Al11104288846

nist Special publication 400=93

U.S. DEPARTMENT OF COMMERCE/Technology Administration National Institute of Standards and Technology

Semiconductor Measurement Technology:

> Design and Testing Guides for the CMOS and Lateral Bipolar-0n-SOI Test Library

J. C. Marshall and M. E. Zaghloul

The National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . . . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . . and to facilitate rapid commercialization . . . of products based on new scientific discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering and performs related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Technology Services

- Manufacturing Technology Centers Program
- Standards Services
- Technology Commercialization
- Measurement Services
- Technology Evaluation and Assessment
- Information Services

Electronics and Electrical Engineering Laboratory

- Microelectronics
- Law Enforcement Standards
- Electricity
- Semiconductor Electronics
- Electromagnetic Fields ${ }^{1}$
- Electromagnetic Technology ${ }^{1}$

Chemical Science and Technology Laboratory

- Biotechnology
- Chemical Engineering ${ }^{1}$
- Chemical Kinetics and Thermodynamics
- Inorganic Analytical Research
- Organic Analytical Research
- Process Measurements
- Surface and Microanalysis Science
- Thermophysics ${ }^{2}$

Physics Laboratory

- Electron and Optical Physics
- Atomic Physics
- Molecular Physics
- Radiometric Physics
- Quantum Metrology
- Ionizing Radiation
- Time and Frequency ${ }^{1}$
- Quantum Physics ${ }^{1}$

Manufacturing Engineering Laboratory

- Precision Engineering
- Automated Production Technology
- Robot Systems
- Factory Automation
- Fabrication Technology

Materials Science and Engineering

 Laboratory- Intelligent Processing of Materials
- Ceramics
- Materials Reliability ${ }^{1}$
- Polymers
- Metallurgy
- Reactor Radiation

Building and Fire Research Laboratory

- Structures
- Building Materials
- Building Environment
- Fire Science and Engineering
- Fire Measurement and Research

Computer Systems Laboratory

- Information Systems Engineering
- Systems and Software Technology
- Computer Security
- Systems and Network Architecture
- Advanced Systems

Computing and Applied Mathematics

 Laboratory- Applied and Computational Mathematics ${ }^{2}$
- Statistical Engineering ${ }^{2}$
- Scientific Computing Environments ${ }^{2}$
- Computer Services ${ }^{2}$
- Computer Systems and Communications ${ }^{2}$
- Information Systems

[^0]
Semiconductor Measurement Technology:

Design and Testing Guides for the CMOS and Lateral Bipolar-on-SOI Test Library

Janet C. Marshall and Mona E. Zaghloul *
Semiconductor Electronics Division
Electronics and Electrical Engineering Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899
* School of Engineering and Applied Science
George Washington University
Washington, DC 20052

March 1994

[^1]National Institute of Standards and Technology Special Publication 400-93 Natl. Inst. Stand. Technol. Spec. Publ. 400-93, 138 pages (March 1994) CODEN: NSPUE2

Semiconductor Measurement Technology:
 Design and Testing Guides for the CMOS and Lateral Bipolar-on-SOI Test Library

Table of Contents

Page

Abstract 1

1. Introduction 2
2. The NIST9 SOI/SIMOX Process 3
2.1 Implant doses and energies for the SIMOX process 4
2.2 Processing sequence for NIST9 5
3. Lateral Bipolar and CMOS-on-SOI Design 6
4. Updated SOI/SIMOX Technology File 8
5. Test Library 10
6. Test Chip NIST8 12
7. Test Wafer NIST9 14
8. Conclusions 16
9. Acknowledgments 17
10. References 17
Appendix A - Sideviews of the 14 SOI/SIMOX Processing Mask Steps Used to Fabricate NIST9 79
Appendix B - Abbreviated SOI/SIMOX Technology File 86
Appendix C - Test algorithm KEYSiv 93
Appendix D - Test algorithm KEYSvt 100
Appendix E - Test algorithm INV 108
Appendix F - Test algorithm SRAM 113
Appendix G - SPICE file for an N-Channel MOSFET 119
Appendix H - SPICE file for an inverter 120
Appendix I - SPICE file for a ring oscillator 122
Appendix J — SPICE file for a ring oscillator using H-gate MOSFETs 126
Appendix K - SPICE file for an SRAM 130

List of Figures

Page

1. Simplifed block diagram for the computer procedure KEYS. 19
2. Key to the shading in the figures 20
3. P-channel MOSFET found in the test library, NIST8, and NIST9 21
4. N-channel MOSFET found in the test library, NIST8, and NIST9 22
5. Minimum-sized n-channel MOSFET found in the test library, NIST8, and NIST9 23
6. Circular n-channel MOSFET found in the test library, NIST8, and NIST9 24
7. Circular n-channel MOSFET with no channel contact found in the test library, NIST8, and NIST9 25
8. H-gate MOSFET found in the test library, NIST8, and NIST9 26
9. Italic H-gate MOSFET found in the test library, NIST8, and NIST9 27
10. T-gate MOSFET found in the test library, NIST8, and NIST9 28
11. H-gate MOSFET with source-to-channel tie found in the test library, NIST8, and NIST9 29
12. T-gate MOSFET with source-to-channel tie found in the test library, NIST8 and NIST9 30
13. N-channel MOSFET with source-to-channel tie found in the test library and NIST9 31
14. N-channel depletion-mode MOSFET found in the test library and NIST9 32
15. First bipolar design ($n p n$) on NIST9 with the base contact beside the emitter and with a full implant 33
16. Second bipolar design (npr) on NIST9 with the base contact beside the emitter and with a half implant 34
17. Third bipolar design (npn) on NIST9 with the base contact below the gate and with a full implant 35
18. Fourth bipolar design (npn) on NIST9 with the base contact below the gate and with a half implant 36
19. Fifth bipolar design ($n p n$) on NIST9 with an n-channel MOSFET gate connected to its base 37
20. Cell structure of the test library with module count 38
21. Module spacings used in the test library, NIST8, and NIST9 39
22. Cell structure of NIST8 40
23. Subcell structure of NIST8 41
24. CMIOS Test Chip, NIST8 42
25. Static RAM module DDM found in the test library, NIST8, and NIST9 43

