
NBSIR 75-780

Mathematics and Engineering
in Computer Science

Christopher J. Van Wyk

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, D. C. 20234

August, 1975

Final Report

U S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

NBSIR 75-780

MATHEMATICS AND ENGINEERING
IN COMPUTER SCIENCE

Christopher J. Van Wyk

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D. C. 20234

August, 1975

Final Report

U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary

James A. Baker, III, Under Secretary

Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

I

I. Introduction

The objective of the research which culminated in this document 'was

to identify and characterize areas of mathematics and engineering v/hich

are relevant to computer science. The descriptions of technical fields

were to be comprehensible to laymen, yet accurate enough to satisfy

technically knowledgeable personnel, and informative for all readers.

The division of the fields, shown in the table of contents, is

somewhat arbitrary, but it is also quite convenient. A short expla-

nation might be helpful.

The mathematical fields can be grouped by noting the importance of

a field to computer science, and, to a lesser extent, the existence of

the field independent of computer science. For example. Boolean algebra

and information theory could (and did) exist without computers being

available. On the other hand, most problems in artificial intelligence

or optimization, once they reach even moderate complexity, must be solved

with a computer, since hand solution would take too much time.

The criteria for grouping the engineering fields are similar. Those

which have "lives of their own," like circuit theory and signal processing,

are classified as contributing to computer science, whereas engineering

fields like microprogramming and software engineering which are dependent

for their existence on computers are listed as components of computer

engineering.

It is important to note that many of the fields covered herein do

not have a generally accepted definition. Hence, the definitions stated

i

have been culled from the listed references, and joined into a coherent

statement which hopefully delimits the field neither too broadly nor too

narrowly. In cases where serious differences about a field's subject

matter were found in the literature, a footnote indicating the source of

the various components of the definitions has been written.

In a work such as this, no list of references could be complete;

hence, no attempt has been made to include all relevant references.

Instead, works have been cited because they are classics in the field or

they provide a good introduction to it. Most of the references listed in

the bibliography are books; many contain comprehensive bibliographies

which reference journal articles. Most journal articles were not included

because they dealt with small areas of a field, rather than providing a

comprehensive view, like books.

This work could not have been completed in a summer without the help of

many members of the Institute for Computer Sciences and Technology.

Among those I would like to thank are: Dr. Ruth M. Davis, for giving me

the opportunity to do this work, and supporting me throughout the effort;

Dr. Joseph 0. Harrison, Jr., who spent many hours reviewing drafts of each

section, suggesting (though never demanding) changes and clarifications

which needed to be made; Dr. Marshall Abrams, Dr. James Albus, Dr. John Evans

Mr. S. Jeffery, Mr. George Lindamood, Dr. Gordon Lyon, Mr. Paul Meissner,

Mr. Thomas N. Pyke, Jr., and Dr. Selden Stewart, who helped me with par-

ticularly difficult topics, reviewed sections related to their areas of

expertise and suggested improvements; Mmes. Jo Ann Brooks, Elaine Frye,

Beverly Geisbert, Shirley Radack, and Anita Walker, who typed the many

drafts and the final copy of this report; and the staffs of the Bureau

and Institute libraries, as well as many individuals, who allowed me to

search through their collections for reference materials.

iii

Table of Contents

I. Introduction i

II, How to Use This Document 1

III. List of Topics Not Treated Separately 3

IV. Mathematical Fields

A. Contributing to Computer Science

1. Theory of Algorithms 5

2. Automata Theory 7

3. Boolean Algebra 10

4. Computer Arithmetic 13

5. Control Theory 15

6. Discrete Mathematics 18

7. Formal Language Theory 21

8. Information Theory 25

9. Numerical Analysis 27

10. Queueing Theory 30

11. Scheduling Theory 32

12. Systems Theory 34

B. Dependent on Computer Science

1. Artificial Intelligence 38

2. Optimization Theory 41

3. Probability and Statistics 44

V. Engineering Fields

A. Contributing to Computer Science

1 . Circuit Theory 48

2. Cryogenic Engineering 50

3. Display Systems Engineering 53

4. Signal Processing 56

B. Computer Engineering .
^

'

1. Computer Storage Technology 59

2. Microprogramming 61

3. Optical Computing 64

4. Software Engineering ^ 66

5. Systems Architecture 69

VI. Bibliography 72

1

II . How To Use This Document

There exists today much ambiguity about the province of computer

science and its relationships with mathematics and engineering. This

document attempts to identify areas of mathematics and engineering which

are related to, overlap with, or are even considered to be part of computer

science. An overview of the areas so identified is given as a guide to the

professional who needs to know about computer science or some aspect of it,

either for himself or to explain it to others; the references suggested

direct the reader to more detailed explanations of the area.

There are fifteen mathematical areas treated in Section IV: twelve

as contributing to computer science (IV. A), and three as dependent on it

(IV. B). Similarly, there are nine areas of engineering treated in Section

V, with four contributing fields (V.A) and five components of computer

engineering (V.B). These areas are closely related; hence, while no attempt

at explicit cross-references has been made, mention is freely made of the

connections one area has with others. In this regard, a list of topics

not treated separately (Section III) has been prepared; this list shows

where descriptions of areas which do not have a complete write-up devoted

to them, but which are nevertheless relevant to computer science, may be

found.

Each description is in a standard . format which has five components;

this format was designed to allow ease of reference to specific information

which a reader may seek. The five components are:

. general definition. As explained in the Introduction

(Section I), this section attempts to given an idea of

the subject matter of the area and the problems with

which it is concerned.

. historical perspective. This section mentions prominent

workers and significant accomplishments in the area. It

also provides an idea of when the area became important

or was recognized as discipline.

. principles and theories. This section gives a general

look at significant or fundamental ideas and achieve-

ments in the area.

. applications to computer science. This section shows the

importance of an area to computer science, and the relation-

ship of the area to others in computer science.

. references. The abbreviated references are written out

fully in the bibliography (Section VI). These references

should prove a good source of additional information to

the interested reader. ^ , _
,

Draft copies of this document have already proven useful to pro-

fessionals in the field of computer science. It is hoped that the scope

of users may be broadened by issuance of the document in this form.

3

III. List of Topics Not Treated Separately

The list at left belov/ contains the names of topics important to

computer science but treated as subtopics of a field in this report.

The section (or sections) wherein information about the topic may be

found is indicated in the column at right.

To Read About: See:

Al gebra I .A 6. Discrete Mathematics

Algebraic Linguistics I A 7. Formal Language Theory

Binary Arithmetic I A 4. Computer Arithmetic

Calcul us I .B 2. Optimization Theory

Calculus of Variations I .B 2. Optimization Theory

Coding Theory I .A 8. Information Theory

Combinatorics I .A 5. Discrete Mathematics

Communication Theory I A 8. Information Theory

Computational Linguistics I .A 7. Formal Language Theory

Data Structures I .A 6. Discrete Mathematics

Differential Calculus I .B 2. Optimization Theory

Distribution Theory I .B 3. Probability and Statistics

Dynamic Programming I .B 2. Optimization Theory

Filter Design II .A 1

.

Circuit Theory

Finite Mathematics I .A 6. Discrete Mathematics

Game Theory I .B 2. Optimization Theory

Geometry II .A 3. Display Systems Engineering

Graph Theory I .A 6. Discrete Mathematics

Heuristic Methods I .B 1

.

Artificial Intelligence

Hoi ography II .B 3. Optical Computing

Linear Programming I .B 2. Optimization Theory

1

'
A

. 1

.

LQy 1 c
*

I
A

.A . 3.

T A "7

i*iarKOv Krocesses 1

n
.B . 3.

Mnrlo 1 1 "i n

n

riuuc 1 1 1 riy
1

A
1 c

iiuiuivai laLc UdlLUlUb 1
1

n
. O o

. c

.

iicuwur Is 1 iicvjry T T
1 1

A
. A 1 .

iNon-Linear rrogramnnng T
I

n
. B

o
2

.

rdtcern Kecogmciori T
1

n
. D 1 .

rrealCdLe LalCUlUS T

I
A

.A.
"7

7.

Ke 1 1 dDi 1 1 ty 1 neory 1 .A. 5.

r\fc?Lur bive runction i neory 1 .A.
o
C.

Kesiaue Mritnmetic 1 , A.
A
4.

oc u 1 [icu 1 y 1

A c
D .

Simulation 1 A. 12.

Stability Theory 1. A. 5.

Stochastic Processes 1. B. 3.

Theory of Algorithms

Boolean Algebra

Formal Language Theory

Probability and Statistics

Systems Theory

Optimization Theory

Circuit Theory

Optimization Theory

Artificial Intelligence

Formal Language Theory

Control Theory

Automata Theory

Computer Arithmetic

Discrete Mathematics

Systems Theorj^

Control Theory'

Probability and Statistics

IV. A. 1. THEORY OF ALGORITHMS

General Definition

An algorithm is an explicit statement of the steps needed to accom-

plish a task. The theory of algorithms is concerned with the study of

algorithms in terms of their efficient use of time and storage, as well

as the proof that a given algorithm or its computer implementation works

as intended. The design and improvement of algorithms is also an area

of study in the theory of algorithms.

Historical Perspective

Recognition of the theory of algorithms as a field of study coincides

with the advent of computers, since the problems posed for computer so-

lution' are much larger than those previously solved by hand, and because

of the expense of computer time and storage.

Informal notions about algorithnis and programs have existed since

the days of the earliest computers, but Knuth and Floyd were among the

first to suggest the desirability of a formalism for studying the prop-

erties of algorithms. Other contributors to the theory of algorithms

include Aho, Pi jkstra , Hoare , Hopcroft, and Ullman .

Principles and Theories

Two very important fields ancillary to the theory of algorithms are

automata theory and formal language theory. Automata theory is the study

of machines as information processing devices; many results have been

established in it about minimal machine representations and about the

unsol vabil ity of certain problems. Formal language theory studies the

structure of languages; among the languages studied (important to the

theory of algorithms) is the first order predicate calculus.

In treatises on the theory of algorithms, an important first step is

the design of a formal language for expressing algorithms. Different

authors use different languages, but features shared by all include

simplicity and completeness; simplicity makes existing algorithms more

easily analyzable, while completeness assures that any algorithm is

expressible in the language (Bohm and Jacopini established a fundamental

result in the completeness of formal languages,).

The theory of algorithms studies both programming and data structur-

ing techniques. Among the former are such concepts as recursion, iteration,

and the evaluation of conditional expressions; lists, queues, and stacks

are commonly used data structuring techniques. For example, in design-

ing an algorithm to sort a list, a decision whether to sort the whole

list at once, or to break it into smaller sublists and then to merge

them into a final sorted list, would be based on the size of the list

to be sorted. If the latter option were chosen, it could be accomplished

either by recursion or by careful "bookkeeping." Recursion involves

having a program call itself during execution; in the example, a

recursive program to sort list L might invoke itself to sort the first

half of list L; this invocation might in turn cause another call to sort

the first quarter of list L; this technique has been called "divide and

conquer" by Aho . "Bookkeepinc " would involve keeping track of how far

the list had been sorted - how close it was to the correct order - as

the program progressed. Whereas recursion is often easier to program than the

"bookkeeping," the efficiency of the program would depend on how the

computer handles recursion. Such an abundance of options and important

considerations is common in computer solutions.

7

Among the important procedures for study in the theory of algorithms are

those for sorting, set manipulation, matrix operations. Fourier trans-

forms, and arithmetic. A proof that an alqorithm vn'll oerform

the intended procedure is an integral part of the analysis,

as are predictions about expected performance and performance in the

worst possible case. (Often the algorithm with the best worst case per-

formance will not have the best average performance in a collection of

algorithms for performing a procedure.) Formal proofs of the correct-

ness of an algorithm or program usually involve formal language theory,

particularly the first-order predicate calculus.

Applications to Computer Science

The theory of algorithms is vital to computer science; in fact, Knuth

claims that the two are identical. It is important in the design of soft-

ware, particularly since many computer applications would be economically

unfeasible or impossible, because of limitations on computer time and space.

References

Aho 1974
Dahl 1972

Knuth 1968

Knuth 1969
Knuth 1973
Miller 1972
Minsky 1967
Traub 1973

IV. A. 2. AUTOMATA THEORY

General Definition

Automata theory is the study of machines (automata) and humans as in-

formation processing devices. Deterministic automata theory is concerned

with ideal machines: all input channels are controlled only by the user,

and components always work as designed. Probabilistic automata theory, on

the other hand, studies the more realistic case: input channels may be

noisy, or components may fail unpredictably.

Historical Perspective

Though speculation about the workings of the human mind (analytic

automata theory) is not new, it was only a decade before the advent of

the electronic computer and attempts at modeling or imitation of thought

processes (synthetic automata theory) that an abstract automata theory

arose. Turing was the first to state a model of computation procedures,

and all systems since proposed as models of such procedures have been

demonstrated to be equivalent to his. These machine representation

methods form the basis for automata theoretical studies today.

Principles and Theories

The notion of an effective computation procedure is central to auto-

mata theory. Intuitively, it may be thought of as a guaranteed way of

solving a problem; for example, Euclid's algorithm to find the greatest

common divisor of two numbers is an effective procedure. Turing ' s thesis

is that effective procedures are those performed by Turing machines.

Among the many formulations of Turing machines, a relatively common one

is a device which has a finite number of internal states, a head which

can read or write one symbol at a time on a tape which can be made

infinitely long, and a specification telling what state the machine

enters when it is in a given state and it reads a given symbol. The

9

machine is designed to operate so that input to the procedure is on the

tape at the start, and output is on the tape after computation.

