.73
1.3789	5	1		4 67.92
1.3770	1	3		2 68.03
1.3555	4	3		1 69.26
1.3442	4	2		2 69.93 70.37
1.3368M	4	2	, ,	70.37
1.3368M		4		3 70.37
1.3069	2	5		2 72.23
1.3015M	5	4		72.58
1.3015M	2	2		1 72.58 3 72.73
1.2992	2	3	4 .	3 72.73
1.2850M	7	1	3 4	4 73.66
1.2850M		6		73.66
1.2777	4	5		1 74.15
1.2564	5	1		75.63
1.2544	2	5	3 2	2 75.77
1.2431	4	6		76.58
1.2321M	4	1		77.39
1.2321M		0		77.39
1.2202	1	5		78.29
1.2173	1	3	7 :	1 78.51
1.1929	2	5		80.44
1.1868M	1	2	_	80.94
1.1868M		4		80.94
1.1728M 1.1728M	1	2 6		4 82.11 1 82.11
	2	6		2 82.33 4 83.01
1.1703		-		
1.1703 1.1624M 1.1624M	2	6		2 83.01

Potassium calcium orthophosphate

CAS registry no. 18901-69-4

Sample

The sample was made at NBS by heating equimolar amounts of $CaCO_3$ and KH_2PO_4 at 800 °C over night, reground, heated to 900° over night and then at 1100 °C for 1 hour.

Color

Colorless

Structure

Hexagonal, P3ml (164), Z = 2. (Bredig, 1941) Isostructural with aphthitalite, $(K,Na)_3Na(SO_4)_2$ The structure of aphthitalite was determined by Gossner (1928).

Lattice constants of this sample

a = 5.5085(4)Ac = 7.5020(8)

c/a = 1.3619

Volume

197.14 A³

Density

(calculated) 2.934 g/cm³

Polymorphism

There are several other forms of $KCaPO_4$ (Znamierowska, 1979). Bredig (1941) refers to the present form as α .

Figure of merit

 $F_{27} = 38.1(0.011,65)$

Additional patterns

PDF card 3-619 (Bredig, 1942)

Wanmaker and Spier (1962)

References

Bredig, J. (1941). J. Am. Chem. Soc. <u>63</u>, 2533.

Bredig, J. (1942). J. Phys. Chem. 46, 747.

Gossner (1928). Neues. Jahrb. Mineral. Geol. Palaeontol. Abh. Abt. A, 57, 89.

Wanmaker, W. L. and Spier, H. L. (1962). J. Electrochem. Soc. 109, 109.

Znamierowska, T. (1979). Pol. J. Chem. <u>53</u>, 1415.

 $CuK\alpha_1$ $\lambda = 1.540598$ Å; temp. 25 ± 1 °C

Internal standard Si, a = 5.430825 Å

d(A)	I ^{rel}		h	kl	2θ(°)
	σ = ±1				
4.024	8	1	0	1	22.07
3.750	12	0	0	2	23.71
2.949	100	1	0	2	30.28
2.754	100	1	1	0	32.49
2.386	2	2	0	0	37.67
2.272	17	2	0	1	39.64
2.0125	39	2	0	2	45.01
1.8762	6	0	0	4	48.48
1.8038	2	2	1	0	50.56
1.7450	3	1	0	4	52.39
1.7255	2	2	0	3	53.03
1.6251	14	2	1	2	56.59
1.5906	12	3	0	0	57.93
1.5497	12	1	1	4	59.61
1.4643	1L	3	0	2	63.48
1.3770	9	2	2	0	68.03
1.2929	1	2	2	2 .	73.14
1.2478	4	3	1	2	76.24
1.2128	3	3	0	4	78.86
1.2097	2	1	0	6	79.10
1.1365	1	4	0	2	85.34
1.1101	1	2	2	4	87.88
1.1073	1	2	0	6	88.16
1.0507	1	3	2	2	94.30
1.0410	2	4	1	0	95.46
1.0275	1L	2	1	6	97.13
1.0030	1L	4	1	2	100.35

Potassium strontium orthophosphate

CAS registry no. 53201-92-6

Sample

The sample was made at NBS by heating equil-molar amounts of KH_2PO_4 and $SrCO_3$ at 900 °C for 1 hour; it was reground and heated to 1250 °C for 1 hour.

Color

Colorless

Structure

Orthorhombic, Pnam (62), Z=4. Isostructural with arcanite, β - K_2SO_4 . (Klement and Kresse, 1961) The structure of arcanite was determined by Robinson, (1958). This phase of $KSrPO_4$ can also be indexed on a hexagonal cell with a = 11.124 and c = 7.350, this being similar to the high form of K_2SO_4 , but with a doubled <u>a</u>.

Lattice constants of this sample

a = 7.3507(7) Å

b = 9.6340(9)c = 5.5621(6)

a/b = 0.7630c/b = 0.5773

Volume . 393.89 A³

Density

(calculated) 3.738 g/cm³

Polymorphism

KSrPO₄ is reported to have several other forms (Klement and Uffelmann, 1941).

Figure of merit

 $F_{30} = 82.0(0.008,45)$

Additional patterns

PDF card 14-40 (Klement and Kresse, 1961)

Wanmaker and Spier, 1962

References

Klement, R. and Kresse, P. (1961). Z. Anorg. Allg. Chem. 310, 62.

Klement, R. and Uffelmann, R. (1941). Naturwissenschaften 29, 300.

Robinson, M. T. (1958). J. Phys. Chem. 62, 925.

Wanmaker, W. L. and Spier, H. L. (1962). J. Electrochem. Soc. 109, 109.

Inter	nal standa	598 Å;			0
		<u> </u>			
d(Å)	I ^{rel}		h	kl	2θ(°)
	$\sigma = \pm i$	1			
5.836	5	1	1	0	15.17
4.813M	19	0	2	0	18.42
4.813M	0	0	1	1	18.42
4.028M 4.028M	8	1 1	2 1	0 1	22.05 22.05
3.433	2	2	1	0	25.93
3.263	27	1	2	1	27.31
3.066	5	2	0	1	29.10
2.943	32	- 1	3	ō	30.35
2.922M	100	2	2	0	30.57
2.922M		2	1	1	30.57
2.780M	93	0	3	1	32.17
2.780M		0	0	2	32.17
2.587	3	2	2	1	34.65
2.512	4	1	1	2	35.72
2.418	8	2	3	0	37.15
2.4107M	5	0	4	0	37.27
2.4107M		0	2	2	37.27
2.3744	19	3	1	0	37.86
2.2890M	10	1	4	0	39.33
2.2890M		1	2	2	39.33
2.2177M	10	2 2	3	1	40.65
2.2177M		2	0	2	40.65
2.1843M	6	3	2	0	41.30
2.1843M		3	1	1	41.30
2.1613	7	2	1	2	41.76
2.1168	24	1	4	1	42.68
2.0330	6	3	2	1	44.53
2.0214	22	1 2	3	2	44.80
2.0150M	36	2	4	0	44.95
2.0150M		2	2	2	44.95
1.9478	9	3	3	0	46.59
1.8942	1	2	4	1	47.99
1.8639 1.8378M	8 6	1	5 3	0 1	48.82 49.56
1.03/61	U	3	3	1	
1.8378M	•	4	0	0	49.56
1.8251	6 6	2	3	2	49.93
1.8203+ 1.8203+	0	0	1	3	50.07 50.07
1.8203+ 1.8061M	7	3	1	2	50.49
1.8061M		4	1	0	50.49
1.7447	1	4	0	1	52.40
	11	4	2	Ō	53.32
1.7167+	11				
1.7167+ 1.7167+	11	4	ī	1	53.32

Potassium Strontium Phosphate, $KSrPO_4$ - (continued)

				hkl	2θ(°)
	$\sigma = \pm$:1			
1.6840	3	1	2	3	54.44
1.6552	1	2	0	3	55.47
1.6413M	12	3	4	1	55.98
1.6413M		4	2	1	55.98
1.6314M	9	2	4	2	56.35
1.6314M		2	1	3	56.35
1.6056M	6	0	6	0	57.34
1.6056M		0	3	3	57.34
1.5951M	4	3	3	2	57.75
1.5951M		4	3	0	57.75
1.5655	1L	2	2	3	58.95
1.5481	8	1	5	2	59.68
1.5332M	6	4	3	1	60.32
1.5332M		4	0	2	60.32
1.5141M	3	3	5	0	61.16
1.5141M		4	1	2	61.16
1.5101	5	1	6	1	61.34
1.4713M	2	2	6	0	63.14
1.4713M		2	3	3	63.14
1.4610M	4	4	4	0	63.64
1.4610M		4	2	2	63.64
1.4408	4	1	4	3	64.64
1.4222	1	2	6	1	65.59
1.4132M	1	3	2	3	66.06
1.4132M		4	4	1	66.06
1.4058M	3	5	2	0	66.45
1.4058M		5	1	1	66.45
1.3907M	6	0	6	2	67.27
1.3907M		0	0	4	67.27
1.3836	1	4	3	2	67.66
1.3634	1	5	2	1	68.80
1.3526	ī	1	ī	4	69.43
1.3365M	3	5	3	0	70.39
1.3365M		0	7	1	70.39

CAS registry no. 12002-98-1

Sample

The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA.

Color

Unground: medium gray Ground: dark gray

Structure

Monoclinic, P2/n (13), Z = 8. The space group was assumed from absences in the present powder data. The cell having "b" equal to half our value below would not allow an index for the very weak line at d = 8.91. This reflection appeared consistently in patterns from randomly oriented samples, but only appeared intermittently from non-randomly oriented mountings. Frueh (1959) gave the space group P2₁/n with b'=b/2.

Lattice constants of this sample

a = 8.1698(15) A b = 8.940(2) c = 8.0653(15)

 $\beta = 112.793(15)^{\circ}$

a/b = 0.9138c/b = 0.9022

Volume 543.07 A³

Density

(calculated) 8.399 g/cm³

Polymorphism

Frueh (1959) uses the following nomenclature. Form III (described here) is stable from room temperature up to a range from 105 °C to 145 °C. Form II is stable between the ranges 105 to 145 °C and 690 to 802 °C. Form I is stable between the range 690 to 802 °C and the melting point.

Figure of merit

 $F_{30} = 23.1(0.015,89)$

Additional patterns

PDF card 12-695 (Thompson, 1949)

Frueh (1959)

Tokody (1932)

References

Frueh, A. J., Jr. (1959). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 112, 44.

Thompson, R. M. (1949). Am. Mineral. 34, 342.

Tokody, L. (1932). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 82, 154.

	$\lambda = 1.540$ al standa				0
d(Å)	I ^{rel}	·	h	k.l	2θ(°)
	$\sigma = \pm$	3			
8.91	5	0	1	0	9.92
6.76	10	-1	0	1	13.08
4.492	8	1	0	1	19.75
3.764 3.726	5 7	2 -1	0 2	0 1	23.62 23.86
3.382	8	-2	0	2	26.33
3.169	24	1	2	1	28.14
3.003	52	-2	2	1	29.73
2.983M	59	-1	2	2	29.93
2.983M		0	3	0	29.93
2.880	100	2	2	0	31.03
2.857 2.695	24 10	0 -2	2	2 2	31.28 33.21
2.453	6	2	2	1	36.60
2.444	6	1	2	2	36.75
2.323M	41	0	3	2	38.73
2.323M		-3	2	1	38.73
2.301	96	-1	2	3	39.12
2.254	58	-3	0	3	39.97
2.246M	61	-3	2	2	40.11
2.246M	20	2	0	2	40.11
2.235+	30	0 -2	4 2	0 3	40.33
2.189	30	3	2	0	41.21
2.167	12	0	2	3	41.65
2.141+	54	3	0	1	42.17
2.141+		0	4	1	42.17
2.122M	22	1	0	3	42.57
2.122M 2.026	15	-1 -4	4 0	1 2	42.57 44.70
		2	2	2	
2.012 2.002M	6 4	-3 -2	2	3 4	45.03 45.25
2.002M	7	1	4	1	45.25
1.958M	6	-3	3	2	46.33
1.958M		-2	4	1	46.33
1.953M	5	-2	1	4	46.45
1.953M		-1	4	2	46.45
1.930	10	3	2	1	47.04
1.884 1.863	1L 3	-2	0 4	0 2	48.27 48.84
1.858	5	0	0	4	48.98
1.845	2	-4	2	2	49.36
1.821M	4	-1	2	4	50.06
1.821M		0	1	4	50.06
1.7737	11	1	4	2	51.48
1.7355M	2	-3	2	4	52.70
1.7355M	0	4	2	0	52.70
1.6950	9 9	-3 -4	4 0	2 4	54.06 54.22
1.6904	u	-/:		4	56 77

Silver Telluride (Hessite), Ag_2Te - (continued)

d(A)	I ^{rel}			hkl	2 0(°)
	$\sigma = 1$:3			
1.5874M	5	-2	1	5	58.06
1.5874M		-3	4	3	58.06
1.5839	9	2	4	2	58.20
1.5797M	7	-2	5	2	58.37
1.5797M		-1	0	5	58.37
1.5752	4	-3	0	5	58.55
1.5578	2	1	2	4	59.27
1.5399	2	1	4	3	60.03
1.5077	2	-5	2	1	61.45
1.4974M	2	3	0	3	61.92
1.4974M		-5	2	3	61.92
1.4573M	2	2	0	4	63.82
1.4573M		3	5	0	63.82
1.4454	11	-4	4	3	64.41
1.4404M	8	-3	4	4	64.66
1.4404M		4	4	0	64.66
1.4107M	3	-5	3	1	66.19
1.4107M		0	2	5	66.19
1.4036	15	-4	2	5	66.57
1.3965M	18	-1	6	. 2	66.95
1.3965M		-1	3	5	66.95
1.3931	4	4	2	2	67.14
1.3761	2	5	0	1	68.08
1.3411+	6	-2	0	6	70.11
1.3411+		4	4	1	70.11
1.3283	3	2	6	1	70.89
1.3263M	2	1	6	2	71.01
1.3263M		-2	1	6	71.01
1.3077	10	-2	4	5	72.18
1.3029M	11	1	2	5	72.49
1.3029M		-1	6	3	72.49
1.2994	8	-6	0	4	72.71
1.2946	7	-5	2	5	73.03
1.2901+	8	-2	6	3	73.32
1.2901+		-1	4	5	73.32
1.2814	10	3	6	0	73.90
1.2773M	5	Ö	7	Ö	74.18
1.2773M		ō	6	3	74.18
1.2555M	4	6	0	Ö	75.69
1.2555M		-1	7	1	75.69
1.2489	7	5	4	0	76.16
1.2390+	5	1	3	5	76.88
1.2390+		-4	2	6	76.88
1.2271+	2	5	1	2	77.77
		3	2	4	77.77
1.2271+			_		

Synonym Sodium barium orthophosphate

CAS registry no. 53201-91-5

Sample

The sample was prepared at NBS. Na_2CO_3 and $2BaHPO_4$ were ground together, heated up gradually to 800 °C, re-ground, returned to oven at 800 °C, heated to 1000 °C, and held there for 1 hour.

Color Colorless

Optical data

Low double refraction with an average value ~1.612.

Structure
Hexagonal, P3ml (164), Z = 2, isostructural
with aphthitalite, (K,Na)₃Na(SO₄)₂. The
structure was determined by Calvo and
Faggiani (1975).

Lattice constants of this sample

a = 5.6181(3) Å

c = 7.2636(5)

c/a = 1.2929

Volume 198.55 Å³

Density (calculated) 4.270 g/cm³

Polymorphism
Forms with other than hexagonal symmetry have been reported (Klement and Kresse, 1961; Kolsi et al., 1981; Paques-Ledent, 1974). Their cells may be related to the hexagonal cell above. An unrelated tetragonal form was reported by Klement and Uffelmann (1941).

Figure of merit F₃₀ = 82.1(0.010,38)

Chem. 53, 1849.

Additional patterns
PDF card 14-204 (Wanmaker and Spier, 1962),
indexed as orthorhombic

Majling et al. (1979) (calculated pattern)

Comment
A pattern given by Kolsi et al., (1981) is called monoclinic but can be indexed with the hexagonal cell here which has ½ the

volume of the monoclinic cell.

References
Calvo, C. and Faggiani, R. (1975). Can. J.

Klement, R. and Kresse, P. (1961). Z. Anorg. Allg. Chem. 310, 62.

Klement, R. and Uffelmann, R. (1941). Naturwissenschaften 29, 300.

Kolsi, A. W., Quarton, M., and Freundlich, W. (1981). Ann. Chim. Paris 6, 411.

Majling, J., Raninec, Š., and Ďurovič, S. (1979). Calculated Powder Diffraction Patterns for Anhydrous Phosphates (VEDA, Bratislava, Czechoslovakia).

Paques-Ledent, M.-Th. (1974). Ind. Chim. Belge 39, 845.

Wanmaker, W. L. and Spier, H. L. (1962). J. Electrochem. Soc. <u>109</u>, 109.

-	$\lambda = 1.540598$				
0					
d(Å)	I ^{rel}		h	k.L	2θ(°)
	$\sigma = \pm 3$				
7.27	4	0	0	1	12.17
4.868	3	1	0	0	18.21
4.044	59	1	0	1	21.96
3.632	1	0	0	2	24.49
2.910	100	1	0	2	30.70
2.808	100	1	1	0	31.84
2.620	8	1	1	1	34.20
2.423	22	0	0	3	37.08
2.307	32	2	0	1	39.01
2.222	7	1	1	2	40.57
2.1672	6	1	0	3	41.64
2.0210	50	2	0	2	44.81
1.8337	25	1	1	3	49.68
1.8155	3	0	0	4	50.21
1.7824	11	2	1	1	51.21
1.7008	13	1	0	4	53.86
1.6405	24	2	1	2	56.01
1.6219	14	3	0	0	56.71
1.5826	1	3	0	1	58.25
1.5247	3	1	1	4	60.69
1.4802	1	3	0	2	62.72
1.4641	2	2	1	3	63.49
1.4548	10	2	0	4	63.94
1.4045	12	2	2	0	66.52
1.3920	5	1	0	5	67.20
1.3472	6	3	0	3	69.75
1.3265	3	3	1	1	71.00
1.2920	10	2	1	4	73.20
1.2651	8	3	1	2	75.02
1.2474	3	2	0	5	76.27
1.2148	5	2	2	3	78.71
1.2095	2	3	0	4	79.12
1.1996	2	4	0	1	79.90
1.1786	1	3	1	3	81.62
1.1748	1	1	0	6	81.94

Sodium Barium Phosphate, NaBaPO₄ - (continued)

d(Å)	I ^{rel}			hkl	2θ(°)
	$\sigma = \pm 3$				
1.1537	2	4	0	2	83.78
1.1400	4	2	1	5	85.02
1.1116	5	1	1	6	87.73
1.1031	2	3	2	1	88.58
1.0868	1L	4	0	3	90.27
1.0831	4	3	1	4	90.66
1.0669	4	3	2	2	92.44
1.0620	3	4	1	0	92.99
1.0150	2	1	0	7	98.74
1.0110	2	2	1	6	99.27
.9887	2	3	1	5	102.36
.9724	3	4	1	3	104.77
.9702	4	3	0	6	105.12
.9546	2	2	0	7	107.60
.9511	3	3	2	4	108.18

Sodium strontium orthophosphate

CAS registry no. 19553-80-1

Sample

The sample was made at NBS by heating a 2:2:1 molar mixture of (NH₄)₂HPO₄, SrCO₃, and Na₂CO₃ at 1000 °C for 2 days.

Color

Colorless

Structure

Monoclinic, $A^*/^*$, Z = 16. The unit cell was determined by the Visser program (1969), and the Z assumed for a reasonable density.

Lattice constants of this sample

a = 20.414(4)A

b = 5.429(11) c = 17.246(3)

 $\beta = 101.76(2)^{\circ}$

a/b = 3.7602

c/b = 3.1766

Volume

1871.21 A³

Density

(calculated) 2.919 g/cm³

Polymorphism

Several other cells have been reported (Klement and Uffelmann, 1941; Bredig, 1942). Both of these references and Klement and Steckenreiter (1940) assume there is a transformation. The phase in this study is assumed to be the low temperature form.

Figure of merit

 $F_{30} = 43.4(0.011,63)$

 $M_{20} = 20.6$

Additional pattern

PDF card 14-269 (Wanmaker and Spier, 1962)

References

Bredig, M. A. (1942). J. Phys. Chem. 46,

Klement, R. and Steckenreiter, F. (1940).

Z. Anorg. Allg. Chem. <u>245</u>, 236.

Klement, R. and Uffelmann, R. (1941).

Naturwissenschaften 29, 300.

Visser, J. W. (1969). J. Appl. Crystallogr. <u>2</u>, 89.

Wanmaker, W. L. and Spier, H. L. (1962).

J. Electrochem. Soc. <u>109</u>, 109.

5.430825 Å 2 θ(°) 0 8.85 2 10.48 2 10.48 2 12.28 0 13.28 2 15.04 2 15.17 1 17.15 1 17.45 1 17.98 2 18.55 1 18.83 1 19.81
0 8.85 2 10.48 2 10.48 2 12.28 0 13.28 2 15.04 2 15.17 1 17.15 1 17.45 1 17.98 2 18.55 1 18.83 1 19.81
2 10.48 2 10.48 2 12.28 0 13.28 2 15.04 2 15.17 1 17.15 1 17.45 1 17.98 2 18.55 1 18.83 1 19.81
2 10.48 2 10.48 2 12.28 0 13.28 2 15.04 2 15.17 1 17.15 1 17.45 1 17.98 2 18.55 1 18.83 1 19.81
2 10.48 2 12.28 0 13.28 2 15.04 2 15.17 1 17.15 1 17.45 1 17.98 2 18.55 1 18.83 1 19.81
2 12.28 0 13.28 2 15.04 2 15.17 1 17.15 1 17.45 1 17.98 2 18.55 1 18.83 1 19.81
0 13.28 2 15.04 2 15.17 1 17.15 1 17.45 1 17.98 2 18.55 1 18.83 1 19.81
2 15.17 1 17.15 1 17.45 1 17.98 2 18.55 1 18.83 1 19.81
1 17.15 1 17.45 1 17.98 2 18.55 1 18.83 1 19.81
1 17.45 1 17.98 2 18.55 1 18.83 1 19.81
1 17.98 2 18.55 1 18.83 1 19.81
1 18.83 1 19.81
1 19.81
1 21.09 4 21.09
0 22.23
1 22.43
2 22.43
2 22.60
3 22.75
3 23.22
4 24.49 4 24.70
3 24.70
1 25.55
2 26.54
0 26.75
3 28.04 4 30.57
2 30.78
3 30.96
1 30.96
5 31.18 6 31.18
6 31.88
5 32.27
3 32.75
0 32.97
4 33.85 3 34.26
2 34.67
2 34.67
6 34.80 5 35.17
7 35 17
0 35.68

Sodium Strontium Phosphate, $NaSrPO_4$ - (cont/inued)

d(Å)	I ^{rel}		2θ(°		
·	$\sigma = \pm 5$				
2.464	2	2	2	2	36.43
2.387M	9	-6	1	5	37.66
2.387M		4	2	0	37.66
2.356	1	-4	2	2	38.16
2.320	1	4	1	5	38.78
2.306	2	-8	1	1	39.02
2.282M	2	0	2	4	39.45
2.282M		-2	2	4	39.45
2.262	29	4	0	6	39.82
2.246M	15	-7	0	6	40.11
2.246M		5	2	0	40.11
2.238M	12	-1	1	7	40.27
2.238M		-3	2	4	40.27
2.219M	2	9	0	0	40.62
2.219M		-3	1	7	40.62
2.205	3	0	1	7	40.90
2.196	4	8	1	1	41.06
2.175	7	2	2	4	41.49
2.169M	3	-4	2	4	41.60
2.169M		7	0	4	41.60
2.148	3	1	1	7	42.03
2.105M	9	6	2	0	42.94
2.105M		-4	0	8	42.94
2.092M	3	-8	0	6	43.22
2.092M		3	2	4	43.22
2.0550	4	1	0	8	44.03
2.0466M	7	9	0	2	44.22
2.0466M		-5	0	8	44.22
2.0409	7	-10	0	2	44.35

Synonyms
Sodium titanium orthophosphate
NTP

CAS registry no. 22239-24-3

Sample

The sample was made at NBS by heating a 1:2:2 molar mixture of NaH₂PO₄·H₂O, (NH₄)₂HPO₄, and TiO₂ (anatase) at 1000 °C. It was then re-ground and heated at 1200° C for 18 hours.

Color Colorless

Structure

Rhombohedral, R3c (167). Isostructural with $NaZr_2(PO_4)_3$ and other similar phosphates. The structure of $NaZr_2(PO_4)_3$ was determined by Hagman and Kierkegaard (1968).

Lattice constants of this sample Hexagonal axes

a = 8.4912(3)Å c = 21.7858(12)

c/a = 2.5657Z = 6

Volume 0 1360.35 A³

Density (calculated) 2.957 g/cm³

Polymorphism

Götz and Niebergall (1969) report a cubic form of NaTi₂(PO_4)₃ in the ternary system NaPO₃-NaF-TiO₂.

Figure of merit F₃₀ = 112.7(0.007,36)

Additional patterns
PDF card 23-1410 (Hagman and Kierkegaard,

Chernorukov (1978)

References

Chernorukov, N. G. (1978). Russ. J. Inorg. Chem. Engl. Transl. 51, 425.

Götz, W. and Niebergall, R. (1969). Naturwissenschaften <u>56</u>, 35.

Hagman, L.-O. and Kierkegaard, P. (1968). Acta Chem. Scand. 22, 1822.

CuKa ₁	λ = 1.5405	98 Å;	temŗ	·	25±1 °C
-	nal standar				0
d(A)	I ^{rel}		hk	s.l	2θ(°)
	$\sigma = \pm 2$				
6.095	14	0	1	2	14.52
4.377	20 32	1 1	0 1	4	20.27 20.91
4.245 3.666	100	1	1	3	24.26
3.632	10	0	0	6	24.49
3.485	. 4	2	0	2	25.54
3.048	28	0	2	4	29.28
2.759M	64	1	1	6	32.42
2.759M 2.694	2	2 1	1 2	1 2	32.42 33.23
2.5532	1	0	1	8	35.12
2.5532	2	2	1	4	36.25
2.4701	16	3	0	0	36.62
2.1883	2	2	0	8	41.22
2.1032	7	1	1	9	42.97
2.0733	2	2	1	7	43.62
2.0378	5	2	2	3	44.42
2.0322M	6	3	0	6	44.55
2.0322M		1	3	1	44.55
2.0053	1	3	1	2	45.18
1.9455	15	1		8	46.65
1.9100	3	1		4	47.57
1.8740	2	0		10	48.54
1.8473	2	3		5	49.29
1.8330	16	2	2	6	49.70
1.8152	5	0		12	50.22
1.8128	6 17	0		2	50.29
1.7419 1.7144	1L 9	4 2		4 10	52.49 53.40
1.7144	9 7	2 1		7	53.40
1.6821	1L 1	3	2	1	54.51 55.03
1.6674	1 6	2 3		2	55.03 56.30
1.6328 1.6115	5	3		4	57.11
1.6048	11	4		0	57.37
1.5959	2	2	2	9	57.72
1.5733	2	2		5	58.63
1.5670	4	4		3	58.89
1.5236	5	0		8	60.74
1.4889	6	1		0	62.31
1.4678	6	4	1	6	63.31
1.4589	2	3	0 1	12	63.74
1.4331	5	2		14	65.03
1.4199 1.4153	4 3	0 3		4 0	65.71 65.95
1.4051 1.3890	2 1L	4		3	66.49 67.36
1.3890	1	2		3 12	67.87
1.3741	3	1		5	68.19
1.3583	3	1		4	69.10

Sodium Titanium Phosphate, $NaTi_2(PO_4)_3$ - (continued)

1.3467 1.3373 1.3338 1.3239 1.3183M 1.3183M 1.2942M 1.2942M 1.2837 1.2642	σ = ±2 1 1 1 1 1 1 2 4 2	2 4 3 4 3 5 1 5 5	4 1 2 2 3 1 3 0 1 5	4 9 10 5 6 1 13 8 4 5	69.78 70.34 70.55 71.16 71.51 73.05 73.05 73.75 75.08
1.3373 1.3338 1.3239 1.3183M 1.3183M 1.2942M 1.2942M 1.2837 1.2642	1 1 1L 1 1 9	4 3 4 3 5 1 5 5 1	1 2 2 3 1 3 0 1	9 10 5 6 1 13 8 4	70.34 70.55 71.16 71.51 71.51 73.05 73.05 73.75
1.3338 1.3239 1.3183M 1.3183M 1.2942M 1.2942M 1.2837 1.2642	1 1L 1 1 9	3 4 3 5 1 5 5 1	2 2 3 1 3 0 1	10 5 6 1 13 8 4	70.55 71.16 71.51 71.51 73.05 73.05 73.75
1.3239 1.3183M 1.3183M 1.2942M 1.2942M 1.2837 1.2642	1L 1 1 9 4	4 3 5 1 5 5 1	2 3 1 3 0 1	5 6 1 13 8 4	71.16 71.51 71.51 73.05 73.05 73.75
1.3183M 1.3183M 1.2942M 1.2942M 1.2837 1.2642	1 1 9 4	3 5 1 5 5 1	3 1 3 0 1	6 1 13 8 4	71.51 71.51 73.05 73.05 73.75
1.3183M 1.2942M 1.2942M 1.2837 1.2642	1 9 4	5 1 5 5	1 3 0 1	1 13 8 4	71.51 73.05 73.05 73.75
1.2942M 1.2942M 1.2837 1.2642	9	1 5 5 1	3 0 1	13 8 4	73.05 73.05 73.75
1.2942M 1.2837 1.2642	9	5 5 1	0	8 4	73.05 73.75
1.2837 1.2642 1.2371	4	5 1	1	4	73.75
1.2642	4	1		-	
1.2371		_	5	5	75.08
	2				
1 0057		3	1	14	77.02
1.2257	7	6	0	0	77.87
1.2157	3	5	1	7	78.64
1.2102	1	0	0	18	79.06
1.2014	1L	3	4	2	79.76
1.1886M	1	3	2	13	80.79
1.1886M		1	5	8	80.79
1.1772	1	5	2	0	81.74
1.1717	1L	2	4	10	82.21
1.1637M	1	1	1	18	82.90
1.1637M		1	2	17	82.90
1.1438	3	2	3	14	84.67
1.1267	1L	4	3	7	86.26
1.1200M	4	5	2	6	86.91
1.1200M		1	6	1	86.91
1.1049	2	3	4	8	88.40
1.0984	7	1	6	4	89.06

Synonyms Sodium zirconium orthophosphate NZP CAS registry no. 19527-81-2 Sample The sample was made at NBS by heating a 1:2:2 molar mixture of NaH₂PO₄·H₂O, (NH₄)₂HPO₄, and ZrO2, slowly up to 1000 °C. It was then re-ground and heated to 1200 °C overnight. Color Colorless Structure Rhombohedral, R3c(167). Isostructural with NaTi₂(PO₄)₃ and many other similar phosphates. The structure has been determined by Hagman and Kierkegaard, (1968) and confirmed by Hong (1976). Lattice constants of this sample Hexagonal axes = 8.8048(4)A= 22.7572(14)c/a = 2.5846z = 6Volume 1527.88 A³ Density (calculated) 3.198 g/cm³ Figure of merit $F_{30} = 103.6(0.007,43)$ Additional patterns PDF card 23-1411 (Hagman and Kierkegaard, 1968) PDF card 24-1180 (Clearfield et al., 1969) Majling, et al. (1979) calculated pattern References Clearfield, A., Duax, W. L., Medina, A. S., Smith, G. D., and Thomas, J. R. (1969). J. Phys. Chem. 73, 3424. Hagman, L-O. and Kierkegaard, P. (1968). Acta Chem. Scand. 22, 1822. Hong, H. Y-P. (1976). Mater. Res. Bull. <u>11</u>, 173.

