Circular

OF THE

Bureau of Standards

S. W. STRATTON, DIRECTOR

No. 31

COPPER WIRE TABLES

[1st Edition]
Issued April 1, 1912

WASHINGTON
GOVERNMENT PRINTING OBPICE
1912
R

Circular
 OF THE

Bureau of Standards

S. W. STRATTON, Director

No. 31

COPPER WIRE TABLES

[1st Edition]
Issued Aprìl 1. 1912

WASHINGTON
GOVERNMENT PRINTING OFFICE

COPPER WIRE TABLES

This Circular, with its tables, was prepared at the request of the Standards Committee of the American Institute of Electrical Engineers. In its preparation the Bureau has had the cooperation of that committee. The Circular is approved by the committee, and the tables have been adopted as the official copper wire tables of the Institute.
S. W. Stratton,

Director.
Approved:
Charles Nagel,
Secretary.
2

COPPER WIRE TABLES

CONTENTS

PART 1. HISTORICAL AND EXPLANATORY
Page.
I. Introduction 5
I. Standard values for conductivity and temperature coefficient of copper 5
2. The basis of the present tables-the "Annealed Copper Standard 8
8
(a) Object of the Bureau of Standards' investigations
8
(b) Restivity of annealed copper
9
(c) The temperature coefficient of resistance of copper
II
II
(e) Density of copper. II
(f) Resistivity of hard-drawn copper wires. II
(g) The highest conductivity found II
(h) Aluminum I2
3. Action of the American Institute of Electrical Engineers 12
II. Wire gages I3
I. Short history of wire gages I3
2. The American Wire Gage. I9
(a) The one gage for copper wire 19
(b) The characteristics of the American Wire Gage 20
(c) Wire table short cuts 20
III. Explanation of tables 23
PART 2. TABLES
I. Various standard values for the resistivity, temperature coefficient, and density of annealed copper. 33
II. Temperature coefficients of copper for different initial temperatures and different conductivities 34
III. Reduction of observations to standard temperature 35
IV. Tabular comparison of wire gages, diameters in mils 36
V. Tabular comparison of wire gages, diameters in millimeters 37
VI. Complete wire table, standard annealed copper, A. W. G., English units 38
VII. Complete wire table, standard annealed copper, A. W. G., metric units 42
VIII. Working table, standard annealed copper wire, A. W. G., English units 46
IX. Working table, standard annealed copper wire, A. W. G., metric units 47
X. Standard annealed copper wire, (British) Standard Wire Gage. 48
XI. Standard annealed copper wire, "Millimeter'' Wire Gage. 49
XII. Bare concentric cables of standard annealed copper, English units 50
XIII. Bare concentric cables of standard annealed copper, metric units. 5I
XIV. Hard-drawn aluminum wire at $20^{\circ} \mathrm{C}$ (or $68^{\circ} \mathrm{F}$), A. W. G., English units. 52
XV. Hard-drawn aluminum wire at $20^{\circ} \mathrm{C}$, A. W. G., metric units 53
PART 3. APPENDICES
I. The expression of resistivity 54
II. Calculation of the "resistivity-temperature constant" 59
III. The density of copper 61
IV. Calculation of the resistance and mass per unit length of cables 64

PART 1. HISTORICAL AND EXPLANATORY

I. INTRODUCTION

1. STANDARD VALUES FOR CONDUCTIVITY AND TEMPERATURE COEFFICIENT OF COPPER

Copper wire tables are based on certain standard or assumed values for the conductivity or resistivity and the temperature coefficient of resistance of copper. When accuracy is important, the electrical engineer does not consult the wire table, but makes actual measurements of the resistivity of samples of the copper used. Frequently the resulting conductivity is expressed in percent of the standard value assumed for conductivity. Percent conductivity is meaningless without a knowledge of the standard value assumed, unless the same standard value is in use everywhere. But the same standard value is not in use everywhere, as may be seen by inspection of Table I, page 33, and confusion in the expression of percent conductivity has accordingly resulted. The temperature coefficient of resistance is usually assumed as some fixed standard value, but the same standard value is not in use everywhere, and results reduced from one temperature to another have accordingly been uncertain when the temperature coefficient assumed was not stated. These conditions led the American Institute of Electrical Engineers to request the Bureau of Standards to make an investigation of the subject. This has been done and has resulted in the establishment of standard values based on measurements of a large number of representative samples of copper-values which in certain respects are more satisfactory than any preceding standard values. The investigation is described below.

Table I gives a number of the most important standard values that have been in use. (See p. 33 for the table and p. 23 for a short explanation of the table.) The resistivity is uniformly given, being the resistance in ohms of a uniform wire 1 meter long weighing a gram. This unit of mass resistivity is conveniently designated for brevity as ohms (meter, gram). The density is also given, through which the volume resistivity may be obtained, so that resistance may be calculated from dimensions. All the standard values given are for annealed copper. The units of resistivity are discussed in Appendix I, p. 54.

The values used in England, column I , are those defined by the Engineering Standards Committee of the (British) Institution of Electrical Engineers in a report of August, 1904, also revised and reissued in March, 19ro. The value of resistivity, 0.1508 ohm (meter, gram) at $60^{\circ} \mathrm{F}$, or $\mathrm{I} 5.6^{\circ} \mathrm{C}$, "is
taken as the Engineering Standards Committee (E. S. C.) standard for annealed high conductivity commercial copper." This value was based on results obtained by Matthiessen ${ }^{1}$ in 1862 on supposedly pure copper. It does not actually represent Matthiessen's results, however, because it was calculated by the use of a ratio of resistivity of hard-drawn to annealed copper $=1.020$, which value was not given by Matthiessen. The temperature coefficient of 0.00238 per degree F was " adopted for commercial purposes." This is equivalent to 0.00428 per degree C at $\mathrm{o}^{\circ} \mathrm{C}$. This value was based on the measurements of Clark, Ford, and Taylor ${ }^{2}$ in 1899 and happens also to be the same as that determined by Dewar and Fleming ${ }^{3}$ in 1893. The density was taken to be 555 pounds per cubic foot at $60^{\circ} \mathrm{F}$ or 8.89 grams per cubic centimeter at $15.6^{\circ} \mathrm{C}$.

The former German copper standards (column 2) were established by the Verband Deutscher Elektrotechniker. ${ }^{4}$ Standard copper, "Normal Kupfer," was defined to be that whose conductivity amounts to 60 (conductivity is taken to be the reciprocal of the volume resistivity expressed in ohms for a meter length and square millimeter cross section at $15^{\circ} \mathrm{C}$). The density to be assumed when it is not actually determined was given as 8.9r. The temperature coefficient of resistance was taken to be 0.004 at $15^{\circ} \mathrm{C}$. Using these values, the resistivity in ohms (meter, gram) was calculated, and given in column 2. In order to facilitate comparison of these values with the other standard values, the data were also reduced to mass resistivity using the density, 8.89 , and these results are given in column 3. These German copper standards have been in use also in Austria. New values have recently been decided upon jointly by German and American engineers and are discussed below.

The results of Matthiessen ${ }^{5}$ have been used more than any others heretofore in the establishment of standard values for the resistivity and temperature coefficient of copper. The ambiguities in the form in which these results were originally stated have caused disagreements in the standard values based on them. Matthiessen originally expressed the conductivity as a percentage of the conductivity of pure silver and later gave an interpretation of this in B. A. ohms (meter, gram) for a harddrawn wire. Later authorities have found varying results in reducing this to international ohms for annealed copper at various temperatures. Accordingly the term "Matthiessen Standard" has not a universally fixed significance. The Matthiessen value is not in use in Germany, but it has been computed by Prof. Lindeck, ${ }^{6}$ of the Physikalisch-Technische Reichsanstalt, for $15^{\circ} \mathrm{C}$. His result is 1.687 microhm-cm at $15^{\circ} \mathrm{C}$. This has been reduced to ohms (meter, gram) at various temperatures, and given in

[^0]column 4, assuming the density 8.89, and assuming "Matthiessen's temperature formula," viz, that given ${ }^{7}$ by Matthiessen and von Bose in 1862.

The temperature formula of Matthiessen has been used in the past probably more than any other. The undesirability of using it is clear, for a number of reasons. It employs two terms, the first and second powers of temperature, while all work done up to the present for moderate temperature ranges is expressed with sufficient accuracy for practical purposes by a linear formula. It is given in terms of conductivity instead of resistance. Various persons have computed the equivalent formula in terms of resistance and some have carried out their formulas ${ }^{8}$ to the fifth power of temperature. In either form the formula is far from being a convenient one. Furthermore, the many digits of Matthiessen's coefficients are without significance, the first, 0.003870 I , being the mean of a number of values ranging from 0.003735 I to 0.0039954 , and similarly for the second.

The copper standards adopted by the American Institute of Electrical Engineers ${ }^{9}$ in 1893 were based upon the results of Matthiessen and are given in column 5. The resistivity of annealed copper was given as 0.141 729 international ohm (meter, gram) at $o^{\circ} \mathrm{C}$, and Matthiessen's temperature formula was adopted. A wire table based on these standards was published at the same time. In the calculation of the values the following constants were used: Density $=8.89$, ratio of resistivity of hard-drawn to annealed copper $=\mathrm{I} .0226$, one B. A. unit $=0.9866$ international ohm.

In the 1907 Standardization Rules, Matthiessen's temperature formula was dropped by the A. I. E. E. and the linear temperature coefficient of 0.0042 at $0^{\circ} \mathrm{C}$ was adopted (column 6). This temperature coefficient was an average value of more than ioo determinations made in the laboratories of the General Electric Co. Since December, i908, the Institute has issued its old wire table with a footnote stating that the values are consequently vitiated for temperatures other than $0^{\circ} \mathrm{C}$. Both the old and the new A. I. E. E. values for the resistivity at $20^{\circ} \mathrm{C}$ have been in use in this country, and as these differed by 0.4 per cent, the difference was commercially important.

The values given in column 7 are those which were adopted by the Bureau of Standards and the American Institute of Electrical Engineers, and used during I9II, as a result of the investigations made at the Bureau. The new " Annealed Copper Standard," given in column 8, is also based substantially on the work done at the Bureau; and supersedes all former standards in the United States and Germany. The engineers of France have also indicated that they would accept this standard. It is to be noted that the temperature coefficients in columns 7 and 8 are definitely stated to apply only to copper of the standard resistivity. The wire tables in this circular are based on the values in column 8.

[^1]2. THE BASIS OF THE PRESENT TABLES—THE "ANNEALED COPPER STANDARD"
(a) OBJECT OF THE BUREAU OF STANDARDS INVESTIGATIONS

The foregoing discussion makes evident the need for data to be used in establishing more reliable standard values. The differences in the assumed standard values for resistivity and for the temperature coefficient have resulted in confusion. Apart from this, there is an additional objection to the assumption of a value for the temperature coefficient. For, since there is no good à priori reason for assuming that the temperature coefficient is the same for all samples of copper, the practice in the past of using a constant temperature coefficient for samples whose resistivity was known to vary, was not justified. The main objects of the investigation at the Bureau of Standards were, then, (I) to find whether the temperature coefficient of different samples varies, and if so to find whether there is any simple relation between the resistivity and the temperature coefficient, and (2) to determine a reliable average value for the resistivity of commercial copper. The results of the investigation are presented in two papers in volume 7, No. I, of the Bulletin of the Bureau of Standards: "The Temperature Coefficient of Resistance of Copper," and "The Electrical Conductivity of Commercial Copper" (abstracts of which were given in Proc. A. I. E. E., 29, p. I995 and p. I98i; Dec., I9IO). The results of the investigation and of the subsequent endeavor to establish international standard values are briefly summarized here.
(b) RESISTIVITY OF ANNEALED COPPER

For annealed samples representing the copper of 14 important refiners and wire manufacturers, measured at the Bureau of Standards, the mean results were:

Resistivity, in ohms (meter, gram) at $20^{\circ} \mathrm{C}=0.15292$.
The average deviation of the results from the various sources of samples from these means was 0.26 per cent.

The results of a large collection of data were also put at the disposal of the Bureau by the American Brass Co. For samples representing more than 100000000 pounds of wire bar copper, the mean results were:

Resistivity, in ohms (meter, gram) at $20^{\circ} \mathrm{C}=0.15263$.
Both of these mean values of mass resistivity differ from the formerly used standard value, 0.153022 ohm (meter, gram), by less than 0.26 per cent, which is the above average deviation from the mean. It was therefore concluded that the best value to be assumed for the mass resistivity of annealed copper, in the preparation of wire tables and in the expression of percent conductivity, etc., was said standard value. Accordingly, the formerly used standard resistivity at $20^{\circ} \mathrm{C}$, together with the temperature coefficient determined in the investigation (giving the values tabulated in column 7, p. 33), were adopted as standard by the Bureau and by the American Institute of Electrical Engineers. The results of the investiga-
tion were put before the engineers of other countries, and an endeavor was made to have an international value adopted. A proposal from Germany of a value differing slightly from the former American standard value was considered a suitable basis for an international standard, and has been recommended for adoption in the two countries. The new value is to be known as the Annealed Copper ${ }^{10}$ Standard, and is equiva'ent to 0.15328 ohm (meter, gram) at $20^{\circ} \mathrm{C}$. This resistivity is one-sixth per cent greater than the former American standard value (column 7, p. 33), and is onethird per cent greater than $\mathbf{0 . 1 5 2 7 8 \text { , the mean of the experimental values pub- }}$ lished by the Bureau of Standards, and just given in the preceding paragraph. The Annealed Copper Standard can therefore be considered as fairly representative of average commercial copper. One of the advantages of this particular value is that in terms of conductivity it is an exact round number, viz, $58 \cdot \frac{\mathrm{I}}{\mathrm{ohm}}\left(\right.$ meter, $\left.\mathrm{mm}^{2}\right)$ at $20^{\circ} \mathrm{C}$. The units of mass resistivity and volume resistivity are interrelated through the density; this was taken as 8.89 grams per cm^{3}. The Annealed Copper Standard, in various units of mass resistivity and volume resistivity, is:

```
    o.15328 ohm (meter, gram) at 20}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ ,
875.20 ohms (mile, pound)}\mp@subsup{)}{}{11}\mathrm{ at }2\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ ,
    I.7241 microhm-cm at 20 ' C,
    0.67879 microhm-inch at 20 ' C,
    10.371 ohms (mil, foot) at 20}\mp@subsup{0}{}{\circ}\textrm{C
```

(c) THE TEMPERATURE COEFFICIENT OF RESISTANCE OF COPPER

While a standard resistivity is properly decided arbitrarily, the value of the temperature coefficient is a matter for experiment to decide. The Bureau of Standards' investigation of the temperature coefficient showed that there are variations of the temperature coefficient with different samples, but that the relation of conductivity to temperature coefficient is substantially a simple proportionality. This relation is in corroboration of the results of Matthiessen ${ }^{12}$ and others for differences in conductivity due to chemical differences in samples; but this investigation showed that it holds also and with greater precision for physical differences, such as those caused by annealing or hard-drawing. Further evidence in regard to this relation has been obtained from the Physikalisch-Technische Reichsanstalt, of Germany. The results of tests at that institution show this relation for a wide range of conductivity, and the mean values agree well with those obtained at the Bureau of Standards. Some data have also been published by Prof. Lindeck, ${ }^{13}$ of the Reichsanstalt, tending to show that the proportional relation

[^2]holds also, but only roughly, for aluminum and for iron. The result obtained, for copper, may be expressed in the form of the following practical rule: The $20^{\circ} \mathrm{C}$ temperature coefficient of a sample of copper is given by multiplying the number expressing the percent conductivity by 0.003 93. The practical importance of this relation is evident, for it gives the temperature coefficient of any sample when the conductivity is known. Thus, the temperature coefficient for the range of conductivity of commercial copper may be exhibited by Table II, p. 34. Also, there are sometimes cases when the temperature coefficient is more easily measured than the conductivity, and the conductivity can be computed from the measured temperature coefficient. (The value, o.00393, is slightly different from the value given in Vol.7, No. i, of the Bureau Bulletin. This difference is necessitated by the change to a new standard of resistivity.)

Cases sometimes arise in practice where a temperature coefficient of resistance must be assumed. It may be concluded from the foregoing results that the best value to assume for the temperature coefficient of good commercial annealed copper wire is that corresponding to 100 per cent conductivity, viz:

$$
\alpha_{0}=0.00427, \alpha_{15}=0.004 \text { or, } \alpha_{20}=0.00393, \alpha_{25}=0.00385
$$

$\left(\alpha_{20}=\frac{R_{t}-R_{20}}{R_{20}(t-20)}\right.$ etc.). This value would usually apply to instruments and machines, since they are generally wound with annealed wire. It might be expected that the winding would reduce the temperature coefficient. But experiment has shown that distortions such as those caused by winding and ordinary handling do not affect the temperature coefficient.

Similarly, when assumption is unavoidable, the temperature coefficient of good commercial hard-drawn copper wire may be taken as that corresponding to a conductivity of 97.3 per cent, viz:

$$
\alpha_{0}=0.00414, \alpha_{15}=0.00390, \alpha_{20}=0.00382, \alpha_{25}=0.00375
$$

The change of resistivity per degree may be readily calculated, as shown in Appendix II, page 59, taking account of the expansion of the metal with rise of temperature. The proportional relation between temperature coefficient and conductivity may be put in the following remarkably convenient form for reducing resistivity from one temperature to another: The change of resistivity of copper per degree C is a constant, independent of the temperature of reference and of the sample of copper. This "resistivity-temperature constant" may be taken, for general purposes, as o.00060 ohm (meter, gram), or 0.0068 microhm-cm. More exactly (see p. 59), it is:
0.000597 ohm (meter, gram)
or, 0.006 81 microhm- cm
or, 3.4 I ohms (mile, pound)
or, 0.00268 microhm-inch
or, 0.0409 ohm (mil, foot)

(d) CALCULATION OF PERCENT CONDUCTIVITY

The percent conductivity of a sample of copper is calculated by dividing the resistivity of the Annealed Copper Standard at $20^{\circ} \mathrm{C}$ by the resistivity of the sample at $20^{\circ} \mathrm{C}$. Either the mass resistivity or volume resistivity may be used. (See first paragraph on p.58.) Inasmuch as the temperature coefficient of copper varies with the conductivity, it is to be noted that a different value will be found if the resistivity at some other temperature is used. This difference is of practical moment in some cases. For example, suppose the resistivity of a sample of copper is 0.1597 at $20^{\circ} \mathrm{C}$; dividing O.I 5328 by this, the present conductivity is 96.0 percent. Now the corresponding $0^{\circ} \mathrm{C}$ resistivity of the sample is 0.1478 ; dividing 0.1413 by this, the percent conductivity is calculated to be 95.6 percent. In order that such differences shall not arise, it is suggested that the $20^{\circ} \mathrm{C}$ value of resistivity always be used in computing the percent conductivity of ccpper. When the resistivity of the sample is known at some other temperature, t, it is very simply reduced to $20^{\circ} \mathrm{C}$ by adding the quantity, (20-t) multiplied by the "resistivity-temperature constant," given at the bottom of p. io.
(e) DENSITY OF COPPER

When it is desired to calculate the resistance of wires from dimensions, as in the calculation of wire tables, it is necessary that a density be given, in addition to the mass resistivity. The standard density for copper, at $20^{\circ} \mathrm{C}$, has been taken as 8.89 grams per cubic centimeter. This is the value which has been used by the A. I. E. E. and most other authorities in the past. Recent measurements have indicated this value as a mean. (See Appendix III, p. 6I.) This density, 8.89, at $20^{\circ} \mathrm{C}$, corresponds to a density of 8.90 at $0^{\circ} \mathrm{C}$. In English units, the density at $20^{\circ} \mathrm{C}=0.32$ I 17 pound per cubic inch.
(f) RESISTIVITY OF HARD-DRAWN COPPER WIRES

It was found that in general the resistivity of hard-drawn wires varies with the size of the wire, while the resistivity of annealed wires does not. The experimental evidence obtained was limited, but it showed, as was to be expected, that the difference between the resistivity of annealed and hard-drawn wires increases as the diameter of the wire decreases. This general conclusion is, however, complicated in any particular case by the particular practice of the wire drawer in regard to the number of drawings between annealings, amount of reduction to each drawing, etc. For No. 12 A. W. G. (B. \& S.), the conductivity of hard-drawn wires was found to be less than the conductivity of annealed wires by 2.7 per cent.

(g) THE HIGHEST CONDUCTIVITY FOUND

The lowest resistivity and highest conductivity found for a harddrazon wire were:

Resistivity in ohms (meter, grain) at $20^{\circ} \mathrm{C}=0.15386$
Percent conductivity

$$
=99.62 \%
$$

and for an annealed wire were:
Resistivity in ohms (meter, gram) at $20^{\circ} \mathrm{C}=-\quad 0.15045$
Percent conductivity $=101.88 \%$

The former was a No. 12 wire, drawn from a cathode plate without melting. The latter wire was drawn directly from a mass of native lake copper which had never been melted down.

(h) ALUMINUM

On account of the commercial importance of aluminum as a conductor, some investigation was made of that metal. The Aluminum Co. of America furnished a figure representing the mean conductivity of its output of all sizes of wire for five years past. As the figure is the result of many thousands of separate determinations, it is of great value. A volume resistivity of 2.828 microhm -cm , and a density of 2.70 , may be considered to be good average values for commercial hard-drawn aluminum. These values give:

Mass resistivity, in ohms (meter, gram) at $20^{\circ} \mathrm{C}$	$=0.0764$	
Mass resistivity, in ohms (mile, pound) at $20^{\circ} \mathrm{C}$		$=436$.
Mas percent conductivity		$=200.7 \%$
Volume resistivity, in microhm-cm at $20^{\circ} \mathrm{C}$		$=2.828$
Volume resistivity, in microhm-inch at $20^{\circ} \mathrm{C}$	$=1.113$	
Volume percent conductivity	$=6.1 .0 \%$	
Density, in grams per cubic centimeter	$=2.70$	
Density, in pounds per cubic inch	$=0.0975$	

3. ACTION OF THE AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS

Fiver since the American Institute adopted the temperature coefficient, 0.0042 at $0^{\circ} \mathrm{C}$, which vitiated the old wire table, the need for a new table was felt; and a recomputation of the old one had been under consideration. The need of more modern and representative data upon which to base the table had also been felt, however, and, as stated above, the Bureau of Standards was requested to secure such data. The work was done in the first half of I9Io, and reports of the investigations were presented to the Standards Committee of the American Institute. At its meeting of October 14, 1910, that committee requested the Bureau of Standards to prepare copper wire tables based on the investigations, to replace the old wire table of the institute. This circular and its tables are the result of this action. On October 14, I910, also, the United States committee of the International Electrotechnical Commission voted that steps should be taken to interest the commission in the attaining of an international standardization of the subject of copper standards, and accordingly the question of standardizing the temperature coefficient was submitted to the other national committees by the United States national committee in letters of January 26, 1911. The question of a standard conductivity was considered by the national committees of several nations in September, 1911; and the result was an agreement among the representatives of Gernany, France, and the United States, upon the value proposed by Germany. This new value is called the Annealed Copper Standard, and differs only slightly from the mean of the results published by the Bureau. The values for the tempera-
ture coefficient determined at the Bureau and corroborated at the German Reichsanstalt were accepted.

The Standards Committee of the American Institute of Electrical Engineers approve the change to the new values, which consequently supersede the values given in the 1911 edition of the Standardization Rules of the Institute. In the preparation of this circular the Standards Committee assisted by their suggestions and criticisms. The circular has been approved by the Committee, and the tables adopted as the official wire tables of the Institute.

II. WIRE GAGES

1. SHORT HISTORY OF WIRE GAGES

The sizes of wires were for many years indicated in commercial practice almost entirely by gage numbers. This practice was accompanied by considerable confusion because numerous gages were in use. Wire gages are in use now less than formerly, the specification of diameter directly being, in many cases, preferred; and, furthermore, the confusion is diminishing because practice is eliminating most of the gages and is assigning welldefined fields to the remaining ones. In an article ${ }^{14}$ written in 1887, over 30 gages were described, ig of which were wire gages. In addition to these there were a number of proposed gages. Among the wire gages that have survived, two are used extensively in this country, viz, the "American Wire Gage" (Brown \& Sharpe) and the "Steel Wire Gage" (variously called the Washburn \& Moen, Roebling, and American Steel \& Wire Co.'s). Three other gages are still used to some extent, viz, the Birmingham Wire Gage (Stubs), the Old English Wire Gage (London), and the Stubs' Steel Wire Gage. There are in addition certain special gages, such as the Music Wire Gage, the drill and screw gages, and the United States Standard Sheet-Metal Gage. In England one wire gage has been made legal and is in use generally, viz, the "Standard Wire Gage." The diameters of the six general wire gages mentioned are given in mils in Table IV, page 36, and in millimeters in Table V, page 37. In Germany, France, Austria, Italy, and other continental countries practically no wire gage is used; size of wires is specified directly by the diameter in millimeters. This system is sometimes called the " 1 nillimeter wire gage." In France the sizes in use are to a considerable extent based on the old Paris gage (" jauge de Paris de 1857 ").

