
NIST Technical Note 1995

Juliet 1.3 Test Suite: Changes From 1.2

Paul E. Black

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.1995

https://doi.org/10.6028/NIST.TN.1995

NIST Technical Note 1995

Juliet 1.3 Test Suite: Changes From 1.2

Paul E. Black
Software Quality Group

Software and Systems Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.1995

June 2018

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.TN.1995

Certain commercial entities, equipment, or materials may be identifed in this document in order to describe
an experimental procedure or concept adequately. Such identifcation is not intended to imply

recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 1995
Natl. Inst. Stand. Technol. Tech. Note 1995, 36 pages (June 2018)

CODEN: NTNOEF

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.1995

https://doi.org/10.6028/NIST.TN.1995

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

Abstract

The Juliet test suite is a systematic set of thousands of small test programs in C/C++ and
Java, exhibiting over 100 classes of errors, such as buffer overfow, OS injection, hard-
coded password, absolute path traversal, NULL pointer dereference, uncaught exception,
deadlock, and missing release of resource. These test programs should be helpful in de-
termining capabilities of software assurance tools, particularly static analyzers, in Unix,
Microsoft Windows, and other environments. Juliet was developed by the National Secu-
rity Agency’s Center for Assured Software and frst released in December 2010. It has been
enhanced twice since then. Version 1.2 was released in May 2013 with a total of 86 864
test cases.

In the years after its release, many problems and defciencies in Version 1.2 came to our
attention. Released in October 2017, Version 1.3 fxes about fourteen systematic problems
in Version 1.2 and adds tests for prefx and postfx increment integer overfow and decre-
ment integer underfow. This technical note details the changes from Version 1.2 to 1.3.
This note also lists known problems remaining in Juliet 1.3.

Key words

Buffer overfow; Bugs Framework (BF); Common Weakness Enumeration (CWE); cyber-
security; integer overfow; Juliet test suite; OS injection bugs; programming language test
material; software assurance; software quality; static analysis; static source code analyzers.

i

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

Table of Contents
1 Introduction 1

1.1 The Organization of the Juliet Suite of Test Cases 2
1.2 Summary of Changes and Remaining Issues 4

2 Details of All Changes 5
2.1 Add Prefx and Postfx Increment Overfow and Decrement Underfow Cases 5
2.2 Missing BOF 6
2.3 Unintended BOF/Read/Above for 64-bit Architectures 7
2.4 Check for Allocation Failure 8
2.5 BOF/Stack Accessing Memory After Its Lifetime 10
2.6 Memory Accessed After Its Lifetime 11
2.7 Uninitialized Structure Member 11
2.8 Undefned Behavior in Random Number Macros 12
2.9 No Unix Command Injection 13
2.10 Insecure Temporary Files 14
2.11 Wrong Check for Value Out of Range - int 15
2.12 Wrong Check for Value Out of Range - int64_t 17
2.13 Wrong Check for Value Out of Range - unsigned int 18
2.14 Wide Format Strings Mishandled 18
2.15 Wrong fscanf() Format Specifer for int64_t and size_t 19
2.16 Improve Compile Files and Scripts 20

3 Known Problems in Juliet 1.3 21
3.1 Memory Leaks 21
3.2 No Evident Failure 22
3.3 Memory Accessed After Its Lifetime 22
3.4 Check for Value Out of Range Still Wrong - int64_t 23
3.5 Additional Cases with Wrong Check for Value Out of Range 23
3.6 Wrong Format Specifer for Wide String 24
3.7 Wrong Format Specifer to Print char as Hexadecimal 24
3.8 Many Bugs Removed by Using Hardcoded Values 25
3.9 Uncaught Java Exceptions 26
3.10 Dead Stores 26
3.11 Dead Code not in Metadata 27
3.12 Integer Overfow not in Metadata 28
3.13 Temporary Files Still Not Secure 28
3.14 Suggestions We Did Not Take 28

4 Some Thoughts on the Future of Juliet and Test Suites 29
References 30

ii

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

1. Introduction

We are pleased to announce Juliet 1.3, which was released in October 2017.
Juliet 1.3 consists of tens of thousands of small test programs in C/C++ and Java ex-

hibiting over 100 classes of errors. It replaces Juliet 1.2. The C/C++ part contains 64 099
test cases and more than 100 000 fles. The Java part contains 28 886 test cases and more
than 46 000 fles. Both parts also include fles, scripts, headers, and other material for com-
piling the test cases, either as a single program per test case or as one program of all test
cases in a given language. These cases should be useful in Unix, Microsoft Windows, and
other environments. The Juliet test suite was originally developed by the National Security
Agency’s Center for Assured Software (CAS) and was frst released in December 2010.
We now refer to it as Juliet Version 1.0.

The C/C++ part of Juliet 1.0 comprised 45 324 test cases [1] covering 116 Common
Weakness Enumeration (CWE) entries [2], and the Java part comprised 13 801 cases [3]
covering 106 CWEs. The following year, Version 1.1 added a few additional CWEs and
increased the total number of test cases to 81 056. To add methods for building test cases,
Version 1.1.1 was released for the Java part.

Version 1.2 was released in May 2013 with a total of 86 864 test cases. A dozen CWEs
were added, and during quality control review, CAS determined that test cases for the
CWEs listed in Table 1 were invalid and removed them from the Java part [4].

Table 1. CWEs removed from the Java part of Version 1.2.

CWE Name
180 Incorrect Behavior Order: Validate Before Canonicalize
330 Use of Insuffciently Random Values
489 Leftover Debug Code
497 Exposure of System Data to an Unauthorized Control Sphere
514 Covert Channel
547 Use of Hard-coded, Security-relevant Constants
665 Improper Initialization
784 Reliance on Cookies without Validation and Integrity Checking

in a Security Decision

Similarly, Table 2 lists the CWEs that CAS determined were invalid and removed
from the C/C++ part [5]. These are still available from the Software Assurance Reference
Dataset (SARD) Test Suites page [6, 7] in Juliet Versions 1.1.

1

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

Table 2. CWEs removed from the C/C++ part of Version 1.2.

CWE Name
204 Response Discrepancy Information Exposure
304 Missing Critical Step in Authentication
374 Passing Mutable Objects to an Untrusted Method
392 Missing Report of Error Condition
489 Leftover Debug Code
547 Use of Hard-coded, Security-relevant Constants
560 Use of umask() with chmod-style Argument

Flow variant 19, dead code after a return, was removed to reduce incidental dead code.
(See the next section for an explanation of fow variants.) Two fow variants were added:
83, declaring class objects on the stack, and 84, declaring them in the heap. In addition,
directories with many fles were split into smaller subdirectories, so that no directory had
more than 1000 fles.

In the years since Version 1.2 was released, people using it reported unintentional prob-
lems they found and passed along suggestions for improvement. We received particularly
extensive comments from Pascal Cuoq and André Maroneze. In 2016 one NIST researcher,
Eric Trapnell collected much external and internal feedback and many notes, and we began
to create a new version of Juliet to address the problems.

Juliet 1.3 fxes about two dozen systematic problems in Version 1.2. The fxes changed
21 552 fles.

This technical note details the changes from Version 1.2. The next section, 1.1, briefy
explains how the thousands of test cases in Juliet are organized, the case naming scheme,
and the structure of each case. Section 1.2 is a very brief description of the fxes and
changes. They are listed roughly in decreasing importance. Section 2 details each fx or
change. In spite of all the changes, we know of many problems remaining in Juliet 1.3.
Section 3 lists them and also lists suggestions that we did not take. Finally, Sec. 4 offers
some thoughts about the future of Juliet and test suites in general.

1.1 The Organization of the Juliet Suite of Test Cases

The Juliet suite of test cases consists of two parts: test cases and supporting fles for Java
and test cases and supporting fles for C and C++. Each part is available in two forms: a
complete, structured, stand-alone suite and a suite of individual cases. These are available
from the Software Assurance Reference Dataset (SARD) Test Suites page [6, 7].

The stand-alone suites include the CAS documentation for Version 1.2, shared support
code and “include” fles, means to compile the test cases (and scripts to update them if
one adds or removes cases), and input fles. Each CWE has its own subdirectory, e.g.,
CWE338_Weak_PRNG or CWE764_Multiple_Locks. CWEs with fewer than one thousand test
case fles contain all their test cases directly under its subdirectory. For CWEs with more

2

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

than one thousand fles, the test cases are divided into subdirectories named s01, s02, etc.
There is more information in the C/C++ or Java User Guides [4, 5].

In this document, we usually refer to just the CWE number, instead of the complete
directory name, which includes the CWE name.

We use the Bugs Framework (BF) [8] in many instances for more clear and precise
classifcation than is possible with CWEs.

Every Juliet test case is available as a separate test case in the SARD, with its own
SARD ID number. For instance, CWE80_XSS__Servlet_getParameter_Servlet_03.java
is 145277, and CWE457_Use_of_Uninitialized_Variable__double_pointer_15.c is
240543. The suites of individual cases, SARD test suites 108 and 109, organize test cases
by their SARD ID number. Each test case has its own subdirectory. The subdirectories are
organized by the millions digits, then thousands digits, then units digits. For example, the
path to the frst test case is 000/145/277/, and the path to the second is 000/240/543/.