List of Figures (continued)

Page
26. Ring oscillator module EEM found in the test library, NIST8, and NIST9 44
27. H-gate MOSFET ring oscillator module GGM found in the test library, NIST8, and NIST9 45
28. Large n-channel MOSFETs for radiation investigations (module OOM) found in the test library, NIST8, and NIST9 46
29. Circuit diagram of the static RAM cell (and how to test it) 47
30. Cell structure of the SOI/SIMOX test wafer NIST9 48
31. Processing module AAM found in the test library and NIST9 49
32. Processing module AAM1 found in the test library and NIST9 50
33. Micromachining module IPNi $_{1}$ found in the test library and NIST9 51
34. OH breath analyzer 52
List of Tables
Page

1. Doses and Energies for the Implantations on NIST9 53
2. Mask Processing Sequence for NIST9 54
3. Magic Layer Used for MOSFET Gates or a Shield for Bipolar Devices and the Mask Numbers Involved in the Processing 55
4. Magic Layers, CIF Names, and Calma Numbers Associated with the SOI Masks 56
5. Magic Layers, CIF Names, and Calma Numbers Associated with the MOSIS CMOS Masks 57
6. Module Cell Names, Dimensions, and Pad Arrangement for the Different Module Sizes Followed by the MOSFET Dimensions and Sample Subcell Name for the 2 by 16 Small Medium, and Large Modules 58
7. Method Used to Make a Medium Module into a Small Module on NIST9 59
8. Module Name, Label, and Description for the Large 10 by 7 Modules 60
9. Module Name, Label, and Description for the 2 by 16 Modules, the 12 by 2 Modules, the 10 by 2 Modules, and the 2 by 11 Module 64
10. List of Large 10 by 7 Modules in the Test Library Organized by Function 68
11. List of All But the Large 10 by 7 Modules in the Test Library Organized by Function 69

List of Tables (continued)

Page
12. List of Modules Consisting of MOSFETs Found in the Test Library with a Sample Subcell Name Given 70
13. List of Modules Consisting of Meanders Found in the Test Library 71
14. Capacitors on Modules CCM and CCM1 Found in the Test Library 72
15. Capacitors on Modules CCM2 through CCM9 Found in the Test Library 73
16. List of Modules Containing Dynamic Circuits Found in the Test Library with a Sample Subcell Name Given 74
17. Organization of the Modules on NIST8 75
18. Method Used to Get Submicrometer Dimensions on NIST8 76
19. Organization of the Large 10 by 7 Modules on NIST9 77
20. Organization of All the Modules Except the Large 10 by 7 Modules on NIST9 78

Semiconductor Measurement Technology:
Design and Testing Guides for the CMOS and Lateral Bipolar-on-SOI Test Library
J. C. Marshall
Semiconductor Electronics Division National Institute of Standards and Technology Gaithersburg, MD 20899
and
M. E. Zaghloul
National Institute of Standards and Technology and School of Engineering and Applied Science
George Washington University
Washington, DC 20052

Abstract

Design and testing guides have been developed for the test library from which test chip NIST8 and test wafer NIST9 were derived. They were designed for use in process monitoring and device parameter extraction to evaluate and compare CMOS (Complementary Metal-Oxide-Semiconductor) test structures, including devices and circuits, fabricated on both bulk silicon and SOI (Silicon-on-Insulator), specifically SIMOX (Separation by the IMplantation of OXygen), wafers. The test library consists of both CMOS-on-SOI and lateral bipolar-on-SOI modules. From it, 20 modules were assembled to create CMOS test chip NIST8 that was fabricated using a standard bulk CMOS foundry through the MOSIS service. SOI/SIMOX test wafer NIST9 contains approximately 1000 modules and was also assembled from modules in this test library. Fourteen processing masks are used to fabricate depletion-mode MOSFETs, lateral bipolar devices, and CMOS MOSFETs with source-to-channel ties. The SOI/SIMOX technology file used with the Magic VLSI layout editor was modified to include the layers necessary to generate these 14 processing masks. This modification is discussed, and unique test structure designs are presented.

Key words: bipolar; CAD; CMOS; Magic; NIST8; NIST9; SOI; technology file; test chip; test structure

1. Introduction

This document is the design and testing guide for the generic test library from which test chip NIST8 and test wafer NIST9 were derived. This test library is intended for researchers in industry, university, and government laboratories who are initiating an SOI process. NIST8 and NIST9 were designed for process monitoring and device parameter extraction to evaluate and compare CMOS (Complementary Metal-Oxide-Semiconductor) test structures, including devices and circuits, fabricated on both bulk silicon and SOI (Silicon-on-Insulator) wafers. The test library was designed for the SOI technology known as SIMOX (Separation by the IMplantation of OXygen).

From this library, a CMOS test chip NIST8 was assembled and submitted to MOSIS [1] for fabrication in a standard CMOS foundry on conventional bulk silicon wafers. Also, a lateral bipolar and CMOS-on-SOI test wafer NIST9 was assembled from this test library. An SOI/SIMOX process for the fabrication of NIST9 is described in section 2 to provide a brief process overview for sample test structure designs which will follow.

The SOI/SIMOX test chips NIST3 and NIST4 that preceded the design of the test library are described in the references [2,3]. A substantial number of additional designs are incorporated into the test library and are described in section 3. These designs include depletion-mode MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), lateral bipolar devices, and CMOS MOSFETs with source-to-channel ties that require 14 processing masks.

The "technology file" used with the CAD graphic layout editor Magic*[4] was modified to include the layers necessary to realize the 14 processing masks needed to build the test library, as well as modifications made since NIST3 and NIST4 were built. This is discussed in section 4. Magic is running under OpenWindows 2.0 on a Sun SPARCsystem 300 running SunOS 4.1.2.

Section 5 describes the test library from which a variety of modules can be assembled to create a new test chip or test wafer, or the modules can be used as "drop-in's." This section explains the philosophy behind the module sizes, dimensions, placements, nomenclature, architecture, and so forth. Each one of the modules described in this section is designed to facilitate packaging.

