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Preface

Computer Vision *

Computer Vision — visual perception employing computers —
shares with "Expert Systems" the role of being one of the most

popular topics in Artificial Intelligence today. Commercial

vision systems have already begun to be used in manufacturing and

robotic systems for inspection and guidance tasks. Other systems

at various stages of development, are beginning to be employed in

military, cartograhic and image inter pretat ion applications.

This report reviews the basic approaches to such systems,

the techniques utilized, applications, the current existing

systems, the state-of-the-art of the technology, issues and

research requirements, who is doing it and who is funding it, and

finally, future trends and expectations.

The computer vision field is multifaceted, having many

participants with diverse viewpoints, with many papers having

been written. However, the field is still in the early stages of

development—organizing principles have not yet crystalized, and

the associated technology has not yet been rationalized. Thus,

this report is not as smooth and even as would be desirable.

Nevertheless, this overview should prove useful to engineering

and research managers, potential users and others who will be

affected by this field as it unfolds.

* Th i s re port Isi n support of the more general NBS/NASA report,
An Overview of Artificial Intelligence and Robotics

.
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Computer Vision

I . Introduction

Following the lead of Cohen and Feigenbaum (1982, p. 127) we

may consider computer vision to be the information-processing

task of understanding a scene from its projected images. Other

fields such as image processing and pattern recognition also

utilize computers in vision tasks. However, we can distinguish

the fields by categorizing them as follows:

Image processing is a signal processing task that transforms

an input image into a more desirable output image through

processes such as noise reduction, contrast enhancement and

registr ation

.

Pattern recognition is a classification task that classifies

images into predetermined categories.
\.

£o rn£u t.e r_ vision is an image understanding task that

automatically builds a description not only of the image itself,

but of the three dimensional scene that it depicts. The term

scene analysis has been used in the past to emphasize the

distinction between processing two dimensional images, as in

pattern c 1 a s s i f i c i a t ion
,
and seeking information about three-

dimensional scenes.

In this report, we will emphasize the Artificial

Intelligence (AI) aspects of vision and therefore will dwell on

image understanding. Image understanding includes among its

techniques, many of the methods found in image processing and

pattern recognition. However, it also includes geometric
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modeling, and A I knowledge representation and cognitive

processing techniques.

Hiatt (1981, p. 3) observes, "For practical purposes,

investigators of computer vision often define seeing as gathering

visual data for the purpose of making complex decisions.

Computer vision is accordingly, a major adjunct to the study of

artificial intelligence." Arden (1980, p. 482) adds, "A view

widely held by psychologists is that perception is an active

process in which hypotheses are formed about the nature of the

environment and sensory information is sought that will confirm

or refute these hypotheses. This view of perception, as a form

of problem-solving at least at some stage, is held by many

researchers in artificial intelligence." Thus, computer vision

with its many current and potential applications is a major

Artificial Intelligence (AI) topic today. The following chapters

are an attempt to provide an overview of this important and

growing field. In addition to reviewing the conceptual basis for

computer vision and its associated techniques, we will also

review their implementation in vision systems, both research and

commercial

.

Chapters II, III and IV further define computer vision,

reviewing its origins and its relation to human vision. Chapter

V briefly indicates applications of computer vision.

Chapters VI outlines a basis for a general purpose computer

vision system, in the process providing a structure for

comprehending systems with lesser aspirations.
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Chapter VII reviews the basic control structures suitable

for vision systems. Chapter VIII examines the successive levels

of repr esenta t ion found in computer vision systems.

Vision systems, both research and industrial are covered in

Chapters IX and X. Information on who the principal participants

are in the computer vision field is given in Chapters XI and XII.

The state-of-the-art, current problems and issues, research

requirements and future trends are presented in Chapters XIII to

XVI.

Reviews of the repr esent a t ion methods and processing

techniques used in computer vision are given in the appendices.

Appendix A reviews repr esentat ions for low level image

features such as pixels, edges, regions, etc.

Appendix B reviews techniques (such as filtering and

thresholding) for extracting edges and regions.

Appendix £ discusses methods for symbiotically combining

image segmentation with interpretat ion

.

Appendix D provides an overview of methods (such as

statistical features, boundary curves, primitive forms, and

relational graphs) for succinctly representing image features and

utilizing the resulting r epresentat ion for recognition.

Appendix E reviews the various methods for extracting

intrinsic image character istics such as surface shapes, ranges

and orientations from 2-D images. Also included is a discussion

of extracting shape and velocity from successive images of

objects in motion.

Appendix £ provides an overview of higher levels of

3



representa t ion--both volumetric and procedural models, and

symbolic descriptions such as relational graphs.

Appendix G reviews how intrinsic images can be given higher

level i n t e r pr e t a t i on s by segmenting intrinsic surface

character istics into objects (either by model or symbolic

description matching) yielding object recognitions or scene

descriptions

.

Appendix H reviews real-time visual tracking, needed for

guidance, assembly and other tasks.

A glossary of terms in computer vision is given in Appendix

K. Publications sources for further information are listed in

Appendix L.

4



II. Definition

Computer (computational or machine) vision can be defined as

perception by a computer based on visual sensory input.

Horn (1979, pp. 70-71) character izes machine vision (from a

robotic orientation) as follows:

An optical system forms an image of some three-
dimensional [3-D] arrangement of parts. The two-
dimensional [2-D] image is sensed and converted into
machine readable format. It is the purpose of the
machine vision system to derive information from this
image useful in the execution of the given task. In
the simplest case the information sought will concern
only the location and orientation of an isolated
object--more commonly, objects have to be recognized
and their spatial relationships determined. This can
be viewed as a process in which a description of the
scene being viewed is developed from the raw image.
The description has to be appropriate to the particular
application. That is, irrelevant visual features
should be discarded, while needed relationships between
parts of objects must be deduced from their optical
projection

.

Barrow and Tenenbaum (1981, p. 573) enlarge on this from a

more general viewpoint, stating:

Vision is an informat ion-processing task with
well-defined input and output. The input consists of
arrays of brightness values, representing projections
of a three-dimensional scene recorded by a camera or
comparable imaging device. Several input arrays may
provide information in several spectral bands (color)
or from multiple viewpoints (stereo or time sequence).
The desired output is a concise description of the
three-dimensional scene depicted in the image, the
exact nature of which depends upon the goals and
expectations of the observer. It generally involves a

description of objects and their interrelationships

,

but may also include such information as the three-
dimensional structure of surfaces, their physical
character istics (shape, texture, color, material), and
the locations of shadows and light sources...

In this report, we will follow the lead of Ballard and Brown

(1982, p. 2) and define Computer Vision as "the enterprise of

automating and integrating a wide range of processes and

5



representat ions used for vision perception." The emphasis will

be on generating a description or an understanding of the scene

from which the image was obtained. The next chapter will enlarge

on this point of view.
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III. Origins of Computer Vision

Computer vision is based largely on ideas from three related

fields: image processing, pattern recognition and scene

analysis

.

Rosenfeld (1981, p. 596) states that, "In image processing,

the input and the output are both images with the output an

improved version of the input." In preprocessing we have gray-

scale modification (usually to normalize scene brightness and

contrast), sharpening (to restore the weakened high spatial

frequencies) and smoothing to remove noise in the image. If two

images have to be compared, they may have to be registered (i.e.,

geometrically transformed to make then congruent) before matching

them

.

In pattern recognition the input is the image, but the

output is a description of the image based on a priori knowledge

of expected patterns. The computer usually starts with a list of

brightness values associated with the array of hundreds of

thousands of points corresponding to the image. Recognizing a

pattern means replacing this mass of undigested data with a much

simpler more useful description. However, it is usually

impractical to search directly for examples of the patterns we

are interested in this array of intensity values. Instead, it is

often more convenient to first search for examples of simpler

patterns (such as edges and regions), referred to as features. A

7



simplified description of the image constructed from these

features can then be used as the basis for pattern recognition*.

Scene analysis is concerned with the tr ansf or mat ion of

simple features into abstract descriptions relating to objects

that cannot be simply recognized based on pattern matching.

Brady ( 1 9 8 1 A , pp. 4-5) referring to scene analysis as image

understanding (IU) expands on the differences between pattern

recognition and IU, observing that typically pattern recognition

systems are concerned with recognizing the input as one of a

usually small set of possibilities. Pattern recognition systems

are mostly concerned with images of basically two dimensional

objects. When the images are of three dimensional objects, such

as engine parts, they are effectively treated as two dimensional,

by considering each stable position as a separate object. In

contrast, IU has dealt extensively with three dimensional images.

More significantly, pattern recognition systems typically

operate directly on the image. IU approaches to most visual

processes (e.g., stereo, texture, shape from shading), operate

not on the image but on symbolic representations that have been

computed by earlier processing such as edge detection.

Arden (1980, pp. 482-483), taking a historical perspective,

contrasts the pat t ern-r ecogn i t ion and the IU or AI approach as

follows

:

* Pratt (1978, pp. 568-569) indicates that in many cases for
simple objects in uncluttered imagery, it is feasible to extract
needed features by transformations of the images (e.g., using a

two dimensional Fourier transform). The resulting feature space
can be partioned into regions for classification into objects,
based on prototypes.

8



Since the early sixties there has been a marked
divergence between the pattern-recogni tion and AI ap-
proaches to computer analysis of images. The former
approach has continued to stress the use of ad hoc
image features in combination with statistical
classification techniques. More recently, use has been
made of "syntactic" methods in which images are
recognized by a "parsing" process as being built up
hierar chically of primitive constituents. By contrast,
the AI approach has employed problem-solving
methodologies based on extensive use of knowledge about
the class of images, or "scenes," to be analyzed...

Much of the work on computer vision has dealt with
images of scenes containing solid objects viewed from
nearby. These are the sort of images with which a

robot vision system must cope in using vision to guide
its motor activities, including manipulation and
locomotion. The analysis of such images is usually
called "scene analysis," to distinguish it from the
analysis of images that are essentially two-
dimensional, such as photomicrographs (which show
cross-sections), radiographs (which show projections),
satellite imagery (in which terrain relief is
negligible), documents, diagrams, maps, and so on. The
methods of computer vision, however, apply equally to
these latter classes of images; the term need not be
restricted to three-dimensional scene analysis.

In this report we will only treat image processing and low-

level vision to the extent needed for image understanding.

Pattern recognition, which has broken off from AI and has also

become a separate field, will also be given minimum treatment.

To a large extent, the terms scene analysis, image

understanding, and computer vision have become synonymous. The

more advanced vision systems have a strong AI flavor, being

heavily concerned with symbolic processes for representing and

manipulating knowledge in a problem solving mode. Though vision

systems that primarily depend on pattern recognition techniques

are also treated in this report, the intent is to concentrate on

the knowledge-based scene analysis (IU) approach which is the

major focus in AI computational vision.

9



In the next chapter we will briefly look at the relation

that human vision has to the AI approach to computer vision.



IV. Relation to Human Vision

MIT’s Harr and Nishihara (1978, p. 42) take the view that

"Artificial Intelligence is (or ought to be) the study of infor-

mation processing problems that character ist ically have their

roots in some aspect of biological information processing." They

developed a computational theory of vision based on their study

of human vision. Figure 1 represents the transition from the raw

image through the primal sketch to the 2-1/2D sketch (indicated

in Figure 2), which contains information on local surface

orientations, boundaries, and depths.

The primal sketch, reminiscent of an artist’s hurried

drawing, is a primitive but rich description of the way the

intensities change over the visual field. It can be represented

by a set of short line segments separating regions of different

brightnesses. A list of the properties of the lines segments,

such as location, length, and orientation for each segment can be

used to represent the primal sketch.

The late Dr. Marr and his associates’ development of a

human visual information processing theory (Marr, 1982) has had a

substantial impact on computational vision.



Figure 1

A Framework for Early and Intermediate States in
A Theory of Visual Information Processing

Intensity Representations Visible Surface Representations

The computations begin with representations of the intensities in
an image— first the image itself, (e.g., the gray-level intensity
array) and then the primal sketch, a representation of spatial
variations in intensity. Next comes the operation of a set of
modules, each employing certain aspects of the information
contained in the image to derive information about local
orientation, local depth, and the boundaries of surfaces. From
this is constructed the so-called 2-1/2 dimensional sketch. Note
that no "high-level” information is yet brough to bear: the
computations proceed by utilizing only what is available in the
image itself.

Source: Marr and Nishihara, 1978, p. 42.
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Figure 2

An Example of a 2-1/2D Sketch

t i

^ ! N

*—r x \

/ / f v ^ t

• > /: ? v, %.•••"*< •

A candidate for the so-called 2- 1 /2-dimensional sketch, which
encompasses local determinations of the depth and orientation of
surfaces in an image, as derived from processes that operate upon
the primal sketch or some other representation of changes in
gray-level intensity. The lengths of the needles represent the
degree of tilt at various points in the surface; the orientations
of the needles represent the directions of tilt... Dotted lines
show contours of surface discontinuity. No explicit
representation of depth appears in this figure.

Source: Marr and Nishihara, 1978, p. 41.
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Barrow and Tenenbaum (1981, pp. 579-580) also seek insights

into the organization of a high-performance, gener al-pur pose

visual system from observations of the behavior of the human

visual system. They observe that a person looking at a natural

scene, such as the landscape, is aware of many intermediate

levels of description, such as surfaces, volumes, and shadows.

Over a wide range of viewpoint and illumination, a person can

readily estimate quite accurately such local surface

character istics as reflectance, color, texture, distance, and

orientation, as well as such global characteristics as size, and

shape. Boundaries are seen not merely as intensity

discontinuities, but as physically significant events--

discontinuities in distance, orientation, reflectance, incident

illumination, and so forth. Humans also experience immediate

global perceptions: the type of scene (landscape), the dominant

orientations of the support plane and the gravitational vertical,

the direction of illumination, and the viewpoint with respect to

these. Thus, what a person sees are intrinsic character istics

of three-dimensional surfaces, not transient features of a two-

dimensional image as observed under a particular set of viewing

conditions

.

They also note that perception by humans of surfaces and

surface boundaries does not appear to depend critically upon

contrast nor familiarity with the specific objects depicted.

There are strong indications (c.f. Gevarter, 1977) that the

interpretat i ve planning areas of the human brain set up a context

for processing the input data. (This is captured by Minsky's

(1975) AI "frame" concept for knowledge representation). The

14



brain then uses visual and other cues from the environment to

draw in past knowledge to generate an internal representat ion and

interpretation of the scene. This knowledge-based expectation-

guided approach to vision is now appearing in the advanced AI

computer vision systems (discussed in later Chapters).

Barrow and Tennenbaum suggest that insights gained by

studying human vision, coupled with experience resulting from

building machine vision systems, can provide the basis for a

computational model of visual processing. Their approach to a

general purpose computer vision system will be pursued in Chapter

VI, but now we pause to motivate this pursuit by briefly

reviewing applications of computer vision already underway in

this rapidly growing field.

