NISTIR 6646

Thermophysical Properties Measurements and Models for Rocket Propellant RP-1: Phase I

Joseph W. Magee Thomas J. Bruno Daniel G. Friend Marcia L. Huber Arno Laesecke Eric W. Lemmon Mark O. McLinden Richard A. Perkins Jörg Baranski Jason A. Widegren

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

NISTIR 6646

Thermophysical Properties Measurements and Models for Rocket Propellant RP-1: Phase I

Joseph W. Magee Thomas J. Bruno Daniel G. Friend Marcia L. Huber Arno Laesecke Eric W. Lemmon Mark O. McLinden Richard A. Perkins Jörg Baranski Jason A. Widegren

Physical and Chemical Properties Division Chemical Science and Technology Laboratory

February 2007

U.S. Department of Commerce *Carlos M. Gutierrez, Secretary*

Technology Administration Robert C.Cresanti, Undersecretary for Technology

National Institute of Standards and Technology William A. Jeffrey, Director

CONTENTS

1.	Introduction	2
	1.1 Objective	2
	1.2 Scope	
	1.3 Organization	
2.	Property Modeling	4
3.	Chemical Characterization	
4.	Density	
	4.2 Density at Elevated Pressures	
5. 6.	Heat Capacity	
7	Viscosity	58
	7.1 Viscosity at Atmospheric Pressure	
	7.2 Viscosity at Elevated Pressures	
8.	Project Workshop at NIST Boulder on December 11, 2003	
9.	Summary and Recommendations	
10.). References	
Ap	ppendix A. Discussion of Chemical Characterization	
Ap	ppendix B. Computational Characterization of Surrogate Mixture C	Compounds109

List of Tables

Table 1.	Bibliography for property modeling	8
Table 2.	Surrogate mixture formulation	.28
Table 3.	Tier 1- Identification of constituents of 2 % (mass/mass) or higher	.30
Table 4.	Tier 2-Identification of constituents of 1 % (mass/mass) or higher	.31
Table 5.	Light fraction-identification of constituents of lightest components	.32
Table 6.	Heavy fraction-identification of constituents of heaviest components	.32
Table 7.	Thermal decomposition kinetics measurements on RP-1	.32
Table 8.	Experimental densities for RP-1 (original sample) under nitrogen	.35
Table 9.	Experimental densities for RP-1 (ultra-low sulfur) under nitrogen	.35
Table 10	. Thermal conductivity of liquid RP-1	.47
Table 11	. Experimental kinematic viscosities for four RP-1 samples	.61
Table 12	. Experimental viscosity measurements at elevated pressures	.66
Table 13	. Participants in NIST Rocket Propellant Workshop	.70

List of Figures

Figure 1. Density of RP-1 at atmospheric pressure; (a) measured densities; (b) deviations of density from the simple polynomial correlation	
Figure 2. Range of thermal conductivity measurements on liquid RP-1	44
Figure 3. Thermal conductivity of RP-1 corrected for thermal radiation (pressure from 0.1 MPa to 70 MPa	45
Figure 4. Empirical optical parameters for radiation correction of RP-1 data	45
Figure 5. Solid deposits with diameters up to 8 times that of the 4 µm hot wires were found after measurements on RP-1 at 650 K	46
Figure 6. Deviations between the radiation corrected thermal conductivity data and the corresponding-states model for RP-1 developed in this work	46
Figure 7. (a) Kinematic viscosity of the original sample of RP-1 as a function of temperature; (b) Arrhenius plot of the same data, solid curve is a correlation; (c) deviations of kinematic viscosity from the correlation	62
Figure 8. Percent deviations of the kinematic viscosity of three rocket propellant samples compared to the correlation for the kinematic viscosity of the original sample of RP-1	63
Figure 9. (Viscosity × density) product of RP-1 at elevated pressures measured in the torsional crystal viscometer at room temperature and at 400 K	67
Figure 10. Percent deviations of the measured viscosities of RP-1 at elevated pressures from the model for the surrogate mixture	68
Figure 11. Molecular representation of 2,2-dimethylbutane	110
Figure 12. Molecular representation of 3-ethyl-4,4-dimethyl-2-pentene	110
Figure 13. Molecular representation of cyclodecene	111
Figure 14. Molecular representation of cis-decaline	111
Figure 15. Molecular representation of 2-methylnonane	112
Figure 16. Molecular representation of 2-methylnaphthalene	112
Figure 17. Molecular representation of decahydro-2-methylnaphthalene	113
Figure 18. Molecular representation of 3-methyldecane	113

Figure 19.	Molecular representation of 1-dodecene	.114
Figure 20.	Molecular representation of 1,11-dodecadiene	.114
Figure 21.	Molecular representation of cyclododecane	.115
Figure 22.	Molecular representation of heptylcyclohexane	.115
Figure 23.	Molecular representation of n-dodecane	.116
Figure 24.	Molecular representation of methylcyclododecane	.116
Figure 25.	Molecular representation of 1-tridecene	.117
Figure 26.	Molecular representation of 2,10-dimethylundecane	.117
Figure 27.	Molecular representation of 2,7,10-trimethyldodecane	.118
Figure 28.	Molecular representation of n-hexadecane	.118

THERMOPHYSICAL PROPERTIES MEASUREMENTS AND MODELS FOR ROCKET PROPELLANT RP-1: PHASE I

Joseph W. Magee, Thomas J. Bruno, Daniel G. Friend, Marcia L. Huber, Arno Laesecke, Eric W. Lemmon, Mark O. McLinden, Richard A. Perkins, Jörg Baranski, and Jason A. Widegren Physical and Chemical Properties Division Chemical Science and Technology Laboratory National Institute of Standards and Technology Boulder, Colorado 80305-3328

Accurate knowledge of thermophysical properties is a prerequisite to the design of efficient and cost-effective rocket engine systems that use the kerosene rocket propellant designated RP-1. A robust properties model that is based on reliable experimental measurements is the best means to provide this information to designers. Thus, a combined experimental and modeling study was carried out to elucidate the behavior of key properties over wide ranges of temperature and pressure. As a first step in this study, an RP-1 sample provided by the U.S. Air Force Research Lab (Wright-Patterson AFB, OH) was chemically characterized, which established that this sample had anomalously high concentrations of unsaturated compounds. Then, thermophysical properties were measured for this sample. Those experimental results were used to develop a mixture model based on a representative surrogate mixture. The results of this study were presented for review and comments during a December 11, 2003 workshop attended by representatives of NASA, U.S. Air Force, and their contractors.

Key words: chemical characterization; density; heat capacity; Helmholtz energy; hydrocarbons; mixture model; rocket propellant RP-1; surrogate mixture; thermal conductivity; viscosity

1. Introduction

1.1 Objective

Among the long-range objectives of research in thermophysical properties at the National Institute of Standards and Technology (NIST) is the development of accurate predictive methods for calculating the properties of gaseous and liquid mixtures of hydrocarbons. The underlying models may play a key role in design of equipment that is used in the transportation and energy sectors and for optimization of materials and energy usage. The ongoing development and testing of these models relies heavily on benchmark experimental measurements. The purpose of this report is to provide design engineers, data analysts, and experimentalists with a compilation of recent studies of the thermophysical properties for rocket propellant RP-1, a real fuel that is a complex hydrocarbon mixture. It is a well established fact that thermophysical properties of a complex mixture can vary considerably with composition. This report is denoted as Phase I since it covers thermophysical properties of the first sample of this real fuel that was furnished to NIST, with an expectation that studies of other samples would follow in Phases II, III, etc., until NIST had developed a robust compositionally variable model that was based on the measurements. The studies were carried out, during calendar year 2003, by the staff of the Experimental Properties of Fluids Group, the Theory and Modeling of Fluids Group, and the Properties for Process Separations Project, all of which are units of the Physical and Chemical Properties Division of the Chemical Science and Technology Laboratory (CSTL) of NIST. We begin with a report of the modeling effort because, while the model was the end product, its discussion provides a framework for the rest of the work. Following the models section, we present details of the underlying experimental measurements of chemical character, density, heat capacity, thermal conductivity and viscosity.

1.2 Scope

Knowledge of thermophysical properties is essential when a detailed analysis of the design

and performance of a rocket propulsion system is needed. Both thermodynamic and transport properties are required. The present work stemmed from NASA's expressed need for accurate thermophysical properties that cover wide ranges of temperature and pressure. This property information is needed for a rational design of highly reliable reusable rocket engines for future launch vehicles in which the fuels are expected to encounter higher pressures and temperatures than in those previous designs. NASA's sensitivity study had concluded that property uncertainties accounted for 70 % of the uncertainty in a portion of the propulsion system design. NASA had also noted that, prior to this project, experimental data covered only limited ranges of conditions and, furthermore, the differences in RP-1 properties from different sources amounted to as much as 60 %.

To meet NASA's needs and expand knowledge in the field of kerosene-based fuels, a comprehensive program was planned and carried out. This program had both measurement and modeling components. Those results are the subject of this report.

1.3 Organization

This report is arranged in nine sections and begins with a discussion of property models. The modeling results are followed by those of measured thermophysical properties: chemical characterization, density, heat capacity, thermal conductivity, and viscosity. The experimental measurements are presented in tables and graphs. The report concludes with a discussion of a NIST workshop, some impacts of this research program, and recommendations for further studies. Section 10 following this report lists references, Appendix A details procedures for chemical analyses, and Appendix B reports computational results for the compounds in a surrogate fuel mixture.

2. Property Modeling

Since RP-1 is a complex mixture of several hundred components, modeling its properties using equations for the constituents of the mixture is not a practical solution. An alternative approach is to model the fuel as a surrogate mixture of between 10 and 20 components that can represent the thermodynamic and transport properties of the actual RP-1 fluid. Both thermodynamic properties (such as density, heat capacity, and normal boiling point) and transport properties (including thermal conductivity and viscosity) may be used in model development.

The first step in the modeling process was a chemical analysis (see Section 3) of a specific RP-1 fuel sample provided by the Fuels Branch of the Air Force Research Lab, Wright-Patterson AFB, OH. The analysis used a gas-chromatography mass/ spectrometry method and provided 37 constituent fluids. A detailed analysis shortened this list to 20 potential constituent fluids for a surrogate mixture. The lightest component identified was neohexane, and the heaviest was hexadecane. The list included linear and branched alkanes, mono and bicyclic paraffins, aromatics, and linear and branched olefins. For each of these fluids, we searched the open literature as well as databases such as TRC-SOURCE, DIPPR, Landolt-Bornstein, and NIST in-house databases for experimental physical property data. A bibliography of the results of these searches was constructed and is given in Table 1. In addition, we used predictive methods when data were not available.

In order to model the thermodynamic properties of these fluids, an equation of state of some form was required. Because of the very limited amount of data available, a generalized method was selected to describe the attributes of the fluids. A short form of a Helmholtz energy equation of state was used as a starting point. The equation is expressed with reducing variables, with the critical temperature and critical density of the fluid as the primary reducing properties.

4

The equation has 12 terms, and the coefficients of the equation are functions of the acentric factor. Experimental data for the normal alkanes from butane through hexatriacontane (C36) were fitted to determine the coefficients of the equation (48 in all, since each coefficient uses 4 parameters that are functions of the acentric factor). The experimental data included densities, vapor pressures, heat capacities, and sound speeds. Comparisons were made against data for both the normal alkanes as well as branched alkanes (which were not fitted) to determine that the final equation could successfully be applied to these hydrocarbons.

The generalized equation was then used to make equations for each of the 20 fluids in the surrogate. Only the critical temperature, critical density, and acentric factor are required to set up an equation for each component. The critical temperatures were taken from the literature or estimated from prediction schemes. The critical density and acentric factor were fitted using experimental vapor pressures at the boiling point and saturated liquid densities near atmospheric conditions. For fluids with additional data at other state points, the values of the critical density and acentric factor could be more closely tuned to achieve lower overall uncertainties. Viscosity and thermal conductivity surfaces for each of the constituent fluids were developed from experimental data, predictive methods, and an extended corresponding states model from sources summarized in Table 1.

The next step was to select a method for representing the properties of the RP-1 mixture. For the thermodynamic properties, we selected an excess Helmholtz energy mixture model used successfully at NIST for the representation of properties of natural gas and refrigerant mixtures [1,2]. The model uses the pure fluid equations of state with ideal mixing to account for most of the mixture properties. To account for the additional interaction between unlike molecules, an excess contribution can be used to account for the remainder of the mixture properties. However, experimental information for each binary system in the mixture is needed to determine the excess contribution. Since experimental data are not available, the excess part was set to zero. There are two additional parameters in the mixture model that can be adjusted to achieve better results. A general scheme had been developed in previous work at NIST to predict one of these parameters for systems where no data are available. This scheme was used here to improve the mixture calculations.

For transport properties, we use an extended corresponding states model [3,4]. In this approach, the properties of the mixture are represented in a two-step process that involves mapping onto a reference fluid. The reference fluid may be any well characterized fluid, but it is best to select a reference fluid that is chemically similar to the constituents of the mixture of interest. For this work, we chose n-dodecane as a reference fluid. Since it is important to have a very good representation of both the thermodynamic and transport properties of the reference fluid, as part of this project we developed a dedicated equation of state for n-dodecane and correlations for the viscosity and thermal conductivity. The results of this work are available as two publications in the journal Energy and Fuels [5,6]. The correlations for n-dodecane are valid over a wide range of fluid states, from the triple point to the onset of decomposition, and for pressures to 200 MPa. Uncertainties of properties calculated using the equation are 0.2 % in density at pressures up to 200 MPa, 0.5 % at higher pressures (up to 500 MPa), 1 % in heat capacities, 0.5 % in sound speeds, and 0.2% in vapor pressures. The viscosity correlation has an estimated uncertainty of 0.5% along the saturation boundary in the liquid phase, 3 % in the compressed liquid region, and 2 % in the vapor. The thermal conductivity has an estimated uncertainty of 3 % along the liquid saturation boundary and in the compressed liquid phase, and 5 % in the vapor region.

The final step in the modeling procedure was to determine the compositions of the

constituent fluids that best represent the properties of the mixture. The properties that we selected for fitting were experimental densities, heat capacities, thermal conductivities, viscosities, and one boiling point that were measured as part of this work, described in separate sections of this report. Data at temperatures above 600 K were not used in the fitting process due to concerns about thermal decomposition during the measurements. A multi-property fitting routine was used to determine the compositions of the constituents of the surrogate mixture. The final mixture, summarized in Table 2, contains 14 constituent fluids, and represents the density to within 0.3 %, the heat capacity to within 7 %, the thermal conductivity to within 3 %, the viscosity to within 3 % at atmospheric pressures and 10 % at 60 MPa, and the boiling point at local atmospheric pressure to 0.5 %. It has an overall molar mass of 164.6, a hydrogen to carbon ratio (H/C) of 1.95, and an approximate chemical formula of $C_{11.8}$ H_{23.0}. The overall composition is (by mole %) 27.4 % alkanes, 26.6 % alkenes, 18.5 % monocyclic paraffins, 22.4 % bicyclic paraffins, and 5.1 % aromatics. This mixture is a surrogate; it is not the actual mixture composition, but rather a mixture that approximates the behavior of the RP-1 sample that was investigated.

Table 1. Bibliography for property modeling.

Fuel Decomposition Studies

Author(s)	Reference	Торіс
Andresen et al.	[7]	Solids formation jet fuels
Balster and Jones	[8]	Formation of insolubles in aviation fuels
Batti	[9]	Thermal stability jet fuels
Behar et al.	[10]	Thermal decomposition of dodecylbenzene
Chin et al.	[11]	Thermal stability of four kerosine-type fuels
Chin and Lefebvre	[12]	For characterizing the thermal oxidative tendencies of
		aviation fuels
Chin and Lefebvre	[13]	Thermal stability characteristics of kerosine-type fuels
Chin and Lefebvre	[14]	Thermal stability characteristics of hydrocarbon fuels
Edwards and	[15]	Surface deposition (fouling) of jet fuels
Zabarnick		
Giovanetti et al.	[16]	Thermal stability and heat-transfer characteristics of several
		hydrocarbon fuels
Goel and Boehman	[17]	Jet fuel degradation in flow reactors
Grinstead and	[18]	Oxidn. and deposition data for jet fuels
Zabarnick		
Han-Ying	[19]	Thermal stability of kerosene
Heneghan et al.	[20]	Jet fuel thermal stability
Heneghan and	[21]	development of an improved JP-8
Harrison		
Hines	[22]	Heat transfer to RP-1 kerosine
Kendall and Mills	[23]	Thermal stability of aviation kerosines
Lai and Song	[24]	Pyrolization of cyclohexane and seven n-alkylcyclohexanes
Liang et al.	[25]	Heat transfer characteristics of methane, propane, kerosene,
		aerokerosene and rocket kerosene
Ма	[26]	Thermal stability of kerosine
Marteney and	[27]	Thermal stability of jet fuels
Spadaccini		
Pande and Hardy	[28]	Soluble copper and stability
Roback et al.	[29]	Deposit formation in hydrocarbon fuels
Savage et al.	[30]	Review of fundamental studies and applications of reactions
		at supercritical conditions
Stekhun	[31]	Effect of hydrofining on thermal stability of jet fuels
Stewart et al.	[32]	Supercritical pyrolysis of decalin, tetralin, n-decane
Stiegemeier	[33]	Thermal Stability and Heat Transfer Investigation of Five
		Hydrocarbon Fuels
Wang	[34]	Thermophysics characterization of kerosene combustion
Watkinson and	[35]	Review of fouling of organic fluids
Wilson		
Wohlwend et al.	[36]	Thermal stability of RP-1, JP-10, and quadricyclane

Author(s)	Reference	Торіс
Yu and Eser	[37]	Critical points of jet fuels
Yu and Eser	[38]	Thermal decomposition C10-C14 normal alkanes
Yu and Eser	[39]	Kinetics of thermal decomposition of C10-C14 normal
		alkanes
Yu and Eser	[40]	n-butylbenzene and n-butylcyclohexane
Yu and Eser	[41]	Thermal decomposition of decalin, tetralin
Yu and Eser	[42]	Thermal decomposition of binary mixtures of jet fuel model
		compounds
Volokhova and	[43]	Pyrolysis of Russian kerosene
Zhorov		

Surrogate Models

Author(s)	Reference	Торіс
Edwards and Maurice	[44]	JP-4, JP-8, JP-5, RP-1 surrogates
Edwards	[45]	Surrogates, general petroleum distillate fuels
Farmer et al.	[46]	RP-1 surrogate
Patterson et al.	[47]	Kerosene surrogate
Violi et al.	[48]	JP-8 surrogate
Wang	[49]	Kerosene/RP-1 surrogate
Wood et al.	[50]	JP-4 surrogate

RP-1/kerosene Properties

Author(s)	Reference	Торіс
Alexander et al.	[51]	Index of refraction
Blake and Sheard	[52]	Dielectric constant, kerosene
Chao	[53]	Isothermal compressibility
CPIA/M4	[54]	Properties of RP-1 including vapor pressure, density,
		viscosity, boiling point, fractional distillation curve, specific
		heat, thermal conductivity, composition
Dubovkin et al.	[55]	Vapor pressure, critical parameters Russian fuels
Kopylov	[56]	Viscosity, Russian T-1 kerosene
Kozyokov	[57]	Thermal conductivity, Russian T-1 kerosene
Liang et al.	[25]	Heat transfer characteristics of kerosene
Mehta et al.	[58]	Specific Gravity, viscosity, boiling point, chemical analysis
		of Russian kerosene
Piatibratov	[59]	Density, Russian T-1 kerosene
Sharma et al.	[60]	Correlation for flash point of kerosene
Sokolov and Tarlakov	[61]	Heat capacity, Russian T-1 kerosene
Sokolov and Tarlakov	[62]	Vapor pressure, Russian T-1 kerosene
Stiegemeier	[63]	RP-1, JP-7, JP-8, JP-8+100, JP-10 thermal stability

Author(s)	Reference	Торіс
Vinogradov	[64]	Density, sound speed, viscosity of kerosene
Volyak	[65]	Surface tension, Russian T-1 kerosene
Wohlwend et al.	[36]	Thermal stability measurements RP-1, JP-10, quadricyclane
Wucherer and Wilson	[66]	Density, thermal conductivity
Zaytseva	[67]	Thermal conductivity, Russian T-1 kerosene

Estimation methods

Author(s)	Reference	Торіс
American Petroleum	[68]	viscosity, thermal conductivity
Institute		
Baroncini et al.	[69]	Thermal conductivity
Chung et al.	[70]	Lennard-Jones parameters, viscosity, thermal conductivity
Constantinou and	[71]	Critical point, boiling point
Gani		
Deppmeier et al.	[72]	Dipole moment, radius of gyration
Ely and Hanley	[73,74]	Viscosity, thermal conductivity
Horvath	[75]	Critical point, boiling point, melting point, heat capacity,
		thermal conducitivty, viscosity
Joback	[76]	Critical point, boiling point, melting point
Marrero	[77]	Critical point, boiling point
Poling et al.	[78]	Critical point, boiling point, melting point, heat capacity,
		thermal conducitivy, viscosity
Quayle	[79]	Parachors
Rihani and	[80]	Heat capacity
Doraiswamy		
Stein and Brown	[81]	Heat capacity
Wilson and Jasperson	[82]	Critical point, boiling point
Yan et al.	[83]	Critical point

Potential Components in the Surrogate Model

Cyclododecane

Author(s)	Reference	Торіс
Coops et al.	[84]	Melting point
Drotloff and Moller	[85]	Melting point
Fischer and Weiss	[86]	Viscosity, density, melting point, boiling point, self-diffusion
		coefficient
Gollis et al.	[87]	Viscosity
Ladygin et al	[88]	Viscosity
Matteoli et al.	[89]	Density

Author(s)	Reference	Торіс
Meyer and Hotz	[90]	Density, vapor pressure
Mueller et al	[91]	Melting point
Ruzicka et al.	[92]	Density

Methylcyclododecane

Estimated properties

Cyclodecene

Author(s)	Reference	Торіс
Allinger	[93]	Boiling point
Blomquist et al.	[94]	Density, boiling point
Cope et al.	[95]	Boiling point
Prelog et al.	[96]	Boiling point

2,10-dimethylundecane

Author(s)	Reference	Торіс
Gibbons	[97]	boiling point

2,7,10-trimethyldodecane

Estimated values

3-methylundecane

Author(s)	Reference	Торіс
Levene and Harris	[98]	Density, boiling point
Mann et al.	[99]	Density
Marsh et al.	[100]	Heat capacity
Petrov et al.	[101]	Melting point, density, boiling point
Prout et al.	[102]	Boiling point
Smith	[103]	Boiling point
Terres et al.	[104]	Melting point

2,9-dimethyldecane

Author(s)	Reference	Торіс
Calingaert and Soroos	[105]	Density, boiling point

Author(s)	Reference	Торіс
Calingaert and Soroos	[106]	Density
Dyke and Jones	[107]	Boiling point
Eykman	[108]	Density
Geist and Cannon	[109]	Density, viscosity
Mears et al.	[110]	Density, boiling point, melting point
Moore et al.	[111]	Density
Parks et al.	[112]	Triple point, melting point

2-methylnonane

Author(s)	Reference	Торіс
Calingaert and	[113]	Density
Hladky		
Calingaert and Soroos	[105]	Boiling point, density
Eykman	[108]	Density
Geist and Cannon	[109]	Viscosity, density
Marsh et al.	[100]	Heat capacity
Mears et al.	[110]	Boiling point, freezing point
Moore et al	[111]	Density
Parks et al.	[112]	Triple point

3-methyldecane

Author(s)	Reference	Торіс
Marsh et al.	[100]	Heat capacity

3-ethyl-4,4-dimethyl-2-pentene

Author(s)	Reference	Торіс
Howard et al.	[114]	Density, boiling point

4-methyl-4-undecene Estimated values

2-methylnaphthalene

Author(s)	Reference	Торіс
Ambrose	[115]	Critical temperature
Briggs	[116]	Thermal conductivity
Byers and Williams	[117]	Viscosity

Author(s)	Reference	Торіс
Camin and Rossini	[118]	Vapor pressure
Coulson	[119]	Boiling point
Cullinane and Chard	[120]	Freezing point
Cumper et al.	[121]	Freezing point
Evans	[122]	Viscosity, density
Glaser and Ruland	[123]	Vapor pressure
Grodde	[124]	Density
Grosse and Ipatieff	[125]	Boiling point
Hales and Townsend	[126]	Density
Huffman et al.	[127]	Triple point
Koelbel	[128]	Viscosity, boiling point
Larsen et al.	[129]	Freezing point
Luther and Wachter	[130]	Boiling point
Mair and Streiff	[131]	Density, boiling point, melting point
Marsh et al.	[100]	Heat capacity
Neuhaus	[132]	Density
Parks and Huffman	[133]	Freezing point
Rampolla and Smyth	[134]	Viscosity, density, freezing point
Salceanu	[135]	Density
Schiessler	[136]	Viscosity
Shreve and Lux	[137]	Density
Sirotenko, A.A.	[138]	Viscosity
Skvarchenko et al.	[139]	Boiling point, freezing point
Smyth	[140]	Viscosity
Streiff et al.	[141]	Freezing point
Szafranski	[142]	Freezing point
Von Auwers and	[143]	Density
Fruhling		
Wieczorek and	[144]	Vapor pressure
Kobayashi		
Yokoyama et al.	[145,146]	Viscosity

Decahydro-2-methylnaphthalene

Author(s)	Reference	Торіс
Adkins and Davis	[147]	boiling point
Gollis et al.	[87]	viscosity, thermal conductivity
Gudzinowicz et al.	[148]	density, viscosity
Weissenberger et al.	[149]	boiling point, density

Heptylcyclohexane

Author(s)	Reference	Торіс
Baylaucq et al.	[150]	viscosity, density
Luther	[151]	density
Marsh et al.	[100]	heat capacity
Mokbel et al.	[152]	vapor pressure
Schlenk	[153]	boiling point
Schmidt	[154]	freezing point
Schmidt and Grosser	[155]	boiling point, viscosity

Cis-decahydronaphthalene

Author(s)	Reference	Торіс
Allinger and Coke	[156]	boiling point
Bird and Daly	[157]	viscosity
Boord et al.	[158]	freezing point, boiling point, density
Briggs	[116]	thermal conductivity
Camin and Rossini	[118]	density, vapor pressure, surface tension
Cheng et al.	[159]	boiling point, critical temperature
Chylinksi and Stryjek	[160]	density
Cooper et al.	[161]	boiling point
Daubin et al.	[162]	boiling point, density
Fenske et al.	[164]	density, vapor pressure
Fischer and Weiss	[86]	viscosity
Foehr and Fenske	[165]	boiling point, density
Frezzotti et al.	[166]	thermal conductivity
Glaser and Ruland	[123]	critical pressure, critical temperature
Gudzinowicz et al.	[167]	density, thermal conductivity
Guenthard et al.	[168]	density
Hibbit and Linstead	[169]	boiling point, density
Hogenboom et al.	[170]	viscosity, freezing point, density
Huckel	[171]	boiling point, freezing point, density
Huckel	[172]	density
Huckel et al	[173]	density
Ipatieff and Pines	[174]	boiling point
Jasper	[175]	surface tension
Korosi and Kovats	[176]	density, surface tension
Kuss	[177]	density
Lauer and King	[178]	density
Lozovoi et al.	[179]	density
Lyusternik and Zhdanov	[180]	viscosity
Marsh et al.	[100]	heat capacity

Author(s)	Reference	Торіс
McCullough et al.	[181]	triple point
Nuzzi	[182]	viscosity
Pak and Kay	[183]	critical pressure, critical temperature
Parks and Hatton	[184]	freezing point
Parthasarathy	[185]	density
Petrov	[186]	freezing point
Polenske and Eisenlohr	[163]	boiling point, density
Prokopetz	[187]	boiling point, density
Rank et al.	[188]	boiling point
Ruzicka et al.	[189]	boiling point, density
Schiessler et al.	[190]	viscosity
Seyer and Barrow	[191]	freezing point, density
Seyer and Leslie	[192]	viscosity, freezing point
Seyer and Mann	[193]	freezing point, boiling point, vapor pressure
Seyer and Walker	[194]	density, surface tension
Shiohama et al	[195]	density
Shiohama et al	[196]	density
Sohda et al.	[197]	vapor pressure, surface tension
Stokkum	[198]	viscosity
Streiff et al.	[199]	freezing point
Timmermans	[200]	freezing point
Zeberg-Mikkelsen et al.	[201]	viscosity, density
Zelinskii	[202]	density

1- dodecene

Author(s)	Reference	Торіс
Asinger	[203]	density, boiling point
Baumgarten	[204]	boiling point
Boord et al.	[205]	density, boiling point, freezing point
Engler and Hofer	[206]	density
Evans	[122]	density, viscosity, boiling point
Forziati et al.	[207]	density, vapor pressure, boiling point
Geldof and Wibaut	[208]	boiling point
Gude et al.	[209]	critical pressure, critical temperature
Hunig and Kiesel	[210]	boiling point
Jasper	[175]	surface tension
Jasper and Kerr	[211]	surface tension
Jasper and Kring	[212]	surface tension
Jeffery and Vogel	[213]	density, boiling point
Krafft	[214]	density, boiling point
Krassilchik	[215]	density
Labarre	[216]	density, boiling point

Author(s)	Reference	Торіс
Lenneman et al.	[217]	boiling point
Luther	[151]	density
Lyusternik and Zhdanov	[180]	viscosity
Maman	[218]	density
Marsh et al.	[100]	heat capacity
McCullough et al.	[219]	triple point
Mukhamedzyanov and	[220]	thermal conductivity
Usmanov		
Petrov et al.	[221]	density, boiling point
Schiessler	[136]	viscosity
Schiessler et al.	[190]	viscosity
Schmidt	[154]	density, freezing point
Schmidt et al.	[222]	density, boiling point, freezing point, viscosity
Streiff et al.	[199]	freezing point
Tilicheev et al.	[223]	density, boiling point
Urry et al.	[224]	boiling point
Wibaut and Geldof	[225]	density
Zafiriadis and Mastagli	[226]	boiling point

1-tridecene

Author(s)	Reference	Торіс
Camin and Rossini	[118]	density, vapor pressure
Jasper	[175]	surface tension
Kozacik and Reid	[227]	density
Lagemann et al.	[228]	density
Luther	[151]	density
Marsh et al.	[100]	heat capacity
Petrov et al.	[221]	density, boiling point
Pictet and Potok	[229]	density, boiling point
Scheissler	[230]	density
Schiessler	[136]	viscosity
Schiessler et al.	[190]	viscosity, density
Schmidt	[154]	density, freezing point
Schmidt et al.	[222]	density, freezing point, viscosity
Streiff et al.	[141]	freezing point
Tilicheev et al.	[223]	density, boiling point

2,2-dimethylbutane

Author(s)	Reference	Торіс
Ambrose et al	[231]	critical temperature
Aucejo et al.	[232]	density, viscosity
Avery and Ellis	[233]	boiling point
Bazhulin et al.	[234]	density, boiling point
Bishop et al.	[235]	density, boiling point
Boord	[236]	boiling point
Brame and Hunter	[237]	density, boiling point
Brazier and Freeman	[238]	viscosity, density
Brewster et al.	[239]	boiling point
Brooks et al.	[240]	density, boiling point, freezing point
Chavanne and van	[241]	density, boiling point, viscosity
Risseghem		
Chavanne	[242]	density, boiling point
Chen and Zwolinski	[243]	density, vapor pressure
Compostizo et al.	[244]	density
Cramer and Mulligan	[245]	density, boiling point
Denyer et al.	[246]	density, boiling point, freezing point
Derfer et al.	[247]	density, boiling point
Desty and Whyman	[248]	boiling point
Dixon	[249]	density
Douslin and Huffman	[250]	triple point
Eicher and Zwolinski	[251]	viscosity
Felsing and Watson	[252]	density, boiling point
Fenske et al.	[253]	boiling point
Finke et al.	[254]	freezing point
Fischer	[255]	melting point
Foehr and Fenske	[165]	density, boiling point
Fomin and Sochanski	[256]	density
Forziati	[257]	density, boiling point, freezing point
Forziati et al.	[258]	density
Funk et al.	[259]	vapor pressure
Genco et al.	[260]	critical volume, critical temperature, critical pressure
Glasgow and Rossini	[261]	freezing point
Glasgow et al.	[262]	freezing point
Griskey and Canjar	[263]	vapor pressure
Griswold et al.	[264]	boiling point
Grummit et al.	[265]	density, boiling point
Haensel and Ipatieff	[266]	boiling point
Hickman	[267]	boiling point
Hicks-Brunn et al.	[268]	density, triple point, boiling point
Hoog et al.	[269]	density, boiling point
Howard et al.	[114]	density, boiling point, freezing point