NIST8 is a CMOS test chip that was assembled from 20 modules in the test library. It is

* In this report, commercial equipment, instruments, and computer programs are identified to specify the procedure adequately. This does not imply recommendation or endorsement by NIST, nor does it imply that the equipment or program is the best available for the purpose. In spite of the authors' experiences that the programs perform correctly on every set of data which has been tried, there can be no assurance that the program will perform equally well on all (possibly anomalous) data. Therefore, both the authors and NIST assume no liability for possible losses resulting from the use of these programs.
described in section 6 and is a CMOS-on-SOI design converted to a CMOS on bulk silicon design via the technology file. NIST8 was tested on the HP 4062UX Semiconductor Process Control System, and the testing results were evaluated using the computer procedure KEYS (linKing softwarE to analYze waferS) [5]. KEYS links SUXES (Stanford University eXtractor of modEl parameterS) [6], SPICE (a Simulation Program with Integrated Circuit Emphasis) [7], and STAT2 [8] to facilitate integrated circuit evaluation. A simplified block diagram for KEYS is given in figure 1. The CMOS data from NIST8 can be presented and compared with the SOI/SIMOX data from NIST9 once it is fabricated and tested.

The SOI/SIMOX test wafer, NIST9, is presented in section 7. It describes its formation, organization, and the test structures that were included from the test library. The processing modules which include the alignment marks were strategically placed to ease the task of mask alignment. To study parameter variations across NIST9, a test module was designed and placed such that the data will be very comprehensive.

Section 8 presents the conclusions.
The test library (from which NIST8 and NIST9 were derived) contains modules that can be used to:

1. Monitor a CMOS or SOI process
2. Extract device or circuit parameters
3. Compare parameters from different device and circuit designs
4. Evaluate a CMOS or SOI process
5. Compare different CMOS and/or SOI processes via correlation coefficients and wafer maps which yield conclusions for future designs and processes.

For information on obtaining this test library, NIST8, NIST9, and the SOI/SIMOX technology file, please contact:
J. C. Marshall

NIST, Bldg. 225, Room B-360
Gaithersburg, MD USA 20899
Telephone: 1-301-975-2049
Email: marshall@sed.eeel.nist.gov
For easier interpretation of the test structures, this author can be contacted for the supplement to this document [9] which is available in color.

2. The NIST9 SOI/SIMOX Process

NIST9 was designed for a robust NIST SOI process using SIMOX which has a $0.15 \mu \mathrm{~m}$ silicon layer. The processing sideviews for the 14 mask steps are shown in Appendix A. Below is a list of these processing masks used to fabricate NIST9, in the order in which they are used, with the added distinction of clear or dark field:

1. Island (clear field mask)
2. Nwell/ n-channel implant (dark field mask)
3. Pwell/p-channel implant (dark field mask)
4. N-channel MOSFET source-to-channel tie implant (dark field mask)
5. P-channel MOSFET source-to-channel tie implant (dark field mask)
6. Depletion-implant (dark field mask)
7. N^{\dagger} poly gate implant (dark field mask)
8. P^{+}poly gate implant (dark field mask)
9. Polysilicon (clear field mask)
10. Source/drain n^{+}-implant (dark field mask)
11. Substrate contact or subcon (dark field mask)
12. Source/drain and substrate p^{+}-implant (dark field mask)
13. Contacts (dark field mask)
14. M1 (clear field mask)

Of the 14 processing masks specified above the following are implant masks:

1. Nwell/ n-channel implant
2. P well $/ p$-channel implant
3. N-channel MOSFET source-to-channel tie implant (also called the ntie implant)
4. P-channel MOSFET source-to-channel tie implant (also called the ptie implant)
5. Depletion-implant (d-implant)
6. N^{+}poly gate implant
7. P^{+}poly gate implant
8. Source/drain n^{+}-implant
9. Source/drain and substrate p^{+}-implant

In the next section, 2.1, the implant doses and energies chosen for these nine implantations are specified. Section 2.2 presents the rationale behind the processing sequence and mask selection in order to realize depletion-mode MOSFETs, lateral bipolar devices, and CMOS MOSFETs with source-to-channel ties.

2.1 Implant doses and energies for the SIMOX process

Nine implantations are used in the processing of NIST9. Five of these are n-type phosphorus implants, and four are p-type boron implants. The primary target for all of these implants is the SOI/SIMOX silicon island (which has a typical thickness of $0.15 \mu \mathrm{~m}$) except for the npoly and ppoly implants which are targetted for the CVD deposited polysilicon (which has a typical thickness of $0.50 \mu \mathrm{~m}$).

The implantation energies were chosen such that the peak concentration is placed half way into the implanted medium. This ensures that the devices are fully depleted and that the doping concentration is uniform throughout. The implanted energies listed in table 1 were selected based on the tables in reference [10]. These energies were slightly altered due to processing equipment limitations. It is possible to redesign the process formula to accomodate thicker or thinner silicon thicknesses which will allow for either a partially or fully depleted technology.

For the fabrication of NIST9, the n well and p well doses were chosen to yield threshold voltages of approximately 0.8 volts using n^{+}and p^{+}polysilicon gates for the n - and p channels, respectively.

The channel dose for the n-channel depletion-mode MOSFETs was chosen to be approximately twice the well doping, a sufficient dose to overcome the pre-existing pwell implant and sufficient to fully deplete it.

The doses for the n - and p-source/drain implantations were chosen to be $3.0 \times 10^{15} \mathrm{~cm}^{-2}$.
The dose of the ptie (ntie) implant was chosen to be approximately midway between the dose of the n well (p well) implant and that of the n-implant (p-implant). The ptie (n tie) implant, as well as being the source-to-channel tie for the p-channel (n-channel) MOSFETs, doubles as the base implant of the bipolar $n p n$ ($p n p$) device. The dose chosen is midway between the dose of the collector which uses the nwell (p well) implant and the dose of the emitter which uses the n-implant (p-implant). This helps ensure that proper bipolar action occurs. Also, this dosage is sufficient to electrically tie the source to the channel within a diode drop. (The ties eliminate the need for an extra contact, thereby conserving silicon area.)

The doses for the npoly (ppoly) implant were considered standard at $5.0 \times 10^{14} \mathrm{~cm}^{-2}$.