15



V . Applications

Brady ( 1 9 8 1 A , p. 2) states that, "There is currently a surge

of interest in image understanding on the part of industry and

the military." Current computer vision applications, primarily

taken from Brady ( 1 9 8 1 A , pp. 3-4), are listed in Figure 3.

16



Figure 3: Examples of Applications of Computer Vision Now
Underway

#

#

AUTOMATION OF INDUSTRIAL PROCESSES

Object acquisition by robot arms, for example sorting
or packing items arriving on conveyor belts.

Automatic guidance of seam welders and cutting tools.

VLSI-related processes, such as lead bonding, chip
alignment and packaging.

Monitoring, filtering, and thereby containing the
flood of data from oil drill sites or from seismographs.

Providing visual feedback for automatic assembly and
repair.

INSPECTION TASKS

The inspection of printed ciruit boards for spurs,
shorts, and bad connections.

Checking the results of casting processes for
impurities and fractures.

Screening medical images such as chromosome slides,
cancer smears, x-ray and ultrasound images, tomography.

Routine screening of plant samples.

Inspection of alpha-numerics on labels and manufactured
items

.

Checking packaging and contents in pharmaceutical and
food industries.

Inspection of glass items for cracks, bubbles, etc.

REMOTE SENSING

Cartography; the automatic generation of hill-shaded
maps, and the registration of satellite images with
terrain maps.

Monitoring traffic along roads, docks, and at
airfields

.

Management of land resources such as water, forestry,
soil erosion, and crop growth.

Exploration of remote or hostile regions for fossil
fuels and mineral ore deposits.

17



Figure 3 (cont.)

MAKING COMPUTER POWER MORE ACCESSIBLE

Management information systems that have a
communication channel considerably wider than current
systems that are addressed by typing or pointing.

Document readers (for those who still use paper).

Design aids for architects and mechanical engineers.

MILITARY APPLICATIONS

Tracking moving objects.

Automatic navigation based on passive sensing.

Target acquisition and range finding.

AIDS FOR THE PARTIALLY SIGHTED

Systems that read a document and speak what they read.

Automatic "guide dog" navigation systems.

18



VI . Basis for a General Purpose Image Understanding System

Barrow and Tenenbaum (1981, p. 573) observe that in going

from a scene to an image (an array of brightness values) that the

image encodes much information about the scene, but the

information is confounded in the single brightness value at each

point. In projecting onto the two-dimensional image,

information about the three-dimensional structure of the scene is

lost. In order to decode brightness values and recover a scene

description, it is necessary to employ a priori knowledge

embodied in models of the scene domain, the illumination, and the

imaging process.

Scene models can be devised to describe the three-

dimensional world in terms of surfaces and objects.

Illumination models can be utilized to describe the primary

light sources, their positions, spatial extents, intensities,

colors, and so forth.

Sensor models describe the photometric and geometric

properties of the sensor, which can be used to predict how a

particular scene, observed from a particular viewpoint and under

particular illumination conditions, is transformed into the two-

dimensional array of brightness values that constitutes the

input

.

As indicated by Figure 4, computer vision is an active

process that uses these models to interpret the sensory data. To

accommodate the diversity of appearance found in real imagery, a

high-per for mance
,
general-purpose system must embody a great deal

of knowledge in its models.

19



Source

:

Figure 4

Model-based Interpretation of Images

Barrow and Tenenbaum, 1981, p. 573.
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The next three chapters review the work in devising computer

vision systems. Chapter VII discusses paradigms for computer

vision systems. Chapter VIII presents the levels of

representation appropriate to high performance systems. Chapter

IX reviews research efforts in building such systems.

21



VII. Basic Paradigms for Computer Vision *

In broad terms, an image understanding system starts with

the array of pixel amplitudes that define the computer image,

and using stored models (either specific or generic) determines

the content of a scene. Typically, various symbolic features

such as lines and areas are first determined from the image.

These are then compared with similar features associated with

stored models to find a match, when specific objects are being

sought. In more, generic cases, it is necessary to determine

various character istics of the scene, and using generic models

determine from geometric shapes and other factors (such as

allowable relationships between objects) the nature of the scene

content

.

A variety of paradigms have been proposed to accomplish

these tasks in image understanding systems. These paradigms are

based on a common set of broadly defined processing and

manipulating elements: feature extraction, symbolic

representation, and semantic interpretation. The paradigms

differ primarily in how these elements (defined below) are

organized and controlled, and the degree of artificial

intelligence and knowledge employed.

A. Hierarchical-Bottom-up Approach

Figure 5A is a block diagram of a hierarchical paradigm of

an image understanding system that employs a bottom-up processing

approach. First, primitive features are extracted from the array

of picture element intensities that constitute the observed

*This chapter is primarily based on Pratt, 1978, pp. 570-57*1.
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Figure 5

Basic Image Understanding Paradigms

A. Hierarchical Bottom-up Approach
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B. Hierarchical Top-down Approach
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Source: Pratt, 1978, pp. 570-574.
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image. Examples of such features are picture element ("pixel”)

amplitudes, edge point locations and textural descriptors.

Next this set of features is passed on to the semantic

interpretat ion stage where the features are grouped into symbolic

representations. For example, edge points are grouped into line

segments or closed curves, and adjacent region segments of common

attributes are combined. The resultant symbol set of lines,

regions, etc., in combination with a priori stored models, are

then operated upon (i.e., semantically interpreted) to produce an

application dependent scene description.

Bottom-up refers to the sequential processing and control

operation of the system starting with the input image. The key

to success in this approach lies in a sequential reduction in

dimensionality from stage to stage -- vital as the relative

processing complexity is generally greater at each succeeding

stage. The hierarchical bottom-up approach can be developed

successfully for domains with simple scenes made up of only a

limited number of previously known objects.

B. Hierarchical Top-down Approach

This approach (usually called hypothesize and test), shown

in Figure 5B, is goal directed, the interpretat ion stage being

guided in its analysis by trial or test descriptions of a scene.

An example would be using template matching — matched filtering

— to search for a specific object or structure within the scene.

Matched filtering is normally performed at the pixel level by

cross correlation of an object template with an observed image

field. It is often computationally advantageous, because of the

reduced dimensionality, to perform the interpretation at a higher
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level in the chain by correlating image features or symbols

rather than pixels.
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C. Heterarchical Approach

Hierarchical image understanding systems are normally

designed for specific applications. They thus tend to lack

adaptability. A large amount of processing is also usually

required. Pratt (1978, pp. 572-573) observes that often much of

this processing is wasted in the generation of features and

symbols not required for the analysis of a particular scene. A

technique to avoid this problem is to establish a central monitor

to observe the overall performance of the image understanding

system and then issue commands to the various system elements to

modify their operation to maximize system performance and

efficiency

.

Figure 5C is a block diagram of an image understanding

system that achieves heter archical operation by distributed

feedback control. If the semantic interpretation stage in the

model experiences difficulty in working with its input symbol

set, control can be fed back to the symbolic representation stage

to request a new set of symbols. This action in turn may result

in a command to the feature extraction stage requesting a

modified set of features. When required, direct feedback control

is also possible between the semantic interpreter and feature

extractor. This paradigm provides an important auxiliary benefit

in addition to flexibility. That is, the dimensionality of the

feature and symbol sets can be kept at minimum levels because the

sets can be restructured on command.

D • Blackboard Approach

Another image understanding system configuration called the

blackboard model has been proposed by Reddy and Newell (1975).
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Figure 5D is a simplified repr esen tat ion of this approach in

which the various system elements communicate with each other via

a common working data storage called the blackboard. Whenever

any element performs a task its output is put into the common

data storage, which is independently accessible by all other

elements. The individual elements can be directed by a central

control, or they can be designed to act autonomously to further

the common system goal as required. The blackboard system is

particularly attractive in cases where several hypotheses must be

considered simultaneously and their components need to be kept

track of at various levels of representation.
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VIII. Levels of Representation

A computer vision system, like human vision, is commonly

considered to be naturally structured as a succession of levels

of representation. Tenenbaum et al. (1979, pp. 242-243) suggests

the following levels (listed from low to high):

Images
Pictorial features
Intrinsic surfaces and bodies
3-D surfaces and bodies
Space map
Symbolic relationships

Tenenbaum et al. contrast this with current industrial

vision systems relying heavily on detailed models of particular

objects to accomplish tasks, employing levels of:

Images
Pictorial features (Edges & Regions)
2-D feature attributes
Objects (specific 2-D views)

Current industrial systems usually begin by thresholding the

original gray-level image to obtain a binary array. Pictorial

features (regions or edges) are then extracted from the gray-

level or binary image and equated with surfaces or surface

boundaries. These 2-D attributes of these pseudo-surface

features are then symbolically matched against 2-D models

(r epresen ting specific views of expected objects) to achieve

recognition. As these industrial systems rely on prototype 2-D

representations of anticipated objects, they are very limited for

use in more general environments.

Barrow and Tenenbaum (1981, pp. 580-581) suggest the levels

given in Figure 6 as those appropriate to a general-pur pose

vision system. The processing steps in the figure that transform

each level of representat ion to the next require knowledge from
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models of the physics of the imaging process, the illumination

and the scene. At the lower levels, these models help resolve

the ambiguity associated with going from a three dimensional

world to a two dimensional image. At the higher levels, these

models provide a foundation for organizing surface fragments into

recognizable objects.
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The input models required to do the processing at each level

are shown at the right. On the left are shown the tasks for

which vision can be used at each level of processing

Tenenbaum, et al., (1979, pp. 254-255), sketch in Figure 7

another way in which to view an organization of a vision system.

They divide the figure into two parts. The first is image

oriented (iconic), domain independent, and based on the image

data (data driven). The second part of the figure is symbolic,

dependent on the domain and the particular goal of the vision

process.

The first portion takes the image, which consists of an

array of intensity of picture elements ("pixels," e.g.,

1000x1000), and converts it into image features such as edges and

regions. These are then converted into a set of parallel

"intrinsic images", one each for distance (range), surface

orientation, reflectance*, etc.

The second part of the system segments these into volumes

and surfaces dependent on our knowledge of the domain and the

goal of the computation. Again using domain knowledge and the

constraints associated with the relations among objects in this

domain, objects are identified and the scene analyzed consistent

with the system goal.

*Fraction of normal incident illumination reflected.
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Figure 7

Organization of a Visual System

Low Level Sensor

Source: Tenenbaum et al., 1979, p. 255.
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Reviews of the representation methods and techniques for

performing the operations indicated in Figure 7 are given in the

appendices

.

The next chapter (Chapter IX) provides an overview of

research in model-based vision systems. These systems endeavor

to start with an image and produce, using a priori models, a

desired description of the original scene, thereby spanning the

complete hierarchy of Figure 7. The systems are constructed

using the various representations, techniques and models reviewed

in the appendices.
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IX. Research in Model-based Vision Systems

Most research efforts in vision have been directed at

exploring various aspects of vision, or toward generating

particular processing modules for a step in the vision process

rather than in devising general purpose vision systems. However,

there are currently two major U.S. efforts in general purpose

vision systems: The ACRONYM system at Stanford University under

the leadership of T. Binford, and the VISIONS system at the

University of Massachusetts at Amherst under A. Hanson and E.

Riseman.

The ACRONYM system, outlined in Table II—

1

9 is designed to

be a general purpose, model-based system that does its major

reasoning at the level of volumes rather than images. The system

basically takes a hierarchical top-down approach as in Figure 5c.

ACRONYM has four essential parts: modeling, prediction,

description and interpretation. The user provides ACRONYM with

models of objects (modeled in terms of volume primitives called

generalized cones) and their spatial relationships; as well as

generic models and their subclass relationships. These are both

stored in graph form. The program automatically predicts which

image features to expect. Description is a bottom up- process

that generates a model-indepentl ent description of the image.

Interpretation relates this description to the prediction to

produce a three-dimensional understanding of the scene.

The VISIONS system outline in Table II-2, can be considered

to be a working tool to test various image understanding modules

and approaches. Rather than using specific models, its high

level knowledge is in the form of framelike "schemas" which
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represent expectations and expected relationships in particular

scene situations. VISIONS is based on monocular images and does

its reasoning at the level of images rather than volumes.

Other research efforts in model-based vision systems are

summarized in Tables III in Appendix 1^.

It will be observed that each system is individually crafted

by the developer to reflect the developer’s background, interests

and domain requir ements. All, except ACRONYM (and to an extent

MOSAIC), use image (2-D) models and are viewpoint dependent.

Models are mostly described by semantic networks, though feature

vectors are also utilized. The systems capitalize on their

choice to limit their observations to only a few objects, by

using predominantly a top-down interpretation of images, relying

heavily on prediction.
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X. Industrial Vision Systems

A. General Characteristics

The prominent aspect of industrial vision systems
,

in

distinction to more general vision systems, is that they operate

in a relatively known and structured environment. In addition,

the situation (such as placement of cameras and lighting) can be

configured to simplify the computer vision problem. Usually, the

number and nature of possible objects will tend to be restricted,

and the visual system will be tailored to the function performed.

Thus many of them are based on a pattern recognition
,
rather than

an image understanding approach. Industrial vision systems are

character istically used for such activities as inspection,

manipulation and assembly.

In an inspection task, the focus is on deviations from a

standard, and usually little or no information is needed for

identification. A manipulator controller, designed to pick parts

off a conveyor, needs to be able to determine the identity,

orientation and position of parts, but needs to know little of

their precise shape except, perhaps at the grasp point. A visual

controller for an arc welder will have its focus on the seam

properties and needs little information about the appearance of

the parts.

Kruger and Thompson (1981, p. 1525), in discussing the

design of industrial vision systems, state:

the complexity of most perceptual tasks requires
that the problem be decomposed into manageable
subunits. Thus major design decisions include the
function of each module, the computational techniques
and data representations imbedded in each module, and
the control structures that relate modules and transfer
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information between them. Most computer vision systems
use a hierarchical organization...

A popular organization for industrial computer vision is a

two-stage hierarchy with a bottom-up control flow. The lower

level segments the image into regions correspond ing to object

surfaces. The higher level uses this segmentation to identify

objects from their surface descriptions.

In practice, most successful systems incorporate aspects of

both bottom-up and top-down control. The bottom-up processing is

used to extract prominent features of a part to determine its

position. Then, top-down control is used to direct a search to

determine if the part satisfies an inspection criterion.

Industrial inspection and assembly operations are well

suited to model-based analysis, because of the well-defined

geometric descriptions associated with manufactured items.

CAD/CAM technology allows the specification of objects using

either volumetric or surface-based models. These geometrically

based models are particularly appropriate to the hypothesis-

verify approach, in which low-level image features are extracted

and matched to an appropriate computer generated 2-D

representation

.

In addition to geometric models, objects may also be

represented by graphs. In this case, recognition becomes a

graph-matching process.

More commonly at present, rather than using geometric models

or graphs, industrial vision systems are taught by being

presented sample parts to be recognized in each of their expected

stable states. Aspects of the resulting images are typically
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stored as templates, and recognition becomes template matching.

The objects can also be represented in terms of their

characteristic features, such as area, number of holes, etc., and

the resulting feature vector stored to be matched (via a search

process) to the corresponding extracted feature vector of the

image during system operation.