Many results concerning Turing machines have been discovered. Turing

himself demonstrated the existence of a universal Turing machine--one which

would simulate any Turing machine, given its specifications. Shannon proved

that two machine states or a two element tape alphabet are sufficient for

the construction of any Turing machine. A proof that no Turing machine

exists which can solve the halting problem--that is decide whether a

given Turing machine will halt on given input--vws accomplished using methods

analogous to those in Gb'del ' s proof of the incompleteness of arithmetic.

Other methods of representing machines are due to Post , Kleene , and

Smullyan ; all have been shown equivalent to Turing's representation. The

McCulloch-Pitts logical calculus can also be used to study machines, but

was designed originally as a simplified model of human brain neurons. The

McCarthy formalism is a convenient notation for indicating that certain

relationships hold among numbers. Recursive function theory also provides a

powerful tool for studying automata. Von Neumann was interested in the

design of automata which could construct other automata or which could

reproduce themselves.

In the area of probabilistic automata, an important result is Shannon '

s

fundamental theorem for a discrete noisy channel (1948). The effect of un-

reliable components on automata was also of interest to von Neumann , who

developed a method (multiplexing) of synthesising reliable automata from

unreliable components. Cowan and Winograd also presented a method for

reliable communication and computation on noisy channels.

Applications to Computer Science

Automata theory has applications in the design of reliable computer

circuits, in algorithmic analysis, and in artificial intelligence studies.

References ,

Arbib 1964
'

Davis 1958 .

Eilenberg 1973

Feigenbaum 1963

Minsky 1967
Nivat 1973 . ,

Shannon 1956

von Neumann 1956

IV. A. 3. BOOLEAN ALGEBRA

General Definition

A Boolean algebra may be considered mathematically in many ways: for

example, as a ring of idempotent elements, or as a complemented distrib-

utive lattice. Most often, however, its usefulness as a subclass of the

propositional calculus of formal logic is exploited. (It is a subclass

because it does not include, for example, syllogistic logic.)

Historical Perspective

Boolean algebra was first presented by Boole in 1847; it was a pioneer-

ing achievement as an algebraic calculus with possible non-arithmetical

interpretations. It was improved by Jevons and Peirce , and later by

Schroder .

Principles and Theories

Like all algebras. Boolean algebra operates on a set; in its logical

contoxt, this set consists of statements and is termed the universe of

discourse. A fundamental assumption is that the universe of discourse

11

is the union of two disjoint classes: true statements and false state-

ments .

A common use of Boolean algebra is the demonstration of the validity

of an argument form; that is, given a set of true premisses, related to

one another in the same way as the abstract form, what conclusions can

validly be deduced? In making such determinations, it is convenient to

represent statements by letters and relations among statements by connective

symbols. Common connectives and symbols include:

not I— '

or y

and
. & A

if . . . then 3 —

>

if and only if = —
jj^

An important property of logical disjunction is its i ncl usiveness

:

"p V q" means that p is true or q is true or both are true. This mod-

ification to Boole 's original work was suggested by Jevons .

Certain axioms are used to transform propositions; these rules are

true regardless of what interpretation is given to the statement variables;

the simplest expresses the fundamental assumption above: p v -^p. Two

of the most important axioms are credited to DeMorgan : '^(p & q)= (^p v^q)

and '^p V q)sh'P S**^). The negation of an axiom is a contradiction

—

false no matter what interpretation is given the statement variables;

e. g., p ge*^. The idea that a contradiction implies any statement was

Peirce 's. Schroder gave Boolean algebra the form of a deductive system.

The limitations of Boolean algebra may be seen in this example.

The argument on the left below is valid in Boolean algebra; the one

on the right is not. -

If Aristotle is a man, then he is mortal. All men are mortal.

Aristotle is a man. - -
; ^ >:

;
Aristotle is a man.

Hence, Aristotle is mortal. : ..r - - Hence, Aristotle is mortal.

The left hand argument is valid because it has the abstract form

P q; p; . . q. The inference is allowed by a rule called modus ponens .

But the right hand argument has the abstract form p; q; . . r, which is

not generally valid; Boolean algebra does not allow the implicit deduction

that if Aristotle is a man then he is in the class of all men. Syllogistic

logic, however, does allow thiis inference.

Applications to Computer Science

The main application of Boolean algebra in computer science is to

switching theory. (Shannon was the first to suggest this.) A switching

circuit produces output voltage depending on its configuration and the

orientation of input voltages. For example, an AND-gate would not be on

unless all inputs were on; an OR-gate would be on unless no inputs were

on^ Computers use switching circuits in the performance of arithmetic

and in logical tests. •, : "h^ v.i
: v: - ' ' ;?w ;

13

References

Boole 1847

Flegg 1964

Hammar 1968

Hohn 1966

Klir 1966

Schroder 1966

IV. A. 4. COMPUTER ARITHMETIC

General Definition

Computer arithmetic is the study of number systems vn"th a viev; tov^ard

their computer implementation for performance of basic arithmetical oper-

ations .

Historical Perspective

Many of the techniques of computer arithmetic have existed for

centuries, being used tc simplify or check hand calculations. The techniques

are usually based on number theory.

Principles and Theories

The need for computer arithmetic is based on a fundamental difference

between humans and computers: In the performance of calculations, a human

can decide, at any point in a calculation, how many digits he wishes to

carry (as significant) in computation; a computer must be instructed to

carry a fixed number of digits, and usually must use the same number all

the way through a calculation. Since the expense of computers is determined

in part by the number of digits carried in calculations, a trade-off must be

made between the accuracy of computations and their cost.

. The binary number system is often used for computer arithmetic.

The binary system uses two as its base, and is positional like the decimal

system: each digit position corresponds to a power of two. Binary arith-

metic is simple because the only digits used are zero and one; thus,

addition and multiplication tables are small. Subtraction is also simple,

because adding the two's complement of the subtrahend to the minuend

yields the difference, and two's complementation is ^^sy to perform.

In computer implementation, provision is often made for the

representation of two types of numbers--f ixed point and floating point.

Fixed point numbers are usually considered to have the decimal point at the

extreme right, thus representing integers. Floating point numbers are usually

represented as the product of a proper binary fraction and a power of two;

this allows a greater range of numbers to be represented and increases the

available precision. Methods have been developed for scalina numbers

represented in this manner, and for detecting overflow conditions which

may occur as a result of performing arithmetic operations.

Residue arithmetic operates on number systems which are not fixed-base

weighted like the decimal system; rather, the base is a vector of inteqers,

and the residue representation of a number is a vector of remainders

corresponding to division of the number by each element of the base. For

example, in base (2,3), the decimal number 11 has the residue representation

(1,2). Though each decimal number has only one residue representation, one

residue representation can refer to many decimal numbers (59 is also

represented by (1,2) in (2,3)).

A special case of residue systems are modular systems. In a modular

system, the base is a single number. A familiar example of a modular

system is a clock; for examole, 8 hours past 7 o'clock eguals 3'o'clock.

15

Obviously, the base for a computer system must be larger to allow the

unique representation of many numbers.

Another aspect of computer arithmetic which has been extensively

studied is conversion methods between binary and residue representations

and the decimal system, important since computer outout must be almost

always be in decimal notation to be useful to humans.

Applications to Computer Science

Computer arithmetic is important in the development of computer

hardware for performance of routine arithmetical tasks. The efficient

design "of arithmetic logic units has importance in the speed with which

a computer will operate.

References

Borevich 1966
Chu 1962

Foster 1970
Kostopoulos 1975

Marcus 1973
Szabo 1967

van der Waerden 1970
Weil 1973

IV. A. 5. CONTROL THEORY

General Definition

Control theory is an important component of systems theory, concerned

with controlling physical systems' performance. Optimization methods play

an important role in control theory. Reliability theory and stability

theory are subdiscipl ines of control theory.

Historical Perspective

Control theory was recoqnized as a discipline only in the 1950's;

by then, system design had become so complex and costly that a systematic

method of system design and control was needed to replace the heuristic

methods then in common use.

Principles and Theories ' ;

In control theoretic analyses, the first step is the development of a

mathematical model of the system to be studied; for this task, techniques

from general systems theory are used to define the system and distinguish it

from its environment, and to model the system using divers mathematical

methods, including calculus, probability and statistics, and queueing

theory.

The control theorist usually attempts to optimize the modelled system.

Many of the techniques for optimization are borrowed from such areas as

calculus, linear programming, and game theory. One of the most important

control mechanisms available for optimization is feedback, which involves

the use of part of a system's output as its inout. For example, in the

heating system for a house, the heat output by the system is detected by

a thermostat which then triggers the furnace to produce more or less

heat, depending on the temperature indicated as desirable.

Reliability theory is concerned v/ith designing syste"is to meet high,

performance criteria. That is, their failure rate rust be very lov/.

Reliability theory deals with the effects of unreliable co'^oonents in

systems design, and with possible remedies, e.a., backuo systems or multi-

plexing, "ery o'f^ten, tradeoffs between the reliability and the cost or

speed of a system must be considered in control theoretic analyses.

Stability theory is concerned with the effects of disturbances on the

systems equilibrium. A tyoical Question might be: what haooens when the

system operates in conditions which are not those for which it was designed

Feedback is one of the imoortant considerations in stability theory: one car

imagine' a feedback system which overcorrects in resoonse to a stimulus,

oscillates wildly instead of converging to the desired point and never

accomplishes the task intended.

Applications to Computer Science

Control theory is used in computer science in the design of executive

routines for computer svste^^s, oarticularly in mul tiorocessi ng environments

It is also important in the design of inout/output devices and in memory

management systems usina oaaing.

References

Barlow 1955

Bazovsky 1951

Bellman 1957
Chorafas 1955

Gumowski 1958

Kirk 1970

18

Lefschetz 1965 '"^i- r-i'r^.^.{\Pivi:i^>-

Lloyd 1962

Peschon 1965 ' '
'

'

'
- '' '^ :^

'
'

Skinners 1972

Widnall 1958 '^^ -
'

^

Wiener 1948

Will ens 1970 ^'
^ ^

'

IV. A. 6. DISCRETE MATHEMATICS

General Definition

Discrete mathematics is a modern branch of mathematics which theory

is important in logic, set theory, algebra, graph theory, combinatorics,^

2
probability, linear programming, and formal language theory. In a sense,

it may be regarded as forming the basis for all of those fields, as a theory

which deals with discrete structures.

Historical Perspective • , .

The recognition of discrete mathematics as a separate field coincides

roughly with the rise of such disciplines as operations research and decision

theory, in which mathematical techniques are applied to systems in discrete

stages of development. Finite mathematics is a subfield of discrete

mathematics which concerns finite systems. An example of such a system is a

card game like poker, which consists of a finite card deck in discrete

stages: shuffle, cut, deal, etc.

Discrete mathematics and combinatorics are considered identical by Berman
and Fryer (Berman 1972).

Linear programming is mentioned as an element of discrete mathematics by

Kemeny, Snell and Thompson (Kemeny 1966).

19

Principles and Theories

The logical theory underlying discrete mathematics is nainly Boolean

algebra, i.e., a subset of the prepositional calculus v/hich ooerates on

statements with regard only to their truth value, and not with regard to

relationships between nouns within them. Ouine and McCl uskey contributed a

method for minimizing Boolean functions: representing them usina as few

symbols as possible. Set theory is basically an application of Boolean

algebra, enriched by syllogistic loaic.

Algebra is a study of systems in terms of their structures--deter-

mining what is and what is not true about them. Usually once a few

properties are established, others may be deduced to hold by analoay to other

systems with similar orooerties. One examole of an aoolication of algebra

in discrete mathematics is algebraic 1 inauistics--the use of alaebraic

techniques on natural and formal l;nauages. (Enaiish is a natural

language; ALGOL a formal language.)

Graph theory deals with points (vertices) and connections between them

(edges). As in alaebra, certain characteristics of a graph determine the

possibility of, for example, connectina any two points of the graoh along

a path consisting of existing edaes. A particularly important area of grapi'

theory in discrete mathematics is tree theory, which is concerned with certain

types of graphs. Gorn is resoonsible for a redefinition of the tree concept.

Combinatorics is concerned with problems in the arranaement and

selection of objects, as well as with their oermutation and combination, ^s

such, it may be regarded as providing the basis for probabilistic and

20

statistical studies. However, it is also involved in geometric problems

like map coloring and with connections between sequence representations

and recurrence relations, particularly the Fibonacci sequence. Wtnograd

and Spira , and Minsky and Panert developed theories about finite network

complexity.

Probability is an attempt to predict the likelihood of a particular event

given knowledge of conditions leading to it. It is useful in designing

mathematical models and in the computer simulation of physical systems. In

operations research, linear programming and game theory are used in attempts

to optimize situations. /

The study of properties of data structures is based on many of the topics

mentioned above. Two important data structures are queues and stacks.

Queues usually accept data at one end and emit it from the other; they are

sometimes said to have a first in-first discipline. Stacks generally accept and

emit data from the same end; their discipline is referred to as last in-first

out. Queues and stacks are special cases of lists, and another important

topic is the determination of methods for reoresenting lists in computers;

this is particularly important when contiguous storage is not available for a

list and point.^rs must therefore be established to indicate the location of

list elements. Another application of the theory is to representing so-called

sparse matrices (i.e., those with only a few non-zero elements with respect

to their size) efficiently.