Author(s)	Reference	Торіс
Jasper	[175]	surface tension
Kay	[270]	vapor pressure, density, critical density, critical
		temperature, boiling point
Kay and Young	[271]	critical temperature, critical pressure
Kilpatrick and Pitzer	[272]	vapor pressure, triple point
Kimura and Benson	[273, 274,	density
	275]	
Kishner	[276]	density, boiling point
Kuss and Pollmann	[277]	viscosity
Lambert et al.	[278]	viscosity
Liberman et al.	[279]	density, boiling point
Lichtenfels et al.	[280]	boiling point
Maman	[281, 282]	density, boiling point
Mann et al.	[99]	density
Marker and Oakwood	[283]	density, boiling point
Markownikov	[284]	density, boiling point
Marsh et al.	[100]	heat capacity
McArdle and Robertson	[285]	density, boiling point
Moldavskii and	[286]	density
Nizovkina		
Nicolini and Laffitte	[287]	density, vapor pressure
Noller	[288]	density, boiling point
Oberfell and Frey	[289]	density, boiling point, freezing point
Paz Andrade	[290]	density
Pichler et al.	[291]	density, boiling point
Rank et al.	[188]	boiling point
Rodger et al.	[292]	density
Sakiadis and Coates	[293]	thermal conductivity
Sayegh and Ratcliff	[294]	vapor pressure
Schmerling et al.	[295]	density, boiling point
Serijan et al.	[296]	density
Seubold	[297]	boiling point
Shen and Williamson	[298]	density
Smittenberg at al.	[299]	triple point, boiling point
Smutny and Bondi	[300]	viscosity
Stull	[301]	vapor pressure, boiling point, freezing point
Timmermans	[302]	boiling point, freezing point
Tooke and Aston	[303]	freezing point
Treszczanowicz et al.	[304]	density
Van Risseghem	[305]	density, freezing point
Van Wijk and Versteeg	[306]	density, viscosity
Vilim	[307]	thermal conductivity
Waddington and Douslin	[308]	density
Westerdijk et al.	[309]	density, boiling point

Author(s)	Reference	Торіс
Wibaut and Gitsels	[310]	boiling point
Wibaut et al.	[311]	density, boiling point, freezing point
Willingham et al.	[312]	vapor pressure, boiling point
Wojciechowski	[313]	boiling point, freezing point
Young	[314]	critical temperature, critical pressure
Zhang et al.	[315]	density

n-hexadecane

Author(s)	Reference	Торіс
Ait-Kaci and Merlin	[316]	melting point
Ambrose	[115]	critical temperature
Aminabhavi and	[317]	density, viscosity
Gopalkrishma		
Anselme et al.	[318]	critical temperature, critical density
Aracil et al.	[319, 320]	density
Aralaguppi et al.	[321]	viscosity, density
Arenosa et al.	[322]	density
Asfour et al.	[323]	density
Assael et al.	[324]	thermal conductivity
Aucejo et al.	[232]	viscosity
Aucejo et al.	[325]	viscosity, density
Awwad et al.	[326]	viscosity
Awwad and Allos	[327]	density
Awwad and Pethwick	[328]	density
Awwad and Salman	[329, 330]	density
Awwad et al.	[331]	viscosity, density
Awwad et al.	[332, 333]	density
Banipal et al.	[334]	density
Banos et al.	[335]	density
Barber and English	[336]	boiling point, melting point, density
Behrends and Kaatze	[337]	viscosity
Benson and Handa	[338]	density
Berger	[339]	boiling point
Bhattacharyya et al.	[340]	density
Boelhouwer	[341]	density
Bogatov et al.	[342]	thermal conductivity
Boord et al.	[158]	boiling point, melting point, density
Bradley and Shellard	[343]	density
Bridgman	[344]	vapor pressure
Bronsted and Koefoed	[345]	density
Calingaert et al.	[346]	density
Camin et al	[347]	vapor pressure, density

Author(s)	Reference	Торіс
Carey and Smith	[348]	melting point
Celda et al.	[349]	density
Chang et al.	[350]	density
Chawla et al.	[351]	density
Chevalier et al.	[352]	viscosity, density
Chylinski and Stryjek	[353]	viscosity
Chylinski and Stryjek	[160]	density
Cooper and Asfour	[354]	viscosity, density
Coursey and Heric	[355]	viscosity, density
Deanesly	[356]	density, melting point
DeLorenzi et al.	[357]	density, viscosity
Dernini et al.	[358]	density
Diaz Pena and Menduina	[359]	density
Diaz Pena and Nunez	[360]	density
Delgado		
Diaz-Pena and Tardajos	[361]	density
Dixon	[249]	density
Drahowzal	[362]	melting point
Ducooulombier et al.	[363]	viscosity
Dymond and Harris	[364]	density
Dymond and Young	[365]	viscosity, density
Dymond et al.	[366]	viscosity, density
Evans	[122]	viscosity, density
Evans	[367]	melting point
Fenby et al.	[368]	density
Ferhat-Hamida and	[369]	density
Philippe		
Fermeglia and Torriano	[370]	viscosity, density
Findenegg	[371]	density, melting point
Finke et al.	[372]	triple point
Foehr and Fenske	[165]	density, melting point
Fox et al.	[373]	surface tension
Francis and Wood	[374]	boiling point, vapor pressure
Gensler and Mahadevan	[375]	boiling point
Glaser et al.	[376]	density
Gollis et al.	[87]	thermal conductivity, melting point
Gouel	[377]	viscosity, density
Graaf et al.	[378]	density
Granovskaya	[379]	vapor pressure
Griot et al.	[380, 381]	density
Grolier et al.	[382]	density
Heric and Brewer	[383]	density, viscosity
Heric and Brewer	[384]	density
Heric and Coursey	[385]	density

Author(s)	Reference	Торіс
Holmes et al.	[386]	thermal conductivity
Holzapfel et al.	[387, 388,	density
	389]	
Ivanov et al.	[390]	boiling point
Jasper	[175]	surface tension
Jasper et al.	[391]	surface tension
Kemula et al.	[392]	boiling point, melting point
Klofutar et al.	[393]	density
Korosi and Kovats	[176]	surface tension
Krafft	[394]	melting point, boiling point, density
Krafft	[395]	density, melting point
Krafft	[396]	density, vapor pressure, melting point
Lagerlof	[397]	boiling point
Lainez and Rodrigo	[398]	density
Lainez et al.	[399]	density
Lal et al.	[400]	density, viscosity
Langedijk and	[401]	density, melting point
Smithuysen		
Larkin et al.	[402]	melting point
Larsen et al.	[129]	boiling point, melting point
Lauer and King	[178]	density
Lee et al.	[403]	vapor pressure
Lenoir and Hipkin	[404]	density
Levene	[405]	boiling point
Levene et al.	[406]	boiling point, melting point
Lim and Williamson	[407]	density
Luther	[151]	density
Mabery	[408]	boiling point
Mabery	[409]	boiling point, density
Mansker et al.	[410]	density
Marsh et al.	[100]	heat capacity
Marsh and Organ	[411]	density
Matsui and Arakawa	[412]	boiling point, melting point, density
Matthews et al.	[413]	viscosity, density
McKinney	[414]	boiling point
McMakin and Van	[415]	density
Winkle		
Messow et al.	[416]	density
Mills and Fenton	[417]	vapor pressure
Mogollon et al.	[418]	critical temperature
Mukhamedzyanov et al.	[419]	thermal conductivity
Mumford and Phillips	[420]	density, melting point, boiling point, viscosity
Mustafaev	[421]	thermal conductivity
Myers	[422]	vapor pressure

Author(s)	Reference	Торіс
Myers and Clever	[423]	surface tension, density
Myers and Fenske	[424]	vapor pressure
Nederbragt and	[425]	viscosity
Boelhouwer		
Nhaesi and Asfour	[426]	density, viscosity
Oddo	[427]	boiling point, melting point
Orwoll and Flory	[428]	melting point
Parks et al.	[429]	vapor pressure, triple point
Perez et al.	[430]	vapor pressure
Petrov	[186]	melting point
Petrov and Kaplan	[431]	boiling point, density
Philippe and Delmas	[432]	density
Pilcher	[433]	triple point
Plebanski et al.	[434]	density
Powell and Groot	[435]	thermal conductivity
Prophete	[436]	melting point
Queimada et al.	[437]	density, viscosity
Ralston et al.	[438]	melting point
Rasskazov et al.	[439]	viscosity
Rastorguev and Keramidi	[440]	viscosity
Ratkovics et al.	[441]	viscosity
Richardson and Parks	[442]	density
Rolo et al.	[443]	surface tension
Rosenthal and Teja	[444]	critical pressure, critical temperature
Sakiadis and Coates	[445]	thermal conductivity
Sanin and Melent'eva	[446]	viscosity
Schiessler	[136]	viscosity
Schiessler et al.	[190]	vapor pressure, density
Schiessler	[230]	melting point
Seyer et al.	[447]	density
Shen and Williamson	[298]	density
Smith	[448]	melting point
Smith et al.	[449, 450]	critical temperature
Snow et al.	[451]	melting point
Snyder and Winnick	[452]	density
Sondheimer and Amiel	[453]	boiling point, melting point
Sorabji	[454]	boiling point, melting point
Streiff et al.	[141]	melting point
Suehnel et al.	[455]	density
Tanaka et al.	[456]	viscosity, density
Tardajos et al.	[457, 458]	density
Tarzimanov and	[459]	thermal conductivity
Mashirov		
Teja and Rice	[460]	density

Author(s)	Reference	Торіс
Teja et al.	[461]	critical temperature
Terhoff	[462]	density
Tilicheev and	[463]	melting point, density
Kachmarchik		
Tilicheev and	[464]	density
Kachmarchik		
Tilicheev et al.	[465]	boiling point, melting point, density
Trejo	[466]	density
Treszczanowicz et al.	[467]	density
Treszczanowicz et al.	[468]	density
Tuot and Guyard	[469]	boiling point, density
Ubbelohde	[470]	vapor pressure, melting point
Van Hook and Silver	[471]	density, melting point
Vavanellos et al.	[472]	viscosity
Vogel	[473]	boiling point, melting point, density
Wada et al.	[474]	thermal conductivity
Wakefield	[475]	viscosity, density
Wakefield and Marsh	[476]	viscosity, density
Wang et al.	[477]	density
Waterman et al.	[478]	boiling point, melting point, density
Whitmore et al.	[479]	viscosity
Wibaut et al.	[311]	density
Wilhelm et al.	[480, 481]	density
Witek et al.	[482]	density
Wu et al.	[483]	viscosity
Young	[484]	boiling point, vapor pressure
Zeinalov and Leikakh	[485]	density
Ziegler et al.	[486]	boiling point, melting point

n-dodecane

Author(s)	Reference	Торіс
Aicart et al.	[487]	density
Allemand et al.	[488, 489]	vapor pressure
Ambrose and Townsend	[490]	critical pressure
Ambrose et al.	[231]	critical temperature
Aminabhavi and Banerjee	[491]	viscosity
Aminabhavi and	[317]	viscosity, density
Gopalkrishma		
Aminabhavi and Patil	[492]	viscosity, density
Anselme et al.	[318]	critical density, critical temperature
Aralaguppi et al.	[321 493]	viscosity, density
Arenosa et al.	[322]	density

Author(s)	Reference	Торіс			
Asfour et al.	[323]	density			
Aucejo et al.	[494, 495]	density			
Aucejo et al.	[496]	viscosity			
Aucejo et al.	[232]	viscosity, density			
Awwad and Salman	[329]	viscosity, density			
Awwad et al.	[331]	viscosity			
Awwad and Allos	[497]	viscosity, density			
Awwad et al.	[331, 332]	density			
Beale and Docksey	[498]	critical pressure, critical temperature, boiling point			
Benson et al.	[499]	density			
Berger	[339]	boiling point			
Bessieres, D. et al.	[500]				
Bhattacharyya et al.	[340]	density			
Bidlack and Anderson	[501]	viscosity			
Bingham and Fornwalt	[502]	density, viscosity			
Boelhouwer	[341]	density			
Boord et al.	[158]	boiling point, density, freezing point			
Bridgman	[344]	vapor pressure			
Burgdorf et al.	[503]	viscosity, thermal conductivity, density			
Campbell et al.	[504]	boiling point			
Caudwell et al.	[505]	viscosity, density			
Celda et al.	[349]	density			
Celda et al.	[506]	viscosity			
Chawla et al.	[351]	density			
Chevalier et al.	[352]	viscosity, density			
Cooper et al.	[161]	boiling point			
Cooper and Asfour	[354]	viscosity, density			
Crawford and Harbourn	[507]	freezing point			
Cutler	[508]	density			
Cutler et al.	[509]	density, viscosity			
De Lorenzi et al.	[357]	viscosity, density			
Deanesly and Carleton	[356]	density, freezing point			
Dejoz et al.	[510]	density, boiling point, vapor pressure			
DeLorenzi et al.	[357]	density			
Dernini et al.	[358]	density			
Diaz Pena and Menduina	[359]	density			
Diaz Pena and Nunez	[360]	density			
Delgado					
Diaz Pena and Tardajos	[361]	density			
Dixon	[249]	density			
Dornte and Smyth	[511]	density			
Drabek and Cibulka	[512]	density			
Ducoulombier et al.	[363]	viscosity			
Dymond et al.	[366]	viscosity			

Author(s)	Reference	Торіс				
Dymond et al.	[513]	viscosity, density				
Dymond et al.	[514, 515]	density				
Evans	[367]	viscosity, density, boiling point				
Fenske et al.	[253]	boiling point				
Ferhat-Hamida and	[369]	density				
Philippe						
Findenegg	[371]	density				
Finke et al.	[372]	triple point				
Francis	[516]	critical temperature, density				
Garcia et al.	[517]	viscosity				
Gensler et al.	[518]	boiling point				
Gierycz et al.	[519]	vapor pressure				
Giller and Drickamer	[520]	viscosity, freezing point				
Gollis et al.	[87]	thermal conductivity, freezing point				
Gomez-Ibanez and Liu	[521]	boiling point, density				
Gonzalez et al.	[522]	viscosity, density				
Gouel	[377]	viscosity				
Gouel	[523]	density				
Grigg et al.	[524]	density				
Griot et al.	[381]	density				
Grolier and Benson	[525]	density				
Grolier et al.	[382]	density				
Guieu et al.	[526]	freezing point				
Hamam et al.	[527]	density				
Hansen and Hansen	[528]	boiling point				
Hogenboom et al.	[529]	viscosity, freezing point				
Horie and Morikawa	[530]	density, boiling point, freezing point				
Houser and McLean	[531]	density, vapor pressure				
Huffman et al.	[127]	triple point				
Iwahashi et al.	[532]	viscosity				
Jasper et al.	[391]	surface tension				
Jessup and Stanley	[533]	boiling point, density, freezing point				
Jobst	[534]	thermal conductivity				
Kashiwagi and Makita	[535]	viscosity				
Kashiwagi et al.	[536]	thermal conductivity				
Keistler and Andrews	[537]	density, vapor pressure				
Keramidi and Rastorguev	[538]	viscosity				
Kharasch et al.	[539]	boiling point				
Kincannon and Manning	[540]	boiling point, density				
Knapstad et al.	[541]	viscosity				
Knapstad et al.	[542]	viscosity, density				
Korosi and Kovats	[176]	surface tension				
Krafft	[396]	density, freezing point, vapor pressure				
Kurtyka and Kurtyka	[543]	boiling point				

Author(s)	Reference	Торіс					
Lainez et al.	[399]	density					
Landau and Wuerflinger	[544]	density					
Leslie and Heuer	[545]	freezing point					
Luther	[151]	density					
Lyusternik and Zhdanov	[180]	viscosity					
Lyvers and Belyanina	[546]	density					
Mair	[547]	freezing point					
Mair and Streiff	[131]	density, boiling point, freezing point					
Mallan et al.	[548]	thermal conductivity					
Maman	[218]	boiling point, density					
Mansker et al.	[410]	density					
Marsh et al.	[100]	heat capacity					
Mears et al.	[549]	boiling point, freezing point, density					
Messow et al.	[416]	density					
Mogollon et al.	[418]	critical temperature					
Moreiras et al.	[550]	viscosity, density					
Morse	[551]	boiling point					
Mukhamedzyanov et al.	[552]	thermal conductivity					
Mustafaev	[553]	thermal conductivity					
Nayak et al.	[554]	viscosity, density					
Neruchev et al.	[555]	density, boiling point					
Ortega et al.	[556, 557,	density					
558]							
Ott and Goates	[559]	freezing point					
Pak and Kay	[560]	critical pressure, critical temperature					
Parks and Huffman	[133]	freezing point					
Petrov and Kaplan	[431]	density, boiling point					
Philippe and Delmas	[432]	density					
Powell and Groot	[435]	thermal conductivity					
Quayle et al.	[561]	density, boiling point					
Ralston et al.	[438]	freezing point					
Rosenthal and Teja	[444]	critical pressure, critical temperature					
Sahgal and Hayduk	[562]	density					
Sakiadis and Coates	[445]	thermal conductivity					
Schiessler	[230]	freezing point, vapor pressure					
Schiessler et al.	[190]	density					
Schmidt et al.	[563]	density, surface tension					
Seyer	[564]	freezing point					
Shen and Williamson	[298]	density					
Shen et al.	[565]	density					
Shepard et al.	[566]	density, freezing point, viscosity, boiling point					
Smith	[567]	thermal conductivity					
Smith et al.	[450]	critical temperature					
Snyder and Winnick	[452]	density					

Author(s)	Reference	Торіс
Sondheimer and Amiel	[453]	boiling point
Sondheimer et al.	[568]	freezing point
Streiff et al.	[141]	freezing point
Suri	[569]	density
Takagi and Teranishi	[570]	density
Tanaka	[456]	viscosity, density
Tanaka et al.	[571]	thermal conductivity
Tardajos et al.	[457, 458]	density
Teja et al.	[461]	critical temperature
Terhoff	[462]	density
Tilicheev et al.	[223]	boiling point, freezing point
Tilicheev et al.	[465]	density
Timmermans	[572]	freezing point
Trejo	[466]	density
Trenzado et al.	[573]	viscosity, density
Treszczanowicz and Lu	[574]	vapor pressure
Treszczanowicz et al.	[468, 575]	density
Tsimering and Kertes	[576]	density
Vogel	[473]	boiling point, density
Vogel and Schuberth	[577]	density
Wakefield and Marsh	[476]	viscosity
Wakefield	[475]	viscosity, density
Wang et al.	[477, 578]	density
Weissler and Del Grosso	[579]	density
Wilhelm et al.	[480, 481]	density
Willingham et al.	[312]	vapor pressure
Witek et al.	[482]	density
Wu et al.	[483]	viscosity
Yanes et al.	[580]	density
Young	[484]	vapor pressure, boiling point
Ziegler et al.	[486]	boiling point, freezing point
Zook and Goldey	[581]	boiling point

Fluid	CAS #	Formula	MW	Mole%
3-ethyl-4,4-dimethyl-2-pentene	53907-59-8	C9H18	126.24	9.98
Cyclodecene	3618-12-0	C10H18	138.25	2.11
2-methylnonane	871-83-0	C10H22	142.28	2.32
2-methylnaphthalene	91-57-6	C11H10	142.20	5.10
2-methyldecalin	2958-76-1	C11H20	152.28	22.35
3-methyldecane	13151-34-3	C11H24	156.31	10.84
1-dodecene	112-41-4	C12H24	168.32	2.64
Cyclododecane	294-62-2	C12H24	168.32	4.27
4-methyl-4-undecene	61142-40-3	C12H24	168.32	10.45
n-dodecane	112-40-3	C12H26	170.33	1.93
Heptylcyclohexane	5617-41-4	C13H26	182.35	14.22
1-tridecene	2437-56-1	C13H26	182.35	1.45
2,7,10-trimethyldodecane	74645-98-0	C15H32	212.41	10.38
n-hexadecane	544-76-3	C16H34	226.44	1.95

Table 2. Surrogate mixture formulation.

 $\Sigma = 99.99 \%$

3. Chemical Characterization

Rocket propellant RP-1 is a kerosene, a complex hydrocarbon mixture that may be thermally unstable at temperatures above 600 K. Thus, it was critical to the success of this project to characterize the components in RP-1, both before and after experimental properties studies. A discussion of the procedures, interpretation of results and identification of components are provided in Appendix B. Tables 3 to 7 provide the results of the chemical characterization of the RP-1 sample.

Peak	Retention	Profile	Corr.	Conf.	Name	CAS Reg. No.	RMM	%
	time, min		coef.			_		
1	4.480	S	50	М	2,2-dimethyl- butane	000075-83-2	86.11	2.375
2	4.619	A	64	Н	3-methyl- decane	013151-34-3	156.19	3.985
3	5.117	A	43	М	3-ethyl-4,4- dimethyl-2- pentene	053907-59-8	126.14	2.726
4	5.486	А	47	М	2,9-dimethyl- decane	001002-17-1	170.2	6.280
5	5.808	S	94	Н	2-methyl-cis- decalin	1000152-47-3	152.16	3.970
6	6.008	A	98	Н	decahydro-2- methyl naphthalene	002958-76-1	152.16	2.574
7	6.307	S	50	М	cis-syn-1- methyl- decalin	1000158-89-1	152.16	4.652
8a [†]	6.468	S	46	М	1-hexyl-3- methylcyclo	061142-68-5	168.19	5 000
	0.337	A			pentane			5.099
	6.653	S	43	М	cyclo dodecane	000294-62-2	168.19	
9	7.443	S	43	М	1-dodecene	000112-41-4	168.19	5.995
10	7.789	S	78	Н	2-methyl- undecane	007045-71-8	170.2	3.124
11	7.996	S	59	М	3-methyl- undecane	001002-43-3	170.2	2.839
12	8.150	A	56	М	2,2-dimethyl- decadi-3,5- ene	055638-50-1	166.17	2.735
13	8.464	S	NA	М	methylcyclo- dodecane	NA	182.22	3.580
14	9.194	S	90	Н	dodecane	000112-40-3	170.20	5.327
15	9.746	S	50	M	2,7,10- trimethyl- dodecane	074645-98-0	212.25	3.765

Table 3. Tier 1 - Identification of constituents of 2 % (mass/mass) or higher. These constituents represent 59 % of the total mass in the sample.

⁺ This peak consists of two coeluting solutes.
Table 4. Tier 2 - Identification of constituents of 1 % (mass/mass) or higher. These constituents represent 18.7 % of the total mass of the sample.

Peak	Retention	Profile	Corr.	Conf.	Name	CAS Reg. No.	RMM	%
	time, min		coef.					
a	3.144	А	50	М	2,7-di-	001072-16-8	142.17	1.329
					methyl octane			
					or			
			38	М	2-methyl	000871-83-0	142.17	
					nonane			
b	4.303	S	89	Н	cyclodecene	003717-12-0	138.14	1.610
c	4.373	А	50	U	cis-deca-	108746-01-6	138.14	1.174
					hydro			
					naphthalene			
d	6.944	А	14	М	z-1,9-	1000245-71-0	166.17	1.754
					dodeca-			
					diene			
e	7.075	S	15	М	4-methyl-4-	061142-40-3	168.19	1.663
					uncecene			
f	9.846	S	20	М	x-tridecene [†]	NA	182.2	1.115
g	10.230	А	30	М	1-tridecene	111270-56-1	182.2	1.241
h	10.514	S	72	Н	heptylcyclo-	005617-41-4	168.19	1.429
					hexane			
i	10.698	S	43	М	x-tridecene	NA	182.2	1.305
j	11.359	А	45	М	x-tridecene	NA	182.2	1.977
k	11.881	S	58	М	2,10-di-	017301-27-8	184.22	1.507
					methyl			
					undecane			
1	12.349	А	NA	М	x-methyl	NA	197.2	1.494
					tridecane			
m	12.787	S	94	Н	2-methyl	000091-57-6	142.08	1.249
					naphthalene			
aa	13.623	S	97	Н	tridecane	000629-50-5	184.22	1.080

 † x signifies uncertainty in the location of the double bond or the methyl group.

Table 5. Light fraction-identification of constituents of lightest components. These components represent 1.7 % of the total mass of the sample.

Peak	Retention	Profile	Corr.	Conf.	Name	CAS Reg. No.	RMM	%
	time, min		coef.					
laa	0.795	А	2	М	methane	107902-82-8	16.03	trace
la	1.924	А	50	Н	nonane	000111-84-2	128.16	0.179
lb	2.615	А	90	Н	1,3,5-trimethyl-	001795-26-2	126.14	0.654
					cyclohexane			
1d	3.551	Α	52	Н	2-methyldecane	006975-98-0	156.19	0.817

Table 6. Heavy fraction-identification of constituents of heaviest components. These constituents are not tabulated for mass percent.

Peak	Retention	Profile	Corr.	Conf.	Name	CAS Reg. No.	RMM	%
	time, min		coef.					
ha	21.776	S	30	М	5-methyl-2-undecene	056851-34-4	168.19	
hb	22.010	А	86	Н	2,6,10-trimethyl-	NA	210.25	
					dodecene [†]			
hc	22.433	А	59	U	3-methyl tridecane	006418-41-3	198.24	
					or	or		
			47		tetradecane	000629-59-4	198.24	
hd	24.083	А	43	U	hexadecane,	000544-76-3	226.27	
					or	or		
			22		1-tetradecene	001120-36-1	196.22	

⁺ The location of double bond is not clear.

Table 7. Thermal decomposition kinetics measurements on RP-1.

Temperature (°C)	$k \pm 1\sigma$ (s ⁻¹)	t _{1/2} (min)
375	$(6.92 \pm 0.75) \times 10^{-5}$	167
400	$(2.00 \pm 0.23) \times 10^{-4}$	58
425	$(3.85 \pm 0.53) \times 10^{-4}$	30
500	$(1.07 \pm 0.17) \times 10^{-3}$	11

4. Density

4.1 Density at Atmospheric Pressure

The density of RP-1 was measured with an Archimedes (buoyancy) technique over the temperature range 1 to 43 °C under a nitrogen blanket at the prevailing atmospheric pressure (approximately 83 kPa). These measurements provide a direct determination of the density. They were conducted to provide a consistency check on the wide-ranging measurements made at Azerbaijan State Oil Academy and to investigate the potential batch-to-batch variation in this property.

The core of the experimental apparatus consists of a cylindrical aluminum "sinker" ($m = 11.54077 \pm 0.00010$ g; $V = 4.2735 \pm 0.0013$ cm³) that is housed in a test cell containing the fluid of interest. This sinker is suspended from a balance, and the experiment consists of weighing the (sinker + suspension device) and the suspension device alone (to give the "tare" weight). The density is given by

$$\rho = \frac{m_{\text{sinker}} - (W_{\text{sinker}} - W_{\text{tare}})}{V_{\text{sinker}}},$$

where W_{sinker} and W_{tare} are the balance readings, and m_{sinker} and V_{sinker} are the mass and volume of the sinker. The volume of the sinker is adjusted for temperature from literature values for the thermal expansion of aluminum. Each density determination comprises multiple tare and sinker weighings, and the balance is calibrated before each determination by use of a small brass calibration mass placed on an auxiliary pan located above the test cell. The total uncertainty in the density is estimated to be ± 0.10 % (k = 2). Temperature is controlled by an external bath circulating a propylene gycol mixture through channels in a copper shield surrounding the test cell. The temperature of the fluid is measured with a standard platinum resistance thermometer located in a thermowell in the test cell; its resistance is read with a nanovolt-level multimeter. The uncertainty in the temperature is ± 0.010 °C. The standard deviation in the temperature over the 20 minutes needed to complete a single density determination averaged 0.004 °C. The atmospheric pressure was read with a vibrating quartz crystal type pressure transducer with an uncertainty of ± 0.07 kPa.

The results are presented in Table 8 and Figure 1(a) for the original sample of RP-1. Three repetitions were carried out at each temperature. The sample was held statically in the cell a total of 10 days, and repeats of the 25 °C point taken nine days apart exhibited variations less than 0.15 % in density. This provides an indication that the sample did not undergo any gross degradation or fractionation during the tests. These data have been correlated by a second-order polynomial (given in the figure) to facilitate comparisons.

Results for the ultra-low sulfur sample of RP-1 are given in Table 9. The percentage differences in density compared to the original RP-1 sample are shown in Figure 1(b) (where the baseline is the polynomial fit of the densities of the original sample). The differences between the two samples are seen to average 0.28 %, with the ultra-low sulfur sample having the higher densities.

Temperature, °C	Pressure, kPa	Density, kg/m ³
2.902 2.899 2.892 23.283 23.319 23.355 25.066 25.072	83.59 83.59 83.59 83.72 83.69 83.67 83.07 83.10	813.18 813.30 813.28 799.01 799.09 799.01 798.71 797.58 707.58
43.109 43.050	83.10 83.07 83.10 83.10	797.00 785.01 784.96 785.09

Table 8. Experimental densities for RP-1 (original sample) under nitrogen.

Table 9. Experimental densities for RP-1 (ultra-low sulfur) under nitrogen.

Temperature, °C	Pressure, kPa	Density, kg/m ³
$ \begin{array}{r} 1.081\\ 1.091\\ 1.106\\ 23.941\\ 23.911\\ 23.878\\ 39.693\\ 39.705\\ 39.705 \end{array} $	82.13 82.12 82.10 82.61 82.61 82.63 82.25 82.23	816.71 816.70 816.60 800.88 800.91 801.15 790.01 789.79
39.720	82.25	/89.68

Figure 1. Density of RP-1 at atmospheric pressure; (a) measured densities; (b) deviations of density from the simple polynomial correlation.

4.2 Density at Elevated Pressures

Densities were measured with a constant-volume piezometer that operates at conditions up to 745 K and 60 MPa. This study was carried out under a contract to Prof. Ilmudin M. Abdulagatov (Russian Academy of Sciences, Makhachkala) who set up a collaborative project with Prof. Nazim D. Azizov (Azerbaijan State Oil Academy (ASOA), Baku). The uncertainty estimated by ASOA for the density measurements is 0.5 kg·m⁻³ (for T<623 K) and 0.1 % (for T>623 K). Those experimental data were privately communicated to NIST and were used, in addition to NIST measurements, to develop the models discussed in Section 2.

5. Heat Capacity

Heat capacities are fundamental to our knowledge of the thermal properties of any substance or mixture. They may be regarded as a measure of the rate of change of energy storage in molecular systems. Heat capacity is defined by the operational path taken during an exchange of energy with the surroundings; the path may be at a constant pressure, at constant density, or along a phase saturation curve. In practice, we may measure a change in enthalpy at constant pressure C_p or a change in internal energy at constant volume C_v . However, it is not possible to measure a heat capacity at a fixed pressure condition of vapor-liquid saturation. This is so because an addition of a small quantity of energy will evaporate a portion of the sample but will not raise its temperature, and thus an infinite heat capacity would be calculated. On the other hand, it is feasible to directly measure heat capacity in the vapor-liquid two-phase region, $C_v^{(2)}$, and then calculate the saturated liquid heat capacity from well-established thermodynamic relations.

Heat capacities at constant pressure were measured with a flow calorimeter that operates at conditions up to 671 K and 60 MPa. This study was carried out under a contract to Prof. Ilmudin M. Abdulagatov (Russian Academy of Sciences, Makhachkala) who set up a collaborative project with Prof. Nazim D. Azizov (Azerbaijan State Oil Academy (ASOA), Baku). The uncertainty estimated by ASOA for the heat capacity measurements is 2 % (for T<573 K) and 3 to 4 % (for T>573 K). Those experimental data were privately communicated to NIST and were used, in addition to NIST measurements, to develop the models discussed in Section 2.

6. Thermal Conductivity

Transient hot-wire measurements of the thermal conductivity of the RP-1 liquid sample were made along nine isotherms at temperatures from 300 to 700 K with pressures up to 70 MPa. Rapid decomposition was observed at 700 K. Only data up to 650 K (8 isotherms) are shown in Figure 2. The transient hot-wire instrument has been described in detail. The measurement cell is designed to closely approximate transient heating from a line source into an infinite fluid medium. The ideal (line source) temperature rise ΔT_{id} is given by,

$$\Delta T_{id} = \frac{q}{4\pi\lambda} \left[\ln(t) + \ln\left(\frac{4a}{r_0^2 C}\right) \right] = \Delta T_w + \sum_{i=1}^{10} \delta T_i, \qquad (1)$$

where *q* is the power applied per unit length, λ is the thermal conductivity of the fluid, *t* is the elapsed time, $a = \lambda/\rho C_p$ is the thermal diffusivity of the fluid, ρ is the density of the fluid, C_p is the isobaric specific heat capacity of the fluid, r_0 is the radius of the hot wire, C = 1.781... is the exponential of Euler's constant, ΔT_w is the measured temperature rise of the wire, and δT_i are corrections to account for deviations from ideal line-source conduction. The significant corrections for the RP-1 measurements are for the finite wire diameter and thermal radiation from the IR absorbing fluid. A plot of ideal temperature rise versus logarithm of elapsed time should be linear, such that thermal conductivity can be found from the slope, and thermal diffusivity can be found from the intercept of a line fit to the data.

At time zero, a fixed voltage is applied to heat a small-diameter wire that is immersed in the fluid of interest. The wire is used as an electrical heat source, while its resistance increase allows determination of the transient temperature rise as a function of elapsed time. Two tungsten wires that have different lengths but the same 4 µm diameter are connected such that the response of the

short wire is subtracted from the response of the long wire to eliminate the effects of axial heat conduction. Short experiment times (nominally 1 s) and small temperature rises (nominally 1 to 3 K) are selected to eliminate heat transfer by free convection. Experiments at several different heating powers (and temperature rises) allow verification that free convection is not significant. Heat transfer due to thermal radiation is more difficult to detect and correct when the fluid can absorb and re-emit infrared radiation such as RP-1. Thermal radiative heat transfer will increase roughly in proportion to the absolute temperature cubed and can be characterized from an increase in the apparent thermal conductivity as experiment time increases because radiative emission from the fluid increases as the thermal wave diffuses outward. Measurements of argon gas made prior to the RP-1 measurements verified that the apparatus was performing correctly.

