
U.S. Department
of Commerce

National Bureau

of Standards

NATX INST. OF STAND & TECH

AlllDh 33MMS7

^BucArms

Computer Science
and Technology

NBS Special Publication 500-98

Planning
for Software Validation,

Verification, and Testing

liC

luu

.U57

19ci2

C.2

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act ot Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Manufacturing

Engineering — Building Technology — Fire Research — Chemical Engineering^

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

'Some divisions within the center are located at Boulder, CO 80303.

Computer Science
and Technology

UBRARY

DEC 1 1962 ,

NBS Special Publication 500-98

Planning

for Software Validation,

Verification, and Testing

Patricia B. Powell, Editor

Center for Programming Science and Tecfinology
Institute for Computer Sciences and Teclinology
National Bureau of Standards
Washington, DC 20234

DATE DUE

Demco, Inc. 33-293

Ernest Ambler, Director

Issued November 1982

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

National Bureau of Standards Special Publication 500-98

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-98, 89 pages (Nov. 1982)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 82-600644

U.S GOVERNMENT PRINTING OFFICE

WASHINGTON 1982

For sale by the Superintendent of Documents. U S, Government Printing Office. Wasfimgton. DC 20402

Price $5.50

(Add 25 percent for other than U S mailing)

Page iii

CX)NTENTS

Chapter 1 INTRODUCTION 1

1.1 AUDIENCE 2

1.2 PHILOSOPHY 2

1 .3 USER OF TOIS DOCUMENT 2

Chapter 2 AN OVERVIEW OF SOFTWARE DEVELOPMENT 4

2.1 SOFIWARE VALIDATION, VERIFICATION, AND TESTING -

EVALUATION AND REVIEW THROUGHOUT THE PROBLEM
SOLVING PROCESS H

2.2 A PROBLEM SOLVING MODEL FOR SOFTWARE DEVELOPMENT 6

2.2.1 Initiation Phase 7
2.2.2 Development Phase

2.2.2.1 Requirements Subpiiase 8

2.2.2.2 Preliminary Design Subphase 9
2.2.2.3 Detailed Design Subphase 10
2.2.2.4 Progranming and Testing Subphase 11

2.2.2.5 Installation Subp*iase 12

2.2.3 Operation and Maintenance Phase 13

Chapter 3 A FRAMEWORK FOR INTEGRATED VALIDATION,
VERIFICATION, AND TESTING 15

3.1 STATIC ANALYSIS 15

3.2 DYNAMIC ANALYSIS 16

Page iv

Pagg

3.3 FORMAL ANALYSIS 19

3.4 AN INTEGRATED APPROACH TO VALIDATION,
VERIFICATION, AND TESTING 20

3.5 REQUIREMENTS VALIDATION, VERIFICATION,
AND TESTING 21

3.6 DESIGN VALIDATION, VERIFICATION,
AND TESTING 23

3.7 CODE VALIDATION, VERIFICATION,
AND TESTING 25

3.8 SUMMARY 2?

Chapter 4 VALIDATION, VERIFICATION, AND TEST PLANNING 28

4.1 VALIDATION, VERIFICATION, AND TEST PLANNING
IN IHE TOTAL PROJECT CONTEXT 28

4.2 STEP I: IDENTIFYING V,V&T GOALS 32

4.3 STEP II: DETERMINE INFLUENCES ON V,V&T ACTIVITIES 35

4.4 STEP III: SELECT V,V&T TECHNIQUES AND TOOLS 37

4.5 STEP IV: DEVELOP A DETAILED V,V&T PLAN 40

Chapter 5 EXAMPLE APPLICATIONS OF VALIDATION, VERIFICATION,
AND TESTING TECHNOLOGY 43

5.1 OVERVIEW OF EXAMPLES 43

5.2 EXAMPLE 1: SOFTWARE DEVELOPMENT USING MANUAL 46

V,V&T TECHNIQUES
5.2.1 Requiranents Subphase Activity Descriptions

5.2.1.1 Initial Requirements Review 47

5.2.1.2 Requironents Analysis 47

5.2.1 .3 V,V&T Planning 51

5.2.1.4 Initial Test Case Generation 51

5.2.2 Preliminary Design SubpAiase Activity Descriptions
5.2.2.1 Refinement of Graphical Representation 52
5.2.2.2 Specify Information Design 52
5.2.2.3 Design Program Architecture 53

5.2.2.4 Design Basic Control Flow 53
5.2.2.5 Test Case Generation 54
5.2.2.6 Preliminary Design Review 54

5.2.3 Detailed Design Subphase Activity Descriptions
5.2.3.1 Detailed Database Design
5.2.3.2 Detailed Module Design
5.2.3.3 Test Case Generation
5.2.3.4 Critical Design Review

5.2.4 Progranming Subphase Activity Description
5.2.4.1 Code Development
5.2.4.2 Module Testing
5.2.4.3 Function Testing
5.2.4.4 Acceptance Testing

5.3 EXAMPLE 2: SOFTWARE DEVELOPMENT USING
A MINIMAL AUTOMATED V ,V&T TOOL SET
5.3.1 Requirements Subphase Activity Description
5.3.2 Preliminary Design Subphase Activity Descriptions

5.3.2.1 Specify Information Design
5.3.2.2 Design Basic Control Flow

5.3.3 Detailed Design Subf^iase Activity Description
5.3.4 Programming Subphase Activity Descriptions

5.3.4.1 Code Development
5.3.4.2 Module Testing
5.3.4.3 Function Testing

5.4 EXAMPLE 3: SOFTWARE DEVELOPMENT USING
A FULLY AUTOMATED V,V&T TOOL SET
5.4.1 Requirements Subphase Activity Description
5.4.2 Preliminary Design Subphase Activity Description
5.4.3 Detailed Design Subp^iase Activity Description
5.4.4 Progranming Subphase Activity Descriptions

5.4.4.1 Code Development
5.4.4.2 Module Testing

5.5 EXAMPLE 4: SOFTWARE MAINTENANCE
5.5.1 Problem Reporting Activity Descriptions

5.5.1.1 ProblCTi Analysis
5.5.1.2 Problem Correction

5.5.2 Change Request Activity Descriptions
5.5.2.1 Requironents Analysis
5.5.2.2 Redesign and Coding

Chapter 6 SUMMARY

Glossary

Bibliography

Index

Page V

Page

54
55
56
56

56

57
58
58

58
59

59
60
60

61

61

62

63
63
63
64

65
66

67

68
69

70
70

71

72

75

Page vi

LIST OF FIGURES
Pgge

Figure 1.1-1 Reading Scenarios 3
Figure 2.1-1 Three Categories of V,V&T Activities 5
Figure 2.2-1 Summary of V,V&T Activities 6
Figure 3.1-1 General Form of Static Analysis 15
Figure 3.1-2 Module Interface Consistency Checks 16
Figure 3.2-1 General Form of Dynamic Analysis 17
Figure 3.3-1 General Form of a Formal Functional Analysis 20
Figure 3.4-1 General V,V&T Integration Strategy 21

Figure 3.5-1 Integrated Approach to Requirements V,V&T 22
Figure 3.6-1 Integrated Approach to Design V,V&T 23
Figure 3.7-1 Integrated Approach to Code V,V&T 26
Figure 4.1-1 Software Project Planning 29
Figure 4.1-2 Evolution of Project Plan 29
Figure 4.1-3 Pr^aration of Plans 30
Figure 4.1-4 Abbreviated Outline of a Project V,V&T Plan 31
Figure 4.2-1 Goals and Measuranent Criteria 33
Figure 4.4-1 V,V&T Technique and Tool Selection Worksheet 38
Figure 4.4-2 Completed V,V&T Technique and Tool Selection

Worksheet 39
Figure 5.1-1 Overview of Examples 44
Figure 5.1-2 Example Software Development Lifecycle 44
Figure 5.2-1 Informal Prose Requirements 48

Figure 5.2-2 Requirements Graphical Representation 50
Figure 5.2-3 Sample Database Schona Shewing Client-Claims

Relation 54
Figure 5.2-4 Sample CLAIMS Record Description 55

Figure 5.2-5 Sample Portion of Code Inspection Checklist 57

Figure 5.3-1 PSL Specifications for Accounts Payable 59
Figure 5.3-2 Preliminary Design PDL of "Issue Policy

Notices" Function 60
Figure 5.3-3 Detailed Design PDL of "Issue Policy Notices"

Function 61

Figure 5.4-1 Detailed PDL with Assertions 65
Figure 5.4-2 Find-policy Subroutine and Corresponding

Assertion Violation Message 67

LIST OF TABLES

Table 5.2-1 Exanple 1 Summary - Software Development Using
Manual V,Y&T Techniques

Table 5.3-1 Exanple 2 Summary - Software Development Using
Minimally Automated V,V&T Tool Set

Table 5.4-1 Example 3 Summary - Software Development Using
Fully Autcmated V,V&T Tool Set

Table 5.5-1 Example 4 Summary - Software Maintenance

Page viii

Abstract

Today, providing conputer software involves greater cost and risk than
providing computer equipment. One major reason is hardware is mass-produced
by proven technology, while software is still produced primarily by the craft
of individual computer programmers. The docunent is for those who direct and
those who implanent computer projects; it explains the selection and use of
validation, verification, and testing (V,V&T) tools and techniques for
software development. A primary benefit of practicing V,V&T is increasing
confidence in the quality of the software. The docunent explains how to
develop a plan to meet specific software V,V&T goals.

Key words: automated software tools; software lifecycle; software testing;
software verification; test coverage; test data generation; validation.

ACKNOWLEDG^ENTS

This report was funded by the National Bureau of Standards* Institute for
Computer Sciences and Technology under U.S. Department of Commerce Contract
NB79SBCAD102. The contributors to the report, as submitted by Boeing Computer
Services were Randy L. Merilatt, Mark K. Smith, and Leonard L. Tripp,

assisted by Allen R. Bennett, John R. Brown, Susan C. Chew, Linda S.

Harrmond, William E. Howden, Leon J. Osterweil, and Richard N. Taylor.
Consultation was provided by Leon G. Stucki.

Page ix

PREFACE

The following docunent was originally included as part of a report titled
"Computer Software Validation and Verification: A General Guideline". The
chapter on techniques and tools was extracted and published as a reference
manual [POWE]; it is a companion to this document. This docunent, being
prepared under contract to the Institute for Computer Sciences and Technology,
is in the public domain and is, therefore, not subject to copyright.
Acknowledgment and thanks are appropriate for the following reviewers who
donated their time and energy to critiquing the docunent:

John B. Bowen
Martha A. Branstad
Marianne Freedman
Carolyn Gannon
Herbert Hecht
Raymond C. Houghton, Jr.

Melba Hye-Knudsen
Denise Kreuss
Sukahamay Kundu
Frank LaMonica
David Maridian

Ralph Ne^er
Jack L. Nelson

Albrecht Newmann
David E. Nichols
Joanne Pasco
Sam Redwine
Ard Robertson
Harlan Seyfer
Jim Skiles
Al Sorkowitz
Susan Voight
John Walter
Alice Wong
Natalie Yopconka
Saul Zaveler

Comments pertaining to the technical content should be directed to:

Systons and Software Technology Division
Roan B266 Bldg. 225
National Bureau of Standards
Washington, D.C. 20234

Page 1

CHAPTER ONE

INTRODUCTION

The Institute for Computer Sciences and Technology (ICST) carries out the
following responsibilities under P.L. 89-306 (Brooks Act) to improve the
Federal Government's management and use of ADP;

0 develops Federal autonatic data processing standards;

o provides agencies with scientific and technological advisory services
relating to ADP;

o undertakes necessary research in computer sciences and technology.

In partial fulfillment of Brooks Act responsibilities, ICST issues Special
Publications (S.P.). This docunent describes an approach to validation,
verification, and testing of computer software that pervades the entire
development and maintenance process. The docunent consists of four additional
chapters which can be grouped into two sections, described below.

Software development is an exercise in problem solving. The solution is

embodied in the final product, the computer software. This product consists
of the programs (computer instructions) and the manuals describing the
software and its use. Executing the program with data on a computer provides
the solution. During the development of the target software, there are
several intermediate products produced by the project requestor and the
developers. The methodology to enhance the overall correctness of the final
product by working with the intermediate products is the subject of this
document.

In problem solving, a key activity is to determine that the solution is

correct. Validation, Verification, and Testing (V,V&T) is a process composed
of the set of procedures, activities, techniques and tools used to ensure that
a software product does solve the intended problem.

The chapters in this report are grouped into two principal sections: V,V&T
Background and V,V&T Planning Guide.

V.V&T Background consists of two chapters. Chapter 2 describes a phased
approach to software development and the fundamental concepts of V,V&T.
Chapter 3 describes three classes of V,V&T techniques and tools, and a scheme
for integrating them.

V.V&T Planning Guide consists of two chapters. Chapter 4 explains how the

goals for V,V&T can be identified and hew to develop a project V,V&T plan.
Chapter 5 discusses the application of V,V&T principles throu^ examples.

Page 2

1.1 AUDIENCE

Ihis docunent is directed tcward those (managers, customers, etc.) who
influence how software development is done and to those (programmers,
analysts, etc.) who do development. The docunent assists a project manager
working with the customer in establishing V ,V&T goals. It further assists
project managers in developing a plan for achieving the goals. Finally it
guides in the judicious selection of the appropriate set of V ,V&T practices,
techniques, and tools.

To the software engineer who is responsible for performing the various V,V&T
functions, this docunent and its companion, the Technique and Tool Reference
Guide[POWE], provide guidance to the actual use of the selected techniques and
tools. For each technique or tool there is information including functions,
inputs, outputs, resources required for use, and sources for more detailed
information. In addition to aiding in the application of individual
techniques and tools, information on their integrated use is presented.

The document is also a resource to another group within the ADP envirorment in
that it addresses certain needs of the ADP policy maker. It presents certain
fundamental concepts, elements of a general V,V&T approach, and many of the
specifics necessary to implement the approach. It provides information that
may be helpful in forming a basis for policies relating to V,V&T practice.
Second, the docunent contains information relevant to the formulation and
inplanentation of the software V,V&T functions in a typical ADP envirorment.

1.2 PHILOSOPHY

This docunent provides assistance in all aspects of V,V&T. It is not a total
"project cookbod<," wherein all the techniques and tools must be used on every
project. Projects vary in size, scope, ccmplexity, and other characteristics
that influence the specific V,V&T approach. Each project must be evaluated to
determine how V,V&T might be applied.

The use of V,V&T does not, of itself, guarantee success. It requires
judgement, training, and experience. Like other methodologies, the
application of V,V&T may be good or bad; but, it should never be blind.

1.3 USER OF IHIS DOCUMENT

For the reader who is encountering this docunent for the first time, reading
Chapters 1 through 3 is reconmended. Reading of subsequent chapters should be
guided by intended use of the information. Suggested reading scenarios for
three types of readers are presented in Figure 1.1-1. "Validation,
Verification, and Testing - Technique and Tool Guide"[POWE] is a companion to
the general guidance in this docunent.

V,V&T BACKGROUND V,V&T PLANNING GUIDE
Chapters 12 3 4 5

- POLICY MAKER - _ - - PLANNER - - -

- - - SELECTOR - - -

Figure 1.1-1 Reading Scenarios

Page 4

CHAPTER IWO

AN OVERVIEW OF SOFTVARE DEVELOPMENT

Systematic approaches to problem solving, including software development,
proceed through a sequence of steps or phases with probable looping back to
previous phases. This type of approach yields several important benefits.

First, because the problem solving process is subdivided into separate phases,
the problem solver is eased into a gradual process. The problem solver is
able to approach separately the problem, the solution, and its implementation.
The problem solver need not deliberate on all three at once. This allows
larger, more complex problems to be resolved successfully.

Second, a phased process provides intermediate monitoring and control points.
The existence of phases and intermediate products increases the visibility of
the process. This encourages the involvement of the group for whom the
problem is being solved and increases their control of the problem solving.

Third, the existence of a series of intermediate specifications, i.e.

requironents, design, and code, of the solution facilitates early and
continual evaluation of the solution as it moves toward implementation. In
software development this process of continual review and evaluation is
validation, verification, and testing (V,V&T).

This chapter discusses software development as a problem solving activity. It

introduces the concepts of software V ,V&T and a phased approach to software
development. Specifically, it describes:

Software Validation, Verification, and Testing - Evaluation and Review
Throughout the Problem Solving Process - The process of obtaining increasing
levels of confidence in a solution through a series of checkpoints and reviews
is discussed as it applies to software development and the analogies
previously presented.

A Problem Solving Model for Software Develocment - A specific series of
problem solving phases for software development is described, including the
V,V&T activities associated with each.

2.1 SOFTWARE VALIDATION, VERIFICATION, AND TESTING - EVALUATION AND REVIEW
THROUGHOUT THE PROBLEM SOLVING PROCESS

Validation, Verification, and Testing (V,V&T), in general terms, is a process
of review, analysis, and testing employed throu^out the software development
lifecycle. It is a methodology which helps ensure the production of quality
software. Validation determines the correctness of the end product, e.g.

code, with respect to the software requironents, i.e. does the output conform
with what was required? Verification is performed at each phase and between
each phase of the development lifecycle. It determines that each phase and
subphase product is correct, ccxnplete, and consistent with itself and with its
predecessor product. Testing, either automated or manual, examines program
behavior by executing the program on sample data sets, e.g. passing data.

