MAR 2 3 1958

Ref. it is it is be taken from any cibrary.

Fire Tests of Brick Walls

United States Department of Commerce
National Bureau of Standards
Building Materials and Structures Report 143

BUILDING MATERIALS AND STRUCTURES REPORTS

On request, the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., will place your name on a special mailing list to receive notices of new reports in this series as soon as they are issued. There will be no charge for receiving such notices.

If 100 copies or more of any report are ordered at one time, a discount of 25 percent is allowed. Send all orders and remittances to the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C.

The following publications in this series are available by purchase from the Super-intendent of Documents at the prices indicated:

BMS1	Research on Building Materials and Structures for Use in Low-Cost Housing	*
BMS2	Methods of Determining the Structural Properties of Low-Cost House Constructions	154
	Suitability of Fiber Insulating Lath as a Plaster Base	10 ₁
BMS4	Accelerated Aging of Fiber Building Boards	104
BMS5	Structural Properties of Six Masonry Wall Constructions	20g
BMS6	Survey of Roofing Materials in the Southeastern States	4
BMS7	Water Permeability of Masonry Walls	*
BMS8	Methods of Investigation of Surface Treatment for Corrosion Protection of Steel	15ϕ
BMS9	Structural Properties of the Insulated Steel Construction Co.'s "Frameless-Steel" Con-	
	structions for Walls, Partitions, Floors, and Roofs	10¢
BMS10	structions for Walls, Partitions, Floors, and RoofsStructural Properties of One of the "Keystone Beam Steel Floor" Constructions Spon-	,
	sored by the H. H. Robertson Co	10¢
BMS11	Structural Properties of the Curren Fabrihome Corporation's "Fabrihome" Construc-	104
DIMBII	tions for Welles of the Current Fabritions Corporation's Fabritions Constitute	104
DMG10	tions for Walls and Partitions	10¢
BMS12	Structural Properties of "Steelox" Constructions for walls, Partitions, Floors, and	4 = 1
	Roofs, Sponsored by Steel Buildings, Inc.	15¢
BMS13	Properties of Some Fiber Building Boards of Current Manufacture	*
BMS14	Indentation and Recovery of Low-Cost Floor Coverings	10¢
BMS15	Indentation and Recovery of Low-Cost Floor CoveringsStructural Properties of "Wheeling Long-Span Steel Floor" Construction Sponsored	
	by the Wheeling Corrugating Co	100
BMS16	by the Wheeling Corrugating Co	,
22.2010	Floors, Inc	10€
BMS17	Sound Insulation of Wall and Floor Constructions	25¢
Cumplemen	t to BMS17, Sound Insulation of Wall and Floor Constructions	
		5¢
		15ϕ
BMS18	Structural Properties of "Pre-Fab" Constructions for Walls, Partitions, and Floors	
	Sponsored by the Harnischfeger Corporation	10¢
BMS19	Preparation and Revision of Building Codes	Ť
BMS20	Structural Properties of "Twachtman" Constructions for Walls and Floors Sponsored	
	by Connecticut Pre-Cast Buildings Corporation	100
BMS21	by Connecticut Pre-Cast Buildings CorporationStructural Properties of a Concrete-Block Cavity-Wall Construction Sponsored by the	,
	National Concrete Masonry Association	150
BMS22	Structural Properties of "Dun-Ti-Stone" Wall Construction Sponsored by the W. E.	,
1)111022	Dunn Manufacturing Co	*
BMS23	Structural Properties of a Brick Cavity-Wall Construction Sponsored by the Brick	
DM1929	Manufacture Association of New York Translation Sponsored by the Brick	3
DMCOA	Manufactures Association of New York, Inc.	
BMS24	Structural Properties of a Reinforced-Brick Wall Construction and a Brick-Tile Cavity-	
	Wall Construction Sponsored by the Structural Clay Products Institute	1
BMS25	Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions,	
	Floors and Roofs	25ϕ
BMS26	Structural Properties of "Nelson Pre-Cast Concrete Foundation" Wall Construction	
	Sponsored by the Nelson Cement Stone Co., Inc.	100
BMS27	Sponsored by the Nelson Cement Stone Co., Inc	
DAIL DE !	Bender Body Co.	10¢
BMS28	Backflow Prevention in Over-Rim Water Supplies	*
BMS29		,
	Survey of Roofing Materials in the Northeastern States	
BMS30	Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas	
Dargos	Fir Plywood Association	4
BMS31	Structural Properties of "Insulite" Wall and "Insulite" Partition Constructions	
	Sponsored by The Insulite Co	*

Fire Tests of Brick Walls

S. H. Ingberg

Building Materials and Structures Report 143

Issued November 30, 1954

Foreword

Brick walls of buildings have been generally recognized as effective means of restricting the spread of fire and reducing the loss from conflagrations in built-up areas. Their effectiveness depends upon their stability under fire conditions and the prevention of ignition of combustible materials near or in contact with the side not exposed to fire.

The present paper gives results of a comprehensive series of fire tests conducted under controlled conditions to determine the essential properties of brick walls as fire barriers. Besides walls of the usual solid design, a number of hollow walls were included with bricks laid flat or on edge to form one or more unfilled spaces between the brick wythes.

The information should be useful in attaining economy with the required degree of fire safety in buildings where bricks are used for exterior walls and interior subdividing constructions.

A. V. Astin, Director.

Contents

•	Page	1	Page
Foreword	iii	6. Results of fire-endurance tests—Continued	
1. Introduction	1	6.2. Results with solid-wall constructions—Con	1.
2. Materials		c. Concrete and sand-lime brick walls	0.4
2.1. Bricka. Clay bricks		of 8-in. thickness(1) Surface-temperature rise	$\frac{24}{24}$
b. Shale brick	2	(2) Temperature limits within	27
c. Concrete bricks		wall	24
d. Sand-lime bricks		(3) Load-carrying ability and	
e. Size of bricks	3	lateral deflections	24
f. Strength and absorption of bricks	s_ 3	(4) Cracks and other fire effects_	24
2.2. Mortar		d. Solid walls of 12-in. thickness	24
a. Materials	3	(1) Surface-temperature limits	29
b. Proportions		(2) Temperature rise in wall	29
c. Strength	3 4	(3) Lateral deflection(4) Cracks and imperfect joints_	29 29
3. Test walls		(5) Fusion of brick and mortar_	28
3.1. Design		(6) Failure under load	32
a. Solid walls.	4	6.3. Results with walls of hollow designs	35
b. Rolok walls	4	a. Hollow walls of 8-in. thickness	35
c. Rolok-bak design		(1) Surface-temperature limits	35
d. Rolok-faced design	4	(2) Temperature limits in wall	35
e. Cavity design	4	(3) Restraint, loading, and lat-	0.1
3.2. Size	4	eral deflections	35
a. Large walls	4 4	(4) Cracks and other fire effects_b. Hollow walls of 12-in, thickness	35 35
b. Small walls 3.3. Workmanship	4	(1) Surface-temperature limits_	35
a. Construction methods	6	(2) Temperature limits in wall	40
b. Rate of laying bricks	- 6	(3) Cracks and other fire effects	40
3.4. Auxiliary strength tests of masonry	7	c. Cavity walls	40
a. Test specimens		(1) Temperature-rise limits	40
b. Strength of solid masonry	7	(2) Loading and deflection	4(
c. Results with the rolok design		(3) Cracks and open joints	42
3.5. Seasoning of walls		6.4. Temperature rise after test	42
a. Large walls		6.5. Ignition of cotton and excelsior pads	42
b. Small walls	9 9	7. Results of fire and hose-stream tests	44
4.1. Panel frames		7.2. Stability and integrity	44
4.2. Furnace equipment	9	7.3. Load-carrying ability	47
4.3. Loading and restraint		a. Walls of 4-in, thickness	$\hat{4}$
4.4. Furnace fire exposure	10	b. Solid and all-rolok walls of 8-in.	
a. Furnace control curve		thickness	47
b. Pyrometer mounting	10	c. Solid and all-rolok walls of 12-in.	
c. Lag and radiation effects	11	thickness	47
d. Unprotected furnace thermocouples		d. Cavity walls	47
4.5. Determination of wall temperatures		7.4. Other wall designs	47
4.6. Calibration of thermocouples	11	masonry	47
4.8. Hose-stream tests	11	8.1. Compressive strength of bricks	48
5. Program of tests		8.2. Transverse strength of bricks	49
5.1. Solid walls	12	8.3. Absorption	49
5.2. Walls of hollow design	13	8.4. Masonry strength	49
5.3. Fire and hose-stream tests		9. Summary and conclusions	50
6. Results of fire-endurance tests		9.1. Materials of construction	50
6.1. Criteria of fire-endurance limit		9.2. Workmanship	50 50
a. Limits of surface temperature rise		9.3. Wall constructions	5(
b. Temperature rise within the wall c. Residual temperature rise		9.4. Testing procedure9.5. Conditioning before test	50
d. Lateral deflection		9.6. Fire-resistance periods	. 50
6.2. Results with solid-wall constructions		a. Theoretical relations	5
a. Walls of 4-in. thickness		b. Loading and stability	51
(1) Temperature-rise limits		c. Average fire-resistance periods	51
(2) Time-temperature curves	14	(1) Clay- and shale-brick walls	
(3) Lateral deflections		of 4-in. thickness	52
b. Clay- and shale-brick walls of 8-i		(2) Solid clay- and shale-brick	
thickness	15	walls of 8- and 12-in.	50
(1) Surface-temperature limits (2) Wall-temperature limits		thickness(3) Solid concrete and sand-lime	52
(3) Effect of drying at elevate		brick walls of 8- and 12-in.	
temperatures		thickness	52
(4) Loading, restraint, and la		(4) Walls of all-rolok and alter-	Ü.
eral deflection		nate rolok designs	52
(5) Effect of cracks and in	n-	(5) Cavity walls	52
perfect joints		(6) Walls of other designs	52
(6) Fusion and spalling effects.	23	10. References	52

Fire Tests of Brick Walls

S. H. Ingberg

Fire-endurance tests were conducted of 54 solid and 19 hollow brick walls, supplemented by 10 fire and hose-stream tests

The fire-resistance limit of 4-in, clay and shale brick walls was found to be about 1\% hr. as based on stability under fire exposure, ability to carry load, and to protect combustible material on the side not exposed to fire. Plaster on both sides increased the limit to 2½ hr. For clay and shale brick solid walls of 8-in. thickness, the fire-resistance limit from the

above considerations was 5 hr, which was increased to 7 hr when the walls were plastered on both sides. For combustible members projecting into the walls 4 in. from the unexposed side, the protection period was 2 hr, and if plastered, 3 hr. With the 12-in. nominal thickness, the fire-resistance limits ranged from 8 to 10 hr, depending upon the fusion temperature of the bricks, and with 7 hr as the protection period for framed-in members.

For solid 8- and 12-in. walls of concrete and sand-lime bricks, the fire-resistance limits were found 1 to 2 hr higher than for comparable walls of clay and shale bricks. This was apparently due to the retarding effect on temperature rise in the wall from evaporation of

the combined water in the brick cementing material.

The fire-resistance limit of 8-in. clay and shale brick walls of the all-rolok design was 2½ hr, and with framed-in combustible members, 1 hr. With plaster, these were increased to 4 hr and 1½ hr, respectively. For 12-in. rolok walls, a fire-resistance limit of 5 hr was indicated, and 2½ hr as the protection period for members supported in the wall. For the plastered wall, these were 7 hr and 3½ hr, respectively.

For cavity walls of 10-in, nominal thickness, the fire-resistance period averaged about 5 hr, with 1½ or 2 hr as the protection period for supported combustible members, depending

upon the degree of embedment assumed.

All wall constructions evidenced ability to meet the performance in the fire and hosestream test required for their respective fire-resistance ratings.

1. Introduction

Brick walls when used as fire and party walls in buildings have a well-established record in restricting the spread of fire, although prior to these tests there were few data extant on their performance in standardized fire tests. Information on such performance has become necessary in that building-code requirements for fire resistance are now in considerable part based upon performance tests that have been substituted for or supplement requirements formerly designated in terms of material, design, and thickness of walls in given

In general, this enables a wider choice of materials and design, not only to meet fire-resistance requirements but also with respect to considerations of economy and other purposes served by the

construction.

The present series consisted of 54 fire-endurance tests of solid and 19 of hollow-type brick walls in a number of designs, and 10 fire and hose-stream tests of typical solid and hollow-type brick-wall constructions. The nominal thickness was in the range 4 to 12 in.

The first tests were begun in 1921 and continued at intervals thereafter. These tests were made

before the fire-testing procedure had been standardized on all particulars. However, sufficient information was obtained in these and later tests to enable the fire resistance for almost all of the construction types and designs to be evaluated in terms of performance, using the procedure now recognized as standard.

2. Materials

2.1. Brick

The walls for the present series of tests were built of clay bricks from three States, shale bricks from one, and sand-lime and concrete bricks each from three sources.

a. Clay Bricks

The clay bricks were made from so-called surface clays, the sources and symbol for each being as

given in table 1.

The brick from Maryland, designated CLM, was made from a red plastic clay by the so-called "soft-mud" machine-molding process, and had a gritty surface from dusting the molds with fine sand. The softening point of the burned material was near 1,475° C (2,687° F) (cone 17).

	Brick			Compressi	ve strength		
Type	Locality	Type and source symbol 1	Wall or test ²	On side On edge		Modulus of rupture	Absorption (5-hr. boiling)
Surface clay Do Do	Md	CLM	1, 11, 14, 15, 38, 54, 64 16, 17 2, 18	3, 130 2, 960	lb/in. ² 2, 560 1, 960 2, 940	lb/in. ² 760 1, 210 920	Percent 15. 6 15. 6 14. 5
Do	Md	CLI CLI CLN	3, 4, 8, 9, 12, 37, 39, 41, 42, 60 to 63, 65 to 69 19 to 21, 43, 55 to 57 44 70 7, 71, 72	2, 960 2, 920 3, 280 3, 580 2, 920	3, 040 2, 330 3, 350	890 1, 180 1, 230 450 420	14. 7 22. 5 16. 7 20. 0 19. 8
Do	W. Va W. Va	SHW	5, 22, 23, 58. 6, 59. 10A.	8, 110 6, 450 10, 040	6, 400 5, 640 7, 410	2,020 1,570 2,760	6. 5 10. 2 5. 6
Do	D. C	COE	25, 26, 45 49 28, 50	2, 920 3, 350	1, 530 2, 290 2, 490	650 780 800	13. 5 10. 8
Do	D. C D. C	SLD	29 to 31, 51 31 32 35 36, 53	2,050 3,050 2,020	4, 720 1, 690 2, 550 2, 000 3, 000	930 460 850 540 800	16. 4 20. 7 24. 3 20. 8 14. 5

1 These symbols are used throughout the text and tables

The Illinois brick (CLI) was made by the extrusion "stiff-mud" end-cut process from a calcareous clay. Its softening point was near 1,145° C

(2,095° F) (cone 01).

The New York, or Hudson River, brick (CLN) was made by the same process as the Maryland brick from a surface clay to which a small amount of powdered coal was added to increase the porosity. The average coefficient of expansion in the temperature range up to 900° C was about 0.0000068. This comes within the lower range reported for such material [1].

b. Shale Brick

Shale brick from West Virginia (SHW) was made from a typical shale by the extrusion "stiffmud" side-cut process. The softening point of the burned brick material was near 1,305° C (2,381° F) (cone 10).

c. Concrete Bricks

The concrete brick from New York (CON) was made from a mix of 1 part of portland cement to 5 parts of siliceous sand by volume. The sand contained 60 to 70 percent of quartz, the rest being

micaceous and feldspathic minerals.

In making the brick, the wet mix was contained in a form 8 ft high, 8 in. wide, and 23% in. long. Blocks 3% in. high were cut from the base of this column, from each of which 10 bricks on edge were cut. The mix in the form was compacted by the dropping incidental to the successive removal of blocks from its base.

The bricks were cured for 4 days in moist air heated to normal indoor temperatures, after which

they were stored outside.

The concrete brick (COD) from the District of Columbia was made from a damp mix of 1 part of portland cement to 6 parts of coarse (concrete) sand, proportioned by volume. The sand, Potomac River, consisted of 50 to 60 percent of quartz, the rest being micaceous and feldspathic minerals, some of which carried iron compounds.

The molding by the dry-tamp process was followed by steam curing at 20-lb/in.² pressures for 24 to 36 hr.

The concrete brick (COE) was also made in the District of Columbia of the same type of materials and concrete mix as the COD brick and cured by similar process.

d. Sand-Lime Bricks

The sand-lime brick from Pennsylvania (SLP) was made with a sand obtained by mixing and crushing the clean waste from a brownstone quarry and stone-cutting plant. From 95 to 100 percent of it passed No. 10 (0.073 in.) mesh; 75 to 85 percent, No. 40 (0.015 in.) mesh; and about 20 percent, No. 100 (0.0055 in.) mesh. Chemical analysis of the sand indicated about 90 percent of silica, 6 percent of alumina and iron oxides, the rest being lime, magnesia, soda, and potash.

The high-calcium quicklime used was hydrated as mixed with about four parts of sand, the mixture being previously pulverized in a tube mill. More sand was added in the final mix to give a proportion of 1 part of quicklime to about 17 parts of dry sand by weight. The brick was molded in machines under high pressure and then hardened under 30- to 35-lb/in.² steam pressure for 10 to 11 hr.

The sand-lime brick from the District of Columbia (SLD) was made with a bank sand containing about 90 percent of quartz, the rest being largely

² Some of the bricks were also used in building walls for fire and hose-stream tests, for which the wall numbers are not here included.

¹ Numbers in brackets refer to references at the end of this report.

orthoclase feldspar. The mix was in the proportion of 1 part of high-calcium hydrated lime to 9 parts of sand by weight, the lime being hydrated at the plant previous to mixing. The bricks were molded by machine under high pressure and then hardened under 120-lb/in. 2 steam pressure for 10 hr.

The sand-lime brick from Ohio (SLO) was made with a sand consisting of a mixture of siliceous and dolomitic minerals. This was mixed with high-calcium lime and enough portland cement to give the required strength in the hardening process under steam pressure.

e. Size of Bricks

The average dimensions of the bricks from a given source were within ½ in. of 2½ in. for the thickness, within ¼ in. of 3¾ in. for the width, and within ¼ in. of 8 in. for the length, except for the sand-lime brick (SLD), which was 2½ to 2½ in. thick, 4½ to 4½ in. wide, the average length being 8¾ in. They were all solid without cores or scoring, except that clay brick CLN had a formed depression, or "frog", on one side equivalent to about 15 percent of the volume.

f. Strength and Absorption of Bricks

The types and sources of the bricks are given in table 1, together with the numbers of the walls for fire-endurance tests built from each lot. Also included in this table are average compressive strengths determined with half bricks on side or edge, the modulus of rupture on 7-in. span, and the water absorption by 5-hr boiling. These determinations were made in accordance with methods given in the standards of the American Society for Testing Materials. The number of determinations on which average results are based ranged from 5 to 50 or more.

2.2. Mortar

The proportions and strength of the mortar used for laying up the walls are given in table 2.

a. Materials

The portland cement and lime were obtained from local dealers and were tested to determine conformity with accepted standards. Both the quick lime and hydrate were of the high-calcium type.

The sand, dredged from the Potomac River, contained about 95 percent of siliceous minerals, mainly quartz, the rest being of micaceous and feldspathic type. In fineness, all of it passed No. 4 sieve; about 95 percent, No. 16 sieve; 20 to 25 percent, No. 50 sieve; and 4 to 5 percent, No. 100 sieve.

b. Proportions

Although the proportions are given by volume, the quantities were obtained by weight. A bag of portland cement weighing 94 lb and one of hydrated lime weighing 50 lb were taken as 1 and 1½ ft ³, respectively. The dry contents of 1 ft ³ of sand was taken as 78 lb, except that for 1:1:6 mortar an 80-lb equivalent was taken. The amount of mixing water to be used was left to the discretion of the mason but weighed for each batch of mortar.

c. Strength

The compressive strength of the mortar was determined with 2-in. cubes, one or more of which were taken from each batch and stored near the test walls under similar atmospheric conditions. The results in table 2 are segregated by age and also by water content of the mix, where specimens were numerous enough to give dependable averages.

The results indicate that, in general, for the cement-lime mortars there was an increase in strength with age and a decrease in strength with increase in water content of the mix. The 1:1½:6 mortar had lower strength than the 1:1½:6 mortar, due apparently to higher lime and sand content. However, the difference probably had no effect on the fire resistance of the walls.

Table 2. Compressive strength of mortar for laying up walls

Type of mortar		n· cement, ne, and sand	Number of walls	Water con- tent 1 of mix	Average	A verage strength
	By dry weight	By nominal volumes	of waits	range	age	Strengtu
				Percent	Days	1b/in.2
Lime	0:50:234	0:11/4:3	3	26.8 to 31.3	62	60
Do	0:50:234	0:114:3	3 3	26.7 to 30.7	140	55
Cement-lime	94:60:468	1:11/2:6	8	21.7 to 25.0	64	310
Do	94:60:468	1:11/2:6	12	25.1 to 36.2	71	180
Do	94:60:468	1:11/2:6	6	25.1 to 36.2	326	220
Do	94:50:468	1:11/4:6	6	19.9 to 23.0	62	340
Do	94:50:468	1:11/4:6	4	19.0 to 23.0	218	540
Do	94:50:468	1:11/4:6	25	23.1 to 26.0	63	340
Do	94:50:468	1:11/4:6	13	23.1 to 26.0	198	450
Do		1:11/4:6	11	26.1 to 30.6	70	290
Do	94:50:468	1:11/4:6	3	26.1 to 30.6	186	280
Do	94:40:480	1:1:6	3	23.1 to 25.4	43	550
Cement	94:0:234	1:0:3	2	22.5 to 23.0	61	850
Do	94:0.234	1:0:3	2	22.3 to 23.8	172	800

¹ Based on total weight of dry materials.

2.3. Plaster

The lime, portland cement, and neat fibered gypsum plaster with which the sanded plaster was made were obtained from local dealers, and in point of quality passed accepted test requirements. The sand was from the same source and of the same fineness as used for the mortar.

The plaster was proportioned by weight of dry materials. The compressive strength, as determined with 2-in. cubes taken from each batch and stored near the test walls, is given in table 3.

The plaster was applied in two coats to a total thickness of 1/2 to 5/8 in. No white-coat finish was applied.

Table 3. Compressive strength of sanded plaster

Type of plaster	Proportions, by dry weight	Wall	Age	A verage strength
Lime	$ \left\{ \begin{array}{l} 1:2\frac{1}{2} \\ 1:3 \\ 1:3 \\ 1:3 \end{array} \right. $	10A 42 60 63	Days 70 65 54 67	1b/in, ² 90 80 25 60
Cement	1:232	8	62	740
Gypsum	1:3 1:3 1:3 1:3 1:3 1:3	9 37 61 62 66 67	61 67 61 67 67 98	590 500 640 920 470 740

3. Test Walls

3.1. Design

The walls of the present series of tests were of solid or of hollow types, as shown in figures 1 and 2.

a. Solid walls

The conventional designs of solid walls are shown in figure 1 (A to C) and of a 4-in. wall

with pilasters in figure 2.