The American Wire Gage was devised by J. R. Brown, one of the founders of the Brown \& Sharpe Manufacturing Co., in 1857. It speedily superseded the Birmingham Wire Gage in this country, which was then in general use. It is perhaps more generally known by the name "Brown \& Sharpe Gage," but this name is not the one preferred by the Brown \& Sharpe Co. In their catalogues they regularly refer to the gage as the "American Standard Wire Gage." The word "Standard" is probably not a good one to retain in the name of this gage, since it is not the stand-

[^3]ard gage for all metals in the United States; and, further, since it is not a legalized gage, as are the (British) Standard Wire Gage and the United States Standard Sheet-Metal Gage. The abbreviation for the name of this gage has usually been written "A. W. G." The American Wire Gage is now used for more metals than any other in this country, and is practically the only gage used for copper and aluminum wire, and in general for wire used in electrical work. It is the only wire gage now in use whose successive sizes are determined by a simple mathematical law. This gage is further discussed below (p. I9).

The "Steel Wire Gage" is the same gage which has been known by the names of Washburn \& Moen gage and American Steel \& Wire Co.'s gage. This gage also, with a number of its sizes rounded off to thousandths of an inch, has been known as the Roebling gage. The gage was established by Ichabod Washburn about the year I830, and was named after the Washburn \& Moen Manufacturing Co. This company is no longer in existence, having been merged into the American Steel \& Wire Co. The latter company continued the use of the Washburn \& Moen Gage for steel wire, giving it the name "American Steel \& Wire Co.'s gage." The company specifies all steel wire by this gage, and states that it is used for fully 85 per cent of the total production of steel wire. This gage was also formerly used by the John A. Roebling's Sons Co., who named it the Roebling gage, as mentioned above. However, the Roebling company, who are engaged in the production of wire for electrical purposes, now prefer to use the American Wire Gage.

It may be stated ${ }^{15}$ that in so far as wire gages continue in use in the United States, the practice has been practically standardized to the use of two gages, the American Wire Gage for wire used in electrical work and for general use and the Steel Wire Gage for steel wire. This is perhaps as satisfactory a state of affairs as can be hoped for as long as wire gages continue in use, since the fields covered by the two gages are distinct and definite, and both gages are used for enormous quantities of material. Neither of these two gages (except for a small portion of the Steel Wire Gage) have the irregular gradations of sizes which make many of the gages objectionable. It is neither desirable nor probable that a single gage for wires will be prescribed by legislative enactment, as was done for sheet metal by the act of Congress approved March 3, I893, establishing the "United States Standard Sheet-Metal Gage."

[^4]The trend of practice in the gaging of materials is increasingly toward the direct specification of the dimensions in decimal fractions of an inch, without use of gage numbers. This has been, for a number of years, the practice of some of the large electrical and manufacturing companies of this country. The United States Navy Department, also, in June, I9I i, ordered that all diameters and thicknesses of materials be specified directly in decimal fractions of an inch, omitting all reference to gage numbers. The War Department, in December, igii, issued a similar order, for all wires. This is similar to the practice on the Continent of Europe, where sizes of wire are specified directly by the diameter in millimeters. The practice of specifying the diameters themselves and omitting gage numbers has the advantages that it avoids possible confusion with other gage systems and states an actual property of the wire directly. An article presenting the disadvantages of gage numbers for wires, sheets, and tubes, and the advantages of the exclusive use of the "decimal system," from the viewpoint of the manufacturer, was published by G. E. Goddard in the "American Machinist," March 2, 1911 , page 400. He states that this practice was recommended in 1895 by a joint committee of the American Society of Mechanical Engineers and the American Railway Master Mechanics' Association. This system is recommended by the Bureau of Standards as the most satisfactory method of specifying dimensions of materials. It should always be followed in careful work and in contracts and specifications, even when the gage numbers are used for rough work. The correspondence which the Bureau of Standards has had with manufacturers of wire has shown that there is a general willingness and desire to have most or all of the gages eliminated. It therefore depends largely on the consumers of wire to simplify wire-gage practice, by ordering material according to dimension rather than gage numbers. The various national engineering societies, representing the users of wire, might succeed in educating consumers by taking up this matter.

When gage numbers are not used, it is necessary that a certain set of stock sizes be considered standard, so that the manufacturers would not be required to keep in stock an unduly large number of different sizes of wire. The large companies who have ceased to use gage numbers have recognized this, having taken as standard the American Wire Gage sizes, to the nearest mil for the larger diameters and to a tenth of a mil for the smaller. (See list of sizes, Table IV, p. 36.) These sizes were adopted, in December, I9II, by the United States War Department for all wires. It seems likely that this system of sizes, based on the American Wire Gage, will be perpetuated. This is fortunate, as the American Wire Gage has advantages over all other gages, which are described below; fortunately, also, practice is eliminating the many useless figures to which the theoretical diameters in the American Wire Gage may be carried.

The objection is often raised that the use of diameters requires the employment of a micrometer; and that the wire-gage as an instrument, marked in gage numbers, is a very rapid means of handling wires and is indispensable for use by unskilled workmen. However, the use of the wiregage as an instrument is consistent with the practice of specifying the diam-
eters directly, provided the wire-gage is marked in mils. Wire-gages marked both in the A. W. G. numbers and in thousandths of an inch can be obtained from the manufacturers. One thus reads off directly from the wire-gage 8 I

Fig. 1 mil, 64 mil, etc., just as he would No. 12, No. I4, etc. (Of course, the diameters in millimeters could be marked on the gage for those who prefer the metric system.) It should not be forgotten, however, that a wire-gage gradually wears with use, and that for accurate work a micrometer should always be used.

Of the three wire gages which have remained in use but are now nearly obsolete, the one most frequently mentioned is the Birmingham, sometimes called the Stubs' Wire Gage. It is said to have been introduced early in the eighteenth century, and a table of its diameters is given in Holtzapffel's "Turning " (London, 1846). Its numbers were based upon the reductions of size made in practice by drawing wire from rolled rod. Thus, rod was called No. o, first drawing No. 1 , and so on. Its gradations of size are very irregular, as shown in Fig. I. The V-shaped diagram is simply a picture of a wire-gage, marked with the Birmingham gage on the left and the American gage on the right. A similar diagram is given in the catalogue of the Brown \& Sharpe Manufacturing Co. (1903, p. 422). The distance between the diverging lines at any point is the diameter of the wire whose gage number is given on the side. The Birmingham gage is typical of most wire gages, and the irregularity of its steps is shown in marked contrast to the regularity of the steps of the American Wire Gage. This contrast is also brought out in Fig. 2, page 18 .

Some of the later gages were based on the Birmingham. It was used extensively both in Great Britain and in the United States for many years. It has been superseded, however, and is now nearly obsolete. By the repeated copying of old specifications its use has persisted to some extent, both in England and the United States, for galvanized-iron telegraph wire. In this country such use has been limited largely to the large telegraph and telephone companies and certain departments of the Government. As stated above, the Government departments are now dropping the wire gages altogether (an exception in next paragraph). The telephone and telegraph companies are inclined to continue the use of the Birmingham gage, and seem to believe that the wire
manufacturers prefer it. The manufacturers, however, would be glad to have wire gages eliminated, and, as stated before, it therefore depends largely on the consumers of wire to simplify wire gage practice.

The principal outstanding exception to the abandonment of the Birmingham gage is that the Treasury Department, with certain legislative sanction, still specifies the Birmingham gage for use in the collection of duty on imports of wire. This gage was prescribed by the Treasury Department in 1875, after it had been ascertained that it was the standard gage "not only throughout the United States, but the world." This reason for the use of this gage does not now exist, inasmuch as the gage is now used very little in the United States, and even less in other countries, but the Treasury Department considers that it can not change its practice, since legislative approval has been given the Birmingham gage by the tariff acts with a provision for assessment of duty according to gage numbers, and further since a change would alter the rate of duty on certain sizes of wire. These facts have been brought to the attention of the congressional committees which have charge of tariff legislation, and it is possible that when the tariff act is next amended the gage numbers will be stricken out and the diameters themselves specified.

The Old English or London gage, the sizes of which differ very little from those of the Birmingham gage, has had considerable use in the past for brass and copper wires, and is now used to some extent in the drawing of brass wire for weaving. It is nearly obsolete.

The Stubs' Steel Wire Gage has a somewhat limited use for tool steel wire and drill rods. This gage should not be confused with the Birmingham, which is sometinnes known as Stubs' Iron Wire Gage.

The "Standard Wire Gage," otherwise known as the New British Standard, the English Legal Standard, or the Imperial Wire Gage, is the legal standard of Great Britain for all wires, as fixed by order in Council, August 23, 1883. It was constructed by modifying the Birmingham Wire Gage, so that the differences between successive diameters were the same for short ranges, i. e., so that a graph representing the diameters consists of a series of a few straight lines. This is shown in the graphical comparison of wire gages, Fig. 2. The curves show three typical wire gages, diameter being plotted against gage number. Attention is called to the regularity of the American Wire Gage curve, the utter irregularity of the Birmingham gage curve, and the succession of straight lines of which the Standard Wire Gage curve is composed. The lower ends of these curves are also shown, magnified io times.

While the Standard Wire Gage is the most used wire gage in Great Britain, we are informed by a large English electrical manufacturing company that the tendency is to adopt mils, or decimal fractions of an inch, rather than gage numbers, the same tendency as in the United States. There was once a movement to bring the "Standard Wire Gage" into general use in the United States. It was adopted in 1885 by the National Telephone Exchange Association, and in 1886 by the National Electric

I8

'Fig. 2

Light Association. The gage, however, never came into general use. In 1886, The Electrical World sent a letter to the principal makers and users of wire throughout the country inquiring about their practices in specifying wire and asking whether they would favor legislation enforcing the "Standard Wire Gage." The great majority of the replies showed that the "Standard Wire Gage" was not in use at all, and that the American Wire Gage was the most used, and also that there was a strong trend in favor of specifying sizes entirely by the diameter in mils.

Among the many wire gages that have been proposed but never came into much use may be mentioned especially Latimer Clark's Wire Gage, the Edison Standard Wire Gage, and the National Electric Light Association's Metric Wire Gage. The first of these, Clark's, was proposed in 1867, and was based on the same principle as the American Wire Gage, viz, each successive diameter obtained by multiplying the preceding by a constant. As Wheeler ${ }^{16}$ justly remarked, its one virtue was its imitation of its prototype, the American gage. The Edison Standard Wire Gage, proposed by the Edison Electric Light Co. sometime before 1887, was based upon a different principle. The area of cross section increased proportionally with the gage numbers. No. $5=5000$ circular mils, No. $10=$ io ooo, and so on. The diameters, therefore, increased as the square root of the gage numbers. The circular mil classification is now actually used for the large sizes of copper wire and cables, but the Edison gage numbers are not used. The National Electric Light Association in 1887 dropped the (British) Standard Wire Gage, which it had adopted the year before, and adopted its Metric Wire Gage. This was nothing more than the German and French millimeter wire gage, giving numbers to the successive sizes, calling 0.1 mm diameter No. $1,0.2 \mathrm{~mm}$ No. 2, and so on.

2. THE AMERICAN WIRE GAGE

(a) THE ONE GAGE FOR COPPER WIRE

As stated above, in the United States practically the only gage now used for copper wire is the American Wire Gage (B. \& S.). Sizes of stranded conductors larger than No. oooo A. W. G. are specified by the total cross section in circular mils. It is becoming more and more the practice for the large electrical companies and others to omit gage numbers; and the stock sizes of copper wire used and specified by those who follow this practice are the American Wire Gage sizes, to the nearest mil for the larger diameters and to a tenth of a mil for the smaller. (See list of sizes in American Wire Gage, Table IV, p. 36.) Those who use the gage numbers do not draw or measure wires to a greater accuracy than this; and we accordingly see that a single system of sizes of copper wire is in use in this country, both by those who use gage numbers and those who do not.

(b) THE CHARACTERISTICS OF THE AMERICAN WIRE GAGE

The American Wire Gage has the property, in common with a number of other gages, that its sizes represent approxinıately the successive steps in the process of wire drawing. Also, like many other gages, its numbers are retrogressive, a larger number denoting a smaller wire, corresponding to the operations of drawing.

Its sizes are not so utterly arbitrary and the differences between successive diameters are more regular than those of other gages, since it is based upon a simple mathematical law. The gage is formed by the specification of two diameters and the law that a given number of intermediate diameters are formed by geometrical progression. Thus, the diameter of No. oooo is defined as 0.4600 inch and of No. 36 as 0.0050 inch. There are 38 sizes between these two, hence the ratio of any diameter to the diameter of the next greater number $=\sqrt[39]{\frac{.4600}{.0050}}=\sqrt[39]{92}=1.122932$ 2. The square of this ratio $=1.2610$. The sixth power of the ratio, i. e., the ratio of any diameter to the diameter of the sixth greater number $=2.0050$. The fact that this ratio is so nearly 2. is the basis of numerous useful relations which are given below in "Wire table short cuts."

The law of geometrical progression on which the gage is based may be expressed in either of the three following manners: (i) the ratio of any diameter to the next smaller is a constant number; (2) the difference between any two successive diameters is a constant per cent of the smaller of the two diameters; (3) the difference between any two successive diameters is a constant ratio times the next smaller difference between two successive diameters.

The regularity of the American Wire Gage is shown by the curve on page 18, where it is graphically compared with two other wire gages. The gage is represented by an ordinary exponential curve. If the curve were plotted on a logarithmic scale it would be a straight line.

(c) WIRE TABLE SHORT CUTS

Since the American Wire Gage is formed by geometrical progression, the wire table is easily reproduced from the ratio and one of the sizes as a starting point. There happen to be a number of approximate relations which make it possible practically to reproduce the wire table by remembering a few remarkably simple formulas and data. The resistance, mass, and cross section vary with the square of the diameter, hence by the use of the square of the ratio of one diameter to the next, viz, 1.2610 , it is possible to deduce the resistance, mass, or cross section of any size from the next. This number may be carried in the mind as approximately $11 / 4$. Furthermore, since the cube of this number is so very nearly 2., it follows that every three gage numbers the resistance and mass per unit length and also the cross section are doubled or halved. The foregoing sentence is a concise expression of the chief "wire table short cut." It is extremely simple to find, say, ohms per iooo feet mentally, starting from the values
for No. ro, as in the illustrative table below. The approximate factors for finding values for the next three sizes after any given size, are I $1 / 4$, I.6, 2.0. Furthermore, every io gage numbers the resistance and mass per unit length and the cross section are approximately multiplied or divided by io.

No. io copper wire has approximately a resistance of I ohm per iooo feet at $20^{\circ} \mathrm{C}$, a diameter of o.r inch, and a cross section of 10000 circular mils. The mass may also be remembered for No. io, viz, 3 I. 4 pounds per Iooo feet; but it will probably be found easier to remember it for No. 5, 100 pounds per 1000 feet; or for No. 2, 200 pounds per 1000 feet.

Very simple approximate formulas may be remembered for computing data for any size of wire. Let:
$N=$ gage number (Take No. $\mathrm{o}=\mathrm{o}, \mathrm{No} . \infty=-\mathrm{I}$, etc.). $R=$ ohms per rooo feet at $20^{\circ} \mathrm{C}$.
$M=$ pounds per iooo feet.
C. M. = cross section in circular mils.

$$
\begin{align*}
& R=10^{\frac{N-10}{10}}=\frac{10 \frac{N}{10}}{10} \tag{I}\\
& M=10^{\frac{25-N}{10}} \tag{2}\\
& C . M .=10^{\frac{50-N}{10}}=\frac{10^{5}}{10 \frac{N}{10}} \tag{3}
\end{align*}
$$

These formulas may be expressed also in the following form, common or Briggs's logarithms being used:

$$
\begin{align*}
& \log (\mathrm{Io} R)=\frac{N}{10} \tag{4}\\
& \log M=\frac{25-N}{10} \tag{5}\\
& \log \frac{C \cdot M .}{100 \mathrm{OOO}}=-\frac{N}{10} \tag{6}
\end{align*}
$$

These formulas are also sometimes given in the equivalent but less useful form:

$$
\begin{align*}
& R=\frac{2^{\frac{N}{3}}}{10} \tag{7}\\
& M=\frac{10^{2.5}}{2^{\frac{N}{3}}}=\frac{320}{2^{\frac{N}{3}}} \tag{8}\\
& \text { C. } M .=\frac{150000}{2^{\frac{N}{3}}} \tag{9}
\end{align*}
$$

Formulas (1) and (4), (2) and (5) give results correct within 2 per cent for all sizes up to No. 20, and the maximum error is 5 per cent for No. 40; and the errors of formulas (3) and (6) vary from 6 per cent for No. oooo to 2 per cent for No. 20, and less than 2 per cent for No. 20 to No. 40.

The sizes of copper rods and stranded conductors larger than No. oooo are generally indicated by circular mils. For such cases, resistance in ohms per rooo feet at $20^{\circ} \mathrm{C}$ is given approximately by combining formulas
(1) and (3) ; $R=\frac{10000}{C . M .}$ or, in other terms,

$$
\begin{equation*}
\text { Feet per ohm }=\frac{C \cdot M \text {. }}{10} \tag{ıо}
\end{equation*}
$$

Similar formulas may be deduced for the ohms and mass per unit length, etc., in metric units. For example, we have similarly to (4), letting $r=o h m s$ per kilometer,

$$
\begin{equation*}
\log (\mathrm{I} O r)=\frac{N+5}{\mathrm{IO}} \tag{II}
\end{equation*}
$$

The slide rule may be used to great advantage in connection with these approximate formulas; (4), (5), (6), and (II), in particular, are adapted to slide-rule computation. Thus, to find ohms per 1000 feet, set the gage number on the slide-rule scale usually called the logarithm scale, and the resistance is given at once by the reading on the ordinary number scale of the slide rule.

An interesting additional "wire table short cut" is the fact that between Nos. 6 and 12, inclusive, the reciprocal of the size number $=$ the diameter in inches, within 3 per cent.

A convenient relation may be deduced from the approximate formula frequently used by engineers, $I=a d^{\frac{3}{3}}$, in which d is diameter of wire, a is a constant for given conditions, and I is either the fusing current or the current which will raise the temperature of the conductor some definite amount. For I defined either way, every 4 gage numbers I is doubled or halved.

A simple table is appended here to show the application of some of the foregoing principles. It is for resistance in ohms per rooo feet, using No. io as a starting point. A similar table might be made for mass in pounds per Iooo feet, or for cross section in circular mils, or for ohms per kilometer.

Gage No.	Ohms per 1000 Feet			$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Ohms per 1000 Feet			$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Ohms per 1000 Feet			$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Ohms per 1000 Feet		
0	0.1			10	1			20	10			30	100		
1		. 125		11		1.25		21		12.5		31		125	
2			. 16	12			1.6	22			16	32			160
3	. 2			13	2			23	20			33	200		
4		. 25		14		2.5		24		25		34		250	
5			. 32	15			3.2	25			32	35			320
6	. 4			16	4			26	40			36	400		
7		. 5		17		5		27		50		37		500	
8			. 64	18			6.4	28			64	38			640
9	. 8			19	8			29	80			39	800		

III. EXPLANATION OF TABLES

Table I.-This table gives a number of the more important standard values of resistivity, temperature coefficient, and density that have been in use. The particular standard temperature in each column is indicated by bold-faced type, and the values given for the various other temperatures are computed from the value at the standard temperature. In each column the temperature coefficient of that column is used in computing the resistivity at the various temperatures. In some cases, e. g., in column I , the standard temperature is not the same for resistivity and for temperature coefficient. The temperature coefficient is in each case understood to be the "constant mass temperature coefficient of resistance," which is discussed in Appendix II, p. 59. This has not usually been specifically stated in the definition of a standard temperature coefficient. It seems fair to assume that this mode of defining the temperature coefficient is implied in the various standard values, since the temperature coefficient most frequently used in practice is that of "constant mass," i. e., the temperature coefficient as measured between potential terminals rigidly attached to the wire. The resistivity is given in each case as the resistance of a uniform wire I meter long weighing a gram. This unit of mass resistivity is conveniently designated for brevity as ohms (meter, gram). The advantages of this unit of resistivity are set forth in Appendix I, p. 54. The values given in Table I are fully discussed above, pages 5 to 1o. Column 8 gives the standards used as the basis of the tables of this circular.

Table II.-This table is an embodiment of the proportionality between conductivity and temperature coefficient. The temperature coefficient at $20^{\circ} \mathrm{C}, \alpha_{20}$, was computed from n, the percent conductivity expressed decimally, thus simply:

$$
\alpha_{20}=n(0.00393) .
$$

The complete expression for calculating $\alpha_{t_{1}}$, the temperature coefficient at any temperature, is given in the note to the table. The values given for α in the table are the "constant mass temperature coefficient of resistance," which is discussed in Appendix II, p. 59. It is to be noted that Table II gives either the conductivity when the temperature coefficient is known or the temperature coefficient when the conductivity is known. It may be again emphasized here that the proportional relation between conductivity and temperature coefficient is equivalent to the following: The change of resistivity per degree C is a constant for copper, independent of the temperature of reference and independent of the sample of copper; this constant is

> 0.000597 ohm (meter, gram), or, o.0068 I microhm-cm, or, 3.4 I ohms (mile, pound), or, o.00268 microhm-inch, or, 0.0409 ohm (mil, foot).

The Fahrenheit equivalents of the foregoing constants or of any of the α 's in Table II may be obtained by dividing by i.8. Thus, for example, the
$20^{\circ} \mathrm{C}$ or $68^{\circ} \mathrm{F}$ temperature coefficient for copper of roo percent conductivity is 0.00393 per degree C, or 0.00218 per degree F . Similarly, the change of resistivity per degree F is o.0or 49 microhm-inch.

The foregoing paragraph gives two simple ways of remembering the temperature coefficient. Another method of remembering how to make temperature reductions, in extended use among engineers, is to make use of the "inferred absolute zero temperature of resistance." This is the quantity, $-T$, given in the last column of Table II for the various conductivities. For any percent conductivity, $-T$ is the calculated temperature on the centigrade scale at which copper of that particular percent conductivity would have zero electrical resistance provided the temperature coefficient between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ applied continuously down to the absolute zero. That is

$$
T=\frac{1}{\alpha_{0}}
$$

One advantage of these "inferred absolute zero temperatures of resistance" is their usefulness in calculating the temperature coefficient at any temperature, t_{1}. Thus, we have the following formulas:

$$
\begin{gathered}
\alpha_{t_{1}}=\frac{\mathrm{I}}{T+t_{1}} \\
t-t_{1}=\frac{R_{t}-R_{t_{1}}}{R_{t_{1}}}\left(T+t_{1}\right)
\end{gathered}
$$

The chief advantage, however, is in calculating the ratios of resistances at different temperatures, for the resistance of a copper conductor is simply proportional to its (fictitious) absolute temperature from the "inferred absolute zero." Thus, if R_{t} and $R_{t_{1}}$ denote resistances, respectively, at any two temperatures t and t_{1}

$$
\frac{R_{t}}{R_{t_{1}}}=\frac{T+t}{T+t_{1}}
$$

For example, a copper wire of 100 percent conductivity, at $20^{\circ} \mathrm{C}$, would have a (fictitious) absolute temperature of 254.4°, and at $50^{\circ} \mathrm{C}$ would have a (fictitious) absolute temperature of 284.4°. Consequently, the ratio of its resistance at $50^{\circ} \mathrm{C}$ to its resistance at $20^{\circ} \mathrm{C}$ would be $\frac{284.4}{254.4}=$ I.11 8_{2}. In more convenient form for slide rule computation, this formula may be written

$$
\frac{R_{t}}{R_{t_{1}}}=\mathrm{I}+\frac{t-t_{1}}{T+t_{1}}
$$

Table III.-It is a simple matter to apply the formulas for temperature reduction to resistance or resistivity measurements, but the work can sometimes be shortened by having a table of temperature corrections. In the discussion of the temperature coefficient of copper, above, it was shown that the change of resistivity per degree C is a constant for copper. Accordingly, if the resistivity of any sample of copper be measured at any temperature, it
can be reduced to any other temperature simply by adding a constant multiplied by the temperature difference. The first and last columns of Table III give temperature of observation. The second, third, fourth, and fifth columns give the quantity to be added to an observed resistivity to reduce to $20^{\circ} \mathrm{C}$.