Page 5

autcraatically or manually, through a design to determine the correctness of
the program is testing the design.

V,V&T is commonly used as a single expression; this is not to infer that the
methodology is an all or nothing process. Project constraints, suda as
criticality, error tolerance or budget, should determine hew much validation,
verification, or testing is applied to that project. This docunent uses the
general term, V,V&T, referring to the total methodology; it is understood
that the reader will extract those portions of V,V&T which are feasible and
applicable to the specific situation. V,V&T may be performed by an
independent V,V&T group (IV&V), by the person(s) producing the product or a

combination of both. Again, the decision as to who performs the V,V&T is
project dependent. The objective of V,V&T is to ensure the correctness,
completeness, and consistency of the final product.

Software V,V&T focuses on the prevention and the detection of errors, i.e.

deviation from intent. This is accomplished throu^ the use of both manual
and automated techniques. Errors include deficiencies such as unsatisfied
requirements, or, the converse, the inclusion of extraneous functions. An
error may be in the coding of the software, a specification of the software,
(e.g., a design specification) or the docunentation (e.g., a user's manual).
The error might be related to the functional correctness or another property,
such as performance, or a more subjective attribute such as product form.

To describe the role of V,V&T in error detection and prevention, three
categories of V,V&T activities are described. These are illustrated in Figure
2.1-1.

CHECK INTEGRITY CHECK EVOLUTION

SPECIFICATION
REFINEMENT ^ SPECIFICATION
ELABORATION ^

CHECK APPROPRIATENESS/SUFFICIENCY

Figure 2.1-1 Three Categories of V,V&T Activities

The objective of integrity checking, the first category of V,V&T activities,
is to verify the integrity of the products at each phase of development. Each
product is analyzed for internal consistency and completeness. For example, a

requirements specification can be analyzed to detect inconsistent or
contradictory requirements such as the specification of an output report that

Page 6

requires data which is unavailable.

The objective of evolution checking, the second category, is to ensure the
completeness and consistency between levels of specification, where the second
is a refinement or elaboration of the first.

The objective of appropriateness^sufficiency checking, the third category, is

to compare this evolving solution against the problem as currently understood
to ensure that it is a necessary and sufficient solution.

2.2 A PROBLEM SOLVING MODEL FOR SOFTWARE DEVELOPMENT

DEVELOPMENT PHASE

Requirements Definition and Analysis Subf*iase

0 Development of the Project V,V&T Plan
0 Generating Requirements Based Test Cases
o Review and Analysis of the Requirements

Preliminary Design Subphase

o V ,V&T Planning
o Generating Design Based Test Scenarios
0 Review and Analyze the Preliminary Design

Detailed Design Subp*iase

0 Generation of Design Based Functional Test Data
0 Review and Analysis of the Detailed Specification

Progranming and Testing Sub^iase

o Ccanplete the Test Case Specification
o Review, Analysis, and Testing of the Program

Installation Subp*iase

o System Acceptance

OPERATION AND MAINTENANCE PHASE

o Software Evaluation
o Software Modification Evaluation
o Regression Testing

Figure 2.2-1 Stanmary of V,V&T Activities

Page 7

The following discussion describes each phase/subphase by presenting the
nature and purpose of each, the products produced, and the V ,V&T activities
which incrementally build confidence in the software product as it evolves.
Figure 2,2-1 simraarizes the V,V&T activities.

2.2.1 INITIATION PHASE

Description: The initiation phase begins with the recognition of a problem
and concludes with a decision of whether or not to implement a software
solution. The recognition of a problem may be sudden or gradual; the problem
may be generally recognized or only perceived by a small group. The main
activity of the initiation phase is a joint exploration of the problem by the
group having the problem and the group responsible for solving it. The
decision to pursue a solution must be based upon a clear understanding of the
problem, a preliminary investigation of alternative solutions, and a

comparison of the expected benefits versus the cost (design, construction, and
operation) of the solution.

Products: The primary result is a decision about the continuation of the

project. To support this decision, there are often three products. These
are:

0 The project request or proposal: defines the problem to be solved and the
scope and objectives of the proposed solution.

o The feasibility study: states the assunptions being made, defines
alternative solutions and assesses technical and operational feasibility.

o The cost/benefit analysis: estimates and compares the costs (construction
and operation) and the expected benefits (both quantifiable and intangible)

.

V,V&T Activities: The three products are reviOf^ed by the problem posers, the
problem solvers, and the decision makers (e.g., higher level management in
control of required resources). The following questions are generally
answered in this review.

o Has the scope, cost, impact, and urgency of the problem been adequately
defined?

o Has a technically feasible and operationally viable solution been

identified?

0 Have alternative solutions been identified?

o Have alternatives been adequately studied?

o Have the costs of the solutions been analyzed and compared against the
expected benefits? What are the probabilities of achieving these benefits?
What are the risks involved?

Page 8

2.2.2 DEVELOPMENT PHASE

As an example, this phase is divided into five subi*iases for the purpose of
illustration. These are each separately described.

2.2.2.1 REQUIREMENTS DEFINITION AND ANALYSIS SUBPHASE

Description: The goal of the requirements subfAiase is to put the problem into
a rigorous form upon which a solution can be based i.e. , a stat«nent of the
requirements which a software solution must satisfy. Requirements
identification is iterative, involving the problem posers and the problem
solvers. Requirements may be modified in later subp^iases as a better
understanding of the problem is gained. These modifications are docunented,
creating a traceable record of the progress and evolution of the final
product. Also during this subf^ase, two planning activities are performed.
First, project plans, budgets, and schedules for the develoment phase and each
subphase are developed. In addition, the V,V&T goals are identified and a
plan for achieving these goals is developed.

Products: This subf^ase results in the preparation of four products. The
first three are completed, while the fourth is finished during subsequent
phases.

o The software requiranents docunent: Specifies what the systen must do.

This includes the requisite information flows and processing functions.
Acceptance criteria for deciding that the requirements are satisfied
as specified is an important part of this product,

o The project plan: Specifies a strategy for managing the software
development. It defines the goals and activities for all phases and
subphases. It includes: resource estimates over time and intermediate
milestones including management and technical reviews. It defines
methods for design, docimentation, problem reporting, and change control.
It also specifies supporting techniques and tools,

o The Validation, Verification, and Testing Plan: Specifies goals of the
V,V&T activities including software testing. It is the design of a

project specific V,V&T process and identifies techniques and tools to
assist in achieving the goals. It specifies plans (schedules, budgets,
responsibilities, etc.) for performing theV,V&T activities.

o The Software Test Case Specification: Describes the scenarios and cases
for testing each requirement. The acceptance criteria are used to develop
test cases. Expected results for each test case are included.

V,V&T Activities: There are three basic thrusts to these activities.
These are:

o Development of the Project V,V&T Plan: Goals for V,V&T activities are
determined; a V,V&T process is designed; techniques and tools are
chosen; schedules and budgets are established.

Page 9

o Generating Requirements Based Test Cases: These form a basic set of test

cases. Th^ help clarify and determine the measurability of the software
requirements and form a basis for acceptance testing.

o Review and Analysis of the Requirements: The goal is to ensure that the
requirements identified will result in a feasible and a usable solution to
the entire problem. They are reviewed for clarity, completeness,
correctness, consistency, testability, and traceability to the problem
statement.

2.2.2.2 PRELIMINARY DESIGN SUBPHASE

Description: During preliminary design, the problem solvers (the software
developers) assisted by the problem posers (the custoner/user) formulate and
analyze alternative solutions. This may reveal flaws in the requirements and
result in its modification. This iteration continues until all issues have
been resolved.

This subphase results in a high level specification of the solution. The
solution is conceptual in nature, defining information aggregates, information
flows, and logical processing steps. It will describe all the major
interfaces, and their inputs and outputs. Implementation details, e.g.,
actual programs and physical data structures are generally not addressed.

Project plans (schedules, budgets, deliverables, etc.) are reviewed and
revised as appropriate for the scope and complexity of the solution
formulated.

Products: There is one new product of this sublease - the preliminary design
specification. In addition, each of the four products of the requirements
subphase may undergo revision or be supplemented with neti data.

o The Preliminary Design Specification: Docunents the high level solution
developed during this phase. This may be packaged in two separate
docunents, i.e. , a systoi/ subsystem specification and a data/database
specification.

o A Revised Requirements Specification: Design activities may reveal
inconsistent, infeasible, or ambiguous requirements and result in the

revision of their specification.

o An Updated Project Plan: Upon the ccmpletion of the preliminary design,

the scope and complexity of the solution are well understood. As a result,
the project plan (schedules, budgets, deliverables, etc.) is made more
accurate and realistic.

o An Updated V,V&T Plan: This plan may warrant revision based upon new or
revised requirements.

o Software Test Case Specification: Additional test scenarios and test cases

Page 10

are developed to exercise and test aspects of the design.

V,V&T Activities: There are three areas of V,V&T activity:

o V,V&T Planning: The V,V&T plan is reviewed and revised as deemed
necessary.

o Generating Design Based Test Scenarios: Complementing and expanding
the requirements based test data generated focusing on the logical
functions performed.

o Review and Analyze the Preliminary Design: To assure internal
consistency, completeness, correctness and clarity; to verify that the
design is linked to and, when implemented, will satisfy the requirements.

2.2.2.3 DETAILED DESIGN SUBPHASE

Description: The purpose of this subphase is to refine, resolve deficiencies,
define additional details, and package the logical solution created in the
previous subphase. Implementation details are addressed. Ambiguities are
removed from the design specification. The detailed design specification
describes the physical solution (algorithms and data structures) which is an
elaboration of the logical solution specified in the preliminary design. The
result is a solution specification that can be implemented in code with little
or no need for additional analysis.

The detailed design team may discover processing operations that are
iirpractical or impossible to implement, necessitating modification of the
preliminary design and possibly the requirements as well.

The user and participants in the review are consulted in making major design
decisions.

Products: There are two new products of this subphase and additional
information added to an existing one:

o The Detailed Design Specification: A fully detailed description of the

software (algorithms and data) to be coded in the following subphase.

o Software Test Case Specification: This is now a substantially complete
description of test data and the expected results.

o Problem Reports: Formal statements of observed problems. This may
necessitate going back to a previous subphase.

V,V&T Activities: The two V,V&T activities of this phase are:

o Gemration of Design Based Functional Test Data: Formulated test data
based on the physical structure of the syst«n.

o Review and Analysis of the Detailed Specification: To assure internal

Page 11

consistency, completeness, correctness, and clarity; to verify that the
detailed design is linked to and is a correct refinement of the preliminary
design; to validate that the design when implemented will satisfy the
requiranents.

2.2.2.4 PROGRAMMING AND TESTING SUBPHASE

Description: This subphase results in a program which is ready for

installation. Programming is the process of implementing the detailed design
specification into code. Only minor, if any, design issues are resolved
during this subphase.

Ccxnpleted code undergoes testing as described in the V ,V&T plan. Generally,

three types of testing are performed: unit, integration, and systan. While
unit testing is done by the programmer, the person(s) responsible for
integration and system testing is project specific.

Unit testing checks for typographical, syntax, and logic errors. Each of the
modules of code are checked individually by the programmers who wrote th«n to
ensure that each correctly implements its design and satisfies the specified
requirements.

Integration testing focuses on checking the intermodule communication links,

and testing aggregate functions formed by groups of modules.

System testing examines the operation of the syst«n as an entity. This type
of testing ensures that the software requirements have been satisfied both
singly and in ccwibination.

The final activity of this subphase is planning the installation of the
software.

Products: There are six new outputs produced during this subpiiase and one
other which is canpleted.

o Software Test Case Specification: Final revisions and additions to the
test data are made.

o Program Code: Fully docunented and tested code, which is ready for
installation.

o Test Results and Test Evaluation Reports: The documentation of the
comparison of actual and expected results.

o User Docunentation: Manuals describing the input and report formats,

user canmands, error messages, and instructions for operation by the
user.

o Maintenance Manual: Docunentation to maintain the system.

o Installation Plan: Specifies the approach to and details of the

Page 12

installation of the software,

o Problem Reports: Formal statenents of observed problems. This may
necessitate going back to a previous sub^iase.

V,V&T Activities: The V,V&T activity of this phase focuses upon the program
produced,

o Complete the Test Case Specification: Final additions and modifications
necessary due to design changes made during coding,

o Review, analysis and testing of the program: Includes checking for
adherence to coding standards, manual/ autcxnated analysis of the program,
and the execution of the program on test data ensuring that it meets
the acceptance criteria.

2,2.2.5 INSTALLATION SUBPHASE

Description: The result of this subphase is a system incorporating the
developed programs, other software components, the hardware, and production
data. The activities of the subphase are guided by the installation plan
developed. The first task is to integrate the system components. Integration
consists of installing hardware, installing the programCs) onto the computer,
refonnatting/creating the data base(s), and verifying that all canponents have
been included. Modification to program code may be necessary to obtain
compatibility between hardware and software, or between different software
modules.

The next task is to test the system. The test data fran earlier subphases is
enhanced and used here. The result is a systen qualified and accepted for
production use.

The ttiird task is the start of syst«n operation. The strategies for this
include ininediate cutover, phased cutovers, or parallel operation. This task
also includes operator and user training.

Products: The new product of this subphase is the Installation Report, but

previously completed products may be updated to incorporate findings of the
installation activity.

o Installation Report: Describes the results of the installation activities,
including data conversion, installation testing/results, and software system
problems and modifications necessary.

V,V&T Activities: The primary V,V&T activity centers on acceptance of the

syston by the custcmer. This could be a simple statanent signed by a customer
representative. This marks the end of the development phase.

Page 13

2.2.3 OPERATION AND MAINTENANCE PHASE

Description: The final phase involves the actual use of the software and
monitoring its operation to ensure that it succeeds in solving the user's
problem.

Most often, sane need for modifying the software arises during this phase.
The maintenance process involves determining the reason for each modification.
IVie cause could be an error made in the original development, the recognition
of a new requirement, or the desire for a design modification to improve
performance, usability, etc. Once the cause is determined, the software (code
and documentation) is 'redeveloped* from that point. For example, the
redevelopment due to a change in requironents will result in modifications to
the requironents specification, the design, the code, and user and operation
manuals.

Problon reporting, change requests, and other change control mechanisms are

used to facilitate the systematic correction and evolution of the software.
In addition, performance measurement and evaluation activities are performed
to ensure that the syst^ continues to meet its requirements in the context of
a changing system environment.

Products: To track and manage the evolution of the software in this post
development phase, several new outputs are produced:

o Problem reports: Formal statements of observed problems. The analyses
of these may result in software change requests.

o Change requests: Requests for specific modification to the software.

These could be generated due to an error (i.e., problem report) or a

modification of the requirements or design.

o Revision to initial development products: As a result of change requests
any one or all of the products of the initiation and development phases may
require revision.

V,V&T Activities: The V,V&T activities of this phase can be separated into
two categories: the monitoring and evaluation of the syston, and the problem
correction activities. The first is an on-going activity. The second is
driven by the problem reports and change requests,

o Software evaluation: Activities aimed at assessing the operation of the
software and assuring continued satisfaction of user requironents,

o Software modification evaluation: As needs for change are discovered and
requests for modifications are made, the requested modifications are
evaluated in the same manner as the original software is evaluated.

After modifications are made, the changes are revia^ed and
tested to ensure that the expected changes in the software is achieved.

0 Regression testing: Rerunning test cases which a program has previously
executed correctly in order to detect errors created during software

correction/modification activities.

Page 15

CHAPTER THREE

A FRAMEWORK FOR INTEGRATED VALIDATION, VERIFICATION, AND TESTING

To do effective V,V&T, the development team needs to select a well-matched,

compatible set of techniques and tools. The selection is based on the V,V&T
goals of the project. These goals take into account the characteristics of
problem and the constraints on the solution. From the user's perspective, the
techniques and tools must ensure functional, efficient, reliable and lew
maintenance software. The developer is concerned with these issues as well as
the integrity and compostion of the software. This blend of concerns is the
guiding force in selecting V,V&T techniques and tools. This chapter presents
information which assists in the selection of a complementary set of
techniques and tools and their application throu^out developnent.
Specifically, it will discuss the following:

Types of analyses that are performed - description of static, dynamic, and
formal analyses,

An integrated approach to performing V ,V&T - combining the three types of

analysis in a complementary fashion to achieve a V,V&T technology, and

Application of the VyV&T approach - the use of the three types of analysis in

applying V,V&T to requirements, design, and code.

3.1 STATIC ANALYSIS

The static analysis detects errors throu^ examination of the product, Figure
3.1-1. Some examples of the errors detected are: language syntax errors,

misspellings, incorrect punctuation, improper sequencing of statonents, and
missing specification elements. Static analysis techniques may be manually or
automatically applied, however, automated techniques require a machine
readable product.

PRODUCT/SPECIFICATION -> ANALYSIS OF
FORM AND
STRUCTURE

REPORTS
... 1^ awn

STANDARDS. GUIDELINES, CRITERIA - DIAGNOSTICS

Figure 3.1-1 General Form of Static Analysis

Manual static analysis techniques may be applied to all development products,
e.g., requirements statement, program code, or a users manual. In general,
they are straightforward and, when applied with discipline, are effective in
preventing and detecting errors.