The 4-in. walls were laid with vertical joints broken, that is, with the joint opposite the middle third of the length of the bricks immediately above or below them. The wythes of the 8-in. walls and outside wythes of the 12-in. walls were similarly laid. In the same course the stretchers in 8- and 12-in. walls were laid with end joints in alinement in some walls, and in others they were broken. With two otherwise similar walls, one was built to each detail on this particular. There was one header course for every five stretcher courses.

b. Rolok Walls

With the rolok designs, the bricks in all or the greater number of courses are laid on edge with

the bond broken vertically. The all-rolok design indicated by D and F in figure 1 has stretchers and headers, all on edge. In design G, all-stretcher courses alternate with all-rolok courses. In design H, two stretcher courses on edge alternate with a bonding course having bricks laid on side with two headers for each stretcher.

c. Rolok-Bak Design

For the 8-in. wall, figure 1, E, a common bond with bricks laid flat is attained for the facing, the backing having four stretcher courses on edge per header course laid with bricks on side. For the 12-in. wall, design J, the same bond is attained for the facing, and the backing has three stretcher courses on edge alternating with two bond courses, one with headers on edge and the other with headers and stretchers laid flat.

d. Rolok-Faced Design

As per design K of figure 1, the all-rolok facing is attained for a 12-in. wall with three all-rolok courses alternating with a rolok course having false (half-brick) headers. The backing has three stretcher courses on edge alternating with a solid header course of bricks on edge.

e. Cavity Design

In the cavity type, design L in figure 1, two 4-in. wythes with bricks laid flat were tied together with metal ties in every sixth course spaced 2 ft apart horizontally. In the walls of the present tests, the ties were Z-shaped and of coppercoated steel wire 0.20 in. in diameter.

3.2. Size

a. Large Walls

The large walls were built into frames with openings 16 ft wide and 10 or 11 ft high, corresponding to the size of wall for those tested restrained within the panel frame. For those tested unrestrained or under load, the length was decreased 2 to 3 in. by the clearance between the wall and the frame, and similarly for the height of unrestrained walls. For walls tested under load, the height was 10 ft 4 in. One wall, No. 10, was built in two sections of 7-ft 9-in. and 7-ft 10-in. respective widths.

b. Small Walls

The frames into which the small walls were built had openings 4 ft 2 in. wide and high. As for the large walls, the clearance at the ends of walls tested under load reduced the width of the wall by about 2 in.

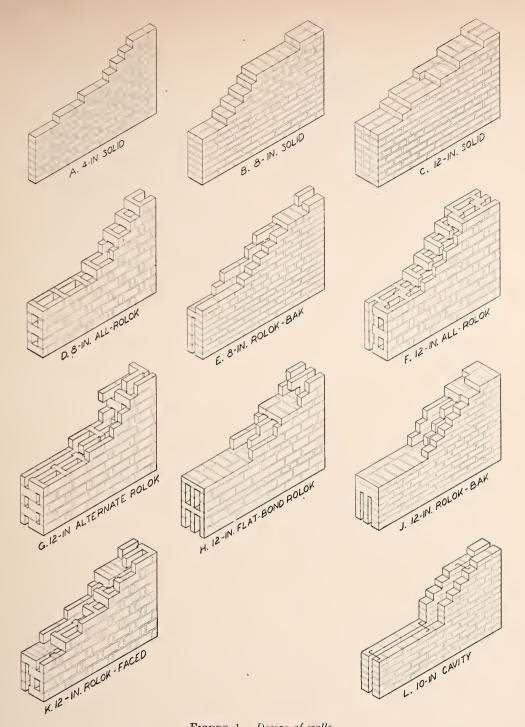


FIGURE 1. Design of walls.

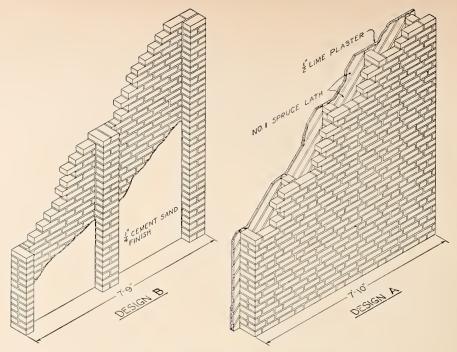


Figure 2. Design of 4-in. wall with pilasters.

3.3. Workmanship

a. Construction Methods

Almost all of the large walls were built by contract given to the lowest bidder, with the stipulation that only experienced masons be employed. Observations were made on methods and rate of laying bricks, the degree to which joints were filled, and related construction details. From 1,000 to 3,300 bricks were required to lay the different walls, each wall requiring the time of one mason from 1 to over 3 days, so that the ordinary work routine might be expected.

Brick stretchers on side in solid walls were uniformly laid by the "spread-and-lay" method, the mason spreading mortar bed for 2 to 5 bricks at a time. Mortar was generally applied to the bricks on only one outside vertical edge before being laid in place with little or no shoving. Mortar was applied to headers near both ends of the long side and sometimes for the greater part of their length. The spread for the following course filled the transverse joints in both stretcher and header course to some extent, and they were found, on the average, three-fourths full on examination after test. The longitudinal joint between stretcher courses in the 8-in. solid walls was found from one-fourth to three-fourths full. In 12-in. solid walls, the longitudinal joints were more nearly filled, the outside stretcher courses being laid first and the center course laid in mortar slushed in between the outside bricks.

thickness of mortar joints was in the general range of 0.40 to 0.60 in.

For bricks set on edge in hollow rolok walls, mortar was spread for the bed joint of several bricks and applied to one vertical edge of stretchers and near both ends on both sides of headers. Somewhat more shoving and tapping of bricks for the rolok walls were necessary than for bricks laid flat. The bed joints were found nearly uniformly filled and vertical joints three-fourths full on the average.

b. Rate of Laying Bricks

The rate of laying bricks in the large walls built on contract varied from 625 to 1,960 bricks per mason per 8-hr day, depending upon the type and thickness of wall, the skill and number of masons working on a given wall, and the number and efficiency of the helpers. The lower rates were obtained with 1 mason and helper laying 4-in. walls and with 3 or 4 masons working on thicker walls, the highest rates being for 1 mason and 2 helpers working on 8-in. solid walls.

The average rate of laying for 8- and 12-in. hollow rolok walls was 910 bricks per mason per 8-hr day, the time required to construct walls of equal area and thickness being nearly the same as for solid walls. The rolok walls required from 25 to 30 percent less brick than solid walls of equal area and thickness.

In table 4 the rate of laying bricks in the large walls is given in terms of man-hours per 100 ft² of

Table 4. Time required for construction of walls

Type of wall	Design (fig. No.)	Nominal thick-	Type of brick	Mortar: ce- ment, lime, and sand	Number	A verage co	Average wall area	
	(ug. 10.)	ness			of walls	Masons	Helpers	built per mason
Solid. Do. Do. Do. Do. All-rolok. Cavity. Solid. Do. All-rolok. Solid. Solid.	1-B	in. 4 14 24 8 8 8 8 10 8 12 12	Surface clay or shale do. do. Surface clay do. Surface clay or shale Surface clay Concrete or sand-lime Surface clay do. Concrete or sand-lime	1:1:6 1:1¼:6 1:1¼:6	5 1 7 2 2 5 3 5 2 1 2	Man-hr/100 fr 2 6, 9 12, 2 7, 1 7, 3 8, 0 7, 7 12, 1 9, 4 10, 9 11, 1 14, 2	Man-hr/100 ft 2 9, 3 17, 6 8, 3 7, 8 10, 1 8, 9 5, 4 10, 3 9, 4 13, 8 12, 7	ft 2/hr 14. 5 8. 2 14. 1 13. 7 12. 5 13. 0 8. 3 10. 6 9. 2 9. 0 7. 0

¹ Pilasters 4 by 4 in., 1-ft 9 in. centers for one half of wall. ² Pilasters 4 by 8 in., 3-ft 9 in. centers for other half of wall.

wall and the average area of wall built per mason

per hour.

The comparatively low rate of laying bricks for 4-in. and cavity walls, considering the relative number of bricks involved, is apparently due in large part to the greater care needed to keep the newly laid masonry on line. The rate for the 4-in. walls with pilasters and for the hollow rolok walls was also attributable to the masons' lack of experience in laying these types, as compared with laying the usual 8- and 12-in. solid walls. As for differences indicated in the table for type of brick and mortar, the conditions were not uniform in point of number and skill of masons and helpers working on given walls, for which due allowance should be made in considering the nominally comparable figures. The averages also comprise figures for five walls built by a mason in Government emplov.

Except for the 4-in. wall with pilasters, none of the large walls were plastered. The face joints were struck and pointed, although not as uniformly as would be required on a commercial job. In point of filling of interior joints and similar construction details, the workmanship was apparently barely up to the average in commercial building

construction.

Five of the large walls and all of the small walls were built by masons in the employ of the Government, with the grade of workmanship probably a little above the commercial average.

3.4. Auxiliary Strength Tests of Masonry

a. Test Specimens

At the time of building the walls for fire tests, an auxiliary masonry pier was built for almost all of the large walls and for a few of the small walls. These were 2 to 3 bricks long, or $16\frac{1}{2}$ to 25 in., the average height being near 2 ft 6 in. The piers had aged 55 days or more at the time of test, and further seasoning probably would not have materially increased their strength. They were tested in compression, with results as summarized in table 5, and the weight loss in seasoning up to the time of testing is also given.

The table further includes results of strength tests of piers cut from walls after fire-endurance or fire and hose-stream tests. For some of the small walls, the whole test wall was subjected to the compression test after cooling, with some regain in strength subsequent to the fire-endurance test.

b. Strength of Solid Masonry

The average results indicate a strength for the solid piers in the lower range of values, of four or more times the 160 lb/in.2 working load applied to 8- and 12-in, walls tested under load in the fireendurance tests. The strength with the portlandcement mortar was higher, and with the lime mortar lower than for the cement-lime mortar, with which most of the solid walls and all of the hollow walls were laid. The average strength of masonry piers laid in lime mortar was 625 lb/in.2

In general, the strength of masonry increased with the strength of the brick, although the relation varied considerably as a result of other properties, including the bond obtained with the mortar. The high compressive strength developed by the 4-in, walls is apparently attributable to the absence of headers, the early breaking of which in 8- and 12-in, walls contributed to failure at lower load.

c. Results with the Rolok Design

The strength for the rolok-type hollow wall with bricks set on edge was lower than for solid walls, being as an average only a little more than three times the load of 160 lb/in.2 applied in the fireendurance tests. However, according to buildingcode requirements, the permitted working stress for hollow walls of brick is lower, being in the range 80 to 125 lb/in.2 of gross area.

	Brick				Fire-test wa	alls		Mortar:			
Kind	Type and source	Compressi	ve strength	Wall	Туре	Design (figure	Nominal	cement, lime, and sand (by	A verage age	Weight loss in seasoning	Compressive strength
Kind	symbol	On side	On edge	vv an	Туре	No.)	thickness	volume)			of piers
Surface clay	CLM CLM CLM CLM CLM CLM	lb/in.² 3, 280 3, 280 3, 280 3, 280 3, 280 3, 280 3, 280	lb/in. ² 2, 560 2, 560 2, 560 2, 560 2, 560 2, 560 2, 560	1 11 38 54 64 14, 15	Soliddo do All-rolokdo Solid	1-A 1-B 1-C 1-D 1-G 1-B	in. 4 8 12 8 12 8	1:1 ¹ / ₄ :6 1:1 ¹ / ₄ :6 1:1 ¹ / ₄ :6 1:1 ¹ / ₄ :6 1:1 ¹ / ₄ :6 1:0:3	Days 182 146 231 135 232 248	lb/ft.3 5. 9 4. 5 3. 5 3. 5 4. 9 3. 5	lb/in.2 1, 170 850 740 530 630 970
Do Do Do Do Do	CLM CLM CLM CLM CLM CLM	3, 130 3, 130 3, 130 2, 960 2, 960	1, 960 1, 960 1, 960 2, 940 2, 940	16 17 75 2 18 10B	do do do do	1-B 1-B 1-B 1-A 1-B 1-A	8 8 8 - 4 8 4	$\begin{array}{c} 0:1\frac{1}{4}:3\\ 0:1\frac{1}{4}:3\\ 1:1\frac{1}{4}:6\\ 1:1\frac{1}{4}:6\\ 0:1\frac{1}{4}:3\\ 1:1\frac{1}{4}:6\\ \end{array}$	126 409 224 55 77 70	2. 5 6. 7 (1) 4. 4 4. 7	510 720 540 1, 450 650 1, 210
Do	CLM CLI CLI CLI CLI CLI	2, 920 2, 920 2, 920 2, 920 2, 920	2, 330 2, 330 2, 330 2, 330 2, 330	13 40 19, 21 75 43 55 to 57	dodododododododo	1-B 1-C 1-B 1-B 1-C 1-D	8 12 8 8 12 8	$\begin{array}{c} 1:1\frac{1}{4}:6\\ 1:1\frac{1}{4}:6\\ 1:1\frac{1}{4}:6\\ 1:1\frac{1}{4}:6\\ 1:1\frac{1}{4}:6\\ 1:1\frac{1}{4}:6\\ 1:1\frac{1}{4}:6\end{array}$	97 98 157 225 157 121	(2) (2) 5.8 (1) 5.5 4.4	630 710 530 400 480 450
Shale	SHW SHW SHW SHW	8, 110 8, 110 8, 110 6, 450	6, 400 6, 400 6, 400 5, 640	5, 73 22, 23 58 59	Solid	1-A 1-B 1-D 1-D	4 8 8 8	1:11/4:6 1:11/4:6 1:11/4:6 1:11/4:6	174 89 316 59	6. 3 5. 8 4. 2 2. 4	1, 880 1, 530 1, 470 440
Concrete Do Do Do	CON CON CON CON CON	2, 780 2, 780 2, 780 2, 780 2, 780 2, 780	1, 530 1, 530 1, 530 1, 530 1, 530	73 25 26 75 45, 78	Soliddo.	1-A 1-B 1-B 1-B 1-C	4 8 8 8 12	1:1 ¹ / ₄ :6 1:1 ¹ / ₄ :6 1:1 ¹ / ₄ :6 1:1 ¹ / ₄ :6 1:1 ¹ / ₄ :6	238 72 314 226 161	8. 0 4. 0 5. 3 (1) 6. 1	1, 250 840 870 440 850
Do	CON COE COE COE	2, 780 2, 780 3, 350 3, 350 3, 350	1, 530 1, 530 2, 490 2, 490 2, 490	78 76 28 28 50	do All-rolok Soliddo	1-C 1-D 1-B 1-B 1-C	12 8 8 8 8 12	1:1¼:6 1:1¼:6 1:1¼:6 1:1¼:6 1:1¼:6 1:1¼:6	174 192 78 78 78 78	(1) 7. 4 (2)	580 440 940 430 1,040
Sand-lime	SLP SLP SLP SLP SLD SLD	4, 630 4, 630 4, 630 4, 630 2, 060 2, 060	4, 720 4, 720 4, 720 4, 720 1, 690 1, 690	29, 30 31 75 51, 78 75 75	dodododododododo	1-B 1-B 1-B 1-C 1-B 1-B	8 8 8 12 8 8	1:1¼:6 1:1½:6 1:1½:6 1:1½:6 1:1½:6 1:1½:6	274 217 228 219 221 224	4. 7 (2) (1) 6. 0 7. 0 (1)	840 280 430 890 830 390
Do	SLD SLD SLD SLO SLO SLO	2, 060 3, 050 3, 050 3, 600 3, 600 3, 600	1,690 2,550 2,550 3,000 3,000 3,000	31 32 32 36 36 36 53	dododododododododododo	1-B 1-B 1-B 1-B 1-B	8 8 8 8 8 12	$\begin{array}{c} 1:1\frac{1}{4}:6 \\ 1:1\frac{1}{4}:6 \\ 1:1\frac{1}{4}:6 \\ 1:1\frac{1}{4}:6 \\ 1:1\frac{1}{4}:6 \\ 1:1\frac{1}{4}:6 \end{array}$	215 69 81 78 78 78	(2) -(2) -(2) -(2)	230 710 450 730 610 810

¹ Pier taken from wall after fire and hose-stream test.

3.5. Seasoning of Walls

a. Large Walls

The large walls were stored in the frames within which they were built, with the base of wall about 4 ft above the floor of the building. The frames were suspended from trolley tracks and for the seasoning period were placed 1½ to 4 ft apart in one end of the building. In cold or damp weather, the drying of masonry was accelerated with three warm-air furnaces, the storage space being segregated from the rest of the building with a canvas curtain

The age of the large walls at time of the fireendurance test ranged from 28 to 100 days, in general, the longer seasoning period being allowed for the thicker walls. A measure of the degree of dryness at time of test was obtained by weighing at intervals the companion piers built for compression tests. The fire test was not conducted until there was no loss indicated in the weight of the pier on successive weighings at intervals of a few days or until the loss was small. The piers were tested from 2 weeks to over 1 year after the fire test of the companion wall, and the weighings of the piers in the interval indicate the weight loss the walls subjected to the fire test might have had on longer aging.

In general, the data indicate that although most of the test walls had not reached constant weight at the time of the fire test under the seasoning conditions concerned, the further loss in weight for walls of clay and shale bricks would have been no more than 10 or 15 percent of the loss up to the time of the fire test. However, if the seasoning had extended into a period with more favorable drying conditions, such as from the summer through the winter months, the eventual loss in weight would have been greater.

For the walls of concrete and sand-lime bricks, the loss for more extended seasoning would apparently have been greater than for the walls of clay

²Pier taken from wall after fire-endurance test.

and shale bricks. Although the rate of loss of the piers immediately before the fire test of the walls was low, further seasoning of the piers for 5 or more months resulted in weight losses from 30 to 70 percent of those sustained before the time of the fire test. The average weight loss of the piers at the time of the compression test after aging an average of about 230 days was 6.2 lb/ft,³ or between 4 and 5 percent of the weight of the masonry. Hence, the indications are that if the concrete and sand-lime brick walls had been aged as long as the piers they would have had a further weight loss of 1 to 2 percent of their weight beyond that obtained at the time of the fire test.

b. Small Walls

These walls were built in a building within which ceramic furnaces were operated, with resulting good drying conditions for the walls. Furthermore, eight of the walls, after seasoning under room conditions for about 1 month, were placed within enclosures and dried to constant or near constant weight at average temperatures in the range 160° to 180° F. On removal from the enclosure they would gain in weight under room atmospheric conditions.

4. Testing Equipment and Methods 4.1. Panel Frames

The large walls were built into frames constructed of 20-in. steel girder beams, the parts thereof exposed to fire or heat as placed for the fire test being protected with concrete. They were supported on trollevs running on the lower flange of overhead beams. The computed strength of the frames as stressed by the expansion or loading of the wall under test ranged from 340,000 to 400,000 lb. Although the highest load applied to the walls did not exceed 240,000 lb, the loads induced by expansion of the wall as exposed to fire might be greater. To strengthen the frames into which the heavier walls were built and to secure a greater degree of restraint on the wall, members made of

OR LINE

OWER

Ó

two 8-in. channels spanning the height of the frame and bolted to webs of the top and bottom frame members were placed one on each side of the vertical center line of the panel.

The frames for the small walls were built of reinforced concrete or protected steel. For the frames in which the walls were tested under load, the top member was free from the side members and served to transmit and distribute the load over the wall.

4.2. Furnace Equipment

The furnace, a section of which is shown in figure 3, was used in fire tests of almost all of the large walls. It was fired with fuel oil of specific gravity 0.87 to 0.93, gas not being available at the

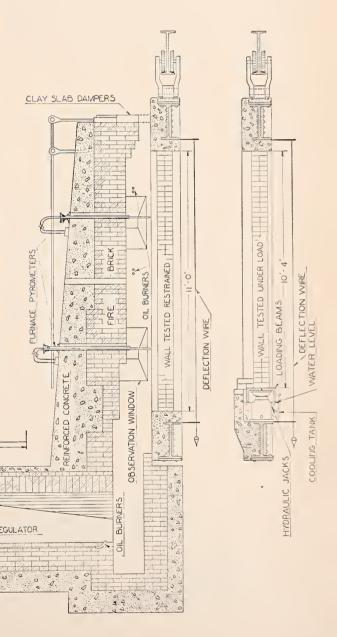


Figure 3. Section through large testing furnace.

site. The oil was dispersed with jets of air at 20-to 25-lb/in.² pressure. Further air for combustion and for forcing flame and heated air over the exposed side of the test wall was supplied by a blower fan at the back of the burner chamber.

Originally, there were two main burners, which later were increased to four. Four auxiliary burners were also added, two on each side, one near the midheight of the panel, and the other about

3 ft higher.

The last tests in the series, Nos. 7, 70, 71, and 72, were made in a gas-fired furnace of design similar to that shown in figure 3, descriptions of which are given in BMS71, BMS117, and BMS120 [2, 3, 4].

The tests of the small walls were conducted in a gas-fired furnace having four blast burners on each side projecting flame at a small angle on the back wall of the chamber, which curved outward toward the center of the test wall. Auxiliary inlets on each side supplied the additional compressed air required for combustion. A view of this furnace is given in figure 9 of RP37 [1].

4.3. Loading and Restraint

The large walls tested under working load were supported on two heavy channels about 8 ft long, under each of which were placed two 200-ton hydraulic jacks resting on the lower member of the panel frame. The jacks were actuated by oil under pressure from a motor-driven pump. The oil pressures, which seldom exceeded 1,000 lb/in.², were measured with gages and a fluid-pressure scale. Load on the small walls was applied with a hydraulic jack bearing against an overhead member secured at its ends to the bottom member of the panel frame.

The walls tested restrained were built solidly into the panel frames. The restraint was relieved to the extent that the panel frame members deflected under pressure from the expanding wall and also from the deflection of the members due to uneven heating. The measurements made on the frames for the large walls indicated that at the midpoint the top member deflected upward during test in the range ¼ to 1 in., and the bottom member deflected similarly downward. The side members deflected inward by smaller amounts

where there was clearance between them and the test wall. The greater part of these deflections was apparently due to temperature effects on the panel members.

A number of the large 8- or 12-in.-thick walls were built clear of the panel frame at the top and sides, thus allowing them to deflect freely because of the temperature difference between their fire-exposed and unexposed sides. To prevent undue curvature at the top of the 8-in. walls, an 8- by 8-in. pilaster was built into them at each end on the unexposed side.