2.2 Processing sequence for NIST9

The mask sequence used to fabricate NIST9 is specified in table 2. Because of the additional structures (n-channel depletion-mode MOSFETs, lateral bipolar devices, and MOSFETs with source-to-channel ties) included on NIST9 (which were not included on NIST3 and NIST4), several additional masks are required, and the following issues need to be addressed:

1. How should the n tie, ptie, and d-implants be ordered ?
2. How should the npoly and ppoly implants be ordered?
3. How should the substrate contacts be handled to avoid step coverage problems?
4. How should the p-implant be ordered?
5. Are lateral bipolar devices possible ?

With respect to the first issue, in order to electrically tie the source to the channel, the source-to-channel ties (or implants) must occur before the polysilicon deposition and after the well implants. Also, the d-implant needs to occur within these bounds. The order of these three implants (n tie, p tie, and d-) is not critical.

The structures in the test library are designed to improve circuit performance by doping the polysilicon gate with the same doping as the source and drain [11-13]. Therefore, the npoly and ppoly implants are included in the processing immediately after the polysilicon film deposition, yet before the polysilicon patterning (see table 2).

With respect to the third issue, the substrate contacts were designed to improve step
coverage by bringing the metal down to the substrate in two steps as opposed to one large step. The first contact opening to the substrate (using the subcon mask) is large ($30 \mu \mathrm{~m}$), and the second contact opening (using the contacts mask) hole is smaller ($14 \mu \mathrm{~m}$).

The p-implant occurs after the substrate contact definition (subcon). The substrate contacts are designed for use with a p-substrate or an n-substrate. In this work, a p-substrate is used and is recommended; therefore, the po-implant occurs after the subcon definintion. The p-implant is placed in the substrate contact area to help create a good ohmic contact for the aluminum-to-substrate connection. If an n-substrate is used, the n-implant occurs after the substrate contact definition.

With respect to the fifth issue and followito tha lateral bipolar devices con os molncod hathe degn zlal datication of the test library and NIST9 with the inclusion of nine appropriately chosen and placed implants in the processing sequence. Considering the bipolas npn (pnp) devices, the nwell (p well) implant can be used for the collector, the ptie (ntie) implant for the base, and the n-implant (p implant) for the emitter. These lateral npn and pnp bipolar device designs are described in the next section.

3. Lateral Bipolar and CMOS-on-SOI Design

There are many different n - and p-channel MOSFEN designs and lateral npn and pnp bipolar device designs included in the test library with various sizes and shapes. On NIST9, five different bipolar designs are included for the npn devices and five for the pnp devices; however, the figures and the discussion which follow refer only to the $n p n$ devices.

In this section, the following MOSFET and bipolar device designs are described (fig. 2 can be used to discern the layers for all the designs in this guide):

1. P-channel MOSFET (fig. 3)
2. N-channel MOSFET (fig. 4)
3. Minimum-sized n-channel MOSFET (fig. 5)
4. Circular MOSFET (fig. 6)
5. Circular MOSFET with no channel contact (fig. 7)
6. H-gate MOSFET (fig. 8)
7. Italic H-gate MOSFET (fig. 9)
8. T-gate MOSFET (fig. 10)
9. H-gate MOSFET with source-to-channel tie (fig. 11)
10. T-gate MOSFET with source-to-channel tie (fig. 12)
11. N-channel MOSFET with source-to-channel tie (fig. 13)
12. Depletion-mode MOSEET (fig. 14)
13. Lateral bipolar (npn) device with the base contact beside the emitter and with the emitter implant incorporating the collector and emitter (fig. 15)
14. Lateral bipolar ($n \mathrm{p} n$) device with the base conitact beside the emitter (fig. 16)
15. Lateral bipolar ($n p \pi$) device with the base contact below the emitter and with the emitter implant incorporating the collector and emitter (fig. 17)
16. Lateral bipolar ($n p n$) device with the base contact below the emitter (fig. 18)
17. Lateral bipolar ($n p n$) device as an n-channel MOSFET with the gate connected to the channel or base (fig. 19)

Figure 3 shows the basic p-channel MOSFET design found in the test library. In this figure, the gate extends beyond the island edge. This decreases the leakage around the gate.

Figure 4 shows the basic n-channel MOSFET design found in the test library. Selected MOSFET dimensions in figure 4 were decreased, resulting in the MOSFET shown in figure 5. Note that the n-channel MOSFET gates use the n^{+}poly gate implant, and the p-channel MOSFET gates (fig. 3) use the p^{+}poly gate implant.

Figure 6 is a circular $\mathbb{N O S F E T}$ with a contact to the channel, and figure 7 is a circular MOSFET without this channel contact. These circular MOSFETs require substantial area and are more difficult to design than the basic MOSFETs. Since the gates are circular, there can be no leakage around the gate edge since there is no edge. Therefore, they are considered to be more hardened to increased levels of radiation.

Figure 8 shows an H-gate MOSFET. As the name implies, the gate is in the shape of an "H." The italic H-gate MOSFET is shown in figure 9, and the T-gate MOSFET is shown in figure 10. The H-gate MOSFET and T-gate MOSFET each with a source-tochannel tie are shown in figures 11 and 12, respectively. These source-to-channel ties eliminate the need for the channel contact which, in turn, conserves silicon area.

The implant for the source-to-channel tie for the MOSFETs has the same dopant type as the source and drain diffusion. As can be seen in figure 13 for an n-channel MOSFET with a source-to-channel tie, the ntie implants extend approximately half way into the channel area, extend beyond the island edges, and define which side of the MOSFET is the source.

Figure 14 gives an example of a typical depletion-mode MOSFET. For this structure, the depletion implant incorporates the channel area and extends $2 \mu \mathrm{~m}$ beyond it in all directions. This $2-\mu \mathrm{m}$ extension occurs when the CIF (Caltech Intermediate Form) file is created.

The first lateral bipolar ($n p n$) design can be found in figure 15. As can be seen in this figure, the n well implant encompasses the whole island. The p tie implant which defines the base reaches approximately half way under the polysilicon (a later step in the process). The n-implant occurs after the polysilicon patterning, is self-aligned, and goes from collector to emitter. When viewing the structure from left (collector contact) to right (emitter contact), the collector starts off heavily n-doped until it reaches the gate when the true collector is simply nwell. The base edge which is located half way under the polysilicon is p-type (p tie). On the other side of the polysilicon, the n-implant overwhelmes the p tie implant to become the emitter which completes the first lateral npr bipolar device design. In this design, the base width is approximately half the width of the polysilicon. To design the $n p n$ ($p n p$) lateral bipolar devices, the Magic layer etch (petch) was created (see table 3),
enabling the vertical construction of island, nwell, nndiff, npoly, and poly (island, p well, ppdiff, ppoly, and poly).

