

REFERENCE

NBS
PUBLICATIONS

A11102 631467

NAT'L INST OF STANDARDS & TECH R.I.C.

A11102631467

Peacock, Richard D/STOVE: a predictive
QC100 .U56 NO.86-3300 1987 V19 C.1 NBS-P

NBSIR 86-330

STOVE: A Predictive Model for Heat Transfer From Solid-Fuel Appliances

Richard D. Peacock
Richard A. Dipert

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
National Engineering Laboratory
Center for Fire Research
Gaithersburg, MD 20899

February 1987

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

-QC

100

.U56

86-3300

1987

NBSIR 86-3300

STOVE: A PREDICTIVE MODEL FOR HEAT TRANSFER FROM SOLID-FUEL APPLIANCES

Richard D. Peacock
Richard A. Dipert

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
National Engineering Laboratory
Center for Fire Research
Gaithersburg, MD 20899

February 1987

**U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director**

TABLE OF CONTENTS

LIST OF TABLES	iii
LIST OF FIGURES	iii
NOMENCLATURE	iv
Abstract	1
1. INTRODUCTION	1
2. REVIEW OF PREVIOUS WORK	4
2.1 Fire Incidents Involving Wood Burning Appliances	4
2.2 Clearances in Existing Codes and Standards	5
2.3 Temperatures Developed in Heating Systems	7
2.4 Limiting Safe Temperatures on Combustible Surfaces	9
2.5 Data for Model Validation	11
3. THEORETICAL BASIS FOR THE MODEL	11
3.1 Radiative Heat Transfer	12
3.2 Convective Heat Transfer	14
3.3 Conductive Heat Transfer	15
3.4 Solution of the Equations for an Arbitrary Protection System .	16
4. COMPUTER IMPLEMENTATION OF THE MODEL	18
5. COMPARISON OF THE MODEL PREDICTIONS WITH EXPERIMENTAL DATA	19
6. MODEL CAPABILITIES AND EXAMPLES	20
6.1 Heat Transfer From Appliance to an Unprotected Wall	21
6.2 Heat Transfer From Appliance to a Sheet Metal Protected Wall .	22
6.3 Heat Transfer From Appliance to a Masonry Protected Wall . .	23
7. USES FOR AND LIMITATIONS OF THE MODEL	23
8. REFERENCES	25
Appendix A: Program Listing of STOVE	37
PROGRAM STOVE	38
SUBROUTINE INPUT	41
DOUBLE PRECISION FUNCTION FVAL	46
SUBROUTINE HEATS	47
SUBROUTINE HEAT	48
DOUBLE PRECISION FUNCTION CFIGS	49
DOUBLE PRECISION FUNCTION CFIGP	50
DOUBLE PRECISION FUNCTION HCONV	51
CHARACTER*5 FUNCTION CMET	52
SUBROUTINE PSUM	53
CHARACTER*60 FUNCTION PMATL	54

COMMON BLOCK FOR PROGRAM STOVE	55
Appendix B: Data Input for STOVE	56

LIST OF TABLES

Table 1. Sample Output From STOVE	28
---	----

LIST OF FIGURES

Figure 1. Heat Transfer From Hot Appliance to Cooler Wall Surface . . .	29
Figure 2. Node Model Representation of Stove / Protector / Wall System .	30
Figure 3. Program Layout For Program STOVE	31
Figure 4. Comparison of Calculated Wall and Protector Surface Temperatures With Experimental Results	32
Figure 5. Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to an Unprotected Combustible Wall Surface . . .	33
Figure 6. Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to a Combustible Wall Protected With a Double Aluminum Sheet Wall Protector (Painted Black)	34
Figure 7. Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to a Combustible Wall Protected With a Double Aluminum Sheet Wall Protector	35
Figure 8. Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to a Combustible Wall Protected With a Solid Masonry Wall Protector With A Ventilated Air Space	36

NOMENCLATURE

F_{dA}	radiant exchange configuration factor	dimensionless
F_{12}	radiant exchange configuration factor	dimensionless
h	convection heat transfer coefficient	$\text{kW} / \text{m}^2 \cdot \text{K}$
k	thermal conductivity	$\text{kW} / \text{m} \cdot \text{K}$
L	characteristic length	m
Nu	Nusselt number	dimensionless
Pr	Prandtl number	dimensionless
R_i	thermal resistance	$\text{m}^2 \cdot \text{K} / \text{kW}$
Ra	Raleigh number	dimensionless
R_{TOTAL}	total thermal resistance = ΣR_i	$\text{m}^2 \cdot \text{K} / \text{kW}$
\dot{q}	heat transfer rate	kW/m^2
T	temperature	K
X	characteristic horizontal dimension	m
Y	characteristic vertical dimension	m
ϵ	emissivity	dimensionless
σ	Stephan-Boltzmann constant	$\text{kW} / \text{m}^2 \cdot \text{K}^4$

STOVE: A Predictive Model for Heat Transfer
From Solid Fuel Appliances

Richard D. Peacock and Richard A. Dipert

Abstract

A computer implementation of a model to predict temperatures on wall and wall protector surfaces exposed to the heating of an appliance such as a solid fuel heating appliance is described. A steady state heat transfer model with flexibility to describe a generalized method of protection for a combustible wall surface is presented along with a computer program implementing the model.

Good agreement was found comparing the model predictions with data previously collected during full scale experiments conducted to evaluate the effectiveness of generic methods of wall protection in reducing temperatures on combustible wall surfaces.

Extensive references of research related to solid fuel heating safety are included.

Key words: Chimneys; fire models; fire safety; fire tests; flues; heat transfer; heating equipment; literature reviews; radiant energy; stoves; wood.

1. INTRODUCTION

The U.S. Consumer Product Safety Commission and the U.S. Department of Energy, as part of a program to investigate safety risks involved with the use of solid fuel burning appliances, have sponsored experimental research at the Center for Fire Research (CFR) at the National Bureau of Standards (NBS) to identify hazards associated with solid fuel heating. The studies were conducted to provide information to improve safety practices for the use of the

appliances, and to provide data upon which to base improved codes and standards.

During the first years of the program, an accident survey, literature review, and codes and standards analysis were performed to establish accident patterns, to determine the types of risks involved with the use of wood burning appliances, and to ascertain the adequacy of existing codes and standards in addressing these risks [1-3].¹ Overwhelmingly, conditions related to installation, operation, and maintenance were responsible for the fire incidents studied. Only a small percentage of the fires was attributed to product design or product defects. Thus, safe installation and use of wood burning appliances is a critical requirement for preventing fire accidents involving the equipment. Much of the criteria for the installation and use of wood burning appliances are based upon data developed over forty years ago and do not provide information on materials of construction, or appliances available in the current market.

The present program at CFR includes research on:

- clearances to combustibles from appliances and chimney connectors [4];
- methods of protection to allow reduced clearances to walls and

¹

Number in brackets refer to literature references listed in section 8 at the end of this report.

ceiling surfaces exposed to radiant heating by appliances and chimney connectors [5];

- temperatures developed in and around fireplaces with and without fireplace inserts installed [6,7];
- intensity and duration of chimney fires in factory-built and masonry chimneys [8];
- temperatures on combustible material surrounding chimney connectors passing through walls and / or connecting to chimneys [9], and;
- prediction of temperatures on surfaces of combustible walls exposed to heating from a typical radiant heating appliance.

This report, one of a series of reports providing information from the experimental program on wood burning safety at NBS, presents the results of the development of a computer based implementation of a model to predict temperatures on a wall surface exposed to heating from a radiant heating appliance such as a wood stove. The resulting computer program allows the user to specify thermal protection to reduce temperatures on the wall surface.

2. REVIEW OF PREVIOUS WORK

2.1 Fire Incidents Involving Wood Burning Appliances

Recent statistics on fires and injuries related to wood burning appliances are alarming:

Year	Fires	Change From Previous Year	Deaths	Dollar Loss
1978	66,800		250	\$134 million
1979	70,700	+14%	210	\$175 million
1980	112,000	+58%	350	--
1981	130,100	+16%	290	\$265 million
1982	139,800	+7%	250	\$257 million
1983	140,600	+0.6%	280	\$296 million

Source: U.S. Consumer Product Safety Commission [10, 11]

There were more fires in solid fuel burning equipment, and a larger percentage increase over previous years, than were reported for any other kind of heating equipment -- including gas, electric, and oil burning appliances [10-11].

This marked increase is attributed to the growing installation and use of wood burning stoves in homes throughout the United States and the fact that most homes are made of combustible construction. Clearly, accidental fires from wood burning appliances are an increasingly important problem.

2.2 Clearances in Existing Codes and Standards

Recommendations for minimum acceptable clearances to combustible materials for the installation of chimney, chimney connectors, and appliances are specified in the various model building codes and recommended practices manuals. Reference [12] is typical of the specifications found in the codes. For simplicity, a single, hopefully conservative clearance is given for each type of appliance installed without protection. No allowance is made for the size, heat output, heat transfer characteristics or other features unique to individual models. Similarly, only a few, specific methods of protection employed to allow reduction of these clearances are recommended.

Typically, 0.91 m of clearance is specified between radiant heaters and unprotected combustible construction. For residential solid fuel chimneys, typically 51 mm of clearance is required. Chimney connectors for solid fuel burning residential appliances require a clearance of at least 0.46 m to combustible materials. However, as with appliances, these clearances may be reduced by the use of appropriate protection applied either to the appliance or to the combustible surface.

The experimental basis for these code requirements is not, in many cases, quite so clear. Several experimental studies have been carried out to determine minimum acceptable clearances to combustible materials. Voigt [13], in a 1933 publication, recommends a minimum clearance of 0.30 m for chimney connectors 0.23 m in diameter. A more extensive study, performed by Underwriters Laboratories in 1943 [14], presents minimum safe clearances for

both unprotected surfaces and surfaces protected by various methods.

Distances at which a maximum temperature rise of 50°C above room temperature is reached are presented as a function of the temperature of the exposed face of a heat producing appliance. The relative protection afforded by various materials used as heat barriers between the appliance and combustible surfaces is also examined. Lawson, Fox, and Webster [15] and Lawson and Simms [16] have studied the heating of wall panels and wood by radiation. With experimentation and theoretical predictions, they present safe clearances between flue pipes and wall surfaces as a function of the pipe diameter and the pipe surface temperature. To maintain a maximum wall temperature of 100°C, 0.15 m pipe should not exceed 350°C in surface temperature at a clearance of 0.46 m [15]. Loftus and Peacock [5] present the results of research studying clearances and methods of protection for wall and ceiling surfaces exposed to radiant heating appliances. A number of recommended methods of protection to reduce temperatures on combustible wall and ceiling surfaces to acceptable levels were found. In the study, appliance surface temperatures from 300 to 450°C were used.

These experimental studies established limits for two important parameters: appliance surface temperature and clearance to combustibles for unprotected and protected surfaces. Maximum appliance surface temperatures for the appliances studied ranged from 300 to 450°C; average appliance surface temperatures from 200 to 250°C. Minimum safe wall clearances for unprotected surfaces ranged from 0.31 to 0.91 m. Most of the current code provisions are only adequate for maximum appliance surface temperatures up to 300 to 350°C.

2.3 Temperatures Developed in Heating Systems

Tests made with prefabricated porcelain-enameled metal chimneys for solid or liquid fuel furnaces [17,18] established a limiting temperature rise of 190°C on the outer surface of the chimney for a flue gas temperature of 537°C. With this limitation, wood framing space 51 mm or more away from the chimney was considered safe. Satisfactory insulation of the chimneys to reduce the outer surface temperatures to acceptable levels was obtained with asbestos paper plies totalling about 45 mm in thickness. In the same study, some asbestos cement pipe coverings were also found to reduce heat transmission to the extent required for safety of nearby combustibles.