Majling, J., Raninec, Š., and Durovič, S. (1979). Calculated Powder Diffraction Patterns for Anhydrous Phosphates. (VEDA,

Bratislava, Czechoslovakia)

d(Å)	I ^{rel}		ŀ	ıkl	2θ(•)
. (-3)	$\sigma = \pm$	1			23(
6.325	22	0	1	2	13.9	9
4.556	75	1	0	4	19.4	
4.399	97	1	1	0	20.1	
3.807	100	1		3	23.3	
3.614	1	2	0	2	24.6	1
3.166	54	0	2		28.1	
2.873 2.666	94 3	1 0	1	6	31.1	
2.571	24	2		8	33.5 34.8	
2.5419	42	3	0	0	35.2	
	72			Ū	33.2	.0
2.2801	7	2		8	39.4	
2.2016	6	2		0	40.9	
2.1929 2.1802	3 3	1 1		9 10	41.1 41.3	
2.1568	2	2		7	41.8	
2.1116	10	3	^	6	/0.7	^
2.0797	3	3	0	2	42.7 43.4	
2.0248	21	1		8	44.7	
1.9824	12	1		4	45.7	
1.9542	6	0		10	46.4	
1.9039	29	2	2	6	47.7	3
1.8802	5	0	4		48.3	
1.8078	1	4	0	4	50.4	
1.7860	22	2		10	51.1	
1.7727	4	1	3	7	51.5	1
1.6967	9	3		8	54.0	0
1.6719	14	3	2	4	54.8	
1.6638	25	4	1	0	55.1	
1.6328 1.6251	1 2	2 4	3	5 3	56.3 56.5	
1.0251		•			50.5	,
1.5894	5	0		14	57.9	
1.5834	4	0		8	58.2	
1.5490 1.5401	12 1	1		10	59.6	
1.5401	14	3 4	2 1	7 6	60.0 60.7	
1 5107	1	3	^	12	60.0	1
1.5197 1.4950	1 7	3 2		12 14	60.9 62.0	
1.4787	4	3		11	62.7	
1.4730	6	0	5	4	63.0	
1.4676	7	3	3	0	63.3	
1.4610	4	4	0	10	63.6	4
1.4406	1	3		3	64.6	
1.4340	3	1		15	64.9	
1.4157	9	1		14	65.9	
1.3969	5	2	4	4	66.9	

Sodium Zirconium Phosphate, $NaZr_2(PO_4)_3$ - (continued)

d(Å)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 1$		
1.3900	3	4 1 9	67.31
1.3869	5	3 2 10	67.48
1.3738	1	4 2 5	68.21
1.3688	3	3 3 6	68.49
1.3487	1	1 3 13	69.66
1.3314	8	5 1 4	70.70
1.3113	1	1 5 5	71.95
1.2886	1	3 1 14	73.42
1.2855	5	4 2 8	73.63
1.2751	1	2 1 16	74.33
1.2709	7	6 0 0	74.62
1.2643	3	0 0 18	75.07
1.2619	2	5 1 7	75.24
1.2373M	1	3 2 13	77.01
1.2373M		0 4 14	77.01
1.2243	1	4 3 4	77.98
1.2210	4	5 2 0	78.23
1.2176	4	2 4 10	78.49
1.2053M	2	5 2 3	79.45
1.2053M		6 0.6	79.45
1.1907	5	2 3 14	80.62
1.1738	1L	5 1 10	82.03
1.1624	5	5 2 6	83.01
1.1473	3	3 4 8	84.35
1.1421	1	1 5 11	84.82
1.1395	2	1 6 4	85.06
1.1319	2	3 0 18	85.77
1.1255	2	0 1 20	86.38
1.1122	3	5 0 14	87.67
1.1039	1	3 2 16	88.50
1.1008	2	4 4 0	88.82
1.0982	6	4 3 10	89.08
1.0903	1L	2 0 20	89.90
	1L	3 5 1	90.16
1.0879			

Synonym Yttrium orthochromite Sample The sample was prepared at NBS by T. Negas. Medium yellowish green Structure Orthorhombic, Pnma (62), Z = 4, isostructural with $GdFeO_3$ (Geller and Wood, 1956). The structure of GdFeO3 was determined by Geller (1956).Lattice constants of this sample a = 5.5237(3)Ab = 7.5343(5)c = 5.2427(3)a/b = 0.7331c/b = 0.6958Volume 218.19 A3 Density (calculated) 5.751 g/cm³ Figure of merit $F_{30} = 116.2(0.008,31)$ Additional patterns PDF card 25-1078 (Gallagher and McCarthy, Penn State University, University Park, PA) Geller and Wood (1956) Keith and Roy (1954) Looby and Katz (1954) (indexed with a monoclinic supercell) References Geller, S. (1956). J. Chem. Phys. 24, 1236. Geller, S. and Wood, E. A. (1956). Acta

Crystallogr. 9, 563.

Chem. Soc. 76, 6029.

Chim. Ital. 85, 892.

Mineral. 39, 1.

Keith, M. L. and Roy, R. (1954). Am.

Looby, J. T. and Katz, L. (1954). J. Am.

Ruggiero, A. and Ferro, R. (1955). Gazz.

d(A)	I ^{rel}		h	kl	2θ
	$\sigma = \pm 2$				
4.306	2	0	1	1	20.
3.805	5	1	0	1	23.
3.770	5	0	2	0	23.
3.396	22	1	1	1	26.
2.762	22	2	0	0	32.
2.676	100	1	2	1	33.
2.621	27	0	0	2	34.
2.593	11	2	1	0	34.
2.443	1L	2	0	1	36.
2.3678	2	1	0	2	37.
2.3248	1	2	1	1	38.
2.2647	5	0	3	1	39.
2.2592	9	1	1	2	39.
2.2276	6	2	2	0	40.
2.1509	9	0	2	2	41.
2.0967	11	1	3	1	43.
2.0497	3	2	2	1	44.
2.0049	2	1	2	2	45.
1.9013	24	2	0	2	47.
1.8831	18	0	4	0	48.
1.8582	8	2	3	0	48.
1.8434	13	2	1	2	49.
1.7516	1L	2	3	1	52.
1.7376	2	3	0	1	52.
1.7230	2	1	3	2	53.
1.7020	1	0	1	3	53.
1.6933	20	3	1	1	54.
1.6878	1	1	4	1	54.
1.6665	1L	1	0	3	55.
1.6264	3	1	1	3	56.
1.5772	9	3	2	1	58.
1.5564	11	2	4	0	59.
1.5291	17	0	4	2	60.
1.5238	27	1	2	3	60.
1.5157	6	2	3	2	61.
1.5066	1L	3	0	2	61.
1.4764	1	2	0	3	62.
1.4482	1L	0	5	1	64.
1.4344	1L	0	3	3	64.
1.4286	8	3	3	1	65.
1.4008	1	1	5	1	66.
1.3883	1L	1	3	3	67.
1.3809	1L	4	0	0	67.
1.3752	1L	2	2	3	68.
1.3583	3	4	1	0	69.

 $CuK\alpha_1 \lambda = 1.540598 \text{ A; temp. } 25\pm1 \text{ °C}$

Yttrium Chromium Oxide, $YCrO_3$ - (continued)

	10				
	$\sigma = \pm 2$				
1.3380	10	2	4	2	70.30
1.3229	1	2	5	0	71.22
1.3107	4	0	0	4	71.99
1.2965	1	4	2	0	72.90
1.2920	1	3	3	2	73.20
1.2825	1L	2	5	1	73.83
1.2769	1L	3	4	1	74.21
1.2751	1	1	0	4	74.33
1.2713	1	1	5	2	74.59
1.2574	2	1	1	4	75.56
1.2558	1	0	6	0	75.67
1.2499	4	3	1	3	76.09
1.2481	2	1	4	3	76.22
1.2382	1L	0	2	4	76.94
1.2219	1	4	0	2	78.16
1.2101	1	4	3	0	79.07
1.2062	4	4	1	2	79.38
1.2015	3	3	2	3	79.75
1.1923	7	1	6	1	80.49
1.1841	3	2	0	4	81.16
1.1810	5	2	5	2	81.42
1.1699	3	2	1	4	82.36
1.1623M	3	4	2	2	83.02
1.1623M			4	3	83.02
1.1384	5	2	5	1	85.16
1.1315	3	3	3	3	85.81
1.1176	1	1	5	3	87.14
1.1137	1L	4	4	0	87.52
1.0987	4	4	3	2	89.03
1.0894	1L	4	4	1	90.00
1.0833	1L	4	0	3	90.64
1.0809	2	5	0	1	90.90
1.0758	2	0	4	4	91.45
1.0708	3	2	3	4	92.00
1.0699	3	5	1	1	92.10

Zinc arsenate octahydrate Zinc orthoarsenate octahydrate

Sample

The sample was made at NBS by adding a dilute solution of Na₂HAsO₄ dropwise to a slightly alkaline dilute solution of ZnSO₄.

Spectrographic analysis Major impurities

0.05 to 0.25% P 0.002 to 0.01% B,Cu,Fe,Ni,Pb,Si <0.005% Al, Mg

Color

Colorless

Structure

Monoclinic, I2/m (12), Z = 2. Vivianite structure (Wolfe, 1940). The structure of vivianite (Fe₃(PO₄)₂·8H₂O) was discussed by Mori and Ito (1950).

Lattice constants of this sample

a = 10.118(2)A

b = 13.431(2)

c = 4.7615(12)

 $\beta = 101.81(2)^{\circ}$

a/b = 0.7533

c/b = 0.3545

Volume

633.37 A³

Density

(calculated) 3.241 g/cm³

Comment

Note the similarity between the data above and the data for the phase $\mathrm{Co_3}(\mathrm{AsO_4})_2$ $^{\circ}\mathrm{8H_2O}$ also appearing in this Monograph.

Figure of merit

 $\mathbf{F_{30}} = 67.1(0.010,44)$

Additional pattern

PDF card 1-0744 (New Jersey Zinc Co.)

References

Mori, H. and Ito, T. (1950). Acta Crystallogr. 3, 1.

Wolfe, C. W. (1940). Am. Mineral. 25, 787.

1	$\lambda = 1.540$				0
Inter	nal standa	rd Si,	a =	5.	43088 A
d(A)	I ^{rel}		h	kl	2θ(°)
	$\sigma = \pm$	2			
7.97	24	1	1	0	11.09
6.72	100	0	2	0	13.17
4.951	10	2	0	0	17.90
4.595	5	-1	0	1	19.30
4.403	14	0	1	1	20.15

d(Å)	I ^{rel}		ŀ	ıkl	2θ(°
	$\sigma = \pm 2$				
4.083	9	1	3	0	21.75
3.987	6	2	2	0	22.28
3.923	15	1	0	1	22.65
3.660	7	-2	1	1	24.30
3.385	3	1	2	1	26.31
3.357	4	0	4	0	26.53
3.229	47	0	3	1	27.60
3.013	34	2	1	1	29.63
3.002 2.900	36 1	-3 -2	0 3	1 1	29.74 30.81
	0	2	,	•	
2.779 2.736	8 28	2 -3	4	0	32.19
2.730	25	-3 -1	2	1 1	32.70 33.01
2.657	16	3	3	0	33.70
2.593	2	1	5	0	34.57
2.549	9	1	4	1	35.18
2.468	16	3	0	î	36.38
2.343	10	-1	1	2	38.39
2.328	22	0	5	1	38.64
2.238M	5	0	6	0	40.27
2.238M		-3	4	1	40.27
2.200	4	0	2	2	40.99
2.195	9	-2	5	1	41.08
2.1154	1	-4	3	1	42.71
2.0838	11	3	5	0	43.39
2.0396	1	2	6	0	44.38
2.0120	2	-1	6	1	45.02
1.9915	2	4	4	0	45.51
1.9874	2	3	4	1	45.61
1.9594M	8	2	0	2	46.30
1.9594M		5	1	0	46.30
1.9542	8	1	3	2	46.43
1.9443	3	1	6	1	46.68
1.9153M	3	-3	3	2	47.43
1.9153M		0	4	2	47.43
1.8434	7	4	3	1	49.40
1.7925	2	-3	6	1	50.90
1.7893	3	-4	5	1	51.00
1.7744	2 9	0	7 5	1	51.46
1.6884	y	1	Э	2	54.29
1.6789	11	0	8	0	54.62
1.6643	11	-3 /	5	2	55.14
1.6154	10 3	4	5	0 1	55.28 56.96
1.6023	2	6	2	0	57.47
1.5941	1	5	5	0	57.79
1.5621	3	- 6	3	1	59.09
1.5441	2	1	8	1	59.85
			- 4 1	1	

Zinc sulfate monohydrate

CAS registry no. 7446-19-7

Sample

The sample was made by allowing ${\rm ZnSO_4\cdot 6H_2O}$ to stay in dry air for several days.

Color

Colorless

Structure

Monoclinic, A2/a (15), Z = 4. Isostructural with kieserite (MgSO₄·H₂O), (Pistorius, 1961). The structure of kieserite was determined by Leonhardt and Weiss (1957).

Lattice constants of this sample

a = 7.5079(6)A

b = 7.5871(6)

c = 6.9355(6)

 $\beta = 116.248(7)^{\circ}$

Volume 354.3 Å³

Density

(calculated) 3.364 g/cm³

Figure of merit

 $F_{30} = 122.5(0.006,38)$

Additional pattern

PDF card 12-781 (Pistorius)

References

Leonhardt, H. J. and Weiss, R. (1957). Naturwissenschaften 44, 338.

Pistorius, C. W. F. T. (1961). Acta Crystallogr. <u>14</u>, 534.

CuKα ₁	$\lambda = 1.540$	598 Å;	tem	p. 2	.5±1 °C
Inter	nal standa	rd Si,	a =	5.4	3088 Å
d(A)	I ^{rel}		hkl		2θ(°)
	$\sigma = \pm 1$				
4.810	39	0	1	1	18.43
4.759	39	-1	1	1	18.63
3.794	11	0	2	0	23.43
3.404	100	1	1	1	26.16
3.348	23	-2	1	1	26.60
3.307	28	1	2	0	26.94
3.056	47	-2	0	2	29.20
2.5595	16	-1	2	2	35.03
2.5185	46	2	2	0	35.62
2.4051	3	0	2	2	37.36

d(A)	I ^{rel}	hkl	2θ(°)
	$\sigma = \pm 1$		
2.3989	3	2 1 1	37.46
2.3805	5	-2 2 2	37.76
2.3678	6	-3 1 1	37.97
2.3370	13	-1 3 1	38.49
2.1888	18	-1 1 3	41.21
2.1064	9	1 3 1	42.90
2.0934	4	-2 3 1	43.18
2.0536	10	1 2 2 -3 2 2	44.06
2.0223 1.9674	2 14	-3 2 2 -3 1 3	44.78 46.10
1.9318	2	3 2 0	47.00
1.9036	7	2 0 2	47.74
1.8979	5	0 4 0	47.89
1.8105 1.7912	9 1	3 1 1 -4 1 1	50.36 50.94
1./912	1	-4 1 1	30.94
1.7886	1	2 3 1	51.02
1.7753	1	-3 3 1	51.43
1.7330	3	-2 0 4	52.78
1.7011	7	2 2 2	53.85
1.6964	5	-1 3 3	54.01
1.6909	1L	-4 1 3	54.20
1.6835	4	4 0 0	54.46
1.6738	15	-4 2 2	54.80
1.6522	8	2 4 0	55.58
1.6193	10	0 4 2	56.81
1.6035	1	0 3 3	57.42
1.5861	9	-3 3 3	58.11
1.5765	4	-2 2 4	58.50
1.5557	6	0 0 4	59.36
1.5420	3	-1 2 4	59.94
1.5383	1	4 2 0	60.10
1.5279M	3	-3 2 4	60.55
1.5279M		-4 0 4	60.55
1.5006	7_	3 3 1	61.77
1.4857	1L	-3 4 2	62.46
1.4726	1	-1 5 1	63.08
1.4518	3	1 3 3	64.09
1.4486	2	3 4 0	64.25
1.4390	3	0 2 4	64.73
1.4364	4	- 5 1 3	64.86
1.4301	1	- 5 1 1	65.18
1.4172M	3	-4 2 4	65.85
1.4172M		3 2 2	65.85
1.4094	3	1 5 1	66.26
1.3962	1	- 5 2 2	66.97
1.3541	1	-3 1 5	69.34
1.3302	2	-4 4 2	70.77
1.3024	1	1 2 4	72.52
1.2795	5	-2 4 4	74.03
1.2693	2	5 2 0	74.73

Zinc Sulfate Hydrate (Gunningite), $ZnSO_4 \cdot H_2O$ - (continued)

d(Å)			hkl	2θ(°)	
	$\sigma = \pm 1$				
1.2646M	5	4	0	2	75.05
1.2646M		0	6	0	75.05
1.2618M	5	-5	3	1	75.25
1.2618M		-2	5	3	75.25
1.2535	2	-3	4	4	75.83
1.2269	1L	-6	1	3	77.78
1.2168	1 L	-3	5	3	78.55
1.1998	1 L	4	2	2	79.89
1.1949M	1	5	1	1	80.28
1.1949M		-6	0	4	80.28

This pattern is calculated from published crystal structure data. The calculation procedure follows the method described in previous sections 15 and 16 of NBS Monograph 25.

Synonyms

5-Ethyl-5-phenyl-2,4,6(1H,3H,5H)-pyrimidinetrione hydrate Phenobarbitone monohydrate 5-Ethyl-5-phenylbarbituric acid hydrate

CAS registry no. 24486-13-3

Structure

Orthorhombic, Pbca (61), Z = 8. The structure was refined from single crystal data (Williams, 1973).

Atom positions

All atoms were in general positions 8(c).

Lattice constants

a = 7.157 Å b = 30.881 c = 10.871

(published values: .7.157 Å, 30.879, 10.870 for $CuK\alpha = 1.54178$; Williams, 1973)

CD cell: 10.871 Å, 30.881, 7.157, sp. gp. Pcab; a/b = 0.3520, c/b = 0.2318

Volume 0 A³

Density (calculated) 1.384 g/cm³

Thermal parameters
Isotropic for hydrogen atoms (ibid.).
Isotropic B. for other atoms, estimated from
U. for each atom.

Scattering factors
Zero ionization (International Tables, 1962)

Scale factors $\gamma = 0.2009 \times 10^{-2}$ I/I (calculated) = 0.812 for reflection with hkl = 020.

Comment

This phase was earlier thought to be number V of the numerous polymorphs of anhydrous phenobarbitone. It was later referred to as form XIII, but now has been shown to be a monohydrate (Williams, op. cit.).

Additional patterns PDF card 22-1883 (Nogami et al., 1969)

PDF cards 27-1592 (Cleverly and Williams, 1959) and 27-1848 (Mesley et al., 1968) may be essentially the phase described here, though each card appears to have minor amounts of a 2nd phase.

References

Cleverly, B. and Williams, P. P. (1959). Tetrahedron 7, 277.

International Tables for X-ray Crystallography III (1962). (The Kynoch Press, Birmingham, England), p. 202.

Mesley, R. J., Clements, R. L., Flaherty, B., and Goodhead, K. (1968). J. Pharm. Pharmacol. 20, 329.

Nogami, H., Nagai, T., and Yotsuyanagi, T. (1969). Chem. Pharm. Bull. Tokyo 17, 499.

Williams, P. P. (1973). Acta Crystallogr. B29, 1572.

		40598A		
d(Å)	I ^{rel}	hk	2	20(
15.44	100	0 2	0 -	5.72
8.87	1	0 2	1	9.9
7.72	30	0 4	0	11.4
5.863	90	1 1	1	15.10
5.569	7	1 2	1	15.90
5.434	45	0 0		16.3
5.163	12	1 3		17.10
4.726	9	1 4		18.7
4.653	2	0 6		19.0
4.283	2	1 1	2	20.7
3.897	80	1 6		22.8
3.773	2	1 4		23.5
3.736	3	0 6		23.8
3.548	15	1 7		25.0
3.485	8	2 2	0	25.5
3.378	6	2 3		26.3
3.312	1	1 6		26.9
3.243+	1	1 8		27.4
3.164	1	1 2		28.1
3.085+	13	1 3	3	28.9
2.976+	22	1 9		30.0
2.938	2	2 6		30.4
2.864+	12	1 5		31.20
2.779+	27	2 7		32.1
2.743+	2	1 10	1	32.62
2.685	5	0 10		33.3
2.624	4	2 8		34.1
2.608	7	1 7		34.30
2.585	6	2 6		34.68
2.477+	2	2 9	0	36.24
2.3624	1	2 8		38.00
2.3376	2	2 10		38.4
2.3248+	2	0 12		38.70
2.2224	5	0 8	4	40.5
2.2088	2	2 11	0	40.82

+ More than one hkl possible

d(Å)	I ^{rel}		hkl		2θ(°)
2.1642	2	2	0	4	41.70
2.1436	1	2	2	4	42.12
2.0888	1	2	12	0	43.28
2.0751	2	1	1	5	43.58
2.0616	2	1	2	5	43.88
2.0129	2	1	12	3	45.00
1.9953+	1	3	8	1	45.42
1.9788	1	2	13	0	45.82
1.9279+	6	3	9	1	47.10
1.8597	1	3		1	48.94
1.8309+	1	1	8	5	49.76
1.8220	1	1	14	3	50.02
1.7932	1	3	11	1	50.88
1.7750	1	2	14	2	51.44
1.7156	1	0	18	0	53.36
1.6985	1	2	16	0	53.94
1.6402	1	0	8	6	56.02
1.6046	1	3	1	5	57.38

Calculated Pattern (Integrated) λ=1.540598Å								
d(Å)	I ^{rel}		hkl		2θ(°)			
15.44	100	0	2	0	5.72			
8.891	1	0	2	1	9.94			
7.722	31	0	4	0	11.45			
5.870	97	1	1	1	15.08			
5.573	5	1	2	1	15.89			
5.437	48	0	0	2	16.29			
5.169	11	1	3	1	17.14			
5.148	3	0	6	0	17.21			
5.128	2	0	2	2	17.28			
4.7263	10	1	4	1	18.76			
4.6526	1	0	6	1	19.06			
4.2875	2	1	1	2	20.70			
3.9904	1	1	3	2	22.26			
3.9005	93	1	6	1	22.78			
3.7763	1	1	4	2	23.54			
3.7372	3	0	6	2	23.79			
3.5787	2	2	0	0	24.86			
3.5492	17	1	7	1	25.07			
3.4863	9	2	2	0	25.53			
3.3796	8	2	3	0	26.35			

d(Å)	I ^{rel}	hkl	2θ(°)
3.3129	1	1 6 2	26.89
3.2431	1	1 8 1	27.48
3.1641	1	1 2 3	28.18
3.1112	1	2 4 1	28.67
3.0880	6	0 10 0	28.89
3.0849	10	1 3 3	28.92
2.9820	8	1 4 3	29.94
2.9762	19	1 9 1	30.00
2.9752	2	2 1 2	30.01
2.9379	2	2 6 0	30.40
2.8707	4	2 3 2	31.13
2.8644	12	1 5 3	31.20
2.7870	23	2 4 2	32.09
2.7794	19	2 7 0	32.18
2.7437	2	1 10 1	32.61
2.7380	1	1 6 3	32.68
2.6853	6	0 10 2	33.34
2.6242	4	2 8 0	34.14
2.6079	8	1 7 3	34.36
2.5845	7	2 6 2	34.68
2.4788	1	1 8 3	36.21
2.4768	2	2 9 0	36.24
2.3630	2	2 8 2	38.05
2.3382	2	2 10 0	38.47
2.3260	1	0 12 2	38.68
2.3237	1	3 1 1	38.72
2.2224	7	0 8 4	40.56
2.2088	1	2 11 0	40.82
2.1642	3	2 0 4	41.70
2.1431	2	2 2 4	42.13
2.0893	2	2 12 0	43.27
2.0756	2 2	1 1 5	43.57
2.0616		1 2 5	43.88
2.0133	2	1 12 3	44.99
1.9948	1	3 8 1	45.43
1.9792	2	2 13 0	45.81
1.9287	1	1 6 5	47.08
1.9275	7	3 9 1	47.11
1.8600	1	3 10 1	48.93
1.8220	2	1 14 3	50.02
1.7929	1	3 11 1	50.89
1.7747	1	2 14 2	51.45
1.7629	1	4 3 0	51.82
1.7156	1	0 18 0	53.36
1.6988	1	2 16 0	53.93
1.6402 1.6048	1 2	0 8 6 3 1 5	56.02 57.37