Many of the cases were not changed from Version 1.2. If the case was not changed, the
Version 1.2 case is used and the SARD ID number remains. If the case was changed, we
deprecated the 1.2 case in the SARD and added a new case to the SARD.

Each test case has a unique fle name. The fle name consists of the CWE number and
name, two underscores (), followed by various identifying types, functions, and alterna-
tives, then a control fow variant number. Control fow variant numbers are the same across
the entire Juliet suite. For instance, _03 variants wrap the target code in a conditional:
if (5 == 5).

Most test cases consist of a single fle, but some span multiple fles. Those with multiple
fles use a one-letter suffx. For instance, 77913 consists of four fles:
CWE127_Buffer_Underread__malloc_char_memmove_53a.c,
CWE127_Buffer_Underread__malloc_char_memmove_53b.c,
CWE127_Buffer_Underread__malloc_char_memmove_53c.c, and
CWE127_Buffer_Underread__malloc_char_memmove_53d.c.
Instead of a one-letter suffx, some Java test cases use other suffxes, e.g., _bad, _base, or
_goodG2B.

Additional information can be found in Boland and Black [9].

Each test case has a particular structure. Each has a single function intended to man-
ifest a bug and has one or more functions with similar behavior, but with no bug. In this
document we refer to the buggy code as bad code and the bug-free code as good code.

Problems were reported in both bad code and good code. Some code in Version 1.2 did
not have the intended bug, or it had unintentional bugs. Typically, we show a bit of the code
from Version 1.2, which we refer to as old code, and the corresponding bit from Version
1.3, which we refer to as new code.

3

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

1.2 Summary of Changes and Remaining Issues

This section summarizes the changes made to Juliet Version 1.2 to create Version 1.3.
Section 2 details each change. This section also summarizes the problems that we know
are still in Version 1.3. Section 3 details the problems and issues.

Version 1.2 had no test cases of integer overfow using unary increment (i++ and ++i)
operators or test cases of integer underfow using decrement (i-- and --i) operators. We
created 3404 Java test cases (5612 fles) and 2736 C test cases (4032 fles) to manifest
overfow or underfow. We added overfow cases under CWE190 and underfow cases
under CWE191. For details, see Sec. 2.1.
• Fixed 104 C cases to actually have buffer overfow (BOF) [10, 11]. Also fxed CWE-

121 Stack-based Buffer Overfow cases to allocate on the stack (Sec. 2.2).
• Fixed 144 C cases that had unintended BOF/Read/Above from constant strings in

64-bit architectures (Sec. 2.3).
• Added a simple check for allocation failure (NULL pointer) to 11 619 C fles across

20 CWEs (Sec. 2.4).
• Removed 24 C BOF/Stack cases (51 fles) under CWE121 that allocated memory on

the stack in a subfunction, then used it after its lifetime–after return. We could not identify
a way to fx the cases and still fulfll their test purposes (Sec. 2.5).
• Fixed 168 C fles to not access memory after its lifetime (Sec. 2.6).
• Fixed 294 C fles to initialize both members of a structure (Sec. 2.7).
• Fixed the C random number macros so their behavior was well defned (Sec. 2.8).
• Fixed 5200 C test cases (8120 fles) under CWE078 to have OS injection on Unix

(Sec. 2.9).
• Improved 72 C fles to use mkstemp() as a more secure way to create temporary fles

(Sec. 2.10).
• Fixed 610 C fles in 576 cases to correctly guard against possible overfow. Be-

cause the problems and fxes differ for different types, we detail changes for int type cases
(Sec. 2.11), for int64_t cases (Sec. 2.12), and for unsigned int cases (Sec. 2.13) sepa-
rately.
• Fixed 672 fles to use swprintf instead of snprintf() to handle wide character string

formats (Sec. 2.14).

The following changes did not invalidate the test cases, that is, not serve as a test for the
intended bug, or add unintentional serious bugs. However, they improved Juliet and were
worth making.
• Fixed code to use the correct format specifer in fscanf() for variables of type

int64_t (352 fles) and size_t (200 fles). Also fxed the utility fle io.c to use the correct
format specifers for those types. In addition, changed io.c to include fles to properly
declare macros (Sec. 2.15).
• Changed the compile (“make”) process to be far more effcient. Also made other

improvements and clean-ups (Sec. 2.16).

4

http:return.We

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

The astute reader may wonder why there were so many changes to C cases and not
many to Java cases. We propose several reasons. First, memory allocation in C is very
prone to errors, and most such errors cannot occur in Java. Second, C is an older language
with many nuances about format and types that caused problems. Third, some problems
that could have been present in the Java cases, such as wrong check for value out of range
(Sec. 2.11), were not present; the code was correct in the earliest version.

Juliet Version 1.3 contains numerous changes from Version 1.2. However, many issues
remain in Version 1.3. These are detailed in Sec. 3. Here is a summary of each issue.
Thousands of cases have minor memory leaks (Sec. 3.1). Many cases have faults regard-
less of the input or do not exhibit failure at all (Sec. 3.2). Hundreds of cases access mem-
ory after its lifetime (Sec. 3.3) or have out-of-range checks that are still wrong (Sec. 3.4
and Sec. 3.5). A few cases have the wrong format specifer for wide strings (Sec. 3.6)
or unintentional dead stores (Sec. 3.10). A utility function incorrectly prints the value 255
(Sec. 3.7). Many intentional bugs are removed in the good code by using a hardcoded value
(Sec. 3.8). Some Java cases potentially leak stream resources (Sec. 3.9). There is no meta-
data indicating thousands of instances of dead code (Sec. 3.11) or hundreds of intentional
integer overfows (Sec. 3.12). Temporary fle names are still not fully secure (Sec. 3.13).

2. Details of All Changes

This section details each change to Version 1.2. The amount and kind of comment or
description differs for each problem. For instance, some problems include an exhausting
explanation of exactly why something is a bug. Others include how we gained assurance
that all instances of a mistake were fxed or that there were no unintentional changes.

We provide the number of test cases or fles associated with each change, usually listing
them for future review. When the names of the fles follow a certain pattern, we give the
pattern using shell fle name completion “star” (*) notation.

We usually edit the code that we include for examples to make it ft the printed page and
to eliminate superfuous parts, so the reader may grasp the essentials more easily. Complete
code is always accessible from the SARD.

Several people pointed out problems or made suggestions over the years following the
release of Version 1.2. For attribution and historical purposes, most changes include a few
words on the source and a convenient designation. Pascal Cuoq designated his comments
with letters. André Maroneze used numbers. Eric Trapnell collected many comments and
suggestions, and we tracked some of our work by row number in his spreadsheet.

2.1 Add Prefx and Postfx Increment Overfow and Decrement Underfow Cases

While tracking down a bug in a project that used Juliet, we realized that there were no test
cases of integer overfow involving a prefx increment (++i) or postfx increment (i++) oper-
ator or of underfow involving a prefx decrement (--i) or postfx decrement (i--) operator.

5

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

There were cases for overfow and underfow for other operations, such as multiplication
or addition:

int result = data + 1;

For C, we created prefx increment overfow cases from CWE190 *_add_*.c cases,
named them *_preinc_*.c, and placed them under CWE190 in a new subdirectory, s06.
Prefx increment cases were a straight-forward syntactic substitution. The postfx increment
cases were more subtle since the variable value changes after the value is retrieved. One
alternative is to use the comma operator to put everything on one line:

int result = (data++, data);

However, we thought this construct was too unusual, so we added another line with the
actual increment:

data ++;
int result = data;

We created postfx increment overfow cases from the prefx increment cases, and named
them *_postinc_*.c. We placed them in another new subdirectory, s07.

The cases of underfow from the prefx and postfx decrement operators were analo-
gous. We began with CWE191 *_sub_*.c cases and placed the new cases under CWE191,
postdec in s04 and _predec_ in s05.

Java cases came from CWE190 *_add_*.java and CWE191 *_sub_*.java. We placed
them under CWE190, _postinc_ in s06 and _preinc_ in s07, and CWE191, _postdec_ in
s04 and _predec_ in s05.

This added 684 test cases (1008 fles) in each new C subdirectory and 851 cases (1403
fles) in each new Java subdirectory, for a total of 2736 C cases (4032 fles) and 3404 Java
cases (5612 fles).

2.2 Missing BOF

We use attributes of the Bugs Framework [10] Buffer Overfow (BOF) [11] class to classify
bugs that are variously referred to as buffer overfow, out-of-bounds read, incorrect access
of indexable resource, etc. These attributes are orthogonal and include access (either read
or write), boundary (below/before or above/after), and location (heap, stack, etc.). Hence
the title of this section may be read as “Missing Buffer Overfow.”

There are 96 C cases (104 fles) under CWE122 s06 and CWE121 s01 that test the
misuse of strlen() with wide character strings, which is CWE-135. As written, they did
not cause buffer overfow. The following example of old code is from CWE122_Heap_Based_
Buffer_Overflow__CWE135_01.c, which is deprecated 70400. (We note “deprecated” since
it may not appear in default SARD searches.)

size_t dataLen = strlen ((char *)data);
void * dest = (void *) calloc(dataLen+1, 1);
memcpy(dest , data , (dataLen +1));

6

http:postinc_*.c.We

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

It has several problems. Note that data is a wide string. That was the intended bug;
strlen() stops too early on wide strings and gives an incorrectly short length. dest was
intended to be too small because the length is short. It is also too small because only one
byte per character is allocated. However, using memcpy() prevents any buffer overfow! It
copies the same number of bytes that were allocated.