To simplify industrial vision systems, the input is usually

reduced to a binary (black and white) image, so that objects

appear as silhouettes. Simplicity is important in industrial

vision systems because the computation time is limited, as most

systems are expected to operate in near real time.

B. Examples of Efforts in Industrial Visual Inspection Systems

Table IV (based largely on Kruger and Thompson, 1981) lists

some example efforts of vision systems designed for inspection.

The systems listed are primarily for the inspection of printed

circuit boards and IC chips, with template matching being the

predominant inspection approach.

Kruger and Thompson (1981, p. 1529) note that: "Automated

visual analysis has also been applied to the inspection of

surface properties such as roughness, scratching and other

potential defects. The best successes have come with highly

specialized illumination and sensing systems, specifically

tailored for a particular application. Recently, greater

sophistication in the modeling of the imaging process has lead to

prototype surface inspection systems with the promise of

increased generality."

Chin (1982) has recently published an extensive bibliography

on automated visual inspection techniques and applications.
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Table IV

Example Efforts In Industrial Visual Inspection Systems

Developer
Purpose

Sample Domains Approach
Modeling and

Representation

Baird (1978)
Inspection
Automated manufacture
of power transistor-pair

IC chips

GM

Inspection process consists of

1) Detection of the IC location and orientation on the heat-sink
substrate

2) Quality control assessment after acquisition

A gradient edge detector Is used to compile the histogram of all edge
directions In the Inspection field. Peak of this histogram Indicates
the approximate orientation of the chip

Next the corners of the IC are located by template matching. If any
corners not located, the IC rejected

Cracked, fractured chips are eliminated by a simple contrast thres-
hbldlng operation

Inspection field
consists of a 50x5C
pixel region
digitized to 16

gray levels

Templates for IC

corners

Chin, Harlow & Dwyer (1977)
Inspection
PCB's

U. of Maryland

Tralnlnq Phase

Use an operator-interactive model-building graph procedure to train
the Inspection system

Using an Interactive camera/display system, the binary Image edges of
of a prototype PCB board are detected, smoothed to reduce noise, and
encoded Into a compact data structure.

Edges, Graph Model

Inspection Phase

Matching (against prestored edges and the graph model) Is used to detect
flaws in test Images

Krakauer & Pavlidis (1979)
Inspection
Mass-Produced PCB's

Princeton University

Ingenious use of binary template matching using a limited number of
well-chosen templates accessed via a rapid lookup technique

Rlnary Templates

Jarvis (1980)
Inspection
Mass-Produced PCB's

Bell Labs

1) Local pattern matching to stored binary templates

2) Supplemental tests for suspicious reqions

-Computation of conductor area
-Length of the conductor-substrate boundary
-ratio of area to length

List of 5x5
pixel binary
templates

Processing done with simple logical operations

Hseih & Fu (1979, 1980)
Inspection and wirebonding
guidance

Multi-layered IC chips

Purdue University

Inspection paradigm for proposed system is (for the most part)top-down
and model -driven using a tree-like syntatlc approach

Various inspection algorithms are called for based on the actions of a

controller, which monitors the whole vision process

First, the Image goes thru a series of task and context-dependent filters

to reduce ambiguities

Then, 8 special purpose defect detectors are used, as required

Design and
inspection
specification take
the form of a

descriptive data
base

Six subpattern
masks
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C. Exa m ples of Efforts in Industrial Visual Recognition and
Location Systems

Table V (again largely derived from Kruger and Thompson,

1981) lists some example efforts of vision systems designed for

industrial part recognition and location. All these systems use a

bottom-up approach. It will be observed that (except for Vamos

1979, and Albus et al., 1982) these systems utilize template or

feature vector matching. Vamos does work from a 3D wire frame

model which utilizes computer graphics type techniques to

transform a model projection into alignment with observed lines

in the image.

Albus’ Machine Vision Group in the NBS Industrial Systems

Division is using simplified 3D surface models of machined parts

to generate expectancy images from needed viewpoints. The group

is seeking to achieve real-time, hier archical
,
multi-sensory,

interactive robot guidance.

D. Commercially Available Industrial Vision Systems*

Table VI in Appendix J_ lists many of the Industrial Vision

Systems that are currently commercially available. Most of the

systems require special lighting.

It will be observed that many of the systems designed for

verification and inspection use pattern recognition, rather than

AI techniques. The systems tend to be bottom-up because of the

speed requirements to achieve real time operation. Often unique

edge and feature extraction algorithms are programmed in hardware

or firmware.

^Add i t i on a 1 i n fo rm a t i o n can be found in Gevarter (1982A).
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Table V (continued)

Example Efforts In Industrial Visual Recognition and Location Systems

Developer
Purpose

Sample Domains
Approach

Modeling and
Representation

Holland Rossol & Ward (1979)

Conslght I

Industrial part location,

recognition and manipulation

Engine parts

GM , .

Two linear light sources superimpose a line of light on a conveyor belt

perpendicular to its direction of motion. The two lines separate,

proportional to the part passing by. Point of separation determines

part boundary* degree of separation determines part thickness.

The scene Is Imaged with a linear array camera and a silhouette

automatically generated.

Uses same feature vector approach as SRI Module.

Feature vector of part

Image characteristics

NBS: Albus et al . (1982)

Visual servoing for robot

guidance (real-time

location and identification

for manipulation)

Machined parts

National Bureau of Standards

Employs a point light source, a sheets-of-structured-light generator

and a camera, all mounted on the wrist of a robot arm.

Uses alternate frames of:

1. A regular point source illumination of the entire object, and

2. Two parallel planes of structured light.

System determines location and orientation based on tri angulation

(associated with relative height of Intersection of light sheets with

part), and recognition based on shape and size of °bser''^
c
11"®^*!

1nn
the planes of light makes as it Intersects part. Uses this Information

to Interpret outline seen in image produced by the point source

illumination.

Analysis of vision Input is performed with a hierarchically organized

group of microprocessors. At each level of the hierarchy, and analytic

process is guided by an expectancy-generating modeling process. The

modeling process is in turn driven by a store of a priori knowledge, by

knowledge of the robot's movements, and by feedback from the analytic

process. Each such level of the hierarchy provides output to guide a

corresponding level of the robot's hierarchical control system.

Uses quadratic
approximations to

surfaces of Idealized

3-D objects.

Perkins (1978)

Industrial parts recognition

Engine components

GM

Operates on 32 gray levels

Bottom-up scene segmentation approach

1. Reduce 256x256 pixel image to an "edge gradient" Image

2. Link edges with similar gradient magnitudes to form chains

3. Characterize chains as either straight lines or circular arcs.

(This reduces 65,000 pixel Image to about 50 concurves.)

System matches observed concurves with model generated concurves using

1. A preset control structure to select the order In which

combinations of model and scene concurves are to be matched.

2. Starts by matching one model and one scene concurve

3. The stored model Is spatially transformed and rotated to fit

associated scene concurves

System Interactively trained by 'generating concurves of sample parts

Can Identify parts partially occluded by other parts

Concurve models of

sample parts

Yachida and Tsujl (1978)

Industrial Parts Recognition

Nonoccluded parts of a

small gasoline engine

Osaka Univ.

Uses a boundary detection and Isolation of parts In a binary Image
approach similar to SRI Vision Module

Recognition system based on a structured step-by-step analysis with
the previously stored models

Use a series of special feature detectors

-hole detector
-line finder
-texture detector
-small hole detector

System training Involves Interactive man-machine examination of the
Identification task

Stable orientation
models of parts

-part name
-orientation
-list of primitive

features
-polar coordinate

boundary
representation

Vamos (1979)

Recognition of 30 Objects

Bearing housings

Assembly

Sheet metal parts to be
painted

Neural nets In microscopic-
section In neural research

Hurgarian Acad, of Science

Finds edges using a simplified version of the Hueckel -operator using
only two linear templates

Lines are then fitted to edges

Wire-frame model transformed (and hidden line elimination used) to
correspond to Image - yielding recognition and part orientation

Objects are Interactively taught to system either by building a

geometric model or by a computer-aided transformation of viewed
samples

3D Wire Frame Models
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The more sophisticated systems tend to utilize variations

and improvements on the SRI Vision Module described in Table V.

A few systems make good use of structured light for 3D

sensing. A number of efforts in guidance of arc welding take

this form.
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XI . Who is Doing It

Rosenfeld, at the University of Maryland, issues a yearly

bibliography, arranged by subject matter, related to the computer

processing of pictorial information. The issue covering 1981,

(Rosenfeld, 1982) includes nearly 1000 references.

The following is a list by category of the U.S. "principal

players" in computer vision.

A. Research Oriented

1 . Universities

These are shown in Table VII.

2 . Non-Profits

SRI International, AI Center
JPL

3. U.S. Government

NBS, Industrial Systems Div., Gaithersburg
,

MD
NOSC (Naval Ocean Systems Center), San Diego.
NIH (National Institutes of Health)

B. Commercial Vision Systems Developers

A partial listing is given in table VIII. It has been

reported that hundreds of companies are now involved in

vision systems.
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Table VII

University Organizations Engaged in Computer Vision Research

Artificial Intelligence and Computer Science Laboratories Funded Under DARPA IU Program

C.S. Labs A. I. Labs Other

CMU

U of MD X

MIT X

Robotics Institute

U of Mass.

Stanford U X

U of Rochester X

Comp. & Info. Sci. Dept.

use Information Processing
Institute

U of Rhode Island

Other Active Universities

Robotics Res. Lab

U of Texas X

at Austin

VPI X

Purdue X

U of PA X

U of IL X

Wayne State U X

JHU E. E. Dept.

RPI Elec. & Sys. Engr. Dept.
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Commercial

Vision

System

Developers
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XII. Who Is Funding It

To date, the principal source of funding for computer vision

research has been the U.S. Government, which is estimated to

spend in the order of $10 million a year in this area.

The major U.S. Government program has been the DARPA Image

Understanding Program. Other government agencies funding vision

research are:

NSF (National Science Foundation)
NIH (National Institutes of Health)
NBS (National Bureau of Standards)
ONR (Office of Naval Research)
DMA (Defense Mapping Agency)
NASA (National Aeronautics and Space Administration)
USGS (U.S. Geological Survey)
AFOSR (Air Force Office of Scientific Research).

It is estimated that DARPA (Defence Advanced Research

Projects Agency) spends in the order of $2.5 million dollars a

year in computer vision research. DARPA thrusts include

automatic stereo and terrain mapping, autonomous navigation,

robot vision
,
symbolic representation, autonomous expert image

systems, and photo analysis aids. DARPA helps support a number

of Image Understanding laboratories at universities where I.U.

work at all levels is performed.

DMA has entered into a very active program in image and

scene analysis. Their goal is to achieve ’’fully automated”

production for mapping, charting and geodesy by 1995, in which

the primary role of human beings will be to validate the inputs

and the output extracted information. They intend to commence by

furnishing computer vision aids to the cartographer and achieve

the desired high-level automation via an evolutionary route.

Their current approach is to focus a portion of DARPA's image
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understanding effort on producing an Image Understanding Testbed

for integrating and evaluating current and emerging computer

vision techniques and systems. An initial version of this

Testbed has been constructed at SRI in Menlo Park, CA (Hanson and

Fischler, 1982). The future emphasis of the Testbed will be on

expert systems that facilitate the application of IU research

results to cartographic problems.

NSF spends roughly $1.5 million a year on a variety of

research topics in computer vision.

NIH spends a substantial sum in obtaining and evaluating

images for a variety of medical research applications. This has

included efforts in semi-automatic cancer screening, computer-

assisted photometry, tomography, image formation and imaging

equipment and various other medical application related areas.

As the focus is application oriented, rather than computer vision

oriented, it is difficult to pinpoint the portion that can be

considered computer vision research. However, a rough guess

might put the figure at one to two million dollars a year.

It has been estimated that NASA spending on image processing

and evaluation approaches one hundred million dollars a year. To

help support this effort, NASA funds somewhat less than one

million dollars a year on research in computer vision*. NASA

spends roughly half this sum to support research at JPL in vision

systems to guide robot manipulation.

^Additional "funds have been spent on image processing and
analysis hardware such as the Massively Parallel Processor (MPP)
at the NASA Goddard Space Flight Center.
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The National Bureau of Standards has an ongoing in-house

robotics vision research effort, which currently is in the order

of one half million dollars a year.

Collectively, other government agencies probably spend

another one to two million dollars per year for research in this

area. It is estimated that perhaps an additional one to two

million dollars a year is spent by government contractors using

IRAD (Independent Research and Development) funds associated with

their prime contracts.
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XIII. Summary of the State-of-the-Art

A. Human Vision

Human vision is the only available example of a general

purpose vision system. However, thus far not many AI researchers

have taken an interest in the computations performed by natural

visual systems, but this situation is changing.

The MIT vision group (among others) believes that, to a

first approximation, the human visual system is subdivided into

modules specializing in visual tasks. There is also evidence

that people do global processing first and use it to constrain

local processing.

Considerable information now exists about lower level visual

processing in humans. However, as we progress up the human

visual computing hierarchy, the exact nature of the appropriate

representations becomes subject to dispute. Thus, overall human

visual perception is a still very far from being understood.

B. Low and Intermediate Levels of Processing

Though methods for powerful high-level understanding visual

analysis are still in the process of being determined, insights

into low-level vision are emerging. Alan Mackworth, from the

University of British Columbia observed at IJCAI-81 that there is

an exciting convergence in the theory of low level vision from

the major vision centers, such as MIT, CMU, SRI and Stanford.

The basic physics of imaging, and the nature of constraints in

vision and their use in computation is fairly well understood.

Detailed programs for vision modules, such as "shape from

shading" and "optical flow," have begun to appear. Also, the

representational issues are now better understood.
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However, even for well understood low-level operations such

as edge detection, there has been no convergence among the many

techniques proposed, and no method stands out as the best. In

general, edge detectors are still unreliable, though Marr and

Hilbert's approach, based on the zero crossing of the second

derivative of the intensity gradient, appears promising. Brady

( 1 9 8 1 B , p. 3) states that operators designed to extract the

"important" intensity changes in an image are still more an art

than a science. Approaches to edge detection consist mostly of

convolving images with local operators tuned to particular

applications. These operators fare badly outside their limited

domain or in the presence of noise.

Barrow and Tenenbaum (1981, p. 576) note that the direct

approach to image segmentation is inherently unreliable. A

number of research groups successfully circumvented this problem

by integrating segmentation and interpretation. However, this

approach is not suitable for a general purpose vision system as

it is based on advance knowledge of the objects to be expected.

In industrial vision, the primary technique for achieving

robust edge finding and segmentation is to use special lighting

and convert to a silhouette binary image in which edges and

regions are readily distinguishable.

At intermediate levels, edge classification and labelling

have been very successfully used in the blocks world. Barrow and

Tenenbaum (1981, p. 573) believe that the various techniques

developed for dealing with the blocks world could be integrated

into a complete, highly competent vision system for that
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domain. Thus far, however, no such system has actually been

built

.

