AJJJ02 63J467

NBS PUBLICATIONS

NBSIR 86-330

STOVE: A Predictive Model for Heat Transfer From Solid-Fuel Appliances

Richard D. Peacock Richard A. Dipert

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899

February 1987

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

NBSIR 86-3300

STOVE: A PREDICTIVE MODEL FOR HEAT TRANSFER FROM SOLID-FUEL APPLIANCES

Richard D. Peacock Richard A. Dipert

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899

February 1987

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director NBS RESEARCH INFORMATION CENTER NBSR QC100 .UEG HQ SG-3300 1987

TABLE OF CONTENTS

LIST	C OF TAI	BLES		••	•••	•••	•••	• •	•	•	• •	•	•	•		•	•	•	•	•	•	•	•	iii
LIST	C OF FIC	GURES					•••			•				•			•	•		•	•	•		iii
NOMI	ENCLATU	RE .										•		•		•				•	•			iv
Abst	tract .				•••				•	•		•	•	•		•	•		•	•	•			1
1.	INTROD	UCTIO	N.,	• •	•••	•••		•••		•	•••	•					•	•	•	•	•	•	•	1
2.	REVIEW 2.1 2.2 2.3 2.4 2.5	Fire Clea Temp Limi	Inci rance eratu ting	US WO dents s in res D Safe Model	Inv Exis evel Temp	olvi ting oped erat	ng V Coc in ures	les Hea 5 on	Bu and tir Co	irn 1 S ng omb	ing tar Sys ust	g Ag nda ster ster	ppl rds ns le	ia Su	nce · · · · rf <i>a</i>	s	s		• • •	• • •	•	•	•	4 5 7 9
3.	THEORE 3.1 3.2 3.3 3.4	Radi Conv Cond	ative ectiv uctiv	S FOR Heat e Hea e Hea of th	Tra t Tr t Tr	nsfe ansf ansf	r . er er			•	•••	•	• •	• •	 									11 12 14 15 16
4.	COMPUT	ER IM	PLEME	NTATI	ON O	F TH	E MO	DDEL	•••			•		•			•	•		•	•	•	•	18
5.	COMPAR	ISON	OF TH	E MOD	EL P	REDI	CTIC	ONS	WIJ	ГН	EXF	PER	IME	ENT	AL	DA	TA		•	•	•	•	•	19
6.	MODEL 6 6.1 6.2 6.3	Heat Heat	Tran Tran	ES AN sfer sfer sfer	From From	Арр Арр	lian lian	nce	to to	an a	Ur She	npro eet	ote Me	ect eta	ed 1 F	Wa ro	11 tec	cte	ed	Wa	11	•		20 21 22 23
7.	USES F	OR AN	D LIM	ITATI	ONS	OF T	HE N	10DE	L	•		•	•	•		•	•	•		•	•	•		23
8.	REFERE	NCES					•••		•	•		•		•		•			•	•	•	•		25
Арро	SUBRA DOUB SUBRA SUBRA DOUB DOUB CHAR SUBRA	RAM S OUTIN OUTIN OUTIN BLE PR BLE PR BLE PR CACTER	TOVE ECISI E HEA E HEA ECISI ECISI ECISI ECISI ECISI ECISI ECISI	ON FU TS . T . ON FU ON FU ON FU NCTIO	NCTI NCTI NCTI NCTI NCTI NCTI NCTI	ON F ON C ON C ON C ON H ET	VAL SFIGS CONV	· · · · · · · · · · · · · · · · · ·			· · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • •	• • • • •	· · · · · · · · · · · · · · · · · · ·			• • • • •	• • • • • • •	•	· · ·	•	•	37 38 41 46 47 48 49 50 51 52 53 54

COMMON	BLOCK	FOR	PROGRAM	STOVE	•	•	•	•	•	•	•	•			•	•	•			•		55
Appendix B:	Data	Inpu	it for S	TOVE .					•	•	•		•	•			•	•	•	•		56

ii

LIST OF TABLES

Table 1.	Sample Outp	it From STOVE									. 28
----------	-------------	---------------	--	--	--	--	--	--	--	--	------

LIST OF FIGURES

Figure 1.	Heat Transfer From Hot Appliance to Cooler Wall Surface 29
Figure 2.	Node Model Representation of Stove / Protector / Wall System . 30
Figure 3.	Program Layout For Program STOVE
Figure 4.	Comparison of Calculated Wall and Protector Surface Temperatures With Experimental Results
Figure 5.	Predicted Wall Surface Temperatures for Heat Transfer From Appli- ance Surface to an Unprotected Combustible Wall Surface 33
Figure 6.	Predicted Wall Surface Temperatures for Heat Transfer From Appli- ance Surface to a Combustible Wall Protected With a Double Aluminum Sheet Wall Protector (Painted Black)
Figure 7.	Predicted Wall Surface Temperatures for Heat Transfer From Appli- ance Surface to a Combustible Wall Protected With a Double Aluminum Sheet Wall Protector
Figure 8.	Predicted Wall Surface Temperatures for Heat Transfer From Appli- ance Surface to a Combustible Wall Protected With a Solid Masonry Wall Protector With A Ventilated Air Space

NOMENCLATURE

F _{dA}	radiant exchange configuration factor	dimensionless
F ₁₂	radiant exchange configuration factor	dimensionless
h	convection heat transfer coefficient	k₩ / m² · K
k	thermal conductivity	k₩ / m · K
L	characteristic length	m
Nu	Nusselt number	dimensionless
Pr	Prandtl number	dimensionless
R _i	thermal resistance	$m^2 \cdot K / kW$
Ra	Raleigh number	dimensionless
R _{total}	total thermal resistance = ΣR_i	m ² · K / kW
ģ	heat transfer rate	kW/m^2
Т	temperature	K
Х	characteristic horizontal dimension	m
Y	characteristic vertical dimension	m
ε	emissivity	dimensionless
σ	Stephan-Boltzmann constant	kW / m ² · K ⁴

STOVE: A Predictive Model for Heat Transfer From Solid Fuel Appliances

Richard D. Peacock and Richard A. Dipert

Abstract

A computer implementation of a model to predict temperatures on wall and wall protector surfaces exposed to the heating of an appliance such as a solid fuel heating appliance is described. A steady state heat transfer model with flexibility to describe a generalized method of protection for a combustible wall surface is presented along with a computer program implementing the model.

Good agreement was found comparing the model predictions with data previously collected during full scale experiments conducted to evaluate the effectiveness of generic methods of wall protection in reducing temperatures on combustible wall surfaces.

Extensive references of research related to solid fuel heating safety are included.

Key words: Chimneys; fire models; fire safety; fire tests; flues; heat transfer; heating equipment; literature reviews; radiant energy; stoves; wood.

1. INTRODUCTION

The U.S. Consumer Product Safety Commission and the U.S. Department of Energy, as part of a program to investigate safety risks involved with the use of solid fuel burning appliances, have sponsored experimental research at the Center for Fire Research (CFR) at the National Bureau of Standards (NBS) to identify hazards associated with solid fuel heating. The studies were conducted to provide information to improve safety practices for the use of the appliances, and to provide data upon which to base improved codes and standards.

During the first years of the program, an accident survey, literature review, and codes and standards analysis were performed to establish accident patterns, to determine the types of risks involved with the use of wood burning appliances. and to ascertain the adequacy of existing codes and standards in addressing these risks [1-3].¹ Overwhelmingly, conditions related to installation, operation, and maintenance were responsible for the fire incidents studied. Only a small percentage of the fires was attributed to product design or product defects. Thus, safe installation and use of wood burning appliances is a critical requirement for preventing fire accidents involving the equipment. Much of the criteria for the installation and use of wood burning appliances are based upon data developed over forty years ago and do not provide information on materials of construction, or appliances available in the current market.

The present program at CFR includes research on:

1

- clearances to combustibles from appliances and chimney connectors [4];
- methods of protection to allow reduced clearances to walls and

Number in brackets refer to literature references listed in section 8 at the end of this report.

ceiling surfaces exposed to radiant heating by appliances and chimney connectors [5];

- temperatures developed in and around fireplaces with and without fireplace inserts installed [6,7];
- intensity and duration of chimney fires in factory-built and masonry chimneys [8];
- temperatures on combustible material surrounding chimney connectors passing through walls and / or connecting to chimneys [9], and;
- prediction of temperatures on surfaces of combustible walls exposed to heating from a typical radiant heating appliance.

This report, one of a series of reports providing information from the experimental program on wood burning safety at NBS, presents the results of the development of a computer based implementation of a model to predict temperatures on a wall surface exposed to heating from a radiant heating appliance such as a wood stove. The resulting computer program allows the user to specify thermal protection to reduce temperatures on the wall surface.

2. REVIEW OF PREVIOUS WORK

2.1 Fire Incidents Involving Wood Burning Appliances

Recent statistics on fires and injuries related to wood burning appliances are alarming:

Year	Fires	Change From Previous Year	Deaths	Dollar Loss
1978	66,800		250	\$134 million
1979	70,700	+14%	210	\$175 million
1980	112,000	+58%	350	
1981	130,100	+16%	290	\$265 million
1982	139,800	+7%	250	\$257 million
1983	140,600	+0.6%	280	\$296 million

Source: U.S. Consumer Product Safety Commission [10, 11]

There were more fires in solid fuel burning equipment, and a larger percentage increase over previous years, than were reported for any other kind of heating equipment -- including gas, electric, and oil burning appliances [10-11].

This marked increase is attributed to the growing installation and use of wood burning stoves in homes throughout the United States and the fact that most homes are made of combustible construction. Clearly, accidental fires from wood burning appliances are an increasingly important problem.

2.2 Clearances in Existing Codes and Standards

Recommendations for minimum acceptable clearances to combustible materials for the installation of chimney, chimney connectors, and appliances are specified in the various model building codes and recommended practices manuals. Reference [12] is typical of the specifications found in the codes. For simplicity, a single, hopefully conservative clearance is given for each type of appliance installed without protection. No allowance is made for the size, heat output, heat transfer characteristics or other features unique to individual models. Similarly, only a few, specific methods of protection employed to allow reduction of these clearances are recommended.

Typically, 0.91 m of clearance is specified between radiant heaters and unprotected combustible construction. For residential solid fuel chimneys, typically 51 mm of clearance is required. Chimney connectors for solid fuel burning residential appliances require a clearance of at least 0.46 m to combustible materials. However, as with appliances, these clearances may be reduced by the use of appropriate protection applied either to the appliance or to the combustible surface.

The experimental basis for these code requirements is not, in many cases, quite so clear. Several experimental studies have been carried out to determine minimum acceptable clearances to combustible materials. Voigt [13], in a 1933 publication, recommends a minimum clearance of 0.30 m for chimney connectors 0.23 m in diameter. A more extensive study, performed by Underwriters Laboratories in 1943 [14], presents minimum safe clearances for

both unprotected surfaces and surfaces protected by various methods. Distances at which a maximum temperature rise of 50°C above room temperature is reached are presented as a function of the temperature of the exposed face of a heat producing appliance. The relative protection afforded by various materials used as heat barriers between the appliance and combustible surfaces is also examined. Lawson, Fox, and Webster [15] and Lawson and Simms [16] have studied the heating of wall panels and wood by radiation. With experimentation and theoretical predictions, they present safe clearances between flue pipes and wall surfaces as a function of the pipe diameter and the pipe surface temperature. To maintain a maximum wall temperature of 100°C, 0.15 m pipe should not exceed 350°C in surface temperature at a clearance of 0.46 m [15]. Loftus and Peacock [5] present the results of research studying clearances and methods of protection for wall and ceiling surfaces exposed to radiant heating appliances. A number of recommended methods of protection to reduce temperatures on combustible wall and ceiling surfaces to acceptable levels were found. In the study, appliance surface temperatures from 300 to 450°C were used.

These experimental studies established limits for two important parameters: appliance surface temperature and clearance to combustibles for unprotected and protected surfaces. Maximum appliance surface temperatures for the appliances studied ranged from 300 to 450°C; average appliance surface temperatures from 200 to 250°C. Minimum safe wall clearances for unprotected surfaces ranged from 0.31 to 0.91 m. Most of the current code provisions are only adequate for maximum appliance surface temperatures up to 300 to 350°C.

2.3 Temperatures Developed in Heating Systems

Tests made with prefabricated porcelain-enameled metal chimneys for solid or liquid fuel furnaces [17,18] established a limiting temperature rise of 190°C on the outer surface of the chimney for a flue gas temperature of 537°C. With this limitation, wood framing space 51 mm or more away from the chimney was considered safe. Satisfactory insulation of the chimneys to reduce the outer surface temperatures to acceptable levels was obtained with asbestos paper plies totalling about 45 mm in thickness. In the same study, some asbestos cement pipe coverings were also found to reduce heat transmission to the extent required for safety of nearby combustibles.

To establish performance requirements for lightweight prefabricated chimneys, tests were conducted with lined and unlined masonry chimneys having 102 mm thick walls [19,20]. Hazardous conditions on wood framing spaced 51 mm away from the chimney were noted with a continuous flue gas temperature of 482°C for the unlined chimney and 592°C for the lined chimney. However, these hazardous conditions were not reached in the lined chimney tests until after 13 hours. In order to study operating conditions with typical fuels, a number of firing tests [21] were conducted with heating appliances known to give high flue gas temperatures, using wood and soft coals as fuels. With a coalfired, jacketed type heater, gas temperatures ranging from 648 to 704°C were measured for an hour or more in the flue at the ceiling level above the heater.