The second bipolar ($n p n$) design can be found in figure 16. It is similar to the previous design except, instead of starting at the collector contact, the n-implant starts on top of the polysilicon and encompasses the emitter. The collector contact does have n-implant inside it for a good ohmic contact to the nwell island, but the implant does not extend to the polysilicon in this case.

The third bipolar ($n p n$) design shown in figure 17 is similar to the first design shown in figure 15 except the base contact is below the emitter contact (assuming the top of the figure is considered the top and the bottom of the figure is considered the bottom). Similarly, the fourth bipolar ($n p n$) design shown in figure 18 is similar to the second design shown in figure 16 except the base contact is below the emitter contact.

The fifth bipolar design can be found in figure 19. This is an n-channel MOSFET with the gate connected to the channel or base.

4. Updated SOI/SIMOX Technology File

Magic is the VLSI layout editor used to design the test library, NIST8, and NIST9. It includes a technology file which allows the user to modify it according to their needs. It specifies the layers, their interaction, the design rules, and the layer selection for each mask. The design rules are similar to those used to design NIST3 and NIST4 [2]. An abbreviated version of the SOI/SIMOX technology file used to design the test library, NIST8, and NIST9 is given in Appendix B.

Table 4 is a brief reference table that indicates which Magic layers correspond to which mask for NIST9. It allows one to obtain this information without sorting through the technology file. Table 5 yields this information for NIST8.
The main differences between the current SOI/SIMOX technology file and the one used to build SOI/SIMOX test chips NIST3 and NIST4 [2,3] in order to fabricate depletion-mode MOSFETs, lateral bipolar devices, and CMOS MOSFETs with source-to-channel ties are:

1. The addition of the following Magic layers:
a. Ntie - this implant is done before the polysilicon deposition, and it has the effect of electrically tying the channel potential to within a diode drop of the source potential for an n-channel MOSFET. This implant also doubles as the base implant for the lateral bipolar pnp devices.
b. Ptie - this implant is done before the polysilicon deposition, and it has the effect of electrically tying the channel potential to within a diode drop of the source potential for a p-channel MOSFET. This implant also doubles as the base implant for the lateral bipolar npn devices.
c. Dimplant - the d-implant (depletion-mode implant) was included for the construction of n-channel depletion-mode MOSFETs.
d. Dfet - the dfet (depletion-mode MOSFET) was added to the Magic
technology file to distinguish between the different MOSFETs on the CAD system. The dfet layer implies that there is dimplant underneath this polysilicon gate.
e. Ppoly - this implant layer was added so that the polysilicon can be implanted with boron for improved performance of the p-channel MOSFETs [11-13].
f. Npoly - this implant layer was added so that the polysilicon can be implanted with phosphorus. Poly was the Magic layer used for NIST3 and NIST4. If poly (or npoly) is specified for NIST9, it implies that this polysilicon will be implanted with phosphorus.
g. Ppc - this contact (p poly contact) is the p poly-to-metall contact which is specified whenever p-implanted polysilicon is to contact metall.
h. Pc - this contact (poly contact) is the npoly-to-metall contact which is specified whenever n-implanted polysilicon is to contact metall.
i. Etch - this layer was added to the Magic technology file in order for Magic to place n-doped polysilicon over nndiff, n well, and island. This polysilicon, which is implanted with phosphorus, is used as a shield for the $n p n$ bipolar devices and can be etched away after the p-implant if desired.
j. Petch - this layer was added to the Magic technology file in order for Magic to place p-doped polysilicon over $p p$ diff, p well, and island. This polysilicon, which is implanted with boron, is used as a shield for the pnp bipolar devices and can be etched away after the p-implant if desired.
k. Open - if this layer is specified, the raw silicon substrate will be exposed to air after processing such that during the post-processing anisotropic etch, the silicon can be etched away. This etching (or micromachining) is done to realize suspended structures [14].
2. Hole - this layer appears only on the contact mask. This opening in the oxide is used in the SIMS (secondary ion mass spectroscopy) structures to facilitate the measurement of doping densities on modules AAM5 and AAM6.
m. Legend - this layer was added to the technology file to aid in labeling the pads for probing purposes. This layer does not appear in the CIF file.
n. Legend_backgound - this layer was added to the technology file to aid in rapidly placing the labels within the pads. This layer does not appear in the CIF file.
3. The layer "pad" is used to specify a bond pad. Its dimensions (before CIF) are $112 \mu \mathrm{~m}$ by $112 \mu \mathrm{~m}$ in the test library, and the layer dimensions (after CIF) for NIST9 are:
a. Island ($112 \mu \mathrm{~m} \times 112 \mu \mathrm{~m}$)
b. Polysilicon ($108 \mu \mathrm{~m} \times 108 \mu \mathrm{~m}$)
c. Npoly implant ($108 \mu \mathrm{~m} \times 108 \mu \mathrm{~m}$)
d. Contact ($92 \mu \mathrm{~m} \times 92 \mu \mathrm{~m}$)
e. Metall $(104 \mu \mathrm{~m} \times 104 \mu \mathrm{~m})$

The pad layer dimensions (after CIF) for NIST8 are:
a. Polysilicon ($112 \mu \mathrm{~m} \times 112 \mu \mathrm{~m}$)
b. Metall ($108 \mu \mathrm{~m} \times 108 \mu \mathrm{~m}$)
c. Polycontact $(106 \mu \mathrm{~m} \times 106 \mu \mathrm{~m})$
d. Metal2 ($104 \mu \mathrm{~m} \times 104 \mu \mathrm{~m}$)
d. M2c ($102 \mu \mathrm{~m} \times 102 \mu \mathrm{~m}$)
e. Glass ($100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$)
3. For the layer "ppad," all the above layers in item 2 for NIST9 are included except the layer "ppoly implant" replaces "npoly implant" with the same dimensions. Ppad is used to specify a bond pad whenever p-implanted polysilicon is used to make the pad connection.
4. The substrate contact is treated differently and must be designed differently to obtain working contacts. Additional information can be found in the section called "Processing Sequence for NIST9."