The following example of new code is from CWE122_Heap_Based_Buffer_Overflow__
CWE135_01.c 232119:

size_t dataLen = strlen ((char *)data);
void * dest = (void *) calloc(dataLen+1, sizeof(wchar_t));
(void)wcscpy(dest , data);

In the new code, calloc() allocates wide characters (but still not enough). More impor-
tantly, wcscpy() copies the whole wide string, which is BOF/write [11].

While working on this problem, we noticed that CWE-121 is Stack-based buffer over-
fow, but the buffer is allocated in the heap. We changed those cases to use alloca(), via a
macro, instead of calloc(). The following example is from CWE121_Stack_Based_Buffer_
Overflow__CWE135_01.c 231402.

void *dest = (void *) ALLOCA ((dataLen +1) * sizeof(wchar_t));

To correct a different problem, we also added code to check if the allocation succeeds.
See Sec. 2.4 for details.

All of the test cases had __CWE135_ in their names. We deprecated and replaced SARD
IDs 62948 to 62995 and 70400 to 70447.

Pascal Cuoq reported this problem on 25 June 2013 (comment C), Takashi Matsuoka
reported it on 22 August 2013, and Andr ́e Maroneze reported it on 12 June 2017 (sugges-
tion 7). This problem was Eric Trapnell’s rows 2 and 12.

2.3 Unintended BOF/Read/Above for 64-bit Architectures

In 64-bit architectures, 144 C cases have unintended BOF/Read/Above [11] from constant
strings. The following old code is from CWE121_Stack_Based_Buffer_Overflow__char_
type_overrun_memcpy_01.c deprecated 63036:

#define SRC_STR "0123456789 abcde0123 "

typedef struct _charVoid
{

char charFirst [16];
void * voidSecond;
void * voidThird;

} charVoid;

{
charVoid structCharVoid;

7

http:names.We
http:allocatedintheheap.We

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

memcpy(structCharVoid.charFirst ,
SRC_STR , sizeof(structCharVoid));

The string SRC_STR is 20 characters long, including the NULL. A 64-bit architecture could
have 64-bit (8 byte) pointers. charVoid is then 16+ 8+ 8 = 32 bytes, so the old code read
32 characters from a 20 character string. To fx this, we extended the string to 32 characters:

#define SRC_STR "0123456789 abcdef0123456789abcde "

There are 36 cases under each of CWE121 s01 and CWE122 s01 (18 char_*_memcpy
cases and 18 char_*_memmove cases respectively), and 36 under each of CWE121 s09 and
CWE122 s09 (also 18 char_*_memcpy cases and 18 char_*_memmove cases). We deprecated
and replaced SARD cases 63036 to 63071 and 67448 to 67483.

Pascal Cuoq explained this problem in his email of 19 March 2014. This problem was
Eric Trapnell’s rows 5 and 6.

2.4 Check for Allocation Failure

Thousands of C cases allocated memory. Few checked whether the allocation succeeded or
failed. They just used the memory. Here is an example from CWE401_Memory_Leak__struct
_twoIntsStruct_malloc_01.c deprecated 100474:

data = (struct _twoIntsStruct *)
malloc (100* sizeof(struct _twoIntsStruct));

data [0]. intOne = 0;

If the allocation fails, a NULL pointer is returned. Dereferencing a NULL pointer causes
an undefned state. In the C language, “undefned” is more drastic than “the result may be
any number.” It means that following the dereference of a NULL pointer, “the program can
whistle ‘Happy Birthday’ in all the colors of the rainbow and still be considered to conform
to the standard.” [12]

In particular, Frama-C halted analysis at the second statement above. After that, any-
thing is allowed, so no precise analysis is reasonable. For theStatic Analysis Tool Exposi-
tion (SATE) V Ockham Sound Analysis Criteria [12], Frama-C was run twice: once with
allocation modeled as always succeeding, and once with allocation modeled as failing. The
union of those two runs served the intended purposes.

We added simple checks after malloc(), calloc(), or realloc(). The check was
minimal, as shown in the new version, 239815, which replaced the former case:

data = (struct _twoIntsStruct *)
malloc (100* sizeof(struct _twoIntsStruct));

if (data == NULL) {exit (-1);}
data [0]. intOne = 0;

This check enables sound tools to continue analysis, since the state is always well defned.
We changed 11 619 fles under 20 CWEs. We do not detail the fles changed. Table 3

summarizes the number of fles and test cases changed under each CWE.

8

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

Table 3. Number of fles and test cases under each CWE directory to which we added checks for
allocation failure.

Number Number
CWE subdirectory name

of fles of cases
4 4 CWE121_Stack_Based_Buffer_Overflow

3342 3186 CWE122_Heap_Based_Buffer_Overflow
500 480 CWE124_Buffer_Underwrite
300 288 CWE126_Buffer_Overread
500 480 CWE127_Buffer_Underread
312 288 CWE194_Unexpected_Sign_Extension
312 288 CWE195_Signed_to_Unsigned_Conversion_Error
72 72 CWE244_Heap_Inspection
18 18 CWE364_Signal_Handler_Race_Condition

1008 972 CWE401_Memory_Leak
312 288 CWE415_Double_Free
150 150 CWE416_Use_After_Free
251 242 CWE457_Use_of_Uninitialized_Variable
54 54 CWE467_Use_of_sizeof_on_Pointer_Type
18 18 CWE479_Signal_Handler_Use_of_Non_Reentrant_Function

312 288 CWE680_Integer_Overflow_to_Buffer_Overflow
234 234 CWE758_Undefined_Behavior
576 576 CWE761_Free_Pointer_Not_at_Start_of_Buffer

2784 2694 CWE762_Mismatched_Memory_Management_Routines
560 480 CWE789_Uncontrolled_Mem_Alloc

Some test cases intentionally have possible NULL pointer dereference. We did not
change them.

Eighteen cases under CWE476 intentionally omit checks immediately after allocation
in both bad and good code. These cases check whether an analyzer will warn about a
NULL check after a dereference. If a pointer is NULL and is dereferenced, the program
has trouble. Any NULL check after that is of little use. The following example code is
from CWE476_NULL_Pointer_Dereference__null_check_after_deref_01.c 104778:

intPointer = (int *) malloc(sizeof(int));
*intPointer = 5;
if (intPointer != NULL)
{

*intPointer = 10;
}

This situation may arise in code if at one time there was a check immediately after the allo-
cation, but later maintenance added the dereference before the check. Another possibility
is that the code is in a context where the reference is never NULL, i.e., it was checked much
earlier. A NULL check following a dereference suggests sloppy code at best.

The bad code of many cases under CWE690 does not check for NULL, while the

9

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

good code checks for NULL. The following example code is from CWE690_NULL_Deref_
From_Return__fopen_01.c 111122:

data = fopen(" file.txt ", "w+");
fclose(data);

If fopen() fails, it returns NULL.
As with the other changes, we used small scripts to modify the fles. Since we changed

so many fles and there were so many different circumstances, we made several special
checks to verify the edits. In particular, we did not want to add checks that would remove
the intended bug and invalidate the test case. We manually reviewed dozens of fles, whilst
developing and testing the editing script. After editing, we checked that the number of al-
locations and the number of NULL checks matched. We carefully audited the mismatches.
We also compiled every test case individually as a simple check of correctness.

Pascal Cuoq reported this problem on 22 July 2013 (comment M). André Maroneze
reported it on 12 June 2017 (suggestion 4). This problem was Eric Trapnell’s row 13.

A related problem is thousands of “memory leaks,” i.e., memory is allocated, but never
freed. We saw little beneft and great cost to fx this problem, so we did not deal with it.
We provide details in Sec. 3.1.

2.5 BOF/Stack Accessing Memory After Its Lifetime

We removed 24 C cases (51 fles) that allocated memory on the stack, then used the mem-
ory after its lifetime. The following example code is from CWE121_Stack_Based_Buffer_
Overflow__CWE131_memcpy_21.c 62870:

static int * badSource(int * data)
{

{
data = (int *) ALLOCA (10);

}
return data;

}

void CWE121_Stack_Based_Buffer_Overflow__CWE131_memcpy_21_bad ()
{

. . .
data = badSource(data);
{

int source [10] = {0};
memcpy(data , source , 10* sizeof(int));

ALLOCA() is a macro for alloca(), which is not defned in C11 or POSIX. It allocates
memory on the stack. In typical implementations, the end of badSource() will terminate
the memory’s lifetime.

10

http:matched.We

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

These cases are under CWE121 s01. They are CWE121*__CWE131_ functions loop,
memcpy, and memmove, and variants 21, 22, 42, 43, 61, 62, 83, and 84. The purpose of
these tests is to allocate memory in one function, then use the memory in another. We
could not identify a way to fx these cases and fulfll their test purposes, so we removed
them.

Bertrand Stivalet reported this problem on 10 March 2014. This problem was Eric
Trapnell’s row 8.