To establish performance requirements for lightweight prefabricated chimneys, tests were conducted with lined and unlined masonry having 102 mm thick walls [19,20]. Hazardous conditions on wood framing spaced 51 mm away from the chimney were noted with a continuous flue gas temperature of 482°C for the unlined chimney and 592°C for the lined chimney. However, these hazardous conditions were not reached in the lined chimney tests until after 13 hours. In order to study operating conditions with typical fuels, a number of firing tests [21] were conducted with heating appliances known to give high flue gas temperatures, using wood and soft coals as fuels. With a coal-fired, jacketed type heater, gas temperatures ranging from 648 to 704°C were measured for an hour or more in the flue at the ceiling level above the heater.

Lawson, Fox, and Webster [15] presented results of tests to measure surface temperature of flue pipes. Measured for a variety of flue systems using solid fuels -- mostly coal and coke -- they report temperatures of about 150°C under "normal" conditions and temperatures as high as 815°C for over fire conditions.

Fox and Whittaker [21] report temperatures on metal flues of several heating appliances operated over a range likely to encountered in normal use. Maximum flue pipe surface temperatures ranged from 704 to 815°C at the appliance flue outlet, 360 to 510°C at a distance of 0.91 m from the appliance flue outlet, and 287 to 326°C at a distance of 1.8 m from the appliance flue outlet.

Shoub [17] concluded that combustible materials will be ignited if maintained in continued contact with a masonry chimney of 120 mm wall thickness with flue gas temperatures of 400°C.

In tests for the Department of Energy [4], temperatures ranging from 297 to 436°C during normal operation and 377 to 693°C during over fire conditions were noted on the surfaces of several wood burning appliances when tested to prescribed test methods [22]. A total of 11 different short term tests, ranging from 1.9 to 25.6 hours duration, were conducted to establish normal firing conditions in wood burning appliances [23]. An examination of the data from these tests shows spikes occurring at the beginning and end of tests and, apparently, whenever the door to the stove was opened. These sharp increases in temperature were attributed to a "high fire" in the morning and to

the rapid increase in active flaming when the door was opened for refueling the fire. The average stove surface temperature rise for normal burning ranged from 177 to 218°C, flue gases from 140 to 269°C, inner chimney wall surface 119 to 241°C, and the outer chimney wall surface 14 to 48°C.

2.4 Limiting Safe Temperatures on Combustible Surfaces

Listings of heat producing appliances and methods for setting clearances between appliances and combustible surfaces are based upon Underwriters Laboratories listings [22]:

- maximum temperature rise of 65°C above room temperature on exposed surfaces; and
- maximum temperature rise of 50°C above room temperature on unexposed surfaces, such as beneath the appliance, floor protector, or wall mounted protective device.

These requirements are based upon the fact that while the ignition temperature of wood products is generally quoted to be on the order of 200°C [24], wood that is exposed to constant heating over a period of time may undergo a chemical change resulting in a much lowered ignition temperature and increased potential for self-ignition.

Mitchell [25] presents data on wood fiberboard exposed to temperatures as low as 109°C that resulted in ignition after prolonged exposure. MacLean

[26,27] reports charring of wood samples at temperatures as low as 93°C. He concludes that wood should not be exposed to temperatures appreciably higher than 66°C for long periods. McGuire [28] suggests that the maximum safe temperatures on the surface of a combustible material adjacent to a constant heat source should be no more than 100°C.

Clearly, the ignition of wood at moderately elevated temperatures is a complex phenomenon; the time of exposure is indeed an important parameter [29,30]. While exact limits recommended in the literature vary due to exposure time and details of the tests conducted, the numerous documented fires involving the ignition of wood members near low pressure steam pipes [31] suggest an upper temperature limit for wood exposed to long-term low-level heating should not be appreciably higher than 100°C.

Nearby combustible materials other than wall and ceiling surfaces, such as chairs or draperies must also be kept a sufficient distance from combustible materials to prevent ignition of the materials. The testing standards and model codes treat all combustibles with the same requirements. Thus, the 0.91 m clearance requirements in NFPA 211 and maximum temperature rise requirements in the Underwriters Laboratories testing standards apply equally well to other combustibles as well. Similarly, a temperature limit of 100°C is more than adequate to protect most combustibles used in furnishings.

2.5 Data for Model Validation

Much of the available literature related to wood heating safety provides a significant amount of data that can be used to compare theoretical predictions with experimental measurements. In the above literature, references [4], [5], and [9] provide measurements of appliance surface temperatures and wall surface temperatures and provide a full description of the experimental setup to be modeled. Reference [22] provides acceptable limits on combustible surface temperatures for use in predicting minimum clearances, maximum appliance surface temperatures, minimum acceptable protector thermal properties, and the like. These references will provide the majority of data for the comparison of theoretical predictions with measured temperatures on surfaces of appliances, on protector systems, and on combustible walls.

3. THEORETICAL BASIS FOR THE MODEL

Figure 1 presents a schematic diagram of a heating appliance / wall system with an arbitrary protection system between the appliance and the wall. Heat transfers from the hot stove surface through any intervening protection to the wall surface, through the wall, and to the cooler surroundings. A few assumptions, reasonable to the system being modeled, simplify the model considerably:

- The stove is operating at steady state conditions (thus, we assume the stove has been operating for a period of time and has reached a steady operating condition).
- Stove is at a constant uniform surface temperature.
- Heat transfer through air spaces in the system takes place by radiation and convection only.
- Heat transfer through solids in the system takes place by conduction only.

With these assumptions, a one-dimensional, steady state model of the stove / protector / wall heat transfer is appropriate. The only loss in generality of the predictive capability of the model is the inability to predict any time dependent behavior of the system. Since the intended purpose of the model is to study the fire safety of the stove / protector / wall system under worst case conditions, this loss is acceptable. By assuming steady state conditions with a constant stove temperature, the worst case conditions will be modeled.

3.1 Radiative Heat Transfer

For heat exchange between two surfaces, the net radiative heat transfer between surfaces 1 and 2 is given by [32]:

$$\dot{q} = \frac{\sigma (T_1^4 - T_2^4)}{\frac{1 - \epsilon_1}{\epsilon_1} + \frac{1}{F_{12}} + \frac{1 - \epsilon_2}{\epsilon_2}} \quad (1)$$

F_{12} , the configuration factor for radiative exchange between surface 1 and surface 2, is defined as the fraction of the radiation leaving surface 1 which is intercepted by surface 2. Compilations of configuration factors are available in the literature [33,34]. For the stove / wall protector geometry, the following equations are appropriate. The configuration factor for a differential element to a plane parallel rectangle with the normal to the element passing through the corner of the rectangle is given by [33]:

$$F_{dA} = \frac{1}{2\pi} \left[\frac{X}{(1+X^2)^{\frac{1}{2}}} \tan^{-1} \frac{Y}{(1+X^2)^{\frac{1}{2}}} + \frac{Y}{(1+Y^2)^{\frac{1}{2}}} \tan^{-1} \frac{X}{(1+Y^2)^{\frac{1}{2}}} \right] \quad (2)$$

where $X = (\text{width of rectangle}) / (\text{distance from rectangle to element})$ and $Y = (\text{height of rectangle}) / (\text{distance from rectangle to element})$. Since the configuration factor for a surface equals the sum of configuration factors for any subdivision of the surface, the configuration factor for any point (X_w, Y_w) on the wall (or first protector) surface can be defined from equation (2) as

$$F_{12} = F_{dA}(X_W - X_S, Y_W - Y_S) - F_{dA}(X_W - X_S - W_S, Y_W - Y_S) + F_{dA}(X_W - X_S - W_S, Y_W - Y_S - H_S) - F_{dA}(X_W - X_S, Y_W - Y_S - H_S) \quad (3)$$

For radiant heat exchange between two identical, directly opposed rectangles (such as two protective surfaces of the same size), the configuration factor is given by [33]

$$F_{12} = \frac{2}{\pi XY} \left[\ln \left[\frac{(1+X^2)(1+Y^2)}{1 + X^2 + Y^2} \right]^{\frac{1}{2}} + X(1+Y^2)^{\frac{1}{2}} \tan^{-1} \frac{X}{(1+Y^2)^{\frac{1}{2}}} \right. \\ \left. + Y(1+X^2)^{\frac{1}{2}} \tan^{-1} \frac{Y}{(1+X^2)^{\frac{1}{2}}} - X \tan^{-1} X - Y \tan^{-1} Y \right] \quad (4)$$

3.2 Convective Heat Transfer

For convective heat transfer between two surfaces separated by an air space, the net heat exchange by convection is given by

$$\dot{q} = h (T_1 - T_2) \quad (5)$$

where h is the convective heat transfer coefficient. For free convection at

the surface of a vertical surface (such as the wall, appliance, or protector surface), h can be found from the equations [35]

$$Nu_L = \frac{h L}{k} = \left[0.825 + \frac{0.387 Ra_L^{1/6}}{\left[1 + (0.492/\Pr) \right]^{9/16}} \right]^{8/27} \quad (6)$$

3.3 Conductive Heat Transfer

For solids, the net heat exchange by conduction is given by

$$\dot{q} = \frac{k}{L} (T_1 - T_2) \quad (7)$$

While for some materials, the thermal conductivity, k , is a function of temperature, for most materials, the assumption that k is a constant leads to inconsequential loss in generality. For instance, for aluminum, the thermal conductivity changes by only 25% over a temperature range from -170°C to well over 2000°C

3.4 Solution of the Equations for an Arbitrary Protection System

At steady state, the heat transferred from the appliance to the outside, figure 2, is equal to the heat transferred through any element or group of elements within the system, or

$$\dot{q}_{\text{TOTAL}} = \frac{(T_S - T_0)}{R_{\text{TOTAL}}} = \dot{q}_i = \frac{(T_i - T_{i+1})}{R_i} \quad (8)$$

Equations (1), (5), and (7) can be expressed as in equivalent resistance forms as

$$(\text{Conduction}) \quad R_i = \frac{L}{K} \quad (9)$$

$$(\text{Convection}) \quad R_i = \frac{1}{h} \quad (10)$$

$$(\text{Radiation}) \quad R_i = \frac{\frac{1 - \epsilon_1}{\epsilon_1} + \frac{1}{F_{12}} + \frac{1 - \epsilon_2}{\epsilon_2}}{\sigma (T_1^2 + T_2^2) (T_1 + T_2)} \quad (11)$$

For the current problem, these equations can be combined into two as

$$(\text{Solids}) \quad R_i = \frac{L}{K} \quad (12)$$

$$(Airspaces) \quad R_i = \frac{\frac{1}{h} + \frac{\sigma (T^2 + T^2) (T + T)}{1 - \epsilon_1 + \frac{1}{F_{12}} + \frac{1 - \epsilon_2}{\epsilon_1}}}{\epsilon_1} \quad (13)$$

Thus, the solution method with a given appliance temperature, T_s , and a given temperature of the surroundings, T_0 , begins by assuming temperatures for the intermediate surfaces, calculating individual resistances from equations (12) and (13) to determine the total resistance, R_{TOTAL} , calculating the total heat flow rate from equation (8), and comparing the total heat flow rate to the individual heats. If the calculated individual rates are sufficiently close to the calculated total heat flow rate, the steady state solution has been obtained. If any of the individual heats are different from the total heat, new estimates for each of the intermediate temperatures are made and the process is repeated until sufficient agreement has been found. Reference [36] provides a number of methods for making best guess estimates for the next iteration toward the solution. For the current problem, a simple linear search is used where one variable at a time is changed until a local optimum is found.

A number of literature sources are available to allow determination of the physical data required for the input (for instance, for the thermal conductivity and emissivity). References [32] and [33] provide extensive listings of thermal and material properties for common materials.

4. COMPUTER IMPLEMENTATION OF THE MODEL

Included as Appendix A is a listing of the FORTRAN (written in ANSI standard FORTRAN 77) program implementing the model as described above. The general structure of the program is illustrated in figure 3.