The next three columns give factors by which to multiply observed resistance to reduce to resistance at $20^{\circ} \mathrm{C}$. Resistance can not be reduced accurately from one temperature to another unless either the temperature coefficient of the sample or its conductivity is known. Of course, if the temperature coefficient itself is known it should be used. If the conductivity is known, the reduction can be made by the aid of these three columns of the table, which are for 96 percent, 98 percent, and ioo percent conductivity. For other conductivities, recourse may be had to interpolation or extrapolation, or to computation by the formula. The sixth column, for 96 percent conductivity, corresponds to a temperature coefficient at $20^{\circ} \mathrm{C}$ of 0.003773 ; the seventh column, for 98 percent conductivity, to 0.003851 ; and the eighth column, for 100 percent conductivity, to 0.003930 . The factors in the eighth column, for example, have been computed by the expression, $\frac{\mathrm{I}}{\mathrm{I}+0.003930(t-20)}$, in which t is the temperature of observation.

Table IV.-This table gives the diameters in mils (thousandths of an inch) of the sizes in the six wire gages in use, as described in Section II (I), above. The diameters in the American Wire Gage are fixed by the definite law of geometrical progression, and can, of course, be calculated out to any number of figures desired. In this table they have been rounded off at the place determined by actual practice of drawers and users of wire. The diameters in the "Steel Wire Gage" were taken from a booklet called "Sizes, Weights, and Lengths of Round Wire," published in 1905 by the American Steel \& Wire Co. The diameters in the Birmingham Wire Gage and the Old English gage were found by comparing a large number of wire gage tables published by various manufacturers and others. The diameters in the Stubs' Steel Wire Gage were taken from the catalogue of Brown \& Sharpe Manufacturing Co. (1909, p. 521). In addition to the sizes shown, this gage has 26 larger sizes and 30 smaller sizes. The diameters in the (British) Standard Wire Gage were obtained from the Engineering Standards Committee "Report on British Standard Copper Conductors" (second issue, March, 1910).

Table V.-The same six wire gages as in Table IV are here compared by the diameters in millimeters. The diameters were found by multiplying the respective numbers in Table IV by 0.025400 I, and rounding off to o.I mml for the largest sizes and 0.001 mm for the smallest sizes.

Table VI.-Complete data on the relations of length, mass, and resistance of annealed copper wires of the American Wire Gage sizes are given in Tables VI and VII, pages 38 to 45. Table VI gives the data in English units, Table VII in metric units. The quantities involving resistances are given at 6 temperatures: $0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 75^{\circ} \mathrm{C}$, and the two widely used standard temperatures, $15^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. The mass per unit length and
length per unit mass are given without specification of temperature because they vary so slightly with temperature; the density from which they are computed is taken to be correct at $20^{\circ} \mathrm{C}$. The quantities in the tables were computed to five significant figures, and have been rounded off and given to four significant figures. The results are believed to be correct within I in the fourth significant figure. It is appreciated that four significant figures greatly exceeds in precision the uses to which a wire table is put. This table is intended, however, chiefly as a sort of ultimate reference table, and it is desired that working tables based upon this table should not disagree with one another. For practical working tables of annealed copper wire, Tables VIII and IX are recommended.

Data may be obtained for sizes other than those in the table either by interpolation or by independent calculation. The fundamental data, in metric units, for making the calculations are given in the explanation of Table VII, page 28. The derived data in English units, as used in the calculation of Table VI, are as follows:

Volume resistivity of annealed copper at $20^{\circ} \mathrm{C}$, or $68^{\circ} \mathrm{F},=0.67879$ microhm-inch.

Density of copper at $20^{\circ} \mathrm{C}$, or $68^{\circ} \mathrm{F},=0.32$ I 17 pound per cubic inch.
Change of volume resistivity of a sample of copper, per degree $\mathrm{C},=$ 0.002679 microhm-inch.

The constants given above and also in the following formulas are given to a greater number of digits than is justified by their use. but it is desired to prevent small errors in the calculated values.

In the following formulas, let:
$s=$ cross section in square inches,
$d=$ density in pounds per cubic inch,
$\rho_{t}=$ resistivity in microhm-inches at $t^{\circ} \mathrm{C}$.

The data of Table VI may be calculated for wire of any cross section by the following formulas. (These formulas hold for any form of cross section as well as circular cross section.) The arbitrary constants, A_{t}, B_{t}, C_{t}, D_{t}, are introduced merely to facilitate ready calculation. They are defined by the equations, and their values for the various temperatures are given in the table following the equations.

Ohms per 1000 feet $=\frac{1.2 \rho_{t}}{100 s}=\frac{A_{t}}{s}$
Pounds per ohm $=\frac{(\mathrm{IO})^{6} d s^{2}}{\rho_{t}}=B_{t} s^{2}$
Ohms per pound $=\frac{\left({ }^{(10}\right)^{-6} \rho_{t}}{d s^{2}}=\frac{C_{t}}{s^{2}}$
Feet per ohm $=\frac{(\mathrm{IO})^{5} s}{\mathrm{I} \cdot 2 \rho_{t}}=D_{t} s$
Pounds per 1000 feet $=12000 . d s=3854.09 s$
Feet per pound $=\frac{\mathrm{I}}{\mathrm{I} 2 . d s}=\frac{0.259465}{s}$

	$0^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
$\begin{aligned} & \mathbf{A}_{t} \\ & \mathbf{B}_{t} \\ & \mathbf{C}_{t} \\ & \mathbf{D}_{t} \end{aligned}$	$\begin{aligned} & 0.0075026 \\ & 514280 \\ & 1.9445 \times 10^{-6} \\ & 133290 \end{aligned}$	$\begin{gathered} 0.0079848 \\ 482810 \\ 2.0712 \times 10^{-6} \\ 125240 . \end{gathered}$	$\begin{gathered} 0.0081455 \\ 473 \mathrm{l} 60 \\ 2.1135 \times 10^{-6} \\ 122770 . \end{gathered}$	$\begin{gathered} 0.0083063 \\ 463880 \\ 2.1557 \times 10^{-6} \\ 120390 . \end{gathered}$	$\begin{gathered} 0.0091100 \\ 422480 . \\ 2.3670 \times 10^{-6} \\ 109770 . \end{gathered}$	$\begin{gathered} 0.0099137 \\ 387860 . \\ 2.5782 \times 10^{-6} \\ 100870 . \end{gathered}$

The following points regarding the computations for different temperatures are worth notice:
(i) The cross section s is in all cases considered to be measured at the temperature concerned, hence the change of s with temperature does not complicate the calculation or interpretation. Similarly, the length is considered to be measured at the temperature concerned, in the case of "Ohms per iooo feet" and "Feet per ohm."
(2) Accordingly, in the calculation of "Ohms per rooo feet" and "Feet per ohm" the only variable with temperature is ρ_{t}, and it is found for $t^{\circ} \mathrm{C}$ by adding $0.002679(t-20)$ to ρ_{20}.
(3) But in the case of "Pounds per ohm" and "Ohms per pound," ρ_{t} and d both vary with temperature. The variation of d with temperature is small, but if it were neglected the values of "Pounds per ohm" at $75^{\circ} \mathrm{C}$ would be 0.3 per cent larger than the true theoretical values. Hence the variations of both ρ_{t} and d with temperature were taken into account in computing the tables. The value of the coefficient of linear expansion of copper was taken as 0.000 oif. But in practical work, in general, for any of the data ρ_{t} may be considered as the only variable with temperature and the calculations may be made very simply. For the temperature reduction of ρ_{t} or of resistance, see Table III and also page 24 .

It should be strictly borne in mind that Tables VI and VII give values for annealed copper whose conductivity is that of "The Annealed Copper Standard" described above (that is, approximately, an average of the present commercial conductivity copper). If data are desired for any sample of different conductivity, and if the conductivity is known as a percentage of this standard, the data of the table which involve the resistance are to be reduced by the use of this percentage, thus (letting $n=$ percent conductivity, expressed decimally): (i) For "Ohms per iooo feet" or "Ohms per pound" multiply the .values given in Table VI by $\frac{1}{n}$. (2) For "Pounds per ohm" and "Feet per ohm" multiply the values given in Table VI by n. An approximate average value of percent conductivity of hard-drawn copper may be taken to be 97.3 per cent when assumption is unavoidable. The method of finding approximate values for hard-drawn copper from the table may be stated thus: (i) For "Ohms per 1000 feet" or "Ohms per pound" increase the values given in Table VI by 2.7 per cent. (2) For "Pounds per ohm" and "Feet per ohm" decrease the values given in Table VI by 2.7 per cent. (3) "Pounds per iooo feet" and "Feet
per pound" may be considered to be given correctly by the table for either annealed or hard-drawn copper.

Table VII.-This is a complete reference table, in metric units, of the relations of length, mass, and resistance of annealed copper wires. It is the equivalent of Table VI, which gives the data in English units. The fundamental data from which all these tables for copper were computed are as follows:

Mass resistivity of annealed copper at $20^{\circ} \mathrm{C}=0.15328$ ohm (meter, gram).

Change of mass resistivity of a sample of copper per degree $\mathrm{C}=$ 0.000597 ohm (meter, gram).

Density of copper at $20^{\circ} \mathrm{C}=8.89$ grams per cubic centimeter.
Volume resistivity of annealed copper at $20^{\circ} \mathrm{C}=1.724 \mathrm{I}$ microhm-cm.
Change of volume resistivity of a sample of copper per degree $C=$ 0.0068 I microhm-cm.

The data of Table VII may be calculated for wires of any cross section by the formulas below, using the following symbols:
$s=$ cross section in square mm
$d=$ density in grams per cubic centimeter,
$\rho_{t}=$ resistivity in microhm-cm at $t^{\circ} \mathrm{C}$.

The arbitrary constants, $E_{t}, F_{t}, G_{t}, H_{t}$, are introduced merely to facilitate ready calculation. They are defined by the equations, and their values for the various temperatures are given in the table following the equations.

Ohms per kilometer $=\frac{\text { IO } \rho_{t}}{s} \equiv \frac{E_{t}}{s}$
Grams per ohm $=\frac{100 d s^{2}}{\rho_{t}}=F_{t} s^{2}$
Ohms per kilogram $=\frac{10 \rho_{t}}{d s^{2}}=\frac{G_{t}}{s^{2}}$
Meters per ohm $=\frac{100 s}{\rho_{t}} \equiv H_{t} s$
Kilograms per kilometer $=d s=8.89 \mathrm{~s}$
Meters per gram $=\frac{1}{d s}=\frac{0.112486}{s}$

	$0^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
E_{t}	15.880	16.901	17.241	17.582	19.283	20.984
\mathbf{F}_{t}	560.43	526.14	515.62	505.52	460.40	422.67
\mathbf{G}_{t}	1.7843	1.9006	1.9394	1.9782	2.1720	2.3659
\mathbf{H}_{t}	62.971	59.168	58.000	56.877	51.859	47.655

The same points regarding the computations for different temperatures and regarding the use of the table for samples of conductivity different from the standard, which were mentioned above in the explanation of Table VI, apply to Table VII also.

Table VIII.-This "working table" for annealed copper wires is an abbreviated form of the complete Table VI. It is intended to facilitate ready reference by the practical user. In the computation of "Ohms per Iooo feet," at $25^{\circ} \mathrm{C}$, the same value of " A_{t} " as given above in the explanation of Table VI, was used. For $65^{\circ} \mathrm{C}$, the value of A_{t} is 0.0095922.

Table IX.-This "working table" in metric units is the equivalent of Table VIII, which gives the data in English units; and is an abbreviated form of the complete Table VII. In the computation of "Ohms per kilometer" at $25^{\circ} \mathrm{C}$, the same value of " E_{t} " as given above in the explanation of Table VII, was used. For $65^{\circ} \mathrm{C}$, the value of E_{t} is 20.304 .

Table X.-This is a reference table, for standard annealed copper, giving "Ohms per 1000 feet" at two temperatures and " Pounds per 1000 feet," for the various sizes in the (British) Standard Wire Gage. The quantities in the table were computed to five significant figures, and have been rounded off and given to four significant figures. The results are believed to be correct within I in the fourth significant figure. In the computation of "Ohms per iooo feet" at $15.6^{\circ} \mathrm{C}$, or $60^{\circ} \mathrm{F}$, the value of " A_{t} " used (" A_{t} " is defined above in the explanation of Table VI) is 0.008004 I . For $65^{\circ} \mathrm{C}$, or $149^{\circ} \mathrm{F}$, the value of A_{t} is 0.0095922.

Table XI.-This is a reference table, for standard annealed copper wire, giving " Ohms per kilometer" at $15^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$, and "Kilograms per kilometer," for selected sizes such that the diameter is an exact number of tenth millimeters. The sizes were selected arbitrarily, the attempt being to choose the steps from one size to another which correspond approximately to the steps in the ordinary wire gages. The data givell are believed to be correct within I in the fourth significant figure. The constants used in the computations are given above.

Table XII.-This table gives data on bare concentric lay cables of annealed copper. A "concentric lay cable" is a conductor made up of a straight central wire surrounded by helical layers of bare wires, the alternate layers having a twist in opposite directions. In the first layer about the central wire, 6 wires of the same diameter are used; in the next layer, 12 ; then I8, 24, etc. The number of layers thus determines the number of individual wires in the cable. There are many other, more complicated forms of cables, but these are not considered here. The size of the individual wires ${ }^{17}$ may be taken to be a definite gage number, but it is the more usual practice to start with a specified total cross section for the cable and from that calculate the diameter of the strands. Thus, in Tables XII and XIII, the column "Diameter of Wires" was calculated from the total cross section.

[^5]The various sizes of cables are usually specified by a statement of the total cross section in "circular mils" (the cross section in circular mils of a single wire is the square of its diameter in mils). This table contains the more usual sizes which are made and used in this country. The practices of manufacturers vary, and consequently the "Number of Wires" given in the table for each value of "Circular Mils" may not represent the practices of all manufacturers. For some purposes a more flexible cable is wanted than in other cases, and this end is attained by using finer wire and increasing the number of layers and of wires. The "Numbers of Wires" for "Standard Strands" and "Flexible Strands" are those adopted by the Standards Committee of the American Institute of Electrical Engineers, in January, I9I2.

The "Outside diameter in mils" is the diameter of the circle circumscribing the cable, and is calculated very simply. Thus, for a cable of 7 wires, the "outside diameter" is 3 times the diameter of one wire; for a cable of 19 wires, it is 5 times the diameter of one wire, etc. The values given for the resistance are based on the "Annealed Copper Standard," discussed above. The density used in calculating the mass is 8.89 grams per cubic centimeter, or 0.32 I I7 pounds per cubic inch. The effect of the twisting of the strands on the resistance and mass per unit length is allowed for, and is discussed in the following paragraphs:

Different authors and different cable companies do not agree in their methods of calculating the resistance of cables. It is usually stated that on account of the stranding the lengths of the individual wires are increased, and hence the resistance of the cable is greater than the resistance of an "equivalent solid rod"-i. e., a solid wire or rod of the same length and of cross section equal to the total cross section of the cable (taking the cross section of each wire perpendicular to the axis of the wire). However, there is always some contact area between the wires of a cable, which has the effect of increasing the cross section and decreasing the resistance; and some authors have gone so far as to state that the resistance of a cable is less than that of the equivalent solid rod. The Bureau of Standards has made inquiries to ascertain the experience of cable manufacturers and others on this point. It is practically unanimously agreed that the resistance of a cable is actually greater than the resistance of an equivalent solid rod. It is shown mathematically in Appendix IV, page 64, that the per cent increase of resistance of a cable with all the wires perfectly insulated from one another over the resistance of the equivalent solid rod is exactly equal to the per cent decrease of resistance of a cable in which each strand makes perfect contact with a neighboring strand at all points of its surface-that is, the resistance of the equivalent solid rod is the arithmetical mean of these two extreme cases. While neither extreme case exactly represents an actual cable, still the increase of resistance is generally agreed to be very nearly equal to that of a cable in which all the wires are perfectly insulated from one another. Apparently the wires are very little distorted from their circular shape, and hence make very little contact with each other. It is shown in Appendix

IV that the percent increase in resistance, and in mass as well, is equal to the percent increase in length of the wires. A standard value of 2 per cent has been adopted for this percent increase in length, by the Standards Committee of the American Institute of Electrical Engineers, and the resistances and masses in the table are accordingly made 2 percent greater than for the equivalent solid rod. This involves an assumption of a value for the "lay," or "pitch," of the cable, but the actual resistance of a cable depends further upon the tension under which the strands are wound, the age of the cable, variations of the resistivity of the wires, variations of temperature, etc., so that it is very doubtful whether any correction need be made to the tabulated values of resistance. It may be more often required to make a correction for the mass of a cable, which can be done when the "lay" is known. The effect of "lay" and the magnitude of the correction are discussed in Appendix IV.

For sizes not given in the table, computations may be made by the following formulas, which were used in calculating the table:

Ohms per iooo feet at $25^{\circ} \mathrm{C}=\frac{10787}{\text { Circular mils }}$
Ohms per ıooo feet at $65^{\circ} \mathrm{C}=\frac{12457 .}{\text { Circular mils }}$
Pounds per 1000 feet $=0.0030875 \times$ Circular mils
Table XIII.-This table gives data in metric units on bare concentric cables of annealed copper; it is the equivalent of Table XII. The first column gives the size in "circular mils," since the sizes are commercially so designated (except for the smaller sizes, for which the A. W. G. number is given). The other quantities in this table are in metric units. The explanations of the calculations of Table XII given above and in Appendix IV apply to this table also.

For sizes not given in the table, computations may be made by the following formulas, which were used in calculating the table ($s=$ total crosssection in mm^{2}):

Ohms per kilometer at $25^{\circ} \mathrm{C}=\frac{17.933}{s}$
Ohms per kilometer at $65^{\circ} \mathrm{C}=\frac{20.710}{s}$
Kilograms per kilometer $=9.0678 \times s$
Table XIV.-This table gives data for average commercial hard-drawn aluminum wire at $20^{\circ} \mathrm{C}$ of the American Wire Gage sizes. It is based upon the values for resistivity and density given on p . 12 ; in brief, volume resistivity $=2.828$ microhm- cm , density $=2.70$ grams per cubic centimeter.

$$
5754^{\circ}-\mathrm{I} 2-3
$$

The quantities in the table were calculated by the following formulas ($s=$ cross-section in square inches):

Ohms per Iooo feet $=\frac{0.013361}{s}$
Pounds per 1000 feet $=1170.5 \times s$
Pounds per ohm $=876 \mathrm{II} . \times s^{2}$
Feet per ohm $=74847 . \times s$
Table XV.-This table is the equivalent in metric units of Table XIV, giving data for average commercial hard-drawn aluminum wire at $20^{\circ} \mathrm{C}$.

The quantities in the table were calculated by the following formulas ($s=$ cross-section in mm^{2}):

Ohms per kilometer $=\frac{28.28}{s}$
Kilograms per kilometer $=2.70 \times s$
Grams per ohm $=95.474 \times s^{2}$
Meters per ohm $=35.361 \times s$

PART 2. TABLES

TABLE I

Various Standard Values for Resistivity, Temperature Coefficient, and Density, of Annealed Copper

Tempera- ture \mathbf{C}	1England (Eng. Stds. Com., 1904)	2 Germany, Old "Normal Kupfer,"" density 8.91	3 Germany; Old "Normal Kupfer," assuming density 8.89	4 Lindeck, Matthiessen value, assuming density 8.89	$\begin{gathered} 5 \\ \text { A. I. E. E. } \\ \text { before } 1907 \\ \text { (Matthiessen } \\ \text { value) } \end{gathered}$	A. I. E. E., 1907 to 1910	$\begin{gathered} 7 \\ \text { Bureau of } \\ \text { Standards } \\ \text { and } \\ \text { A. I. E. E., } \\ 1911 \end{gathered}$	8 New "Annealed Copper Standard"

RESISTIVITY IN OHMS (METER, GRAM)

0°	0.14136_{2}	0.13959_{0}	0.13927_{7}	0.14157_{1}	0.14172_{9}	0.14172_{9}	0.14106_{8}	0.14133_{2}
15°	$.15043_{7}$	$.14850_{0}$	$.14816_{7}$	$.14997_{4}$	$.15014_{1}$	$.15065_{8}$	$.15003_{4}$	$.15029_{0}$
$\left(15.6^{\circ}\right)$.1508							
20°	$.15346_{3}$	$.15147_{0}$	$.1513_{0}$	$.15285_{1}$	$.15302_{2}$	$.15363_{4}$	$.15302_{2}$.15328
25°	$.15648_{8}$	$.15444_{0}$	$.15409_{3}$	$.15576_{5}$	$.15593_{8}$	$.15661_{0}$	$.15601_{\theta}$	$.15626_{2}$

TEMPERATURE COEFFICIENT

0°	0.00428	0.00425_{5}	0.00425_{5}	$\left({ }^{18}\right)$	$\left({ }^{18}\right)$	0.0042	$19\left(0.00427_{7}\right)$	${ }^{19}\left(0.00426_{5}\right)$
15°	$.00402_{2}$.004	.004			$.00395_{1}$	${ }^{19}\left(.00401_{9}\right)$	$19\left(.00400_{9}\right)$
20°	$.00394_{3}$	$.00392_{2}$	$.00392_{2}$			$.00387_{5}$	${ }^{19}(.00394)$	
25°	$.00386_{6}$	$.00384_{6}$	$.00384_{6}$			$.00393)$		

DENSITY

| 208.89 | 8.91 | (8.89) | (8.89) | 8.89 | 8.89 | ${ }_{21} 8.89$ | 218.89 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^6]TABLE II
Temperature Coefficients of Copper
for Different Initial Temperatures (Centigrade) and Different Conductivities

Ohms (meter, gram) at $20^{\circ} \mathrm{C}$	Percent conductivity	α_{0}	α_{15}	α_{20}	α_{25}	α_{30}	α_{50}	$\begin{aligned} & \text {-T, } \\ & \text { "Inferred } \\ & \text { absolute } \\ & \text { zero" } \end{aligned}$
0.16134	95\%	0.00403	0.00380	0.00373	0.00367	0.00360	0.00336	-247.8
. 15966	96\%	. 00408	. 00385	. 00377	. 00370	. 00364	. 00339	-245.1
. 15802	97\%	. 00413	. 00389	. 00381	. 00374	. 00367	. 003.42	-242.3
. 15753	97.3\%	. 00414	. 00390	. 00382	. 00375	. 00368	. 00343	-241.5
. 15640	98\%	. 00417	. 00393	. 00385	. 00378	. 00371	. 00345	-239.6
. 15482	99\%	. 00422	. 00397	. 00389	. 00382	. 00374	. 00348	-237.0
.15328	100\%	. 00427	. 00401	. 00393	. 00385	. 00378	. 00352	-234.4
. 15176	101\%	. 00431	. 00405	. 00397	. 00389	. 00382	. 00355	-231.9

Note.-The fundamental relation between resistance and temperature is the following:

$$
\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{\mathrm{t} 1}\left(\mathrm{I}+\alpha_{\mathrm{t}_{1}}\left[\mathrm{t}-\mathrm{t}_{1}\right]\right)
$$

where $\alpha_{\hbar_{1}}$ is the "temperature coefficient," and t_{1} is the "initial temperature" or "temperature of reference."
The values of α in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any percent conductivity, n, within commercial ranges, and for centigrade temperatures. (n is considered to be expressed decimally: e. g., if percent conductivity $=99$ per cent, $n=0.99$.)

$$
\alpha_{\mathrm{t}_{1}}=\frac{\mathrm{I}}{\frac{\mathrm{I}}{n(0.00393}+\left(t_{1}-20\right)}
$$

The quantity $(-T)$ in the last column of the above table presents an easy way of remembering the temperature coeffcient, its usefulness being evident from the following formulas:

$$
\begin{gathered}
t-t_{1}=\frac{R_{\mathrm{t}}-R_{\mathrm{t}_{1}}}{R_{\mathrm{t1}}}\left(T+t_{1}\right) \\
\frac{R t}{R_{\mathrm{t}_{1}}}=\mathrm{r}+\frac{t-t_{1}}{T+t_{1}}
\end{gathered}
$$