Page 16

The application of certain manual techniques, such as desk checking,
inspection, and walkthrougjis, provide certain advantages over the use of
specialized automated techniques. One advantage is that different
perspectives can be addressed simultaneously. A product may be examined for
high level as well as detailed properties. Another advantage is that manual
analysis provides an opportunity for the analyst to apply various heuristics,
i.e. aids to discover errors, and subjective judgements. A general weakness
of the manual techniques is that correct usage often involves tedious and
repetitious activities. As the size of the application increases, the
tendency is to compromise on the thorough application of the technique which
results in an increasing chance of error.

Automated static analysis tools most often operate on program source code but
can operate on requirements and design. Two kinds of static analyzers can be
identified. The first gathers and reports information about a program. These
kinds of analyzers generally do not search for any particular type of error in
a program. A symbol cross reference generator is an example of this type.

The second kind of analyzer detects specific classes of errors or anomalies in
a progran. Examples of this type include: (1) parsers which determine the
adherence of a program to the language syntax; they may include additional
local progranming conventions/standards such as program length; (2)

techniques for analyzing the consistency of actual and formal parameter
interfaces (see Figure 3.1-2); (3) techniques for comparing all variable
references with their declarations to check for consistency; and (4)

techniques for analyzing a program for erroneous sequences of events or
operations, for example, attonpting to read from a file before it is opened.

A much more detailed description of many specific techniques and tools can be
found in the Technique and Tool Reference Guide[POWE].

Procedure
Mismatch

Figure 3.1-2 Module Interface Consistency Checks

3.2 DYNAMIC ANALYSIS

Dynamic analysis is the process of detecting errors through the stucfy of the

response of a program to a set of input data. It is usually accomplished

Page 17

through an autcmated simulation or the execution of a program, but may be
manually performed, e.g., a walkthrough. Dynamic analysis (see Figure 3.2-1)

.

is the processes of:

o preparing for test execution,
o test execution, and
o analysis of test results.

Preparing for test execution includes test data preparation and formulation of
expected results.

SPECIFICATION OF FUNCTTONAL INTENT

ALGORITHM

SPECIFICATION

PATH/VARIABLE

SELECTION

FUNCTIONAL
ANALYSIS

FUNCTIONS

COMPUTED

COMPARISON
ANO

ANALYSIS

EVALUATION i

DIAGNOSTICS

Figure 3.2-1 General Form of Dynamic Analysis

Test data preparation involves the formulation of test scenarios, test cases
and the data which are to be entered into the program. Test scenarios and
test cases are chosen as the result of analyzing the requirements and design
specifications and the code itself. The test data should demonstrate and
exercise externally visible functions, program structures, data structures,
and internal functions including impossible and improbable test cases. Each
test case includes a set of input data and the expected results. The expected
results may be expressed in terms of final values and as statonents
(assertions), embedded in the software, about intermediate states of program
execution.

The development of assertions takes place during the design and programming
subphases of the lifecycle. In general, assertions are stat«nents that
specify the intent of a program's behavioral properties and constraints.
Assertions about inputs, outputs, and intermediate steps of each function may
be generated. A special notation (an assertion language) often is used to
specify the assertions. Assertions are developed and inserted into the actual
design specification and program code, usually as specially formatted
comments.

Currently, test preparation is accomplished primarily throu^ manual methods.

These include definition of specification based functional tests and
cause-effect graphing, a test case design methodology. Specification based
functional testing is a method of developing test scenarios, test data and
expected results throu^ the examination of the program specifications (in
particular, the requirements, design and program code). Test scenarios based

Page 18

upon the requirements have the objective of demonstrating that the functions,
performance and interface requirements and solution constraints are satisfied.
Test cases are determined from the design to test functions, structures,
algorithms and other elements of the design. Test data are determined from
the program to exercise computational structures implemented in the program
code.

Cause-effect grappling [MYER] is a technique to develop test cases based upon
inputs and input conditions. For each case, the expected outputs are
identified. This technique operates on the requirements and design
specifications.

Test execution involves running a program with the prepared test cases and
then collecting the results. Testing may be planned and performed in a
top-down or botton-up fashion or a combination of the two, Top>-down testing
is performed in parallel with top-down construction in that a module is
developed and tested while sutmodules are left incomplete as stubs or dunmy
routines, Bottcra-up testing consists of testing pieces of code, individual
modules, and small collections of modules in that order, before they are
integrated into the total program. Bottom-up testing may require the
development of test driver routines.

Test execution may be performed manually. Design and code walkthrougjris (i,e,

,

a manual simulation) provide a straightforward dynamic analysis method used
prior to execution and during debugging.

Instrumentation, the insertion of code into a program to measure program
characteristics, may be required to assist in testing. It may be done to
capture intermediate values of a computation, measure execution frequencies
during testing, or to detect assertion violations. Instrumentation may be
done manually, or automatically as with test coverage analyzers and dynamic/
assertion processors.

Four types of tools are commonly used to assist in test execution. They are:

o Test coverage analyzers,
o Execution monitors,
o Dynamic assertion processors, and
o Performance monitors.

Test coverage analyzers capture and report execution details (e.g,, statanent
execution counts). Scxne test tools (often built into a compiler or runtime
system) monitor execution and check for the adherence to certain language
semantics (e.g., array subscripts must remain within declared bounds, divisors
must be non-zero). E^namic assertion processors monitor program execution and
report violations of the assertions supplied by the analyst. Performance
monitoring tools report execution data describing execution frequency and

timing information.

The process of analyzing the outputs of testing involves canparing the actual

to expected results. This analysis requires a specification of the expected
results for each case. Comparison of actual and expected results may be

Page 19

performed manually, or if the data are machine readable, an autanated
comparator may be used. The detection of assertion violations is normally
accomplished through analyzing the assertion results generated by the
instrumented program.

Dynamic analysis also includes determining the thoroughness of the testing.
Commonly used metrics are the nunbers (or percentages) of executable
statements, branches, and paths actually exercised by the tests. Each

succeeding metric subsunes the others. Since the nunber of paths grows
exponentially with the nunber of decision points, even small programs can have
many thousands of paths. For this reason, attempting to ensure that a high
percentage of paths, exclusive of loop iterations, is exercised can be very
costly. The statanent and branch coverage metrics, althou^ less conclusive,
are most frequently used because they are relatively easy and inexpensive to
implement.

3.3 FORMAL ANALYSIS

Formal analysis involves the use of rigorous mathonatical techniques to
analyze the algorithms of a solution. Algorithms are analyzed for nunerical
properties (e.g. accuracy, stability, convergence), efficiency, and
correctness. At present, formal analysis is primarily a manual activity with
limited autanated assistance.

For more detailed information about techniques and tools for measurement of
testing in the analysis of the numerical properties of algorithms, two types
of analysis can be identified. The first type makes a conjecture about an
algorithm's nunerical properties and then proves a theorem to establish the
conjecture. In the second type, an automated tool is used to analyze the
nunerical stability of a sequence of conputations.

Complexity analysis first makes conjectures about the nunber of operations
and/or the amount of space used on a problem of arbitrary but fixed size. The
next step is to construct arguments which support the conjectures. There is
considerable discussion as to how to measure or express software complexity.
This technique has not reached maturity.

In another type of formal analysis, two basic approaches are used. One
approach is to prove correctness of a whole program. The second approach is
to prove correctness of particular program properties.

The basic strategy to both approaches is to construct a set of reasoning that
shows that a solution specification satisfies its requiranent(s) . Typically,
this is done by comparing the inferred transformations to the functional
transformations dictated by the specifications of intent (see Figure 3.3-1).

To do the comparison, symbolic execution using selected control paths through
the algorithmic specification is employed. For each path the values of each
data object encountered are computed. Each value is not computed as a nunber
but rather as a function or formula. Inputs are not assigned specific values
but rather are treated as unquantified variables. As a result, at the end of
tracing down the selected path, the functional relation^ips of outputs to

Page 20

inputs are determined. These functions or formulas are then compared to
specifications of functional intent to see if the solution specification is
correct as a value transformer.

.aQLUTIQH,.

SPECIFICATIONS

TEST
PKEPAXATION TEST

AND DATA

SOfTMABE

EXeCUTIOII

OR
SIKUUTION

f:yNCTiPn m ,

INSTRUMENTATXOM

OUTPJnS

TEST
AHALTS IS

fi'KgO, roB,,

MORE TESTIMO

ERRORS
,

Figure 3.3-1 General Form of a Formal Functional Analysis

The formal analysis of a specific path can ensure that the functions computed
in traversing the path are correct, and thus that any input processed by
traversal of that path will necessarily be transformed into correct output
values.

Formal analysis has two major limitations: strict dependence on the validity
of the assimptions on which the analysis is based, and the complexity of the
pathwise analysis of even anall programs. Formal analysis has not yet reached
its full potential as a V,V&T technique for several reasons. For one, program
specifications are rarely written with sufficient precision to permit a
rigorous canparison of intent with the implemented program. Also,
accomplishing the analysis manually is extremely tedious and difficult (thus
prone to error) and very few automated tools are currently available to
facilitate effective application of formal techniques,

3.4 AN INTEGRATED APPROACH TO V,V&T

Each of the three types of analysis — static, dynamic, and formal — provides
the V,V&T analyst with different types of specific information about the
solution being examined. Static analysis focuses on the form and structure of
the solution, but not the functional or canputational aspects. Dynamic
analysis addresses the functional, structural, and computational aspects. It
is used to detect errors relating to these, but in practice is not used to
dononstrate the absence of errors and is limited in demonstrating correctness.
Formal analysis can provide a strong statement regarding certain properties of
a solution including correctness, but is limited by the difficulty of
application and lack of autanated support.

These three types of analysis can be integrated to not only achieve the
benefits of each, but to be complementary and provide a powerful conposite
V,V&T technology.

This section briefly describes a strategy to achieve this integration (see
Figure 3.4-1). The following three sections of this chapter describe hew this
strategy can be applied to software requirements and design specifications,
and to the code itself.

Page 21

NEED FOR
ADDITIONAL
ANALYSIS

ANALYSIS
^SATISFACTORILY
COMPLETED

M3DIFY

Figure 3.4-1 General V,V&T Integration Strategy

The integration strategy is simple. First, static analysis techniques and
tools are applied to analyze the form of the specification. These techniques
and tools are straight forward to apply, applicable to all levels of
specification, and identify flaws preventing the application of dynamic and
formal techniques.

The second step is the application of dynamic analysis techniques and tools.

These focus on the functional meaning of the solution and detect errors in
their specification. These may be manually applied to the requirements and
design specifications, with the code undergoing dynamic testing. This
process, when applied with discipline, is effective, comprehensive and within
the resojrce constraints of nearly all projects.

If additional assurances are required, the third step is the application of
formal analysis techniques. These techniques can give strong assurances that
the progran design and code are fully traceable to the requirements and that
they are a necessary and sufficient solution to the stated problem.

3.5 REQUIREMENTS V,V&T

Figure 3.5-1 illustrates the integrated V,V&T approach for requirements
specification. It involves the application of static analysis techniques and
tools to inspect the form and structure of the requirements and dynamic
analysis techniques and tools to examine their functional aspects. For
requironents specification, the definition of dynamic analysis is extended to
include all actions which examine behavioral and performance aspects of
requiranents. Static and dynamic analysis techniques and tools, whether
strictly manual, automated, or a combination of both are generally applicable
to the four types of requirements:

o functional processing requirements.

Page 22

o performance requirements,
o interface requirements, and
o solution (design) constraints.

Static techniques and tools are most useful for analysis of product form and
interface requirements and solution constraints, while dynamic analysis (such
as simulation) is most useful for performance requirements.

FUNCTIONAL TRACES TO BE EXAMINED
FOR CORRECTNESS OF INTENT

TEST SCENARIOS

BEQUIREHENTS SPECIFICATION STATIC
ANALYSIS

NO ERRORS FOUND J DYNAMIC
n ANALYSIS

CONSISTENCY

DETECTED ERRORS

ANALYSIS
COMPLETED

DETECTED ERRORS

MDDIFY

Figure 3.5-1 Integrated Approach to Requiranents V,V&T

Static analysis normally focuses on checking adherence to specification
conventions, completeness and language syntax. Dynamic analysis at this level
normally focuses upon information flows and functional interrelationships.
Manual methods such as inspections, peer reviews, and walkthrou^s are
effective in accanplishing both types of analyses if rigorously performed. An
example of using a manual method and dynamic analysis is to include input data
as part of a walkthrou^.

The application of both types of analysis depends upon the method used to
specify the requirements. If the constructs of the specification schane are
clearly defined and capable of being represented in a computer processable
form, then automated tools to aid in performing both the static and dynamic
analysis may be used. Several such specification methods with supporting
tools are in existence, but not widely used or available.

The requirements specification methods commonly in use today support the
representation of information aggregates and functional capabilities in a
hierarchical form. This allows for two types of checks of the specification
for internal consistency. The first examines the decompositions performed in
creating the functional and information hierarchies. Each level of
decanposition is checked to ensure that it is consistent with the previous.
The second type of analysis examines the consistency between the functional
and information views. Information aggregate specifications usually include
indications of the functions which generate and utilize them. Conversely,

function specifications usually include indications of the information
aggregates which they generate and utilize. These two types of specifications

Page 23

are readily checked for consistency.

The dynamic analysis of a specification often involves the evaluation of the
functional aspects of the solution with respect to the intent as docunented in
previous specifications. This is not possible because the requirements
statement is the first formal specification. The only previous docunent to
which it might be compared is the project request from the initiation phase.

Normally, this is an insufficient basis for requirements analysis.

Consequently, the dynamic analysis of requirements is acccmplished throu^ the
examination of expected functional behavior to determine if it will solve the
problem. Exercising information transformations throu^ plausible sequences
of the required functions will provide insight to the expected behavior. This
is usually guided by scenarios which describe expected use, including input
values and expected results. (These scenarios form the basis for the software
test data and are refined and complemented in the design and coding
subphases.) This type of analysis aids in the recognition of errors,

oversights, and contradictions in the requirements.

3.6 DESIGN V,V&T

Figure 3.6-1 illustrates the integration strategy as applied to a design
specification. Similar to the requirements analysis, static analysis
techniques and tools are applied to analyze the form and structure of the
design specification(s) . Dynamic analysis techniques and tools are used to
examine the functional aspects of the design. In addition, formal analysis
may be applied to rigorous design specifications to gain additional assurances
of correctness relating to certain functional properties.

TEST
~1

0E3ICM SPECIFICATION STATIC
ANALYSIS

FUNCTIONAL AND
PEHFOHKANCE
BEIUVIOR

INFOnMATION ABOUT
NUHEfllCAL PROPERTIES,
COKPLEXITT, AND

CORRECTNESS

HO ERRORS FOUND FUNCTIONAL
SIMULATION

NO ERRORS FOUND FORMAL

ANALYSIS
analysis

HODirV i

CONSISTEHCr

DrrecTEO errors DETECTED ERHORS DCTECTBD ERRORS

Figure 3.6-1 Integrated Approach to Design V,V&T

The basis for design V,V&T is the design docunentation. The mechanisms or

design representation schemes used to specify the design determine the
specific analysis techniques which can be employed. The degree of formality
of the schemes used determines the need for and ability to perform static

analysis. The content of the information captured by the scheme determines
the dynamic and formal analysis techniques which may be applied. If the

Page 24

schanes can be translated into a computer processable form, then automated
techniques may be used.

Syntactic and s«nantic errors can be detected by the static analysis of a

design specification. The syntactic errors are errors in form rather than
content. These are not the primary emphasis of static analysis. By assuring
the correct form and structure of the design specification, the way is cleared
for more in depth analysis of the semantic content of a specification.

The semantic errors which can be detected in a design involve information or
data decomposition, functional decomposition, control flew, and data flow.
Selected examples of these are discussed belcw.

Design specification schemes generally provide mechanisms for specifying
algorithms and their inputs and outputs in terms of modules. Various
inconsistencies in specifying the flow of data objects throu^ the modules are
possible. For example, a module may need a particular data object which no
other module creates. Conversely, a module may create a data object which is
not input to any module. Static analysis can be applied to detect these types
of data flow errors.

Certain errors made during the composition of a design can also be detected.
Design specifications are usually created by iteratively supplying detail.
Thus, most schemes facilitate the hierarchical expression of a design. Data
aggregates and functional modules may be specified in terms of their gross
overall characteristics and then specified in more detail. A hierarchical
specification structure is regarded as an excellent vehicle for expressing and
understanding a design. It does, however, leave open the possibility of
inconsistencies between levels of detail. For example, the inputs and outputs
specified for a high level module must be equivalent to the cimulative inputs
and outputs of the sutraodules. Any inconsistencies indicate an error in the
evolving solution. Static analysis can determine the presence or absence of
such errors.