Program input (detailed in Appendix B) takes the form of different key words with arguments to specify values which depend upon the key word. In most cases, the order of the key words is unimportant. A description of each of the input key words and values which go on the same line are presented below:

STOVE	<height> <width> <emissivity> <temperature>
AIRSPACE	<thickness> <emissivity>
FOR	<variable> = <lower> <upper> <increment>
XWALL	<x position>
YWALL	<y position>
PROTECTOR	<thickness> <height> <width> <k> <emissivity> <temperature>

A sample input for the program follows:

```

FOR:           TSTOVE = 473.15 673.15 10.
STOVE:         0.9 0.5 0.5 473.15
AIRSPACE:      0.91 0.9
ALUMINUM SHEET: 0.00254 3.0 3.0 177. 0.9
AIRSPACE:      0.0254 0.9
ALUMINUM SHEET: 0.00254 3.0 3.0 177. 0.9
AIRSPACE:      0.0254 0.9
GYPSUM WALLBOARD: 0.0127 3.0 3.0 0.17 0.9
F/G INSULATION: 0.0916 3.0 3.0 0.038 0.9
BRICK OUTSIDE: 0.0916 3.0 3.0 0.72 0.9
AIRSPACE:      273.15
END:

```

This input specifies a series of calculations to be done for a stove temperature ranging from 200°C to 400°C (473.15 to 673.15 K in the input above) for a wall protection system consisting of two aluminum sheets spaced 25 mm (0.00254 m in the input above) apart and placed 25 mm from an insulated outside wall of a house. A clearance of 0.91 m from the appliance to the first aluminum sheet is specified. A sample output from the program, using this sample data set, is presented in table 1. Calculated temperatures on all surfaces from the stove to the outdoors are shown along with the specified sizes and thermal properties of the materials used for the walls and protectors. Execution time, of course, depends upon the computer in use. On a typical desk top personal computer, execution of the above test case required less than 1.5 minutes.

5. COMPARISON OF THE MODEL PREDICTIONS WITH EXPERIMENTAL DATA

Figure 4 presents a comparison of calculated temperatures on the surfaces of wall protectors and on the surfaces of combustible walls with experimentally measured values taken from references [4] and [5]. To assess the predictive capabilities of the model, a range of conditions from the experimental studies were simulated. Wall materials used in these experimental studies ranged from uninsulated gypsum wallboard to a fully insulated stud wall with a brick facing on the exterior. A number of different wall protection methods were taken from reference [5], varying from a simple sheet metal protector to a sheet metal / insulation board / air space composite protector or a ventilated brick protector. A simple cross plot of

the calculated values and the experimental values illustrates the agreement of the model's predictions with experimental data obtained in earlier studies. Agreement of the calculated values with the experimentally measured values, stated as

$$((T_{\text{calculated}} - T_{\text{measured}}) / T_{\text{calculated}}) * 100$$

with temperatures expressed in absolute, averaged within less than 1 percent. Individual agreement, however ranged from 5 percent low (calculated values lower than experimental) to 4 percent high. Much of the disparity in the comparison can be explained by the choice of ambient conditions for the experimental tests. All the data in the two reports were described in terms of temperature rise above ambient conditions. Since the experimental calculations are based upon absolute temperatures, some assumptions had to be made for the ambient temperatures in the surroundings during the tests. A variation in ambient temperature of 15°C could change the calculated surface temperatures on the wall surfaces by as much as ± 10 percent. Thus, the agreement illustrated in figure 5 is excellent in light of the possible variation in the calculations depending upon the assumed ambient temperature.

6. MODEL CAPABILITIES AND EXAMPLES

A theoretical model for predicting the heat transfer between the appliance and the wall surfaces can be a useful tool not only in the design of appliances and wall protection devices but also in the design of future experiments to study clearances and reduced clearances for wood burning

appliances. This section presents some examples of the use of the model in predicting temperatures and clearances from combustibles for both protected and unprotected wall surfaces.

6.1 Heat Transfer From Appliance to an Unprotected Wall

Figure 5 shows calculated wall surface temperatures as a function of appliance / wall clearance for a medium size appliance (an appliance 0.5 by 0.5 m on the side parallel to the wall surface) adjacent to an unprotected wall surface for appliance surface temperatures from 150 to 350°C. For these calculations, the outside air temperature (temperature of the surroundings) was assumed equal to 0°C. The wall consisted of 12 mm gypsum wallboard, a 92 mm stud space with glass fiber insulation, and a 92 mm common brick facing on the outside of the wall exposed to the outdoors. At an appliance clearance of 0.91 m, appliance surface temperatures greater than about 300 °C would lead to temperatures on the wall in excess of the recommended limit [22] of 50°C above room ambient temperature at a point on the wall directly centered behind the appliance. Since, in an earlier study [4], average appliance surface temperatures of about 200 °C were noted, a sufficient margin of safety is indicated for an appliance this size.

6.2 Heat Transfer From Appliance to a Sheet Metal Protected Wall

Figures 6 and 7 show calculated wall surface temperatures as a function of appliance / wall clearance for a medium size appliance (an appliance 0.5 by 0.5 m on the side parallel to the wall surface) adjacent to a protected wall surface for appliance surface temperatures from 150 to 350°C. As before, the outside air temperature was assumed equal to 0°C. The wall protector consisted of two sheets of aluminum (2.5 mm in thickness) separated by a ventilated 25 mm air space. The wall protector was spaced from the wall by a ventilated 25 mm air space. The wall consisted of 12 mm gypsum wallboard, a 92 mm stud space with glass fiber insulation, and a 92 mm common brick facing on the outside of the wall exposed to the outdoors. With the surfaces of the protector painted black and at an appliance clearance of 0.91 m, appliance surface temperatures greater than about 300°C would lead to temperatures on the wall in excess of the recommended limit of 50°C above room ambient temperature -- in fact, about the same as the case with no protection. However, when the surfaces of the protector are left unpainted (shiny aluminum surfaces), appliance surface temperatures higher than 350°C are required to raise the temperature of the wall surface above acceptable limits. Conversely, the clearance of the appliance to the wall could be reduced from 0.91 m to 0.3 m with an average appliance surface temperature of 200°C.

6.3 Heat Transfer From Appliance to a Masonry Protected Wall

Figure 8 shows calculated wall surface temperatures as a function of appliance / wall clearance for the same appliance (an appliance 0.5 by 0.5 m on the side parallel to the wall surface) adjacent to a protected wall surface for appliance surface temperatures from 150 to 350°C. Again, the outside air temperature was assumed equal to 0°C. The wall protector consisted of a 92 mm thick solid brick wall was spaced from the wall by a ventilated 25 mm air space. The wall consisted of 12 mm gypsum wallboard, a 92 mm stud space with glass fiber insulation, and a 92 mm common brick facing on the outside of the wall exposed to the outdoors. With the surfaces of the protector painted black and at an appliance clearance of 0.91 m, appliance surface temperatures greater than about 300°C would lead to temperatures on the wall in excess of the recommended limit of 50°C above room ambient temperature -- again not significantly lower than in wall surface temperatures than for the unprotected wall. Note, however, one of the major thermal characteristics of a masonry wall protection system -- high thermal mass -- is not accounted for in a steady state prediction.

7. USES FOR AND LIMITATIONS OF THE MODEL

A model was developed to predict temperatures on protected and unprotected wall surfaces exposed to heating from a (primarily) radiant heating appliance. A one-dimensional, steady state model of appliance / protector / wall heat transfer showed agreement within an average of less than 1 percent

when compared to experimental results from earlier laboratory studies. A range of building materials typical of residential construction, along with a number of different wall protection methods were simulated in the comparison. As a guideline to the range of applicability of the model, the variations of the thermal properties used in the comparisons were

k:	0.038	to	177	W/m · K
ϵ :	0.1	to	0.9	
airspace thickness:	0.1	to	1.0	m
solid thickness:	0.0025	to	0.1	m

Improvements in the program implementation of the model are possible. The simple linear search for the solution of the equations is certainly not the most efficient method. A number of search methods have been described in the literature [36]. An n-dimensional simplex search where the next guess for a given variable depends upon the values of the other n-1 variables would improve the execution speed of the program. Additional improvements would be realized with any of a number of acceleration methods, also available in the literature [36]. Of course, a more complicated, harder to understand and modify program would result.

8. REFERENCES

- [1] Peacock, R. D., A Review of Fire Incidents, Model Building Codes, and Standards Related to Wood-Burning Appliances, Nat. Bur. Stand. (U.S.), NBSIR 79-1731 (April 1979).
- [2] Peacock, R. D., A Review of Fire Incidents Related to Wood-Burning Appliances, Wood Energy Institute, Proceedings of Wood Heating Seminar IV, Portland, Oregon, March 21-24, 1979, 43-46.
- [3] Shelton, J. W., Analysis of Fire Reports on File in the Massachusetts State Fire Marshal's Office Relating to Wood and Coal Heating Equipment, contract to the National Bureau of Standards (U.S.), NBSGCR 78-149 (November 1978).
- [4] Peacock, R. D., Ruiz, E., and Torres-Pereira, R., Fire Safety of Wood Burning Appliances, Part 1: State of the Art Review and Fire Tests, Volume I and II, Nat. Bur. Stand. (U.S.), NBSIR 80-2140 (November 1980).
- [5] Loftus, J. J., and Peacock, R. D., Clearances and Methods of Protection for Wall and Ceiling Surfaces Exposed to Radiant Heating Appliances, Nat. Bur. Stand. (U.S.), NBSTN 1205 (December 1984).
- [6] Maxwell, T. T., Dyer, D. F., Maples, G., and Burch, T., An Investigation of Creosoting and Fireplace Inserts, contract to the National Bureau of Standards (U.S.), NBSGCR 81-365 (December 1981).
- [7] Terpstra, W. R., Jorgenson, M. L., and Dosedlo, L. J., Investigation of Fire Hazards of Fireplace Inserts in Factory-Built and Masonry Fireplaces, contract to the National Bureau of Standards (U.S.), NBSGCR 82-368 (January 1982).
- [8] Peacock, R. D., Intensity and Duration of Chimney Fires in Several Chimneys, Nat. Bur. Stand. (U.S.), NBSIR 83-2771 (December 1983).
- [9] Loftus, J. J., and Peacock, R. D., Evaluation of Thimble - Chimney Connector (Wall-Pass Through) Systems for Solid Fuel Burning Appliances, Nat. Bur. Stand. (U.S.), NBSIR 84-2969 (November 1984).
- [10] Kale, D., Fires in Woodburning Appliances, U. S. Consumer Product Safety Commission (December 1982).
- [11] Harwood, B., and Kale, D., Fires Involving Fireplaces, Chimneys and Related Appliances, U. S. Consumer Product Safety Commission (September 1981).
- [12] Standard for Chimneys, Fireplaces, Vents and Solid Fuel Burning Appliances, NFPA 211-1984, National Fire Protection Association, Quincy, Massachusetts (February 1984).

- [13] Voigt, G. Q., Fire Hazard of Domestic Heating Installations, Nat. Bur. Stand. (U.S.), NBS Research Paper RP596 (September 1933).
- [14] Neale, J. A., Clearances and Insulation of Heating Appliances, Underwriters Laboratories, Inc., UL Bulletin of Research No. 27 (February 1943).
- [15] Lawson, D. I., Fox, L. L., and Webster, C. T., The Heating of Panels by Flue Pipes, Fire Research Special Report No. 1, Fire Protection Association, London, England (March 1952).
- [16] Lawson, D. I., and Simms, D. L., The Ignition of Wood by Radiation, British Journal of Applied Physics, Vol 3, 288-292 (September 1952).
- [17] Shoub, H., Survey of Literature on the Safety of Residential Chimneys and Fireplaces, Nat. Bur. Stand. (U.S.), NBS Misc. Pub. 252 (December 1963).
- [18] Prefabricated Metal Chimneys, National Bureau of Standards, Fire Research Section, unpublished reports to the Federal Public Housing Authority (1941-1945).
- [19] Thulman, R. K., Temperatures Developed in Chimneys for Low Cost Houses, Nat. Bur. Stand. (U.S.), Tech. News. Bull. 328 (August 1944).
- [20] Thulman, R. K., Performance of Masonry Chimneys for Houses, Housing and Home Finance Agency (U. S.), Housing Research Paper No. 13 (November 1952).
- [21] Fox., L. L., and Whittaker, D., Some Measurements of Temperatures of Metal Flues of Domestic Heating Appliances, Journal of the Institution of Heating and Ventilation Engineers, Vol. 23, 183-192 (August 1955).
- [22] Standard for Room Heaters, Solid Fuel Type -- UL 1482, First Edition, Underwriters Laboratories, Inc., Northbrook, IL (August 1979).
- [23] Loftus, J. J., Evaluation Tests on Metal Factory-Built Insulated Chimneys Used for Venting Solid Fuel Burning Appliances, Nat. Bur. Stand. (U.S.), letter report to the U. S. Consumer Product Safety Commission (April 1985).
- [24] Schaffer, E. L., Smoldering Initiation in Cellulosics Under Prolonged Heating, Fire Technology, Vol. 16, No. 1, 22-28 (February 1980).
- [25] Mitchell, N. D., New Light on Self-Ignition, NFPA Quarterly, Vol. 45, No. 2, 165-172 (October, 1951).
- [26] Maclean, J. D., Effect of Heat on Properties and Serviceability of Wood: Experiments on Thin Wood Specimens, Forest Products Laboratory Report No. R1471, Madison, WI (1945).