The results of 465 transient hot-wire measurements are given in Table 10 for temperatures from 300 K to 650 K. Each experiment is characterized by the initial cell temperature T_0 and the mean experiment temperature T_e . There are generally five experiments at each initial cell temperature to verify that convection was not significant, since convection depends strongly on the temperature rise ($\Delta T = T_e - T_0$). The conditions of the fluid during each measurement are given by the experimental temperature T_e , pressure P_e , and density ρ_e . Two values of measured thermal conductivity are reported. The thermal conductivity without correction for thermal radiation is given by λ_e , while the value corrected for thermal radiation is given by λ_c . The magnitude of the radiation correction can be found through comparison of these two values and varies from 0.1 % at 300 K to 3.5 % at 550 K, increasing to 6.6 % at 650 K. Both values of thermal conductivity are provided for comparison with literature data where the radiation correction has often not been considered. Details of the thermal radiation correction and validation of its use with liquid toluene have been presented elsewhere. Measured thermal conductivity data for RP-1, corrected for thermal radiation, are shown in Figure 3. Empirical values for the product of the mean absorption coefficient times the refractive index squared (Kn^2) are provided in Figure 4 as a function of fluid density (temperatures range from 300 K to 650 K). The solid line is given by a cubic polynomial fit in terms of density; the fit was used to correct the transient hot-wire data for thermal radiation.

Measurements were made at increasing temperatures on the original sample from 300 K to 600 K. The sample was collected for chemical analysis and the cell was charged with fresh RP-1 for measurements at 650 K. The 650 K sample was collected and the cell was charged again with fresh sample for the 700 K isotherm. Rapid decomposition of the RP-1 sample was observed at 700 K. Measured thermal conductivity at 700 K was significantly higher and inconsistent with values obtained at lower temperatures. The 700 K sample was collected and the three samples were analyzed for decomposition by gas chromatography-mass spectrometry-infrared detection (GC-MS-IR). There is clear evidence in the 650 K sample of sample reactions and discoloration with a significant increase in aromatics, including heavier aromatics such as naphthalenic compounds. The 700 K sample shows the predominance of these reactions with a further significant increase in aromatic and napthalenic components.

After significant reactions were observed at 700 K, a study of measured thermal conductivity as a function of residence time at 650 K was made. After filling and initial temperature equilibration at 650 K, there was a steady increase in cell pressure and decrease in cell temperature. While this would be characteristic of cracking reactions, which are endothermic and produce products of low molecular weight, chemical analysis suggests that other reactions are also responsible for the observed changes. The pressure increase was from 13.1 MPa to 14.8 MPa over a 9 h period. The thermal conductivity increased by 0.3 % over the same period, while the temperature decreased by 0.4 K. This thermal conductivity is 2.4 % smaller than expected based

on the changes in temperature and pressure. Thus, the thermal conductivity changes by about 2 % due to changes in sample composition during this period at 650 K. This new isotherm agreed with the previous measurements at 650 K to within about 3 %. However, some of this disagreement is likely due to a solid coating that was present on the hot wires after exposure to the RP-1 sample at 700 K.

Figure 5 shows significant deposits of solid material that were found on the hot wires after measurements at 700 K. It appears that the material was molten but nonvolatile when the RP-1 sample was flashed and removed at 700 K. Small diameter cylindrical sections that are only slightly larger than the wire diameter are seen between the larger "beads". The spherical-bead shape of the deposits was likely due to minimization of interfacial forces at the molten film-wire and film-gas boundaries. Measurements were made on liquid toluene near 300 K after the measurements at 700 K and excellent agreement (0.3 % difference) was found with reference data for the thermal conductivity of toluene even with the presence of the solid material on the wire. Thus, the thermal conductivity of the solid deposit is likely close to that of toluene, an aromatic material, but slightly different from` that of the original RP-1 sample. The deposit was not soluble in toluene at 300 K.

The uncertainty of the measured thermal conductivity data is less than 0.5 % for temperatures from 300 to 450 K where decomposition and thermal radiation were not significant. At higher temperatures, the uncertainty increases due to sample decomposition and increased thermal radiation heat transfer. This uncertainty is about 1.0 % at 550 K and increases significantly when the effects of decomposition are observable in the measured thermal conductivity as a function of sample residence time at 650 K. At 650 K the uncertainty is about 4 %, due largely to changes in sample composition.

Deviations between the measured thermal conductivity data, corrected for thermal radiation, and the corresponding states model developed in this project for the thermal conductivity of RP-1 are shown in Figure 6. The deviations are generally within 3 % for temperatures between 300 K and 400 K, but the model is systematically higher than the data as the density decreases along an isotherm and as temperature increases. The model is systematically 4 % to 12 % higher than the data along the 650 K isotherm. The data for each isotherm are consistent within the uncertainties given above, both within the isotherm and among the eight isotherms. There are some "discontinuities" of the order of 1 % in the deviation plot along the higher temperature isotherms. These "discontinuities" are not present in the measured thermal conductivity data, as shown in Figure 3. This is likely a convergence issue in the corresponding states model that would have a small impact on designs based on this model for the thermal conductivity of RP-1. The corresponding states model is based on thermal conductivity data for pure components that typically have not been corrected for thermal radiation. Thus it is expected that the corresponding states model will predict higher thermal conductivities, more like the uncorrected thermal conductivity values for RP-1 measured in this work. The correction for thermal radiation was as large as 6.6 % at the lowest densities along the 650 K isotherm. Thermal radiation accounts for about half of the systematic deviations shown in Figure 6. A thorough development of the corresponding states model would need to consider the contribution of thermal radiation on the pure components used in the model.

Bibliography for Thermal Conductivity

Perkins, R. A.; Roder, H. M.; Nieto de Castro, C. A. A high-temperature transient hot-wire thermal conductivity apparatus for fluids. J. Res. Natl. Inst. Stand. Tech. 96: 247-269 (1991).

Nieto de Castro, C. A.; Perkins, R. A.; Roder, H. M. Radiative heat transfer in transient hot-wire measurements of thermal conductivity. Int. J. Thermophys. 12: 985-997 (1991).

Figure 2. Range of thermal conductivity measurements on liquid RP-1.

Figure 3. Measured thermal conductivity of RP-1 corrected for thermal radiation (pressure from 0.1 MPa to 70 MPa).

Figure 4. Empirical optical parameters for radiation correction of RP-1 data.

Figure 5. Solid deposits with diameters up to eight times that of the 4 μ m hot wires were found after measurements on RP-1 at 650 K.

Figure 6. Deviations between the radiation corrected thermal conductivity data and the corresponding-states model for RP-1 developed in this work.

	10		iniai conaac	tivity of liqe	ind itt it.	
Point ID	T_0	T _e	Pe	$\rho_{\rm e}$	$\lambda_{ m e}$	λ_{c}
	(K)	(K)	(MPa)	(g·cm⁻³)	$(W \cdot m^{-1} K^{-1})$	$(W \cdot m^{-1}K^{-1})$
2001	299.998	301.798	63.3444	0.83331	0.12705	0.12695
2002	299.998	302.036	63.3249	0.83316	0.12722	0.12712
2003	300.003	302.302	63.3083	0.83299	0.12710	0.12700
2004	300.004	302.559	63.2909	0.83283	0.12716	0.12706
2005	300.002	302.834	63.2699	0.83266	0.12712	0.12702
2006	299.985	301.802	60.5341	0.83192	0.12667	0.12656
2007	299.991	302.041	60.5107	0.83177	0.12659	0.12649
2008	300.002	302.302	60.4845	0.83160	0.12640	0.12633
2009	300.006	302.571	60.4609	0.83143	0.12631	0.12620
2010	300.003	302.844	60.4359	0.83125	0.12632	0.12621
2011	300.002	301.837	53.6465	0.82842	0.12523	0.12508
2012	300.018	302.092	53.6341	0.82825	0.12512	0.12499
2013	300.016	302.343	53.6227	0.82809	0.12479	0.12467
2014	300.025	302.616	53.6114	0.82792	0.12475	0.12462
2015	300.037	302.909	53.5993	0.82774	0.12495	0.12483
2016	300.021	301.875	46.0715	0.82440	0.12346	0.12332
2017	300.028	302.121	46.0630	0.82424	0.12295	0.12283
2018	300.030	302.383	46.0541	0.82408	0.12287	0.12274
2019	300.026	302.648	46.0468	0.82391	0.12280	0.12265
2020	300.036	302.946	46.0404	0.82372	0.12317	0.12295
2021	300.002	301.892	37.7058	0.81977	0.12145	0.12129
2022	300.000	302.132	37.7019	0.81961	0.12139	0.12122
2023	300.011	302.401	37.6976	0.81944	0.12100	0.12080
2024	300.008	302.674	37.6932	0.81926	0.12105	0.12088
2025	300.021	302.976	37.6688	0.81905	0.12118	0.12102
2026	299.999	301.908	31.0595	0.81591	0.11999	0.11981
2027	299.996	302.152	31.0539	0.81574	0.11942	0.11924
2028	300.011	302.427	31.0473	0.81556	0.11944	0.11926
2029	300.006	302.702	31.0387	0.81537	0.11922	0.11903
2030	300.016	303.006	31.0311	0.81517	0.11955	0.11936
2031	300.043	301.953	29.6071	0.81501	0.11886	0.11867
2032	300.056	302.217	29.5643	0.81481	0.11923	0.11905
2033	300.052	302.479	29.5309	0.81462	0.11907	0.11889
2034	300.062	302.767	29.5057	0.81441	0.11914	0.11895
2035	300.051	303.052	29.5016	0.81422	0.11936	0.11916
2036	300.011	301.954	23.3521	0.81119	0.11786	0.11759
2037	300.022	302.214	23.3541	0.81101	0.11777	0.11753
2038	300.028	302.486	23.3358	0.81081	0.11751	0.11731
2039	300.030	302.771	23.3001	0.81060	0.11744	0.11723
2040	300.039	303.078	23.2702	0.81037	0.11742	0.11721
2041	300.011	301.986	15.4211	0.80605	0.11570	0.11548
2042	300.012	302.240	15.4388	0.80588	0.11567	0.11544

Table 10. Thermal conductivity of liquid RP-1.

Point ID	T	T	D	<u> </u>	2	2
I UIIII ID	I_0	I_{e}	r _e (MD _a)	$\rho_{\rm e}$	\mathcal{N}_{e}	\mathcal{A}_{c}
2042	(N) 300.027	(N) 302 526	(IVIFA) 15 / 592	(g.cm) 0.80560	$(\mathbf{v}\mathbf{v}\cdot\mathbf{m} \mathbf{K})$	$(\mathbf{W} \cdot \mathbf{II} \mathbf{K})$
2043	300.027	302.320	15.4365	0.80309	0.11547	0.11323
2044	200.010	302.793	15.4/50	0.80531	0.11511	0.11488
2043	200.023	201.092	13.4803	0.80330	0.11504	0.11480
2046	299.997	301.983	12.0832	0.80380	0.11304	0.11481
2047	300.016	302.262	12.0704	0.80359	0.11456	0.11432
2048	300.007	302.526	12.0827	0.80341	0.11420	0.11393
2049	300.022	302.828	12.1065	0.80321	0.11422	0.11395
2050	300.011	303.123	12.1261	0.80301	0.11434	0.11410
2051	299.987	302.001	6.2210	0./996/	0.11324	0.11299
2052	299.995	302.270	6.2334	0.79948	0.11278	0.11253
2053	300.013	302.565	6.2425	0.79927	0.11257	0.11232
2054	300.012	302.857	6.2477	0.79906	0.11251	0.11225
2055	300.015	303.168	6.2466	0.79883	0.11263	0.11238
2056	299.988	302.028	0.2179	0.79520	0.11148	0.11122
2057	299.999	302.308	0.1941	0.79497	0.11086	0.11060
2058	300.003	302.594	0.1755	0.79474	0.11070	0.11043
2059	300.003	302.892	0.1675	0.79450	0.11101	0.11067
2060	300.001	303.204	0.1792	0.79428	0.11072	0.11045
3001	351.854	353.436	66.4743	0.80567	0.12331	0.12296
3002	351.854	353.659	66.4227	0.80551	0.12212	0.12177
3003	351.870	353.904	66.3775	0.80535	0.12219	0.12184
3004	351.861	354.161	66.3535	0.80520	0.12179	0.12144
3005	351.865	354.379	66.3472	0.80508	0.12268	0.12236
3006	351.845	353.439	66.2878	0.80556	0.12285	0.12250
3007	351.847	353.706	66.2729	0.80540	0.12228	0.12189
3008	351.865	353.900	66.2542	0.80529	0.12236	0.12197
3009	351.846	354.127	66.2306	0.80515	0.12232	0.12196
3010	351.858	354.367	66.1862	0.80499	0.12238	0.12202
3011	351.847	353.444	65.9787	0.80538	0.12248	0.12212
3012	351.846	353.647	65.9703	0.80526	0.12250	0.12214
3013	351.849	353.872	65.9607	0.80513	0.12252	0.12216
3014	351.850	354.104	65.9512	0.80500	0.12246	0.12211
3015	351.856	354.356	65.9398	0.80486	0.12229	0.12193
3016	351.828	353.438	58.4753	0.80097	0.12102	0.12064
3017	351.825	353.652	58.4373	0.80083	0.12042	0.12004
3018	351.843	353.889	58.4229	0.80069	0.12051	0.12013
3019	351.839	354.120	58.4251	0.80056	0.12034	0.11995
3020	351.832	354.361	58.4319	0.80043	0.12045	0.12006
3021	351.823	353.454	53.0937	0.79767	0.11957	0.11917
3022	351.827	353.671	53.0800	0.79753	0.11895	0.11856
3023	351.836	353.904	53.0655	0.79739	0.11905	0.11865
3024	351.834	354.140	53.0528	0.79725	0.11897	0.11857
3025	351 839	354 396	53 0392	0 79709	0 11907	0 11866

Table 10. Thermal conductivity of liquid RP-1.

Point ID	T	T	D		2	2
I VIIIT ID		I_{e}	r _e (MPa)	$\mu_{\rm e}$	\mathcal{M}_{e}	\mathcal{N}_{c}
3026	(IX) 351 820	(IX) 353 /8/	(1 111 a) 15 0117	(g. (m)) 0.70308	$(\mathbf{v} \cdot \mathbf{m} \cdot \mathbf{K})$	(11716)
3020	351.029	252 609	4J.7442 15 0216	0.79300	0.11/39	0.11/10
3027	251.023	252.096	45.9340	0.79293	0.11/02	0.11655
2020	251.022	254 194	45.9234	0.79260	0.11096	0.11655
3029	351.838	354.184	45.9124	0.79265	0.11/0/	0.11604
3030	351.823	354.424	45.9021	0.79230	0.11690	0.11047
3031	351.810	353.500	38.1085	0.78782	0.11518	0.114/2
3032	351.810	353.724	38.1724	0.78769	0.11464	0.11419
3033	351.830	353.969	38.1/84	0.78754	0.11448	0.11403
3034	351.829	354.213	38.1884	0./8/40	0.11466	0.11421
3035	351.826	354.471	38.1983	0.78725	0.11463	0.11417
3036	351.808	353.523	30.8077	0.78253	0.11286	0.11238
3037	351.817	353.757	30.8057	0.78238	0.11233	0.11189
3038	351.833	354.008	30.8008	0.78222	0.11279	0.11231
3039	351.831	354.258	30.7953	0.78206	0.11226	0.11178
3040	351.837	354.528	30.7900	0.78189	0.11240	0.11192
3041	351.816	353.568	23.0974	0.77660	0.11061	0.11011
3042	351.825	353.808	23.0969	0.77645	0.11034	0.10983
3043	351.823	354.045	23.0942	0.77629	0.11074	0.11023
3044	351.835	354.313	23.0907	0.77611	0.10987	0.10936
3045	351.827	354.573	23.0858	0.77594	0.11005	0.10954
3046	351.849	353.609	21.2003	0.77506	0.10942	0.10891
3047	351.849	353.840	21.2056	0.77491	0.10962	0.10911
3048	351.868	354.104	21.2109	0.77474	0.10941	0.10890
3049	351.873	354.364	21.2156	0.77457	0.10962	0.10911
3050	351.864	354.629	21.2203	0.77440	0.10975	0.10923
3051	351.845	353.642	15.1613	0.77001	0.10788	0.10735
3052	351.848	353.875	15.1777	0.76986	0.10764	0.10711
3053	351.861	354.135	15.1951	0.76970	0.10754	0.10701
3054	351.853	354.390	15.2092	0.76954	0.10740	0.10687
3055	351.846	354.657	15.2224	0.76936	0.10738	0.10684
3056	351.832	353.645	11.9712	0.76722	0.10652	0.10598
3057	351.859	353.905	11.9842	0.76704	0.10635	0.10581
3058	351.868	354.163	11.9958	0.76687	0.10640	0.10585
3059	351.864	354.424	12.0053	0.76670	0.10635	0.10580
3060	351.862	354.700	12.0124	0.76651	0.10627	0.10573
3061	351.813	353.659	6.1880	0.76188	0.10450	0.10394
3062	351.828	353.909	6.1732	0.76168	0.10440	0.10383
3063	351.840	354.178	6.1425	0.76146	0.10404	0.10348
3064	351,840	354.448	6.1183	0.76124	0.10423	0.10367
3065	351.845	354 737	6.0987	0.76101	0.10430	0.10374
3066	351 818	353 696	0.6116	0.75633	0.10223	0.10165
3067	351 845	353 967	0 6214	0 75614	0 10225	0 10167
3068	351.847	354.228	0.6278	0.75594	0.10218	0.10159

Table 10. Thermal conductivity of liquid RP-1.

		_	-	in the second second		
Point ID	T_0	$T_{\rm e}$	$P_{\rm e}$	$\rho_{\rm e}$	λ_{e}	λ_c
• • • • •	(K)	(K)	(MPa)	(g·cm ⁻³)	(W·m ⁻¹ K ⁻¹)	$(W \cdot m^{-1} K^{-1})$
3069	351.851	354.505	0.6282	0.75573	0.10237	0.10179
3070	351.852	354.794	0.6056	0.75549	0.10213	0.10155
4001	400.446	402.270	67.8698	0.78064	0.11752	0.11682
4002	400.474	402.512	67.8711	0.78051	0.11731	0.11661
4003	400.464	402.724	67.8715	0.78041	0.11797	0.11668
4004	400.463	402.954	67.8743	0.78029	0.11748	0.11678
4005	400.466	403.201	67.8738	0.78016	0.11730	0.11659
4006	400.434	402.289	60.7558	0.77582	0.11560	0.11482
4007	400.435	402.506	60.7558	0.77570	0.11542	0.11474
4008	400.450	402.745	60.7602	0.77558	0.11528	0.11455
4009	400.453	402.986	60.7647	0.77545	0.11524	0.11450
4010	400.453	403.233	60.7700	0.77532	0.11508	0.11435
4011	400.424	402.304	53.4350	0.77058	0.11347	0.11270
4012	400.436	402.542	53.4325	0.77045	0.11291	0.11215
4013	400.446	402.778	53.4091	0.77030	0.11289	0.11212
4014	400.441	403.017	53.3763	0.77015	0.11292	0.11215
4015	400.447	403.274	53.3494	0.76999	0.11292	0.11215
4016	400.417	402.341	45.7511	0.76474	0.11113	0.11033
4017	400.428	402.573	45.7250	0.76459	0.11118	0.11038
4018	400.437	402.819	45.7046	0.76443	0.11054	0.10972
4019	400.449	403.074	45.7046	0.76429	0.11051	0.10976
4020	400.436	403.322	45.7239	0.76416	0.11041	0.10961
4021	400.410	402.368	38.3898	0.75877	0.10869	0.10787
4022	400.420	402.610	38.3544	0.75860	0.10823	0.10741
4023	400.440	402.868	38.3270	0.75842	0.10815	0.10732
4024	400.443	403.124	38.3062	0.75825	0.10806	0.10723
4025	400.440	403.385	38.2888	0.75809	0.10800	0.10717
4026	400.440	402.404	38.3049	0.75868	0.10862	0.10780
4027	400.444	402.635	38.2825	0.75852	0.10840	0.10757
4028	400.452	402.883	38.2644	0.75836	0.10810	0.10727
4029	400.455	403.138	38.2591	0.75821	0.10806	0.10724
4030	400.449	403.396	38.2724	0.75807	0.10833	0.10749
4031	400.420	402.438	29.9102	0.75132	0.10580	0.10494
4032	400.446	402.697	29.8883	0.75114	0.10567	0.10480
4033	400.437	402.929	29.8703	0.75098	0.10553	0.10467
4034	400.435	403.183	29.8701	0.75082	0.10546	0.10459
4035	400.441	403.461	29.8844	0.75066	0.10543	0.10456
4036	400.422	402.481	23.1390	0.74487	0.10323	0.10235
4037	400.439	402.738	23.1129	0.74468	0.10287	0.10199
4038	400.445	402.992	23.0911	0.74449	0.10291	0.10202
4039	400.448	403.263	23.0714	0.74430	0.10296	0.10207
4040	400.440	403.532	23.0644	0.74412	0.10279	0.10194
4041	400 421	402 543	15 2520	0 73665	0 10018	0 09926

Table 10. Thermal conductivity of liquid RP-1.

Doint ID	T	T	n		1	<u> </u>
r vint ID			P_{e}	$\rho_{\rm e}$	Λ_{e}	$\Lambda_{\rm c}$
4042	(K)	(K)	(IVIPA) 15 2694	$(g \cdot cm^{-})$	$(\mathbf{W} \cdot \mathbf{M} \cdot \mathbf{K}^{-})$	$(\mathbf{W} \cdot \mathbf{m} \cdot \mathbf{K}^{-})$
4042	400.409	402.774	15.2684	0.73631	0.10008	0.09916
4043	400.434	403.053	15.2832	0.73633	0.09982	0.09890
4044	400.432	403.324	15.2953	0.73616	0.09983	0.09891
4045	400.447	403.626	15.3055	0.73597	0.09970	0.09877
4046	400.428	402.578	11.7858	0.73274	0.09878	0.09785
4047	400.433	402.827	11.7687	0.73254	0.09862	0.09769
4048	400.443	403.097	11.7586	0.73234	0.09840	0.09746
4049	400.437	403.369	11.7652	0.73216	0.09811	0.09718
4050	400.441	403.661	11.7812	0.73197	0.09814	0.09721
4051	400.415	402.618	5.9253	0.72564	0.09625	0.09530
4052	400.417	402.870	5.9120	0.72544	0.09611	0.09516
4053	400.430	403.150	5.9089	0.72523	0.09592	0.09496
4054	400.423	403.423	5.9193	0.72504	0.09601	0.09506
4055	400.429	403.726	5.9348	0.72483	0.09570	0.09469
4056	400.407	402.659	0.5228	0.71842	0.09365	0.09268
4057	400.420	402.929	0.5313	0.71822	0.09371	0.09274
4058	400.419	403.200	0.5392	0.71802	0.09334	0.09237
4059	400.419	403.490	0.5450	0.71780	0.09328	0.09231
4060	400.435	403.808	0.5460	0.71755	0.09324	0.09227
5001	447.986	449.670	68.6898	0.75732	0.11230	0.11117
5002	447.991	449.870	68.6635	0.75721	0.11232	0.11118
5003	447.993	450.077	68.6272	0.75708	0.11238	0.11119
5004	447.983	450.283	68.5986	0.75695	0.11226	0.11112
5005	447.989	450.514	68.5747	0.75682	0.11300	0.11184
5006	447.928	449.652	59.8904	0.75048	0.11005	0.10887
5007	447.966	449.886	59.9032	0.75037	0.10986	0.10868
5008	447.944	450.075	59.9145	0.75029	0.10981	0.10863
5009	447.939	450.291	59.9247	0.75018	0.10975	0.10856
5010	447.935	450.518	59.9336	0.75008	0.10967	0.10848
5011	447.904	449.679	49.9987	0.74213	0.10681	0.10558
5012	447.905	449.882	50.0107	0.74203	0.10674	0.10551
5013	447.907	450.099	50.0219	0.74192	0.10654	0.10531
5014	447,911	450.330	50.0314	0.74180	0.10698	0.10574
5015	447 919	450 575	50.0394	0.74168	0.10641	0.10517
5016	447 906	449 729	41 2702	0 73404	0 10366	0 10239
5017	447 904	449 937	41 2462	0 73390	0 10364	0.10237
5018	447 911	450 166	41 2255	0 73375	0 10351	0.10223
5019	447 919	450 409	41 2089	0 73360	0 10334	0 10206
5020	447 907	450.637	41 2165	0 73348	0 10389	0 10260
5020	447 889	449 755	34 3025	0 72703	0 10121	0.00001
5021	447 895	449 974	34 3195	0.72601	0 10098	0.09968
5022	<u>447</u> 800	450 200	34 3354	0.72691	0 10122	0.09901
5024	447 923	450 468	34 3495	0.72665	0 10088	0.09957

Table 10. Thermal conductivity of liquid RP-1.

Point ID	T	T	סייייייייייייייייייייייייייייייייייייי		1	2
1 UIIIL ID	I_0	I_{e}	r _e (MDa)	$\rho_{\rm e}$	λ_{e}	\mathcal{N}_{c}
5025	(N) 447.017	(K) 450 714	(IVIFA) 3/1 3608	(g.cm) 0.72652	$(\mathbf{W} \cdot \mathbf{H} \mathbf{K})$	$(\mathbf{W} \cdot \mathbf{III} \mathbf{K})$
5025	447.917	430.714	34.3008	0.72032	0.10087	0.09930
5020	447.899	449.807	27.0109	0.71992	0.09802	0.09730
5027	447.905	450.051	27.7971	0.71973	0.09843	0.09712
5028	447.905	450.265	27.7795	0.71939	0.09850	0.09722
5029	447.913	450.520	27.7664	0.71942	0.09853	0.09720
5030	447.905	450.769	27.7621	0.71926	0.09835	0.09/02
5031	447.893	449.857	20./169	0./113/	0.09580	0.09445
5032	447.895	450.087	20.6985	0./1119	0.09573	0.09437
5033	447.905	450.333	20.6836	0./1101	0.09554	0.09418
5034	44/.906	450.587	20.6850	0./1085	0.09550	0.09414
5035	447.905	450.851	20.6988	0./1069	0.09536	0.09400
5036	447.883	449.890	15.3503	0.70424	0.09352	0.09215
5037	447.889	450.128	15.3608	0.70409	0.09326	0.09188
5038	447.886	450.367	15.3694	0.70393	0.09370	0.09231
5039	447.898	450.640	15.3777	0.70376	0.09316	0.09178
5040	447.906	450.915	15.3851	0.70358	0.09306	0.09168
5041	447.888	449.937	11.1635	0.69816	0.09158	0.09019
5042	447.899	450.182	11.1639	0.69798	0.09154	0.09014
5043	447.919	450.449	11.1449	0.69776	0.09142	0.09002
5044	447.913	450.710	11.1238	0.69754	0.09136	0.08996
5045	447.910	450.983	11.1067	0.69731	0.09121	0.08981
5046	447.869	449.998	3.6297	0.68575	0.08778	0.08637
5047	447.889	450.267	3.6382	0.68555	0.08785	0.08643
5048	447.893	450.528	3.6454	0.68536	0.08783	0.08636
5049	447.889	450.798	3.6525	0.68515	0.08771	0.08629
5050	447.896	451.088	3.6577	0.68493	0.08764	0.08621
5051	447.882	450.059	0.1765	0.67919	0.08582	0.08440
5052	447.890	450.318	0.1697	0.67896	0.08591	0.08449
5053	447.908	450.599	0.1764	0.67873	0.08576	0.08434
5054	447.886	450.854	0.1878	0.67854	0.08579	0.08436
5055	447.902	451.159	0.1979	0.67830	0.08562	0.08419
6001	501.556	503.108	68.6557	0.73147	0.10791	0.10614
6002	501.565	503.294	68.6482	0.73138	0.10802	0.10624
6003	501.579	503.499	68.6109	0.73125	0.10790	0.10613
6004	501.561	503.682	68.5784	0.73113	0.10766	0.10583
6005	501.554	503.878	68.5536	0.73102	0.10773	0.10596
6006	501.492	503.091	58.5297	0.72228	0.10462	0.10279
6007	501.488	503.271	58.5390	0.72220	0.10456	0.10273
6008	501.503	503.479	58.5461	0.72211	0.10454	0.10271
6009	501.505	503.684	58.5529	0.72201	0.10442	0.10260
6010	501.506	503.900	58.5550	0.72191	0.10465	0.10282
6011	501.485	503.138	48.2361	0.71189	0.10097	0.09909
6012	501 491	503 336	48 2135	0 71177	0 10086	0 09898

Table 10. Thermal conductivity of liquid RP-1.

Doin4 ID	T	T	n n	in ity of inqu	1	1
Point ID	T_0	T_{e}	P_{e}	$\rho_{\rm e}$	$\Lambda_{\rm e}$	$\Lambda_{\rm c}$
(012	(K)	(K)	(MPa)	(g·cm ~)	$(W \cdot M^{-1}K^{-1})$	(W·m [*] K [*])
6013	501.500	503.542	48.1945	0.71164	0.10097	0.09909
6014	501.493	503.749	48.1807	0.71151	0.10122	0.09933
6015	501.487	503.966	48.1838	0.71140	0.10068	0.09885
6016	501.454	503.160	39.1892	0.70169	0.09746	0.09555
6017	501.471	503.375	39.1977	0.70158	0.09740	0.09548
6018	501.486	503.596	39.2047	0.70146	0.09732	0.09540
6019	501.497	503.826	39.2083	0.70134	0.09824	0.09629
6020	501.480	504.039	39.2048	0.70121	0.09753	0.09560
6021	501.469	503.232	30.9930	0.69126	0.09424	0.09228
6022	501.475	503.441	30.9816	0.69112	0.09405	0.09209
6023	501.475	503.657	30.9862	0.69099	0.09419	0.09222
6024	501.488	503.893	31.0013	0.69087	0.09454	0.09221
6025	501.501	504.142	31.0161	0.69074	0.09428	0.09231
6026	501.470	503.297	22.7998	0.67936	0.09099	0.08900
6027	501.487	503.526	22.8038	0.67921	0.09060	0.08861
6028	501.493	503.753	22.8028	0.67906	0.09078	0.08879
6029	501.506	504.000	22.7819	0.67887	0.09059	0.08859
6030	501.516	504.254	22.7625	0.67868	0.09053	0.08853
6031	501.487	503.385	15.4641	0.66692	0.08729	0.08528
6032	501.492	503.609	15.4503	0.66673	0.08721	0.08520
6033	501.506	503.854	15.4406	0.66654	0.08713	0.08511
6034	501.506	504.098	15.4385	0.66636	0.08710	0.08508
6035	501.507	504.354	15.4490	0.66620	0.08701	0.08499
6036	501.489	503.429	11.7229	0.65968	0.08549	0.08347
6037	501.498	503.660	11.7341	0.65953	0.08525	0.08323
6038	501.497	503.893	11.7437	0.65937	0.08523	0.08321
6039	501.488	504.135	11.7521	0.65921	0.08519	0.08317
6040	501.506	504.407	11.7591	0.65902	0.08511	0.08309
6041	501.473	503.483	5.7558	0.64636	0.08228	0.08025
6042	501.484	503.723	5.7489	0.64614	0.08216	0.08013
6043	501.475	503.961	5.7334	0.64590	0.08198	0.07995
6044	501.501	504.244	5.7211	0.64563	0.08196	0.08021
6045	501.499	504.508	5.7106	0.64538	0.08188	0.07984
6046	501.489	503.584	0.2293	0.63093	0.07857	0.07654
6047	501.497	503.834	0.2292	0.63069	0.07857	0.07654
6048	501.482	504.069	0.2293	0.63046	0.07858	0.07655
6049	501.500	504.352	0.2300	0.63019	0.07857	0.07653
6050	501.482	504.618	0.2307	0.62993	0.07834	0.07630
6051	501.361	503.455	0.2316	0.63107	0.07865	0.07663
6052	501.373	503.707	0.2319	0.63082	0.07862	0.07659
6053	501.380	503.969	0.2321	0.63057	0.07857	0.07654
6054	501.361	504.216	0.2322	0.63033	0.07861	0.07657
6055	501.365	504.503	0.2324	0.63005	0.07850	0.07646

Table 10. Thermal conductivity of liquid RP-1.