Dynamic analysis of a design is generally accomplished by some form of design
simulation. This may be a manual walkthrou^ or simulation using a model of
the design. A design walkthrou^ is similar to the analysis performed on the
requirements except at a greater level of detail. It is guided by usage
scenarios which are refined and expanded from those used in the requirements
analysis. At the design stage, test cases are developed and used during the
walkthrough to exercise all functions. During detailed design, test cases are
developed and used to examine the software structure as well as its functions.
(These test scenarios and test cases are used during the programming subphase
for testing the code.) Manual walkthrou^s, when rigorously performed and
guided by documented test scenarios, are a cost effective technique for
analyzing a software design.

For larger software designs and highly critical systems or components, an
automated simulation may be appropriate. This requires the construction and
execution of a solution model with the test scenarios. The model is validated
as a faithful representation of the solution. The cost of simulation
generally increases with the complexity of the model and the degree of model

Page 25

fidelity. Thus, mcxlel simulation is only used when it can be cost justified.

Fonnal analysis techniques may be manually applied to a design specification
This involves tracing paths throu^ the design specification and formulating a

composite function for each. This procedure is more feasible at higher levels
of a hierarchical design specification because less detail is present,
resulting in algorithm paths being relatively short and few in nunber. Thus,
the evolved functions remain concise and manageable.

The purpose for deriving these ccmposite functions for a given level of design
is computed and compared to the functions of the previous level. This process
assures that the design is continuing to specify the same functional solution
as it is hierarchically elaborated.

The formal analysis of a design specification can be improved by using
autcraated symbolic execution tools. Such tools can be expensive to create and
operate. In return, however, they offer greater speed and capacity for
manipulating detailed specifications. Thus, the functional effects of all
levels of a design specification can be determined.

Unfortunately, such soi*iisticated tools are rarely applied in contemporary
practice principally due to the novelty of such tools, the infrequent use of
rigorous design formalisms, and expense. It is likely, as experience with
these tools is gained and as better design representation schemes emerge,
their use will increase.

3.7 CODE V,V&T

The third and last application of the general V,V&T integration strategy is to

program code. This is portrayed in Figure 3.7-1 . The V ,V&T procedure for
code includes botti static and dynamic analysis. It may also enccmpass formal
analysis.

Because code is written to be canpiled and executed, it is necessarily written
in a axnputer language having defined syntax and s«nantics. Syntax rules are
generally enforced througji the use of a compiler. Unfortunately, most
compilers do not carry out checking for many important semantic errors, e.g.

array range subscript checking, type analysis or routine interface analysis.

Static analysis techniques and tools are used to ensure the proper form of

programming products such as code and docunentation. This can be accomplished
by checking adherence to coding and docunentation conventions, interface and
type checking, etc. The checking can be done by manual techniques such as
inspections and automated tools such as a code auditor.

Next, dynamic analysis techniques are employed to stu(fy the functional and

canputational correctness of the code. Initially, manual techniques such as
walkthroughs can be used as an effective forerunner to testing. These
techniques can focus on modules to complement the role of testing.

Page 26

TtST CASES/DATA

OimfOCES
BETWEEN ACTUAL I

EXPECTED OUTPUTS

INFORMATION ABOUT
HUMERI CAi PROPERTIES.
COWUXm 4 CORRECTNESS

CODE STATIC NO ERRORS FOUND OYNAHIC
ANALYSIS

NO ERRORS FOUND FORMAL
ANALYSIS

4 i

ARALT5I5

^^^^^^^^COKSISTHCT

DCrtCTEO ERMRS OmCTED EIUtORS OenCTCD EMOtS

woirr

ANALYSIS
CO^S»LETED

Figure 3.7-1 Integrated Approach to Code V,V&T

Testing is accomplished by running the code on the test data sets which were
developed during the requirements and design subp*iases. As emphasized
earlier, the correctness of the test executions is determined more
definitively when the expected results are specified. Testing for adherence
to assertions is also highly advisable. The assertions, which are products of
the design activity, provide additional information regarding expected
behavior of the software.

In cases where software is being developed in an envirorment other than the
production envirorment, testing is more problematical. Here the production
envirorment can be simulated or taken into account informally. In ary case,
the validity of the test results depends upon the fidelity of the simulation
or informal judgements. If there is a significant difference in the two
envirorments, there will be an eventual need for some additional testing in
the actual production envirorment. The balance between simulation testing and
actual production envirorment testing must be determined for each individual
project, based partially upon the availability and expensiveness of the
production environment.

If assurances of correctness over and above those provided by dynamic analysis
are required, then formal analysis should follow testing. For most projects,
this simply takes the form of inspections to see that the various algorithms
dictated by the design have been correctly implemented. Coming after a
battery of successful tests, this activity needs to focus upon algorithms
which are deemed crucial and yet inadequately tested (perhaps due to high cost
of exercising them). Of course, seme applications may be particularly
critical in nature and demanding of very great assurance of correctness.
Symbolic evaluation and other formal analysis methods can be effective in
achieving such levels of confidence, but the cost is high, generally entailing
development of special purpose evaluation tools.

Page 27

3.8 SUMMARY

It is reasonable to conclude that for any software project, the integration
strategy for V,V&T activities will residt in a better return on investment of
costly resources and increased confidence in the desired qualities of the
final product. Although the strategy is sound and is strongly endorsed, it
does not address the problem of how to select and configure specific
techniques and tools for a specific project. The problems in doing this
appear to be of two major types:

o Projects vary in many respects and this variation strongly affects the

proper selection of techniques and tools, and

o There are a multiplicity of techniques and tools but there is little
guidance in their selection to meet specific project needs.

The first problem is addressed in Chapter 4 of this docunent. The second
problem is addressed in part by the report "Features of Software Development
Tools" [HOUGa] and the "NBS Software Tools Database" [HOUGbj.

In time, a reasonable complement of proven V ,V&T support techniques and tools
will evolve. Then, with a judicious selection and systanatic, integrated
application during all lifecycle phases, it will be possible to effect
significant reductions in the cost of software production as well as
inproveraents in the quality of developed systems.

Page 28

CHAPTER FOUR

V,V&T PLANNING

An important part of problem solving is planning. This is certainly true in
software development. Within this context, V,V&T planning is an integral part
of the overall project development planning. It is started during the
initiation of a project along with all other planning.

Ihe objective is to establish a V,V&T plan to suit the needs of the project.

Software development and maintenance projects vary with respect to many
factors such as size, criticality, canplexity, etc. These factors must be
taken into account so that the plan is both feasible and effective.

This chapter describes the contents of a V,V&T plan and presents a process for
developing one. Section 4.1 explains how V,V&T planning is part of the
overall planning process. It briefly describes the outcome of a V,V&T plan
and introduces a four step process to assist in developing part of the plan.
The remaining sections present each of the four steps.

Step I - Identify V^V&T Goals - The result is a set of specific measurable
goals of the validation, verification, and testing activities of the project.

Step II - Determine Influences on V ^V&T Activities - The result is a set of
factors to be taken into account in the planning of the V,V&T activity.

Step III - Select V,V&T Techniques and Tools - The outcome is a list of V,V&T
practices, techniques and tools to satisfy the identified goals within the
constraints of the envirorment.

Step IV - Develop a Detailed V,V&T Plan - The result is a phase-by-phase V,V&T
plan specifying V,V&T practices, as well as specific tasks, schedules, and
budgets.

4.1 V,V&T PLANNING IN THE TOTAL PROJECT CONTEXT

Project planning is one of the major functions of project management. V,V&T
planning is one part of project planning. Figure 4,1-1 illustrates this
relationship and examples of planning products.

The objective of planning is to docunent a plan of action. It may include:

objectives, approach, schedule, and allocated resources. A plan is used to
initiate and control a project.

Figure 4.1-2 shows the evolution of a project plan. A project is formed to
solve a problem. This first step in project formation is to define its
mission or its objectives. Next, an approach is formulated. This is refined
with additional details about the approach and docunented in the project plan.

Page 29

V,V4T PLAN EXAMPLES:
S/W DEVELOPMENT PLAN
QUALITY ASSURANCE PLAN
CHANGE CONTROL PLAN
INSTALLATION PLAN
TRAINING PLAN
DOCUMENTATION PLAN

Figure Software Project Planning

Problem Mission Approach Plan

Figure 4,1-2 Evolution of Project Plan

This chapter presents a V,V&T planning process which follows a similar set of
steps. The interactions between the general and theV,V&T planning activities
are important. The general planning activity will drive the V,V&T planning
activity, which in turn will provide input and feedback to the first. Some of
the important interactions are:

o V,V&T goals are established which complement the general project approach,
o V,V&T techniques and tools will assist in achieving the V,V&T goals only

if they are integrated with the project approach,
o The details of the V,V&T plan, e.g., time and resource requirements, must be

factored into the overall schedule and budgets.

Planning activities, including the preparation of the V,V&T plan, may begin in
the initiation phase but are completed early in the development phase (Figure
4.1-3). Plans specifying tasks, budgets, schedules, etc. for the
requirements and preliminary design subpiiases are completed early in the
subphase. Plans specifying information for the subsequent subphases are also
prepared to the level of detail possible. These, though, are likely to be
revised as the technical scope, size and complexity of the solution are

Page 30

defined in tJie preliminary design activity. Special attention must be paid to
activities that require long lead time, or need to begin early in the project,
e.g., tool acquisition or development, personnel hiring or training.

Initiation Development

Initial
Plans

Revised Plans

(as necessary)

^ ^

Figure 4.1-3 Pr^aration of Plans

The result of the V ,V&T planning activity is a docunented V ,V&T plan. The
ccxnplexity of the plan and the effort required to prepare it will depend upon
the size and nature of the project. More effort and a greater level of detail
may be required as the size, complexity, and critical nature of the project
increases.

A V,V&T plan specifies goals of the project's V,V&T activities relating to the
products of each phase. For these products, the activities and supporting
techniques and tools are then described which make up the approach to achieve
the goals. An abbreviated outline of a V,V&T plan is presented in figure
4.1-=4. A detailed outline is presented in Section 4.5.

The remainder of this chapter describes the four step approach to preparing a

V,V&T plan. Each step and substep are presented in a standard format,
including the following items as appropriate:

o General Description
o Outputs
0 Inputs
o Interrelation^ips with Other Steps
0 Roles and Responsibilities
o Method and Supporting Techniques
o Worksheet
o Example
o Conments

The worksheets are suggested as docunentation aids. Examples are presented
using these worksheets.

For anall projects it may be sufficient to abbreviate the process, following
it as necessary to achieve the ultimate objective, a V,V&T plan. For larger
projects, the process provides a systematic method for developing a
comprehensive V,V&T plan. In either case, the outcome should suit the goals
of the project.

I. BACKGROUND AND INTRODUCTION

II. V,V&T GOALS

1, Summary of V,V&T Goals and Measurement Criteria
2. References and Related Docunents

III. PHASE BY PHASE PLANS

For each phase, information including:

1 . V,V&T Goals for Each Product
2. V,V&T Activities
3. Techniques and Tools
4. Assumptions and Other Information
5. Roles and Responsibilities
6. Schedules
7. Budgets
8. Personnel

Figure 4.1-M
ABBREVIATED OUTLINE OF A PROJECT V,V&T PLAN

Page 32

4.2 STEP I: IDENTIFYING V,V&T GOALS

General Description: V,V&T goals are formulated fron software requirements,
and, secondarily, software product standards. V,V&T goals address the
functional, structural, and computational correctness of the software, the
correctness of the form, its performance, and other attributes such as
reliability and portability. The achievonent of these goals danonstrates that
the software has the desired attributes. This is straightforward in seme
instances, e.g., demonstrating the correct operation of a tape sort/merge
capability, while in others it may be a matter of degree, e.g., clarity and
understandability of docunentation. The term goal describes a specific,
measurable outcome. A complete definition of a goal includes the statement of
the measurement criteria to determine that the goal has been reached.

Goals are established to define tangible results of the activity (e.g., a

report) or a culminating event (e.g., a review). Measurement criteria specify
hew to determine that the result is satisfactory.

Goals relating to products (intermediate and final) are established which
pertain to either their form or the content. The goal will precisely describe
the desired product attributes. This distinction will be useful in selecting
techniques and tools.

Goals relating to an activity or product should be examined as a set, and
categorized as high, medium, or lew in importance. This information will be
used in St^ III if trade-offs (because of time, budget, or resource
constraints) are necessary. This examination also acts as a re-evaluation
point, and may result in the revision, elimination, or combination of goals.
The worksheet examples for steps I and III are separate. To eliminate
duplication, they can be combined into one worksheet.

Outputs of Step I:

o A set (one or more) of goals, measurement criteria, and importance
of each V,V&T goal

Inputs to Step I:

o Project Proposal
o Statement of Problen/Needs
o Statonent of Software Requirements
o Applicable Product Standards

Interrelationships with Other Steps: The list of goals frera this step will be

used in Step III. This step can be done parallel with Step II.

Roles and Responsibilities:

o (Jser/Cu sterner - to identify the goals and measurement criteria to ensure
that the product is acceptable

o Development Staff and Management - to ensure that V,V&T goals and

Page 33

measurement criteria are both measurable and feasible and reflect
existing standards and conventions concerning product quality

Methods and Supporting Techniques:

o Standards, guidelines and conventions that contribute to product quality

o Requirement analysis and specification aids that support the

identification and documentation of the software requirements

o Checklists for identifying V,V&T goals based upon the
software requirements

0 Inspection, walkthrou^, review procedures that support the analysis

and evaluation of the V ,V&T goals

V,ViT GOALS WORKSHEET

PROJECT
:^

General Product;

Activity/
Product Goal Measurement Criteria Importance

Product: All critical modules

Software will undergo
thorough testing

Test data will be generated

to:

1) Demonstrate the adherence

to functional specification,
including nominal values and

extremes of the domain and range.

2) Exercise all module branches,

3) Traverse all recovery paths,

i.e., an execution path where

an error (e.g., Illegal input data)

is discovered and for which the

system must continue to operate.

(These paths must be identified

In the program internal and

external documentation).

high

Figure 4.2-1 Goals and Measurement Criteria

Example: Figure U.2-1 identifies the goal, measurement criteria, and

importance of testing critical modules.

Comments: A worksheet which assists in specifying goals and selecting the

associated techniques and tools are described in the following sections. It

can be used as an aid in docunenting the results of this step.

o V,V&T Goals Worksheet - used in Step I to define a specific set of goals

and the measurement criteria

Page 3^

o V,V&T Technique and Tool Selection Worksheet - used in Step 3 to select
the techniques and tools to attain each goal

Page 35

4.3 STEP II: DETERMINE FACTORS INFLUENCING V,V&T ACTIVITIES

General Description: This step involves collecting a mixture of both
objective and subjective information (e.g., the attitudes of the technical
staff concerning V,V&T). This information will, in seme cases, lead to clear
cut decisions regarding the implementation of a given technique or tool. In

other instances, it may only indicate potential areas of difficulty or supply
information to support a decision intuitively.

Four general areas in a suggested order of investigation are presented belcw.

Software V,V&T and development technology
Project groups and roles
Project constraints
Available computing resources

These areas of investigation are further described belcw.

Outputs of Step II:

o An assessment of available software engineering and V,V&T technology
0 The capabilities and expected involvement of various groups
o The budget and schedule constraints upon the V,V&T activities
o An inventory of computing resources.

Inputs to Step II:

o Software engineering standards, guidelines, procedures, development and
maintenance metiiodologies, etc.

o Information regarding technical personnel
o Information regarding project budget and sdiedule
o Information regarding computing resources

Interrelationships with Other Steps: This step can be performed in parallel
with Step I - The Identification of V,V&T Goals. It provides inputs into Step
III and Step IV.

Roles and Responsibilities: This activity is primarily the responsibility of

the development organization.

Methods and Supporting Techniques: The following is a checklist of the four

areas of investigation mentioned above.

Software V,V&T and Development Technology

o Software V,V&T (see techniques and tools descriptions in [POWE])
- techniques
- tools
- standards and guidelines
- conventions and procedures

o Software development

Page 36

- methodologies
- specification techniques and design representation schemes
- techniques and tools
- docunentation standards and guidelines
- technical assistance
- training

Project Groups and Roles (The following groups and their expected roles
should be balanced against their knowledge, experience, attitudes, and
expectations.)

o Customer
o User
o Technical staff
o Management (e.g., project, or organizational, and support, e.g.,

legal)
o Independent groups (e.g., quality assurance, independent V ,V&T)

Project Constraints

0 Schedule of major project results
0 Budget information for:

- analysis and review of each product
- acquisition and/or development of support capabilities and tools
- technical assistance and/or training in the use of selected

techniques and tools
- use of independent testing, V,V&T and quality assurance teams

Available Computing Resources

0 Available machines
o Access methods and devices
0 Suppcrt utilities
0 Technical support

Page 37

4.4 STEP III: SELECT V,V&T TECHNIQUES AND TOOLS

General Description: This step can be divided into two activities:

o Establish a candidate list of techniques and tools to be used to reach
each goal, and

o Select and evaluate the techniques and tools from the candidate list
to be used.

One input to the first activity is the list of V,V&T goals. Goals should have
been established for: a) activities by phase/subphase, and b) the form and
content of each product. The other input to this activity is information
about each candidate technique or tool.

Candidate techniques and tools may be chosen from three sets: a) those
commonly used on software development projects (information on these was
collected during Step II); b) those used elsewhere which may be acquired;
and c) those which can be developed by the project staff.