21

Applications to Computer Science

Discrete mathematics is relevant to computer science from an important

design standpoint: any comouter is finite and must perform ooerations

sequentially. Other computer science areas where discrete mathematics is

relevant include machine representation of data structures. Specialized

discrete mathematical techniques have computer science applications in the

design of switching circuits, automata theory, compiler construction,

information transmission, and computer simulation.

References

Anton 1974

Berman 1972

Bertziss 1975

Bobrow 1974
Kemeny 1965

Korfhage 1974

Patten 1974

IV. A. 7. FORMAL LANGUAGE THEORY

General Definition

Formal language theory attempts to discover and characterize the properties

of languages (including formal, as well as natural, lanquaaes) in a mathematical

way.

Historical Perspective

Formal language theory is closely related to automata theory; in fact,

many of the major develooments in formal lanquaae theory involve the

demonstration that a class of languages is equivalent to a class of automata.

22

Formal lanquaqe theory is also important in linguistics, for it has

shown that certain problems in machine translation of natural languages

cannot have algorithmic solutions. Two famous linguists who have also

contributed to formal language theory are Chomsky and Bar-Hi 11 el .

Principles and Theories "1

Formal language theory defines a language as a set of (usually finite)

strings composed of elements from a finite alphabet. Two important methods

of specifying a language are by means of generative grammars and recognition

automata. A generative grammar is a set of rules (or rewriting system) which, when

applied to an alphabet, generates all strings of the language. These rules

may be viewed as the inverse of sentence diagramming: instead of separating

a particular sentence into subject and predicate, a rule will state that a

sentence in the language may be composed of subject and predicate: other

rules then specify how to form subjects and predicates. Often, the set of all

languages defined by rewriting systems is too large for convenient study,

so restrictions are applied on the types of rules to be allowed in the

grammar; the Chomsky hierarchy is an often used sequence for restricting

languages.

Recognition automata are machines with a finite number of states,

which accept input and produce output, and which may have extra storage.

As with grammars, the limitation of what types of storage or input

arrangements are allowed affects the variety of languages which can be

recognized by an automaton; there exist machines which are equivalent to

23

each class in the Chomsky hierarchy. One of the most interesting

problems in formal language theory is the determination of v/hether

a language is recursi ve--v;hether there exists an algorithm for determining

whether a given string is a language element--and if it is, whether an

efficient procedure for recognizing all strings in the language exists.

In natural languages it is intuitively plausible'' that one can determine

whether a string is part of the language or not. Thus, attempts to design

generative grammars for natural languages are an important area of study in

linguistics; Chomsky's transformational grammar approach to language is one

example of a generative grammar.

Some aspects of programming languages may be viewed in terms of formal

languages, and developing generative grammatical representations for them

is important in studying their properties; one such representation, appropriate

only for certain types of languages, is due to Backus and Naur . LISP is a

programming language which design is closely related to formal language

theoretic considerations, parti cul arly Church ' s lambda-notation.

Formal language theory is closely related to mathematical logic; in fact,

formal language theory can be used in the design of systems for representing

2
logical statements or arguments. Some formulations of the predicate calculus ,

^According to Chomsky.

2
A system of logic, deeply explored in Principia Mathematica by Russel

1

and Whi tehead , which includes Boolean algebra and Aristotelian syllogistic
logic, but is richer because it allows the quantification of variables; for
example, the sentence "for all real numbers x, there exists an integer i

such that i is the greatest integer less than x" (basically, this guarantees
that if a number is separated into whole number and proper fractional
part, the whole number is unique) has a one-line predicate calculus
representation, but no finite Boolean or Aristotelian representation.

24

as well as of Church ' s lambda-calculus, result from a language-theoretic

point of view; the decidability or completeness of a language can then be

analyzed in light of its relation to logical systems with known properties

of decidability and completeness.

Applications to Computer Science

Formal language theory is useful in the design of computer programming

languages and in the construction of parsers for their compilers. It also

has applications in attempts to translate natural languages by machine

and in efforts aimed at computer programs to comprehend natural languages.

The use of linguistic techniques in data retrieval systems has also been

reported .
'

References

Bar-Hi 11 el 1964

Book 1973 ^ , : ; : i
'-•

Chomsky 1965

Eilenberg 1974
Hopcroft 1969

Kurki-Suonio 1971 r-; .• lf; or

Lee 1 972

Marcus 1967

NYU 1970

Mi vat 1973
Ollongren 1974
Salomaa 1973

See NYU 1970.

25

IV. A. 8. IMFORMATIOP! THEORY

General Definition

Information theory is the study of properties of the symbols and

media used in the storage and transmission of messages. Communication

theory is a major part of information theory.

Historical Perspective

The equivalence of information and negative entropy was suggested by

Szilard in 1929. The idea was rediscovered by Shannon in 1948, and he

called it The Mathematical Theory of Communication . Wiener published another

approach to information theory, but Shannon 's is the generally accepted basis

for a theory of information.

Principles and Theories

In information theory, a message is considered without regard to its

possible correspondence to the real world; for example, the transmission and

receipt of a one-bit is not interpreted as "yes" or "no" in answer to a

question but is rather seen simply as a one-bit. The amount of information

carried in a message is defined, statistically, as the negative logarithm of

the probability of the transmission of the message; thus, an expected message

is less informative than an unexpected one. The equivalence between information

and (thermodynamical) negative entropy arises because entropy is a tendency

toward disorder or randomness, and information is regarded as combatting this

tendency--as increasing order in the world.

26

Communication theory deals with problems in messaqe transmission.

There are two important subtopics. One deals with the characteristics of

the media used to transmit messages--channel s . Among the features. of a channel

which are of interest are the capacity of a channel for information, the amount and

type of noise present in a channel, the provision for memory (if any), and

whether the channel accepts discrete or continuous transmission.

Shannon ' s Fundamental Theorem states that arbitrarily high reliability may be

achieved without degrading the transmission rate below a parameter called

the channel capacity.

The other important area of communication theory deals with coding. Certain

properties of codes, such as redundance and parity-checking, contribute to

the reliability of message transmission. However, they also reduce the

possible transmission rate. Coding design involves attempting to optimize

the trade off between reliability and rate of transmission, ^lajor results

in coding include an extended Carnot principle: a gain in information is

always accompanied by a larger gain in entropy; and the definition of Hamming

distance: a measure of similarity between code elements.

A third concern of information theory is the analysis of information

sources. An important property of a source is whether successive messages

are independent. Another consideration is the number of possible messages

versus the number of messages considered meaningful. Knowledge of such source

oroperties is important in the design of optimal communication networks.

27

Applications to Computer Science

Information theoretic considerations are important to comouter science

in the design of codes and channels for transmission of data fro"^ one part

of a computer to another and between comouter and user.

References

Abramson 1963

Ash 1967
Brillouin 1962

Feinstein 1958

Fuchs 1971

Slepian 1973

IV. A. 9. .NUMERICAL ANALYSIS

General Definition

Numerical analysis is concerned with the (often approximate) numerical

solution of equations; here, such oroblems as findina function values and

inverting matrices are considered to be solving equations. Estimates of

the error involved in the methods used are also of interest.

Historical Perspective

Before the diaital computer, many numerical analytic "^ethods had been

developed for hand comoutation, and analyses of errors to which they were

susceptible had been accomplished. With the advent of the comouter, the

adaptation of such methods to oerformance by comouter was beaun. This

sometimes entailed the develoomant of alaorithms more suited to computer

operation, and analyses of errors introduced by the finite nature of

computer arithmetic.

28

Principles and Theories '

'

Approximations to the values of common functions--triqonometric,

logarithmic, etc. --are a primary concern of numerical analysis. .

Classical methods for representing functions include Fourier and power

series, continued fractions, and rational functions; all of these consist

of an infinite number of terms. It is the task of numerical analysis to

determine how many terms are necessary for adequate precision or number of

significant digits; generally, different aoproximations are appropriate for

different regions in the functions' domain . For example, a series giving the

sine of a small angle to six decimal places in ten terms might need hundreds

of terms to achieve the same precision for large angles. Many polynomial

approximations to functions are due to Chebyshev , Gram , Hermi te , Laguerre ,

and Legendre .

Integration is a versatile technique which is also the subject of

numerical -tnalysis. Integration can be used in the determination of areas and

volumes, and in the summation of series. Numerical approximations to integrals

are often necessary for complex problems. A popular method for this is

quadrature, for which methods have been developed by Gauss , Hermi te , Jacobi , and

Simpson . A related problem--the solution of differential equations--is found in

almost all branches of engineering, chemistry, and physics. Runge-Kutta methods

are a popular solution method based on Taylor series expansions. Predictor-

corrector methods, as the name implies, give good approximations by predicting

a value, then correcting it by estimating the error in it.

II

29

Interpolation is a technique used to obtain the approximate value of a

function between known values. For examole, one might want to finH the sine

of 30°30' and only have values of the sine at 30° and 31°; one would inter-

polate to arrive at a reasonable est'^'mate. The most common interoolation

techniques are finite difference methods; to improve precision, more known values

are taken on either side of the desired value, and combined into some sort of

equation. Originators and improvers on finite difference methods include

Bessel , Gauss , Newton , and Stirl ing .

The solution of systems of linear equations is also in the province of

numerical analysis. The solution methods are handled as soecial cases

of matrix operations such as row-reduction, inversion and eigenvalue

determination. Linear equations are important in circuit analysis and in the

modelling of economic systems. Gauss and Gauss -Jordan elimination methods are

commonly used solution methods, while Gauss -Seidel iteration and Graeffe ' s root

squaring method are aoplied to difficult problems.

Applications to Computer Science

The solution of many physical problems v/ould not be possible without the

application of numerical analysis. Indeed, design of computers probably would

be prohibitively expensive without numerical analysis on computers. Investi-

gation of algorithms for calculating common functions is also important in

the design of mathematical software.

30

References .

Acton 1970

Fike 1968

Hamminn 1962

Hildebrand 1974
Householder 1953 ..

' " ' IV. A. 10. OIJEUEIMG THEORY

General Definition '
' ^J'v^

Oueueing theory is the study of queueing systems--systems where

customers arrive (usually at random) and await service, and leave after

service (perhaps before, if they become^ impatient) ; here, "customers" may

be people as well as, for example, objects on a production line, or

computer programs awaiting execution. Oueueing theory can also be used

to model waiting line situations, providing parameters such as average

waiting time or queue length.: '

, i' .

'

Historical Perspective i rrt^l.

The initial motivation for the development of a theory of queues was the

study of telephone traffic congestion. Erlang was the pioneer in the field,

and in 1901 he published The Theory of Probabilities and Telephone

Conversations . Further applications of theory in telephony were made in the

1920's by Mol ina , and in the early 1930's by Pol 1 aczek . Applications in other

areas, such as management science and operations research, have been published

by Champernowne on random walks, Karl in and llc^regor on birth-death processes,

and Takacs on waiting time.

31

Principles and Theories

The characteristics of a queue are usually represented in a notation due to

Kendal 1 . The following five queue features are basic to the Kendall notation:

. Arrival time distribution. Is the arrival pattern probabilistic,

deterministic, exponential, or of another type?

. Service time distribution. Does the service time vary predictably,

is it constant, or does it vary unpredictably?

. Number of parallel servers. How many channels are available for

providing service? For example, how many checkstands in a super-

market are manned?

. Restriction on system capacity. Basically, how many customers the

waiting room (queue) can accommodate.

. Queue discipline. Examples include first come, first served,

service in random order, and service based on priority. Also

included is the prooensity of customers for switching queues in a

multi -server system, or for leaving the system before service if the

waiting time is excessive.

Queueing theory applies notions from orobability and statistics

to the design of queueing models. Poisson and Markov properties of

distributions, as well as ergodic theory, are commonly used in such analyses.

Sometimes, the properties of a queue cannot be expressed in analytical

mathematical terms; then, simulation techniques are employed in efforts to

solve queueing problems.

32

When queueing theory is applied to multistage processes such as assembly

lines, and optimization techniques are employed in efforts to reduce costs

or waiting times, the techniques used are referred to as scheduling theory.

In scheduling theory, an additional system characteristic of importance is

the order in which tasks must be performed.

Applications to Computer Science ''

'

Queueinq theory has computer applications in the design of system

monitors which schedule orograms for execution, particularly when systems

allow tine-sharing or multi -processing operation.

References - .u,:

Gross 1974 '

-
' '

'
.

Lee 1966 .

Morse 1958 '

' "

' '^^
• .

'

-

Prabhu 1965

Takacs 1962 - ' ^
'

' '
'

i^:"
'^-^- v

'

-:.f.j^;c-:!

IV. A. 11 . SCHEDULING THEORY

General Definition

There are two disciplines commonly called scheduling theory. The

mathematical field deals with multistage queueing processes^ the

management field is concerned with project planning.

33

Historical Perspective

Analytical treatment of scheduling problems began only in the 1950's,

though it quickly grew with the development of such techniques as linear and

dynamic programming. Changes in management notions about scheduling came in

the early 1960's, necessitated by great complexity of projects and large

budgets for their accomplishment.

Principles and Theories

Mathematical scheduling theory uses queueinq theory to develop models of

assembly line types of processes. Usually, the analysis is continued in

efforts to optimize a scheduling process with respect to time or cost. The

optimization techniques used include dynamic programming and other methods

for dealing with sequences of processes. One of the most important considerations

deals with the necessity of one orocedure following another or the

possibility of two procedures being performed simultaneously; for example, it

makes no sense to tiahten the lug nuts on a car wheel before mounting the

tire, but different tires can be mounted simultaneously by different peoole.