Doint ID	T	2				
Point ID	T_0	$T_{\rm e}$	$P_{\rm e}$	$\rho_{\rm e}$	$\Lambda_{\rm e}$	λ_c
7001	(K)	(K)	(MPa)	(g·cm [°])	$(W \cdot m^{-1}K^{-1})$	$(W \cdot m^{-1}K^{-1})$
7001	545.383	546.851	67.4191	0.70986	0.10481	0.10239
7002	545.381	547.018	67.4082	0.70977	0.10458	0.10217
7003	545.381	547.197	67.4029	0.70968	0.10478	0.10236
7004	545.388	547.394	67.3987	0.70959	0.10451	0.10209
7005	545.383	547.581	67.3945	0.70950	0.10451	0.10209
7006	545.396	546.916	56.9830	0.69905	0.10122	0.09880
7007	545.399	547.094	56.9839	0.69896	0.10133	0.09884
7008	545.415	547.292	56.9840	0.69886	0.10130	0.09882
7009	545.421	547.490	56.9823	0.69876	0.10119	0.09870
7010	545.424	547.695	56.9813	0.69866	0.10093	0.09845
7011	545.430	546.986	50.3613	0.69148	0.09904	0.09652
7012	545.456	547.191	50.3670	0.69138	0.09868	0.09617
7013	545.449	547.372	50.3813	0.69131	0.09868	0.09617
7014	545.452	547.570	50.3948	0.69122	0.09849	0.09597
7015	545.465	547.792	50.4064	0.69112	0.09848	0.09596
7016	545.436	547.031	43.2920	0.68268	0.09594	0.09340
7017	545.441	547.220	43.2966	0.68258	0.09597	0.09342
7018	545.459	547.431	43.2993	0.68247	0.09606	0.09351
7019	545.453	547.630	43.2938	0.68236	0.09583	0.09328
7020	545.467	547.860	43.2682	0.68220	0.09572	0.09316
7021	545.442	547.089	36.1910	0.67288	0.09311	0.09053
7022	545.438	547.270	36.1943	0.67278	0.09306	0.09048
7023	545.459	547.493	36.1931	0.67265	0.09311	0.09053
7024	545.476	547.716	36.1896	0.67252	0.09302	0.09043
7025	545.475	547.936	36.1673	0.67236	0.09310	0.09051
7026	545.426	547.138	27.3687	0.65893	0.08951	0.08689
7027	545.457	547.363	27.3756	0.65880	0.08939	0.08677
7028	545.461	547.573	27.3780	0.65867	0.08948	0.08685
7029	545.461	547.790	27.3805	0.65854	0.08949	0.08686
7030	545.451	548.008	27.3644	0.65838	0.08935	0.08672
7031	545.426	547.197	20.5868	0.64631	0.08607	0.08344
7032	545.435	547.411	20.5896	0.64617	0.08596	0.08333
7033	545.445	547.635	20.5911	0.64602	0.08623	0.08359
7034	545.458	547.874	20.5770	0.64583	0.08622	0.08357
7035	545.464	548.116	20.5600	0.64563	0.08582	0.08318
7036	545 430	547 256	14 7485	0.63351	0.08344	0.08078
7037	545.419	547.460	14.7549	0.63337	0.08307	0.08042
7038	545 421	547 681	14 7604	0.63322	0.08312	0.08047
7039	545 443	547 939	14 7656	0.63304	0.08298	0.08033
7040	545 454	548 197	14 7698	0.63286	0.08289	0.08024
7041	545 420	547 317	9 6654	0.62017	0.08041	0.07776
7042	545 436	547 555	9 6709	0.61999	0.08001	0.07736
7043	545 429	547 775	9 6760	0.61982	0.08008	0 07743

Table 10. Thermal conductivity of liquid RP-1.

Doint ID	7	7	n	in ity of inqu	1	
Point ID	T_0	T_{e}	P_{e}	$\rho_{\rm e}$	$\Lambda_{\rm e}$	$\Lambda_{\rm c}$
7044	(K)	(K)	(MPa)	(g·cm ~)	$(\mathbf{W} \cdot \mathbf{m}^{-} \mathbf{K}^{-})$	(W·m 'K ')
7044	545.443	548.028	9.6803	0.61962	0.08002	0.07737
7045	545.431	548.272	9.6840	0.61943	0.07993	0.07728
7046	545.426	547.321	9.6400	0.62009	0.08019	0.07754
7047	545.444	547.557	9.6388	0.61989	0.08005	0.07741
7048	545.450	547.789	9.6465	0.61972	0.08001	0.07736
7049	545.441	548.021	9.6550	0.61955	0.07992	0.07727
7050	545.443	548.279	9.6619	0.61936	0.07996	0.07731
7051	545.412	547.356	6.0392	0.60874	0.07802	0.07537
7052	545.410	547.578	6.0433	0.60855	0.07787	0.07523
7053	545.435	547.836	6.0470	0.60832	0.07782	0.07518
7054	545.447	548.093	6.0494	0.60810	0.07781	0.07516
7055	545.437	548.348	6.0515	0.60787	0.07772	0.07507
7056	545.420	547.422	2.8458	0.59656	0.07562	0.07300
7057	545.406	547.635	2.8430	0.59633	0.07567	0.07304
7058	545.436	547.907	2.8335	0.59601	0.07563	0.07300
7059	545.426	548.151	2.8249	0.59572	0.07552	0.07289
7060	545.435	548.429	2.8180	0.59541	0.07561	0.07297
7061	544.931	546.966	1.0907	0.58916	0.07449	0.07188
7062	544.952	547.222	1.0966	0.58891	0.07427	0.07167
7063	544.962	547.477	1.1018	0.58864	0.07425	0.07164
7064	544.946	547.716	1.1060	0.58840	0.07416	0.07155
7065	544.966	548.006	1.1101	0.58809	0.07411	0.07150
8001	605.887	608.009	15.0088	0.58786	0.08163	0.07782
8002	605.896	608.232	15.0091	0.58769	0.08181	0.07800
8003	605.889	608.454	15.0098	0.58751	0.08170	0.07789
8004	605.885	608.687	15.0109	0.58733	0.08183	0.07800
8005	605.901	608.954	15.0124	0.58713	0.08171	0.07788
8006	605.901	607.571	68.9229	0.68401	0.10529	0.10169
8007	605.902	607.754	68.9080	0.68391	0.10525	0.10165
8008	605.908	607.937	68.9000	0.68382	0.10510	0.10151
8009	605.907	608.117	68.9029	0.68375	0.10520	0.10160
8010	605.919	608.329	68.9171	0.68367	0.10508	0.10147
8011	605.970	607.725	54.3640	0.66635	0.10000	0.09631
8012	605.986	607.920	54.3665	0.66626	0.09978	0.09610
8013	605.988	608.114	54.3508	0.66614	0.09956	0.09588
8014	606.003	608.325	54.3318	0.66602	0.09998	0.09592
8015	606.015	608.541	54.3142	0.66589	0.09958	0.09588
8016	605.989	607.838	41.3265	0.64724	0.09465	0.09090
8017	605.993	608.034	41.3139	0.64711	0.09458	0.09082
8018	606.000	608.237	41.3159	0.64701	0.09446	0.09071
8019	606.011	608.454	41.3281	0.64691	0.09431	0.09056
8020	606.012	608.674	41.3388	0.64681	0.09443	0.09067
8021	605.989	607.926	30.8369	0.62830	0.08999	0.08619

Table 10. Thermal conductivity of liquid RP-1.

Point ID	T	2				
I UNIT ID	I_0	I_{e}	۲ _e (MDa)	$\mu_{\rm e}$	\mathcal{N}_{e}	\mathcal{N}_{c}
8022	(N) 605 002	(K) 608 130	(1011 a)	(g·cm)	$(\mathbf{W} \mathbf{H} \mathbf{K})$	$(\mathbf{W} \cdot \mathbf{H} \mathbf{K})$
8022	605.992	608.336	30.8407	0.02819	0.08988	0.08617
8023	606.013	608.530	30.8421	0.02807	0.08997	0.08017
8024	606.003	608.374	30.8294	0.02790	0.08990	0.08009
8023	605.005	607.092	30.8140	0.02774	0.08990	0.08009
8020	605.938	607.985	22.9237	0.61062	0.08607	0.08220
8027	605.909	608.201	22.9273	0.61048	0.08001	0.08220
8028	606.005	608.430	22.9109	0.61030	0.08392	0.08211
8029	606.003	608.081	22.9027	0.01010	0.08575	0.08192
8030	606.010	608.922	22.8928	0.60991	0.08380	0.08204
8031	605.986	608.109	15.2320	0.58855	0.0818/	0.07806
8032	605.986	008.320	15.2214	0.38832	0.0818/	0.07805
8033	605.996	608.564	15.2123	0.58811	0.0816/	0.07785
8034	606.009	608.814	15.2060	0.58/89	0.08165	0.07783
8035	606.007	609.062	15.2004	0.58/68	0.08166	0.07783
8036	605.901	608.103	10.2436	0.56965	0.07862	0.0/483
8037	605.927	608.356	10.23/1	0.56939	0.07862	0.07482
8038	605.918	608.579	10.2284	0.56915	0.07841	0.07462
8039	605.931	608.846	10.2215	0.56888	0.07834	0.07455
8040	605.961	609.137	10.2159	0.56859	0.07840	0.07459
8041	605.890	608.158	6.9713	0.55351	0.07621	0.07245
8042	605.923	608.426	6.9734	0.55324	0.07619	0.07242
8043	605.937	608.680	6.9744	0.55298	0.07616	0.07239
8044	605.936	608.936	6.9695	0.55269	0.07625	0.07247
8045	605.944	609.210	6.9636	0.55237	0.07608	0.07230
8046	605.898	608.242	4.1257	0.53490	0.07371	0.07000
8047	605.903	608.483	4.1296	0.53463	0.07451	0.07076
8048	605.907	608.736	4.1333	0.53434	0.07388	0.07016
8049	605.881	608.974	4.1364	0.53406	0.07380	0.07007
8050	605.915	609.279	4.1394	0.53370	0.07371	0.06998
8051	605.854	608.251	2.1312	0.51694	0.07215	0.06849
8052	605.878	608.520	2.1330	0.51655	0.07215	0.06849
8053	605.885	608.783	2.1344	0.51616	0.07198	0.06832
8054	605.881	609.047	2.1350	0.51575	0.07183	0.06817
8055	605.889	609.336	2.1321	0.51527	0.07174	0.06809
8056	605.824	608.259	1.1099	0.50456	0.07062	0.06705
8057	605.825	608.509	1.1098	0.50411	0.07066	0.06708
8058	605.858	608.804	1.1085	0.50355	0.07060	0.06701
8059	605.832	609.047	1.1080	0.50310	0.07092	0.06731
8060	605.839	609.340	1.1078	0.50256	0.07090	0.06729
9006	647.900	649.976	12.5113	0.54280	0.07897	0.07423
9007	647.882	650.176	12.5159	0.54265	0.07885	0.07411
9008	647.875	650.394	12.5162	0.54246	0.07873	0.07400
9009	647.888	650.643	12.5153	0.54223	0.07871	0.07398

Table 10. Thermal conductivity of liquid RP-1.

Point ID		<u> </u>	D	<u> </u>	2	2
I UIIII ID	10 (K)	I_{e} (K)	r _e (MPa)	$\mu_{\rm e}$	\mathcal{M}_{e}	$(\mathbf{W} \cdot \mathbf{m}^{-1} \mathbf{K}^{-1})$
9010	(N) 647.862	(N) 650.862	(1011 a) 12 5150	$(g^{2}Cm^{2})$	$(\mathbf{W}^{\text{m}}\mathbf{K})$	$(\mathbf{W}^{-111} \mathbf{K})$
9010	647.288	648 869	68 7755	0.54204	0.07855	0.07381
9011	647.200	640.009	68 7679	0.00390	0.10489	0.10039
9012	647.233	640 180	68 7776	0.00382	0.10444	0.09990
9013	647.277	640 265	60 7007	0.00377	0.10447	0.09998
9014	647.273	640 550	69 7092	0.00370	0.10432	0.09977
9013	647.279	649.330	00.7903	0.00304	0.10409	0.10013
9010	647.084	640.793	47.5140	0.03022	0.09039	0.09192
9017	647.119	640 102	47.3030	0.03010	0.09048	0.09180
9018	647.120	649.195	47.4904	0.03399	0.09010	0.09144
9019	647.123	649.390	47.4900	0.05588	0.09030	0.09102
9020	646.026	649.001	47.4928	0.03378	0.09012	0.09143
9021	646.930	648.790	30.9474	0.00420	0.08903	0.08433
9022	646.940	640.905	30.9004	0.00417	0.08922	0.08446
9023	646.931	649.103	30.9720	0.60410	0.08918	0.08444
9024	646.925	640 500	30.9838	0.00400	0.08905	0.08429
9023	646.930	649.399	30.9940	0.00389	0.08900	0.08431
9020	040.823	640.005	19.8440	0.57530	0.08320	0.07855
9027	040.823	649.005	19.8431	0.57341	0.08343	0.07849
9028	646.832	649.225	19.8429	0.3/320 0.57211	0.08322	0.07848
9029	646.832	649.447	19.8437	0.57511	0.08314	0.07824
9030	040.839	049.088	19.8328	0.37290	0.08307	0.07834
9031	040.303	048.002	12.4149	0.54548	0.07850	0.07382
9032	040.381	048.893	12.4100	0.54528	0.07844	0.07385
9033	040.380	649.124	12.4191	0.54309	0.07844	0.07375
9034	040.3/3	649.349	12.4242	0.54292	0.07843	0.07370
9035	646.551	649.569	12.4331	0.54277	0.07429	0.0/3/4
9030	040.212	048.432	7.3342	0.51194	0.07428	0.009/1
9037	646.207	648.654	7.3503	0.51170	0.07455	0.07018
9038	040.200	648.890	7.3393	0.51145	0.07433	0.00978
9039	040.211	649.144	7.3032	0.51119	0.07437	0.00978
9040	040.201	049.394	/.308/	0.31093	0.07225	0.009/8
9041	043.803	048.101	4.0401	0.48540	0.0/235	0.06701
9042	043.818	048.348	4.0303	0.48314	0.07227	0.00/91
9043	043.840	048.02/	4.0044	0.484//	0.0/22/	0.00///
9044 0045	043.830	048.894	4.0381	0.48442	0.07294	0.00/83
904 <i>3</i> 9044 9045	645.846 645.856 645.875	648.62/ 648.894 649.180	4.6544 4.6581 4.6613	0.48477 0.48442 0.48403	0.07234 0.07284	0.06783 0.06828

Table 10. Thermal conductivity of liquid RP-1.

7. Viscosity

7.1 Viscosity at Atmospheric Pressure

The kinematic viscosities (ν) of the RP-1 samples were measured at atmospheric pressure (approximately 83 kPa) by open gravitational capillary viscometry. With this technique, the time (t) required for a given volume of the liquid to flow through a calibrated capillary under the influence of gravity was measured. The flow time is proportional to the kinematic viscosity:

$$v = C \cdot t$$
,

where the proportionality constant, *C*, is determined by calibrating the capillary with standard reference liquids. The absolute viscosity (η) can be determined from the kinematic viscosity if the density (ρ) of the liquid is known:

$\eta = v \cdot \rho$.

For these measurements we used the procedure outlined in ASTM method D 445 – 03; however, instead of averaging two determinations of the kinematic viscosity, at least eight determinations were averaged for each entry in Table 11. Commercially obtained Ubbelohde capillary viscometers were used for all the measurements. The capillary viscometers were calibrated at NIST using commercially obtained standard reference liquids. The calibration constant, *C*, for each capillary was found to be within the stated uncertainty of the manufacturer's calibration constant. During a measurement, the viscometers were immersed in an insulated, continuously stirred bath (ethylene glycol + water) whose temperature was maintained with a refrigerated circulator, an electric heater, and a precision temperature controller. The bath temperature was measured with an ITS-90 calibrated platinum resistance thermometer accurate to ± 0.01 K. Flow times were measured automatically. With this apparatus, the expanded uncertainty in the kinematic viscosity is estimated to be 1 % (k = 2). The primary contribution to the uncertainty is the 0.5 % standard uncertainty in *C*, which results in a 0.5 % standard uncertainty in the kinematic viscosity. Including fluctuations and temperature gradients, the uncertainty in the temperature is estimated to be 0.02 K, which leads to a negligible standard uncertainty in the kinematic viscosity of ≤ 0.074 %. The Hagenbach (kinetic energy) correction was ≤ 0.13 %, so it was also neglected. The uncertainty in the flow time measurement also leads to a negligible standard uncertainty of about 0.01 % in the kinematic viscosity. Since the RP-1 samples are hydrocarbon-based, no correction was necessary to account for the difference in surface tension between the hydrocarbon-based calibration liquids and the test samples.

Kinematic viscosities were measured as a function of temperature for four RP-1 samples. The first sample was the original sample of RP-1 (acquired May 2003, designated by batch number P000016660,) which has anomalously high olefin (unsaturated hydrocarbon) content. Viscosities were measured from 243.29 K to 333.15 K (approximately –30 °C to 60 °C). The kinematic viscosities of the other three samples—a second sample of normal grade RP-1 (acquired November 2004, designated 11/03), an ultra-low sulfur RP-1 (batch number not provided), and a TS-5 RP-1 (batch number not provided)—were measured only at 298.15 K (25 °C) and 313.15 K (40 °C). All of these data are collected in Table 11. At some temperatures the kinematic viscosity of the original sample of RP-1 was determined multiple times using different aliquots of that sample. Such independent determinations are listed separately in Table 11.

Figure 7(a) shows a graph of the kinematic viscosity as a function of temperature for the original sample of RP-1. Figure 7(b) shows an Arrhenius plot of the same data with a correlation to a modified Arrhenius equation of the form,

$$\ln(\nu) = A + B(1/T) + C(1/T)^2 + D(1/T)^3,$$
(1)

where A, B, C, and D are constants and *T* is the temperature in kelvins. A regression analysis gave the following values for the coefficients: A = -7.812, $B = 5.530 \times 10^3$, $C = -1.503 \times 10^6$, and $D = 1.801 \times 10^8$. Figure 7(c) shows the percent deviation of the measured kinematic viscosities from the correlation given in Eq. (1). All of the data points are within 1.1 % of Eq. (1).

Figure 8 shows the percent deviation of the kinematic viscosities of the three other rocket propellant samples compared to the correlation of the data for the original sample of RP-1, Eq. (1). The error bars in Figure 8 correspond to the repeatability of the measurements at the 2-sigma level, not to the total uncertainty in the measurement. Figure 8 shows that the viscosities for the second RP-1 sample, the TS-5 sample and the ultra-low sulfur sample are all about 7 to 10 % higher than the correlation at 298.15 K and 313.15 K. Hence, capillary viscosity measurements easily distinguish all three of these samples from the original sample of RP-1. The second RP-1 sample is also distinguishable from the TS-5 and the ultra-low sulfur samples. However, the viscosities of the TS-5 and the ultra-low sulfur samples.

These measurements show that the anomalous composition of the original sample of RP-1 results in a significant change in the viscosity behavior of that sample compared to a "normal" RP-1 sample whose composition is on specification. Consequently, these data provide strong motivation for additional measurements on a "normal" RP-1 sample. These measurements also show that the two low-sulfur versions of RP-1 are significantly different from normal grade RP-1. Hence, accurate models of such low-sulfur rocket propellants will require separate viscosity measurements.

	Temperature / K	$\boldsymbol{\nu}/(\mathrm{mm}^2\cdot\mathrm{s}^{-1})$	Capillary used
Original sample of RP-1	243.29	7.667	Ι
(acquired 05/03, P000016660)	243.93	7.431	I*
(248.15	6.530	I
	248.16	6.368	I [*]
	253.15	5.369	I
	258.15	4.601	Ι
	263.15	4.027	Ι
	263.15	3.990	Ι
	268.15	3.496	Ι
	273.15	3.093	Ι
	278.15	2.758	Ι
	283.15	2.479	Ι
	288.15	2.242	Ι
	288.15	2.255	0b
	293.15	2.053	0b
	293.15	2.040	Ι
	298.15	1.867	Ι
	298.15	1.870	Ι
	298.15	1.867	Ι
	298.15	1.875	0b
	298.15	1.878	0b
	298.15	1.880	0b
	298.15	1.865	I*
	303.15	1.723	0b
	308.15	1.591	0b
	313.15	1.475	0b
	323.15	1.282	0b
	333.15	1.126	Ob
Second sample of RP-1	298.15	2.0214	0b
(acquired 11/03)	313.15	1.5768	0b
Ultra-low sulfur RP-1	298.15	2.0491	0b
	313.15	1.5968	Ob
TS-5 RP-1	298.15	2 0581	()h
	313.15	1.6021	0b

Table 11. Experimental kinematic viscosities (v) for four RP-1 samples.

* These values were determined with a second capillary viscometer of size I.

Figure 7. (a) Kinematic viscosity of the original sample of RP-1 as a function of temperature; (b) Arrhenius plot of the same data; solid curve is correlation; (c) deviations of kinematic viscosity from the correlation.

Figure 8. Percent deviations of the kinematic viscosities of three rocket propellant samples compared to the correlation of the kinematic viscosities for the original sample of RP-1.

7.2 Viscosity at Elevated Pressures

The viscosity of RP-1 kerosene was measured at elevated pressures up to 65.7 MPa with a torsional crystal viscometer by mechanical spectroscopy in the frequency domain. Three isotherms were measured, two of which were near room temperature to validate the repeatability of the instrument, and one was at 400 K. Table 12 presents the results of the measurements numerically, while the pressure dependence is shown in Figure 9.

Before introducing the sample fluid with a pressure generator, the viscometer was evacuated for three days. The internal damping of the torsional crystal transducer was measured in vacuo at room temperature prior to the RP-1 measurements. The transducer performance was consistent with the long-term results measured during the last decade. The pressure generator was cleaned with toluene and evacuated for 24 h before it was filled with RP-1.

After charging the cell with RP-1, the quartz crystal viscosity transducer indicated no increase of the measured conductance. The susceptance rose by about 6 microsiemens (μ S) over its vacuum level. This is a typical increase for dense hydrocarbons. It is much lower than values observed with hydrofluorocarbons. These observations indicate the presence of no polar impurities in the sample fluid that might have caused electroviscous contributions in the measured viscosity data.

Each line in Table 12 represents an average of four measurements, except the line at 5.5 MPa, which is based on only three measurements. The columns with the experimental data are followed by columns with their absolute and relative standard deviations. Included are columns with the averaged resonance frequencies f^* and bandwidths Δf , which are the original experimental information. The product (viscosity × density) rather than the absolute viscosity is shown because measurements with this viscometer yield this product and the density needs to be supplied either from other measurements or from correlations or equations of state to obtain the viscosity. The pressure dependence of the measured (viscosity × density) results is illustrated in Figure 9.

The uncertainty of the pressure transducer is estimated at 0.01 MPa, while the uncertainty of the measured temperatures is estimated to be 0.05 K. The typical uncertainty of the (viscosity \times density) results measured with this instrument is 2 %. However, the RP-1 measurements were conducted at the resolution limit of the impedance analyzer, so that higher uncertainties were incurred. These will be discussed below. The internal damping of the vibrating crystal was not accounted for in the data analysis at room temperature because the bandwidth in vacuo (0.08 Hz) is at most only 0.01 % of the bandwidths of the resonances in the kerosene sample. The internal damping was included in the analysis of the data at 400 K.

Figure 10 compares the viscosities derived from Table 12 with viscosities calculated with the model that was developed in this project. The figure displays percent deviations of the experimental viscosities relative to those calculated with the model as a function of pressure. The deviations range between -3.5 % at 400 K and 0.1 MPa and -11.7 % at 295 K and 41.5 MPa. Consequently, the model predicts higher viscosities than those measured. Given the complexity of the surrogate mixture, the agreement between the model and the measured data can be considered satisfactory. This is supported by a consideration of the uncertainties of the experimental data. They were assessed by calculating the change in the viscosity due to a change in the measured bandwidth Δf resulting from the resolution of the impedance analyzer of ± 0.01 Hz. The uncertainties are indicated in Figure 10 by horizontal bars above and below the data points at the highest and at the lowest pressure. The highest uncertainties of the viscosity data occur at the highest pressures due to the flatness of the resonance curves at high external damping of the torsionally vibrating crystal. While the measurement at the highest pressure of Series 2 at 296 K is 9.2 % lower than the viscosity predicted by the model, the uncertainty of the measurement due to the impedance analyzer resolution of ± 0.1 Hz results in a deviation interval from -15 % to -0.3 %. This puts the deviations between the experimental and the calculated model data in perspective.

Bibliography for Viscosity

Hafer, R. F.; Laesecke, A. Extension of the torsional crystal viscometer to measurements in the time domain. Meas. Sci. Technol. 14: 663-673 (2003).

Laesecke, A. Viscosity measurements and model comparisons for the refrigerant blends R-410A and R-507A. ASHRAE Trans. Symp. 110 (part 2): 503-521 (2004).

P _{exp} MPa	T _{exp} Κ	f * Hz	s₁* Hz	∆ f Hz	${f s}_{\Delta f}$ Hz	η×ρ kg ² ·m ⁻⁴ ·s	s _{η·ρ} Hz	$s_{\eta}/\eta_{0/0}$
65.7032	295.23	39479.7920	1.5476	91.0156	0.8436	2.5287	0.047	1.85
63.6221	295.37	39480.1843	1.8560	90.1313	2.0625	2.4804	0.115	4.62
51.1380	295.57	39481.1876	1.0860	84.1500	0.7194	2.1606	0.037	1.71
41.5231	295.68	39486.1139	1.2056	78.2529	0.6358	1.8676	0.030	1.63
31.5127	295.78	39486.6795	0.6816	74.3371	1.1402	1.6851	0.052	3.07
21.5319	295.91	39489.3690	1.0328	70.5069	0.2671	1.5151	0.011	0.76
11.3880	297.23	39491.8394	0.6729	64.9280	0.0320	1.2843	0.001	0.10
5.54529	297.22	39491.4181	0.9675	62.9383	0.3212	1.2066	0.012	1.02
1.16686	297.30	39493.5601	0.3737	61.0921	0.8900	1.1368	0.033	2.91
0.1190	297.31	39491.6728	0.6652	60.6646	0.4787	1.1209	0.018	1.58
67.3416	296.12	39479.8022	2.7331	90.4688	0.8398	2.4985	0.046	1.86
60.7903	296.22	39481.3354	2.1428	87.7083	0.4166	2.3477	0.022	0.95
49.5042	296.27	39483.3182	0.8905	82.9125	1.1698	2.0974	0.059	2.83
40.0488	297.12	39485.5269	1.4492	77.4432	0.6889	1.8290	0.032	1.77
29.8420	297.14	39489.1896	1.5698	72.6040	0.2903	1.6069	0.013	0.80
20.1337	297.25	39490.8163	0.9642	68.7578	0.9207	1.4408	0.039	2.69
10.1259	297.29	39490.7615	1.5726	64.4845	0.7253	1.2669	0.029	2.25
5.0746	297.36	39490.9510	1.3958	62.7792	0.2912	1.2005	0.011	0.93
1.2191	297.38	39493.5878	1.4182	61.1579	0.5500	1.1392	0.020	1.79
0.1984	297.42	39493.9507	1.3361	60.6076	0.3710	1.1187	0.014	1.23
68.1731	400.08	39508.6993	1.1045	45.1800	0.2298	0.6202	0.006	1.01
60.0641	400.06	39510.1366	0.6027	43.8570	0.3088	0.5842	0.008	1.41
50.2712	400.07	39509.5068	0.6400	42.1027	0.1064	0.5383	0.003	0.50
39.8690	400.04	39510.9737	0.5615	39.9416	0.2524	0.4843	0.006	1.26
29.4055	400.06	39511.1211	0.2013	37.7958	0.1313	0.4335	0.003	0.69
19.4202	400.06	39511.9547	0.2073	35.9434	0.2801	0.3919	0.006	1.56
10.1350	400.06	39512.9821	0.0000	33.6950	0.0272	0.3443	0.001	0.16
5.0553	400.04	39513.4951	0.0008	32.6561	0.0621	0.3234	0.001	0.38
1.0233	400.06	39512.7072	1.0937	31.8197	0.1076	0.3070	0.002	0.68
0.1008	399.07	39512.7240	1.0627	31.7850	0.1672	0.3063	0.003	1.05

Table 12. Results of viscosity measurements at elevated pressures.

Figure 9. (Viscosity × density) product of RP-1 at elevated pressures measured in the torsional crystal viscometer at room temperature and at 400 K.

Pressure p / MPa

Figure 10. Percent deviations of the measured viscosities of RP-1 at elevated pressures from the model for the surrogate mixture.

8. Project Workshop at NIST Boulder on December 11, 2003

On December 11, 2003, the Physical and Chemical Properties Division of CSTL hosted a project workshop at the Boulder campus of NIST on the thermophysical properties of the rocket propellant designated RP-1. Specialists in rocket fuels (from NASA, the U.S. Air Force, commercial rocket engine manufacturers, and academia) convened with NIST researchers to hear about recent NIST work conducted to help better define the properties of this fuel and to plan future activities required to achieve consensus standards for the properties of fuels over the broad ranges of conditions encountered in their use.

NIST researchers reported new, high sensitivity compositional characterizations of RP-1 fuels and new metrological quality property results for density, viscosity, heat capacity, and thermal conductivity with temperatures extending beyond a decomposition limit (near 600 K) and pressures to about 70 MPa. These data were used to establish accurate preliminary property surfaces for this complex fluid. A software implementation of the preliminary models was delivered to NASA engineers and their contractors for testing and to assist in the resolution of current engine design problems. Participants in the workshop, listed in Table 13, were eager to use the current results, and were very interested in continued NIST efforts to explore the effects of sample-to-sample variation and refined processing methods on fuel properties, to help establish new protocols for fuel characterization, and to expand the range of conditions and properties.

NASA

Dr. Kendall Brown NASA/MSFC/TD51 Liquid Engine Systems Mail Code TD51 Marshall Space Flight Center, AL 35812 Email: <u>kendall.k.brown@nasa.gov</u> Phone: (256) 544-5938 Fax: (256) 544-5876

Mr. Larry de Quay NASA/SSC/VA305 Propulsion Test Division, Systems Analysis Branch Mail Code VA305 Stennis Space Center, MS Email: <u>larry.dequay-1@nasa.gov</u> Phone: (228) 688-1956 Fax: (228) 688-1485

Mr. Darrell Gaddy NASA/MSFC/ED25 Thermal Analysis Mail Code ED25 Marshall Space Flight Center, AL 35812 Email: <u>Darrell.E.Gaddy@nasa.gov</u> Phone: (256) 544-0198 Fax:

Mr. Van Loung NASA/MSFC/ED25 Thermal Analysis Mail Code ED25 Marshall Space Flight Center, AL 35812 Email: <u>Van.Luong-1@nasa.gov</u> Phone: (256) 544-3070 Fax: Mr. Mike Martin NASA/MSFC/TD53 Performance Modeling Mail Code TD53 Marshall Space Flight Center, AL 35812 Email: <u>michael.a.martin@nasa.gov</u> Phone: (256) 544-4478 Fax:

Mr. Mike Meyer NASA/GRC 21000 Brookpark Road Cleveland, OH 44135 Email: <u>michael.l.meyer@nasa.gov</u> Phone: (216) 977-7492 Fax:

Mr. Joe Sims NASA/MSFC/TD61 Combustion Devices Mail Code TD61 Marshall Space Flight Center, AL 35812 Email: Joseph.D.Sims@nasa.gov Phone: (256) 544-4650 Fax:

Dr. Jeff West NASA/MSFC/TD64 CFD Mail Code TD64 Marshall Space Flight Center, AL 35812 Email: Phone: (256) 544-6309 Fax:

Industry Partners

Mr. Tom Crofoot Northrop Grumman Space Technology Chemistry Technology Department One Space Park/BldO1 Rm2020/ Redondo Beach, CA 90278 Email: <u>tom.crofoot@ngc.com</u> Phone: (310) 813-4623 Fax: Mr. Dave Ewing Rocketdyne Performance Modeling 6633 Canoga Park Ave.; P.O. Box 7922 Canoga Park, CA 91309-7922 Email: Phone: (818) 586-0350 Fax: Dr. He Huang United Technologies Research Center Thermal Mgt MS 129-29, 411 Silver Lane, East Hartford, CT 06108 Email: <u>HuangH@utrc.utc.com</u> Phone: (860) 610-7594 Fax: (880) 660-1178

Mr. Mike Krene Rocketdyne TCA IPT Lead 6633 Canoga Park Ave.; P.O. Box 7922 Canoga Park, CA 91309-7922 Email: Phone: (818) 360-2321 Fax:

Mr. Herb Lander Rocketdyne Hydrocarbon Fuel Analyst 1964 W. Wide River Dr. St. George, UT 84790 Email: JP10fuel@aol.com Phone: (435) 673-4323 Fax:

Mr. Buzz Laning Lockheed Martin Corporation Vehicle MPS DC3006; P.O. Box 179 Denver, Colorado 80201 Email: <u>buzz.lanning@lmco.com</u> Phone: 303) 971-9390 Fax: Mr. Dennis Lim Rocketdyne TCA Design 6633 Canoga Park Ave.; P.O. Box 7922 Canoga Park, CA 91309-7922 Email: Phone: (818) 586-0422 Fax:

Mr. Skip Urquhart Pratt & Whitney RBCC P.O. Box 109600, M/S 712-67 West Palm Beach, Fl. 33410-9600 Email: james.urquhart@pw.utc.com Phone: (561) 796-9706 Fax:

Mr. Brian Wherley Rocketdyne TCA IPT Sub-lead 6633 Canoga Park Ave., P.O. Box 7922 Canoga Park, CA 91309-7922 Email: Phone: (818) 586-1785 Fax:

Mr. Peter Zeender Chemical Propulsion Information Agency Properties Documentation 10630 Little Patuxent Parkway, Suite 202 Columbia, MD 21044 Email: <u>pzeender@cpia.jhu.edu</u> Phone: (410) 992-9950 x205 Fax:

University Partners

Dr. Brian Landrum University of Alabama Huntsville Professor Technology Hall, S-227, Univ of Alabama in Huntsville Huntsville, Al 35899 Email: <u>landrum@mae.uah.edu</u> Phone: (256) 824-7207 Fax:

Mr. Ben Stiegemeier University of Toledo 21000 Brookpark Road Cleveland, OH 44135 Email: <u>ben.steigemeier@grc.nasa.gov</u> Phone: (216) 433-8242 Fax:

Military Partners

Dr. Tim Edwards Air Force Research Laboratory Propulsion Directorate Wright-Patterson AFB, OH Email: james.edwards@wpafb.af.mil Phone: (937) 255-3524 Fax:

NIST Staff

Dr. Thomas Bruno NIST Physical & Chemical Properties Division 325 Broadway, MC 838.00 Boulder, CO 80305-3328 Email: <u>bruno@boulder.nist.gov</u> Phone: (303) 497-5158 Fax: (303) 497-5224

Dr. Rob Chirico NIST Physical & Chemical Properties Division 325 Broadway, MC 838.00 Boulder, CO 80305-3328 Email: <u>chirico@boulder.nist.gov</u> Phone: (303) 497-4126 Fax: (303) 497-5224

Dr. Michael Frenkel NIST Physical & Chemical Properties Division 325 Broadway, MC 838 Boulder, CO 80305-3328 Email: <u>frenkel@boulder.nist.gov</u> Phone: (303) 497-3952 Fax: (303) 497-5224

Dr. Daniel Friend NIST Physical & Chemical Properties Division 325 Broadway, MC 838 Boulder, CO 80305-3328 Email: <u>dfriend@boulder.nist.gov</u> Phone: (303) 497-5424 Fax: (303) 497-5044

Dr. Marcia Huber NIST Physical & Chemical Properties Division 325 Broadway, MC 838.08 Boulder, CO 80305-3328 Email: <u>huber@boulder.nist.gov</u> Phone: (303) 497-5252 Fax: (303) 497-5224 Dr. Arno Laesecke NIST Physical & Chemical Properties Division 325 Broadway, MC 838.07 Boulder, CO 80305-3328 Email: <u>laesecke@boulder.nist.gov</u> Phone: (303) 497-3197 Fax: (303) 497-5224

Dr. Eric Lemmon NIST Physical & Chemical Properties Division 325 Broadway, MC 838.08 Boulder, CO 80305-3328 Email: <u>ericl@boulder.nist.gov</u> Phone: (303) 497-7939 Fax: (303) 497-5224

Dr. Joseph Magee NIST Physical & Chemical Properties Division 325 Broadway, MC 838.07 Boulder, CO 80305-3328 Email: <u>magee@boulder.nist.gov</u> Phone: (303) 497-3298 Fax: (303) 497-3441

Dr. Jeffrey Manion NIST Physical & Chemical Properties Division 100 Bureau Drive, Stop 8381 Gaithersburg, MD 20899-8381 Email: <u>jeffrey.manion@nist.gov</u> Phone: (301) 975-3188 Fax:

Dr. Mark McLinden NIST Physical & Chemical Properties Division 325 Broadway, MC 838.07 Boulder, CO 80305-3328 Email: <u>mclinden@boulder.nist.gov</u> Phone: (303) 497-3580 Fax: (303) 497-5224 Dr. Richard Perkins NIST Physical & Chemical Properties Division 325 Broadway, MC 838.07 Boulder, CO 80305-3328 Email: <u>perkins@boulder.nist.gov</u> Phone: (303) 497-5499 Fax: (303) 497-5224 Dr. Jason Widegren NIST Physical & Chemical Properties Division 325 Broadway, MC 838.07 Boulder, CO 80305-3328 Email: <u>widegren@boulder.nist.gov</u> Phone: (303) 497-5207 Fax: (303) 497-5224

NIST Guests

Mr. Aziz Abdulagatov NIST Physical & Chemical Properties Division 325 Broadway, MC 838.07 Boulder, CO 80305-3328 Email: <u>aziz@boulder.nist.gov</u> Phone: (303) 497-3716 Fax: (303) 497-5224

Dr. Ilmutdin Abdulagatov NIST Physical & Chemical Properties Division 325 Broadway, MC 838.07 Boulder, CO 80305-3328 Email: <u>Ilmutdin@boulder.nist.gov</u> Phone: (303) 497-4027 Fax: (303) 497-5224

Dr. Peter Andersen NIST Physical & Chemical Properties Division 325 Broadway, MC 838 Boulder, CO 80305-3328 Email: <u>panderse@boulder.nist.gov</u> Phone: (303) 497-5614 Fax: (303) 497-5224 Dr. Jörg Baranski NIST Physical & Chemical Properties Division 325 Broadway, MC 838.07 Boulder, CO 80305-3328 Email: <u>baranski@boulder.nist.gov</u> Phone: (303) 497-3522 Fax: (303) 497-5224

Dr. Jesus Sanchez Ochoa NIST Physical & Chemical Properties Division 325 Broadway, MC 838.07 Boulder, CO 80305-3328 Email: jsanchez@boulder.nist.gov Phone: (303) 497-4167 Fax: (303) 497-5224

Mr. Hong-Wei Xiang NIST Physical & Chemical Properties Division 325 Broadway, MC 838 Boulder, CO 80305-3328 Email: <u>hwxiang@boulder.nist.gov</u> Phone: (303) 497-7752 Fax: (303) 497-5224

9. Summary and Recommendations

A combined experimental and modeling study was carried out to elucidate the behavior of key properties over wide ranges of temperature and pressure. An RP-1 sample provided by the Air Force Research Lab (Wright-Patterson AFB, OH) was chemically characterized. Thermophysical properties were then measured for this sample. The experimental results were used to develop a mixture model based on a representative surrogate mixture. The results of this study were presented for review and comments in the December 11, 2003 workshop attended by representatives of NASA, the U.S. Air Force and their contractors.