INORGANIC NAMES

	Vol. or		7	/ol. or	_
	Sec.	Page		Sec.	Page
Aluminum, Al	1	11	Ammonium aluminum fluoride,		
Aluminum antimony, AlSb	4	72	(NH ₄) ₃ AlF ₆	9m	5
Aluminum bismuth oxide, Al ₄ Bi ₂ O ₉	11m	5	Ammonium aluminum selenate hydrate,	0	,
Aluminum borate, Al ₁₈ B ₄ O ₃₃	17m	5 6 1	NH ₄ Al(SeO ₄) ₂ ·12H ₂ O	9m	6
Aluminum chloride, AlCl ₃	9m	01	Ammonium aluminum sulfate, NH ₄ Al(SO ₄) ₂	10m	5
Aluminum chloride hydrate (chloraluminite), AlCl ₃ ·6H ₂ O	7	3	Ammonium aluminum sulfate hydrate	10111	3
Aluminum copper, Al ₄ Cu ₉	11m	79	(tschermigite), NH ₄ Al(SO ₄) ₂ ·12H ₂ O	6	3
Aluminum fluoride hydroxide silicate,			Ammonium azide, NH ₄ N ₃	9	4
<pre>topaz, Al₂(F,OH)₂SiO₄</pre>	1m	4	Ammonium beryllium fluoride,		
Aluminum iron, AlFe	18m	5	(NH ₄) ₂ BeF ₄	3m	5
Aluminum iron antimony oxide, bahiani	te,		Ammonium borate hydrate,		
Al _{5.66} Fe _{0.09} Sb _{2.95} O ₁₆	16m	87	NH ₄ B ₅ O ₈ ·4H ₂ O	17m	7
Aluminum iron oxide, AlFeO ₃	15m	7	Ammonium boron fluoride, NH ₄ BF ₄	3m	6
Aluminum lithium, Al ₄ Li ₉	10m	98	Ammonium bromide, NH ₄ Br	2	49
Aluminum nickel, AlNi	6m	82 5	Ammonium cadmium bromide, (NH ₄) ₄ CdBr ₆	15m	9 6
Aluminum nitride, AlN	12m	3	Ammonium cadmium chloride, NH ₄ CdCl ₃	5m	0
A1(NO ₃) ₃ •9H ₂ O	11m	6	Ammonium cadmium phosphate hydrate, NH ₄ CdPO ₄ ·H ₂ O	19m	13
Aluminum oxide (corundum), α -Al ₂ 0 ₃	9	3	Ammonium cadmium sulfate,	13111	13
Aluminum oxide hydrate (boehmite),	,	,	$(NH_4)_2Cd_2(SO_4)_3$	7m	5
α-Al ₂ O ₃ ·H ₂ O	3	38	Ammonium cadmium sulfate hydrate,	7 111	J
Aluminum oxide hydrate, diaspore,			(NH ₄) ₂ Cd(SO ₄) ₂ ·6H ₂ O	8m	5
β-Al ₂ O ₃ ·H ₂ O	3	41	Ammonium calcium sulfate,	-	
Aluminum phosphate, Al(PO ₃) ₃	2m	3	$(NH_4)_2Ca_2(SO_4)_3$	8m	7
Aluminum phosphate (berlinite),			Ammonium cerium nitrate,		
AlPO ₄ (trigonal)	10	3	$(NH_4)_2Ce(NO_3)_6$	18m	6
Aluminum phosphate, AlPO ₄			Ammonium chlorate, NH ₄ ClO ₄		
(orthorhombic)	10	4	(orthorhombic)	7	6
Aluminum plutonium, Al ₃ Pu	15m	77	Ammonium chloride (salammoniac),		
Aluminum rhenium, AlRe	15m	79	NH ₄ C1	1	59
Aluminum rhenium, Al ₁₂ Re	15m	80	Ammonium chromium sulfate hydrate,		_
Aluminum rhodium, AlRh	15m	82	NH ₄ Cr(SO ₄) ₂ ·12H ₂ O	6	7
Aluminum ruthenium, AlRu	15m	83	Ammonium cobalt (II) chloride,		_
Aluminum ruthenium, Al ₆ Ru	15m	84	NH ₄ CoCl ₃	6m	5
Aluminum samarium, AlSm ₂	15m 15m	86 88	Ammonium cobalt fluoride, NH ₄ CoF ₃	8m	9
Aluminum samarium, AlSm ₃	15m	90	Ammonium copper bromide hydrate, (NH ₄) ₂ CuBr ₄ ·2H ₂ O	10m	6
Aluminum samarium, Al ₃ Sm	15m	91	Ammonium copper chloride, NH ₄ CuCl ₃	7m	7
Aluminum silicate (mullite),	10	7.	Ammonium copper chloride hydrate,	,	•
Al ₆ Si ₂ O ₁₃	3m	3	$(NH_4)_2CuCl_4 \cdot 2H_2O \dots$	12m	6
Aluminum sulfate, Al ₂ (SO ₄) ₃	15m	8	Ammonium copper fluoride, NH ₄ CuF ₃	11m	8
Aluminum technetium, AlaTc	15m	93	Ammonium gallium sulfate hydrate,		
Aluminum terbium, Al ₂ Tb	15m	95	$NH_4Ga(SO_4)_2 \cdot 12H_2O \dots$	6	9
Aluminum terbium, Al ₂ Tb ₃	15m	96	Ammonium germanium fluoride,		
Aluminum thorium uranium, Al ₆ ThU	15m	98	$(NH_4)_2GeF_6$	6	8
Aluminum tungsten, Al_5W , δ -phase	15m	100	Ammonium hydrogen arsenate,		
Aluminum tungsten oxide, Al ₂ (WO ₄) ₃	11m	7	NH ₄ H ₂ AsO ₄	16m	9
Aluminum vanadium, Al ₁₀ V	15m	102	Ammonium hydrogen carbonate	0	-
Aluminum vanadium, Al _{10,25} V	15m	104	(teschemacherite), (NH ₄)HCO ₃	9	5
Aluminum vanadium, Al ₂₃ V ₄	15m	106 108	Ammonium hydrogen phosphate,	/.	64
Aluminum vanadium, Al ₄₅ V ₇ , α -phase .	15m 15m	111	NH ₄ H ₂ PO ₄ Ammonium iodate, NH ₄ IO ₃	4 10m	7
Aluminum ytterbium, Al ₂ Yb	15m	112	Ammonium iodide, NH ₄ I	4	56
Aluminium yttrium oxide, AlYO ₃	19m	7	Ammonium iridium chloride,		30
Aluminium yttrium oxide, Al ₂ Y ₄ O ₉	19m	9	(NH ₄) ₂ IrCl ₆	8	6
Aluminium yttrium oxide, Al ₅ Y ₃ O ₁₂	19m	11	Ammonium iron chloride hydrate,		
, , , , , , , , , , , , , , , , , , , ,			(NH ₄) ₂ FeCl ₅ ·H ₂ O	14m	7
Further work on this program is i	n prog	ress,	Ammonium iron fluoride, (NH ₄) ₃ FeF ₆	9m	9
and it is anticipated that addition			Ammonium iron sulfate, NH ₄ Fe(SO ₄) ₂	10m	8
will be issued. Therefore, the cumul			Ammonium iron sulfate hydrate,		
here is not necessarily the concl	uding :	index	$NH_4Fe(SO_4)_2 \cdot 12H_2O \dots$	6	10
for the project.			Ammonium lead chloride, (NH ₄) ₂ PbCl ₆	11m	10
m - Monograph 25.			Ammonium magnesium aluminum fluoride,		
A mineral name in () indicates a	synthe	etic	NH ₄ MgAlF ₆	10m	9
sample.					

	Vol. or		7	Vol. or	•
	Sec.			Sec.	Page
Ammonium magnesium chromium oxide			Antimony cobalt vanadium, CoSbV	15m	125
hydrate, (NH ₄) ₂ Mg(CrO ₄) ₂ ·6H ₂ O	8m	10	Antimony dysprosium, DySb	4m	41
Ammonium magnesium phosphate hydrate			Antimony erbium, ErSb	4m	41
(struvite), NH ₄ MgPO ₄ ·6H ₂ O	3m	41	Antimony(III) fluoride, SbF ₃	2m	4
Ammonium manganese chloride hydrate,			Antimony gadolinium, GdSb	4m	42
$(NH_4)_2MnCl_4 \cdot 2H_2O \dots$	11m	11	Antimony gallium, GaSb	6	30
Ammonium manganese(II) fluoride,			Antimony gold (aurostibite), AuSb ₂	7	18
NH ₄ MnF ₃	5m	8	Antimony indium, InSb	4	73
Ammonium manganese sulfate,			Antimony(III) iodide, SbI_3	6	16
$(NH_4)_2Mn_2(SO_4)_3$	7 m	8	Antimony iron titanium oxide		
Ammonium manganese sulfate hydrate,			hydroxide, derbylite,		
(NH ₄) ₂ Mn(SO ₄) ₂ ·6H ₂ O	8m	12	SbFe ₄ Ti ₃ O ₁₃ (OH)	16m	89
Ammonium mercury chloride, NH ₄ HgCl ₃	8m	14	Antimony lanthanum, LaSb	4m	42
Ammonium molybdenum oxide phosphate	8	10	Antimony neodymium, NdSb	4m	43
hydrate, (NH ₄) ₃ (MoO ₃) ₁₂ PO ₄ ·4H ₂ O Ammonium nickel(II) chloride,	0	10	Antimony(III) oxide (senarmontite), Sb ₂ O ₃ (cubic)	3	31
NH ₄ NiCl ₃	6m	6	Antimony(III) oxide, valentinite,	3	31
Ammonium nickel chromium oxide	Oili	U	Sb ₂ O ₃ (orthorhombic)	10	6
hydrate, (NH ₄) ₂ Ni(CrO ₄) ₂ ·6H ₂ O	8m	16	Antimony(IV) oxide (cervantite),	10	J
Ammonium nickel sulfate hydrate,		10	Sb ₂ O ₄	10	8
$(NH_4)_2Ni(SO_4)_2 \cdot 6H_2O \dots$	17m	9	Antimony oxide, Sb_6O_{13}	16m	14
Ammonium nitrate (nitrammite),			Antimony praseodymium, PrSb	4m	43
NH ₄ NO ₃	7	4	Antimony scandium, SbSc	4m	44
Ammonium osmium bromide, (NH ₄) ₂ OsBr ₆	3	71	Antimony selenide, Sb_2Se_3	3m	7
Ammonium osmium chloride,			Antimony silver sulfide, AgSbS ₂		
(NH ₄) ₂ OsCl ₆	1m	6	(cubic)	5m	48
Ammonium palladium chloride,			Antimony silver sulfide (miargyrite),		
$(NH_4)_2$ PdCl ₄	6	6	AgSbS ₂ (monoclinic)	5m	49
Ammonium palladium chloride,			Antimony silver sulfide (pyrargyrite),	•	
(NH ₄) ₂ PdCl ₆	8	7	Ag ₃ SbS ₃ (trigonal)	5m	51
Ammonium platinum bromide,	•		Antimony silver telluride, AgSbTe ₂	3m	47
(NH ₄) ₂ PtBr ₆	9	6	Antimony(III) sulfide (stibnite),	_	
Ammonium platinum chloride,	-	^	Sb ₂ S ₃	5	6
(NH ₄) ₂ PtCl ₆	5	3	Antimony telluride, Sb ₂ Te ₃	3m	8
Ammonium potassium iron chloride hydrate (kremersite),			Antimony terbium, SbTb	5m 4m	61 44
(NH ₄ ,K) ₂ FeCl ₅ ·H ₂ O	14m	8	Antimony thorium, SbTh Antimony thulium, SbTm	4m	45
Ammonium rhenium oxide, NH ₄ ReO ₄	9	7	Antimony tin, SbSn	16m	15
Ammonium selenium bromide,		•	Antimony ytterbium, SbYb	4m	45
(NH ₄) ₂ SeBr ₆	8	4	Antimony yttrium, SbY	4m	46
Ammonium silicon fluoride			Arsenic, As	3	6
(cryptohalite), (NH ₄) ₂ SiF ₆	5	5	Arsenic bromide, AsBr ₃	18m	9
Ammonium strontium chromium oxide,			Arsenic cerium, AsCe	4m	51
$(NH_4)_2Sr(CrO_4)_2 \dots$	14m	9	Arsenic(III) iodide, AsI ₃	13m	7
Ammonium strontium sulfate,			Arsenic oxide (arsenolite),		
$(NH_4)_2Sr(SO_4)_2$	15m	11	As ₂ 0 ₃ (cubic)	1	51
Ammonium sulfate (mascagnite),			Arsenic oxide, claudetite, As ₂ 0 ₃		
(NH ₄) ₂ SO ₄	9	8	(monoclinic)	3m	9
Ammonium sulfate, (NH ₄) ₂ S ₂ O ₃	17m	11	Barium, Ba	4	7
Ammonium sulfate, $(NH_4)_2S_2O_8$	17m	13	Barium aluminum oxide, BaAl ₂ O ₄	5m	11
Ammonium tellurium bromide,		_	Barium aluminum oxide, Ba ₃ Al ₂ O ₆	12m	7
(NH ₄) ₂ TeBr ₆	8	5	Barium aluminum titanium oxide,	10m	1/
Ammonium tellurium chloride,	8	8	BaA1 ₆ TiO ₁₂ Barium aluminum titanium oxide,	19m	14
(NH ₄) ₂ TeCl ₆	5	4		18m	10
Ammonium tin fluoride, NH ₄ SnF ₃	18m	8	Ba _{1.23} Al _{2.46} Ti _{5.54} O ₁₆ Barium aluminum titanium oxide,	1011	10
Ammonium titanium fluoride,	10111		Ba ₃ Al ₁₀ TiO ₂₀	19m	16
(NH ₄) ₂ TiF ₆	16m	10	Barium arsenate, Ba ₃ (AsO ₄) ₂	2m	6
Ammonium vanadium oxide, NH ₄ VO ₃	8	9	Barium borate, BaB ₄ O ₇	4m	6
Ammonium zinc chloride, (NH ₄) ₃ ZnCl ₅	15m	12	Barium borate, high form, BaB ₂ O ₄	4m	4
Ammonium zinc fluoride, NH ₄ ZnF ₃	8m	18	Barium borate, BaB ₈ O ₁₃	7 m	10
Ammonium zirconium fluoride,			Barium boride, BaB ₆	19m	18
(NH ₄) ₃ ZrF ₇	6	14	Barium bromate hydrate,		
Antimony cobalt, CoSb	15m	121	$Ba(BrO_3)_2 \cdot H_2O \dots$	8m	19
Antimony cobalt, CoSb ₂	15m	122	Barium bromide, BaBr ₂	10m	63
Antimony cobalt titanium, CoSbTi	15m	124			

	Vol. or	•	V	ol. or	•
		Page		_	Page
Barium bromide fluoride, BaBrF	10m	. 10	Barium strontium nitrate,		
Barium bromide hydrate, BaBr ₂ ·H ₂ O	3m	10	Ba _{.50} Sr _{.50} (NO ₃) ₂	12m	42
Barium bromide hydrate, BaBr ₂ ·2H ₂ O	16m	16	Barium strontium nitrate,		
Barium cadmium chloride hydrate,			Ba _{.75} Sr _{.25} (NO ₃) ₂	12m	42
BaCdCl ₄ ·4H ₂ O	15m	14	Barium sulfate (baryte), BaSO ₄	10m	12
Barium calcium nitrate,			Barium sulfide, BaS	7	8
Ba 25Ca 75(NO3)2	12m	38	Barium thiosulfate hydrate,	16	20
Barium calcium nitrate,	12m	38	$BaS_2O_3 \cdot H_2O$ Barium tin oxide, $BaSnO_3$	16m 3m	20 11
Ba _{.50} Ca _{.50} (NO ₃) ₂ Barium calcium nitrate,	1 2111	30	Barium titanium oxide, BaTiO ₃	3	45
Ba _{.75} Ca _{.25} (NO ₃) ₂	12m	38	Barium titanium silicate (fresnoite),		
Barium calcium tungsten oxide,			Ba ₂ TiSi ₂ O ₈	9m	14
Ba ₂ CaWO ₆	9m	10	Barium tungsten oxide, BaWO ₄	7	9
Barium carbonate (witherite), BaCO ₃			Barium tungsten oxide, Ba ₂ WO ₅	12m	14
(orthorhombic)	2	54	Barium tungsten oxide, Ba ₃ WO ₆	19m	21
Barium carbonate, BaCO ₃ (cubic)	10	11	Barium vanadium oxide, Ba ₃ (VO ₄) ₂	14m	10 8
at 1075 °C	10 16m	11 17	Barium zirconium oxide, BaZrO ₃ Beryllium, alpha, Be	5 9m	64
Barium chlorate hydrate,	Tom	17	Beryllium aluminum oxide	7111	04
Ba(ClO ₃) ₂ ·H ₂ O	8m	21	(chrysoberyl), BeAl ₂ 0 ₄	9	10
Barium chlorate hydrate,			Beryllium aluminum silicate, beryl,		
$Ba(C10_4)_2 \cdot 3H_20 \dots$	2m	7	Be ₃ Al ₂ (SiO ₃) ₆	9	13
Barium chloride, BaCl ₂ , (cubic)	9m	13	Beryllium calcium iron magnesium		
Barium chloride, BaCl ₂ ,			aluminum phosphate hydroxide		
(orthorhombic)	9m	11	hydrate, roscherite (monoclinic),		
Barium chloride fluoride, BaClF	10m	11	Be ₂ Ca(Fe _{.3} Mg _{.7}) ₂ Al _{.67} (PO ₄) ₃ (OH) ₃ ·2H ₂ O	16m	96
Barium chloride hydrate, BaCl ₂ ·2H ₂ O Barium chromium oxide,	12m	9	Beryllium calcium manganese aluminum iron phosphate hydroxide		
$Ba_3(CrO_4)_2$	15m	16	hydrate, roscherite (triclinic),		
Barium fluoride, BaF ₂	1	70	Be ₄ Ca ₂ (Mn _{3.91} Mg _{.04} Ca _{.05})(Al _{.13} Fe _{.42}		
Barium hydroxide phosphate,			$Mn_{12})(PO_4)_6(OH)_4 \cdot 6H_2O \cdot$	16m	100
Ba ₅ (OH)(PO ₄) ₃	11m	12	Beryllium calcium oxide,		
Barium iodide, BaI ₂	10m	66	Be ₁₇ Ca ₁₂ O ₂₉	7m	89
Barium iodide hydrate, BaI ₂ ·2H ₂ O	16m	18	Beryllium carbide, Be ₂ C	19m	23
Barium lead chloride, BaPbCl ₄	11m	13	Beryllium chromium oxide, BeCr ₂ O ₄	10	12
Barium lead nitrate,	10	60	Beryllium cobalt, BeCo	5m	62 13
Ba _{.33} Pb _{.67} (NO ₃) ₂ Barium lead nitrate,	12m	40	Beryllium germanium oxide, Be ₂ GeO ₄ Beryllium lanthanum oxide, Be ₂ La ₂ O ₅	10 9m	65
Ba _{.67} Pb _{.33} (NO ₃) ₂	12m	40	Beryllium niobium, Be ₂ Nb	7m	92
Barium manganese oxide, BaMnO ₄	18m	11	Beryllium nitride, Be ₃ N ₂	18m	15
Barium manganese oxide,			Beryllium oxide (bromellite), BeO	1	36
$Ba(MnO_4)_2$	15m	17	Beryllium palladium, BePd	5m	62
Barium molybdenum oxide, BaMoO ₄	7	7	Beryllium silicate, phenakite,		
Barium molybdenum oxide, Ba ₂ MoO ₅	12m	10	Be ₂ SiO ₄	8	11
Barium neodymium titanium oxide,	10	10	Beryllium sulfate, BeSO ₄	15m	20
BaNd ₂ Ti ₃ O ₁₀	18m	12	Bismuth, Bi	3 8	20 14
Barium neodymium titanium oxide, BaNd ₂ Ti ₅ O ₁₄	19m	19	Bismuth cerium, BiCe	4m	46
Barium nitrate (nitrobarite),	17	• 7	Bismuth chloride oxide (bismoclite),		
Ba(NO ₃) ₂	11m	14	BiOC1	4	54
Barium nitrite hydrate,			Bismuth dysprosium, BiDy	4m	47
$Ba(NO_2)_2 \cdot H_2O \dots$	15m	18	Bismuth erbium, BiEr	4m	47
Barium oxide, BaO	9m	63	Bismuth fluoride, BiF ₃	1m	7
Barium oxide, BaO ₂	6	18	Bismuth holmium, BiHo	4m	48
Barium phosphate, Ba ₂ P ₂ O ₇ ,	16m	19	Bismuth(III) iodide, BiI ₃	6 9	20 16
(high form)	16m 12m	12	Bismuth iodide oxide, BiOI Bismuth lanthanum, BiLa	4m	48
Barium selenide, BaSe	5m	61	Bismuth neodymium, BiNd	4m	49
Barium silicate, β-BaSiO ₃	13m	- 8	Bismuth oxide (bismite), α-Bi ₂ O ₃	3m	17
Barium silicate (sanbornite),			Bismuth phosphate, BiPO ₄		
β-BaSi ₂ O ₅	13m	10	(monoclinic)	3m	11
Barium silicate, Ba ₂ SiO ₄	13m	12	Bismuth phosphate, BiPO ₄ (trigonal)	3m	13
Barium silicate, Ba ₂ Si ₃ O ₈	13m	13	Bismuth praseodymium, BiPr	4m	49
Barium silicate, Ba ₃ SiO ₅	13m	15	Bismuth selenide (paraguanajuatite),	10-	16
Barium silicate, Ba ₃ Si ₅ O ₁₃	13m	17 7	Bi_2Se_3 Bismuth sulfide (bismuthinite),	18m	16
Barium silicon fluoride, BaSiF ₆ Barium strontium nitrate,	4m	,	Bi ₂ S ₃	5m	13
Ba _{.25} Sr _{.75} (NO ₃) ₂	12m	42	5-2-3		Ī
,20 ,10 . 3/2		_			

	Vol. or			Vol. or	;
	Sec.	Page		Sec.	Page
Bismuth telluride, BiTe Bismuth telluride (tellurobis-	4m	50	Calcium bromide, CaBr ₂ Calcium bromide hydrate, CaBr ₂ ·6H ₂ O	11m 8	70 15
muthite), Bi ₂ Te ₃ Bismuth vanadium oxide, high form,	3m	16	Calcium carbonate (aragonite), CaCO ₃ (orthorhombic)	3	53
BiVO ₄ (monoclinic)	3m	14	Calcium carbonate (aragonite), CaCO ₃ (orthorhombic, calculated		
Bismuth vanadium oxide, low form, BiVO ₄ (tetragonal)	3m	14	pattern)	14m	44
Boron oxide, B ₂ O ₃ , phase 1	10m 3	70 10	Calcium carbonate (calcite), CaCO ₃ (hexagonal)	2	51
Cadmium, Cd	3	10	Calcium chloride (hydrophilite),	2	31
$Cd(NH_3)_2Cl_2$	10m 16m	14 24	CaCl ₂	11m 10m	18 17
Cadmium borate, CdB ₄ O ₇ Cadmium bromate hydrate,	1011	24	Calcium chloride fluoride, CaClF Calcium chloride hydrate,	1011	17
Cd(Br0 ₃)·2H ₂ 0	17m 9	14 17	CaCl ₂ ·4H ₂ O Calcium chloride hydrate	11m	73
Cadmium bromide chloride, CdBrCl	11m	15	(antarcticite), CaCl ₂ ·6H ₂ O	12m	16
Cadmium carbonate (otavite), CdCO ₃	7	11 63	Calcium chromium germanium oxide,	10	16
Cadmium cerium, CdCe	5m	03	$Ca_3Cr_2(GeO_4)_3$	10	10
Cd(ClO ₄) ₂ ·6H ₂ O	3m 9	19 18	oxide, loveringite, Ca _{.72} RE _{.33} (Y,		
Cadmium chloride, CdCl ₂	5 m	16	Th,U,Pb) _{.05} Ti _{12.48} Fe _{3.38} Cr _{2.24} Mg _{.92} Zr _{.58} Al _{.39} V _{.21} Mn _{.04} O ₃₈	16m	106
Cadmium copper, Cd ₈ Cu ₅	11m 2m	81 8	Calcium chromium oxide (chromatite),	7	13
Cadmium cyanide, Cd(CN) ₂ Cadmium fluoride, CdF ₂	10m	15	$CaCrO_4$ Calcium chromium oxide, $Ca_3(CrO_4)_2$	15m	22
Cadmium iodide, α -Cd I_2	19m	24	Calcium chromium silicate	10	17
Cadmium iron oxide, CdFe ₂ O ₄ Cadmium lanthanum, CdLa	9m 5m	16 63	(uvarovite), $Ca_3Cr_2(SiO_4)_3$ $Calcium$ cyanamide, $CaCN_2$	10 18m	17 19
Cadmium manganese oxide, CdMn ₂ O ₄	10m	16	Calcium fluoride (fluorite), CaF_2 .	1	69
Cadmium molybdenum oxide, CdMoO ₄ Cadmium nitrate hydrate,	6	21	Calcium fluoride phosphate (fluorapatite), $Ca_5F(PO_4)_3$	3m	22
Cd(NO ₃) ₂ ·4H ₂ O	7m	93	Calcium fluoride phosphate hydrate,	15	27
Cadmium oxide, CdO	2 8m	27 2	CaFPO ₃ ·2H ₂ O	15m	24
Cadmium phosphate, Cd ₂ P ₂ O ₇	16m	26	$Ca_3Ga_2(GeO_4)_3$	10	18
Cadmium phosphate, Cd ₃ (PO ₄) ₂ Cadmium praseodymium, CdPr	16m 5m	27 64	Calcium hydrogen phosphate hydrate, Ca ₈ H ₂ (PO ₄) ₆ ·5H ₂ O	13m	21
Cadmium selenide (cadmoselite),	7	10	Calcium hydrogen phosphate sulfate	16	100
CdSe (hexagonal)	7 13m	12 19	hydrate, Ca ₂ HPO ₄ SO ₄ ·4H ₂ O Calcium hydroxide (portlandite),	16m	109
Cadmium silicate, Cd ₃ SiO ₅	13m	20	Ca(OH) ₂	1	58
Cadmium sulfate, CdSO ₄ Cadmium sulfate hydrate, CdSO ₄ ·H ₂ O	3m 6m	20 10	Calcium iodate (lautarite), Ca(IO ₃) ₂	14m	12
Cadmium sulfate hydrate,	(0	Calcium iodate hydrate,	1/	10
3CdSO ₄ ·8H ₂ O	6m 4	8 15	Ca(IO ₃) ₂ ·6H ₂ O	14m	13
Cadmium telluride, CdTe	3m	21	$Ca_3Fe_2(GeO_4)_3$	10	19
Cadmium titanium oxide, CdTiO ₃ Cadmium tungsten oxide, CdWO ₄	15m 2m	21 8	Calcium iron oxide, CaFe ₂ O ₄ Calcium iron silicate (andradite),	18m	20
Calcium, Ca	9m	68	$Ca_3Fe_2Si_3O_{12}$	9	22
Calcium aluminum germanium oxide, Ca ₃ Al ₂ (GeO ₄) ₃	10	15	Calcium iron silicate hydroxide, julgoldite,		
Calcium aluminum hydroxide,	1.1m	16	$Ca_{2}Fe_{3}Si_{3}O_{10}(OH,O)_{2}(OH)_{2} \dots$	10m	72
Ca ₃ Al ₂ (OH) ₁₂	11m	16	Calcium lead nitrate, Ca _{.33} Pb _{.67} (NO ₃) ₂	12m	44
(brownmillerite), Ca ₄ Al ₂ Fe ₂ O ₁₀	16m	28 10	Calcium lead nitrate,	12m	44
Calcium aluminum oxide, Ca ₃ Al ₂ O ₆ Calcium aluminum oxide (mayenite),	5	10	Ca _{.67} Pb _{.33} (NO ₃) ₂ Calcium magnesium silicate	12m	44
Ca ₁₂ Al ₁₄ O ₃₃	9	20	(diopside), $CaMg(SiO_3)_2$	5m	17
Calcium aluminum oxide hydrate, Ca ₄ Al ₆ O ₁₃ ·3H ₂ O	19m	25	Calcium molybdenum oxide (powellite), CaMoO4	6	22
Calcium aluminum silicate hydrate,	10-	27	Calcium nitrate, $Ca(NO_3)_2$	7 1	14 43
chabazite, Ca ₂ Al ₄ Si ₈ O ₂₄ ·12H ₂ O Calcium aluminum sulfate hydrate	19m	27	Calcium oxide (lime), CaO Calcium oxide (lime), CaO	1	43
(ettringite), Ca ₆ Al ₂ S ₃ O ₁₈ ·3lH ₂ O	8 18m	3	(calculated pattern)	14m	49 17
Calcium borate, CaB ₂ O ₄	18m	17	Calcium oxide phosphate, $Ca_4O(PO_4)_2$ Calcium phosphate, β - $Ca_2P_2O_7$	12m 7m	17 95
(calculated pattern)	15m	136	Calcium platinum oxide, Ca ₄ PtO ₆	10m	18
Calcium borate hydrate, hexahydroborite, $Ca[B(OH)_4]_2 \cdot 2H_2O$	16m	104			
Calcium boride, CaB ₆	16m	29			