- [27] Maclean, J. D., Rate of Disintegration of Wood Under Different Heating Conditions, American Wood-Preservers Association (1951).
- [28] McGuire, J. H., Limiting Safe Temperature of Combustible Materials, Fire Technology, Vol 5, No. 3 (August 1969).
- [29] Ignition and Charring Temperatures of Wood, Forest Products Laboratory Report No. 1464, Madison, WI (January 1958).
- [30] Shelton, J. W., Wood Heat Safety, Garden Way Publishing, Charlotte, VT (September 1979).
- [31] Matson, A. F., Dufori, R. E., and Breen, J. F., Performance of Type B Gas Vents for Gas-Fired Appliances, Part II, Survey of Available Information on Ignition of Wood Exposed to Moderately Elevated Temperatures, Underwriters Laboratories, Inc., UL Bulletin of Research No. 51, Northbrook, IL (May 1959).
- [32] Incorpera, F. P., and DeWitt, D. P., Fundamentals of Heat Transfer, John Wiley & Sons, New York, NY (1981).
- [33] Siegel, R., and Howell, J. R., Thermal Radiation Heat Transfer, McGraw-Hill Book Company, New York, NY (1981).
- [34] Hsu, Chia-Jung, Shape Factor Equations for Radiant Heat Transfer Between Two Arbitrary Sizes of Rectangular Planes, Canadian Journal of Chemical Engineering, Vol. 45, 58-60 (February 1967).
- [35] Churchill, S. W., and Chu, H. H. S., Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate, Int. J. Heat Mass Transfer, Vol. 18, 1323 (1975).
- [36] Beveridge, G. S., and Schechter, R. S., Optimization: Theory and Practice, McGraw-Hill Book Company, New York, NY (1970).

Table 1. Sample Output From STOVE

DOUBLE ALUMINUM PLATE, ALL SURFACES PAINTED BLACK

NUMBER OF NODES IN CALCULATION: 10

POINT ON WALL: (X): 0.000 (Y): 0.000

SERIES OF CALCULATIONS FOR VARIABLE TSTOVE: 473.150 673.150 20.000

I	MATERIAL	HEIGHT (m)	WIDTH (m)	THICK (m)	EMISS	K (W/m·K)	TEMPERATURE (°C)
0	STOVE	0.50	0.50		0.90		200.00
1	AIRSPACE			0.91	0.90		
2	ALUMINUM SHEET	3.00	3.00	0.00	0.90	177.000	
3	AIRSPACE			0.03	0.90		
4	ALUMINUM SHEET	3.00	3.00	0.00	0.90	177.000	
5	AIRSPACE			0.03	0.90		
6	GYPSUM WALLBOARD	3.00	3.00	0.01	0.90	0.170	
7	INSULATION	3.00	3.00	0.09	0.90	0.038	
8	BRICK OUTSIDE	3.00	3.00	0.09	0.90	0.720	
9	AIRSPACE			0.00	1.00		0.00

0: STOVE / AIRSPACE
 1: AIRSPACE / ALUMINUM SHEET
 2: ALUMINUM SHEET / AIRSPACE
 3: AIRSPACE / ALUMINUM SHEET
 4: ALUMINUM SHEET / AIRSPACE
 5: AIRSPACE / GYPSUM WALLBOARD
 6: GYPSUM WALLBOARD / INSULATION
 7: INSULATION / BRICK OUTSIDE
 8: BRICK OUTSIDE / AIRSPACE
 9: AIRSPACE

TSTOVE	(0) (°C)	(1) (°C)	(2) (°C)	(3) (°C)	(4) (°C)	(5) (°C)	(6) (°C)	(7) (°C)	(8) (°C)	(9) (°C)
473.150	200.0	33.1	33.1	31.6	31.6	30.1	29.3	3.1	1.7	0.0
493.150	220.0	38.7	38.7	37.0	37.0	35.3	34.4	3.6	2.0	0.0
513.150	240.0	44.7	44.7	42.8	42.8	41.0	39.9	4.2	2.3	0.0
533.150	260.0	51.1	51.1	49.0	49.0	47.0	45.7	4.7	2.6	0.0
553.150	280.0	57.8	57.8	55.6	55.6	53.4	51.9	5.4	2.9	0.0
573.150	300.0	64.8	64.8	62.5	62.5	60.1	58.5	6.0	3.2	0.0
593.150	320.0	72.2	72.2	69.7	69.7	67.2	65.4	6.7	3.6	0.0
613.150	340.0	79.9	79.9	77.3	77.3	74.6	72.6	7.4	3.9	0.0
633.150	360.0	87.8	87.8	85.1	85.1	82.3	80.1	8.1	4.3	0.0
653.150	380.0	96.0	96.0	93.2	93.2	90.3	87.8	8.8	4.7	0.0
673.150	400.0	104.3	104.3	101.5	101.5	98.5	95.8	9.6	5.0	0.0

Figure 1. Heat Transfer From Hot Appliance To Cooler Wall Surface

Figure 2. Node Model Representation of Stove / Protector / Wall System

Figure 3. Program Layout For Program STOVE

Figure 4. Comparison of Calculated Wall and Protector Surface Temperatures With Experimental Results

Figure 5. Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to an Unprotected Combustible Wall Surface

Figure 6. Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to a Combustible Wall Protected With a Double Aluminum Sheet Wall Protector (Painted Black)

Figure 7. Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to a Combustible Wall Protected With a Double Aluminum Sheet Wall Protector

Figure 8. Predicted Wall Surface Temperatures for Heat Transfer From Appliance Surface to a Combustible Wall Protected With a Solid Masonry Wall Protector With A Ventilated Air Space

Appendix A: Program Listing of STOVE

```

1 |      PROGRAM STOVE
2 |C
3 |C      CCCCCCCCCC
4 |C      CCCC   C      C
5 |C      CCCC   CCCCCC  CCCC C   CCCC
6 |C      CCCCCCCC  CCCC  CCCC C   CCCC
7 |C      CCCC   CCCC  CCCC C   CCCC
8 |C      C   CCCC  CCCC  CCCC C   C
9 |C      CCCCCCCC  CCCC  CCCCCC  C   CCCCCC
10 |C
11 |C
12 |C      THIS PROGRAMS CALCULATES AN ENERGY BALANCE ON A STOVE / WALL SYSTEM
13 |C      ASSUMING STEADY STATE CONDITIONS, WITH AN ARBITRARY NUMBER OF WALL
14 |C      PROTECTORS BETWEEN THE STOVE AND THE WALL
15 |C
16 |C      INCLUDE 'STOVE.CMN'
17 |C      CHARACTER CMET*5, PMATL*60, VERSN*7
18 |C      LOGICAL THRU1,NOTYET,THEEND
19 |C      DATA VERSN '/86.0108'
20 |C
21 |C      INITIALIZE EVERYTHING TO DEFAULT CONDITIONS, READ INPUT FOR CASE
22 |C
23 |C      QEPS=0.00001
24 |C      EPS=0.0001
25 |C      TSTEP1=2.
26 |C      TSTEP2=2.
27 |C      10 CALL INPUT(THEEND)
28 |C      IF (.NOT. THEEND) THEN
29 |C          XSTOVE=WSTOVE/2.
30 |C          YSTOVE=0.
31 |C          IF (.NOT. FULPRT) THEN
32 |C              WRITE (6,11) (I,PMATL(MATL(I),MATL(I+1)),I=0,N-1),N,MATL(N)
33 |C              WRITE (6,12) VNAME,(I,I=0,N)
34 |C              WRITE (6,8) '      ',('  (°C) ',I=0,N)
35 |C              WRITE (6,8) ('-----',I=-1,N)
36 |C          END IF
37 |C          NCALCS=MAX(INT((VUPPER-VLOWER)/VINCR+0.5)+1,1)
38 |C          DO 100 ICALC=1,NCALCS
39 |C              VARVAL=VLOWER+VINCR*(ICALC-1)
40 |C
41 |C      SET NEXT VALUE OF VARIABLE TO BE INCREMENTED
42 |C
43 |C          IF (IVAR.EQ.1) THEN
44 |C              XWALL=VARVAL
45 |C          ELSE IF (IVAR.EQ.2) THEN
46 |C              YWALL=VARVAL
47 |C          ELSE IF (IVAR.EQ.3) THEN
48 |C              T(0)=VARVAL
49 |C          ELSE IF (IVAR.EQ.4) THEN
50 |C              L(ISUB)=VARVAL
51 |C              IF (ISUB.EQ.1) ZSTOVE=VARVAL
52 |C          ELSE IF (IVAR.EQ.5) THEN
53 |C              WIDTH(ISUB)=VARVAL
54 |C              IF (ISUB.EQ.0) WSTOVE=VARVAL
55 |C              XSTOVE=WSTOVE/2.
56 |C          ELSE IF (IVAR.EQ.6) THEN
57 |C              HEIGHT(ISUB)=VARVAL
58 |C              IF (ISUB.EQ.0) HSTOVE=VARVAL
59 |C          ELSE IF (IVAR.EQ.7) THEN
60 |C              K(ISUB)=VARVAL
61 |C          ELSE IF (IVAR.EQ.8) THEN
62 |C              EMMIS(ISUB)=VARVAL
63 |C          END IF
64 |C
65 |C      INITIALIZE THE COUNTERS TO ZERO
66 |C
67 |C          ITER=0
68 |C
69 |C      INITIALIZE TEMPERATURE GUESSES TO WORST CASE CONDITIONS
70 |C