4.4. Furnace Fire Exposure

a. Furnace Control Curve

At the time these fire stests were begun, the control of furnace temperatures had been standardized to call for an average of 1,550° F (843° C) at the end of ½ hr, 1,700° F (927° C) at 1 hr, and 1,850° F (1,010° C) at 1½ hr. Subsequent to this, the rise was constant at 75 deg F per hour, the temperature for the 4-hr point being 2,000° F (1,093° C), and 2,300° F (1,260° C) at 8 hr.

In the tests carried beyond 8 hr, it was the intention to continue raising the furnace temperature 75 deg F per hour until 2,500° F was reached at 10 hr 40 min, after which it was to be maintained at this level. According to a later revision of the standard, the temperature of 2,300° F at 8 hr is to be maintained for longer test durations. These furnace reference curves are shown in dashed lines on the time-temperature plots.

b. Pyrometer Mounting

The furnace pyrometer mounting initially used is shown in figure 4, the thermocouple wires being in pairs of chromel and alumel. On account of the high cost and frequent breakage with this type of mounting, ½-in. black-iron pipes were later substituted, capped or welded closed at the furnace end. Thermoelectric properties of chromel-alumel wire are not affected by black iron even at the temperature of the furnace, and it was also found that the lag and radiation effects on the temperature readings are about the same as for the procelain-tube mounting.

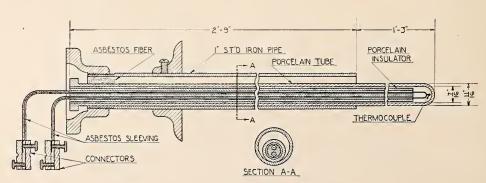


FIGURE 4. Detail of furnace pyrometer mounting.

In the tests with the furnace shown in figure 3, there were six furnace pyrometers thus mounted, symmetrically placed 3 ft above and below the center line of the panel, two on the vertical center line, and two 5½ ft from it on each side. The end of the mounting was kept at approximately 3 in. from the wall under test.

In the tests conducted in the small furnace, six pyrometers with iron-pipe mountings were located in two vertical rows 1 ft to the side of the center of the panel, with two on the horizontal center line, two 14 in. above and two below it, similarly placed.

c. Lag and Radiation Effects

Because of the insulating effect of the mounting [5], the thermocouple readings during the initial part of the test were far below the temperature of the furnace gases, and even at 5 min the lag was in the order of 150 to 250 deg F. However, at 20 to 30 min, the lag effect was not appreciable.

The mounting was also cooled by radiation from furnace and test walls that were at lower temperatures than the furnace gases. During the first part of the test, this may affect the readings by as much as 300 deg F, decreasing, as the furnace and test walls heat up, to the order of 100 deg F

at 4 or 5 hr.

The temperatures called for according to the furnace control curve are adjusted to allow for the lag and radiation effects that were incurred with the prescribed pyrometer mounting.

d. Unprotected Furnace Thermocouples

To obtain information on the temperature variation in the large furnace and some indications of lag and radiation effects on the readings of the mounted furnace thermocouples, nine unprotected thermocouples of No. 18 B&S gage chromelalumel wire were placed with a 12-in. length in the furnace and the thermocouple junction about 1 in. from the fire-exposed face of the wall. They were located symmetrically with reference to the center of the panel, 3 on the horizontal center line and 3 distant 1½ ft from its top, bottom, or side borders.

4.5. Determination of Wall Temperatures

Temperatures at the center of the thickness of 4- and 8-in. walls and between the wythes of 12-in. walls were determined with 5 chromelalumel thermocouples, the leads for 6 in. or more from the junction being placed parallel with the wall.

The temperatures of the unexposed face of the wall were obtained with iron-constantan or chromel-alumel thermocouples, the wire size ranging from No. 22 to No. 30 B&S gage. The regular number for the large walls was 13, of

which 9 were located over the central one-third of the area. They were in close contact with the wall surface and freely exposed. Other thermocouples were placed over holes or cracks that developed as the test progressed. In addition, 1 or 2 thermocouples on the face of the lower part of the wall were covered with 3½ in. of loose cotton in a 3-ft square box or were in contact with the board face of a similar box filled with wood excelsior. This simulated conditions where clothing or bales or crates of combustible materials are in contact with the unexposed side.

After a number of the tests had been completed, the method of temperature measurement on the unexposed surface was standardized to require thermocouples or thermometers under asbestos pads 6 in. sq and 0.40 in. thick. [6] For some time prior and subsequent thereto, the determinations were thus made, although parallel determinations were made with uncovered thermocouples to obtain approximate correlation of readings.

The temperatures on the unexposed face of the small walls were determined with uncovered thermocouples and with thermocouples or thermometers under the 0.40-in.-thick asbestos pads, generally 3 in number, located 1 at the center of the wall and the others about 1 ft distant on a diagonal center line.

4.6. Calibration of Thermocouples

The temperature-emf relations of representative samples of the thermocouple wire were determined by comparison with a thermocouple for which this relation was known. Due to changed temperature-emf relations on reheating after use at high temperatures, the furnace thermocouples were replaced for each test except for those of short duration. Thermocouples in the walls were also thus replaced if the temperatures indicated had been above certain limits.

4.7. Deflection Measurements

The deflections of the large walls were measured with reference to weighted wires suspended from the top member of the panel frame and passed through holes in pegs secured to the lower member. Measurements were made at the center of the wall and at the quarter points of the height and width. For the walls tested unrestrained, deflections were also measured at the top center and top corners and at two intermediate points.

4.8. Hose-Stream Tests

Typical wall constructions were subjected to hose-stream tests after fire exposures of given durations. The tests were conducted according to the ASTM or ASA fire-test standard applicable at the time. The stream was delivered through a National Standard playpipe having 1½-in, nozzle diameter, the water pressure being obtained with a motor-driven centrifugal pump.

5. Program of Tests 5.1. Solid Walls

Table 6 gives the schedule of fire-endurance tests of solid brick walls, the designs of which are shown in figure 1 (A to C) and in figure 2. The schedule included 27 tests of large walls and about an equal number of the smaller size. They were tested either under working load, restrained within the panel frame, or in the unrestrained condition with a clearance of ½ to 1½ in from the

sides and top of the frame.

Most of the walls were laid in mortar having 1:14:6 or 1:14:6, volume parts of portland cement, hydrated lime, and sand. These are equivalent, respectively, to about 1:0.53:5 and 1:0.64:5 parts by weight of dry materials. Two of the walls were laid up in portland cement and mortar, proportioned 1:3 by volume, and three in lime mortar proportioned 14:3 by volume. All but six were tested without plaster finish on either side.

Table 6. Description of solid brick walls for fire-endurance tests

	v	Vall dimensi	ons			Briek		Mortar:ee-	Plast	er		1.
Wall or test	Nominal thickness	Length	Height	Design (fig. No.)	Kind	Locality	Type and source symbol	ment, lime, and sand (by volume)	Fire-exposed side	Unexposed side	Restraint or loading during test	Age at time of test
1 2 3 4 5	in. 4 4 4 4 4 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-A 1-A 1-A 1-A 1-A	Claydodododoshale	Md	CLM CLM CLM CLM SHW	1:11/4:6 1:11/4:6 1:11/2:6 1:11/2:6 1:11/4:6	None	Nonedododododo	Restrained	43 50
6 7 8 9 10A 10B	4 4 4 4	15 9 16 0 4 2 4 2 7 10 7 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1-A 1-A 1-A 1-A 2-A 2-B	Claydo .	West Va N. Y. Md Md West Va	SHW CLN CLM CLM SHW	1:11/4:6 1:11/4:6 1:11/2:6 1:11/2:6 1:11/4:6	dodoCementGypsum_{Lime on wood lath.	None	80 lb/in. ²	$ \begin{array}{c} 39 \\ 29 \\ 40 \\ 41 \\ 150 \\ 235 \\ 153 \\ 100 \end{array} $
11 12 13 14 15	8 8 8 8 8	$\begin{array}{cccc} 16 & 0 \\ 4 & 2 \\ 4 & 2 \\ 15 & 10 \\ 16 & 0 \end{array}$	$\begin{array}{cccc} 11 & 0 \\ 4 & 2 \\ 4 & 2 \\ 10 & 10 \\ 11 & 0 \end{array}$	1-B 1-B 1-B 1-B 1-B	do do do do	Md Md Md Md	CLM CLM CLM CLM CLM	1:11/4:6 1:11/2:6 1:11/4:6 1:0:3 1:0:3	do do do	do	RestraineddodoUnrestrained	75 3 D
16 17 18 19	8 8 8 8	15 10 16 0 15 9 15 10	10 10 11 0 10 4 10 11	1-B 1-B 1-B 1-B	do do do	Md Md Md	CLM CLM CLM	0:1¼:3 0:1¼:3 0:1¼:3 1:1¼:6	do	do	Unrestrained Restrained 120 lb/in.² Partly re- strained.	34 50 65
20 21 22 23 24 25	8 8 8 8 8	16 0 16 0 16 0 15 10 4 2 15 10	11 0 11 0 11 0 10 10 4 2 10 10	1-B 1-B 1-B 1-B 1-B 1-B	do Shale do do Conerete	Ill West Va West Va West Va N. Y	CLI SHW SHW SHW CON	$1:1\frac{1}{4}:6$ $1:1\frac{1}{4}:6$ $1:1\frac{1}{4}:6$ $1:1\frac{1}{4}:6$ $1:1\frac{1}{4}:6$ $1:1\frac{1}{4}:6$ $1:1\frac{1}{4}:6$	do do do do	do do do	Restrained do do Unrestrained Restrained Unrestrained	57 52 35 43 56 32
26 27 28 29 30	8 8 8 8	$\begin{array}{ccc} 16 & 0 \\ 4 & 2 \\ 4 & 0 \\ 16 & 0 \\ 15 & 10 \\ \end{array}$	$\begin{array}{cccc} 11 & 0 \\ 4 & 2 \\ 4 & 2 \\ 11 & 0 \\ 10 & 10 \end{array}$	1-B 1-B 1-B 1-B 1-B	do do Sand-lime_ do	N. Y. D. C. D. C. Pa. Pa.	CON COD COE SLP SLP	1:1¼:6 1:1½:6 1:1½:6 1:1¼:6 1:1¼:6 1:1¼:6	do do do	do	Restrained do 160 lb/in.² Restrained Unrestrained	34 80 3 D 40 42
31 32 33 34 35	. 8 8 8 8	15 10 15 9 4 2 4 0 4 0	$\begin{array}{cccc} 10 & 10 \\ 10 & 4 \\ 4 & 2 \\ 4 & 2 \\ 4 & 2 \end{array}$	1-B 1-B 1-B 1-B 1-B	do do do	Pa D. C D. C D. C D. C D. C D. C	SLP SLD SLD SLD SLD SLD	$ \begin{array}{c} 1:1\frac{1}{4}:6 \\ 1:1\frac{1}{4}:6 \\ 1:1\frac{1}{2}:6 \\ 1:1\frac{1}{2}:6 \\ 1:1\frac{1}{4}:6 \end{array} $	do do do	do	do	35 63 77 46 3 D
36 37 38 39 40	8 8 12 12 12 12	$\begin{array}{cccc} 4 & 0 \\ 4 & 2 \\ 15 & 10 \\ 4 & 2 \\ 4 & 0 \end{array}$	$\begin{array}{cccc} 4 & 2 \\ 4 & 2 \\ 10 & 10 \\ 4 & 2 \\ 4 & 2 \end{array}$	1-B 1-B 1-C 1-C 1-C	Claydododododo	Ohio	SLO CLM CLM CLM CLM	$\begin{array}{c} 1:1\frac{1}{4}:6 \\ 1:1\frac{1}{2}:6 \\ 1:1\frac{1}{4}:6 \\ 1:1\frac{1}{2}:6 \\ 1:1\frac{1}{4}:6 \end{array}$	Gypsum None do	Gypsum _ None	160 lb/in.² Restrained Unrestrained_ Restrained 160 lb/in.²	³ D 47 83 48 ³ D
41 42 43 44 45	12 12 12 12 12 12	4 2 4 2 16 0 4 0 4 0	$\begin{array}{ccccc} 4 & 2 \\ 4 & 2 \\ 11 & 0 \\ 4 & 2 \\ 4 & 2 \end{array}$	1-C 1-C 1-C 1-C 1-C	do do do Shale	Md Md Ill West Va	CLM CLM CLI CLI SHW	$1:1\frac{1}{2}:6$ $1:1\frac{1}{2}:6$ $1:1\frac{1}{4}:6$ $1:1\frac{1}{2}:6$ $1:1\frac{1}{2}:6$	Lime Nonedo	do do do	Restraineddododo160 lb/in.2160 lb/in.2	$ \left\{ \begin{array}{c} 44 \\ 1 41 \\ 2 22 \\ 54 $
46 47 48 49 50	12 12 12 12 12 12	$\begin{array}{ccc} 16 & 0 \\ 4 & 0 \\ 4 & 2 \\ 4 & 0 \\ 4 & 0 \end{array}$	$\begin{array}{cccc} 11 & 0 \\ 4 & 2 \\ 4 & 2 \\ 4 & 2 \\ 4 & 2 \end{array}$	1-C 1-C 1-C 1-C 1-C 1-C	Conerete do do do	N. Y D. C D. C D. C	CON COD COD COD COE	1:1¼:6 1:1½:6 1:1½:6 1:1½:6 1:1¼:6	do do do	do do do	Restrained	38 82 53 3 D 3 D
51 52 53	12 12 12	16 0 4 0 4 0	$\begin{array}{cccc} 11 & 0 \\ 4 & 2 \\ 4 & 2 \end{array}$	1-C 1-C 1-C	Sand-lime_ do	Pa D. C Ohio	SLP SLD SLO	1:1½:6 1:1½:6 1:1½:6	do	do	Restrained 160 lb/in.2 160 lb/in.2	48 78 3 D

Masonry. ² Plaster. ³ Dried to eonstant weight.

5.2. Walls of Hollow Design

Table 7 gives the schedule of fire-endurance tests of walls having one or more cavities spanned by header bricks or wire ties, the designs of which are given in figure 1 (D to L). They were all of clay or shale bricks laid up in portland-cement-lime-sand mortar. The conditions of loading and restraint were the same as for the solid walls.

5.3. Fire and Hose-Stream Tests

Table 8 describes the walls which were subjected to a hose-stream test after a fire-exposure of 1 hr or after the fire-endurance test. Most of them were built in three or more sections bonded together and of bricks representative of those in the walls for the fire-endurance tests.

Table 7. Description of hollow walls for fire-endurance tests

Wall	V	Vall dimensi	ons	Wall de	esign		Brick		Mortar:	Pla	ster	Restraint	Age at
or test	Nominal thick- ness	Length	Height	Type	Figure No.	Kind	Locality	Type and source symbol	lime, and sand (by volume)	Fire- exposed side	Unex- posed side	or loading during test	time of test
54 55 56 57 58 59 60 61 62 63 64 65 66	in. 8 8 8 8 8 8 8 12 12	ft in. 15 10 15 10 16 0 16 0 15 10 15 9 4 2 4 2 4 0 4 0 15 10 15 10 4 2 4 2 4 2 4 0 4 0	ft in 10 10 10 10 11 0 11 0 10 10 11 0 10 10 10 4 4 2 4 2 4 2 4 2 10 10 4 2 4 2	All-rolokdododododododo.	1-D 1-D 1-D 1-D 1-D 1-D 1-D 1-D 1-E 1-E 1-E	Claydododododododo	III	CLM CLI CLI CLI SHW SHW CLM CLM CLM CLM CLM CLM CLM CLM	1:1½:6 1:1½:6 1:1½:6 1:1½:6 1:1½:6 1:1½:6 1:1½:6 1:1½:6 1:1½:6 1:1½:6 1:1½:6 1:1½:6	Nonedododododododo.	Nonedododododododo.	UnrestraineddoRestraineddoUnrestraineddoUnrestraineddododododododo	Days 40 34 38 40 53 32 { 1 42 2 28 45 43 46 100 47 { 1 46
67	12	4 2	4 2	Flat-bond rolok.	1-H	do		CLM		do	dypsum_	do	2 31 46
68	12	4 0	4 2	Rolok-bak.	1-J	do	Md	CLM	1:11/2:6	None	None	Unrestrained.	41
69	12	4 0	4 2	Rolok- faced.	1-K	do	Md	CLM	1:1½:6	do	do	160 lb/in.²	41
70 71 72	10 10 10	15 9 15 10 16 0	$\begin{array}{ccc} 10 & 4 \\ 10 & 4 \\ 10 & 0 \end{array}$	Cavitydodo	1-L 1-L 1-L	do do		CLN CLN CLN	1:1:6 1:1:6 1:1:6	do do	do	125 lb/in.² 54 lb/in.² Restrained	48 33 41

1 Masonry.

² Plaster.

Table 8. Description of walls for fire and hose-stream tests

No plaster was applied on any of the walls subjected to the fire and hose stream test

		Size of wall	1	Wall desig	n	Number	Brick symbol	Mortar: cement,		Age at
Wall or test	Nominal thick- ness	Length	Height	Type	Figure No.	of sec- tions	for respec- tive sec- tions	lime, and sand (by volume)	Restraint or loading during test	time of test
	in.	ft in.	ft in.				(CLM)		Days
73	4	16 0	11 0	Solid	1-A	8	CLI SHW CON	1:11/4:6	Restrained	36
7 1	4	16 0	10 0	do	1-A	1	CLN CLM	1:11/4:6	do	29
74	8	15 10	10 10	do	1-B	8	CLI SHW CON SLP	1:11/4:6	Unrestrained	34
75	8	16 0	11 0	do	1-B	8	CLM CL1 SHW CON SLP SLD CLM	1:1¼:6	Restrained	26
76	8	16 0	11 0	All-rolok	1-D	8	CLI SHW CON	1:11/4:6	_do	26
77	8	15 10	10 10	do	1-D	10	l SLP	1:1¼:6 one half: 1:¼o:6 one half.	Unrestrained	28
78A	12	15 10	11 0	Solid	1-C	3	CON SLP SLD	1:114:6	Restrained	45
78B ² 71 ¹ 72 ¹	12 10 10	15 10 15 10 16 0	10 10 10 4 10 0	Cavitydo	1-L	3 1 1	do ⁴ CLN CLN	1:134:6 1:1:6 = 1:1:6	Unrestrained 54 lb in ³ . Restrained	56 33 41

¹ Hose stream applied at the end of the fire-endurance test.

² Test No. 78B was made with the same wall as Test No. 78A but top brick course had been removed so wall could be tested in the unrestrained condition.

³ Includes CLM, CLI, SHW, CON, SLP.

⁴ Includes CON, SLP, SLD.

6. Results of Fire-Endurance Tests

6.1. Criteria of Fire-Endurance Limit

The results of the fire-endurance tests from the standpoint of limits of temperature rise on the unexposed surface and within the wall are given in the tables in sections 6.2 and 6.3. Also given is the time at which some of the walls exposed to fire under load failed under the working load applied, this being their fire-endurance limit in the absence of a lower limit based upon other criteria.

a. Limits of Surface-Temperature Rise

According to the test specifications cited [6] and later issues thereof, the permissible average limit of temperature rise on the unexposed surface above the initial is 250 deg F, and for a single location, 325 deg F. This assumes that measurements are made under the prescribed asbestos pads. previously indicated, in the earlier tests the greater number of temperature measurements were made on the freely exposed surface. A comparison of results where both methods were used indicate that the average limit of temperature rise under the asbestos pads is reached in about 0.84 of the time the limit is reached with the uncovered thermocouples. This agrees closely with results of similar comparisons reported and applied in a previous paper [1]. Accordingly, in the tables in sections 6.2 and 6.3, for tests where the average limit of surface temperature rise was obtained only on the free surface, the derived limit for determination under the asbestos pads, obtained by applying the above factor, is given in italics. It appears that results thus derived come well within the limits of variation due to difference in materials and bricks within groups for which the results are herein summarized in terms of average values.

Significant information is also obtained from the time limits of temperature rise obtained under the large cotton pad and excelsior box applied on the unexposed surface in the earlier tests and also the limits indicated over cracks and imperfect joints.

b. Temperature Rise Within the Wall

The limits of temperature rise within the wall are given in the last double column of the tables in section 6.2 and 6.3. These are used as the basis for indicating fire-endurance limits of walls having combustible members framed into them for a 4-in. depth from the unexposed side.

c. Residual Temperature Rise

Where the limit of temperature rise was reached after the fire was shut off, it is included in parenthesis in the tables, except where the lag is only a few minutes. Although not applied as a basis for fire-endurance limits, it is significant as indicating the degree of temperature rise after the end of the fire exposure, with the wall remaining in

front of the furnace in the same position as during the test.

d. Lateral Deflection

Although the test specifications do not place a limit on lateral deflections, they determine to a large extent the ability to sustain load and the stability under fire exposure. Lateral deflections are largely due to temperature differences between the fire-exposed and unexposed surfaces of the wall.

The center deflection, f, for the restrained or loaded wall, free from the panel frame at the sides, can be expressed approximately by the following relation: [7]

$$f = \frac{Ch^2(T_2 - T_1)}{8t},$$

where C is a constant involving the coefficient of expansion of the wall material, h is height, t the wall thickness, and (T^2-T^1) the temperature difference between the fire-exposed and unexposed sides of the wall

Based upon the same considerations, the deflection at the top of unrestrained walls will be four times the center deflection for the restrained or loaded condition.

6.2. Results With Solid-Wall Constructions

The solid-wall constructions in 4-, 8-, or 12-in. nominal thickness, for which results are given in table 9, were built of clay, shale, concrete, or sand-lime bricks.

a. Walls of 4-in. Thickness

The 4-in, walls were all of clay and shale bricks and were tested either under load or restrained within the panel frame. There was no failure under load or from excessive deflection before the time corresponding to their fire-endurance limit as determined by temperature rise on the unexposed surface.

(1) Temperature-rise limits. The temperature rise of 250 deg F was reached in an average time of 1 hr 21 min for the unplastered walls as referenced to temperatures under the asbestos pads. A \%-in. thickness of portland cement or gypsum plaster on both side (tests 8 and 9) increased the fire-endurance by 1 to 1\%2 hr.

One wall tested in two sections, 10A and 10B, was stiffened with pilasters (fig. 2). Lime plaster on wood lath was applied over the pilasters on the fire-exposed side of 10A and a ¼-in. thickness of portland-cement plaster on the unexposed side of 10B. Although the pilasters decreased the maximum center deflections to ½ in., the plaster finish added little to the fire-endurance periods.

(2) Time-temperature curves. The temperature curves for tests of 4-in. walls are given in figures 5, 6, and 7. The curves marked F give the temperatures indicated by the furnace pyrometers

mounted as shown in figure 4. For test 5, the curves marked 1 give the average, maximum, and minimum temperatures indicated by 9 unprotected furnace thermocouples of No. 18 gage wires placed with junctions about 1 in. from the fire-

exposed face of the wall.