The anticipated impact of the knowledge of thermophysical properties developed in this study will be more efficient and cost-effective rocket engine systems that use the kerosene rocket propellant designated RP-1. For future work, it is recommend that the variation of RP-1 properties be systematically explored based on studies of RP-1 samples from different lots. This will help design engineers to better understand the effects of batch-to-batch variability on the thermophysical properties of RP-1, and thus to lead to a more flexible engine design that performs equally well with RP-1 from various distillation batches or vendors. In the longer term, it is recommended that the mixture property model developed here, and the approach used to obtain the model from accurate experimental measurements, be applied to other kerosene-type fuels that are widely used in jet aviation. This information is expected to enhance the design and performance characterization of jet engines, especially those that will see applications in supersonic flight where fuels encounter both high temperatures and pressures.

Financial support for this project was provided by the NASA John H. Glenn Research Center.

74

10. References

- [1] Lemmon, E. W.; McLinden, M. O.; Huber, M. L. REFPROP, reference fluid thermodynamic and transport properties. NIST Standard Reference Database 23; Version 7 ed. (2002).
- [2] Lemmon, E. W.; Jacobsen, R. T. A generalized thermodynamic model for the thermodynamic properties of mixtures. Int. J. Thermophys. 20: 825-835 (1999).
- [3] Huber, M. L.; Ely, J. F. Prediction of the viscosity of refrigerants and refrigerant mixtures. Fluid Phase Equilib. 80: 239-248 (1992).
- [4] Huber, M. L.; Ely, J. F. Prediction of the thermal conductivity of refrigerants and refrigerant mixtures. Fluid Phase Equilib. 1992; 80: 249-261.
- [5] Lemmon, E. W.; Huber, M. L. Thermodynamic properties of n-dodecane. Energy and Fuels 18: 960-967 (2004).
- [6] Huber, M. L.; Laesecke, A.; Perkins, R. A. Transport properties of n-dodecane. Energy and Fuels 18: 968-975 (2004).
- [7] Andresen, J. M.; Strohm, J. J.; Sun, L. Relationship between the formation of aromatic compounds and solid deposition during thermal degradation of jet fuels in the pyrolytic regime. Energy Fuels 15: 714-723 (2001).
- [8] Balster, W. J.; Jones, E. G. Effects of temperature on formation of insolubles in aviation fuels. J. Eng. Gas. Turbines Power, Trans. ASME 120: 289-293 (1998).
- [9] Batti, F. Thermal stability of jet fuels. Lembaran Publikasi Lemigas 24: 18-22 (1990).
- [10] Behar, F.; Lorant, F.; Budzinski, H.; Desavis, E. Thermal stability of alkylaromatics in natural systems: kinetics of thermal decomposition of dodecylbenzene. Energy Fuels 16: 831-841 (2002).
- [11] Chin, J. S.; Lefebvre, A. H.; Sun, F. T. Y. Temperature effects on fuel thermal-stability. j. eng. gas. turbines power, Trans. ASME 114: 353-358 (1992).
- [12] Chin, J. S.; Lefebvre, A. H. Experimental techniques for the assessment of fuel thermal stability. J. Propul. Power 8: 1152-1156 (1992).
- [13] Chin, J. S.; Lefebvre, A. H. Experimental study on hydrocarbon fuel thermal stability. J. Thermal Sci. 1: 70-74 (1992).
- [14] Chin, J. S.; Lefebvre, A. H. Influence of flow conditions on deposits from heated hydrocarbon fuels. J. Eng. Gas. Turbines Power, Trans. ASME 115: 433-438 (1993).
- [15] Edwards, T.; Zabarnick, S. Supercritical fuel deposition mechanisms. Indust. Eng. Chem. Res. 32: 3117-3122 (1993).
- [16] Giovanetti, A. J.; Spadaccini, L. J.; Szetela, E. J. Deposit formation and heat-transfer characteristics of hydrocarbon rocket fuels. J. Spacecraft Rockets 22: 574-580, (1985).
- [17] Goel, P.; Boehman, A. L. Numerical simulation of jet fuel degradation in flow reactors. Energy Fuels 14: 953-962 (2000).
- [18] Grinstead, B.; Zabarnick, S. Studies of jet fuel thermal stability, oxidation, and additives using an isothermal oxidation apparatus equipped with an oxygen sensor. Energy Fuels 13: 756-760 (1999).
- [19] Han-Ying, M. A Study on Thermal Stability and its improvement of hydrocarbon fuel. Energetic Materials--Insensitivity and Environment Awareness International Annual Conf.; Karlsruhe, Germany, 88.81 -88.12 (1993).
- [20] Heneghan, S. P.; Martel, C. R.; Williams, T. F.; Ballal, D. R. Studies of jet fuel thermal stability in a flowing system. J. Eng. Gas Turbines Power 115: 480-485 (1993).

- [21] Heneghan, S. P.; Harrison, W. E.; III. JP-8+100: the development of high thermal stability jet fuel. Proc.; 6th Intl. Conf. on Stability and Handling of Liquid Fuels, Oct. 13-17, 1997, Vancouver, B.C. 1: 271-283 (1998).
- [22] Hines, W. S. Heat transfer to RP-1 kerosine in turbulent flow under asymmetric heating conditions. Chemical Engineering Progress, Symp. Series 59: 193-200 (1963).
- [23] Kendall, D. R.; Mills, J. S. Thermal stability of aviation kerosines: Techniques to characterize their oxidation properties. Indust. Eng. Chem. Product Res. Devel. 25: 360-367 (1986).
- [24] Lai, W. C.; Song, C. S. Pyrolysis of alkylcyclohexanes in or near the supercritical phase. Product distribution and reaction pathways. Fuel Process. Technol.; 48: 1-27 (1996).
- [25] Liang, K.; Yang, B.; Zhang, Z. Investigation of heat transfer and coking characteristics of hydrocarbons fuels. J. Propul. Power 14: 789-796 (1998).
- [26] Ma, H. A study on thermal stability and its improvement of hydrocarbon fuel. 24th Intl. Ann. Conf. of ICT 88/81-12 (1993).
- [27] Marteney, P. J.; Spadaccini, L. J. Thermal decomposition of aircraft fuel. J. Eng. Gas Turbines Power 108: 648-653 (1986).
- [28] Pande, S. G.; Hardy, D. R. Comparison of the effects of storage conditions, type of soluble copper, and MDA on JP-5 fuel thermal stability. Proc.; 6th Intl. Conf. on Stability and Handling of Liquid Fuels, Oct. 13-17, 1997, Vancouver, B.C. 1: 211-230 (1998).
- [29] Roback, R.; Szetela, E. J.; Spadaccini, L. J. Deposit formation in hydrocarbon fuels. J. Eng. Power 105: 59-65 (1983).
- [30] Savage, P. E.; Gopalan, S.; Mizan, T. I.; Martino, C. J.; Brock, E. E. Reactions at supercritical conditions: Applications and fundamentals. AIChE J. 41: 1723-1778 (1995).
- [31] Stekhun, A. I. Effect of hydrofining on thermal stability of jet fuels. Ekspluat. Svoistva Aviats. Topliv 3:180-186 (1972).
- [32] Stewart, J.; Brezinsky, K.; Glassman, I. Supercritical pyrolysis of decalin, tetralin, and n-decane at 700-800 K. Product distribution and reaction mechanism. Combust. Sci. Technol. 136: 373-390 (1998).
- [33] Stiegemeier, B. A thermal stability and heat transfer investigation of five hydrocarbon fuels; 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, Indianapolis, IN, AIAA Paper 3873 (2002).
- [34] Wang, T.-S. Thermophysics characterization of kerosene combustion. J. Thermophys. Ht. Trans. 15: 140-147 (2001).
- [35] Watkinson, A. P.; Wilson, D. I. Chemical reaction fouling: A review. Exp. Thermal Fluid Sci. 14: 361-374 (1997).
- [36] Wohlwend, K.; Maurice, L. Q.; Edwards, T. Thermal stability of energetic hydrocarbon fuels for use in combined cycle engines. J. Propul. Power 17: 1258-1262 (2001).
- [37] Yu, J.; Eser, S. Determination of critical properties (T-C, P-C) of some jet fuels. Indust. Eng. Chem. Res. 34: 404-409 (1995).
- [38] Yu, J.; Eser, S. Thermal decomposition of c10-c14 normal akanes in near-critical and supercritical conditions: Product distributions and reaction mechanisms. Ind. Eng. Chem. 36: 574-584 (1997).
- [39] Yu, J.; Eser, S. Kinetics of supercritical-phase thermal decomposition of C10-C14 normal alkanes and their mixtures. Ind. Eng. Chem. 36: 585-591 (1997).
- [40] Yu, J. A.; Eser, S. Thermal decomposition of jet fuel model compounds under near-critical and supercritical conditions. 1. n-butylbenzene and n-butylcyclohexane. Indust. Eng.

Chem. Res. 37: 4591-4600 (1998).

- [41] Yu, J.; Eser, S. Thermal decomposition of jet fuel model compounds under near-critical and supercritical conditions. 2. Decalin and tetralin. Ind. Eng. Chem. 37: 4601-4608 (1998).
- [42] Yu, J.; Eser, S. Supercritical-phase thermal decomposition of binary mixtures of jet fuel model compounds. Fuel 79: 759-768 (2000).
- [43] Volokhova, G. S.; Zhorov, Y. M. Composiiton of aromatic hydrocarbons in kerosine-gasoil cuts (in Russian). Khim. Tekhnol. Topl. Masel 12: 33-35 (1980).
- [44] Edwards, T.; Maurice, L. Q. Surrogate mixtures to represent complex aviation and rocket fuels. J. Propul. Power 17: 461-466 (2001).
- [45] Edwards, T. "Kerosene" fuels for aerospace propulsion: Composition and properties. Proc. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conf.; July 7-10, 2002, Paper No. 2002-3874 (2002)
- [46] Farmer, R. C.; Anderson, P. G.; Cheng, G. C.; Myruski, B. L.; Pike, R. W. Propulsion chemistry for CFD applications, SECA, Inc.; Huntsville, AL (1997).
- [47] Patterson, P. M.; Kyne, A. G.; Pourkashanian, M.; Williams, A. Combustion of kerosene in counterflow diffusion flames. J. Propul. Power 16: 453-460 (2000).
- [48] Violi, A.; Yan, S.; Eddings, E. G.; Sarofim, A. F.; Granata, S.; Faravelli, T.; Ranzi, E. Experimental formulation and kinetic model for JP-8 surrogate mixtures. Combust. Sci. Technol. 174: 399-417 (2002).
- [49] Wang, T.-S. Thermo-kinetics characterization of kerosine/RP-1 combustion; 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf.; Lake Buena Vista, FL, 10 (1996).
- [50] Wood, C. P.; McDonell, V. G.; Smith, R. A.; Samuelson, G. S. Development and application of a surrogate distillate fuel. J. Propul. Power 5: 399-405 (1989).
- [51] Alexander D. R.; Kalwala, R.; Kubik, R. D.; Schaub, S. A. Complex index-of-refraction measurements for RP-1 liquid rocket fuel. Opt. Eng. 34: 913-921 (1995).
- [52] Blake, F. C.; Sheard, C. On the dielectric constant of kerosene and water for high frequency currents. Phys. Rev. 15: 148-149 (1920).
- [53] Chao, G. T. Y. Isothermal compressibility of liquid oxygen and RP-1. ARS J. 29: 199-203 (1959).
- [54] CPIA/M4 Liquid propellant manual, Unit 20a. Chemical Propulsion Information Agency, Johns Hopkins University, Columbia, MD (2002).
- [55] Dubovkin, N. F.; Tararyshkin, M. E.; Abashina, L. D. Vapor pressure and critical parameters of jet fuels (in Russian). Khim. Tekhnol. Topl. Masel 4: 34-37 (1981).
- [56] Kopylov, N. I. Trudy Moskovskogo Aviatsionnogo Instituta (Trans. Moscow Aviation Inst.) 132: 45-56 (1961).
- [57] Kozyukov, A. V. Trudy Moskovskogo Aviatsionnogo Instituta (Trans. Moscow Aviation Inst.) 132: 94-108 (1961).
- [58] Mehta, G.; Stone, W.; Ingram, C.; Bai, S.; Sanders, T. Comparative testing of Russian kerosene and RP-1. 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, San Diego, CA, AIAA 95-2962, 11 (1995).
- [59] Piatibratov, S. N. Trudy Moskovskogo Aviatsionnogo Instituta (Trans. Moscow Aviation Inst.) 132: 31-44 (1961).
- [60] Sharma, R. L.; Tewari, G. B.; Singh, J. A new equation for predicting flash point of kerosine. Indian J. Technol. 31: 882-884 (1993).
- [61] Sokolov, S. N.; Tarlakov, Y. V. Trudy Moskovskogo Aviatsionnogo Instituta (Trans.

Moscow Aviation Inst.) 132: 15-30 (1961).

- [62] Sokolov, S. N.; Tarlakov, Y. V. Trudy Moskovskogo Aviatsionnogo Instituta (Trans. Moscow Aviation Inst.) 132: 116-122 (1961).
- [63] Stiegemeier, B. A Thermal stability and heat transfer investigation of five hydrocarbon fuels: JP-7, JP-8, JP-8+100, JP-10 and RP-1. B.S.; University of Kansas, Lawrence, KS (1998).
- [64] Vinogradov, A. N. Physicochemical properties and composition of a magnetic kerosene-based fluid. Russ. J. Phys. Chem. 74: 1192-1195 (2000).
- [65] Volyak, L. D. Trudy Moskovskogo Aviatsionnogo Instituta (Trans. Moscow Aviation Inst.) 132: 63-76 (1961).
- [66] Wucherer, E. J.; Wilson, A. Chemical, physical and hazards properties of quadricyclane. AFRL/PRS, Edwards AFB, CA (1998).
- [67] Zaytseva, L. S. Trudy Moskovskogo Aviatsionnogo Instituta (Trans. Moscow Aviation Inst.) 132: 79-93 (1961).
- [68] Technical data book: Petroleum refining, 4th ed. American Petroleum Inst.; Vol. II (1983).
- [69] Baroncini, C.; Di Filippo, P.; Latini, G.; Pacetti, M. Organic liquid thermal conductivity: A prediction method in the reduced temperature range 0.3 to 0.8. Int. J. Thermophys. 2: 21-38 (1981).
- [70] Chung, T. H.; Ajlan, L.; Lee, L. L.; Starling, K. E. Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 27: 671-679 (1988).
- [71] Constantinou, L.; Gani, R. New group-contribution method for estimating properties of pure compounds. AIChE J. 40: 1697-1710 (1994).
- [72] Deppmeier, B. J.; Driessen, A. J.; Hehre, W. J.; Klunzinger, P. E.; Le, T.; Yu, J. PC Spartan Plus 2.0.0, March 2000 ed.; Wavefunction, Inc.: Irvine, CA (2000).
- [73] Ely, J. F.; Hanley, H. J. M. Prediction of transport properties. 1. Viscosity of fluids and mixtures. Ind. Eng. Chem. Fundamentals 20: 323-332 (1981).
- [74] Ely, J. F.; Hanley, H. J. M. Prediction of transport properties. 2. Thermal conductivity of pure fluids and mixtures. Ind. Eng. Chem. Fundamentals 22: 90-97 (1983).
- [75] Horvath, A. L. Molecular design: Chemical structure generation from the properties of pure organic compounds. Elsevier: New York, NY (1992).
- [76] Joback, K. J. A unified approach to physical property estimation using multivariate statistical techniques. S.M.; Mass. Inst. Technol.; Cambridge, MA (1984).
- [77] Marrero, J.; Gani, R. Group-contribution based estimation of pure component properties. Fluid Phase Equilib. 183: 183-208 (2001).
- [78] Poling, B. E.; Prausnitz, J. M.; O'Connell, J. P. The properties of gases and liquids, 5th ed.; McGraw-Hill: New York, NY (2001).
- [79] Quayle, O. R. The parachors of organic compounds. An interpretation and catalogue. Chem. Rev. 53: 439-589 (1953).
- [80] Rihani, D. N.; Doraiswamy, L. K. Estimation of the heat capacity of organic compounds from group contributions. Ind. Eng. Chem. 4: 17-21 (1965).
- [81] Stein, S. E.; Brown, R. L. Structures and Properties Group additivity model. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (<u>http://webbook.nist.gov</u>). March 2003 ed. (2003).
- [82] Wilson, G. M.; Jasperson, L. V. Critical Tc, Pc estimation based on zero, first, second-order methods; AIChE Meeting New Orleans, LA (1996).
- [83] Yan, X.; Dong, Q.; Hong, X. Reliability analysis of group-contribution methods in

predicting critical temperatures of organic compounds. J. Chem. Eng. Data 48: 374-380 (2003).

- [84] Coops, J.; van Kamp, H.; Lambregts, W. A.; Visser, B. J.; Dekker, H. Thermal properties of cycloparaffins, IV. Heats of combustion of cycloparaffins with 10-17C at. Recl. Trav. Chim. Pays-Bas 79: 1226 (1960).
- [85] Drotloff, H.; Moller, M. On the phase transitions of cycloalkanes. Thermochim. Acta 112: 57-62 (1987).
- [86] Fischer, J.; Weiss, A. Transport properties of liquids. V. Self diffusion, viscosity, and mass density of ellipsoidal shaped molecules in the pure liquid phase. Ber. Bunsenges. Phys. Chem. 90: 896-905 (1986).
- [87] Gollis, M. H.; Belenyessy, L. I.; Gudzinowicz, B. J.; Koch, S. D.; Smith, J. O.; Wineman, R. J. Evaluation of pure hydrocarbons as jet fuels. J. Chem. Eng. Data 7: 311-316 (1962).
- [88] Ladygin, B. Y.; Zinina, G. M.; Vannikov, A. V. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya 1018 (1984).
- [89] Matteoli, E.; Lepori, L.; Spanedda, A. Volumetric properties of cyclic hydrocarbons in tetrachloromethane at 25C. J. Solution Chem. 23: 619-638 (1994).
- [90] Meyer, E. F.; Hotz, C. A. Cohesive energies in polar organic liquids. 3. Cyclic ketones. J. Chem. Eng. Data 21: 274-279 (1976).
- [91] Mueller, E.; Padeken, H. G.; Salamon, M.; Fiedler, G. Direct photooxidation of cycloalkanes. Chem. Ber. 98: 1893-1909 (1965).
- [92] Ruzicka, L.; Stoll, M.; Huyser, H.; Boekenoogen, H. A. Zur Kenntnis des Kohlenstoffringes XV uber die Herstellung und einige physikalische Daten verschiedener Kohlenstoffringe bis zum 32-Ring. Helv. Chim. Acta 13: 1152-1185 (1930).
- [93] Allinger, N. L. The relative stabilities of cis and trans isomers: III. The cyclodecenes. J. Am. Chem. Soc. 79: 3443-3446 (1957).
- [94] Blomquist, A. T.; Burge, R. E.; Sucsy, A. C. Many-Membered Carbon Rings V. Cyclodecyne, cis- and trans-cyclodecene, and related compounds. J. Am. Chem. Soc. 74: 3636-3642 (1952).
- [95] Cope, A. C.; Mclean, D. C.; Nelson, N. A. Cyclic Polyolefins XXXVI. Trans-cyclononene and trans-cyclodecene from cyclononyldimethylamine oxide and cyclodecyldimethylamine oxide. J. Am. Chem. Soc. 77: 1628-1631 (1955).
- [96] Prelog, V.; Schenker, K.; Guenthard, H. H. Carbon rings, LX. The ten-membered ring. Helv. Chim. Acta 35: 1598-1615 (1952).
- [97] Gibbons, L. C. PhD, Ohio State Univ, Columbus, OH (1941).
- [98] Levene, P. A.; Harris, S. A. Configurational relationships of methylphenyl- and methylhexylacetic acids and an attempt at the correlation of the configurations of 2-hydroxy acids with those of disubstituted acetic acids containing a methyl group. J. Biol. Chem. 112: 195-208 (1935).
- [99] Mann, G.; Muehlstaedt, M.; Braband, J. Conformation and physical data of alkanes and cyclanes. II. Single- and double-branched alkanes. Tetrahedron 23: 3393-3401 (1967).
- [100] Marsh, K. N.; Wilhoit, R. C.; Frenkel, M.; Yin, D. TRC Thermodynamic properties of substances in the ideal gas state; 1.0M ed.; Thermodynamics Research Center (TRC) (1994).
- [101] Petrov, A. A.; Sergienko, S. R.; Nechitailo, N. A.; Tsedilina, A. L. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya 1091-1097 (1959).
- [102] Prout, F. S.; Cason, J.; Ingersoll, A. W. Branched-Chain Fatty Acids V. The synthesis of

optically active 10-methyloctadecanoic acids. J. Am. Chem. Soc. 70: 298 (1948).

- [103] Smith, D. C. Infrared spectra of pure hydrocarbons, Nav. Res. Lab. Rep. (U.S.) C-3274 (1948).
- [104] Terres, E.; Gebert, F.; Fischer, D.; Modak, G. Brennst.-Chem. 35: 263-269 (1954).
- [105] Calingaert, G.; Soroos, H. The methyl nonanes. J. Am. Chem. Soc. 58: 635-636 (1936).
- [106] Calingaert, G.; Soroos, H. A method of comparison and critical analysis of the physical properties of homologs and isomers. The Molecular Volume of Alkanes. J. Am. Chem. Soc. 58: 153-157 (1936).
- [107] Dyke, W. J. C.; Jones, W. J. J. Chem. Soc. (London) 2426 (1930).
- [108] Eykman, J. F. Natuurkd. Verh. Hollandsche Maatschappij Wet. Haarlem 8: 438-555 (1919).
- [109] Geist, J. M.; Cannon, M. R. Viscosities of pure hydrocarbons. Ind. Eng. Chem. An. Ed. 18: 611-613 (1946).
- [110] Mears, T. W.; Fookson, A.; Pomerantz, P.; Rich, E. H.; Dussinger, C. S.; Howard, F. L. Syntheses and properties of two olefins, six paraffins, and their intermediates. Nat. Bur. Stand (U.S.) J. Res. 44: 299 (1950).
- [111] Moore, G. E.; Renquist, M. L.; Parks, G. S. Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins. J. Am. Chem. Soc. 62: 1505-1507 (1940).
- [112] Parks, G. S.; West, T. J.; Moore, G. E. Thermal data on organic compounds. XXI. Some heat capacity, entropy and free energy data form the four methylnonanes. J. Am. Chem. Soc. 63: 1133-1135 (1941).
- [113] Calingaert, G.; Hladky, J. W. A method of comparison and critical analysiss of the physical properties of homologs and isomers. The molecular volume of alkanes. J. Am. Chem. Soc. 58: 153 (1936).
- [114] Howard, F. L.; Mears, T. W.; Fookson, A.; Pomerantz, P.; Brooks, D. B. Preparation and physical properties of several aliphatic hydrocarbons and intermediates. Nat. Bur. Stand. (U.S.) J. Res. 38: 365 (1947).
- [115] Ambrose, D. Critical temperatures of some phenols and other organic compounds. Trans. Farad. Soc. 59: 1988 (1963).
- [116] Briggs, D. K. H. Thermal conductivity of liquids. Ind. Eng. Chem. 49: 418-421 (1957).
- [117] Byers, C. H.; Williams, D.F. Viscosities of pure polyaromatic hydrocarbons. J. Chem. Eng. Data 32: 344-348 (1987).
- [118] Camin, D. L.; Rossini, F. D. Physical properties of 14 American Petroleum Institute research hydrocarbons, C9 to C15. J. Phys. Chem. 59: 1173-1179 (1955).
- [119] Coulson, E. A. Preparation of alpha- and beta-methylnaphthalene from tar-oil fractions: I beta-methylnaphthalene. J. Soc. Chem. Ind. (London) 60: 123 (1941).
- [120] Cullinane, N. M.; Chard, S. J. Action of methanol on naphthalene in the presence of catalysts of the auliman-silica type. formation of 2-methylnaphthalene. J. Chem. Soc. (London) 804 (1948).
- [121] Cumper, C. W. N.; Redford, D. G.; Vogel, A. I. Physical properties and chemical constitution. The eletric dipole moments of methylquinolines. J. Chem. Soc. (London) 1176 (1962).
- [122] Evans, E. B. The viscosities of hydrocarbons. J. Inst. Petroleum Tech. 24: 321-337 (1938).
- [123] Glaser, F.; Ruland, H. Vapor pressure curves and critical data for several technically important organic substances (in German). Chem.-Ing.-Tech. 29: 772-775 (1957).

- [124] Grodde, K. H. Phys. Z. 39: 772 (1938).
- [125] Grosse, A. V.; Ipatieff, V. N. The reaction of cycloparaffins with aromatic hydrocarbons: decycloalkylation. J. Org. Chem. 2: 447-458 (1937).
- [126] Hales, J. L.; Townsend, R. Liquid densities from 293 to 490 K of nine aromatic hydrocarbons. J. Chem. Thermodyn. 4: 763-772 (1972).
- [127] Huffman, H. M.; Parks, G. S.; Barmore, M. Thermal data on organic compounds X. Further studies on the heat capacities, entropies, and free energies of hydrocarbons. J. Am. Chem. Soc. 53: 3876-3888 (1931).
- [128] Koelbel, H. Alkylnaphthalenes as lubricating-oil models. Brennst.-Chem. 30: 73-80 (1949).
- [129] Larsen, R. G.; Thorpe, R. E.; Armfield, F. A. Oxidation characteristics of pure hydrocarbons. Ind. Eng. Chem. 34: 183-193 (1942).
- [130] Luther, H.; Wachter, G. Preparation and physical properties of alkyl substituted naphthalene. Chem. Ber. 82: 161-176 (1949).
- [131] Mair, B. J.; Streiff, A. J. Separation of the aromatic hydrocarbons, and the isolation of n-dodecane, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene from the kerosene fraction of petroleum. Nat. Bur. Stand. (U.S.) J. Res. 24: 395-414 (1940).
- [132] Neuhaus, A. Z. Kristallogr. 101: 177 (1939).
- [133] Parks, G. S.; Huffman, H. M. Some fusion and transition data for hydrocarbons. Ind. Eng. Chem. 23: 1138-1139 (1931).
- [134] Rampolla, R. W.; Smyth, C. P. Microwave absorption and molecular structure in liquids. XXI. Relaxation times, viscosities and molecular shapes of substituted pyridines, quinolines and naphthalenes. J. Am. Chem. Soc. 80: 1057-1061 (1958).
- [135] Salceanu, C. C. R. Hebd. Seances Acad. Sci. 193: 161 (1931).
- [136] Schiessler, R. W. American Doc. Inst. Doc. No. 4597 (1945).
- [137] Shreve, R. N.; Lux, J. H. Monosulfonation of 2-methylnaphthalene. Ind. Eng. Chem. 35: 306-311 (1943).
- [138] Sirotenko, A. A. Zh. Prikl. Khim. (Leningrad) 71: 1047 (1998).
- [139] Skvarchenko, V. R.; Levina, R. Y.; Chervoneva, L. A. Synthesis of Aromatic Hydrocarbons VIII. Alkyltetrahydronaphthalenes. Vestnik Moskovskogo Universiteta, Ser. Mat.; Mekh.; Astron.; Fiz.; Khim-. 13: 187 (1958).
- [140] Smyth, C. P. Microwave absorption and molecular structure in liquids. XVII Dielectric relaxation times and shapes of rigid molecules. Proc. Natl. Acad. Sci. U. S. A. 42: 234-239 (1956).
- [141] Streiff, A. J.; Hulme, A. R.; Cowie, P. A.; Krouskop, N. C.; Rossini, F. D. Purification, purity, and freezing points of sixty-four American Petroleum Institute Standard and Research Hydrocarbons. Anal. Chem. 27: 411-415 (1955).
- [142] Szafranski, A. M. Solid-liquid equibrium. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1: 40-50 (1984).
- [143] Von Auwers, K.; Fruhling, A. Justus Liebigs Ann. Chem. 422: 196 (1921).
- [144] Wieczorek, S. A.; Kobayashi, R. Vapor pressure measurements of 1-methylnaphthalene,
 2-methylnaphthalene and 9,10-dihydrophenanthrene at elevated temperatures. J. Chem.
 Eng. Data 26: 8-11 (1981).
- [145] Yokoyama, C.; Takei, J.; Kumagai, A. Viscosity of mixtures of indole containing 2-methylnaphthalene and isoquinoline under pressure. High Temp. - High Pressures 32: 97-102 (2000).