TABLE III
Reduction of Observations to Standard Temperature

Temperature C	Corrections to reduce Resistivity to $20^{\circ} \mathrm{C}$				Factors to reduce Resistance to $20^{\circ} \mathrm{C}$			Temperature C
	Ohm (meter, gram)	Microhm-cm	Ohm (mile, pound)	$\underset{\text { inch }}{\text { Microhm- }}$	For 96 percent con- ductivity	For 98 percent conductivity	For 100 percent conductivity	
$\begin{array}{r} 0 \\ 5 \\ 10 \end{array}$	$\begin{aligned} & +0.01194 \\ & +.00896 \\ & +.00597 \end{aligned}$	$\begin{aligned} & +0.1361 \\ & +.021 \\ & +.0681 \end{aligned}$	$\begin{aligned} & +68.20 \\ & +51.15 \\ & +\quad 34.10 \end{aligned}$	$\begin{aligned} & +0.05358 \\ & +.04018 \\ & +.02679 \end{aligned}$	$\begin{aligned} & 1.0816 \\ & 1.0600 \\ & 1.0392 \end{aligned}$	$\begin{aligned} & 1.0834 \\ & 1.0663 \\ & 1.0401 \end{aligned}$	$\begin{aligned} & 1.0853 \\ & 1.0626 \\ & 1.0409 \end{aligned}$	$\begin{array}{r} 0 \\ 5 \\ 10 \end{array}$
$\begin{aligned} & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{array}{r} +.00537 \\ +.00478 \\ +.00418 \end{array}$	+.0612 +.0544 +.0476	+30.69 $+\quad 27.28$ $+\quad 23.87$	+ +.02411 +.02143 +.01875	1.0352 1.0311 1.0271	1.0359 1.0318 1.0277	1.0367 1.0325 1.0283	$\begin{aligned} & 11 \\ & 12 \\ & 13 \end{aligned}$
$\begin{aligned} & 14 \\ & 15 \\ & 16 \end{aligned}$	+.00358 +.00299 +.00239	+.0408 +.0340 +.0272	+20.46 +17.05 $+\quad 13.64$	+.01607 +.0140 +.01072	1.0232 1.0192 1.0153	1.0237 1.0196 1.0156	$\begin{aligned} & 1.0242 \\ & 1.0200 \\ & 1.0160 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \\ & 16 \end{aligned}$
$\begin{aligned} & 17 \\ & 18 \\ & 19 \end{aligned}$	+ +.00179 +.00119 +.00060	+.0204 .+ .136 .+ .0068	+10.23 $+\quad 6.82$ $+\quad 3.41$	+ +.00804 +.00536 +.00268	1.0114 1.0076 1.0038	1.0117 1.0078 1.0039	$\begin{aligned} & 1.0119 \\ & 1.0079 \\ & 1.0039 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \\ & 19 \end{aligned}$
$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	$\begin{gathered} 0 \\ -.00060 \\ .00119 \end{gathered}$	$\begin{aligned} & 0 \\ &-.0068 \\ &-.0136\end{aligned}$	$\begin{array}{ll} & 0 \\ -\quad & 3.41 \\ -\quad 6.82\end{array}$	- - -.0026836	$\begin{gathered} 1.0090 \\ 0.962 \\ .9922 \end{gathered}$	$\begin{aligned} & 1.0000 \\ & 0.9962 \\ & 0.9924 \end{aligned}$	$\begin{gathered} 1.0000 \\ 0.9961 \\ .9922 \end{gathered}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$
$\begin{aligned} & 23 \\ & 24 \\ & 25 \end{aligned}$	$\begin{array}{r} -.00179 \\ =.00239 \\ -.00299 \end{array}$	- $\begin{array}{r}\text { - } \\ =.0204 \\ =.02720\end{array}$	-10.23 -13.64 -17.05	-.00804 $=.01072$ -.01340	$\begin{aligned} & .9888 \\ & .9851 \\ & .9815 \end{aligned}$	$\begin{array}{r} .9886 \\ .9848 \\ .9811 \end{array}$	$\begin{aligned} & .9883 \\ & .9845 \\ & \hline .9807 \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \\ & 25 \end{aligned}$
$\begin{aligned} & 26 \\ & 27 \\ & 28 \end{aligned}$	-.00358 $=.00418$ -.00478	- 0.0408	-20.46 $-\quad 23.87$ $-\quad 27.28$	$=.01607$ $=.01875$ -.02143	$\begin{array}{r} .9779 \\ .9743 \\ .9707 \end{array}$	$\begin{aligned} & .9774 \\ & .9737 \\ & .9701 \end{aligned}$.9770 .9732 .9695	$\begin{aligned} & 26 \\ & 27 \\ & 28 \end{aligned}$
$\begin{aligned} & 29 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & =.00537 \\ & =.00597 \\ & -.00896 \end{aligned}$	$\begin{aligned} & =.0612 \\ & =.0681 \\ & =.1021 \end{aligned}$	-30.69 34.10 -51.15	$\begin{aligned} & =.02411 \\ & =.02679 \\ & -.04018 \end{aligned}$	$\begin{array}{r} .9672 \\ .9636 \\ .9464 \end{array}$	$\begin{aligned} & .9665 \\ & .9629 \\ & .9454 \end{aligned}$	$\begin{aligned} & .9658 \\ & .9622 \\ & .9443 \end{aligned}$	$\begin{aligned} & 29 \\ & 30 \\ & 35 \end{aligned}$
$\begin{aligned} & 40 \\ & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & =.01194 \\ & =.01493 \\ & -.01792 \end{aligned}$	- .1361 $=.1701$.2042	-68.20 $=85.25$ -102.30	-.05358 $=.06698$ -.08037	$\begin{array}{r} .9298 \\ .9138 \\ .8983 \end{array}$	$\begin{aligned} & .9285 \\ & .9122 \\ & .8964 \end{aligned}$	$\begin{aligned} & .9971 \\ & .9105 \\ & .8945 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \\ & 50 \end{aligned}$
$\begin{aligned} & 55 \\ & 60 \\ & 65 \end{aligned}$	$\begin{array}{r} =.020990 \\ =.02389 \\ -.02687 \end{array}$	$\begin{aligned} & =.2382 \\ & =.2722 \\ & =.3062 \end{aligned}$	$\begin{aligned} & -119.35 \\ & =136.40 \\ & -153.45 \end{aligned}$	$\begin{array}{r} =.09376 \\ =.10716 \\ =.12056 \end{array}$	$\begin{aligned} & .8833 \\ & .8689 \\ & .8549 \end{aligned}$	$\begin{aligned} & .8812 \\ & .8665 \\ & .8523 \end{aligned}$	$\begin{aligned} & .8791 \\ & .8642 \\ & .8497 \end{aligned}$	$\begin{aligned} & 55 \\ & 60 \\ & 65 \end{aligned}$
70 75	$\begin{aligned} & -.02986 \\ & -.03285 \end{aligned}$	-. 3403	$\begin{aligned} & -170.50 \\ & -187.55 \end{aligned}$	$\begin{aligned} & =.13395 \\ & =.14734 \end{aligned}$	$.8413$	$\begin{aligned} & .8385 \\ & .8252 \end{aligned}$	$\begin{aligned} & .8358 \\ & .8223 \end{aligned}$	$\begin{aligned} & 70 \\ & 75 \end{aligned}$

TABLE IV
Tabular Comparison of Wire Gages
Diameters in Mils

Gage No.	American Wire Gage (B. \& S.)	Steel Wire Gage ${ }^{22}$	Birmingham Wire Gage (Stubs')	Old English Wire Gage (London)	Stubs' Steel Wire Gage	(British) Standard Wire Gage	Gage No.
$\begin{aligned} & 7-0 \\ & 6-0 \\ & 5-0 \end{aligned}$		$\begin{aligned} & 490.0 \\ & 461.5 \\ & 430.5 \end{aligned}$				$\begin{aligned} & 500 . \\ & 464 . \\ & 432 . \end{aligned}$	$\begin{aligned} & 7-0 \\ & 6-0 \\ & 5-0 \end{aligned}$
$\begin{aligned} & 4-0 \\ & 3-0 \\ & 2-0 \end{aligned}$	$\begin{aligned} & 460 . \\ & 410 . \\ & 365 . \end{aligned}$	$\begin{aligned} & 393.8 \\ & 362.5 \\ & 331.0 \end{aligned}$	$\begin{aligned} & 454 . \\ & 425 . \\ & 380 . \end{aligned}$	$\begin{aligned} & 454 . \\ & 425 . \\ & 380 . \end{aligned}$		$\begin{aligned} & 400 . \\ & 372 . \\ & 348 . \end{aligned}$	$\begin{aligned} & 4-0 \\ & 3-0 \\ & 2-0 \end{aligned}$
$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 325 . \\ & 289 . \\ & 258 . \end{aligned}$	$\begin{aligned} & 306.5 \\ & 283.0 \\ & 262.5 \end{aligned}$	$\begin{aligned} & 340 . \\ & 300 . \\ & 284 . \end{aligned}$	$\begin{aligned} & 340 . \\ & 300 . \\ & 284 . \end{aligned}$	$\begin{aligned} & 227 . \\ & 219 . \end{aligned}$	$\begin{aligned} & 324 . \\ & 300 . \\ & 276 . \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 229 . \\ & 204 . \\ & 182 . \end{aligned}$	$\begin{aligned} & 243.7 \\ & 225.3 \\ & 207.0 \end{aligned}$	$\begin{aligned} & 259 . \\ & 238 . \\ & 220 . \end{aligned}$	$\begin{aligned} & 259 . \\ & 238 . \\ & 220 . \end{aligned}$	$\begin{aligned} & 212 . \\ & 207 . \\ & 204 . \end{aligned}$	$\begin{aligned} & 252 . \\ & 232 . \\ & 212 . \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$
$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 162 . \\ & 144 . \\ & 128 . \end{aligned}$	$\begin{aligned} & 192.0 \\ & 177.0 \\ & 162.0 \end{aligned}$	$\begin{aligned} & 203 . \\ & 180 . \\ & 165 . \end{aligned}$	$\begin{aligned} & 203 . \\ & 180 . \\ & 165 . \end{aligned}$	$\begin{aligned} & 201 . \\ & 199 . \\ & 197 . \end{aligned}$	$\begin{aligned} & 192 . \\ & 176 . \\ & 160 . \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$
9 10 11	$\begin{array}{r} 114 . \\ 102 . \\ 91 . \end{array}$	$\begin{aligned} & 148.3 \\ & 135.0 \\ & 120.5 \end{aligned}$	$\begin{aligned} & 148 . \\ & 134 . \\ & 120 . \end{aligned}$	$\begin{aligned} & 148 . \\ & 134 . \\ & 120 . \end{aligned}$	$\begin{aligned} & 194 . \\ & 191 . \\ & 188 . \end{aligned}$	$\begin{aligned} & 144 . \\ & 128_{0} . \\ & 116 . \end{aligned}$	$\begin{array}{r} 9 \\ 10 \\ 11 \end{array}$
12 13 14	$\begin{aligned} & 81 . \\ & 72 . \\ & 64 . \end{aligned}$	$\begin{array}{r} 105.5 \\ 91.5 \\ 80.0 \end{array}$	$\begin{array}{r} 109 . \\ 95 . \\ 83 . \end{array}$	$\begin{array}{r} 109 . \\ 95_{0} \\ 83 . \end{array}$	$\begin{aligned} & 185 . \\ & 182 . \\ & 180 . \end{aligned}$	$\begin{array}{r} 104 . \\ 92 . \\ 80 . \end{array}$	$\begin{aligned} & 12 \\ & 13 \\ & 14 \end{aligned}$
$\begin{aligned} & 15 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 57 . \\ & 51 . \\ & 45 . \end{aligned}$	$\begin{aligned} & 72.0 \\ & 62.5 \\ & 54.0 \end{aligned}$	$\begin{aligned} & 72 . \\ & 65 . \\ & 58 . \end{aligned}$	$\begin{aligned} & 72 . \\ & 65 . \\ & 58 . \end{aligned}$	$\begin{aligned} & 178 . \\ & 175 . \\ & 172 . \end{aligned}$	$\begin{aligned} & 72 . \\ & 64 . \\ & 56 . \end{aligned}$	$\begin{aligned} & 15 \\ & 16 \\ & 17 \end{aligned}$
$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$	40. 36. 32.	$\begin{aligned} & 47.5 \\ & 41.0 \\ & 34.8 \end{aligned}$	$\begin{aligned} & 49 . \\ & 42 . \\ & 35 . \end{aligned}$	$\begin{aligned} & 49 . \\ & 40 . \\ & 35 . \end{aligned}$	$\begin{aligned} & 168 . \\ & 164 . \\ & 161 . \end{aligned}$	48. 40. 36.	$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$
$\begin{aligned} & 21 \\ & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 28.5 \\ & 25.3 \\ & 22.6 \end{aligned}$	$\begin{aligned} & 31.7 \\ & 28.6 \\ & 25.8 \end{aligned}$	$\begin{aligned} & 32 . \\ & 28 . \\ & 25 . \end{aligned}$	$\begin{aligned} & 31.5 \\ & 29.5 \\ & 27.0 \end{aligned}$	$\begin{aligned} & 157 . \\ & 155 . \\ & 153 . \end{aligned}$	$\begin{aligned} & 32 . \\ & 28 . \\ & 24 . \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \\ & 23 \end{aligned}$
$\begin{aligned} & 24 \\ & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & 20.1 \\ & 17.9 \\ & 15.9 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 20.4 \\ & 18.1 \end{aligned}$	$\begin{aligned} & 22 . \\ & 20 . \\ & 18 . \end{aligned}$	$\begin{aligned} & 25.0 \\ & 23.0 \\ & 20.5 \end{aligned}$	$\begin{aligned} & 151 . \\ & 148 . \\ & 146 . \end{aligned}$	22. 20. 18.	$\begin{aligned} & 24 \\ & 25 \\ & 26 \end{aligned}$
$\begin{aligned} & 27 \\ & 28 \\ & 29 \end{aligned}$	14.2 12.6 11.3	17.3 16.2 15.0	16. 14. 13.	$\begin{aligned} & 18.75 \\ & 16.50 \\ & 15.50 \end{aligned}$	$\begin{aligned} & 143 . \\ & 139 . \\ & 134 . \end{aligned}$	$\begin{aligned} & 16.4 \\ & 14.8 \\ & 13.6 \end{aligned}$	$\begin{aligned} & 27 \\ & 28 \\ & 29 \end{aligned}$
$\begin{aligned} & 30 \\ & 31 \\ & 32 \end{aligned}$	$\begin{array}{r} 10.0 \\ 8.9 \\ 8.0 \end{array}$	$\begin{aligned} & 14.0 \\ & 13.2 \\ & 12.8 \end{aligned}$	$\begin{array}{r} 12 . \\ 10 . \\ 9 . \end{array}$	$\begin{aligned} & 13.75 \\ & 12.25 \\ & 11.25 \end{aligned}$	$\begin{aligned} & 127 . \\ & 120 . \\ & 115 . \end{aligned}$	$\begin{aligned} & 12.4 \\ & 11.6 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 30 \\ & 31 \\ & 32 \end{aligned}$
$\begin{aligned} & 33 \\ & 34 \\ & 35 \end{aligned}$	7.1 6.3 5.6	11.8 10.4 9.5	8. 7. 5.	10.25 9.50 9.00	$\begin{aligned} & 112 . \\ & 110 . \\ & 108 . \end{aligned}$	10.0 9.2 8.4	$\begin{aligned} & 33 \\ & 34 \\ & 35 \end{aligned}$
$\begin{aligned} & 36 \\ & 37 \\ & 38 \end{aligned}$	5.0 4.5 4.0	$\begin{aligned} & 9.0 \\ & 8.5 \\ & 8.0 \end{aligned}$	4.	$\begin{aligned} & 7.50 \\ & 6.50 \\ & 5.75 \end{aligned}$	$\begin{aligned} & 10 \sigma_{0} \\ & 103 . \\ & 101 . \end{aligned}$	7.6 6.8 6.0	$\begin{aligned} & 36 \\ & 37 \\ & 38 \end{aligned}$
$\begin{aligned} & 39 \\ & 40 \\ & 41 \end{aligned}$	3.5 3.1	7.5 7.0 6.6		5.00 4.50	$\begin{aligned} & 99 . \\ & 97 . \\ & 95 . \end{aligned}$	$\begin{aligned} & 5.2 \\ & 4.8 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 39 \\ & 40 \\ & 41 \end{aligned}$
42 43 44		6.2 6.0 5.8			$\begin{aligned} & 92 . \\ & 88 . \\ & 85 . \end{aligned}$	4.0 3.6 3.2	$\begin{aligned} & 42 \\ & 43 \\ & 44 \end{aligned}$
$\begin{aligned} & 45 \\ & 46 \\ & 47 \end{aligned}$		5.5 5.2 5.0			$\begin{aligned} & 81 . \\ & 79 . \\ & 77 . \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 45 \\ & 46 \\ & 47 \end{aligned}$
$\begin{aligned} & 48 \\ & 49 \\ & 50 \end{aligned}$		4.8 4.6 4.4			$\begin{aligned} & 75 . \\ & 72 . \\ & 69 . \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 48 \\ & 49 \\ & 50 \end{aligned}$

[^7] ling," "American Steel and Wire Co.'s." Its abbreviation should be written "Stl. W. G.," to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage.

TABLE V
METRIC
Tabular Comparison of Wire Gages
Diameters in Millimeters

Gage No.	American Wire Gage (B. \& S.)	Steel wire Gage ${ }^{22}$	$\begin{aligned} & \text { Birmingham } \\ & \text { Wire Gage } \\ & \text { (Stubs') } \end{aligned}$	Old English Wire Gage (London)	Stubs' Steel Wire Gage	$\begin{aligned} & \text { (British) } \\ & \text { Standard } \\ & \text { Wire Gage } \end{aligned}$	Gage No.
$7-0$ $6-0$ $5-0$		12.4 11.7 10.9				12.7 11.8 11.0	$\begin{aligned} & 7-0 \\ & 6-0 \\ & 5-0 \end{aligned}$
4-0	11.7	10.0	11.5	11.5		10.2	4-0
3-0	10.4	9.2	10.8	10.8		9.4	3-0
2-0	9.3	8.4	9.7	9.7		8.8	2-0
0	8.3	7.8	8.6	8.6		8.2	0
1	7.3	7.2	7.6	7.6	5.77	7.6	1
2	6.5	6.7	7.2	7.2	5.56	7.0	2
3	5.8	6.2	6.6	6.6	5.38	6.4	3
4	5.2	5.7	6.0	6.0	5.26	5.9	4
5	4.6	5.3	5.6	5.6	5.18	5.4	5
6	4.1	4.9	5.2	5.2	5.11	4.9	6
7	3.7	4.5	4.6	4.6	5.05	4.5	7
8	3.3	4.1	4.2	4.2	5.00	4.1	8
9	2.91	3.77	3.76	3.76	4.93	3.66	9
10	2.59	3.43	3.40	3.40	4.85	3.25	10
11	2.30	3.06	3.05	3.05	4.78	2.95	11
12	2.05	2.68	2.77	2.77	4.70	2.64	12
13	1.83	2.32	2.41	2.41	4.62	2.34	13
14	1.63	2.03	2.11	2.11	4.57	2.03	14
15	1.45	1.83	1.83	1.83	4.52	1.83	15
16	1.29	1.59	1.65	1.65	4.45	1.63	16
17	1.15	1.37	1.47	1.47	4.37	- 1.42	17
18	1.02	1.21	1.24	1.24	4.27	1.22	
19	0.91	1.04	1.07	1.02	4.17	1.02	19
20	. 81	0.88	0.89	0.89	4.09	0.91	20
21	. 72	. 81	. 81	. 80	3.99	. 81	21
22	. 64	. 73	. 71	. 75	3.94	. 71	22
23	. 57	. 66	. 64	. 69	3.89	. 61	23
24	. 51	. 58	. 56	. 64	3.84	. 56	24
25	. 45	. 52	. 51	. 58	3.76	. 51	25
26	. 40	. 46	. 46	. 52	3.71	. 46	26
		. 439			3.63	. 42	27
28	. 32	. 411	. 36	. 42	3.53	. 38	28
29	. 29	. 381	. 330	. 394	3.40	. 345	29
30	. 25	. 356	. 305	. 349	3.23	. 315	30
31	. 227	. 335	. 254	. 311	3.05	. 295	31
32	. 202	. 325	. 229	. 286	2.92	. 274	32
33	. 180	. 300	. 203	. 260	2.84	. 254	33
34	. 160	. 264	. 178	. 241	2.79	. 234	34
35	. 143	. 241	. 127	. 229	2.74	. 213	35
36	. 127	. 229	. 102	. 191	2.69	. 193	36
37	. 113	. 216		. 165	2.62	. 173	37
38	. 101	. 203		. 146	2.57	. 152	38
39	. 090	. 191		. 127	2.51	. 132	39
40	. 080	. 178		. 114	2.46	. 122	40
41		. 168			2.41	. 112	41
42		. 157			2.34	. 102	42
43		. 152			2.24	. 091	43
44		. 147			2.16	. 081	44
45		. 140			2.06	. 071	45
46		. 132			2.01	. 061	46
47		. 127			1.96	. 051	47
48		. 122			1.90	. 041	48
49		. 117			1.83	. 030	49
50		. 112			1.75	. 025	50

TABLE VI
Complete Wire Table, Standard Annealed Copper.
American Wire Gage (B. \& S.). English Units

Gage No.	$\begin{gathered} \text { Diameter } \\ \text { in } \\ \text { Mils } \end{gathered}$	Cross-Section		Ohms per 1000 Feet					
		Circular Mils	Square Inches	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \left(=32^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 15^{\circ} \mathrm{C} \\ \left.=59^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 20^{\circ} \mathrm{C} \\ \left.=68^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \left.=77^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ \left(=122^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{C} \\ \left(=167^{\circ} \mathrm{F}\right) \end{gathered}$
0000	460.0	211600.	0.1662	0.04514	0.04804	0.04901	0.04998	0.05482	0.05965
000	409.6	167800.	. 1318	. 05693	. 06058	. 06180	. 06303	. 06912	. 07522
00	364.8	133100.	. 1045	. 07178	. 07639	. 07793	. 07947	. 08716	. 09485
0	324.9	105500.	. 08289	. 09052	. 09633	. 09827	. 1002	. 1099	. 1196
1	289.3	83690.	. 06573	. 1141	. 1215	. 1239	. 1264	. 1386	. 1508
2	257.6	66370.	. 05213	. 1439	. 1532	. 1563	. 1594	. 1748	. 1902
3	229.4	52640.	. 04134	. 1815	. 1931	. 1970	. 2009	. 2204	. 2398
4	204.3	41740.	. 03278	. 2288	. 2436	. 2485	. 2534	. 2779	. 3024
5	181.9	33100.	. 02600	. 2886	. 3071	. 3133	. 3195	. 3504	. 3813
6	162.0	26250.	. 02062	. 3639	. 3872	. 3951	. 4029	. 4418	. 4808
7	144.3	20820.	. 01635	. 4589	. 4883	. 4982	. 5080	. 5572	. 6064
8	128.5	16510.	. 01297	. 5786	. 6158	. 6282	. 6406	. 7025	. 7645
9	114.4	13090.	. 01028	. 7296	. 7765	. 7921	. 8078	. 8860	. 9641
10	101.9	10380.	. 008155	. 9200	. 9792	. 9989	1.019	1.117	1.216
11	90.74	8234.	. 006467	1.160	1.235	1.260	1.284	1.409	1.533
12	80.81	6530.	. 005129	1.463	1.557	1.588	1.620	1.776	1.933
13	71.96	5178.	. 004067	1.845	1.963	2.003	2.042	2.240	2.438
14	64.08	4107.	. 003225	2.326	2.475	2.525	2.576	2.824	3.074
15	57.07	-3257.	. 002558	2.933	3.121	3.184	3.248	3.562	3.876
16	50.82	2583.	. 002028	3.699	3.936	4.015	4.095	4.491	4.887
17	45.26	2048.	. 001609	4.664	4.963	5.064	5.164	5.663	6.162
18	40.30	1624.	. 001276	5.881	6.259	6.385	6.512	7.141	7.771
19	35.89	1288.	. 001012	7.416	7.892	8.051	8.210	9.004	9.799
20	31.96	1022.	. 0008023	9.352	9.953	10.15	10.35	11.36	12.36
21	28.46	810.1	. 0006363	11.79	12.55	12.80	13.06	14.32	15.58
22	25.35	642.4	. 0005046	14.87	15.82	16.14	16.46	18.06	19.65
23	22.57	509.5	. 0004002	18.75	19.95	20.36	20.76	22.77	24.78
24	20.10	404.0	. 0003173	23.64	25.16	25.67	26.18	28.71	31.24
25	17.90	320.4	. 0002517	29.81	31.73	32.37	33.01	36.20	39.39
26	15.94	254.1	. 0001996	37.59	40.01	40.82	41.62	45.65	49.68
27	14.20	201.5	. 0001583	47.40	50.45	51.46	52.48	57.56	62.64
28	12.64	159.8	. 0001255	59.77	63.61	64.90	66.18	72.59	78.98
29	11.26	126.7	. 00009953	75.37	80.22	81.84	83.46	91.53	99.60
30	10.03	100.5	. 00007894	95.05	101.2	103.2	105.2	115.4	125.6
31	8.928	79.70	. 00006260	119.8	127.6	130.1	132.7	145.5	158.4
32	7.950	63.21	. 00004964	151.1	160.8	164.1	167.3	183.5	199.7
33	7.080	50.13	. 00003937	190.6	202.8	206.9	211.0	231.4	251.8
34	6.305	39.75	. 00003122	240.3	255.7	260.9	266.1	291.8	317.5
35	5.615	31.52	. 00002476	303.0	322.5	329.0	335.5	367.9	400.4
36	5.000	25.00	. 00001964	382.1	406.6	414.8	423.0	464.0	504.9
37	4.453	19.83	. 00001557	481.8	512.8	523.1	533.5	585.1	636.7
38	3.965	15.72	. 00001235	607.5	646.6	659.6	672.7	737.7	802.8
39	3.531	12.47	. 000009793	766.1	815.4	831.8	848.2	930.2	1012.0
40	3.145	9.888	. 000007766	966.1	1028.	1049.	1070.	1173.	1276.