The curves marked P give the temperatures under the standard 6- by 6- by 0.4-in. asbestos pads placed against the unexposed face of the wall, and those marked S, the temperatures indicated by thermocouples in close contact with the unexposed face but freely exposed. Other curves give temperatures under the 3- by 3-ft pads or boxes filled with cotton or excelsior applied to the unexposed side of the walls in some of the earlier tests and shown in place in figure 8.

The arrows on the curves of temperature on the unexposed side indicate the time when an average temperature rise limit of 250 deg F, or a rise at any thermocouple location of 325 deg F, is reached, whichever in any given test occurs earlier.

(3) Lateral deflections. Typical deflection curves for tests of 4-in. walls are given in figure 9. For walls made of bricks from the same source, the deflections of those tested restrained were greater than for tests under load, the highest deflection being obtained with a restrained shale-brick wall. Figure 10 shows the unexposed side of a 4-in. clay-brick wall after a fire-endurance test of 1 hr 25 min, followed by hose-stream application on the fire-exposed side. The maximum deflection of 6 in. during the fire exposure was decreased to no more than 3 in. from the cooling effect of the hose stream.

b. Clay- and Shale-Brick Walls of 8-in. Thickness

The details of construction and main results of tests for solid 8-in. walls built of clay or shale bricks in the group 11 to 24 and plastered wall 37 are given in tables 6 and 9. Wall 18, laid up in lime mortar, was tested under load, the rest being tested restrained within the panel frame or built free from the frame at sides and top for test in the unrestrained condition.

(1) Surface-temperature limits. Most of the present tests are within the group of large walls in which the fire exposure was limited to 6 hr, on the ground that in regulations such as building codes no higher fire resistance is required. In fact, the maximum required does not generally exceed 4 hr.

With the 6-hr test limit and temperatures on the unexposed side determined on the free surface, the limit of 250 deg average rise was attained only in test 19. However, significant information was obtained from the times at which the temperaturerise limits occurred under the large cotton pad, excelsior box, and at cracks (see fig. 11). Also, in test No. 12 (fig. 12) the rise limit was determined with thermometers under the standard asbestos pads.

Based on the results of these determinations and with allowance for the methods used, the average fire-endurance limit of 8-in. walls built of clay or shale bricks and normally seasoned, was indicated as being near 5 hr. With gypsum plaster on both sides (test 37), the limit of surface temperature rise was not reached until after 9 hr. Although the increment in fire endurance due to plaster increases with wall thickness, in this case, the plastered wall apparently had not attained the degree of dryness of unplastered walls at the time of testing. The lag in temperature rise is shown by the temperature curves in figure 13.

(2) Wall-temperature limits. The permissible temperature rise within the wall, 4 in. from the unexposed surface, was reached in an average time of 2 hr 16 min for the 12 normally seasoned walls. The average of the six lowest results

was 2 hr.

(3) Effect of drying at elevated temperatures. Wall 13 was dried to constant weight at temperatures in the range 160° to 180° F. The 325-deg-F average temperature rise was reached in the wall 4 in. from the unexposed surface at 2 hr 1 min and an average rise of 250 deg F on the unexposed surface under the asbestos pads at 4 hr 9 min. The latter compares with 5 hr 11 min for the companion wall 12, aged under room conditions. Because wall 13 gained in weight under dry heated-room conditions after removal from the drying chamber, it was apparently in a drier condition than walls would usually be after extended aging in heated buildings.

(4) Loading, restraint, and lateral deflection. Wall 18, laid up in lime mortar, was tested under load of 120 lb/in.², which was sustained throughout a fire test terminated at 6 hr. The original compressive strength of the masonry was 650 lb/in.² The maximum lateral deflection was about 1 in. (fig. 9). No further fire tests under load were made of 8-in. solid walls of clay or shale bricks because it was apparent that the load

would be sustained.

For walls of brick from the same source (CLM) as the loaded wall and tested restrained within the panel frame, No. 17 laid up in lime mortar deflected about 1 in. and walls 11 and 15, laid up in cement-lime or cement mortar, near 2 in. The maximum deflection of walls of clay bricks from the other source, CLI, (tests 19, 20, 21 and of shale bricks, SHW (test 22) and tested restrained, were in the range 2½ to 4 in. (fig. 9).

The maximum deflection at the top of the walls tested unrestrained (Nos. 14, 16, and 23, fig. 9) was on the average a little less than four times the center deflection for comparable restrained or loaded walls, which is in fair agreement with the

relation derived from theory [7].

There was no collapse from excessive deflection of restrained or unrestrained 8-in, walls of elay and shale bricks as tested on 11-ft height for 6 hr, which is beyond their fire endurance as limited by

Table 9. Results of fire-endurance tests of solid walls of clay, shale, concrete, or sand-lime bricks Walls having minimum lateral dimensions of 10 ft and area of 100 ft 2 conform to present requirements of ASTM Standard E119

Wall	Nominal	Wall	Brick	Plaste	r	Restraint or load-	Age at	Т	est duration	Severity of furnace
or test	thickness	area	symbol	Fire-exposed	Unexposed	ing during test	time of test	Time	Why ended	exposure
1 2 3 4 5	in. 4 4 4 4 4 4	ft ² 176 160 17. 4 17. 4	CLM CLM CLM CLM SHW	Nonedo.	Nonedododododo	Restrained	Days 69 43 50 38 37	hr min 6 1 2 20 1 10 0 45 2 41	Set limit	Percent 98.7 100.4 100.1 98.0 99.8
6 7 8 9 10A 10B	4 4 4 1 1 2 4	163 160 17. 4 17. 4 81 80	SHW CLN CLM CLM SHW CLM	dodo Cement Gypsum_ Lime on wood lath_ None_	None	Restraineddo	39 29 40 41 50 53	1 44 1 25 4 9 4 1 2 30 2 30	Load failure	100. 6 100. 5 98. 8 98. 7 101. 7 101. 7
11 12 13 14 15	8 8 8 8 8	176 17. 4 17. 4 171 176	CLM CLM CLM CLM CLM	do do dodo	do do	Restraineddo do Unrestrained Restrained	46 75 D ³ 34 77	$\begin{array}{ccc} 6 & 1 \\ 5 & 10 \\ 4 & 09 \\ 6 & 01 \\ 6 & 03 \end{array}$	Set limit_ High wall tempdo Set limitdo	99. 5 98. 8 99. 4 97. 5 99. 1
16 17 18 19 20	8 8 8 8	171 176 163 173 176	CLM CLM CLM CLI CLI	do	do	Unrestrained Restrained 160 lb/in.² Partly restrained Restrained	35 34 50 65 57	$\begin{array}{ccc} 6 & 1 \\ 6 & 0 \\ 6 & 0 \\ 6 & 2 \\ 6 & 1 \end{array}$	do do dodo	99. 0 100. 2 98. 3 100. 5 99. 3
21 22 23 24 25	8 8 8 8	176 176 171 17. 4 171	CLI SHW SHW SHW CON	do do dodo	dododo	. restramed	52 35 43 56 32	$\begin{array}{ccc} 6 & 2 \\ 6 & 1 \\ 6 & 1 \\ 4 & 0 \\ 6 & 1 \end{array}$	do do do	97. 5 99. 6 100. 8 98. 8 100. 2
26 27 28 29 30	8 8 8 8	176 17. 4 16. 7 176 171	CON COD COE SLP SLP	do do dodo	dododododododo.	Restrained	34 80 D 3 40 42	$\begin{array}{ccc} 6 & 2 \\ 7 & 0 \\ 6 & 17 \\ 6 & 1 \\ 6 & 1 \end{array}$	High wall tempdo Set limitdo	99. 0 98. 7 99. 8 99. 1 100. 8
31 32 33 34 35	* 8 8 8 8 8	171 163 17. 4 16. 7 16. 7	$\begin{array}{c} \{\text{SLP} \\ \text{SLD} \\ \text{SLD} \\ \text{SLD} \\ \text{SLD} \\ \text{SLD} \\ \text{SLD} \end{array}$	}do do dodo	dodo	do	77	6 1 6 0 10 6 8 0 7 45	dodoHigh wall tempSet limit.	98. 2 98. 3 97. 4
36 37 38 39 40	8 8 12 12 12	16. 7 17. 4 171 17. 4 16. 7	SLO CLM CLM CLM CLM	Gypsum None do	dodo Gypsum Nonedodo	Unrestrained Restrained	D ³ 47 83 48 D ³	$\begin{array}{ccc} 6 & 41 \\ 11 & 2 \\ 5 & 51 \\ 11 & 36 \\ 10 & 22 \end{array}$	dodoEquip. failureSet limit.	. 100, 2 . 98, 9
41 42 43 44 45	12 12 12 12 12 12	17. 4 17. 4 176 16. 7 16. 7	CLM CLM CLI CLI SHW	Lime None do	dodo	do	44 41 54 82 77	$\begin{array}{ccc} 8 & 0 \\ 16 & 5 \\ 6 & 0 \\ 10 & 21 \\ 12 & 50 \end{array}$	Set limit	98. 0 100. 1
46 47 48 49 50	12 12 12 12 12 12	176 16. 7 17. 4 16. 7 16. 7	CON COD COD COD COE	dodododododododo	dodo	160 lb/in.² Restrained	38 82 53 D ³ D ³	$\begin{array}{ccc} 6 & 1 \\ 16 & 4 \\ 12 & 30 \\ 13 & 55 \\ 14 & 0 \\ \end{array}$	Set limit	98. 8 102. 8 100. 6 99. 4 101. 3
51 52 53	12 12 12	176 16. 7 16. 7	SLP SLD SLO	dodododo	do	Restrained160 lb/in.2do	48 78 D ³	$\begin{array}{ccc} 6 & 1 \\ 9 & 57 \\ 13 & 53 \end{array}$	Set limitLoad failuredo	98. 5 99. 7 101. 0

temperature rise on the unexposed side. The unrestrained walls, all with 8- by 8-in. pilasters at the ends, deflected outward at the top up to 8 in., the pilasters serving to keep the top in approximate straight alinement (fig. 14).

(5) Effect of cracks and imperfect joints. The large walls were nearly all laid up by contract, and the workmanship as a whole was barely up to good construction practice. The filling and pointing of mortar joints on the surface of un-

plastered walls apparently was not as well done as would be required on a construction job. Accordingly, steam and hot gases issued through small holes in the imperfect joints with temperatures over them higher than those on the adjacent surface.

Such higher temperatures also occurred over cracks formed during test. These cracks varied from very fine to those with openings of ¼ to 1/46 in. The larger openings were generally at

With pilasters. See figure 2, A.
 With pilasters. See figure 2, B.
 Dried to constant weight at temperatures of 160° to 180° F.

				TP		1					
Wall or	A vorage at	end of test			e rise at unex te 250 deg F r			deg F rise at	one location		temperature ll 4 in, from
test	Asbestos	Free surface	Asbestos		Cotton pad	Excelsior box	A - h f	Free surface		-	422 deg. F maximum
1 2 3 4	° F	° F 551 419 212 117	hr min 4 1 37 1 20 1 8 (1 12)	hr min 1 56 1 35 (1 17) nr	hτ min 1 41 1 11	hr min 1 25	hr min 5 (1 19) (1 39)	hr min 2 3 1 39 (1 27) 6 nr	hr min 1 28	hr min	hr min
5 6 7 8 9 10A 10B	269 453 509	331 335 445 387	1 19 1 22 2 50 2 35 1 20 1 22	1 34 nr	1 19 1 30 1 10 1 20	1 35	1 21 3 17 2 52	1 36 nr 3 58 3 40 1 45 1 44	1 30	1 58	
11 12 13 14 15	247 250	192 169 176 152 159	5 11 4 9	nr (5 56) (5 11) (7 48) (7 29)	5 44		(5 50) (4 49)	nr nr nr nr nr	5 13 5 45 7 4 49	2 26 2 10 2 1 2 17 2 32	2 43 2 12 2 14 1 40 2 19
16 17 18 19 20		161 224 205 271 218	4 45	(7 25) (6 25) nr 5 39 (7 20)	5 46 5 1 nr	5 4 nr		nr nr nr nr nr	3 16 7 (6 5) nr	2 57 1 49 2 16 2 0 2 20	3 12 1 58 2 27 2 5 2 25
21 22 23 24 25	132	228 173 233 121 150	(5 16)	(6 34) (7 1) (6 20) nr nr	5 7 5 15 nr	5 18 4 41 nr	nr	nr (7 30) (7 2) nr nr	7 5 38 nr	2 15 2 39 2 27 3 22	2 33 2 47 2 33 3 21
26 27 28 29 30	253 253	132 215 197 127 131	6 59 6 14	nr (7 55) (7 54) nr nr	nr nr nr	(7 18)	(7 37) (7 21)	nr nr nr nr nr	5 06 	3 33 2 41 2 30 3 31 3 29	4 12 2 49 2 55 3 59 3 52
31 32 33 34 35	250 155 253	125 118 174 123 166	10 6 (9 53) 7 42	nr nr nr nr nr	nr	nr	(11 14) nr (8 59)	nr nr nr nr	nr nr	3 56 4 9 3 32 	4 1 4 30 3 53 3 17
36 37 38 39 40	253 348 	172 242 119 119 170	6 39 9 32 (13 5) 10 19	nr (11 22) nr nr nr	nr		(7 56) (14 17) (12 5)	nr nr nr nr nr	nr	2 46 3 41 nr 6 38	3 5 3 43 nr 7 31
41 42 43 44 45	292 136 251	98 220 107 119 167	15 5 12 49	nr (18 0) nr nr nr			(14 24)	nr nr nr nr		(8 17) 9 14 nr 7 34 8 33	(9 56) 10 10 nr 7 32 9 1
46 47 48 49 50	247 130 255 253	105 178 110 177 181	(16 9) (16 16) 13 47 13 57	nr (19 25) nr nr (17 15)	nr	nr	(17 52) nr (15 38) (15 2)	nr nr nr nr		nr 11 30 	nr 12 7 11 22 11 26
51 52 53	87 203	100 75 137	nr nr	nr nr nr	nr	nr 	nr nr	nr nr nr	nr	nr nr 10 4 3	nr nr 12 39

Figures in italics indicate derived temperature limit for determination under asbestos pads (see section 6.1, a).

5 Figures in parentheses indicate temperature rise reached after the test fire was shut off.
6 "nr" indicates that a given temperature was not reached.
7 Cotton waste placed over thermocouple.

the joints between bricks and not necessarily continuous through the wall. On the fire-exposed side, the cracks were relatively smaller.

The time at which a temperature rise of 325 deg F occurred over cracks is given in table 9. This limit was reached before 5 hr only in the tests of walls 15 and 16. Wall 15 was laid up in portlandcement mortar and tested restrained. Due to mortar that did not adhere to the trowel and

spread readily, the wall had a number of small holes, the high temperature rise occurring over one of them with a wad of cotton covering the thermocouple.

For wall 16, laid up in lime mortar and tested unrestrained, the temperature rise limit was reached at 3 hr 16 min over a large diagonal crack in the upper part of the wall. For wall 17. tested restrained, and wall 18 under load, both

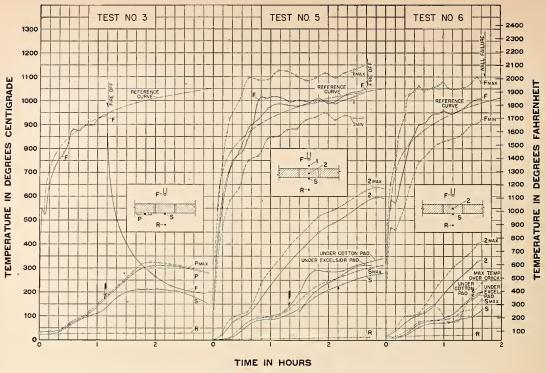


FIGURE 5. Temperatures in fire-endurance tests of 4-in. unplastered walls 3, 5, and 6.

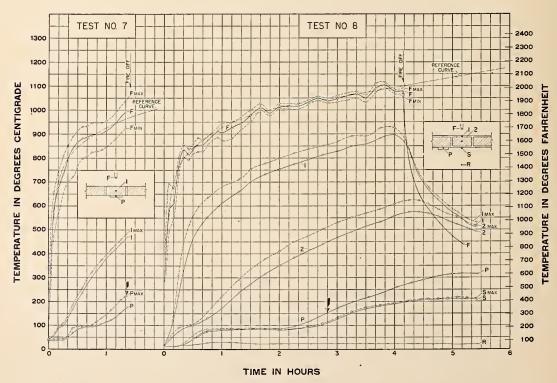


Figure 6. Temperatures in fire-endurance tests of 4-in. unplastered wall 7, and 4-in. plastered wall 8.

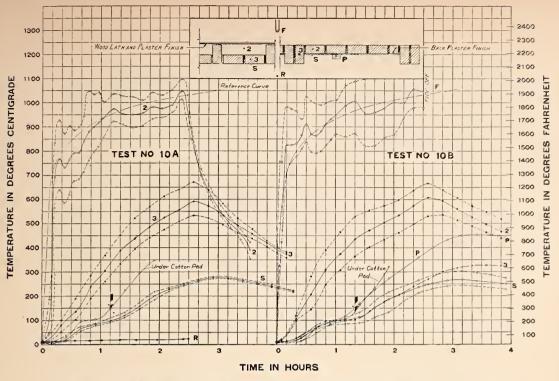


Figure 7. Temperatures in fire-endurance test of 4-in. pilastered walls 10A and 10B.

FIGURE 8. Unexposed side of walls 10A and 10B before test.

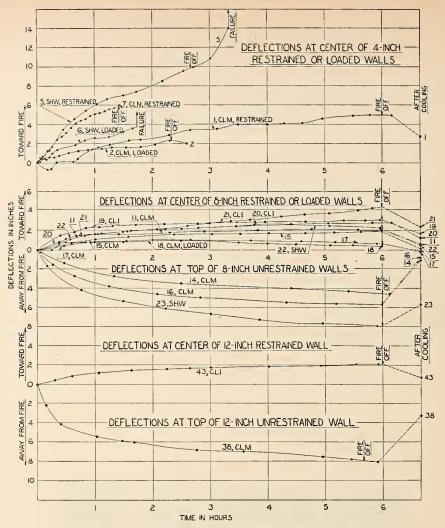


FIGURE 9. Deflections of solid walls of clay and shale bricks.

Figure 10. Unexposed side of 4-in. wall 7 after fire-endurance and hose-stream tests.

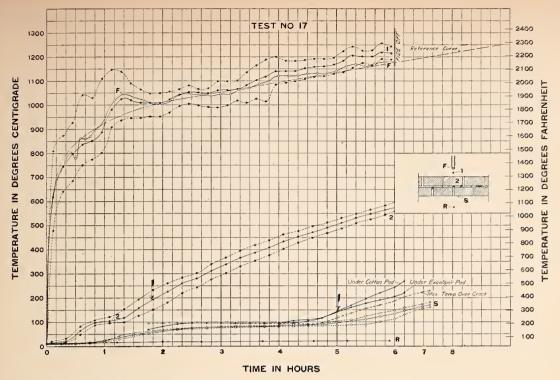


Figure 11. Temperatures in fire-endurance test of solid clay-brick wall 17.

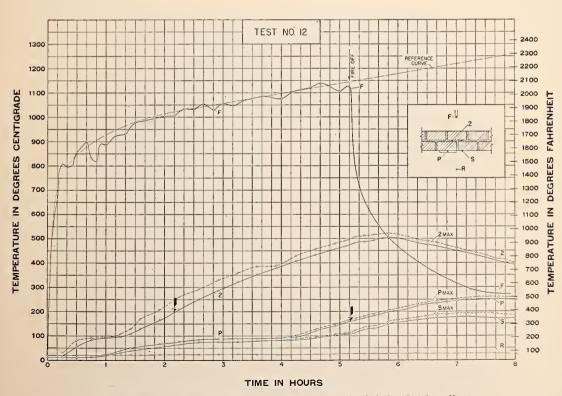


FIGURE 12. Temperatures in fire-endurance test of solid clay-brick wall 12.

Figure 13. Temperatures in fire-endurance test of plastered solid clay-brick wall 37.

Figure 14. Unexposed side of 8-in. unrestrained wall 14 at end of 6-hr fire test.

laid up in lime mortar, no crack having an opening over $\frac{1}{1/2}$ in. was observed. As the object of the test in the unrestrained condition was mainly to determine stability, the low limit of temperature

rise for wall 16 may not be significant.

The cracks formed in walls tested unrestrained were wider and in greater number and extent than for those tested restrained within the panel frame. For the latter condition, they seldom had width exceeding 1/16 in. with the present group of walls, while for the unrestrained condition a number of cracks had openings of $\frac{3}{16}$ to $\frac{5}{16}$ in. on the unexposed side of the wall. As tested restrained, there was little difference in the matter of cracks observed as due to the three types of mortar used. namely, cement, cement-lime, and lime. also applies for the effect of brick materials from the three sources, CLM, CLI, and SHW. Tested unrestrained, cracks of the greatest extent and width were evidenced for wall 16 of clay bricks laid up in lime mortar and for wall 23 of shale bricks in cement-lime mortar.

In some tests, the central part of the wall slid inward from 1/16 to 1/4 in. at the second to sixth course from the base due to the force of the inward deflection. However, resulting openings

were not over ½ in. wide.

Openings on the unexposed side were formed between the wall under test and the frame, occurring at the base of unrestrained walls, at the base and top for the loaded walls, and also at the sides for walls tested restrained. At the sides, these openings did not exceed ½ in. and apparently had no effect on the performance of the wall.

At the base of the wall, there were openings up to ½ in. at the outer face. While the lower edge of the large cotton pad and excelsior box were resting in most tests on the restraining frame at the base of the wall, no ignition or scorching from these cracks at the bottom margin was noted. This was probably due to an inward draft of cold air where the crack communicated with the furnace chamber.

Between the panel frame and the top of restrained walls, openings up to ¾ in. in width were formed at the outer surface. These closed up or became smaller as the fire-exposed face was approached. The limited number of determinations made indicated temperatures at these openings up to the ignition point of wood or other ordinary combustible materials in immediate contact, at 2½ to 3 hr after the start of the test. It is unlikely that room contents would be in contact at the top of the wall. Further, wood in cornice molds, generally applied only on plastered construction and with the inner corner cut back, would not be within 1½ or 2 in. from such an opening.

(6) Fusion and spatting effects. With walls of clay bricks from source CLM, there was no fusion or spalling of bricks during a 6-hr fire test. The fire-exposed side of such a wall after test is shown

in figure 15.

With walls of clay bricks from source CLI, there was considerable fusion and fluxing of the bricks on the lower part of the wall where the furnace temperatures were highest (fig. 16). This began after 4-hr fire exposure, most of it occurring during the last hour of the 6-hr fire

Figure 15. Fire-exposed side of wall 11 of clay bricks from source CLM after 6-hr fire test

test. The depth of fusion was from ½ to 1 in. The softening point of this brick is near 2,100° F. The fusion, apparently had little effect on the

fire resistance of the walls.