2.6 Memory Accessed After Its Lifetime

Cases with a total of 168 C fles under CWE476 accessed automatically allocated mem-
ory after its lifetime. The following example good code is from CWE476_NULL_Pointer_
Dereference__int64_t_01.c deprecated 104652:

int64_t * data;
{

int64_t tmpData = 5LL;
data = &tmpData;

}
printLongLongLine (*data);

Memory for tmpData is automatically allocated (usually on the stack) when execution en-
ters the block. Although the address is saved, the lifetime of the memory ends when execu-
tion leaves the block. Thus, the argument of the call to printLongLongLine() is an invalid
dereference.

We fxed this by declaring the variable earlier, as shown in the new good code 240719:

int64_t * data;
int64_t tmpData = 5LL;
{

data = &tmpData;
}
printLongLongLine (*data);

Pascal Cuoq reported this problem on 26 June 2013 (comment G). André Maroneze
reported this problem on 12 June 2017 (suggestion 5). This problem was Eric Trapnell’s
row 10.

After Juliet 1.3 was released, André Maroneze reported another set of cases that ac-
cessed memory after its lifetime. We provide details in Sec. 3.3.

2.7 Uninitialized Structure Member

While tracking down what we thought were incorrect warnings of uninitialized variables
for the SATE V Ockham Sound Analysis Criteria, we found a wide-spread problem. One
type of structure has two members:

11

http:lifetime.We

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

typedef struct _twoIntsStruct
{

int intOne;
int intTwo;

} twoIntsStruct;

In 1046 fles, both felds are initialized:

for (i = 0; i < 100; i++)
{

dataBuffer[i]. intOne = 1;
dataBuffer[i]. intTwo = 1;

}

However, in 294 fles, intOne is initialized twice, and intTwo is not initialized:

for (i = 0; i < 100; i++)
{

source[i]. intOne = 0;
source[i]. intOne = 0;

}

We believe this was unintentional. We changed 240 fles under CWE121 s04 and s05
(the fles are named *__CWE805_*) and under CWE476. We deprecated and replaced test
cases 64792 to 65031.

Pascal Cuoq reported this problem on 26 June 2013 (comment H). André Maroneze
reported this problem on 12 June 2017 (suggestion 6). This problem was Eric Trapnell’s
row 9.

2.8 Undefned Behavior in Random Number Macros

The behavior of macros that Juliet 1.2 used for random numbers, RAND32 and RAND64, were
undefned. The macros shift signed integers out of range. The following old code is from
testcasesupport/std_testcase.h:

#define RAND32 () ((rand ()<<30) ^ (rand()<<15) ^ rand ())
#define RAND64 () ((rand ()<<60) ^ (rand()<<45) ^ (rand()<<30)

^ (rand()<<15) ^ rand ())

As explained in Sec. 2.4, Frama-C ceased analysis after this undefned behavior.
We replaced the macros following André Maroneze’s suggestions. The shifts are done

on unsigned integers so that the behavior is defned. A single call to rand() then picks
whether to produce a positive or a negative number. The new code for RAND32 is the fol-
lowing:

#define URAND31 () (((unsigned)rand()<<30)
^ ((unsigned)rand()<<15) ^ rand ())

#define RAND32 () ((int)(rand ()&1 ? URAND31 () : -URAND31 () - 1))

12

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

Note that this does not guarantee numbers with very high entropy. Specifcally, there
are few guarantees for numbers that rand() produces. There are far better ways to generate
random numbers, but this seems suffcient for Juliet. We tested both of the new macros
with an extensive pseudo-random number generator test program, and they both passed.

Although we only changed one fle, this corrected undefned behavior in 3440 C test
cases under 16 CWE directories.

Java cases in Juliet use random booleans for conditionals, but do not use “large” random
numbers.

André Maroneze reported this problem on 12 June 2017 (suggestion 1).

2.9 No Unix Command Injection

The INJ [13] test cases, under CWE078, did not work in Unix platforms. The code com-
piles and executes, but does not perform a command injection. The following example of
the old code is from CWE78_OS_Command_Injection__char_console_execl_41.c depre-
cated 118447:

define COMMAND_INT_PATH "/ bin / sh "
define COMMAND_ARG1 " ls "
define COMMAND_ARG2 "-la "
define COMMAND_ARG3 data

#define EXECL execl

EXECL(COMMAND_INT_PATH , COMMAND_INT_PATH , COMMAND_ARG1 ,
COMMAND_ARG2 , COMMAND_ARG3 , NULL);

The program reads a string into data then executes the EXECL() statement. Suppose that
the input is *;date>GOTCHA. The program executes this command:

/bin/sh ls -la *;date >GOTCHA

This is not valid: sh does not execute binaries. It “treats the frst argument as the name of
a fle from which to read commands (a shell script)” [14].

Charles De Oliveira developed the following code, which works in Windows and in
Unix. He changed the execution statement and two macro defnitions. The following new
code is from CWE78_OS_Command_Injection__char_console_execl_41.c 244499:

#define COMMAND_ARG1 "-c"
#define COMMAND_ARG2 "ls "
#define COMMAND_ARG3 data

EXECL(COMMAND_INT_PATH , COMMAND_INT_PATH , COMMAND_ARG1 ,
COMMAND_ARG3 , NULL);

The program reads a string, appends it to ls (in code not shown), and puts it into data. If
the input is again *;date>GOTCHA, the program executes this command:

13

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

/bin/sh -c ls *;date >GOTCHA

After executing ls, this executes date and puts the output in a local fle.
In the 520 fles that use popen(), we also corrected the argument to popen(). The fol-

lowing example old code is from CWE78_OS_Command_Injection__char_file_popen_01.c
deprecated 119479:

pipe = POPEN(data , "wb ");

The argument wb is not POSIX standard [15].
The following new code is from 245515:

pipe = POPEN(data , "w");

We changed 5600 C fles, 2120 C++ fles, and 400 header (.h) fles, totaling 8120 fles,
in 4800 test cases under CWE78. There were 840 fles in each of eight subdirectories, s01
through s08, and 280 fles in s09.

Elisa Heymann reported this problem on 1 October 2014. This problem was Eric Trap-
nell’s row 7.

2.10 Insecure Temporary Files

Test cases under CWE377 intentionally insecurely create and open temporary fles. The
bad functions used tempnam(), tmpnam(), or mktemp(). The following bad code is from
CWE377_ Insecure_Temporary_File__char_mktemp_01.c deprecated 97938:

char tmpl[] = "fnXXXXXX ";

filename = MKTEMP(tmpl);

fileDesc = OPEN(filename , O_RDWR|O_CREAT ,
S_IREAD|S_IWRITE);

The old good functions were more secure than the old bad functions: they opened fles with
O_EXCL. The following old good code to open the fle is from the same case as above:

fileDesc = OPEN(filename , O_RDWR|O_CREAT|O_EXCL ,
S_IREAD|S_IWRITE);

Using mkstemp() makes the code more secure still. (However, fle names are still too
predictable for this to be considered very secure, but it is better. We repeat this explanation
in Sec. 3.13 for consistency.) The following new good code is from 239333:

char filename [] = "/tmp/fileXXXXXX ";

int fileDesc = MKSTEMP(filename);

This change potentially alters how the cases can be used. The cases now use a more
secure function; they do not just use a dangerous function more securely. This raises the
possibility that these cases might serve, also or instead, for CWE-242 Use of Inherently

14

http:better.We

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

Dangerous Function. Currently the test cases under CWE242 only have variants of one
function, gets(). We decided that since Juliet does not include some number of dangerous
functions, there was no reason to take time using these cases there.

In checking for other possible uses, we found a problem in test cases under CWE459,
which deals with incomplete cleanup after execution. The test cases do not remove a tempo-
rary fle. The following example old bad code is from CWE459_Incomplete_Cleanup__char
_01.c deprecated 104285:

char tmpl[] = "badXXXXXX ";

filename = MKTEMP(tmpl);

pFile = FOPEN(filename , "w");

The good code is the same, except that the prefx of the fle’s name is “good” instead of
“bad.” To remove the unintentional bug, we changed these cases to use mkstemp(), too.
The following new good code is from 240619:

char filename [] = "goodXXXXXX ";

int fileDesc = MKSTEMP(filename);

pFile = FDOPEN(fileDesc , "w");

To compile in Windows, Eric Trapnell found an open source version of mkstemp(),
which we added to each fle.

We did not change any wchar_t cases. In those cases, the fle name is declared as

wchar_t *filename;

No Unix version of mkstemp() handles wchar_t, and Windows does not have mkstemp().
We changed 54 fles under CWE377 to use mkstemp() in the good functions. They

were named CWE377_Insecure_Temporary_File__char_FUNC with 18 fles where FUNC is
tempnam, 18 tmpnam, and 18 mktemp. We also changed 18 fles under CWE459 to use
mkstemp(). They were named CWE459_Incomplete_Cleanup__char_01.c to _18.c.

André Maroneze reported this problem on 12 June 2017 (suggestion 8). This problem
was Eric Trapnell’s row 11.