TABLE VI-Continued
Complete Wire Table, Standard Annealed Copper-Continued
American Wire Gage (B. \& S.). English Units-Continued

Gage No.	Diameter in Mils.	$\begin{aligned} & \text { Pounds } \\ & \text { per } \\ & 1000 \text { Feet } \end{aligned}$	$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { Pound } \end{gathered}$	Feet per Ohm					
				$\begin{gathered} 0^{\circ} \mathrm{C} \\ \left(=32^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 15^{\circ} \mathrm{C} \\ \left(=59^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 20^{\circ} \mathrm{C} \\ \left(=68^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \left(=77^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ \left(=122^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{C} \\ \left(=167^{\circ} \mathrm{F}\right) \end{gathered}$
0000	460.0	640.5	1.561	22150.	20810.	20400.	20010.	18240.	16760.
000	409.6	507.9	1.968	17570.	16510.	16180.	15870.	14470.	13290.
00	364.8	402.8	2.482	13930.	13090.	12830.	12580.	11470.	10540.
0	324.9	319.5	3.130	11050.	10380.	10180.	9979.	9098.	8361.
1	289.3	253.3	3.947	8751.	8233.	8070.	7913.	7215.	6630.
2	257.6	200.9	4.977	6948.	6529.	6400.	6276.	5722.	5258.
3	229.4	159.3	6.276	5510.	5178.	5075.	4977.	4538.	4170.
4	204.3	126.4	7.914	4370.	4106.	4025.	3947.	3599.	3307.
5	181.9	100.2	9.980	3465.	3256.	3192.	3130.	2854.	
6	162.0	79.46	12.58	2748.	2582.	2531.	2482.	2263.	2080.
7	144.3	63.02	15.87	2179.	2048.	2007.	1968.	1795.	1649.
8	128.5	49.98	20.01	1728.	1624.	1592.	1561.	1423.	1308.
9	114.4	39.63	25.23	1371.	1288.	1262.	1238.	1129.	1037.
10	101.9	31.43	31.82	1087.	1021.	1001.	981.8	895.1	822.6
11	90.74	24.92	40.12	862.0	810.0	794.0	778.5	709.9	652.4
12	80.81	19.77	50.59	683.6	642.3	629.6	617.4	563.0	517.3
13	71.96	15.68	63.80	542.0	509.4	499.3	489.6	446.4	410.3
14	64.08	12.43	80.44	429.9	404.0	396.0	388.3	354.0	325.4
15	57.07	9.858	101.4	340.9	320.4	314.0	307.9	280.8	258.0
16	50.82	7.818	127.9	270.4	254.1	249.0	244.2	222.7	204.6
17	45.26	6.200	161.3	214.4	201.5	197.5	193.7	176.6	162.3
18	40.30	4.917	203.4	170.0	159.8	156.6	153.6	140.0	128.7
19	35.89	3.899	256.5	134.8	126.7	124.2	121.8	111.1	102.0
20	31.96	3.092	323.4	106.9	100.5	98.49	96.59	88.07	80.93
21	28.46	2.452	407.8	84.81	79.69	78.11	76.60	69.84	64.18
22	25.35	1.945	514.2	67.25	63.20	61.95	60.74	55.39	50.90
23	22.57	1.542	648.4	53.34	50.12	49.12	48.17	43.92	40.36
24	20.10	1.223	817.7	42.30	39.74	38.96	38.20	34.83	32.01
25	17.90	0.9699	1031.	33.54	31.52	30.90	30.30	27.62	25.39
26	15.94	. 7692	1300.	26.60	25.00	24.50	24.02	21.91	20.13
27	14.20	. 6100	1639.	21.10	19.82	19.43	19.05	17.37	15.96
28	12.64	. 4837	2067.	16.73	15.72	15.41	15.11	13.78	12.66
29	11.26	. 3836	2607.	13.27	12.47	12.22	11.98	10.93	10.04
30	10.03	. 3042	3287.	10.52	9.886	9.691	9.503	8.665	7.962
31	8.928	. 2413	4145.	8.344	7.840	7.685	7.536	6.871	6.314
32	7.950	. 1913	5227.	6.617	6.218	6.094	5.976	5.449	5.008
	7.080					4.833	4.739	4.322	3.971
34	6.305	. 1203	8310.	4.161	3.910	3.833	3.759	3.427	3.149
35	5.615	. 09542	10480 .	3.300	3.101	3.040	2.981	2.718	2.497
36	5.000	. 07568	13210.	2.617	2.459	2.410	2.364	2.155	1.981
37	4.453	. 06001	16660.	2.075	1.950	1.912	1.874	1.709	1.571
38	3.965	. 04759	21010.	1.646	1.547	1.516	1.487	1.356	1.246
39	3.531	. 03774	26500.	1.305	1.226	1.202	1.179	1.075	0.9878
40	3.145	. 02993	33410.	1.035	0.9727	0.9534	0.9349	0.8525	. 7834

Table continued on next page. Explanatory notes given at end of Table VII, p. 45*

Complete Wire Table, Standard Annealed Copper-Continued

American Wire Gage (B. \& S.). English Units-Continued

$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Diameter in Mils	Ohms per Pound					
		$\begin{gathered} 0^{\circ} \mathrm{C} \\ \left(=32^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 15^{\circ} \mathrm{C} \\ \left.=59^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 20^{\circ} \mathrm{C} \\ \left(=68^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \left(=77^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ \left(=122^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{C} \\ \left(=167^{\circ} \mathrm{F}\right) \end{gathered}$
0000	460.0	0.00007041	0.00007509	0.00007652	0.00007805	0.00008570	0.00009334
000	409.6	. 0001120	. 0001192	. 0001217	. 0001241	. 0001363	. 0001483
00	364.8	. 0001780	. 0001896	. 0001935	. 0001974	. 0002167	. 0002360
0	324.9	. 0002830	. 0003015	. 0003076	. 0003138	. 0003445	. 0003753
1	289.3	. 0004500	. 0004794	. 0004891	. 0004990	. 0005478	. 0005967
2	257.6	. 0007156	. 0007622	. 0007778	. 0007934	. 0008711	. 0009487
3	229.4	. 001138	. 001212	. 001237	. 001262	. 001385	. 001508
4	204.3	. 001809	. 001927	. 001966	. 002006	. 002202	. 002399
5	181.9	. 002877	. 003064	. 003127	. 003189	. 003502	. 003813
6	162.0	. 004574	. 004872	. 004972	. 005071	. 005568	. 006065
7	144.3	. 007273	. 007747	. 007906	. 008064	. 008853	. 009643
8	128.5	. 01156	. 01232	. 01257	. 01282	. 01408	. 01533
9	114.4	. 01839	. 01959	. 01999	. 02039	. 02238	. 02438
10	101.9	. 02924	. 03115	. 03178	. 03242	. 03559	. 03877
11	90.74	. 04649	. 04952	. 05053	. 05155	. 05660	. 06164
12	80.81	. 07393	. 07874	. 08035	. 08196	. 08999	. 09801
13	71.96	. 1176	. 1252	. 1278	. 1303	. 1431	. 1558
14	64.08	. 1869	. 1991	. 2032	. 2072	. 2275	. 2478
15	57.07	. 2972	. 3166	. 3230	. 3295	. 3616	. 3940
16	50.82	. 4726	. 5033	. 5136	. 5239	. 5752	. 6265
17	45.26	. 7514	. 8003	. 8167	. 8330	. 9146	. 9962
18	40.30	1.195	1.273	1.299	1.325	1.454	1.584
19	35.89	1.900	2.024	2.065	2.106	2.313	2.519
20	31.96	3.021	3.218	3.283	3.349	3.677	4.006
21	28.46	4.803	5.116	5.221	5.325	5.846	6.368
22	25.35	7.637	8.135	8.302	8.467	9.296	10.13
23	22.57	12.14	12.93	13.20	13.46	14.78	16.10
24	20.10	19.31	20.57	20.99	21.41	23.50	25.60
25	17.90	30.70	32.70	33.37	34.04	37.37	40.71
26	15.94	48.82	52.00	53.06	54.13	59.43	64.73
27	14.20	77.63	82.69	84.37	86.07	94.49	102.9
28	12.64	123.4	131.5	134.2	136.8	150.2	163.7
29	11.26	196.3	209.1	213.3	217.6	238.9	260.2
30	10.03	312.1	332.4	339.2	346.0	379.9	413.8
31	8.928	496.3	528.5	539.3	550.2	604.0	657.9
32	7.950	789.1	840.5	857.6	874.8	960.4	1046.
33	7.080	1255.	1336.	1364.	1391.	1527.	1663.
34	6.305	1995.	2125.	2168.	2212.	2428.	2645.
35	5.615	3172.	3379.	3448.	3517.	3861.	4205.
36	5.000	5044.	5372.	5482.	5592.	6139.	6687.
37	4.453	8020.	8542.	8717.	8892.	9762.	10630.
38	3.965	12750.	13580.	13860.	14140.	15520.	16900.
39	3.531	20280.	21600.	22040.	22480.	24680.	26880.
40	3.145	32240.	34340.	35040.	35740.	39250.	42750.

TABLE VI-Continued
Complete Wire Table, Standard Annealed Copper-Continued
American Wire Gage (B. \& S.). English Units-Continued

Gage No.	Diameter in Mils	Pounds per Ohm					
		$\begin{gathered} 0^{\circ} \mathrm{C} \\ \left(=32^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 15^{\circ} \mathrm{C} \\ \left.=59^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 20^{\circ} \mathrm{C} \\ \left.=68^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \left.=77^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ \left(=122^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{C} \\ \left(=167^{\circ} \mathrm{F}\right) \end{gathered}$
0000	460.	14200.	13340.	13070.	12810.	11670.	10710.
000	409.	8933.	8387.	8219.	8057.	7339.	6738.
00	364.	5618.	5274.	5169.	5067.	4615.	4237.
0	324.9	3533.	3317.	3251.	3187.	2903.	2665.
1	289.3	2222.	2086.	2044.	2004.	1826.	1676.
2	257.6	1396.	1312.	1286.	1260.	1148.	1054.
3	229.4	878.9	825.1	808.6	792.7	722.0	662.9
4	204.3	552.7	518.9	508.5	498.6	454.1	416.9
5	181.9	347.6	326.4	319.8	313.5	285.6	262.2
6	162.0	218.6	205.2	201.1	197.2	179.6	164.9
7	144.3	137.5	129.1	126.5	124.0	112.9	103.7
8	128.5	86.47	81.18	79.56	77.99	71.04	65.22
9	114.4	54.38	51.05	50.03	49.05	44.67	41.02
10	101.9	34.20	32.11	31.47	30.85	28.10	25.79
11	90.74	21.51	20.19	19.79	19.40	17.67	16.22
12	80.81	13.53	12.70	12.44	12.20	11.11	10.20
13	71.96	8.507	7.987	7.827	7.673	6.989	6.416
14	64.08	5.350	5.023	4.922	4.826	4.395	4.035
15	57.07	3.365	3.159	3.096	3.035	2.764	2.538
16	50.82	2.126	1.987	1.947	1.909	1.738	1.596
17	45.26	1.331	1.250	1.224	1.200	1.093	1.004
18	40.30	0.8370	0.7858	0.7701	0.7549	0.6876	0.6313
19	35.89	. 5264	. 4942	. 4843	. 4748	. 4324	. 3970
20	31.96	. 3310	. 3108	. 3046	. 2986	. 2719	. 2497
21	28.46	. 2082	. 1955	. 1915	. 1878	. 1710	. 1570
22	25.35	. 1309	. 1229	. 1205	. 1181	. 1076	. 09876
23	22.57	. 08234	. 07731	. 07576	. 07427	. 06765	. 06211
24	20.10	. 05179	. 04862	. 04765	. 04671	. 04254	. 03906
25	17.90	. 03257	. 03058	. 02997	. 02938	. 02676	. 02456
26	15.94	. 02048	. 01923	. 01884	. 01847	. 01683	. 01545
27	14.20	. 01288	. 01209	. 01185	. 01162		
28	12.64	. 008101	. 007606	. 007454	. 007307	. 006656	. 006110
29	11.26	. 005095	. 004783	. 004688	. 004595	. 004186	. 003843
30	10.03	. 003204	. 003008	. 002948	. 002890	. 002632	. 002417
31	8.928	. 002015	. 001892	. 001854	. 001818	. 001656	. 001520
32	7.950	. 001267	. 001190	. 001166	. 001143	. 001041	. 0009559
33	7.080	. 0007971	. 0007483	. 0007333	. 0007189	. 0006548	. 0006012
34	6.305	. 0005013	. 0004706	. 0004612	. 0004521	. 0004118	. 0003781
35	5.615	. 0003152	. 0002960	. 0002900	. 0002843	. 0002590	. 0002378
36	5.000	. 0001983	. 0001861	. 0001824	. 0001788	. 0001629	. 0001495
37	4.453	. 0001247	. 0001171	. 0001147	. 0001125	. 0001024	. 00009405
38	3.965	. 00007842	. 00007363	. 00007216	. 00007074	. 00006443	. 00005914
39	3.531	. 00004932	. 00004630	. 00004538	. 00004448	. 00004052	. 00003720
40	3.145	. 00003102	. 00002912	. 00002854	. 00002798	. 00002548	. 00002339

Explanatory notes given at end of Table VII, p. 45 .

TABLE VII

Complete Wire Table, Standard Annealed Copper
American Wire Gage (B. \& S.). Metric Units

Gage No.	Diameter in min	Cross Section in mm^{2}	Ohms per Kilometer					
			$0^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
0000	11.68	107.2	0.1481	0.1576	0.1608	0.1640	0.1798	0.1957
000	10.40	85.03	. 1868	. 1988	. 2028	. 2068	. 2268	. 2468
00	9.266	67.43	. 2355	. 2506	. 2557	. 2607	. 2860	. 3112
0	8.252	53.48	. 2970	. 3161	. 3224	. 3288	. 3606	. 3924
1	7.348	42.41	. 3744	. 3985	. 4066	. 4146	. 4547	. 4948
2	6.544	33.63	. 4722	. 5025	. 5126	. 5228	. 5733	. 6240
3	5.827	26.67	. 5954	. 6336	. 6464	. 6592	. 7230	. 7868
4	5.189	21.15	. 7508	. 7990	. 8152	. 8312	. 9117	. 9921
5	4.621	16.77	. 9467	1.008	1.028	1.048	1.150	
6	4.115	13.30	1.194	1.270	1.296	1.322	1.450	1.578
7	3.665	10.55	1.505	1.602	1.634	1.667	1.828	1.989
8	3.264	8.366	1.898	2.020	2.061	2.102	2.305	2.508
9	2.906	6.634	2.394	2.547	2.599	2.650	2.906	3.163
10	2.588	5.261	3.018	3.212	3.277	3.342	3.665	3.988
11	2.305	4.172	3.806	4.050	4.132	4.214	4.622	5.029
12	2.053	3.309	4.799	5.108	5.211	5.314	5.828	6.342
13	1.828	2.624	6.052	6.441	6.571	6.701	7.349	7.997
14	1.628	2.081	7.631	8.122	8.285	8.450	9.267	10.08
15	1.450	1.650	9.622	10.24	10.45	10.65	11.68	12.72
16	1.291	1.309	12.13	12.91	13.18	13.44	14.73	16.03
17	1.150	1.038	15.30	16.28	16.61	16.94	18.58	20.22
18	1.024	0.8231	19.29	20.53	20.95	21.35	23.43	25.50
19	0.9116	. 6527	24.33	25.89	26.42	26.94	29.54	32.15
20	. 8118	. 5176	30.68	32.65	33.31	33.97	37.25	40.54
21	. 7230	. 4105	38.68	41.17	42.00	42.83	46.97	51.12
22	. 6438	. 3255	48.78	51.92	52.96	54.01	59.23	64.46
23	. 5733	. 2582	61.51	65.46	66.79	68.11	74.69	81.29
24	. 5106	. 2047	77.56	82.55	84.22	85.88	94.19	102.5
25	. 4547	. 1624	97.81	104.1	106.2	108.3	118.8	129.2
26	. 4049	. 1288	123.3	131.3	133.9	136.6	149.8	163.0
27	. 3606	. 1021	155.5	165.5	168.8	172.2	188.8	205.5
28	. 3211	. 08098	196.1	208.6	212.9	217.1	238.1	259.1
29	. 2859	. 06422	247.3	263.2	268.5	273.8	300.3	326.8
30	. 2546	. 05093	311.8	331.9	338.6	345.2	378.6	412.0
31	. 2268	. 04039	393.2	418.5	426.9	435.4	477.5	519.6
32	. 2019	. 03203	495.8	527.7	538.3	549.0	602.0	655.2
33	. 1798	. 02540	625.2	665.4	678.8	692.2	759.2	826.2
34	. 1601	. 02014	788.3	839.0	856.0	872.9	957.3	1042.
35	. 1426	. 01597	994.2	1058.	1079.	1101.	1207.	1314.
36	. 1270	. 01267	1254.	1334.	1361.	1388.	1522.	1656.
37	. 1131	. 01005	1581.	1682.	1716.	1750.	1920.	2089.
38	. 1007	. 007967	1993.	2120.	2164.	2207.	2420.	2634.
39	. 08969	. 006318	2513.	2675.	2729.	2783.	3052.	3321.
40	. 07987	. 005010	3170.	3373.	3441.	3509.	3849.	4188.

TABLE VII--Continued
METRIC
Complete Wire Table, Standard Annealed Copper-Continued
American Wire Gage (B. \& S.). Metric Units-Continued

Gage No.	Diameter in mm	Kilograms per Kilometer	Meters per Gram	Meters per Ohm					
				$0^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
0000	11.68	953.2	0.001049	6752.	6344.	6219.	6098.	5560.	5110.
000	10.40	755.9	. 001323	5354.	5031.	4932.	4836.	4410.	4052.
00	9.266	599.5	. 001668	4246.	3990.	3911.	3835.	3497.	3213.
0	8.252	475.4	. 002103	3367.	3164.	3102.	3042.	2773.	2548.
1	7.348	377.0	. 002652	2670.	2509.	2460.	2412.	2198.	2021.
2	6.544	299.0	. 003345	2118.	1990.	1951.	1913.	1744.	1603.
3	5.827	237.1	. 004217	1679.	1578.	1547.	1517.		
4	5.189	188.0	. 005318	1332.	1252.	1227.	$1203 .$	$1097 .$	$1008 .$
5	4.621	149.1	. 006706		992.5		954.0	869.8	799.3
6	4.115	118.2	. 008457	837.6	787.1	771.5	756.5	689.8	633.9
7	3.665	93.78	. 01066	664.3	624.2	611.8	600.0	547.1	502.7
8	3.264	74.37	. 01345	526.8	495.0	485.2	475.8	433.8	398.7
9	2.906	58.98	. 01696	417.8	392.6	384.8	377.3	344.0	316.2
10	2.588	46.77	. 02138	331.3	311.3	305.2	299.2	272.8	250.7
11	2.305	37.09	. 02696	262.7	246.9	242.0	237.3	216.4	198.8
12	2.053	29.42	. 03400	208.4	195.8	191.9	188.2	171.6	157.7
13	1.828	23.33	. 04287	165.2	155.3	152.2	149.2	136.1	125.0
14	1.628	18.50	. 05406	131.0	123.1	120.7	118.4	107.9	99.17
15	1.450	14.67	. 06816	103.9	97.65	95.72	93.86	85.58	78.65
16	1.291	11.63	. 08595	82.41	77.44	75.90	74.43	67.87	62.37
17	1.150	9.226	. 1084	65.35	61.41	60.19	59.02	53.82	49.46
18	1.024	7.317	. 1367	51.83	48.70	47.74	46.81	42.68	39.22
19	0.9116	5.803	. 1723	41.10	38.62	37.86	37.12	33.85	31.10
20	. 8118	4.602	. 2173	32.60	30.63	30.02	29.44	26.84	24.67
21	. 7230	3.649	. 2740	25.85	24.29	23.81	23.35	21.29	19.56
22	. 6438	2.894	. 3455	20.50	19.26	18.88	18.52	16.88	15.51
23	. 5733	2.295	. 4357	16.26	15.28	14.97	14.68	13.39	12.30
24	. 5106	1.820	. 5494	12.89	12.11	11.87	11.64	10.62	9.756
25	. 4547	1.443	. 6928	10.22	9.607	9.417	9.234	8.420	7.737
26	. 4049	1.145	. 8736	8.108	7.619	7.468	7.323	6.677	6.136
27	. 3606	0.9078	1.102	6.430	6.042	5.922	5.807	5.295	4.866
28	. 3211	. 7199	1.389	5.099	4.791	4.696	4.605	4.199	3.859
29	. 2859	. 5709	1.752	4.044	3.800	3.725	3.652	3.330	3.060
30	. 2546	. 4527	2.209	3.207	3.013	2.954	2.897	2.641	2.427
31	. 2268	. 3590	2.785	2.543	2.390	2.342	2.297	2.094	1.925
32	. 2019	. 2847	3.512	2.017	1.895	1.858	1.822	1.661	1.526
33	. 1798						1.445	1.317	1.210
34	. 1601	. 1791	5.584	1.268	1.192	1.168	1.146	1.045	0.9599
35	. 1426	. 1420	7.042	1.006	0.9451	0.9264	0.9085	0.8284	. 7612
36	. 1270	. 1126	8.879	0.7977	. 7496	. 7347	. 7205	. 6570	. 6037
37	. 1131	. 08931	11.20	. 6326	. 5944	. 5827	. 5714	. 5210	. 4787
38	. 1007	. 07083	14.12	. 5017	. 4714	. 4621	. 4531	. 4132	. 3797
39	. 08969	. 05617	17.80	. 3978	. 3738	. 3664	. 3593	. 3276	. 3011
40	. 07987	. 04454	22.45	. 3155	. 2965	. 2906	. 2850	. 2598	. 2388

Table continued on next page. Explanatory notes given at end of table.