Binford (1982) in reviewing existing research in model-based

vision systems observed that most systems first segment regions

then describe their shape. None of the systems makes effective

use of texture for segmentation and description. In general,

shape description is primitive and interpretation systems have

not yet made full use of even these limited capabilities.

As yet, the extraction of useful information from color is

extremely rudimentary. The perceptual use of motion (optical

flow) has been a focus of attention recently, but findings are

preliminary

.

For low level processing, many recent algorithms take the

form of parallel computations involving local interactions. One

popular approach having this character is "relaxation." These

locally parallel architectures are well suited to rapid parallel

processing using special purpose VLSI chips.

C. Industrial Vision Systems

Barrow and Tenenbaum (1981, p. 572) observe that:

Significant progress has been made in recent years
on practical applications of machine vision. Systems
have been developed that achieve useful levels o f

performance on complex real imagery in tasks such as
inspection of industrial parts, interpretation of
aerial imagery, and analysis of chest X-rays. Virtual-
ly all such systems are special purpose, being heavily
dependent on d o m a i n - s p e c i f i c constraints and
techniques. For example, industrial vision systems
usually require high contrast to obtain binary images
and use overhead cameras to minimize variations in
object appearance.

A much more pressimistic view is taken by Kruger and
Thompson (1981, p. 1524) who state that:
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Despite substantial research efforts, the study of
computer vision is still in its infancy...
Significant reductions in complexity are possible if
automated perception is limited to an industrial
environment. Even here, however, we still lack a clear
understanding of the fundamental problems that must be
addressed if computer vision is to have a major impact
on manufacturing.

Hiatt (1981, pp. 2, 3) observes that in industry, robot

vision systems are limited to simple repetitive processes, and

that the classic bin of jumbled parts problem still overwhelms

industrial vision systems. However, Birk and Kelley at the

University of Rhode Island have devised algorithms to

successfully pick out parts from a bin on up to 90% of the

computer-vision robot’s machine cycles.

Krueger and Thompson (1981, p. 1537) observe that, ’’The

current state of the art precludes the construction of one

general-purpose computer vision system with applicability to all

industrial vision tasks.... Current systems use no common

primitives for formal r epresen tat ions of object properties.

There is also no common programming language for these

applications. [Current industrial vision systems are limited in

their flexibility in allowing users to reprogram the system to

new situations.] This situation will likely improve as computer

vision becomes more integrated into the production process.”

In adapting concepts generated in the research laboratory to

industrial vision applications, many important additional factors

come into play such as speed, cost and complexity. It has also

been found that the lighting and optics play a key role in the

robustness of an industrial system. Most potential industrial

vision applications cannot be reduced to working with binary
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silhouettes, due to texture and other real-life environmental

factors. Thus, systems engineering is an important ingredient.

Unfortunately, at present many prospective users have inadequate

inhouse capability to do the systems planning and integration

needed to successfully adapt computer vision to their operations.

This has inhibited the industrial use of sophisticated vision

systems. The vision manufacturers are now beginning to try to

remedy this situation by starting to provide easier user

programming, friendlier user interfaces, and systems engineering

support to prospective users.

It has been estimated that as of mid-1982, though less than

50 sophisticated industrial vision systems were actually in use,

approximately 1000 simple line-scan inspection systems were in

regular operation. Though special purpose systems have thus far

been the most effective, successful vision applications are now

becoming commonplace and are expanding. Many firms are now

entering the industrial vision field, with technical leap-

frogging being common due to rapidly changing technology.

D. General Purpose Vision Systems

1 . Introduction

Though many practical image recognition systems have been

developed, Hiatt (1981, pp. 2, 8) observes that, "In current

vision applications, the type of scene to be processed and acted

upon is usually carefully defined and limited to the capability

of the machine... General purpose computer vision has not yet

been solved in practice.” This domain specificity makes each new

application expensive and time consuming to develop. Thus, there

is a clear need for computer vision systems capable of dealing
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with a variety of industrial applications, particularly those

with less structured environments.

Barrow and Tenenbaum (1981, p. 572) note that "Developing

general-purpose computer vision systems has proved surprisingly

difficult and complex. This has been particularly frustrating

for vision researchers, who daily experience the apparent ease

and spontaneity of human perception. Research in the last few

years, however, has provided new insights into the computational

nature of vision that could lead to systems capable of high

performance in a broad range of visual domains."

Brady ( 1 9 8 1 A ) observes that there has been a research shift

toward topics corresponding to identifiable modules in the human

vision systems, and away from particular domains of application.

The consequence has been a sharp decline in the construction of

entire vision systems.

2. Difficulties

Barrow and Tenenbaum (1981, p. 574) emphasize that

Model-based interpretation of image data is an
enormously complex computational task. The variety of
possible scene configurations and viewpoints is so
great that an exhaustive search through the space of
possible interpretations is out of the question. Only
the most promising or most important alternative
interpretations can be pursued. Selection of candidate
interpretations depends both upon information derived
from the input image, and upon the observer’s goals and
expectations. A delicate balance must be struck
between data-directed and goal-directed search to avoid
oversight (not seeing things that are really present)
and hallucination (seeing things that are not).

Gennery et al . (1981, pp . 10-1, 10-3, 3-6) observe that

The statement "Vision is hard" is found often in
the computer vision literature. There are several
reasons for the difficulty. In the first place, an
image contains an enormous amount of information, much
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of it irrelevant to the task at hand, and it is an
imperfect projection of the real world, containing
noise and distortion. From this the relevant
information must be extracted. In the second place,
the transformation from the image to the real world is
highly ambiguous. Thus world knowledge must be relied
on to resolve the ambiguities. (This is especially
true in monocular vision of three-dimensional scenes,
but it is also true to a lesser extent in stereo
vision.) In the third place, an object seen may only
vaguely resemble others of its generic type or even
itself at other times or under other conditions. In
the fourth place, in a powerful vision system an
object must be recognized out of a large number of
possible objects or generic types.

These facts appear to manifest themselves in two
ways in practice. First, vision requires an enormous
amount of computing. Second, it seems that the
computational methods needed are very complicated, and
it is unknown today what the right methods will be...

Some experimental systems hold promise for
recognition of generic three-dimensional objects,
although they require a large amount of computing time
on existing computers. Some special-purpose hardware
is becoming available, which enables some very low-
level computations to be performed rapidly. Even in
these cases, however, a variety of techniques are in
use, with no consensus about which are the best. This
becomes even truer as we move to the higher-level, more
general, on more advanced areas. Furthermore, many of
the approaches that have been used are ad hoc, with
little promise of generality.

...two tasks that are beyond the capability of any
existing computer vision system are the recognition of
parts in a jumble in a bin and the operation of a

robot vehicle in a complicated outdoor environment.

Rosenfeld (1981, p. 3) observes that "Image processing and

scene analysis have definitely saturated the capacity of

computers .

"

In relation to earth observation imagery for resources

management, Alan Mackworth of UBC stated at IJCAI-81 that it will

be necessary to alter the popular current multi-spectral paradigm

that pixel meaning can be determined by intensity alone -- it

doesn’t work. It is necessary to understand spatial
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organization, meaning and context. The spatial constraints are

very important. There is no chance of getting a general purpose

vision system to understand satellite imagery alone -- it is

necessary to use a system-generated "sketch map" to interact with

the scene.

3 • Techniques

Brady ( 1 9 8 1 B , p. 4) observes that, "Most AI workers have...

abandoned the idea that visual perception can profitably be

studied in the context of a priori commitment to a particular

program or machine architecture." Binford (1982) believes

"...that building a vision system is 1% a system effort of the

sort which are familiar in computer science, and 99% basic

science .

"

The research emphasis has moved to developing techniques

(vision modules) for extracting intrinsic images (shape from

shading, shape from texture, etc.). Brady ( 1 9 8 1 A , p. 6) observes

that, "Representations have been developed that make explicit,

the information computed by a module... [This] leads to a view of

visual perception as the process of constructing instances of a

sequence of representations."

Gennery et al (1981, p. 3-1) note that at higher levels of

descriptions it becomes difficult to judge what are the best

approaches. As a result, a wide variety of techniques have been

used

.

Brady (1981, p. 99) observes that though it appears that the

most difficult visual problem is the perception or planning of
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movements through cluttered space, a solid start has been made on

this problem by Lozano-Perez (1981).

4 . Conclusions

Binford (1982) in reviewing current model-based research

vision systems concludes that most systems have not attempted to

be general vision systems, though ACRONYM does demonstrate some

progress toward this goal. Existing vision systems performances

are strongly limited by the performance of their segmentation

modules, their weak use of world knowledge and weak descriptions,

making little use of shape. The systems primarily relate image

relations to image observables; in general lacking the ability to

relate three dimensional space models to images. Existing

systems show little emphasis on basic vision problems in systems

building

.

Binford observes that until recently, systems efforts have

been small and short-lived, generally only a few man years

effort. Focussed and continuous efforts are necessary but not

sufficient for system building. The system programming effort

alone in building a vision system is enormous.

With the exception of ACRONYM (and to an extent MOSAIC), the

systems surveyed depend on image models and relations, and

therefore are strongly viewpoint-dependent. To generalize to

viewpoint insensative interpretations, would require three-

dimensional modeling and interpretation as in ACRONYM.

Binford found that the systems jump to conclusions based on

flimsy evidence which would probably not distinguish many objects

in a complex visual environment. The systems typically use the

hypothesis-verification paradigm. Hypothesis generation is the
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crucial part, made easy in the top-down case. The systems

succeed best with quasi-2d scenes, for example aerial

photographs, industrial scenes from a fixed viewpoint, x-ray

images, and ground level photos from a fixed viewpoint. Even

ACRONYM, which incorporates viewpoint-insensitive mechanisms, has

been demonstrated only on aerial images, although it appears

applicable to ground level photographs as well.

Binford concludes that though that the results of these and

other efforts are encouraging as first demonstrations,

nevertheless as general vision systems, they have a long way to

go.

Tenenbaum and Barrow (1981, p. 594) in discussing the

general computer vision problem conclude that:

We are beginning to understand the computational
nature of vision at a fundamental level, independent of
implementation. This understanding provides new
insights into limitations of early scene analysis
systems and a solid scientific foundation upon which
future general-purpose high-performance computer vision
systems can be built...

The competence of a vision system ultimately
rests upon the representations it uses to describe the
world and the models available for manipulating and
transforming descriptions. Many levels of description
are necessary to achieve human performance requiring
models of scene domains, objects, surfaces,
illumination, sensors, and the geometry and photometry
of imaging.

A vision system is naturally structured as a

sequence of levels of representation. The initial
levels are primarily iconic (edges, regions, gradients)
because that is the nature of the information available
directly from an image. The highest levels are
primarily symbolic (surfaces, objects, scenes), because
that is the nature of the information that is sought.
Intermediate levels are constrained by the information
available from preceding levels and that required by
subsequent levels. In particular, physical and three-
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dimensional surface characteristics provide a critical
transition from iconic to symbolic representations.

Early levels of processing in a vision system are
primarily data driven, while higher levels are
controlled by goals and expectations. At intermediate
levels, some combination of data-driven (bottom-up) and
goal-driven (top-down) operation is needed both to
compensate for errors, and to avoid computational
overload. Although the detailed nature of processing
is dependent on representation and therefore
considerably different at low and high levels, it is
significant that at virtually all levels processing
appears to be inherently parallel, and thus amenable to
implementation by networks of computational elements
(e.g., neurons or VLSI chips)...

While no such [general-purpose computer vision]
system yet exists, most of the pieces have been
experimentally demonstrated. Thus it would not be
unreasonable to attempt to construct one within the
current state of the art. Of course, many details
still remain unresolved, especially at the higher
levels of processing.

E. Visual Tracking

Real-time tracking of objects is important to manipulation

and guidance. The state-of-the-art in visual tracking is

reviewed and Appendix H. Though some success has been achieved

under limited conditions, it remains as an important area for

research

.

F . Overview

In conclusion, we might observe that computer vision can be

viewed as a set of very difficult problems. However commercial

vision systems are available and are operating successfully in

specialized environments on low level problems of verification,
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inspection, measurement, recognition, and determination of

object location or orientation.

There is now a much better understanding of the computer

vision problem than there was just a few years ago. A major

focus of the current research effort is in extracting 3D shape

from intrinsic image characteristics.

Though quite a number of high level research vision systems

have been explored, no general vision system is available today

or is imminent. Major current efforts in this area are ACRONYM

at Stanford U. and VISIONS at the U. of Mass.
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XIV. Current Problems and Issues

A . General

Some of the general issues are:

• Can general vision be reduced to computer analysis?

- What assumptions about the world are restrictive
enough?

How much data is required?

Need to incorporate generic aspects of perception
(Binford, 1982)

Similarity, not spatial congruence is the paradigm
of interpretation in nature.

Humans are always seeing things they haven’t seen
before

.

3D interpretation of images versus 2D

Binford (1982) believes that general vision
systems depend on building three dimensional
descr ipt ions--that prediction, description and
interpretation take place largely in three
dimensions

.

How necessary is it to follow the central paradigm
(Figure 6, in this report) to achieve high level
vision? Is it essential to employ a key intermediate
representation such as the 2-1/2D sketch or Intrinsic
Images? It is possible to obtain these using only
local constraints?

Is the hierarchical vision paradigm (Figure 6), which
implies complete segmentation and labeling
inappropriate for natural scenes? Is a more isomorphic
representation needed, such as a map which implicitly
captures the detail and relations and is more
appropriate for natural computations? For such
isomorphic representations, is the serial digital
computer inappropriate and another calculating medium
such as a network needed? (See Fischler, 1978, 1981.)

Methods and hardware to reduce the software generation
costs and processing time for computer vision*.

*N u d d HW5 provides a good overview of computer processing
requirements for computer vision and appropriate ar chi tectures
and hardware to implement them.
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Lack of interface standards for connecting computer
vision systems to robots and industrial machines.

• Active vs passive sensing in vision systems.

• Relative merits of binary versus gray-scale imagery.

• Most issues are still poorly understood.

Techniques

1 . Low Level Processing

Many of the unsolved problems in computer vision
are at this level.

The whole issue of constructing the primal sketch
from zero crossings of the second derivative of
the intensity is far from resolved.

• Direct edge finding and region segmentation are
still unreliable for general vision.

• A key insight is that local information is usually
inadequate to guide segmentation and
interpretation in a general scene. Global
structure such as the shading gradient is
required. To what extent can modeling and using
physical contraints in scene analysis provide
global restrictions which can guide segmentation
and assist in classification? Possible examples
include 1) utilization of shadows to locate
lighting sources and to pinpoint objects casting
shadows, and 2) use of sky-land boundaries as a

global constraint. Another global approach for
man-made scenes is to employ the camera model and
geometric perspective to detect vanishing points
associated with parallel lines in an urban scene.
Fishier et al. (1982) indicate that the detection
of clusters of parallel lines by finding their
vanishing points can be used to automatically
screen large amounts of man-made structures.