```

```

71 |      DO 20 I=1,N-1
72 | 20      T(I)=T(N)
73 |      TDIFF=T(0)-T(N)
74 |      TGOAL=T(N)
75 |C
76 |C      DETERMINE NEXT GUESS FOR TEMPERATURES
77 |C
78 |      DO 30 I=1,N-1
79 | 30      T(I)=T(I)+TDIFF/N
80 |C
81 |C      CALCULATE TOTAL RESISTANCE AND HEAT FLOW FROM GUESSED TEMPERATURES
82 |C
83 |      CALL HEATS
84 | 40      INNER=0
85 |C
86 |C      CALCULATE WITH NEWLY GUESSED TEMPERATURES AND HEATS
87 |C
88 |      DO 60 I=1,N
89 |      TINC=ABS(TDIFF/N/TSTEP1)
90 |      TINCI=TINC
91 |      QSIGN=DSIGN(1.D0,Q(I)-QTOTAL)
92 |C
93 |C      GO THROUGH INNER ITERATION LOOP AT LEAST ONCE FOR SOME FORCED
94 |C      IMPROVEMENT
95 |C
96 |      THRU1=.FALSE.
97 | 50      IF (.NOT. (ABS((Q(I)-QTOTAL)/QTOTAL).LE.QEPS.AND.THRU1)) THEN
98 |          INNER=INNER+1
99 |          THRU1=.TRUE.
100 |          IF (ABS((Q(I)-QTOTAL)/QTOTAL).GT.QEPS) NOTYET=.TRUE.
101 |          IF (MATL(I).NE.'AIRSPACE') THEN
102 |C
103 |C      HEAT TRANSFER IS CONDUCTION, CALCULATE TEMPERATURE
104 |C
105 |          T(I)=T(I-1)-QTOTAL*R(I)
106 |          ELSE
107 |C
108 |C      HEAT TRANSFER IS BY CONVECTION & RADIATION, SEARCH FOR TEMPERATURE
109 |C
110 |          T(I)=T(I)+QSIGN*TINC
111 |C
112 |C      RECALCULATE THE HEAT FLOW AND COMPARE TO TOTAL HEAT
113 |C
114 |          CALL HEAT(I)
115 |          IF (DSIGN(1.D0,Q(I)-QTOTAL).NE.QSIGN) THEN
116 |              TINCI=TINCI/TSTEP2
117 |              TINC=TINCI
118 |              QSIGN=DSIGN(1.D0,Q(I)-QTOTAL)
119 |          ELSE
120 |              TINC=TINC*2.
121 |          END IF
122 |          GO TO 50
123 |          END IF
124 |          END IF
125 |C
126 |C      RECALCULATE TOTAL HEAT WITH THE NEW TEMPERATURES AND PROCEED
127 |C
128 |          CALL HEATS
129 | 60          CONTINUE
130 |C
131 |C      IF DEBUG IS ON, PRINT OUT A SUMMARY OF THE ITERATION
132 |C
133 |          ITER=ITER+1
134 |          IF (DEBUG.AND.NOTYET) THEN
135 |              WRITE (6,7) ITER,INNER
136 |              WRITE (6,'(1X,A,F7.2)') 'STOVE TEMPERATURE: ',T(0)-273.15
137 |              WRITE (6,'(1X,A,F8.2,A,F8.3)') 'TOTAL HEAT: ',QTOTAL,
138 |                                     , ' TOTAL RESISTANCE: ',RTOTAL
139 |              WRITE (6,3)
140 |              DO 70 I=1,N

```

```

141      IF (MATL(I).EQ.'AIRSPACE'.AND.I.EQ.1) THEN          141
142        WRITE (6,5) MATL(I),T(I)-273.15,R(I),Q(I),CF(I) 142
143      ELSE IF (MATL(I).EQ.'AIRSPACE'.AND.I.NE.1) THEN    143
144        WRITE (6,1) MATL(I),T(I)-273.15,R(I),Q(I),H(I),CF(I) 144
145      ELSE                                              145
146        WRITE (6,2) MATL(I),T(I)-273.15,R(I),Q(I)          146
147      END IF                                            147
148      70  CONTINUE                                         148
149      TDIFF=T(N)-TGOAL                                149
150      WRITE (6,'(1X,A7,F10.3,A)') 'TDIFF: ',TDIFF,      150
151      2      CMET(TDIFF/TGOAL,EPS)                      151
152      WRITE (6,6) 'QMET: ',(Q(I)-QTOTAL,                152
153      2      CMET((Q(I)-QTOTAL)/QTOTAL,EPS),I=1,N)      153
154      END IF                                            154
155      TDIFF=T(N)-TGOAL                                155
156      T(N)=TGOAL                                     156
157  C
158  C IF ANY OF THE INDIVIDUAL HEATS HAVEN'T CONVERGED ON THE FINAL VALUE, 158
159  C CONTINUE WITH THE PROCESS UNTIL ALL ARE EQUAL                      159
160  C
161      NOTYET=.FALSE.                                    161
162      DO 80 I=1,N                                     162
163      IF (ABS((Q(I)-QTOTAL)/QTOTAL).GT.EPS) NOTYET=.TRUE. 163
164  80  CONTINUE                                         164
165      IF (ABS(TDIFF)/TGOAL.GT.EPS) NOTYET=.TRUE.        165
166      IF (NOTYET) GO TO 40                           166
167  C
168  C THE SOLUTION HAS BEEN FOUND, PRINT IT OUT                 168
169  C
170      IF (.NOT.FULPRT) THEN                           170
171        WRITE (6,9) VARVAL,(T(I)-273.15,I=0,N)        171
172      ELSE                                              172
173        WRITE (6,4) TITLE                            173
174        WRITE (6,'(1X,A,I3)') 'ITERATIONS: ',ITER      174
175        WRITE (6,'(1X,3A,F8.3)') 'VARIED VARIABLE: ',VNAME,' = ', 175
176      2      VARVAL                                176
177        WRITE (6,'(1X,A,F7.2)') 'STOVE TEMPERATURE: ',T(0)-273.15 177
178        WRITE (6,'(1X,A,F8.2,A,F8.3)') 'TOTAL HEAT: ',QTOTAL,      178
179      2      ' TOTAL RESISTANCE: ',RTOTAL            179
180        WRITE (6,3)                                180
181        DO 90 I=1,N                                181
182        IF (MATL(I).EQ.'AIRSPACE'.AND.I.EQ.1) THEN 182
183          WRITE (6,5) MATL(I),T(I)-273.15,R(I),Q(I) 183
184        ELSE IF (MATL(I).EQ.'AIRSPACE'.AND.I.NE.1) THEN 184
185          QCONV=(T(I-1)-T(I))/CONV(I)                185
186          QRAD=(T(I-1)-T(I))/RAD(I)                 186
187          WRITE (6,1) MATL(I),T(I)-273.15,R(I),Q(I),QCONV,QRAD 187
188        ELSE                                              188
189          WRITE (6,2) MATL(I),T(I)-273.15,R(I),Q(I) 189
190        END IF                                            190
191  90  CONTINUE                                         191
192      WRITE (6,4) 'TEMPERATURES ARE OF COOLER SIDE OF NODE' 192
193      END IF                                            193
194  100  CONTINUE                                         194
195      GO TO 10                                         195
196      END IF                                            196
197      STOP                                              197
198  1  FORMAT (1X,A10,2X,F10.2,3X,F10.3,2X,F10.3,3X,F10.3) 198
199  2  FORMAT (1X,A10,2X,F10.2,3X,F10.3,2X,F10.3)          199
200  3  FORMAT ('OMATERIAL      TEMPERATURE      RESISTANCE      HEAT      CONV 200
201  2ECTION      RADIATION',/)                      201
202  4  FORMAT ('0',A)                                    202
203  5  FORMAT (1X,A10,2X,F10.2,3X,F10.3,2X,F10.3,16X,F10.3) 203
204  6  FORMAT (1X,A7,4(F10.3,A5,:),/,10(8X,4(F10.3,A5,:),/)) 204
205  7  FORMAT ('0ITERATION: ',I3,'          INNER LOOP: ',I3) 205
206  8  FORMAT (' ',A10,20(A7,:))                      206
207  9  FORMAT (' ',F10.3,20(F6.1,1X,:))                207
208 11  FORMAT ('0',/,20(' ',I6,' ',A,/,/))            208
209 12  FORMAT (' ',A10,20(' ',I2,' ',:))              209
210  END                                              210

```

```

111 |C  SUBROUTINE INPUT (THEEND)
112 |C
113 |C      000000
114 |C      0000          @
115 |C      0000  000000  000000  000  0  000000
116 |C      0000  0  000  000  0  000  0  0000
117 |C      0000  0  000  000  0  000  0  0000
118 |C      0000  0  000  000000  000  0  0000
119 |C      000000  0  000  000  000000  0000
120 |C          000
121 |C
122 |C  PURPOSE:  INPUTS DATA DESCRIBING THE STOVE / WALL PROTECTION SYSTEM
123 |C  TO BE MODELED
124 |C
125 |C  INCLUDE 'STOVE.CMN'
126 |C  PARAMETER (NVAR=8)
127 |C  CHARACTER VAR(NVAR)*6,IN*80,KEYWD*80
128 |C  INTEGER VLEN(NVAR)
129 |C  LOGICAL THEEND,HAVEX,HAVEY
130 |C  DATA (VAR(I),VLEN(I),I=1,NVAR) /'XWALL ',5,'YWALL ',5,'TSTOVE ',6,
131 |C  2 'THICK ',5,'WIDTH ',5,'HEIGHT ',6,'K      ',1,'EMMIS ',5/
132 |C
133 |C  LOOK FOR A KEYWORD OR END OF FILE
134 |C
135 |C  THEEND=.TRUE.
136 |C  HAVEX=.FALSE.
137 |C  HAVEY=.FALSE.
138 |C  TITLE='STOVE / WALL PROTECTOR HEAT TRANSFER MODEL'
139 |C  N=0
140 |C  IVAR=0
141 |C  VNAME=' '
142 |C  10 READ (5,'(A80)',END=30) IN
143 |C  THEEND=.FALSE.
144 |C  IS=INDEX(IN,': ')
145 |C  IF (IS.GT.1) THEN
146 |C      KEYWD=IN(1:IS-1)
147 |C      IF (KEYWD.NE.'END') THEN
148 |C
149 |C  XWALL ... X POSITION OF POINT ON THE WALL
150 |C
151 |C      IF (KEYWD.EQ.'XWALL') THEN
152 |C          ICHR=IS+2
153 |C          XWALL=FVAL(IN,ICHR)
154 |C          HAVEX=.TRUE.
155 |C
156 |C  YWALL ... Y POSITION OF POINT ON THE WALL
157 |C
158 |C      ELSE IF (KEYWD.EQ.'YWALL') THEN
159 |C          ICHR=IS+2
160 |C          YWALL=FVAL(IN,ICHR)
161 |C          HAVEY=.TRUE.
162 |C
163 |C  AIRSPACE ... AN AIR SPACE BETWEEN TWO SOLID PROTECTORS
164 |C
165 |C      ELSE IF (KEYWD.EQ.'AIRSPACE') THEN
166 |C          N=N+1
167 |C          MATL(N)='AIRSPACE'
168 |C          ICHR=IS+2
169 |C          V1=FVAL(IN,ICHR)
170 |C          V2=FVAL(IN,ICHR)
171 |C          V3=FVAL(IN,ICHR)
172 |C          IF (V2.EQ.0..AND.V3.EQ.0..) THEN
173 |C              T(N)=V1
174 |C              EMMIS(N)=1.0
175 |C              HEIGHT(N)=0.
176 |C          ELSE
177 |C              L(N)=V1
178 |C              EMMIS(N)=V2
179 |C              IF (EMMIS(N).EQ.0..) EMMIS(N)=1.0
180 |C              T(N)=V3