- [146] Yokoyama, C.; Takei, J.; Kumagai, A. Viscosity of mixtures of indole containing 2-methylnaphthalene and isoquinoline under pressure, Erratum. High Temp. - High Pressures 33: 345-346 (2001).
- [147] Adkins, H.; Davis, J. W. Catalytic dehydrogenation of hydroaromatic compounds in benzene II. J. Am. Chem. Soc. 71: 2955-2957 (1949).
- [148] Gudzinowicz, B. J.; Campbell, R. H.; Adams, J. S. Thermal conductivity measurements of complex saturated hydrocarbons. J. Chem. Eng. Data 9: 79-82 (1964).
- [149] Weissenberger, G.; Henke, R.; Katschinka, H. Binary liquid mixtures: XX Systems with substituting hydronaphthalenes. Z. Anorg. Allg. Chem. 153: 33 (1926).
- [150] Baylaucq, A.; Zeberg-Mikkelsen, C. K.; Dauge, P.; Boned, C. Dynamic viscosity and density of heptylbenzene and heptylcyclohexane up to 100 MPa. J. Chem. Eng. Data 2002; 47: 997-1002.
- [151] Luther, H. Brennst.-Chem. 30: 258-266 (1949).
- [152] Mokbel, I.; Rauzy, E.; Loiseleur, H.; Berro, C.; Jose, J. Vapor pressure of 12 alkylcyclohexanes, cyclopentane, butylcyclopentane and trans-decahydronaphthalene down to 0.5 Pa. Fluid Phase Equilib. 108: 103-120 (1995).
- [153] Schlenk, W. Justus Liebigs Ann. Chem. 573: 142-162 (1951).
- [154] Schmidt, A. W. Physical properties of aliphatic compounds. Ber. Dtsch. Chem. Ges. B75: 1399 (1942).
- [155] Schmidt, A. W.; Grosser, A. Physical data of alkyl cyclohexanes. Ber. Dtsch. Chem. Ges. A 73: 930 (1940).
- [156] Allinger, N. L.; Coke, J. L. The relative stabilities of cis and trans isomers. 6. The decalins. J. Am. Chem. Soc. 81: 4080-4082 (1959).
- [157] Bird, L. H.; Daly, E. F. Trans. Farad. Soc. 35: 588 (1939).
- [158] Boord, C. E.; Greenlee, K. W.; Perilstein, W. L.; Derfer, J. M. The synthesis, purification and prop. of hydrocarbons of low mol. wt.; Am. Pet. Inst. Res. Proj. 45, Eleventh Annu. Rep.; Ohio State Univ. (1949).
- [159] Cheng, D. C. H.; McCoubrey, J. C.; Phillips, D. G. Critical temperatures of some organic cyclic compounds. Trans. Farad. Soc. 58: 224 (1962).
- [160] Chylinski, K.; Stryjek, R. Excess volumes of 1,2,3,4-tetrahydronaphthalene+trans-,and +cis -bicyclo[4.4.4]decane and of quinoline +trans- and +cis-bicyclo[4.4.0] decane, +1,2,3,4-tetrahydronaphthalene, and +n-hexadecane at. J. Chem. Thermodyn. 14: 1115 (1982).
- [161] Cooper, A. R.; Crowne, C. W. P.; Farrell, P. G. Gas-liquid chromatographic studies of electron-donor-acceptor systems. Trans. Farad. Soc. 63: 447 (1967).
- [162] Dauben, W. G.; Hiskey, C. F.; Markhart, A. H. J. Am. Chem. Soc. 73: 1393 (1951).
- [163] Polenske, R.; Eisenlohr, F. Chem. Ber. 57: 1639 (1924).
- [164] Fenske, M. R.; Myers, H. S.; Quiggle, D. n-Decane-trans-decahydronaphthalene. Binary mixture for determining efficiencies of fractioning columns operating at reduced pressures. Ind. Eng. Chem. 42: 649 (1950).
- [165] Foehr, E. G.; Fenske, M. R. Magneto-optic rotation of hydrocarbons. Ind. Eng. Chem. 41: 1956 (1949).
- [166] Frezzotti, D.; Goffredi, G.; Bencini, E. Thermal conductivity measurements of cis- and trans-decahydronaphthalene isomers using a steady-state coaxial cylinders method. Thermochim. Acta 265: 119-128 (1995).
- [167] Gudzinowicz, B. J.; Campbell, R. H.; Adams, J. S. Specific heat measurements of complex

saturated hydrocarbons. J. Chem. Eng. Data 8: 201 (1963).

- [168] Guenthard, H. H.; Suess, R.; Marti, L.; Furst, A.; Plattner, P. A. Helv. Chim. Acta 34: 959 (1951).
- [169] Hibbit, D. C.; Linstead, R. P. Fused carbon rings, Part VII. The preparation of cyclic hydrocarbons from unsaturated tertiary alcohols. The synthesis of cis-9-methyloctalin and -decalin and a proof of the presence of angular methyl. J. Chem. Soc. (London) 470 (1936).
- [170] Hogenboom, D. L.; Webb, W.; Dixon, J. A. The low-temperature thermodynamic properties of naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,3,4-tetrahydronaphthalene, trans-decahydronaphthalene and cis-decahydronaphthalene. J. Chem. Phys. 46: 2586 (1967).
- [171] Huckel, W. Justus Liebigs Ann. Chem. 441: 1 (1925).
- [172] Huckel, W. Suom. Kemistil. B 17: 7 (1944).
- [173] Huckel, W.; Kumetat, K.; Severin, H. Justus Liebigs Ann. Chem. 518: 184 (1935).
- [174] Ipatieff, V. N.; Pines, H. J. Am. Chem. Soc. 59: 56 (1937).
- [175] Jasper, J. J. The surface tension of pure liquid compounds. J. Phys. Chem. Ref. Data 1: 841-1009 (1972).
- [176] Korosi, G.; Kovats, E. Density and surface tension of 83 organic liquids. J. Chem. Eng. Data 26: 323 (1981).
- [177] Kuss, E. Some physical properties of crude oils at high pressure. Erdoel Kohle 6: 266 (1953).
- [178] Lauer, J. L.; King, R. W. Anal. Chem. 28: 1697 (1956).
- [179] Lozovoi, A. V.; D'yakova, M. K.; Stepantseva, T. G. Some physical constants of hydrocarbon mixtures: II. Zhurnal Obshchei Chim 9: 540-546 (1939).
- [180] Lyusternik, V. E.; Zhdanov, A. G. Viscosity of alkanes, alkenes and alkynes in gaseous phase. Teplofiz. Svoistva Veshchestv Mater.; Rabinovich, V. A.; Ed.; Standards Publ.: Moscow 7 (1973).
- [181] McCullough, J. P.; Finke, H. L.; Messerly, J. F.; Todd, S. S.; Kincheloe, T. C.; Waddington, G. The low-temperature thermodynamic properties of naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,3,4-tetrahydro- naphthalene, trans-decahydronaphthalene and cis-decahydronaphthalene. J. Phys. Chem. 61: 1105-1116 (1957).
- [182] Nuzzi, M. Riv. Combust. 38: 211 (1984).
- [183] Pak, S. C.; Kay, W. B. Gas-liquid critical temperatures of mixtures. benzene + n-alkanes and hexafluorobenzene + n-alkanes. Ind. Eng. Chem. 11: 255 (1972).
- [184] Parks, G. S.; Hatton, J. A. Thermal data on organic compounds. XXIV. The heat capacities, entropies and free energies of cis- and trans-decahydronapthalene. J. Am. Chem. Soc. 71: 2773-2775 (1949).
- [185] Parthasarathy, P. S. Ultrasonic velocities in organic liquids. Proceedings Indian Academy of Sciences, Section A 4: 59 (1936).
- [186] Petrov, A. D. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya 533 (1941).
- [187] Prokopetz, E. I. Zh. Prikl. Khim. (Leningrad) 8: 1214 (1935).
- [188] Rank, D. H.; Scott, R. W.; Fenske, M. R. Qualitive and quantitative analysis of hydrocarbon mixtures. Anal. Chem. 14: 816 (1942).
- [189] Ruzicka, L.; Koolhaas, D. R.; Wind, A. H. Helv. Chim. Acta 14: 1151 (1931).
- [190] Schiessler, R. W.; Herr, C. H.; Rytina, A. W.; Weisel, C. A.; Fischl. F.; McLaughlin, R. L.; Kuehner, H. H. The synthesis and properties of hydrocarbons of high molecular weight-IV. Proc., American Petroleum Inst. 26: 254-302 (1946).

- [191] Seyer, W. F.; Barrow, G. M. The dielectric properties of solid and liquid cis- and transdecahydronaphthalene. J. Am. Chem. Soc. 70: 802-805 (1948).
- [192] Seyer, W. F.; Leslie, J. D. The viscosity of cis and trans decahydronaphthalene. J. Am. Chem. Soc. 64: 1912-1916 (1942).
- [193] Seyer, W. F.; Mann, C. W. The vapor pressures of cis- and trans-decahydronaphthalene. J. Am. Chem. Soc. 67: 328 (1945).
- [194] Seyer, W. F.; Walker, R. D. The densities and surface tensions of cis-and trans-decahydronaphthalene between -30 and 180 K. J. Am. Chem. Soc. 63: 2425 (1941).
- [195] Shiohama, Y.; Ogawa, H.; Murakami, S. Molar excess enthalpies of cis-decalin + benzene, + toluene, + isooctane and + heptane at 298.15 K. Fluid Phase Equilib. 32: 249 (1987).
- [196] Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I. Excess molar isobaric heat capacities and isentropic compressibilities of (cis- or trans-decalin + benzene or toluene or isooctane or n-heptane) at 298.15 K. J. Chem. Thermodyn. 20: 1183 (1988).
- [197] Sohda, M.; Iwai, Y.; Arai, Y.; Sakoguchi, A.; Ueoka, R.; Kato, Y. Vapor Pressure of cisand trans-Decalins. Netsu Sokutei 17: 131 (1990).
- [198] Stokkum, I. H. M. V.; Scherer, T.; Brouwer, A. M.; Verhoeven, J. W. Conformational dynamics of flexibly and semirigidly bridged electron donor-acceptor systems as revealed by spectrotemporal parameterization of fluorescence. J. Phys. Chem. 98: 852-866 (1994).
- [199] Streiff, A. J.; Soule, L. F.; Kennedy, C. M.; Janes, M. E.; Sedlak, V. A.; Willingham, C. B.; Rossini, F. D. Purification, purity, and freezing points of twenty-nine hydrocarbons of the API-standard and API-NBS series. Nat. Bur. Stand (U.S.) J. Res. 45: 173 (1950).
- [200] Timmermans, J. Freezing points of organic compounds. VVI New determinations. Bull. Soc. Chim. Belg. 61: 393 (1952).
- [201] Zeberg-Mikkelsen, C. K.; Baylaucq, A.; Barrouhou, M.; Boned, C. The effect of stereoisomerism on dynamic viscosity: A study of cis-decalin and trans-decalin versus pressure and temperature. Phys. Chem. Chem. Phys. 5: 1547-1551 (2003).
- [202] Zelinskii, N. D.; Titz, I. N.; Fateev, L. Ber. Dtsch. Chem. Ges. A 59: 2580 (1926).
- [203] Asinger, F. Chem. Ber. 77: 73 (1944).
- [204] Baumgarten, P. Chem. Ber. 75: 977 (1942).
- [205] Boord, C. E.; Greenlee, K. W.; Derfer, J. M. The synthesis, purification and prop. of hydrocarbons of low mol. wt.; Am. Pet. Inst. Res. Proj. 45, Twelfth Annu. Rep.; Ohio State Univ. (1950).
- [206] Engler, C.; Hofer, H. Das Erdols, Hirtzel Co. Leipzig, Ger 1: 268 (1913).
- [207] Forziati, A. F.; Camin, D. L.; Rossini, F. D. Density, refractive index, boiling point, and vapor pressure of eight monoolefin (l-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons. Nat. Bur. Stand. (U.S.) J. Res. 45: 406 (1950).
- [208] Geldof, H.; Wibaut, J. P. Recl. Trav. Chim. Pays-Bas 67: 105 (1948).
- [209] Gude, M. T.; Rosenthal, D. J.; Teja, A. S. The critical properties of 1-alkenes from 1-pentene to 1-dodecene. Fluid Phase Equilib. 70: 55 (1991).
- [210] Hunig, S.; Kiessel, M. Chem. Ber. 91: 380 (1958).
- [211] Jasper, J. J.; Kerr, E. R. The othobaric surface tensions and thermodynamic properties of the liquid surfaces of a series of 1-alkenes, c6 to c16, and of decylcyclopentane, decylcyclohexane, and decylbenzene. J. Am. Chem. Soc. 76: 2659 (1954).
- [212] Jasper, J. J.; Kring, E. V. The isobaric surface tensions and thermodynamic properties of the surfaces of a series of n-alkanes, c5 to c18, 1-alkenes, c6 to c16, and of n-decylcyclopentane, n-decylcyclohexane and n-decylbenz. J. Phys. Chem. 59: 1019

(1955).

- [213] Jeffery, G. H.; Vogel, A. I. Physical properties and chemical constitution: xvi ethylenic compounds. J. Chem. Soc. (London) 658-673 (1948).
- [214] Krafft, F. Preparation of higher olefins, especially dodecene c(12)h(24), tetradecene c(14)h(28), cetene or hexadecene c(16)h(32) and octadecene c(18)h(36). Ber. Dtsch. Chem. Ges. 16: 3018-3024 (1883).
- [215] Krassilchik, A. Rev. Inst. Fr. Pet. Ann. Combust. Liq. 10: 923 (1935).
- [216] Labarre, J. F. Contribution to the study of magneto-optics of bonds between atoms in aliphatic hydrocarbons. Ann. Chim. (Paris) 8: 45-83 (1963).
- [217] Lenneman, W. L.; Hites, R. D.; Komarewsky, V. I. Sulfuric acid-catalyzed alkylation of benzene with high-molecular 1-alkenes. J. Org. Chem. 19: 463 (1954).
- [218] Maman, A. Publ. Sci. Tech. Minist. Air (Fr.) 66: 32 (1935).
- [219] McCullough, J. P.; Finke, H. L.; Gross, M. E.; Messerly, J. F.; Waddington, G. Low temperature calorimetric studies of seven 1-olefins: Effect of orientational disorder in the solid state. J. Phys. Chem. 61: 289 (1957).
- [220] Mukhamedzyanov, G. K.; Usmanov, A. G. Thermal conductivity of liquid organic compounds. Teplo i Massoperenos 7: 518 (1968).
- [221] Petrov, A. A.; Sergienko, S. R.; Tsedilina, A. L.; Egorov, Y. P. Isomeric conversions of unsaturated hydrocarbons, c(12)-c(16). Khim. Tech. Topliv Masel 1: 26-32 (1956).
- [222] Schmidt, A. W.; Schoeller, V.; Eberlein, K. Uber physikalische Daten von 1-Olefinen und n-Paraffinen. Berichte der Deutschen Chemischen Geseilschaft 74B: 1313-1324 (1941).
- [223] Tilicheev, M. D.; Peshkov, V. P.; Yuganova, S. A. Determination of the purity and identification of 1-alkenes by means of a thermal method. Zh. Anal. Khim. 4: 298 (1949).
- [224] Urry, W. H.; Stacey, F. W.; Huyser, E. S.; Juveland, O. O. The peroxide- and light-induced additions of alcohols to olefins. J. Am. Chem. Soc. 76: 450 (1954).
- [225] Wibaut, J. P.; Geldof, H. Accurate values of the specific gravities and the refractive indices of a series of alkenes with terminal double bond. Recl. Trav. Chim. Pays-Bas 65: 125 (1946).
- [226] Zafiriadis, Z.; Mastagli, P. C. R. Hebd. Seances Acad. Sci. 238: 821 (1954).
- [227] Kozacik, A. P.; Reid, E. E. Lengthening carbon chains by three units assay of primary bromides from the addition of hydrogen bromide. J. Am. Chem. Soc. 60: 2436-2438 (1938).
- [228] Lagemann, R. T.; McMillan, D. R.; Woolsey, M. Ultrasonic velocity in a series of 1-olefins. J. Chem. Phys. 16: 247 (1948).
- [229] Pictet, A.; Potok, J. The distillation of sodium stearate and oleate under reduced pressure and the origin of petroleum. Helv. Chim. Acta 2: 501 (1919).
- [230] Schiessler, R. W. Am. Pet. Inst. Res. Proj. 42, Twelfth Meeting (1947).
- [231] Ambrose, D.; Cox, J. D.; Townsend, R. The critical temperatures of forty organic compounds. Trans. Farad. Soc. 56: 1452 (1960).
- [232] Aucejo, A.; Cruz Burguet, M.; Muñoz, R.; Marques, J. L. Densities, viscosities, and refractive indices of the binary liquid systems n-alkanes + isomers of hexane at 298.15 K. J. Chem. Eng. Data 40: 871-874 (1995).
- [233] Avery, W. H.; Ellis, C. F. J. Chem. Phys. 10: 10 (1942).
- [234] Bazhulin, P. A.; Bokstein, M. L.; Liberman, A. L.; Lukina, M. Y.; Margolis, E. I.; Solovova, O. P.; Kazanskii, B. A. Optical methods for studying hydrocarbons, III. The combined scattering spectrum of paraffins. Izvestiya Akademii Nauk SSSR, Seriya

Khimicheskaya 198 (1943).

- [235] Bishop, J. W.; Burk, R. E.; Lankelma, H. P. The action of aluminum bromide on paraffin hydrocarbons, II. Branched chain hexanes. J. Am. Chem. Soc. 67: 914 (1945).
- [236] Boord, C. E. Oil Gas J. 41: 188 (1942).
- [237] Brame, J. S. S.; Hunter, T. G. Composition of cracked distillates. J. Inst. Petroleum Tech. 13: 794 (1927).
- [238] Brazier, D. W.; Freeman, G. R. The effects of pressure on the density, dielectric constant, and viscosity of several hydrocarbons and other organic liquids. Can. J. Chem. 47: 893-899 (1969).
- [239] Brewster, J. H.; Patterson, J. W.; Fidler, D. A. Reductions at metal surfaces, III. Clemensen reduction of some sterically-hindered ketones. J. Am. Chem. Soc. 76: 6368 (1954).
- [240] Brooks, D. B.; Howard, F. L.; Crafton, H. C. Physical Properties of some purified aliphatic hydrocarbons. Nat. Bur. Stand. (U.S.) J. Res. 24: 33 (1940).
- [241] Chavanne, G.; van Risseghem, H. Bull. Soc. Chim. Belg. 31: 87 (1922).
- [242] Chavanne, G. The constituents of the fraction of a Borneo petroleum which distills between 37 and 81 degrees. Bull. Soc. Chim. Belg. 31: 331 (1922).
- [243] Chen, S. S.; Zwolinski, B. J. Excess thermodynamic functions of binary mixtures of normal and isomeric alkanes (C5 and C6). J. Chem. Soc.; Faraday Trans. 2 70: 1133-1142 (1974).
- [244] Compostizo, A.; Crespo Colin, A.; Rubio, R. G.; Diaz Pena, M. Thermodynamics of mixtures with a hexane isomer: excess volumes of 1- chlorohexane with a hexane isomer at 298.15 K. J. Chem. Soc.; Faraday Trans. 1 83: 819 (1987).
- [245] Cramer, P. L.; Mulligan, M. J. The preparation of the isomeric hexanes. J. Am. Chem. Soc. 58: 373 (1936).
- [246] Denyer, R. L.; Fidler, F. A.; Lowry, R. A. Azeotrope formation between thiols and hydrocarbons. Ind. Eng. Chem. 41: 2727-2737 (1949).
- [247] Derfer, J. M.; Greenlee, K. W.; Boord, C. E. A New synthesis of monoalkylcyclobutanes: reduction of neopentyl type tribromides. J. Am. Chem. Soc. 71: 175 (1949).
- [248] Desty, D. H.; Whyman, B. H. F. Anal. Chem. 29: 320 (1957).
- [249] Dixon, J. A. Binary solutions of saturated hydrocarbons. J. Chem. Eng. Data 4: 289 (1959).
- [250] Douslin, D. R.; Huffman, H. M. Low-temperature thermal data on the five isomeric hexanes. J. Am. Chem. Soc. 68: 1704 (1946).
- [251] Eicher, L. D.; Zwolinski, B.J. Molecular structure and shear viscosity. Isomeric hexanes. J. Phys. Chem. 76: 3295-3300 (1972).
- [252] Felsing, W. A.; Watson, G. M. The pressure-volume-temperature relations of 2,2-dimethylbutane. J. Am. Chem. Soc. 65: 1889-1891 (1943).
- [253] Fenske, M. R.; Braun, W. G.; Wiegand, R. V.; Quiggle, D.; McCormick, R. H.; Rank, D. H. Raman spectra of hydrocarbons. Anal. Chem. 19: 700-765 (1947).
- [254] Finke, H. L. C.; M. R.; Frey, F. E.; and Aston, J. G. Solid solution studies i. equilibria in the binary systems 2,2-dimethyl butane-2,3-dimethylbutane and 2,2-dimethylbutane-cyclopentane. J. Am. Chem. Soc. 69: 1501 (1947).
- [255] Fischer, L. O. Research in stoichiometry: IV the heat of fusion and the polymorphism of organic compounds. Bull. Soc. Chim. Belg. 49: 129 (1940).
- [256] Fomin, W.; Sochanski, N. Chem. Ber. 46: 244 (1913).
- [257] Forziati, A. F. Am. Pet. Inst. Res. Proj. 6, Nat. Bur. Stand. (U.S.) (1943).
- [258] Forziati, A. F.; Glasgow, A. R.; Willingham, C. B.; Rossini, F. D. Specification and

properties of 29 paraffin, 4 alkylcyclopentanes, 10 alkylcyclohexanes and 8 alkylbenzene hydrocarbons. Nat. Bur. Stand. (U.S.) J. Res. 36: 129 (1946).

- [259] Funk, E. W.; Chai, F.-C.; Prausnitz, J. M. Thermodynamic properties of binary liquid mixtures containing aromatic and saturated hydrocarbons. J. Chem. Eng. Data 17: 24-27 (1972).
- [260] Genco, J. M.; Teja, A. S.; Kay, W. B. Study of the critical and azeotropic behavior of binary mixtures I critical states of perfluoromethylcyclohexane + isomeric hexane systems. J. Chem. Eng. Data 25: 350 (1980).
- [261] Glasgow, A. R.; Rossini, F. D. Am. Pet. Inst. Res. Proj. 6 Nat. Bur. Stand. (U.S.) (1943).
- [262] Glasgow, A. R.; Murphy, E. T.; Willingham, C. B.; Rossini, F. D. Purification, purity, and freezing points of 31 hydrocarbons of the api- nbs series. Nat. Bur. Stand. (U.S.) J. Res. 37: 141 (1946).
- [263] Griskey, R. G.; Canjar, L. N. Compressibilities of 2-methylpentane and 2,2-dimethylbutane. J. Chem. Eng. Data 9: 271 (1964).
- [264] Griswold, J.; van Berg, C. F.; Kasch, J. E. Ind. Eng. Chem. 35: 854 (1943).
- [265] Grummitt, O.; Sensel, E. E.; Smith, W. R.; Burk, R. E.; Lankelma, H. P. The action of aluminum bromide on paraffin hydrocarbons I. n-hexane and n-heptane. J. Am. Chem. Soc. 67: 910 (1945).
- [266] Haensel, V.; Ipatieff, W. Selective demethylation of paraffin hydrocarbons. J. Am. Chem. Soc. 68: 345 (1946).
- [267] Hickman, J. B. Solubility of isomeric hexanes in perfluoroheptane. J. Am. Chem. Soc. 66: 6154-6156 (1955).
- [268] Hicks-Brunn, M. M.; Bruun, J. H.; Faulconer, W. B. M. Isolation of 2,2-dimethylbutane from natural gas and determination of its physical properties. J. Am. Chem. Soc. 61: 3099-3101 (1939).
- [269] Hoog, H.; Smittenberg, J.; Visser, G. H. Composition of the primary polymerization prod. of propene and butenes. Ile Congr. Mondial Pet 2.;Phys Chem. Raffin-age 489 (1937).
- [270] Kay, W. B. The vapor pressures and saturated liquid and vapor densities of the isomeric hexanes. J. Am. Chem. Soc. 68: 1336 (1946).
- [271] Kay, W. B.; Young, C. L. Gas-liquid critical properties. Tetradecafluoro-methylcyclohexane(perfluoromethylcyclohexane)-2,2-dimethylbutane. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1: 58 (1974).
- [272] Kilpatrick, J. E.; Pitzer, K. S. The thermodynamics of 2,2-dimethylbutane, including the heat capacity, heat of transitions, fusion and vaporization and the entropy. J. Am. Chem. Soc. 68: 1066 (1946).
- [273] Kimura, F.; Benson, G. C. Excess enthalpies of binary mixtures of 1-hexanol with hexane isomers at 298.15 K. J. Chem. Eng. Data 26: 317-318 (1981).
- [274] Kimura, F.; Benson, G. C. Excess volume of binary mixtures of 1-hexanol with hexane isomers at 298.15 5 K. J. Chem. Eng. Data 28: 157-160 (1983).
- [275] Kimura, F.; Benson, G. C. Excess volumes of binary mixtures of 2-ethyl-1-butanol with hexane isomers at 298.15 K. Fluid Phase Equilib. 16: 77-86 (1984).
- [276] Kishner, N. Trimethylethylmethane from pinacolin. Zhurnal Russ. Fiz.-Khim. O.-va, Chast Khim. 47: 1111 (1915).
- [277] Kuss, E.; Pollman, P. Z. Phys. Chem. (Leipzig) 68: 205 (1969).
- [278] Lambert, J. D.; Cotton, K. J.; Pailthorpe, M. W.; Robinson, A. M.; Scrivins, J.; Vale, W. R. F.; Young, R. M. Transport properties of gaseous hydrocarbons. Proc. R. Soc. London, Ser.

A 231: 280-290 (1955).

- [279] Liberman, A. L.; Lukina, M. Y.; Solovova, O. P.; Kazanskii, B. A. The synth. of paraffins containing a quaternary c atom by means of Z alkyls. Doklady Akademii Nauk SSSR 40: 70 (1943).
- [280] Lichtenfels, D. H.; Fleck, S. A.; Burow, F. H. Anal. Chem. 27: 1510 (1955).
- [281] Maman, A. The preparation and several physicochemical properties of hexane and its isomers. C. R. Hebd. Seances Acad. Sci. 198: 1323 (1934).
- [282] Maman, A. The hexanes and some related hydrocarbons. Publ. Sci. Tech. Minist. Air (Fr.) 66: 55 (1935).
- [283] Marker, R. E.; Oakwood, T. S. Hexamethylethane and tetraalkylmethanes. J. Am. Chem. Soc. 60: 2598 (1938).
- [284] Markownikov, W. Trimethylethylmethane. Chem. Zentr. ii: 472 (1899).
- [285] McArdle, E. H.; Robertson, A. E. Solvent properties of isomeric paraffins. Ind. Eng. Chem. 34: 1005 (1942).
- [286] Moldavskii, L.; Nizovkina, T. V. Hydrogenation of oxygent-contining compounds, III. Preparation of 2,3-dimethylbutane from pinacalone. Zhurnal Obshchei Khim 10: 1183 (1940).
- [287] Nicolini, E.; Laffitte, P. Vapor densities and latent heats of vaporization of pure org. liquids. C. R. Hebd. Seances Acad. Sci. 229: 935-936 (1949).
- [288] Noller, C. R. The prep. of zinc alkyls and their use in the synthesis of hydrocarbons. J. Am. Chem. Soc. 594 (1929).
- [289] Oberfell, G. G.; Frey, F. E. Oil Gas J. 38: 70 (1939).
- [290] Paz Andrade, M. I. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 2: 103 (1973).
- [291] Pichler, H.; Ziesecke, K. H.; Titzenthaler, E. The composition of hydrocarbons from isosynthesis. Brennst.-Chem. 30: 333 (1949).
- [292] Rodger, A. J.; Hsu, C. C.; Furter, W. F. Vapor-liquid equilibria for 23 carbon tetrachloride-hydrocarbon syst. J. Chem. Ecol. 14: 362 (1969).
- [293] Sakiadis, B. C.; Coates, J. Studies of thermal conductivity of liquids, Parts I and II. AIChE J. 1: 275-288 (1955).
- [294] Sayegh, S. G.; Ratcliff, G. A. Excess Gibbs energies of binary systems of isopentanol and n-pentanol with hexane isomers at 25 deg. C: Measurement and prediction by analytical group solution model. J. Chem. Eng. Data 21: 71 (1976).
- [295] Schmerling, L.; Friedman, B. S.; Ipatieff, V. N. Notes on preparation and properties of some aliphatic hydrocarbons. J. Am. Chem. Soc. 62: 2446-2449 (1940).
- [296] Serijan, K. T.; Spurr, R. A.; Gibbons, L. C. The system cyclopentane-neohexane-aniline. J. Am. Chem. Soc. 68: 1763-1764 (1946).
- [297] Seubold, F. H. The cyclohexyl and cyclopentylmethyl radicals. J. Am. Chem. Soc. 76: 3732 (1954).
- [298] Shen, W.-G.; Williamson, A. G. Enthalpies of mixing of ternary alkane mixtures with branched chain components. Can. J. Chem. 66: 904-907 (1988).
- [299] Smittenberg, J.; Hoog, H.; Henkes, R. A. Freezing points of a number of pure hydrocarbons of the gasoline boiling range and of some of their binary mixtures. J. Am. Chem. Soc. 60: 17 (1938).
- [300] Smutny, E. J.; Bondi, A. Di-t-Butyl ether: Strain energy and physical properties. J. Phys. Chem. 65: 546-550 (1961).
- [301] Stull, D. R. A Semi-micro calorimeter for measuring heat capacities at low temp. J. Am.

Chem. Soc. 59: 2726 (1937).

- [302] Timmermans, J. Investigation of the freezing point of organic substances VII. Bull. Soc. Chim. Belg. 31: 389 (1922).
- [303] Tooke, J. W.; Aston, J. G. Solid solutions in hydrocarbon systems. J. Am. Chem. Soc. 67: 2275 (1945).
- [304] Tsvetkov, O. B. Thermal conductivity of freon C318 along the saturation boundary. Khol. Tekh. 44: 61 (1967).
- [305] Van Risseghem, H. Synthesis of trimethylethylmethane. Bull. Soc. Chim. Belg. 31: 62-66 (1922).
- [306] Van Wijk, W. R.; Versteeg, J. M. Viscosity of pure hydrocarbons. Ile Congr. Mondial Pet 2.;Phys Chem. Raffin-age 955 (1937).
- [307] Vilim, O. Thermal conductivity of hydrocarbons. Collection Czechoslov, Chem. Commun. 25: 993-999 (1960).
- [308] Waddington, G.; Douslin, D. R. Experimental vapor heat capacities and heats of vaporization of n-hexane and 2,2-dimethylbutane. J. Am. Chem. Soc. 69: 2275 (1947).
- [309] Westerdijk, J. B.; Waterman, H. I.; Span, H. F. O.; Booij, H.; van Nes, K. J. Inst. Pet. 36: (1950) 281.
- [310] Wibaut, J. P.; Gitsels, H. P. L. Refractometric constants of 3,3-dimethyl-1-butene. Recl. Trav. Chim. Pays-Bas 60: 241 (1941).
- [311] Wibaut, J. P.; Hoog, H.; Langedijk, S. L.; Overhoff, J.; Smittenberg, J.; Benninga, N.; Bouman, G. P.; van Dijk, H.; Gaade, W.; Geldof, H.; Hackmann, J. T.; Jonker, E. W.; Paap, T.; Zuiderweg, F. J. Study on the preparation and the physical constants of a number of alkanes and cycloalkanes. Recl. Trav. Chim. Pays-Bas 58: 329 (1939).
- [312] Willingham, C. B.; Taylor, W. J.; Pignocco, J. M.; Rossini, F. D. Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane and alkylbenzene hydrocarbons. Nat. Bur. Stand. (U.S.) J. Res. 35: 219 (1945).
- [313] Wojciechowski, M. Some physical constants of a few hydrocarbons and their structural isomers. Proc. Am. Acad. Arts Sci 73: 361 (1940).
- [314] Young, C. L. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1: 48 (1974).
- [315] Zhang, D.; Benson, G. C.; Lu, B. C. Y. Excess volume of n-decane + a hexane isomer) at 298.15 K. J. Chem. Thermodyn. 18: 619 (1986).
- [316] Ait-Kaci, A.; Merlin, J. C. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1: 70 (1979).
- [317] Aminabhavi, T. M.; Gopalkrishma, B. Densities, viscosities, refractive indices, and speeds of sound of the binary mixtures of bis(2-methoxyethyl) ether with nonane, decane, dodecane, tetradecane, and hexadecane at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data 39: 529-534 (1994).
- [318] Anselme, M. J.; Gude, M.; Teja, A. S. The critical temperatures and densities of the n-alkanes from pentane to octadecane. Fluid Phase Equilib. 57: 317-326 (1990).
- [319] Aracil, J.; Rubio, R. G.; Caceres, M.; Diaz Pena, M.; Renuncio, J. A. R. Excess properties of the hexafluorobenzene-n-hexadecane and hexafluorobenzene-benzene-n-hexadecane systems at 298.15 K. Fluid Phase Equilib. 31: 71-87 (1986).
- [320] Aracil, J.; Rubio, R. G.; Renuncio, J. A. R.; Diaz Pena, M. Vapour-liquid equilibrium of n-tetradecane and of n-hexadecane with hexafluorobenzene and with hexafluorobenzene + benzene at 323.15 K. Ber. Bunsenges. Phys. Chem. 91: 603-611 (1987).
- [321] Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H.; Joshi, S. S. Thermodynamic interactions in mixtures of bromoform with hydrocarbons. J. Phys. Chem. 95: 5299-5308

(1991).