5. Test Library

New test chips can be custom designed from the modules in the test library or the modules can be used as "drop-in's." From the test library, test chip NIST8 and test wafer NIST9 were built. A module is a single (or group of) test structure(s) which can be tested by the single positioning of one set of probes. There are five different sizes of modules (i.e., five different probe pad configurations); however, each module can be considered small, medium, or large depending on the sizes of MOSFETs chosen within the module. (There are five different probe pad configurations, but only one or two different probe cards are needed for testing.)
Figure 20 shows the outline of the test library with the corresponding possible module count given the existing organization. There are $686-2$ by 16 modules, $130-12$ by 2 modules, $90-$ 10 by 7 modules, $72-10$ by 2 modules, and $22-2$ by 11 modules. This results in a total of 1000 modules, given the layout of modules shown whose area is equivalent to a quarter of a $10.16-\mathrm{cm}(4-\mathrm{in}$.) wafer. (A 2 by 16 module implies there are 2 columns and 16 rows of probe pads. This naming convention is true for all the other modules except for the 10 by 7 module. For this module there are 10 pads along the top, 10 pads along the bottom, 7 pads along each side, and the middle area is for circuitry.)
The five different module sizes shown in figure 20 are given in table 6. All the probe pads have a $200-\mu \mathrm{m}$ center-to-center spacing. The cell nomenclature for these modules is also included in this table. For example, a 12 by 2 module could be called "aaS," "ooM," "qcL," etc.

The five different module types given in table 6 can be small, medium, or large depending on the MOSFET sizes chosen (the pad arrangements and module dimensions remain the same). The cell names of the small modules end with an "S," the names for the medium modules end with an " M ," and for the large modules the cell names end with an "L." The
lower portion of table 6 gives the nominal MOSFET dimensions for the small, medium, and large 2 by 16 modules along with a sample subcell name which is descriptive of the MOSFET's dopant type, design, and channel dimensions.

To convert a medium module into a small module, the procedure is given in table 7. This is a difficult task involving submicrometer dimensions and, therefore, grid alterations. It is the last thing that is done because a .mag file magnified by a factor of 10 is needed to design using submicrometer dimensions. Therefore, after the entire wafer is designed except for the submicrometer dimensions, a CIF file is generated and read back in an order of a magnitude larger. The submicrometer dimensions are then designed into the file while considering the scale factor. The CIF file is created using a scale factor which reduces the design by a factor of 10 and is sent to the mask makers. This resulting .cif file will retain the submicrometer character of the design; however, if this file is read back into Magic without magnification, the submicrometer dimensions will be rounded to the nearest micrometer and any .cif file generated by this .mag file will exhibit the rounded numbers and not the submicrometer dimensions. Therefore, creating the submicrometer dimensions should be the last thing that is done before submitting a design to the mask makers.

The 2 by 16 module is defined to be the basic module. Given a 2 by 16 probe pad arrangement with a center-to-center pad spacing of $200 \mu \mathrm{~m}$, it is possible to fit a MOSFET with a channel area of $50 \mu \mathrm{~m}$ by $50 \mu \mathrm{~m}$ between these pads. Any pad spacing larger than $200 \mu \mathrm{~m}$ would result in a lot of unused silicon area. Inside a 2 by 16 module, it is possible to put six MOSFETs with individual connections to the source, gate, drain, and channel. For this work, the substrate contact connections can be shared with neighboring MOSFETs. Each of the six MOSFETs within the 2 by 16 module has different channel dimensions. Also, the pad dimensions are large enough ($112 \mu \mathrm{~m}$ by $112 \mu \mathrm{~m}$) such that they can be wire bonded (exposed metal area on NIST9 is $104 \mu \mathrm{~m}$ by $104 \mu \mathrm{~m}$). Individual packaged modules are also possible for these narrow 2 by 16 modules [15].
The final wafer or chip can be separated using a wafer saw. The 2 by 16 modules are placed next to each other conserving the $200-\mu \mathrm{m}$ center-to-center pad spacing. If the modules are separated, the narrow-bladed saw will pass through the center of the neighboring 2 by 16 modules. These sacrificed modules can be probed beforehand, or they can be duplicated on the chip or wafer.
The large 10 by 7 modules are needed because most circuits will not fit within the 2 by 16 probe-pad arrangement. A circuit could be placed to the right of a 2 by 16 probe-pad arrangement with the wiring routed to the appropriate pads; however, if these circuits are to be irradiated, the probes will shield parts of the circuit from the radiation while it is being tested. Therefore, the large 10 by 7 modules have 30 pads along the periphery (including the corners). There are 10 pads located along the top, 10 pads along the bottom, and 7 pads on each side.

The remaining three module types are sacrificial modules used adjacent to the 2 by 16 modules and/or the large 10 by 7 modules. As shown in figure 20 , the horizontal 12 by 2 modules are placed above and below the 2 by 16 modules. If a 2 by 16 module is packaged,
the 12 by 2 modules will be sacrificed on the ends, thus keeping intact the 2 by 16 modules above and below the one to be packaged. In addition to the 12 by 2 modules, the 10 by 2 horizontal modules are used as the sacrificial modules above and below the large 10 by 7 modules. These large 10 by 7 modules were arranged together, in this case along the bottom, to minimize the sawing task. And the remaining 2 by 11 modules are placed along the bottom row of large 10 by 7 modules. The module arrangement is highly versatile. Perhaps it is desired to package the horizontal (12 by 2 or 10 by 2) modules in which case a different approach to module placement is recommended.