METRIC
TABLE VII-Continued
Complete Wire Table, Standard Annealed Copper-Continued

American Wire Gage (B. \& S.). Metric Units-Continued

Gage No.	Diameter in mm	Ohms per Kilogram					
		$0^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
0000	11.68	0.0001552	0.0001653	0.0001687	0.0001721	0.0001889	0.0002058
000	10.40	. 0002468	. 0002629	. 0002682	. 0002736	. 0003004	. 0003272
00	9.266	. 0003924	. 0004180	. 0004265	. 0004351	. 0004777	. 0005203
0	8.252	. 0006240	. 0006646	. 0006782	. 0006918.	. 0007595	. 0008273
1	7.348	. 0009922	. 001057	. 001078	. 001100	. 001208	. 001316
2	6.544	. 001578	. 001680	. 001715	. 001749	. 001920	. 002092
3	5.827	. 002508	. 002672	. 002726	. 002781	. 003053	. 003326
4	5.189	. 003989	. 004248	. 004335	004422	. 004855	. 005288
5	4.621	. 006342	. 006755	. 006893	. 007031	. 007720	. 008408
6	4.115	. 01008	. 01073	. 01096	.01118	. 01228	. 01337
7	3.665	. 01604	. 01708	. 01743	. 01778	. 01952	. 02126
8	3.264	. 02550	. 02716	. 02771	. 02827	. 03104	. 03380
9	2.906	. 04054	. 04318	. 04407	. 04495	. 04935	. 05375
10	2.588	. 06446	. 06866	. 07006	. 07147	. 07847	. 08547
11	2.305	. 1025	. 1092	. 1114	. 1136	. 1248	. 1359
12	2.053	. 1630	. 1736	. 1771	. 1807	. 1984	. 2161
13	1.828	. 2592	. 2760	. 2817	. 2873	. 3154	. 3436
14	1.628	. 4121	. 4389	. 4479	. 4569	. 5016	. 5464
15	1.450	. 6552	. 6979	. 7121	. 7264	. 7975	. 8686
16	1.291	1.042	1.110	1.132	1.155	1.268	1.381
17	1.150	1.656	1.765	1.800	1.837	2.017	2.195
18	1.024	2.634	2.806	2.863	2.920	3.206	3.492
19	0.9116	4.092	4.461	4.552	4.644	5.098	5.553
20	. 8118	6.660	7.094	7.238	7.383	8.107	8.830
21	. 7230	10.59	11.28	11.51	11.74	12.89	14.04
22	. 6438	16.84	17.93	18.30	18.67	20.49	22.32
23	. 5733	26.77	2 2. 51	29.10	29.68	32.59	35.50
24	. 5106	42.57	45.34	46.27	47.20	51.82	56.44
25	. 4547	67.69	72.10	73.57	75.05	82.39	89.75
26	. 4049	107.6	114.6	117.0	119.3	131.0	142.7
27	. 3606	171.1	182.3	186.0	189.8	208.3	226.9
28	. 3211	272.1	289.8	295.8	301.7	331.2	360.8
29	. 2859	432.7	460.9	470.3	479.7	526.7	573.7
	. 2546						912.2
31	. 2268	1094.	1165.	1189.	1213.	1332.	1450.
32	. 2019	1740.	1853.	1891.	1928.	2117.	2306.
33	.1798	2766.	2946.	3006.	3066.	3367.	3667.
34	. 1601	4398.	4684.	4780.	4876.	5353.	5831.
35	. 1426	6993.	7448.	7601.	7753.	8512.	9272.
36	. 1270	11120.	11840.	12080.	12330.	13540.	14740.
37	. 1131	17680.	18830.	19220.	19600.	21520.	23440.
38	. 1007	28110.	29940.	30560.	31170.	34220.	37270.
$\begin{aligned} & 39 \\ & 40 \end{aligned}$	$\begin{aligned} & .08969 \\ & .07987 \end{aligned}$	$\begin{aligned} & 44700 . \\ & 71080 . \end{aligned}$	$\begin{aligned} & 47610 . \\ & 75710 . \end{aligned}$	$\begin{aligned} & 48590 . \\ & 77260 . \end{aligned}$	$\begin{array}{\|l\|l} 49560 . \\ 78800 . \end{array}$	$\begin{aligned} & 54410 . \\ & 86520 . \end{aligned}$	$\begin{aligned} & 59270 . \\ & 94240 . \end{aligned}$

Complete Wire Table, Standard Annealed Copper-Continued
American Wire Gage (B. \& S.). Metric Units-Continued

$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Diameter in mm	Grams per Ohm					
		$0^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
0000	11.68	6443000.	6049000.	5928000.	5811000.	5293000.	4859000.
000	10.40	4052000.	3803000.	3728000.	3655000.	3329000.	3056000.
00	9.266	2548000.	2392000.	2344000.	2298000.	2093000.	1922000.
0	8.252	1603000.	1505000.	1474000.	1446000.	1317000.	1209000.
1	7.348	1008000.	946200.	927300.	909100.	828000.	760200.
2	6.544	633900.	595100.	583200.	571700.	520700.	478100.
3	5.827	398700.	374300.	366800.	359600.	327500.	300700.
4	5.189	250700.	235400.	230700.	226100.	206000.	189100.
5	4.621	157700.	148000.	145100.	142200.	129500.	118900.
6	4.115	99170.	93100.	91230.	89440.	81460.	74790.
7	3.665	62370.	58550.	57380.	56250.	51230.	47040.
8	3.264	39220.	36820.	36090.	35380.	32220.	29580.
9	2.906	24670.	23160.	22690.	22250.	20260.	18600.
10	2.588	15510.	14560.	14270.	13990.	12740.	11700.
11	2.305	9756.	9160.	8976.	8800.	8015.	7359.
12	2.053	6136.	5760.	5645.	5534.	5040.	4628.
13	1.828	3859.	3623.	3550.	3480.	3170.	2910.
14	1.628	2427.	2278.	2233.	2189.	1994.	1830.
15	1.450	1526.	1433.	1404.	1377.	1254.	1151.
16	1.291	959.9	901.2	883.1	865.8	788.5	723.9
17	1.150	603.7	566.7	555.3	544.4	495.9	455.2
18	1.024	379.7	356.4	349.3	342.4	311.9	286.3
19	0.9116	238.8	224.2	219.7	215.4	196.2	180.1
20	. 8118	150.2	141.0	138.2	135.4	123.4	113.2
21	. 7230	94.44	88.66	86.89	85.18	77.58	71.23
22	. 6438	59.40	55.76	54.64	53.57	48.79	44.79
23	. 5733	37.35	35.07	34.36	33.69	30.68	28.17
24	. 5106	23.49	22.05	21.61	21.19	19.30	17.72
25	. 4547	14.77	13.87	13.59	13.32	12.14	11.14
26	. 4049	9.291	8.723	8.548	8.380	7.633	7.007
27	. 3606	5.343	5.486	5.376	5.270	4.800	4.407
28	. 3211	3.675	3.450	3.381	3.314	3.019	2.772
29	. 2859	2.311	2.170	2.126	2.084	1.899	1.743
30	. 2546	1.454	1.365	1.337	1.311	1.194	1.096
31	. 2268	0.9140	0.8582	0.8410	0.8244	0.7509	0.6894
32	. 2019	. 5749	. 5397	. 5289	. 5185	. 4723	. 4336
33	. 1798	. 3616	. 3394	. 3326	. 3261	. 2970	. 2727
34	. 1601	. 2274	. 2135	. 2092	. 2051	. 1868	. 1715
35	. 1426	. 1430	. 1343	. 1316	. 1290	. 1175	. 1079
36	. 1270	. 08994	. 08444	. 08275	. 08112	. 07389	. 06783
37	. 1131	. 05656	. 05310	. 05204	. 05101	. 04646	. 04266
38	. 1007	. 03557	. 03340	. 03273	. 03208	. 02922	. 02683
39	. 08969	. 02237	. 02100	. 02058	. 02018	. 01838	. 01687
40	. 07987	. 01407	. 01321	. 01294	. 01269	. 01156	. 01061

Note r.-The fundamental resistivity used in calculating the tables is the Annealed Copper Standard, viz, 0.15328 ohm (meter, gram) at $20^{\circ} \mathrm{C}$. The temperature coefficient for this particular resistivity, is $\alpha_{20}=0.00393$, or $a_{0}=0.00427$. However, the temperature coefficient is proportional to the conductivity, and hence the change of resistivity per degree C is a constant, 0.000597 ohm (meter, gram). The "constant mass" temperature coefficient of any sample is

$$
\alpha_{t}=\frac{0.000597+0.000005}{\text { resistivity in ohms (meter, gram) at } t^{\circ} \mathrm{C}}
$$

The density is 8.89 grams per cubic centimeter.
Note, 2. The values given in the tables are only for annealed copper of the standard resistivity. The user of the table must apply the proper correction for copper of any other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

NOTE 3.-This table is intended as an ultimate reference table, and is computed to a greater precision than is desired in practice. The practical user of a wire table is referred to the "Working Tables," Nos. VIII and IX.

ENGLISH

TABLE VIII

Working Table, Standard Annealed Copper Wire
 English Units

American Wire Gage (B. \& S.)

Gage No.	Diameter in Mils	Cross Section		Ohms per 1000 Feet		Pounds per 1000 Feet
		Circular Mils	Square Inches	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \left(=77^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 65^{\circ} \mathrm{C} \\ \left(=149^{\circ} \mathrm{F}\right) \end{gathered}$	
0000	460.	212000.	0.166	0.0500	0.0577	641.
000	410.	168000.	. 132	. 0630	. 0728	508.
00	365.	133000.	. 105	. 0795	. 0918	403.
0	325.	106000.	. 0829	. 100	. 116	319.
1	289.	83700.	. 0657	. 126	. 146	253.
2	258.	66400.	. 0521	. 159	. 184	201.
3	229.	52600.	. 0413	. 201	. 232	159.
4	204.	41700.	. 0328	. 253	. 293	126.
5	182.	33100.	. 0260	. 320	. 369	
6	162.	26300.	. 0206	. 403	. 465	79.5
7	144.	20800.	. 0164	. 508	. 587	63.0
8	128.	16500.	. 0130	. 641	. 740	50.0
9	114.	13100.	. 0103	. 808	. 933	39.6
10	102.	10400.	. 00815	1.02	1.18	31.4
11	91.	8230.	. 00647	1.28	1.48	24.9
12	81.	6530.	. 00513	1.62	1.87	19.8
13	72.	5180.	. 00407	2.04	2.36	15.7
14	64.	4110.	. 00323	2.58	2.97	12.4
15	57.	3260.	. 00256	3.25	3.75	9.86
16	51.	2580.	. 00203	4.09	4.73	7.82
17	45.	2050.	. 00161	5.16	5.96	6.20
18	40.	1620.	. 00128	6.51	7.52	4.92
19	36.	1290.	. 00101	8.21	9.48	3.90
20	32.	1020.	. 000802	10.4	12.0	3.09
21	28.5	810.	. 000636	13.1	15.1	2.45
22	25.3	642.	. 000505	16.5	19.0	1.94
23	22.6	509.	. 000400	20.8	24.0	1.54
24	20.1	404.	. 000317	26.2	30.2	1.22
25	17.9	320.	. 000252	33.0	38.1	0.970
26	15.9	254.	. 000200	41.6	48.1	. 769
27	14.2	202.	. 000158	52.5	60.6	. 610
28	12.6	160.	. 000126	66.2	76.4	. 484
29	11.3	127.	. 0000995	83.5	96.4	. 384
30	10.0	101.	. 0000789	105.	122.	. 304
31	8.9	79.7	. 0000626	133.	153.	. 241
32	8.0	63.2	. 0000496	167.	193.	. 191
33	7.1	50.1	. 0000394	211.	244.	. 152
34	6.3	39.8	. 0000312	266.	307.	. 120
35 促	5.6	31.5	. 0000248	336.	387.	. 0954
36	5.0	25.0	. 0000196	423.	489.	. 0757
37	4.5	19.8	. 0000156	533.	616.	. 0600
38	4.0	15.7	. 0000123	673.	777.	. 0476
39	3.5	12.5	. 0000098	848.	980.	. 0377
40	3.1	9.9	. 0000078	1070.	1240.	. 0299

NOTE I.-The fundamental resistivity used in calculating the table is the Annealed Copper Standard, viz, 0.15328 ohm (meter, gram) at $20^{\circ} \mathrm{C}$. The temperature coefficient for this particular resistivity is $a_{20}=0.00393$, or $a_{0}=0.00427$. However, the temperature coefficient is proportional to the conductivity, and hence the change of resistivity per degree C is a constant, 0.000597 ohm (meter, gram). The "constant mass" temperature coefficient of any sample is

$$
\alpha_{\mathrm{t}}=\frac{0.0005970 .000005}{\text { resistivity in ohms (meter, gram) at } t^{\circ} \mathrm{C}}
$$

The density is 8.89 grams per cubic centimeter.
Note 2.-The values given in the table are only for annealed copper of the standard resistivity. The user of the table must apply the proper correction for copper of any other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

Note 3.-Ohms per mile, or pounds per mile, may be obtained by multiplying the respective values above by 5.28 .

TABLE IX
METRIC

Working Table, Standard Annealed Copper Wire

American Wire Gage (B. \& S.). Metric Units

Note r. -The fundamental resistivity used in calculating the table is the Annealed Copper Standard, viz, 0.15328 ohm (meter, gram) at $20^{\circ} \mathrm{C}$. The temperature coefficient, for this particular resistivity, is $a_{20}=0.00393$, or $a_{0}=0.00427$. However, the temperature coefficient is proportional to the conductivity, and hence the change of resistivity per degree C is a constant, 0.000597 ohm (meter, gram). The "constant mass" temperature coefficient of any sample is

$$
\alpha_{\mathrm{t}}=\frac{0.000597+0.000005}{\text { resistivity in ohms (meter, gram) at } t^{\circ} \mathrm{C}}
$$

The density is 8.89 grams per cubic centimeter.
NOTE 2. -The values given in the table are only for annealed copper of the standard resistivity. The user of the table must apply the proper correction for copper of any other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

$$
5754^{\circ}-12-4
$$

TABLE X
Standard Annealed Copper Wire, (British) Standard Wire Gage

Gage No.	Diameter in Mils	Cross Section		Ohms per 1000 Feet		Pounds per 1000 Feet
		Circular Mils	Square Inches	$\begin{aligned} & 15.6^{\circ} \mathrm{C} \\ & \left(=60^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 65^{\circ} \mathrm{C} \\ \left(=149^{\circ} \mathrm{F}\right) \end{gathered}$	
$\begin{aligned} & 7-0 \\ & 6-0 \\ & 5-0 \end{aligned}$	$\begin{aligned} & 500 . \\ & 464 . \\ & 432 . \end{aligned}$	250000. 215300. 186600.	$\begin{array}{r} 0.1964 \\ .1691 \\ .1466 \end{array}$	$\begin{array}{r} 0.04076 \\ .04734 \\ .05461 \end{array}$	0.04885 .05673 .06544	$\begin{aligned} & 756.8 \\ & 651.7 \\ & 564.9 \end{aligned}$
$\begin{aligned} & 4-0 \\ & 3-0 \\ & 2-0 \end{aligned}$	$\begin{aligned} & 400 . \\ & 372 . \\ & 348 . \end{aligned}$	$\begin{aligned} & 160000 . \\ & 138400 . \\ & 121100 . \end{aligned}$	$\begin{aligned} & .1257 \\ & .1087 \\ & .09512 \end{aligned}$	$\begin{aligned} & .06369 \\ & .07364 \\ & .08415 \end{aligned}$	$\begin{aligned} & .07633 \\ & .08825 \\ & .1008 \end{aligned}$	$\begin{aligned} & 484.3 \\ & 418.9 \\ & 366.6 \end{aligned}$
$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 324 . \\ & 300 . \\ & 276 . \end{aligned}$	105000. 90000. 76180.	$\begin{aligned} & .08245 \\ & .07069 \\ & .05983 \end{aligned}$.09708 .1132 .1338	$\begin{aligned} & .1163 \\ & .1357 \\ & .1603 \end{aligned}$	$\begin{aligned} & 317.8 \\ & 272.4 \\ & 230.6 \end{aligned}$
$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 252 . \\ & 232 . \\ & 212 . \end{aligned}$	$\begin{aligned} & 63500 . \\ & 53820 . \\ & 44940 . \end{aligned}$	$\begin{aligned} & .04988 \\ & .04227 \\ & .03530 \end{aligned}$	$\begin{aligned} & .1605 \\ & .1893 \\ & .2267 \end{aligned}$	$\begin{aligned} & .1923 \\ & .2269 \\ & .2717 \end{aligned}$	$\begin{aligned} & 192.2 \\ & 162.9 \\ & 136.0 \end{aligned}$
$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 192 . \\ & 176 . \\ & 160 . \end{aligned}$	36860. 30980. 25600.	$\begin{aligned} & .02895 \\ & .02433 \\ & .02011 \end{aligned}$.2764 .3290 .3981	$\begin{aligned} & .3313 \\ & .3943 \\ & .4771 \end{aligned}$	$\begin{gathered} 111.6 \\ 93.76 \\ 77.49 \end{gathered}$
$\begin{array}{r} 9 \\ 10 \\ 11 \end{array}$	$\begin{aligned} & 144 . \\ & 128 . \\ & 116 . \end{aligned}$	$\begin{aligned} & 20740 . \\ & 16380 . \\ & 13460 . \end{aligned}$	$\begin{array}{r} .01629 \\ .01287 \\ .01057 \end{array}$.4914 .6220 .7573	.5890 .7454 .9076	$\begin{aligned} & 62.77 \\ & 49.59 \\ & 40.73 \end{aligned}$
$\begin{aligned} & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{array}{r} 104 . \\ 92 . \\ 80 . \end{array}$	$\begin{array}{r} 10820 . \\ 8464 . \\ 6400 . \end{array}$.008495 .006648 .005027	. 9422 1.204 1.592	1.129 1.443 1.908	$\begin{aligned} & 32.74 \\ & 25.62 \\ & 19.37 \end{aligned}$
$\begin{aligned} & 15 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 72 . \\ & 64 . \\ & 56 . \end{aligned}$	$\begin{aligned} & 5184 . \\ & 4096 . \\ & 3136 . \end{aligned}$.004072 . 003217 . 002463	$\begin{aligned} & 1.966 \\ & 2.488 \\ & 3.250 \end{aligned}$	$\begin{aligned} & 2.356 \\ & 2.982 \\ & 3.894 \end{aligned}$	$\begin{gathered} 15.69 \\ 12.40 \\ 9.493 \end{gathered}$
$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 48 . \\ & 40 . \\ & 36 . \end{aligned}$	$\begin{aligned} & 2304 . \\ & 1600 . \\ & 1296 . \end{aligned}$. 001810 . 001257 .001018	4.423 6.369 7.864	5.301 7.633 9.424	$\begin{aligned} & 6.974 \\ & 4.843 \\ & 3.923 \end{aligned}$
$\begin{aligned} & 21 \\ & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 32 . \\ & 28 . \\ & 24 . \end{aligned}$	$\begin{aligned} & 1024 . \\ & 784.0 \\ & 576.0 \end{aligned}$	$\begin{aligned} & .0008042 \\ & .0006158 \\ & .0004524 \end{aligned}$	$\begin{gathered} 9.952 \\ 13.00 \\ 17.69 \end{gathered}$	$\begin{aligned} & 11.93 \\ & 15.58 \\ & 21.20 \end{aligned}$	$\begin{aligned} & 3.098 \\ & 2.373 \\ & 1.744 \end{aligned}$
$\begin{aligned} & 24 \\ & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & 22 . \\ & 20 . \\ & 18 . \end{aligned}$	$\begin{aligned} & 484.0 \\ & 400.0 \\ & 324.0 \end{aligned}$	$\begin{aligned} & .0003801 \\ & .0003142 \\ & .0002545 \end{aligned}$	$\begin{aligned} & 21.06 \\ & 25.48 \\ & 31.45 \end{aligned}$	$\begin{aligned} & 25.23 \\ & 30.53 \\ & 37.69 \end{aligned}$	1.465 1.211 0.9807
$\begin{aligned} & 27 \\ & 28 \\ & 29 \end{aligned}$	16.4 14.8 13.6	269.0 219.0 185.0	$\begin{aligned} & .0002112 \\ & .0001720 \\ & .0001453 \end{aligned}$	$\begin{aligned} & 37.89 \\ & 46.52 \\ & 55.10 \end{aligned}$	$\begin{aligned} & 45.41 \\ & 55.76 \\ & 66.03 \end{aligned}$	$\begin{aligned} & .8141 \\ & .6630 \\ & .5599 \end{aligned}$
$\begin{aligned} & 30 \\ & 31 \\ & 32 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 11.6 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 153.8 \\ & 134.6 \\ & 116.6 \end{aligned}$	$\begin{aligned} & .0001208 \\ & .0001057 \\ & .00009161 \end{aligned}$	$\begin{aligned} & 66.28 \\ & 75.74 \\ & 87.37 \end{aligned}$	$\begin{gathered} 79.43 \\ 90.77 \\ 104.7 \end{gathered}$	$\begin{aligned} & .4654 \\ & .4073 \\ & .3531 \end{aligned}$
$\begin{aligned} & 33 \\ & 34 \\ & 35 \end{aligned}$	10.0 9.2 8.4	100.0 84.64 70.56	$\begin{aligned} & .00007854 \\ & .00006648 \\ & .00005542 \end{aligned}$	$\begin{aligned} & 101.9 \\ & 120.4 \\ & 144.4 \end{aligned}$	$\begin{aligned} & 122.1 \\ & 144.3 \\ & 173.1 \end{aligned}$	$\begin{aligned} & .3027 \\ & .2562 \\ & .2136 \end{aligned}$
$\begin{aligned} & 36 \\ & 37 \\ & 38 \end{aligned}$	7.6 6.8 6.0	57.76 46.24 36.00	$\begin{aligned} & .00004536 \\ & .00003632 \\ & .00002827 \end{aligned}$	176.4 220.4 283.1	$\begin{aligned} & 211.4 \\ & 264.1 \\ & 339.3 \end{aligned}$	$\begin{aligned} & .1748 \\ & .1400 \\ & .1090 \end{aligned}$
$\begin{aligned} & 39 \\ & 40 \\ & 41= \end{aligned}$	5.2 4.8 4.4	27.04 23.04 19.36	$\begin{aligned} & .00002124 \\ & .00001810 \\ & .00001521 \end{aligned}$	$\begin{aligned} & 376.9 \\ & 442.3 \\ & 526.4 \end{aligned}$	$\begin{aligned} & 451.7 \\ & 530.1 \\ & 630.8 \end{aligned}$	$\begin{aligned} & .08185 \\ & .06974 \\ & .05860 \end{aligned}$
$\begin{aligned} & 42 \\ & 43 \\ & 44 \end{aligned}$	4.0 3.6 3.2	16.00 12.96 10.24	$\begin{aligned} & .00001257 \\ & .00001018 \\ & .000008042 \end{aligned}$	$\begin{aligned} & 636.9 \\ & 786.3 \\ & 995.2 \end{aligned}$	$\begin{array}{r} 763.3 \\ 942.3 \\ 1193 . \end{array}$	$\begin{aligned} & .04843 \\ & .03923 \\ & .03100 \end{aligned}$
$\begin{aligned} & 45 \\ & 46 \\ & 47 \end{aligned}$	2.8 2.4 2.0	7.840 5.760 4.000	$\begin{aligned} & .000006158 \\ & .000004524 \\ & .000003142 \end{aligned}$	$\begin{aligned} & 1300 . \\ & 1769 . \\ & 2548 . \end{aligned}$	$\begin{aligned} & 1558 . \\ & 2120 . \\ & 3053 . \end{aligned}$.02373 .017 44* . 01211
$\begin{aligned} & 48 \\ & 49 \\ & 50 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.560 \\ & 1.440 \\ & 1.000 \end{aligned}$	$\begin{aligned} & .000002011 \\ & .000001131 \\ & .0000007854 \end{aligned}$	$\begin{array}{r} 3981 . \\ 7077 . \\ 10190 . \end{array}$	$\begin{array}{r} 4771 . \\ 8481 . \\ 12210 . \end{array}$	$\begin{aligned} & .007749 \\ & .004359 \\ & .003027 \end{aligned}$

Note r.-The fundamental resistivity used in calculating the table is the Annealed Copper Standard, viz, 0.15328 ohm (meter, gram) at $20^{\circ} \mathrm{C}$. The temperature coefficient for this particular resistivity is $a_{20}=0.00393$, or $a_{0}=0.00427$. However, the temperature coefficient is proportional to the conductivity, and hence the change of resistivity per degree C is a constant, 0.000597 ohm (meter, gram). The "constant mass" temperature coefficient of any sample is

$$
\alpha_{\mathrm{t}}=\frac{0.000597+0.000005}{\text { resistivity in ohms (meter, gram) at } t^{\circ} \mathrm{C}}
$$

The density is 8.89 grams per cubic centimeter.
NOTE 2.-The values given in the table are only for annealed copper of the standard resistivity. The user of the table must apply the proper correction for copper of any other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

Note 3.-Ohms per mile, or pounds per mile, may be obtained by multiplying the respective values above b- 5.28 .