```

```

281           HEIGHT(N)=HEIGHT(N-1)          71
282           WIDTH(N)=WIDTH(N-1)         72
283       END IF                         73
284
285 C  STOVE ... THE HOT STOVE SURFACE    74
286
287       ELSE IF (KEYWD.EQ.'STOVE') THEN 75
288           MATL(0)='STOVE'              76
289           ICHR=IS+2                 77
290           EMMIS(0)=FVAL(IN,ICHR)      78
291           IF (EMMIS(0).EQ.0.) EMMIS(N)=1.0 79
292           HEIGHT(0)=FVAL(IN,ICHR)      80
293           WIDTH(0)=FVAL(IN,ICHR)       81
294           T(0)=FVAL(IN,ICHR)          82
295
296 C  FOR ... SPECIFIES A SERIES OF CALCULATIONS TO BE DONE 83
297
298       ELSE IF (KEYWD.EQ.'FOR') THEN 84
299           IVAR=0                      85
300           ISUB=0                      86
301           DO 20 I=1,NVAR              87
302           J=INDEX(IN,VAR(I)(1:VLEN(I))) 88
303           IF (J.NE.0.AND.IN(J-1:J-1).EQ.' ') IVAR=I 89
304 20      CONTINUE                      90
305           IR=0                      91
306           ICHR=IS+2                 92
307           IF (IVAR.EQ.0) THEN        93
308               WRITE (6,1) IN          94
309               GO TO 10              95
310
311 C  IF IT'S A VARIABLE WITH SUBSCRIPT, MAKE SURE ONE'S THERE 96
312
313       ELSE IF (IVAR.GE.4) THEN      97
314           IL=INDEX(IN,'(')          98
315           IR=INDEX(IN,')')          99
316           IF (IL.EQ.0.OR.IR.EQ.0.OR.IL.GT.IR) THEN 100
317               WRITE (6,2) IN          101
318               GO TO 10              102
319           END IF                      103
320           ISUB=FVAL(IN,ICHR)          104
321
322           ICHR=IR+1                 105
323           VLOWER=FVAL(IN,ICHR)        106
324           VUPPER=FVAL(IN,ICHR)        107
325           VINCR=FVAL(IN,ICHR)        108
326           IF ((VLOWER.NE.VUPPER.AND.VINCR.EQ.0)        109
327               .OR.(VLOWER.EQ.VUPPER.AND.VINCR.NE.0)        110
328               .OR.(VUPPER.GT.VLOWER.AND.VINCR.LT.0)        111
329               .OR.(VUPPER.LT.VLOWER.AND.VINCR.GT.0)) THEN 112
330               WRITE (6,4) IN          113
331               GO TO 10              114
332
333           END IF                      115
334           VNAME=VAR(IVAR)            116
335           VNAME(VLEN(IVAR)+1:VLEN(IVAR)+1+IR-IL)=IN(IL:IR) 117
336
337 C  DEBUG ... TURN DEBUG PRINT ON OR OFF 118
338
339       ELSE IF (KEYWD.EQ.'DEBUG') THEN 119
340           IF (INDEX(IN,'OFF').NE.0) DEBUG=.FALSE. 120
341           IF (INDEX(IN,'ON').NE.0) DEBUG=.TRUE.   121
342
343 C  PRINTOUT ... SPECIFY LEVEL OF PRINTOUT 122
344
345       ELSE IF (KEYWD.EQ.'PRINTOUT') THEN 123
346           IF (INDEX(IN,'FULL').NE.0) FULPRT=.TRUE. 124
347           IF (INDEX(IN,'FULL').EQ.0) FULPRT=.FALSE. 125
348
349 C  TITLE ... SPECIFY A TITLE FOR THE PRINTOUT 126
350
351       ELSE IF (KEYWD.EQ.'TITLE') THEN 127

```

```

351      TITLE=IN(IS+2:80)          141
352      C
353      C IF IT'S NOT ONE OF THE RECOGNIZED KEYWORDS, ASSUME A SOLID PROTECTOR 142
354      C
355      ELSE                      143
356          N=N+1                  144
357          ICHR=IS+2              145
358          MATL(N)=IN(1:IS-1)      146
359          L(N)=FVAL(IN, ICHR)    147
360          HEIGHT(N)=FVAL(IN, ICHR) 148
361          WIDTH(N)=FVAL(IN, ICHR) 149
362          K(N)=FVAL(IN, ICHR)    150
363          EMMIS(N)=FVAL(IN, ICHR) 151
364          T(N)=FVAL(IN, ICHR)    152
365          IF (L(N).EQ.0..OR.HEIGHT(N).EQ.0..OR.WIDTH(N).EQ.0..OR. 153
366              K(N).EQ.0..OR.EMMIS(N).EQ.0.) THEN                  154
367              WRITE (6,3) IN          155
368              N=N-1                  156
369              GO TO 10              157
370          END IF                  158
371          END IF                  159
372          GO TO 10              160
373          END IF                  161
374          END IF                  162
375      C
376      C DATA HAS BEEN READ IN, CHECK CONSISTENCY OF DATA INPUT          163
377      C
378      30  IF (THEEND) THEN          164
379          RETURN                  165
380          ELSE IF (N.LE.1) THEN      166
381              WRITE (6,*) 'DATA INPUT ERROR, TOO FEW NODES SPECIFIED.' 167
382          ELSE
383              IF (DEBUG.AND.IVAR.NE.0) THEN          168
384                  IF (IVAR.LT.4) THEN          169
385                      WRITE (6,5) VAR(IVAR),VLOWER,VUPPER,VINCR          170
386                  ELSE                      171
387                      WRITE (6,6) VAR(IVAR),ISUB,VLOWER,VUPPER,VINCR          172
388                  END IF                  173
389          END IF                  174
390          DO 40 I=1,N              175
391          IF (DEBUG) CALL PSUM(I)          176
392          IF (MATL(I).EQ.'AIRSPACE') THEN          177
393              IF ((L(I).LE.0..AND.I.NE.N).OR.(HEIGHT(I).LE.0..AND.I.NE.N) 178
394                  2 .OR.(HEIGHT(I).NE.0..AND.I.EQ.N).OR.EMMIS(I).LE.0.) THEN 179
395                  WRITE (6,'(1X,A,I3)') 'INCORRECTLY SPECIFIED AIR SPACE.',I 180
396                  STOP 'INPUT DATA ERRORS, AIR SPACE'          181
397          END IF                  182
398          ELSE
399              IF (L(I).LE.0..OR.HEIGHT(I).LE.0..OR.WIDTH(I).LE.0..OR. 183
400                  2 K(I).LE.0..OR.EMMIS(I).LE.0.) THEN          184
401                  WRITE (6,'(1X,A,I3)') 'INCORRECTLY SPECIFIED PROTECTOR.',I 185
402                  STOP 'INPUT DATA ERRORS, SOLID PROTECTOR'          186
403          END IF                  187
404          END IF                  188
405      40  CONTINUE                  189
406          IF (XWALL.LT.0..OR.YWALL.LT.0.) THEN          190
407              WRITE (6,*) 'INCORRECTLY SPECIFIED POINT ON WALL.'          191
408              STOP 'DATA INPUT ERRORS, XWALL & YWALL'          192
409          END IF                  193
410          IF (T(0).LE.T(N)) THEN          194
411              WRITE (6,*) 'INCORRECTLY SPECIFIED ENDPOINT TEMPERATURES.' 195
412              STOP 'DATA INPUT ERRORS, T(0) & T(N)'          196
413          END IF                  197
414          IF (T(0).LE.0..OR.WIDTH(0).LE.0..OR.HEIGHT(0).LE.0..OR.EMMIS(0) 198
415              2 .LE.0.) THEN          199
416              WRITE (6,*) 'INCORRECTLY SPECIFIED STOVE PARAMETERS.'          200
417              STOP 'DATA INPUT ERRORS, STOVE'          201
418          END IF                  202
419          END IF                  203
420          IF (MATL(N).EQ.'AIRSPACE') HEIGHT(N)=HEIGHT(N-1)          204

```

```

421      ZSTOVE=L(1)                                211
422      HSTOVE=HEIGHT(0)                           212
423      WSTOVE=WIDTH(0)                           213
424      C
425      C IF NOT POSITION HAS BEEN SPECIFIED, USE MIDPOINT OF STOVE 214
426      C
427          IF (.NOT. HAVEX) THEN                 215
428              XWALL=WSTOVE/2.                  216
429          END IF                                217
430          IF (.NOT. HAVEY) THEN                 218
431              YWALL=HSTOVE/2.                  219
432          END IF                                220
433      C
434      C IF NO INCREMENT HAS BEEN SPECIFIED, MAKE ONE UP 221
435      C
436          IF (IVAR.EQ.0) THEN                 222
437              IVAR=1                           223
438              VLOWER=XWALL                  224
439              VUPPER=XWALL                  225
440              VINCR=1.0                      226
441          END IF                                227
442      C
443      C PRINT OUT A DESCRIPTION OF THE STOVE / WALL SYSTEM AS SPECIFIED 228
444      C
445          WRITE (6,11) TITLE,N+1,XWALL,YWALL 229
446          IF (IVAR.GT.0.AND.IVAR.LT.4) THEN 230
447              WRITE (6,5) VAR(IVAR),VLOWER,VUPPER,VINCR 231
448          ELSE IF (IVAR.GT.4) THEN 232
449              WRITE (6,6) VAR(IVAR),ISUB,VLOWER,VUPPER,VINCR 233
450          END IF                                234
451          WRITE (6,12)                                235
452          DO 50 I=0,N                            236
453          IF (I.EQ.0.OR.I.EQ.N) THEN 237
454              IF (MATL(I).EQ.'STOVE') THEN 238
455                  WRITE (6,13) I,MATL(I),HEIGHT(I),WIDTH(I),EMMIS(I),T(I)-273.15 239
456              ELSE IF (MATL(I).EQ.'AIRSPACE') THEN 240
457                  WRITE (6,14) I,MATL(I),L(I),EMMIS(I),T(I)-273.15 241
458              ELSE                                242
459                  WRITE (6,15) I,MATL(I),HEIGHT(I),WIDTH(I),L(I),EMMIS(I),K(I), 243
460                  T(I)-273.15 244
461          END IF                                245
462          ELSE                                246
463              IF (MATL(I).EQ.'STOVE') THEN 247
464                  WRITE (6,13) I,MATL(I),HEIGHT(I),WIDTH(I),EMMIS(I) 248
465              ELSE IF (MATL(I).EQ.'AIRSPACE') THEN 249
466                  WRITE (6,14) I,MATL(I),L(I),EMMIS(I) 250
467              ELSE                                251
468                  WRITE (6,15) I,MATL(I),HEIGHT(I),WIDTH(I),L(I),EMMIS(I),K(I) 252
469              END IF                                253
470          END IF                                254
471      50  CONTINUE                                255
472          RETURN                                256
473      C
474      1  FORMAT ('OSYNTAX ERROR ON ''FOR'' STATEMENT, ILLEGAL OR NO VARIABL 257
475      2E SPECIFIED.',/,',',A79,/) 258
476      2  FORMAT ('OSYNTAX ERROR ON ''FOR'' STATEMENT, SUBSCRIPT REQUIRED FO 259
477      2R VARIABLE SPECIFIED.',/,',',A79,/) 260
478      3  FORMAT ('OSYNTAX ERROR ON STATEMENT, UNRECOGNIZED KEYWORD.',/, 261
479      2 ',',A79,/) 262
480      4  FORMAT ('OSYNTAX ERROR ON ''FOR'' STATEMENT, RANGE AND INCREMENT I 263
481      2NCONSISTENT.',/,',',A79,/) 264
482      5  FORMAT ('OSERIES OF CALCULATIONS FOR VARIABLE ',A,': ',3F10.3) 265
483      6  FORMAT ('OSERIES OF CALCULATIONS FOR VARIABLE ',A,'(',I2, 266
484      2 ') : ',3F10.3) 267
485      11 FORMAT ('1',A,/, 268
486      2 ' NUMBER OF NODES IN CALCULATION: ',I2,/, ' POINT ON WALL: (X):', 269
487      3 F10.3,T41,'(Y):',F10.3) 270
488      12 FORMAT ('OI MATERIAL           HEIGHT   WIDTH   THICK   EMISS 271
489      2   K   TEMPERATURE',/, 272
490      3   ,           (m)      (m)      (m) 273