Lawson, Fox, and Webster [15] presented results of tests to measure surface temperature of flue pipes. Measured for a variety of flue systems using solid fuels -- mostly coal and coke -- they report temperatures of about 150°C under "normal" conditions and temperatures as high as 815°C for over fire conditions.

Fox and Whittaker [21] report temperatures on metal flues of several heating appliances operated over a range likely to encountered in normal use. Maximum flue pipe surface temperatures ranged from 704 to 815°C at the appliance flue outlet, 360 to 510°C at a distance of 0.91 m from the appliance flue outlet, and 287 to 326°C at a distance of 1.8 m from the appliance flue outlet.

Shoub [17] concluded that combustible materials will be ignited if maintained in continued contact with a masonry chimney of 120 mm wall thickness with flue gas temperatures of 400°C.

In tests for the Department of Energy [4], temperatures ranging from 297 to 436°C during normal operation and 377 to 693°C during over fire conditions were noted on the surfaces of several wood burning appliances when tested to prescribed test methods [22]. A total of 11 different short term tests, ranging from 1.9 to 25.6 hours duration, were conducted to establish normal firing conditions in wood burning appliances [23]. An examination of the data from these tests shows spikes occurring at the beginning and end of tests and, apparently, whenever the door to the stove was opened. These sharp increases in temperature were attributed to a "high fire" in the morning and to

the rapid increase in active flaming when the door was opened for refueling the fire. The average stove surface temperature rise for normal burning ranged from 177 to 218°C, flue gases from 140 to 269°C, inner chimney wall surface 119 to 241°C, and the outer chimney wall surface 14 to 48°C.

2.4 Limiting Safe Temperatures on Combustible Surfaces

Listings of heat producing appliances and methods for setting clearances between appliances and combustible surfaces are based upon Underwriters Laboratories listings [22]:

- maximum temperature rise of 65°C above room temperature on exposed surfaces; and
- maximum temperature rise of 50°C above room temperature on unexposed surfaces, such as beneath the appliance, floor protector, or wall mounted protective device.

These requirements are based upon the fact that while the ignition temperature of wood products is generally quoted to be on the order of 200°C [24], wood that is exposed to constant heating over a period of time may undergo a chemical change resulting in a much lowered ignition temperature and increased potential for self-ignition.

Mitchell [25] presents data on wood fiberboard exposed to temperatures as low as 109°C that resulted in ignition after prolonged exposure. MacLean [26,27] reports charring of wood samples at temperatures as low as 93°C. He concludes that wood should not be exposed to temperatures appreciably higher than 66°C for long periods. McGuire [28] suggests that the maximum safe temperatures on the surface of a combustible material adjacent to a constant heat source should be no more than 100°C.

Clearly, the ignition of wood at moderately elevated temperatures is a complex phenomenon; the time of exposure is indeed an important parameter [29,30]. While exact limits recommended in the literature vary due to exposure time and details of the tests conducted, the numerous documented fires involving the ignition of wood members near low pressure steam pipes [31] suggest an upper temperature limit for wood exposed to long-term lowlevel heating should not be appreciably higher than 100°C.

Nearby combustible materials other than wall and ceiling surfaces, such as chairs or draperies must also be kept a sufficient distance from combustible materials to prevent ignition of the materials. The testing standards and model codes treat all combustibles with the same requirements. Thus, the 0.91 m clearance requirements in NFPA 211 and maximum temperature rise requirements in the Underwriters Laboratories testing standards apply equally well to other combustibles as well. Similarly, a temperature limit of 100°C is more than adequate to protect most combustibles used in furnishings.

2.5 Data for Model Validation

Much of the available literature related to wood heating safety provides a significant amount of data that can be used to compare theoretical predictions with experimental measurements. In the above literature, references [4], [5], and [9] provide measurements of appliance surface temperatures and wall surface temperatures and provide a full description of the experimental setup to be modeled. Reference [22] provides acceptable limits on combustible surface temperatures for use in predicting minimum clearances, maximum appliance surface temperatures, minimum acceptable protector thermal properties, and the like. These references will provide the majority of data for the comparison of theoretical predictions with measured temperatures on surfaces of appliances, on protector systems, and on combustible walls.

3. THEORETICAL BASIS FOR THE MODEL

Figure 1 presents a schematic diagram of a heating appliance / wall system with an arbitrary protection system between the appliance and the wall. Heat transfers from the hot stove surface through any intervening protection to the wall surface, through the wall, and to the cooler surroundings. A few assumptions, reasonable to the system being modeled, simplify the model considerably:

- The stove is operating at steady state conditions (thus, we assume the stove has been operating for a period of time and has reached a steady operating condition).
- Stove is at a constant uniform surface temperature.
- Heat transfer through air spaces in the system takes place by radiation and convection only.
- Heat transfer through solids in the system takes place by conduction only.

With these assumptions, a one-dimensional, steady state model of the stove / protector / wall heat transfer is appropriate. The only loss in generality of the predictive capability of the model is the inability to predict any time dependent behavior of the system. Since the intended purpose of the model is to study the fire safety of the stove / protector / wall system under worst case conditions, this loss is acceptable. By assuming steady state conditions with a constant stove temperature, the worst case conditions will be modeled.

3.1 Radiative Heat Transfer

For heat exchange between two surfaces, the net radiative heat transfer between surfaces 1 and 2 is given by [32]:

$$\dot{q} = \frac{\sigma (T_1^4 - T_2^4)}{\frac{1 - \epsilon_1}{\epsilon_1} + \frac{1}{F_{12}} + \frac{1 - \epsilon_2}{\epsilon_2}}$$
(1)

 F_{12} , the configuration factor for radiative exchange between surface 1 and surface 2, is defined as the fraction of the radiation leaving surface 1 which is intercepted by surface 2. Compilations of configuration factors are available in the literature [33,34]. For the stove / wall protector geometry, the following equations are appropriate. The configuration factor for a differential element to a plane parallel rectangle with the normal to the element passing through the corner of the rectangle is given by [33]:

$$F_{dA} = \frac{1}{2\pi} \left[\frac{X}{(1+X^2)^{\frac{1}{2}}} \tan^{-1} \frac{Y}{(1+X^2)^{\frac{1}{2}}} + \frac{Y}{(1+Y^2)^{\frac{1}{2}}} + \frac{Y}{(1+Y^2)^{\frac{1}{2}}} \right]$$
(2)

where $X = (width of rectangle) / (distance from rectangle to element) and <math>Y = (height of rectangle) / (distance from rectangle to element). Since the configuration factor for a surface equals the sum of configuration factors for any subdivision of the surface, the configuration factor for any point <math>(X_w, Y_w)$ on the wall (or first protector) surface can be defined from equation (2) as

$$F_{12} = F_{dA}(X_{W} - X_{S}, Y_{W} - Y_{S}) - F_{dA}(X_{W} - X_{S} - W_{S}, Y_{W} - Y_{S}) + F_{dA}(X_{W} - X_{S} - W_{S}, Y_{W} - Y_{S} - H_{S}) - F_{dA}(X_{W} - X_{S}, Y_{W} - Y_{S} - H_{S})$$
(3)

For radiant heat exchange between two identical, directly opposed rectangles (such as two protective surfaces of the same size), the configuration factor is given by [33]

$$F_{12} = \frac{2}{\pi XY} \left[\ln \left[\frac{(1+X^2)(1+Y^2)}{1+X^2+Y^2} \right]^{\frac{1}{2}} + X(1+Y^2)^{\frac{1}{2}} \tan^{-1} \frac{X}{(1+Y^2)^{\frac{1}{2}}} + Y(1+X^2)^{\frac{1}{2}} \tan^{-1} \frac{Y}{(1+X^2)^{\frac{1}{2}}} - X \tan^{-1} X - Y \tan^{-1} Y \right]$$
(4)

3.2 Convective Heat Transfer

For convective heat transfer between two surfaces separated by an air space, the net heat exchange by convection is given by

$$\dot{q} = h (T_1 - T_2)$$
 (5)

where h is the convective heat transfer coefficient. For free convection at

the surface of a vertical surface (such as the wall, appliance, or protector surface), h can be found from the equations [35]

$$Nu_{L} = \frac{h L}{k} = \left[0.825 + \frac{0.387 Ra_{L}^{1/6}}{\left[1 + (0.492/Pr)^{9/16} \right]^{8/27}} \right]^{2}$$
(6)

3.3 Conductive Heat Transfer

For solids, the net heat exchange by conduction is given by

$$\dot{q} = \frac{k}{L} (T_1 - T_2)$$
⁽⁷⁾

While for some materials, the thermal conductivity, k, is a function of temperature, for most materials, the assumption that k is a constant leads to inconsequential loss in generality. For instance, for aluminum, the thermal conductivity changes by only 25% over a temperature range from -170°C to well over 2000°C

3.4 Solution of the Equations for an Arbitrary Protection System

At steady state, the heat transferred from the appliance to the outside, figure 2, is equal to the heat transferred through any element or group of elements within the system, or

$$\dot{q}_{TOTAL} = \frac{(T_s - T_0)}{R_{TOTAL}} = \dot{q}_i = \frac{(T_i - T_{i+1})}{R_i}$$
 (8)

Equations (1), (5), and (7) can be expressed as in equivalent resistance forms as

(Conduction)
$$R_i = \frac{L}{K}$$
 (9)

(Convection)
$$R_i = \frac{1}{h}$$
 (10)

(Radiation)
$$R_{i} = \frac{\frac{1-\epsilon_{1}}{\epsilon_{1}} + \frac{1}{F_{12}} + \frac{1-\epsilon_{2}}{\epsilon_{2}}}{\sigma (T_{1}^{2} + T_{2}^{2}) (T_{1} + T_{2})}$$
 (11)

For the current problem, these equations can be combined into two as

(Solids)
$$R_i = \frac{L}{K}$$
 (12)

(Airspaces)
$$R_{i} = \frac{1}{\frac{1}{h} + \frac{\sigma (T^{2} + T^{2}) (T + T)}{\frac{1 - \epsilon_{1}}{\epsilon_{1}} + \frac{1}{F_{12}} + \frac{1 - \epsilon_{2}}{\epsilon_{2}}}$$
 (13)

Thus, the solution method with a given appliance temperature, T_s , and a given temperature of the surroundings, T_0 , begins by assuming temperatures for the intermediate surfaces, calculating individual resistances from equations (12) and (13) to determine the total resistance, R_{TOTAL} , calculating the total heat flow rate from equation (8), and comparing the total heat flow rate to the individual heats. If the calculated individual rates are sufficiently close to the calculated total heat flow rate, the steady state solution has been obtained. If any of the individual heats are different from the total heat, new estimates for each of the intermediate temperatures are made and the process is repeated until sufficient agreement has been found. Reference [36] provides a number of methods for making best guess estimates for the next iteration toward the solution. For the current problem, a simple linear search is used where one variable at a time is changed until a local optimum is found.

A number of literature sources are available to allow determination of the physical data required for the input (for instance, for the thermal conductivity and emissivity). References [32] and [33] provide extensive listings of thermal and material properties for common materials.

4. COMPUTER IMPLEMENTATION OF THE MODEL

Included as Appendix A is a listing of the FORTRAN (written in ANSI standard FORTRAN 77) program implementing the model as described above. The general structure of the program is illustrated in figure 3.

Program input (detailed in Appendix B) takes the form of different key words with arguments to specify values which depend upon the key word. In most cases, the order of the key words is unimportant. A description of each of the input key words and values which go on the same line are presented below:

STOVE<height> <width> <emissivity> <temperature>AIRSPACE<thickness> <emissivity>FOR<variable> = <lower> <upper> <increment>XWALL<x position>YWALL<y position>PROTECTOR<thickness> <height> <width> <k> <emissivity> <temperature>

A sample input for the program follows:

FOR:	TSTOVE = 473.15 673.15 10.
STOVE:	0.9 0.5 0.5 473.15
AIRSPACE:	0.91 0.9
ALUMINUM SHEET:	0.00254 3.0 3.0 177. 0.9
AIRSPACE:	0.0254 0.9
ALUMINUM SHEET:	0.00254 3.0 3.0 177. 0.9
AIRSPACE:	0.0254 0.9
GYPSUM WALLBOARD:	0.0127 3.0 3.0 0.17 0.9
F/G INSULATION:	0.0916 3.0 3.0 0.038 0.9
BRICK OUTSIDE:	0.0916 3.0 3.0 0.72 0.9
AIRSPACE:	273.15
END:	

This input specifies a series of calculations to be done for a stove temperature ranging from 200°C to 400°C (473.15 to 673.15 K in the input above) for a wall protection system consisting of two aluminum sheets spaced 25 mm (0.00254 m in the input above) apart and placed 25 mm from an insulated outside wall of a house. A clearance of 0.91 m from the appliance to the first aluminum sheet is specified. A sample output from the program, using this sample data set, is presented in table 1. Calculated temperatures on all surfaces from the stove to the outdoors are shown along with the specified sizes and thermal properties of the materials used for the walls and protectors. Execution time, of course, depends upon the computer in use. On a typical desk top personal computer, execution of the above test case required less than 1.5 minutes.