In management, scheduling theory is used to plan and schedule the tasks

involved in a project. Again, the oossibility of two tasks being accomplished

simultaneously or the necessity of one task's completion before starting the next

are fundamental considerations. Management scheduling theory has developed

a set of tools for allocating resources to tasks accordinq to their

importance and in order to complete a project in a specified amount of time.

Among these are Program Evaluation Review Techniques (PEPJ) for time and cost,

and the Critical Path Method (CPM). f'ERT-Time involves estimatina three parameters

for each task: the shortest possible time for completion, the longest possible.

and the most probable; these estimates are then combined to give an

idea of how the project should be managed. PERT-Cost works analagously

with respect to cost. CPM finds the longest sequence of tasks which

will accomplish the project as a guide to proqress which should be expected

if any task along the critical path is delayed, the completion of the

entire project is delayed.

Applications to Computer Science

Mathematical scheduling theory is used in mul tipronramming executives

for computer systems. Management scheduling methods can be used in the

design and construction of computer systems.
'

References •

Archibald 1967 '
.

-

>
,

;

Ashour 1972

Cleland 1968
;

'

Conway 1967
Iri 1969 '

~
' ' ' '

'

Johnson 1967

Le Breton 1961 '
/'

'

-'^ -

Wagner 1970

IV.A.12. SYSTEMS THEORY

General Definition , .
r

,
.

Systems theory is the application of mathematical techniques in the

theoretical modelling of physical systems. Techniques used come from

many mathematical disciplines, including algebra, geometry, calculus,

probability and combinatorics.

35

Historical Perspective

The need for a general systens theory was exnressed by Roulding in

1956. The theory must mediate between highly general and theoretical

mathematical notions and the specialized ideas of particular scientific

disciolines.

There are several aooroaches to systens theory. Wymore looks upon systems

theory as a generalization of automata theory; analysis and tonology can

then be used to solve problems, whereas they are rarely employed in

automata theory. Mesarovic views systens as relations, or connections,

betv/een sets of inout and sets of outout; he also includes notions about the

temporal order of and causal links between events. Hammer , in contrast to the

aforementioned authors, has attemoted to redefine notions in mathematics

to allow their broader apolication in systens theory; one of his main goals

is extend classical conceots to apoly neaninafully to discrete as well

as to continuous cases.

Principles and Theories

Different authors have different fornal definitions of "system," but

they usually share two characteristics: a distinction (which is often not

completely definitive) is made between a system and its environment, and facts

about the system are characterized as relevant or irrelevant to the problem.

For example, in analysis of a service station, the station, its employees and

the automobiles entering the station comorise the system, the rest of the world is

the environment, and the neighborhood in which the station is located is in

36

some ways part of the system (e.g., when lines of cars awaitinq service extend onto

the roadway), but also part of the environment. Relevant system parameters

include service time and time of arrival of a car, whereas the color of the

car is probably unimportant. Systems theory may be used to study a

system, or to design one having the desired features, the system being either

real (e.g., a service station), or abstract (as in linguistics or

algebra) . , >

Fundamental concepts about systems include:

. resolution level. How accurately system parameters can be

measured; e.g., mass to within 1 gram, velocity to 1 km/sec, etc.

. activity. The variation of all system parameters in a time

interval. ^:z^^uu:^..r:
. f

. time-dependence of relations. If a relation amonq system

parameters is satisfied for every possible activity over an

entire time interval, it is absolutely time-invariant; if

it is satisfied over the entire interval for some activities it

is relatively time-invariant; and if satisfied at some places on

a time interval it is locally time-invariant, r^r? a'

. behavior. A time-invariant relation which obtains in a system

. . is termed the system behavior, and classed as permanent,

relatively permanent, or temporary, depending on whether the

relation is absolutely, relatively, or locally time-invariant.

37

. organization. Factors of a system producing its behavior.

Usually, the organization is seen as divided into the system

structure, which does not change, and the program, which is

variable.

Based on the above and other characteristics of a system, systems theory

applies mathematical techniques such as queueing theory or probability and

statistics to model the system, allowing easier analysis and facilitating

predictions about the effects of changes on the system. Another use of

systems theory is in the design of a system structure given knowledge of its

desired behavior.

Systems theory is also used in simulation of physical systems.

Simulation is basically the use of models to produce quantitative

estimates about the parameters of a system. Often, simulations must use

simplifications of models, since the complete model is of great compu-

tational complexity.

Applications to Computer Science

Systems theory can be used to model computer systems, and thus study

the costs of time-sharing or parallel processing. Computers are also

necessary in the modelling of systems with a great degree of complexity, such

as national economies.

References

Hammer 1969
Klir 1969
Meredith 1973
Mesarovic 1975
Padulo 1974
Wymore 1969

38

. IV.B.l. ARTIFICIAL INTELLIGENCE

General Definition

Research in the field of artificial intelligence (AI) encompasses

a broad range of problems, all of which involve the imitation of human

thought processes. For example, the design of a machine which can play

chess, and which learns and improves its game as it plays more, is a

possible research problem in AI. i.>

Historical Perspective -
; ^r'£ - :r

Two important philosophical contributions to AI are by Wiener and

Turing . Wiener , in Cybernetics , attempts to show what diverse fields

must be united in pursuit of AI devices or theory, and he discusses some

of the moral implications of AI as well. Turing , in Computing Machinery

and Intelligence , proposed a test to answer the question "Can machines

think?"

Most research in AI in the 1950's and early 1960's was concentrated

on producing machines or programs which perform some task which humans

consider "intellectual" activity. Early examples include Samuel 's

checkers-playing program, Gelernter ' s geometry theorem-proving machine, the

logic theorist of Mewel

1

, Shaw , and Simon , Slagle 's symbolic integrator,

and numerous chess-playing programs. Machines which attempt to understand

natural language, and machines which discern and recognize patterns, are also

the results of specific AI research.

39

Another branch of AI is concerned dv'-ectly with the si'^^j laticn of

human thought orocesses. 'jewel 1 and $1'":on ' s general proble~ solver

is designed to si~ulate hu~an thought, and provide insights into the

processes which occur between croble'" staterent and orobler solution.

Other progrars simulate hu~an inductive in-f'erences and social behavior.

Modern AI research", includes continuation of '^uch of the above-

mentioned work, as well as atter^ots to translate natural lanauages by nachines.

A particularly iniportant application is oattern recoanition, which is

now used by banks and, to a li'-.ited extent, by the Postal Service. I.'-proving

pattern recognizers could nake the coroletion of document handling tasks ruch

faster and "-ore reliable.

Principles and Theories

One of the orirary efforts in AI is aired at the develoonent of

heuristic nethods. Heuristic -ethods are solution atte^^pts wiiich will

not always v/ork but which offer a good chance of arriving at the correct

answer; in nany cases, they are the only ways to solve a D^^oble--. For

example, a chess-player cannot look ahead and examine all oossible -^oves;

so he uses strategies which usually work or have worked in the oast in

similar situations. A mathematician, in atte-^oting to Drove a theo^c-^,

can work backward from the result desired, as well as forward from knovm

expressions. Heuristics are oowerful tools in oroble'^ solving, but also

have application in other tyoes o-f" AI . For exa-^ple, hu-^ans derive ~uch information

from speech through heuristics about what they exoect to hear. If a computer

could be programmed to use these heuristics, it could listen to and

comprehend human speech. ! .

r

Problems about human learning processes--how many times a stimulus-

response pair must be repeated before the stimulus elicits the correct

response; the mechanisms of memory and forqettinq; the fomiation of general

classes or concepts from specific instances of elements of such classes;

how humans decide questions based on limited evidence; and many more--are

the subject of another branch of AI; proposed solutions in this area run into

the problem of psycholoqical reality--how does one know that a simulator is

doing its job using the same processes a human would?

Though no general theory of pattern recognition exists, there is a fairly

standard way of studying pattern recognition problems. Problems are segmented

into three subproblems:

- sensing. How will the machine sense the pattern, and how will it

be represented in the machine?

- feature extraction. What characteristics can be used to best

distinguish different input data items? For example, what are

the salient features of letters of the alphabet which identify

• • them? , . .

- decision algorithm. What boundaries should be established to

assure high probability of correct identification? In other

words, how many criteria must a letter satisfy to be identified

as a particular letter? i;

41

Methods of representing the data itens expected are also studied in

pattern recognition.

Applications Related to Computer Science

Many of tne AI projects meniioned above--chess-pl ayers ,
theorem-provers

,

and pattern-recogni zers--woul d not be imp! ementabl e 'without the processing

power of computers. AI also nas implications for computer design: if a

computer had the memory organization of a human, its access time might be

reduced, or it might process in parallel much more readily than do today's

systems.

References

Andrev/s 1972
Atkinson 1965

Banerji 1969
Dyer 1966
Feigenbaum 1963
Findler 1971

IBFI 1963
Kanal 1968
Minsky 1973
Pedelty 1963

Sass 1965
Schank 1973
Tou 1974
Watanabe 1959
Watanabe 1972
Wiener 1948
Wilson 1966

IV. B. 2. OPTIMIZATION THEORY

General Definition

Optimization theory involves the application of mathematical

techniques to the solution of problems wnicn objective is the maximization

or minimization of a function, sometimes subject to constraints.

Classical mathematical optimization theory includes methods from

differential calculus, multivariate calculus, and the calculus of

variations. Modern developments in optimization theory include linear

and non-linear programminq, qame theory, dynamic programming, and elements

of control theory.

Historical Perspective

The development of differential calculus by Newton and Leibniz

allowed the solution of problems which had been unsolved before. Using

techniques from multivariate calculus, Lagrange developed his multiplier

method of finding extrema of functions subject to constraints. Euler

was the first to state general rules for solving problems in the calculus

of variations, while Lagrange introduced much of the terminology of the

field. .

The mathematical foundations for linear programminq were laid by

von Neumann . In 1946, Dantziq published the simplex algorithm for solving

linear programming problems, and computer programs implementing it were

achieved in the early 1950's. Non-linear programming is not as advanced,

but major tools include the Cauchy gradient method and the Kuhn-Tucker

optimal ity criterion.

The foundations of game theory were laid in 1921 by Borel , but the

minimax theorem (fundamental to game theory) was not proved until 1927, by

von Neumann . Widespread attention to game theory came only in 1944, with

the publication of a book about it by von Neumann and Morgenstern .

43

Dynamic programming is an extension of the calculus of variations.

Bellman was the first to use the term, and he proved a fundamental

theorem in the field.

Principles and Theories ,

The use of differential calculus in optimization problems classically

involves finding points at which a function achieves an extremum; unfor-

tunately, the simple techniques which indicate an extremum for functions of

one variable do not readily extend to functions of two or more variables. The

method of Lagrange multipliers is used to solve multivariate optimization

problems subject to constraints. The calculus of variations involves the

optimization of functionals, where a functional is a rule assigning a

numerical value to a function; some of the simplest problems are concerned

with finding what arc between two points has optimal properties for some

function.

Linear programming is a set of methods for finding extrema of linear

functions subject to linear constraints. For example, the mixing of

quantities of different substances, subject to minimum amounts of each

substance in the mixture, and attempting to minimize the manufacturing

cost, is a linear programming problem.

Game theoretic analyses involve classification of a game by such

features as the number of players or teams and determinations of utility--

e.g., the payoff of the game. (Usually, it is presumed that players have

conflicting interests--they work at cross-purposes.) Then, an effort is

made to determine an optimal strategy--one which will lead to maximum gains

(or minimum losses)

.

Applications of control theory in optimization are mainly concerned

with the use of feedback techniques. An example would be an electronic robot

limb which accepts commands from a processor and returns information about

its location, orientation, pressure exerted on it, etc., so that the pro-

cessor can direct its movements for best effect.

Dynamic programming is the mathematical theory of multi-stage decision

processes. A sample problem: to find the path between two locations In

a city which will take the least time. Bel Iman ' s fundamental

theorem states that if a problem is decomposed into subproblems, then

the optimal solution to the total problem is the union of the optimal

solutions to each subproblem.

Applications Related to Computer Science

Many optimization problems would be intractable without the use of

computers, since they are quite complex. For example, attempting to solve the

dynamic programming problem mentioned above could easily involve choosing

among thousands of alternate routes in a moderately large city.

References .i'l" -v;" :^;;•^-r^ M^tf ;

;

Bellman 1963
Beveridge 1970
Gottfried 1973 iijij : r^r^ ^./v'^ 'r^.^'^-^ . z:^. J -.r -

Mangasarian 1969

von Neumann 1953 ^^r-^^:'

IV. B. 3. PROBABILITY AND STATISTICS

General Definition

Probability theory predicts the results of performing repeated

experiments, based on knowledge of the experimental conditions. Statistical

45

analysis is used in efforts to discover significant patterns in

experimental data, and to estimate the meaningfulness of experimental

results. Probability and statistics, then, are mathematical disciplines

with applications in the design of experiments and the analysis of exper-

imental results.

Historical Perspectives

Intuitive notions about probability have existed for thousands of

years, but the first quantitative work in the field was done by Fermat ,

Huygens , and Pascal in connection with "games of chance"; later work in

this area was accomplished by Bernoul 1

i

and DeMoivre . Bol tzmann and Gi bbs

applied probability notions in physics, and Wiener applied it in his formal

description of Brownian motion. Kolmogorov is responsible for many modern

developments in probability.

Statistical methods are largely based on probability. Some of the most

important methods have been developed by Bayes , Neyman , and Pearson ; these

deal with data grouping and class definition: finding patterns in data.

Two important applications of statistical analyses are due to Fisher

(theoretical considerations in experimental design) and Wald (quality control).