TABLE XI

Standard Annealed Copper Wire, "Millimeter" Wire Gage

Diameter in mm	Cross Section in mm ${ }^{2}$	Ohms per Kilometer		$\underset{\substack{\text { Kilograms per } \\ \text { Kilometer }}}{ }$
		$20^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	
$\begin{array}{r} 10.0 \\ 9.0 \\ 8.0 \end{array}$	$\begin{aligned} & 78.54 \\ & 63.62 \\ & 50.27 \end{aligned}$	$\begin{gathered} 0.2195 \\ .2710 \\ .3430 \end{gathered}$	$\begin{array}{r} 0.2585 \\ .3192 \\ .4039 \end{array}$	$\begin{aligned} & 698.2 \\ & 565.6 \\ & 446.9 \end{aligned}$
$\begin{aligned} & 7.0 \\ & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 38.48 \\ & 28.27 \\ & 19.64 \end{aligned}$	$\begin{aligned} & .4480 \\ & .0098 \\ & .8781 \end{aligned}$	$\begin{gathered} .5276 \\ .7181 \\ 1.034 \end{gathered}$	$\begin{aligned} & 342.1 \\ & 251.4 \\ & 174.6 \end{aligned}$
4.5 4.0 3.5	15.90 12.57 9.621	1.084 1.372 1.792	1.277 1.616 2.110	141.4 111.7 85.53
$\begin{aligned} & 3.0 \\ & 2.5 \\ & 2.0 \end{aligned}$	7.069 4.909 3.142	2.439 3.512 5.488	2.872 4.136 6.463	$\begin{aligned} & 62.84 \\ & 43.64 \\ & 27.93 \end{aligned}$
1.8 1.6 1.4	2.545 2.011 1.539	6.775 8 11.575	7.979 10.979 13.19	22.62 137.87 13.69
$\begin{aligned} & 1.2 \\ & 1.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 1.131 \\ & 0.7854 \\ & .6362 \end{aligned}$	15.24 21.95 27.10	17.95 25.85 31.92	$\begin{gathered} 10.05 \\ 6.982 \\ 5.656 \end{gathered}$
.80 .70 .60	.5027 .3848 .2827	34.30 44.80 60.98	40.39 52.76 71.81	$\begin{aligned} & 4.469 \\ & 3.421 \\ & 2.514 \end{aligned}$
.50 .45 .40	.1964 .1590 .1257	87.81 108.4 137.2	103.4 127.7 161.6	1.746 1.414 1.117
.35 .30 .25	$\begin{array}{r}0.09621 \\ .07069 \\ .049 \\ \hline 09\end{array}$	179.2 243.9 351.2	211.0 287.2 413.6	$\begin{array}{r} 0.8553 \\ .6284 \\ .4364 \end{array}$
.20 .15 .10	$\begin{aligned} & .03142 \\ & .01767 \\ & .007854 \end{aligned}$	$\begin{aligned} & 548.8 \\ & 975.6 \\ & \text { 9195. } \end{aligned}$	$\begin{aligned} & \begin{array}{l} 646.3 \\ \text { 1149. } \\ 2585 . \end{array} \end{aligned}$	$\begin{aligned} & .2793 \\ & .1571 \\ & .06982 \end{aligned}$
. 05	. 001964	8781.	10340.	. 01746

Note r.-The fundamental resistivity used in calculating the table is the Annealed Copper Standard, viz, 0.15328 ohm (meter, gram) at $20^{\circ} \mathrm{C}$. The temperature coefficient, for this particular resistivity, is $a_{20}=0.00393$, or $a_{0}=0.004{ }^{2} 7$. However, the temperature coefficient is proportional to the conductivity, and hence the change of resistivity per degree C is a constant, 0.000597 ohm (meter, gram). The "constant mass" temperature coefficient of any sample is

$$
\alpha_{\mathrm{t}}=\frac{0.000597+0.000005}{\text { resistivity in ohms (meter, gram) at } \mathrm{t}^{\circ} \mathrm{C}}
$$

The density is 8.89 grams per cubic centimeter.
Note 2.-The values given in the table are only for annealed copper of the standard resistivity. The user of the table must apply the proper correction for copper of any other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

Bare Concentric Cables of Standard Annealed Copper
English Units

Note r. -The fundamental resistivity used in calculating the table is the Annealed Copper Standard, viz, o. 15328 ohm (meter, gram) at $20^{\circ} \mathrm{C}$. The temperature coefficient is given in Table II. The density is 8.89 grams per cubic centimeter.

NOTE 2. -This table is in accord with the standards adopted by the Standards Committee of the American Institute of Electrical Engineers in January, isis; both in respect to the "Number of wires" in "Standard strands" and "Flexible strands," and in respect to the correction for increase of resistance and mass due to the twist of the wires. The values given for "Ohms per 1000 feet" and "Pounds per roo o feet" are 2 per cent greater than for a solid rod of cross section equal to the total cross section of the wires of the cable. This increment of 2 per cent means that the values are correct for cables having a lay of I in 15.7 . For any other lay, equal to I in n, resistance or mass may be calculated by increasing the above tabulated values by

TABLE XIII
METRIC

Bare Concentric Cables of Standard Annealed Copper

Metric Units

"Circular Mils" (or Gage No.)	Total Cross Section in $\mathrm{mm}{ }^{2}$	Ohms per Kilometer		Kilograms per Kilometer	Standard Strands			Flexible Strands		
		$25^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$		Number of Wires	Diameter of Wires, in mm	Outside Diameter, in mm	Number of Wires	Diameter of Wires, in mm	Outside Diameter, in mm
2000000	1013.	0.0177	0.0204	9190.	127	3.19	41.4	169	2.76	41.4
1900000	963.	. 0186	. 0215	8730.	127	3.11	40.4	169	2.69	40.4
1800000	912.	. 0197	. 0227	8270.	127	3.02	39.3	169	2.62	39.3
1700000	861.	. 0208	. 0240	7810.	127	2.94	38.2	169	2.55	38.2
1600000	811.	. 0221	. 0255	7350.	127	2.85	37.1	169	2.47	37.1
1500000	760.	. 0236	. 0272	6890.	91	3.26	35.9	127	2.76	35.9
1400000	709.	. 0253	. 0292	6430.	91	3.15	34.7	127	2.67	34.7
1300000	659.	. 0272	. 0314	5970.	91	3.04	33.4	127	2.57	33.4
1200000	608.	. 0295	. 0341	5510.	91	2.92	32.1	127	2.47	32.1
1100000	557.	. 0322	. 0372	5050.	91	2.79	30.7	127	2.36	30.7
1000000	507.	. 0354	. 0409	4590.	61	3.25	29.3	91	2.66	29.3
950000	481.	. 0373	. 0430	4370.	61	3.17	28.5	91	2.60	28.5
900000	456.	. 0393	. 0454	4140.	61	3.09	27.8	91	2.53	27.8
850000	431.	. 0416	. 0481	3910.	61	3.00	27.0	91	2.45	27.0
800000	405.	. 0442	. 0511	3680.	61	2.91	26.2	91	2.38	26.2
750000	380.	. 0472	. 0545	3450.	61	2.82	25.3	91	2.31	25.4
700000	355.	. 0506	. 0584	3220.	61	2.72	24.5	91	2.23	24.5
650000	329。	. 0544	. 0629	2990.	61	2.62	23.6	91	2.15	23.6
600000	304.	. 0590	. 0681	2760.	61	2.52	22.7	91	2.06	22.7
550000	279.	. 0643	. 0743	2530.	61	2.41	21.7	91	1.97	21.7
500000	253.	. 0708	. 0817	2300.	37	2.95	20.7	61	2.30	20.7
450000	228.	. 0786	. 0908	2070.	37	2.80	19.6	61	2.18	19.6
400000	203.	. 0885	. 102	1840.	37	2.64	18.5	61	2.06	18.5
350000	177.	. 101	. 117	1610.	37	2.47	17.3	61	1.92	17.3
300000	152.	. 118	. 136	1380.	37	2.29	16.0	61	1.78	16.0
250000	127.	. 142	. 163	1150.	37	2.09	14.6	61	1.63	14.6
A. W. G.	107.	. 167	. 193	972.	19	2.68	13.4	37	1.93	13.5
000	85.	. 211	. 244	771.	19	2.39	11.9	37	1.71	12.0
00	67.4	. 266	. 307	611.	19	2.13	10.6	37	1.52	10.7
0	53.5	. 335	. 387	485.	19	1.89	9.46	37	1.36	9.50
1	42.4	. 423	. 488	385.	19	1.69	8.43	37	1.21	8.46
2	33.6	. 533	. 616	305.	7	2.47	7.42	19	1.50	7.51
3	26.7	. 672	. 776	242.	7	2.20	6.61	19	1.34	6.68
4	21.2	. 848	. 979	192.	7	1.96	5.88	19	1.19	5.95
5	16.8	1.07	1.23	152.	7	1.75	5.24	19	1.06	5.30
6	13.3	1.35	1.56	121.	7	1.56	4.67	19	0.944	4.72
7	10.5	1.70	1.96	95.7	7	1.39	4.16	19	. 841	4.20
8	8.37	2.14	2.48	75.9	7	1.23	3.70	19	- . 749	3.74

Note r.-The fundamental resistivity used in calculating the table is the Annealed Copper Standard, viz, 0.15328 ohm (meter, gram) at $20^{\circ} \mathrm{C}$. The temperature coefficient is given in Table II. The density is 8.89 grams per cubic centimeter.

Note 2.-This table is in accord with the standards adopted by the Standards Committee of the American Institute of Electrical Engineers in January, 1912; both in respect to the "Number of wires" in "Standard strands" and "Flexible strands," and in respect to the correction for increase of resistance and mass due to the twist of the wires. The values given for "Ohms per kilometer" and "Kilograms per kilometer" are 2 per cent greater than for a solid rod of cross section equal to the total cross section of the wires of the cable. This increment of 2 per cent means that the values are correct for cables having a lay of I in 15.7 - For any other lay, equal to x in n, resistance or mass may be calculated by increasing the above tabulated values by

$$
\left(\frac{484 \cdot}{n^{2}}-2 .\right) \%
$$

ENGLISH

TABLE XIV
Hard-Drawn Aluminum Wire at $20^{\circ} \mathrm{C}$ (or, $68^{\circ} \mathrm{F}$)

English Units

American Wire Gage (B. \& S.)

Gage No.	Diameter in Mils	Cross Section		Ohms per 1000 Feet	Pounds per 1000 Feet	Pounds per Ohm	Feet per Ohm
		Circular Mils	Square Inches				
0000	460.	212000.	0.166	0.0804	195.	2420.	12400.
000	410.	168000.	. 132	. 101	154.	1520.	9860.
00	365.	133000.	. 105	. 128	122.	957.	7820.
0	325.	106000.	. 0829	. 161	97.0	602.	6200.
1	289.	83700.	. 0657	. 203	76.9	379.	4920.
2	258.	66400.	. 0521	. 256	61.0	238.	3900.
3	229.	52600.	. 0413	. 323	48.4	150.	3090.
4	204.	41700.	. 0328	. 408	38.4	94.2	2450.
5	182.	33100.	. 0260	. 514	30.4	59.2	1950.
6	162.	26300.	. 0206	. 648	24.1	37.2	1540.
7	144.	20800.	. 0164	. 817	19.1	23.4	1220.
8	128.	16500.	. 0130	1.03	15.2	14.7	970.
9	114.	13100.	. 0103	1.30	12.0	9.26	770.
10	102.	10400.	. 00815	1.64	9.55	5.83	610.
11	91.	8230.	. 00647	2.07	7.57	3.66	
12	81.	6530.	. 00513	2.61	6.00	2.30	384.
13	72.	5180.	. 00407	3.29	4.76	1.45	304.
14	64.	4110.	. 00323	4.14	3.78	0.911	241.
15	57.	3260.	. 00256	5.22	2.99	. 573	191.
16	51.	2580.	. 00203	6.59	2.37	. 360	152.
17	45.	2050.	. 00161	8.31	1.88	. 227	120.
18	40.	1620.	. 00128	10.5	1.49	. 143	95.5
19	36.	1290.	. 00101	13.2	1.18	. 0897	75.7
20	32.	1020.	. 000802	16.7	0.939	. 0564	60.0
21	28.5	810.	. 000636	21.0	. 745	. 0355	47.6
22	25.3	642.	. 000505	26.5	. 591	. 0223	37.8
23	22.6	509.	. 000400	33.4	. 468	. 0140	29.9
24	20.1	404.	. 000317	42.1	. 371	. 00882	23.7
25	17.9	320.	. 000252	53.1	. 295	. 00555	18.8
26	15.9	254.	. 000200	67.0	. 234	. 00349	14.9
27	14.2	202.	. 000158	84.4	. 185	. 00219	11.8
28	12.6	160.	. 000126	106.	. 147	. 00138	9.39
29	11.3	127.	. 0000995	134.	. 117	. 000868	7.45
30	10.0	101.	. 0000789	169.	. 0924	. 000546	5.91
31	8.9	79.7	. 0000626	213.	. 0733	. 000343	4.68
32	8.0	63.2	. 0000496	269.	. 0581	. 000216	3.72
33	7.1	50.1	. 0000394	339.	. 0461	. 000136	2.95
34	6.3	39.8	. 0000312	428.	. 0365	. 0000854	2.34
35	5.6	31.5	. 0000248	540.	. 0290	. 0000537	1.85
36	5.0	25.0	. 0000196	681.	. 0230	.0000338	1.47
37	4.5	19.8	. 0000156	858.	. 0182	. 0000212	1.17
38	4.0	15.7	. 0000123	1080.	. 0145	. 0000134	0.924
39	3.5	12.5	. 00000979	1360.	. 0115	. 00000840	. 733
40	3.1	9.9	. 00000777	1720.	. 0091	. 00000528	. 581

TABLE XV
Hard-Drawn Aluminum Wire at $20^{\circ} \mathrm{C}$
Metric Units
American Wire Gage (B. \& S.)

$\begin{aligned} & \text { Gage } \\ & \text { No } \end{aligned}$	Diameter in mm	Cross Section in mm^{2}	Ohms per Kilometer	Kilograms per Kilometer	$\underset{\text { Grams per }}{\text { Ohm }}$	Meters per Ohm
0000	11.7	107.	0.264	289.	1100000.	3790.
000	10.4	85.0	. 333	230.	690000.	3010.
00	9.3	67.4	. 419	182.	434000.	2380.
0	8.3	53.5 ,	. 529	144.	273000.	1890.
1	7.3	42.4	. 667	114.	172000.	1500.
2	6.5	33.6	. 841	90.8	108000.	1190.
3	5.8	26.7	1.06	72.0	67900.	943.
4	5.2	21.2	1.34	57.1	42700.	748.
5	4.6	16.8	1.69	45.3	26900	593.
6	4.1	13.3	2.13	35.9	16900.	470.
7	3.7	10.5	2.68	28.5	10600.	373.
8	3.3	8.37	3.38	22.6	6680.	296.
9	2.91	6.63	4.26	17.9	4200.	235.
10	2.59	5.26	5.38	14.2	2640.	186.
11	2.30	4.17	6.78	11.3	1660.	
12	2.05	3.31	8.55	8.93	1050.	117.
13	1.83	2.62	10.8	7.08	657.	92.8
14	1.63	2.08	13.6	5.62	413.	73.6
15	1.45	1.65	17.1	4.46	260.	58.4
16	1.29	1.31	21.6	3.53	164.	46.3
17	1.15	1.04	27.3	2.80	103.	36.7
18	1.02	0.823	34.4	2.22	64.7	29.1
19	0.91	. 653	43.3	1.76	40.7	23.1
20	. 81	. 518	54.6	1.40	25.6	18.3
21	. 72	. 411	68.9	1.11	16.1	14.5
22	. 64	. 326	86.9	0.879	10.1	11.5
23	. 57	. 258	110.	. 697	6.36	9.13
24	. 51	. 205	138.	. 553	4.00	7.24
25	. 45	. 162	174.	. 438	2.52	5.74
26	. 40	. 129	22.	. 348	1.58	4.55
27	. 36			. 276	0.995	
28	. 32	. 0810	349.	. 219	. 626	2.86
29	. 29	. 0642	440.	. 173	. 394	2.27
30	. 25	. 0509	555.	. 138	. 248	1.80
31	. 227	. 0404	700.	. 109	. 156	1.43
32	. 202	. 0320	883.	. 0865	. 0979	1.13
33	. 180	. 0254	1110.	. 0686	. 0616	0.899
34	. 160	. 0201	1400.	. 0544	. 0387	. 712
35	. 143	. 0160	1770.	. 0431	. 0244	. 565
36	. 127	. 0127	2230.	. 0342	. 0153	. 448
37	. 113	. 0100	2820.	. 0271	. 00963	. 355
38	. 101	. 0080	3550.	. 0215	. 00606	. 282
$\begin{aligned} & 39 \\ & 40 \end{aligned}$.090 .080	.0063 .0050	$\begin{aligned} & 4480 . \\ & 5640 . \end{aligned}$. 0171	$\begin{aligned} & .00381 \\ & .00240 \end{aligned}$	$\begin{aligned} & .223 \\ & .177 \end{aligned}$

PART 3. APPENDICES

I. THE EXPRESSION OF RESISTIVITY

The names which have been in use for the various units of resistivity are frequently criticized. For example, "ohms per mil-foot" is unsatisfactory because the hyphen between mil and foot suggests a product and similarly "per" suggests a quotient. The name "ohms per meter-gram" is likewise objectionable, for interpretation by the usual conventions would lead to a false idea of the relations of resistance, mass, and length. Again, "microhms per cm cube" is open to the same misinterpretation. It is desirable to have names for these units which avoid this objection.

One way to select such names is to refer to the defining equations of the units and express the relations thereof by the usual conventions. Thus equations (I) and (2) below would give, for the units mentioned above, "ohm-circular-mils per foot," "ohm-grams per meter per meter," and "microhm-cm." These names (except the last) are certainly too cumbersome.

To overcome the difficulties it seems necessary to avoid the use of "per" and the hyphen in the names of the units of resistivity. There will be no misinterpretation possible if, e. g., the following expressions are used: "Resistance in ohms per foot of a uniform wire I mil in diameter," "resistance in ohms of a uniform wire I meter long weighing a gram," "resistance in microhms per centimeter of a bar I square centimeter in cross section." These names are exactly descriptive, and it is desirable to employ them whenever a careful statement of units is in order (the second one, e. g., is used on pages 5 and 23 of this circular). But when the unit is repeated, it is desirable to have a convenient abbreviated designation for it. We therefore use the following terms:

For mass resistivity $\left\{\begin{array}{l}\text { ohm (meter, gram). } \\ \text { ohm (mile, pound) }\end{array}\right.$
For volume resistivity $\left\{\begin{array}{l}\text { ohm (mil, foot). } \\ \text { ohm (meter, mm) } \\ \text { ohm (meter, } \mathrm{mm}^{2} \text {) } \\ \text { microhm-cm. } \\ \text { microhm-inch. }\end{array}\right.$
This set of abbreviated names is consistent in that each one states explicitly the units of the quantities employed in its definition. They are so similar to the older names that they can readily be understood by anyone familiar with the older expressions. "Resistivity" is definable in the most
general way as the resistance of a unit specimen, and hence a numerical value is given by stating the number of ohms in such a unit specimen. The units employed in defining the different kinds of unit specimen are given in the parentheses in the foregoing expressions. An exception is to be noted in the case of the last two. These might be written, consistently with the others, "microhm (cm)" and "microhm (inch);" but the expressions, "microhmcm " and "microhm-inch," indicating a product, are dimensionally correct and are already in use; and it is therefore considered advisable to use these.

The units of conductivity may be written in abbreviated forms similar to the units of resistivity, e. g., $\frac{\mathrm{I}}{\mathrm{ohm}}$ (meter, mm^{2}).

Not only the names of the units, but the meaning and relations of the different units involved in the expression of resistivity, are sometimes a source of confusion. The " mass resistivity," in terms of which the standard value for the resistivity of copper is expressed in this circular, is not familiar to some engineers and scientists. Very few textbooks even mention "mass resistivity." Furthermore, some persons think this unit is necessarily a less desirable one than "volume resistivity," i. e., the unit which is ordinarily defined as the resistance of a unit cube. An explanation and discussion of "mass resistivity," therefore, appears necessary. The advantages of this unit were appreciated a half century ago, for Lord Kelvin (Phil. Mag., 24, p. I56; 1862) said, "it is much to be desired that the weight-measure, rather than the diameter or the volume-measure, should be generally adopted for accurately specifying the gage of wires used as electric conductors." Furthermore, Matthiessen, in I865, gave his results of resistivity measurements of the metals in ohms (meter, gram). The American Institute of Electrical Engineers in 1893 defined the standard resistivity, from which their Copper Wire Table was calculated, in ohms (meter, gram). The British Engineering Standards Committee define the standard resistivity of copper in terms of the resistance in ohms of "a wire I meter long, weighing i gram." . In all these cases " mass resistivity" is used, and we see that it is a well-established practice to express standard values of resistivity in ohms (meter, gram). This unit is, moreover, established in commercial practice, at least for copper, as a number of the large electrical companies and copper-wire manufacturers in the United States express the resistivities of wires in terms of it. Those who employ English units exclusively use ohms (mile, pound), (sometimes called "pounds per mile-ohm"). This is exactly the equivalent of ohms (meter, gram), either unit being an expression of "mass resistivity," which is defined as the product of resistance per unit length and mass per unit length.

From the standpoint of the engineer and the user of conductors, especially line wires, the quantities directly concerned are the ohms, mass, and length; rather than the ohms, cross section, and length; and the former are the quantities actually measured in the usual commercial and engineering tests of copper. The measurement of cross section or density is comparatively rare, and should be so, since the mass can be more easily and accu-
rately measured. Letting $R=$ resistance, $m=$ mass, $l=$ length, $s=$ cross section, $d=$ density, $\delta=$ mass resistivity, $\rho=$ volume resistivity, we have

$$
\begin{equation*}
\delta=\frac{R}{l} \cdot \frac{m}{l} \tag{I}
\end{equation*}
$$

Therefore the value directly obtained from the measured quantities is δ. To obtain ρ, we have

$$
\begin{equation*}
\rho=\frac{R s}{l}=\frac{1}{d}\left(\frac{R}{l} \cdot \frac{m}{l}\right)=\frac{\delta}{d} \tag{2}
\end{equation*}
$$

A density must be used, in addition to the usually measured quantities, to give ρ. If instead of the actual density of the sample, which is usually unknown, a standard density d_{0} is used, then we obtain a fictitious ρ,

$$
\begin{equation*}
\rho_{0}=\frac{\delta}{d_{0}} \tag{3}
\end{equation*}
$$

If a value is taken for δ as standard, then samples may be compared with the standard directly; but if some value of ρ is taken as standard, the intermediary quantity, density, must be specified. Thus, from the practical standpoint, the "mass resistivity" combines two variables in one, viz, the "volume resistivity" and the density. To the purchaser of copper for conducting purposes it is equally desirable to have either the conductance I per cent greater or the mass I per cent less, and it is evident that either variation would affect the "mass resistivity" equally.

Since conductors are usually sold by weight, the relative commercial value to users of conductors of the same or even of different metals is given simply by multiplying the cost per unit mass by the mass resistivity. This statement of relative commercial value neglects differences in insulation, differences of stranding of cables, economy of space, etc. The reasons why the "mass resistivity" is preferable to the "volume resistivity" may be summarized as follows:
I. The measurement of either cross section or density in many cases is difficult and inaccurate.
2. The direct measurement of cross section is practically impossible for irregular shapes of cross section.
3. Conductors are sold by weight rather than by volume, and therefore the information of value to most users is given directly by the " mass resistivity."

Possibly one reason why the volume resistivity is still exclusively used by some people is the ease of defining it in terms of a unit cube. Such persons usually believe that their preference of volume resistivity over mass resistivity is due to the former's being more "scientific," whereas the real reason that they prefer it is because the mental picture of a unit cube is easy to retain. It is probable, however, that the worst thing about the
unit, "volume resistivity," is the mental picture of a unit cube which accompanies it. From experience with students' examination papers college instructors soon learn that this conception too frequently leads to the gross error of thinking of resistance as proportional to volume. Indeed, practical men often use the expression "ohms per cubic centimeter." The "resistance of a unit cube" is not a practical case; wires are the usual articles whose resistance is desired to be known, and a form of expression of "volume resistivity," which fits the case better, has been devised and is in extensive use. This form of expression is the "ohms (meter, mm) " or " ohms (mil, foot) " in which the greater dimension is the length of the wire and the smaller is the diameter. In these definitions we have the mental picture of a wire of a certain length and a certain diameter. When we speak of "ohms (meter, gram)" we similarly have the conception of a conductor of a certain length and a certain mass per unit length. There should be no greater difficulty about the second conception than about the first, especially since the mass per unit length can be actually determined with greater ease and accuracy than the mean diameter. The definitions of mass resistivity and volume resistivity can be made exactly symmetrical, thus: "Mass resistivity" = product of resistance per unit length into mass per unit length, and "volume resistivity" = product of resistance per unit length into volume per unit length.

It is to be noticed that the term "specific resistance" has not been used at all in this discussion. "Specific resistance" has been very extensively used in the past for the volume resistivity. The term was, however, not well chosen, and seems to be tending to go out of use and give way to "resistivity." "Specific resistance" is considered to be an unfortunately chosen name for the resistance of a unit quantity because similar names, e. g., specific heat, specific gravity, specific inductive capacity, refer primarily, not to the property of a unit quantity of the substance, but to the ratio of the property of the particular substance to the same property of a standard substance. Another pedagogical stumbling block is found herein, for students are sometimes found defining "specific resistance" as the ratio of the resistance of some quantity of a metal to the resistance of the same quantity of copper. The term "resistivity" is a better name for the resistance of a unit quantity, just as "conductivity" is a better term than "specific conductance" would be. "Specific resistance" has probably not been much used for the resistance of a unit mass.