For each candidate technique or tool, sane basic information is needed. This

includes the availability of docunentation, training, consulting support, and
tool effectiveness. Also required are cost, time required for acquisition,
and need for training project personnel.

Once the list of candidate techniques and tools has been created for a given
goal, the selection activity begins. The feasibility of implementing each
technique or tool is studied. The implementation requirements (e.g.,
personnel resources and level of expertise) are compared against the
constraints identified in Step II (e.g., personnel experience). This
identifies inappropriate candidates. The techniques and tools to be used are
chosen from the remaining.

Ihe assumptions made in the selection process need to be documented for use in

Step IV. For example, assunptions regarding the acquisition, implementation,
application, and required training should be recorded.

Outputs of Step III:

o A list of V,V&T techniques and tools
o Assumptions made in selection process

Inputs to Step III:

o V ,V&T goals
0 Information on candidate tools and techniques
o Influences to be considered during selection (from Step II)

Interrelationships with Other Steps: The list of V,V&T goals may be revised
because one or more goals are determined to be infeasible.

Page 38

Roles and Responsibilities: The development staff have primary responsibility
for this step. It should be performed by senior staff familiar with both the
management and the technical aspects of the project. Generally, a

representative of the groups who will use the techniques and tools should be
involved in the selection process.

Methods and Supporting Techniques: The "Validation, Verification, and Testing
Technique and Tool Reference Guide" [POWE] describes individual techniques and
tools.

Worksheet and Example: Figure 4.4-1 shews the V,V&T Technique and Tool

selection worksheet. Figure 4.4-2 shows a completed worksheet for a goal from
the previous example.

1
V.ViT TECHNIQUE AND TOOL SELECTION WORKSHEET

PROJECT:

Goals
Measurement
Criteria

Candidate Techniques
& Tools

Rationale for

Choice/Elimination
Final Choice
& Comments

The goals and criteria

established during
Step I.

Techniques or tools which Each technique or tool

may potentially be used will be analyzed and

in reaching each goal are either chosen or

listed in this column rejected. The decision
Is documented here.

The final cholceCs)

will be listed here.

Also any Information
pertaining to the
use or application
should be stated here
or reference to supple-
mentary material
given. It is Important

to note here any special
information that
should be taken into

account in the detailed
planning (Step IV)

and/or implementation
of the technique or

tool.

Figure 4.4-1 V,V&T Technique and Tool Selection Worksheet

Page 39

V.VtT TECHNIOUE t TOOL SELECTION VWJRKSIIEET

PROJECT t

Goals

For critical
fjnctions

I

All critical
fflrxJulcs will
undergo
thorough
testing

Measurement
Criteria

The functions of
these modules
raust be tested
for extremal
valuen ot the
domain and
range, as well
as on nominal
test datas
1) All branches
will be tested,
including all
' recovery

'

paths. I.e.
an execution path
where an error
(e.g., Illegal
input data) Is
discovered and
tot which the
syst»m must
continue to
opf'tat'! (these
paths must be
identified in
the program
Internal and
external
documentation)

.

Candidate Techniques
t Tools

-Data Flow Analyser

-Assertion Generation
and Assertion
Processing

-Specification Based
Functional
Testing

-Test Coverage
Analyzer

Rationale for
Choice/Elimination

Can be used to check out
programs from the data
flow perspective.
Availability is uncertain.

Assertion generation will
aid in specification
documentation and test
generation. Assertion
checking via an autimatic
processor will aid in
testing and test coverage
measurement

.

Availability is uncertain.

This technique can be
used in the requirements
and design phases to
incrementally build test
sets.

This tool can summariae
test coverage to enable
an accurate assessment
of the thoroughness of
the testing.

Final Choice
t Comments

Invest Iqate
availability

Investigate
availability

Used in conjunction
with test set docu-
mentation standards
and test libraries to
store data and results.

Will be usf?d.

Modifications to
existing tool will
will be necessary.

Figure 4.4-2 Completed V,V&T Technique and Tool Selection Worksheet

Page 40

4.5 STEP IV: DEVELOP A DETAILED V,V&T PLAN

General Description: The preceding three steps provide a definition and means
of attaining V,V&T goals. The detailed V,V&T plan can now be formulated by
defining each activity in terms of specific tasks and outccmes. The roles and
responsibilities of the groups involved, (e.g., customer, user, technical,
management) are defined; sign-off procedures at milestones are established.
Underlying assunptions are stated, and interrelation^ips with other
activities (preceding, parallel with, and succeeding) are defined. Budget
allocations and schedules are established. Plans also include training and
tool acquisition or development activities.

Outputs of Step IV:

o A Detailed V,V&T Plan

Inputs to Step IV:

o List of V,V&T techniques and tools
o Project Schedule, budget, and personnel information
o V ,V&T goals
o Technique and tool selection assunptions

Interrelationships with Other Steps: The plan is built on the outputs of
prior steps.

Roles and Responsibilities: This involves both management and technical
staff. Management approval is required for schedules and budgets.
Oustoners/users approve their role.

Methods and Supporting Techniques: Presented below is an annotated outline of
a general V,V&T plan. This can be used as a checklist.

An Outline of a Project V,V&T Plan

I. Background and Introduction

The purpose of this section is to establish the context for the

docunent. It should be brief and introductory in nature. It

should focus on those aspects of the problem and/or solution which
are the sources of the goals for V,V&T. Where additional
information is necessary, it can be included or referenced.

A. Statement of Problem
B. Proposed Solution
C. Project Summary
D. References/Related Docunents

II. V,V&T Goals and Measurement Criteria

Page 41

This section presents the results of Step I. It presents the
project V,V&T goals, measurement criteria, and importance. The
exact format and content of this section may vary. If the
worksheets are used, then they may be included. Alternatively
goals could be sunmarized as presented belcw. A third alternative
would be to state the project level information in this section
and present all phase (and product) specific information in the
next section.

A. V,V&T Requirements
A.I. Functional
A. 2. Performance
A. 3. Reliability
A. U. Other

B. V,V&T Goals and Measurement Criteria for each goal
B. I. General
B.2. Product specific
B.3. Phase specific

C. References/Related Docunents

III. Phase by Phase V,V&T Plans

This section contains the description of project V,V&T practices.
Section A defines the project approach: phases, their products,
and the major reviews and check points. Where a practice is
common to all phases it may be described here. Section B and
later sections describe phase specific activities.

A. Project Background and Summary Information
A.I. Project Phases and Products
A. 2. Major Reviews (both management and technical)

B. Requirements Subphase V ,V&T Activities
B. I. Summary of V,V&T Goals
B.2. V,V&T Activities
B.3. V,V&T Techniques and Tools Selected

a. Reviews
b. Methods of Analysis

B.4. Support Requirements and Assunptions
B.5. Roles and Responsibilities
B.6. Schedules
B.7. Budgets
B.8. Personnel

C-F. Preliminary Design through Installation respectively (same

format as B)

.

Appendix A Project and Envirormental Considerations

This section contains the information which was compiled during

St^ II.

A. Technical Issues
B. Organizational/Personnel Issues
C. Project Budget and Schedule
D. Computing Resources

Appendix B Technique and Tool Selection Information

This section contains the work sheets of Step III.

A. Goals, and Related Techniques and Tools
B. Worksheets

Page 43

CHAPTER FIVE

EXAMPLE APPLICATIONS OF VALIDATION AND VERIFICATION TECHNOLOGY

This chapter presents a series of examples in which the concepts of software
development, software V,V&T, and V,V&T planning are illustrated. The purpose
is to show how these concepts may be applied in a variety of situations.

Four examples are presented, using an autonobile insurance transaction
processing syst«n as the system being developed and maintained. The first
three examples describe development activities in differing envirorments and
the fourth describes selected maintenance activities.

The four examples are structured recognizing that programming envirorments
present in government and industry settings vary significantly in resources
available to support V ,V&T. The transaction processing system is considered
first in an environment where only manually applied techniques are employed.

The progressive benefits of utilizing automated and more advanced techniques
can then be seen by stuc^ying how V,V&T is done on the same application, first
through adding a small nunber of automated tools to the set of manual
techniques, and lastly through use of a full complement of modern automated
tools.

5.1 OVERVIEW OF EXAMPLES

Examples 2, 3, and 4 build upon Example 1. The tools introduced in Example 2

are to be used in addition to the manual techniques described in the first
example. The discussion in each example centers on the additional
capabilities introduced. Figure 5.1-1 presents an overview of the different
V,V&T tools and techniques which are used in the four examples.

The software development subphases for each example are:

o Requirements,
o Preliminary design,
o Detailed design, and
o Programming (includes testing).

Figure 5.1-2 shows the information flow and relationships among the four

subphases of the software development lifecycle depicted in the examples.

Each of the examples will be presented showing for each phase:

o Inputs to the phase,

0 Outputs from the phase,
0 Supporting technology used in the phase, and
0 Activities which canprise the phase.

Page 44

Software DevelopneaC Maintenance

Example
(tfl)

Manual
Techniques

(«) (#3)
Tool Complements

Minimal Extensive

(14)

Supporting
Technology

Graphical Requirements
Represencation

Requirements & Design
Languages

froblem Reporting
and Change Request
Mechanisms

StAtlc Analysis Walkthroughs
Formal Reviews

Cross-Referencer
Requirements & Design
Language Analyzers

Interface Checker
Dataflow Analyzer
Standards Checker

Ad Hoc

Dynamic Analysis Functional Testing Test Coverage Analyzers
File Comparator

Assertion Generation
Assertion Checking

Formal Analysis

Figure 5.1-1 Overview of Examples

IKTOWW. PROSE
W0UIR£>^>«T5 REOUIRE>tfrrS

DEFINITION

OETAILED /-i-.^

REQUIRCDfTS
SPECIFICATION

REOui R£?crrs-aAS£i«^

'

fUiaiOfOi. TEST

CASES

ViV
PRELIMINART
DESIGH
0OCU«KT

PRELIMINARY
oesio*

0ESIGJ4-8ASE3'
FUNCTIONAL
TEST CASES

OHAILEO
DESIGN
OOCUHENT

OCTAILEO
DESIGN

3£SI5«-aAS£0 f
F\«aiONAL TEST
CASES

Figure 5.1-2 Example Software Development Lifecycle

Page 45

Most activities will contain:

o V,V&T purpose for the activity,
o V,V&T technique(s) used by the activity, and
o Example(s).

Tables 5.2-1, 5.3-1
f
5.4-1, and 5.5-1 provide a sunmary of the development and

V,V&T techniques and activities for the manual, minimal automation, full
automation, and maintenance activities. These tables present a synopsis of
the examples presented in this chapter.

The application area used in the examples is representative of a large nimber
of government and ccramercial systans. Transaction processing systems are
perhaps the most common of all commercial systems. Mary banking, billing,
payroll, inventory, and insurance applications are in this category. Thus,
the four examples focus on this area.

The transaction processing system is set in the context of an auto insurance
application. In order to limit the size of the presentations seme
simplifications have been made in the application area. An expert in the auto
insurance field will surely detect omissions and simplifications in details of
the system as described. The reader is encouraged, hcwever, to not focus on
the application area, but rather on the V,V&T principles applied. The details
provided enable presentation of specific instances of the application of V,V&T
techniques.

The Auto Insurance Management System (AIMS) described in the exairples supports
all the major activities of such a company: accounts payable (claims
processing), accounts receivable (premium processing), management reports, and
database management. AIMS must issue client premium due notices, checks to
repair shops (or clients), recommend policies that should be cancelled,
monitor the company's day-to-day financial health, and so forth. Further
details of the syst«n's requirements are included in the first example.

Page 46

5.2 EXAMPLE 1: SOFTWARE DEVELOPMENT USING MANUAL V,V&T TECHNIQUES

In this example the details of the AIMS are presented in addition to the
actual manual V,V&T practices which are applied within each of the four phases
of the software development lifecycle.

TABLE 5.2-1

EXAMPLE 1 SUMMARY
SOFIWARE DEVELOPMENT USING MANUAL V,V&T TECHNIQUES

SUHPIIASF.S^ REQUIREMENTS PRELIMINARY DESIGN DETAILED DESIGN PROGRAMMING

INPUT

o Informal prose
Requirements

o Detailed Requirements

- Revised Prose
Descr ipt ion

- Revised Graphical
GR Representation

O V,ViT Plan

o Preliminary Design
Ror'iimp n t

o V.ViT Plan
o Test Cases

o Detailed Design
Doc umen t

c V.ViT Plan
o Test Cases

OUTPUT

o Detailed Requirements
Specification

o V.ViT Plan
o Initial Test Cases

o Preliminary Design
Document
- Further Refined GR

System Representation
- Detailed User Input/

Output Specification
- Basic Control Flow

Des ign
- Basic System Infor-

mation Specification
o Additional Test Cases

o Detailed Design
Document

o Additional Test cases

o System Software
o Test Results

SUPPORTING
TECHNOLOGY

o Formal Requirements
Rev lows

o A Graphical Requirements
Representation Method

o Roqu I rements-based
Functional Testing

o Reviews
o A Graphical Requirements

Representation Method
o Design-based Functional

Testing

o Reviews
o Database Management

System (DBMS)
o Design-based Functional

Test ing

o Compilers
o Database Management

Sys tem
o Operating System
o Reviews

ACTIVITIES

o Initial Requirements
Rev iew

O Requirements Analysis
o V.ViT Planning
o Initial Test Case
Generation

o Interaction with
cus corner

o Sign-off by customer

0 Refinement of Graphical
Representat ion

o Specify Information
Des ign

o Design Program Architec-
ure & Allocate Require-
ments

o Design Basic Control
Flow

o Test Case Generation
o Preliminary Design

Review

o Detailed Database
Des Ign

o Detailed Module Desgn
o Test Case Generation
o Critical Design Review

o Code Development
o Module Testing
o Function Testing
o Acceptance Twsting

Page 47

5.2.1 Requirements Subphase Activity Descriptions

5.2.1.1. Initial Requirements Review

The informal prose requirements for the AIMS is given in Figure 5.2-1.
Appropriate management and technical personnel from the software development
group review these requirements for completeness, consistency, and correctness
and prepares a list of questions which address particular aspects of the
requiranents. This list is then supplied to the customer and a Requirements
Review meeting is scheduled and held with customer and user, e.g. clerks,
agents. During the meeting the questions are discussed with the goal being a
more specific and unambiguous set of requirements,

V,V&T Purpose: To produce a requirements specification providing the

foundation from which more formal requirements specification, V,V&T planning,
and test planning will be accomplished.

V,V&T Technique: The review itself is the V,V&T technique used in this
activity. Seme of the questions addressed during the review could be:

o Shouldn't a claims record contain some kind of indication as to the
nature of the claim? For example: if it is due to an accident, who
was at fault?

o How is the "reasonableness" of a claim amount determined?

o How does one know what claim nunbers are valid for which agents?

0 When is the pronium rate computed? How is it computed?

0 Shouldn't the acceptance criteria include provisions for testing more
than just the functional capabilities?

5.2.1.2. Requir«nents Analysis

The requirements analysis involves translation of the informal prose
requirements into a formal representation. This will result in the
identification of other aspects of the requirements which will need
clarification or further definition. For this example, the graphical
representation(GR) scheme used is a modification of the Systonatic Activity
Modeling Method [SAMM].

V,V&T Purpose: To identify inadequately specified requirements such as

incomplete, ambiguous, or otherwise unclear requirements statements.

V,V&T Technique: Formal reviews serve as the V,V&T technique used to achieve
the above purpose on this project. Problem issues which are identified during
the requirements analysis are docunented and distributed to the customer and a

second Requironents Review is sdieduled. This review again involves dialogue
between the customer and the developers; it centers on the formal

requirements statement and the identified issues. The result is a revised set
of requirements in both formal and informal forms and a graphical

Page 48

I 2 a

V O i/t

a. -5

^ O y

J! S «j S

U E
_ y 2

S

4 .2 5 1- c z .a

y g 3 ti a V _
5 £ iJ }i « S

u « c o
" S X

> —"1

1^

S 2
Sx

u

- X « « 1
*

- 55- c

S i s
<J O u

irt ii ^

V 4) «

5 ^ c I

~ ^ 73 ~ -
o 2 «

i

S .*
'5
*

|^«!
s ii i

U ~ <l

eg « S .

o o o o o

a
•= 31 " - " 41

3 S E ioi»„|

o o o o o
.

J-
«) 5 X o y

Page 49

representation(GR) . Specific activities which are performed within this
review are:

o Verification that all requirements have been correctly represented
using the formal scheme,

o Identification of the problems encountered during the restatement
elaboration of the requirements, and

o Discussion and resolution of the problems.

Example:

The formal representation for the basic system and the accounts payable
function are shown on the following page s(figure 5.2-2). The graphical
representation is interpreted as follows:

Master input files are at the top of the diagram and are represented by

nunbers.

Master output files are at the right of the diagram and are represented by

nunbers.

Files internal to a data flow diagram are labeled with a letter followed by

a number.

The upperhalf of figure 5.2-2 is the root which contains five modules, A-E.

The data flow within the root and to and from master files are labeled
according to their source. If the data are internal to the root, its
identifier is preceded by the module letter.

The lower half of figure 5.2-2 is an expansion of module A from the root.