Principles and Theories

Elementary probability uses combinatorial notions; a sample

question might concern the number of possible orderinqs of a card deck.

The probability of an event is simply the ratio of the number of ways that

event can occur to the total number of possible events: out of all

46

possible deals of a card deck in a poker game, how many will yield a

royal flush?

Statistics about experimental data are often concerned with finding

average values, and with fitting experimental data to equations. There

are several types of average--mean, median, and mode; the mean is most

commonly used but can be deceptive: a city advertising mean temperature

70° could have six months of 30° weather and six months of 110° weather each

year. The median is the number at the middle of an ordered list of the

data. The mode is that datum which occurs most often. For the set (2,2,5),

the mean is 3, the median 2, and the mode 2. When using averages, it is

important to know the data distribution (see below).

Probability and statistics deal with random variables as elements of

event spaces. An event space is comprised of points representing events. A

fundamental concept is the distribution of points in the event space. The

distribution refers to the ways in which data may be aggregated or clustered;

distributions are classified according to such features as modality,

normality, and skewness. For example, the bell-shaped distribution curve

is normal and unimodal; this means that the mean, the median, and the mode

coincide. An important concept in random distributions is due to Poisson .

In advanced probability, the measure theory of Lebesgue is employed, and

such studies are sometimes said to be part of the theory of distributions.

Stochastic processes are sequences of probabalistic events. An example

is a card game: each deal of a card is random. Markov chains are a special

type of stochastic process. The study of random walks--in which the movement

of a particle is independent of its past history— is a particularly rich

field for investigation; many physical processes can be modelled on the

atomic level by random walks.

Applications Related to Computer Science

Probability and statistics are relevant in such computer science

related fields as queueing theory and finite mathematics. Computers are

also important in applications of probability and statistics: large

statistical analyses could not be carried out without computers, due

to the magnitude of the calculations involved. Simulation also relies

heavily on theories from probability and statistics.

References

Feller 1968

Hodges 1964
Karl in 1966

Kemeny 1960

Larson 1974

Pfeiffer 1973

V.A.I . CIRCUIT THEORY

General Definition

Circuit (or network) theory is considered today as a component

discipline of systems theory and as a mathematically wel 1 -developed

electrical engineering field. It covers both the determination of

what a given circuit will do (analysis) and the design of circuits

with specified characteristics (synthesis).

Historical Perspective

Before the first World War, circuit theory had been deduced from

Maxwel

1

' s general electromagnetic theory, and was viewed as an inde-

pendent discipline. Much of the progress in circuit theory in the

period immediately after World War I was in connection with network

design for long distance telephony. In the latter half of the 1920's

and the beginning of the 1930's, a transition from methods of circuit

analysis to network synthesis occurred. During the second World War,

microwave applications of network theory led to the adoption of

techniques from physics in preference over classical methods.

After World War II, circuit theory grew in many directions. The

theory of active networks progressed, and a separation between formal

real izabi 1 i ty theory and topological synthesis developed. One important

research area involves design of circuits which perform a task faster

or more reliably. In this connection, integrated circuit theory has

allow^^d a shift in emphasis from minimization techniques to methods of

circuit construction which allow faster operation.

49

Principles and Theories

Circuit theory takes as postulates Kirchoff s laws: (1) the voltage

difference between two points in a circuit is the same no matter how the

circuit is traversed; (2) the current entering a junction equals the

current leaving; and Ohm's law: the voltage difference across two points

equals the product of the current flow and the resistance between the

points. Since ordinary circuit elements like resistors and capacitors are

analogous to elements of dynamic systems like dashpots and springs, several

techniques were adopted from analytical dynamics; Steinmetz , for example,

popularized the complex notation for steady state harmonic behavior.

Heaviside was among the first to use the concept of impedance, which refers

to the tendency of circuit elements to resist alternating electric current.

The invention of the electric filter by Campbel

1

and Wagner was

crucial to telephone technology. Zobel contributed to filter techniques

with his m-deri vation. Filters act on signals by damping certain frequencies

and not damping others. They can make communication lines less noisy.

Cauer and Foster contributed the first papers in the area of network

synthesis. Later, Butterworth and Cauer applied approximation techniques in

solving amplifier and feedback design problems.

The development of transistors and, later, integrated circuits, allowed

circuit designers to concern themselves less with minimization techniques--

using as few components as possible to do a job, for reasons of cost and

rel iabil i ty--and more with speed and reliability of circuit elements. This

new technology has also enabled the reduction in size of circuit components

by a factor of several thousand.

50

Applications to Computer Science

Circuit theory in computer science is used to design the circuits

which make up a processor. Some examples include timing and delay

circuits, flip-flops or multi -vibrator circuits, and gating circuits for

performance of logical operations.

_
:. "^e b!!::.:.-

-

References - ;

Anderson 1973 ' ; :

Chu 1962
Lepage 1952 "

- , - h j-y'^^-s '^v; .

Marcus 1973
Mavar 1973 • : -

. .

<

Murdock 1970

Newcomb 1968 ' " '

'
^ .-r.-. -:a,„-; --^i' -o:': M'r :

Van Valkenburg 1974

V.A.2. CRYOGENIC ENGINEERING

General Definition " '

Cryogenic engineering is the technology of producing low temperatures and

the study of phenomena, such as superconductivity, which occur at low

temperatures. In this context, a low temperature is near or below the

boiling point of methane, around 112 K.

Historical Perspective

Major early accomplishments in cryogenics include the first lique-

faction of oxygen by Cailletet and Pictet (independently), in 1877;

Olszewski and Wroblewski , in 1883, developed another oxygen liquefaction

method and a device for storing the liquid element. These techniques

were used in the determination of the components of air.

Important developments around the turn of the century include

the liquefaction of large quantities of air by Linde (1895) and

Claude (1902); Dewar 's liquefaction of hydrogen (1898), and his

development of a vacuum-insulated storage vessel; and the liquefaction

of helium in 1908 by Onnes .

With gas liquefaction techniques well developed, work began on

extending the range of low temperatures available, exploring applications

of cryogenics, and study of phenomena occurrina at cryogenic temperatures.

A notable magnetic cooling method, proposed in 1926 and implemented in 1933,

allowed production of temperatures around .001 K. Goddard experimented

with liquid oxygen as a rocket fuel in the 1920's.

Onnes discovered the phenomenon of superconductivity (the disappearance

of resistance to electricity in metals at cryogenic temperatures) in 1911.

In 1933, Meissner and Ochsenfeld showed that superconductive states also

completely exclude magnetic flux. Study of the microscopic characteristics

of the superconducting state led to the distinction of Types I and II super-

conductors; the former are usually pure metals, while the latter are alloys.

Bardeen . Cooper , and Schri effer first gave a complete microscopic ex-

planation of superconductivity, for which they won a Nobel prize.

Principles and Theories

The major area of interest in cryogenic engineering is the develop-

ment of methods for achieving and maintaining low temperatures. To this

end, much work has been done in areas such as heat transfer and insulation;

the former is of interest because large amounts of heat-generatinq energy

must be expended to cool to cryogenic temperatures, and the latter is

important for the maintenance of low temperatures once achieved. . Almost

all methods for gas liquefaction are based on the Joule-Thomson effect of

isenthalpic expansion--if an insulated container of gas is allowed to

expand, the gas temperature decreases.

In superconductivity, interest has been in finding good super-

conductors, in the effects of various physical properties of a metal

on its superconducting behavior, and in generation of large magnetic fields

using superconducting magnets.

The microscopic study of superconductivity involves investigations into

transition states between low resistance and zero-resistance states, as

well as determination of the structure of a superconducting metal or

alloy. One particularly interesting microscopic process is tunnelling,

discovered by Qiaever in 1960; electrons can cross a gap (tunnel) between

superconducting metals or between a normal metal and a superconductor,

if a voltage difference exists between them.

Applications to Computer Science , ^ ,

A major application of cryogenic properties to computer science is

the Josephson junction, a circuit which is fabricated from superconductors

and which operates at extremely high switching speeds and with very little

power dissipation, exceeding by far the characteristics of any known

transistor. ,, x v

53

References

DeGennes 1966

Fishlock 1969

Haselden 1971

Parks 1969
Rose-Innes 1969

Wallace 1968

Williams 1970 ^

V.A.3. DISPLAY SYSTEMS ENGINEERING

General Definition

Display systems enqineering is the application of physical science and

technology to the desian of devices which display data.

Historical Perspective

Devices for data display have existed for centuries; a simple example

is a clock. But with the tremendous increase in information, brought

about largely by the digital computer, a need has arisen for "better"

information display methods--better in the sense of more easily comprehensible

or more efficiently presented. A modern trend in computer display systems

is toward devices which themselves process data, instead of allowing the

computer to do all of the processing.

Principles and Theories

Three elements of display systems are easily distinguished:

. initial transducer. This element receives the information

to be displayed.

54

intermediate transducer. This element transforms the

"raw" data received by the initial transducer into

another form.

. depiction mechanism. This element accepts the

transformed data from the intermediate transducer and

gives human-understandable (e.g., auditory or visual)

I output.

For example, in a modern watch, vibrations of a quartz crystal are counted

and transformed into electrical impulses which excite 1 ight- emitting diodes

to indicate the time of day or the date.

Initial transducer design depends very much on the application.

Common initial transducers include terminal keyboards and card punch

machines. Radar antennae, spectrophotometers, and voltmeters are possible

initial transducers in different specialized applications.

Intermediate transducers may be digital computers devoted to the task

or special purpose devices which incorporate logic circuitry. Many graphic

display terminals, for example, have microprocessors which accept information

from a computer and from controls on the terminal; the processor then

performs necessary transformations to allow viewing of a figure from

different perspectives.

The design of depiction mechanisms for optimum comprehension is based

on psychological factors, and implementation uses techniques from photo-

metry, colorimetry, optics, and electronics. For example., an engineering

psychologist might be called upon to determine, for a cathode-ray

display, the best character size or the best color contrast with the

background; it would then be the engineer's task to build such a

device, subject to constraints on image quality, possible viewing angle,

and so on, as well as to limitations inherent in the materials used for

construction.

Applications to Computer Science

Display systems in computer science are the user's way of determining

what the computer is doing, and are particularly important in interactive

computer use. Specialized display systems are also used in engineering

design; some allow "blueprints" to be stored in a computer and modified

using cathode-ray devices, without necessitating costly manual redrawing;

others use computers to design better computers.

References

Barnhill 1974
Biberman 1971

Biberman 1973
Luxenberg 1968
Sherr 1970

Woodworth 1967

V : V.A.4 SIGNAL PROCESSING

General Definition

Signal processing is concerned with methods of collectina and

analyzing signals. A signal is an electrical quantity which

corresponds to physical data; for example, if an anemometer drives a

magneto, the power output signal will vary with the speed of revolution

of the anemometer, and hence with the windspeed.

Historical Perspective • ; , ^

Analog signal processing dates to the period immediately after the

first World War, with research in long distance telephony, particularly

in filter design; but such research was considered to be a part of

circuit theory. Speculation about the application of digital techniques

to filter design can be traced back to World War II, but a formal theory

of digital signal processing did not emerge until the middle of the 1960's

when reliable integrated circuits were available. Kaiser showed how to

design a digital filter. Cooley and Tukey published a fast method of

computing discrete Fourier transforms. Stockham demonstrated that finite

impulse response filters could be very efficient.

Principles and Theories

There are five major areas of interest in signal processing:

. data capture and storage. This area is concerned with

the mechanisms for collecting data and for translating

57

it into signals, as well as with devices which store the

information.

pre-processing. Often, data as initially received is not

readily analyzable. For example, in the decay of a radio-

active sample, the emission of particles is sporadic, but the

figure of interest is particles emitted per unit time; so, a pre-

processor would store up the number of particles detected and

send the information out at regular time intervals. Pre-

processing may also involve conversions between analog and

digital data forms.

frequency analysis. This topic is concerned with expressing

signals in terms of their amplitude or power, the location

of such parameters on a frequency spectrum, and the problem

of studying infinite series of random signals in terms of

statistics acquired in a finite time interval,

filtering techniques. Due to non-idealities in signal

generators, signals often need to be modified to be processed;

a filter accepts discrete inputs and pror'uces output dependent

upon these inputs and on desired characteristics of the filter,

correlation analysis. This area is based heavily on statistics

and is used to determine similarity between signals and to

separate signals from noise.

Applications to Computer Science

Signal processing is important in the design of reliable computer

circuitry, and in construction of transducers which translate data into

signals. Computers are now used in the design of signal processors, and thus

can aid in the design of new computers.

References

Beauchamp 1973

Gold 1969
Martin 1969
Rabiner 1975
Schwartz 1975

Whalen 1971

59

V.B.I. COMPUTER STORAGE TECHNOLOGY

General Definitions

Computer storage technology is concerned with the research,

development, and production methods for computer memory devices.

It uses theory from chemistry and physics, and techniques from

engineering, in accomplishing this task.

Historical Perspective

The need for computer storage devices is a concomitant of the

development of computers. Slow mechanical memory devices such as

those used in mechanical calculators existed before modern computers,

but the fast processing capability of modern comouters made the develop-

ment of faster memories important; thus, researchers turned to ferro-

magnetic and other advanced technologies in search of faster storage

devices. Early work in the late 1940's and early 1950's used ferromagnetic

devices like cores and drums, as well as semiconductor devices, including

the transistor. In the 1960's, integrated circuits further improved

computer memory performance. In the 1970's, technologies being explored

for use as computer memories include magnetic "bubble" devices, charge-

coupled devices, and holography.