5. COMPARISON OF THE MODEL PREDICTIONS WITH EXPERIMENTAL DATA

Figure 4 presents a comparison of calculated temperatures on the surfaces of wall protectors and on the surfaces of combustible walls with experimentally measured values taken from references [4] and [5]. To assess the predictive capabilities of the model, a range of conditions from the experimental studies were simulated. Wall materials used in these experimental studies ranged from uninsulated gypsum wallboard to a fully insulated stud wall with a brick facing on the exterior. A number of different wall protection methods were taken from reference [5], varying from a simple sheet metal protector to a sheet metal / insulation board / air space composite protector or a ventilated brick protector. A simple cross plot of the calculated values and the experimental values illustrates the agreement of the model's predictions with experimental data obtained in earlier studies. Agreement of the calculated values with the experimentally measured values, stated as

((
$$T_{calculated} - T_{measured}$$
) / $T_{calculated}$) * 100

with temperatures expressed in absolute, averaged within less than 1 percent. Individual agreement, however ranged from 5 percent low (calculated values lower than experimental) to 4 percent high. Much of the disparity in the comparison can be explained by the choice of ambient conditions for the experimental tests. All the data in the two reports were described in terms of temperature rise above ambient conditions. Since the experimental calculations are based upon absolute temperatures, some assumptions had to be made for the ambient temperatures in the surroundings during the tests. A variation in ambient temperature of 15°C could change the calculated surface temperatures on the wall surfaces by as much as ±10 percent. Thus, the agreement illustrated in figure 5 is excellent in light of the possible variation in the calculations depending upon the assumed ambient temperature.

6. MODEL CAPABILITIES AND EXAMPLES

A theoretical model for predicting the heat transfer between the appliance and the wall surfaces can be a useful tool not only in the design of appliances and wall protection devices but also in the design of future experiments to study clearances and reduced clearances for wood burning appliances. This section presents some examples of the use of the model in predicting temperatures and clearances from combustibles for both protected and unprotected wall surfaces.

6.1 Heat Transfer From Appliance to an Unprotected Wall

Figure 5 shows calculated wall surface temperatures as a function of appliance / wall clearance for a medium size appliance (an appliance 0.5 by 0.5 m on the side parallel to the wall surface) adjacent to an unprotected wall surface for appliance surface temperatures from 150 to 350°C. For these calculations, the outside air temperature (temperature of the surroundings) was assumed equal to 0°C. The wall consisted of 12 mm gypsum wallboard, a 92 mm stud space with glass fiber insulation, and a 92 mm common brick facing on the outside of the wall exposed to the outdoors. At an appliance clearance of 0.91 m, appliance surface temperatures greater than about 300 °C would lead to temperatures on the wall in excess of the recommended limit [22] of 50°C above room ambient temperature at a point on the wall directly centered behind the appliance. Since, in an earlier study [4], average appliance surface temperatures of about 200 °C were noted, a sufficient margin of safety is indicated for an appliance this size.

6.2 Heat Transfer From Appliance to a Sheet Metal Protected Wall

Figures 6 and 7 show calculated wall surface temperatures as a function of appliance / wall clearance for a medium size appliance (an appliance 0.5 by 0.5 m on the side parallel to the wall surface) adjacent to a protected wall surface for appliance surface temperatures from 150 to 350°C. As before, the outside air temperature was assumed equal to 0°C. The wall protector consisted of two sheets of aluminum (2.5 mm in thickness) separated by a ventilated 25 mm air space. The wall protector was spaced from the wall by a ventilated 25 mm air space. The wall consisted of 12 mm gypsum wallboard, a 92 mm stud space with glass fiber insulation, and a 92 mm common brick facing on the outside of the wall exposed to the outdoors. With the surfaces of the protector painted black and at an appliance clearance of 0.91 m, appliance surface temperatures greater than about 300°C would lead to temperatures on the wall in excess of the recommended limit of 50°C above room ambient temperature -- in fact, about the same as the case with no protection. However, when the surfaces of the protector are left unpainted (shiny aluminum surfaces), appliance surface temperatures higher than 350°C are required to raise the temperature of the wall surface above acceptable limits. Conversely, the clearance of the appliance to the wall could be reduced from 0.91 m to 0.3 m with an average appliance surface temperature of 200°C.

6.3 Heat Transfer From Appliance to a Masonry Protected Wall

Figure 8 shows calculated wall surface temperatures as a function of appliance / wall clearance for the same appliance (an appliance 0.5 by 0.5 m on the side parallel to the wall surface) adjacent to a protected wall surface for appliance surface temperatures from 150 to 350°C. Again, the outside air temperature was assumed equal to 0°C. The wall protector consisted of a 92 mm thick solid brick wall was spaced from the wall by a ventilated 25 mm air space. The wall consisted of 12 mm gypsum wallboard, a 92 mm stud space with glass fiber insulation, and a 92 mm common brick facing on the outside of the wall exposed to the outdoors. With the surfaces of the protector painted black and at an appliance clearance of 0.91 m, appliance surface temperatures greater than about 300°C would lead to temperatures on the wall in excess of the recommended limit of 50°C above room ambient temperature -- again not significantly lower than in wall surface temperatures than for the unprotected wall. Note, however, one of the major thermal characteristics of a masonry wall protection system -- high thermal mass -- is not accounted for in a steady state prediction.

7. USES FOR AND LIMITATIONS OF THE MODEL

A model was developed to predict temperatures on protected and unprotected wall surfaces exposed to heating from a (primarily) radiant heating appliance. A one-dimensional, steady state model of appliance / protector / wall heat transfer showed agreement within an average of less than 1 percent

when compared to experimental results from earlier laboratory studies. A range of building materials typical of residential construction, along with a number of different wall protection methods were simulated in the comparison. As a guideline to the range of applicability of the model, the variations of the thermal properties used in the comparisons were

k:	0.038	to	177	W∕m · K
ε:	0.1	to	0.9	
airspace thickness:	0.1	to	1.0	m
solid thickness:	0.0025	to	0.1	m

Improvements in the program implementation of the model are possible. The simple linear search for the solution of the equations is certainly not the most efficient method. A number of search methods have been described in the literature [36]. An n-dimensional simplex search where the next guess for a given variable depends upon the values of the other n-1 variables would improve the execution speed of the program. Additional improvements would be realized with any of a number of acceleration methods, also available in the literature [36]. Of course, a more complicated, harder to understand and modify program would result.

8. REFERENCES

- Peacock, R. D., A Review of Fire Incidents, Model Building Codes, and Standards Related to Wood-Burning Appliances, Nat. Bur. Stand. (U.S.), NBSIR 79-1731 (April 1979).
- [2] Peacock, R. D., A Review of Fire Incidents Related to Wood-Burning Appliances, Wood Energy Institute, Proceedings of Wood Heating Seminar IV, Portland, Oregon, March 21-24, 1979, 43-46.
- [3] Shelton, J. W., Analysis of Fire Reports on File in the Massachusetts State Fire Marshal's Office Relating to Wood and Coal Heating Equipment, contract to the National Bureau of Standards (U.S.), NBSGCR 78-149 (November 1978).
- Peacock, R. D., Ruiz, E., and Torres-Pereira, R., Fire Safety of Wood Burning Appliances, Part 1: State of the Art Review and Fire Tests, Volume I and II, Nat. Bur. Stand. (U.S.), NBSIR 80-2140 (November 1980).
- [5] Loftus, J. J., and Peacock, R. D., Clearances and Methods of Protection for Wall and Ceiling Surfaces Exposed to Radiant Heating Appliances, Nat. Bur. Stand. (U.S.), NBSTN 1205 (December 1984).
- [6] Maxwell, T. T., Dyer, D. F., Maples, G., and Burch, T., An Investigation of Creosoting and Fireplace Inserts, contract to the National Bureau of Standards (U.S.), NBSGCR 81-365 (December 1981).
- [7] Terpstra, W. R., Jorgenson, M. L., and Dosedlo, L. J., Investigation of Fire Hazards of Fireplace Inserts in Factory-Built and Masonry Fireplaces, contract to the National Bureau of Standards (U.S.), NBSGCR 82-368 (January 1982).
- [8] Peacock, R. D., Intensity and Duration of Chimney Fires in Several Chimneys, Nat. Bur. Stand. (U.S.), NBSIR 83-2771 (December 1983).
- [9] Loftus, J. J., and Peacock, R. D., Evaluation of Thimble Chimney Connector (Wall-Pass Through) Systems for Solid Fuel Burning Appliances, Nat. Bur. Stand. (U.S.), NBSIR 84-2969 (November 1984).
- [10] Kale, D., Fires in Woodburning Appliances, U. S. Consumer Product Safety Commission (December 1982).
- [11] Harwood, B., and Kale, D., Fires Involving Fireplaces, Chimneys and Related Appliances, U. S. Consumer Product Safety Commission (September 1981).
- [12] Standard for Chimneys, Fireplaces, Vents and Solid Fuel Burning Appliances, NFPA 211-1984, National Fire Protection Association, Quincy, Massachusetts (February 1984).

- [13] Voigt, G. Q., Fire Hazard of Domestic Heating Installations, Nat. Bur. Stand. (U.S.), NBS Research Paper RP596 (September 1933).
- [14] Neale, J. A., Clearances and Insulation of Heating Appliances, Underwriters Laboratories, Inc., UL Bulletin of Research No. 27 (February 1943).
- [15] Lawson, D. I., Fox, L. L., and Webster, C. T., The Heating of Panels by Flue Pipes, Fire Research Special Report No. 1, Fire Protection Association, London, England (March 1952).
- [16] Lawson, D. I., and Simms, D. L., The Ignition of Wood by Radiation, British Journal of Applied Physics, Vol <u>3</u>, 288-292 (September 1952).
- [17] Shoub, H., Survey of Literature on the Safety of Residential Chimneys and Fireplaces, Nat. Bur. Stand. (U.S.), NBS Misc. Pub. 252 (December 1963).
- [18] Prefabricated Metal Chimneys, National Bureau of Standards, Fire Research Section, unpublished reports to the Federal Public Housing Authority (1941-1945).
- [19] Thulman, R. K., Temperatures Developed in Chimneys for Low Cost Houses, Nat. Bur. Stand. (U.S.), Tech. News. Bull. 328 (August 1944).
- [20] Thulman, R. K., Performance of Masonry Chimneys for Houses, Housing and Home Finance Agency (U. S.), Housing Research Paper No. 13 (November 1952).
- [21] Fox., L. L., and Whittaker, D., Some Measurements of Temperatures of Metal Flues of Domestic Heating Appliances, Journal of the Institution of Heating and Ventilation Engineers, Vol. <u>23</u>, 183-192 (August 1955).
- [22] Standard for Room Heaters, Solid Fuel Type -- UL 1482, First Edition, Underwriters Laboratories, Inc., Northbrook, IL (August 1979).
- [23] Loftus, J. J., Evaluation Tests on Metal Factory-Built Insulated Chimneys Used for Venting Solid Fuel Burning Appliances, Nat. Bur. Stand. (U.S.), letter report to the U. S. Consumer Product Safety Commission (April 1985).
- [24] Schaffer, E. L., Smoldering Initiation in Cellulosics Under Prolonged Heating, Fire Technology, Vol. <u>16</u>, No. 1, 22-28 (February 1980).
- [25] Mitchell, N. D., New Light on Self-Ignition, NFPA Quarterly, Vol. <u>45</u>, No. 2, 165-172 (October, 1951).
- [26] Maclean, J. D., Effect of Heat on Properties and Serviceability of Wood: Experiments on Thin Wood Specimens, Forest Products Laboratory Report No. R1471, Madison, WI (1945).

- [27] Maclean, J. D., Rate of Disintegration of Wood Under Different Heating Conditions, American Wood-Preservers Association (1951).
- [28] McGuire, J. H., Limiting Safe Temperature of Combustible Materials, Fire Technology, Vol <u>5</u>, No. 3 (August 1969).
- [29] Ignition and Charring Temperatures of Wood, Forest Products Laboratory Report No. 1464, Madison, WI (January 1958).
- [30] Shelton, J. W., Wood Heat Safety, Garden Way Publishing, Charlotte, VT (September 1979).
- [31] Matson, A. F., Dufori, R. E., and Breen, J. F., Performance of Type B Gas Vents for Gas-Fired Appliances, Part II, Survey of Available Information on Ignition of Wood Exposed to Moderately Elevated Temperatures, Underwriters Laboratories, Inc., UL Bulletin of Research No. 51, Northbrook, IL (May 1959).
- [32] Incorpera, F. P., and DeWitt, D. P., Fundamentals of Heat Transfer, John Wiley & Sons, New York, NY (1981).
- [33] Siegel, R., and Howell, J. R., Thermal Radiation Heat Transfer, McGraw-Hill Book Company, New York, NY (1981).
- [34] Hsu, Chia-Jung, Shape Factor Equations for Radiant Heat Transfer Between Two Arbitrary Sizes of Rectangular Planes, Canadian Journal of Chemical Engineering, Vol. 45, 58-60 (February 1967).
- [35] Churchill, S. W., and Chu, H. H. S., Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate, Int. J. Heat Mass Transfer, Vol. <u>18</u>, 1323 (1975).
- [36] Beveridge, G. S., and Schechter, R. S., Optimization: Theory and Practice, McGraw-Hill Book Company, New York, NY (1970).