```

491	4	(W/m K) (°C)',/,',78(''-'),/)	281
492	13	FORMAT (1X,I2,2X,A,T26,1X,F6.2,T35,F6.2,T51,F6.2,T70,F7.2)	282
493	14	FORMAT (1X,I2,2X,A,T43,F6.2,T51,F6.2,T70,F7.2)	283
494	15	FORMAT (1X,I2,2X,A,T26,1X,4(F6.2,2X),F8.3,2X,F8.2)	284
495		END	285

```

496  DOUBLE PRECISION FUNCTION FVAL (IN,ICHR)          1
497  C
498  C   00000000          000  2
499  C   0000          000  3
500  C   0000   000  0   000000  000  4
501  C   00000000  000  0   0   000  5
502  C   0000   000  0   000000  000  6
503  C   0000   0000   0   000  7
504  C   0000   00   000000  000  8
505  C
506  C   ARGUMENTS: IN:   STRING CONTAINING (MAYBE) NUMBER  9
507  C           ICHR:  (INPUT) BEGINNING CHARACTER POSITION 10
508  C           (OUTPUT) NEXT CHARACTER POSITION 11
509  C
510  C   PURPOSE:  DECODE NEXT NUMBER IN STRING AS A DOUBLE PRECISION VALUE 12
511  C
512  C   IMPLICIT DOUBLE PRECISION (A-H,O-Z) 13
513  C   CHARACTER IN*(*),FORMAT*10 14
514  C   IL=LEN(IN) 15
515  C   IFIRST=ICHR 16
516  C   DO 20 I=IFIRST,IL 17
517  C   IF ((IN(I:I).GE.'0'.AND.IN(I:I).LE.'9').OR.IN(I:I).EQ.'.' 18
518  C   2 .OR.IN(I:I).EQ.'+'.OR.IN(I:I).EQ.'-' ) THEN 19
519  C
520  C   THERE IS A NUMBER ON THE CARD, FIND OUT WHAT IT IS 20
521  C
522  C   DO 10 J=I,IL 21
523  C
524  C   IF WE FIND THE END OF THE NUMBER, READ IT FROM THE LINE 22
525  C
526  C   IF ((IN(J:J).LT.'0'.OR.IN(J:J).GT.'9').AND.IN(J:J).NE.'.' 23
527  C   2 .AND.IN(J:J).NE.'+'.AND.IN(J:J).NE.'-' ) THEN 24
528  C   WRITE (FORMAT,30) J-I 25
529  C   READ (IN(I:J-1),FORMAT) VAL 26
530  C   FVAL=VAL 27
531  C   ICHR=J 28
532  C   RETURN 29
533  C   END IF 30
534  10  CONTINUE 31
535  C
536  C   IF WE GET TO THE END OF THE LINE WITHOUT FINDING END OF NUMBER, 32
537  C   JUST READ THE NUMBER 33
538  C
539  C   WRITE (FORMAT,30) IL-I+1 34
540  C   READ (IN(I:IL),FORMAT) VAL 35
541  C   FVAL=VAL 36
542  C   ICHR=J 37
543  C   RETURN 38
544  C   END IF 39
545  20  CONTINUE 40
546  C
547  C   IF NO NUMBER IS ON THE CARD, JUST RETURN A 0. 41
548  C
549  C   FVAL=0. 42
550  C   RETURN 43
551  C
552  30  FORMAT ('(F',I2.2,'.0)') 44
553  C   END 45

```

554	SUBROUTINE HEATS	1
555 C		2
556 C	0000 0	3
557 C	0000 0	4
558 C	0000 0 000000 000000 000000 000000	5
559 C	00000000 0 000 0 0000 000 0000	6
560 C	0000 0 000000 000000 0000 000000	7
561 C	0000 0 0 0 000 0000 0000 000	8
562 C	0000 0 000000 000000 0000 000000	9
563 C		10
564 C	ARGUMENTS: NONE	11
565 C		12
566 C	PURPOSE: CALCULATES TOTAL HEAT AND TOTAL RESISTANCE THROUGH WALL	13
567 C	PROTECTORS	14
568 C		15
569 C	INCLUDE 'STOVE.CMN'	16
570 C		17
571 C	JUST SUM UP RESISTANCES TO MAKE UP TOTAL RESISTANCE	18
572 C		19
573 C	RTOTAL=0.	20
574 C	DO 10 I=1,N	21
575 C	CALL HEAT(I)	22
576 C 10	RTOTAL=RTOTAL+R(I)	23
577 C		24
578 C	TOTAL HEAT IS JUST DELTA T / TOTAL RESISTANCE	25
579 C		26
580 C	QTOTAL=(T(0)-T(N))/RTOTAL	27
581 C	RETURN	28
582 C	END	29

```

583 |      SUBROUTINE HEAT(I)          1
584 |C
585 |C      0000  0
586 |C      0000  0
587 |C      0000  0  000000  000000  000000  0
588 |C      00000000  0  000  0  000000  000000
589 |C      0000  0  000000  000000  000000
590 |C      0000  0  0  000  000000  000000  0000
591 |C      0000  0  000000  000000  000000  0000
592 |C
593 |C      ARGUMENTS:  I: ELEMENT NUMBER          11
594 |C
595 |C      PURPOSE:  CALCULATES HEAT THROUGH ELEMENT NUMBER I          12
596 |C
597 |C      INCLUDE 'STOVE.CMN'          13
598 |C      DATA SIGMA / 5.67D-8 /          14
599 |C      IF (MATL(I).NE.'AIRSPACE') THEN          15
600 |C
601 |C      MATERIAL IS A SOLID, CONDUCTION ONLY          16
602 |C
603 |C      R(I)=L(I)/K(I)          17
604 |C      ELSE IF (MATL(I).EQ.'AIRSPACE'.AND.I.EQ.1) THEN          18
605 |C
606 |C      MATERIAL IS AND AIRSPACE NEXT TO STOVE, CALCULATE FOR POINT ON WALL          19
607 |C
608 |C      XNOTS=XSTOVE-(XSTOVE-WSTOVE*.5)          20
609 |C      YNOTS=YSTOVE-YSTOVE          21
610 |C      ZNOTS=ZSTOVE          22
611 |C      CF(I)=CFIGS(XNOTS,YNOTS,ZNOTS)-CFIGS(XNOTS-WSTOVE,YNOTS,ZNOTS)          23
612 |C      2      +CFIGS(XNOTS-WSTOVE,YNOTS-HSTOVE,ZNOTS)          24
613 |C      3      -CFIGS(XNOTS,YNOTS-HSTOVE,ZNOTS)          25
614 |C      RAD(I)=1./(CF(I)*SIGMA*EMMIS(I)*(T(I-1)**2+T(I)**2)          26
615 |C      2      *(T(I-1)+T(I)))          27
616 |C      RMTEMP=293.15          28
617 |C      RLOSS=(T(I-1)-T(I))/((T(I)**4-RMTEMP**4)*SIGMA*EMMIS(I)          29
618 |C      2      *(1-CF(I)))          30
619 |C      R(I)=1./(1./RAD(I)-1./RLOSS)          31
620 |C      ELSE IF (MATL(I).EQ.'AIRSPACE'.AND.I.NE.N) THEN          32
621 |C
622 |C      MATERIAL IS AN AIRSPACE, BUT NOT NEXT TO STOVE          33
623 |C
624 |C      CF(I)=CFIGP(HEIGHT(I),WIDTH(I),L(I))          34
625 |C      H(I)=ECONV(T(I-1),T(I),HEIGHT(I))          35
626 |C      CONV(I)=1./H(I)          36
627 |C      RAD(I)=1./(CF(I)*SIGMA*EMMIS(I)*(T(I-1)**2+T(I)**2)          37
628 |C      2      *(T(I-1)+T(I)))          38
629 |C      R(I)=1./(1./CONV(I)+1./RAD(I))          39
630 |C      ELSE          40
631 |C
632 |C      MATERIAL IS AN AIRSPACE AND LAST ELEMENT ... THE GREAT OUTDOORS          41
633 |C
634 |C      CF(I)=1.          42
635 |C      H(I)=ECONV(T(I-1),T(I),HEIGHT(I))          43
636 |C      CONV(I)=1./H(I)          44
637 |C      RAD(I)=1./(CF(I)*SIGMA*EMMIS(I)*(T(I-1)**2+T(I)**2)          45
638 |C      2      *(T(I-1)+T(I)))          46
639 |C      R(I)=1./(1./CONV(I)+1./RAD(I))          47
640 |C      END IF          48
641 |C      Q(I)=(T(I-1)-T(I))/R(I)          49
642 |C      RETURN          50
643 |C      END          51

```

```

644  DOUBLE PRECISION FUNCTION CFIGS (A,B,C)          1
645  |C
646  |C    000000000    0000    0000
647  |C    0    0000    0    0
648  |C    0    0000    000000    0000    00000000    00000000
649  |C    0    0000    0000    0000    00000000    000
650  |C    0    0000    0000    0000    0    00000000
651  |C    0    0000    0000    0000    0000000000    000
652  |C    000000000    0000    0000    0    0000    00000000
653  |C                                000000000
654  |C
655  |C  ARGUMENTS:    A:  WIDTH OF RECTANGLE          12
656  |C          B:  HEIGHT OF RECTANGLE          13
657  |C          C:  DISTANCE TO POINT OF CALCULATION 14
658  |C
659  |C  PURPOSE:  CALCULATES RADIATION CONFIGURATION FACTOR FOR A PLANE 15
660  |C          ELEMENT TO A PLANE PARALLEL RECTANGLE.          16
661  |C
662  |C  SOURCE:  THERMAL RADIATION HEAT TRANSFER, SEIGEL & HOWELL. 17
663  |C
664      IMPLICIT DOUBLE PRECISION (A-H,O-Z)          18
665      PI=3.14159          19
666      X=A/C          20
667      Y=B/C          21
668      CFIGS=1./(2*PI)*(X/SQRT(1+X**2)*ATAN(Y/SQRT(1+X**2)) 22
669      2 + Y/SQRT(1+Y**2)*ATAN(X/SQRT(1+Y**2)))          23
670      RETURN          24
671      END          25

```

```

672 |C DOUBLE PRECISION FUNCTION CFIGP (A,B,C) 1
673 |C 2
674 |C     00000000    0000    0000 3
675 |C     0  0000    0          0 4
676 |C     0  0000    000000    0000    00000000    00000000 5
677 |C     0          0000    0000    00000000    000  0 6
678 |C     0  0000    0000    0000    0          000  0 7
679 |C     0  0000    0000    0000    00000000    00000000 8
680 |C     00000000    0000    0000    0          0000  000 9
681 |C                           00000000    000 10
682 |C 11
683 |C ARGUMENTS:    A:  WIDTH OF RECTANGLE 12
684 |C                 B:  HEIGHT OF RECTANGLE 13
685 |C                 C:  DISTANCE BETWEEN RECTANGLES 14
686 |C 15
687 |C PURPOSE:  CALCULATES RADIATION CONFIGURATION FACTOR FOR TWO 16
688 |C IDENTICAL, PARALLEL, DIRECTLY OPPOSED RECTANGLES. 17
689 |C 18
690 |C SOURCE:  THERMAL RADIATION HEAT TRANSFER, SEIGEL & HOWELL. 19
691 |C 20
692 |C IMPLICIT DOUBLE PRECISION (A-H,O-Z) 21
693 |C PI=3.14159 22
694 |C X=A/C 23
695 |C Y=B/C 24
696 |C CFIGP=2./((PI*X*Y)*(LOG(((1+X*X)*(1+Y*Y))/(1+X*X+Y*Y))**0.5 + 25
697 |C 2*X*SQRT(1+Y*Y)*ATAN(X/SQRT(1+Y*Y)) + 26
698 |C 3*Y*SQRT(1+X*X)*ATAN(Y/SQRT(1+X*X)) - 27
699 |C 4*X*ATAN(X) - Y*ATAN(Y)) 28
700 |C RETURN 29
701 |C END 30

```

```

702 |      DOUBLE PRECISION FUNCTION HCONV(T1,T2,L)          1
703 |C
704 |C      @@@@  @
705 |C      @@@@  @
706 |C      @@@@  @  @@@@ @@@@  @@@@ @@@@  @@@@  @
707 |C      @@@@ @@@@  @  @@@@  @@@@  @  @@@@  @@@@  @
708 |C      @@@@  @  @  @@@@  @  @@@@  @  @@@@  @@@@  @
709 |C      @@@@  @  @  @@@@  @@@@  @  @@@@  @@@@  @@@@  @
710 |C      @@@@  @  @@@@ @@@@  @@@@ @@@@  @  @@@@  @
711 |C
712 |C      ARGUMENTS:   T1:  TEMPERATURE OF HOTTER SURFACE 11
713 |C                      T2:  TEMPERATURE OF COOLER SURFACE 12
714 |C                      L:   HEIGHT OF SURFACES        13
715 |C
716 |C      PURPOSE:  CALCULATES FREE CONVECTION HEAT TRANSFER COEFFICIENT FOR 15
717 |C                      A VERTICAL SURFACE.                  16
718 |C
719 |C      SOURCE:  FUNDAMENTALS OF HEAT TRANSFER, INCOPERA & DEWITT. 17
720 |C
721 |C      IMPLICIT DOUBLE PRECISION (A-H,O-Z)          18
722 |C      DOUBLE PRECISION K,NU,L,NUSELT               19
723 |C      DIMENSION C(3,5)                            20
724 |C      DATA ((C(I,J),J=1,5),I=1,3) /             21
725 |C      2  -.381021E-2,  .132063E-3,  -.117332E-6,  .687499E-10,  -.127680E-13 22
726 |C      3,  -.167333E-4,  .143076E-6,  -.249135E-10,  .781850E-13,  -.127693E-16 23
727 |C      4,  -.501195E-5,  .468550E-7,  .881329E-10,  -.117315E-13,  .307192E-17 24
728 |C      5 /
729 |C      TF=(T1+T2)/2                            25
730 |C      DELTAT=(T1-T2)                          26
731 |C      K=C(1,1)+C(1,2)*TF+C(1,3)*TF*TF+C(1,4)*TF**3+C(1,5)*TF**4 27
732 |C      ALPHA=C(2,1)+C(2,2)*TF+C(2,3)*TF*TF+C(2,4)*TF**3+C(2,5)*TF**4 28
733 |C      NU=C(3,1)+C(3,2)*TF+C(3,3)*TF*TF+C(3,4)*TF**3+C(3,5)*TF**4 29
734 |C      PR=NU/ALPHA                         30
735 |C      RA=9.8*(1./TF)*ABS(DELTAT)*L**3/(NU*ALPHA) 31
736 |C      NUSELT=(0.825+0.387*RA***(1./6.)/(1.+(0.492/PR)***(9./16.)) 32
737 |C      2 ***(8./27.))**2 33
738 |C      HCONV=NUSELT*K/L 34
739 |C      RETURN 35
740 |C      END 36