	Vol. or	•		Vol. or	
	Sec.	Page		Sec.	Page
Calcium selenide, CaSe	5m	64	Cesium chlorate, CsClO ₄ ,		
Calcium silicate (larnite),			(orthorhombic)	1m	10
β-Ca ₂ SiO ₄	19m	29	Cesium chloride, CsCl	2	44
Calcium silicon fluoride hydrate,	19m	31	Cesium chromium oxide, Cs ₂ CrO ₄	3m	25
CaSiF ₆ ·2H ₂ O Calcium strontium nitrate,	17111	31	Cesium chromium sulfate hydrate, CsCr(SO ₄) ₂ ·12H ₂ O	8	21
Ca _{.33} Sr _{.67} (NO ₃) ₂	12m	46	Cesium cobalt(II) chloride, CsCoCl ₃	6m	11
Calcium strontium nitrate,			Cesium cobalt chloride, Cs ₂ CoCl ₄	11m	19
Ca _{.67} Sr _{.33} (NO ₃) ₂	12m	46	Cesium copper(II) chloride, CsCuCl ₃	5m	22
Calcium sulfate (anhydrite), CaSO ₄	4	65	Cesium copper chloride, Cs ₂ CuCl ₄	11m	20
Calcium sulfate hydrate (bassanite),	10m	22	Cesium copper sulfate hydrate,	7m	1.4
$CaSO_4 \cdot 0.5H_2O$	18m	22	Cs ₂ Cu(SO ₄) ₂ ·6H ₂ O Cesium fluoride, CsF	7m 3m	14 26
CaSO ₄ • 2H ₂ O	17m	16	Cesium gallium sulfate hydrate,	J	
Calcium sulfide (oldhamite), CaS	7	15	$CsG_a(SO_4)_2 \cdot 12H_2O \dots$	8	23
Calcium telluride, CaTe	4m	50	Cesium germanium fluoride, Cs ₂ GeF ₆	5	17
Calcium tin oxide, CaSnO ₃	17m	18	Cesium iodate, CsIO ₃	15m	26
Calcium titanium oxide	9 m	17	Cesium iodide, CsI Cesium iodide, CsI ₃	4 10m	47 33
(perovskite), CaTiO ₃ Calcium tungsten oxide, Ca ₃ WO ₆	9m	19	Cesium iodine bromide, CsI ₂ Br	19m 7m	103
Calcium tungsten oxide, scheelite,	7	17	Cesium iodine chloride, CsICl ₂	3	50
CaWO ₄	6	23	Cesium iron chloride hydrate,		
Carbon, diamond, C	2	5	Cs ₂ FeCl ₅ ·H ₂ O	14m	14
Cerium arsenate, CeAsO ₄	4m	8	Cesium iron sulfate hydrate,		
Cerium(III) chloride, CeCl ₃	lm	8	$Cs_2Fe(SO_4)_2 \cdot 6H_2O$	7m	16
Cerium cobalt, CeCo ₂ Cerium cobalt, Ce ₂₄ Co ₁₁	13m 13m	50 51	Cesium iron sulfate hydrate, CsFe(SO ₄) ₂ ·12H ₂ O	6	28
Cerium copper, CeCu ₆	7m	99	Cesium lead(II) chloride, CsPbCl ₃	O	20
Cerium(III) fluoride, CeF ₃	8	17	(tetragonal)	5 m	24
Cerium gallium, CeGa ₂	13m	54	Cesium lead fluoride, CsPbF ₃	8m	26
Cerium magnesium, CeMg	5m	65	Cesium lithium cobalt cyanide,		
Cerium magnesium, CeMg ₃	13m	56	CsLiCo(CN) ₆	10m	79
Cerium nickel, CeNi ₂ Cerium niobium oxide, CeNbO ₄	13m 18m	58 25	Cesium lithium fluoride, CsLiF ₂	7m	105
Cerium niobium titanium oxide	10111	23	Cesium magnesium chromium oxide, Cs ₂ Mg ₂ (CrO ₄) ₃	8m	27
(aeschynite), CeNbTiO ₆	3m	24	Cesium magnesium chromium oxide	0	
Cerium nitrate hydrate,			hydrate, $Cs_2Mg(CrO_4)_2 \cdot 6H_2O \dots$	8m	29
$Ce(NO_3)_3 \cdot 6H_2O$	17m	20	Cesium magnesium sulfate hydrate,		
Cerium nitride, CeN	4m	51	$Cs_2Mg(SO_4)_2 \cdot 6H_2O \dots$	7m	18
Cerium(IV) oxide (cerianite), CeO ₂	1	56 52	Cesium magnesium titanium oxide,	10	29
Cerium phosphide, CeP Cerium tantalum oxide, CeTaO ₄	4m 18m	27	Cs _{1.45} Mg _{0.724} Ti _{7.27} O ₁₆ Cesium manganese fluoride, CsMnF ₃	18m 10m	21
Cerium thallium, CeTl	13m	59	Cesium manganese sulfate hydrate,	10111	
Cerium thallium, CeTl ₃	13m	60	$Cs_2Mn(SO_4)_2 \cdot 6H_2O \dots$	7m	20
Cerium thallium, Ce ₃ Tl	13m	61	Cesium mercury chloride, CsHgCl ₃	7m	22
Cerium(III) vanadium oxide, CeVO ₄	1m	9	Cesium molybdenum oxide,		
Cerium zinc, CeZn	5m	65	Cs ₂ Mo ₃ O ₁₀	19m	35 12
Cerium zinc, CeZn ₃ Cerium zinc, CeZn ₅	14m 14m	50 53	Cesium nickel(II) chloride, CsNiCl ₃ Cesium nickel sulfate hydrate,	6m	12
Cerium zinc, Ce ₂ Zn ₁₇	14m	55	Cs ₂ Ni(SO ₄) ₂ ·6H ₂ O	7m	23
Cesium aluminum sulfate hydrate,			Cesium nitrate, CsNO ₃	9	25
$CsA1(SO_4)_2 \cdot 12H_2O$	6	25	Cesium osmium(IV) bromide, Cs ₂ OsBr ₆	2m	10
Cesium antimony fluoride, CsSbF ₆	4m	9	Cesium osmium chloride, Cs ₂ OsCl ₆	2m	11
Cesium beryllium fluoride, CsBeF ₃	9m	69	Cesium platinum bromide, Cs ₂ PtBr ₆ .	8	19
Cesium boron fluoride, CsBF ₄ Cesium bromate, CsBrO ₃	8 8	22 18	Cesium platinum chloride, Cs ₂ PtCl ₆ Cesium platinum fluoride, Cs ₂ PtF ₆ .	5 6	14 27
Cesium bromide, CsBr	3	49	Cesium selenium bromide, Cs ₂ SeBr ₆ .	8	20
Cesium cadmium bromide, CsCdBr ₃	J		Cesium silicon fluoride, Cs ₂ SiF ₆	5	19
(hexagonal)	10m	20	Cesium strontium chloride, CsSrCl ₃	6m	13
Cesium cadmium chloride, CsCdCl ₃			Cesium sulfate, Cs ₂ SO ₄	7	17
(hexagonal)	5m	19	Cesium tellurium bromide, Cs ₂ TeBr ₆	9	24
Cesium calcium chloride, CsCaCl ₃	5m 8m	21 25	Cesium tin chloride, Cs ₂ SnCl ₆	5	16
Cesium calcium fluoride, CsCaF ₃ Cesium calcium sulfate,	8m	23	Cesium vanadium sulfate hydrate, CsV(SO ₄) ₂ ·12H ₂ O	1m	11
$Cs_2Ca_2(SO_4)_3$	7m	12	Cesium zinc sulfate hydrate,		
Cesium cerium chloride, Cs ₂ CeCl ₆	14m	58	$Cs_2Zn(SO_4)_2 \cdot 6H_2O \dots$	7m	25
Cesium chlorate, CsClO ₃	8	20	Chromium, Cr	5	20
Chromium, Cr	5	20	Chromium boride, ζ-CrB	17m	22
Chromium boride, ζ-CrB	17m	22			

7	ol. or	•			Vol. or	
	Sec.	Page			Sec.	Page
Chromium boride, CrB ₂	19m	37		Cobalt germanium manganese,		
Chromium boride, Cr ₅ B ₃	18m	30		Co ₂ GeMn	13m	79
Chromium chloride, CrCl ₂	11m	77		Cobalt germanium niobium,	15-	150
Chromium chloride, CrCl ₃ Chromium chloride hydrate, CrCl ₃ ·6H ₂ O	17m 16m	23 31		Co _{1.5} Ge _{0.5} Nb	15m	150
Chromium cobalt niobium, CoCrNb	15m	140		Co ₁₆ Ge ₇ Nb ₆	14m	71
Chromium cobalt silicide,				Cobalt germanium oxide, Co ₂ GeO ₄	10	27
Co ₉ Cr ₁₅ Si ₆	14m	62		Cobalt germanium tantalum,	15	150
Chromium cobalt tantalum, CoCrTa	15m 10m	142 81		Co _{1.5} Ge _{0.5} Ta	15m	152
Chromium fluoride, CrF ₂	7m	108		Co ₁₆ Ge ₇ Ta ₆	14m	73
Chromium(III) fluoride hydrate,				Cobalt germanium titanium, Co ₂ GeTi	13m	80
CrF ₃ ·3H ₂ O	5m	25		Cobalt hafnium tin, Co ₂ HfSn	14m	75
Chromium iridium, Cr ₃ Ir	6m	14		Cobalt holmium, Co ₂ Ho	14m 15m	76 154
Chromium iron oxide, Cr _{1.3} Fe _{0.7} O ₃	17m	24		Cobalt holmium, $Co_{9.2}Ho_{12}$ Cobalt hydroxide, β -Co(OH) ₂	15m	29
Chromium niobium oxide, CrNbO ₄	19m	38		Cobalt indium, CoIn ₃	13m	81
Chromium oxide, CrO ₃	17m	25		Cobalt iodide, CoI ₂	4m	52
Chromium(III) oxide, Cr ₂ O ₃	5	22		Cobalt iron arsenide	10	0.0
Chromium phosphate, α-CrPO ₄ Chromium phosphate, β-CrPO ₄	2m 9	12 26		(safflorite), CoFeAs ₄ Cobalt iron oxide, CoFe ₂ O ₄	10 9m	28 22
Chromium phosphate hydrate,		2.0		Cobalt iron sulfide, CogFeSg	14m	77
CrPO ₄ ·6H ₂ O	15m	27		Cobalt iron vanadium,		
Chromium rhodium, Cr ₃ Rh	6m	15		Co _{4.35} Fe _{13.47} V _{12.18}	14m	79
Chromium silicide, Cr ₃ Si	6	29 33		Cobalt lanthanum, CoLa ₃	13m	83
Chromium sulfate, $Cr_2(SO_4)_3$ Cobalt, Co (cubic)	16m 4m	10		Cobalt magnesium Co.Mg	13m 15m	86 156
Cobalt aluminum oxide, CoAl ₂ O ₄	9	27		Cobalt magnesium, Co ₂ Mg Cobalt manganese silicide, Co ₂ MnSi	14m	81
Cobalt ammine iodide, Co(NH ₃) ₆ I ₃	10m	83		Cobalt mercury thiocyanate,		
Cobalt antimony oxide, CoSb ₂ O ₆	5m	26		Co Hg(CNS) ₄	2m	13
Cobalt arsenate hydrate (erythrite),	10	20		Cobalt molybdenum, Co ₂ Mo	14m	82
Co ₃ (AsO ₄) ₂ ·8H ₂ O	19m 4m	39 10		Cobalt molybdenum, Co ₂ Mo ₃	15m 15m	158 160
Cobalt arsenide (skutterudite),	7111	10		Cobalt molybdenum, Co ₇ Mo ₆ Cobalt molybdenum silicide,	1.5111	100
CoAs ₃	10	21		Co ₃ Mo ₂ Si	15m	162
Cobalt borate, Co ₃ (BO ₃) ₂	12m	20		Cobalt neodymium, Co ₂ Nd	13m	87
Cobalt bromide hydrate, CoBr ₂ ·6H ₂ O	12m	21		Cobalt nickel tin,	12	0.0
Cobalt(II) carbonate (sphaero-cobaltite), CoCO ₃	10	24		Co _{.75} Ni _{.75} Sn _{.75} Cobalt niobium silicide, Co ₃ Nb ₄ Si ₇	13m 15m	88 164
Cobalt chlorate hydrate,				Cobalt niobium tin, Co ₂ NbSn	15m	166
Co(C10 ₄) ₂ ·6H ₂ O	3m	28		Cobalt nitrate hydrate,		
Cobalt chloride hydrate, CoCl ₂ ·2H ₂ O	11m	22		α -Co(NO ₃) ₂ ·6H ₂ O	12m	22
Cobalt chloride hydrate, CoCr O	11m 9m	23 21		Cobalt(II) oxide, CoO	9	28 29
Cobalt chromium oxide, CoCr ₂ O ₄ Cobalt copper tin, CoCu ₂ Sn	14m	64		Cobalt phosphate, Co(PO ₃) ₂	13m	23
Cobalt dysprosium, Co ₂ Dy	13m	63		Cobalt phosphate hydrate,		
Cobalt erbium, Co ₂ Er	13m	64		$Co_3(PO_4)_2 \cdot 8H_2O \dots$	19m	40
Cobalt erbium, Co ₇ Er ₂	13m	65 31		Cobalt phosphide, CoP	14m 14m	83 85
Cobalt fluoride, CoF ₂ Cobalt fluoride, CoF ₂ (calculated	18m	31		Cobalt phosphide, CoP ₃ Cobalt phosphide, Co ₂ P	18m	32
pattern)	10m	85		Cobalt platinum, CoPt (disordered)	15m	167
Cobalt fluoride hydrate, CoF ₂ ·4H ₂ O	11m	24		Cobalt platinum, CoPt (ordered)	15m	168
Cobalt gadolinium, CoGd ₃	13m	68		Cobalt platinum, CoPt ₃	15	160
Cobalt gadolinium, Co ₂ Gd Cobalt gadolinium, Co ₇ Gd ₂	13m 13m	71 72		(disordered)	15m 15m	169 170
Cobalt gallium hafnium, Co ₂ GaHf	14m	65		Cobalt plutonium, CoPu ₂	14m	87
Cobalt gallium manganese, Co ₂ GaMn	13m	75		Cobalt plutonium, CoPu ₃	15m	171
Cobalt gallium niobium,				Cobalt plutonium, CoPu ₆	14m	89
Co _{1.5} Ga _{0.5} Nb	15m	144 66		Cobalt plutonium, Co ₂ Pu	14m	91 92
Cobalt gallium niobium, Co ₂ GaNb Cobalt gallium oxide, CoGa ₂ O ₄	14m 10	27		Cobalt plutonium, Co ₃ Pu Cobalt plutonium, Co ₁₇ Pu ₂	14m 14m	92 94
Cobalt gallium tantalum,				Cobalt praseodymium, Co ₂ Pr	14m	97
Co _{1.5} Ga _{0.5} Ta	15m	146		Cobalt rhodium sulfide, Co ₈ RhS ₈	14m	98
Cobalt gallium tantalum, Co2GaTa	13m	76		Cobalt ruthenium sulfide, Co ₈ RuS ₈ .	14m	100
Cobalt gallium titanium, Co ₂ GaTi	13m 13m	77 78		Cobalt samarium, Co ₂ Sm	15m 13m	173 90
Cobalt gallium vanadium, Co ₂ GaV Cobalt germanium, Co ₃ Ge ₂	14m	67		Cobalt silicate, Co ₂ SiO ₄	1.0111	70
Cobalt germanium, Co ₅ Ge ₇	15m	148		(orthorhombic)	4m	11
Cobalt germanium hafnium,	- 1					
Co ₁₆ Ge ₇ Hf ₆	14m	69	95	•		

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Cobalt silicon fluoride hydrate,			Erbium phosphate, ErPO ₄	9	31
CoSiF ₆ ·6H ₂ O	3m	27	Erbium silver, ErAg	5m	67
Cobalt sulfate, β-CoSO ₄	2m	14	Erbium telluride, ErTe	4m 5m	55 29
Cobalt tantalum silicide, Co ₁₆ Ta ₆ Si ₇	14m	102	Erbium vanadium oxide, ErVO ₄ Europium arsenate, EuAsO ₄	3m	32
Cobalt thorium, Co ₁₇ Th ₂	12m	64	Europium(III) chloride, EuCl ₃	1m	13
Cobalt tin, Co ₃ Sn ₂	13m	92	Europium chloride oxide, EuClO	1m	13
Cobalt tin oxide, Co ₂ SnO ₄	15m	30	Europium gallium oxide,	•	
Cobalt tin vanadium, Co ₂ SnV	15m	174 175	Eu ₃ Ga ₅ O ₁₂	2m 4m	17 56
Cobalt tin zirconium, Co ₂ SnZr Cobalt titanium oxide, CoTiO ₃	15m 4m	13	Europium nitride, EuN Europium oxide, EuO	4m	56
Cobalt titanium silicide,		13	Europium phosphate, EuPO ₄	11m	26
Co ₁₆ Ti ₆ Si ₇	14m	104	Europium(III) vanadium oxide, EuVO ₄	4m	16
Cobalt tungsten oxide, CoWO ₄	4m	13	Gadolinium arsenate, GdAsO ₄	4m	17
Cobalt vanadium silicide, Co ₂ VSi	15m	176	Gadolinium arsenide, GdAs	4m	57
Copper, Cu	1	15	Gadolinium chloride hydrate,	7m	118
Cu(NH ₃) ₄ SeO ₄	10m	87	GdCl ₃ *6H ₂ O	1m	17
Copper ammine sulfate hydrate,			Gadolinium fluoride, GdF ₃	1m	14
$Cu(NH_3)_4SO_4 \cdot H_2O$	10m	90	Gadolinium gallium oxide,		
Copper antimony oxide, CuSb ₂ O ₆	5m	27	Gd ₃ Ga ₅ O ₁₂	2m	18
Copper arsenate (trippkeite),	16m	120	Gadolinium indium, GdIn	5m	67 57
CuAs ₂ O ₄ Copper(I) bromide, CuBr	16m 4	120 36	Gadolinium nitride, GdN Gadolinium oxide, Gd ₂ O ₃	4m 1m	57 16
Copper(I) chloride (nantokite),	_	30	Gadolinium silver, GdAg	6m	87
CuCl	4	35	Gadolinium titanium oxide, Gd ₂ TiO ₅	8m	32
Copper chloride hydrate			Gadolinium vanadium oxide, GdVO ₄	5m	30
(eriochalcite), CuCl ₂ ·2H ₂ O	18m	33	Gallium, Ga	2	9
Copper fluoride hydrate, CuF ₂ ·2H ₂ O	11m	25	Gallium arsenide, GaAs	3 m 2 m	33 22
Copper hydrogen phosphite hydrate, CuHPO ₃ ·2H ₂ O	11m	83	Gallium lutetium oxide, Ga ₅ Lu ₃ O ₁₂ Gallium magnesium, Ga ₂ Mg	12m	48
Copper hydroxide carbonate,			Gallium magnesium, Ga ₅ Mg ₂	12m	51
azurite, $Cu_3(OH)_2(CO_3)_2$	10	30	Gallium neodymium oxide, Ga ₅ Nd ₃ O ₁₂	1m	34
Copper hydroxide carbonate			Gallium oxide, α-Ga ₂ O ₃	4	25
(malachite), Cu ₂ (OH) ₂ CO ₃	10	31	Gallium phosphate (α-quartz type),	0	27
Copper hydroxide phosphate (libethenite), Cu ₂ (OH)PO ₄	17m	30	GaPO ₄ Gallium phosphate hydrate,	8	27
Copper(I) iodide (marshite), CuI	4	38	GaPO ₄ ·2H ₂ O	8m	34
Copper lead hydroxide sulfate,			Gallium samarium oxide, Ga ₅ Sm ₃ O ₁₂	1m	42
linarite, CuPb(OH) ₂ (SO ₄)	16m	34	Gallium ytterbium oxide, Ga ₅ Yb ₃ O ₁₂	1m	49
Copper(I) oxide (cuprite), Cu ₂ 0	2	23	Gallium yttrium oxide, Ga ₅ Y ₃ O ₁₂	1m	50
Copper (II) oxide (tenorite), CuO	1 14m	49 15	Germanium, Ge	1 4m	18 58
Copper phosphate, $Cu(PO_3)_2$ Copper phosphate, α - $Cu_2P_2O_7$	7m	113	Germanium(IV) iodide, GeI ₄	5	25
Copper sulfate (chalcocyanite),			Germanium oxide, GeO ₂ (hexagonal)		
CuSO ₄	3m	29	(low form)	1	51
Copper(II) sulfide (covellite), CuS	4	13	Germanium oxide, GeO ₂		00
Copper uranium oxide, CuUO ₄	10m	93	(tetragonal) (high form)	8 1	28 33
Dichlorotetraaquochromium (III) chloride dihydrate,			Gold, Au	16m	37
$Cr(H_2O)_4Cl_2$ $Cl \cdot 2H_2O$	16m	31	Gold(I) cyanide, AuCN	10	33
Dysprosium arsenate, DyAsO ₄	3m	30	Gold holmium, AuHo	5m	68
Dysprosium arsenide, DyAs	4m	53	Gold magnesium, AuMg	6m	83
Dysprosium gallium oxide,	2	15	Gold niobium, AuNb ₃	6m	16 36
Dy ₃ Ga ₅ O ₁₂ Dysprosium gold, DyAu	2m 5m	15 66	Gold potassium cyanide, AuK(CN) ₂ Gold tin, AuSn	8m 7	19
Dysprosium nitride, DyN	4m	53	Gold titanium, AuTi ₃	6m	17
Dysprosium oxide, Dy ₂ O ₃	9	30	Gold vanadium, AuV ₃	6m	18
Dysprosium silver, DyAg	5m	66	Hafnium, Hf	3	18
Dysprosium telluride, DyTe	4m	54	Hafnium nitride, HfN	19m	46 34
Dysprosium vanadium oxide, DyVO ₄ Erbium arsenate, ErAsO ₄	4m 3m	15 31	Holmium arsenate, HoAsO ₄	3m 10m	23
Erbium arsenide, ErAs	4m	54	Holmium nitride, HoN	4m	58
Erbium gallium oxide, Er ₃ Ga ₅ O ₁₂	1m	12	Holmium oxide, Ho ₂ O ₃	9	32
Erbium iron, ErFe ₂	19m	42	Holmium selenide, HoSe	4m	59
Erbium manganese oxide, ErMnO ₃	2m	16	Holmium silver, HoAg	5m	68 18
Erbium nitride, ErN Erbium oxide, Er ₂ O ₃	4m 8	55 25	Holmium vanadium oxide, HoVO ₄ Hydrazinium sulfate, $(NH_3)_2SO_4$	4m 17m	18 38
LIDIUM ONIGC, HIZO3	3	25	Hydrogen amidosulfate, H ₂ NSO ₃ H	7	54

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Hydrogen arsenate, H ₅ As ₃ O ₁₀	7m	84	Lanthanum oxide, La ₂ 0 ₃	3	33
Hydrogen borate, β-HBO ₂ (monoclinic)	9m	71	Lanthanum phosphide, LaP	5m	69
Hydrogen borate (metaborite), HBO ₂ (cubic)	4m	27	Lanthanum selenide, LaSe	4m 15m	61 35
Hydrogen iodate, HIO ₃	5	28	Lanthanum titanium oxide, $La_2Ti_2O_7$ Lanthanum zinc, LaZn	5m	70
Hydrogen iodate, HI ₃ 0 ₈	8m	104	Lead, Pb	1	34
Hydrogen phosphate hydrate,	**		Lead borate, PbB ₄ O ₇	4m	19
H ₃ PO ₄ ·0.5H ₂ O	12m 12m	56 34	Lead bromide, PbBr ₂	17m	43
Hydrogen tellurate, H ₆ TeO ₆ Indium, In	3	12	Lead bromide chloride, PbBrCl Lead bromide fluoride, PbBrF	11m 10m	33 25
Indium arsenide, InAs	3m	35	Lead bromide hydroxide, PbBr(OH)	16m	40
Indium oxide, In ₂ 0 ₃	5	26	Lead bromide oxide, Pb ₃ O ₂ Br ₂	5m	32
Indium phosphate, InPO ₄	8	29	Lead carbonate (cerussite), PbCO ₃	2	56
Indium sulfide, In ₂ S ₃	11m 3	30 16	Lead chloride (cotunnite), PbCl ₂	12m	23
Iridium, Ir	4	9	Lead chloride fluoride (matlockite), PbClF	13m	25
Iridium niobium, IrNb ₃	6m	19	Lead chromium oxide, Pb ₂ CrO ₅	14m	16
Iridium oxide, IrO ₂	4m	19	Lead fluoride, α-PbF ₂		
Iridium titanium, IrTi ₃	6m 6m	20 21	(orthorhombic)	5	31
Iridium vanadium, IrV ₃ Iron, α-Fe	4	3	Lead fluoride, β -PbF ₂ (cubic) Lead fluoride iodide, PbFI	5 10m	33 26
Iron aluminum oxide (hercynite),		ŭ	Lead hydrogen arsenate (schultenite)		20
FeAl ₂ 0 ₄	19m	48	PbHAsO ₄	14m	18
Iron antimony oxide, FeSbO ₄	19m	49	Lead hydrogen phosphate, PbHPO ₄	15m	37
Iron arsenide, FeAs	1m 10	19 34	Lead hydroxide phosphate,	•	22
Iron boride, FeB	18m	35	$Pb_5OH(PO_4)_3$ Lead iodate, $Pb(IO_3)_2$	8 17m	33 45
Iron bromide, FeBr ₂	4m	59	Lead(II) iodide, PbI ₂	5	34
Iron carbonate, siderite, FeCO ₃	15m	32	Lead molybdenum oxide (wulfenite),		
Iron chloride hydrate (rokuhnite),	11	22	PbMoO ₄	7	23
FeCl ₂ •2H ₂ O	11m	32	Lead nitrate, Pb(NO ₃) ₂	5	36
FeCl ₃ ·6H ₂ O	, 17m	40	Lead oxide (litharge), PbO (red, tetragonal)	2	30
Iron chromium oxide (chromite),		,	Lead oxide (massicot), PbO (yellow,	_	30
FeCr ₂ 0 ₄	19m	50	orthorhombic)	2	32
Iron fluoride hydrate, FeF ₂ ·4H ₂ O	11m 18m	90 36	Lead(II,III) oxide (minium), Pb ₃ O ₄	8	32
Iron fluoride, FeF ₃	17m	41	Lead oxide sulfate, Pb ₅ 0 ₅ S0 ₄ Lead selenide (clausthalite), PbSe	10m 5	27 38
Iron hydroxide sulfate hydrate,	- 7		Lead strontium nitrate,	3	30
butlerite, Fe(OH)SO ₄ ·2H ₂ O	10m	95	Pb _{.33} Sr _{.67} (NO ₃) ₂	12m	53
Iron iodide, FeI ₂	4m	60	Lead strontium nitrate,		
Iron oxide (hematite), α-Fe ₂ O ₃	18m	37	Pb _{.67} Sr _{.33} (NO ₃) ₂	12m	53
Iron(II,III) oxide (magnetite), Fe ₃ O ₄	5m	31	Lead sulfate (anglesite), $PbSO_4$ Lead sulfide (galena), PbS	3 2	67 18
Iron phosphate, FePO ₄	15m	33	Lead tin oxide, Pb ₂ SnO ₄	10m	29
Iron phosphate hydrate (vivianite),			Lead titanium oxide (macedonite),		
Fe ₃ (PO ₄) ₂ ·8H ₂ O	16m	38	PbTiO ₃	5	39
Iron sulfate, Fe ₂ (SO ₄) ₃	16m	39	Lead tungsten oxide (stolzite),	5	2/
FeSO ₄ ·7H ₂ O	8m	38	PbWO ₄ (tetragonal) Lead uranium oxide, Pb ₃ UO ₆	5m 8m	34 109
Iron sulfide (pyrite), FeS ₂	5	29	Lithium aluminum fluoride,	· · · · · · · · · · · · · · · · · · ·	•05
Iron thorium, Fe ₁₇ Th ₂	12m	67	α-Li ₃ A1F ₆	8m	111
Iron titanium oxide (ilmenite),	15m	34	Lithium arsenate, Li ₃ AsO ₄	2m	19
FeTi0 ₃	15m 18m	38	Lithium azide, LiN ₃ Lithium barium fluoride, LiBaF ₃	8m 5m	113 35
Lanthanum arsenate, LaAsO4	3m	36	Lithium beryllium fluoride, Li ₂ BeF ₄	7m	126
Lanthanum arsenide, LaAs	4m	60	Lithium borate, Li ₂ B ₄ O ₇	8m	114
Lanthanum borate, LaBO ₃	1m	20	Lithium bromide, LiBr	4	30
Lanthanum chloride, LaCl ₃ Lanthanum chloride oxide, LaClO	1m 7	20 22	Lithium calcium aluminum boron		
Lanthanum fluoride, LaF ₃	7	21	hydroxy silicate, liddicoatite, Ca(Li,Al) ₃ Al ₆ B ₃ Si ₆ O ₂₇ (O,OH) ₃ (OH,F)	16m	42
Lanthanum magnesium, LaMg	5m	69	Lithium carbonate, Li ₂ CO ₃	8m	42
Lanthanum nickel platinum,			Lithium chlorate hydrate,		
LaNi _{0.25} Pt _{4.75}	17m	42	LiClO ₄ ·3H ₂ O	8	34
Lanthanum niobium titanium oxide, LaNbTiO ₆	3m	37	Lithium chloride, LiCl	1	62
Lanthanum nitrate hydrate,	Jii	3,	Lithium chromium oxide hydrate, Li ₂ CrO ₄ ·2H ₂ O	16m	44
La(NO ₃) ₃ ·6H ₂ O	8m	40	Lithium fluoride, LiF	1	61
Lanthanum nitride, LaN	4m	61	Lithium gallium oxide, LiGaO ₂	10m	31