Figure 21 shows the module spacings for the various modules. The module-to-module spacing occurs in multiples of $200 \mu \mathrm{~m}$ due to the center-to-center probe-pad spacing of $200 \mu \mathrm{~m}$. This facilitates the placement of modules.
All MOSFETs are oriented in the same way for ease in testing. That is, the gate is the upper left-hand probe pad, the drain is the upper right, the source the lower left, and the channel is the lower right-hand probe pad. For a p-type substrate, the substrate connection will be either the pad directly above the drain pad or the pad directly below the channel pad depending upon the MOSFET's location within the 2 by 16 module arrangement. For an n-type substrate, the substrate connection is either the pad directly above the gate pad or the pad directly below the source pad. Given the MOSFET's location within the 2 by 16 module arrangement, the substrate connections will be in the same place on other 2 by 16 MOSFET modules. Figure 21 gives the MOSFET and substrate contact locations for four of the five module types which have a different number of probe pads and, therefore, can accommodate a different number of MOSFETs and substrate contact arrangements. (MOSFETs are not routinely pinned out on the large 10 by 7 modules since they fit in a more reasonable space on the other four module types.)
Table 8 lists the large 10 by 7 modules that are available in the test library. This list for the 2 by 16 modules, and the other miscellaneous modules is found in table 9 . A listing of the large 10 by 7 modules in table 8 organized by function is given in table 10 with a comparable list of the modules in table 9 given in table 11. These lists are further subdivided into tables 12 through 16 which list the different MOSFETs, meanders, capacitors, and dynamic circuits.

6. Test Chip NIST8

To compare and contrast bulk CMOS and SOI processes, test chip NIST8 was constructed from various modules in the test library. It is a CMOS-on-SOI design that was converted to a CMOS on bulk silicon design via the technology file given in Appendix B. The CIF file created by Magic's technology file was submitted to MOSIS for fabrication on a $2.0-\mu \mathrm{m}$ (lambda=1.0) processing run. An n well process was used; however, a p well process would have resulted in working parts as well.
The size of NIST8 ($\mathrm{x}=4410 \mu \mathrm{~m}, \mathrm{y}=6800 \mu \mathrm{~m}$) was chosen to accommodate fabrication by MOSIS. NIST8 is composed of four large 10 by 7 modules, twelve 2 by 16 modules, one 12 by 2 , and three 10 by 2 modules. Figure 22 shows the cell structure of NIST8, figure 23 shows the subcell structure of NIST8, and table 17 includes the dopant type and device
sizes on a row and column basis. Figure 24 shows the actual layout of NIST8. The 2 by 16 modules on NIST8 include:

1. Module AM - N-channel MOSFETs (with various lengths and widths) (see fig. 4)
2. Module BM - P-channel MOSFETs (with various lengths and widths) (see fig. 3)
3. Module CM - Minimumly designed n-channel MOSFETs (see fig. 5)
4. Module DM - Circular n - and p-channel MOSFETs with a well contact (see fig. 6)
5. Module KM - Circular n - and p-channel MOSFETs without a well contact (see fig. 7)
6. Module EM - H-gate MOSFETs (see fig. 8)
7. Module UM - Italic H-gate MOSFETs (see fig. 9)
8. Module FM - T-gate MOSFETs (see fig. 10)
9. Module VM - Inverters
10. Module XM - Alignment structures
11. Module AaM - Square n-channel MOSFETs
12. Module BbM - Square p-channel MOSFETs

The large 10 by 7 modules include:

1. Module DDM - An SRAM (see fig. 25)
2. Module EEM - A 23 -stage ring oscillator using regular MOSFETs (see fig. 26)
3. Module GGM - A 23 -stage ring oscillator using H-gate MOSFETs (see fig. 27)
4. Module OOM - Large n-channel MOSFETs for radiation investigations (see fig. 28)

And the horizontal modules include:

1. Module aaM - N-channel MOSFETs
2. Module bbbM - P-channel MOSFETs
3. Module aaaM - Unusually sized n-channel MOSFETs
4. Module cccM - Unusually sized p-channel MOSFETs

In the test library, the substrate contacts are placed at strategic locations on each 2 by 16 module such that each test structure is adjacent to one. This is intended only for SOI processing. For the CMOS processing of NIST8, the "substrate" connections disappear after a CIF file is generated. In other words, what was a substrate contact, becomes metal and p-implant, the construction of which has no purpose in CMOS. The pads labeled "W" for "well" on NIST8 are used to bias the CMOS devices which are sufficient to probe the MOSFETs and circuits on NIST8.

NIST8 requires the use of submicrometer dimensions in the alignment structures on module XM. A method to obtain submicrometer dimensions on NIST8 is given in table 18. This was the last thing done before submission to MOSIS.

All of the test structures on NIST8 (excluding the ring oscillators which were probed manually) were probed using an HP 4062UX Semiconductor Process Control System. The test algorithms can be found in Appendices C through F. They perform the following:

1. the test algorithm KEYSiv (Appendix C) obtains the IV data points for n - or
p-channel MOSFETs,
2. KEYSvt (Appendix D) obtains the $I_{D S}$ versus $V_{G S}$ curves for various values of $V_{B S}$,
3. the test algorithm INV (Appendix E) obtains the $V_{I N}$ versus Vout data for inverters, and
4. the test algorithm SRAM (Appendix F) plots the output of the SRAM given various input stimulus.

All of these algorithms acquire data suitable for the evaluation procedure KEYS [5]. The circuit diagram of the static RAM cell (and how to test it) is given in figure 29.

An example SPICE file for the MOSFETs, inverters, regular ring oscillators, H-gate ring oscillstore, and SRAM can be found in Appendices G through IS. These were used in the computer procedure KEYS.

7. Test Wafer NIST9

SOI/SIMOX test wafer NIST9 is comprised of numerous modules taken from the test library and organized such that they would fit onto a quarter of a $10.16-\mathrm{cm}(4-\mathrm{in}$.) wafer. This quarter-wafer constraint is to accommodate a $7.62-\mathrm{cm}$ (3-in.) based fabrication facility at NIST. To maximize the use of the SIMOX wafers, the $10.16-\mathrm{cm}$ ($4-\mathrm{in}$.) wafers were sawed into quarters and then processed. Actually, the radius of NIST9 (if it were a whole wafer) needed to be approximately 6 mm less than 5.08 cm (2 in.) to facilitate handling and equipment constraints.

To easily align the masks, the locations for the main processing module, called AAM (the only expanded module shown in fig. 30), are critical. This module, shown in figure 31, contains the alignment marks. The alignment marks on this module are viewed and paired with the alignment marks on another AAM processing module for mask alignment. These main processing modules need to be separated by approximately $2.54 \mathrm{~cm}(1 \mathrm{in}$.). If they are much closer, the alignment microscope cannot see both modules at once, and alignment becomes a more difficult task.