2.11 Wrong Check for Value Out of Range - int

Some of the good code under CWE190_Integer_Overflow intended to avoid overfow by
checking that the value was in range. The following example of good code is from CWE190_
Integer_Overflow__int_fscanf_square_01.c deprecated 83358:

if (abs((long)data) <= (long)sqrt((double)INT_MAX))
{

int result = data * data;
}

15

http:gets().We

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

else
{

printLine (" data value is too large ...
}

The problem is that the absolute value of the most negative integer (abs(INT_MIN)) is un-
defned because it is greater than INT_MAX. Some systems defne abs(INT_MIN) to return
INT_MIN, which is negative. In that case, it would pass the test anyway and cause an over-
fow. In addition, the function abs() does not handle long values; at best the cast is not
needed. The following example of the check in new good code is from 235621:

if (data > INT_MIN &&
abs(data) < (long)sqrt((double)INT_MAX))

Variants of CWE190 cases comprise fve operations: square (data*data), multiply
(data*2), add (data+1), prefx increment (++data), and postfx increment (data++). Only
the cases with square operation had this problem. All others used simpler checks that did
not have a problem with INT_MIN.

The case variants comprise fve types: char, int64_t, int, short, and unsigned_int.
The types char and short are fne, in usual architectures, because CHAR_MIN and SHORT_MIN
do have positive int representations. Unsigned integers are all positive and thus not a prob-
lem. The problem with abs(min) only occurs for types int and int64_t. Type int64_t
variants had additional problems, so we discuss them in the next section, Sec. 2.12. Type
unsigned int variants have a different problem, so we discuss them in Sec. 2.13.

In 30 test cases, the “input method” is just the hardcoded value INT_MAX. The follow-
ing example old good code is from CWE190_Integer_Overflow__int_max_square_01.c
deprecated 83646:

data = INT_MAX;
if (abs((long)data) <= (long)sqrt((double)INT_MAX))
{

int result = data * data;

Eric Trapnell argued that because data can never be INT_MIN in these cases, the check
need not be changed. Since these tests are for static analyzers, it may be informative to
have as consistent code as possible, in case a known value of INT_MAX affects analysis.
Accordingly, we changed those cases, too.

Using a hardcoded value to “fx” the good function may be a concern. This changes the
functionality and is therefore not a fx as much as it is removing the bug. See Sec. 3.8 for
more discussion about this.

For int type, we fxed 288 C fles (in 288 test cases) under CWE190 under s02 (48
fles), s03 (192 fles), and s04 (48 fles). A total of 228 fles were in C, and 60 fles were in
C++. These were all named CWE190_Integer_Overflow__int_*_square_*.c or .cpp.

Pascal Cuoq reported this problem on 25 July 2013 (comment N). André Maroneze
reported this problem on 12 June 2017 (suggestion 3). This problem was Eric Trapnell’s
row 14.

16

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

After Juliet 1.3 was released, Maroneze reported that many cases still had similar prob-
lems with range checks. We provide details in Sec. 3.5.

2.12 Wrong Check for Value Out of Range - int64_t

The old Juliet Version 1.2 code does not properly handle int64_t types, even with casts.
The following example old good code is from CWE190_Integer_Overflow__int64_t_
fscanf_square_01.c deprecated 82638:

fscanf (stdin , "%lld ", &data);
if (abs((long)data) <= (long)sqrt((double)LLONG_MAX))
{

int64_t result = data * data;

The functions abs() and sqrt() do not handle int64_t type values. The cast to double
may distort values in other ways. The following new check is from 235405:

fscanf (stdin , "%" SCNd64 , &data);
if (imaxabs ((intmax_t)data) <= sqrtl(LLONG_MAX))
{

int64_t result = data * data;

We also added an include of inttypes.h to all the fles of these cases.
We also noticed that the %lld format specifer does not handle int64_t type values. We

corrected it.
For int64_t type, we changed 178 C and C++ fles (in 144 test cases) under CWE190

s02. Of those, 114 fles were C, and 30 fles were C++. These fles were all named
CWE190_Integer_Overflow__int64_t_*_square_*.c or .cpp.

The number of fles fxed for int64_t type cases differs from the number fxed for the
int type cases (Sec. 2.11). The int cases have input variants connect_socket, fgets,
and listen_socket. The int64_t type cases do not have those input variants. Also, we
changed int64_t fles to fx a scanf() format specifer problem (Sec. 2.15).

Pascal Cuoq reported this problem on 25 July 2013 (comment P). This problem was
Eric Trapnell’s rows 14 and 16.

As we wrote this report, we realized that this fx does not solve the minimum integer
problem, as explained above in Sec. 2.11. We note this as a problem remaining in Juliet 1.3
in Sec. 3.4.

After Juliet 1.3 was released, André Maroneze reported that many cases still had similar
problems with range checks. We found 432 cases in Juliet 1.3 that we failed to fx. We
provide details in Sec. 3.5.

As with the int cases, there are still a concern with some of these cases. One version
of the good function is “fxed” by using a hardcoded value: data = LLONG_MAX. Sec. 3.8
discusses this in more detail.

17

http:typevalues.We
http:checks.We

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

2.13 Wrong Check for Value Out of Range - unsigned int

This check is, to paraphrase Pascal Cuoq, a theoretical problem that would only hap-
pen on an architecture with a 64-bit int type, which is rare. The following old check-
ing code is from CWE190_Integer_Overflow__unsigned_int_fscanf_square_01.c dep-
recated 84366:

if (abs((long)data) <= (long)sqrt((double)UINT_MAX))
{

unsigned int result = data * data;

When UINT_MAX (264 − 1) is converted to double, it is rounded up to 264. The square root
of 264 is 232. If data is 232, it passes the check, and the multiplication overfows.

We followed Cuoq’s recommendation and changed <= to <. The following example new
code is from 235789:

if (abs((long)data) < (long)sqrt((double)UINT_MAX))

We changed 144 fles under CWE190 s05, all named __unsigned_int_*_square_.
Pascal Cuoq reported this problem on 25 July 2013 (comment O). This problem was

Eric Trapnell’s row 15.

2.14 Wide Format Strings Mishandled

Some test cases pass wide character format strings to snprintf(), which does not han-
dle them. The following old code is from CWE122_Heap_Based_Buffer_Overflow__c_
CWE805_wchar_t_snprintf_01.c deprecated 72176:

#ifdef _WIN32
define SNPRINTF _snwprintf
else
define SNPRINTF snprintf
endif

SNPRINTF(data , 100, L"%s", source);

We replaced snprintf() with swprintf() in 672 fles. There are 188 fles under CWE121
(in s05, s06, s07, and s08), 208 fles under CWE122 (in s04, s05, s09, and s10), 240 fles
under CWE134 (in s03, s04, s05, and s06), 18 fles under CWE252, and 18 fles under
CWE253. All of the cases have _wchar_t_ in their names and have _snprintf just before
the variation number.

Pascal Cuoq reported this problem on 26 June 2013 (comment K). This problem was
Eric Trapnell’s row 12.

As we wrote this report, we noticed that source itself is a wide string. It is handled
with the wrong format specifer: %s instead of %S. This is a latent bug in Juliet 1.3, which
we explain in Sec. 3.6.

18

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

2.15 Wrong fscanf() Format Specifer for int64_t and size_t

The %lld format specifer, used in fscanf(), does not handle int64_t type variables.
The following example old code is from CWE190_Integer_Overflow__int64_t_fscanf_
square_01.c deprecated 82638:

int64_t data;
fscanf (stdin , "%lld ", &data);

We changed the code to use SCNd64. The following new input code is from 235405:

int64_t data;
fscanf (stdin , "%" SCNd64 , &data);

We also added an include of inttypes.h in all the fles of these cases. This occurs in 352
fles in the following seven subdirectories: CWE190, subdirectories s01, s02, s06, and s07,
and CWE191, subdirectories s01, s04, and s05. The fles are named CWE19[01]_Integer_
{Over,Under}flow__int64_t_fscanf_FUNC_*, where FUNC is add, sub, multiply, preinc,
postinc, predec, or postdec.

Similar to that, the %ud format specifer is not the standard way to handle size_t vari-
ables. The following example of old code is from CWE789_Uncontrolled_Mem_Alloc__new_
char_fscanf_14.cpp deprecated 117572:

size_t data;
fscanf(stdin , "%ud ", &data);

We replaced %ud with %zu. The following new code is from 243952:

size_t data;
fscanf(stdin , "%zu ", &data);

These are all under CWE789. The cases are named CWE789_Uncontrolled_Mem_Alloc__
{malloc,new}_{char,wchar_t}_fscanf_*.{c,cpp}. The __malloc_ cases are in s01. The
__new_ fles are in s02. There are 100 fles in each of s01 and s02.

André Maroneze reported this problem on 12 June 2017 (part of suggestion 2). This
problem was Eric Trapnell’s row 17.

Similar to those two problems, utility functions in the support fle io.c used the wrong
format specifers. The following is the old code:

void printLongLongLine (int64_t longLongIntNumber)
{

printf ("% lld\n", longLongIntNumber);
}

void printSizeTLine (size_t sizeTNumber)
{

printf ("%ud\n", sizeTNumber);
}

19

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

We changed this code to use the appropriate format specifers:

void printLongLongLine (int64_t longLongIntNumber)
{

printf ("%" PRId64 "\n", longLongIntNumber);
}

void printSizeTLine (size_t sizeTNumber)
{

printf ("%zu\n", sizeTNumber);
}

We also added an include of inttypes.h, to defne PRId64, and wctype.h, to declare
iswxdigit().

Pascal Cuoq reported this problem as part of comment Q.

2.16 Improve Compile Files and Scripts

As explained in [5] and [4], Juliet was designed so that the user could either compile all test
cases in one big executable (All) or each test case as its own, individual executable (Ind).