	Vol. or			Vol. or	
	sec.	Page		Sec.	Page
Lithium hydroxide, LiOH	17m	46	Magnesium cerium nitrate hydrate,		
Lithium hydroxide hydrate, LiOH·H ₂ O	11m	92 26	Mg ₃ Ce ₂ (NO ₃) ₁₂ ·24H ₂ O	10	20
Lithium iodate, LiIO ₃ (hexagonal) Lithium iodate, LiIO ₃ (tetragonal)	7 10m	33	Magnesium chlorate hydrate,	_	
Lithium iodide hydrate, LiI·3H ₂ O	18m	40	$Mg(ClO_4)_2 \cdot 6H_2O$	7m	30
Lithium molybdenum oxide, Li ₂ MoO ₄			Magnesium chloride (chloro- magnesite), MgCl ₂	11m	94
(trigonal)	1m	23	Magnesium chloride hydrate,	11111	24
Lithium niobium oxide, LiNbO ₃	6m	22	MgCl ₂ ·12H ₂ O	7m	135
Lithium nitrate, LiNO ₃	7	27	Magnesium chloride hydrate		
Lithium phosphata high form Li PO	1 m 3 m	25 39	(bischofite), MgCl ₂ ·6H ₂ O	11m	37
Lithium phosphate, high form, Li ₃ PO ₄ Lithium phosphate, low form	JIII	39	Magnesium chromium oxide		0.1
(lithiophosphate), Li ₃ PO ₄	4m	21	(magnesiochromite), MgCr ₂ O ₄	9	34
Lithium phosphate hydrate,			Magnesium chromium oxide hydrate, MgCrO ₄ ·5H ₂ O	15m	39
Li ₃ P ₃ O ₉ ·3H ₂ O	2m	20	Magnesium fluoride (sellaite), MgF ₂	4	33
Lithium potassium sulfate, KLiSO ₄	3m	43	Magnesium fluoride silicate		
Lithium rubidium fluoride, LiRbF ₂	7m	128	(humite), Mg ₇ F ₂ Si ₃ O ₁₂	1m	30
Lithium selenide, Li ₂ Se Lithium silicate, Li ₂ SiO ₃	10m 14m	100 19	Magnesium fluoride silicate		
Lithium silver bromide,	14111	19	(norbergite), Mg ₃ F ₂ SiO ₄	10	39
Li 2Ag 8Br	12m	55	Magnesium gallium oxide, MgGa ₂ O ₄	10	36
Lithium silver bromide, Li.4Ag.6Br	12m	55	Magnesium germanium oxide, Mg ₂ GeO ₄ (cubic)	10	37
Lithium silver bromide,			Magnesium germanium oxide,	10	31
Li _{.6} Ag _{.4} Br	12m	55	Mg ₂ GeO ₄ (orthorhombic)	10	. 38
Lithium silver bromide,			Magnesium hydrogen phosphate		
Li 8Ag 2Br	12m	55	hydrate, newberyite, MgHPO ₄ ·3H ₂ O	7m	139
Lithium sodium aluminum fluoride,	9m	23	Magnesium hydroxide (brucite),		
cryolithionite, Li ₃ Na ₃ Al ₂ F ₁₂ Lithium sodium sulfate, LiNaSO ₄	6m	24	Mg(OH) ₂	6	30
Lithium sulfate, Li ₂ SO ₄	6m	26	Magnesium iodate hydrate,	1.7m	/. O
Lithium sulfate hydrate,			Mg(IO ₃) ₂ ·4H ₂ O Magnesium iron hydroxide carbonate	17m	48
Li ₂ SO ₄ ·H ₂ O	4m	22	hydrate, pyroaurite,		
Lithium sulfide, Li ₂ S	10m	101	$Mg_6Fe_2(OH)_{16}CO_3 \cdot 4H_2O$ (rhomb.)	10m	104
Lithium tantalum oxide, LiTaO ₃	14m	20	Magnesium iron hydroxide carbonate		
Lithium telluride, Li ₂ Te	10m	102	hydrate, sjögrenite,		
Lithium tin oxide, Li ₂ SnO ₃ Lithium tungsten oxide, Li ₂ WO ₄	16m	45	$Mg_6Fe_2(OH)_{16}CO_3 \cdot 4H_2O$, (hexag.)	10m	103
(trigonal)	1m	25	Magnesium lanthanum nitrate	1	00
Lithium tungsten oxide hydrate,			hydrate, Mg ₃ La ₂ (NO ₃) ₁₂ ·24H ₂ O Magnesium manganese oxide, MgMn ₂ O ₄	1m 10m	22 35
Li ₂ WO ₄ ·0.5H ₂ O	2m	20	Magnesium mercury, MgHg	6m	84
Lithium uranium fluoride, LiUF ₅	7m	131	Magnesium molybdenum oxide, MgMoO ₄	7m	28
Lithium zirconium oxide, Li ₂ ZrO ₃	19m	51	Magnesium nickel oxide, MgNiO ₂	10m	36
Lutetium arsenate, LuAsO ₄	5m	36	Magnesium oxide (periclase), MgO	1	37
Lutetium manganese oxide, LuMnO ₃	2m 4m	23 62	Magnesium phosphate, $Mg(PO_3)_2$	13m	26
Lutetium nitride, LuN Lutetium oxide, Lu ₂ O ₃	1m	27	Magnesium phosphate, α-Mg ₂ P ₂ O ₇	18m	41
Lutetium vanadium oxide, LuVO ₄	5m	37	Magnesium phosphate (farringtonite),	10	E E
Magnesium, Mg	1	10	$Mg_3(PO_4)_2$	19m 5m	55 70
Magnesium aluminum oxide (spinel),			Magnesium selenite hydrate,	Эш	, 0
MgAl ₂ 0 ₄	9m	25	MgSeO ₃ ·6H ₂ O	8m	116
Magnesium aluminum silicate (low			Magnesium silicate, enstatite,		
cordierite), Mg ₂ Al ₄ Si ₅ O ₁₈	1	20	MgSiO ₃	6	32
(orthorhombic)	1m	28	Magnesium silicate (forsterite),		0.0
(indialite) Mg ₂ Al ₄ Si ₅ O ₁₈			Mg ₂ SiO ₄	1	83
(hexagonal)	1m	29	Magnesium sulfate hydrate (kieserite), MgSO ₄ ·H ₂ O	16m	46
Magnesium aluminum silicate			Magnesium sulfate hydrate	Tom	40
(pyrope), Mg ₃ Al ₂ (SiO ₄) ₂	4m	24	(epsomite), MgSO ₄ ·7H ₂ O	7	30
Magnesium arsenate hydrate			Magnesium sulfide, MgS	7	31
(hoernesite), Mg ₃ (AsO ₄) ₂ ·8H ₂ O	19m	53	Magnesium sulfite hydrate,		
Magnesium borate, MgB ₄ O ₇	17m	47	MgSO ₃ ·6H ₂ O	9m	26
Magnesium borate, Mg ₂ B ₂ O ₅ (triclinic)	4m	25	Magnesium tin, Mg ₂ Sn	5	41
Magnesium bromide, MgBr ₂	4m	62	Magnesium tin oxide, Mg ₂ SnO ₄	10m	37
Magnesium bromide hydrate,			Magnesium titanium oxide (geikielite), MgTiO ₃	5	43
MgBr ₂ ⋅6H ₂ O	11m	35	Magnesium titanium oxide, Mg ₂ TiO ₄	12m	25
Magnesium carbonate (magnesite),	_		Magnesium tungsten oxide, MgWO ₄	13m	27
MgCO ₃	7	28	Manganese, α-Mn (calculated pattern)	7m	142
			Manganese, α-Mn	17m	50

	Vol. or		7	Vol. or	
	Sec.	Page		Sec.	Page
Manganese, β-Mn	18m	43	Molybdenum oxide (molybdite), MoO ₃	3	30
Manganese aluminum oxide (galaxite),	0	25	Molybdenum silicide, Mo ₅ Si ₃	19m	59
MnAl ₂ O ₄	9 4m	35 63	Molybdenum sulfide (molybdenite),	5	1.7
Manganese(II) carbonate	7111	05	MoS_2 Neodymium arsenate, $NdAsO_4$	5 4m	47 28
(rhodochrosite), MnCO ₃	7	32	Neodymium arsenide, NdAs	4m	64
Manganese chloride (scacchite),			Neodymium borate, NdBO ₃	1m	32
MnCl ₂	8m	43	Neodymium chloride, NdCl ₃	1m	33
Manganese chloride hydrate, MnCl ₂ ·2H ₂ O	11m	38	Neodymium fluoride oxide, NdOCl	8	37 36
Manganese chloride hydrate,	1 1	50	Neodymium fluoride, NdF ₃ Neodymium oxide, Nd ₂ O ₃	8 4	26
MnCl ₂ ·4H ₂ O	9m	28	Neodymium phosphate, NdPO ₄	11m	40
Manganese cobalt oxide, MnCo ₂ O ₄	9m	30	Neodymium selenide, NdSe	5m	71
Manganese fluoride, MnF ₂	10m	105	Neodymium silver, NdAg	5m	71
Manganese iodide, MnI ₂	4m	63	Neodymium tantalum oxide, NdTaO ₄	18m	46
MnFe ₂ 0 ₄	9	36	Neodymium titanium oxide, Nd ₂ TiO ₅ Neodymium titanium oxide, Nd ₂ Ti ₂ O ₇	18m 18m	48 50
Manganese(II) oxide (manganosite),			Neodymium titanium oxide, Nd ₂ Ti ₂ O ₇	18m	52
Mn0	5	45	Neodymium vanadium oxide, NdVO ₄	4m	30
Manganese oxide (pyrolusite), β-MnO ₂	10m	39	Neptunium nitride, NpN	4m	64
Manganese oxide (bixbyite), α-Mn ₂ O ₃	11m	95	Nickel, Ni	1	13
Manganese oxide (hausmannite), Mn ₃ O ₄	10m	38	Nickel aluminum oxide, NiAl ₂ O ₄	9	42
Manganese oxide hydroxide, groutite,	10	30	Nickel arsenate hydrate (annabergite), Ni ₃ (AsO ₄) ₂ ·8H ₂ O	19m	60
α-Mn00H	11m	97	Nickel arsenide (rammelsbergite),	17	00
Manganese phosphate, Mn(PO ₃) ₂	14m	21	NiAs ₂	10	42
Manganese phosphate, Mn ₂ P ₂ O ₇	15m	41	Nickel arsenic sulfide		
Manganese phosphate, Mn ₃ (PO ₄) ₂	16m 10	47 41	(gersdorffite), NiAsS	1m	35
Manganese selenide, MnSe Manganese sulfate hydrate	10	41	Nickel bromide, NiBr ₂	10m	119
(szmikite), MnSO ₄ ·H ₂ O	16m	49	Nickel(II) carbonate, NiCO ₃ (trigonal)	1m	36
Manganese sulfide (alabandite),			Nickel chloride, NiCl ₂	9m	81
α-MnS	4	11	Nickel chloride hydrate,		
Manganese titanium oxide	15	4.0	NiCl ₂ ·6H ₂ O	11m	42
(pyrophanite), MnTiO ₃	15m	42	Nickel fluoride, NiF ₂	10m	121
(huebnerite), MnWO ₄	2m	24	Nickel fluoride hydrate, NiF ₂ ·4H ₂ O Nickel gallium oxide, NiGa ₂ O ₄	11m 10	43 45
Manganese vanadium oxide, Mn ₂ V ₂ O ₇	9m	75	Nickel germanium oxide, Ni ₂ GeO ₄	9	43
Mercury amide chloride, HgNH ₂ Cl	10m	40	Nickel iron oxide (trevorite),		
Mercury ammine chloride,		2.0	NiFe ₂ 0 ₄	10	44
$Hg(NH_3)_2Cl_2$ Mercury bromate, $Hg(BrO_3)_2$	11m 10m	39 107	Nickel molybdenum oxide, NiMoO ₄	19m	62
Mercury bromide, HgBr ₂	10m	110	Nickel nitrate hydrate, Ni(NO ₃) ₂ ·6H ₂ O	12m	26
Mercury bromide, Hg ₂ Br ₂	7	33	Nickel(II) oxide (bunsenite), NiO	1	47
Mercury chloride, HgCl ₂	13m	29	Nickel phosphate, Ni(PO ₃) ₂	14m	22
Mercury chloride (calomel),			Nickel phosphate hydrate,		
Mercury chloride sulfide,	13m	30	Ni ₃ (PO ₄) ₂ ·8H ₂ O	19m	64
α-Hg ₃ Cl ₂ S ₂	8m	118	Nickel phosphide, $Ni_{12}P_5$ Nickel silicon fluoride hydrate,	9m	83
Mercury(II) cyanide, Hg(CN) ₂	6	35	NiSiF ₆ ·6H ₂ 0	8	38
Mercury(II) fluoride, HgF ₂	2m	25	Nickel sulfate, NiSO ₄	2m	26
Mercury hydroxide nitrate,			Nickel sulfate hydrate (retgersite),		
Hg(OH)NO ₃	17m	52 49	NiSO ₄ ·6H ₂ O (tetragonal)	7	36
Mercury(I) iodide, HgI Mercury(II) iodide, HgI ₂ (tetragonal)	4 7m	32	Nickel sulfate hydrate (nickel-		
Mercury(II) oxide (montroydite),	,	J.	hexahydrite), β-NiSO ₄ ·6H ₂ O (monoclinic)	19m	65
HgO	9	39	Nickel sulfide, millerite, NiS	1m	37
Mercury(II) selenide (tiemannite),			Nickel titanium oxide, NiTiO ₃	18m	54
HgSe	7	35	Nickel tungsten oxide, NiWO ₄	2m	27
Mercury sulfate, HgSO ₄	16m 16m	50 52	Nickel yttrium, Ni ₃ Y	10m	123
Mercury(II) sulfide (cinnabar),	Tom	32	Niobium, Nb (monoclinic) Niobium boride, ζ-NbB	19m 17m	67 54
HgS (hexagonal)	4	17	Niobium chloride oxide, NbCl ₃ O	7m	148
Mercury(II) sulfide (metacinnabar),			Niobium osmium, Nb ₃ Os	6m	30
HgS (cubic)	4	21	Niobium platinum, Nb ₃ Pt	6m	31
Molyhdenum arsenide Mo.As-	1 10m	20 115	Niobium silicide, NbSi ₂	8	39
Molybdenum arsenide, Mo ₂ As ₃ Molybdenum osmium, Mo ₃ Os	6m	28	Niobium silicide, α -Nb ₅ Si ₃ Niobium silicide, β -Nb ₅ Si ₃	15m 15m	43 44
Molybdenum oxide, MoO ₂	18m	44	Osmium, Os	4	8

	Vol. or			Vol. or	_
	Sec.	Page		Sec.	Page
Osmium titanium, OsTi	6m	85	Potassium chromium oxide sulfate,		
Palladium, Pd	1	21	$K_2(CrO_4)_{.33}(SO_4)_{.67}$	12m	28
Palladium hydride, PdH _{0.706}	5m	72	Potassium chromium oxide sulfate,	10	27
Palladium oxide, PdO	4	27	$K_2(CrO_4)_{.67}(SO_4)_{.33}$ Potassium chromium sulfate,	12m	27
Palladium selenium (palladseite), Pd ₁₇ Se ₁₅	16m	139	KCr(SO ₄) ₂	16m	58
Palladium vanadium, PdV ₃	6m	32	Potassium chromium sulfate hydrate,	10	
Phosphorus bromide, PBr ₇	7m	150	KCr(SO ₄) ₂ ·12H ₂ O	6	39
Phosphorus oxide (stable form I),			Potassium cobalt(II) fluoride,		
P ₂ O ₅ (orthorhombic)	9m	86	KCoF ₃	6m	37
Phosphorus oxide (stable form II),	0	88	Potassium cobalt fluoride, K ₂ CoF ₄	11m	46
P ₂ O ₅ (orthorhombic)	9m	00	Potassium cobalt nitrite, K ₃ Co(NO ₂) ₆	9	45
P ₄ O ₁₀ (rhombohedral)	9m	91	Potassium cobalt(II) sulfate,		73
*Platinum, Pt	1	31	$K_2Co_2(SO_4)_3$	6m	35
Platinum titanium, PtTi ₃	6m	33	Potassium copper chloride, KCuCl ₃	7m	41
Platinum vanadium, PtV ₃	6m	34	Potassium copper chloride hydrate		
Plutonium arsenide, PuAs	4m	65	(mitscherlichite), K ₂ CuCl ₄ ·2H ₂ O	9m	34
Plutonium phosphide, PuP	4m	65	Potassium copper(II) fluoride,	ć	20
Plutonium telluride, PuTe Potassium aluminum sulfate,	4m	66	KCuF ₃ KCNO	6m 7	38 39
KA1(SO ₄) ₂	9 m	31	Potassium cyanate, KCNO Potassium cyanide, KCN	1	77
Potassium aluminum sulfate hydrate) III	J1	Potassium fluoride, KF	1	64
(potash alum), KA1(SO ₄) ₂ ·12H ₂ O	6	36	Potassium fluoride hydrate, KF·2H ₂ O	18m	55
Potassium arsenic fluoride,			Potassium germanium fluoride,		
KAsF ₆	17m	57	K ₂ GeF ₆	6	41
Potassium barium chromium oxide,			Potassium hydrogen arsenate,		
$K_2Ba(CrO_4)_2$	14m	23	KH ₂ AsO ₄	1m	38
Potassium barium iron titanium	16m	147	Potassium hydrogen iodate,	17m	5.0
oxide, K _{1.16} Ba _{0.72} Fe _{0.36} Ti _{5.58} O ₁₃ Potassium barium molybdenum oxide,	16m	147	KH(IO ₃) ₂ Potassium hydrogen phosphate,	17m	58
K ₂ Ba(MoO ₄) ₂	14m	24	KH ₂ PO ₄	3 -	69
Potassium barium nickel nitrite,			Potassium hydroxide, KOH at 300 °C	4m	66
K_2 BaNi(NO ₂) ₆	9m	32	Potassium iodate, KIO ₃	15m	48
Potassium barium phosphate,			Potassium iodate, KIO ₄	7	41
KBaPO ₄	19m	68	Potassium iodide, KI	1	68
Potassium borate hydroxide hydrate,	1.5	10	Potassium iron chloride hydrate	1/	0.7
K ₂ B ₄ O ₅ (OH) ₄ ⋅2H ₂ O	15m	46	(erythrosiderite), K ₂ FeCl ₅ ·H ₂ O	14m	27 35
Potassium calcium phosphate, KCaPO ₄	19m	70	Potassium iron cyanide, K_3 Fe(CN) ₆ Potassium iron cyanide, K_4 Fe(CN) ₆	9m 18m	56
Potassium boron hydride, KBH ₄	9	44	Potassium iron(II) fluoride, KFeF ₃	6m	39
Potassium bromate, KBrO ₃	7	38	Potassium iron fluoride, K ₃ FeF ₆	9m	37
Potassium bromide, KBr	1	66	Potassium iron sulfate (yavapaiite),		
Potassium bromide chloride,			$\mathrm{KFe}(\mathrm{SO}_4)_2$	16m	59
KBr _{0.5} Cl _{0.5}	8m	46	Potassium lead chloride, KPb ₂ Cl ₅	13m	33
Potassium bromide iodide,	11	44	Potassium lead chromium oxide,	1/-	28
KBr.33I.67 Potassium bromide iodide, KBr.67I.33	11m 11m	45	$K_2Pb(CrO_4)_2$ Potassium lead molybdenum oxide,	14m	20
Potassium cadmium fluoride, KCdF ₃	8m	47	K_2 Pb(MoO ₄) ₂	14m	29
Potassium cadmium sulfate,			Potassium lead phosphate,		
$K_2Cd_2(SO_4)_3$	7m	34	$K_2Pb(PO_3)_4$	15m	50
Potassium calcium carbonate			Potassium lead selenate,		
(fairchildite), $K_2Ca(CO_3)_2$	8m	48	$K_2Pb(SeO_4)_2$	15m	52
Potassium calcium chloride, KCaCl ₃	7m	36	Potassium lead sulfate (palmierite),		30
Potassium calcium fluoride, KCaF ₃	8m	49	K ₂ Pb(SO ₄) ₂ Potassium magnesium chloride	14m	30
Potassium calcium magnesium sulfate, K ₂ CaMg(SO ₄) ₃	7m	37	hydrate (carnallite), KMgCl ₃ ·6H ₂ O	8m	50
Potassium calcium nickel nitrite,	,	<i>J</i> ,	Potassium magnesium chromium oxide,		•
K ₂ CaNi(NO ₂) ₆	9m	33	K ₂ Mg ₂ (CrO ₄) ₃	8m	52
Potassium calcium sulfate,			Potassium magnesium fluoride, KMgF ₃	6m	42
$K_2Ca_2(SO_4)_3$	7m	39	Potassium magnesium fluoride, K ₂ MgF ₄	10m	42
Potassium calcium sulfate hydrate	- 1	0.5	Potassium magnesium selenate	10	/ 2
(syngenite), K ₂ Ca(SO ₄) ₂ ·H ₂ O	14m	25	hydrate, K ₂ Mg(SeO ₄) ₂ ·6H ₂ O	10m	43
Potassium cerium fluoride, β-KCeF ₄	1 2m 3m	59 42	Potassium magnesium sulfate (langbeinite), $K_2Mg_2(SO_4)_3$	6m	40
Potassium chlorate, KClO ₃ Potassium chlorate, KClO ₄	6	43	Potassium magnesium sulfate hydrate	JII.	,,
Potassium chloride (sylvite), KCl	1	65	(picromerite), K ₂ Mg(SO ₄) ₂ ·6H ₂ O	8m	54
Potassium chromium oxide, K ₃ CrO ₈	3m	44	Potassium manganese(II) fluoride,		
Potassium chromium oxide (lopezite),			KMnF ₃	6m	45
$K_2Cr_2O_7$	15m	47			

	Vol. or			Vol. or	
	Sec.			Sec.	Page
Potografum managanaga avide KMnO.	7	42	Potassium sulfate, K ₂ S ₂ O ₈	17m	64
Potassium manganese oxide, KMnO ₄ Potassium manganese(II) sulfate			Potassium sulfate (arcanite), K ₂ SO ₄	3	62
(manganolangbeinite), K ₂ Mn ₂ (SO ₄) ₃	6m	43	Potassium sulfide, K ₂ S	10m	127
Potassium molybdenum oxide, K ₂ MoO ₄	15m	53	Potassium telluride, K ₂ Te	10m	128
Potassium molybdenum oxide phos-	•	40	Potassium thiocyanate, KCNS	8	44
phate hydrate, K ₃ (MoO ₃) ₁₂ PO ₄ ·4H ₂ O	8 7m	43 42	Potassium tin chloride, K ₂ SnCl ₆	6 7	38 40
Potassium nickel fluoride, KNiF ₃ Potassium nickel fluoride, K ₂ NiF ₄	7m 10m	45	Potassium titanium fluoride, K ₂ TiF ₆ Potassium tungsten oxide, K ₂ WO ₄	11m	47
Potassium nickel(II) sulfate,	10111	45	Potassium vanadium oxide, KVO ₃	18m	57
$K_2Ni_2(SO_4)_3$	6m	46	Potassium vanadium oxide, KV ₃ O ₈	8m	56
Potassium niobium fluoride, K2NbF7	8m	120	Potassium zinc bromide hydrate,		
Potassium niobium oxide, KNb0 ₃	17m	62	KZnBr ₃ ·2H ₂ O	11m	104
Potassium nitrate (niter), KNO ₃	3	58	Potassium zinc fluoride, KZnF ₃	5	51
Potassium nitrite, KNO ₂	9m	38	Potassium zinc fluoride, K ₂ ZnF ₄	10m	46
Potassium nitrosyl ruthenium chloride, K ₂ NORuCl ₅	16m	61	Potassium zinc iodide hydrate, KZnI ₃ ·2H ₂ O	11m	107
Potassium oxide, K ₂ O	10m	125	Potassium zinc sulfate, K ₂ Zn ₂ (SO ₄) ₃	6m	54
Potassium platinum bromide, K ₂ PtBr ₆	8	40	Potassium zinc sulfate hydrate,		
Potassium platinum chloride,			$K_2Zn(SO_4)_2 \cdot 6H_2O \dots$	7m	43
K ₂ PtCl ₆	13m	34	Potassium zinc vanadium oxide		
Potassium platinum fluoride, K ₂ PtF ₆	6	42	hydrate, K ₂ Zn ₂ V ₁₀ O ₂₈ ·16H ₂ O	3m	45
Potassium rhenium chloride, K ₂ ReCl ₆	2m 8	28 41	Potassium zirconium fluoride,	0	1.6
Potassium rhenium oxide, KReO ₄ Potassium rubidium chloride,	8	41	K ₃ ZrF ₇ Praseodymium arsenate, PrAsO ₄	9 4m	46 32
K _{0.5} Rb _{0.5} Cl	8m	76	Praseodymium arsenide, PrAs	4m	67
Potassium rubidium chromium oxide,			Praseodymium chloride, PrCl ₃	1m	39
KRbCrO ₄	12m	29	Praseodymium chloride oxide, PrOCl	9	47
Potassium ruthenium chloride,			Praseodymium fluoride, PrF ₃	5	52
K ₂ RuCl ₆	10	46	Praseodymium sulfide, PrS	4m	67
Potassium ruthenium oxide chloride		, -	Praseodymium vanadium oxide, PrVO ₄	5m	40
hydrate, K ₄ Ru ₂ OCl ₁₀ ·H ₂ O	10	47	Praseodymium zinc, PrZn	5m	72
Potassium selenate, K ₂ SeO ₄ Potassium selenide, K ₂ Se	9m 10m	41 126	Rhenium, Re	2	13 9
Potassium selenium bromide, K ₂ SeBr ₆	8	41	Rhodium vanadium, RhV ₃	6m	56
Potassium silicon fluoride			Rubidium aluminum sulfate	0.12	30
(hieratite), K ₂ SiF ₆	5	50	hydrate, RbAl(SO ₄) ₂ ·12H ₂ O	6	44
Potassium silver cyanide, KAg(CN) ₂	8m	78	Rubidium amide, RbNH ₂	5m	73
Potassium sodium aluminum fluoride		4.0	Rubidium barium chromium oxide,	- 1	
(elpasolite), K ₂ NaAlF ₆	9m	43	Rb ₂ Ba(CrO ₄) ₂	14m	32
Potassium sodium bromide, K.2Na_8Br	12m	62	Rubidium barium molybdenum oxide, Rb ₂ Ba(MoO ₄) ₂	15m	59
Potassium sodium bromide,	12	02	Rubidium bromate, RbBrO ₃	8	45
K.4Na.6Br	12m	62	Rubidium bromide, RbBr	7	43
Potassium sodium bromide,			Rubidium cadmium chloride, high		
K _{.6} Na _{.4} Br	12m	62	form, RbCdCl ₃ (tetragonal)	5m	43
Potassium sodium bromide,	10-	60	Rubidium cadmium chloride,	-	/1
K ₈ Na ₂ Br	12m	62	low form, RbCdCl ₃ (orthorhombic)	5m	41
Potassium sodium chloride, K. ₂ Na _{.8} Cl	12m	63	Rubidium cadmium sulfate, Rb ₂ Cd ₂ (SO ₄) ₃	7m	45
Potassium sodium chloride,	12	03	Rubidium calcium chloride, RbCaCl ₃	7 m	47
K.4Na.6C1	12m	63	Rubidium calcium fluoride, RbCaF ₃	8m	57
Potassium sodium chloride,			Rubidium calcium sulfate,		
K _{.6} Na _{.4} Cl	12m	63	$Rb_2Ca_2(SO_4)_3$	7m	48
Potassium sodium chloride,	10	60	Rubidium chlorate, RbClO ₃	8	47
K ₈ Na ₂ Cl	12m	63	Rubidium chlorate, RbClO ₄	2m 4	30 41
Potassium sodium sulfate, K _{.67} Na _{1,33} SO ₄	6m	48	Rubidium chloride, RbCl Rubidium chromium oxide, Rb ₂ CrO ₄	3m	46
Potassium sodium sulfate, KNaSO ₄	6m	50	Rubidium chromium oxide, Rb ₂ Cr ₂ O ₇	15m	60
Potassium sodium sulfate			Rubidium chromium sulfate hydrate,		
(aphthitalite), K ₃ Na(SO ₄) ₂	6m	52	RbCr(SO ₄) ₂ ·12H ₂ O	6	47
Potassium strontium chromium oxide,			Rubidium cobalt(II) chloride,		
$K_2Sr(CrO_4)_2$	15m	57	RbCoCl ₃	6m	57
Potassium strontium phosphate,	10-	71	Rubidium cobalt fluoride, RbCoF ₃	8m	58
KSrPO ₄ Potassium strontium selenate,	19m	71	Rubidium cobalt sulfate, Rb ₂ Co ₂ (SO ₄) ₃	8m	59
K ₂ Sr(SeO ₄) ₂	15m	58	Rubidium copper chloride hydrate,	OIII	3,
Potassium strontium sulfate			Rb ₂ CuCl ₄ •2H ₂ O	10m	47
(kalistrontite), K ₂ Sr(SO ₄) ₂	14m	31	Rubidium copper sulfate hydrate,		
Potassium sulfate, K ₂ S ₂ O ₇	9m	99	$Rb_2Cu(SO_4)_2 \cdot 6H_2O$	8m	61