The lower left corner of each box contains the parent, i.e. A in the root.
The Icwer right corner of each box is the letter designator for each module,
i.e. A-E. Data created by the accounts payable activity is labeled
according to its source, e.g. data B.I, a validated claims transaction, is
created by module B, validate claims transaction, and used by modules C-E.

Data B.2, invalid claims transaction notice, is created by B and put on
master file 7 , user/client notices.

Some of the problems which could be identified are:

o What does the systan do with an invalid claims transaction? Solution:

Output a notice to the user identifying the errors,
o The involved driver's record in the client's record needs to be updated

to reflect a new claim due to an accident. There does not appear to be
enough information in the client record for this. Solution: Add the
necessary information to the claims transaction.

Page 50

ACTivnr • OiTt now ouzmn Hoot

till*
luto InJursnea Han<g«atnt 3)rittB {AIH3)

DATA TD DATA DESCRIPTION

1 ATMS data base

2 Claims transaction file

3 Premium payment transaction file

4 Client transaction

5 Payout account transaction

6 Claim payment check

7 User/client notices

8 Updated AIMS data base

9 Management reports

C.l AIMS account information

E.l AIMS account transactions

laiviTt - OAT* nou incntn

Aoeeutils

Accounts

E.1

AIMS

J
C.l

Ctnarat«

B«port3

Canercl
Lcdetr

A. A

6

7.8

Acoountt ftyabl*

DATA ID DATA DESCRIPTION

1 AIMS database

2 Claims transaction file

A. l Client record

B. l Validated claims transaction

B»2 Invalid claims transaction notice

C. l Claims record

D. l Claims payment check

D.2 Updated payout account

D.3 Insufficient funds notice

D. 4 Claims transaction log

E. l Updated client record

E.2 Cancellation notice

E.3 Rate increase notice

r r
Ketd
Client
F.caord

LI.

•A.V

CWiBl

Slor*
CUlM M
Kacord

8.2

IT
S.I , B.l

I>iiia

CneeW to
f«ya»

C.l-

0.1

D.3

0,

-t\6

Stora
CUant
Aacord

J :

E. 1 ^ S

£.2 !?
t.3 ^7

Figure 5.2-2 Requirements Graphical Representation

Page 51

5.2.1.3. V,V&T Planning

V,V&T planning is one aspect of the overall planning process. It is
accOTiplished in parallel with other planning activities and the requironents
identification activity,

V,V&T Purpose: To choose V,V&T practices which can be implemented to suit the
project needs. The objectives are:

o Identify the goals of the AIMS project's V ,V&T activities,
o Select supporting V ,V&T techniques and tools, and
o Develop plans for each phase's V,V&T activities. (Plans include tasks,

e.g., acquiring or developing tools), schedules, responsibilities, and
resources.

)

V,V&T Technique: The process described in Chapter 4 is used to develop the
V,V&T plans.

5.2.1.4. Initial Test Case Generation

The AIMS requirements will be analyzed and test cases will be designed to test
the functional capabilities of the system. These test cases will also form
the basic set of acceptance tests.

V,V&T Purpose: To design test cases which, when used to test the AIMS
software, will maximize the possibility of revealing the presence of errors in
the software.

V,V&T Technique: Requirements-based functional testing is applied to generate
this initial set of test cases.

Example:

In the accounts payable function a claims transaction is validated by

checking (among other things) that the claim number is valid for the given
agent. Each agent has a specified range in which claim nunbers associated
with claims issued by that agent must fall. Assiming an agent was assigned
claim numbers in the range 801000 to 801999, test cases which are generated
to test accounts payable should include claim nunbers as follows.

Test Data Class Test Claim Number ExDected Cutout Comment

Non-extremal 801500 None valid
Non-extremal 801317 None valid
Extremal 801000 None upper bound
Extremal 801999 None lower bound
Extronal 800999 Invalid Claim Number lower bound-1

Extremal 802000 Invalid Claim Number upper bound4-1

Special 80 100

A

Invalid Claim Number
Special 80100Z Invalid Claim Number
Special 80150 Invalid Claim Number
Special -01500 Invalid Claim Number
Special 80L500 Invalid Claim Number

Page 52

5.2.2 Preliminary Design Subpiiase Activitj^ Descriptions

5.2.2.1. Refinement of Graphical Representation

The GR diagrams developed during requirements analysis will be deconposed to
reflect l^e requirements for the system in more detail.

V,V&T Purpose; The conpleteness and consistency of the GR description of the
requironents and preliminary design should be ensured,

V,V&T Technique: A review of the resulting diagrams will be performed to
verify:

o that all of the basic activities necessary to perform a particular function
have been identified,

o that all inputs and outputs required by each activity have been identified,
and

o the consistency and conpleteness of the data flows.

Example:

Within the accounts payable function there is no indication as to the action
which is to be taken when a claim transaction is processed for a claim which
has been previously entered. This error would be discovered during the
review of the GR activity for the accounts payable function.

5.2.2.2. Specify Information Design

The preliminary design of the information consists of a detailed user
input/output specification and a description of the basic content and
structure of the data used by the systen. The detailed user input/output
specification essentially amounts to preparing a user's manual for the syston.
The formats used to input claims and pronium payment transactions are defined
as well as the output responses. The printed report formats for the
management reports are also defined. Specification of the basic data
structures and content will consist of identification of variables and records
needed the system, and the relationships which exist among them.

V,V&T Purpose: The V^V&T purpose in this activity is twofold. First, the

detailed user specifications need to be shown to be usable and that they
satisfy the needs of the user. Second, the systan data structures and content
need to be verified and shown to be conplete (i.e., that which is required to
perform all system functions) and correct (i.e., the data types and
relation^ips are consistent with the functions which need to be performed).

V,V&T Technique:

0 A formal review will be held with the custaner to review the detailed user
input/output specifications. Ihis will be preceded by informal dialogue
between the user conmunity and the developers to aid in the development

Page 53

of the specifications. Once satisfied, the custcmer will formally sign-off
on the specification,

o Formal inspections of the system data structures and content will be
performed.

Example:

Discovered by the custcmer participating in the formal review of the
detailed input/output spec was that a client is not always the owner of the
car, so that lien-holder information needs to be included in the client
record.

5.2.2.3. Design Program Architecture & Allocate Requirements

The progran architecture design gives a complete high-level description of the
software. It refines and groups functions defining software components and
interfaces.

V,V&T Purpose: Requirements are cross-rel'erenced by the design to ensure that
all the requirements have been addressed.

V,V&T Technique: Specification tracing.

Example:

A ccraplete set of cross-references is defined and maintained. These show

the evolution from the prose requirements to the requirements represented by

the GR and finally to the components identified in the design.

5.2.2.4. Design Basic Control Flow

The GR represents the data flow within a system but only shows control flew in

an implicit way. The syston's control flow therefore needs to be explicitly
designed. The activities identified in the GR will need to be mapped into
modules. The control flew between modules must also be described. This is
done using an informal design language. This defines the program
architecture. The hierarchical structure of the modules comprising the system
are developed.

V,V&T Purpose: To produce a correct and understandable description of the
basic control flow of the syst«n.

V,V&T Technique: An inspection of the control flow design will be performed
to verify:

o its consistency with the GR representation,
o correctness of the high level logic, and
o the quality of the modularization, i.e., are the functional boundaries
natural?

Page 54

5.2.2.5. Test Case Generation

V,V&T Purpose: Generate test data that will exercise and test each function,
and also demonstrate the code is consistent with the design,

V,V&T Technique: Desigivbased functional testing.

Example:

Test cases for a function which adds the amount of the premium payment to
the payout account would include: a negative (or zero) amount, an amount
which is greater than zero but less than that which would leave the balance
larger than the maximum allowed, and one which would leave the balance
greater than the maximum allowed.

5.2.2.6. Preliminary Design Revia^

At the ccmpletion of the preliminary design activity, a formal review is held.
This involves management and technical staff representing the developer and
the custaner/user. It covers all aspects of the design. Results of V,V&T
activities are revi»/ed. Management of custaner/user and developer sign-off
of acceptance is required.

5.2.3 Detailed Design Sublease Activity Descriptions

5.2.3.1. Detailed Database Design

The format and structure of the data to be stored in the syst^ database is
designed. This includes description of data which are logically related in
the form of records, and the relationships which exist between records. The
logical structure of the database will be described using a grap*iical database
design representation. Record descriptions will be specified in a Data
Definition Language. Examples are shown in figures 5.2-3 and 5.2-4.

In figure 5.2-3, ovals represent record access (key) fields, boxes represent
records, "1:M" means that for each client record there are potentially many (1

or more) claims records.

Figure 5»2-3 Sample Database Schema Showing Client^Claims Relation

Page 55

record name is CLAIMS
location mode is calc in CALC-KEY using POLICY-NUM
01 CLAIM-NUM PIC 9 (6)
01 DATE-OF-CLAIM PIC 9 (6)
01 ACC-REP-NUM PIC 9 (9)
01 DRIVER

02 LAST PIC X (15)
02 FIRST PIC X (15)
02 MIDDLE-INTL PIC X

01 PAYEE
02 NAME PIC X (31)
02 ADDRESS

03 STREET PIC X (24)
03 CITY PIC X (15)
03 STATE PIC X (2)

03 ZIP PIC X (5)
01 POLICY-NUM PIC 9 (8)

01 AGENT PIC 9 (5)

Figure 5.2-4 Sarrple CLAIMS Record Description

V,V&T Purpose: The database design needs to be verified for consistency with
the preliminary design. Moreover, the database structure will be verified to
ensure that it is correct and is reasonable with respect to potential storage
consunption and access time.

V,V&T Technique: An inspection of the database design is performed to ensure
that Uie above V,V&T purpose is met.

Example:

During the inspection of the database design an error is found in the claims
record (Figure 5.2-4) where POLICY-NUM is identified as the key field where
as the schema diagram (Figure 5.2-3) indicates CLAIM-NUM. The solution is
to change the key field in the claims record description to CLAIM-NUM.

5.2.3.2. Detailed Module Design

Detailed module design includes for each module a description of the function
performed and descriptions of input and output data, as well as a high level
description of how the function is to be done (i.e., the algorithm used).

V,V&T Purpose: To show that 1. all of the system's functional capabilities
are addressed by one or more modules and 2. each module addresses one or more
syston functions. Moreover, relation^ips among and interfaces between all
modules are identified and verified.

V,V&T Technique:

0 Inspections of the syston modules are held. Activities performed during
the inspections include manual checking of the module interfaces to

Page 56

ensure that all modules are used and that their' inputs and outputs are
consistent. Inspections are also used to verify informally the correctness
of the algorithms used.

o Requironents tracing is accomplished by identifying each module with
the lowest level GR activity (from the preliminary design) in which the
module is contained.

Example:

A module which updates the date and time of the last access to the payout
account record has as one of its inputs the premiun payment transaction.
However, manual interface checking detects an inconsistency whereby the
pronium payment transaction is not supplied. As it turns out, the
transaction is not used within the module and is deleted as an input.

5.2.3.3* Test Case Generation

This involves refining and adding to test data previously developed.

V,V&T Purpose: Test cases are developed to exercise and test the internal
structures and functions of modules.

V,V&T Technique:

o Branch testing

0 Path testing

Example:

The module which validates a claim number checks for six error conditions.
Associated with these conditions are three actions. Test data is developed
to exercise all combinations of error conditions and resulting actions, that
is all branches and all paths throu^ the modules,

5.2.3.4. Critical Design Review (CDR)

At the conpletion of the detailed design a formal detailed design review is

held. This primarily involves project management and technical personnel and
covers all aspects of the design (including the test cases). Management
sign-off of their acceptance of the design is required.

5.2.4 Programming Subphase Activity Descriptions

5.2.4,1, Code Development

The detailed design of a given component provides the information needed to

write the code for that ccmponent in the host programming language ,e.g.

,

COBOL. Once written, the code is entered into the ccxnputer and all
conpilation errors are ronoved.

Page 57

V,V&T Purpose: V,V&T of the compiled code is performed to:

o Verify the consistency of the code with the detailed design,

o Identify errors, and
o Ensure adherence to programming standards.

V,V&T Technique: Formal reviavs of each system module.

Example:

During an inspection of "issue policy notices" module the section of code

which is responsible for issuing a premium due notice is found to be in
error. The error is that the premiun due notice is printed without having
the appropriate data moved into the printer buffer. A sample portion of the

inspection checklist used is shown below in Figure 5.2-5. This particular
error is discovered using question two under "data reference.

"

DATA DECLARATION

1 . Are all variables declared?

2. Are the correct attributes assigned?
3. Are variables properly initialized?
4. Are variable naming conventions followed?

5. Is the proper explanatory ccmment included for each variable?

DATA REFERENCE

1 . Are there any unreferenced variables?
2. Are there any references to unassigned variables?

3. Are subscripts within range?
4. Are there off-by-one errors in subscript canputations?

Figure 5.2-5 Sample Portion of Code Inspection Checklist

5.2.4.2. Module Testing

An incremental, bottorrnup testing strategy is used to test the AIMS modules.

This involves individually testing the lowest level modules; then combining

and testing those modules with the higher level modules which call them. The

process continues until all modules are canbined into the complete systan.

Test drivers are written to control the testing of the individual modules.

The test data used is that created by design-based functional testing which

were generated from analyses of the functional, structural and interface

specifications of the individual modules during detailed design.

V,V&T Purpose: To reveal errors present in the individual modules.

Page 58

5.2.4.3. Function Testing

Function testing of AIMS uses the test cases developed frcm requirements-based
functional testing during preliminary design to test the functional
capabilities of the AIMS software.

V,V&T Purpose: To reveal errors where the software fails to perform a
function as specified in the requirements.

5.2.4.4. Acceptance Testing

Acceptance testing is similar to function testing in that it consists of a

subset of the same test cases. But where the purpose of function testing is
to reveal the presence of errors, acceptance testing is to demonstrate that
the software performs according to its specification. Acceptance testing is a
formal procedure and requires custcnier sign-off.

5.3 EXAMPLE 2: SOFTWARE DEVELOPMENT USING A MINIMALLY AUTOMATED V,V&T TOOL
SET

Ihe minimally automated V,V&T tool set consists of a set of commonly available
tools. These are used to supplement the manual techniques described earlier.
The tools contained in the minimal set and the lifecycle phase in which they
are applied are shown below.

TABLE 5.3-1
EXAMPLE 2 SUMMARY

SOFTWARE DEVELOPMENT USING A MINIMALLY AUTOMATED V,V&T TOOL SET

SUBPMSES. Rfouinocr? ptaiWRAin oaia DETAani otsia

:i»uT

• (No A4dU1on«l Input)
So»Clf1Clt1on InclualBfl

Ul« o' flKulrCMntl
Sp*c1f1Cit1on L«n9u49«

• Pr«M»1r\«ry OoilTn
Doci«*nt Inc1ud1n9 UM
of IUou1rw»nt irtd

D«il5ti Se«c1f Icitlon

» 0«t>11*4 0Ml9n
QoctMnt Includlif I.)
of 0«l9n Specification

OUTPUT
$p*c1f(:itlon Including

Ut* of EL*Qu1rw»nu
Sp«c1f1ut1on U»9u«9*

• Pr»11»1ntr)r 0*«l9n
Ooo«nt Including
Furtfl.r Ji* of 9»<jutr»-

mnu Sp«<:1ff cation
On 1 <p\ Lin9vM9*

OociMnt Including Us*
of tnutrtrmnt »na
D*ii9n So«cU1ut1on

• (Xo Dtw OutpuU

)

SUPPORTING
TtCHNOLOSr

• R»ou1i mawu SMC^fl ca-
tion Lin<;u49*

• Btqutnwnu Sp«c1'U«-
tion Ltn9u<9t •Ji«lyztr

• l(»<rjir««»»otJ Sp«cU1c»-
tlon linqu49«

* TooUSuPDorTM Ocilfn

• 0»i1?n So«c1f1cition * Croil-*tf •'"•nctr
* Ttst COY»r»g» Analyitr
* F11« ConMritor

ACTIVITIES

• flTCufrcMntx Analyiis • So«1fy IntorBttlon
Otilqn

• Oeiign t«s1c Control
Hon

• [>*ui1«4 Hodul*
Ottlgn

• Cod* 0«v«1oi>»flt

• noouli T«ttln9
• Function Ttitlnf

o Requirements
- Requirements representation language analyzer

o Preliminary and Detailed Design

Page 59

- Design representation language analyzer

o Code
- Cross reference generator
- File comparator
- Test coverage analyzer

5.3.1 Requirements Subphase Activity Description

A tool-supported requirements statement language is used to formally specify
the requirements. It is used in conjunction with the graphical represention
technique which analyzes the gross requirements while the language
representation is used to perform a more detailed analysis. It is used to
directly support the V,V&T purpose to identify inadequately specified

requirements in that a consistency analyzer is part of the tool. The reports
generated by the tool are included with the other material for requirements
reviews.

Example:

A Problem Statement Language (PSL) [TEIC] description of the accounts

payable function is shown in Figure 5.3-1.