Principles and Theories

Main memory in a computer contains programs beinn executed and their

associated data. It is fast to read from and write into, and the data in

each memory location can be obtained in the same amount of time (access time).

The capacity of main memory is usually small because of its high cost. Main

memories are often volatile: interruoti ons in power cause loss of the

information stored therein. Common main memory implementation methods

include integrated circuits and other semiconductor devices; magnetic

core memories are also used, and they are not volatile.

Bulk memory devices such as magnetic tapes and disks store programs

for future use. They are capable of storing more data than main memory,

and they have longer access time. In addition, they are not volatile.

A common bulk memory design uses ferromagnetic materials coated onto a

substrate such as plastic or aluminum. The ferromagnetic coating material

stores binary information by being magnetized in ways which correspond to

binary "one" and "zero". ,.; . -

In memory devices using ferromagnetic films, there are two types of

accessibility: sequential and random. Random access devices, such as

disks and drums, have heads which float on a film of air above the media

surface; these heads read or write data and there are mechanisms which

control movement of the head to insure that data operations occur at the

correct locations. Sequential access devices, such as magnetic tapes,

have stationary read and write heads in contact with the moving tape.

Mechanisms are needed to prevent tape breakage during the sudden starts

and stops made.

Experimental devices using holographic techniques, magnetic "bubbles,"

charge-coupled devices, and other media, are being explored for possible

use in faster or larger capacity^ memories. Reduced cost is also a goal.

\arger capacity can be achieved either by increasing device size or by

increasing the packing density--how much data is stored per unit area.

61

Applications to Computer Science

Memory is a vital part of a computer, without which modern applications

would be impossible. It is used to store the larqe amounts of data used by

computer programs, as well as the programs themselves. The speed of memory

devices affects the speed with which computations can be performed.

References

Eimbinder 1971

Flores 1973

Hoagland 1973

Hodges 1972

Hodges 1973

Lai i Otis 1973

Luecke 1973

Marcus 1973
Pear 1967

V.B.2. MICROPROGRAMMING

General Definitions

Microprogramming is a technique for implementing a computer's control

function using memory.

Historical Perspective

Wilkes coined the term "microprogramming" in 1951, describina computer

instructions which perform many transfers of data in one cycle. Imple-

mentation of microprogramming did not become popular, however, until the

development of fast reliable integrated circuits in the mid-1960's.

62

Principles and Theories

In microprogramminq, microinstructions reside in control storage,

which is always a fast memory and is usually faster than main memory

(Here, the speed of a memory refers to the time needed to access parts of

it.). This memory may be modifiable only by the computer manufacturer,

(e.g., read-only memory - ROM), it may be user modifiable using special

techniques (e.g., programmable read-only memory - PROM), or it may be

writable by a user in the course of a program, though typically the writing

operation is slower than reading. .1

Microprogramming is implemented using microinstructions. In the design

of microinstructions, two major considerations are:

. number of resources controlled by the instruction. A vertical

instruction controls single operations - load, store, etc. -

on one or more operands; a horizontal instruction controls

resources which can operate simultaneously and independently -

e.g., main memory, the arithmetic and logic unit, and various

registers. A technique known as residual control is a hybrid

of vertical and horizontal instruction schema, in which special

registers, in conjunction with the instruction, direct comouter

operation.
'

. encoding method. Direct encoding means that individual bits

control different resources and are combined into instructions;

with indirect encoding, the meaning of one field depends on

another (control) field, on the value in a register, or on the

machine status.

63

Vertical microinstructions are most often used, being more closely akin

to traditional programmina methods. Horizontal microinstructions have the

potential for being much faster, but are more difficult for the programmer

to use.

An important feature of microinstructions is the possibility of over-

lapped instruction execution, i.e., while one instruction is being executed,

the next is fetched for execution. Of course, situations like conditional

statements require special handling, since one does not know what the next

instruction is until the condition has been evaluated.

Applications to Computer Science

Many modern computers are microprogrammed; in some, a user can design

his instruction set to contain only the instructions he needs, allowing

faster execution. Microprogramming has been used in graphics systems and

for signal processing, as well as in "emulation" of machines by other

machines.

References

Aqrawala 1974
Falk 1974
Husson 1970

Kampe 1960

Laliotis 1974
Ramamoorthy 1974
Rosin 1969
Wilkes 1953

,
64

V.B.3. OPTICAL COMPUTING

General Definition -
- :

Optical computing is based on principles from Fourier optics and

holography. A wide variety of optical computing applications exists,

including image enhancement and pattern recognition.

Historical Perspective

The use of Fourier optics in image manipulation began around the

turn of the twentieth century; the first reported experiments of this

type were performed by Abbe and Porter . In 1935, Zernike proposed a

phase-contrast microscopic technique for observing transparent specimens.

In the early 1950's, Marechal began using spatial -filtering techniques in

image enhancement. Stroke and Zech first described the use of "holographic

Fourier-transform division image-deblurring convolution" in 1967. The

application of optical techniques in radar was also introduced around this

time.

Principles and Theories

Fourier analysis is a mathematical tool which is used to determine

the frequency spectrum of a function over a surface in terms of integrals

of exponential functions. This operation is known as a Fourier transform.

Many theorems about the properties of Fourier transforms exist; one,

the convolution theorem, states that convolving two functions is

equivalent to multiplying their transforms; another, the Fourier integral

theorem, states that applying the transform and then the inverse transform

to a function yields the original function.

A lens naturally performs Fourier transforms on images in terms

of their spatial frequency. This is the principle underlying holo-

graphy, wherein monochromatic light (usually laser light) passing through

a lens, illuminating an image, produces a hologram in the focal plane

of the lens; this hologram can then be reconstructed to give a three-

dimensional image. A lens can be used to deblur a photograph: if one

regards the picture as one function and the blurring as another, the

blurred photograph is a convolution of the two; deconvolving them involves

a simple application of the convolution theorem. This same idea can be

used to remove grid lines from a picture.

Three important applications of optical computing are in pattern

recognition, radar, and image enhancement. Pattern recognition is a

particularly fruitful application because of the natural capability of the

lens for parallel processing. Information can be stored as its Fourier

transform, and patterns can be analysed in terms of their correspondence

to this information. The analysis is facilitated by the ability of the

lens to search for the same pattern in different areas of a picture (simply

shifting the axes of the transform).

Radar antennae located on a moving vehicle send back data which can

be processed optically to give an image having hiah resolution. This

technique can be used to map inaccessible terrains on the earth or other

plants. Devices incorporating image enhancement can be used to deblur

66

photographs whose clarity has been compromised by camera movement or

other factors. Electron micrographs can also be resolved using these

techniques. ^
:

Applications to Computer Science

Optical computing is being used in the development of alternative

types of input devices, memories, and logic units. For example, a

content-addressable memory could be realized using optical computing

techniques. ''^>" ."^ -n-; bu

References • "
'

y^" ..:a'^"^iv;:/

Pollock 1963 'i-rjnm'o:X

Rosenfeld 1969
Shulman 1970 -

?

Stroke 1972

Tippett 1965 •
^

V.B.4. SOFTWARE ENGINEERING

General Definition

Software engineering represents an effort to state general principles

to be observed in software design. Hence, a software engineer must be

familiar with such computer-related areas as systems architecture, data

structuring techniques, programming language characteristics, and the theory

of algorithms.

i

!

67

Historical Perspective

Software development has been characterized by several negative

features, for example: lack of discipline, in that processes are re-

invented for each software project; lack of an adequate specification

method for performance requirements, causing extra costs since already

written software must be modified or discarded; lack of standard tools

for design and verification of software, forcing systems programmers to

use unreliable subjective judgements in the evaluation of software

performance; and, lack of transferability of software between different

computer systems, necessitating extra work on or re-development of a

system being transferred from one computer to another.

Software engineering represents an attempt to remedy the problems

mentioned above, by characterizing and explicating or developing princi-

ples for good software development. Popular interest in software engineering

was spurred by NATO-sponsored conferences at the end of the 1960's. A

variety of techniques for improving the development of software have been

the subject of experiments by computer firms.

Principles and Theories

Software is the set of instructions which direct a computer to perform

a specific function. Software is often used to implement the operating

system, programming language compilers and interpreters, and utility

routines of a general -purpose computer system. Software is also used to

implement specialized computer applications in the form of programs.

The practice of software engineering involves five major steps:

. the definition of the purpose of a system -- what it is to do;

. the design of a structure which will fulfill the system's defined

purpose;
'

. the specification of an implementation method, typically a

programming language; ^

'

. the expression of the structure in the implementation by coding

and debugging; and

. the modification of the system to meet goals in performance.

Certain principles guide software engineering, including:

. the notion of modularity: splitting a goal into independent

subgoals which when combined will accomplish the intended system

function ;
^

•
'

' '
' ' '

. the idea of concealing from a user system features which are un-

important to him; for example designing the software to allocate

space to variables, rather than concerning the user with that

process;

. the assurance of completeness: that a system does all that it

is supposed to do.

The goals of software engineering are system understandability,

reliability, efficiency and modifiabili ty. To this end, such practices

as structured programming, top-down system design, and program production

libraries have been used by various computer firms in large software

projects

.

69

Applications to Computer Science

Software engineering is used in the design of computer programs,

particularly operating systems. Although such systems will almost

always contain errors, the goal of software engineering is the minimization

of the importance and occurrence of those errors.

References

Bratman 1975

Dahl 1972

McGowan 1975

Ross 1975

Tou 1970
Weinberg 1971

V.B.5. SYSTEMS ARCHITECTURE

General Definition

Computer systems architecture is the study and design of methods for

implementing the logical control function which manages the resources of

a computer system.^

Historical Perspective

There are basically three^types of computer system components:

hardware, software, and firmware. It is the job of the systems

architect to decide which control functions will be implemented in

This definition, proposed to the IEEE Committee on Computer Architecture
has been paraphrased from Abrams 1973.

hardware, which in software, and which (if any) in firmware.

Important considerations include the speed of operations (in which

hardware has an advantage) and the system modifiabil ity (in which

software has a great advantage). Hardware includes:

. central processing unit (CPU). The CPU of a computer includes

the circuits which comprise the arithmetic and logic unit, the

control unit, and the registers used in computations.

. memory. Amonq the types of memory are "core" or main memory,

disk or random-access memory, and tape or sequential access

memory. Important considerations in weighing the merits of

memory systems are speed of access to desired data, and

volatility or permanence of the memory.

. input/output devices. Machines used for communication between

the user and the processor; included are card readers and

punches, line printers and cathode-ray display tubes.

. communication devices. Machines for controlling the transfer

of information from one part of a computer complex to another,

including buffer units for moving data between units which

operate at different speeds. -c^'u o'^'if'i

Software includes routines and programs stored in the computer which

give it instructions for performing tasks. The term software usually

includes such routines as programming language compilers and interpreters,

utility programs such as editors, linkers, and loaders, and specialized

routines for performing mathematical or business-oriented tasks.

Firmware describes control functions which are implemented by micro-

programming; that is, using fast memory for the storage and execution

f

71

of control tasks.

The design of the executive processor and its associated routines

is of fundamental importance in modern computer operations. The executive

schedules jobs for execution, secures files against tampering, and

keeps account of systems use. Associated routines control input/output

operations and interrupt conditions. One of the most important jobs

performed by an executive is keeping track of what hardware is operational

and what limitations should be imposed on it; for example, if a disk has

a blemish which interferes with reading or writing, the executive (or one

of its associated routines) must prevent use of that portion of the disk.

Many of the problems faced by a systems architect involve trade-offs;

for example, higher security versus soeed of operation and memory available

for use by the processor; or, cost versus speed of input/output devices. In

such cases, the architect must carefully weigh the relative advantages and

disadvantages of proposed system designs, in light of the expected application.

Applications to Computer Science

Systems architecture is vital to the design of computer systems if they

are to be satisfactory for the application and economically feasible. A

particularly important application is executive design to allow multi-

processing .

References

Abrams 1973

Amdahl 1964
Beizer 1971

Bell 1971

Donovan 1972

Foster 1970
Gear 1974
Katzan 1973

72

VI . Bibi iography

Abrams 1973

Abramson 1963

Acton 1970

Agrawala 1974

Aho 1973

Amdahl 1964

Anderson 1973

Andrews 1972

Anton 1974

Arbib 1964

Archibald 1967

Ash 1967

Ashou^ 1972

Abrams, Marshall D. and Stein, Philip G., Computer
Hardware and Software : An Interdisciplinary
Introduction . Reading, MA: Addison-Wesley, 1973.

Abramson, Norman, Information Theory and Coding .

New York: McGraw-Hill, 1963.

Acton, Forman S., Numerical Methods That Work .

New York: Harper and Row, 1970.

Agrawala, A. K. and Rauscher, T. G., "Microprogramming:
Perspectives and Status," in Institute of Electrical
and Electronics Engineers Transactions on Computers
(August, 1974), Volume C23, Number 8, pp. 817-837.

Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D.,

The Design and Analysis of Computer Algorithms .

Reading, MA: Addison-Wesley, 1973.

Amdahl, G. M., Blaauw, G. A., and Brooks, F. P., Jr.,
"Architecture of the IBM System/360,'' in IBM

Journal of Research and Development (April, 1964)
Volume 8, Number 2, pp. 87-101.

Anderson, Brian D. 0. and Vongpanitlerd, Sumeth, Network
Analysis and Synthesis : A Modern Systems Theory
Approach ! Englewood Cliffs, NJ: Prentice-Hall, 1973.