How to best utilize and avoid difficulties with
texture in natural scenes is still unsolved.

Rectification of images prior to stereo matching
remains a problem.

2 . Middle Level Processing

A key problem remaining in computer vision is
bridging the gap between pictorial features (e.g.,
edges and regions) and 3D objects.
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• Techniques for analyzing time-varying imagery.

• Limits of the intrinsic image approach: It is not
clear that we can reliably obtain intrinsic images
from images of real scenes via the methods
outlined in this report. Alternative approaches
when available, such as stereo or active ranging
sensors, may be preferable for extracting
intrinsic characteristics.

• How best to deal .with shadows and occlusions.

3. Higher Level Processing

• Relation of higher level vision to AI

• Modules that operate on the surface orientation
map to produce object representations

.

• Generic interpretation in terms of object classes.

• Semantic interpretation.

• Semantic search techniques for use in matching
schemes using semantic segmentations and indexing.

• Identification for interpretation of which
geometric parameters are casually (functionally)
rather than statistically determined (Binford,
1982 )

.

C. Representation and Modeling

Representations for complex and amorphous shapes (e.g.,

a tree, a crumpled sweater, a flowing stream).

Proper level for the dividing line between iconic
representations at the lower levels and symbolic at the
higher levels, and how much these representations
should overlap.

How to index efficiently into a database containing a

large number of models.

* What sort of features should be extracted from the
scene (edges, corners, regions, surface oriention,
etc.) and how should objects be modeled (wire-frame
models, generalized cylinders, etc.)

D. System Paradigms and Design

* Is the relaxation process the most attractive approach
at the lower levels where global aspects are not
directly considered?
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How far can parallel methods (like relaxation) be
pushed at all levels?

• Is a combination of top-down and bottom-up the
preferred approach for complex vision tasks?

• Under what circumstances is the blackboard approach to
be preferred? Note that hierarchical image
understanding systems suffer from lack of adaptability
and also require a large amount of processing.

Knowledge Acquisition - Teaching and Programming

• Methods for knowledge acquisition at all levels.

Methods for learning and tracking of generic types.

• How to make the system versatile by having it
programmable at a very high level.

• Design of a very-high-level programming language
especially for vision. Little has been done to date in
this area.

Sensing

• Active vs passive sensing.

• Best methods for using structured light.

• Methods for acquiring 3D directly.

• Is scanning laser radar the wave of the future?

Planning

Methods to incorporate planning into robotic systems
utilizing vision.



XV. Research Needed

A . General

• Need to understand human vision as it’s our best
example of a general purpose vision system.

Need research in general purpose systems capable of
high performance in a wide variety of visual domains.

• Need to be able to use generic recognition.

• Methods to reduce software costs of computer vision and
reduce processing time.

Image processing techniques for greater capability.

• Interface standards.

Methods for visual guidance in cluttered spaces.

• Improved understanding of the extent and use of domain
specific information in visual perception.

• Need to determine how to best utilize range
information

.

Need to develop global methods (e.g., utilizing
shading) either to bypass or to help guide the current
hierarchical paradigm.

B. Techniques

1 . Low level processing

More reliable and faster edge and region finders
for general scenes.

Ways to extract motion measures from sequences
of intensity arrays.

• Reliable stereo disparity modules.

• Determination of surface properties, such as
color, smoothness, coatings, etc.

2. Middle level processing

• Techniques for analyzing time-varying imagery.

• Methods to bridge the gap between edges and
regions and 3D objects.

• Improved methods of extracting intrinsic images.
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3. High level processing

Better understanding of how to use texture.

• Modules that operate on the surface orientation
map to produce object representations.

• Methods for generic and semantic interpretation.

C. Representation and Modeling

Representations for complex and amorphous shapes.

• Techniques for indexing into a large data base of
models

.

Mathematical methods to model texture conviently.

• More precise representations of surface orientation
maps at different levels of resolution.

• Methods to group properties at each level of resolution
for each representation, so that a hierarchical
structure can be imposed upon the representations.

Determination of under what conditions is binary
imagery most favorable and under what conditions is
gray-scale to be preferred.

• Choosing which features to extract from a scene.

• Methods for modeling 3D objects.

D. System Paradigms and Design

Need to explore the extension of relaxation processes
to multiple levels in the pyramid of description and
interpretation

.

Methods of local parallel processing which can discover
global information through propogation.

Efficient methods and techniques for maintaining
concurrently a number of images of a scene in various
stages of processing, so that these explicitly
represented images can interact with each other and
with higher and lower levels of processing as
processing proceeds. This is especially pertinent to
globally consistent relaxation processing.

• Need investigation of paradigms, other than the
conventional hierarchical paradigms, such as the
"blackboard" and other paradigms being explored in
Artificial Intelligence areas such as expert systems.
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Faster pre- and post-processing hardware (e.g., special
digital circuits to evaluate intensity gradients).

E. Knowledge Acquisition - Teaching and Programming

• Need better techniques for rapid reprogramming of
vision systems by the user.

• Inspection and Assembly vision systems software
approaches that can easily be modified to adapt to new
situations. It would be desirable that control
structures be incorporated that will specify tests to
be performed and possible alternate paths of actions.

Need high-level programming languages designed
especially for vision.

• Need methods for learning and teaching of generic
types.

• Methods for knowledge acquisition at all levels.

F . Sensing

Techniques for rapid 3D sensing -- ranging by lidar
(scanning laser radar), defocussing, stereo and
triangulation

.

Improved methods for use of structured light for 3D
evaluation and shape identification.

Methods for exploiting multiple light sources.

• Higher-resolution and selective-resolution transducers.

G. Planning

Methods for incorporating vision into robotic planning.
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XVI. Future Trends

As the field of computer vision unfolds, we expect to see

the following future trends*.

A. Techniques

Though most industrial vision systems have used binary
representations, we can expect increased use of gray
scales because of their potential for handling scenes
with cluttered backgrounds and uncontrolled lighting.

Recent theoretical work on monocular shape
interpretation from images (shape from shading,
texture, etc.) make it appear promising that general
mechanisms for generating spatial observations from
images will be available within the next 2 to 5 years
to support general vision systems.

Successful techniques (such as stereo and motion
parallax) for deriving shape and/or motion from
multiple images should also be available within 2 to 5

years

.

The mathematics of Image Understanding will continue to
become more sophisticated.

Enlargement will continue of the links now growing
between Image Understanding and Theories of Human
Vision

.

Brady ( 1 9 8 1 B . p. 11) predicts that there will be a

considerable advances in current vision ”... issues over
the next few decades, probably resulting in changes in
our conception of computing and vision at least as
large as those which have occurred over the past
decade .

"

B. Hardware and Architecture

We are now seeing hardware and software emerging that
enables real-time operation in simple situations.
Within the next 3 to 5 years we should see hardware and
software that will enable similar real-time operation
for robotics and other activities requiring
recognition, and position and orientation information.

^The se tr ends have been largely derived from statements by Brady
( 1 98 1 A , 1 9 8 1 B) ,

Binford (1982), Kruger and Thompson (1981), Agin
(1980), Arden (1980), Rosenfeld (1981), Hiatt (1981), and Barrow
and Tenenbaum (1981).
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Fast raster-based pipeline preprocessing hardware to
compute low-level features in local regions of an
entire scene are now becoming available and should find
general use in commercial vision systems in 2 to 4

years

.

As at virtually all visual levels, processing seems
inherently parallel, parallel processing is a wave of
the future (but not the entire answer). Parallel
processing research hardware systems (such as ZMOB at
the U. of MD, and the MPP for NASA Goddard) have
already been built, and appropriate algorithms are
being developed.

Three possible parallel processing architectures are
array processing, pipeline processing and multi-
processing. Multi-processing looks most promising as
it allows data from several data streams of an image to
interact with each other to yield a high-level
representation

.

i

Relaxation and constraint analysis techniques are on
the increase and will be increasingly reflected in
future architectures.

C. A . I . and General Vision Systems

Computer vision will be a key factor in achieving many

artificial intelligence applications. The goal is to move from

special-purpose visual processing to general-purpose computer

vision. Work to date in model-based systems has made a tentative

beginning. But the long-run goal is to be able to deal with

unfamiliar or unexpected input*. Reasoning in terms of generic

models and reasoning by analogy are two approaches being pursued.

However, it is anticipated that it will be a decade or more

before substantial progress will be made.

*TT computer vision systems move toward this goal, they will
increasingly incorporate Expert System components using multiple
knowledge sources. Gevarter (1982B) provides An Overview of
Expert Systems, in which ACRONYM and VISIONS are considered to be
examples of Expert Systems.
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Barrow and Tenenbaum (1981, p. 594) indicate that no general

vision system now exists, but most of the ”... pieces have been

experimentally demonstrated. Thus it would not be unreasonable

to attempt to construct one within the current state-of-the-art.”

D. Modeling and Programming

• Now emerging is 3D modeling, arising largely from
CAD/CAM technology. 3D CAD/CAM data bases will be
integrated with industrial vision systems to
realistically generate synthesized images for matching
with visual inputs.

Illumination models, shading and surface property
models will be increasingly incorporated into visual
systems.

Volumetric models which allow prediction and
interpretation at the levels of volumes, rather than
images, will see greater utilization.

• High level vision programming languages (such as
Automatix’s RAIL) that can be integrated with robot and
industrial manufacturing languages are now beginning to
appear and will become commonplace within 5 years.

• Generic representations for amorphous objects (such as
trees) have been experimentally utilized and should
become generally available within 5 years.

E. Knowledge Acquisition

Strategies for indexing into a large database of models
should be available within the next 2 to 5 years.

"Training by being told” will supplement "training by
example" as computer graphics techniques and vision
programming languages become more common.

F . Sensing

An important area of development is 3D sensing.
Several current industrial vision systems are already
employing structured light for 3D sensing. A number of
new innovative techniques in this area are expected to
appear in the next 5 years.

• More active vision sensors such as lidar are now being
explored, but are unlikely to find substantial
industrial application until the last half of this
decade

.
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A number of other innovative techniques in 3D sensing
are now being developed. Among these are the use of
multiple light sources, multiple views, and shape from
motion. Some of these techniques may .see commercial
application within the next two years.

• Kruger and Thompson (1981, p. 33) observe that "By
taking several views from particular positions and
with carefully controlled illumination, it is possible
to separate and independently measure the different
surface propert ies." Industrial vision systems for
inspection that use this technique will probably appear
within the next several years.

It is anticipated that within two years solid-state
cameras and convolvers will become available that will
make stereo machine vision a reality.

G. Industrial Vision Systems

We will see increased use of advanced vision techniques
in industrial vision systems, including gray scale
imagery.

We are now observing a shortening time lag between
research advances and their applications in industry.
It is anticipated that in the future this lag may be as
little as one to two years.

Advanced electronics hard ware at reduced cost is
increasing the capabilities and speed of industrial
vision, while simultaneously reducing costs.

• Because of low start-up costs and the importance of
vision to industrial and other applications, new
companies and organizations are rapidly entering the
vision field.

It has been estimated that more than 200 companies are
now playing a role in the vision field. A shakeout
appears likely as the field settles down, but
innovation will continue to encourage new entrants.

It is anticipated that special lighting and active
sensing will play an increasing role in industrial
vision

.

Better human/machine interfaces simplifying user
reprogramming are now appearing and will become
dominant in sophisticated applications within 5 years.

• Common programming languages and improved interface
standards will within the next 3 to 10 years enable
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easier integration of vision to robots and into the
industrial environment.

H. Future Applications

It is anticipated that about one quarter of all
industrial robots will be equipped with some form of
vision system by 1990.

Arden (1980, p. 487) observes that "Increasingly,
computer-vision techniques are being applied to real-
world problems. This is particularly true of device
assembly, circuit board layout, and inspection in the
field of industrial automation. Although much of the
work is still going on, several convincing
demonstration programs have been written, and it is
expected that computer vision will soon begin to have a

significant impact in industry. At the same time, the
computer-vision approach will increasingly be applied
to the analysis of images by computer, areas which up
to now have been the domain of researchers in pattern
recognition— for example, the analysis of handwriting,
photomicrographs and radiographs, and satellite
imagery.

"

It is likely that in the order of 90 % of all industrial
inspection activities requiring vision will be done
with computer vision systems within the next decade.

• New vision system applications in a wide variety of
areas, as yet unexplored, will begin to appear within
this decade. An example of such a system might be
visual traffic monitors at intersections that could
perceive cars, pedestrians, etc., in motion, and
control the flow of traffic accordingly.

• Computer vision will play a large role in future
military applications. The Defense Mapping Agency
intends to achieve fully automated production for
mapping, charting and geodesy by 1995, utilizing
"expert system "-guided computer vision facilities.
Other future computer vision military applications
include autonomous navigation and guidance for vehicles
and missiles, target detection, the interpretat ion of
aerial images for general surveilance purposes and for
local battlefield surveilance. Computer vision will
also play a large role in future battlefield robots.

Table X gives Binford's (1982) forecast for computer
vision system applications.
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Table X*

Example Future Applications for Computer Vision Systems

Short term (1-2 years)

• Industrial Vision Systems

t Cartography: Semi -Automated stereo for terrain mapping

Mid term (2-3 years)

• Cartography; Semi -Automated stereo mapping of complex cultural sites

• Photointerpretation - Monitoring of selected objects in restricted situations

Long term (3-5 years)

• 3D Systems for:

-warehousing
-handling unoriented parts
-inspection of non-laminar parts

• Cartography - automatic feature classification

• Photointerpretation - Automatic classification of a greater variety of
objects with greater detail

Greater than 5 years

• Robotic operations in hazardous environments

• Autonomous navigation

• Vehicle Guidance

• Medical image analysis

• Aids to handicapped

More than a decade

• Home robots

• General robotic activities

j”l Observations of extra-terrestrial bodies"^

*Based on Binford (1982)
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I Conclusion

In conclusion, the amount of activity and the many

researchers in the computer vision field suggest that within the

next 5 to 10 years, we should see some startling advances in

practical computer vision, though the availability of practical

general vision systems still remains a long way off.
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APPENDIX A*

LOW LEVEL FEATURES

The scene to be analyzed is usually sensed by a digital

camera or other similar device, the output of which is normally a

digitized image having an array of brightness values. For some

purposes these brightness values can be operated upon directly to

obtain desired information about the scene, but it is usual to

extract low level features for further computer processing. The

following sections describe the low level features usually

considered for extraction.

A. Pixels (Picture Elements)

Pixels are the individual elements in a digitized array.

They usually represent brightness and perhaps color in a

projection from a three dimensional scene, but could also

represent distance in a range image.

B. Texture

Texture is a local variation in pixel values that repeats in

a regular or random way across a portion of an image or object.

Texture can sometimes be used to identify the object being

sensed, or it can be used for approximating range and surface

orientation in a known object. However it can also be a noise

source in processing the image.

C . Regions

A region is a set of connected pixels that show a common

property such as average gray level, color or texture in an

image

.