```

741	CHARACTER*5 FUNCTION CMET(VALUE,EPS)	1
742	C	2
743	C 00000000	3
744	C 0 0000 00000000 000000 000000	4
745	C 0 0000 0 0 000 0 000 000000	5
746	C 0 0000 0 0 000 0 000 000000	6
747	C 0 0000 0 0 000 000000 0000	7
748	C 0 0000 0 0 000 0 000 000000	8
749	C 00000000 0 0 000 000000 0000	9
750	C	10
751	C ARGUMENTS: VALUE: NUMBER TO BE EVALUATED	11
752	C EPS: ACCEPTANCE CRITERION FOR VALUE	12
753	C	13
754	C PURPOSE: FUNCTIONS RETURNS A CHARACTER INDICATION OF WHETHER THE	14
755	C VALUE IS WITHIN LIMITS. USED FOR DEBUG PRINTOUT	15
756	C	16
757	IMPLICIT DOUBLE PRECISION (A-H,O-Z)	17
758	IF (ABS(VALUE).LE.EPS) THEN	18
759	CMET='(IN) '	19
760	ELSE	20
761	CMET='(OUT)'	21
762	END IF	22
763	RETURN	23
764	END	24

```

765 |      SUBROUTINE PSUM(I)          1
766 |C      88888888 2
767 |C      8888 3
768 |C      8888 8 88888888 8888 8 88888888 4
769 |C      88888888 8888 8888 8 8 8888 5
770 |C      88888888 8888 8888 8 8 8888 6
771 |C      88888888 8888 8888 8 8 8888 7
772 |C      88888888 8888 8888 8 8 8888 8
773 |C      88888888 88888888 8 8 8888 9
774 |C
775 |C      ARGUMENTS: I: SURFACE NUMBER FOR SUMMARY PRINTOUT 10
776 |C
777 |C      PURPOSE: PRINTS OUT ALL THE VARIABLES IN THE COMMON BLOCK. USED 11
778 |C      FOR DEBUG PRINTOUT. 12
779 |C
780 |C      INCLUDE 'STOVE.COM' 13
781 |C      WRITE (6,10) I,MATL(I),T(I),R(I),L(I),K(I),E(I),CF(I),EMMIS(I), 14
782 |C      2 Q(I),CONV(I),RAD(I),HEIGHT(I),WIDTH(I),XSTOVE,YSTOVE,ZSTOVE, 15
783 |C      3 WSTOVE,ESTOVE,XWALL,YWALL,RTOTAL,QTOTAL,N 16
784 |C      RETURN 17
785 |C
786 |10     FORMAT ('OCURRENT VALUES FOR SPACE ',I2,' MATERIAL IS ',A,/, 18
787 |2 ' TEMPERATURE:',F10.3,T41,'RESISTANCE:',F10.3,/, 19
788 |3 ' THICKNESS:',F10.3,T41,'THERMAL CONDUCTIVITY:',E12.5,/, 20
789 |4 ' E:',F10.3,T41,'CONFIGURATION FACTOR:',F10.3,/, 21
790 |5 ' EMISSIVITY:',F10.3,T41,'INDIVIDUAL HEAT:',F10.3,/, 22
791 |6 ' CONV. RESISTANCE:',F10.3,T41,'RAD. RESISTANCE:',F10.3,/, 23
792 |7 ' HEIGHT:',F10.3,T41,'WIDTH:',F10.3,/, 24
793 |8 ' XSTOVE:',F10.3,T31,'YSTOVE:',F10.3,T61,'ZSTOVE:',F10.3,/, 25
794 |9 ' WSTOVE:',F10.3,T31,'ESTOVE:',F10.3,/, 26
795 |* ' XWALL:',F10.3,T31,'YWALL:',F10.3,/, 27
796 |1 ' RTOTAL:',F10.3,T31,'QTOTAL:',F10.3,T61,'N:      ',I10) 28
797 |C      END 29

```

```

798 |C CHARACTER*60 FUNCTION PMATL(MATL1,MATL2)
799 |C
800 |C     00000000
801 |C     0000      0           00000000      00000000      000
802 |C     0000      0   00000000      00000000      00000000      000
803 |C     00000000      0   0000      00000000      00000000      000
804 |C     0000      0   0000      00000000      00000000      000
805 |C     0000      0   0000      00000000      00000000      000
806 |C     0000      0   0000      00000000      00000000      000
807 |C
808 |C
809 |C     ARGUMENTS:  MATL1:  DESCRIPTION OF MATERIAL CLOSER TO APPLIANCE
810 |C                 MATL2:  DESCRIPTION OF MATERIAL FURTHER AWAY FROM APPLIA NCE
811 |C
812 |C     PURPOSE:  CREATES A CONCATENATED DESCRIPTION OF TWO MATERIALS FOR
813 |C                 PRINTOUT
814 |C
815     CHARACTER*40 MATL1,MATL2
816     PMATL=MATL1
817     DO 10 I=40,1,-1
818     IF (MATL1(I:I).NE.' ') THEN
819         PMATL(I+1:I+3)=' / '
820         GO TO 20
821     END IF
822    10 CONTINUE
823     PMATL=' '
824    20 DO 30 I=40,1,-1
825     IF (PMATL(I:I).NE.' ') THEN
826         PMATL(I+2:60)=MATL2
827         RETURN
828     END IF
829    30 CONTINUE
830     PMATL=MATL2
831     RETURN
832     END

```

```
1 |C COMMON BLOCK FOR PROGRAM STOVE
2 |C
3 |C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
4 |C
5 |C PARAMETER (MAXPRO=20)
6 |C
7 |C DOUBLE PRECISION L,K
8 |C CHARACTER MATL*40,VNAME*10,TITLE*80
9 |C LOGICAL DEBUG,FULPRT
10 |C COMMON /NSTOVE/ T(0:MAXPRO),R(0:MAXPRO),L(0:MAXPRO),K(0:MAXPRO),
11 |C H(0:MAXPRO),CF(0:MAXPRO),EMIS(0:MAXPRO),Q(0:MAXPRO),
12 |C 3 CONV(0:MAXPRO),RAD(0:MAXPRO),HEIGHT(0:MAXPRO),WIDTH(0:MAXPRO),
13 |C 4 XSTOVE,YSTOVE,ZSTOVE,WSTOVE,HSTOVE,XWALL,YWALL,RTOTAL,QTOTAL,N,
14 |C 5 IVAR,ISUB,VLOWER,VUPPER,VINCR,DEBUG,FULPRT
15 |C COMMON /CSTOVE/ MATL(0:MAXPRO),VNAME,TITLE
16 |C
```

Appendix B: Data Input for STOVE

The data input for stove takes the form of six different key words with arguments to specify values which depend upon the key word. In most cases, the order of the key words is unimportant, except as noted below. A description of each of the input key words and values which go on the same line are presented below:

STOVE	<height> <width> <emissivity> <temperature>
AIRSPACE	<thickness> <emissivity>
FOR	<variable> = <lower> <upper> <increment>
XWALL	<x position>
YWALL	<y position>
PROTECTOR	<thickness> <height> <width> <k> <emissivity> <temperature>

BOLDFACE type are required key words. Words in <brackets> specify numeric inputs as follows:

<emissivity> specifies the emissivity of the cooler surface of the material. If specified for an airspace, it is the emissivity of the surface adjacent to the airspace at the farther distance from the stove.

<height> specifies the height of the stove or protector in meters.

<increment> specifies the amount to increment the variable <variable> in the **FOR** statement for each calculation to be performed. The first calculation is done with <variable> equal to the value <lower>; the second calculation is done with <variable> equal to the value <lower> + <increment> and so forth until the value of <variable> is greater than or equal to the value of

<upper>. The units for the number are the same as those for the variable <variable>.

<k> specifies the thermal conductivity of the solid protector in W/m·K.

<lower> specifies the beginning value of the variable <variable> in the **FOR** statement for each calculation to be performed. The first calculation is done with <variable> equal to the value <lower>; the second calculation is done with <variable> equal to the value <lower> + <increment> and so forth until the value of <variable> is greater than or equal to the value of <upper>. The units for the number are the same as those for the variable <variable>.

<temperature> specifies the temperature of the stove surface, protector, or airspace in K. Temperatures are only specified for the stove surface (surface number 0) and for the outermost surface or airspace (surface number N).

<thickness> specifies the thickness of the material (for a protector) or the distance between surfaces (for an airspace).

<variable> specifies the variable to be incremented in each calculation to be done. The first calculation is done with <variable> equal to the value <lower>; the second calculation is done

with <variable> equal to the value <lower> + <increment> and so forth until the value of <variable> is greater than or equal to the value of <upper>. Legal variables which may be used are: T(0) -- the stove temperature, width(i), k(i), xwall, ywall, emissivity(i), height(i), l(i).

<width> specifies the width of the stove or protector in meters.

<x position> specifies the x position of the point on the wall at which the calculation is to done in meters.

<y position> specifies the y position of the point on the wall at which the calculation is to done in meters.

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET (See instructions)	1. PUBLICATION OR REPORT NO. NBSIR 86-3300	2. Performing Organ. Report No.	3. Publication Date February 1987
4. TITLE AND SUBTITLE STOVE: A Predictive Model for Heat Transfer from Solid-Fuel Appliances			
5. AUTHOR(S) Richard D. Peacock and Richard A. Dipert			
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) National Bureau of Standards Department of Commerce Gaithersburg, MD 20899		7. Contract/Grant No.	8. Type of Report & Period Covered
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)			
10. SUPPLEMENTARY NOTES			
<input type="checkbox"/> Document describes a computer program; SF-185, FIPS Software Summary, is attached.			
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)			
A computer implementation of a model to predict temperatures on wall and wall protector surfaces exposed to the heating of an appliance such as a solid fuel heating appliance is described. A steady state heat transfer model with flexibility to describe a generalized method of protection for a combustible wall surface is presented along with a computer program implementing the model. Good agreement was found comparing the model predictions with data previously collected during full scale experiments conducted to evaluate the effectiveness of generic methods of wall protection in reducing temperatures on combustible wall surfaces. Extensive references of research related to solid fuel heating safety are included.			
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)			
chimneys; fire models; fire safety; fire tests; flues; heat transfer; heating equipment; literature reviews; radiant energy; stoves; wood			
13. AVAILABILITY		14. NO. OF PRINTED PAGES	
<input checked="" type="checkbox"/> Unlimited <input type="checkbox"/> For Official Distribution. Do Not Release to NTIS <input type="checkbox"/> Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.		66	
<input type="checkbox"/> Order From National Technical Information Service (NTIS), Springfield, VA. 22161		15. Price	
		\$ 13.95	