Table 1. Sample Output From STOVE

DOUBLE ALUMINUM PLATE, ALL SURFACES PAINTED BLACK

NUMBER OF NODES IN CALCULATION: 10POINT ON WALL:(X):0.000(Y):0.000

SERIES OF CALCULATIONS FOR VARIABLE TSTOVE: 473.150 673.150 20.000

I	MATERIAL	HEIGHT (m)	WIDTH (m)	THICK (m)	EMISS	K (W/m·K)	TEMPERATURE (°C)
0	STOVE	0.50	0.50		0.90		200.00
1	AIRSPACE			0.91	0.90		
2	ALUMINUM SHEET	3.00	3.00	0.00	0.90	177.000	
3	AIRSPACE			0.03	0.90		
4	ALUMINUM SHEET	3.00	3.00	0.00	0.90	177.000	
5	AIRSPACE			0.03	0.90		
6	GYPSUM WALLBOARD	3.00	3.00	0.01	0.90	0.170	
7	INSULATION	3.00	3.00	0.09	0.90	0.038	
8	BRICK OUTSIDE	3.00	3.00	0.09	0.90	0.720	
9	AIRSPACE			0.00	1.00		0.00

0:	STOVE / AIRSPACE
1:	AIRSPACE / ALUMINUM SHEET
2:	ALUMINUM SHEET / AIRSPACE
3:	AIRSPACE / ALUMINUM SHEET

- 4: ALUMINUM SHEET / AIRSPACE
- 5: AIRSPACE / GYPSUM WALLBOARD
- 6: GYPSUM WALLBOARD / INSULATION
- 7: INSULATION / BRICK OUTSIDE
- 8: BRICK OUTSIDE / AIRSPACE
- 9: AIRSPACE

TSTOVE	(0) (°C)	(1) (°C)	(2) (°C)	(3) (°C)	(4) (°C)	(5) (°C)	(6) (°C)	(7) (°C)	(8) (°C)	(9) (°C)
473.150	200.0	33.1	33.1	31.6	31.6	30.1	29.3	3.1	1.7	0.0
493.150	220.0	38.7	38.7	37.0	37.0	35.3	34.4	3.6	2.0	0.0
513.150	240.0	44.7	44.7	42.8	42.8	41.0	39.9	4.2	2.3	0.0
533.150	260.0	51.1	51.1	49.0	49.0	47.0	45.7	4.7	2.6	0.0
553.150	280.0	57.8	57.8	55.6	55.6	53.4	51.9	5.4	2.9	0.0
573.150	300.0	64.8	64.8	62.5	62.5	60.1	58.5	6.0	3.2	0.0
593.150	320.0	72.2	72.2	69.7	69.7	67.2	65.4	6.7	3.6	0.0
613.150	340.0	79.9	79.9	77.3	77.3	74.6	72.6	7.4	3.9	0.0
633.150	360.0	87.8	87.8	85.1	85.1	82.3	80.1	8.1	4.3	0.0
653.150	380.0	96.0	96.0	93.2	93.2	90.3	87.8	8.8	4.7	0.0
673.150	400.0	104.3	104.3	101.5	101.5	98.5	95.8	9.6	5.0	0.0

Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to an Unprotected Combustible Wall Surface Figure 5.

Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to a Combustible Wall Protected With a Double Aluminum Sheet Wall Protector (Painted Black) Figure 6.

Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to a Combustible Wall Protected With a Double Aluminum Sheet Wall Protector Figure 7.

Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to a Combustible Wall Protected With a Solid Masonry Wall Protector With A Ventilated Air Space Figure 8.

Appendix A: Program Listing of STOVE

1	PROCEMM STOLE	
c	PROGRAM STOVE	
c	0000000	
jc	0 0000 0 0	
C	999999 999999 999999 999999 999999 99999	
C	999 9 999 9 999 9 999 9999 9999 9999999	
C	000000 0 000 0 000 0 000 0000 0000	
C	9 999 9999 9 999 9999 9	
C	0000000 00000 0000000 0000000000000000	
C		
C		
IC	THIS PROGRAMS CALCULATES AN ENERGY BALANCE ON A STOVE / WALL SYSTEM	
C IC	ASSUMING STEADY STATE CONDITIONS, WITH AN ARBITRARY NUMBER OF WALL	
lc Ic	PROTECTORS BETWEEN THE STOVE AND THE WALL	
	INCLUDE 'STOVE.CMN'	
1	CHARACTER CMET*5, PMATL*60, VERSN*7	
i i	LOGICAL THRU1, NOTYET, THEEND	
i	DATA VERSN /'86.0108'/	
İc		
İc	INITIALIZE EVERYTHING TO DEFAULT CONDITIONS, READ INPUT FOR CASE	
jc	- ,	
	QEPS=0.00001	
1	EPS=0.0001	
	TSTEP1=2.	
	TSTEP2=2.	
10	CALL INPUT(THEEND)	
	IF (.NOT. THEEND) THEN	
ļ	XSTOVE=WSTOVE/2.	
	YSTOVE=0.	
	IF (.NOT.FULPRT) THEN	
	WRITE (6,11) (I,PMATL(MATL(I),MATL(I+1)),I=0,N-1),N,MATL(N) WRITE (6,12) VNAME,(I,I=0,N)	
	WRITE (6,8) ' ',(' (°C) ',I=0,N) WRITE (6,8) ('',I=-1,N)	
i i	END IF	
i	NCALCS=MAX(INT((VUPPER-VLOWER)/VINCR+0.5)+1,1)	
i	DO 100 ICALC=1, NCALCS	
i	VARVAL=VLOWER+VINCR*(ICALC-1)	
C		
C	SET NEXT VALUE OF VARIABLE TO BE INCREMENTED	
C		
	IF (IVAR.EQ.1) THEN	
	XWALL=VARVAL	
	ELSE IF (IVAR.EQ.2) THEN	
	YWALL=VARVAL	
	ELSE IF (IVAR.EQ.3) THEN	
	T(0)=VARVAL ELSE IF (IVAR.EQ.4) THEN	
	L(ISUB)=VARVAL	
1	IF (ISUB.EQ.1) ZSTOVE=VARVAL	
	ELSE IF (IVAR.EQ.5) THEN	
	WIDTH(ISUB)=VARVAL	
	IF (ISUB.EQ.0) WSTOVE=VARVAL	
i	XSTOVE=WSTOVE/2.	1
i	ELSE IF (IVAR.EQ.6) THEN	
i	HEIGHT (ISUB)=VARVAL	
	IF (ISUB.EQ.0) HSTOVE=VARVAL	
	ELSE IF (IVAR.EQ.7) THEN	
	K(ISUB)=VARVAL	
	ELSE IF (IVAR.EQ.8) THEN	
	EMMIS(ISUB)=VARVAL	
	END IF	
C		
C	INITIALIZE THE COUNTERS TO ZERO	
C	TURN-0	
10	ITER=0	
C	INITIALIZE TEMPERATURE GUESSES TO WORST CASE CONDITIONS	
C		

7.1			71
71		DO 20 I=1,N-1	
72	20	T(I)=T(N)	72
73		TDIFF=T(0)-T(N)	73
74		TGOAL=T(N)	74
	с		75
		DETERMINE NEXT GUESS FOR TEMPERATURES	76
	С	DETERMINE NEAT GUESS FOR TEMPERATURES	
77	С		77
78		DO 30 I=1,N-1	78
79	30	T(I)=T(I)+TDIFF/N	79
	c		80
	С	CALCULATE TOTAL RESISTANCE AND HEAT FLOW FROM GUESSED TEMPERATURES	81
82	C		82
83		CALL HEATS	83
	40	INNER=0	84
		IMER-0	
	C		85
86	C	CALCULATE WITH NEWLY GUESSED TEMPERATURES AND HEATS	86
87	lc		87
88	i -	DO 60 I=1,N	88
89		TINC=ABS(TDIFF/N/TSTEP1)	89
90		TINCITINC	90
91		QSIGN=DSIGN(1.D0,Q(1)-QTOTAL)	91
92	İc		92
		GO THROUGH INNER ITERATION LOOP AT LEAST ONCE FOR SOME FORCED	93
94	C	IMPROVEMENT	94
95	C		95
96	i	THRU1=, FALSE,	96
97	50		
	100	IF (.NOT. (ABS((Q(I)-QTOTAL)/QTOTAL).LE.QEPS.AND.THRU1)) THEN	97
98		INNER=INNER+1	98
99		THRU1=. TRUE.	99
100	i	IF (ABS((Q(I)-QTOTAL)/QTOTAL).GT.QEPS) NOTYET=.TRUE.	100
101	-	IF (MATL(I).NE.'AIRSPACE') THEN	101
102	C		102
103	С	HEAT TRANSFER IS CONDUCTION, CALCULATE TEMPERATURE	103
104	lC 🛛		104
105	-	T(I)=T(I-1)-QTOTAL*R(I)	105
106		ELSE	106
107	C		107
108	lc 🛛	HEAT TRANSFER IS BY CONVECTION & RADIATION, SEARCH FOR TEMPERATURE	108
109	İc		109
110		T(I)=T(I)+QSIGN+TINC	110
111	C		111
112	C	RECALCULATE THE HEAT FLOW AND COMPARE TO TOTAL HEAT	112
113	İc		113
	ľ	CALL HEAT(I)	
114			114
115		IF (DSIGN(1.D0,Q(I)-QTOTAL).NE.QSIGN) THEN	115
116		TINCI=TINCI/TSTEP2	116
117		TINC=TINCI	117
118	i	QSIGN=DSIGN(1.D0,Q(I)-QTOTAL)	118
119	!	ELSE	119
120		TINC=TINC*2.	120
121		END IF	121
122	i	GO TO 50	122
123	1		
	!	END IF	123
124	!	END IF	124
125	C		125
126	İc	RECALCULATE TOTAL HEAT WITH THE NEW TEMPERATURES AND PROCEED	126
127	İc		127
	ľ	CALL HEATS	
128		CALL HEATS	128
129	60	CONTINUE	129
130	C		130
131	İc	IF DEBUG IS ON, PRINT OUT A SUMMARY OF THE ITERATION	131
132	İc		132
	10		
133		ITER=ITER+1	133
134		IF (DEBUG.AND.NOTYET) THEN	134
135		WRITE (6,7) ITER, INNER	135
136	i	WRITE (6, '(1X, A, F7.2)') 'STOVE TEMPERATURE: ', T(0)-273.15	136
137		WRITE (6, '(1X, A, F8.2, A, F8.3)') 'TOTAL HEAT: ', QTOTAL,	137
138		2 ' TOTAL RESISTANCE: ', RTOTAL	138
139		WRITE (6,3)	139
140	Í	DO 70 I=1,N	140
			1.0

1 2	IF (MATL(I).EQ.'AIRSPACE'.AND.I.EQ.1) THEN WRITE (6,5) MATL(I),T(I)-273.15,R(I),Q(I),CF(I)	141 142
3	ELSE IF (MATL(I).EQ.'AIRSPACE'.AND.I.NE.1) THEN	142
4	WRITE (6,1) MATL(I),T(I)-273.15,R(I),Q(I),H(I),CF(I)	143
5	ELSE	145
6	WRITE (6,2) MATL(I),T(I)-273.15,R(I),Q(I)	146
7	END IF	147
8 70	CONTINUE	148
9	TDIFF=T(N)-TGOAL	149
0	WRITE (6,'(1X,A7,F10.3,A)') 'TDIFF: ',TDIFF,	150
1	2 CMET(TDIFF/TGOAL, EPS)	151
2	WRITE (6,6) 'QMET: ', (Q(I)-QTOTAL,	152
3	2 CMET((Q(I)-QTOTAL)/QTOTAL, EPS), I=1,N)	153
4 5	END IF TDIFF=T(N)-TGOAL	154 155
6	T(N)=TGOAL	155
7 0		157
8 C	IF ANY OF THE INDIVIDUAL HEATS HAVEN'T CONVERGED ON THE FINAL VALUE,	158
9 jc	CONTINUE WITH THE PROCESS UNTIL ALL ARE EQUAL	159
0 C		160
1	NOTYET=, FALSE.	161
2	DO 80 I=1,N	162
	IF (ABS((Q(I)-QTOTAL)/QTOTAL).GT.EPS) NOTYET=.TRUE.	163
8		164
	IF (ABS(TDIFF)/TGOAL.GT.EPS) NOTYET=.TRUE.	165
	IF (NOTYET) GO TO 40	166 167
İc	THE SOLUTION HAS BEEN FOUND, PRINT IT OUT	168
		169
	IF (.NOT.FULPRT) THEN	170
i	WRITE (6,9) VARVAL, (T(I)-273.15, I=0,N)	171
i	ELSE	172
	WRITE (6,4) TITLE	173
1	WRITE (6,'(1X,A,I3)') 'ITERATIONS: ',ITER	174
	WRITE (6,'(1X,3A,F8.3)') 'VARIED VARIABLE: ',VNAME,' = ',	175
	2 VARVAL	176
	WRITE (6, '(1X, A, F7.2)') 'STOVE TEMPERATURE: ', T(0)-273.15	177 178
	WRITE (6,'(1X,A,F8.2,A,F8.3)') 'TOTAL HEAT: ',QTOTAL, 2 'TOTAL RESISTANCE: ',RTOTAL	178
	WRITE (6,3)	180
i i	DO 90 I=1.N	181
i	IF (MATL(I).EQ, 'AIRSPACE'.AND.I.EQ,1) THEN	182
İ	WRITE (6,5) MATL(I),T(I)-273.15,R(I),Q(I),Q(I)	183
	ELSE IF (MATL(I).EQ.'AIRSPACE'.AND.I.NE.1) THEN	184
	QCONV=(T(I-1)-T(I))/CONV(I)	185
	QRAD = (T(I-1)-T(I))/RAD(I)	186
	WRITE (6,1) MATL(I),T(I)-273.15,R(I),Q(I),QCONV,QRAD	187
	ELSE	188 189
	WRITE (6,2) MATL(I),T(I)-273.15,R(I),Q(I) END IF	199
90		191
	WRITE (6,4) 'TEMPERATURES ARE OF COOLER SIDE OF NODE'	192
i	END IF	193
11		194
	GO TO 10	195
	END IF	196
	STOP	197
12	FORMAT (1X, A10, 2X, F10, 2, 3X, F10, 3, 2X, F10, 3, 3X, F10, 3, 3X, F10, 3)	198 199
2	FORMAT (1X,A10,2X,F10.2,3X,F10.3,2X,F10.3) FORMAT ('OMATERIAL TEMPERATURE RESISTANCE HEAT CONV	200
1	2ECTION RADIATION',/)	201
4	FORMAT ('0',A)	202
5	FORMAT (1X, A10, 2X, F10.2, 3X, F10.3, 2X, F10.3, 16X, F10.3)	203
6	FORMAT (1X, A7, 4(F10.3, A5, :), /, 10(8X, 4(F10.3, A5, :), /))	204
7	FORMAT ('OITERATION: ', I3,' INNER LOOP: ', I3)	205
8	FORMAT (' ',A10,20(A7,:))	206
9	FORMAT (' ',F10.3,20(F6.1,1X,:))	207
1		208
1		209
.0	END	210