^This a p p e n d i x is based largely on Gennery et al. (1981).
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D. Edges and Lines

An edge is a step in pixel values (exceeding some threshold)

between two regions of relatively uniform values. A line is

defined as a thin region of roughly uniform pixel values between

two regions of different but roughly equal pixel values. Line

representations are extracted from edges.

E . Corners

A corner is an abrupt change in direction of a curve.

Corners are useful in data compression approaches to representing

straight edges, and as points for feature matching.
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APPENDIX B

EXTRACTING EDGES AND AREAS

A natural first step in analyzing a scene is to convert it

into a sketch, that is, find the edges that separate regions of

differing brightnesses. Edges correspond to abrupt changes in

brightness. Such changes can be identified as places where the

first derivative of the brightness is suddenly high or the second

derivative is zero (see Figure 8). There are various schemes for

doing this, all in some way related to taking brightness

differences between adjacent points.

A. Extracting Edges

The basic methods for extracting edge and line elements from

images are*:

1 . Linear Matched Filtering:

Successively convolve** image windows with a template of the

desired feature and seek the maximum value.

2. Non-linear Filtering:

Convolve windows in the image with a local operator

(weighting function that approximates first or second derivatives

by first or second differences). Examples of operators for doing

this are shown in Table I. In general, each point in the image

is convolved with directional operators in as many directions as

*This section is based largely on methods described in Rosenfeld
(1981, p. 601), Gennery, et al., (1981, pp. 2-8 to 2-14), and
Brady (1981A). Additional material can be found in Ballard and
Brown (1982), Binford (1981), and Nevatia (1982).

**Convolve means superimposing a nxn operator over a nxn pixel
area(window) in the image, multiplying corresponding points
together and summing the result.
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Figure 8 Intensity Variations at Step Edges.
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needed. The resultant outputs at each point are combined to

determine the gradient vector (the orientation and magnitude of

the intensity changes).
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Table 1

Ex amp 1 es o f Non-L inear Filtering* for Extract ina Edge
and. LJJiS. E^erngnts

Appr oach

I . Edge Operators

Edge Criteria Aemar fcs

Detect first derivative
of brightness: af

dx

Sobel Operators

Edge
Mask

-1 0 1

-2 0 2

-1 0 1

pixels wh i ch
yield max

.

values

operators
t uned for
) imi ted
range of
oper a t i on

-100 -100 0 100 100

-100 -100 0 100 100

-100 -100 0 100 100

-100 -100 0 100 100

-100 -100 0 100 100

For each pixel,
f i nd ang 1

e

oper-
ators that yield
maximum value.
Then thin,
threshold and
1 ink (line fit).

similar operators
used for each
30 ' angle.

*Nevatia and Babu Operators

I l . Bar Operators
Detect second derivative d

2
f

a?

Bar
Mask

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

look for zero
crossing

sensative to noise

•"Convolving a image window (about a pixel) with operators such as
those indicated. Operators shown are for finding vertical lines.
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3. Local Thresholding

Apply local thresholding and discard responses that do not

lie on borders (between upper and lower threshold regions) and

link responses that do.

4. Surface Fitting - The Hueckel Operator

Fit a surface to neighborhood of each pixel and compute

maximum gradient of the surface. Consider as edge points those

pixels having surface maximum gradients above a selected

threshold value. This approach was first devised by Prewitt

(1970). The Hueckel Operator is a popular method for doing this.

5. Rotationally Insensitive Operators :

The Laplacian Operator (71 ,
related to the

magnitude of the derivative of the intensity gradient) is

insensitive to the direction of a line and yields edge elements

at pixel points where the Laplacian is zero. Thus discrete

approximations to the Laplacian have proved useful in line

finding

.

6. Line Following :

Shirai (1975) devised a line following method that used a

pair of parameters that varied according to how continuously and

smoothly elements were found. These parameters determined

thresholds for accepting a new element according to how close it

was to the linear continuation of the current line being tracked.

7. Global Methods

Martelli (1976) devised a global hueristic search that

operates directly on the brightness values. A cost function

is optimized depending on the curvature of the candidate
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line and the degree to which the candidate line succeeds in

dividing the image into regions of different brightnesses.

Kelly (1971) used a hierarchical refinement approach, first

finding lines in a coarse image and using the results to

guide line finding in a higher resolution image.

Eberlein (1976) utilized a relaxation approach for linking

edges found by a local detector, depending on how the edges

agreed with their local neighbors. This was a parallel

method that merged the elements into a continuous line.

The Hough Transform (Duda and Hart, 1973), is a global

parallel method for finding straight or curved lines. For a

straight line, using results from local edge detectors, the

perpendicular distance (p) from the line element to the

origin and the angle (6) of the normal to the line is

determined and mapped into (p,e) space. Peak clusters in

(p, ©) space are considered to be straight lines.

Fischler, Tenenbaum and Wolf (1981) describe a new paradigm

for detectingandprecisely deliniating roads and similar

"line-like" structures appearing in low-resolution aerial

imagery: The approach combines "local information from

multiple, and possibly incommensurate, sources, including

various line and edge detection operators, map knowledge

about the likely path of roads through an image, and generic

knowledge about roads (e.g. connectivity, curvature, and

width constraints). The final interpretation of the scene

is achieved by using either a graph search or dynamic

programming techniques to optimize a global figure of

merit .

"
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B. Edge Finding Variations

There are many approaches which can be considered to be

variations, combinations and extensions of the basic approaches

to edge finding considered in section A.

For example, Marr and Hildreth (1979) utilized the fact that

different edges are found depending upon the size of the edge

masks. They also observed that bar masks seem to give more

reliable information than edge masks. They used bar masks of

different panel widths and combined their outputs to reduce

effects of noise and to compute the fuzziness of an edge. They

extended this method based on their observations that intensity

changes are localized in space and in (spatial) frequency. They

note that using a Gaussian filter* optimized localization in both

domains simultaneously. They thus convolved the original image

with the Laplacian of the Gaussian smoothing filter for each

spatial frequency used. Edges were considered to occur where

zero crossings from several spatial frequency channels concurred.

C. Linking Edge Elements , and Thinning Resultant Lines

Due to imperfections in edge element finding techniques,

situations where edges are poorly defined and noise in the image,

the primal sketch will usually consist of discontinuous and

somewhat scattered edge elements. Various schemes (heuristics)

exist to connect these edge elements together to form lines.

*An averaging procedure about a pixel in which the influence of
neighboring pixels fall off with distance, according to a

Gaussian distribution.
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Long edges or lines can be found either by using an edge

detector (as discussed _in the previous section) and linking the

resultant edge elements into a long smooth curve (filling in gaps

and ignoring stray elements), or by a procedure which

accomplishes a similar result by operating directly on the image

data. In either case, if the algorithm operates sequentially by

proceeding along the curve as it links edge elements or pixels,

it often is called a line follower (or tracker), edge follower,

or curve follower. However algorithms have also been devised

that operate on an effectively parallel or gestalt basis.

Eberlein's (1976) relaxation method yields a thin line

naturally upon convergence. Nevatia and Babu's (1979) approach

accepts as edge portions those candidate edge elements found

that have a maximal gradient value compared to adjacent pixels

with a similar gradient orientation.

When deriving curves from edge data, it is often desirable

to thin the resulting contours. Thinning methods reduce the

contours to a single-pixel width by discarding redundant edges

while maintaining the continuity of the contours. Some methods

such as Eberlein’s or Nevatia and Babu's include thinning as an

inherent part of their operation.

D. Remarks on Edge Finding

Binford (1981) states that it is important to distinguish

between detection of an intensity change and its subsequent

localization. Thus, he considers the zero crossing of the second

derivative of the intensity good for localization of feature

points but not for detection; while the maximum of the first

derivative is good for detection, but not for localization.

Combining the two effects and using linear interpolation,
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MacVicar-Whelan and Binford (1981) report being able to localize

edges to sub-pixel accuracy.

Gennery, et al., (1981) state that for poor quality images,

the performance of all the various detectors degrade, but in

different ways. None can be considered to be the last word in

edge detectors.

E . Extracting Regions

Many of the edge finding approaches are designed to perform

best when the edges can be approximated reasonably by a series of

linked straight lines. In natural scenes, this approach can lead

to difficulties.

An alternative approach to edge finding is to partition an

image into regions of approximately uniform brightness

corresponding to surfaces. Unlike edge linking, "region growing"

does not require the assumption that the boundaries are straight.

Region growing can be accomplished by initially partitioning the

image into elementary regions of constant brightness, and then

successively merging adjacent regions having sufficiently small

brightness differences, until only boundaries with strong

contrast remain. The merging can be done somewhat in parallel by

computing merge merits for all pairs of adjacent regions, and

merging all pairs that have mutually highest merit. Another

advantage of region growing over edge finding is that this

technique generalizes more readily to characteristics other

than brightness, such as texture, color, size and shape, which

are important in natural scenes.

The simplest vision systems use a global threshold to obtain

a binary image - an approach commonly used in industrial vision
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systems. Thresholding can also be local or even dynamic. When

histograms* of image pixel intensitites are used, it is usual to

dissect the image by thresholding at a value in a valley of the

histogram so as to give strong peaks on either side of the

threshold value. This region splitting approach can be applied

recursively until no more regions can be split. Ohlander et al.

(1978) used this approach, computing histograms in each of nine

colors and thresholding on the parameter that yielded the best

histogram for splitting.

NASA has employed spectral analysis for segmenting

regions in LANDSAT imagery (c.f., Landgrebe, 1981).

^Frequency counts of the occurrence of each intensity in an
image

.
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APPENDIX C

SEGMENTATION AND INTERPRETATION

A. The Computer Vision Paradigm

Starting with an image of a scene, the goal of a computer

vision system is to identify the objects and their relationships

in the scene. To accomplish this, it is customary for the system

to segment the image into surfaces or edges associated with the

objects, and then use the resulting information, together with

domain knowledge, to generate the desired scene description. In

this appendix we will review techniques used to do this

segmentation

.

B. An Early Bottom-up System

A landmark program in machine perception was developed by

Roberts (1965) to recognize various three dimensional polyhedral

object configurations. Roberts employed an image-dissector

camera to look at blocks-world scenes involving blocks, wedges,

hexagonal prisms, or objects formed by sticking these together.

His program could determine the location, orientation, and

dimensions of the objects. The program could demonstrate its

"under stand ing ,” by displaying a drawing of the scene observed

from any desired viewpoint.

Roberts’ program first found the places in the images where

brightness or shading changed abruptly, corresponding to points

on the edges of the object. Then by linking these points, it

produced a line drawing of the scene. The line drawing was

interpreted by finding triangles, quadrilaterals, and hexagons,

which suggested possible objects (triangles suggest wedges,

etc.) and eventually accounted for all the lines and junctions as
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edges and corners of objects. From the resulting appearance of

the object in the image, the program was able to compute its

dimensions, location, and orientation.

C . Problems with Bottom-Up Systems

Barrow and Tenenbaum (1981, p. 570) note that a major

problem with sequential program organization used by Roberts and

many of his successors:

...is the inherent unreliability of segmentation.
Some surface boundaries may be missed because the
contrast across them is low, while shadows,
reflections, and markings may introduce extra lines and
regions. The interpretation phase, when presented with
a corrupted segmentation, may be unable to produce an
explanation, and hence cause the entire system to fail.

Partitioning an arbitrary image into regions
corresponding to objects or object surfaces is
fundamentally impossible without exploiting scene
models. First, there is no basis for deciding which
image features are significant at the level of objects
and which are not. Second, there is no good pictorial
criterion for filling in missing features. Third, the
very notion of an object is ill defined, being largely
determined by convention and experience.

D o Interpretation-Guided Segmentation

Several research teams tried to overcome these problems by

integrating the segmentation and interpretation phases. One

simple approach used was to try to recognize objects from partial

matches obtained using models and then to try to verify the

results by attempting to find evidence that supported image

features previously missed.

Techniques were also developed for region-based systems. The

general approach being:

1. For regions with uniform attributes such as intensity,

color or texture, assign sets of possible object
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interpretations based on knowledge of possible object

surfaces and the contextural contraints associated with

assignments in adjacent regions. For instance, a road

cannot be surrounded by sky.

2. Merge adjacent regions with comparable interpretations.

3. Reevaluate interpretations based on contextual

constraints associated with the new adjacent regions.

4. Continue alternating merging and interpreting until all

adjacent regions have disjoint interpretations

unviolated by contextual constraints.

Both line-based and region-based interpretation-guided

segmentation systems have been devised that have performed well

in a variety of complex scene domains. However, the approach is

not suitable for a general-purpose vision system as it depends on

prior knowledge of expected objects. Unknown objects cannot be

recognized or even described. Thus for unknown objects, levels

of scene descriptions below the level of complete objects are

needed

.

E. Use of General World Knowledge to Guide Segmentation

Marr and Nishira (1978) observe that as the primal sketch is

typically a large and unwieldy collection of data, the next step

is to decode it--traditionally by " ... a process called

segmentation whose purpose is to divide a primal sketch, or more

generally an image, into regions that are meaningful, perhaps as

physical objects." It makes sense to use any general knowledge

that might help in the interpretation. An example of such
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knowledge is information on the physical nature of edges of

objects

.

Huffman (1971) and Clowes (1971) devised an approach to

enable the interpretation of perfect line drawings of polyhedral

objects without having to resort to heuristics. They recognized

that each line in the picture represented either a convex edge,

a concave edge, or an occluding edge in a three-dimensional

scene. From this, they constructed a catalog of possible vertices

with allowable line labellings. A scene could then be analyzed

by starting at one vertex and proceeding through the line drawing

performing a tree search, limiting the number of possible line

labellings at each step according to the catalog, until a

consistent labelling for the entire scene is obtained. Waltz

(1975) further extended this technique to include shadows and

cracks. His catalog included several thousand possible vertex

types. He used a relaxation-type procedure to decide on the

correct labelling for each line according to the possibilities in

the catalog. The resultant procedure converges rapidly (usually

to a unique interpretation) regardless of the complexity of the

scene

.

A move toward a more general approach to the problem of

interpreting feature point segments as lines and edges has

recently been made by Binford (1981) and Lowe and Binford (1981).

In their scheme, a segment is interpreted as a space curve, and

constraints are formulated based on coincidence, and those

situations in which a curve corresponds to a true edge or

bounding contour.
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A comprehensive approach to deriving a physical sketch of a

scene from one or more images has been taken by Fischler et al.

(1982). They use a priori knowledge of global and extended

constraints to guide the segmentation and interpretation process.

Their approach involves modeling physically meaningful information

such as the imaging process, the scene geometry and elements of

the scene content. They utilize knowledge about such factors as

the camera model, vanishing points, geometric distortion, ground

plane, geometric horizon, skyline, semantic context (urban or

rural scene, etc.) physical surface models and edge

classification

.
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APPENDIX D

2-D REPRESENTATION, DESCRIPTION AND RECOGNITION

This appendix presents a number of 2-D representations and

descriptions useful for further processing and recognition.