The Juliet 1.2 makefle command to make one big executable, All, for C/C++ on a Unix
platform was impractical. The command passed more than 100 000 fles to gcc, which gcc
could not handle.

As one step to fx that, we changed the makefle command to generate individual test
case executables, Ind, (using -DINCLUDEMAIN), in addition to one executable for each CWE.
(One executable per CWE was already available in Juliet 1.2.) We changed this command
to create unlinked object fles (.o fles) for each source fle (.c or .cpp fles). Following that
all of the object fles in a directory could be linked to create an executable of all of the test
cases in that directory or all of the object fles could be linked to create a partial.o fle.

The partial.o in each directory is used by the new makefle command to link the one
big executable, All. We heavily edited the command to link each directory’s partial.o.
This compilation process is far quicker than the process in Version 1.2 and consumes fewer
resources.

Hence in the top directory, there are now two make commands:
$ make individuals
creates an executable fle for each C/C++ test case.
$ make Juliet1.3
or
$ make
invokes make individuals, then creates a single executable with of all the test cases.

Similar options are supported for Windows in the .bat fles, except that individual exe-
cutables are not supported.

20

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

For the Java code, the most signifcant improvement is that there are now commands
available in the top directory for compiling test cases:
$ ant compile
creates only bytecode fles.
$ ant jar
creates java archive fles.
$ ant war
creates web archive fles.

We also made small changes to improve the manifest of jar fles.

For both C and Java, we removed code that is not needed. Previously scripts in the
top directory had code to ignore directories named svn. SVN is a source control system,
like git or rcs. In SVN, a .svn subdirectory stores change metadata for each source code
directory. Hence, .svn directories were scattered all over. Files in those directories should
not be included in makefles or other fles. Since there are no .svn directories in Juliet 1.3,
the code is unnecessary.

3. Known Problems in Juliet 1.3

We corrected many problems in the Juliet 1.2 test suite. This section details the many
systematic problems remaining in Juliet 1.3 of which we know. We decided not to fx some
because the effort to fx the code exceeded any beneft. Four problems were noticed only
months after Juliet 1.3 was released. They are detailed in Sections 3.3, 3.4, 3.5, and 3.6.

3.1 Memory Leaks

The frst problem is that thousands of cases have memory leaks. That is, memory is allo-
cated, but never freed (until the program ends). The following example is from CWE758_
Undefined_Behavior__double_pointer_alloca_use_01.c 112082:

static void good1()
{

{
double * data;
double ** pointer = (double **) ALLOCA(sizeof(double *));
data = (double *) malloc(sizeof(double));
*data = 5.0;
*pointer = data;
{

double * data = *pointer;
printDoubleLine (*data);

}
}

}

21

http:whichweknow.We

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

We decided not to fx this memory leak problem for several reasons. First, the memory
leak does not lead to undefned behavior, and therefore should not stop analyzers from
looking for other problems. Second, it should not cause any problem in practice. Even if
all the cases are compiled and executed together, only about 2 megabytes of memory will
be allocated.

Third and most importantly, it would take a huge amount of manual effort to write and
test scripts to insert the proper free() commands at the right places. Worse, we foresee
two mistakes possible with the scripts: the memory is freed too early or the wrong memory
is freed. Either way, later code accesses freed memory. There is no simple way to check
for these mistakes.

Aurélien Delaitre reported this problem on 15 September 2015. This problem was Eric
Trapnell’s row 19.

3.2 No Evident Failure

Although most cases have faults, i.e., corrupted internal states, many cases do not take
user input or do not have externally apparent failures. The following bad code is from
CWE416_Use_After_Free__malloc_free_char_01.c 240263:

data = (char *) malloc (100* sizeof(char));
. . . initialize . . .
free(data);
printLine(data);

Although this code always uses memory after it is freed, there is usually no visible failure,
e.g., a crash or corrupted result. Even some cases that have apparent failures do so for all
inputs. That is, they crash given essentially any input.

Future versions of these test cases might be built so that all of them execute reason-
ably for some inputs and fail for other inputs. Even better would be versions that have
exploitable security vulnerabilities.

David Musliner reported this problem on 28 February 2018.

3.3 Memory Accessed After Its Lifetime

All 80 cases under CWE843 access automatically allocated memory after its lifetime. The
following example code is from CWE843_Type_Confusion__short_01.c 122807:

void * data;
{

short shortBuffer = 8;
data = &shortBuffer;

}
printIntLine (*((int*)data));

Memory for shortBuffer is automatically allocated (usually on the stack) by the time that
execution enters the block. Although the address is saved, the lifetime of the memory ends

22

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

when execution leaves the block. Thus, the argument to printIntLine() is an invalid
dereference.

This can be fxed by declaring the variable earlier, as detailed in Sec. 2.6. This is how
the fxed code might appear:

void * data;
short shortBuffer = 8;
{

data = &shortBuffer;
}
printIntLine (*((int*)data));

André Maroneze reported this problem on 12 April 2018.

3.4 Check for Value Out of Range Still Wrong - int64_t

As we wrote this report, we realized that the range check fx explained in Sec. 2.12 does not
solve the minimum integer problem for int64_t. In brief, the absolute value of LLINT_MIN
is not defned by the C11 standard [16]. The check should be

if (data > LLINT_MIN &&
imaxabs ((intmax_t)data) <= sqrtl(LLONG_MAX))

This affects 144 fles under CWE190 s02. All the fles with this problem are named
CWE190*_int64_*square*.

3.5 Additional Cases with Wrong Check for Value Out of Range

Some of the good code under CWE190_Integer_Overflow intended to avoid overfow by
checking that the value was in range. The following example of good code is from CWE190_
Integer_Overflow__unsigned_int_max_square_01.c 235831:

if (abs((long)data) <= (long)sqrt((double)UINT_MAX))
{

unsigned int result = data * data;
printUnsignedLine(result);

else
{

printLine (" data value is too large ...
}

The problem is in abs((long)data). On some architectures, the largest unsigned integer
will not ft in a long. Thus the cast does not behave as intended. In addition, abs() does
not handle long values. The problem could be addressed by checking that the value fts
and using an appropriate absolute value function, as explained in Sections 2.11 and 2.12.
André Maroneze suggested the following code:

if (data <= LONG_MAX &&
labs(data) < (long)sqrt((double)UINT_MAX))

23

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

The fles with this problem are all under CWE190, subdirectories s01, s04, and s05.
They are named CWE190_Integer_Overflow__TYPE_SOURCE_square_VARIANT.c or .cpp,
with three types, char, short, and unsigned_int, three sources, max, rand, and fscanf,
and 48 fow variants, for a total of 432 fles.

André Maroneze reported this problem on 12 April 2018.

3.6 Wrong Format Specifer for Wide String

As we wrote this report, we noticed the change explained in Sec. 2.14 does not fx all the
printing problems. The following code is from CWE122_Heap_Based_Buffer_Overflow__c_
CWE805_wchar_t_snprintf_01.c 233407:

#define SNPRINTF swprintf

wchar_t source [100];

SNPRINTF(data , 100, L"%s", source);

The argument, source, is a wide string. The code has the wrong format specifer: %s. To
handle wide strings, the specifer should be %S.

This problem needs to be fxed in 672 fles under various directories: CWE121 (subdi-
rectories s05, s06, s07, and s08), CWE122 (subdirectories s04, s05, s09, and s10), CWE134
(subdirectories s03, s04, s05, and s06), CWE252, and CWE253.

3.7 Wrong Format Specifer to Print char as Hexadecimal

In Juliet 1.3, utility code prints char type arguments with the wrong format specifer. The
function printHexCharLine() is defned in the support utility fle io.c as:

void printHexCharLine (char charHex)
{

printf ("%02x\n", charHex);
}

The format specifer %x is for an unsigned int argument. In this case, charHex is promoted
to int. If type char is signed, a common choice that the C11 standard [16] leaves to each
compiler, a negative value is promoted to a negative integer by sign extension. That means
the above typically prints 255 as ffffffff.

Pascal Cuoq suggested using casts to print properly:

printf ("%02x\n", (unsigned int)(unsigned char)charHex);

The cast (unsigned int) is needed because the C11 standard 7.21.6.1:9 “The fprintf
function” states, “If any argument is not the correct type for the corresponding conversion
specifcation, the behavior is undefned.”

As an alternative, C11 7.21.6.1:7 provides a length modifer, hh, to handle this:

printf ("%02 hhx\n", charHex);

24

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

Pascal Cuoq reported this problem as part of comment Q. André Maroneze reported
this problem on 12 June 2017 (part of suggestion 2).

3.8 Many Bugs Removed by Using Hardcoded Values

The most widespread and challenging issue in Juliet 1.3 is that the good code in thousands
of cases removes a problem by just using a hardcoded value. For instance, some cases
under CWE190 read a value then increment it. The following example bad code is from
CWE190_Integer_Overflow__int_fscanf_add_01.c 83262:

fscanf(stdin , "%d", &data);
{

int result = data + 1;

Note that there is no check for overfow. This particular case has two good functions, each
with a different resolution. One adds a check:

fscanf(stdin , "%d", &data);
if (data < INT_MAX)
{

int result = data + 1;

The other one merely sets the variable to a value that will not cause an overfow:

data = 2;
{

int result = data + 1;

Hardcoded values to remove bugs are located throughout the Juliet test suite. For in-
stance, cases under nineteen CWEs use

data = "foo ";

We identifed a dozen different kinds of hardcoded constants, such as integers, passwords,
and strings.