1 2 C	SUBROUTINE INPUT (THEEND)	
2 C 3 C	000000	
4 C	0000	
5 C	000000 000000 0000 00000 00000 00000	
6 C	9999 9 999 9 999 9 999 9 999 9 999 9 9999	
7 C		
	8899 9 999 808989 909 9 9099	
9 C 0 C	99999 9999999 999999 999999 9999999999	
2 0	PURPOSE: INPUTS DATA DESCRIBING THE STOVE / WALL PROTECTION SYSTEM	
з (с	TO BE MODELED	
4 C		
5	INCLUDE 'STOVE.CMN'	
6 7	PARAMETER (NVAR=8)	
8	CHARACTER VAR(NVAR)*6, IN*80, KEYWD*80 INTEGER VLEN(NVAR)	
9	LOGICAL THEEND, HAVEY	
οİ	DATA (VAR(I), VLEN(I), I=1, NVAR) /'XWALL ',5,'YWALL ',5,'TSTOVE',6,	
1	2 'THICK ',5,'WIDTH ',5,'HEIGHT',6,'K ',1,'EMMIS ',5/	
2 C		
3 C	LOOK FOR A KEYWORD OR END OF FILE	
4 C 5	THEEND=.TRUE.	
6	HAVEX=.FALSE.	
7	HAVEY=.FALSE.	
8	TITLE='STOVE / WALL PROTECTOR HEAT TRANSFER MODEL'	
9	N=0	
0	IVAR=0	
1 2 10	VNAME=''	
3	READ (5,'(A80)',END=30) IN THEEND=.FALSE.	
4	IS=INDEX(IN,': ')	
5	IF (IS.GT.1) THEN	
6	KEYWD=IN(1:IS-1)	
7	IF (KEYWD.NE.'END') THEN	
8 C 9 C	XWALL X POSITION OF POINT ON THE WALL	
	ANALE A TOSTITON OF TOTAL ON THE WALL	
1	IF (KEYWD.EQ.'XWALL') THEN	
2	ICHR=IS+2	
3	XWALL=FVAL(IN, ICHR)	
4	HAVEX=. TRUE.	
5 C 6 C	YWALL Y POSITION OF POINT ON THE WALL	
6 C 7 C	TREE I LOSTION OF FOINT ON THE WALL	
8	ELSE IF (KEYWD.EQ.'YWALL') THEN	
9	ICHR=IS+2	
0	YWALL=FVAL(IN,ICHR)	
1	HAVEY=. TRUE.	
2 C 3 C	ATCOACE AN ATO COACE BETWEEN THE COLT DECTORS	
3 C 4 C	AIRSPACE AN AIR SPACE BETWEEN TWO SOLID PROTECTORS	
5	ELSE IF (KEYWD.EQ.'AIRSPACE') THEN	
6	N=N+1	
7	MATL(N)='AIRSPACE'	
8	ICHR=IS+2	
9 0	V1=FVAL(IN, ICHR) V2=FVAL(IN, ICHR)	
1	V3=FVAL(IN, ICHR)	
2	IF (V2.EQ.0AND.V3.EQ.0.) THEN	
3	T(N)=V1	
	EMMIS(N)=1.0	
4		
5	HEIGHT(N)=0.	
5 6	ELSE	
5 6 7	ELSE L(N)=V1	
5 6	ELSE	

		HEIGHT(N)=HEIGHT(N-1) WIDTH(N)=WIDTH(N-1)	
		END IF	
С			
С	STOVE	THE HOT STOVE SURFACE	
С			
	H	ELSE IF (KEYWD.EQ.'STOVE') THEN	
		MATL(0)='STOVE'	
		ICHR=IS+2	
		EMMIS(0)=FVAL(IN,ICHR) IF (EMMIS(0).EQ.0.) EMMIS(N)=1.0	
		HEIGHT(0)=FVAL(IN,ICHR)	
		WIDTH(0)=FVAL(IN, ICHR)	ł
		T(0)=FVAL(IN, ICHR)	1 I
с			
С	FOR	. SPECIFIES A SERIES OF CALCULATIONS TO BE DONE	i
c			i
	1	ELSE IF (KEYWD.EQ.'FOR') THEN	į.
		IVAR=0	l.
		ISUB=0	
		DO 20 I=1,NVAR	
1		J=INDEX(IN,VAR(I)(1:VLEN(I)))	
		IF (J.NE.O.AND.IN(J-1:J-1).EQ.'') IVAR=I	
20		CONTINUE	
		IR=0	
		ICHR=IS+2	
		IF (IVAR.EQ.0) THEN	
1		WRITE (6,1) IN	
C		GO TO 10	
lC IC	TE TT.	S A VARIABLE WITH SUBSCRIPT, MAKE SURE ONE'S THERE	
lc	IL II	S & VARIABLE WITH SUBSCRIPT, PARE SURE ONE S THERE	
		ELSE IF (IVAR.GE.4) THEN	
1		IL=INDEX(IN,'(')	
i i		IR=INDEX(IN,')')	
i i		IF (IL.EQ.O.OR.IR.EQ.O.OR.IL.GT.IR) THEN	i
Í		WRITE (6,2) IN	i
į –		GO TO 10	i
i i		END IF	i i
		ISUB=FVAL(IN, ICHR)	
1		END IF	
		ICHR=IR+1	
		VLOWER=FVAL(IN, ICHR)	
		VUPPER=FVAL(IN, ICHR)	
		VINCR=FVAL(IN, ICHR)	
		IF ((VLOWER.NE.VUPPER.AND.VINCR.EQ.0)	
	2	.OR. (VLOWER.EQ. VUPPER.AND.VINCR.NE.0)	
	3	.OR. (VUPPER.GT. VLOWER, AND. VINCR.LT.0)	
	4	.OR. (VUPPER.LT. VLOWER.AND.VINCR.GT.0)) THEN	
		WRITE (6,4) IN	
		GO TO 10	
		END IF	
		VNAME=VAR(IVAR) $VNAME(VIEN(IVAR)+1 \cdot VIEN(IVAR)+1+TP-TI)=IN(II \cdot TR)$	
C		VNAME(VLEN(IVAR)+1:VLEN(IVAR)+1+IR-IL)=IN(IL:IR)	
IC IC	DEBUG	TURN DEBUG PRINT ON OR OFF	
c	00000		
Ĭ		ELSE IF (KEYWD.EQ.'DEBUG') THEN	
		IF (INDEX(IN, 'OFF').NE.0) DEBUG=.FALSE.	
		IF (INDEX(IN, 'ON').NE.0) DEBUG=.TRUE.	
İc			
c	PRINTO	UT SPECIFY LEVEL OF PRINTOUT	
c			
		ELSE IF (KEYWD.EQ.'PRINTOUT') THEN	
1		IF (INDEX(IN, 'FULL').NE.0) FULPRT=.TRUE.	
		IF (INDEX(IN, 'FULL').EQ.0) FULPRT=.FALSE.	
с			
C C C	TITLE	SPECIFY A TITLE FOR THE PRINTOUT	

IF IT'S NOT ONE OF THE RECOGNIZED KEYWORDS, ASSUME A SOLID PROTECTOR
ELSE
N=N+1
ICHR=IS+2
MATL(N)=IN(1:IS-1) L(N)=FVAL(IN,ICHR)
HEIGHT(N) = FVAL(IN, ICHR)
WIDTH(N)=FVAL(IN, ICHR)
K(N)=FVAL(IN, ICHR)
EMMIS(N)=FVAL(IN, ICHR)
T(N)=FVAL(IN, ICHR)
IF (L(N).EQ.0OR.HEIGHT(N).EQ.0OR.WIDTH(N).EQ.0OR. K(N).EQ.0OR.EMMIS(N).EQ.0.) THEN
WRITE (6,3) IN
N=N-1
GO TO 10
END IF
END IF
GO TO 10 END IF
END IF
The second
DATA HAS BEEN READ IN, CHECK CONSISTENCY OF DATA INPUT
IF (THEEND) THEN RETURN
ELSE IF (N.LE.1) THEN
WRITE (6,*) 'DATA INPUT ERROR, TOO FEW NODES SPECIFIED.'
ELSE
IF (DEBUG.AND.IVAR.NE.O) THEN
IF (IVAR.LT.4) THEN WRITE (6.5) VAR(IVAR) VICHER WIRDER VINCE
WRITE (6,5) VAR(IVAR), VLOWER, VUPPER, VINCR ELSE
WRITE (6,6) VAR(IVAR), ISUB, VLOWER, VUPPER, VINCR
END IF
END IF
DO 40 I=1,N
IF (DEBUG) CALL PSUM(I) IF (MATL(I).EQ.'AIRSPACE') THEN
IF ((L(I).LE.0AND.I.NE.N).OR.(HEIGHT(I).LE.0AND.I.NE.N)
2 .OR. (HEIGHT(I).NE.OAND.I.EQ.N).OR.EMMIS(I).LE.O.) THEN
WRITE (6, '(1X, A, I3)') 'INCORRECTLY SPECIFIED AIR SPACE.', I
STOP 'INPUT DATA ERRORS, AIR SPACE'
END IF ELSE
IF (L(I).LE.0OR.HEIGHT(I).LE.0OR.WIDTH(I).LE.0OR.
2 K(I).LE.OOR.EMMIS(I).LE.O.) THEN
WRITE (6, '(1X, A, I3)') 'INCORRECTLY SPECIFIED PROTECTOR.', I
STOP 'INPUT DATA ERRORS, SOLID PROTECTOR'
END IF END IF
CONTINUE
IF (XWALL.LT.OOR.YWALL.LT.O.) THEN
WRITE (6,*) 'INCORRECTLY SPECIFIED POINT ON WALL.'
STOP 'DATA INPUT ERRORS, XWALL & YWALL'
END IF
IF (T(0).LE.T(N)) THEN WRITE (6,*) 'INCORRECTLY SPECIFIED ENDPOINT TEMPERATURES.'
STOP 'DATA INPUT ERRORS, T(0) & T(N)'
END IF
IF (T(0).LE.0OR.WIDTH(0).LE.0OR.HEIGHT(0).LE.0OR.EMMIS(0)
2 .LE.O.) THEN
WRITE (6,*) 'INCORRECTLY SPECIFIED STOVE PARAMETERS.'
STOP 'DATA INPUT ERRORS, STOVE'
END IF END IF
UND II