	Vol. or			Vol. or	
	Sec.			Sec.	Page
Rubidium fluoride, RbF	8m	63	Selenium, Se	5	54
Rubidium iodate, RbIO ₃	15m	62	Selenium oxide (selenolite), SeO ₂	7m	60
Rubidium iodate, RbIO ₄	2m	31	Silicon, Si	13m	35
Rubidium iodide, RbI	4	43	Silicon, Si (reference standard)	12m	2
Rubidium iron chloride hydrate,			Silicon nitride, β-Si ₃ N ₄	18m	59
Rb ₂ FeCl ₅ ·H ₂ O	14m	33	Silicon nitride, β-Si ₃ N ₄	7./	116
Rubidium iron sulfate hydrate,	8m	64	(calculated pattern)	14m	116
Rb ₂ Fe(SO ₄) ₂ ·6H ₂ O Rubidium lead chromium oxide,	OIII	04	Silicon oxide (α or low cristobalite), SiO ₂ (tetragonal)	10	48
Rb ₂ Pb(CrO ₄) ₂	14m	34	Silicon oxide (\alpha or low	10	40
Rubidium lead molybdenum oxide,			cristobalite), SiO ₂ (tetragonal)		
$Rb_2Pb(MoO_4)_2$	15m	63	(calculated pattern)	15m	180
Rubidium magnesium chromium oxide,			Silicon oxide (quartz, low), α -SiO ₂	18m	61
$Rb_2Mg_2(CrO_4)_3$	8m	66	Silicon oxide (β or high		
Rubidium magnesium chromium oxide	0	60	cristobalite), SiO ₂ (cubic)	1	42
hydrate, Rb ₂ Mg(CrO ₄) ₂ ·6H ₂ O Rubidium magnesium sulfate,	8m	68	Silver, Ag (mafaranas standard)	1	23
Rb ₂ Mg ₂ (SO ₄) ₃	7m	50	Silver, Ag (reference standard) Silver arsenate, Ag ₃ AsO ₄	8m 5	2 56
Rubidium magnesium sulfate	7	30	Silver arsenic sulfide,	3	30
hydrate, Rb ₂ Mg(SO ₄) ₂ ·6H ₂ O	8m	70	xanthoconite, Ag ₃ AsS ₃	8m	126
Rubidium manganese(II) fluoride,			Silver bromate, AgBrO ₃	5	57
RbMnF ₃	5m	44	Silver bromide (bromargyrite), AgBr	4	46
Rubidium manganese sulfate,	_		Silver carbonate, Ag ₂ CO ₃	13m	36
$Rb_2Mn_2(SO_4)_3$	7m	52	Silver chlorate, AgClO ₃	7	44
Rubidium nickel(II) chloride,	6m	58	Silver chloride (chlorargyrite),	,	,,
RbNiCl ₃	6m	36	AgC1	1200	44
Rb ₂ Ni ₂ (SO ₄) ₃	8m	72	Silver chromium oxide, Ag ₂ CrO ₄ Silver cyanide, AgCN	12m 9m	30 48
Rubidium nickel sulfate hydrate,			Silver fluoride, Ag ₂ F	· 5m	53
$Rb_2Ni(SO_4)_2 \cdot 6H_2O \dots$	8m	74	Silver iodate, AgIO ₄	9	49
Rubidium nitrate, RbNO ₃ (trigonal)	5m	45	Silver iodide (iodargyrite), AgI		
Rubidium platinum chloride,			(hexagonal)	8	51
Rb ₂ PtCl ₆	5	53	Silver iodide, γ-AgI (cubic)	9	48
Rubidium platinum fluoride, Rb ₂ PtF ₆	6	48	Silver manganese oxide, AgMnO ₄	7 <u>m</u>	155
Rubidium selenate, Rb ₂ SeO ₄ Rubidium silicon fluoride, Rb ₂ SiF ₆	9m 6	44 49	Silver mercury iodide, β-Ag ₂ HgI ₄	17m	67 /5
Rubidium strontium chloride,	U	40	Silver molybdenum oxide, Ag ₂ MoO ₄ Silver nitrate, AgNO ₃	7 5	45 59
RbSrCl ₃	7m	54	Silver nitrite, AgNO ₂	5	60
Rubidium strontium chromium oxide,			Silver oxide, Ag ₂ 0	1m	45
$Rb_2Sr(CrO_4)_2$	15m	64	Silver(II) oxide nitrate, Ag ₇ O ₈ NO ₃	4	61
Rubidium strontium sulfate,			Silver phosphate, Ag ₃ PO ₄	5	62
$Rb_2Sr(SO_4)_2$	15m	65	Silver rhenium oxide, AgReO ₄	8	53
Rubidium sulfate, Rb ₂ SO ₄	8	48	Silver selenate, Ag ₂ SeO ₄	2m	32
Rubidium tellurium bromide, Rb ₂ TeBr ₆	8	46	Silver sodium chloride,	Q _m	70
Rubidium tellurium chloride,		70	Ag _{0.5} Na _{0.5} Cl	8m 13m	79 37
Rb ₂ TeCl ₆	8	48	Silver sulfide (acanthite), Ag ₂ S	10	51
Rubidium tin chloride, Rb ₂ SnCl ₆	6	46	Silver telluride (hessite),		
Rubidium zinc fluoride, RbZnF ₃	7m	57	Ag ₂ Te	19m	73
Rubidium zinc sulfate hydrate,	_		Silver terbium, AgTb	5m	74
$Rb_2Zn(SO_4)_2 \cdot 6H_2O \dots$	7 m	55	Silver thiocyanate, AgCNS	16m	62
Ruthenium, Ru	4 6m	5 86	Silver thulium, AgTm	5m	74
Ruthenium titanium, RuTi	4m	33	Silver yttrium, AgY	5m Om	75 105
Samarium arsenide, SmAs	4m	68	Sodium, NaSodium aluminum chloride silicate,	9m	105
Samarium chloride, SmCl ₃	1m	40	sodalite, Na ₈ Al ₆ Cl ₂ (SiO ₄) ₆	7m	158
Samarium chloride oxide, SmOCl	1m	43	Sodium aluminum fluoride (chiolite),	,	100
Samarium fluoride, SmF ₃	1m	41	Na ₅ Al ₃ F ₁₄	16m	63
Samarium oxide, Sm ₂ O ₃ (cubic)	4m	34	Sodium aluminum oxide, β -NaAlO ₂	18m	62
Samarium silver, SmAg	5m	73	Sodium aluminum sulfate hydrate		
Samarium tin oxide, Sm ₂ Sn ₂ O ₇	8m	77 47	(soda alum), NaAl(SO ₄) ₂ ·12H ₂ O	15m	68
Scandium arsenate Scand.	5m 4m	47 35	Sodium azide, α -NaN ₃ , at -90 to -100 °C	0	120
Scandium arsenate, ScAsO ₄ Scandium arsenide, ScAs	4m	68	-100 C Sodíum azide, β-NaN ₃	8m 8m	129 130
Scandium boride, ScB ₂	17m	66	Sodium barium phosphate, NaBaPO ₄	19m	75
Scandium oxide, Sc ₂ O ₃	3	27	Sodium beryllium calcium aluminum		
Scandium phosphate, ScPO ₄	8	50	fluoride oxide silicate, meliphanite	,	
Scandium silicate (thortveitite),			$(Na_{0.63}Ca_{1.37})Be(Al_{0.13}Si_{1.87})$		
Sc ₂ Si ₂ O ₇	7m	58	$(F_{0.75}O_{6.25})$	8m	135

Sec. Page		Vol. or			Vol. or	
### AmbecaFaiglon		_	Page		_	_
### Sodium borste, NaBQ0	Sodium beryllium calcium fluoride			Sodium lanthanum fluoride silicate		
Sabeta S					7 m	64
Sodium borate, NaB02		8m	138			
Sodium borate, Naph011, 981,00 160 NaltgaclhgAlgOlly36igQ72 3m 47 (Dorany, Naph026(0H), 981,0 16m 66 Sodium bromate, Nabr02 5 55 Sodium bromate, Nabr03 5 5 Sodium bromate, Nabr03 5 5 Sodium bromate, Nabr03 5 5 Sodium bromate, Nabr03 11m 5 Sodium bromate, Nabr03 11m 5 Sodium bromated, Nabr03 11m 5 Sodium orational shadium aluminum fluoride Nydrate, thomsenolite, Nabr04 11m 5 Sodium calcium aluminum fluoride Nydrate, thomsenolite, Nabr04 11m 5 Sodium calcium aluminum fluoride Nydrate, thomsenolite, Nabr04 1 1 1 1 Sodium calcium silicate, Nag-G8504 1 1 1 Sodium carbonate sulfate (glamberite), Nag-G86402 2 1 1 1 Sodium carbonate sulfate (burkete), Nag-G96304 2 1 1 1 Sodium carbonate sulfate (burkete), Nag-G96304 2 1 1 1 Sodium carbonate sulfate, Nag-G96304 1 1 1		18m	63		10m	49
Sodium borate hydroxide hydrate	Sodium borate, Na ₂ B ₄ O ₇	16m				
Sodium bromate, NaBrO ₃ Sodium bromate chloride, NaDromate, NaBrO ₃ Sodium spannessium sulfate hydrate, Sodium sodium calcium aluminum fluoride sydrate, thomsenolite, NaCaNIF ₂ MacCaNIF		7m	160			
Sodium boron hydride, NaBH4		16			3m	47
Sodium bromate, NaBrúg. 5 65 Sodium bromade, NaBra 3 47 Sodium bromide chloride, NaBra 36,1-7. 1 1m 49 Sodium bromide chloride, NaBra 36,1-13. 1 1m 50 Sodium calcium aluminum filoride hydrate, NaBra 36,1-13. 1 1m 50 Sodium calcium aluminum filoride hydrate, NaBra 36,1-13. 1 1m 50 Sodium calcium aluminum filoride hydrate, NaBra 36,1-13. 1 1m 50 Sodium calcium aluminum filoride hydrate, Pirssonite, Na_26,100,1-12. 2 150 Sodium calcium bnosphate, PankaGrog. 9m 106 Sodium calcium phosphate, PankaGrog. 1 15m 68 Sodium calcium slilicate, Na_26,10-14. 1 10m 100 Sodium calcium phosphate, Na_26,10-14. 1 10m 100 Sodium calcium phosphate, Na_26,10-14. 1 10m 100 Sodium carbonate sulfate, Na_26,0-15. 1 10m 10					11	
Sodium bromside, NaBr	_				11m	56
Sodium bromide chloride, Ilm 48 Sodium magnesium sulfate hydrate, Nabr. 35(1.57) Sodium calcium aluminum filoride hydrate, Nabr. 35(1.53) Sodium falloride, Nabr. 35(1.53) Sodium calcium aluminum filoride hydrate, NacAlfe. 18(0) Sodium calcium carbonate hydrate, NacAlfe. 18(0) Sodium calcium carbonate hydrate, Sodium calcium carbonate hydrate, Sodium calcium phosphate, Smallor, Sm					15m	72
NaBr_agCl_ag		3	7,		13111	12
Sodium magnesium sulfate hydrate Sodium magnesium sulfate hydrate Nacharle 1, 15h Sodium calcium aluminum fluoride Nacharle 1, 15h Sodium calcium aluminum fluoride Nacharle 1, 15h Sodium calcium aluminum fluoride Nacharle 1, 15h Sodium manganese (II) fluoride Nacharle 1, 15h Sodium manganese sulfate hydrate, Sodium manganese sulfate hydrate, Sodium calcium sulfate (Equaberite) Sodium calcium sulfate (Saluberite) Sodium calcium sulfate (Saluberite) Sodium calcium sulfate (Naga-0804) Sodium calcium sulfate (Saluberite) Sodium molydenum oxide (Naga-004) Sodium calcium sulfate (Saluberite) Sodium molydenum oxide (Naga-004) Sodium nolydenum ox		11m	49		6m	63
SaBr_6_6Cl_33						
Sodium calcium aluminum fluoride Nydrate, homesenolite, Nacahle, HgO		11m	50		14m	35
Sadailwa callocatius carbonate hydrate, pirssonite, Na ₂ Ca(Co ₂) ₂ ·2l ₂ O 9m 106 Sodium male, pirssonite, Na ₂ Ca(Co ₂) ₂ ·2l ₂ O 9m 106 Sodium calcium silicate, Na ₂ CaSiO ₄ 15m 68 Sodium calcium silicate, Na ₂ CaSiO ₄ 15m 68 Sodium calcium silicate, Na ₂ CaSiO ₄ 10m 48 Sodium calcium silicate, Na ₂ CaSiO ₄ 10m 48 Sodium calcium silicate, Na ₂ CaSiO ₄ 10m 48 Sodium calcium silicate, Na ₂ Co ₂ O ₄ 10m 48 Sodium calcium silicate, Na ₂ Co ₂ O ₄ 10m 48 Sodium calcium silicate, Na ₂ Co ₂ O ₄ 10m 59 Sodium calcium silicate, Na ₂ Co ₃ O ₄ 10m 59 Sodium calcium silicate, Na ₂ Co ₃ O ₄ 10m 59 Sodium calcium silicate, Na ₂ Co ₃ O ₄ 10m 50 Sodium calcium silicate, Na ₂ Co ₃ O ₄ 10m 50 Sodium calcium silicate, Na ₂ Co ₃ O ₄ O ₂ 11m 51 Na ₂ Ni(SdA ₂) ₂ 48p 0 6m 6m 6m 6m 6m 6m 6m						
Sodium calcium carbonate hydrate, prissonite, Na ₂ Ca(30 ₃) ₂ :2H ₂ O 9m 106 Sodium calcium phosphate, β-NaCaPO ₄ 15m 69 NaHgCl ₂ ·2H ₂ O 6m 6m 64 Sodium calcium silicate, Na ₂ CaSiO ₄ 6m 59 Sodium calcium sulfate (glauberite) 8m 50 Sodium calcium sulfate (glauberite) 8m 50 Sodium carbonate hydrate (thermonatrite) 8m 54 Sodium carbonate hydrate (thermonatrite) 8m 54 Sodium carbonate sulfate (buckeite) 8m 54 Sodium carbonate sulfate (buckeite) 8m 54 Sodium carbonate sulfate (buckeite) 8m 50 Sodium carbonate sulfate (buckeite) 8m 50 Sodium carbonate sulfate (buckeite) 8m 50 Sodium carbonate sulfate (buckeite) 8m 6m 6m 6m 6m 6m 6m 6m					6m	65
pirssonite, Na ₂ Ca(Co ₃) ₂ ·2H ₂ O. 9m 106 Sodium mercury(11) chloride hydrate, Sodium calcium solitate, Na ₂ CaSiO ₄ 15m 69 NaH ₂ Cl ₃ ·2H ₂ O. 6m 66 Sodium calcium solitate, Na ₂ CaSiO ₄ 10m 48 Sodium molybdenum oxide, Na ₂ No ₂ O ₂ 9m 110 Na ₂ Ca(SO ₄) ₂		8m	132			
Sodium calcium phosphate, β-NacBPO ₄ 15m 69 NaHgCl ₃ -2HgO ₆ 06m 66 66 Sodium calcium sulfate (glauberite) 50dium calcium sulfate (glauberite) 50dium calcium sulfate (glauberite) 50dium carbonate bydrate (thermonatrite), Na ₂ CO ₈ (30 ₄) ₂		0	106		14m	37
Sodium calcium silicate, Na ₂ CaSiO ₄ 10m		_			6	
Sodium calcium sulfate (glauberite), 60 59 Sodium molybdenum oxide, Na_2ho_0^0_7 9m 10						
NagCa(So ₄) ₂		1011	40		_	
Sodium carbonate hydrate (thermonatrite), Na ₂ CO ₃ 18 ₂ O ₅ Na ₂ CO ₃ 18 ₂ O ₅ Na ₂ CO ₃ 18 ₂ O ₅ Na ₂ CO ₃ 18 ₂ O ₃ O ₄ Na ₂ CO ₃ 18 ₂ O ₃ O ₄ Na ₂ CO ₃ 18 ₂ O ₃ O ₄ Na ₂ CO ₃ 18 ₂ O ₃ O ₄ Na ₂ CO ₃ 18 ₂ O ₃ O ₄ Na ₂ CO ₃ 18 ₂ O ₃ O ₄		6m	59		7111	110
Sodium carbonate sulfate, Na ₂ CO ₃ SO ₄ 11m 51 Sodium nickel(11) sulfate hydrate, Na ₆ CO ₃ (SO ₄) ₂ 11m 51 Sodium carbonate sulfate (burkeite), Na ₆ CO ₃ (SO ₄) ₂ 11m 52 NaNbO ₃ 6 50 Sodium carbonate sulfate, Na ₆ CO ₃ (SO ₄) ₂ 11m 53 Sodium nitrate (soda niter), NaNO ₃ 6 50 Sodium carbonate sulfate, Na ₆ CO ₃ (SO ₄) ₂ 11m 53 Sodium nitrate (soda niter), NaNO ₃ 6 50 Sodium carbonate sulfate, Na ₆ CO ₃ (SO ₄) ₂ 11m 54 Sodium nitrosyl iron cyanide Na ₆ CO ₃ (SO ₄) ₂ 11m 54 Sodium cintrosyl iron cyanide Na ₆ CO ₃ (SO ₄) ₂ 11m 54 Sodium chrosyl iron cyanide Na ₆ CO ₃ 15m		O.III	3,		7m	66
Sodium carbonate sulfate, Na ₂ CO ₃ SO ₄ 11m 51 Na ₂ Ni(SO ₄) ₂ · 41 ₂ O		8	54			
Sodium carbonate sulfate (burkeite), Na ₀ CO ₃ (SO ₄) ₂ 11m 52 NahDO ₃ 18m 64 65 65 65 65 65 65 65		11m	51		6m	68
Sodium carbonate sulfate, 11m 53 Sodium nitrate (soda niter), NaNO3 6 50 NagCO3(SO4)2 11m 53 Sodium nitrosyl iron cyanide						
NagCo ₃ (SO ₄) ₂ 1lm 53 Sodium nitrite, NaNO ₂ 4 62 Sodium carbonate sulfate, Na ₆ (CO ₃) ₂ SO ₄	Na ₆ CO ₃ (SO ₄) ₂	11m	52	NaNbO ₃	18m	64
Sodium carbonate sulfate, Na $_0(CO_3)_2SO_4$				Sodium nitrate (soda niter), NaNO ₃	6	
Nag(CO ₃) 2SO ₄		11m	53		4	62
Sodium chlorate, NaClO ₃ 3 51 Sodium oxide, Na ₂ O ₀		11	- /		10	
Sodium phosphate, Na ₃ P ₃ O ₉ 3m 49						
Sodium phosphate hydrate, Na ₃ P ₃ O ₃ ·H ₂ O		3	31		_	
NaclO ₄ +l ₂ 0 17m 68 Sodium phosphate hydrate, Sodium chlorate (halite), NaCl 2 41 α-Na ₂ Pa ₁ O ₂ ·4l ₂ O (monoclinic) 13m 39 39 30 30 30 30 30 30		7	/ _Q		3111	49
NaClO ₄ +H ₂ O		'	43		3m	50
Sodium chloride (halite), NaCl 2		17m	68		Jii	50
Sodium chromium oxide, Na ₂ CrO ₄ 9m 48 Sodium phosphate hydrate, β-Na ₄ P ₄ O ₁₂ ·4H ₂ O (triclinic) 2m 35 Na ₂ CrO ₄ ·4H ₂ O					13m	39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9m	48			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2m	35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na ₂ CrO ₄ ·4H ₂ O	9m	50	Sodium phosphate hydrate,		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·				5m	54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7m	62			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·				_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1511	70		_	
Sodium cyanate, NaCNO 2m 33 Sodium silicon fluoride Sodium cyanide, NaCN (cubic) 1 78 (malladrite), Na ₂ SiF ₆ 16m 68 Sodium cyanide, NaCN (orthorhombic) at 6°C 1 79 NaSrPO ₄ 19m 77 Sodium fluoride (villiaumite), NaF 1 63 Sodium sulfate, Na ₂ SO ₄ 11m 57 Sodium fluoride (villiaumite), NaF 1 63 Sodium sulfate, Na ₂ SO ₄ 11m 57 Sodium fluoride (villiaumite), NaF 1 63 Sodium sulfate, Na ₂ SO ₄ 11m 57 Sodium fluoride (villiaumite), NaF 1 63 Sodium sulfate, Na ₂ SO ₄ 11m 57 Sodium hydrogen carbonate hydrate, 15m 71 Sodium sulfate (thenardite), Na ₂ SO ₄ 2 59 trona, Na ₃ H(CO ₃) ₂ ·2H ₂ O 15m 71 Sodium sulfate hydrate, 17m 74 Sodium hydrogen fluoride, NaHF ₂ 5 63 Na ₂ S ₂ O ₃ ·5H ₂ O 17m 74 Sodium hydrogen silicate hydrate, 7m 16a Sodium tin fluoride, Na ₂ SO ₃ <td></td> <td>6m</td> <td>61</td> <td></td> <td></td> <td></td>		6m	61			
Sodium cyanide, NaCN (cubic) 1 78					10111	130
Sodium cyanide, NaCN (orthorhombic) at 6 °C					16m	68
at 6 °C						
Sodium fluoride (villiaumite), NaF 1 63 Sodium sulfate, Na $_2$ SO $_4$		1	79		19m	77
trona, $Na_3H(CO_3)_2 \cdot 2H_2O$ 15m 71 Sodium sulfate hydrate, Sodium hydrogen fluoride, $NaHF_2$ 5 63 $Na_2S_2O_3 \cdot 5H_2O$ 17m 74 Sodium hydrogen phosphate, Sodium sulfide, Na_2S 10m 140 $Na_3H(PO_3)_4$ 10m 130 Sodium sulfite, Na_2SO_3 3 60 Sodium hydrogen silicate hydrate, Sodium telluride, Na_2Te 10m 141 $Na_2H_2SiO_4 \cdot 4H_2O$ 7m 163 Sodium tin fluoride, $NaSn_2F_5$ 7m 166 Sodium hydrogen sulfate hydrate, Sodium titanium oxide, $Na_2Ti_3O_7$ 16m 69 $NaHSO_4 \cdot H_2O$ 9m 52 Sodium titanium phosphate, Sodium iodate, $NaIO_3$ 19m 79 Sodium iodate, $NaIO_3$ 19m 79 Sodium iodate, $NaIO_4$ 7 47 Sodium tungsten oxide, Na_2WO_4 1m 47 Sodium iodate hydrate, $NaIO_4$ 7 48 Sodium tungsten(VI) oxide hydrate, Sodium iodide, NaI 4 31 Sodium vanadium oxide, $\alpha - NaVO_3$ 18m 67	Sodium fluoride (villiaumite), NaF	1	63		11m	57
Sodium hydrogen fluoride, NaHF2 5 63 Na ₂ S ₂ O ₃ ·5H ₂ O 17m 74 Sodium hydrogen phosphate, Sodium sulfide, Na ₂ S 10m 140 Na ₃ H(PO ₃) ₄ 10m 130 Sodium sulfite, Na ₂ SO ₃ 3 60 Sodium hydrogen silicate hydrate, Sodium telluride, Na ₂ Te 10m 141 Na ₂ H ₂ SiO ₄ ·4H ₂ O 7m 163 Sodium tin fluoride, NaSn ₂ F ₅ 7m 166 Sodium hydrogen sulfate hydrate, 9m 52 Sodium titanium oxide, Na ₂ Ti ₃ O ₇ 16m 69 NaHSO ₄ ·H ₂ O 9m 52 Sodium titanium phosphate, 19m 79 Sodium iodate, NaIO ₃ 7 47 Sodium tungsten oxide, Na ₂ WO ₄ 1m 47 Sodium iodate, NaIO ₄ 7 48 Sodium tungsten(VI) oxide hydrate, 3 3 60 Sodium iodate hydrate, NaIO ₃ ·H ₂ O 17m 73 Na ₂ WO ₄ ·2H ₂ O 2m 33 Sodium iodide, NaI 4 31 Sodium vanadium oxide, α-NaVO ₃ 18m 67	Sodium hydrogen carbonate hydrate,			Sodium sulfate (thenardite), Na ₂ SO ₄	2	59
Sodium hydrogen phosphate, Sodium sulfide, Na ₂ S						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	63			
Sodium hydrogen silicate hydrate, Na $_2$ H $_2$ SiO $_4$ '4H $_2$ O		1.0	100			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 Um	130			
Sodium hydrogen sulfate hydrate, NaHSO $_4$ ·H $_2$ O		7m	163			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7 Ш	103		_	
Sodium hydroxide, NaOH at 300 °C . 4m 69 NaTi ₂ (PO ₄) ₃		9m	52		Tom	0,
Sodium iodate, NaIO $_3$	Sodium hydroxide, NaOH at 300 °C				19m	79
Sodium iodate, NaIO $_4$					_	
Sodium iodate hydrate, NaIO $_3$ ·H $_2$ O 17m 73 Na $_2$ WO $_4$ ·2H $_2$ O 2m 33 Sodium iodide, NaI 4 31 Sodium vanadium oxide, α -NaVO $_3$ 18m 67						
Sodium iodide, NaI	Sodium iodate hydrate, NaIO3·H2O	17m		Na ₂ WO ₄ • 2H ₂ O	2m	
Sodium iron fluoride, Na_3FeF_6 9m 54 Sodium vanadium oxide, β -NaVO ₃ 18m 68	Sodium iodide, NaI	4				
	Sodium iron fluoride, Na ₃ FeF ₆	9m	54	Sodium vanadium oxide, β -NaVO $_3$	18m	68

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Sodium zinc fluoride, NaZnF ₃	6m	74	Tantalum, Ta	1	29
Sodium zinc sulfate hydrate,			Tantalum silicide, TaSi ₂	8	59
Na ₂ Zn(SO ₄) ₂ ·4H ₂ O	6m	72	Tellurium, Te	1	26
Sodium zirconium fluoride, Na ₇ Zr ₆ F ₃₁	8m	144	Tellurium(IV) oxide (paratellurite), TeO ₂ (tetragonal)	7	56
Sodium zirconium phosphate,			Tellurium(IV) oxide, paratellurite,	·	
NaZr ₂ (PO ₄) ₃	19m	81	TeO ₂ (tetragonal)	10	55
Strontium aluminum hydroxide,	10m	50	Tellurium(IV) oxide, tellurite, TeO ₂ (orthorhombic)	9	57
Sr ₃ Al ₂ (OH) ₁₂ Strontium aluminum oxide, Sr ₃ Al ₂ O ₆	10m	52	Terbium arsenate, TbAsO ₄	3m	54
Strontium arsenate, $Sr_3(AsO_4)_2$	2m	36	Terbium arsenide, TbAs	5m	75
Strontium azide, $Sr(N_3)_2$	8m	146 53	Terbium nitride, TbN	4m 5m	70 76
Strontium borate, SrB_2O_4 Strontium borate, SrB_4O_7	3m 4m	36	Terbium phosphide, TbP Terbium selenide, TbSe	5m	76
Strontium bromate hydrate,			Terbium sulfide, TbS	5 m	77
Sr(Br0 ₃) ₂ ·H ₂ 0	17m	76	Terbium telluride, TbTe	5m	77
Strontium bromide fluoride, SrBrF	10m	54	Terbium vanadium oxide, TbVO ₄	5m 16m	56 73
Strontium bromide hydrate, SrBr ₂ ·6H ₂ O	4	60	Thallium, α-Tl Thallium aluminum sulfate hydrate,	10111	13
Strontium carbonate (strontianite),			T1A1(SO ₄) ₂ ·12H ₂ O	6	53
SrCO ₃	3	56	Thallium(I) arsenate, Tl ₃ AsO ₄	2m	37
Strontium chloride, SrCl ₂	4 10m	40 55	Thallium azide, TlN ₃	8m 8	82 60
Strontium chloride fluoride, SrClF Strontium chloride hydrate,	Tolli	33	Thallium(I) bromate, TlBrO ₃ Thallium bromide, TlBr	7	57
SrCl ₂ ·2H ₂ O	11m	58	Thallium cadmium sulfate,		
Strontium chloride hydrate,			$Tl_2Cd_2(SO_4)_3$	8m	83
SrCl ₂ ·6H ₂ O	4	58	Thallium(I) chlorate, TlClO ₄	2m 8	38 61
Strontium chloride hydroxide phosphate, Sr ₅ Cl _{.65} (OH) _{.35} (PO ₄) ₃	11m	60	Thallium(I) chlorate, TlClO ₃ Thallium(I) chloride, TlCl	4	51
Strontium chromium oxide, SrCr ₂ 0 ₇	17m	77	Thallium chromium oxide, Tl ₂ CrO ₄	3m	54
Strontium chromium oxide, Sr ₂ CrO ₄	16m	71	Thallium chromium sulfate hydrate,		
Strontium chromium oxide hydrate,	1.7m	79	$T1Cr(SO_4)_2 \cdot 12H_2O$	6.	55
SrCr ₂ 0 ₇ ·3H ₂ 0 Strontium fluoride, SrF ₂	17m 5	67	Thallium cobalt sulfate, Tl ₂ Co ₂ (SO ₄) ₃	8m	85
Strontium hydroxide, Sr(OH) ₂	13m	41	Thallium cobalt sulfate hydrate,	J	
Strontium hydroxide hydrate,			$Tl_2Co(SO_4)_2 \cdot 6H_2O$	7m	70
Sr(OH) ₂ ·H ₂ O	13m	42	Thallium copper sulfate hydrate,	7m	72
Strontium hydroxide hydrate, Sr(OH) ₂ ·8H ₂ O	13m	43	Tl ₂ Cu(SO ₄) ₂ ·6H ₂ O Thallium fluoride, TlF	7m 16m	74
Strontium indium hydroxide,			Thallium gallium sulfate hydrate,		
$\operatorname{Sr}_{3}\operatorname{In}_{2}(\operatorname{OH})_{12}$	6m	76	T1Ga(SO ₄) ₂ ·12H ₂ O	6	57
Strontium iodide hydrate,	8	58	Thallium(I) iodate, TIIO ₃	8	62
$SrI_2 \cdot 6H_2O$	18m	69	Thallium(I) iodide, TlI (orthorhombic)	4	53
Strontium manganese oxide,			Thallium iron sulfate hydrate,		
SrMnO ₃ (cubic)	10m	56	$T1_2Fe(S0_4)_2 \cdot 6H_20 \dots$	8m	87
Strontium manganese oxide,	10m	58	Thallium lead sulfate,	15m	74
SrMnO ₃ (hexagonal) Strontium molybdenum oxide, SrMoO ₄	7	50	$Tl_2Pb(SO_4)_2$	15m	/ -
Strontium nitrate, $Sr(NO_3)_2$	12m	31	$Tl_2Mg_2(CrO_4)_3$	8m	89
Strontium oxide, SrO	5	68	Thallium magnesium sulfate hydrate,	_	7,
Strontium oxide, Sr0 ₂	6 11m	52 61	Tl ₂ Mg(SO ₄) ₂ ·6H ₂ O	7m	74
Strontium oxide hydrate, SrO ₂ ·8H ₂ O Strontium phosphate, α-Sr ₂ P ₂ O ₇	11m	62	Thallium manganese sulfate, $Tl_2Mn_2(SO_4)_3$	7m	76
Strontium phosphate, α -Sr ₃ (PO ₄) ₂	11m	64	Thallium nickel sulfate hydrate,		
Strontium scandium oxide hydrate,		7.0	$Tl_2Ni(SO_4)_2 \cdot 6H_2O \dots$	7m	78
$Sr_3Sc_2O_6 \cdot 6H_2O$ Strontium silicate, Sr_3SiO_5	6m 13m	78 44	Thallium(I) nitrate, TlNO ₃ Thallium oxide (avicennite), Tl ₂ O ₃	6 16m	58 77
Strontium sulfate (celestite), SrSO ₄	_	61	Thallium(III) oxide, Tl ₂ O ₃	2	28
Strontium sulfide, SrS	7	52	Thallium(I) phosphate, Tl ₃ PO ₄	7	58
Strontium telluride, SrTe	4m	69 80	Thallium(III) phosphate, TlPO ₄	7	59
Strontium tin oxide, $SrSnO_3$ Strontium titanium oxide, $SrTiO_3$	8m 3	80 44	Thallium platinum chloride, Tl ₂ PtCl ₆	5	70
Strontium tungsten oxide, SrWO ₄	7	53	Thallium silicon fluoride, Tl ₂ SiF ₆	6	56
Strontium tungsten oxide, Sr ₂ WO ₅	12m	32	Thallium strontium sulfate,		
Strontium vanadium oxide, $Sr_3(VO_4)_2$	15m	73 51	$Tl_2Sr(SO_4)_2$	15m 6	75 59
Strontium zirconium oxide, SrZrO ₃ . Sulfamic acid, H ₂ NSO ₃ H	9 7	51 54	Thallium(I) sulfate, Tl ₂ SO ₄ Thallium(I) thiocyanate, TlCNS	8	63
Sulfur, S (orthorhombic)	9	54	Thallium tin chloride, Tl ₂ SnCl ₆	6	54