With walls of shale bricks (source SHW) the fusion was limited to near the exposed surface with little running of fused material (fig. 17). With wall 22 tested restrained there was spalling of bricks on the fire-exposed side to depths of ¼ to ½ in. For wall 23, tested unrestrained, there was no spalling but there were cracks in the bricks parallel with the surface at a depth of ½ to 1½ in.

In figure 18 is shown the fire-exposed side of wall 37 after the 11-hr fire test. It was built of clay br.cks from source CLM and had gypsum plaster on both sides. The furnace temperatures during the last 2 hr of the test were in the range 2,400° to 2,500° F. The fusion apparently affected the mortar joints more than the bricks, and the plaster before it sloughed off probably also had a fluxing effect.

c. Concrete and Sand-Lime Brick Walls of 8-in. Thickness

This group comprises walls 25 to 36, of which 6 were large walls tested to 6 hr and 6 were small

walls tested for longer periods.

(1) Surface-temperature rise. In no test was a temperature-rise limit reached on the unexposed surface within 6 hr in the regular thermocouple locations. In the test of wall 26, a temperature rise of 325 deg F occurred at 5 hr 6 min over a hole in a mortar joint (table 9).

For wall 27, of concrete bricks normally seasoned, the temperature rise of 250 deg F under the standard asbestos pad occurred at 6 hr 59 min (fig. 19). With wall 28, dried to constant weight at elevated temperatures, the same limit

was reached at 6 hr 14 min.

In tests of walls of sand-lime bricks, the surface-temperature rise was slower than with bricks of other types, although for the tests with bricks from source SLD, this was due in part to bricks wider than the standard 3¾-in. width by ½ to ¾ in. A temperature rise of 325 deg F occurred at a crack 64 min after the fire was off in test of wall 29 of sand-lime bricks from source SLP (fig. 20).

In fire test of wall 33, of sand-lime bricks from source SLD and seasoned under room conditions for 77 days, the limit of 250-deg F temperature rise on the surface was reached at 10 hr 6 min (table 9). With similar wall 35, dried at higher temperatures, the same limit obtained at 7 hr 42 min. With wall 36, built of sand-lime bricks from source SLO, having width near the standard 3¾ in. and dried at the higher temperatures, the 250-deg F surface-temperature limit was reached at 6 hr 39 min.

(2) Temperature limits within wall. For walls of concrete bricks normally seasoned, the time at which an average temperature rise of 325 deg was reached at the midplane of the wall ranged from 2 hr 41 min to 3 hr 33 min (table 9). For

wall 28, which was dried to constant weight, the limit was reached at 2 hr 30 min.

In tests of five walls of sand-lime bricks normally seasoned (walls 29 to 33), the rise of 325 deg F in the wall was reached at an average of 3 hr 43 min. As dried at elevated temperatures, this was reduced to 3 hr 2 min for wall 35 of bricks from source SLD, and to 2 hr 46 min for wall 36, built of the smaller bricks from source SLO.

(3) Load-carrying ability and lateral deflections. Wall 28, of concrete bricks from source COE, was tested under load of 160 lb/in.², which was sustained in a fire test of 6 hr 17 min (table 9). A pier cut from the wall after test had a compressive strength of 430 lb/in.² and that of the companion pier not subjected to fire test, 940 lb/in.² (table 5).

Wall 32, of sand-lime bricks from source SLD, carried a load of 146 lb/in.² during a 6-hr fire test. The strength of the companion masonry pier was 710 lb/in.² and for a pier cut from the wall after the fire test, 450 lb/in.² The maximum lateral deflection during the fire test was 0.70 in. Wall 46 of sand-lime bricks from the same source supported a load of 160 lb/in.² during an 8-hr fire test.

The lateral deflections of solid walls of concrete and sand-lime bricks are plotted in figure 21. There was no collapse of either restrained or unrestrained walls from excessive deflections. As indicated in par. b (4) above for clay and shale brick walls, the average top deflection at the end of 6-hr fire tests of unrestrained walls, was about four times the center deflection of restrained walls.

(4) Cracks and other fire effects. The extent of cracking of the walls during test was about the same as for the 8-in. clay- and shale-brick walls. For those tested restrained, cracks in the body of the wall were rarely more than ½6 in. in width. However, as tested unrestrained, many diagonal cracks were formed with openings in the range ½ to ½ in.

The openings that developed between wall and frame were not of such extent as to affect the fire resistance. The same applies for horizontal displacements of brick courses with reference to

each other.

For concrete-brick walls tested for 6 to 8 hr, there was fusion of the bricks to a depth of ½ in., but the fused material remained largely in place (fig. 22). A few bricks spalled to a depth of ¾ in. The bricks were, in general, dehydrated and weak for a depth of 2 to 3 in. from the fire-exposed side.

With walls of sand-lime bricks tested for 6 hr, there was no fusion of brick or mortar (fig. 23). For longer test durations up to 10 hr, the mortar in the joints fused to depths of 1 in. The fire-exposed bricks were crazed and cracked to the extent of falling to pieces under light impacts after removal from the wall.

d. Solid Walls of 12-in. Thickness

The present group of 16 tests (walls 38 to 53, table 9) was made with 12-in. walls, one or more of which were built of bricks from the sources

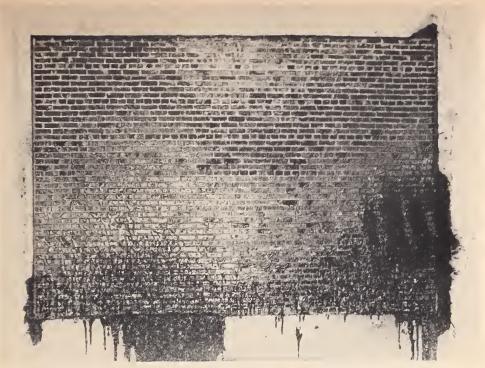


Figure 16. Fire-exposed side of wall 21 of clay bricks from source CLI after 6-hr fire test.

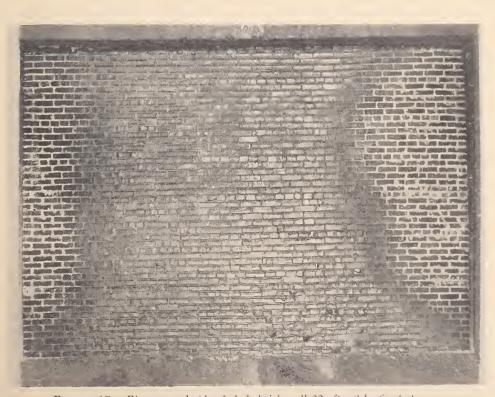


Figure 17. Fire-exposed side of shale-brick wall 23 after 6-hr fire test.

Figure 18. Fire-exposed side of plastered clay-brick wall 37 after 11-hr fire test.

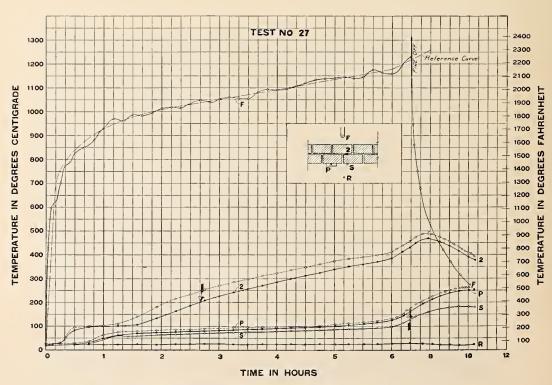


Figure 19. Temperatures in fire-endurance test of 8-in. concrete-brick wall 27.

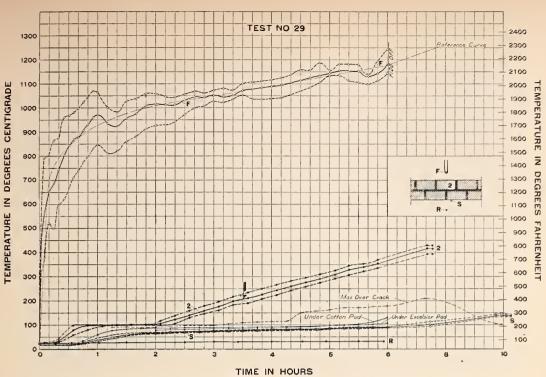


Figure 20. Temperatures in fire-endurance test of 8-in. sand-lime brick wall 29.

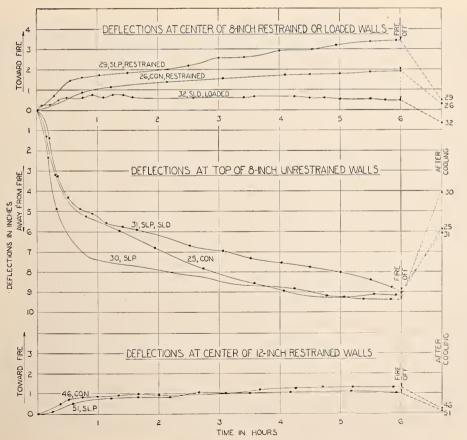


FIGURE 21. Deflections of solid walls of concrete and sand-lime bricks.

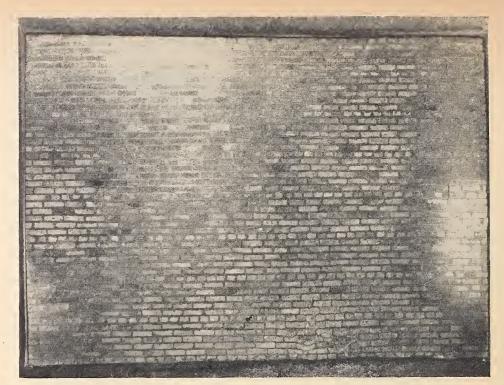


Figure 22. Fire-exposed side of 8-in. concrete-brick wall 25 after 6-hr fire test.

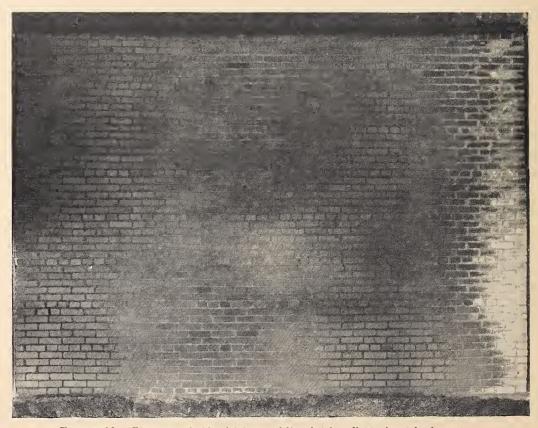


Figure 23. Fire-exposed side of 8-in. sand-lime brick wall 30 after 6-hr fire test.

represented in the present series of tests. Only four of these walls were of the larger size.

(1) Surface-temperature limits. With the four large walls in the first group that were tested to 6 hr or less (walls 38, 43, 46, and 51), the average temperature rise on the free surface did not exceed 119 deg F. This represents a rise far below the permissible limit of 250 deg F, as determined under the asbestos pads. Nor did temperatures go higher than 220 deg F under the large cotton pad and excelsior box or over cracks. Typical time-temperature curves from these tests are given in figure 24.

In tests of longer duration, made with walls of the smaller size, the information obtained on fire endurance based on temperature rise is limited by failure of some of the walls under load or ending of the test before the limiting temperature rise was reached. For clay-brick wall 40, that had been dried to constant weight, the limit of 250 deg F average rise was reached at 10 hr 19 min (fig. 25). For shale-brick wall 45, seasoned under room conditions for 77 days, the limit was reached at 12 hr 49 min.

The fire-endurance limit based on average surface-temperature rise was reached for 12-in. concrete-brick wall 47 at 16 hr 9 min. This wall was of the small size and seasoned under room conditions for 82 days. With similar walls 49 and 50, that were dried to constant weight at higher temperatures, the limit was reached at 13 hr 47 min and 13 hr 57 min, respectively.

The surface-temperature limits were not determined with 12-in, walls of sand-lime bricks because wall 51 was tested only to 6 hr, and walls 52 and 53 failed under load before the limit was

reached.

The results of all fire tests of 12-in. walls in the smaller size should be applied with due consideration for the more favorable conditions attributable to size as compared with those of walls having dimensions approximating constructions in buildings. This will be given consideration in evaluating the results of the tests.

(2) Temperature rise in wall. The average temperature rise of 325 deg F 4 in. from the unexposed side was not reached in any of the tests of large walls terminated at 6 hr. For wall 40, of clay bricks from source CLM, which was dried to constant weight at temperatures in the range 160° to 180° F, the limit of average temperature rise in the wall was reached at 6 hr 38 min. With wall 44, of clay bricks from source CLI, and with wall 45, of shale bricks, both seasoned under room conditions, the limits were reached at 7 hr 32 min and 8 hr 33 min, respectively.

For wall 42, of clay bricks with lime plaster on the fire-exposed side, the temperature-rise limit in the wall was reached at 9 hr 14 min. Although the plaster fell off during the first 12 min of the test, it apparently had retarded drying of the wall, which was tested at the age of 41 days.

In the tests with walls of concrete bricks, the temperature-rise limit in the wall came at 11 hr

30 min for wall 47 seasoned under room conditions and at 10 hr 18 min and 10 hr 17 min, respectively, for walls 49 and 50 that were dried to constant weight at higher temperatures. The limit of wall-temperature rise was reached at 10 hr 43 min with wall 53 of sand-lime bricks, which was also dried to constant weight at the higher temperatures.

Because the limits of wall-temperature rise were obtained with walls of the smaller size, the determinations are subject to the same limitations as indicated above for limits of temperature rise

on the surface.

(3) Lateral deflection. The maximum deflection of clay-brick wall 43, tested restrained, was near 2 in. and the outward deflection at the top of wall 38, tested unrestrained, was about 8 in. at the end of the fire test (fig. 9). A view of the tested wall is given in figure 26. With the concrete and sand-lime brick walls tested restrained, the center deflection did not exceed 1.3 in. (fig. 21).

The deflections of the 12-in. walls of 11-ft height, as tested for 6 hr, were not such as to seriously endanger stability or decrease to significant extent the ability of the walls to support the working load. Near the end of the test, the deflections were constant or decreasing, hence a longer fire exposure may not be critical from this

standpoint.

(4) Cracks and imperfect joints. There were only very fine cracks on the unexposed side of 12-in. walls, except that for the ones that failed under load larger cracks began to show at 10 to 15 min before failure. Openings on the unexposed side between frame and wall had a maximum of % in. width with wall 43, for which the maximum center deflection was near 2 in. (fig. 9). With walls 46 and 51 having lower deflections (fig. 21), these openings were not noticeable.

Steam and hot gases issued from holes in mortar joints, but no temperatures higher than 220 deg F were indicated over them for the large walls tested

to 6 hr or less.

(5) Fusion of brick and mortar. In the fire tests of large walls limited to 6 hr, there was no appreciable fusion of wall material except for wall 43, of clay bricks from source CLI, where there was fusion and fluxing of the bricks to about the same extent as for the 8-in, walls of bricks from this source. In tests of longer duration, there was more fusion, depending upon the brick material and duration of the tests.

Although clay brick from source CLM had a relatively high softening point, there was a limited amount of fusion in tests of the longer durations (fig. 27). For wall 44, of clay bricks from source CLI, most of the fire-exposed course was fluxed away during the 10 hr 21 min test. With shale bricks, the fusion effect was of intermediate degree (fig. 28).

With concrete and sand-lime bricks, the fusion effects were dependent upon the sand and other aggregates used. With walls 47 and 48, of con-

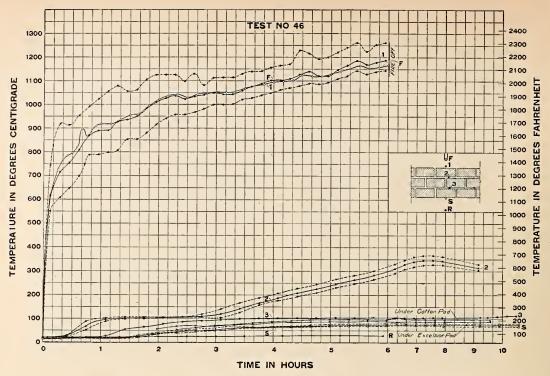


FIGURE 24. Temperatures in fire-endurance test of 12-in. concrete brick wall 46.

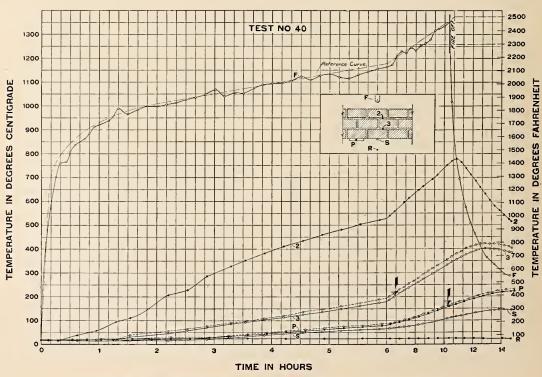


Figure 25. Temperatures in fire-endurance test of 12-in. clay brick wall 40.

Figure 26. Unexposed side of 12-in. clay-brick wall 38 at the end of the fire-endurance test.

Figure 27. Fire-exposed side of 12-in, claybrick wall 42 after 16-hr 5-min fire test.

crete bricks from source COD, tested for 16 hr 4 min and 12 hr 30 min, respectively, there was no general fluxing of the bricks. There was more fusion of the concrete top member of the loading frame (fig. 29). In the test of wall 49, most of the course on the fire-exposed side fused and flowed into the furnace pit. The bricks for these walls were from the same plant, but those for wall 49 were from a later delivery. There was also fusion of the fire-exposed course in the test of wall 50 of concrete bricks from source COE (fig. 30).

With walls of sand-lime bricks, the fusion effects were about the same as for concrete-brick walls

tested for comparable durations.

In the tests of the longer durations, the mortar fused to depths up to 2 in. However, it remained largely in place where supported by bricks that had not fused.

It is to be noted that in these tests the furnace temperatures after 8 hr were raised to a ceiling of 2,500 deg F at 10 hr 40 min. The prescribed procedure [6] was later revised so that the 2,300 deg F reached at 8 hr remained as the ceiling for tests of

longer durations. Hence, according to the later procedure, there will be comparatively less fusion of wall materials in fire tests extending beyond 8 hr.

(6) Failure under load. The ability to carry the applied working load in tests of long duration was limited by fusion and decided loss in strength of brick and mortar in the course on the fire-exposed side. The unexposed side of wall 44, of clay brick from source CLI, is shown in figure 31 after failure under load, and the fire-exposed side of sand-lime brick wall 52 is shown in figure 32.

For 12-in. walls, the ability to carry load was determined with walls of the smaller size. It was deemed impractical to subject the large walls to fire tests of the required long durations, considering the damage and possible inoperative condition that would result for furnace and loading equipment. However, the size of wall specimen tested had a considerable bearing on the results obtained, due account of which will be taken in making the evaluation.

Figure 28. Fire-exposed side of 12-in. shale-brick wall 45 after 12-hr 50-min fire test.

Figure 29. Fire-exposed side of 12-in. concrete-brick wall 47 after 16-hr 4-min fire test.

Figure 30. Fire-exposed side of 12-in. concrete-brick wall 50 after 14-hr fire test.

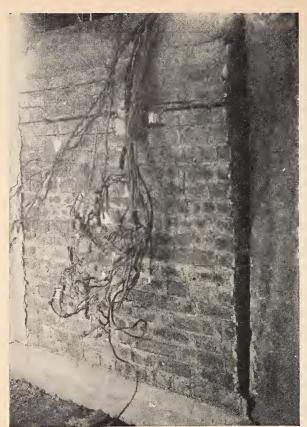


Figure 31. Unexposed side of 12-in. wall 44 of clay bricks from source CLI after failure under load at 10 hr 21 min in fire-endurance test.

Figure 32. Fire-exposed side of 12-in. sand-lime brick wall 52 after failure under load at 9 hr 57 min in fire-endurance test.

6.3. Results With Walls of Hollow Designs

The schedule of tests with walls having one or more unfilled spaces in the wall thickness is given in table 7, and the results of the tests in terms of fire-endurance limits are given in table 10. The walls were all built of clay or shale brick.

a. Hollow Walls of 8-in. Thickness

In this group are included 8 all-rolok walls (walls 54 to 61) and 2 (walls 62 and 63) of the rolok-bak pattern (fig. 1, designs D and E).

(1) Surface-temperature limits. The tests of all of the large walls (walls 54 to 59) were among the first in the series before surface temperatures were determined under the 0.40-in.-thick asbestos pads. The time, however, at which an average 250-deg F rise was reached on the free surface was determined in all of these tests. From these the approximate times for the rise under the asbestos pads, given in italics in table 10, were derived by applying the 0.84 factor (section 4.1).

On this basis, the average time to reach the 250-deg F rise for the six unplastered walls, 54 to 59, was 2 hr 46 min. The minimum for any test was 2 hr 25 min. Typical time-temperature

curves are given in figure 33.

These results might be considered qualified by lower limits indicated over cracks for walls 57, 58, and 59. The hot spots were actually over holes in the vertical mortar joints, which were not as well filled for bricks set with the 4-in. dimensions vertically as for the conventional method with bricks laid flatwise. This was due in part to less experience of the masons with this method and also less care in pointing of joints than would be required for unplastered walls in building construction.

The occurrence for wall 58 of the limiting temperature rise at 2 hr 14 min under the 3- by 3-ft cotton pad of 3½-in. thickness can be taken as due largely to the greater heat insulation over the area adjacent to the thermocouple as compared with that given by 6- by 6-in. asbestos pads of 0.40-in. thickness.

With all-rolok walls 60 and 61 plastered on both sides, the limit of average temperature rise on the unexposed surface was reached soon after 5 hr. These tests were with walls of the smaller size, and considering the air space, the results may have been unduly affected by cooling from the borders.

Walls 62 and 63 were of the rolok-bak design with bricks laid flat for the face course and on edge for the backing (fig. 1–E), the backing as plastered being exposed to the furnace fire. For wall 62, the limit of surface-temperature rise came at 4 hr 58 min (fig. 34) and for wall 63 at 4 hr, all lime plaster on the latter falling off during the first 15 min of the test. The gypsum plaster on wall 62 remained in place for 2 hr, but at 4½ hr practically all had fallen off. For these walls also the results may be subject to qualification due

to cooling from the borders, considering the continuous air space between the facing and backing.

tinuous air space between the facing and backing. (2) Temperature limits in wall. The limiting temperature rise in the wall, as given in the last columns of table 10, is taken at 250 deg F for the average and 325 deg F at any thermocouple location. This is lower than the comparable limits for solid wall constructions (table 9) because parts of combustible members projecting into the air space ignite and burn more readily than those embedded in a solid wall.