A . Pyramids

A pyramid data structure represents an image at several

levels of resolution simultaneously. The base of the pyramid is

the original full resolution image, usually assumed to be a n x n

square array. The next level of the pyramid is typically formed

by partioning the image into non-overlapping 2 by 2 cells and

mapping (usually by average gray level) the four pixels in each

cell to a single pixel in the next level*. This is repeated,

level by level, until the image is compressed into a single pixel

at the top level. The usefulness of pyramids lies in being able

to extract features at an appropriate level of resolution.

B . Quadtrees

A quadtree representation of a n x n image is obtained in a

top-down manner by recursively splitting the image into

quadrants, the quadrants into subquadrants, etc. The process

continues until all pixels in a quadrant are uniform with respect

to some feature (such as gray level). The terminal leaves of a

quadtree are uniform regions of varying sizes, thus being a

useful first phase in segmenting a image into regions.

C . Statistical Features of _a Region

Once an image has been segmented, a description of each

region, or blob, can be generated as a list of statistical

*Other par t ion ings and mappings are common.
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features. These features typically include perimeter, area, c.g.,

first and second order moments, color, etc. The individual blob

descriptors are linked to form a tree data structure which

represents nesting relationships. The parent of any blob in the

tree is the adjacent blob which completely surrounds it.

Recognition is performed by matching the statistical features

with those of stored prototypes. The SRI Vision Module and GM’s

CONSIGHT use this approach.

D. Boundary Curves

The boundary of a region can be represented by a chain of

straight lines and arcs. The resulting compressed boundary

descriptions are sometime referred to as ’’chain codes" or

"concurves." Gennery et al. (1981, p. 3-2) note that "The main

advantage of the concurve representation is that objects may be

recognized on the basis of partial views by matching a subset of

the lines and arcs in a model concurve with the image data."

E. Run-Length Encoding

For a binary image, it is possible to segment the image into

edges and regions by sequentially scanning the image and

recording the edge points (where pixels change from zero to one

or vica versa). This process of reducing a binary image to a set

of edge points is called run-length encoding, and has been

successfully used in the SRI Vision Module and a number of

sophisticated commerical vision systems derived from that module.

F. Skeleton Representations and Generalized Ribbons

In this approach, a planar region is represented by a

skeleton which consists of the medial line (locus of points
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equidistant from the boundaries of the region) and the

perpendicular distance from the boundary for each point on the

medial line. In some cases, a complex region can be constructed

as the union of these generalized ribbons (the 2-D version of

generalized cones described in Appendix F)

.

G . Representation by a Concatenation of Primitive Forms

A region can be built up from a collection of squares,

rectangles or other shapes. The "Maximal Block" approach uses a

union of squares of various sizes.

H. Relational Graphs

An image that has been segmented into regions can be

described in terms of a relational graph, whose nodes represent

regions and whose arcs represent properties (such as shape and

size) and relations (such as "infront of" and "adjacent to").

Corresponding views of known objects can be similarly

represented, and recognition can be achieved by matching the

graphs

.

I . Recognition

Recognition consists of matching a description derived from

an image to a description of a stored model. Recognition can be

accomplished by correlation, which for binary data reduces to

template matching. A more elaborate approach is statistical

pattern classification using features such as described in

Section C. Relaxation and syntactic analysis approaches

(described elsewhere) have also been used. Fischler and Bolles

(1982) suggest "random sample consensus" as a paradigm for

selecting the model that provides the best match to the data and

for computing the best values of the free parameters.
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APPENDIX E

RECOVERY OF INTRINSIC SURFACE CHARACTERISTICS

A. Basic Approach

As indicated earlier, it is helpful in many cases to assist

in finding 3-D surfaces and volumes for interpretation, to go

beyond the 2-D representation of edges and regions to a

representation proposed by Marr (1978) of MIT, called the 2.5-D

sketch consisting of surface distances and orientations. Such a

sketch can be constructed from the surface characteristics which

are intrinsic to the scene and are not dependent upon

idiosyncracies of viewpoint of the sensor.

Barrow and Tenenbaum (1981, pp. 581-582) indicate that these

intrinsic characteristics of surfaces are appropriately

represented as a set of arrays in registration with the image

array. Each array corresponds to a particular intrinsic

characteristic such as surface reflectance, surface orientation,

incident illumination and range. Each array contains values for

its intrinsic characteristic at the surface element visible at

the corresponding point in the sensed image. It also explicitly

indicates boundaries due to discontinuties in value or gradient

of the characteristic. Such arrays have been referred to as

intrinsic images.

Figure 9 is an artist’s conception of one possible set of

intrinsic images, corresponding to a monochrome image of a simple

scene. The images are shown as line drawings, but in fact would

contain values at every point. The solid lines represent

discontinuities in the scene characteristic; the dashed lines
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represent discontinuities in its derivative. The distance image

gives the line of sight range from the center of projection to

each visible point in the scene. The reflectance image gives the

albedo (the ratio of total reflected to total incident

illumination) at each point. The orientation image consists of

vectors representing the direction of the surface normal at every

point. The integrated incident illumination from all sources is

given by the illumination image.
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Figure 9: A set of intrinsic images derived from a single
monochrome intensity image.

<b)

(d)

Source: Barrow and Tenebaum, 1981, p. 582.
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The central problem in recovering the intrinsic

characteristics from the image is that the desired information is

confounded in the sensory data. The observed light intensity at

a single point could result from an infinitude of combinations of

illumination, reflectance and orientation. The key to recovery

lies in exploiting constraints derived from assumptions about

the nature of the scene and the physics of the imaging process.

For example, as surfaces are continuous except at boundaries, we

can expect surface characteristics (reflection, orientation and

range) to also be continuous. Similarly, incident illumination

also varies smoothly over a scene except at shadow boundaries.

Barrow and Tenenbaum (1981, p. 589) propose the following

four-step model for using interacting constraints in a

relaxation type process for simultaneously recovering the primary

intrinsic characteristics from a brightness image:

1) find the brightness discontinuities in the input
image

;

2) determine the physical nature of the
discontinuity

;

3) assign boundary values for intrinsic characteris-
tics along the edges, based on the physical
interpretation

;

4) propagate from these boundary values into the
interiors of regions, using continuity
assumptions

.

Many different approaches to recover shape from image

characteristics have been explored as represented by the

following sections.

B. Shape from Shading

Barrow and Tenenbaum (1978) describe a low level method of

estimating relative distance and surface orientation from a
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single image. They use heuristics based on the rate of change of

brightness across the image.

Ikeuchi and Horn (1981) have formulated a second order

differential equation which Horn calls the "image irradiance

equation." This equation relates the orientation of the local

surface normal of a visible surface, its surface reflectance

characteristics, and the lighting, to the intensity value

recorded at the corresponding point in the image.

C. Stereoscopic Approach

Gennery et al., (1981, pp. 6-1 to 6-4) describe various

stereoscopic approaches to finding range. They observe that the

basic stereo approach uses triangulation between two or more

views from different positions to determine distance. However,

stereo techniques differ in the way in which matching is done

between pictures, particularly in the kind of entities that are

matched. The two major approaches are area correlation and

matching lines of maximum intensity changes (edge-based stereo).

They report (p. 6-3) that, "Scenes of man-made objects often

are not highly textured but contain sharp brightness edges at

boundaries of objects and at intersections of planar faces. For

such scenes, area correlation does not work very well. Instead,

it is usually better to detect features in each image and to

match these features."

D. Photometric Stereo

In this approach, the light source illuminating the scene is

moved to different known locations, and the orientation of the

surfaces deduced from the resulting intensity variations

(Woodham, 1979, 1981).
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E

.

Shape from Texture

Brady C 1 9 8 1 A , p. 88) reports that, "Of the modules which

seem to bridge the gap between the Primal Sketch and the Surface

Orientation Map, none has received quite as much attention from

Psychologists as the computation of surface orientation and depth

from texture gradients." Various methods for computing texture

gradients are possible and from this orientation can be deduced.

F . Shape from Contour

Barrow and Tenenbaum [1980] have suggested a method for

interpreting curved line drawings as three-dimensional surfaces.

To interpret a two-dimensional curve, a three-dimensional curve

projecting to it is computed that minimizes a combination of

variation in curvature and departure from planarity. Other

approaches to this problem are given by Draper (1981), Kanade

(1981) and Stevens (1981).

G . Shape and Velocity from Motion

Brady ( 1 9 8 1 A , p. 96) provides a review of efforts to recover

shape from motion for the case of rigid bodies. He reports that

Ullman (1978) was the first to treat this issue. He considered

the problem of establishing a correspondence between the Primal

Sketches in two successive image frames. Ullman also studied the

problem of computing the structure of a rigid body from the

correspondences of a small number of points in a number of views

and found that remarkably few of each are required to compute

rigid three-dimensional structure.

Brady ( 1 9 8 1 A , p. 70) defines "optical flow" as the

distribution of velocities of apparent movement caused by

1 1
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smoothly changing brightness patterns. Horn and Schunck (1981)

have proposed a method for computing "optical flow" by

differentiating the brightness distribution in successive images

with respect to time."
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APPENDIX F

HIGHER LEVELS OF REPRESENTATION

The basic form for the higher levels of representation is

the 3-D model. This is an object-centered representation that

describes the object in a convenient way, as in the following

examples

.

A. Volumetric Models

1. Generalized Cones

Agin and Binford (1973) introduced the concept of

generalized cones (also called generalized cylinders). A

generalized cone is defined by a space curve, called the spine or

axis, and a planar cross section normal to the axis. A ’’sweeping

rule” describes how the cross section changes along the axis.

Complicated objects can often be represented by a concatenation

of generalized cones.

2. Wire Frame Models

Various investigators have represented 3-D objects by means

of wire frame models in which the wires correspond to edges or

boundaries of cross sections. Stick figure models are a related

representation

.

3. Polyhedral Models

Wesley et al., (1980) report on a geometric modeling system

developed at IBM to describe complicated mechanical parts. The

object is represented by polyhedral primitives which are combined

as required by the operations of union, difference and

intersection. In the IBM system, objects and assemblies are

represented in a graph structure that indicates part-whole
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relationships, attachment, constraint, and assembly. Also

included are physical properties of objects and positional

relationships between objects. The system can determine the

appearance of an object for an arbitrary view. This information

provides the potential for use by a computer vision recognition

system to guide the search for features to match an image to the

model

.

4. Combining ID, 2D, and 3D Primitives

Shapiro et al., (1980) describe objects in terms of the

primitives: sticks, plates and blobs. Relations are given on how

the parts connect, their size, and spatial relationships.

5. Planes and Ellipsoids

Gennery (1980) produced a method for describing 3-D outdoor

scenes. The ground surface was approximated by one or more

planes or paraboloids, and objects lying on the ground were

approximated by ellipsoids.

6. Sets of Prototype Volumes

Efforts in Computer Aided Design and Computer Aided

Manufacturing (CAD/CAM) often represent objects by combining a

small set of prototype volumes such as spheres, blocks and

triangular prisms.

B. Symbolic Descriptions

The various parts of an object in a scene may be represented

by graphs in which the nodes are the objects and the

arcs are the relations (such as above, to the right of, behind,

surrounded by, part of, larger than, etc.) and intrinsic

attributes (e.g., small, flat, etc.).

Barrow and Tenenbaum (1981, p. 576) observe that, "Symbolic
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models are appropriate for natural objects (e.g., trees) that are

better defined in terms of generic characteristics (e.g., larger,

green, leafy) than their precise shape."

C . Procedural Models

Rosenfeld (1981, p. 604) defines a procedural model as any

process that generates or recognizes images. An important class

of such models are grammatical or syntactic models. Pratt (1978,

pp. 574-578) discusses such syntatic processes. He observes that

syntatic methods have been proved feasible for simple models, but

notes that it is not clear yet whether or not these techniques

can be extended to general classes of images.

115



APPENDIX G

HIGHER LEVELS OF INTERPRETATION

Barrow and tenenbaum (1981, pp. 591-593) outline how

interpretation might proceed based on intrinsic images. They

observe that intrinsic images provide scene information on a

point by point basis in a viewer-centered coordinate frame.

Higher levels of interpretation, such as object recognition,

require a more global representation in a viewpoint-independent

coordinate frame. Surfaces and volumes are obvious candidates

for representaions following from intrinsic images.

An interpretation-guided segmentation approach based on

structural prototypes is a possible mechanism for deriving 3-D

surfaces and volumes from intrinsic images.

Once a scene description has been obtained in terms of

surface and volume primitives, geometric models can be used to

generate similar primitives, which can then be matched by a

search process to obtain object recognition and location. It is

often convenient to use graph structures for representing scene

parts. As scene descriptions are typically fragmented and

include many objects, some of which may be occluded, it is

necessary to match parts of the scene graph with parts of object

graphs. As such subgraph matching can be combinator ially

explosive, much work has been done on algorithms to handle such

matching in complex scenes.

Barrow and Tenenbaum suggest that perhaps the best way to

defeat the combinatorics of search is to decompose object models

hierarchically into components. These components can then be
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independently matched, and combined and checked

afterward. Using this approach, the complexity of

to increase additively rather than exponentially.

for consistancy

matching tends
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APPENDIX H

TRACKING

Gennery et al. (1981, pp. 5-1 to 5-3) survey the real-time

tracking problem, observing:

The goal of object tracking is to process
sequences of images in real time to describe the motion
of one or more objects in a scene. Often real time
implies processing every image from a TV camera
operating at 30 Hz. In other words, an image is
digitized, features are extracted from the image, the
object or objects are located in the image, and
position and velocity estimates are updated 30 times a

second, although in practice slightly slower rates are
sometimes used. At the present time, the approaches
which achieve real-time operation rely on simplifying
assumptions about the nature of the scene, track very
few objects in a given scene, and incorporate varying
levels of special-purpose hardware designed for the
particular tracking algorithm...

Since successive images are only 1/30 second apart
in time, the appearance of the object will change very
little from image to image. The object can be modelled
adaptively as it was last seen by the tracker, with the
expectation that a good match between the object model
and the features in the current image is available.
Furthermore, the location of the object in the image
can be predicted very accurately by using the latest
available position and velocity estimates coupled with
the short elapsed time between images. As a result,
the search window need only be large enough to contain
the object up to a few pixels uncertainty. This limits
the required computation to a manageable level and,
more importantly, greatly reduces the probability of a

false match occurring...

Real-time implementations typically rely on
features which can be computed directly from the image
without resorting to actual 3-D measurements of object
features

.

Table IX summarizes the various approaches surveyed by

Gennery et al. It will be observed that a variety of approaches

are possible using either area correlation or feature matching.

However, no final optimum system has yet been devised.
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Real-time tracking is important for manipulation; for

guidance for applications such as recovering satellites or free-

flying payloads; for grasping moving objects (such as parts in an

industrial environment); for assembling objects such as

machinery or electrical appliances; and for building space

structures. It is also important for target acquisition and

tracking or for locking onto a feature in situations such as

planetary flybys and astronomical or earth observations. And, as

to be expected, it is also applicable for vehicle and missile

guidance

.
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APPENDIX I

Additional Tables of

Model-Based Vision Systems
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APPENDIX K

GLOSSARY *

. Artificial Intelligence (Al) Approach! An approach that has its emphasis
on symbolic processes for representing and manipulating knowledge
in a problem solving mode.