	Vol. or Sec.	Page		Vol. or Sec.	Page
Thallium(I) tungsten oxide, Tl ₂ WO ₄	1m	48	Yttrium vanadium oxide, YVO ₄	5m	59
Thallium zinc sulfate hydrate,	-	0.0	Zinc, Zn	1	16
$Tl_2Zn(SO_4)_2 \cdot 6H_2O$ Thorium arsenide, ThAs	7m 4m	80 70	Zinc aluminum oxide (gahnite),	2	38
Thorium carbide, ThC	18m	71	ZnAl ₂ O ₄	11m	68
Thorium nitrate hydrate,			Zinc ammine chloride, Zn(NH ₃) ₂ Cl ₂	10m	59
Th(NO ₃) ₄ ·5H ₂ O	18m	72	Zinc antimony oxide, ZnSb ₂ O ₄	4m	39
Thorium oxide (thorianite), ThO ₂	1 3m	57 56	Zinc Arsenate Hydrate (koettigite), $Zn_3(AsO_4)_2 \cdot 8H_2O \dots$	1 0m	85
Thulium arsenate, TmAs 0 ₄ Thulium arsenide, TmAs	4m	71	Zinc borate, $Zn_4B_6O_{13}$	19m 13m	48
Thulium nitride, TmN	4m	71	Zinc carbonate, smithsonite, ZnCO ₃	8	69
Thulium oxide, Tm ₂ O ₃	9	58	Zinc chlorate hydrate,	16	70
Thulium telluride, TmTe Thulium vanadium oxide, TmVO ₄	4m 5m	72 57	$Zn(C1O_4)_2 \cdot 6H_2O \dots$ Zinc chromium oxide, $ZnCr_2O_4 \dots$	16m 9m	79 59
Tin, α-Sn (cubic)	2	12	Zinc cobalt oxide, ZnCo ₂ O ₄	10m	60
Tin, β-Sn (tetragonal)	1	24	Zinc cyanide, Zn(CN) ₂	5	73
Tin arsenide, SnAs	. 4m	37	Zinc fluoride, ZnF ₂	6	60
Tin arsenide, Sn _{3.8} As ₃	15m	76 84	Zinc fluoride hydrate, ZnF ₂ ·4H ₂ O	11m	69
Tin chloride hydrate, SnCl ₂ ·2H ₂ O Tin(II) fluoride, SnF ₂	17m 3m	51	Zinc germanium oxide, $Z_{12}GeO_4$ Zinc hydroxide silicate hydrate,	10	56
Tin hydrogen phosphate, SnHPO ₄	13m	46	hemimorphite, Zn ₄ (OH) ₂ Si ₂ O ₇ ·H ₂ O	2	62
Tin(IV) iodide, SnI ₄	5	71	Zinc iodide, ZnI ₂	9	60
Tin(II) oxide (romarchite), SnO	4	28	Zinc iron oxide (franklinite),		
Tin(IV) oxide (cassiterite), SnO ₂	1 0m	54 57	ZnFe ₂ 0 ₄	9m	60
Tin sulfide (berndtite), β-SnS ₂ ···· Tin(II) telluride, SnTe ······	9m 7	61	Zinc manganese oxide (hetaerolite), ZnMn ₂ O ₄	10m	61
Titanium, Ti	3	4	Zinc molybdenum oxide, Zn ₂ Mo ₃ O ₈	7m	173
Titanium carbide, TiC	18m	73	Zinc nitrate hydrate,		
Titanium(III) oxide, TiO _{1.515}	9	59	α -Zn(NO ₃) ₂ ·6H ₂ O	12m	36
Titanium oxide (anatase), TiO ₂	7m	82	Zinc oxide (zincite), ZnO	2 16m	25 80
Titanium oxide, brookite, TiO ₂ (orthorhombic)	3m	57	Zinc phosphate, α -Zn ₃ (PO ₄) ₂ Zinc phosphate, β -Zn ₃ (PO ₄) ₂	16m 16m	81
Titanium oxide (rutile), TiO ₂	7 m	83	Zinc phosphate, γ -Zn ₃ (PO ₄) ₂	16m	83
Titanium silicide, Ti ₅ Si ₃	8	64	Zinc phosphate hydrate (hopeite),		
Titanium sulfide, TiS ₂	4m	72	Zn ₃ (PO ₄) ₂ ·4H ₂ O	16m	85
Titanium sulfide, Ti ₂ S Tungsten, W	8m 1	149 28	Zinc selenide, ZnSe	3 7	23 62
Tungsten, W (reference standard)	8m	2	Zinc silicate (willemite), Zh25104 Zinc silicon fluoride hydrate,	'	02
Tungsten oxide, WO ₂	18m	74	ZnSiF ₆ ·6H ₂ O	8	70
Tungsten sulfide (tungstenite), WS ₂	8	65	Zinc sulfate (zinkosite), ZnSO ₄	7	64
Uranium nitride, UN	'18m	75 78	Zinc sulfate hydrate (gunningite),	10-	9.6
Uranium oxide, UO	5m 2	33	$ZnSO_4 \cdot H_2O$	19m	86
Uranium selenide, USe	5m	78	ZnSO ₄ ·7H ₂ O	8	71
Uranium telluride, UTe	4m	73	Zinc sulfide (wurtzite), α-ZnS		
Vanadium, V	9m	58	(hexagonal)	2	14
Vanadium(V) oxide (shcherbinaite),	8	66	Zinc sulfide (sphaelerite), β-ZnS	2	16
V_2O_5 Vanadium sulfide, α - V_3S	14m	118	(cubic)	3m	58
Vanadium sulfide, β-V ₃ S	14m	120	Zinc tin oxide, Zn ₂ SnO ₄	10m	62
Ytterbium arsenate, YbAsO ₄	4m	38	Zinc titanium oxide, ZnTiO ₃	13m	49
Ytterbium arsenide, YbAs	4m	73	Zinc titanium oxide, Zn ₂ TiO ₄	12m	37
Ytterbium nitride, YbN	4m 6m	74 80	Zinc tungsten oxide (sanmartinite), ZnWO ₄	2m	40
Ytterbium selenide, YbSe	5m	79	Zirconium, α-Zr	2	11
Ytterbium telluride, YbTe	5m	79	Zirconium fluoride, ZrF ₄	18m	79
Ytterbium(III) vanadium oxide, YbVO ₄		58	Zirconium hydride, ZrH ₂	5m	60
Yttrium, Y YASO	18m 2m	77 39	Zirconium iodate, Zr(IO ₃) ₄	1m 5m	51 80
Yttrium arsenate, YAsO ₄	4m	74	Zirconium nitride, ZrN Zirconium oxide, ZrO	5m	81
Yttrium chloride oxide, YCl0	1m	51	Zirconium oxide chloride hydrate,	3	
Yttrium chromium oxide, YCrO ₃	19m	83	ZrOCl ₂ ·8H ₂ O	18m	81
Yttrium oxide, Y ₂ O ₃	3	28 67	Zirconium phosphide, ZrP	4m	75 68
Yttrium phosphate (xenotime), YPO ₄	8 5m	67 80	Zirconium silicate, zircon, ZrSiO ₄ Zirconium silicide, ZrSi ₂	4 17m	68 36
Yttrium sulfide, YS	4m	75	Zirconium silicide, Zisi ₂ Zirconium sulfate hydrate	17111	00
Yttrium titanium oxide, Y ₂ TiO ₅	11m	113	(zircosulfate), Zr(SO ₄) ₂ ·4H ₂ O	7	66

CUMULATIVE ORGANIC FORMULA INDEX

		Vol. or	
		Sec.	Page
CHI ₃	Iodoform	18m	34
CH ₄ N ₂ O	Urea	7	61
CH ₄ N ₂ S	Thiourea	17m	83
CH ₅ NO ₂	Ammonium formate	11m	9
CH ₅ N ₃ ·HC1	Guanidinium chloride	17m	35
CH ₅ N ₃ S	Thiosemicarbazide	17m	81
C2Ag2O4	Silver oxalate	9m	47
C ₂ FeO ₄ •2H ₂ O	Iron oxalate hydrate (humboldtine)	10m	24
C2HNaO4·H2O	Sodium hydrogen oxalate hydrate	17m	72
C ₂ H ₂ CaO ₄	Calcium formate	8	16
$C_2H_2O_4 \cdot 2H_2O$	Oxalic acid hydrate	16m	55
C ₂ H ₂ O ₄ Pb	Lead formate	8	30
C ₂ H ₂ O ₄ Sr	Strontium formate	8	55
C ₂ H ₂ O ₄ Sr·2H ₂ O	Strontium formate hydrate (orthorhombic)	8	56
C ₂ H ₃ KO ₄	Potassium formate-formic acid complex	9m	93
$C_2H_3NaO_2 \cdot 3H_2O$	Sodium acetate hydrate	15m	66
C ₂ H ₄ N ₂ O ₂	Glyoxime	8m	102
C ₂ H ₅ NO ₂	α-Glycine	17m	34
C ₂ H ₇ NO ₂	Ammonium acetate	8m	95
C ₂ H ₈ N ₂ ·2HC1	Ethylenediamine Hydrochloride	19m	43
C ₂ H ₈ N ₂ O ₄ ·H ₂ O	Ammonium oxalate hydrate (oxammite)	7	5
C ₂ K ₂ O ₄ ·H ₂ O	Potassium oxalate hydrate	9 m	39
C ₂ Li ₂ O ₄	Lithium oxalate	10m	34
C ₂ Na ₂ O ₄	Sodium oxalate	6m	70
C ₂ O ₄ Rb ₂ ·H ₂ O ₂	Rubidium oxalate perhydrate	9m	102
C ₃ H ₇ NO ₂	L-Alanine	8m	93
C ₃ H ₇ NO ₂ S	L-Cysteine	11m	86
C ₃ H ₉ N·HC1	Trimethylammonium chloride	9m	113
	Potassium hydrogen oxalate hydrate	17m	60
C ₄ H ₃ KO ₈ • 2H ₂ O	· · ·	17m 10m	
C ₄ H ₄ CaO ₅ •2H ₂ O	Calcium malate hydrate		76
C ₄ H ₄ KNaO ₆ • 4H ₂ O	Potassium sodium tartrate hydrate	15m	55
C ₄ H ₄ MnO ₆	Manganese Tartrate	19m	57
C ₄ H ₄ NO ₈ Y·H ₂ O	Ammonium yttrium oxalate hydrate	8m	97
$C_4H_4Na_2O_6 \cdot 2H_2O$	Sodium D-tartrate hydrate	11m	110
C ₄ H ₆ CoO ₄ ·4H ₂ O	Cobalt acetate hydrate	12m	19
C ₄ H ₆ Hg ₂ O ₄	Mercury acetate	17m	51
C ₄ H ₆ NiO ₄ ·4H ₂ O	Nickel acetate hydrate	13m	31
$C_4H_6O_4Zn \cdot 2H_2O$	Zinc acetate hydrate	18m	78
C ₄ H ₆ O ₆	D-Tartaric acid	7m	168
C ₄ H ₆ O ₆ U • 2H ₂ O	Uranyl acetate hydrate	18m	76
C ₄ H ₇ N ₃ O	Creatinine	15m	31
C ₄ H ₈ N ₈ O ₈	α-HMX	11m	100
C ₄ H ₈ N ₈ O ₈	β-НМХ	11m	102
$C_4H_8N_8O_8$	Octahydro-1,3,5,7-tetranitro-		
	1,3,5,7-tetrazocine, alpha-	11m	100
$C_4H_8N_8O_8$	Octahydro-1,3,5,7-tetranitro-		
	1,3,5,7-tetrazocine, beta-	11m	102
$C_{4}H_{22}B_{20}$	bis-(o-Dodecacarborane)	6m	7
$C_5H_4N_4O_3$	Uric acid, phase 1 (calc. pattern)	8m	154
$C_5H_4N_4O_3$	Uric acid, phase 1	16m	78
C ₅ H ₇ CuNO ₄ ·2H ₂ O	Copper glutamate hydrate	7m	110
$C_5H_7NO_4Zn \cdot 2H_2O$	Zinc glutamate hydrate	7m	170
$C_5H_8NNaO_4 \cdot H_2O$	Sodium glutamate hydrate	17m	70
C ₅ H ₉ NO ₄	β-L-Glutamic acid	17m	32
C ₅ H ₁₂ O ₄	Pentaerythritol	17m	55
C ₆ H ₃ N ₃ O ₇	Picric acid	16m	56
C ₆ H ₅ NO ₂	Nicotinic acid	16m	54
C ₆ H ₆ O ₂	y-Hydroquinone	8m	107
C ₆ H ₈ Cl ₂ N ₄ Zn	Zinc diimidazole chloride	7m	123
C ₆ H ₈ N ₂ ·HC1	Phenylhydrazine hydrochloride	17m	56
C ₆ H ₈ O ₆	L-Ascorbic acid	8m	99
C ₆ H ₁₂ N ₄	Hexamethylenetetramine	17m	37
C ₆ H ₁₂ O ₆	Dextrose	11m	28
0 12-0	501172555		

		Vol. or	_
		Sec.	Page
C ₆ H ₁₂ O ₆	α-D-Glucose	11m	28
С ₆ H ₁₅ HoO ₁₂ S ₃ ·9H ₂ O	Holmium ethylsulfate hydrate	1m	18
$C_6H_{15}NdO_{12}S_3 \cdot 9H_2O$	Neodymium ethylsulfate hydrate	9	41
C ₇ H ₅ BrO ₂	o-Bromobenzoic acid	16m	22
C7H5C1O2	m-Chlorobenzoic acid	16m	30
C ₇ H ₅ FO ₂	p-Fluorobenzoic acid	16m	36
C ₇ H ₅ IO ₂	p-Iodobenzoic Acid Methyl sulfonanilide	19m 9m	47 78
C ₇ H ₉ NO ₂ S C ₇ H ₁₂ O ₄	Pimelic acid	7m	153
C ₈ H ₄ H ₈₂ O ₄	Mercury o-phthalate	10m	113
C ₈ H ₅ KO ₄	Potassium hydrogen o-phthalate	4m	30
C8H5O4T1	Thallium hydrogen phthalate	16m	75
C ₈ H ₇ N ₃ O ₇	2,4,6-Trinitrophenetole	8m	152
C ₈ H ₈ O ₃	p-Anisic acid	16m	11
C ₈ H ₉ NO	Acetanilide (calc. pattern)	14m	38
C ₈ H ₉ NO	Acetanilide	16m	7
C ₈ H ₁₁ N ₂ NaO ₃	Sodium barbital	16m	157
C ₈ H ₁₂ N ₂ O ₃	Barbital, form I Barbital, form II	15m	126
C ₈ H ₁₂ N ₂ O ₃ C ₈ H ₁₂ N ₂ O ₃	Barbital, form IV	15m 15m	128 130
C ₉ H ₁₄ N ₂ O ₃	Metharbital	15m	177
C ₁₀ H ₁₂ N ₂ O ₃	Allobarbital	14m	41
C ₁₀ H ₁₂ N ₂ O ₈	Ethylenediaminetetraacetic Acid	19m	45
C ₁₀ H ₁₅ NO·HC1	(-)-Ephedrine hydrochloride	16m	124
C ₁₁ H ₁₆ N ₂ O ₃	Vinbarbital, form I	16m	162
$C_{11}H_{18}N_{2}O_{3}$	Amobarbital, form I	15m	114
$C_{11}H_{18}N_2O_3$	Amobarbital, form II	15m	117
$C_{12}H_{10}N_2$	Azobenzene	7 m	86
C ₁₂ H ₁₂ N ₂ ·2HC1	Benzidine hydrochloride	18m	14
C ₁₂ H ₁₂ N ₂ O ₃	Phenobarbital, form III	16m	144
C ₁₂ H ₁₂ N ₂ O ₃ • 8H ₂ O	Phenobarbital Hydrate	19m	88
C ₁₂ H ₁₆ Cl ₂ CuN ₈ C ₁₂ H ₁₆ Cl ₂ N ₈ Ni	Copper tetrapyrazole chloride Nickel tetrapyrazole chloride	8m 8m	31 44
C ₁₂ H ₁₆ CuN ₁₀ O ₆	Copper tetraimidazole nitrate	13m	24
C ₁₂ H ₁₆ N ₂	(N,N)-Dimethyltryptamine	14m	109
C ₁₂ H ₁₆ N ₂ O	Bufotenine	15m	133
C ₁₂ H ₁₆ N ₂ O	Psilocin	16m	152
C ₁₂ H ₂₂ O ₁₁	Sucrose	11m	66
C ₁₂ H ₂₆ N ₂ O ₄	Hexamethylenediammonium adipate	7 m	121
$C_{13}H_{20}N_2O_2 \cdot HC1$	Procaine hydrochloride	16m	149
$C_{13}H_{21}N_2O_4P$	Psilocybin methanolate	16m	154
C ₁₄ H ₁₁ FO	4-Acetyl-2'-fluorodiphenyl	8m	91
C ₁₄ H ₁₉ N ₃ S·HC1	Methapyrilene hydrochloride	14m 18m	112 24
C ₁₅ H ₁₂ N ₂ O	β-Carbamazepine Dibenzoylmethane	7m	115
$C_{15}H_{12}O_2$ $C_{16}H_{13}C1N_2O$	Diazepam	14m	106
C ₁₆ H ₁₃ N	N-Phenyl-2-naphthylamine	6m	29
C ₁₇ H ₁₉ ClN ₂ S	Chlorpromazine	14m	60
C ₁₇ H ₁₉ NO ₃ ·HC1·3H ₂ O	Morphine hydrochloride hydrate	16m	133
C ₁₇ H ₂₁ NO ₄ ·HC1	L-Cocaine hydrochloride	16m	114
C ₁₇ H ₂₅ N•HC1	Phencyclidine hydrochloride	16m	141
$C_{18}H_{21}NO_3\cdot HBr\cdot 2H_2O$	Codeine hydrobromide hydrate	16m	117
C ₁₈ H ₂₄ CdN ₁₄ O ₆	Cadmium hexaimidazole nitrate	8m	23
C ₁₈ H ₂₄ N ₁₄ NiO ₆	Nickel hexaimidazole nitrate	7m	27
C ₁₈ H ₂₈ N ₂ O ₄ S	(+)-Amphetamine sulfate	15m	119
C ₁₉ H ₂₁ NO ₄ ·HC1·2H ₂ O	Naloxone hydrochloride hydrate Cinchonine	16m 17m	136 26
C ₁₉ H ₂₂ N ₂ 0 C ₁₉ H ₂₄ N ₂ ·HC1	Imipramine hydrochloride	16m	129
C ₂₀ H ₂₅ NO ₃ ·HC1	Benactyzine hydrochloride	16m	92
C ₂₀ H ₃₄	α-Dihydrophyllocladene, hartite	- 3	_
20 31	(or bombiccite)	16m	122
C ₂₁ H ₂₃ C1FNO ₂	Haloperidol	16m	127
C ₂₁ H ₃₀ O ₂	Cannabidiol	16m	111
$C_{22}H_{25}C1N_2OS \cdot 2H_2O$	Clopenthixol hydrate	17m	28
C ₂₂ H ₃₀ O ₄	Δ ⁹ -Tetrahydrocannabinolic acid B	16m	160

		Vol. or Sec.	Page
C ₂₄ H ₃₂ N ₂ O ₂ Pd	Palladium bis-(N-isopropyl-3-	7	166
C ₂₅ H ₁₅ N ₆	ethylsalicylaldiminate) N-Methylphenazinium-7,7,8,8-	7m	144
-25156	tetracyanoquinodimethanide	7m	146
C33H40N2O9	Reserpine	8m	123

CUMULATIVE ORGANIC NAME INDEX

	•	Vol. or	
		Sec.	Page
Acetanilide	C ₈ H ₉ NO (calc. pattern)	14m	38
Acetanilide	C ₈ H ₉ NO	16m	7
4-Acetyl-2'-fluorodiphenyl Alanine, L-	$C_{14}H_{11}FO$ $CH_{3}CHNH_{2}CO_{2}H$	8m 8m	91 93
Allobarbital	C ₁₀ H ₁₂ N ₂ O ₃	14m	41
Amobarbital, form I	C ₁₁ H ₁₈ N ₂ O ₃	15m	114
Amobarbital, form II	$C_{11}H_{18}N_2O_3$	15m	117
Ammonium acetate	NH ₄ · CH ₃ CO ₂	8 m	95
Ammonium formate	NH ₄ HCO ₂	11m	9
Ammonium oxalate hydrate (oxammite)	$(NH_4)_2C_2O_4 \cdot H_2O$	7	5
Ammonium yttrium oxalate hydrate	$NH_4Y(C_2O_4)_2 \cdot H_2O$	8m	97
Amphetamine sulfate, (+)-	C ₁₈ H ₂₈ N ₂ O ₄ S	15m	119
p-Anisic acid	C ₈ H ₈ O ₃	16m	11
Ascorbic acid, L- Azobenzene	C ₆ H ₅ NNC ₆ H ₅	8m 7m	99 8 6
Barbital, form I	C ₈ H ₁₂ N ₂ O ₃	15m	126
Barbital, form II	C ₈ H ₁₂ N ₂ O ₃	15m	128
Barbital, form IV	C ₈ H ₁₂ N ₂ O ₃	15m	130
Benactyzine hydrochloride	C ₂₀ H ₂₅ NO ₃ ·HC1	16m	92
Benzidine hydrochloride	C ₁₂ H ₁₂ N ₂ ·2HCl	18m	14
o-Bromobenzoic acid	C ₇ H ₅ BrO ₂	16m	22
Bufotenine	$C_{12}H_{16}N_2O$	15m	133
Cadmium hexaimidazole nitrate	$Cd(C_3H_4N_2)_6(NO_3)_2$	8m	23
Calcium formate	Ca(HCO ₂) ₂	8	16
Calcium malate hydrate	$Ca(O_2C)_2(CH_2CHOH) \cdot 2H_2O$	10m	76
Cannabidiol	C ₂₁ H ₃₀ O ₂	16m	111
Carbamazepine, β-	$C_{15}H_{12}N_2O$	18m	24
m-Chlorobenzoic acid	C ₇ H ₅ ClO ₂	16m	30
Chlorpromazine Cinchonine	C ₁₇ H ₁₉ ClN ₂ S	14m 17m	60 26
Clopenthixol hydrate	$C_{19}H_{22}N_{2}0$ $C_{22}H_{25}C1N_{2}OS \cdot 2H_{2}O$	17m	28
Cobalt acetate hydrate	$Co(C_2H_3O_2)_2 \cdot 4H_2O$	12m	19
Cocaine hydrochloride, L-	C ₁₇ H ₂₁ NO ₄ •HC1	16m	114
Codeine hydrobromide hydrate	C ₁₈ H ₂₁ NO ₃ ·HBr·2H ₂ O	16m	117
Copper glutamate hydrate	$Cu(O_2C)_2(H_2NCHCH_2CH_2) \cdot 2H_2O$	7m	110
Copper tetraimidazole nitrate	$Cu(C_3H_4N_2)_4(NO_3)_2$	13m	24
Copper tetrapyrazole chloride	$Cu(C_3H_4N_2)_4Cl_2$	8m	31
Creatinine	$C_4H_7N_3O$	15m	31
Cysteine, L-	HSCH ₂ ·CH(NH ₂)·COOH	11m	86
Dextrose	C ₆ H ₁₂ O ₆	11m	28
Diazepam	$C_{16}H_{13}ClN_2O$	14m 7m	106 115
Dibenzoylmethane Dihydrophyllocladene, α-, hartite (or	(C ₆ H ₅ CO) ₂ CH ₂	7 111	115
bombiccite)	C ₂₀ H ₃₄	16m	122
(N,N)-Dimethyltryptamine	C ₁₂ H ₁₆ N ₂	14m	109
bis-(o-Dodecacarborane)	C ₄ B ₂₀ H ₂₂	6m	7
Ephedrine hydrochloride, (-)-	C ₁₀ H ₁₅ NO·HC1	16m	124
Ethylenediamine hydrochloride	C ₂ H ₈ N ₂ ·2HC1	19m	43
Ethylenediaminitetraacetic acid	$C_{10}H_{12}N_2O_8$	19m	45
p-Fluorobenzoic acid	$C_7H_5FO_2$	16m	36
Glucose, \alpha-D-	$C_{6}H_{12}O_{6}$	11m	28
Glutamic acid, β-L-	C ₅ H ₉ NO ₄	17m	32
Glycine, α-	C ₂ H ₅ NO ₂	17m 8m	34
Glyoxime	H ₂ C ₂ (NOH) ₂	17m	102 35
Guanidinium chloride	CH ₅ N ₃ ·HCl C ₂₁ H ₂₃ C1FNO ₂	16m	127
Haloperidol Hexamethylenediammonium adipate	$(CH_2)_4(CO_2H_3N)_2(CH_2)_6$	7m	121
Hexamethylenetetramine	$C_{6}H_{12}N_{4}$	17m	37
HMX, α -	C ₄ H ₈ N ₈ O ₈	11m	100
HMX, β-	$C_4H_8N_8O_8$	11m	102
Holmium ethylsulfate hydrate	Но [(C ₂ H ₅)SO ₄] ₃ ·9H ₂ O	1m	18
Hydroquinone, y-	HOC ₆ H ₄ OH	8m	107