421 422		ZSTOVE=L(1) HSTOVE=HEIGHT(0)	21
423		WSTOVE=WIDTH(0)	21
424	İc		21
425	C	IF NOT POSITION HAS BEEN SPECIFIED, USE MIDPOINT OF STOVE	21
426 427	C		21
428		IF (.NOT. HAVEX) THEN XWALL=WSTOVE/2.	21 21
429	i	END IF	21
430	!	IF (.NOT. HAVEY) THEN	22
431 432	-	YWALL=HSTOVE/2.	22 22
433	c		22
434	İc	IF NO INCREMENT HAS BEEN SPECIFIED, MAKE ONE UP	22
435	C		22
436 437	-	IF (IVAR.EQ.0) THEN IVAR=1	22 22
438	i	VLOWER=XWALL	22
439	j	VUPPER=XWALL	22
440	!	VINCR=1.0	23
441 442	c	END IF	23 23
443	c	PRINT OUT A DESCRIPTION OF THE STOVE / WALL SYSTEM AS SPECIFIED	23
444	c		23
445	-	WRITE (6,11) TITLE, N+1, XWALL, YWALL	23
446 447	1	IF (IVAR.GT.0.AND.IVAR.LT.4) THEN WRITE (6,5) VAR(IVAR), VLOWER, VUPPER, VINCR	23 23
448	ł –	ELSE IF (IVAR.GT.4) THEN	23
449	1	WRITE (6,6) VAR(IVAR), ISUB, VLOWER, VUPPER, VINCR	23
450 451	{	END IF	24
452	ł	WRITE (6,12) DO 50 I=0.N	24 24
453	į	IF (I.EQ.O.OR.I.EQ.N) THEN	24
454	!	IF (MATL(I).EQ.'STOVE') THEN	24
455 456		WRITE (6,13) I,MATL(I),HEIGHT(I),WIDTH(I),EMMIS(I),T(I)-273.15 ELSE IF (MATL(I).EQ.'AIRSPACE') THEN	24 24
457	i	WRITE (6,14) I,MATL(I),L(I),EMMIS(I),T(I)-273.15	24
4 58	ļ	ELSE	24
459	-	WRITE (6,15) I, MATL(I), HEIGHT(I), WIDTH(I), L(I), EMMIS(I), K(I),	24
460 461		2 T(I)-273.15 END IF	25
462	i	ELSE	25
463		IF (MATL(I).EQ.'STOVE') THEN	25
464 465		WRITE (6,13) I,MATL(I),HEIGHT(I),WIDTH(I),EMMIS(I) ELSE IF (MATL(I),EQ.'AIRSPACE') THEN	25
465	1	WRITE (6,14) I, MATL(I), L(I), EMMIS(I)	25
467	i	ELSE	25
468	!	WRITE (6,15) I,MATL(I),HEIGHT(I),WIDTH(I),L(I),EMMIS(I),K(I)	25
469 470	1	END IF END IF	25 26
471	50	CONTINUE	26
472		RETURN	26
473	C		26
474 475	1	FORMAT ('OSYNTAX ERROR ON ''FOR'' STATEMENT, ILLEGAL OR NO VARIABL 2E SPECIFIED.',/,' ',A79,//)	26 26
475	2	FORMAT ('OSYNTAX ERROR ON ''FOR'' STATEMENT, SUBSCRIPT REQUIRED FO	26
477		2R VARIABLE SPECIFIED.',/,' ',A79,//)	26
478	3	FORMAT ('OSYNTAX ERROR ON STATEMENT, UNRECOGNIZED KEYWORD.',/,	26
479 480	4	2 ' ',A79,//) FORMAT ('OSYNTAX ERROR ON ''FOR'' STATEMENT, RANGE AND INCREMENT I	26 27
481		2NCONSISTENT.',/,' ',A79,//)	27
482	5	FORMAT ('OSERIES OF CALCULATIONS FOR VARIABLE ', A, ': ', 3F10.3)	27
483	6	FORMAT ('OSERIES OF CALCULATIONS FOR VARIABLE ',A,'(',I2,	27
484 485		2 '): ',3F10.3) FORMAT ('1',A,//,	27 27
486		2 ' NUMBER OF NODES IN CALCULATION: ', I2, /, ' POINT ON WALL: (X):',	27
487	1	3 F10.3, T41, '(Y):', F10.3)	27
488	12	FORMAT ('OI MATERIAL HEIGHT WIDTH THICK EMISS	27 27
489 490	1	2 K TEMPERATURE',/, 3 ' (m) (m) (m)	27
	1		

491	1	4 (W/m K) (°C)',/,' ',78('-'),/)	281
492	13	FORMAT (1X, I2, 2X, A, T26, 1X, F6.2, T35, F6.2, T51, F6.2, T70, F7.2)	282
493	14	FORMAT (1X, I2, 2X, A, T43, F6.2, T51, F6.2, T70, F7.2)	283
494	15	FORMAT (1X, I2, 2X, A, T26, 1X, 4(F6.2, 2X), F8.3, 2X, F8.2)	284
495	1	END	285

.

496		DOUBLE PRECISION FUNCTION FVAL (IN, ICHR)	1
	с	DODDE INDIDION TONOTION I VAL (IN, ICHK)	2
	lc	888 8888	3
	c	999 9999	4
500	c	8889 8899999 8 889999	5
501	С	000 0 000 0 0 000 0000000	6
502	С	999 9999999 9 999 9999	7
	С	000 0000 0000 0000	8
	С	888 8888 888 888 888 888 888 888 888 8	9
	C		10
		ARGUMENTS: IN: STRING CONTAINING (MAYBE) NUMBER	11
	IC IC	ICHR: (INPUT) BEGINNING CHARACTER POSITION (OUTPUT) NEXT CHARACTER POSITION	12 13
	c	(OUTFOI) MEAT CHARACTER FOSTITION	13
	lc	PURPOSE: DECODE NEXT NUMBER IN STRING AS A DOUBLE PRECISION VALUE	15
	ic		16
512	i	IMPLICIT DOUBLE PRECISION (A-H,O-Z)	17
513	İ	CHARACTER IN*(*), FORMAT*10	18
514		IL=LEN(IN)	19
515		IFIRST=ICHR	20
516		DO 20 I≠IFIRST,IL	21
517		IF ((IN(I:I).GE.'0'.AND.IN(I:I).LE.'9').OR.IN(I:I).EQ.'.'	22
518 519		2 .OR. IN(I:I).EQ. '+'.OR. IN(I:I).EQ. '-') THEN	23 24
	C C	THERE IS A NUMBER ON THE CARD, FIND OUT WHAT IT IS	24
	c	THE IS A NOLDER ON THE GEO, THE OUT WHAT IT IS	26
522	i -	DO 10 J=I,IL	27
523	С		28
	С	IF WE FIND THE END OF THE NUMBER, READ IT FROM THE LINE	29
	С		30
526		IF ((IN(J:J).LT.'0'.OR.IN(J:J).GT.'9').AND.IN(J:J).NE.'.'	31 32
527 528	1	2 .AND.IN(J:J).NE.'+'.AND.IN(J:J).NE.'-') THEN WRITE (FORMAT,30) J-I	32
529	1	READ (IN(I:J-1),FORMAT) VAL	34
530	i	FVAL=VAL	35
531	Í	ICHR=J	36
532		RETURN	37
533	!	END IF	38
	10	CONTINUE	39
	IC		40
		IF WE GET TO THE END OF THE LINE WITHOUT FINDING END OF NUMBER,	41
	lc Ic	JUST READ THE NUMBER	43
539	ľ	WRITE (FORMAT,30) IL-I+1	44
540	i	READ (IN(I:IL), FORMAT) VAL	45
541	i	FVAL=VAL	46
542	i	ICHR=J	47
543		RETURN	48
544		END IF	49
	20	CONTINUE	50
	C		51
547	lc lc	IF NO NUMBER IS ON THE CARD, JUST RETURN A 0.	53
548 549		FVAL=0.	54
550	i	RETURN	55
551	с		56
552	30	FORMAT ('(F',I2.2,'.0)')	57
553		END	58

554		SUBROU	JTINI	E HEATS						1
555	c									2
556	C	0000	0							3
557	C	0000	0			Ø				4
558	C	0000	0	000000	000000	000000	000000			5
559	C	000000	999	0 000	0	0000	000			6
560	C	0000	0	000000	000000	0000	000000			7
561	C	0000	0	0	0 000	0000	000			8
562	C	0000	0	000000	000000	0000	000000			9
563	C									10
564	C	ARGUMENT	CS :	NONE						11
565	C									12
566	C	PURPOSE	: C/	ALCULATES	TOTAL HEAT	AND TOTAL	RESISTANCE	THROUGH WALL		13
567	C		P	ROTECTORS						14
568	C I									15
569		INCLU	DE 's	STOVE . CMN'					1	16
570	C									17
571	C	JUST SUR	1 UP	RESISTANC	ES TO MAKE	UP TOTAL	RESISTANCE			18
572	C									19
573		RTOTAL	L=0.							20
574		DO 10	I=1	, N						21
575	1	CALL I	HEAT	(I)						22
576	10	RTOTAL	L=RT	OTAL+R(I)						23
577	C									24
578	C	TOTAL H	EAT	IS JUST DE	LTA T / TO	TAL RESIS	TANCE			25
579	C									26
580	1	QTOTA	L=(T	(0)-T(N))/	RTOTAL					27
581	1	RETUR	N							28
582	1	END								29

•

583		SUBROUTINE HEAT(I)	1
	C		2
	C	0 0000	3
	C	0 0000	4
	C	000000 000000 000000 000000	5
	C	0000 0 000 0 00000	6
	C	0000 000000 000000 00000	7
590	C	0000 0000 0000 0000	8
	C	0000 0 000000 000000 00000 0 0000	9
592	C		10
593		ARGUMENTS: I: ELEMENT NUMBER	11
594	lc Ic		12
595 596	lc	PURPOSE: CALCULATES HEAT THROUGH ELEMENT NUMBER I	13
597		INCLUDE 'STOVE.CMN'	14 15
598	ł	DATA SIGMA / 5.67D-8 /	16
599	ł	IF (MATL(I).NE.'AIRSPACE') THEN	10
600	lc		18
601	c	MATERIAL IS A SOLID, CONDUCTION ONLY	19
602	İc		20
603	1	R(I)=L(I)/K(I)	21
604	i	ELSE IF (MATL(I).EQ.'AIRSPACE'.AND.I.EQ.1) THEN	22
605	İc		23
606	jc –	MATERIAL IS AND AIRSPACE NEXT TO STOVE, CALCULATE FOR POINT ON WALL	24
607	C		25
608		XNOTS=XWALL-(XSTOVE-WSTOVE*.5)	26
609	ļ	YNOTS=YWALL-YSTOVE	27
610		ZNOTS=ZSTOVE	28
611	!	CF(I)=CFIGS(XNOTS, YNOTS, ZNOTS)-CFIGS(XNOTS-WSTOVE, YNOTS, ZNOTS)	29
612		2 +CFIGS(XNOTS-WSTOVE, YNOTS-HSTOVE, ZNOTS)	30
613	ļ –	3 -CFIGS(XNOTS, YNOTS-HSTOVE, ZNOTS)	31
614		RAD(I)=1./(CF(I)*SIGMA*EMMIS(I)*(T(I-1)**2+T(I)**2) $2 *(T(I-1)+T(I)))$	32 33
615 616	1	2 *(T(I-1)+T(I))) RMTEMP=293.15	34
617	i i	RLOSS = (T(I-1)-T(I))/((T(I)) + 4-RMTEMP + 4) + SIGMA + EMMIS(I)	35
618	1	2 *(1-CF(I)))	36
619	i –	R(I)=1./(1./RAD(I)-1./RLOSS)	37
620	i i	ELSE IF (MATL(I).EQ.'AIRSPACE'.AND.I.NE.N) THEN	38
621	jc		39
622	C	MATERIAL IS AN AIRSPACE, BUT NOT NEXT TO STOVE	40
623	C		41
624		CF(I)=CFIGP(HEIGHT(I),WIDTH(I),L(I))	42
625	ļ	H(I)=HCONV(T(I-1),T(I),HEIGHT(I))	43
626		CONV(I)=1./H(I)	44
627	Į	RAD(I)=1./(CF(I)*SIGMA*EMMIS(I)*(T(I-1)**2+T(I)**2)	45
628	1	2 $*(T(I-1)+T(I)))$	46
629	!	R(I)=1./(1./CONV(I)+1./RAD(I))	47
630		ELSE	48 49
631 632	lc lc	MATERIAL IS AN AIRSPACE AND LAST ELEMENT THE GREAT OUTDOORS	49 50
633	C	MATERIAL IS AN AIRSPACE AND LAST ELEMENT THE GREAT OUTDOORS	51
634	ľ	CF(I)=1.	52
635	i	H(I)=HCONV(T(I-1),T(I),HEIGHT(I))	53
636	i	CONV(I)=1./H(I)	54
637	i	RAD(I)=1./(CF(I)*SIGMA*EMMIS(I)*(T(I-1)**2+T(I)**2)	55
638	Í	2 *(T(I-1)+T(I)))	56
639		R(I)=1./(1./CONV(I)+1./RAD(I))	57
640		END IF	58
641		Q(I)=(T(I-1)-T(I))/R(I)	59
642		RETURN	60
643	ł	END	61

644		DOUBLE PRECISION F	UNCTION CF	IGS (A,B,C)			
645	c						
646	c	000000000000000000000000000000000000000	0000				
647	C	0 0000 0		e			
648	C	000000 0000 0	0000	000000	000000		
649	C	0000 0	6666	000000	000		
650	C	8888 8888 8	8888	6	000000		
651	C	8888 8888 8	0000	00000000	000		
652	C	0000 0000000 00000	0000	0 0000	000000		
653	C			00000000			
654	C						
655	C		DTH OF REC				
6 56	C		EIGHT OF RE				
657	C	C: D1	ISTANCE TO	POINT OF CAL	CULATION		
658	C						
659	C	PURPOSE: CALCULATES				A PLANE	
660	C	ELEMENT TO	A PLANE E	ARALLEL REC	ANGLE.		
661	C						
662	C	SOURCE: THERMAL RAI	DIATION HEA	T TRANSFER,	SEIGEL & HOWE	LL.	
663	C						
664		IMPLICIT DOUBLE PR	RECISION (A	A-H,O-Z)			
665	1	PI=3.14159					
666		X=A/C					
667		Y=B/C					
668		CFIGS=1./(2*PI)*()			SQRT(1+X**2))		
669		2 + Y/SQRT(1+Y**2)	ATAN (X/SQF	RT(1+Y**2)))			
670		RETURN					
671		END					