There is no à priori reason why "resistivity" could not refer to the unit mass, as some people profess to believe; and this term has not been limited to the idea of the unit cube or unit cross section, historically. For example, as mentioned above, in the A. I. E. E. Copper Wire Table, the standard "resistivity" was given in ohms (meter, gram). "Resistivity" is simply the property of unit quantity of a substance, and in defining it we are at liberty to choose any of the units of length, mass, and time, and the international electrical units. Since there are two modes of defining resistivity in common use, the unit mass and the unit cube, it is always desirable
to indicate which is meant, by using the precise expressions "mass resistivity" and "volume resistivity." These expressions are used in Alexander Russell's "Theory of Electric Cables and Networks," i908. It may be worth remarking that no definition of resistivity is admissible which involves something not a property of the material itself. For example, we can not speak of a "cost resistivity" since a unit whose value depends on business conditions can not be considered a physical expression of the properties of unit quantity of a substance.

In the expression of "percent conductivity" there is a similar necessity for distinguishing between the definitions in terms of the unit mass and the unit cube. The term "percent conductivity" is extensively used in the copper industry, and on account of its convenience will probably continue in use. (See first sentence in section (d) on p. II.) Of course the percent conductivity can be calculated from either the mass resistivity or the volume resistivity, and if the density of the sample is different from the standard density these two percent conductivities will not agree. Accordingly, the use of "percent conductivity" should be limited to copper; unless it is very carefully indicated whether it was calculated from the mass resistivity or the volume resistivity by the use of the terms " mass percent conductivity," or "volume percent conductivity." A striking example of the difference between the two percent conductivities in the case of a metal of different density from that of copper is furnished by aluminum. Thus, the "mass percent conductivity " of average commercial hard-drawn aluminum is about 200 per cent, while the "volume percent conductivity" is about 6 I per cent. The general conclusion may be drawn from the foregoing that it is always desirable to state conductivity or resistivity directly in terms of the mass resistivity at a standard temperature rather than in terms of percent conductivity.

To sum up, this discussion has tried to make the following points clear; (1) That the older names for the units of resistivity are objectionable; (2) that from a practical standpoint the "mass resistivity" is preferable to the "volume resistivity"; (3) that the advantage of a mental picture to aid in defining volume resistivity is no less available in defining mass resistivity; (4) that "specific resistance" is an undesirable term; (5) that the term "resistivity" is susceptible of a certain breadth of definition; (6) that there are limitations to the proper use of "percent conductivity."

II. CALCULATION OF THE "RESISTIVITY-TEMPERATURE CONSTANT"

The temperature coefficient of resistance, as measured between potential terminals rigidly attached to the wire, expresses the change of resistance for a constant mass. The change of resistivity per degree involves a change of dimensions as well as this change of resistance, and hence the coefficient of expansion γ of copper must be considered as well as the temperature coefficient of resistance. α. The "mass resistivity" δ depends on the mass m, the resistance R, and the length l, as follows:

$$
\begin{gathered}
\delta=\frac{m R}{l^{2}} \\
\delta_{t}=\frac{m R_{20}\left(\mathrm{I}+\alpha_{20}[t-20]\right)}{l_{20}^{2}(\mathrm{I}+\gamma[t-20])^{2}} \\
=\delta_{20}\left(\mathrm{I}+\left[\alpha_{20}-2 \gamma\right][t-20]\right),(\text { since } \gamma \text { is very small }) .
\end{gathered}
$$

For ioo percent conductivity, using ohms (meter, gram)

$$
\begin{aligned}
\delta_{t} & =0.15328\left(\mathrm{I}+\left[\begin{array}{ll}
0.003 & 930-0.000034][t-20]) \\
& =0.15328+(0.15328)(0.003896)(t-20) \\
& =0.15328+0.000597(t-20)
\end{array}\right.\right.
\end{aligned}
$$

This "resistivity-temperature constant," o.000 597, is readily seen to be independent of the temperature of reference. It also holds for copper samples of all conductivities (in the range investigated), since, if we let the subscripts X and N denote samples of unknown and of standard conductivity, respectively,

$$
\frac{\alpha_{X}}{\alpha_{N}}=\frac{\delta_{N}}{\delta_{X}}, \text { or } \alpha_{X} \delta_{X}=\alpha_{X} \delta_{Y}=0.000
$$

Similarly the calculation may be made for the "volume resistivity" ρ, which involves the cross-section s :

$$
\begin{aligned}
& \rho=\frac{R s}{l} \\
& \rho_{t}=\frac{R_{20} s_{20}\left(\mathrm{I}+\alpha_{20}[t-20]\right)(\mathrm{I}+2 \gamma[t-20])}{l_{20}(\mathrm{I}+\gamma[t-20])} \\
&=\rho_{20}\left(\mathrm{I}+\left[\alpha_{20}+\gamma\right][t-20]\right),(\text { since } \gamma \text { is very small). }
\end{aligned}
$$

For 100 percent conductivity, using microhm-cms,

$$
\begin{aligned}
\rho_{t} & =\mathrm{I} .724 \mathrm{I}(\mathrm{I}+[\mathrm{O} .003930+0.000 \mathrm{OI} 7][t-20]) \\
& =\mathrm{I} .724 \mathrm{I}+(\mathrm{I} .724 \mathrm{I})(0.003947)(t-20) \\
& =\mathrm{I} .724 \mathrm{I}+0.0068 \mathrm{I}(t-20)
\end{aligned}
$$

This "resistivity-temperature constant," 0.006 8I, similarly holds for any temperature of reference and any conductivity.

This effect of thermal expansion in the expression of the temperature coefficient is treated on pp. 93 to 96 of Bulletin of the Bureau of Standards, Vol. 7, No. i, in the paper on "The Temperature Coefficient of Resistance of Copper." Thus, the explanation given herewith is contained in the two formulas:

$$
\begin{align*}
& \alpha_{\grave{o}}=\alpha_{R}-2 \gamma \tag{35}\\
& \alpha_{\rho}=\alpha_{R}+\gamma \tag{2}
\end{align*}
$$

The relations of these-temperature coefficients to that obtained when the measurements are made between knife-edges are given in formulas (38), (39), and (40) of the same paper. Although the effect of thermal expansion is small, it was considered desirable to take account of it, since these constants will be used in reducing the results of resistivity measurements from one temperature to another, and troublesome inconsistencies would otherwise arise. It must be carefully noted that the constants here given are different from those in the paper just referred to, owing to the different value of resistivity, and consequently of temperature coefficient, taken as corresponding to 100 percent conductivity.

Attention is called to the great convenience of the "resistivity-temperature constant" in computing the temperature coefficient, α_{t}, at any temperature t for any sample of copper whose resistivity is known at the temperature t. Thus, $\alpha_{t}=\frac{0.000597}{\delta_{t}}$. The α_{t} thus obtained, however, is the α_{o} of formula (35) above, viz, the "temperature coefficient of mass resistivity." To obtain the more frequently used "constant mass temperature coefficient of resistance," (that obtained by resistance measurements between potential terminals rigidly attached to the wire), we have

$$
\begin{aligned}
\alpha_{t} & =\frac{0.000597+0.000-005}{\text { ohms (meter, gram) at } t^{\circ} \mathrm{C}} \\
\text { Also, } \alpha_{t} & =\frac{0.0068 \mathrm{I}-0.000 \mathrm{o} 3}{\text { microhm-cms at } t^{\circ} \mathrm{C}} \\
\text { Also, } \alpha_{t} & =\frac{3.4 \mathrm{I}+0.03}{\text { ohms (mile, pound) at } t^{\circ} \mathrm{C}} \\
\text { Also, } \alpha_{t} & =\frac{0.00268-0.000 \text { oI }}{\text { microhm-inches at } t^{\circ} \mathrm{C}} \\
\text { Also, } \alpha_{t} & =\frac{0.0409-0.0002}{\text { ohms (mil, foot) at } t^{\circ} \mathrm{C}}
\end{aligned}
$$

These formulas furnish a very convenient connection between the " resistivitytemperature constant" and the temperature coefficient of resistance.

III. THE DENSITY OF COPPER

As stated above, in Appendix I, the quantities measured in the usual engineering or commercial tests of resistivity of copper are resistance, mass, and length. The constant of the material which is actually measured is therefore the mass resistivity. When it is desired to calculate the resistance of a wire from its dimensions, it is necessary to know the density in addition to the mass resistivity. The density of copper is usually considered to vary so little from sample to sample that the volume resistivity can be calculated for a sample by the use of a standard value for the density. The density is the connecting link between mass resistivity and volume resistivity, the former being proportional to the product of the latter into the density. It is the purpose of this Appendix to present some data on the density of copper used for conductors, obtained at the Bureau of Standards in connection with the investigations of the temperature coefficient and the conductivity of copper. The average value from all the data is the figure which has been most frequently used in the past as a standard value, viz, 8.89 (at $20^{\circ} \mathrm{C}$). The data may be conveniently divided into three parts.

First, the density has been determined on a number of the wire samples submitted to the Bureau of Standards for ordinary conductivity tests by various companies. During the three years, i908-1910, the density of 36 such samples was determined. These samples had been submitted by seven companies, as follows: Three smelters, three electrolytic refiners, one user of copper, who bought his material from various copper companies. The number of samples and the mean density, for each of these companies, is shown in the following table:

Number of samples	Density
8	8.882
2	8.892
3	8.869
3	8.895
4	8.918
12	8.872
4	8.878
	Mean........8.887

All of the 36 samples were of conductivity greater than 97.5 per cent, except one of the samples in the fourth group, for which the conductivity was 94.6 per cent and the density was 8.887 .

The second group of data is that obtained from the wires which were included in the investigations of the temperature coefficient and resistivity of copper. Inasmuch as the "mass resistivity" was considered the important quantity rather than the "volume resistivity," it was not necessary
in the investigation to determine the density. However, measurements were made on a few samples from three of the companies whose copper was included in the investigation, and data were obtained by Mr. George L. Heath, of the Calumet and Hecla Smelting Works, on 18 samples of copper, a number of which were included in the Bureau of Standards investigation. The results, for the four companies, are summarized in the following table:

Number of samples	Density
3	8.880
1	8.895
1	8.900
18	8.899
	Mean........8.893

All of these samples were of conductivity greater than 95 per cent.
The third group of data is that obtained at the Physikalisch-Technische Reichsanstalt, of Germany, by Prof. Lindeck, ${ }^{12}$ and given in the Appendix ${ }^{23}$ of the paper on "The temperature coefficient of resistance of copper." These results are for copper samples submitted for test at the Reichsanstalt during the five years, 1905-r909. The mean value of the density for the 48 samples is
8.890.

Some of these samples were of low conductivity, down to one-third of the conductivity of pure copper. Taking only the 34 samples of conductivity greater than 94 per cent, the mean value of the density is
8.88ı.

The final average value may be computed from the three groups of data in the following way, for example:

B. S. tests.	8. 887
B. S. Investigation.	8. 893
Reichsanstalt.	8.890
Final average	8.890

Or, if we use the Reichsanstalt value for only the samples whose conductivity exceeded 94 per cent, we have:

B. S. tests.	8. 887
B. S. investigation	8. 893
Reichsanstalt.	8.88I
Final average	8.887

Or, if we consider the Calumet and Hecla measurements and the other measurements of the second group as independent means, and again use the

[^8]Reichsanstalt value for only the samples whose conductivity exceeded 94 per cent, we have:

B. S. tests.	8.887
B. S. investigation.	8.893
Calumet and Hecla.	8.899
Reichsanstalt	8.88I
Final average	8.890

For any reasonable method of calculating the final average, we find that, to three figures, the value is
8.89.

Since, in addition to the weight of the foregoing evidence, this value has been very widely used as standard, there seems to be no doubt that it is the best figure to assume for the density of copper (at $20^{\circ} \mathrm{C}$).

In justification of the assumption made in engineering practice that the variations of the density of particular samples of copper from the standard mean value do not exceed the limits of commercial accuracy, the data on the samples discussed in the foregoing show that the density is usually between 8.87 and 8.9 r, that in a few cases it varies as far as 8.85 and 8.93, and that in extreme cases it can vary to 8.83 and 8.94. We are here referring to copper of conductivity greater than 94 per cent.

The question sometimes arises whether there is any difference in the density of annealed and of hard-drawn copper. That there is no appreciable difference was shown by experiments made by Mr. Heath on the 18 wires mentioned above, which were of 80 mils and 104 mils diameter (No. Io and No. 12 A. W. G.). The mean density of 8 annealed samples was 8.899 . The mean density of ro hard-drawn samples from the same coils was 8.898 . After these hard-drawn samples were annealed their mean density was 8.900. The very small differences between these three means are too small to be considered significant. The densities of all the 18 samples varied from 8.878 to 8.916 .

Finally, it is desired to point out that confusion sometimes arises over the different ways of specifying density and "specific gravity." For instance, this has led to a criticism of the value, 8.89 for density, as being too low a figure. The critic, however, had in mind the "specific gravity referred to water as $20^{\circ} \mathrm{C}$." Density, defined as the number of grams per cubic centimeter, is identically equal to "specific gravity referred to water at its maximum density." A "specific gravity referred to water at $20^{\circ} \mathrm{C}$ " of 8.91 is equal to a density, or "specific gravity referred to water at its maximum density," of 8.8946 . It is apparent that the term "specific gravity" is not definite unless it be stated to what temperature of water it is referred. Since varying interpretations can not be given the term density, this is the preferable term. Of course, since a metal expands as its temperature rises, its density decreases. Thus, if the density of copper is 8.89 at $20^{\circ} \mathrm{C}$, it is 8.90 at $0^{\circ} \mathrm{C}$. Consequently, when we state either a density or a specific gravity, the temperature of the substance whose density we are giving should be specified.

To sum up this discussion, the density of copper has been found to be 8.89 at $20^{\circ} \mathrm{C}$.
$5754^{\circ}-\mathrm{I} 2-5$

IV. CALCULATION OF THE RESISTANCE AND MASS PER UNIT LENGTH OF CABLES

In the first place, it is proposed to show that the per cent increase of resistance of a cable with all the wires perfectly insulated from one another over the resistance of the "equivalent solid rod" is exactly equal to the per cent decrease of resistance of a cable in which each wire makes perfect contact with a neighboring wire at all points of its surface. That is, if
$R_{s}=$ resistance of a solid wire or rod of the same length and of cross section equal to the total cross section of the cable (taking the cross section of each wire perpendicular to the axis of the wire),
$R_{1}=$ resistance of a cable with the individual wires perfectly insulated from one another,
$R_{2}=$ resistance of a hypothetical cable with the wires distorted into such shape that they make perfect contact at all points of their surfaces (the layers all being twisted in the same direction),

$$
\text { then } R_{s}=\frac{R_{1}+R_{2}}{2}
$$

$R_{1}>R_{s}$, because on account of the stranding the path of the current is longer than it would be if parallel to the axis of the cable. $R_{2}<R_{s}$, because the path of the current is in this case parallel to the axis of the cable, which path has a greater cross section than the sum of the cross sections of each wire taken perpendicular to the axis of the wire

$$
\therefore R_{1}>R_{s}>R_{2}
$$

In showing that R_{s} is just halfway between R_{1} and R_{2}, we use the symbols:
$\rho=$ volume resistivity
$l=$ length along axis of cable; or length of "equivalent solid rod"
$s=$ total cross section of the wires of the cable, taken perpendicular to axis of wire; or cross section of "equivalent solid rod"
$\Delta l=$ increase of length of wire due to twisting
$\Delta s=$ increase of cross section perpendicular to axis of cable due to twisting We have:

$$
\begin{align*}
& R_{s}=\frac{\rho l}{s} \tag{I}\\
& R_{1}=\frac{\rho(l+\Delta l)}{s} \tag{2}\\
& R_{2}=\frac{\rho l}{s+\Delta s} \tag{3}
\end{align*}
$$

The following diagram shows a side view of one wire of a cable. In the diagram only one dimension of the cross section, s, is shown; the dimension perpendicular to this is unchanged by the twisting, and hence s is proportional to the dimension shown.

Fig. 3
By similar triangles,

$$
\begin{gather*}
\frac{s+\Delta s}{s}=\frac{l+\Delta l}{l} \\
s+\Delta s=s\left(\mathrm{I}+\frac{\Delta l}{l}\right) \tag{4}\\
\therefore R_{2}=\frac{\rho l}{s\left(\mathrm{I}+\frac{\Delta l}{l}\right)}=\frac{\rho l}{s}\left(\mathrm{I}-\frac{\Delta l}{l}\right), \text { since } \frac{\Delta l}{l} \text { is small. } \tag{5}
\end{gather*}
$$

From (2),

$$
\begin{align*}
& R_{1}=\frac{\rho l}{s}\left(\mathrm{I}+\frac{\Delta l}{l}\right) \tag{6}\\
& \therefore R_{1}+R_{2}=\frac{2 \rho l}{s} \tag{7}
\end{align*}
$$

From (1) and (7),

$$
R_{s}=\frac{R_{1}+R_{2}}{2}
$$

The resistance of an actual cable must be between R_{1} and R_{2}. Although the case represented by R_{2} is highly hypothetical, still the effect of contact between the wires is not zero. This is shown by the fact that the resistance of cables increases with age, which may be considered to be due to contamination of the wire surfaces. Hence the resistance of a cable is somewhat less than R_{1}. Manufacturers agree, however, that it is much nearer R_{1} than R_{s}, and it is ordinarily taken as equal to R_{1}. By equations (1) and (6),

$$
\frac{R_{1}-R_{s}}{R_{s}}=\frac{\Delta l}{l}
$$

The resistance of a cable is therefore taken to be greater than R_{s} by a fractional amount equal to $\frac{\Delta l}{l}$. The mass of a cable is greater than the mass of the "equivalent solid rod" by a fractional amount exactly equal to $\frac{\Delta l}{l}$. This is readily seen, and may be considered to be due either to increase of length or to increase of cross section. This fraction is taken to be 2 per cent in calculating the tables of this circular. This involves the assumption of a definite value for the "lay" or pitch. The method of computing this fraction from the "lay" of the cable is given herewith. Let
$d=$ diameter of the helical path of one wire.
$L=$ length along axis of cable for one complete revolution of wire about axis,
$n=\frac{L}{d}=$ number of times the diameter d is contained in the length L, "Lay" $=\frac{d}{L}=\frac{1}{n}=$ ratio of the diameter d to the length L.
The lay is usually expressed as $\frac{\mathrm{I}}{n}$ or " I in n "; thus we may speak of a lay of $1 / 20$, or I in 20 .

Consider a wire of length $(L+\Delta L)$, developed in a plane containing the axis of the cable, of length L. The developed wire and the axis make with each other the angle θ, in the figure. The third side of the triangle equals in length the circumference of the helical path of the wire.

Fig. 4

$$
\begin{gathered}
\tan \theta=\frac{\pi d}{L}=\frac{\pi}{n} \\
\frac{L+\Delta L}{L}= \\
=\sec \theta=\sqrt{I+\tan ^{2} \theta} \\
= \\
I+\frac{\pi^{2}}{n^{2}}
\end{gathered}
$$

All terms of higher order than the first are negligible for the purpose in hand; hence the correction factor to obtain resistance or mass per unit length of a cable from that of the "equivalent solid rod" is

$$
\left(\mathrm{I}+\frac{\Delta l}{l}\right)=\left(\mathrm{I}+\frac{\Delta L}{L}\right)=\mathrm{I}+\frac{\mathrm{I}}{2}\left(\frac{\pi^{2}}{n^{2}}\right)
$$

This correction factor must be computed separately for each layer of the strands when the lay is different for different layers of the cable. If L is the same for each layer of the cable, the lay varies because of the change of d. It should not be forgotten that the central wire is untwisted.

The lay corresponding to a correction of 2 per cent is calculated thus:

$$
\begin{aligned}
& \mathrm{I}+2 \%=\mathrm{I}+\frac{1}{2}\left(\frac{9.87}{n^{2}}\right), \\
& n=\mathrm{I} 5.7
\end{aligned}
$$

This means that the values given in Tables XII and XIII for resistance and mass per unit length correspond to cables having a lay of I in 15.7 . If the lay is known and is different from I in 15.7, resistance or mass may be calculated by multiplying the values in Tables XII and XIII by

$$
\mathrm{I}+\left(\frac{484 .}{n^{2}}-2 .\right) \%
$$

For example, if the lay is I in 12 , resistance or mass may be obtained by adding I. 4 per cent to the values in the tables. If the lay is I in 30 , resistance or mass may be obtained by subtracting I.5 per cent from the values in the tables.

[^0]: ${ }^{1}$ Phil. Trans., 152, p. i; 1862. Pogg. Ann., 115, p. 353; 1862. Report of Brit. Ass., p. 365; 1864. Phil. Mag., 29, p. 36I; 1865.
 ${ }^{2}$ London Elec., 42, p. 786; 1899. Elec. World and Eng., 33, p. 516; 1899; and 35, p. 389; I900.
 ${ }^{3}$ Phil. Mag., 36, p. 271; 1893.
 4 "Normalien Vorschriften und Leitsätze," p. 68; 1907. E. T. Zs., 17, p. 402; 1896.
 ${ }^{5}$ See note 1 .
 ${ }^{6}$ C. Hering, "Conversion Tables," p. 104 (published by John Wiley \& Sons, N. Y., I904).

[^1]: ${ }^{7}$ Phil. Trans., 152, p. i; 1862. Pogg. Ann., 115, p. 353; 1862.
 ${ }^{8}$ Kennelly and Fessenden: Physical Review, $\mathbb{1}$, p. 260; 1893. F. B. Crocker: London Elec.,58, p. 968; 1907. R. T. Glazebrook: London Elec., 59, p. 65; 1907.
 ${ }^{9}$ Trans. A. I. E. E., 10, supplement, Oct., I893.

[^2]: ${ }^{10}$ This name was suggested for the standard value recommended by the Bureau in rgro. It is now recommended that this name be reserved for the new value.
 ${ }^{11}$ The term "ohms (mile, pound)" is exactly equivalent to "pounds per mile-ohm," which is sometimes used. Either term means the product of ohms per mile into pounds per mile. "Ohms (mile, pound)" is chosen here, because of its agreement in form with "ohms (meter, gram)."
 ${ }^{12}$ Matthiessen and Vogt: Phil. Trans., 154, p. 167; 1864.
 ${ }^{13}$ Varhand. d. Deut. Phys. Gesell., 13, p. 65; r9Ir.

[^3]: ${ }^{14}$ S. S. Wheeler: Elec. World, 10. 254; 1887.

[^4]: ${ }^{15}$ The information about wire gages was gathered from the writings on the subject in scientific literature and in the catalogues of manufacturers, and also from special correspondence with leading manufacturers in America and Europe, undertaken by the Bureau of Standards to find out the current practices.

 The name "Steel Wire Gage" was suggested by the Bureau of Standards, in its correspondence with various companies, and it met with practically unanimous approval. It was necessary to decide upon a name for this gage, and the three names which have been used for it in the past were all open to the objection that they were the names of particular companies. These companies have accepted the new name. The abbreviation of the name of the gage should be "Stl. W. G.," to distinguish it from "S. W. G.," the abbreviation for the (British) Standard Wire Gage. When it is necessary to distinguish the name of this gage from others which may be used for steel wire, e. g., the (British) Standard Wire Gage, it may be called the United States Steel Wire Gage.

[^5]: ${ }^{17}$ The individual wire is also called a "strand." The term "strand," in general, means any wire or group of wires forming a portion of a stranded conductor or a cable.

[^6]: ${ }^{18}$ Matthiessen's formula: $\lambda_{t}=\lambda_{0}\left(1-0.003870 \mathrm{It}+0.000009009 \mathrm{t}^{2}\right)$. λ_{t} and $\lambda_{0}=$ reciprocal of resistance at t° and $0^{\circ} \mathrm{C}$, respectively.

 19 This temperature coefficient applies only to this particular resistivity. The temperature coefficient is considered to be proportional to conductivity. Expressed otherwise, the change of resistivity per degree C is considered to be a constant, viz, 0.000597 ohm (meter, gram). See p. io.
 ${ }^{20} \mathrm{At} 15.6^{\circ} \mathrm{C}$.
 ${ }^{21}$ This is the density at $20^{\circ} \mathrm{C}$. It corresponds to 8.90 at $0^{\circ} \mathrm{C}$.

[^7]: 22 The Steel Wire Gage is the same gage which has been known by the various names: "Washburn and Moen," "Roeb-

[^8]: ${ }^{23}$ Bulletin of Bureau of Standards, 7, pp. 97-Ior; I910.