The average time for the present limit in tests of unplastered 8-in. rolok walls was 1 hr, with minimum in any test of 54 min. For the two plastered walls, 60 and 61, the average was 1 hr

42 min.

(3) Restraint, loading, and lateral deflections. Of the 6 large 8-in. all-rolok walls, 2 were tested restrained within the panel frame and 3 unrestrained. One of shale bricks was tested under load of 160 lb/in.² of gross area, which was sustained throughout a 6-hr fire test (fig. 35).

As for solid walls, the lateral deflection as tested restrained was indicated as greater than with the wall under load (fig. 36). The deflection at the top of unrestrained walls was 2 to 4 times the center deflection of restrained or loaded walls, the relation being less consistent than in tests with solid walls. There was no collapse due to deflection with walls of 11-ft height and exposed to fire for periods considerably beyond their fire-endurance limits as determined by the temperature rise on the unexposed side.

(4) Cracks and other fire effects. For walls tested restrained, the cracks were hardly noticeable, and between wall and frame there were openings on the unexposed side up to ¼ in. In the wall tested under load, cracks opened up to ½ in., and in those tested unrestrained, up to ¾ in. These were generally inclined and through the mortar joints.

The fusion effects with walls of clay bricks from source CLI, tested for 6 hr, were about the same as for solid walls of bricks from the same source (fig. 16). However, there was no fusion of bricks from this source in a wall exposed to fire for nearly 4 hr (fig. 37).

b. Hollow Walls of 12-in. thickness

This group comprises six walls, 64 to 69, of several rolok designs (fig. 1, F to K). They were all built of clay bricks from source CLM.

(1) Surface-temperature limits. In the test of all-rolok wall 64, the temperature-rise limit was not reached, but with wall 65 of alternate rolok design, the 250-deg F rise under the asbestos pad came at 5 hr 7 min (fig. 38). For wall 67 of the flat-bond rolok design and plastered on both sides, the limit was reached at 10 hr 12 min, this result being apparently affected by cooling from the borders through the continuous air spaces. The same applies, although possibly in less degree, to the

Table 10. Results of fire-endurance tests of hollow walls of clay or shale brick

Walls having minimum lateral dimension of 10 ft and area of 100 ft² conform to present requirements of ASTM Standard E119

Wall			Wall design	Brick	Pla	ster	Restraint or	Age at	D		-	Severity
or test	ness	area	(fig. No.)	symbol	Fire-ex- posed side	Unexposed side	loading during test	time of test	Dur	ation	Why ended	offurnace exposure
54 55	in. 8 8	ft ² 171 171	All-rolok 1-Ddo	CLM CLI	None	Nonedo	Unrestraineddo	Days 40 34	hr 6 3	min 1 58	Set limit High wall temperature.	Percent 101.'2 101. 0
56 57 58	8 8 8	176 176 171	do do do	CLI CLI SHW	do do	do	Restrained do Unrestrained	38 40 53	6 6 6	1 1 1	Set limitdo	98. 0 99. 2 99. 9
59 60	8 8	163 17. 4	do	SHW CLM	Lime	Lime	160 lb/in.² Restrained	32 42	6 8	0	High wall temperature.	100. 2 99. 2
61 62 63	8' 8 8	17. 4 16. 7 16. 7	Rolok-bak 1-Edo	$\begin{array}{c} {\rm CLM} \\ {\rm CLM} \\ {\rm CLM} \end{array}$	Gypsum_do Lime	Gypsum_ None do	do 160 lb/in.²do	45 43 46	6 6 5	$\frac{1}{20}$	do do	98. 7 99. 4 98. 4
64	12	171	All-rolok 1-F	$_{\rm CLM}$	None	do	Unrestrained.	100	5	13	Equipment fail- ure.	98. 2
65	12	17.4	Rolok 1-G	CLM	do	do	Restrained	47	8	0	High wall tem- perature.	98.3
66 67	12 12	17. 4 17. 4	Rolok 1-H	$_{\rm CLM}^{\rm CLM}$	Gypsum do	Gypsum _do	do	46 46	8 10	0 50	Set limit High wall tem- perature.	100. 1 100. 1
68	12	16. 7	Rolok-bak 1-J	$_{ m CLM}$	None	None	Unrestrained	41	12	20	do	102. 1
69 70	12 10	16.7 163	Rolok-faced 1-K.	$\begin{array}{c} \text{CLM} \\ \text{CLN} \end{array}$	do	do	160 lb/in. ² 125 lb/in. ²	41	10	1	do	100.1
71	10	164	Cavity 1-L	CLN	do	do	54 lb/in,2	48 33	1 5	17 18	Wall collapsed High wall tem-	101. 5 100. 0
72	10	160	do	CLN	do	do	Restrained	41	5	3	perature.	100.0

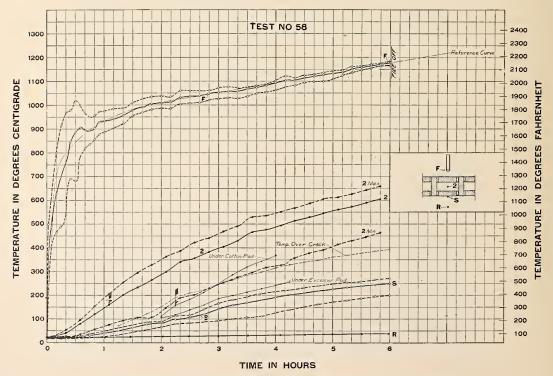


Figure 33. Temperatures in fire-endurance test of 8-in. all-rolok wall 58.

Table 10. Results of fire-endurance tests of hollow walls of clay or shale brick.—Continued

				Temperatur	e rise at une	xposed surfa	ee				emperature
Wall or test	Average at	end of test	Time of average 250-deg F rise				Time of 325-	deg F rise at	rise in wall 4 in, from unexposed surface		
	Asbestos pad	Free surface	Asbestos pad	Free surface	Cotton pad	Excelsior box	Asbestos pad	Free surface	Over crack	250-deg f average	325-deg F maximum
54 55	° F	° F	hr min 1 2 25 - 2 45	hr min 2 52 3 16	hr min	hr min	hr min	hr min 3 24 3 42	hr min	hr min 0 54 1 0	hr min 0 57 1 10
56 57 58		379 410 420	2 55 2 37 2 42	3 29 3 7 3 13	2 14	2 42		4 25 3 49 3 33	² 1 47 2 21	$\begin{array}{ccc} 1 & 4 \\ 0 & 56 \\ 1 & 5 \end{array}$	1 10 1 2 1 5
59 60	500	390 318	3 13 5 2	3 50 6 7	2 57	4 2		$\begin{array}{ccc} 4 & 15 \\ 7 & 26 \end{array}$	2 2 07	0 59 1 45	1 05 1 51
61 62 63	343 414 447	253 234 277	5 13 4 58 4 0	5 57 nr 5 08				³ nr nr 4 (6 13)		$\begin{array}{ccc} 1 & 39 \\ 1 & 52 \\ 0 & 57 \end{array}$	1 55 1 37 1 0
64		114		nr	nr	nr		nr	(5 32)	3 41	2 48
65	462	281	5 7	7 5				7 47		2 45	2 41
66 67	166 320	130 219	$\begin{pmatrix} 9 & 7 \\ 10 & 12 \end{pmatrix}$	nr (11 32)				nr nr		$\begin{array}{ccc} 4 & 7 \\ 5 & 20 \end{array}$	3 47 5 31
68	359	260	10 42	12 2				nr		4 56	4 45
69 70 71	359 17 252	218	8 52 nr 5 17	nr			nr nr	nr		4 58 nr 1 48	5 28 nr 2 6
72	264		4 56				nr			1 25	1 28

¹ Figures in italics indicate derived temperature limit for determination under asbestos pads (see section 6.1, a).
2 Cotton waste placed over thermocouple.
3 "nr" indicates that a given temperature was not reached.
4 Figures in parentheses indicate temperature rise reached after the test fire was shut off.

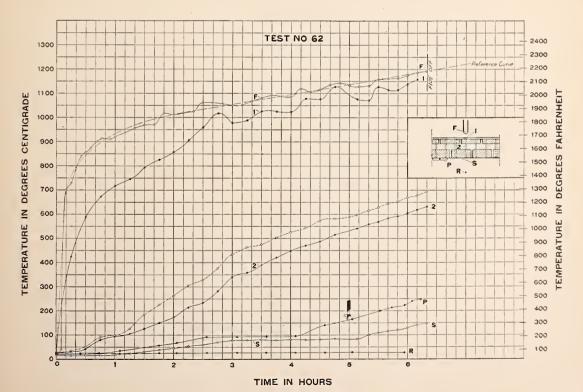


FIGURE 34. Temperatures in fire-endurance test of 8-in. rolok-bak wall 62, plastered on the fire-exposed side.

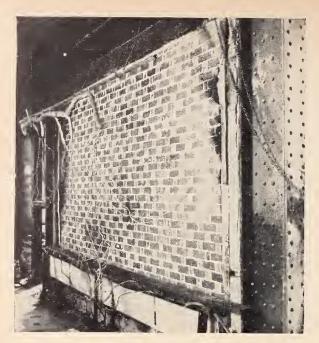


Figure 35. Unexposed side of 8-in. all-rolok wall 59 after 6-hr fire test under load of 160 lb/in. 2 of gross area.

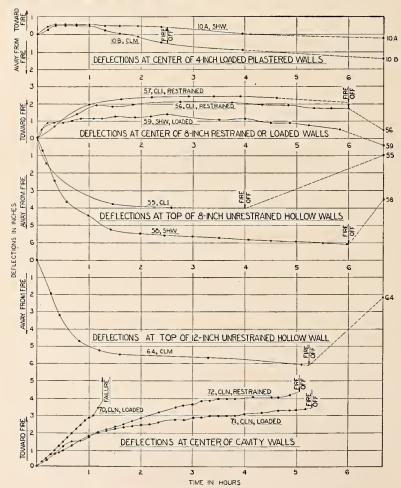


Figure 36. Deflections of hollow walls of clay and shale bricks.

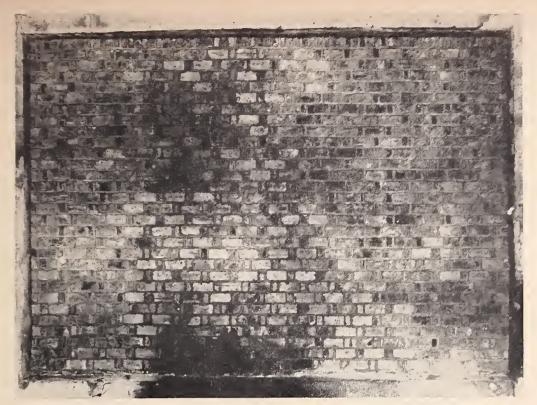


Figure 37. Fire-exposed side of 8-in. all-rolok wall 55, of clay bricks from source CLI, after 3-hr 58-min fire exposure.

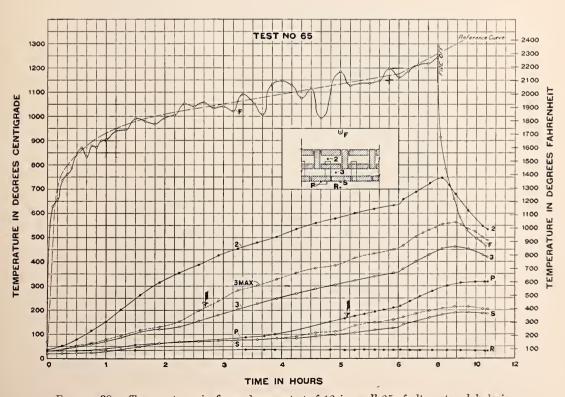


Figure 38. Temperatures in fire-endurance test of 12-in. wall 65 of alternate rolok design.

10-hr 42-min limit for rolok-bak wall 68 and the 8-hr 52-min limit for rolok-faced wall 69.

(2) Temperature limits in wall. The times when an average temperature rise of 250-deg F occurred in the air space next to the unexposed side or a rise of 325 deg F at any thermocouple location, are given in the last two columns of table 10. As for surface-temperature limits, the results with the small walls, and particularly with those of the flat-bond rolok and rolok-faced designs, are subject to qualification because of cooling from the borders through continuous unobstructed air spaces.

(3) Cracks and other fire effects. In none of the tests was cracks noted that would affect the fire resistance of these 12-in. walls. The top of wall 64, tested unrestrained, deflected outward about 6 in. (fig. 36).

The walls were built of brick from source CLM, showing a relatively high softening point, and there was no fusion causing flow of brick material. Figure 39 shows the fire-exposed face of wall 67 of the flat-bond rolok design after 10-hr 50-min fire exposure. The plaster had fallen from the fire-exposed side during the first 2 hr of the test. In figure 40, showing the backing side of rolokbak wall 68 fire-exposed for 12 hr 20 min, fusion and flow of mortar is seen in joints between bricks set on edge, but none in the brick material.

Three fire tests were conducted with cavity-type walls (fig. 1-L), consisting of two brick wythes with a 2-in. air space between them, spanned by Z-shaped wire ties. They were built of clay brick from source CLN laid up in 1:1:6 cement-limesand mortar. As the width of the bricks was little more than $3\frac{1}{2}$ in., the actual thickness of the walls was in the range $9\frac{1}{4}$ to $9\frac{1}{2}$ in.

(1) Temperature-rise limits. The time at which an average rise of 250-deg F was reached under the asbestos pads was 5 hr 6 min, taken as an average for walls 71 and 72. The time-temperature curves for the former are given in figure 41.

For the same walls, the 250-deg F rise in the air space was reached in an average time of 1 hr 36 min. However, wood joists usually project into walls no more than 3½ in. for bearing purposes and would be almost embedded. Accordingly, the permissible average rise of 325-deg F, same as for solid walls, might apply, which rise was reached in 2 hr 10 min and 1 hr 43 min, respectively, for the two walls, or an average time of 1 hr 56 min.

(2) Loading and deflection. Wall 70, subjected to fire test under load of 125 lb/in.² of gross area, failed because of load and deflection at 1 hr 17 min, the center lateral deflection before failure being over 3 in. The brick material had a coefficient of expansion within the lower range for

Figure 39. Fire-exposed side of 12-in. flat-bond rolok wall 67 after 10-hr 50-min fire exposure.

Figure 40. Backing side of 12-in. rolok-bak wall 68 after 12-hr 20-min fire test.

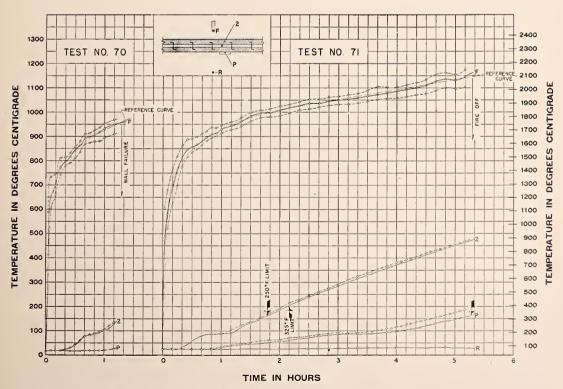


Figure 41. Temperatures in fire-endurance test of cavity walls 70 and 71 of clay bricks from source CLN.

burned clay, and the early failure was apparantly

attributable to the cavity design.

Wall 71 was loaded to an average of 80 lb/in.² on the wythe exposed to fire and 28 lb/in.² on the unexposed wythe, the average load of 54 lb/in.² being applied 1½ in. off-center toward the fire-exposed side. This is representative of the load on an exterior 10-in. cavity wall from the live and dead load of floor, roof, and wall constructions. The wall carried the load thus applied during a fire test of 5 hr 18 min, although it deflected toward the fire a maximum of 3.3 in. (fig. 26).

(3) Cracks and open joints. One horizontal crack on the unexposed side of wall 72 opened to ¼ in., otherwise none with an opening over ¼6 in. was noted. The workmanship in building the walls was good, with joints well filled and pointed.

6.4. Temperature Rise After Test

For the tests in which the data were obtained, table 11 gives the average surface-temperature rise at the end of the test when the fire was shut off and the subsequent highest rise of average surface temperature.

It is seen that with the test continued to the fire-endurance limit of the wall, as indicated by an average temperature rise under the asbestos pads near 250 deg F, the subsequent rise for 4-in. wall 3 increased it to 498 deg F and for the 8-in. walls it was increased to the range 374 to 414 deg F.

For 4-in. wall 4, the fire exposure ended at 45 min, and the subsequent rise was to 334 deg F. For 8-in. walls 24 and 34, the test was stopped about 1 hr short of their fire-endurance limits, and the subsequent rise under the asbestos pads was to 348 and 304 deg F, respectively.

For 12-in. walls 40, 45, 49, and 50, the tests were continued to their fire-endurance limits as in-

dicated by an average temperature rise under the asbestos pads near 250 deg F, and the subsequent rise increased it to the range 365 to 399 deg F. In the test of 12-in. clay-brick wall 41, stopped at 8 hr, the temperature rise to the end of the fire exposure and subsequently was minor. Continued closer to the fire-endurance limit (tests 39, 48, and 66), the maximum rise ranged from 282 to 373 deg F.

In all of these tests, the walls remained in front of the furnace with the fuel supply shut off but with the fan supplying air for combustion kept on. Although the furnace temperature fell rapidly, for considerable periods it was at levels substantially above the temperature on the unexposed surface. The temperature rise on the latter was also due to higher temperatures on planes within the wall, which, as the cooling progressed, might also be higher than those on the side that had been exposed to fire.

6.5. Ignition of Cotton and Excelsior Pads

In most of the fire tests of large walls, boxes 3 by 3 ft by 3½ in. deep, filled either with cotton or wood excelsior, were placed against the lower portion of the unexposed surface. The box containing cotton was open on one side, with the cotton in direct contact with the wall. The excelsior box was closed with its side of ¾-in. pine or ½-in. cypress boards in contact with the wall. A thermocouple was placed between the wall and the center of the pad.

Table 12 gives the record of evidence of ignition or nonignition and the corresponding temperatures under the pads. In tests for self-ignition of cotton and wood, some smoke is given off before there is ignition as evidenced by flame or glow. In some of these tests, however, the observation indicating

Table 11. Surface-temperature rise after fire test

		Brick material		Duration	Temperatu end of		Final average temperature rise					
Wall or test	Wall design		Nominal thickness	of fire exposure	Under as-	On free	Under ask	pestos pad	On free surface			
		-			bestos pad	surface	Time	Rise	Time	Rise		
$egin{array}{c} 3 \\ 4 \\ 12 \\ 113 \\ 24 \\ \end{array}$	Soliddodododododododododo	Claydodododoshale	in. 4 4 8 8 8	$\begin{array}{ccc} hr & min \\ 1 & 10 \\ 0 & 45 \\ 5 & 10 \\ 4 & 9 \\ 4 & 0 \\ \end{array}$	${}^{\circ}F. \\ 260 \\ 113 \\ 247 \\ 250 \\ 132$	$^{\circ}F.$ 212 117 169 176 121	hr min 2 5 2 0 7 43 6 35 7 20	° F. 498 334 414 411 348	hr min 2 2 1 50 7 10 6 10 6 47	° F. 336 225 270 278 240		
27 1 28 34 1 35 1 36	do do do do	Concretedo Sand-limedodo	8 8 8 8 8	7 0 6 17 8 0 7 45 6 41	253 253 155 253 253	215 197 123 166 172	$\begin{array}{ccc} 10 & 12 \\ 10 & 5 \\ 12 & 13 \\ 11 & 27 \\ 10 & 20 \\ \end{array}$	410 377 304 377 374	9 30 8 45 11 50 10 55 9 45	290 284 202 254 246		
39 1 40 41 45 48	do	Claydo ShaleConcrete	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	$\begin{array}{ccc} 11 & 36 \\ 10 & 22 \\ 8 & 0 \\ 12 & 50 \\ 12 & 30 \\ \end{array}$	159 255 251 130	119 170 98 167 110	16 25 14 55 17 29 17 53	373 365 399 282	$\begin{array}{cccc} 15 & 42 \\ 14 & 12 \\ 11 & 30 \\ 16 & 55 \\ 17 & 37 \end{array}$	227 232 108 245 192		
1 49 1 50 2 66		do	12 12 12	13 55 14 0 8 0	255 253 166	177 181 130	18 20 17 52 11 48	367 374 341	17 26 17 15 11 55	246 250 204		

¹ Dried to constant weight at temperatures of 160° to 180° F. ² Plastered on both sides.

Table 12. Temperatures and notes on ignition of large pads

Wall						ton pad	, ,		lsior box
or test	Wall design	Brick material	Nominal thickness	Time	Temper- ature	Note	Time	Temper- ature	Note
1 1 1 1	Soliddo	do	in. 4 4 4	hr min 2 15 2 25 6 01	° F 471 576	Slight smoke Glow End of test	hr min 2 15 3 18 6 01	° F	Slight smoke. Flaming. End of test.
5 5 5	do	do	4 4 4	$ \begin{array}{ccc} 1 & 35 \\ 1 & 54 \\ 2 & 41 \end{array} $	448 1069	Smoking Glow End of test	2 15 2 41 2 45	525 595 597	Smoking. End of test. Board flaming.
6 6	do	do	4 4	1 40 1 44	356	No ignition Load failure	1 40 1 44	394	No ignition. Load failure.
10A 10A 10A	do	do	4+pilasters	$\begin{array}{ccc} 1 & 40 \\ 2 & 07 \\ 2 & 30 \end{array}$	567	Smoking One-third consumed End of test			
10B 10B 10B	do	Clay do do	do do	$\begin{array}{ccc} 1 & 42 \\ 2 & 03 \\ 2 & 30 \end{array}$	468	SmokingBlazingEnd of test			
14 14 14	do			6 01 6 48 8 30	338 452 556	Burning			
16 16 16 16	do do	do do do	8 8 8 8	6 01 6 15 6 40 7 55	313 333 	End of test	6 01 6 15 7 55		End of test. Slight smoke. All consumed. Apparently ignited at crack.
17 17 17	do	do	8 8 8	6 00 6 20 6 25	482 520	End of test. Burnt odor_ No note Glowing	6 00 6 20 6 30	403 429	End of test. Slight smoke. More smoke. Board browned not scorched.
22	do		8	5 49 6 01	434	Decided burnt odor, no smoke.	5 49 6 01	394	Slight burnt odor, no smoke.
22 22	do	do	8 8	6 05	460	End of test Ignited at hole in wall	6 05	417	End of test. Browned, not ignited.
23 23 23	do	do	8 8 8	5 52 6 01 6 03	417 441	No smoke End of test Ignited at crack	$ \begin{array}{ccc} 5 & 52 \\ 6 & 01 \\ 6 & 03 \end{array} $	438 453	Slight smoke. End of test. Scorched over crack.
26 26	do	Concrete do	8 8	6 02 During night	205	End of test Burned up	6 02 During night	210	End of test. Burned up.
32 32 32	do do	do	8 8 8	6 00 10 35 Next day	212 356	End of test No ignitiondo	6 00 10 35 Next day	201 258	End of test. No ignition. Do.
38 38	do	Claydo	12 12	5 51 Next day	200	End of test No scorehing or ignition	5 51 Next day		End of test. No scorehing or ignition.
46 46 46	do	do	12 12 12	6 01 10 34 Next day	207 201	End of test No ignitiondo	6 01 10 34 Next day	190 193	End of test. No ignition. Do.
51 51 51	do		12 12 12	6 01 12 00 Next day	205 194	End of test No ignition. do	6 01 12 00 Next day	190 191	End of test. No ignition. Do.
58 58 58 58	Rolokdodo	Shaledododododo	8 8 8 8	3 00 3 10 4 00 6 01	482 526 697	SmokingScorched at top Glowing throughout End of test	3 55 	462 	Wood ignited, no blaze. Blazed up. End of test.
59 59 59	do	do	8 8 8	3 50 4 24 6 00	502	Had ignited Burning End of test	$\begin{array}{ccc} 3 & 40 \\ 4 & 18 \\ 6 & 00 \end{array}$		Smoking. Burning. End of test.
64 64 64	do	do	12 12 12	5 13 8 25 Next day	185 214	No ignitionSlight discolor, no ignition_	5 13 8 25 Next day	163 178	Do. No ignition. Rosin run, no ignition.

smoke was apparently made at or beyond the time ignition took place. In other cases ignition took place at cracks or open joints and with the thermocouple not in the immediate location it indicated

relatively low temperature.