		Vol. or Sec.	Page
Imipramine hydrochloride	C ₁₉ H ₂₄ N ₂ ·HC1	16m	129
p-Iodobenzoic acid	C ₇ H ₅ IO ₂	19m	47
Iodoform	CHI ₃	18m	34
Iron oxalate hydrate (humboldtine)	FeC ₂ O ₄ • 2H ₂ O	10m	24
Lead formate	Pb(HCO ₂) ₂	8	30
Lithium oxalate	Li ₂ C ₂ O ₄	10m	34
Manganese tartrate Mercury acetate	$C_4H_4MnO_6$ $C_4H_6Hg_2O_4$	19m 17m	57 51
Mercury o-phthalate	$C_{6}H_{4}(CO_{2}Hg)_{2}$	10m	113
Methapyrilene hydrochloride	C ₁₄ H ₁₉ N ₃ S·HC1	14m	112
Metharbital	C ₉ H ₁₄ N ₂ O ₃	15m	177
Methyl sulfonanilide	C ₆ H ₅ NHSO ₂ CH ₃	9m	78
N-Methylphenazinium-7,7,8,8-tetra-			
cyanoquinodimethanide	C ₂₅ H ₁₅ N ₆	7m	146
Morphine hydrochloride hydrate Naloxone hydrochloride hydrate	$C_{17}H_{19}NO_{3} \cdot HC1 \cdot 3H_{2}O$ $C_{19}H_{21}NO_{4} \cdot HC1 \cdot 2H_{2}O$	16m 16m	133 136
2-Naphthylamine, N-phenyl-	C ₁₀ H ₇ NHC ₆ H ₅	6m	29
Neodymium ethylsulfate hydrate	Nd [(C ₂ H ₅)SO ₄] ₃ ·9H ₂ O	9	41
Nickel acetate hydrate	$Ni(C_2H_3O_2)_2 \cdot 4H_2O$	13m	31
Nickel hexaimidazole nitrate	$Ni(C_3H_4N_2)_6(NO_3)_2$	7m	27
Nickel tetrapyrazole chloride	$Ni(C_3H_4N_2)_4Cl_2$	8m	44
Nicotinic acid	C ₆ H ₅ NO ₂	16m	54
Octahydro-1,3,5,7-tetranitro-	CHNO	11	100
1,3,5,7-tetrazocine (α-HMX) Octahydro-1,3,5,7-tetranitro-	$C_4H_8N_8O_8$	11m	100
1,3,5,7-tetrazocine (β-HMX)	C ₄ H ₈ N ₈ O ₈	11m	102
Oxalic acid hydrate	C ₂ H ₂ O ₄ • 2H ₂ O	16m	55
Palladium bis-(N-isopropyl-3-	22-42-		33
ethylsalicylaldiminate)	$Pd(C_{12}H_{16}NO)_2$	7m	144
Pentaerythritol	C ₅ H ₁₂ O ₄	17m	55
Phencyclidine hydrochloride	C ₁₇ H ₂₅ N•HC1	16m	141
Phenobarbital, form III	$C_{12}H_{12}N_2O_3$	16m	144
Phenobarbital hydrate	C ₁₂ H ₁₂ N ₂ O ₃ ·H ₂ O	19m	88
Phenylhydrazine hydrochloride Picric acid	C ₆ H ₈ N ₂ ·HCl C ₆ H ₃ N ₃ O ₇	17m 16m	56 56
Pimelic acid	$(CH_2)_5(CO_2H)_2$	7m	153
Potassium formate-formic acid complex	KO2CH·HO2CH	9m	93
Potassium hydrogen o-phthalate	C ₆ H ₄ (COOH)(COOK)	4m	30
Potassium hydrogen oxalate hydrate	$C_4H_3KO_8 \cdot 2H_2O$	17m	60
Potassium oxalate hydrate	$K_2C_2O_4 \cdot H_2O$	9m	39
Potassium oxalate perhydrate	K ₂ C ₂ O ₄ ·H ₂ O ₂	9m	96
Potassium sodium tartrate hydrate Procaine hydrochloride	C ₄ H ₄ KNaO ₆ ·4H ₂ O	15m 16m	55 149
Psilocin	C ₁₃ H ₂₀ N ₂ O ₂ ·HC1 C ₁₂ H ₁₆ N ₂ O	16m	152
Psilocybin methanolate	C ₁₃ H ₂₁ N ₂ O ₄ P	16m	154
Reserpine	C ₃₃ H ₄₀ N ₂ O ₉	8m	123
Rubidium oxalate perhydrate	$Rb_2C_2O_4 \cdot H_2O_2$	9m	102
Silver oxalate	Ag ₂ C ₂ O ₄	9m	47
Sodium acetate hydrate	C ₂ H ₃ NaO ₂ ·3H ₂ O	15m	66
Sodium barbital	C ₈ H ₁₁ N ₂ NaO ₃	16m	157
Sodium glutamate hydrate Sodium hydrogen oxalate hydrate	C ₅ H ₈ NNaO ₄ •H ₂ O C ₂ HNaO ₄ •H ₂ O	17m 17m	70 72
Sodium oxalate	Na ₂ C ₂ O ₄	6m	70
Sodium D-tartrate hydrate	(CHOH-CO ₂ Na) ₂ ·2H ₂ O	11m	110
Strontium formate	Sr(CHO ₂) ₂	8	55
Strontium formate hydrate	$Sr(CHO_2)_2 \cdot 2H_2O$ (orthorhombic)	8	56
Sucrose	C ₁₂ H ₂₂ O ₁₁	11m	66
Tartaric acid, D-	(CHOHCO ₂ H) ₂	7m	168
Δ ⁹ -Tetrahydrocannabinolic acid B Thallium hydrogen phthalate	C ₂₂ H ₃₀ O ₄	16m 16m	160 75
Thiosemicarbazide	C ₈ H ₅ O ₄ T1 CH ₅ N ₃ S	17m	81
Thiourea	CH ₄ N ₂ S	17m	83
Trimethylammonium chloride	C ₃ H ₉ N·HC1	9m	113
2,4,6-Trinitrophenetole	C ₈ H ₇ N ₃ O ₇	8m	152
Uranyl acetate hydrate	C ₄ H ₆ O ₆ U·2H ₂ O	18m	76
Urea	CO(NH ₂) ₂	7	61
Uric acid, phase 1, (calc. pattern) Uric acid (phase 1)	C ₅ H ₄ N ₄ O ₃	8m 16m	154 78
Vinbarbital, form I	$C_{5}H_{4}N_{4}O_{3}$ $C_{11}H_{16}N_{2}O_{3}$	16m	162
,	-11102-3		

		Vol. or	
		Sec.	Page
Zinc acetate hydrate	C4H6O4.2H2O	18m	78
Zinc diimidazole chloride	$Zn(C_3H_4N_2)_2Cl_2$	7m	123
Zinc glutamate hydrate,	Zn(O ₂ CCHNH ₂ CH ₂ CH ₂ CO ₂)·2H ₂ O	7m	170

Vol. or Sec. Page Vol. or Sec. Page

Acanthite, Ag ₂ S	10	51	Clausthalite, PbSe	5	38
Aeschynite CeNbTiO ₆	3m	24	Clinobisvanite, BiVO ₄	3m	14
Alabandite, MnS	4	11	Copper, Cu	1	15
Anatase, TiO ₂	7m	82	Cordierite, Mg ₂ Al ₄ Si ₅ O ₁₈	1m	28
Andradite, Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22	Corundum, Al ₂ O ₃	9	3
Anglesite, PbSO ₄	3	67	Cotunnite, PbCl ₂	12m	23
Anhydrite, CaSO ₄	4	65	Covellite, CuS	4	13
	19m	60		4	13
Annabergite, Ni ₃ (AsO ₄) ₂ ·8H ₂ O	19m	16	Cristobalite (\alpha or low) SiO ₂	10	4.0
Antarcticite, CaCl ₂ ·6H ₂ O		14	(tetragonal)	10	48
Antimony; Sb	3		Cristobalite (\alpha or low) SiO ₂	15	100
Aphthitalite, K ₃ Na(SO ₄) ₂	6m	52	(tetragonal, calculated pattern)	15m	180
Aragonite, CaCO ₃	3	53	Cristobalite (β or high) SiO ₂ (cubic)	1	42
Aragonite, CaCO ₃ (calculated pattern)	14m	44	Cryolithionite, Li ₃ Na ₃ Al ₂ F ₁₂	9m	23
Arcanite, K ₂ SO ₄	3	62	Cryptohalite, (NH ₄) ₂ SiF ₆	5	5
Arsenic, As	3	6	Cuprite, Cu ₂ O	2	23
Arsenolite, As ₂ O ₃	1	51	*Derbylite, SbFe ₄ Ti ₃ O ₁₃ (OH)	16m	89
Aurostibite, AuSb ₂	7	18	*Diamond, C	2	5
Avicennite, Tl ₂ O ₃	16m	77	*Diaspore, Al ₂ O ₃ ·H ₂ O	3	41
\star Azurite, $Cu_3(OH)_2(CO_3)_2$	10	30	Diopside, CaMg(SiO ₃) ₂	5m	17
*Bahianite, Al _{5.66} Fe _{0.09} Sb _{2.95} O ₁₆ .	16m	87	*Dravite, NaMg3Al6B3Si6O27(OH)4	3m	47
Baryte, BaSO ₄	10m	12	Eitelite, Na ₂ Mg(CO ₃) ₂	11m	56
Bassanite, CaSO ₄ ·0.5H ₂ O	18m	22	Elpasolite, K2NaAlF6	9m	43
Berlinite, AlPO ₄	10	3	*Enstatite, MgSiO ₃	6	32
Berndtite, SnS ₂	9m	57	Epsomite, MgSO ₄ ·7H ₂ O	7	30
*Beryl, Be ₃ Al ₂ Si ₆ O ₁₈	9	13	Eriochalcite, CuCl ₂ ·2H ₂ O	18m	33
Bischofite, MgCl ₂ ·6H ₂ O	11m	37	Erythrite, Co ₃ (AsO ₄) ₂ ·8H ₂ O	19m	39
Bismite, α-Bi ₂ O ₃	3m	17	Erythrosiderite, K ₂ FeCl ₅ ·H ₂ O	14m	27
Bismoclite, BiOCl	4	54	Eskolaite, Cr ₂ O ₃	5	22
Bismuth, Bi	3	20	Ettringite, Ca ₆ Al ₂ S ₃ O ₁₈ ·3lH ₂ O	8	3
Bismuthinite, Bi ₂ S ₃	5m	13	Fairchildite, $K_2Ca(CO_3)_2$	8m	48
Bixbyite, α -Mn ₂ 0 ₃	11m	95	Farringtonite, $Mg_3(PO_4)_2$	19m	55
*Bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	6m	63		3m	22
	3	38	Fluorapatite, Ca ₅ F(PO ₄) ₃		69
Boehmite, Al ₂ O ₃ ·H ₂ O			Fluorite, CaF ₂	1	
*Bombiccite, C ₂₀ H ₃₄	16m	122	Forsterite, Mg ₂ SiO ₄	1	83
Borax, Na ₂ B ₄ O ₅ (OH) ₄ ·8H ₂ O	16m	66	Franklinite, ZnFe ₂ O ₄	9m	60
Bromargyrite, AgBr	4	46	Fresnoite, Ba ₂ TiSi ₂ O ₈	9m	14
Bromellite, BeO	1	36	Gahnite, ZnAl ₂ O ₄	2	38
*Brookite, TiO ₂	3m	57	Galaxite, MnAl ₂ O ₄	9	35
Brownmillerite, Ca ₄ Al ₂ Fe ₂ O ₁₀	16m	28	Galena, PbS	2	18
Brucite, Mg(OH) ₂	6	30	Gaspeite, NiCO ₃	1 m	36
Bunsenite, NiO	1	47	Geikielite, MgTiO ₃	5	43
Burkeite, $Na_6CO_3(SO_4)_2$	11m	52	Gersdorffite, NiAsS	1m	35
*Butlerite, Fe(OH)SO ₄ ·2H ₂ O	10m	95	Glauberite, $Na_2Ca(SO_4)_2$	6m	59
Cadmoselite, CdSe	7	12	Gold, Au	1	33
Calcite, CaCO ₃	2	51	Goslarite, ZnSO ₄ ·7H ₂ O	8	71
Calomel, Hg ₂ Cl ₂	13m	30	Greenockite, CdS	4	15
Carnallite, KMgCl ₃ ·6H ₂ O	8m	50	*Groutite, MnO(OH)	11m	97
Carobbiite, KF	1	64	Gunningite, ZnSO ₄ ·H ₂ O	19m	86
Cassiterite, SnO ₂	1	54	Gypsum, CaSO ₄ ·2H ₂ O	17m	16
Celestite, SrSO ₄	2	61	Halite, NaCl	2	41
Cerianite, CeO ₂	1	56	*Hartite, C ₂₀ H ₃₄	16m	122
Cerussite, PbCO ₃	2	56	Hausmannite, Mn ₃ O ₄	10m	38
Cervantite, Sb ₂ O ₄	10	8	Hematite, α -Fe ₂ 0 ₃	18m	37
*Chabazite, Ca ₂ Al ₄ Si ₈ O ₂₄ ·12H ₂ O	19m	27	*Hemimorphite, $Zn_4(OH)_2Si_2O_7 \cdot H_2O$	2	62
Chalcocyanite, CuSO ₄	3m	29	Hercynite, FeAl ₂ 0 ₄	19m	48
Chernovite, YAsO ₄	2m	39	Hessite, Ag ₂ Te	19m	73
Chiolite, Na ₅ Al ₃ F ₁₄	16m	63	Hetaerolite, ZnMn ₂ O ₄	10m	61
Chloraluminite, AlCl ₃ ·6H ₂ O	7	3	*Hexahydroborite, $Ca[B(OH)_4]_2 \cdot 2H_2O$	16m	104
Chlorargyrite, AgCl	4	44		5	50
Chloromagnesite, MgCl ₂	11m	94	Hieratite, K ₂ SiF ₆	19m	53
	7	13	Hoernesite, Mg ₃ (AsO ₄) ₂ ·8H ₂ O	16m	85
Chromatite, CaCrO ₄			Hopeite, $Zn_3(PO_4)_2 \cdot 4H_2O \dots$		24
Chromite, FeCr ₂ O ₄	19m	50	Huebnerite, MnWO ₄	2m	
Chrysoberyl, BeAl ₂ O ₄	9	10	Humboldtine, FeC ₂ O ₄ ·2H ₂ O	10m	24
Cinnabar, HgS	4	17	Humite, Mg ₇ F ₂ Si ₃ O ₁₂	1m	30
Claudetite, As ₂ 0 ₃	3m	9	Hydromolysite, FeCl ₃ ·6H ₂ 0	17m	40
*			Hydrophilite, CaCl ₂	11m	18
*Natural mineral			Ilmenite, FeTiO ₃	15m	34

,	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Indialite, Mg ₂ Al ₄ Si ₅ O ₁₈	1m	29	Palladium, Pd	1	21
Iodargyrite, AgI	8	51	Palladseite, Pd ₁₇ Se ₁₅	16m	139
Iron, α-Fe	4	3	Palmierite, $K_2Pb(SO_4)_2$	14m	30
Jacobsite, MnFe ₂ O ₄	9	36	Paraguanajuatite, Bi ₂ Se ₃	18m	16
*Julgoldite, Ca ₂ Fe ₃ Si ₃ O ₁₀ (OH,O) ₂ (OH) ₂	10m	72	*Paratellurite, TeO ₂	10	55
Kalistrontite, K ₂ Sr(SO ₄) ₂	14m	31	Paratellurite, TeO ₂	7	56
Kieserite, MgSO ₄ ·H ₂ O	16m 19m	46 85	Periodase, MgO	1	37
Koettigite, $Zn_3(AsO_4)_2 \cdot 8H_2O$ Kremersite, $(NH_4,K)_2FeCl_5 \cdot H_2O$	14m	8	Perovskite, CaTiO ₃ * *Phenakite, Be ₂ SiO ₄	9m 8	17 11
Langbeinite, $K_2Mg_2(SO_4)_3$	6m	40	Picromerite, K ₂ Mg(SO ₄) ₂ ·6H ₂ O	8m	54
Larnite, β-Ca ₂ SiO ₄	19m	29	*Pirssonite, $Na_2Ca(CO_3)_2 \cdot 2H_2O$	9m	106
Lautarite, Ca(IO ₃) ₂	14m	12	Platinum, Pt	1 .	31,
Lead, Pb	1	34	Portlandite, $Ca(OH)_2$	1	58
*Leucophanite, NaCaBeFSi ₂ O ₆	8m	138	Potash alum, KAl(SO ₄) ₂ ·12H ₂ O	6	36
Libethenite, Cu ₂ (OH)PO ₄	17m	30	Powellite, CaMoO ₄	6	22
*Liddicoatite, Ca(Li,Al) ₃ Al ₆ B ₃ Si ₆ O ₂₇ (O,OH) ₃ (OH,F)	. 16m	42	Pyrargyrite, Ag ₃ SbS ₃ Pyrite, FeS ₂	5m 5	51 29
Lime, CaO	1	43	*Pyroaurite, Mg ₆ Fe ₂ CO ₃ (OH) ₁₆ ·4H ₂ O	10m	104
Lime, CaO (calculated pattern)	14m	49	Pyrolusite, β-MnO ₂	10m	39
*Linarite, CuPb(OH) ₂ (SO ₄)	16m	34	Pyrope, $Mg_3Al_2(SiO_4)_3$	4m	24
Litharge, PbO (red)	2	30	Pyrophanite, MnTiO ₃	15m	42
Lithiophosphate, Li ₃ PO ₄	4m	21	*Quartz, SiO ₂ (α or low)	3	24
Loellingite, FeAs ₂	10	34	Quartz, low, α-SiO ₂	18m	61
Loeweite, Na ₁₂ Mg ₇ (SO ₄) ₁₃ ·15H ₂ O	14m 15m	35 47	Rammelsbergite, NiAs ₂	10 7	42 36
Lopezite, K ₂ Cr ₂ O ₇ *Loveringite, Ca _{.72} RE _{.33} (Y,Th,U,	13111	4/	Retgersite, NiSO ₄ ·6H ₂ O Rhodochrosite, MnCO ₃	7	32
Pb) _{.05} Ti _{12.48} Fe _{3.38} Cr _{2.24} Mg _{.92}			Rokuhnite, FeCl ₂ ·2H ₂ O	11m	32
Zr _{.58} Al _{.39} V _{.21} Mn _{.04} O _{.38}	16m	106	Romarchite, SnO	4	28
Lueshite, NaNbO ₃	18m	64	*Roscherite, (monoclinic),		
Macedonite, PbTiO ₃	5	39	$Be_2Ca(Fe_3Mg_7)_2Al_{67}(PO_4)_3(OH)_3$		
Magnesiochromite, MgCr ₂ O ₄	9	34	2H ₂ O	16m	96
Magnesite, MgCO ₃	7	28	*Roscherite, (triclinic), Be ₄ Ca ₂		
Magnetite, Fe_3O_4	5m 10	31 31	(Mn _{3,91} Mg _{.04} Ca _{.05})(Al _{.13} Fe _{.42} Mn _{.12}) (PO ₄) ₆ (OH) ₄ ·6H ₂ O	16m	100
Malladrite, Na ₂ SiF ₆	16m	68	Rutile, TiO ₂	7m	83
Manganolangbeinite, $K_2Mn_2(SO_4)_3$	6m	43	Safflorite, CoFeAs ₄	10	28
Manganosite, MnO	5	45	Salammoniac, NH ₄ Cl	1	59
Marshite, CuI	4	38	Sanbornite, β -BaSi ₂ 0 ₅	13m	10
Mascagnite, (NH ₄) ₂ SO ₄	9	8	Sanmartinite, ZnWO ₄	2m	40
Massicot, PbO (yellow)	2	32	Scacchite, MnCl ₂	8m	43
Matlockite, PbFC1	13m 9m	25 52	<pre>*Scheelite, CaWO₄ Schultenite, PbHAsO₄</pre>	6 14m	23 18
Matteuccite, NaHSO ₄ ·H ₂ O	9111	20	Selenium, Se	5	54
Melanterite, FeSO ₄ ·7H ₂ O	8m	38	Selenolite, SeO ₂	7m	60
*Meliphanite,			Sellaite, MgF ₂	4	33
Na .63Ca _{1.37} BeAl . ₁₃ Si _{1.87} O _{6.25} F . ₇₅	8m	135	Senarmontite, Sb_2O_3	3	31
Metaborite, HBO ₂	4m	27	Shcherbinaite, V ₂ O ₅	8	66
Metacinnabar, HgS	4	21	*Siderite, FeCO ₃	15m	32
Miargyrite, AgSbS ₂	5m 1m	49 37	Silver, Ag	1 8m	23 2
Minium, Pb ₃ O ₄	8	32	*Sjögrenite, Mg ₆ Fe ₂ CO ₃ (OH) ₁₆ ·4H ₂ O	10m	103
Mitscherlichite, K ₂ CuCl ₄ ·2H ₂ O	9m	34	Skutterudite, CoAs ₃	10	21
Molybdenite, MoS ₂	5	47	*Smithsonite, ZnCO ₃	8	69
Molybdite, MoO ₃	3	30	Soda alum, NaAl $(SO_4)_2 \cdot 12H_2O \dots$	15m	68
Monteponite, CdO	2	27	*Sodalite, Na ₈ Si ₆ Al ₆ O ₂₄ Cl ₂	7m	158
Montroydite, HgO	9	39	Soda niter, NaNO ₃	6	50 24
Mullite, Al ₆ Si ₂ O ₁₃	3m 4	3 35	Sphaerocobaltite, CoCO ₃ Sphalerite, ZnS	10 2	24 16
Nantokite, CuCl	7m	139	Spinel, MgAl ₂ O ₄	9m	25
Nickel-hexahydrite, β-NiSO ₄ ·6H ₂ O	19m	65	Stibnite, Sb ₂ S ₃	5	6
Niter, KNO ₃	3	58	Stilleite, ZnSe	3	23
Nitrammite, NH ₄ NO ₃	7	4	Stolzite, PbWO ₄	5m	34
Nitrobarite, Ba(NO ₃) ₂	11m	14	Strontianite, SrCO ₃	3	56
Norbergite, Mg ₃ F ₂ SiO ₄	10	39	Struvite, MgNH ₄ PO ₄ ·6H ₂ O	3m 9	41 54
Oldhamite, CaS	7 7	15 11	Sulfur, S (orthorhombic) Sylvite, KCl	1	65
Otavite, CdCO ₃ Oxammite, (NH ₄) ₂ C ₂ O ₄ ·H ₂ O	7	5	Syngenite, $K_2Ca(SO_4)_2 \cdot H_2O \dots$	14m	25
			Szmikite, MnSO ₄ ·H ₂ O	16m	49

	Vol. or	
	Sec.	Page
Tellurantimony, Sb ₂ Te ₃	3m	8
*Tellurite, TeO ₂	9	57
Tellurium, Te	1	26
Tellurobismuthite, Bi ₂ Te ₃	3m	16
Tenorite, CuO	1	49
Teschemacherite, NH ₄ HCO ₃	9	5
Thenardite, Na ₂ SO ₄	2	59
Thermonatrite, Na ₂ CO ₃ ·H ₂ O	8	54
*Thomsenolite, NaCaAlF ₆ ·H ₂ O	8m	132
Thorianite, ThO ₂	1	57
Thortveitite, Sc ₂ Si ₂ O ₇	7m	58
Tiemannite, HgSe	7	35
Tin, α-Sn (cubic)	2	12
Tin, β-Sn (tetragonal)	1	24
*Topaz, Al ₂ SiO ₄ (F,OH) ₂	1m	4
Trevorite, NiFe ₂ O ₄	10	44
Trippkeite, CuAs ₂ O ₄	16m	120
*Trona, Na ₃ H(CO ₃) ₂ ⋅2H ₂ O	15m	71
Tschermigite, NH ₄ Al(SO ₄) ₂ ·12H ₂ O	6	3
Tungstenite, WS ₂	8	65
Unnamed mineral,		
K _{1.16} Ba _{.72} Fe _{.36} Tí _{5.58} O ₁₃ Uraninite, UO ₂	16m	147
Uraninite, UO ₂	2	33
Uvarovite, Ca ₃ Cr ₂ (SiO ₄) ₃	10	17
*Valentinite, Sb ₂ O ₃	10	6
Vanthoffite, Na ₆ Mg(SO ₄) ₄	15m	72
Villiaumite, NaF	1	63
Vivianite, Fe ₃ (PO ₄) ₂ ·8H ₂ O	16m	38
Wakefieldite, YVO ₄	5m	59
Willemite, Zn ₂ SiO ₄	7	62
Witherite, BaCO ₃	2	54
Wulfenite, PbMoO ₄	7	23
Wurtzite, ZnS	2	14
*Xanthoconite, Ag ₃ AsS ₃	8m	126
Xenotime, YPO ₄	8	67
Yavapaiite, KFe(SO ₄) ₂	16m	59
Zinc, Zn	1	16
Zincite, ZnO	2	25
Zinkosite, ZnSO ₄	7	64
*Zircon, ZrSiO ₄	4	68
Zircosulfate, Zr(SO ₄) ₂ ·4H ₂ O	7	66

NBS-114A (REV. 2-80)	
U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No.	3. Publication Date
BIBLIOGRAPHIC DATA REPORT NO.	December 1982
SHEET (See instructions) Monogr. 25Sec. 19	December 1302
4. TITLE AND SUBTITLE	
Standard X-ray Diffraction Powder Patterns	
Section 19Data for 51 Substances	
5. AUTHOR(S) M. C. Manuis, H. F. McMundie, F. H. Evans, P. Danetz	
H. S. Parker, N. P. Pyrros, and C. R. Hubbard	Kin,
	Contract/Grant No.
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE JCPDSInternational Centre 8.	Type of Report & Period Covered
WASHINGTON, D.C. 20234 for Diffraction Data	Type of Report & Ferrod Covered
	inal
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)	
3. SPONSOKING ORGANIZATION HATE AND COLLECTE ADDRESS (SECO., STO), SECO., 211	
Same as item 6 above.	
TA CUPPLEVENTARY NOTES	
10. SUPPLEMENTARY NOTES	
Library of Congress Catalog Card Number: 53-61386	
Document describes a computer program; SF-185, FIPS Software Summary, is attached.	
11. ABSTRACT (A 200-word or less factual summary of most significant information. If documen	ti-dudo a cia-ifica-t
III. ABSTRACT IA 200-word or less idetilal summary of most significant information. If documen	t includes a significant
bibliography or literature survey, mention it here)	
bibliography or literature survey, mention it here)	
Standard x-ray powder diffraction patterns are presented for 5	1 substances. These
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual of	l substances. These or automated diffrac-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal stru	ol substances. These or automated diffracticture data. The
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by 1	I substances. These or automated diffracture data. The east-squares methods,
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with s	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with s	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with s	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These r automated diffracture data. The east-squares methods, pace group extinc-
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included.	I substances. These or automated diffracture data. The east-squares methods, pace group extinctereferences, and
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature	I substances. These or automated diffracture data. The east-squares methods, pace group extinctereferences, and
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual o tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by land reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included.	or automated diffracticture data. The east-squares methods, space group extinctive references, and
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual of tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by and reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included. 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and sep Crystal structure; densities; lattice constants; powder pattern	or automated diffracticture data. The east-squares methods, space group extinctive references, and
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual of tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by and reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included. 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and see Crystal structure; densities; lattice constants; powder pattern intensities; standard; x-ray diffraction.	of substances. These or automated diffracticture data. The east-squares methods, space group extinctions and extended and extinctions and extinctions are references, and extinctions are references.
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual of tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by and reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included. 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and sep Crystal structure; densities; lattice constants; powder pattern	of substances. These or automated diffracticture data. The east-squares methods, space group extinctions and extended and extinctions are references, and extinctions are references. It is no. of
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual of tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by and reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included. 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and septimental structure; densities; lattice constants; powder pattern intensities; standard; x-ray diffraction. 13. AVAILABILITY	of substances. These or automated diffracticture data. The east-squares methods, space group extinctions and extended and extinctions and extinctions are references, and extinctions are references.
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual of tometer methods, or were calculated from published crystal strustantice constants from the experimental work were refined by and reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included. 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and see Crystal structure; densities; lattice constants; powder pattern intensities; standard; x-ray diffraction. 13. AVAILABILITY [X] Unlimited	of substances. These or automated diffracticture data. The east-squares methods, space group extinctions and extended and extinctions are references, and extinctions are references. 14. NO. OF PRINTED PAGES
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual of tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by and reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included. 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and sep Crystal structure; densities; lattice constants; powder pattern intensities; standard; x-ray diffraction. 13. AVAILABILITY Valimited For Official Distribution. Do Not Release to NTIS	of substances. These or automated diffracticture data. The east-squares methods, space group extinctions and extended and extended are references, and extended are serviced at a service parate key words by semicolons) as; reference 14. NO. OF PRINTED PAGES 118
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual of tometer methods, or were calculated from published crystal strustantice constants from the experimental work were refined by and reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included. 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and see Crystal structure; densities; lattice constants; powder pattern intensities; standard; x-ray diffraction. 13. AVAILABILITY [X] Unlimited	of substances. These or automated diffracticture data. The east-squares methods, space group extinctive references, and orarate key words by semicolons) is; reference 14. NO. OF PRINTED PAGES 118
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual of tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by and reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included. 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and sep Crystal structure; densities; lattice constants; powder pattern intensities; standard; x-ray diffraction. 13. AVAILABILITY X Unlimited	of substances. These or automated diffracticture data. The east-squares methods, space group extinctereferences, and orarate key words by semicolons) is; reference 14. NO. OF PRINTED PAGES 118 15. Price
Standard x-ray powder diffraction patterns are presented for 5 patterns, useful for identification, were obtained by manual of tometer methods, or were calculated from published crystal strulattice constants from the experimental work were refined by and reflections were assigned Miller indices consistent with stions. Relative intensities, calculated densities, literature other relevant data are included. 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and sep Crystal structure; densities; lattice constants; powder pattern intensities; standard; x-ray diffraction. 13. AVAILABILITY X Unlimited	of substances. These or automated diffracticture data. The east-squares methods, space group extinctions and extended for a series of the east-squares and extinction of the east-squares and extinction of the east-squares methods, space group extinction extinct

, , , , , , , ,

FORM NBS-114A: BIBLIOGRAPHIC DATA SHEET. This bibliographic data sheet meets the standards adopted for use by all U.S. Government agencies. It is needed for NTIS processing and must accompany all NBS papers, those appearing in nongovernmental media as well as those in NBS series, since all reports of NBS technical work are normally entered into the NTIS system. For all GPO publications, it becomes an integral part of the document and is widely used by librarians and abstractors.

- Complete if information is available; otherwise Publications Office will complete later: If non-NBS publication, state "see item 10" (Enter other agency sponsor's report number if requested to do so, and enter NBSIR number under item 2).
- 1tem 3 Complete if known; otherwise Publications Office will complete.
- Items 4, 5 Complete as shown on manuscript. When NBS-114A is resubmitted along with NBS-266, following publication of non-NBS media papers, these items must agree with published paper.
- Item 6 If not NBS, blank out and enter Grantee/Contractor name and address, or if performed jointly, show both.
- Item 7 Complete when applicable.
- ltem 8 Enter "Interim," "Final," or period covered.
- Enter all sponsors' names and addresses. Include NBS if also a sponsor.
- Enter other relevant information, i.e., related or superseded documents. Also used by Publications Office for Library of Congress catalog number, and entry of non-NBS media citation upon receipt of Form NBS-266 from author. Check block if appropriate and attach SF185.
- Item 11, 12 Prepare abstract and key words with special care. These are published separately by NBS, NTIS, and other bibliographic services, and are vital elements in guiding readers to your paper. The key words will be used as entries in a subject index. See NBS Communications Manual for additional guidance.
- Item 13

 Indicate "Unlimited" for open-literature documents cleared under NBS editorial procedures, or "For official distribution. Do not release to NTIS" for limited, restricted, or need-to-know material (See Communications Manual). Publications Office will mark appropriate "order" box and complete Stock Number when known.
- Items 14, 15 -Leave blank. To be completed by Publications Office or call Printing and Duplicating for NBSIR's.

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription: domestic \$18; foreign \$22.50. Single copy, \$4.25 domestic; \$5.35 foreign.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce National Bureau of Standards

Washington, D.C. 20234 Official Business Penalty for Private Use \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

> THIRD CLASS BULK RATE