Fig. 1. A cartoon highlighting that making a bug disappear is not the same as fxing it.
NON SEQUITUR © 2018 Wiley Ink, Inc.. Dist. By ANDREWS MCMEEL SYNDICATION.
Reprinted with permission. All rights reserved.

25

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

To test that a static analysis tool recognizes the basic difference between a vulnerability
and no vulnerability, the use of hardcoded “inputs” is reasonable acceptable. But elimi-
nating the problem using a hardcoded value changes the program behavior (drastically!).
These “fxes” are very different from the patches one would fnd in real code.

Damien Cupif points out that these pseudo-fxes tend to invalidate discrimination cal-
culations. That is, the behavior of the good version is signifcantly different than the bad
version behavior, not just for buggy values.

Expanding the utility of the Juliet suite may require rethinking the tactic of eradicat-
ing problems with hardcoded values. Finding a good resolution would require extensive
consideration and changing thousands of fles in a dozen different ways.

3.9 Uncaught Java Exceptions

We know of at least two uncaught Java exceptions in Juliet 1.3. In the following exam-
ple, the constructor OutputStreamWriter can throw an exception that is not caught, cre-
ating a potential resource leak. The following example code is from CWE400_Resource_
Exhaustion__getParameter_Servlet_write_72b.java 138404:

File file = new File(" badSink.txt ");
OutputStreamWriter writerOutputStream = new

OutputStreamWriter(streamFileOutput , "UTF -8");

If the Java installation does not support UTF-8, the method exits, but the fle remains open.
This problem was Eric Trapnell’s row 3.

Similarly, the constructor InputStreamReader can throw an exception. The resource is
a URL connection in this example from CWE400_Resource_Exhaustion__URLConnection_
for_loop_14.java 139105:

URLConnection urlConnection =
(new URL(" http ://www.example.org /")). openConnection ();

readerInputStream = new
InputStreamReader(urlConnection.getInputStream (),

"UTF -8");

These are unlikely to cause problems in any execution of these test cases.
Aurélien Delaitre reported both of these problems in connection with SATE V [17].

This problem was Eric Trapnell’s row 4.

3.10 Dead Stores

Forty cases have unintentional dead stores. That is, a value is stored in a variable, and the
value is overwritten before it is used. There is no way to fx these and still keep the code
similar to other variants. For example, here is bad code that does not use a variable. It is
from CWE563_Unused_Variable__unused_uninit_variable_char_33.cpp 105689:

26

http://www.example.org/")).openConnection

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

char data = dataRef;
/* FLAW: Do not use the variable */

The good code initializes then prints data.

char data = dataRef;
/* FIX: Initialize then use data */
data = ’C ’;
printHexCharLine(data);

This occurs for two scenarios (unused_uninit_variable and unused_value), four types
(int, char, wchar_t, and long), and four code variants (33, 72b, 73b, and 74b). The
corresponding fles are named CWE563_Unused_Variable__SCENARIO_TYPE_VARIANT.cpp.

We could not think of a way to fx the dead store so that they are still similar to the
01 variants and also have the same structure as the thousands of other 33 variants. One
approach is just to remove these tests: there are many other test cases with unused variables,
unused values, dead stores, etc. Another approach is to not declare the local variable and
use the right hand side of the assignment instead. So the above good code would become:

/* FIX: Initialize then use data */
dataRef = ’C ’;
printHexCharLine(dataRef);

We decided to leave the dead stores and note them as extraneous weaknesses.
Aur´ This problem was Eric elien Delaitre reported this problem on 6 August 2015.

Trapnell’s row 18.

3.11 Dead Code not in Metadata

There are thousands of cases with dead code, but the metadata that accompanies test cases
and test suites does not note it. The following example code is from CWE190_Integer_
Overflow__int_File_postinc_02.java 249242:

if (false)
{

/* INCIDENTAL: CWE 561 Dead Code , the code below will
* never run but ensure data is inititialized ... */

data = 0;
}
else
{

/* FIX: Use a hardcoded number that won ’t cause
underflow , overflow , divide by zero , or loss -of -
precision issues */

data = 2;
}

For consistency and completeness, such dead code should be noted in the metadata for
automated checking.

27

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

3.12 Integer Overfow not in Metadata

CWE-680 is a chain of two faults, an integer overfow (FRS/Overfow) that leads to a
BOF/Write. All cases under CWE680 have metadata for BOF/Write at the right line.
However, the FRS/Overfow is not in the metadata. The following example code is from
CWE680_Integer_Overflow_to_Buffer_Overflow__malloc_rand_01.c 241054:

intPointer = (int*) malloc(data * sizeof(int));
for (i = 0; i < (size_t)data; i++)
{

intPointer[i] = 0;
}

The computation for the amount of memory to allocate may overfow, causing a buffer that
is too small to be allocated.

3.13 Temporary Files Still Not Secure

In Sec. 2.10, we explained how temporary fles in Juliet 1.3 are more secure than those in
Juliet 1.2. There we also explained the two remaining problems. We mention them again
here to list all known problems in a single section.

First, we did not change any wchar_t cases because there is no widely-used equivalent
of mkstemp() that handles wchar_t names.

Second, mkstemp() is not entirely secure. The fle names are too predictable.

3.14 Suggestions We Did Not Take

In addition to comments and known problems, we received a number of suggestions on
which we did not take action. This section records them.

3.14.1 Add RAND16 and RAND8 Macros

In 402 fles of Juliet Version 1.3, data is assigned a random char value. In other fles, data
is assigned a random short value. The following example code is from CWE190_Integer_
Overflow__char_rand_postinc_01.c 235991:

data = (char)RAND32 ();

The cast narrows the integer returned by RAND32() to a char, which changes some values.
The C11 standard states that the exact nature of the changes is left to the implementa-
tion. In suggestion 1, André Maroneze said that users frequently request that such cases of
implementation-dependent behavior be reported. To make it clear that there is no problem
intended in these cases, he suggested adding new macros, for example:

#define URAND15 () (rand() \% (1<<15))
#define RAND16 () (rand() & 1 ? (short)URAND15 () :

-((short)URAND15 ()) - 1)

28

http:reported.To

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

#define URAND7 () (rand() \% (1<<7))
#define RAND8() (rand() & 1 ? (char)URAND7 () :

-((char)URAND7 ()) - 1)

We improved existing macros for random numbers (Sec. 2.8). However, we did not add
specifc macros to produce random char or short values.

3.14.2 Move Cases of NULL Check After Dereference

As explained in Sec. 2.4, 18 cases intentionally check a pointer for NULL after the pointer
is dereferenced. In suggestion 7, André Maroneze suggested moving these cases from
CWE476_NULL_Pointer_Dereference to CWE571_Expression_Always_True. We decided
that CWE-571 is not a suffciently close match. In fact, there is no CWE for this problem.

This suggestion was Eric Trapnell’s row 15.

3.14.3 Move Cases of Incorrectly Calculating Multi-Byte String Length

André Maroneze’s suggestion 7 was to move cases of incorrectly calculating multi-byte
string length to a new directory named for CWE-135 Incorrect Calculation of Multi-Byte
String Length. The following example of Juliet 1.3 code is from CWE122_Heap_Based_
Buffer_Overflow__CWE135_01.c 232119:

size_t dataLen = strlen ((char *)data);
void * dest = (void *) calloc(dataLen+1, sizeof(wchar_t));
(void)wcscpy(dest , data);

This affects 172 fles in 96 cases, all with __CWE135_ in their names. They are all under
CWE121 and CWE122.

The original catalyst for looking at them was that the cases did not have BOF [11]. This
problem was fxed so that the cases have BOF (Sec. 2.2).

The misuse of strlen() on wide character strings is intentional. We decided not to
create a new directory and move these cases there for several reasons. First, these are le-
gitimate BOF cases, so there is reason to leave them where they are or to duplicate them.
Second, if we did create a new directory, it should contain a thorough set of cases of in-
correctly calculating, not just one example. For instance, perhaps the misuse should be in
other contexts, like printing and reading, not just copying. Third, for consistency, we would
rename all of the fles to start with CWE135_*) and change the names of the functions in the
code. Finally, we plan to eventually replace the CWE classifcation with BF classifcation.

4. Some Thoughts on the Future of Juliet and Test Suites

In this section, we provide some thoughts on the future of the Juliet test suite and assurance
tool testing in general.

29

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

There is no plan to create a Juliet Version 1.4. On one hand, many known problems can
be corrected with techniques used to create Version 1.3. On the other hand, the Center for
Assured Software plans to generate future test suites on demand. That is, a custom set of
tests will be generated for each user. Custom sets of tests reduce the incentive to code a
tool to an unchanging test suite.

With oversight and direction by NIST, students at TELECOM Nancy, a computer en-
gineering school of the Université de Lorraine, Nancy, France implemented and then im-
proved a test case generator [7]. They used the generator to create suites similar to Juliet
for PHP and C# [18].

What would be the ultimate test suite? As Cohen et. al. explained [17], a perfect
collection has three aspects: it represents production software, we know where all the bugs
are, and it has lots of different types of bugs in varied situations. Juliet incorporates the last
two aspects. Software that is used in production is typically large and complex. Juliet cases
are far smaller and less complex than production software. Most synthetic or generated
collections will be similarly small and less complex.