With the time of heating here concerned, which was in the range 1½ to 12 hr, there was no evidence of ignition of the wood or cotton at temperatures below 400° F. At temperatures in the range 400° to 450°, smoking sufficient to indicate ignition or approach to ignition was recorded. In the range 450° to 500° F, more conclusive evidence of ignition was apparent. The above should be taken as limited to the conditions that prevailed in these tests.

7. Results of Fire and Hose-Stream Tests

The results of the fire and hose-stream tests are given in table 13, with a fuller description of the walls tested in table 7. All of them, except 4-in. wall 7 and cavity walls 71 and 72, were built in three or more sections bonded together and of bricks representative of those in the walls subjected to the fire-endurance tests.

The points of interest in these results pertain to the performance of the wall in the fire test preceding the hose-stream application and the stability and structural integrity maintained

during the hose-stream application.

At the time most of the fire and hose-stream tests were conducted, the specifications for fire

test of load-bearing walls had not been developed and the procedure used in the hose-stream tests followed that for nonbearing walls and partitions. As this did not require the walls to carry load during the hose-stream application, an evaluation is here made from this standpoint for the constructions that were tested.

7.1. Performance Under Fire Exposure

The fire exposure of 1 hr or less duration preceding the hose-stream application did not approach the fire-resistance of any of the walls thus tested. Wall 7 of 4-in, thickness (fig. 10) and cavity walls 71 and 72 were subjected to the hose stream after the full fire-endurance test, in accordance with the optional procedure.

7.2. Stability and Integrity

None of the walls collapsed in the fire and hose-stream tests. For those tested unrestrained, there was dislodgment of some bricks near the borders in the wythe on which the stream was applied, but no holes through the wall were formed (figs. 42 and 43). For tests in the restrained condition, all bricks remained in place (figs. 44 and 45). The same applies for 10-in. cavity walls 71 and 72, the one being tested under load and the other restrained.

All walls were laid up in 1:4:6 or 1:1:6 cement-lime mortar except one-half of wall 77, which was laid up in 1:4:6 cement mortar.

Table 13. Results of fire and hose-stream tests of brick walls

Waller	Wall or Nominal Wall		Wall	lesign	Duisk symbol for	Restraint or	Duratio		Hose-s	stream	application	
test	thickness		Туре	Figure No.	Brick symbol for respective sections	loading during test	of fire exposu	011700017710		tion.	Pressure at nozzle	Results
1 7	in. 4	ft ² 160	Solid	1-A	CLN	Restrained	hr mi	in 25	min 2	8ec 24	lb/in. ² 30	No wall temp. above permis- sible limits or passage of hose stream.
73	4	176	do	1-A	CLM, CLI, SHW, CON, SLP.	do	1	0	5	0	50	Do.
74	8	171	do	1-B	do	Unrestrained	0 5	59	5	0	50	Do.
74 75	8	176	do	1-B	CLM, CLI, SHW, CON, SLP, SLD.	Restrained		0	5	ő	49	Do.
76	8	176	All-rolok		CLM, CLI, SHW, CON, SLP.	do	1	0	5	0	50	Do.
77	8	171	do	1-D	do	Unrestrained	1	0	5	0	41 to 46	Do.
78A	12	173	Solid	1-C	CON, SLP, SLD	Restrained	1	0	5	0	38 to 45	Do.
² 78 B	12	173	do	1-C	do	Unrestrained	1	0 18	5	0	50 to 52	Do.
1 71	10	163	Cavity	1-L	CLN	54 lb/in.2	5 1	18	8	0	45	Do.
1 72	10	160	do	1-L	do	Restrained	5	3	7	57	45	Do.

1 Hose stream applied at the end of the fire-endurance test.

² Test 78B was made with the same wall as test 78A with top brick course removed so wall could be tested in unrestrained condition.

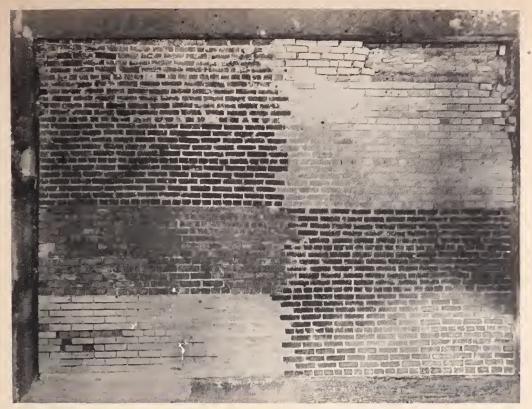


FIGURE 42. Exposed side of 8-in. solid unrestrained wall 74 after fire and hose-stream test.

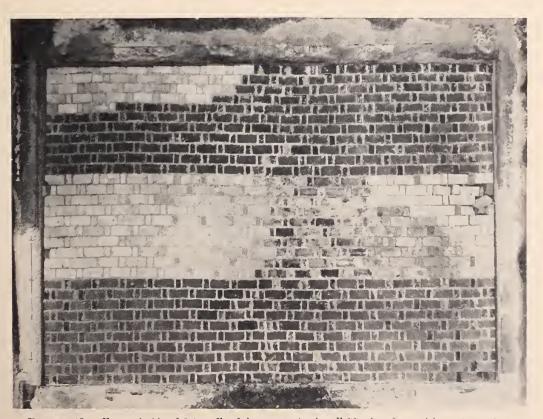


Figure 43. Exposed side of 8-in. all-rolok unrestrained wall 77 after five and hose-stream test.

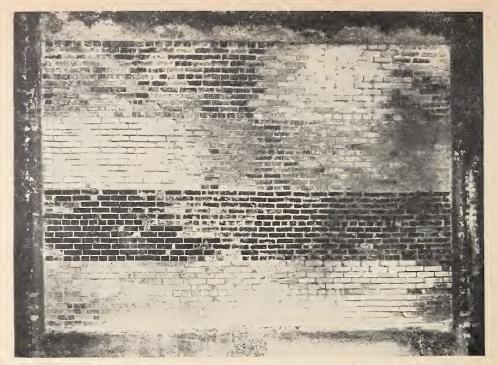


Figure 44. Exposed side of 8-in. solid restrained wall 75 after fire and hose-stream test.

Figure 45. Exposed side of 8-in. all-rolok restrained wall 76 after fire and hose-stream test.

7.3. Load-Carrying Ability

a. Walls of 4-in. Thickness

Brick walls of 4-in, thickness are not generally used for bearing purposes, and in the present tests 4-in, walls 7 and 73 were not loaded in the fire and

hose-stream test.

Clay-brick wall 2 and shale-brick wall 6 of this thickness were each subjected to a load of 80 lb/in.² in fire-endurance tests that were sustained up to or beyond their fire-endurance limits as determined by temperature rise on the unexposed side. At the end of the fire-endurance test, the load on wall 2 was increased to 160 lb/in.², which was sustained, the center lateral deflection being 2 in.

According to the specifications for conduct of fire tests [6], the fire exposure preceding the hose-stream application need not exceed more than one-half the fire-endurance limit, or for 4-in. walls, 30 to 45 min. At this time, the deflection of 4-in. loaded walls was indicated at 2 in. or less (fig. 9), which would be considerably reduced by the hose-stream application. Hence, it appears fairly assured that the 4-in. brick walls in this series would have sustained a load of 80 lb/in.² during the hose-stream test and subsequent load of 160 lb/in.². The original strength of the masonry as tested in piers ranged from 1,170 to 1,876 lb/in.² (table 5).

b. Solid and All-Rolok Walls of 8-in. Thickness

Walls 74 to 77 were subjected to the hose-stream test in the restrained or unrestrained condition with maximum lateral center deflection for the restrained walls of 1 to 1½ in. at the end of the 1-hr fire test, and 0 to 0.40 in. on cooling after the hose-stream application.

The original strength of the masonry for the solid walls as tested in piers ranged from 510 to 1,530 lb/in.² of gross area, and of piers taken from the walls after fire and hose-stream tests, from 390 to 540 lb/in.² For the all-rolok walls, the original strength of the masonry in piers had a

range from 440 to 1,470 lb/in.² (table 5).

Considering the above and the low deflections at the end of the 1-hr fire exposure and on cooling after the hose-stream application, it appears that the walls would have carried the 160-lb/in.² load during the fire and hose-stream test and twice the load, or 320 lb/in.², on cooling after the test. It might be noted that 8-in. walls carried working loads in fire-endurance tests for 6 to 8 hr (tables 9 and 10).

c. Solid and All-Rolok Walls of 12-in. Thickness

Two fire and hose-stream tests were made with 12-in. solid wall 78, one with the wall restrained, the other unrestrained. The maximum deflection at the end of the 1-hr fire exposure was 0.80 in. and after the water application, 0.35 in. The original strength of the masonry in piers ranged from 480 to 1,040 lb/in.² In one comparison with piers of concrete bricks, the original strength was 850 lb/in.² and for the pier taken from the wall

after hose-stream tests 78A and 78B, 580 lb/in.² (table 5).

As for the 8-in. walls, the low lateral deflections during test and the strength of the masonry indicate adequate ability to carry the loads required by the present testing procedure.

No fire and hose-stream tests were made with 12-in. all-rolok hollow walls because the required resistance for the purpose was considered as shown by the tests of 8-in. walls of the same design.

d. Cavity Walls

Cavity wall 71 was subjected to the fire and hose-stream test under the load carried in the preceding fire-endurance test and wall 72 in the restrained condition following the 5 hr 3 min

fire-endurance test.

The load carried during test was reapplied on wall 71 after cooling following the hose-stream application, but on further increase, it failed at a load 50 percent in excess of the load carried during the fire test. Although this is short of the 100-percent excess load to be carried, it is noted that the wall had been exposed to fire for 5 hr 18 min in the preceding fire-endurance test as compared with the 1-hr fire exposure required by the regular fire and hose-stream test procedure.

7.4. Other Wall Designs

No fire and hose-stream tests were conducted with various rolok and rolok-bak designs, the fire-endurance tests of which were only with walls of the smaller size (walls 62, 63, and 65 to 69, tables 7 and 10).

8. Effect of Fire Tests on Strength of Brick and Masonry

Although the condition of the construction after the fire test has no bearing on the rating based on performance in the test, it is informative as to the possibility of reuse after fire. Representative samples of bricks were taken from the walls after the fire tests, with which over 2,000 strength and absorption tests were made. Specimens of masonry were also cut from the walls of approximately the same size as the auxiliary specimens laid up when the walls were built.

Cracking of masonry and bricks from differential expansion and the stresses induced by the fire exposure was an apparent cause of loss of strength. The effect on the brick materials as such varied with type of material and temperature. For clay and shale bricks subjected to temperatures in a limited range above those at which they were fired in the kiln, there were indications of gain in strength where not offset by other effects

of the fire exposure.

The concrete and saud-lime bricks lost strength due to dehydration of the bonding constituents. When subjected in the fire tests to temperatures not greatly exceeding 212° F, there was an increase in strength in some cases. This may have been due to the resulting temperature and moisture conditions.

8.1. Compressive Strength of Bricks

Table 14 gives the results for half-bricks tested in compression on edge and table 15 the results

with tests on side or flatwise. Fairly representative samples were obtained except where the bricks were fused and fluxed.

Table 14. Effect of fire tests on compressive strength of bricks tested on edge

	Brick				Effect of	f fire test
Symbol	Material	Type of test	Location of bricks	Average original strength	Number of tests	Average loss (-), gain (+)
CLM CLM CLM CLM CLM	Claydododododo	do	Fire exposed in 4-, 8-, or 12-in. solid walls Fire exposed in 4- or 8-in. solid walls Middle course in 12-in. solid wall Unexposed in 8- or 12-in. solid walls Unexposed in 8-in. solid walls	lb/in.2 2, 530 1, 960 2, 560 2, 400 1, 960	76 9 7 71 10	Percent -14.8 -13.9 -6.2 -2.9 +11.5
CLI CLI CLI SHW SHW	Sbale	Fire endurancedo	Fire exposed in 8- or 12-in, solid walls. Middle course in 12-in, solid walls. Unexposed in 8- or 12-in, solid walls. Fire exposed in 1- or 8-in, solid walls. Unexposed in 8-in, solid walls.	2, 330 2, 330 2, 330 6, 400 6. 400	17 13 35 25 24	-18. 5 -0. 6 -4. 2 -15. 0 -17. 0
SHW CON CON COD COD	do	Fire and water Fire endurancedo Fire endurance to 13 hr 55 mindo	do Fire exposed in 8- or 12-in, solid walls Unexposed in 8 or 12-in, solid walls Fire exposed in 12-in, solid wall Middle course in 12-in, solid wall	6, 400 1, 530 1, 530 2, 290 2, 290	9 33 23 (1) 14	$ \begin{array}{r} -11.2 \\ -21.8 \\ +7.0 \\ (^2) \\ -46.3 \end{array} $
COD SLP SLP SLP SLP	dodo Sand-lime dodo		do	2, 290 4, 720 4, 720 4, 720 4, 720	20 31 10 22 16	+16. 4 -50. 9 -43. 0 -13. 9 -21. 8
SLP SLP SLD SLD SLD	do do do	Fire endurance	Unexposed in 8- or 12-in, solid walls do Fire exposed in 8-in, solid walls Unexposed in 8- or 12-in, solid walls do do	4, 720 4, 720 2, 270 2, 260 1, 690	50 21 40 48 15	$ \begin{array}{r} -23.9 \\ -17.1 \\ -45.0 \\ +0.1 \\ +6.3 \end{array} $
CLM CLM CLM CLI CLI	dodo	do dodo	Fire exposed in 8- or 12-in rolok walls Middle course in 12-in, rolok wall Unexposed in 8- or 12-in, rolok walls Fire exposed in 8-in, rolok walls Unexposed in 8-in, rolok walls	2, 560 2, 330	24 17 19 27 25	+6. 2 +18. 8 +1. 3 +8. 5 -0. 9
SHW	Shaledo	do	Fire exposed in 8-in, rolok walls. Unexposed in 8-in, rolok walls.	5, 840 5, 910	23 31	-12. 6 -13. 0

¹ No tests.

Table 15. Effect of fire tests on compressive strength of bricks tested on side

Brick				Average	Effect o	f fire test
Symbol	Material	Type of test	Location of bricks	original strength	Number of tests	Average loss (-), gain (+)
CLM CLI CLI CLI SHW SHW CON COD COD COD SLP SLP SLP SLP	dodododododo	Fire endurance	Fire exposed in 4-, 8-, or 12-in, solid walls Unexposed in 8- or 12-in, solid walls Fire exposed in 8- or 12-in, solid walls Unexposed in 8- or 12-in, solid walls Unexposed in 8- or 12-in, solid walls Unexposed in 8- or 12-in, solid walls Fire exposed in 8- or 12-in, solid walls Unexposed in 8- or 12-in, solid walls Fire exposed in 12-in, solid wall Unexposed in 12-in, solid wall Unexposed in 12-in, solid wall Fire exposed in 8- or 12-in, solid wall Fire exposed in 8- or 12-in, solid wall Fire exposed in 12-in, solid wall Onexposed in 12-in, solid wall	4,630 4,630	29 32 12 4 23 11 9 18 (¹) 10 10 13 8 9 9 25	Percent -11: 7 -10. 2 -8. 8 -4. 3 -14. 9 -22. 5 -47. 5 -19. 7 (2) -0. 8 -19. 3 -33. 6 -14. 1 -11. 7
SLP SLD SLD CLM CLM CLM SHW SHW	do do Clay do Sbale	Fire and water Fire endurancedo	do	4, 630 2, 530 2, 580 3, 280 3, 280	* 8 22 22 6 5 5 11 11 14	+12.9 -2.4 -27.8 -9.4 +17.7 +2.2 -13.1 +3.4 -7.4

¹ No tests.

² Fluxed.

² Fluxed.

Although the results indicate a considerable range in loss of strength as between bricks from the different sources, in most cases the effect is not of a degree that would preclude reuse of the bricks or masonry. However, other conditions, such as the effect on the mortar and deflection and cracking of the wall resulting from the fire test, would also have a bearing thereon.

8.2. Transverse Strength of Bricks

Table 16 gives the flexure strength of bricks as determined with whole bricks on 7-in. span. The loss is seen to be much greater than for the compressive strength. As many of the bricks were broken in the wall from the fire tests and were not included in the samples taken, the actual loss was greater than indicated in the table. Dismantling of the walls also indicated that transverse rupture of the bricks, particularly in header courses, was the most serious effect having a bearing on possible reuse of the construction after test.

8.3. Absorption

No detailed results of the absorption tests are given here, but in general the fire test reduced the absorption. It did not appear that the change in absorption had a significant bearing on the possibility of reusing the bricks or masonry.

8.4. Masonry Strength

In seven comparisons obtained from table 5 on loss of strength of 8- and 12-in. solid masonry in the fire-endurance test, the average is 40 percent. For six similar comparisons obtained with walls in the fire and hose-stream tests, the average loss was 40.5 percent.

Table 16. Effect of fire tests on the flexure strength of bricks

	Briek		h		Effect of	fire test
Symbol	Material	Type of test	Location of bricks	Average original strength	Number of tests	Average loss (-), gain (+)
CLM CLM CLM CLM	do do	Fire endurancedoFire and water.Fire endurancedo	Fire-exposed stretchers in 4-, 8-, 12-in, solid walls Fire-exposed headers in 8- or 12-in, solid walls Fire-exposed stretchers in 4- or 8-in, solid walls Middle course stretchers in 12-in, solid wall Unexposed stretchers in 8- or 12-in, solid walls	lb/in.2 890 900 1, 210 760 950	56 45 10 6 34	Percent -73. 8 -12. 6 -72. 9 +4. 7 -2. 0
CLI CLI CLI CLI SHW	do do	do	Fire-exposed stretchers in 8- or 12-in, solid walls Fire-exposed headers in 8- or 12-in, solid walls Middle course stretchers in 12-in, solid wall Unexposed stretchers in 8- or 12-in, solid walls. Fire-exposed stretchers in 4- or 8-in, solid walls	1, 180 1, 180 1, 180 1, 180 2, 040	24 30 5 11 50	-58. 4 -56. 9 -22. 3 -25. 2 -84. 3
SHW SHW CON CON	Conerete	do do do do Fire and water	Fire-exposed headers in 8-in, solid walls. Unexposed stretchers in 8-in, solid walls. Fire-exposed stretchers in 8- or 12-in, solid walls. Fire-exposed headers in 8- or 12-in, solid walls. Fire-exposed stretchers in 4-, 8-, or 12-in, solid walls.	2, 020 2, 020 650 650 650	10 12 18 22 9	-49.8 +27.2 -82.2 -74.0 -75.9
CON CON CON COD	do		Fire-exposed headers in 8- or 12-in. solid walls Unexposed stretchers in 8- or 12-in. solid walls Unexposed headers in 12-in. solid wall Unexposed stretchers in 8- or 12-in. solid walls Fire-exposed headers or stretchers in 12-in. solid wall	650 650 650 650 780	5 23 6 5 (1)	$ \begin{array}{r} -44.1 \\ -30.1 \\ -35.2 \\ -19.3 \\ (2) \end{array} $
COD COD COD SLP SLP	do Sand-lime	do do do Fire endurance do	Middle course stretchers in 12-in, solid wall Unexposed headers in 12-in, solid wall Unexposed stretchers in 12-in, solid wall Fire-exposed stretchers in 8- or 12-in, solid walls Firc-exposed headers in 8- or 12-in, solid walls	780 780 780 930 930	10 10 10 17 23	-\$5, 2 -66, 3 -43, 1 -94, 8 -\$1, 4
SLP SLP SLP SLP SLP	do	do	Fire-exposed stretchers in 4-, 8-, or 12-in. solid walls. Fire-exposed headers in 8- or 12-in. solid walls. Middle course stretchers in 12-in. solid wall. Unexposed stretchers in 8- or 12-in. solid walls. Middle course stretchers in 12-in. solid wall.	930 930 930 930 930	\$ 8 9 30 6	-89.7 -74.2 -38.5 -36.5 -27,0
SLP SLP SLP SLD SLD	do	do	Unexposed headers in 12-in, solid wall. Unexposed stretchers in 8- or 12-in, solid walls. Unexposed headers in 12-in, solid wall. Fire-exposed stretchers in 8-in, solid walls. Fire-exposed headers in 8-in, solid walls.	930 930 930 660 660	9 11 6 20 18	-34.9 -31.9 -32.6 -86.6 -73.1
SLD CLM CLM CLM CLM	Claydodododo	do do do do	Unexposed stretchers in 8-in, solid walls Fire-exposed stretchers in 8- or 12-in, rolok walls Fire-exposed headers in 8- or 12-in, rolok walls Unexposed stretchers in 12-in, rolok wall Unexposed headers in 12-in, rolok wall	700 760 760 760 760	25 15 15 6 6	-54, 6 -53, 5 -13, 9 -0, 4 -5, 4
CLI CLI SHW SHW SHW	Shaledo	do do do dodo	Fire-exposed stretchers in 8-in, rolok walls Fire-exposed headers in 8-in, rolok walls Fire-exposed stretchers in 8-in, rolok walls Fire-exposed headers in 8-in, rolok walls. Unexposed stretchers in 8-in, rolok walls.	1, 180 1, 180 1, 720 1, 760 1, 720	16 17 15 14 15	-56.3 -57.3 -77.1 -34.4 +4.9

No tests.
 Fluxed.