/* Auto Insurance Management Systems (AIMS)

Accounts payable •/

INPUT: clairas-transaction-file;

OUTPUT: claim-payment>check, client-notices;
SET: aims-data-base
INTERFACE: client;

GENERATES: claims-transactions;
RECEIVES: claim-payment-checks;

PROCESS: accounts-payable;
UPDATES: aims-data-base;
RECEIVES: claims-transactions;
GENERATES: claim-payment-checks;

EOF

Figure 5.3-1 PSL Specification for Accounts Payable

In this example, the Problem Statement Analyzer (PSA) [TEIC] would identify

an inconsistency with respect to the accounts payable process. Accounts

payable generates clairo-payment-checks which have not been previously

defined (it is misspelled in the OUTPUT definition).

5.3.2 Preliminary Design Subphase Activity Descriptions

5.3.2.1. Specify Information Design

A formal requirements specification language (such as PSL) can be used to

specify a high-level system information design. Reports produced by the tool

are included in the preliminary design document and are analyzed during the

Page 60

reviews,

5.3.2,2. Design Basic Control Flow

One of t^e difficulties encountered in the use of an informal design language
is that of ensuring a consistent representation for all modules. The use of a
tool-supported design language, such as Program Design Language (PDL) [CAIN],
prevents this frcHii happening.

Example:

Figure 5.3-2 shews the PDL description for "Issue Policy Notices". The PEL
for all modules is included in the reviews and walk-throughs.

Issue Policy Notices

Initialize
Fetch first client record
do until end-of-file on client file

if premiun is due
Issue premium due notice

else if premiun past due
Issue cancellation notice

endif
Fetch next client record

enddo

Figure 5.3-2 Preliminary Design PDL of "Issue Policy Notices" Function

5.3.3 Detailed Design Subphase Activity Description

As in the preliminary design described above, a formal, tool-supported design
language is used to describe modules and their algorithms. The reports
generated by the tool are included with the information used in the reviews
and walkthroughs.

During the inspection of this module two problems, an error and a standards

violation, are identified. The error is that the program may very likely
issue more than one premitm notice. The problem occurs in line six. If
currents-date is greater than or equal to pronium-due-date - 40 then
current-date +1 (when the program is next executed) will also be greater. One
solution is to introduce an additional boolean variable in the client record,
"issued", which is initially false but set to true when the notice is issued.

Line six then becomes:

if(current-date >= premium-due-date - ^0) and not issued

The standards violation is a result of the use of the integer literal constant
"40" in line six, particularly since this value m^ be subject to change, A
program constant called "response-interval" should be defined with the value
40 and referenced in line six.

Page 61

Example:

Figure 5.3-3 shews the PDL of the detailed design for "Issue Policy Notices"
from the preliminary design shown in Figure 5.3-2.

Issue Policy Notices

1 Get current-date
2 Issue operator instructions
3 Open data base
4 Fetch first client record
5 do. until end-of-file on client file
6 if current-date > = premiun-due-date - 40
7 Issue premium notice
8 else if current^date i premium-due-date
9 Issue cancellation notice
10 endif
11 Fetch next client record
12 enddo

13 Close database

Issue operator instructions

14 Display program start message and date
15 Display prepare printer message
16 Wait until printer ready

Figure 5.3-3 Detailed Design PDL of "Issue Policy Notices" function

5.3.4 Progranming Subphase Activity Description

5.3.4.1. Code Development

In addition to that described earlier, a cross-referencer is used to produce
cross-reference lists of all identifiers used by a program. This list is
included with the source code listings for module inspections.

Example:

A careful examination of the cross-reference listing of module ISSUE-CHECK
in ACCOUNTS-PAYABLE during the code inspection indicated that two variables,
PAYOUT-ACCOUNT-BAL and PAYOUT-ACCT-BAL, were referenced. The error was that
PAYOUT-ACCOUNT- BAL, should have been coded "PAYOUT-ACCT-BAL."

5.3.4.2. Module Testing

A test coverage analyzer is used to supplement module testing as described in

Table 5.3-1. Each module to be tested is instnmented to collect execution
frequency counts and then executed. The execution counts for each statement
are then listed with the corresponding statement by a post-execution routine.
Untested or poorly tested portions of the module can be identified and

Page 62

additional test cases can be generated to test those specific segments.

Example:

ACCOUNTS-PAYABLE processes claims transactions read from a file which
contains a given day's claims. The module contains a check to verify that
each record is indeed a claims transaction and, if not, invokes an error
handling routine which logs the error. Use of a test coverage analyzer
showed that this particular situation did not arise during testing of the
module using the tests created during detailed design. As a result, those
tests are supplemented with invalid claims transactions and the module
retested. This, in turn, results in an error being revealed whereby the
error handler responds with an incorrect output response.

5.3.^.3. Function Testing

Function testing is supplemented with the use of a file conparator.
Associated with each of the requirements-based functional test cases is the
expected output. ITiis is stored on a file in the exact format expected to be
produced. the AIMS software is tested, the resulting output is stored on
a separate file, A file comparator is used to detect automatically any
discrepancies which may have occurred.

Example:

In preparing the test cases for the New Clients report, a form is used which
formats the expected output data in accordance with the specification. Each
report corresponding to a given test case is then stored on a file in the
order in which the tests are to be executed. Testing is then performed and
the actual output is compared to the expected output using a file
comparator. The results show the presence of two errors, a format error and
a data output error. The format error is a misalignment caused by incorrect
spacing between output fields. The data output error is a missing agent
name which is to be printed with the agent nimber.

Page 63

5.4 EXAMPLE 3: SCFIVARE DEVELOPMENT USING A FULLY AUTOMATED V,V&T TOOL SET

The fully autanated V,V&T tool set is comprised of commonly used tools and
techniques, and includes those tools contained in the minimal tool set
described earlier as well as those described in this section. The additional
tools and the applicable lifecycle phase are shown below.

0 Preliminary Design
- Assertion generation

o Detailed Design
- Assertion generation

o Code
- Interface checker
- Data flew analyzer
- Assertion processor
- Standards analyzer

TABLE 5.4-1

EXAMPLE 3 SUMMARY
SOFTWARE DEVELOPMENT USING A FULLY AUTOMATED V,V&T TOOL SET

mLiniMRT oQia
I

oaAiLED oesisi

• (l«e MdttlORt to

mnlHl Tool S«t)

• (He Addltloiul Inputs)
OocvMfit Includlnf
Ati«rc1oni AsMrclani

OUTW
• [M AddUlont to

mnliBl Tool S«t) OooMnt Inclvidinf

Aiitrtlons loout txt

• 0«t<11t4 Otltp

AedltlOTMl A(l«rC1««

• (He Mdltloiiil OutBuu)

TicmoujCT

• (Me Mtflttont ta

mnlMl Tool S*t)
• Asi«rt1e« Stnaratlon t Asttrtlon fi*fl«rit1on • [nt*r'tet Chtcktr

• 04U Flow Antlyztr
• illtrtlsn 'njctjior

AcntmEs
• (He Addltlani to

mnlMl Tsol Sat)
• Oeslftt ittic Central

nam Onl9n
» Com 9tT«lcon>nt

5.4.1 Requirements Subphase Activity Description

(No additions to minimal tool set.)

5.4.2 Preliminary Design Subphase Activity Description

V,V&T Technique: Assertion generation is used to specify the desired

functional properties of the individual modules. This is done, by including in
the module specifications input and, to the extent possible, output
assertions.

Page 64

Example:

Policy numbers are stored in the database in blocks of arrays where each
block contains a fixed nunber (n) of policy nunbers (policy-nun) and the
address (policy-addr) of their associated client records. Policy nunbers
are stored in the policy-nun array in ascending order. A procedure,
find-policy, is called to search the policy-nun array for a supplied policy
nunber and return the address of its client record. If the supplied policy
nunber is not found an address of zero is returned. The input and output
assertions which capture the functional properties of find-policy are given
below.

1) /* assert input poli^r-nun (IX = nun< = policy-nun (m) */ and
2) /* assert input forall i in. 1 . . .n-1 :polcy-nun (i)< = policy-nun (i+1) V
3) /* assert output (exists in i in 1 . ..n : nun = police-nun (i)) */ or.

4) /* assert output (addr=0 and forall i in. 1 . . .n:nun = policy-nun (i)) */

5.4.3 Detailed Design Sub^iase Activity Description

V,V&T Technique: Assertions are generated to include algorithmic detail in

addition to input and output specifications of the functional properties of
the individual modules.

Example:

The example in the previous section describes the find-policy procedure and

specifies the input and output assertions associated with it. Shewn in
figure 5.4-1 is the PDL for find-policy which is implemented using a binary
search algorithm.

Ihe input and output assertions capture the functional properties of the

procedure independent of the algorithm used to implement the search.

Assertions 1, 2 and 3, however, capture conditions which are very dependent
upon the algorithm. Assertion 1 is always correct whenever nun is in the
policy-nun array. If nun is not in the array, assertion 1 is violated the
last time ttirough the loop (when high = low). This is an acceptable result,
however, in that nun should be a valid policy nunber.

find-policy:

/* searches sorted global array policy-nun for nun (input argunent) and, if

found, returns the associated policy-addr in addr (output argunent). If
not found a zero is returned in addr V

/* assert input policy-nun (IX = nun< = policy-nun (n) */

/• assert input forall i in 1 . ..n-1 : policy-nun (i)< = policy-nun (i+1) */

set addr to 0
set lew tQ_ 1

set high to n

Page 65

do until high< low or nun = policy-nun (i)

(1) /* assert 1< = low< r high< = n and policy-nun (lowX = nun<=
policy-nun (high) */

set m to (low + high) /2
if nun< policy-nun (i)

else if nun> Dolicv-nun (i)

else goto successful
enddo

/* unsuccessful */

(2) /* assert high = low-1 and policy-nun (highX nun< policy-nun (low) •/

/* assert output addr = 0 gnd forall i in 1 , ..n: nun 4 policy-nun (i) «/
return

/*successful*/

set addr to policy-nun (i)

(3) /* assert 1< = lcw< = m< = hiRh< = n and nun = policy-nun (m)
/* assert cutout exists i in 1...n: nun = policy-nun (i) */

return

»/

end find-policy;

Figure 5.4-1 Detailed PDL with ASSERTIONS

5.4.4 Programming Subphase Activity Descriptions

5.4.4.1. Code Development

The code development activities described in earlier sections are supplanented
in a full tool set envirorment with an interface checker, data flow analyzer
and standards analyzer. These tools can be separate but are often included as
capabilities provided by a single tool. They are all static analysis
techniques and are therefore applied prior to software testing. The output
which results from each of the capabilities is included with the material for
the formal code inspections.

V,V&T Techniques:

0 Interface checking is used to check the consistency of the interfaces
between modules.

Example:

An error is detected between the module which reads client records for
premium payment processing and the "find-policy" module. It is an
inconsistency in the type of the argunents for the policy nunbers.
"Find-policy" is being called with a policy nunber of type character where

Page 66

it should be type integer,

o Data flow analysis is used to identify variable reference/definition
ancmalies.

Example:

When data flow analysis is performed on the module which updates the payout
account with a premiim payment, a reference to an uninitialized variable is
noted. The variable should contain the current date and time and is used to
update the date and time of the last change to the payout account, A call
to the routine which updates the time and date should be made prior to the
reference,

o Standards' analyzers are used to assure adherence to program coding and
docunentation standards. One of the primary capabilities provided by most
commonly available standards* analyzers is the notification of the use of
non-standard language features.

Example:

One of the requirements for the AIMS software is that it be portable. To
assist in the development of portable code, a COBOL standards' analyzer is
used. All places where a standards' violation occurs is either changed or
justified. Even trivial nonstandard features such as the use of the
abbreviation "DISP" for "DISPLAY" are detected. In addition, a variety of
undesirable standard language constructs such as the "ALTER" statonent and
"NEXT SENTENCE" clause are detected with the tool.

5.4.4,2. Module Testing

The module testing activities described in earlier sections are supplemented
in a full tool set envirorment witti a dynamic assertions processor. This
processor is generally included as part of a broader dynamic analysis tool
which includes, for example, statement execution counts.

V,V&T Technique: Assertions processor: A dynamic assertions processor
translates assertions, usually specified as part of the source program, into
source language stat«nents which check the validity of the assertion during
program execution. Generally, when an assertion is violated, an informative
message is output.

Example:

Figure 5.4-2 shows a portion of a FORTRAN implementation of the find-policy
routine from Figure 5,4-1, Also shown is an example of an assertion
violation message which was printed when the assertion in line 14 of the
program was violated (i,e, , false) during program execution. Subsequent
analysis of the problem indicated that the error was an incorrect coding of
line 18 from the PDL where HIGH should have been set to M - 1, not M + 1.

Page 67

13 100 CONTINUE
14 C» ASSERTd.LE.LOW.AND.LOW.LE.HIGH.AND.HIGH.LE.N
15 C« . AND. POLNUMC LOW). LE. NUM. AND. NUM. LE.POLNUMC HIGH))
16 M = (LOW + HIGH)/2
17 IF (NUM .LT. POLNUMC M)) THEN
18 HIGH = M + 1

19 ELSE IF (NUM .GT. POLNUMC M)) THEN
20 LOW = M + 1

21 ELSE
22 GO TO 200
23 ENDIF
24 IFC HIGH. LE. LOW. AND. NUM. NE. POLNUMC M)) GO TO 100

»»« ASSERTION VIOLATION AT LINE 1 4 OF SUBROUTINE FNDPOL:
CURRENT EXECUTION COUNT = 2

LOW = 1, HIGH = 65, N = 64, NUM = 22707,
POLNUMC LOW) r 16747, POLNUMC HIGH) = 36757

Figure 5.4-2
Find-policy Subroutine and Corresponding Assertion Violation Message

5.5 EXAMPLE 4: SOFTVARE MAINTENANCE

System maintenance activities involve the processing of changes to the syston
software and docunentation necessary to correct an error or to enhance or
alter the syston's functional capabilities. The maintenance activities
described in this example are supported by the fully automated V,V&T tool set,

described in earlier examples, augmented with software configuration control
procedures.

Maintenance is generally divided into two classifications:

o Problem reporting and correction, and
o Change request processing.

Problem reporting and correction involves a formal notification Cusually
consisting of a form which is filled out by a user) of an error in the
software. The error is then verified and the offending moduleCs) identified
and corrected. The effort required for the entire process is, in most cases,

minimal in that any more than a very minimal redesign is seldom necessary.

Page 68

Change request processing involves a formal notification (basically consisting
of a r®5uiraiients statonent) of a desired enhancement, alteration or
inprovanent (e.g« 5 performance) in the system's functional capabilities.
Change requests always require some software redesign and, as a result,
involve a greater level of effort.

Each of these activities are illustrated in the following sections with some
simple examples frcm the AIMS software.

TABLE 5.5-1
EXAMPLE 4 SUMMARY

SOFTWARE MAINTENANCE

SUBPHASES PROBLEM REPORTING AND CORRECTION CHANGE REQUEST PROCESSING

O System Software o System Software
O System Documentation o System Documentation

INPUT o System Test Cases o System Test Cases
o Problem Reports o Change Requests

OUTPUT O Updated System Software o Updated System Software
o updated System Documentation o Updated System Documentation

SUPPORTING o Fully Automated V,V&T Tool Set o Fully Automated V,V&T Tool Set
TECHNOLOGY o Configuration Control Procedures o Configuration Control Procedures

ACTIVITIES o Problem Analysis o Requirements Analysis
o Problem Correction o Redesign and Coding

5.5.1 Problem Reporting and Correction Activity Descriptions

5.5.1.1* Problem Analysis

When a problem report is received, the problem must be analyzed to determine

the cause of the error. Often, the error needs to be recreated to obtain
additional information pertaining to the source of the error. It may be that
a user has made an error which was the result of a misunderstanding on his
part. The misunderstanding could be the user's problem or it may be the user
docunentation that is incorrect.

If the problem is indeed an error in the software, then the offending code
needs to be identified and possible solutions addressed. This is generally
not an easy task. If the software has been developed using the lifecycle
V,V&T techniques and tools described in the previous sections, the error has
escaped very thorou^ attempts to uncover it. Althou^ some V,V&T tools can
provide assistance, they are generally not very helpful in locating the error.

The best tool to use is one's brain. Tools are not meant to replace thinking
but to assist in amplifying the thinking process.

Page 69

Once the error has been located, possible solutions can be identified. These
solutions vary from being very trivial code modifications to an extensive
redesign. It is important to note that if good lifecycle V,V&T practices are
utilized during software development, then the instances of redesign are
significantly reduced.

Example:

An AIMS Problem Report is received describing an error in which a claims
transaction is due to an invalid agent nunber althou^ that particular agent
nunber is listed in the user docunentation as valid. Upon analysis of the
problon, the cause of the error turns out to be that a new agent was added
to the company with a new number assigned. The docunentation was updated
but the table of agent nunbers in the AIMS software was not updated.

5.5.1.2. Problem Correction

When the source of an error is found to be in the software and the offending
code is identified, the correction of the error needs to be made. The code in
the module which contains the error is modified. The V,V&T techniques and
tools which are used during the code correction process will depend on the
extent of the error. In the previous example, only a table addition is
required. The compiler detects most errors and an inspection of the compiled
table is generally all that is necessary before retesting. In a case where an
entire algorithm is wrong, a formal review of the code is probably necessary,
as well as use of the full automated V,V&T tool set to completely retest the
module.