• Bar Operators: Convolution masks to detect second derivatives of image
brightness in particular directions.

• Binary Image: A black and white image represented as seros and ones, in
which objects appear as silhouettes.

• Blackboard Approach: A problem solving approach whereby the various
system elements communicate with each other via a common working
data storage called the blackboard.

• Blob: A connected region in a binary inage.

• Blocks World: Scenes consisting of three dimensional polyhedral object
configurations. A simple artificial world used to explore computer
vision concepts.

• Bottom Up (Data Driven): Refers to the sequential processing by a
vision system, beginning with the input image and terminating in an
interprets!ion

•

• CAD/CAM: Computer-aided design / computer-aided manufacture

.

• Chain Code: A boundary representation which starts with an initial
point and stores a chain of directions to successive points.

• Computer Vision (Computational or Machine Vision): Perception by a com-
puter, based on visual sensory input, in which a concise description
is developed of a scene depicted in an image. It is a knowledge

-

based, expectation-guided process that uses models to interpret
sensory data. Used somewhat synonymously with image understanding
and scene analysis.

•. Concurve: A boundary representation consisting of a chain of straight
lines and arcs.

• Convolve: Superimposing a mxn operator over a mxn pixel area (window)
in the image, multiplying corresponding points together and summing
the result.

• Corner: An abrupt change in direction of a curve.

• Correlation: A correspondence between attributes in an image and a
reference image.

* As yet no standard definitions exist, so that the definitions listed here
can he considered to be somewhat imprecise.
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• Description i A symbolic representation of the relevant information,
e.g., a list of statistical features of a region*

• Digitized Image: A representation of an image as an array of bright-
ness values.

• Domain: The sphere of concern* The task world. A set of allowable
inputs.

• Edge: A change in pixel values (exceeding some threshold) between two
regions of relatively uniform values. Edges correspond to changes
in brightness which can correspond to a discontinuity in surface
orientation, surface reflectance or illumination.

• Edge Operators: Templates for finding edges in images.

•t Edge-Based Stereo: A stereographic technique based on matching edges
in two or more views of the same scene taken from different positions.

• Features: Simple image data attributes such as pixel amplitudes, edge
point locations and textural descriptors, or somewhat more elaborate
image patterns such as boundaries and regions.

• Feature Vector: A set of features of an object (such as area, number of
holes, etc.) that can be used for its identification.

• Feature Extraction: Determining image features by applying feature
detectors.

• Gaussian Filtering: A convolution proceedure in which the weighting of

pixels in the template fall off with distance according to a
Gaussian distribution.

• General Purpose Vision System: A vision system that is universally
applicable. A system that is based on generic rather than specific
knowledge (cf. Bevatla, 1982, p 188). A system that can deal with
unfamiliar or unexpected input.

• Generalized Cone (Generalized Cylinder): A volumetric model defined by
a space curve, called the spine or axis, and a planar cross section
normal to the axis. A "sweeping rule" describes how the cross

section changes along the axis.

. Generalized Bibbon (See Skeleton Representation) : A planar region approx-
imated by a medial line (axis) and the perpendicular distances to .

the boundary. The 2-D version of a generalized cone.

• Global Method: A method based on non-local aspects, e.g., region split-
ting by thresholding based on an image histogram.

• Goal Driven: Top-down approach.
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• Gradient Spaces A coordinate system (p,q) in which p and q are the
rates of change in depth (gray value) of the surface of an object
in the scene along the x and y directions (the coordinates in the
image plane). Thus (p,q, l) has the direction of the surface
normal.

. Gradient Vectors The orientation and magnitude of the rate of change in

intensity at a point in the image.

• Graph (Also Relational Graph) s An image representation in which nodes
represent regions and arcs between nodes represent properties of
and relations between these regions.

• Gray Levels A quantized measurement of image irradlance (brightness) , or
other pixel property.

. Heterarchical Approach s An image interpretation control structure in
which no processing stage is in sole command, but in which each
stage can control other stages to its needs as required.

4 Heuristics s
MRules of thumb, N knowledge or other techniques used to help

guide a problem solution.

• Hierarchical Approach s An approach to vision based on a series of
ordered processing levels in which the degree of abstraction in-
creases as we proceed from the image level to the interpretation
level.

4 Higher Levels * The interpretative processing stages such as those in-
volving object recognition and scene description, as opposed to the
lower levels corresponding to the image and descriptive stages.

• Histograms Frequency counts of the occurrence of each intensity (gray
level) in an image.

• Hough Transforms A global parallel method for finding straight or
curved lines, in which all points on a particular curve map into
a single location in the transform space.

• Hueckel Operators A method for finding edges in an image by fitting an
intensity surface to the neighborhood of each pixel and selecting
surface gradients above a chosen threshold value.

• Iconics Image-like.

• Images A projection of a scene into a plane. Usually represented as an
array of brightness values.

• Image Processing: Transformation of an input image into an output image
with more desirable properties, such as increased sharpness, less
noise, and reduced geometric distortion. Signal processing is a
1-D analog.
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• Image Understanding (lU)s Employs geometric modeling and the AI
techniques of knowledge representation and cognitive processing

> 1 to develop scene interpretations from image data. IU has dealt
extensively with JD objects. IU usually operates not on an
image but on a symbolic representation of it. IU is somewhat
synonymous with computer vision and scene analysis.

• Irradiancej The brightness of a poiirt in the. scene..

• Isomorphic Representation : A representation in which there is a one
to one correspondence between the scene and its representation,
(e.g., an image or a map).

• Interpretations Establishing a correspondence between the scene and a
set of models. Assigning names to objects in a scene.

• Interpretation-Guided Segmentations Using models to help guide image
segmentation, by the process of extending partial matches.

• Intrinsic Characteristics t Properties inherent to the object, such
as surface reflectance, orientation, incident illumination and
range.

• Intrinsic Images t A set of arrays in registration with the image
array. Each array corresponds to a particular intrinsic
characteristic

.

• Laplacian Operators The sum of the second derivatives of the image

intensity in the x and y directions Is called the laplacian.
The laplacian operator is used to find edge elements by finding
points where the laplacian is zero.

• Lines A thin connected set of points contrasting with neighbors on
both sides. Line representations are extracted from edges.

• Line Detectors: Oriented operators for finding lines in an image.

• Line Followers: Techniques for extending lines currently being
tracked.

• Low Level Features: Pixel-based features such as texture, regions,
edges, lines, corners, etc.

• Model-based Vision Systems A system that utilizes a priori models
to derive a desired description of the original scene from an image.

, Modules A processing unit in a vision system.

• Monocular: Pertaining to an image taken from a single viewpoint.
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• Optical Flow* The distribution of velocities of apparent movement
in an image caused by smoothly changing brightness patterns.

• Pattern Recognition* A technique that classifies images into pre-
determined categories, usually using statistical methods.

» Perception » An active process in which hypotheses are formed about the
nature of the environment, or sensory information is sought to
confirm or refute hypotheses.

• Fhotometr ic Stereo* An approach in which the light source illum-
inating the scene is moved to different known locations, and the
orientation of the surfaces deduced from the resulting intensity
variations.

• Pixel (Picture Element)* The individual elements in a digitized
image array.

e Primal Sketch* A primitive description of the intensity changes
in an image. It can be represented by a set of short line
segments separating regions of different brightnesses.

• Pyramid* A hierarchical data structure that represents an image at
several levels of resolution simultaneously.

• Quadtree* A representation obtained by recursively splitting an
image into quadrants, until all pixels in a quadrant are uniform
with respect to some feature (such as gray level).

• Recognition* A match between a description derived from an image and
a description obtained from a stored model*

• Reflectance (Albedo)* The ratio of total reflected to total incident
illumination at each point.

• Region* A set of connected pixels that show a common property such
as average gray level, color or texture, in an image.

• Region Growing* Process of initially partitioning an image into
elementary regions with a common property (such as gray level)
and then successively merging adjacent regions having sufficiently
small differences in the selected property, until only regions
with large differences between them remain.

• Registration* Processing images to correct geometrical and intensity
distortions, relative translational and rotational shifts, and
magnification differences between one image and another or
between an image and a reference map. When registered, there is
a one to one correspondence between a set of points in the image
and in the reference.

• Relaxation Approach* An iterative problem solving approach in which
initial conditions are propagated utilizing constraints until all
goal conditions are adequately satisified.
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Relational Graphs See "graph

• Representations A symbolic description or model of objects in the
image or scene domain*

• Run-length Encodings A data compression technique in which an image
is raster-scanned and only the lengths of runs of consecutive
pixels with the same property are stored*

• Scenes The 3-D environment from which the image is generated.

• Scene Analysis s The process of seeking information about a 3-V
scene from information derived from a 2-D image. It usually
involves the transformation of simple features into abstract
descriptions*

• Segmentations The process of breaking up an image into regions (each
with uniform attributes) usually corresponding to surfaces of
objects or entities in the scene.

• Semantic Interpretations Producing an application-dependent scene
description from a feature set (representation) derived from
the image*

• Semantic Networks A representation of objects and relationships
between objects as a graph structure of nodes and labeled arcs.
See "graph."

• Skeleton Representation (See "Generalized Ribbons") s A representation
of a 2-D region by the medial line and the perpendicular distance
to the boundary at each point along it.

• Sketch Maps A rough line drawing of a scene.

• Sobel Operators -A popular convolution operator for detecting edges.
Similar to other difference operators such as the Prewitt
Operator.

• Spectral Analysis s Interpreting image points in terms of their
response to various light frequencies (colors).

• Splines (B-Splines) s Piecewise continuous polynomial curves used to
approximate a curve.

• Steroscopic Approach s Use of triangulation between two car more views.

obtained from different positions, to determine range or depth.

• Structured Light i Sheets of light and other projective light con-

figurations used to directly determine shape and/or range from
the observed configuration that the projected line, circle,

grid, etc. makes as it intersects the object.
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• Symbolic Description t Non-iconic scene descriptions such as graph
representations

•

• Syntactic Analysis* Recognizing images by a "parsing" process as
being built up of primitive elements.

• Template* A prototype iconic model that can be used directly to
match to image characteristics for object recognition or
inspection.

« Template Matching* Corellating an object template with an observed
image field - usually performed at the pixel level.

• Texture* A local variation in pixel values that repeats in a regular
or random way across a portion of an image or object.

• Thresholdings Separating regions of an image based on pixel values
above or below a chosen (threshold) value.

• Top Down Approach (Goal Directed)* An approach in which the inter-
pretation stage is guided in its analysis by trial or test
descriptions of a scene. Sometimes referred to as "Hypothesize
and Test."

• Tracking* Processing sequences of images in real time to derive a
description of the motion of one or more objects in a scene.

• Vertex: The point on a polyhedron common to three or more sides.

• Viewpoint: The position (or direction) from which the scene is observed.

« Vision* The process of understanding the environment based on image data.

• Wireframe Model* A 3-D model, similar to a wireframe, in which the
object is defined in terms of edges and vertices.

• Window: A selected portion (usually square or rectangular) of an image.

• 2-D* Two dimensional.

• 2.5-D Sketch* A scene representation proposed by Marr (1978), consisting
of surface distances and orientations.

• 3-D* Three dimensional.
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APPENDIX L

SOME PUBLICATION SOURCES FOR FURTHER INFORMATION

A. Recent Books

Ballard, D.H., and Brown, C.M., Computer Vision , Englewood Cliffs:
Prentice Hall, 1982.

Brady, M. (fid.) Computer Vision . Amsterdam: North Holland, 1981.

Cohen, P.R., and Feigenbaum, E.A., "Vision," The Handbook of Artificial
Intelligence , Vol. Ill, Los Altos, CA: Kaufman, 1982, pp. 125-321.

Haralick, R. (Ed.) Picture Data Analysis , Berlin: Springer-Verlag,
1982 .

^ ^

Marr, D.C., Vision , San Francisco: Watt. Freeman, 1982.

Nevatla, R., Machine Perception , Englewood Cliffs: Rrentice Hall, 1982.

Rosenfeld, A., and Kak, A.C., Digital Image Processing , 2nd Ed.,
Vols. 1 and 2, New York: Acad. Pr., 1982.

Ih.vlidis, T., Algorithms for Graphics and Image Processing , Rockville, Md.:
Computer Science Press t 1982.

Hord, R. M., Digital Image Processing of Remotely Sensed Data . New York:
Acad. Pr., 15©2
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B. Periodic Conference and Workshop Proceedings

DARPA Image Understanding Workshops - Scl. Applications Inc,

International Conferences on Pattern Recognition - Tiara Computer Society

National Conferences on Artificial Intelligence - AAAI

IEEE Workshops on Computer Vision - IEEE Computer Society

International Joint Conferences on Artificial Intelligence

International Conferences on Robot Vision - The Industrial Robot Journal
and Sensor Review

Workshops on Industrial Applications of Computer Vision - IEEE Computer
Society

SP3E Technical Symposia - Society of Photo-Optical Instrumentation
Engineers

NSF Workshops (Aperiodic workshops on various topics in computer vision).
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C. Periodicals

Computer Graphics and Image Processing

Artificial Intelligence

IEEE Transactions on Bittern Analysis and Machine Intelligence

Hittern Recognition

International Journal of Robotics Research

IEEE Transactions on Systems, Man and Cybernetics

157



D. Some Recent Bibliographies, Surveys and Synthesefe

Ahuja, N. and Schacter, B. , "Image Models," ACM Computing Surveys,
Vol. 13, No. 4, Dec. 1981, pp. 373-398.

Barrow, H.G. and Tenenbaum, J. M., "Computational Vision," Proc. of the
IEEE , Vol. 69, No. 5, May 1981, pp. 572-595.

Binford, T.O. , "Survey of Model-Based Image Analysis Systems," Robotics
Research , Vol. 1, No. 1, Spring 1982, pp 18-64.

Brady, M. , "Computational Approaches to Image Understanding? Computer
Surveys . Vol. 14, No. 1, March 1982, pp. 3”71.

Chin, R. T., "Automated Visual Inspection Techniques and Applications! A
Bibliography," fettern Recongltlon . Vol. 5, No. 4., 1982,

PP. 328-357.

Genery, D., Cunningham, R«, Saund, E., High, J., and Rouff, C«,
Computer Vision . JPL 81-92, JFL, Pasadena, CA, Nov, 1, 1981.

Kruger, R.P. and Thompson, V.B., "A Technical and Economic Assessments of
Computer Vision for Inspection and Robotic Assembly," Proc. of the
IEEE . Vol. 69, No. 12, Dec. 1981, pp. 1524-1538.

Rosenfeld, A., Picture Processing . U. of Md. C.S. Center, College
Burk, Md., A yearly bibliography of computer processing of
pictorial information.

Srihari, S. N. "Representation of 3 D Digital Images," ACM Computing
Surveys . Vol. 13, No. 4 Dec. 1981., pp. 399-424.
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