Some of the loss was due to damage to the masonry specimen incurred in cutting it out of the wall after test. It might also be noted that the tests were made with specimens about 2½ ft high, and the effect on strength, such as from loss of header bond in the fire test, would not be as much as with specimens of greater height.

9. Summary and Conclusions

9.1. Materials of Construction

The bricks included a representative range in kind and quality and met ASTM specifications from the standpoint of strength and other properties, for use in interior or exterior walls of

buildings (table 1).

The portland cement, lime, plaster, and sand also met recognized acceptance standards. The mortar strengths (table 2) were somewhat lower than prescribed for given proportions, apparently due to the wet mix, the samples being taken from the mortar prepared by the workmen constructing the walls.

9.2. Workmanship

The workmanship for most of the large solid and all-rolok hollow walls was hardly up to the usual standard for building construction. This applied particularly to the filling and pointing of mortar joints at the surface of unplastered walls.

The strength of the masonry as based on compressive tests of piers (table 5) had a factor of safety of 3 or more on working loads applicable

for given wall designs.

9.3. Wall Constructions

The walls tested were of designs representative of those in common use, and some new designs were included that as yet have found only limited application in building construction. They were subjected to fire test restrained within heavy panel frames, unrestrained with freedom to deflect outward at the top, and under applied working loads. The heights of the large walls were representative of moderate story heights of buildings. Supplementary information was obtained with walls or smaller size.

9.4. Testing Procedure

The furnace fire exposure was controlled according to the present procedure for conduct of fire tests [8], except that, in the earlier tests going beyond 8 hr, the furnace temperature was raised above 2,300° F to a maximum of 2,500° F (sec. 4.4(a)). The comparison on severity of furnace exposure given in tables 9 and 10 was based on the area under the furnace curve of the present standard, hence the severity in some of these earlier tests of long duration appears relatively

high. Otherwise, the furnace control was well within permitted tolerance limits.

In the earlier tests, the method of determining temperatures on the unexposed surface had not been standardized, but sufficient information was obtained in these and later tests to evaluate results

in terms of the present procedure.

The procedure used in some of the fire and hose-stream tests differed in only minor details from the present procedure with respect to the nozzle pressure and duration of the hose-stream application. Although no load was applied in these earlier tests, the evidence appears conclusive (sec. 7.3) that the walls would have sustained the working load during the test and twice this load after cooling, if tested according to the present procedure [8]. On other aspects, the test data indicated that the walls fully met the requirements of the test (sec. 7.1 and 7.2).

9.5. Conditioning Before Test

For the 4-in, walls and the 8-in, walls of clay or shale bricks, the conditioning procedure used (sec. 3.5) apparently resulted in a degree of dryness within the range attained by walls within heated buildings. Concrete and sand-lime bricks are more retentive of moisture, and for them, as well as for all 12-in, solid walls and 8- and 12-in, plastered walls, the desired degree of dryness may not have been attained.

A number of the walls were dried to constant weight at temperatures in the range 160° to 180° F, and in the general evaluation of the results of the tests, due consideration is given to their performance in the fire test in comparison with the results obtained with walls seasoned under

room conditions.

9.6. Fire-Resistance Periods

The main result of this type of fire test is the time the construction withstands the test under the given performance limits. The limiting condition may be failure under working load or collapse from excessive lateral deflection, certain temperature-rise limits reached within the wall or on the surface not exposed to fire, passage of flame, or ignition of combustible material in contact on the unexposed side. Satisfactory performance in the fire and hose-stream test is also a corollary re-

The fire-resistance periods are based upon the events during the test while the construction was exposed to fire. Subsequent occurrences (tables 11 and 12), such as increase in temperature rise on the unexposed side and ignition of pads in contact therewith, are not considered of direct concern. In the fire test, the furnace temperature was at or near maximum at the end of the fire exposure, and the subsequent heat from the furnace was, in effect, a continuation of the test

of the wall in place at the furnace.

Also, high temperatures of fires in buildings are not generally sustained for long periods, and the cooling periods are longer than those for the test furnace. Thus, in fire severity tests with combustibles burned under representative conditions in buildings, the maximum temperatures were reached relatively early, but the greater part of the area under the time-temperature curve serving as a measure of fire severity, was obtained in the

subsequent period. Accordingly, fire-division walls in buildings having a fire-resistance equal to the fire severity to be expected should give protection during both the active period of the fire and subsequently. The fire resistance of brick walls is relatively high, and the thickness required for other reasons will generally give the required fire resistance. However, this is not always the case, particularly where hot debris remains in contact with the wall. Hence, the possibility that materials on the unexposed side or combustible members framed into the wall will ignite after the fire is under control, or even after extinguishment. This is attested by such occurrences in building fires.

a. Theoretical Relations

For the conditions of the fire test it has been found that, with constructions of the same material, the time of the limiting temperature rise at points within the wall or on the unexposed surface varies with the 1.7 power of the thickness of solid material intervening between these points and the fire-exposed surface [7]. Furthermore, the effect of plaster and of the air spaces in the construction can be evaluated on a similar basis [9].

Use will be made of these relations only in comparing results with similar walls of different thicknesses and in appraising results in which the degree of conditioning or size of wall may have had significant effects.

b. Loading and Stability

In the fire tests, the 4- and 8-in, solid and allrolok walls carried working loads up to or beyond the time when temperature-rise limits were reached on the unexposed side. For the 10-in, cavity wall. an adjustment in the working load had to be made before this condition was met. For 12-in, solid walls of clay bricks having a low softening point and for those of sand-lime bricks having a compressive strength of less than 2,500 lb/in.2, there was failure under load before the limiting temperature rise was reached on the unexposed side.

With these exceptions, the walls shown to have given fire-resistance periods can be considered as able to carry up to these limits the working loads appropriate for their design, thickness, brick material, and mortar.

There was no collapse in the tests of unloaded walls because of excessive lateral deflection.

c. Average Fire-Resistant Periods

Fire-resistance periods or limits of brick walls of solid and hollow designs are given in table 17, as based upon results from the present tests. They are given to the nearest 1/4 hr up to 2 hr, to the nearest 1/2 hr in the range from 2 hr to 4 hr, and to the nearest hour above 4 hr.

Table 17. Fire-resistance periods of brick walls

								fire-resista based on—	
Wall design		Sketch in fig- ure 1	Nominal thick- ness	Brick material	Plaster	Wall or test	Time	Time of tempera- ture rise	
		шет	ness				load can be sup- ported	On un- exposed surface	4-in inside unexposed surface
Sol	id Do Do Do	A A B B C	in. 4 4 8 8 12	Clay and shaledododododododo	None		hr 1114 21/2 5 7 8	hr 114 212 5 7	hr
	Do	C B C B C	12 8 12 8 12	do 4	do do		10 6 12 7 9	10 6 12 7 12	21 ₂ 83 9
All	rolok Do I rolok and alt, rolok t, rolok vity Do	G L	8 8 12 12 10 10	Clay and shaledododododododo	do Both sides None Both sides None do	54 to 59 60, 61. 64, 65. 66. 70 to 72. 70 to 72.	21 ½ 4 5 7 3 5	21 ₂ 4 5 5 5 5	1 1 ¹ 2 2 ¹ 2 3 ¹ 2 1 ¹ 3

Load limited to 80 lb/in.2, centrally applied, and with pilasters to 160 lb/in.2. Walls to be laid up in mortar comparable to the cement or coment-lime

mortars used in this test project, or equivalent in other mortars.

2 Bricks of burned clay and shale having softening point below 2,200° F.

3 Bricks of burned clay and shale having softening point of 2,200° F or over.

4 No cinders or other constituents in the aggregate that lower the softening point of the concrete below 2,300° F.

5 Working load limited to one-third of load allowed for 8-in, solid brick walls of comparable material.

⁶ Based on embedment of ends of combustible members on not less than three sides.

The values in table 17 are below the average result with a group of comparable walls but were not as low as the minimum in all cases. Further reductions were made on account of size and degree

of seasoning of the walls.

The increase credited for plaster is based upon coatings of not less than % in. thickness of gypsum or portland-cement plaster, comparable to those applied in connection with these tests. For periods determined by temperature rise on the unexposed side, the plaster is assumed to be applied on both sides of the wall. Where determined by bearing capacity or protection of ends of combustible members 4-in. inside the unexposed surface, the plaster need be applied only on the fire-exposed side.

(1) Clay- and shale-brick walls of 4-in, thickness. The limit of 1\hstyle{1}/4 hr for the unplastered wall is based upon an average test result for the group of 1 hr 21 min, the minimum in any test being 1 hr 8 min. Here little or no discount need be made for size of wall or degree of seasoning. Shalebrick wall 6 and clay-brick wall 2 carried a load of 80 lb/in.2 for 1 hr 44 min and 2 hr 20 min, respectively. The results of tests 10A and 10B indicate that with pilasters (fig. 2) the load can

be increased to 160 lb/in.2

(2) Solid clay- and shale-brick walls of 8- and 12-in. thickness. The 5 hr period for unplastered walls is within the limits determined in the tests with normally seasoned walls. The average limit of temperature rise in the wall of 2 hr compares with the average from 12 tests of 2 hr 16 min.

The periods given for plastered walls are lower than the results with plastered wall 37, both because of size of wall and degree of dryness. They are in accord with a conservative interpretation of results obtained with plaster and also with theoretical relations [9]. Similar considerations were applied in the derivation of periods for

the 12-in. walls.

(3) Solid concrete and sand-lime brick walls of 8- and 12-in. thickness. In arriving at the periods listed in table 17, due consideration was given to the degree of dryness of the walls at the time of test and the possible effect of border conditions for other than the large walls. The periods given for the walls of 12-in. thickness and those more fully experimentally determined for the 8-in. walls are in general theoretical accord. aggregate for concrete bricks in 12-in. walls should contain no cinders or other constituents that unduly lower the fusion point. Allowance was made for the extra width of sand-lime bricks from source SLD.

(4) Walls of all-rolok and alternate rolok designs. For the unplastered walls, the limits given in table 17 are taken at or a little below the average results from the tests. The periods arrived at for

the plastered walls are below experimental values that apparently were unduly influenced by degree of seasoning before test and cooling from the borders during test.

(5) Cavity walls. Only the cavity wall of nominal 10-in, thickness was included in the tests, and the fire-resistance periods in table 17 are near

the average of the test results.

(6) Walls of other designs. A number of walls of rolok-bak and rolok-faced designs were included in the series, and while the results are informative, they do not form an adequate basis for evaluation in terms of fire-resistance periods, pending accrual of additional information from further fire tests.

Acknowledgments are made to a number of former members of the Fire Resistance Section of the National Bureau of Standards for conduct of tests and reducing the large volume of test data to usable form, among whom mention is here made of Clement R. Brown, Nolan D. Mitchell, and Harry E. Newcomer. Acknowledgments are also made to William Carver, formerly architect with the Common Brick Manufacturers Association of America, for development of a number of the hollow wall designs, and to C. O. Christianson, Research Associate with the Association, for assistance on fire tests of the walls.

10. References

[1] S. H. Ingberg and H. D. Foster, Fire resistance of hollow load-bearing wall tile, BS J. Research 2, 27 (1929) RP37.

[2] S. H. Ingberg and Nolan D. Mitchell, Fire tests of wood- and metal-framed partitions, NBS Building Materials and Structures Report BMS71 (1941).

[3] Harry D. Foster, Earl R. Pinkston, and S. H. Ingberg, Fire resistance of walls of lightweight-aggregate concrete masonry units, NBS Building Materials and Structures Report BMS117 (1950).

[4] Harry D. Foster, Earl R. Pinkston, and S. H. Ingberg, Fire resistance of walls of gravel-aggregate concrete masonry units, NBS Building Materials and Structures Report BMS120 (1951).

[5] S. H. Ingberg, H. K. Griffin, W. C. Robinson, and R. E. Wilson, Fire tests of building columns, BS Tech. Pap. T184, p. 99–106 (1921).

[6] Standard specifications for fire tests of building contractions of the property of the proper

struction and materials, American Society for Testing Materials Designation C19–33 or American Standards Association No. A2–1934.

[7] S. H. Ingberg, Size and border conditions of test specimens in their relation to results of fire tests, Am. Soc. Testing Materials Proc. 49, p. 1065-77 (1949).

[8] Standard methods of fire tests of building construction and materials, American Society for Testing Materials Designation E119-50.

[9] Fire-resistance classifications of building constructions, NBS Building Materials and Structures Report BMS92, Appendix B (1942).

Washington, April 19, 1954.

BUILDING MATERIALS AND STRUCTURE REPORTS

[Continued from cover page 11]

BMS32	Structural Properties of Two Brick-Concrete-Block Wall Constructions and a Concrete-Block Wall Construction Sponsored by the National Concrete Masonry Association.	*
BMS33 BMS34	Plastic Calking Materials Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 1	* 156
BMS35 BMS36	Stability of Sheathing Papers as Determined by Accelerated AgingStructural Properties of Wood-Frame Wall, Partition, Floor, and Roof Constructions	*
BMS37	With 'Red Stripe' Lath Sponsored by The Weston Paper and Manufacturing Co-Structural Properties of "Palisade Homes" Constructions for Walls, Partitions, and	10¢
BMS38	Floors, Sponsored by Palisade Homes Structural Properties of Two "Dunstone" Wall Constructions Sponsored by the W. E.	*
	Dunn Manufacturing Co. Structural Properties of a Wall Construction of "Pfeifer Units" Sponsored by the	10¢
BMS39	Wisconsin Units Co	10¢
BMS40	Structural Properties of a Wall Construction of "Knap Concrete Wall Units" Sponsored by Knap America, Inc.	*
BMS41 BMS42	Effect of Heating and Cooling on the Permeability of Masonry Walls	*
BMS43 BMS44	Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 2	吳
BMS45	Air Infiltration Through Windows	20¢
BMS46	Structural Properties of "Scott-Bilt" Prefabricated Sheet-Steel Construction for Walls, Floors, and Roofs Sponsored by The Globe-Wernicke Co	*
BMS47	Structural Properties of Prefabricated Wood-Frame Constructions for Walls, Partitions, and Floors Sponsored by American Houses, Inc	206
BMS48	Structural Properties of "Precision-Built" Frame Wall and Partition Constructions Sponsored by the Homasote Co	*
BMS49	Metallic Roofing for Low-Cost House Construction	25
BMS50 BMS51	Stability of Fiber Building Boards as Determined by Accelerated AgingStructural Properties of "Tilecrete Type A" Floor Construction Sponsored by the	4
	Tilecrete Co	*
BMS52 BMS53	Effect of Ceiling Insulation Upon Summer Comfort	15¢
DIMOU	Sponsored by the Muniock Engineering Co.	10¢
BMS54	Effect of Soot on the Rating of an Oil-Fired Heating Boiler	100
$\begin{array}{c} { m BMS55} \\ { m BMS56} \end{array}$	A Survey of Humidities in Residences.	104
BMS57	Roofing in the United States—Results of a Questionnaire————————————————————————————————————	*
BMS58	Strength of Soft-Soldered Joints in Copper Tubing	15¢
BMS59	Properties of Adhesives for Floor Coverings	*
BMS60	Bricks Produced in the United States	30¢
BMS61 BMS62	Structural Properties of Two Nonreinforced Monolithic Concrete Wall Constructions Structural Properties of a Precast Joist Concrete Floor Construction Sponsored by the	7
DMOUL	Portland Cement Association	156
BMS63	Moisture Condensation in Building Walls	*
BMS64	Solar Heating of Various Surfaces Methods of Estimating Loads in Plumbing Systems	100
BMS65 BMS66	Plumbing Manual	400
BMS67	Structural Properties of "Mu-Steel" Prefabricated Sheet-Steel Constructions for Walls.	
DEFCOO	Partitions, Floors, and Roofs Sponsored by Herman A. Mugler Performance Test for Floor Coverings for Use in Low-Cost Housing: Part 3	200
BMS68	Performance Test for Floor Coverings for Use in Low-Cost Housing: Part 3	250
BMS69 BMS70	Stability of Fiber Sheathing Boards as Determined by Accelerated AgingAsphalt-Prepared Roll Roofings and Shingles	204
BMS71	Fire Tests of Wood- and Metal-Framed Partitions	30
BMS72	Fire Tests of Wood- and Metal-Framed Partitions Structural Properties of "Precision-Built, Jr." Prefabricated Wood-Frame Wall Construction Sponsored by the Homasote Co	*
BMS73	Indentation Characteristics of Floor Coverings	100
BMS74	Structural and Heat-Transfer Properties of "U. S. S. Panelbilt" Prefabricated Sheet- Steel Constructions for Walls, Partitions, and Roofs Sponsored by the Tennessee	
BMS75	Survey of Roofing Materials in the North Central States	156
BMS76	Coal, Iron & Railroad Co	*
BMS77	Properties and Performance of Fiber Tile Boards	4
BMS78	Constructions	350
BMS79	Water-Distributing Systems for Buildings	200
BMS80 BMS81	Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 4	3.7
BMS82	Field Inspectors' Check List for Building Constructions (cloth cover, 5 x 7½ inches) Water Permeability of Walls Built of Masonry Units	256
BMS83	Water Permeability of Walls Built of Masonry UnitsStrength of Sleeve Joints in Copper Tubing Made With Various Lead-Base Solders	150
BMS84	Survey of Roofing Materials in the South Central States	*

BUILDING MATERIALS AND STRUCTURE REPORTS

[Continued from cover page III]

BMS85	Dimensional Changes of Floor Coverings With Changes in Relative Humidity and	4
BMS86	Temperature	15¢
BMS87	A Method for Developing Specifications for Building Construction—Report of Sub- committee on Specifications of the Central Housing Committee on Research	
BMS88	Design, and Construction————————————————————————————————————	20¢
BMS89	Structural Properties of "Precision-Built, Jr." (Second Construction) Prefabricated Wood-Frame Wall Construction Sponsored by the Homasote Co	15¢
BMS90	Structural Properties of "PHC" Prefabricated Wood-Frame Constructions for Walls, Floors, and Roofs Sponsored by the PHC Housing Corporation	15¢
BMS91	A Glossary of Housing Terms Fire-Resistance Classifications of Building Constructions	*
BMS92	Fire-Resistance Classifications of Building Constructions	35¢
BMS93 BMS94	Accumulation of Moisture in Walls of Frame Construction During Winter Exposure_ Water Permeability and Weathering Resistance of Stucco-Faced, Gunite-Faced, and "Knap Concrete-Unit" Walls	*
BMS95	Tests of Cement-Water Paints and Other Waterproofings for Unit-Masonry Walls	256
BMS96	Properties of a Porous Concrete of Cement and Uniform-Sized Gravel	100
BMS97	Experimental Dry-Wall Construction With Fiber Insulating Board	*
BMS98	Physical Properties of Terazzo Aggregates	*
BMS99	Physical Properties of Terazzo Aggregates Structural and Heat-Transfer Properties of "Multiple Box-Girder Plywood Panels" for Walls, Floors, and Roofs	*
BMS100	Relative Slipperiness of Floor and Deck Surfaces Strength and Resistance to Corrosion of Ties for Cavity Walls	*
BMS101	Strength and Resistance to Corrosion of Ties for Cavity Walls	4 1 ~ 1
BMS102 BMS103	Painting Steel Massurements of Heat Losses From Slab Flore	19¢
BMS104	Measurements of Heat Losses From Slab Floors———————————————————————————————————	
DMSIOT	Partitions, Floors, and Roofs Sponsored by the Douglas Fir Plywood Association.	*
BMS105	Paint Manual with particular reference to Federal Specifications	. 50
BMS106	Laboratory Observations of Condensation in Wall Specimens	100
BMS107	Building Code Requirements for New Dwelling Construction	*
BMS108	Temperature Distribution in a Test Bungalow With Various Heating Devices	15¢
BMS109	Strength of Houses: Application of Engineering Principles to Structural Design \$1	l. 7 5
BMS110	Paints for Exterior Masonry Walls	20e
BMS111	Performance of a Coal-Fired Boiler Converted to Oil————————————————————————————————————	15¢
BMS112	Properties of Some Lightweight-Aggregate Concretes With and Without an Air-	
DMC119	Entraining Admixture	15¢
BMS113 BMS114	Fire Resistance of Structural Clay Tile Partitions Temperature in a Test Bungalow With Some Radiant and Jacketed Space Heaters	100
BMS115	A Study of a Baseboard Convector Heating System in a Test Bungalow.	200
BMS116	Preparation and Revision of Building Codes	200
BMS117	Preparation and Revision of Building Codes Fire Resistance of Walls of Lightweight Aggregate Concrete Masonry Units	256
BMS118	Stack Venting of Plumbing Fixtures	256
BMS119	Wet Venting of Plumbing Fixtures Fire Resistance of Walls of Gravel-Aggregate Concrete Masonry Units	25ϕ
BMS120	Fire Resistance of Walls of Gravel-Aggregate Concrete Masonry Units	15ϕ
BMS121	Investigation of Failures of White-Coat Plasters	-30¢
BMS122	Physical Properties of Some Samples of Asbestos-Cement Siding	20¢
BMS123	Fire Tests of Wood-Framed Walls and Partitions With Asbestos-Cement Facings	15¢
BMS124 BMS125	Fire Tests of Steel Columns Protected With Siliceous Aggregate Concrete Stone Exposure Test Wall	196
BMS126	The Self-Siphonage of Fixture Traps	
BMS127	Effect of Aging on the Soundness of Regularly Hydrated Dolomitic Lime Putties	156
BMS128	Atmospheric Exposure Tests of Nailed Sheet Metal Building Materials	20¢
BMS129	Fire Endurance of Shutters for Moving-Stairway Openings	10¢
BMS130	Fire Endurance of Shutters for Moving-Stairway Openings Methods and Equipment for Testing Printed-Enamel Felt-Base Floor Covering	15¢
BMS131	Fire Tests of Gunite Slabs and Partitions	15¢
BMS132	Capacities of Plumbing Stacks in Buildings	25¢
BMS133	Live Loads on Floors in Buildings	25¢
BMS134	Fire Resistance of Concrete Floors	1 = 1
BMS135 BMS136	Properties of Cavity Walls	154
BMS137	Properties of Cavity Walls	154
BMS138	Effect of Edge Insulation Upon Temperature and Condensation on Concrete-Slab	100
_ 1.1.0100	Floors	20¢
BMS139	Studies of Stone-Setting Mortars	25¢
BMS140	Studies of Stone-Setting Mortars Selected Bibliography on Building Construction and Maintenance	30¢
BMS141	Fire Endurance of Open-Web Steel-Joist Floors With Concrete Slabs and Gypsum	
DMG140	Ceilings Frost Closure of Roof Vents	20¢
BMS142	Fire Tests of Prior Wells	25¢
BMS143	Fire Tests of Brick Walls	30¢