672	I.	DOUBLE PRECISION	FUNCTION CFI	GP (A.B.C)		1	1
673	İc			,-,-,-,			2
674	İc	0000 0000000 0000	0000				3
675	İc	0 0000 0		0			4
676	İc	00000 0000 0	0000 0	000000	000000	i i	5
677	İC	0000	0000	000000	000 0		6
678	C	0 0000 0000	0000	Ø	000 0		7
679	C	0000 0000 0	0000	00000000	000000		8
680	C	000000000000000000000000000000000000000	0000	0000 0	@@ @		9
681	C			000000000	000		10
682	C						11
683	C	ARGUMENTS: A: W	IDTH OF RECT.	ANGLE			12
684	C	В: Н	EIGHT OF REC	TANGLE			13
685	C	C: D	ISTANCE BETW	EEN RECTANG	LES		14
686	C						15
687	C	PURPOSE: CALCULATE	S RADIATION	CONFIGURATI	ON FACTOR FOR TWO		16
688	C	IDENTICAL	, PARALLEL,	DIRECTLY OP	POSED RECTANGLES.		17
689	C						18
690	C	SOURCE: THERMAL RA	DIATION HEAT	TRANSFER,	SEIGEL & HOWELL.		19
691	C						20
692		IMPLICIT DOUBLE F	RECISION (A-	H,O-Z)			21
693	1	PI=3.14159					22
694		X=A/C					23
695	1	Y=B/C					24
696		CFIGP=2./(PI*X*Y)	*(LOG(((1+X*	X)*(1+Y*Y))	/(1+X*X+Y*Y))**0.5 +		25
697		2 X*SQRT(1+Y*Y)*AT	AN (X/SQRT(1+	Y*Y)) +			26
698		3 Y*SQRT(1+X*X)*AT	AN(Y/SQRT(1+	X*X)) -			27
699		4 X*ATAN(X) - Y*AT	AN(Y))				28
700		RETURN					29
701		END					30

702	1	DOUBLE PRECISION FUNCTION HCONV(T1,T2,L)
703	C	
704	C	0 0000
705	C	0 000
706	C	0 000 0 000000 000000 000000 0 00000
707	C	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
708	C	9 999 9 999 9 999
709	C	9999 9 9999 9 9999 9 9999 9 9999 9 9999
710	C	00 00 0 00000 0 00000 0 0000
711	C	
712	C	ARGUMENTS: T1: TEMPERATURE OF HOTTER SURFACE
713	C	T2: TEMPERATURE OF COOLER SURFACE
714	C	L: HEIGHT OF SURFACES
715	C	
716	C	PURPOSE: CALCULATES FREE CONVECTION HEAT TRANSFER COEFFICIENT FOR
717	C	A VERTICAL SURFACE.
718	C	
719	C	SOURCE: FUNDAMENTALS OF HEAT TRANSFER, INCORPERA & DEWITT.
720	C	
721		IMPLICIT DOUBLE PRECISION (A-H,O-Z)
722		DOUBLE PRECISION K, NU, L, NUSELT
723		DIMENSION C(3,5)
724		DATA ((C(I,J),J=1,5),I=1,3) /
725	!	2381021E-2, .132063E-3,117332E-6, .687499E-10,127680E-13
726		3,167333E-4, .143076E-6,249135E-10, .781850E-13,127693E-16
727	Į –	4,501195E-5, .468550E-7, .881329E-10,117315E-13, .307192E-17
728		5 /
729	1	TF = (T1 + T2)/2
730		DELTAT=(T1-T2)
731	1	K=C(1,1)+C(1,2)*TF+C(1,3)*TF*TF+C(1,4)*TF**3+C(1,5)*TF**4
732		ALPHA=C(2,1)+C(2,2)*TF+C(2,3)*TF*TF+C(2,4)*TF**3+C(2,5)*TF**4
733	1	NU=C(3,1)+C(3,2)*TF+C(3,3)*TF*TF+C(3,4)*TF**3+C(3,5)*TF**4
734		PR=NU/ALPHA
735		RA=9.8*(1./TF)*ABS(DELTAT)*L**3/(NU*ALPHA)
736	1	NUSELT=(0.825+0.387*RA**(1./6.)/(1.+(0.492/PR)**(9./16.))
737	1	2 **(8./27.))**2
738	1	HCONV=NUSELT*K/L
739	1	RETURN
740		END

 $\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\9\\20\\22\\23\\24\\25\\26\\27\\28\\9\\31\\32\\33\\4\\35\\6\\37\\38\\39\end{array}$

741		CHARACTER*5 FUNCTION CMET(VALUE, EPS)	
742	C		
743	C	0000000	
744	C	9 9999 9	
745	C	000000 000000 000000 000000 000000 00000	
746	C	9889 9889 9889 9889 9	
747	C	9999 99999 99999 99999 99999 9	
748	C	2223 3 2223 3 2223 3 2223 3 2223 3 2223 2 2223 2 2223 2 2223 2 2223 2 2223 2 2223 2 2223 2 2223 2 2223 2 2223 2	
749	C	6000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
750	C		
751	C	ARGUMENTS: VALUE: NUMBER TO BE EVALUATED	
752	C	EPS: ACCEPTANCE CRITERION FOR VALUE	
753	C		
754	C	PURPOSE: FUNCTIONS RETURNS A CHARACTER INDICATION OF WHETHER THE	
755	C	VALUE IS WITHIN LIMITS. USED FOR DEBUG PRINTOUT	
756	C		
757		IMPLICIT DOUBLE PRECISION (A-H, O-Z)	
758	1	IF (ABS(VALUE).LE.EPS) THEN	
759		CMET='(IN) '	
760		ELSE	
761	1	CMET='(OUT)'	
762		END IF	
763	1	RETURN	
764		END	

765	1	SUBROUTINE PSUM(I)				
755	C					
757	C	8686688				
758	C	6666 6				
769	C	6666 6 666666 666 6 6666666				
770	C	66666666 666 666 6 6 6 6 6 6 6 6 6				
771	C	8000 000000 000 0 0 000				
772	C	8886 686 886 6 6 6 886				
773	C	255 3 3 555536 255538 255538 25553				
771	C					
775	C	ARGUMENTS: I: SURFACE NUMBER FOR SUMMARY FRINTOUT				
776	C					
777	C	PURPOSE: FRINTS OUT ALL THE VARIABLES IN THE COMMON BLOCK. USED				
775	C	FOR DEBUG FRINTOUT.				
779	C	and the second to				
7 8-0	1	INCLUDE 'STOVE.QAN'				
761	ļ	WRITE (5,10) I, MATL(I), I(I), R(I), L(I), K(I), E(I), CF(I), EMMIS(I),				
7.5.2	2 Q(I), CONV(I), RAD(I), HEIGHI(I), WIDIE(I), XSTOVE, YSTOVE, ZSTOVE,					
753	3 WSTOVE, HSTOVE, MMALL, YMALL, RICIAL, QIOTAL, N					
754		RETURN				
785	0					
786	10					
787	2 ' TEMPERATURE:',F10.3,T41,'RESISTANCE:',F10.3,/, 3 ' THICKNESS:',F10.3,T41,'THERMAL CONDUCTIVITY:',E12.5,/,					
788	Ł					
790	ł.	4 ' E:', P10.3, T41, 'CONFIGURATION FACTOR:', F10.3, /, 5 ' EMISSIVITY:', F10.3, T41, 'INDIVIDUAL EEAT:', F10.3, /,				
791	ł –	5 ' CONV. RESISTANCE:', F10.3.141.'RAD. RESISTANCE:', F10.3./.				
792	1	7 ' EEIGET: ',F10.3,I41, 'WIDTE: ',F10.3,/.				
7.53	8 ' XSTOVE: ', F10.3, T31. 'YSTOVE: ', F10.3, T51. 'ZSTOVE: ', F10.3, /,					
794	9 ' WSTOVE:',F10.3,T31, 'ESTOVE:',F10.3,/,					
795						
795	i	1 ' RTOTAL: '.F10.3.T31. 'OTOTAL: '.F10.3.T61.'N: '.I10)				
797		END				