Andrews, Harry C, Introduction to Mathematical Techniques
in Pattern Recognition . New York: Wiley-Interscience.
TWTT.

~~ V .

Anton, Howard and Kolman, Bernard, Applied Finite
Mathematics . New York: Academic Press, 1974.

Arbib, Michael A., Brains, Machines and Mathematics .

New York: Mcgraw-Hill , 1964.

Archibald, R. D. and Villoria, R. L., Network-Based
Management Systems (PERT/CPM) . New York: Wiley,
1967.

Ash, Robert B., Information Theory . New York: Wiley-
Interscience, 1967.

Ashour, Said, Sequencing Theory , New York: Springer-Verlag.
1972.

73

Atkinson 1965

Banerji 1969

Bar-Hillel 1964

Barlow 1955

Barnhill 1974

Bazovsky 1961

Beauchamp 1973

Beizer 1971

Bell 1971

Bellman 1 963'

Bellman 1967

Atkinson, Richard C, Bower, Gordon H., and Crothers,
Edward J., An Introduction to Mathematical Learning

Theory . New York: Wiley, 1965.

Banerji, Ranan B., Theory of Problem Solving : An Approach
to Artificial Intelligence . New York: American
Elsevier, 1969.

Bar-Hillel, Yehoshua, Language and Information : Sel ected
Essays on Their Theory and Application . Reading, MA:

Addison-Wesley, 1964.

Barlow, Richard E. and Proschan, Frank, Mathemati cal

Bellman 1971

Herman 1972

Theory of Rel iabi 1 ity . New York: Wiley, 1965.

Barnhill, Robert E. and Riesenfeld, Richard F., editors,
Computer Aided Geometric Design . New York:

Academic Press, 1974.

Bazovsky, Igor, Reliability Theory and Practice . Englewood
Cliffs, NJ: Prentice-Hall, 1961.

Beauchamp, K. G., Signal Processing Using Analog and
Digital Techniques . New York: Wiley, 1973.

Beizer, Boris, The Architecture and Engineering of
Digital Computer Complexes , Volumes 1 and 2.

New York: Plenum Press, 1971

.

Bell, C. Gordon and Newell, Allen, Computer Structures :

Readings and Examples. New York: McGraw-Hill,
1971.

Bellman, Richard, editor. Symposium on Mathematical
Optimization Techniques

.
Berkeley, CA: University

of California Press, 1963.

Bellman, Richard E., Linear Equations and Quadratic
Criteria , Volume 1 of Introduction to the Mathematical
Theory of Control Processes . New York: Academi

c

Press, 1967.

Bellman, Richard E., Nonlinear Processes , Volume 2 of
Introduction to the Mathematical Theory of Control
Processes . New York: Academic Press, 1971.

Berman, Gerald and Fryer, K. D., Introduction to Combinatorics
New York: Academic Press, 1972.

74

Beveridge 1970

Biberman 1971

Biberman 1973

Bobrow 1974

Book 1973

Boole 1847

Borevich 1966

Bratman 1975

Brillouin 1962

Chomsky 1957

Chomsky 1965

Chorafas 1966

Chu 1962

Beveridge, Gordon S. G. and Schechter, Robert S.,

Optimization : Theory and Practice . New York:

McGraw-Hill, 1970.

Biberman, Lucien M. and Nudelman, Sol, editors,
Photo Electronic Imaging Devices , Volumes 1 and
2. New York: Plenum Press, 1971.

Biberman, Lucien M., Perception of Displayed Infor-
mation . New York: Plenum Press, 1973.

Bobrow, Leonard S. and Arbib, Michael A., Discrete
Mathematics : Applied Algebra for Computer and
Information Science . Philadelphia, PA: W. B.

Saunders, 1974.

Book, Ronald V., "Topics in Formal Language Theory,"
in Aho, Alfred V., editor. Currents in the Theory
of Computing . Enalewood Cliffs, NJ: Prentice-

i Hall, 1973.

Boole, George, An Investigation into the Laws of Thought ,

On Which Are Founded the Mathematical Theories of
Logic and Probabilities . New York: Dover, "First
American Printing."

Borevich, Z. I. and Shofarevich, I. R., Number Theory .

New York: Academic Press, 1966.

Bratman, Harvey and Court, Terry, "The Software Factory,"
in Computer (May, 1975), Volume 8, Number 5, pp. 28-37,

Brillouin, Leon, Science and Information Theory . New York:

Academic Press, 1962.

Chomsky, Noam, Syntactic Structures . The Haque: Mouton,
1957.

Chomsky, Noam, Aspects of the Theory of Syntax . Cambridge,
MA: Massachusetts Institute of Technology Press, 1965.

Chorafas, Dimitris A., Control Systems Functions and

Programming Approaches. New York: Academic Press,

Chu, Yaohan, Digital Computer Design Fundamentals . New
York: McGraw-Hill , 1962.

75

Cleland 1968

Conway 1967

Dahl 1972

Davis 1958

De Gennes 1966

Donovan 1972

Dyer 1966

Eilenberg 1974

Eimbinder 1971

Falk 1974

Feigenbaum 1963

Fein stein 1958

Feller 1968

Fike 1968

Cleland, David I. and King, William R., Systems Analysis

and Project Management . New York: McGraw-Hill, 1968.

Conway, Richard W., Maxwell, William L., and Miller,

Louis W., Theory of Scheduling . Reading, MA:

Addi son-Wesley, 1967.

Dahl, Ole-Johan, Dijkstra, E. W., and Hoare, C. A. R.,

Structured Programming . New York: Academic
Press, 1972.

Davis, Martin, Computabi 1 ity and Unsol vabi 1 ity . New York:

McGraw-Hill, 1958.

De Gennes, Pierre G., Superconductivity of Metals and

Al loys . New York: W. A. Benjamin, 1966.

Donovan, John J., Systems Programming . New York: McGraw-
Hill, 1972.

Dyer, Ralph, et alii , Optical Scanning for the Business
Man . New York: Hobbs, Dorman and Company, 1966.

Eilenberg, Samuel, Automata, Languages, and Machines .

New York: Academic Press, 1974.

Eimbinder, Jerry, editor. Semiconductor Memories
Wiley-Interscience, 1971.

New York:

Falk, Howard, "Microcomputer Software Makes Its Debut,"
in Institute of Electrical and Electronics Engineers
Spectrum (October, 1974), Volume 11, Number 10,

pp. 78-84.

Feigenbaum, Edward A. and Feldman, Julian, editors,
Computers and Thought . New York: McGraw-Hill, 1963.

Feinstein, Ami el, Foundations of Information Theory .

New York: McGraw-Hill, 1958.

Feller, William, An Introduction to Probability Theory
and Its Applications , Volumes I and 2. New York:

Wiley, 1968.

Fike, C. T., Computer Evaluation of Mathematical
Functions. Englewood Cliffs, NJ: Prentice-Hall , 1968.

76

Findler 1971 Findler, N. V. and Meltzer, Bernard, Artificial Intell-
igence and Heuristic Programming . Edinburgh:
Edinburgh University Press, 1971.

Fishlock 1969 Fishlock, David, editor, A Guide to Superconductivity .

New York: American Elsevier, 1969.

Flegg 1964 Flegg, H. Graham, Boolean Algebra and Its Applications .

New York: Wiley, 1964.

Flores 1973 Flores, Ivan, Peripheral Devices . Englewood Cliffs, NJ:

Prentice-Hall , 1973.

Foster 1970 Foster, Caxton C, Computer Architecture . New York:

Van Nostrand Reinhold, 1970.

Fuchs 1971
.
Fuchs, Walter R., Cybernetics for the Modern Mind .

New York: Macmillan, 1971.

Gauss 1966 Gauss, Karl Friedrich, Pi squi s i ti ones Ari thmeti cae .

New Haven, CN: Yale University Press, 1966.

Gear 1974 Gear, C. William, Computer Organization and Programming .

New York: McGraw-Hill, 1974.

Gold 1969 Gold, Bernard and Rader, C. W., Digital Processing of
Signals . New York: McGraw-Hill, 1969.

Gottfried 1973 Gottfried, Byron S. and Weisman, Joel, Introduction to

Optimization Theory . Englewood Cliffs, NJ:

Prentice-Hall, 1973.

Gross 1974 Gross, Donald and Harris, Carl M., Fundamentals of
Queueing Theory . New York: Wiley, 1974.

Gumowski 1968 Gumowski, Igor and Mira, C, Optimization in Control
Theory and Practice . London: Cambridge
University Press, 1968.

Hammar 1968 Hammar, Peter L. and Rudeanu, Sergu, Boolean Methods in

Operations Research and Related Areas . New York:

Springer-Verlag, 1968.

Hammar 1969 Hammer, Preston C, editor. Advances in Mathematical
Systems Theory . University Park, PA: Pennsylvania
State University Press, 1969.

77

Hamming 1962 Hamming, Richard W., Numerical Methods for Scientists
and Engineers . New York: McGrav-i-Hi 1 1 , 1 962.

Haselden 1971 Haselden, G. G., editor, Cryogenic Fundamentals . Mew

York: Academic Press, 1971.

Hildebrand 1974 Hildebrand, Francis B., Introduction to Numerical
Analysis . New York: McGraw Hill, 1974.

Hoagland 1973 Hoagland, Albert S., "Mass Storage: Past, Present and

Future," in Computer (September, 1973), Volume 6,

Number 9, pp. 28-33.

Hodges 1964 Hodges, J. L., Jr. and Lehmann, E. L., Basic Concepts of

Probability and Statistics . San Francisco, CA:

Holden-Day, 1964.

Hodges 1972 Hodqes, David A., editor, Semiconductor Memories . New
York: Institute of Electrical and Electronics
Engineers Press, 1972.

Hodges 1973 Hodges, David A., "Alternative Component Technologies for

Advanced Memory Systems," in Computer (September,

1973), Volume 6, Number 9, pp. 34-37.

Hohn 1966 Hohn, Franz E., Applied Boolean Algebra . New York:

Macmillan, 1966.

Hopcroft 1969 Hopcroft, John E. and Ullman, Jeffrey D., Formal Languages
and Their Relation to Automata . Reading, MA:

Addison -Wesley, 1969.

Householder 1953 Householder, Alston S., Principles of Numerical Analysis .

New York: McGraw-Hill, 1953.

Husson 1970 Husson, S. S., Microprogramming Principles and Practices .

Englewood Cliffs, NJ: Prentice-Hall, 1970.

IBFI 1963 International Business Forms Industry, Optical Character
Recognition and the Years Ahead . Elmhurst, IL:

Business Press, 1963.

Iri 1969 Iri
,
Masao, Network Flow, Transportation and Scheduling :

Theory and Algorithms . New York: Academic Press, 1969.

Johnson 1967 Johnson, Richard A., Kast, Fremont E., and Rosenzweig,
James E., The Theory and Management of Systems .

New York: McGraw-Hill ,
1967.'

78

Kampe 1960

Kanal 1968

Karl in 1966

Katzan 1973

Kemeny 1960

Kemeny 1966

Kirk 1970 -

Kli'r 1966

Klir 1969

Knuth 1968

Knuth 1969

Knuth 1973

Korfhage 1974

Kostopoulos 1975

Kampe, Thomas W., "The Design of a General -Purpose Micro-
program Computer with Elementary Structure," in

Institute of Radio Engineers Transactions (June, 1960),
Volume 2, Number EC-9, pp. 208-213.

Kanal, Laveen N., editor, Pattern Recognition . Washington,
DC: Thompson Book, 1968.

Karl in, Samuel, A First Course in Stochastic Processes .

New York: Academic Press, 1966.

Katzan, Harry, Jr., Operating Systems : A Pragmatic
Approach . New York: Van Nostrand Reinhold, 1973.

Kemeny, John G. and Snell, J. Laurie, Finite Markov
Chains . Princeton, NJ: Van Nostrand, 1960.

Kemeny, John G., Snell, J. Laurie, and Thompson, Gerald L.,

Introduction to Finite Mathematics . Englewood Cliffs,
NJ: Prentice-Hall, 1966.

Kirk, Donald E., Optimal Control Theory : An Introduction .

Englewood Cliffs, NJ: Prentice-Hall , 1970.

/V/
Klir, Jin and Seidl, Lev K., Synthesis of Switching

Circuits . London: Icliffe Books, 1966.

Klir, George J . , An Approach to General Systems Theory .

New York: Van Nostrand Reinhold, 1969.

Knuth, Donald E., Fundamental Algorithms , Volume 1 of
The Art of Computer Programming . Reading, MA:

Addi son-Wesley, 1968.

Knuth, Donald E., Seminumerical Algorithms , Volume 2 of
The Art of Computer Programming . Reading, MA:

Addi son-Wesley, 1969.

Knuth, Donald E., Sorting and Searching , Volume 3 of
The Art of Computer Programming . Reading, MA:

Addi son -Wesley, 1973.

Korfhage, Robert R., Discrete Computational Structures .

New York: Academic Press, 1974.

Kostopoulos, Georae K., Digital Engineering . New York:
Wiley-Interscience, 1975.

79

Kurki-Suonio 1971

Lai i Otis 1973

La li Otis 1974

Larson 1974

LeBreton 1971

Lee 1966

Lee 1972

Lefschetz 1965

Lepage 1952

Lloyd 1962

Luecke 1973

Luxenberg 1968

McGowan 1975

Kurki-Suonio, Reino, A Programmer's Introduction to

Computabi 1 i ty and Formal Languages . Princeton,
NJ: Auerbach, 1971.