An approach to achieving all three aspects is to inject bugs into production software.
Automated tools can help by fnding locations with desirable execution fow, program state,
and data visibility. However, none of the published approaches appear to have a path to
completely automated bug injection of many types of bugs.

Acknowledgments

We thank all those who reported problems in Juliet 1.2, especially Pascal Cuoq (Pas-
cal.CUOQ@cea.fr), Takashi Matsuoka (takashi.matsuoka@redlizards.com), André
Maroneze (Andre.OLIVEIRAMARONEZE@cea.fr), Bertrand Stivalet, Aurélien Delaitre,
and Elisa Heymann (elisa@cs.wisc.edu). We also thank Eric Trapnell and Charles D. De
Oliveira for their work on Juliet 1.3.

References

[1] Center for Assured Software (2012) Juliet Test Suite for C/C++ - Changelog. Ac-
cessed 19 March 2018. URL https://samate.nist.gov/SARD/view.php?tsID=86.

[2] Common weakness enumeration: A community-developed list of software weakness
types. Accessed 4 January 2018. URL https://cwe.mitre.org/.

[3] Center for Assured Software (2012) Juliet Test Suite for Java - Changelog. Accessed
19 March 2018. URL https://samate.nist.gov/SARD/view.php?tsID=87.

[4] Center for Assured Software (2012) Juliet Test Suite v1.2 for Java User Guide.
Accessed 19 March 2018. Also available with the Juliet Test Suite v1.3 for
Java. URL https://samate.nist.gov/SARD/resources/Juliet Test Suite v1.2 for Java
- User Guide.pdf.

30

https://samate.nist.gov/SARD/view.php?tsID=86
https://cwe.mitre.org/
https://samate.nist.gov/SARD/view.php?tsID=87
https://samate.nist.gov/SARD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SARD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
http:CharlesD.De
mailto:elisa@cs.wisc.edu
mailto:Andre.OLIVEIRAMARONEZE@cea.fr
mailto:takashi.matsuoka@redlizards.com
mailto:cal.CUOQ@cea.fr

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.TN
.1995

[5] Center for Assured Software (2012) Juliet Test Suite v1.2 for C/C++ User Guide.
Accessed 19 March 2018. Also available with the Juliet Test Suite v1.3 for
C/C++. URL https://samate.nist.gov/SARD/resources/Juliet Test Suite v1.2 for C
Cpp - User Guide.pdf.

[6] Software assurance reference dataset (SARD). Accessed 4 January 2018. URL https:
//samate.nist.gov/SARD/.

[7] Black PE (2017) SARD: Thousands of reference programs for software assurance.
Journal of Cyber Security and Information Systems - Tools & Testing Techniques
for Assured Software - DoD Software Assurance Community of Practice: Volume
2 5(3):6–13.

[8] Bojanova I, Black PE, Yesha Y (2017) Cryptography classes in bugs framework
(BF): Encryption bugs (ENC), verifcation bugs (VRF), and key management bugs
(KMN). 2017 IEEE 28th Annual Software Technology Conference (STC), pp 1–8.
https://doi.org/10.1109/STC.2017.8234453. Gaithersburg, Maryland

[9] Boland T, Black PE (2012) Juliet 1.1 C/C++ and Java test suite. IEEE Computer
45(10):88–90.

[10] Bojanova I, Black PE, Yesha Y, Wu Y (2016) The bugs framework (BF): A structured
approach to express bugs. 2016 IEEE International Conference on Software Quality,
Reliability, and Security (QRS), pp 175–182. https://doi.org/10.1109/QRS.2016.29.
Vienna, Austria

[11] Buffer overfow (BOF) class. Accessed 20 March 2018. URL https://samate.nist.gov/
BF/Classes/BOF.html.

[12] Black PE, Ribeiro A (2016) SATE V Ockham sound analysis criteria. National In-
stitute of Standards and Technology, NIST IR 8113. https://doi.org/10.6028/NIST.IR.
8113. Noted 23 June 2017.

[13] Injection (INJ) class. Accessed 22 March 2018. URL https://samate.nist.gov/BF/
Classes/INJ.html.

[14] dash — command interpreter (shell). Accessed 22 January 2018. URL http://
manpages.ubuntu.com/manpages/xenial/en/man1/sh.1.html.

[15] IEEE (2017) 1003.1-2017 Portable Operating System Interface (POSIX).
[16] (2011) ISO/IEC 9899:2011 programming languages - C, Committee Draft — April

12, 2011 N1570. The International Organization for Standardization and the Inter-
national Electrotechnical Commission (ISO/IEC) Joint Technical Committee JTC 1,
Information technology, Subcommittee SC 22, Programming languages, their envi-
ronments and system software interfaces, Working Group WG 14 - C.

[17] Cohen TS, et al. (2017) Improving software assurance through static analysis tool
expositions. Journal of Cyber Security and Information Systems - Tools & Testing
Techniques for Assured Software - DoD Software Assurance Community of Practice:
Volume 2 5(3):14–22.

[18] Stivalet B, Fong E (2016) Large scale generation of complex and faulty PHP test
cases. Proc. 2016 IEEE International Conference on Software Testing, Verifcation
and Validation (ICST), pp 409–415. https://doi.org/10.1109/ICST.2016.43

31

https://samate.nist.gov/SARD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SARD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/
https://doi.org/10.1109/STC.2017.8234453
https://doi.org/10.1109/QRS.2016.29
https://samate.nist.gov/BF/Classes/BOF.html
https://samate.nist.gov/BF/Classes/BOF.html
https://doi.org/10.6028/NIST.IR.8113
https://doi.org/10.6028/NIST.IR.8113
https://samate.nist.gov/BF/Classes/INJ.html
https://samate.nist.gov/BF/Classes/INJ.html
http://manpages.ubuntu.com/manpages/xenial/en/man1/sh.1.html
http://manpages.ubuntu.com/manpages/xenial/en/man1/sh.1.html
https://doi.org/10.1109/ICST.2016.43

	Introduction
	The Organization of the Juliet Suite of Test Cases
	Summary of Changes and Remaining Issues

	Details of All Changes
	Add Prefix and Postfix Increment Overflow and Decrement Underflow Cases
	Missing BOF
	Unintended BOF/Read/Above for 64-bit Architectures
	Check for Allocation Failure
	BOF/Stack Accessing Memory After Its Lifetime
	Memory Accessed After Its Lifetime
	Uninitialized Structure Member
	Undefined Behavior in Random Number Macros
	No Unix Command Injection
	Insecure Temporary Files
	Wrong Check for Value Out of Range - |int|
	Wrong Check for Value Out of Range - |int64t|
	Wrong Check for Value Out of Range - |unsigned int|
	Wide Format Strings Mishandled
	Wrong |fscanf()| Format Specifier for |int64t| and |sizet|
	Improve Compile Files and Scripts

	Known Problems in Juliet 1.3
	Memory Leaks
	No Evident Failure
	Memory Accessed After Its Lifetime
	Check for Value Out of Range Still Wrong - |int64t|
	Additional Cases with Wrong Check for Value Out of Range
	Wrong Format Specifier for Wide String
	Wrong Format Specifier to Print |char| as Hexadecimal
	Many Bugs Removed by Using Hardcoded Values
	Uncaught Java Exceptions
	Dead Stores
	Dead Code not in Metadata
	Integer Overflow not in Metadata
	Temporary Files Still Not Secure
	Suggestions We Did Not Take

	Some Thoughts on the Future of Juliet and Test Suites
	References
	NIST.TN.1995OLD - Cover.pdf
	Introduction
	The Organization of the Juliet Suite of Test Cases
	Summary of Changes and Remaining Issues

	Details of All Changes
	Add Prefix and Postfix Increment Overflow and Decrement Underflow Cases
	Missing BOF
	Unintended BOF/Read/Above for 64-bit Architectures
	Check for Allocation Failure
	BOF/Stack Accessing Memory After Its Lifetime
	Memory Accessed After Its Lifetime
	Uninitialized Structure Member
	Undefined Behavior in Random Number Macros
	No Unix Command Injection
	Insecure Temporary Files
	Wrong Check for Value Out of Range - |int|
	Wrong Check for Value Out of Range - |int64t|
	Wrong Check for Value Out of Range - |unsigned int|
	Wide Format Strings Mishandled
	Wrong |fscanf()| Format Specifier for |int64t| and |sizet|
	Improve Compile Files and Scripts

	Known Problems in Juliet 1.3
	Memory Leaks
	No Evident Failure
	Memory Accessed After Its Lifetime
	Check for Value Out of Range Still Wrong - |int64t|
	Additional Cases with Wrong Check for Value Out of Range
	Wrong Format Specifier for Wide String
	Wrong Format Specifier to Print |char| as Hexadecimal
	Many Bugs Removed by Using Hardcoded Values
	Uncaught Java Exceptions
	Dead Stores
	Dead Code not in Metadata
	Integer Overflow not in Metadata
	Temporary Files Still Not Secure
	Suggestions We Did Not Take

	Some Thoughts on the Future of Juliet and Test Suites
	References

		Superintendent of Documents
	2022-04-05T13:00:42-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