799 C 22 800 C @@@@@@@@ @@@@ 3 801 C @@@@@@@ @@@@@@ 3 802 C @@@@@@@ @@@@@@@@@@@@@@@@ 3 802 C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	798	1	CHARACTER*60 FUNCTION PMATL(MATL1,MATL2)		1
801 C 6000 6 6000 4 802 C 6000 6 6000 5 803 C 6000 6 6000 6 5 803 C 6000 6 6000 6 6 6 6 803 C 6000 6 <t< td=""><td>799</td><td>lc</td><td></td><td></td><td>2</td></t<>	799	lc			2
802 C 9698 9696666 968666 968 5 803 C 96866666 6 9686 668 6 804 C 9686 6 9686 986 7 805 C 8686 6 9866 9866 88 806 C 9686 6 9866 98 807 C 10 10 808 C 9686 9866 98 807 C 10 11 11 808 C 9866 98 98 11 809 C ARGUMENTS: MATL1: DESCRIPTION OF MATERIAL CLOSER TO APPLIANCE 12 810 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA 14 811 C 11 14 14 812 C FURPOSE: CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR 15 813 C FNATL=MATL1 16 16 814 C 17 16 16 817 DO 10 I=40, 1, -1 12	800	C	999999999999999999999999999999999999999		3
803 C 969266080 8 9606 9606 9606 9606 7 804 C 6868 6 6668 9668 9668 9668 9 806 C 6680 6 6686 6668 9 9 806 C 6680 6 6686 6668 9 9 807 C 10 10 10 10 10 10 806 C 6686 6668 6668 6668 9 10 806 C ARGUMENTS: MATL1: DESCRIPTION OF MATERIAL CLOSER TO APPLIANCE 12 811 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE 13 811 C FRINTOUT 14 14 14 14 812 C FURPOSE: CREATER A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR 15 15 814 C 17 16 17 16 17 814 C 17 10 120 16 17	801	İc	9999 9 9999		4
804 C 8082 8 8 8 7 805 C 8806 6 8 8 8 806 C 8806 6 8 8 8 806 C 8806 6 8 8 8 807 C 10 11 11 11 809 C ARGUMENTS: MATL1: DESCRIPTION OF MATERIAL CLOSER TO APPLIANCE 12 810 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE 13 811 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE 13 811 C FRINTOUT 14 14 14 812 C PURPOSE: CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR 15 813 C FRINTOUT 16 14 16 814 C IT 17 18 17 16 817 DO 10 140,1,-1	802	İc	999 999999 999999 999999 999999 9 99999		5
805 C @@@@ @ @@@ @@@@ @@@@ 8 806 C @@@@ @ @@@ @@@@ @@@ 9 807 C 10 10 10 808 C 11 10 11 809 C ARGUMENTS: MATL1: DESCRIPTION OF MATERIAL CLOSER TO APPLIANCE 12 810 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE 13 811 C PRIPOSE: CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR 15 813 C PRINTOUT 16 14 814 C 17 15 17 815 CHARACTER*40 MATL1, MATL2 18 18 16 814 C 17 19 17 20 10 14 19 815 CHARACTER*40 MATL1, MATL2 18 18 11 19 17 120 12 18 18 18 18 14 12 18 18 12 18 12 12 12 12 12 12 12 12	803	İc	999 9999 9 9999 9 99999 9 9999999		6
805 C @@@@ @ @@@ @@@@ @@@@ 8 806 C @@@@ @ @@@ @@@@ @@@@ 9 807 C 10 808 C 10 809 C ARGUMENTS: MATL1: DESCRIPTION OF MATERIAL CLOSER TO APPLIANCE 12 810 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE 13 811 C Image: Composition of material function of the material formation of the materi forma	804	İc	989 9999 99999 99999 999 9 9999		7
807 C 10 808 C 11 809 C ARGUMENTS: MATL1: DESCRIPTION OF MATERIAL CLOSER TO APPLIANCE 12 810 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE 13 811 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE 14 811 C 14 14 812 C FURPOSE: CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR 15 813 C PRINTOUT 16 814 C 17 16 815 CHARACTER*40 MATL1, MATL2 18 18 816 PMATL=MATL1 19 19 817 DO 10 T=40,1,-1 20 20 818 IF (MATL1(I:I).NE.' ') THEN 21 22 820 GO TO 20 23 23 821 END IF 24 25 822 10 CONTINUE 25 823 PMATL=' ' 26 26 824 20 DO 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.' ') THEN	805	İc			8
808 C 11 809 C ARGUMENTS: MATL1: DESCRIPTION OF MATERIAL CLOSER TO APPLIANCE 12 810 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE 13 811 C 14 14 14 812 C PURPOSE: CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR 15 813 C PRINTOUT 16 814 C 17 16 815 CHARACTER*40 MATL1,MATL2 18 18 816 PMATL=MATL1 19 19 817 DO 10 I=40,1,-1 20 20 818 IF (MATL(I:I).NE.' ') THEN 21 22 820 GO TO 20 23 23 821 END IF 24 25 823 PMATL=' ' 26 824 20 DO 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.' ') THEN 28 826 PMATL1(I:I).NE.' ') THEN 28 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 <td< td=""><td>806</td><td>c</td><td>999 9999 9999 99999 999 9 9999</td><td></td><td>9</td></td<>	806	c	999 9999 9999 99999 999 9 9999		9
809 C ARGUMENTS: MATL1: DESCRIPTION OF MATERIAL CLOSER TO APPLIANCE 12 810 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE 13 811 C 14 812 C PURPOSE: CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR 15 813 C PRINTOUT 16 814 C 17 815 C HARACTER*40 MATL1, MATL2 18 816 PMATL=MATL1 19 817 D0 10 I=40, 1, -1 20 818 IF (MATL1(I:I).NE.') THEN 21 819 PMATL(I+1:I+3)=' / ' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 PMATL=' ' 26 824 20 D0 30 I=40, 1, -1 27 825 IF (PMATL(I:I).NE.' ') THEN 28 826 PMATL(I+2:60)=MATL2 29 826 FMATL 29 827 RETURN 30 828 SO CONTINUE 32	807	İc 🛛			10
810 C MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE 13 811 C 14 812 C FURPOSE: CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR 14 813 C FRINTOUT 16 814 C 17 815 CHARACTER*40 MATL1,MATL2 18 816 FMATL=MATL1 19 817 D0 10 I=40,1,-1 20 818 IF (MATL1(I:I).NE.') THEN 21 819 FMATL(I+1:I+3)=' / ' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 FMATL=' ' 26 824 20 D0 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.' ') THEN 28 826 FMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	808	İc			11
811 C 14 812 C FURPOSE: CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR 15 813 C PRINTOUT 16 814 C 17 815 CHARACTER*40 MATL1,MATL2 18 816 PMATL=MATL1 19 817 D0 10 I=40,1,-1 20 818 IF (MATL1(I:I).NE.') THEN 21 819 PMATL(I+1:I+3)=' /' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 FMATL=' ' 26 824 20 D0 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.' ') THEN 28 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	809	İc 🛛	ARGUMENTS: MATL1: DESCRIPTION OF MATERIAL CLOSER TO APPLIANCE		12
812 C PURPOSE: CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR 15 813 C PRINTOUT 16 814 C 17 815 CHARACTER*40 MATL1,MATL2 18 816 PMATL=MATL1 19 817 DO 10 1=40,1,-1 20 818 IF (MATL1(I:I).NE.'') THEN 21 819 PMATL(I+1:I+3)=' / ' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 FMATL=' ' 26 824 20 DO 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.' ') THEN 28 826 PMATL(I+1:10,0E.' ') THEN 28 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	810	İc	MATL2: DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA	NCE	13
813 C PRINTOUT 16 814 C 17 815 CHARACTER*40 MATL1,MATL2 18 816 FMATL=MATL1 19 817 DO 10 I=40,1,-1 20 818 IF (MATL1(I:I).NE.'') THEN 21 819 FMATL(I+1:I+3)=' / ' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 FMATL=' ' 26 824 20 DO 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.' ') THEN 28 826 FMATL[:*:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	811	İc			14
814 C 17 815 CHARACTER*40 MATL1, MATL2 18 816 PMATL=MATL1 19 817 DO 10 I=40,1,-1 20 818 IF (MATL1(I:I).NE.'') THEN 21 819 PMATL(I+1:I+3)='/' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 PMATL=' ' 26 824 20 DO 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.' ') THEN 28 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	812	İc	PURPOSE: CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR		15
815 CHARACTER*40 MATL1,MATL2 18 816 PMATL=MATL1 19 817 D0 10 I=40,1,-1 20 818 IF (MATL1(I:I).NE.'') THEN 21 819 PMATL(I+1:I+3)='/' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 PMATL='' 26 824 20 DO 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.'') THEN 28 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	813	İc	PRINTOUT		16
816 FMATL=MATL1 19 817 DO 10 I=40,1,-1 20 818 IF (MATL1(I:I).NE.'') THEN 21 819 FMATL(I+1:I+3)=' / ' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 FMATL=' ' 26 824 20 DO 30 I=40,1,-1 26 825 IF (PMATL(I:I).NE.' ') THEN 28 826 FMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	814	İc			17
817 D0 10 I=40,1,-1 20 818 IF (MATL1(I:I).NE.'') THEN 21 819 PMATL(I+1:I+3)=' / ' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 PMATL=' ' 26 824 20 D0 30 I=40,1,-1 26 825 IF (PMATL(I:I).NE.' ') THEN 26 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	815	İ	CHARACTER*40 MATL1, MATL2		18
818 IF (MATL1(1:1).NE.'') THEN 21 819 PMATL(I+1:I+3)='/' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 PMATL='' 26 824 20 DO 30 I=40,1,-1 26 825 IF (PMATL(I:I).NE.'') THEN 28 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	816	İ	PMATL=MATL1		19
819 PMATL(I+1:I+3)=' / ' 22 820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 PMATL=' ' 26 824 20 DO 30 I=40,1,-1 26 825 IF (PMATL(I:I).NE.' ') THEN 28 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	817	İ	DO 10 I=40,1,-1		20
820 GO TO 20 23 821 END IF 24 822 10 CONTINUE 25 823 FMATL=' ' 26 824 20 DO 30 I=40,1,-1 26 825 IF (PMATL(I:I).NE.' ') THEN 28 826 PMATL(I:E0)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	818	Ì	IF (MATL1(I:I).NE.' ') THEN		21
821 END IF 24 822 10 CONTINUE 25 823 FMATL='' 26 824 20 DO 30 I=40,1,-1 26 825 IF (PMATL(I:1).NE.'') THEN 28 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	819	Ì	PMATL(I+1:I+3)=' / '		22
822 10 CONTINUE 25 823 PMATL='' 26 824 20 DO 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.'') THEN 28 826 PMATL(I+2:50)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	820	İ	GO TO 20		23
823 FMATL=' ' 26 824 20 DO 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.' ') THEN 28 826 PMATL(I+2:50)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	821	Ì	END IF		24
824 20 DO 30 I=40,1,-1 27 825 IF (PMATL(I:I).NE.'') THEN 28 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	822	10	CONTINUE		25
825 IF (PMATL(I:I).NE.'') THEN 28 826 PMATL(I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	823		PMATL=' '		26
826 PMATL (I+2:60)=MATL2 29 827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	824	20	DO 30 I=40,1,-1		27
827 RETURN 30 828 END IF 31 829 30 CONTINUE 32	825				28
828 END IF 31 829 30 CONTINUE 32	826	1	PMATL(I+2:60)=MATL2		29
829 30 CONTINUE 32	827		RETURN		30
	828	1	END IF		31
830 PMATL=MATL2 33	829	30	CONTINUE		32
	830		PMATL=MATL2		33
831 RETURN 34	831	1	RETURN		34
832 END 35	832		END		35

	C	COMMON BLOCK FOR PROGRAM STOVE	
	C		
1	1	IMPLICIT DOUBLE PRECISION (A-H,O-Z)	1
2	C		2
3	1	PARAMETER (MAXPRO=20)	3
4	C		4
5	1	DOUBLE PRECISION L,K	5
6	1	CHARACTER MATL*40, VNAME*10, TITLE*80	6
7		LOGICAL DEBUG, FULPRT	7
8		COMMON /NSTOVE/ T(0:MAXPRO), R(0:MAXPRO), L(0:MAXPRO), K(0:MAXPRO),	8
9	1	2 H(0:MAXPRO), CF(0:MAXPRO), EMMIS(0:MAXPRO), Q(0:MAXPRO),	9
10		3 CONV(0:MAXPRO), RAD(0:MAXPRO), HEIGHT(0:MAXPRO), WIDTH(0:MAXPRO),	10
11		4 XSTOVE, YSTOVE, ZSTOVE, WSTOVE, HSTOVE, XWALL, YWALL, RTOTAL, QTOTAL, N,	11
12		5 IVAR, ISUB, VLOWER, VUPPER, VINCR, DEBUG, FULPRT	12
13		COMMON /CSTOVE/ MATL(0:MAXPRO), VNAME, TITLE	13
14	C		14

,

The data input for stove takes the form of six different key words with arguments to specify values which depend upon the key word. In most cases, the order of the key words is unimportant, except as noted below. A description of each of the input key words and values which go on the same line are presented below:

STOVE	<pre><height> <width> <emissivity> <temperature></temperature></emissivity></width></height></pre>
AIRSPACE	<thickness> <emissivity></emissivity></thickness>
FOR	<variable> = <lower> <upper> <increment></increment></upper></lower></variable>
XWALL	<pre><x position=""></x></pre>
YWALL	<y position=""></y>
PROTECTOR	<pre><thickness> <height> <width> <k> <emissivity> <temperature></temperature></emissivity></k></width></height></thickness></pre>

BOLDFACE type are required key words. Words in <brackets> specify numeric inputs as follows:

- <emissivity> specifies the emissivity of the cooler surface of the material. If specified for an airspace, it is the emissivity of the surface adjacent to the airspace at the farther distance from the stove.
- <height> specifies the height of the stove or protector in meters.
- <increment> specifies the amount to increment the variable <variable> in
 the FOR statement for each calculation to be performed. The
 first calculation is done with <variable> equal to the value
 <lower>; the second calculation is done with <variable> equal
 to the value <lower> + <increment> and so forth until the
 value of <variable> is greater than or equal to the value of

<upper>. The units for the number are the same as those for the variable <variable>.

<k> specifies the thermal conductivity of the solid protector in W/m·K.

- <lower> specifies the beginning value of the variable <variable> in the FOR statement for each calculation to be performed. The first calculation is done with <variable> equal to the value <lower>; the second calculation is done with <variable> equal to the value <lower> + <increment> and so forth until the value of <variable> is greater than or equal to the value of <upper>. The units for the number are the same as those for the variable <variable>.
- <temperature> specifies the temperature of the stove surface, protector, or airspace in K. Temperatures are only specified for the stove surface (surface number 0) and for the outermost surface or airspace (surface number N).
- <thickness> specifies the thickness of the material (for a protector) or the distance between surfaces (for an airspace).
- <variable> specifies the variable to be incremented in each calculation to be done. The first calculation is done with <variable> equal to the value <lower>; the second calculation is done

with <variable> equal to the value <lower> + <increment> and so forth until the value of <variable> is greater than or equal to the value of <upper>. Legal variables which may be used are: T(0) -- the stove temperature, width(i), k(i), xwall, ywall, emissivity(i), height(i), l(i).

<width> specifies the width of the stove or protector in meters.

- <x position> specifies the x position of the point on the wall at which the calculation is to done in meters.
- <y position> specifies the y position of the point on the wall at which the calculation is to done in meters.

NBS-114A (REV. 2-80)							
U.S. DEPT. OF COMM.	1. PUBLICATION OR	2. Performing Organ. Report No	. 3. Publication Date				
BIBLIOGRAPHIC DATA	REPORT NO.						
SHEET (See instructions)	NBSIR 86-3300		February 1987				
4. TITLE AND SUBTITLE							
STOVE: A Predictive Model for Heat Transfer from Solid-Fuel Appliances							
5. AUTHOR(S)	and Dishard A Dinart						
	and Richard A. Dipert						
	TION (If joint or other than NBS	, see instructions)	7. Contract/Grant No.				
National Bureau of							
Department of Commo			8. Type of Report & Period Covered				
Gaithersburg, MD	20899						
9. SPONSORING ORGANIZA	TION NAME AND COMPLETE A	DDRESS (Street, City, State, ZIF	·)				
10. SUPPLEMENTARY NOTE	ES						
Document describes a	a computer program; SF-185, FIP	S Software Summary, is attached.					
11. ABSTRACT (A 200-word of	or less factual summary of most	significant information. If docum					
bibliography or literature	survey, mention it here)						
A computer impleme	ntation of a model to	predict temperatures	on wall and wall				
		ng of an appliance such					
			model with flexibility				
to describe a generalized method of protection for a combustible wall surface is							
presented along with a computer program implementing the model. Good agreement was							
	found comparing the model predictions with data previously collected during full scale experiments conducted to evaluate the effectiveness of generic methods of wall						
experiments conduc	ted to evaluate the ef	fectiveness of generi	c methods of wall				
			ces. Extensive references				
of research related to solid fuel heating safety are included.							
12. RET WORDS (SIX to twelv	e entries; alphapetical order; ca	pitulize only proper names; and s	separate key words by semicolons)				
chimneys; fire mod	els; fire safety; fire	e tests; flues; heat t	ransfer; heating				
	ure reviews; radiant e						
13. AVAILABILITY							
			14. NO. OF PRINTED PAGES				
X Unlimited							
For Official Distribut							
	ion。Do Not Release to NTIS		66				
		ment Printing Office, Washington	D. D.C.				
Order From Superinter 20402.		ment Printing Office, Washington					
20402.			15. Price				
20402.	ndent of Documents, U.S. Govern		D.C.				