Laliotis, Theodore A., "Main Memory Technology," in

Computer (September, 1973), Volume 6, Number 9,

pp. 20-27.

Laliotis, Theodore A., "Microprocessors Present and

Future," in Computer (July, 1974), Volume 7,

Number 7, pp. 20-24.

Larson, Harold J., Introduction to Probability Theory and

Statistical Inference . New York: Wiley, 1974.

LeBreton, Preston P. and Henning, Dale, A., Planning
Theory . Englewood Cliffs, NJ: Prentice-Hall,
1961

.

Lee, Alec. M., Applied Oueueing Theory . London:
Macmillan, 1966.

Lee, John A. N., Computer Semantics : Studies of
Algorithms, Processors and Languages . New York:

Van Nostrand Reinhold, 1972.

Lefschetz, Solomon, Stability of Nonlinear Control
Systems . New York: Academic Press, 1965.

Lepage, Wilbur R. and Seely, Samuel, General Network
"

Analysis . New York: McGraw-HilT, 1952.

Lloyd, David K. and Lipow, Myron, Reliability :

Management, Methods, and Mathematics . Englewood
Cliffs, NJ: Prentice-Hall, 1962.

Luecke, Gerald, Mizer, Jack P., and Carr, William N.,

Semiconductor Memory Design and Application .

New York: McGraw-Hill , 1973.

Luxenberg, H. R. and Kuehn, Rudolph L., editors.
Display Systems Engineering . New York: McGraw-
Hill, 1968.

McGowan, Clement L. and Kelly, John R., Top-Down
Structured Programming Techniques . New York:
Petrocelli/Charter, 1975.

80

Mangasarian 1969

Marcus 1967

Marcus 1973

Martin 1969

Mavar 1973

Meredith 1973

Mesarovic 1975

Miller 1972

Minsky 1967

Minsky 1973

Morse 1958

Murdock 1970

NYU 1970 :

Newcomb 1968

Mangasarian, 01 vi L., Nonlinear Programming . New
York: McGraw-Hill, 1969.

Marcus, Solomon, Algebraic Linguistics : Analytical
Models . New York: Academic Press, 1967.

Marcus, Abraham and Lenk, John D., Computers for

Technicians. Englewood Cliffs, NJ: Prentice-
Hall, 1973.

Martin, James Thomas, Telecommunications and the

Computer . Englewood Cliffs, NJ: Prentice-Hal 1

,

1969.

Mavar, John, M.O.S.T. Integrated Circuit Engineering .

Stevenage, England: Peter Peregrinus, 1973.

Meredith, Dale D., Wong, Kam W., Woodhead, Ronald W.,

and Wortman, Robert H., Design and Planning of
. Engineering Systems . Englewood Cliffs, NJ:

Prentice-Hall, 1973.

Mesarovic, Mihajlo D. and Takahara, Yasuhiko, General
Systems Theory : Mathematical Foundations .

New York: Academic Press, 1975.

Miller, Raymond E. and Thatcher, James W., editors.
Complexity of Computer Computations . New York:
Plenum Press, 1972.

Minsky, Marvin L., Computation : Finite and Infinite
Machines . Englewood Cliffs, NJ: Prentice-Hall,
1967.

Minsky, Marvin and Papert, Seymour, Artificial Intelligence :

Condon Lectures . Eugene, OR: Oregon State System
of Higher Education, 1973.

Morse, Philip M., Queues, Inventories and Maintenance .

New York: Wiley, 1958.

Murdock, J. B., Network Theory . New York: McGraw-Hill,
1970.

New York University Linguistic String Program, An
Application of Syntactic Analysis to Information
Petri evaT String Program Report Number 6, 1970.

Newcomb, Robert W., Active Integrated Circuit Synthesis .

Englewood Cliffs, NJ: Prentice-Hall, 1968.

81

Nivat 1973 Nivat, M., editor, Automata, Languages and Programming .

New York: American Elsevier, 1973.

Ollonqren 1974 Ollongren, Alexander, Definition of Programming Languages
by Interpreting Automata . New York: Academic
Press, 1968.

Padulo 1974 Padulo, Louis and Arbib, Michael A., System Theory :

A Unified State-Space Approach to Continuous and
Discrete Systems . Philadelphia, PA: W. B. Saunders, 1974.

Parks 1969 Parks, R. D., editor. Superconductivity , Volumes 1 and 2.

New York: Marcel Dekker, 1969.

Patton 1974 Patton, P. C, "Data Organization and Access Methods," in

Tou, Julius T., editor, Advances in Information Systems
Science , Volume 5. New York: Plenum Press, 1974, pp. 1-95.

Pear 1967 Pear, Charles B., Jr., editor. Magnetic Recording in

Science and Industry . New York: Reinhold Publishing,
1967.

Pedelty 1963 Pedelty, Michael J., An Approach to Machine Intelligence .

Washington, DC: Spartan Books, 1963.

Peschon 1965 Peschon, John, editor, Disciplines and Techniques of
Systems Control . New York: Blaisdell, 1965.

Pfeiffer 1973 Pfeiffer, Paul E. and Schum, David A., Introduction
to Applied Probability . New York: Academic
Press, 1973.

Pollock 1963 Pollock, Donald K., Koester, Charles J., and Tippett,
James T., Optical Processing of Information ,

Baltimore, MD: Spartan Books, 1963.

Prabhu 1965 Prabhu, Narahari , Queues and Inventories : A Study of
Their Basic Stochastic Processes . New York:
Wiley, 1965.

Rabiner 1975 Rabiner, Lawrence R. and Gold, Bernard, Theory and
Application of Digital Signal Processing .

Englewood Cliffs, NJ: Prentice-Hall, 1975.

Ramamoorthy 1974 Ramamoorthy, Charles V., "A Survey of the Status of

Microprogramming," in Tou, Julius T., editor,
Advances in Information Systems Science , Volume 5.

New York: Plenum Press, 1974, pp. 193-259.

Rose-Innes 1969 Rose-Innes, Alistair C. and Rhoderick, E. H., Introduction
to Superconductivity . Oxford: Pergamon Press, 1969.

82

Rosenfeld 1969

Rosin 1969

Ross 1975

Salomaa 1973

Sass 1965

Schank 1973

Schroder 1966

Schwartz 1975

Shannon 1956

Sherr 1970

Shinners 1972

Shulman 1970

Slepian 1973

Stroke 1972

Rosenfeld, Azriel, Picture Processing by Computer .

New York: Academic Press, 1969.

Rosin, Robert F., "Contemporary Concepts of Micro-
proaramming and Simulation," in Computing Surveys
(December,"' 1969), Volume 1, Number 4, pp. 197-212.

Ross, Douglas T., Goodenough, John B. , and Irvine, C. A.,

"Software Engineering: Process, Principles, and
Goals," in Computer (May, 1975), Volume 8, Number 5,

pp. 17-27.

Solomaa, Arto, Formal Languages . New York: Academic
Press, 1973.

Sass, Margo A. and Wilkinson, William D., Computer
Augmentation of Human Reasoning . Washington, DC:

Spartan Books, 1965.

Schank, Roger C. and Colby, Kenneth Mark, editors.
Computer Models of Thought and Language . San

Francisco, CA: W. H. Freeman, 1973.

Schroder, Ernst, Vorlesungen liber die Algebra der Logik .

Bronx, NY: Chelsea Publishing, 1966.

Schwartz, Mischa and Shaw, Leonard, Signal Processing :

Discrete Spectral Analysis, Detection, and
; Estimation . New York: McGraw-Hill, 1975.

Shannon, C. E. and McCarthy, J., editors. Automata
Studies . Princeton, NJ: Princeton University
Press, 1956.

Sherr, Solomon, Fundamentals of Display Systems Design .

New York: Wi ley-Interscience, 1970.

Shinners, Stanley M,, Modern Control System Theory and

Appl ication . Reading, MA: Addi son-Wesley, 1972.

Shulman, Arnold Roy, Optical Data Processing . New
York: Wiley, 197D:

"

Slepian, David, editor, Key Papers in the Development

of Information Theory . New York: Institute of

i Electrical and Electronics Engineers Press, 1973.

Stroke, George W., "Optical Computing," in Institute

of Electrical and Electronics Engineers Spectrum
(December, 1972), Volume 9, Number 12, pp. 24-41.

83

Szabo 1967

Takacs 1962

Tippett 1965

Tou 1970

Tou 1974

Traub 1973

van der Waerden
1970

Van Valkenburg
1974

von Neumann 1953

von Neumann 1966

Wagner 1970

Wallace 1969

Watanabe 1969

Szabo, Nicholas S. and Tanaka, Richard I., Residue

Arithmetic and Its Applications to Computer
Technology . New York: McGraw-Hill, 1967.

Takacs, Lajos, Introduction to the Theory of Queues .

New York: Oxford University Press, 1962.

Tippett, James T., Berkowitz, David A., Clapp, Lewis C,
Koester, Charles J., and Vanderburgh, Alexander,

'Jr., editors, Optical and Electro-Optical Information
Processing . Cambridge, MA: Massachusetts Institute
of Technology Press, 1965.

Tou, Julius T., editor. Software Engineering , Volumes 1

and 2. New York: Academic Press, 1970.

Tou, Julius T. and Gonzalez, Rafael C, Pattern Recognition
Principles . Reading, MA: Addison-Wesley , 1974.

Traub, J. F., Jr., editor. Complexity of Sequential and
Parallel Numerical Algorithms . New York: Academic
Press, 1973.

van der Waerden, B. L., Algebra . New York: Frederick
Ungar Publishing, 1970.

Van Valkenburg, M. E., editor, Circuit Theory : Foundations
and Classical Contributions . Stroudsberg, PA:

Dowden, Hutchinson and Ross, 1974.

von Neumann, John and Morqenstern , Oskar, Theory of

Games and Economic Behavior . Princeton, NJ:

Princeton University Press, 1953.

von Neumann, John, Theory of Self-Reporducinq Automata ,

edited and completed by Arthur W. Burks. Urbana,
IL: University of Illinois Press, 1966.

Wagner, Harvey M., Principles of Management Science with
Applications to Executive Decisions . Englewood
Cliffs, NJ: Prentice-Hall , 1970.

Wallace, P. R., editor, Superconductivity , Volumes 1 and
2. New York: Gordon and Breach, 1969.

Watanabe, Satosi, editor. Methodologies of Pattern
Recognition. New York: Academic Press, 1969.

84

Watanabe 1972

Weil 1973

Weinberg 1971

Whalen 1971

Widnall 1968

Wiener 1948

Wilkes 1953

Will ems 1970

Williams 1970

Wilson 1966

Woodworth 1967

Wymore 1967

Watanabe, Satosi , editor, Frontiers of Pattern

Recognition . New York: Academic Press, 1972.

Weil, Andre, Basic Number Theory . New York: Springer-
Verlag, 1973.

Weinberg, Gerald M., The Psychology of Computer
Programming . New York: Von Nostrand Reinhold, 1971.

Whalen, Anthony D., Detection of Signals in Noise .

New York: Academic Press, 1971.

Widnall, William S., Applications of Control Theory to

Computer Controller Design . Cambridge, MA:

Massachusetts Institute of Technology Press, 1968.

Wiener, Norbert, Cybernetics, or Control and Communication
in the Animal and the Machine . New York: Wiley,

T948:

Wilkes, M. V. and Stringer, J. B., "Microprogramming
and the Design of the Control Circuits in an

Electronic Digital Computer," in Proceedings of

the Cambridge Philosophical Society (April, 1953),
Volume 69, Part 2, pp. 230-238.

Will ems, Jacgues Leopold, Stability Theory of Dynamical
Systems . New York: Wi ley-Interscience, 1970.

Williams, J. E. C, Superconductivity and Its Applications ,

London: Pi on, 1970.

Wilson, Robert A., Optical Page Reading Devices . New York

Reinhold Publishing, 1966.

Woodworth, Forrest, Graphical Simulation . Scran ton, PA:

International Textbook, 1967.

Wymore, A. Wayne, A Mathematical Theory of Systems
Engineering - the Elements . New York: Wiley, 1967.

USCOMM-NBS-DC

NBS.114A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBSIR 75- 780

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITIJ:

MATHEMATICS AND ENGINEERING IN COMPUTER SCIENCE

5* Publication Date

Auqust 1975
6. Performing Organization Code

7. AUTHOR(S)

Christopher J. Van Wvk

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

lA r~i ' /T^ l/\Y/ I TI' M
10. Proiect/ 1 ask/ Work Unit No.

6000910
11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Same as item 9

Covered

Final
14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual summary of most si^ificant information. If document includes a significant

bibliography or literature survey, mention it here.)

This document presents short descriptions of fifteen mathematical fields and nine
engineering fields which are important to computer science today. The descriptions
have five sections: general definition, historical perspective, principles and
theories, applications to computer science, and references. A list of thirty-five
other topics, not separately treated but subsumed under one or more of the twentv-
four major headings, is included. A bibliography lists classic and recent works
in the areas covered.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper
name; separated by semicolons) Computer science; engineering; mathematics

18. AVAILABILITY Unlimited

H For Off icial Distribution. Do Not Release to NTIS

I I
Order From Sup. of Doc, U.S. Government Printing Office
Washington, D.C. 20402, SD Cat. No. C13

I !
Order F rem National Technical Information Service (NTIS)
Springfield, Virginia 221^1

19. SECURITY CLASS
(THIS REPORT)

UNCL ASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

22. Price

USCOMM-DC 29042-P74

		Superintendent of Documents
	2022-04-15T19:18:44-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