- [322] Arenosa, R. L.; Rubio, R. G.; Menduina, C.; Diaz Pena, M. Excess enthalpies of binary mixtures of ethylbenzene + n-alkanes. J. Chem. Eng. Data 30: 24-26 (1985).
- [323] Asfour, A.-F. A.; Siddique, M. H.; Vavanellos, T. D. Density-composition data for eight binary systems containing toluene or ethylbenzene and C(8)-C(16) n-alkanes at 293.15, 298.15, 308.15, and 313.15 K. J. Chem. Eng. Data 35: 192-198 (1990).
- [324] Assael, M. J.; Charitidou, E.; Karagiannidis, L. The thermal conductivity of n-hexadecane + ethanol and n-decane + butanol mixtures. Int. J. Thermophys. 12: 491-500 (1991).
- [325] Aucejo, A.; Cruz Burguet, M.; Muñoz, R.; Marques, J. L. Densities, viscosities, and refractive indices of some n-alkane binary liquid systems at 298.15 K. J. Chem. Eng. Data 40: 141-147 (1995).
- [326] Awwad, A. M.; North, A. M.; Pethrick, R. A. J. Chem. Soc.; Faraday Trans. 1 79: 2333 (1983).
- [327] Awwad, A. M.; Allos, E. I. Volumes of mixing and the isomeric effect. Part 1. Nonane isomers with n-nonane and n-hexadecane. J. Solution Chem. 16: 465-474 (1987).
- [328] Awwad, A. M.; Pethrick, R. A. Isentropic compressibilities of hydrocarbons and their mixtures. Mixtures of linear and branched-chain alkanes. J. Chem. Thermodyn. 16: 131-136 (1984).
- [329] Awwad, A. M.; Salman, M.A. Excess Molar Volumes and Viscosities of Binary Mixtures of Cyclohexanes and n-Alkane at 298.15 K. Fluid Phase Equilib. 25: 195-208 (1986).
- [330] Awwad, A. M.; Salman, M. A. Volume of mixtures of nonane isomers with normal nonane and normal hexadecane at 298.15 K; an interpretation in terms of the Flory-Patterson theory. Fluid Phase Equilib. 31: 105-115 (1986).
- [331] Awwad, A. M.; Al-Azzawi, S. F.; Salman, M. A. Volumes and viscosities of benzene + n-alkane mixtures. Fluid Phase Equilib. 31: 171-182 (1986).
- [332] Awwad, A. M.; Al-Nidawy, N. K.; Salman, M. A.; Hassan, F. A. Molar excess volumes of binary mixtures of ethylbenzene with n-alkanes at 298.15 k; an interpretation in termos of the prigogin-flory- patterson model. Thermochim. Acta 114: 337 (1987).
- [333] Awwad, A. M.; Jbara, K. A.; Al-Dujaili, A. H. Excess volumes of n-pentylacetate with alkanes, cycloalkanes and aromatics at 303.15 K. Fluid Phase Equilib. 46: 259-265 (1989).
- [334] Banipal, T. S.; Garg, S. K.; C.; A. J. Heat capacities and densities of liquid n-octane, n-nonane, n-decane, and n-hexadecane at temperatures from 318.15 K to 373.15 K and at pressures up to 10 MPa. J. Chem. Thermodyn. 23: 923-931 (1991).
- [335] Banos, I.; Sanchez, F.; Perez, P.; Valero, J.; Gracia, M. Vapor pressures of 1-butanol with n-hexadecane between 293.18 and 323.18 K. Description of 1-butanol + n-alkane systems by ERAS model. Fluid Phase Equilib. 81: 165-174 (1992).
- [336] Barber, G. W.; English, J. Reaction of 3,5-Dibromocyclopentene with Grignard reagents. J. Am. Chem. Soc. 73: 746-749 (1951).
- [337] Behrends, R.; Kaatze, U. Structural isomerization and molecular motions of liquid n-alkanes. Ultrsonic and high-frequency shear viscosity relaxation. J. Phys. Chem. A104: 3269-3275 (2000).
- [338] Benson, G. C.; Handa, Y. P. Ultrasonic speeds and isentropic compressibilities for (decan-1-ol + n-alkane) at 298.15 K. J. Chem. Thermodyn. 13: 887-896 (1981).
- [339] Berger, G. Recl. Trav. Chim. Pays-Bas 57: 1029 (1938).
- [340] Bhattacharyya, S. N.; Trejo Rodriguez, A.; Andreoli-Ball, L.; Patterson, D. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1: 47 (1982).

- [341] Boelhouwer, J. W. M. PVT Relations of five liquid n-alkanes. Physica (Amsterdam) (1960) 26: 1021-1028.
- [342] Bogatov, G. F.; Rastorguev, Y. L.; Grigor'ev, B. A. Thermal conductivity of normal hydrocarbons at high pressures and temperatures (in Russian). Khim. Tech. Topliv Masel (1969) 9: 31-33.
- [343] Bradley, R. S.; Shellard, A. D. The rate of evaporation of droplets. III. Vapour pressures and rates of evaporation of straight-chain paraffin hydrocarbons. Proc. R. Soc. London, A (1949) 198: 239.
- [344] Bridgman, P. W. Further rough compressions to 40,000 kg/sq. cm, especially certain liquids. Proc. Am. Acad. Arts Sci. 77: 129-146 (1949).
- [345] Bronsted, J. N.; Koefoed, J. Mat.-Fiz. Me. -K. Dan. Vidensk. Selsk. 22: 32 (1946).
- [346] Calingaert, G.; Beatty, H. A.; Kuder, R. C.; Thomson, G. W. Homologous series of alkanes density and its temperature coefficient. Ind. Eng. Chem. 33: 103 (1941).
- [347] Camin, D. L.; Forziati, A. F.; Rossini, F. D. Physical properties of n-hexadecane, n-decylcyclopentane, n-decylcyclohexane, 1-hexadecene and n-decylbenzene. J. Chem. Phys. 58: 440 (1954).
- [348] Carey, P. C.; Smith, J. C. Higher aliphatic compounds: Part III. The preparation of paraffins. J. Chem. Soc. 346-347 (1933).
- [349] Celda, B.; Campos, A.; Figueruelo, J. E.; Horta, A. Excess Gibbs function and excess volume of n-alkane (1) + 2-butanone (2) systems at 20 °C. J. Phys. Chem. 90: 1137-1143 (1986).
- [350] Chang, J. S.; Lee, M. J.; Lin, H.-M. Densities of binary mixtures of hexadecane with m-xylene and tetralin from 333 K to 413 K and pressures up to 30 MPa. J. Chem. Eng. Data 43: 233-237 (1998).
- [351] Chawla, B.; Parkash, R.; Suri, S. K. A systematic study on volumetric interactions of cyclohexanone with various aliphatic hydrocarbons. Can. J. Chem. 61: 1647 (1983).
- [352] Chevalier, J. L. E.; Petrino, P. J.; Gaston-Bonhomme, Y. H. Viscosity and density of some aliphatic, cyclic, and aromatic hydrocarbons binary liquid mixtures. J. Chem. Eng. Data 35: 206-212 (1990).
- [353] Chylinski, K.; Stryjek, R. Viscosity of binary bicyclic compounds hexadecane systems. Pol. J. Chem. 54: 1797-1804 (1980).
- [354] Cooper, E. F.; Asfour, A. A. Densities and kinematic viscosities of some c6-c16 n-alkane binary liquid systems at 293.15 K. J. Chem. Eng. Data 36: 285-288 (1991).
- [355] Coursey, B. M.; Heric, E. L. Viscosity of some binary systems of hexadecane and normal chloroalkanes. J. Chem. Eng. Data 14: 426-430 (1969).
- [356] Deanesly, R. M.; Carleton, L. T. Physical constants of the normal paraffin hydrocarbons. J. Phys. Chem. 45: 1104 (1941).
- [357] DeLorenzi, L.; Fermeglia, M.; Torriano, G. Densities and viscosities of 1,1,1-trichloroethane + paraffins and + cycloparaffins at 298.15 K. J. Chem. Eng. Data 39: 483-487 (1994).
- [358] Dernini, S.; Polcaro, A. M.; Ricci, P. F.; Marongiu, B. Thermodynamic properties of binary mixtures containing cycloalkanones. 2. Excess volumes of cycloalkanones + n-alkanes. J. Chem. Eng. Data 32: 194-195 (1987).
- [359] Diaz Pena, M.; Menduina, C. Excess enthalpies at 298.15k of binary mixtures of benzene with n-alkanes. J. Chem. Thermodyn. 6: 387 (1974).
- [360] Diaz Pena, M.; Nunez Delgado, J. Excess volumes at 323.15 K of binary mixtures of

benzene with n-alkanes. J. Chem. Thermodyn. 7: 201 (1975).

- [361] Diaz Pena, M.; Tardajos, G. Isothermal compressibilities of n-alkanes and benzene. J. Chem. Thermodyn. 10: 19-24 (1978).
- [362] Drahowzal, F. Monatsh. Chem. 82: 767 (1951).
- [363] Ducoulombier, D.; Zhou, H.; Boned, C.; Peyrelasse, J.; Saint-Guirons, H.; Xans, P. Pressure (1-1000 bars) and temperature (20-100C) dependence of the viscosity of liquid hydrocarbons. J. Phys. Chem. 90: 1692-1700 (1986).
- [364] Dymond, J. H.; Harris, K. R. The temperature and density dependence of the self-diffusion coefficient of n-hexadecane. Mol. Phys. 75: 461-466 (1992).
- [365] Dymond, J. H.; Young, K. J. Transport properties of nonelectrolyte liquid mixtures- i. viscosity coefficients for n-alkane mixtures at saturation pressure from 283 to 378K. Int. J. Thermophysics 1: 331-344 (1980).
- [366] Dymond, J. H.; Young, K. J.; Isdale, J. D. Transport properties of nonelectrolyte liquid mixtures-ii. viscosity coefficients for the n-hexane + n-hexadecane system at temperatures from 25 to 100 C at pressures up to the freezing pressure or 500 MPa. Int. J. Thermophys. 1: 345-373 (1980).
- [367] Evans, E. B. The viscosities of hydrocarbons. Parts I-III. J. Inst. Petroleum Tech. 24: 38 (1938).
- [368] Fenby, D. V.; Khurma, J. R.; Konner, Z. S.; Block, T. E.; Knobler, C. M.; Reeder, J.; Scott, R. L. Isomer effects in mixtures of hydrocarbons: Some experimental excess volumes and enthalpies. Aust. J. Chem. 33: 1927 (1980).
- [369] Ferhat-Hamida, Z.; Philippe, R. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1979; 1: 17.
- [370] Fermeglia, M.; Torriano, G. Density, viscosity, and refractive index for binary systems of n0C16 and four nonliner alkanes at 298.15 K. J. Chem. Eng. Data 44: 965-969 (1999).
- [371] Findenegg, G. H. Density and expansion coefficient of some liquid alkanes. Monatsh. Chem. 101: 1081-1088 (1970).
- [372] Finke, H. L.; Gross, M. E.; Waddington, G.; Huffman, H. M. Low-temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadecane. J. Am. Chem. Soc. 76: 333-341 (1954).
- [373] Fox, H. W.; Hare, E. F.; Zisman, W. A. Wetting properties of organic liquids on high-energy surfaces. J. Phys. Chem. 59: 1097 (1955).
- [374] Francis, F.; Wood, N. E. The boiling points of some higher aliphatic n-hydrocarbons. J. Chem. Soc. (London) 1420-1423 (1926).
- [375] Gensler, W. J.; Mahadevan, A. P. Hexadecatriyne-5,8,11. J. Am. Chem. Soc. 78: 167 (1956).
- [376] Glaser, M.; Peters, C. J.; van der Kooi, H. J.; Lichtenthaler, R. N. Phase equilibria of (methane + n-hexadecane) and (p, V(m), T) of n-hexadecane. J. Chem. Thermodyn. 17: (1985) 803-815.
- [377] Gouel, P. Correlations entre la composition des melanges d'hydrocarbures et leurs proprietes thermodynamiques. Bulletin des centres de recherches exploration-production Alf-Aquitaine 2: 419-467 (1978).
- [378] Graaf, G. H.; Smit, H. J.; Stamhuis, E. J.; Beenackers, A. A. C. M. Gas-liquid solubilities of the methanol synthesis components in various solvents. J. Chem. Eng. Data 37: 146 (1992).
- [379] Granovskaya, A. A. Determination of the vapor pressure of normal hydrocarbons (pentadecane and hexadecane). Vestnik Moskovskogo Universiteta, Ser. Fiz.-Mat.

Estestv.Nauk 7: 47 (1952).

- [380] Griot, A.; Philippe, R.; Merlin, J. C. Thermal compression coeff. and expansion coeff. at 298.15K for a series of pyridine derivatives. J. Chim. Phys.- Chim. Biol. 79: 671 (1982).
- [381] Griot, A.; Philippe, R.; Merlin, J. C. Thermal pressure and expansion coefficients and derived thermodynamic properties at 298.15 K of binary mixtures of methylcyclohexane and linear alkanes. J. Chim. Phys.- Chim. Biol. 80: 507 (1983).
- [382] Grolier, J.-P. E.; Inglese, A.; Roux, A. H.; Wilhelm, E. Thermodynamics of (1-chloronaphthalene + n-alkane): excess enthalpies, excess volumes and excess heat capacities. Ber. Bunsenges. Phys. Chem. 85: 768-772 (1981).
- [383] Heric, E. L.; Brewer, J. G. Viscosity of some binary liquid nonelectrolyte mixtures. J. Chem. Eng. Data 12: 574-583 (1967).
- [384] Heric, E. L.; Brewer, J. G. Refraction in some binary liquid nonelectrolyte mixtures. J. Chem. Eng. Data 16: 313-316 (1971).
- [385] Heric, E. L.; Coursey, B. M. Densities and refraction in some binary systems of hexadecane and normal chloroalkanes at 25 °C. J. Chem. Eng. Data 16: 185-187 (1971).
- [386] Holmen, R.; Lamvik, M.; Melhus, O. Measurements of the thermal conductivitites of solid and liquid unbranched alkanes in the c-16-to c-19 range during phase transition. Int. J. Thermophys. 23: 27-39 (2002).
- [387] Holzapfel, K.; Gotze, G.; Kohler, F. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1: 43 (1986).
- [388] Holzapfel, K.; Goetze, G.; Kohler, F. Volume and isothermal compressibility of oxolane + some normal alkane (C5 C16). Int. DATA Ser.; Sel. Data Mixtures, Ser. A 4: 263-268 (1987).
- [389] Holzapfel, K.; Goetze, G.; Demiriz, A. M.; Kohler, F. Volume and isothermal compressibility of some normal alkanes (C5-C16) + 2,3 -dimethylbutane, + methylcyclopentane, + butylcyclohexane, + benzene, + 2- propanone, or + tetrachloromethane. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1: 30-56 (1987).
- [390] Ivanov, D.; Ivanov, C.; Stoianova-Ivanova, B. Composition of stearoptene from Bulgarian rose oil. II. Saturated hydrocarbons other than eicosane. Dokl. Bulg. Akad. Nauk 7: 17-20 (1954).
- [391] Jasper, J. J.; Kerr, E. R.; Gregorich, F. The orthobaric surface tensions and thermodynamic properties of the liquid surfaces of the n-alkanes, C(5) to C(28). J. Am. Chem. Soc. 75: 5252-5254 (1953).
- [392] Kemula, W.; Buchowski, H.; Pawlowski, W. Effect of the position of substituents in an aromatic ring on R(f) and partition coefficients: II. Aromatic amines. Rocz. Chem. 42: 1951-1965 (1968).
- [393] Klofutar, C.; Paljk, S.; Domanska, U. Heats of solution of 1-nonanol and 1-undecanol in n-hexane, n-heptane, n-decane and n-hexadecane at 298.15 K. Thermochim. Acta 158: 301 (1990).
- [394] Krafft, F. A few higher normal paraffins. Chem. Ber. 19: 2218 (1886).
- [395] Krafft, F. Nineteen higher normal paraffins CnH2n+2 and a simple volume law for the saturated liquid state. Ber. Dtsch. Chem. Ges. 15: 1711 (1882).
- [396] Krafft, F. On nineteen higher normal paraffins and a simple volume law for liquids that form drops I. Ber. Dtsch. Chem. Ges. 15: 1687-1711 (1882).
- [397] Lagerlof, D. Thermodynamic research: reduced formulas for simplified calculations of latent molar heat of evaporation. J. Prakt. Chem. 98: 136 (1918).

- [398] Lainez, A.; Rodrigo, M. M. Excess vol. and excess heat cap. of pyridine or piperidine + n-alkane(c7-c16). Int. DATA Ser.; Sel. Data Mixtures, Ser. A 2: 109-126 (1992).
- [399] Lainez, A.; Rodrigo, M.-M.; Wilhelm, E.; Grolier, J.-P. E. Excess volumes and excess heat capacities of some mixtures with trans,trans,cis-1,5,9-cyclododecatriene at 298.15 K. J. Chem. Eng. Data 34: 332-335 (1989).
- [400] Lal, K.; Tripathi, N.; Dubey, G. P. Densities, viscosities, and refractive indices of binary liquid mixtures of hexane, decane, hexadecane, and squalane with benzene at 298.15 K. J. Chem. Eng. Data 45: 961-964 (2000).
- [401] Langedijk, S. L.; Smithuysen, W. C. B. The freezing point diagram of the system n-hexadecane + n-hexadecene-1 (cetene). Recl. Trav. Chim. Pays-Bas 57: 1050 (1938).
- [402] Larkin, J. A.; Fenby, D. V.; Gilman, T. S.; Scott, R. L. Heats of mixing of nonelectrolyte solutions, III. Solutions of the five hexane isomers with hexadecane. J. Phys. Chem. 70: (1966) 1959.
- [403] Lee, C. H.; Dempsey, D. M.; Mohamed, R. S.; Holder, G. D. Vapor-liquid equilibria in the systems of n-decane/tetralin, n-hexadecane/ tetralin, n-decane/1-methylnaphthalene, and 1-methylnaphthalene/tetralin. J. Chem. Eng. Data 37: 183-186 (1992).
- [404] Lenoir, J. M.; Hipkin, H. G. Enthalpies of mixtures of n-hexadecane and n-pentane. J. Chem. Eng. Data 15: 368-371 (1970).
- [405] Levene, P. A. Org. Synth. 15: 27 (1935).
- [406] Levene, P. A.; West, C. J.; Van der Scheer, J. J. Biol. Chem. 20: 521 (1915).
- [407] Lim, C. B.; Williamson, A. G. Excess volumes of ternary and quaternary mixtures of n-alkanes. J. Chem. Thermodyn. 12: 65-70 (1980).
- [408] Mabery, C. F. J. Soc. Chem. Ind. (London) 19: 502 (1900).
- [409] Mabery, C. F. Am. Chem. J. 28: 174 (1902).
- [410] Mansker, L. D.; Criser, A. C.; Jangkamolkulchai, A.; Luks, K. D. The isothermal compressibility of n-paraffin liquids at low pressures. Chem. Eng. Commun. 57: 87 (1987).
- [411] Marsh, K. N.; Organ, P. P. Excess molar enthalpies and excess molar volumes for threeand four-component n-alkane mixtures simulating (n-hexane + n-hexadecane). J. Chem. Thermodyn. 17: 835-841 (1985).
- [412] Matsui, M.; Arakawa, S. Mem. Coll. Sci.; Univ. Kyoto, Ser. A. 15: 189 (1932).
- [413] Matthews, M. A.; Rodden, J. B.; Akgerman, A. High-temperature diffusion, viscosity and density measurements in n-hexadecane. J. Chem. Eng. Data 32: 317-319 (1987).
- [414] McKinney, J. W. The constitution of kerogen. J. Am. Chem. Soc. 968-979 (1924).
- [415] McMakin, L. E. J.; Van Winkle, M. Vapor-liquid equilibrium of n-hexadecane-bibenzyl-phenanthrene system at 100 mm. of mercury absolute. J. Chem. Eng. Data 7: 9-12 (1962).
- [416] Messow, U.; Doye, U.; Kuntzsch, S. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 2: 156 (1980).
- [417] Mills, P. L.; Fenton, R. L. Vapor pressures, liquid densities, liquid heat capacities, and ideal gas thermodynamic properties for 3-methylhexanal and 3,4-dimethylpentanal. J. Chem. Eng. Data 32: 266-273 (1987).
- [418] Mogollon, E.; Kay, W. B.; Teja, A. S. Modified sealed-tube method for the determination of critical temperature. Ind. Eng. Chem. Fundamentals 21: 173-175 (1982).
- [419] Mukhamedzyanov, G. K.; Usmanov, A. G.; Tarzimanov, A. A. determination of the thermal conductivity of liquid saturated hydrocarbons. Izvestiya Vysshikh Uchebnykh Zavedenii, Neft Gaz 6: 75-79 (1963).

- [420] Mumford, S. A.; Phillips, J.W.C. The physical properties of some aliphatic compounds. J. Chem. Soc. (London) 75-84 (1950).
- [421] Mustafaev, R. A. Inzh.-Fiz. Zh. 24: 663-668 (1973).
- [422] Myers, H. S. Volatility characteristics of high-boiling hydrocarbons. PhD, Pennsylvania State University, College Park, PA (1952).
- [423] Myers, R. S.; Clever, H. L. Surface tension of octamethylcyclotetrasiloxane and hexamethyldisilazane and their solutions with carbon tetrachloride and n-hexadecane. J. Chem. Eng. Data 14: 161-164 (1969).
- [424] Myers, H. S.; Fenske, M. R. Measurement and correlation of vapor pressures data for high boiling hydrocarbons. Ind. Eng. Chem. 47: 1652 (1955).
- [425] Nederbragt, G. W.; Boelhouwer, J. W. M. Physica 305 (1947).
- [426] Nhaesi, A. H.; Asfour, A. F. A. Densities and kinematic viscosities of ten regular liquid systems at 293.15 and 298.15 K. J. Chem. Eng. Data 45: 991-995 (2000).
- [427] Oddo, G. Gazz. Chim. Ital. 31 (1901).
- [428] Orwoll, R. A.; Flory, P. J. Equation-of-state parameters for normal alkanes. Correlation with chain length thermodynamic properties of binary mixtures of n-alkanes. J. Am. Chem. Soc. 89: 6814-6822 (1967).
- [429] Parks, G. S.; Moore, G. E.; Renquist, M. L.; Naylor, B. F.; McClaine, L. A.; Fujii, P. S.; Hatton, J. A. Thermal data on organic compounds. XXV. Some heat capacity, entropy and free energy data for nine hydrocarbons of high molecular weight. J. Am. Chem. Soc. 71: 3386 (1949).
- [430] Perez, P.; Valero, J.; Gracia, M.; Gutierrez Losa, C. G(E)(m) (298.15 K) of mixtures containing 1,2-dichloropropane or 1,3-dichloropropane. J. Chem. Thermdyn. 21: 259-264 (1989).
- [431] Petrov, A. D.; Kaplan, E. P. Zhurnal Obshchei Khim 12: 99 (1942).
- [432] Philippe, R.; Delmas, G. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1: 69 (1982).
- [433] Pilcher, G. Anal. Chim. Acta 17: 144 (1957).
- [434] Plebanski, T.; Wozniak, M.; Wilanowska, K. A dilatometric method for measuring the density of organic liquids at elevated temperatures. Nauchn. Appar. 1: 47-59 (1986).
- [435] Powell, R. W.; Groot, H. Use of thermal comparator method for thermal conductivity measurements on liquids: values for three organic series: normal alcohols, acids and saturated hydrocarbons. Int. J. Heat and Mass Transfer 15: 360-366 (1972).
- [436] Prophete, H. Contribution to the study of flowers. Wax from roses. C. R. Hebd. Seances Acad. Sci. 183 (1926).
- [437] Queimada, A. J.; Quinones-Cisneros, S. E.; Marrucho, I. M.; Coutinho, J. A. P.; Stenby, E. H. Viscosity and liquid density of asymmetric hydrocarbon mixtures. Int. J. Thermophys. 24: 1221-1239 (2003).
- [438] Ralston, A. W.; Crews, L. T.; Hoerr, C. W. Solubilities of some normal saturated aliphatic hydrocarbons. J. Org. Chem. 9: 319-327 (1944).
- [439] Rasskazov, D. S.; Babikov, Y. M.; Filatov, N. Y. Tr. Mosk. Energ. Inst. 179: 62 (1974).
- [440] Rastorguev, Y. I.; Keramidi, A. S. Izvestiya Vysshikh Uchebnykh Zavedenii, Neft Gaz (1972) 15: 61.
- [441] Ratkovics, F.; Salamon, T.; Domonkos, L. Magy. Kem. Foly. 80: 264 (1974).
- [442] Richardson, J. W.; Parks, G. S. Thermal data on organic compounds XIX. Modern combustion data for some non-volatile compounds containing carbon, hydrogen and oxygen. J. Am. Chem. Soc. 61: 3543 (1939).

- [443] Rolo, L. I.; Caco, A. I.; Queimada, A. J.; Marrucho, I. M.; Coutinho, J. A. P. Surface tension of heptane, decane, hexadecane, eicosane, and some of their binary mixtures. J. Chem. Eng. Data 47: 1442-1445 (2002).
- [444] Rosenthal, D. J.; Teja, A. S. The critical properties of n-alkanes using a low-residence time flow apparatus. AIChE J. 35: 1829 (1989).
- [445] Sakiadis, B. C.; Coates, J. Studies of thermal conductivity of liquids, Part III. AIChE J. 3: 121-126 (1957).
- [446] Sanin, P. I.; Melent'eva, N. V. Tr. Inst. Nefti. Akad. Nauk SSSR 13: 58 (1959).
- [447] Seyer, W. F.; Patterson, R. F.; Keays, J. L. The density and transition points of the n-paraffin hydrocarbons. J. Am. Chem. Soc. 66: 179-182 (1944).
- [448] Smith, J. C. J. Chem. Soc. 737 (1932).
- [449] Smith, R. L.; Anselme, M.; Teja, A. S. World Congress III Chem. Eng., Tokyo, II, 135 (1986).
- [450] Smith, R. L.; Teja, A. S.; Kay, W. B. Measurement of critical temperatures of thermally unstable n-alkanes. AIChE J. 33: 232 (1989).
- [451] Snow, R. L.; Ott, J. B.; Goates, J. R.; Marsh, K. N.; O'Shea, S.; Stokes, R. H. (Solid + liquid) and (vapor + liquid) phase equilibria and excess enthalpies for (benzene + n-tetradecane), (benzene + n-hexadecane), (cyclohexane + n-tetradecane), and (cyclohexane + n-hexadecane) at 293.15, 298.15, and 308.15 K. Comparison of G(E)(m) calculated from (vapor + liquid) and (solid + liquid) equilibria. J. Chem. Thermodyn. 18: 107-130 (1986).
- [452] Snyder, P. S.; Winnick, J. The pressure, volume and temperature properties of liquid n-alkanes at elevated pressures. Proc. Symp. Thermophys. Prop. 5: 115-129 (1970).
- [453] Sondheimer, F.; Amiel, Y. Unsaturated macrocyclic compounds III. Synthesios of cyclohexadeca-1,3,9,11 -tetrayne by a novel cyclization reaction. J. Am. Chem. Soc. 79: 5817 (1957).
- [454] Sorabji, K. B. B. J. Chem. Soc. 47: 37-41 (1885).
- [455] Suehnel, K.; Geidel, E.; Kaden, R. Excess volumes of binary systems from ketones and n-alkanes. Z. Phys. Chem. (Leipzig) 267: 593 (1986).
- [456] Tanaka, Y.; Hosokawa, H.; Kubota, H.; Makita, T. Viscosity and density of binary mixtures of cyclohexane with n-octane, n-dodecane, and n-hexadecane under high pressures. Int. J. Thermophysics 12: 245-264 (1991).
- [457] Tardajos, G.; Pena, M. D.; Aicart, E. Speed of sound in pure liquids by a pulse-echo-overlap method. J. Chem. Thermodyn. 18: 683-689 (1986).
- [458] Tardajos, G.; Aicart, E.; Costas, M.; Patterson, D. Liquid structure and second-order mixing functions for benzene, toluene and p-xylene with n-alkanes. J. Chem. Soc.; Faraday Trans. 1 82: 2977-2987 (1986).
- [459] Tarzimanov, A. A.; Mashirov, V. E. Experimental investigation of the thermal conductivity of vapours of normal saturated hydrocarbons at temperatures up to 450 deg C. Teploenergetika (Moscow) 14: 67 (1967).
- [460] Teja, A. S.; Rice, P. Densities of benzene-n-alkane mixtures. J. Chem. Eng. Data 21: 173-175 (1976).
- [461] Teja, A. S.; Gude, M.; Rosenthal, D. J. Novel methods for the measurement of the critical properties of thermally unstable fluids. Fluid Phase Equilib. 52: 193 (1989).
- [462] Terhoff, W. Recovery of isooctane (2,2,4-trimethylpentane). Brauwissenschaft 28: 52 (1975).

- [463] Tilicheev, M. D.; Kachmarchik, Y. M. Neft. Khoz. 25: 45 (1947).
- [464] Tilicheev, M. D.; Kachmarchik, Y. M. Basic physico-chemical constants of n-alkanes c(13)-c(19). Zhurnal Obshchei Khim 21: 78-85 (1951).
- [465] Tilicheev, M. D.; Peshkov, V. P.; Yuganova, S. A. Cryoscopic constants and transition temperatures of normal alkanes. Zhurnal Obshchei Khim 21: 1229-1237 (1951).
- [466] Trejo, L. M. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1: 14 (1991).
- [467] Treszczanowicz, A. J.; Kiyohara, O.; Benson, G. C. Excess volumes for n-alkanols + n-alkanes. IV. Binary mixtures of decan-1-ol + n-pentane, + n-hexane, + n-octane, + n-decane, and + n-hexadecane. J. Chem. Thermodyn. 13: 253-260 (1981).
- [468] Treszczanowicz, T.; Benson, G. C.; Lu, B. C. Y. Excess volumes for binary mixtures formed by 2,5,8,11- tetraoxadodecane or 2,5,8,11,14-pentaoxapentadecane with homologous n-alkanes. Thermochim. Acta 168: 95-102 (1990).
- [469] Tuot, M.; Guyard, M. Bull. Soc. Chim. Fr. 1086-1096 (1947).
- [470] Ubbelohde, A. R. Structure and thermodynamic properties of long-chain compounds. Trans. Farad. Soc. 34: 282 (1938).
- [471] Van Hook, A.; Silver, L. Premelting anomalies of some long-chain normal paraffin hydrocarbons. J. Chem. Phys. 10: 686-690 (1942).
- [472] Vavanellos, T. D.; Asfour, A.-F.; Siddique, M. H. Kinematic viscosity-composition data for eight binary systems containing toluene or ethylbenzene and c8-c16 n-alkanes at 308.15 and 313.15 K. J. Chem. Eng. Data 36: 281-284 (1991).
- [473] Vogel, A. I. Physical properties and chemical constitution. Part IX. Aliphatic hydrocarbons. J. Chem. Soc. 1946: 133-139 (1946).
- [474] Wada, Y.; Nagasaka, Y.; Nagashima, A. Measurements and correlation of the thermal conductivity of liquid n-paraffin hydrocarbons and their binary and ternary mixtures. Int. J. Thermophys. 6: 251-265 (1985).
- [475] Wakefield, D. L. Viscosities of nonelectrolyte liquid mixtures. III. Selected binary and quaternary mixtures. Int. J. Thermophysics 1988; 9: 365-381.
- [476] Wakefield, D. L.; Marsh, K. N. Viscosities of nonelectrolyte liquid mixtures. I. n-hexadecane + n-octane. Int. J. Thermophys. 8: 649-662 (1987).
- [477] Wang, L.; Benson, G. C.; Lu, B. C.-Y. Excess volumes for binary mixtures of n-butyl methyl ether with n-alkanes at 298.15 K. J. Chem. Eng. Data 35: 242-244 (1990).
- [478] Waterman, H. I.; Leendertse, J. J.; Van Krevelen, D. W. Preparation of some pure hydrocarbons for the purpose of testing physical methods in use for the examination of hydrocarbon mixtures. Rev. Pet. Technol. (London) 25 (1939).
- [479] Whitmore, F. C.; Sommer, L. H.; DiGiorgio, P. A.; Strong, W. A.; Van Strein, R. E.; Bailey, D. L.; Hall, H. K.; Pietrusza, E. W.; Kerr, G. T. Organo-silicon compounds, i. synthesis and properties of n-alkyltrimethyl-and n-alkyltriethyl-silanes. J. Am. Chem. Soc. 68: 475-481 (1946).
- [480] Wilhelm, E.; Lainez, A.; Roux, A. H.; Grolier, J.-P. E. Excess molar volumes and heat capacities of (1,2,4-trichlorobenzene + an n-alkane) and (1-chloronpahthalene + an n-alkane). Thermochim. Acta 105: 101 (1986).
- [481] Wilhelm, E.; Inglese, A.; Roux, A. H.; Grolier, J.-P. E. Excess enthalpy, excess heat capacity and excess volume of 1,2,4-trimethylbenzene +, and 1-methylnaphthalene + an n-alkane. Fluid Phase Equilib. 34: 49-67 (1987).
- [482] Witek, M.; Goldon, A.; Hofman, T.; Domanska, U. Densities and excess volumes of methyl 1,1-dimethylpropyl ether + benzene, or cyclohexane, or an alkane (C6-C16) at

298.15 K. J. Chem. Eng. Data 42: 60-63 (1997).

- [483] Wu, J.; Shan, Z.; Asfour, A. A. Viscometric properties of multicomponent liquid n-alkanes. Fluid Phase Equilib. 143: 263-274 (1998).
- [484] Young, S. On the boiling points of the normal paraffins at different pressures; Proc. Roy. Irish Acad. 38B, 65-92 (1928).
- [485] Zeinalov, B. K.; Leikakh, V. S. Izvestiya Akademii Nauk Az. SSR 10: 3 (1954).
- [486] Ziegler, K.; Dersch, F.; Wollthan, H. Alkali organic compounds XI. Mechanism of polymerization of unsaturated hydrocarbons by alkali metal and alkali alkyls. Justus Liebigs Ann. Chem. 511: 13-44 (1934).
- [487] Aicart, E.; Tardajos, G.; Diaz Pena, M. Isothermal compressibility of cyclohexane-n-decane, cyclohexane-n-dodecane, and cyclohexane-n-tetradecane. J. Chem. Eng. Data 26: 22-26 (1981).
- [488] Allemand, N.; Jose, J.; Michou-Saucet, C. An instrument for the measurement of vapor pressure (range: 3-1000 Pa). Thermochim. Acta 98: 237-253 (1986).
- [489] Allemand, N.; Jose, J.; Merlin, J. C. Measurement of the vapor pressure of hydrocarbons c10 to c18 n-alkanes and n-alkylbenzenes in the range 3-1000 Pascal. Thermochim. Acta 105: 79-90 (1986).
- [490] Ambrose, D.; Townsend, R. Critical temperatures and pressures of some alkanes. Trans. Faraday Soc. 64: 2622-2631 (1968).
- [491] Aminabhavi, T. M.; Banerjee, K. Thermodynamic interactions in binary mixtures of 1-chloronaphthalene with n-alkanes. Ind. J. Chem. 40A: 53-64 (2001).
- [492] Aminabhavi, T. M.; Patil, V. B. Density, refractive index, viscosity, and speed of sound in binary mixtures of ethylbenzene with hexane, heptane, octane, nonane, decane, and dodecane. J. Chem. Eng. Data 42: 641-646 (1997).
- [493] Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Refractive index, viscosity, and speed of sound in binary mixtures of cyclohexanone with hexane, heptane, octane, nonane, decane, dodecane, and 2,2,4-trimethylpentane. J. Chem. Eng. Data 44: 435-440 (1999).
- [494] Aucejo, A.; Part, E.; Medina, P.; Sancho-Tello, M. Viscosity of some n-alkane/1-chloroalkane binary liquid mixtures. J. Chem. Eng. Data 31: 143-145 (1986).
- [495] Aucejo, A.; Burguet, M. C.; Munoz, R.; Marques, J. L. Densities, viscosities, and refractive indices of some n-alkane binary liquid systems at 298.15 K. J. Chem. Eng. Data 40: 141-147 (1995).
- [496] Aucejo, A.; Part, E.; Medina, P.; Sancho-Tello, M. Viscosity of some n-alkane/1-chloroalkane binary liquid mixtures. J. Chem. Eng. Data 31: 143-145 (1986).
- [497] Awwad, A. M.; Allos, E.I. Thermodynamic properties of binary mixtures of isooctane and n-alkane at 298.15 K. Fluid Phase Equilib. 22: 353-365 (1985).
- [498] Beale, E. S. L.; Docksey, P. A Wide Range Boiling-point conversion chart for hydrocarbons and petroleum products. J. Inst. Petrol. Tech. 21: 860-870 (1935).
- [499] Benson, G. C.; Kumaran, M. K.; Treszczanowicz, A. J.; D'Arcy, P. J.; Halpin, C. J. Thermodynamic properties for 2,5,8,11-tetraoxadodecane + n-dodecane mixtures at 298.15 K. Thermochim. Acta 95: 59 (1985).
- [500] Bessieres, D.; Saint-Guirons, H.; Daridon, J.-L. High pressure measurement of n-doceane heat capacity up to 100 MPa. Calculation from equations of state. High Pressure Research 18: 279-284 (2000).
- [501] Bidlack, D. L.; Anderson, D. K. Mutual diffusion in nonideal, nonassociating liquid

systems. J. Phys. Chem. 68: 3790-3794 (1964).