After the code has been modified and module testing completed, regression
testing is performed. In cases where the module interfaces with another
module(s), interface checking, hierarchy, module calling, etc. tools should
be employed before regression checking. All system conponents which can
potentially be affected by the change are retested using a standard set of
syst«n test cases augmented with tests aimed at revealing the original error
(e.g., the actual input which caused the error should be included). When
testing is conplete, the actual output is compared with the expected (correct)
output, possibly using a file comparator. If no errors are present, then the
updated modules are incorporated into the production software and any

pertinent docunentation is updated.

Example:

An error was discovered where on midnight of December 30, 1980 the year-to-
date premium total was reset so that premiums received on December 31 were
counted in the 1981 total instead of the 1980 total. Upon examination, it
was found that the end of year test was 365 days. 1980, however, being a

leap year, contained 366 days and so the reset occurred a day early. In

this case, the software correction is quite simple and is implemented with
little difficulty. In fact, it is more difficult to correct the
misinformation in the database than it is to correct the error.

Page 70

5.5.2 Change Request Processing Activity Descriptions

5.5.2.1. Requirements Analysis

The requirements analysis associated with system enhancements or alterations
is essentially the same as described earlier in this chapter except for one
fundamental difference. For all practical purposes, the feasibility of a
particular enhanced or altered capability depends upon how well that
capability can be implemented within the existing design. The more redesign
that is necessary, the greater the magnitude of the cost to implement it.

Redesign costs are not an issue during the requirements phase of the initial
software developnent since there is no existing design. What this means is
that the scope of what is or is not feasible is much narrower during the
maintenance phase and therefore must be given consideration.

The V,V&T techniques applied during this requirements analysis are the same as
before utilizing reviews, representation aids, etc. to assist in the analysis
and specification.

Example:

High level canpary management issued a change request to enhance AIMS to
interactively process claims and premium payment transactions. The current
system batchs the transactions on a file which is then processed once a day.

This results in a response time which is inconvenient for the agents as well
as the custaner. It is decided to enhance the system to process claims and
premium payments interactively as they are received.

During requirements analysis, it is found that those system modules which
are impacted by the redesign are those which control the inpuiyoutput of the
batch transactions. Replacement of those modules with ones which could
perform interactive processing is relatively straightforward. Increased
computer usage would, however, require additional hardware resources for
normal production operation.

Management felt that the extra cost was worthwhile and thereby authorized
the system change.

5.5.2.2. Redesign and Coding

The process followed for the implementation of a systan enhancement or an

alteration is no different than that followed for a complete software
developnent as described earlier in this chapter. Therefore, no further
discussion is required.

Page 71

CHAPTER SIX

SUMMARY

This document has presented information on lifecycle V,V&T and guidance on

planning for V,V&T. It has covered:

0 Software development phases and acccmparying V,V&T activities

o A categorization of V,V&T techniques into static, dynamic, and formal
analysis

0 Suggestions on hew to integrate static, dynamic, and formal V,V&T
analysis into a lifecycle

0 Guidance on steps and approaches to take when planning V ,V&T

activities

o Recognition that V ,V&T activities must be tailored to meet the needs
of specific projects ;

A series of rather detailed examples of Y,V&T approaches using increasing
levels of automated support were also presented. A reference guide of
techniques and tools [POWE] for V,V&T is a valuable companion for this
docunent. A glossary of V,V&T terms is included as an appendix.

Page 72

GLOSSARY

BLACK BOX TESTING: see FUNCTIONAL TESTING

BOUNDARY VALUE ANALYSIS: a selection technique in which test data is chosen
to lie along "boundaries" or extrones of input dcwiain (or output range)
classes, data structures, procedure parameters, etc. Choices often include
maximum, minimum, and trivial values or parameters. This technique is often
called stress testing.

BRANCH TESTING: a test method satisfying coverage criteria that require, for
each decision point, each possible branch be executed at least once.

CAUSE EFFECT GRAPHING: test data selection technique. The inputs and outputs
of the progran are determined throu^ analysis of the requirements. A minimal
set of inputs is chosen avoiding the testing of multiple inputs which cause
identical output.

COMPLETENESS: the property that all necessary parts of the entity in question
are included. Completeness of a product is often used to express the fact
that all requirements have been met by the product.

CONSISTENCY: the property of logical coherency amoung constituent parts.

Consistency may also be expressed as adherence to a given set of rules.

CORRECTNESS: the extent to which software is free from design and coding
defects, i.e. fault free. It is also the extent to which software meets its
specified requirements and user objectives. (IEEE Software Engineering
Terminology)

DEBUGGING: the process of correcting syntactic and logical errors detected
during coding. With the primary goal of obtaining an executing piece of code,

debugging shares with testing certain techniques and strategies but differs in
its usual ad hoc application and local scope.

DESIGN BASED FUNCTIONAL TESTING: the application of test data derived through
functional analysis (see FUNCTIONAL TESTING) extended to include design
functions as well as requirement functions.

DRIVER: code which sets up an environment and calls a module for test.

DYNAMIC ANALYSIS: involves execution or simulation of a development phase
product. It detects errors by analyzing the response of a product to sets of
input data.

EXTREMAL TEST DATA: test data that is at the extremes, or boundaries, of the
domain of an input variable or which produces results at the boundaries of an
output domain.

FORMAL ANALYSIS: uses rigorous mathematical techniques to analyze the

algorithms of a solution. The algorithms may be analyzed for numerical
properties, efficiency, and/or correctness.

Page 73

FUNCTIONAL TESTING: application of test data derived from the specified
functional requirements without regard to the final program structure,

INSPECTION: a manual analysis technique in which the program (requirements,
design, or code) is examined in a very formal and disciplined manner to
discover errors.

INSTRUMENTATION: the insertion of additional code into the program in order
to collect information about program behavior during program execution.

INVALID INPUT (TEST DATA FOR INVALID INPUT DOMAIN): test data that lies
outside the danain of the program's function.

PATH TESTING: a test method satisfying coverage criteria that each logical
path through the program be tested. Often paths throu^ the program are
grouped into a finite set of classes; one path from each class is then
tested.

PROOF OF CORRECTNESS: the use of techniques of mathematical logic to infer
that a relation between program variables assuned true at program entry
implies that another relation between program variables holds at program exit.

REGRESSION TESTING: Rerunning test cases which a program has previously
executed correctly in order to detect errors created during software
correction or modification activities.

SIMULATION: use of an executable model to represent the behavior of an
object. During testing the computational hardware, the external environment,
and even code segments may be simulated.

SPECIAL TEST DATA: test data based on input values that are likely to require
special handling by the program.

STATEMENT TESTING: a test method satisfying the criterion that each statement
in a program be executed at least once during program testing.

STATIC ANALYSIS: direct analysis of the form and structure of a product
without executing the product. It may be applied to the requirements, design
or code.

STRESS TESTING: see BOUNDARY VALUE ANALYSIS.

STUB: special code segments that when invoked by a code segment under test
will simulate the behavior of designed and specified modules not yet
constructed.

SYNBOLIC EXECUTION: an analysis technique that derives a symbolic expression
for each progran path.

TEST DATA SET : set of input elements used in the testing process.

Page 74

TEST DRIVER: a program which directs the execution of another program against
a collection of test data sets. Usually, the test driver records and
organizes the output generated as the tests are run.

TEST HARNESS: see TEST DRIVER.

TESTING: examination of the behavior of a program by executing the program on
sample data sets.

VALID INPUT (TEST DATA FOR A VALID INPUT DOMAIN): test data that lies within
the dcanain of the function represented by the program.

VALIDATION: determination of the correctness of the final program or software
produced from a development project with respect to the user needs and
requirements.

VERIFICATION: in general, the demonstration of consistency, canpleteness, and
correctness of the software at each stage and between each stage of the
development lifecycle,

WALKTHRCXJGH: a manual analysis technique in which the module author describes
the module's structure and logic to an audience of colleagues.

NOTE: Most of the definitions above are from:

ADRION,W.R. ,BRANSTAD,M.A. ,and CHERNIAVSKY, J.C. , "Validation, Verification,
and Testing," NBS Special Publicaiton 500-75.

/

Page 75

BIBLKDGRAPHY

[ADRI] ADRION, W.R., BRANSTAD, M.A.
,

CHERNIAVSKY, J.C.
,

"Validation,
Verification, and Testing of Computer Software, " NBS Special Publication
500-75, February I98I.

[BRAN] BRANSTAD, M.A.
,

CHERNIAVSKY, J.C. and ADRION, W.R.
,

"Validation,
Verification and Testing for the Individual Programmer, " NBS Special
Publication 500-56T Washington,D.C. , October 1979.

[CAIN] CAINE, S.H. and GORDON, E.K. , "PDL: A Tool for Software Design,"
Proceedings of the National Computer Conference, 1975.

[DARR] DARRINGER, J.C. King, "Applications of Symbolic Execution to Program
Testing," Computer, April 1978.

[DEMI] DEMILLO, R.A.
,
LIPTON, R.J. and SAYWARD, F.C. , "Hints on Test Data

Selection: Help for the Practicing Programmer," Canputer, April 1978.

[DUKE] DUKE, M.O.
,
"Testing in a Complex Systems Environment," IM Systems

Journal, Vol. 14, No. 4, 1975.

[ELSP] ELSPAS, B.K.
,
LEVITT, N. and WALDINGE R, R.J. "An Assessment of the

Techniques for Proving Program Correctness, " ACM Computing Surveys, Vol. 4,
No. 2, June 1972, pp. 97-147.

[ELME] ELMENDORF, W.R. , "Discipl ined Software Testing, " Debugging Techniques
in Large Systems, R. Rustin, ed. , Prentice Hall, 1971, PP. 137-140.

[FAIR] FAIRLEY, R.E. , "Static Analysis and Dynamic Testing of Computer
Software," Computer, April 1978.

[FIPS38] "Guidelines for Docune.ntation of Computer Programs and Automated Data
Systems," NiS Federal Information Processing Standards Publication ^8,
February 1976.

[FIPS64] "Guidelines for Docunentation of Computer Programs and Automated Data
Systems for the Initiation Phase," NBS Federal Information Processing
Standards Publication 64, August 1979.

[FOSD] FOSDICK, L.D. and OSTERWEIL, L.J. "Data Flow Analysis in Software
Reliability," ACM Computing Surveys, Vol. 8, No. 3, September 1976, pp.
305-330.

[GERH] GERHART, S.L. and YELOWIIZ, L. "Observations of Fallibility in the
Application of Modern Programming Methodologies," IEEE Transactions on
Software Engineering, Vol. SE-2, No. 3, September 1 976, pp. 195-207.

[GLAS] GLASS, R. , "Software Reliability Guidebook," Englewood Cliffs, NJ.,

Prentice-Hall, 1979.

Page 76

[GOOD] GOODENOUGH, J.B. and GERHART, S.L. "Toward a Theory of Test Data
Selection," IEEE Transactions on Software Engineering, Vol. SB-1 , No. 2,
June 1975, pp. 156-173.

[HART] HARIWICK, R.D. , "Test Planning, " AFX PS Conference Proceedings, Vol.

46, 1977 NCC, pp. 285-294.

[HETZ] HETZEL, W.C.
,

"Program Test Methods", Englewood Cliffs, NJ.

,

Prentice-Hall, 1973.

[HOUGa] HOUGHTON, Raymond C.
,
Jr., "Features of Software Development Tools,"

NBS Special Publication 500-74, Washington, D.C.
,
February 1981.

[HOUGb] HOUGHTON, Raymond C. Jr. , and OAKLEY, Karen A. , eds. , "NBS Software
Tools Database," NBSIR 80-2 15Q, October 1980.

[HCWDa] HOWDEN, W.E.
,
"Reliability of the Path Analysis Testing Strategy,"

IEEE Transactions on Software Engineering, Septonber 1 976, pp. 208-214.

[HCWDb] HCWDEN, W.E. , "Theoretical and Empirical Studies of Program Testing,"
IEEE Transactions on Software Engineering, Vol. SB-4, July 1976.

[HUAN] HUANG, J.C. , "An Approach to Program Testing, " ACM Computer Surveys,

Vol. 7, No. 3, September 1975.

[MILLa] MILLER, E.F.
,
Jr., "Program Testing: Art Meet Theory, "Computer, July

1977.

[MILLb] MILLER, E.F. and HOWDEN, W.E. , "Tutorial: Software Testing and
Validation Techniques," Long Beach, CA, IEEE Computer Society, 1978.

[MULL] MULLIN, F,J., "Software Test Management," COMPSAC TL Proceedings,

Chicago, Illinois, November 1977.

[MYER] MYERS, G.J., "The Art of Software Testing," New York, Wiley, 1979.

[PANZ] PANZL,D.J., "Autccnatic Software Test Drivers, " Computer, April 1978.

[POWE] PCWELL, P. B.
, "Software Validation, Verification, and Testing

Technique and Tool Reference Guide," NiS Special Publication 500-93,
Washington, D.C, September 1982.

[SAMM] "SAMM (Systematic Activity Modeling Method) Primer," BCS 10167,
October 1978.

[TEIC] TEICHROEW, D. and HERSHEY, E. , "PSA/PSL: A Computer-Aided Technique

for Structured Docunentation of Information Processing Systems," IEEE
Transactions on Software Engineering, Vol. SE-3, No. 1, 1977.

Page Index-

1

INDEX

Acceptance ^i '^^t 54, 56
Acceptance criteria 8

Acceptance tests 51, 58
Algorithm 19, 25, 72
Assertion 17, 26

Bottan-up testing 18

Boundary value analysis 72
Branch testing 56, 72

Cause-effect graphing 17

Change request 13
Code V,V§T 25-26
Comparator 19
Conpleteness . 5, 72
Complexity analysis 19
Consistency 5, 72
Correctness 5, 72
Critical design review 56

Design language 60

Design review 54
Design V,V^T 23
Desk checking 16

Detailed design specification 10
Development phase 6, 8

Dynamic analysis 16, 20-21, 23-24, 72
Dynamic assertion processor 18

Formal analysis 19-20, 25, 72

Initiation phase 7

Inspections 22
Installation plan 12
Installation report 12

Installation subphase 12
Instrumentation 18, 73
Integration testing 11

Module testing 57, 61

NBS software tools database 27

Operation and maintenance phase ... 13

Planning 28-29

Page Index-2

Preliminary design specification ... 9
Problem reports 10, 12-13

Problem solving 1, 4, 28
Progranming and testing subphase ... 11

Project plan 8-9, 28

Regression testing 14, 69, 73
Requir^ents 8

Requirements based test cases 9
Requirements docunent 8

Requirements sublease 8

Requirements V,V§T 21

Software 1

Software development 1,4
Software evaluation 13
Software test case specification ... 8, 10-11

Specification based functional testing 17
Static analysis 15-16, 20-22, 25, 73
System testing 11

Test data preparation 17
Test execution 17-18

Top-down testing 18

V,VaT planning 28-29

Validation, verification, and testing 2, 4

Validation, verification, and testing plan 8

Walkthroughs 16, 22, 24

NBS-n4A IREV. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS SP 500-98

2. Performing Organ. Report No. 3. Publication Date

November 1982

4. TITLE AND SUBTITLE

Computer Science and Technology:

Planning for Software Validation, Verification, and Testing

5. AUTHOR(S)

Patricia B. Powell. Editor
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

S^jrM'kK^roVSo^MMr/o"^"''" Boeing Computer Services Co.

WASHINGTON, D.c. 20234 Seattle, Washington 98124

7. Contract/Grant No.

NB79SBCA0102

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

National Bureau of Standards
Department of Commerce
Washington, DC 20234

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 82-600644

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual sun^mary of most significant information. If document includes a significant

bi bliography or literature survey, mention it here)

Today, providing computer software involves greater cost and risk, than

providing conputer equipment. One major reason is hardware is mass-produced
by proven technology, while software is still produced primarily by the craft

of individual conputer programmers. The docunent is for those who direct and
those who implement computer projects; it explains the selection and use of

validation, verification, and testing (V,V&T) tools and techniques for

software development. A primary benefit of practicing V,V&T is increasing
confidence in the quality of the software. The docunent explains how to
develop a plan to meet specific software V,V&T goals.

12. KEY WORDS fS/x to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Key words: automated software tools; software lifecycle; software testing;

software verification; test coverage; test data generation; validation.

13. AVAILABILITY

fX] Unlimited

I I

For Official Distribution. Do Not Release to NTIS

r"x] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

89

15. Price

$5.50

USCOMM-DC 6043-P80

|>U.S. GOVERNMENT PRINTING OFFICEi 19 8 2-380-997/2327

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-S03)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

$18; foreign $22.50. Single copy, $4.25 domestic; $5.35 foreign.

NONPERIODICALS

Monographs— Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks— Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications— include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under
the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AiP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safely charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private .sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent oj Docu-

ments. Government Printing Office. Washington, DC 20402.

Order the following NBS publications—FlPS and NBSIR s—from
the National Technical Information Services. Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 1 1717 (38 FR 12315, dated May II, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Washington, D C. 20234
Official Business

Penalty for Private Use $300

POSTAGE AND FEES PAID

U S DEPARTMENT OF COMMERCE
COM-215

THIRD CLASS
BULK RATE

		Superintendent of Documents
	2022-04-16T08:11:15-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