- [502] Bingham, E. C.; Fornwalt, H. J. Chemical constitution and association. J. Rheol. 1: 372-417 (1930).
- [503] Burgdorf, R.; Zocholl, A.; Arlt, W.; Knapp, H. Thermophysical properties of binary liquid mixtures of polyether and n-alkane at 298.15 and 323.15 K: Heat of mixing, heat capacity, viscosity, density and thermal conductivity. Fluid Phase Equilib. 164: 225-255 (1999).
- [504] Campbell, T. W.; Burney, W.; Jacobs, T. L. The reaction of Gignard reagents with d-t-butyl peroxide. J. Am. Chem. Soc. 72: 2735 (1950).
- [505] Caudwell, D. R.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A. The viscosity and density of n-dodecane and n-octadecane at pressures up to 473 K. 15th Intl. Symp. on Thermophysical Properties, Boulder, CO (2003).
- [506] Celda, B.; Gavara, R.; Tejero, R.; Figueruelo, J. E. Dynamic viscosities of n-alkanes and 2-butanone mixtures at 20 deg. C. J. Chem. Eng. Data 32: 31-33 (1987).
- [507] Crawford, W.; Harbourn, C. L. A. Anal. Chem. 27: 1449 (1955).
- [508] Cutler, W. G. A study of the compressions of several high molecular weight hydrocarbons. Ph.D.; Pennsylvania State University, University Park, PA (1955).
- [509] Cutler, W. G.; McMickle, R.H.; Webb, W.; Schiessler, R.W. Study of the compressions of several high molecular weight hydrocarbons. J. Chem. Phys. 29: 727-740 (1958).
- [510] Dejoz, A.; Gonzalez-Alfaro, V.; Miguel, P. J.; Vazquez, M. I. Isobaric vapor-liquid equilibria for binary systems composed of octane, decane and dodecane at 20 kPa. J. Chem. Eng. Data 41: 93-96 (1996).
- [511] Dornte, R. W.; Smyth, C. P. The dielectric polarization of liquids. X. The polarization and refraction of the normal paraffins. J. Am. Chem. Soc. 52: 3546-3552 (1930).
- [512] Drabek, O.; Cibulka, I. Excess molar volumes of binary mixtures of acetic acid and propionic acid with some members of homologous series of alkanes. Collection Czechoslov, Chem. Commun. 56: 736-744 (1991).
- [513] Dymond, J. H.; Robertson, J.; Isdale, J. D. Transport properties of nonelectrolyte liquid mixtures. III. Viscosity coefficients for n-octane, n-dodecane, and equimolar mixtures of n-octane + n-dodecane from 25 to 100 C at pressures up to the freezing pressure of 500 MPa. Int. J. Thermophys. 2: 133-154 (1981).
- [514] Dymond, J. H.; Robertson, J.; Isdale, J. D. (p, Rho, T) of some pure n-alkanes and binary mixtures of n-alkanes in the range 298 to 373 K and 0.1 to 500 MPa. J. Chem. Thermodyn. 14: 51-59 (1982).
- [515] Dymond, J. H.; Glen, N. F.; Isdale, J. D. Transport properties of nonelectrolyte liquid mixtures - VII. Viscosity coefficients for isooctane and for equimolar mixtures of isooctane + n-octane and isooctane + n-dodecane from 25 to 100 °C at pressures up to 500 MPa or to the freezing pressure. Int. J. Thermophys. 6: 233-250 (1985).
- [516] Francis, A. W. Pressure-temperature-liquid density relations of pure hydrocarbons. Ind. Eng. Chem. 1779-1786 (1957).
- [517] Garcia, B.; Alcalde, R.; Aparicio, S.; Leal, J. M. Thermophysical behavior of methylbenzoate + n-alkanes mixed solvents. application of cubic equations of state and viscosity models. Ind. Eng. Chem. Res. 41: 4399-4408 (2002).
- [518] Gensler, W. J.; Mahadevan, A. P.; Casella, J. Preparation and constitution of nonadiyne-1,4. J. Am. Chem. Soc. 78: 163 (1956).
- [519] Gierycz, P.; Rogalski, M.; Malanowski, S. Vapour-liquid equilibria in binary systems formed by n-methylpyrrolidone with hydrocarbons and hydroxyl derivatives. Fluid Phase

Equilib. 22: 107-122 (1985).

- [520] Giller, E. B.; Drickamer, H. G. Viscosity of normal paraffins near the freezing point. Ind. Eng. Chem. 41: 2067-2069 (1949).
- [521] Gomez-Ibanez, J.; Liu, C.-T. The excess volume of mixtures of cyclohexane and some normal alkanes. J. Phys. Chem. 65: 2148-2151 (1961).
- [522] Gonzalez, B.; Dominguez, A.; Tojo, J. Viscosities, densities and speeds of sound of the binary systems: 2-propanol with octane, or decane, or dodecane at T=(293.15, 298.15, and 303.15)K. J. Chem. Thermodyn. 35: 939-953 (2003).
- [523] Gouel, P. Density of alkanes (C6 to C16) cyclics and alkyl-benzenes. Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine 2: 211-225 (1978).
- [524] Grigg, R. B.; Goates, J. R.; Ott, J. B. Excess volumes and excess enthalpies for (n-dodecane + n-octane) and excess volumes for (n-dodecane + cyclohexane) at 298.15 K. J. Chem. Thermodyn. 14: 101-102 (1982).
- [525] Grolier, J.-P.; Benson, G. C. Thermodynamic properties of binary mixtures containing ketones. VIII. Heat capacities and volumes of some n-alkanone + n-alkane mixtures at 298.15 K. Can. J. Chem. 62: 949-953 (1984).
- [526] Guieu, R.; Faradjzadeh, A.; Carbonnel, L. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1: 50 (1980).
- [527] Hamam, S. E. M.; Kumaran, M. K.; Zhang, D.; Benson, G. C. Excess enthalpies of binary mixtures of 2,4-dimethylpentane with n-hexane, n-heptane, n-octane, and n-dodecane. J. Chem. Eng. Data 30: 222-224 (1985).
- [528] Hansen, R. S.; Hansen, R. D. J. Phys. Chem. 59: 496 (1955).
- [529] Hogenboom, D. L.; Webb, W.; Dixon, J. A. Viscosity of several liquid hydrocarbons as a function of temperature, pressure, and free volume. J. Chem. Phys. 46: 2586-2598 (1967).
- [530] Horie, H.; Morikawa, K. Research on composition of fushun shale oil. XIV. Properties and paraffin hydrocarbons of the cuts distilling at 200-240 deg. Kogyo Kagaku Zasshi 41: 401-403 (1938).
- [531] Houser, H. F.; McLean, A. M. Vapor-liquid equilibria of naphthalene-n-dodecane, n-dodecane-butyl carbitol, and naphthalene-butyl carbitol systems at subatmospheric press. Chem. Eng. Data Series 2: 12-16 (1957).
- [532] Iwahashi, M.; Yamaguchi, Y.; Ogura, Y.; Suzuki, M. Dynamical structures of normal alkanes, alcohols, and fatty acids in the liquid state as determined by viscosity, self-diffusion coefficient, infrared spectra, and 13CNMR spin-lattice relaxation time measurements. Bull. Chem. Soc. Japan 63: 2154-2158 (1990).
- [533] Jessup, R. S.; Stanley, C. L. Heats and volumes of mixing in several c12 hydrocarbon systems. J. Chem. Eng. Data 6: 368-371 (1961).
- [534] Jobst, W. Measurement of thermal conductivitites of organic aliphatic liquids by an absolute unsteady-state method. Int. J. Heat Mass Transfer 7: 725-732 (1964).
- [535] Kashiwagi, H.; Makita, T. Viscosity of twelve hydrocarbon liquids in the temperature range 298-348 K at pressures up to 110 MPa. Int. J. Thermophysics 3: 289-305 (1982).
- [536] Kashiwagi, H.; Oishi, M.; Tanaka, Y.; Kubota, H.; Makita, T. Thermal conductivity of fourteen liquids in the temperature range 298-373 K. Int. J. Thermophys. 3: 101-116 (1982).
- [537] Keistler, J. R.; Andrews, L. J. Vapor-liquid equibria at subatmospheric pressures. hexadecene. Ind. Eng. Chem. 44: 622-624 (1952).
- [538] Keramidi, A. S.; Rastorguev, Ya. L. Viscosity of n-dodecane. Izvestiya Vysshikh

Uchebnykh Zavedenii, Neft Gaz 13: 113-114 (1970).

- [539] Kharasch, M. S.; Holton, P. G.; Nudenberg, W. J. Org. Chem. 19: 1600 (1954).
- [540] Kincannon, C. B.; Manning, E. Purification of normal paraffins. Ind. Eng. Chem. 47: 149 (1955).
- [541] Knapstad, B.; Skjolsvik, P. A.; Oye, H. A. Viscosity of pure hydrocarbons. J. Chem. Eng. Data 34: 37-43 (1989).
- [542] Knapstad, B.; Skjolsvik, P. A.; Oye, H. A. Viscosity of three binary hydrocarbon mixtures. J. Chem. Eng. Data 36: 84-88 (1991).
- [543] Kurtyka, Z. M.; Kurtyka, E. A. Vapor-liquid equilibria in the systems aniline-pseudocumene, o-toluidine-n-decane, and m-xylidine-n-dodecane at atmos. press. J. Chem. Eng. Data 24: 15 (1979).
- [544] Landau, R.; Wuerflinger, A. PVT data of acetonitrile, undecane and dodecane to 3 kbar and -50 C pressure dependence and change of volume, enthalpy and entropy. Ber. Bunsenges. Phys. Chem. 84: 895-902 (1980).
- [545] Leslie, R. T.; Heuer, W. W. Study of the crystal behavior of hydrocarbons. Nat. Bur. Stand. (U.S.) J. Res. 18: 639 (1937).
- [546] Lyvers, H. I.; Belyanina, E. T. Vapor-liquid equilibria of the naphthalene-n-dodecane and naphthalene -dipropylene glycol systems at 100 Mm of mercury. J. Chem. Eng. Data 3: 60 (1958).
- [547] Mair, B. J. The synthesis, purification, and certain physical constants of the normal hydrocarbons from pentane to dodecane, of n-amyl bromide and of n-nonyl bromide. Nat. Bur. Stand. (U.S.) J. Res. 9: 457 (1932).
- [548] Mallan, G. M.; Michaelian, M. S.; Lockhart, F. J. Liquid thermal conductivities of organic compounds and petroleum fractions. J. Chem. Eng. Data 17: 412-414 (1972).
- [549] Mears, T. W.; Stanley, C. L.; Compere, E. L.; Howard, F. L. Synthesis, purification, and physical properties of seven twelve-carbon hyd rocarbons. Nat. Bur. Stand. (U.S.) J. Res. 67: 475 (1963).
- [550] Moreiras, A. F.; Garcia, J.; Lugo, L.; Comunas, M. J. P.; Lopez, E. R.; Fernandez, J. Experimental densities and dynamic viscosities of organic carbonate + n-alkane or p-xylene systems at 298.15 K. Fluid Phase Equilib. 204: 233-243 (2003).
- [551] Morse, B. K. J. Am. Chem. Soc. 1957; 79: 3375.
- [552] Mukhamedzyanov, I. K.; Mukhamedzyanov, G. Kh.; Usamov, A.G. Thermal conductivity of liquid saturated hydrocarbons from 1 to 2250 bar (in Russian). Trudy Kazanskogo Khimoco Tekhnol. Inst. 47: 22-28 (1971).
- [553] Mustafaev, R. A. Thermal conductivity of the vapors of normal saturated hydrocarbons at high temperatures. Izvestiya Vysshikh Uchebnykh Zavedenii, Neft Gaz 16: 71-74 (1973).
- [554] Nayak, J. N.; Aralaguppi, M. I.; Aminanbhavi, T. M. Density, viscosity, refractive index, and speed of sound for the binary mixtures of ethyl chloroacetate with n-alkanes (C6 to C12) at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 46: 891-896 (2001).
- [555] Neruchev, Y. A.; Zotov, V. V.; Otpushchennikov, N. F. Velocity of sound in the homologous series of n-alkanes. Russ. J. Phys. Chem. 43: 1597-1599 (1969).
- [556] Ortega, J.; Paz-Andrade, M. I.; Rodriguez-Nunez, E.; Jimenez, E. Excess molar volumes of binary mixtures of 2-hexanone with n-alkane at 298.15 K. Can. J. Chem. 63: 3354-3356 (1985).
- [557] Ortega, J.; Paz-Andrade, M. I.; Rodriguez, E. Excess molar volumes of the mixtures hexan-2-ol + n-alkane at 298.15 K. J. Chem. Eng. Data 31: 336-338 (1986).

- [558] Ortega, J.; Matos, J. S.; Pena, J. A.; Paz Andrade, M. I.; Pias, L.; Fernandez, J. Isobaric expansivities of the binary mixtures C3H7(OH)+CnH2n+2 (n=11,12) between 288.15 and 318.15 K. Thermochim. Acta 131: 57 (1988).
- [559] Ott, J. B.; Goates, J. R. (Solid + liquid) phase equilibria in binary mixtures containing benzene, a cycloalkane, an n-alkane, or tetrachloromethane. An equation for representing (solid + liquid) phase equilibria. J. Chem. Thermodyn. 15: 267-278 (1983).
- [560] Pak, S. C.; Kay, W. B. The critical properties of binary hydrocarbon systems. Ind. Eng. Chem. Fundam. 11: 255-267 (1972).
- [561] Quayle, O. R.; Day, R. A.; Brown, G. M. A study of organic parachors. VII. A series of saturated hydrocarbons. J. Am. Chem. Soc. 66: 938-941 (1944).
- [562] Sahgal, A.; Hayduk, W. Ethylene solubility and diffusivity in hexane-dodecane and ethylene glycol-butanol solutions. J. Chem. Eng. Data 24: 222-227 (1979).
- [563] Schmidt, R. L.; Randall, J. C.; Clever, H. L. The surface tension and density of binary hydrocarbon mixtures: benzene-n-hexane and benzene-n-dodecane. J. Phys. Chem. 70: 3912-3916 (1966).
- [564] Seyer, W. F. Mutual solubilities of hydrocarbons, II. The freezing point curves of dotricontane (dicetyl) in dodecane, decane, octane, hexane, cyclohexane and benzene. J. Am. Chem. Soc. 60: 827-830 (1938).
- [565] Shen, S.; Wang, Y.; Feng, H.; Shi, J. Measurement of excess enthalpies for alkane-ketone systems. Nanjing Huagong Xueyuan Xuebao 13: 50-52 (1991).
- [566] Shepard, A. F.; Henne, A.L.; Midgley, T. Physical properties of the normal paraffin hydrocarbons, pentane to dodecane. J. Am. Chem. Soc. 53: 1948-1958 (1931).
- [567] Smith, J. F. D. The thermal conductivity of liquids. Trans. ASME 58: 719-725 (1936).
- [568] Sondheimer, F.; Amiel, Y.; Wolovsky, R. Unsaturated macrocyclic compounds iv. the oxidation of terminal diacetylenes to macrocyclic tetraacetaylenes. J. Am. Chem. Soc. 79: 6263 (1957).
- [569] Suri, S. K. Thermodynamic properties of solutions containing an aliphatic amine. 2. excess volumes of binary mixtures of triethylamine with 12 hydrocarbons at 313.15 K. J. Chem. Eng. Data 25: 390-393 (1980).
- [570] Takagi, T.; Teranishi, H. Ultrasonic speeds and thermodynamics for binary solutions of n-alkanes under high pressures. Fluid Phase Equilib. 20: 315-320 (1985).
- [571] Tanaka, Y.; Itani, Y.; Kubota, H.; Makita, T. Thermal conductivity of five normal alkanes in the temperature range 283-373 K at pressures up to 250 MPa. Int. J. Thermophysics 9: 331-350 (1988).
- [572] Timmermans, J. Researches in stoichiometry. I. The heat of fusion of organic compounds. Bull. Soc. Chim. Belg. 44: 17-40 (1935).
- [573] Trenzado, J. L.; Matos, J. S.; Segade, L.; Carballo, E. Densities, viscosities, and related properties of some (methyl ester + alkane) binary mixtures in the temperature range from 283.15 to 313.15 K. J. Chem. Eng. Data 46: 974-983 (2001).
- [574] Treszczanowicz, T.; Lu, B. C.-Y. Isothermal vapour-liquid equilibria for 11 examples of (an ether + a hydrocarbon). J. Chem. Thermodyn. 18: 213-220 (1986).
- [575] Treszczanowicz, T.; Benson, G. C.; Lu, B. C.-Y. Excess enthalpies for binary mixtures of 2, 5,8-trioxanonane or 2,5,8,11,14-pentaoxapentadecane with n-alkanes at 298.15 K. J. Chem. Eng. Data 33: 379-381 (1988).
- [576] Tsimering, L.; Kertes, A. S. Excess enthalpies of tri-n-butylphosphate + hydrocarbons. J. Chem. Thermodyn. 6: 411-415 (1974).
- [577] Vogel, L.; Schuberth, H. Some thermodynamic and fluid-dynamic data of the system n-hexane/n-dodecane. Wissenschaftliche Zeitschrift der Martin-Luther-Univ. Halle-Wittenberg, Math.--Naturwiss. Reihe 38: 153-156 (1989).
- [578] Wang, L.; Benson, G. C.; Lu, B. C.-Y. Excess enthalpies for (di-n-propyl ether + n-alkane) at 298.15 K. J. Chem. Thermodyn. 20: 975-979 (1988).
- [579] Weissler, A.; Del Grosso, V. A. Ultrasonic investigation of liquids. VI. Acetylene derivatives. J. Am. Chem. Soc. 72: 4209-4210 (1950).
- [580] Yanes, C.; Maestre, A.; Perez-Tejeda, P.; Calvente, J. J. Excess molar volumes and refractive indices of Cis-9-octadecenoic acid + n-alkanes or alkan-1-Ols at 298.15 K. J. Chem. Eng. Data 38: 512-515 (1993).
- [581] Zook, H. D.; Goldey, R. N. Coupling of lithium alkyls and alkyl halides. Metal-halogen exchange reactions. J. Am. Chem. Soc. 75: 3975 (1953).

Appendix A. Discussion of Chemical Characterization

A.1. Procedures

A sample of RP-1 kerosene-based rocket propellant was presented for analysis. The sample was drawn with a disposable pipette from a 5-gallon steel pail supplied by the Air Force Research Lab (designated P000016660). The liquid sample had a pale-red cast provided by a dying agent, and appeared to have the viscosity of a typical kerosene. The liquid had the characteristic kerosene odor.

The sample was analyzed with a gas chromatography/mass spectrometry method. A 30 m capillary column with a 0.1 µm coating of 5 % phenyl polydimethyl siloxane was chosen as the stationary phase. This phase provides separations based upon boiling temperature and also the polarity of the solute. In this context, polarity also includes points of unsaturation or aromaticity on the solute molecule. The sample was injected via a syringe into a split/splitless injector set with a 100 to 1 split ratio. The injector was operated at 350 °C and a constant head pressure of 69 kPa (10 psig). The sample residence time in the injector was very short, thus the effect of sample exposure to this high temperature is expected to be minimal. The column was temperature programmed to provide complete and rapid elution with minimal loss of peak shape. Initially, the temperature was maintained isothermally at 60 °C for 2 min, followed by a 2 °C /min ramp to 90 °C, followed by a 10 °C /min ramp to 250 °C. Although the analysis was allowed to run for 40 min, all peaks were eluted after approximately 27 min. Mass spectra were collected for each peak from 15 to 550 RMM (relative molecular mass) units. The areas under each peak were integrated with a commercial algorithm optimized to identify peaks that were at least an order of magnitude larger than the noise level.

A.2. Results

Approximately 250 peaks can be discerned on the total ion chromatogram. Not all of these were chosen for integration, however. The integration protocol mentioned above selected only 70 peaks as exceeding the threshold peak width and intensity established for recognition. Of these, a subset was chosen for examination. These were divided into four groups:

First tier: Peaks representing 2 % (mass/mass) or higher

Second tier: Peaks representing 1 % or higher

Lights: Peaks that elute very early

Heavies: Peaks that elute very late

A few comments about the above categories are in order. First, the mass percents referred to are based on the assumption that all peaks have identical response factors. Thus, the mass percents obtained from the total ion chromatogram were recorded without calibration. To apply a calibration to the mass, one would have to make standard mixtures of each of the components of RP-1. Since we do not have all of the pure components to make up calibration mixtures, or the time and resources to do so, the only practical alternative was the assumption of equal response. What is the consequence of this assumption?

In general, the total ion current, and therefore the intensity of the peaks on a total ion chromatogram, depends upon the number and intensity of the fragments produced by the constituents. A greater ion current will be produced by species that produce more fragments. Thus larger heavier species that produce a richer fragmentation pattern will tend to be over-represented in intensity on the total ion chromatogram. On the other hand, smaller, lighter species, which will produce a less rich fragmentation pattern, will be more efficiently carried into the source. The larger heavier ones will be more likely to adsorb on surfaces along the way, despite efforts to

prevent that. These two effects will cancel to some extent. In the case of RP-1, even the smaller molecules are reasonably rich in fragments. Therefore, the assumption of equal response factor is unlikely to be a major source of uncertainty.

The terms heavy and light need some explanation. In this context, they refer only to the time that is required for the components producing the peaks to emerge from the column. Note however that the column is not a pure boiling point column. Thus, the last component out is not necessarily the heaviest in terms of RMM. Unsaturation will play a role in this as well. Thus, if components of lighter RMM emerge after components of heavier RMM, this is not a concern. Rather, this is expected.

The constituents in the heavy category were not integrated for mass percent. This is because as the chromatogram proceeds, the peaks broaden and are less amenable to integration. Thus, to integrate these peaks, one needs a protocol different from that used with the earlier peaks. While this could have been done, there was no reason to do so for the purpose of this study.

The components that have been identified represent 70 % of the total constituents of the RP-1 sample. Note that the dye is not among those materials identified.

A.3. Identification of Components

The ability to view the mass spectrum of each peak provides a great deal of insight into the identity of the constituent that produced it. It must be understood that it is not necessarily unequivocal, however. Not all peaks on a mass spectrum are created equally. Some are very instructive, some are ubiquitous, and some are distractions. The automated search routines that are available seek to match mass spectra with library file spectra. In all of these routines, match quality is determined by the intensity of a peak and also the m/e, or RMM value, of the fragment that the peak represents. Once a database routine finds a "match," it provides a quality factor based upon

the match up of these two parameters: intensity and m/e. A higher quality factor results from the match of a heavier and more intense m/e peak. An unfortunate consequence of the procedure is that very often, the highest quality factor matches are nonsense, and that the slate of matches that is produced is of matches unrelated chemically. For this reason, it is very rare for one to be able to have "the computer" find the matches for you. Rather, each mass spectrum will have to be interpreted individually, by hand.

It is critical to correctly identify the parent ion packet on the mass spectrum, and make sure that the computer has done so properly. If the computer has failed to do so, it is time to ignore the computer and to start analyzing the mass spectrum. In 80 % of the spectra analyzed here, the software failed to properly identify the parent ion packet. In the tables shown in the text of this report, the quality factor is normalized to 100 and is referred to as the correlation coefficient. Sometimes a high number is obtained for this, sometimes not. Occasionally, the software will "identify" a compound and assign it a correlation coefficient of 90 (very high). Then, upon looking at the spectrum, it is apparent that the match is 200 m/e units heavier than the compound being matched. The parent ion packed was misidentified by the computer, leading the operator "down the garden path." It is always possible to calculate the correlation coefficient, however, even if it is meaningless. In these instances, one must scroll through the spectrum until the correct pattern is recognized. Thus, even when a relatively low quality factor is obtained, the identification may be very certain. It becomes a matter of ignoring the m/e peaks that the computer weighted too heavily.

In the tables of results, the correlation coefficient is given, as well as a confidence indication. These range from U,S (uncertain and/or speculative) to M (confident) to H (highly confident). The purpose of the foregoing discussion on mass spectral interpretation, while by no means complete, was to give proper context for interpretation of the correlation coefficient and

confidence columns in the tables of results.

In all cases, the chromatographic peaks were examined for mass spectral purity. What is meant by this is that each peak was examined to determine whether the beginning, centroid, and end of the peak represented the mass spectrum of the same compound. When two peaks closely elute, there is inevitably some chemical impurity of the overlapping tails of the peak. Examining the peak for mass spectral purity ensures that the most reliable region will be chosen for the identification.

The peaks are listed in the tables by retention time on the total ion chromatogram. This is determined at the peak apex. Usually, well shaped Gaussian-like peaks were obtained, consistent with high efficiency and high selectivity. Nearly all resolved peaks were resolved to baseline. In some cases, the mass spectra were determined from the spectrum taken at the peak apex, while in other cases, an average over just part or all of the chromatographic peak was used. This is denoted in the profile column in each table as a S(ingle) or A(verage). We conclude that the RP-1 sample used in this work is unusual because it has a surprising number of unsaturated compounds present.

A.4. Thermal Decomposition

The global decomposition kinetics of RP-1 was investigated at elevated temperatures and a function of time. From these experiments, a global pseudo-first-order rate constant was derived that describes the overall decomposition of the RP-1 sample. Those results are presented in Table 7.

Bibliography for Chemical Characterization

Bruno, T. J.; Svoronos, P. D. N. CRC handbook of basic tables for chemical analysis, CRC Press: Boca Raton, 1989.
Bruno, T. J.; Svoronos, P. D. N. CRC handbook of basic tables for chemical analysis, 2nd. ed., CRC Press: Boca Raton, 2004.
Andersen, P. C.; Bruno, T. J. Thermal decomposition kinetics of RP-1 rocket propellant. Ind. Eng. Chem. Res. 44: 1670-1676 (2005).

Appendix B. Computational Characterization of Surrogate Mixture Compounds

The following four steps were taken to computationally characterize the compounds that

were selected for the surrogate fuel mixture:

- (a) Obtain equilibrium geometries from ab initio molecular orbital calculations. Use Hartree-Fock approximation as theory level with 6-31G* basis sets (low level approximation, sufficient for visualization purposes).
- (b) Calculate isosurfaces for two electron density values:
 - Isosurface of electron density 0.002 e-/au3 contains approx. 98% of a molecule. Rendered as a mesh;
 - Isosurface of electron density 0.08 e-/au3 rendered as a solid surface to illustrate the core of the molecule;
 - 1 au (atomic unit) = 5.292 nm.
- (c) Color-map the electrostatic potential onto the electron density isosurfaces. The electrostatic potential is defined as the energy of interaction of a point positive charge with the nuclei and electrons of a molecule. The color-mapping indicates electron-rich regions in red and electron-poor regions in blue.

(d) Combining this information leads to molecular representations that comprise four dimensions:

- three dimensions conveying structure, and;
- one dimension conveying intramolecular charge distribution as a function of location.

The still images illustrated below were created with PC Spartan for Windows, version '02.*

Bibliography for Computational Characterization

Shusterman, G. P.; Shusterman, A. J. Teaching chemistry with electron density models. J. Chem. Educ. 74: 771-776 (1997).

Gillespie, R. J. Electron densities, atomic charges, and ionic, covalent, and polar bonds. J. Chem. Educ. 78: 1688-1690 (2001).

Gillespie, R. J.; Popelier, P. L. A. Chemical bonding and molecular geometry: from Lewis to electron densities, Oxford University Press: New York, 2001.

^{*}Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

2,2-Dimethylbutane

Figure 11. Molecular representation of 2,2-dimethylbutane.

3-Ethyl-4,4-dimethyl-2-pentene

Figure 12. Molecular representation of 3-ethyl-4,4-dimethyl-2-pentene.

Cyclodecene

Surface Area of Molecule / A ²	186.26
Volume of Molecule / A ³	178.71
Dipol moment / d	0.25

Figure 13. Molecular representation of cyclodecene.

Cis-decaline

 Surface Area of Molecule / Å²
 184.50

 Volume of Molecule / Å³
 170.89

 Dipol moment / d
 0

Figure 14. Molecular representation of cis-decaline.

2-Methylnonane

Figure 15. Molecular representation of 2-methylnonane.

2-Methylnaphthalene

Figure 16. Molecular representation of 2-methylnaphthalene.

Decahydro-2-methylnaphthalene

Figure 17. Molecular representation of decahydro-2-methylnaphthalene.

3-Methyldecane

Figure 18. Molecular representation of 3-methyldecane.

Figure 19. Molecular representation of 1-dodecene.

1,11-Dodecadiene

Figure 20. Molecular representation of 1,11-dodecadiene.

Cyclododecane

Figure 21. Molecular representation of cyclododecane.

Heptylcyclohexane

Surface Area of Molecule / A ²	266.87
Volume of Molecule / A ³	239.37
Dipol moment / d	0.06

Figure 22. Molecular representation of heptylcyclohexane.

Figure 23. Molecular representation of n-dodecane.

Figure 24. Molecular representation of methylcyclododecane.

1-Tridecene

Surface Area of Molecule / A ²	288.12
Volume of Molecule / Å ³	248.93
Dipol moment / d	0.34

Figure 25. Molecular representation of 1-tridecene.

2,10-Dimethylundecane

Surface Area of Molecule / Å ²	288.76
Volume of Molecule / Å ³	252.2
Dipol moment / d	0.08

Figure 26. Molecular representation of 2,10-dimethylundecane.

2,7,10-Trimethyldodecane

Figure 27. Molecular representation of 2.7.10-trimethyldodecan						
riguic 27. Wolceulai representation of 2.7.10-timethyluoueean	10-trimethyldodecane	of $2.7 \ 10_{-}$	representation	Molecular	ure 27	Fior
	, 10-u miculy luouceane.	012,7,10-	representation	withcould	urc 27.	rigi

0.07

Dipol moment / d

Figure 28. Molecular representation of n-hexadecane.