The horizontal processing module AAM1 (fig. 32) appears below each main AAM module. Module AAM1's purpose is to help grossly align those masks which have a dark field.

NIST9 includes many of the modules from the test library. The placement of the modules on NIST9 (fig. 30) is similar to the module placement in the test library (fig. 20) except that more large 10 by 7 modules occupy the lower portion and right-hand portion of the wafer (without sacrificial modules surrounding them). These large 10 by 7 modules are the process monitor modules (called AAM2 through AAM6) which will be sacrificed during the processing. They include structures for the following:

1. cross sections for SEM,
2. SIMS targets for doping concentrations, and
3. MOSFETs to probe during processing.

Table 19 was used to help organize the other large 10 by 7 modules, and table 20 was used to help organize the 2 by 16 modules that are detailed in tables 8 and 9 , respectively.

To study parameter variations across the wafer, the 2 by 16 module CcM was designed. This 2 by 16 module includes the following:

1. a $6-\mu \mathrm{m}$ polysilicon cross bridge resistor,
2. an n-channel MOSFET with $L=6 \mu \mathrm{~m}$ and $\mathrm{W}=6 \mu \mathrm{~m}$,
3. a p-channel MOSFET with $\mathrm{L}=6 \mu \mathrm{~m}$ and $\mathrm{W}=12 \mu \mathrm{~m}$,
4. an inverter with $L=6 \mu \mathrm{~m}, W_{n}=6 \mu \mathrm{~m}$, and $W_{p}=12 \mu \mathrm{~m}$, and
5. a p-channel MOSFET with $\mathrm{L}=6 \mu \mathrm{~m}$ and $W=6 \mu \mathrm{~m}$.

This is referred to as the KEYS module in table 20 which occupies every other 2 by 16 module slot on the wafer. The MOSFETs and inverters on this module can be tested on the HP 2062UX using the test algorithms in Appendices C, D, and E. The data from these test structures can be evaluated (and wafer maps obtained) by the computer procedure $\mathbb{K} E Y S$. Also, the horizontal 12 by 2 module bbM includes the same structures listed above except for the p-channel MOSFET with $\mathrm{L}=6 \mu \mathrm{~m}$ and $\mathrm{W}=6 \mu \mathrm{~m}$. On this horizontal module, the structures are rotated 90 deg to make horizontal and vertical parameter mapping possible.

The remaining 2 by 16 modules include the following:

1. MOSFETs - oriented such that the gate is the upper-left-hand probe pad, the drain is the upper-right-hand probe pad, the source is the lower-left, and the channel is the lower-right. The J. V characteristics and threshold voltage data can be compared for the differently designed MOSFETs with the same channel dimensions. The differently designed MOSFETs include:
a. N - and p-channel MOSFETs (with and without source-to-channel ties)
b. Depletion-mode MOSFETs
c. Circular MOSFETs (with and without channel contacts)
d. H-gate MOSFETs with the same dimensions as the T-gate MOSFETs (with and without source-to-channel ties)
e. Italic H-gate MOSFETs
f. T-gate MOSFETs (with and without source-to-channel ties)
2. Contact resistors
3. Cross-bridge resistors
4. Inverters
5. E-beam X-ray alignment structures
6. Lateral bipolar $n p \pi$ and $p n p$ devices

The large 10 by 7 modules are intended to be used for radiation studies. The circuitry is within the area to be bonded, and therefore, the probes will not block any incoming radiation. The large 10 by 7 modules on NIST9 include the following:

1. The processing modules
2. Large capacitors from which to obtain various capacitance values
3. Three different varieties of meanders of different types
4. Ring oscillators pinned out for a 2 by 16 or a square probe card. All the different ring oscillators use the same pinout. The different 23 -stage ring oscillator modules include the following MOSFET designs:
a. N - and p-channel MOSFETs (with and without source-to-channel ties)
b. Circular MOSFETs (with and without channel contacts)
c. H-gate MOSFETs (with and without source-to-channel ties)
d. T-gate MOSFETs (with and without source-to-channel ties)
5. SRAMs using n - and p-channel MOSFETs and circular MOSFETs
6. Diodes
7. Van der Pauws (dopant resistivity devices)
8. Suspended structures including MOSFETs, diodes, resistors, and an OH breath analyzer (see fig. 33)

The OH breath analyzer (fig. 34) [16] is a micromachined structure which suspends the central trampoline-like area by the support arms. This suspension occurs after the NIST9 wafer is selectively protected with glass (which is not included in the 14 -mask process) and then a post-processing anisotropic etch [14] is performed which etches away the raw silicon exposed in the designed open areas. After a sufficient amount of time in the etch solution, a large inverted pyramidal pit is formed whose rectangular base edges are adjacent to the inside dimensions of the p-implant, which is an effective etch stop, leaving the island with the diffused resistor mainly encompassed in oxide and suspended in air. On the right of this suspended island are contacts to the island and a glass cut covering both these contacts.
When the diffused resistor heats the suspended island up to $300^{\circ} \mathrm{C}$, if the glass opening is covered with a thin layer of bismuth, the resistance between those two contacts will change significantly in the presence of OH which can come from the breath of an intoxicated individual.

8. Conclusions

With the experience gained from the design, fabrication, and testing of NIST3 and NIST4 $[2,3]$, a test library, NIST8, and NIST9 were designed to evaluate and compare CMOS test structures, including devices and circuits, fabricated on both bulk silicon and SOI/SIMOX wafers. This is the design and testing guide for the test library, NIST8, and NIST9. The test library was created from which the CMOS test chip NIST8 was designed and subsequently fabricated through MOSIS (on bulk silicon only), and the SOI/SIMOX test wafer NIST9 (a 14-mask process) was designed for fabrication at the NIST processing facility or for outside users of this design.

The processing sequence for the NIST9 SOI/SIMOX process was presented in section 2 along with the implant doses and energies chosen for the nine implantations which are optimized for fully depleted devices on $0.15 \mu \mathrm{~m}$ silicon on buried oxide. These nine implantations made it possible to realize depletion-mode MOSFETs, lateral bipolar devices, and CMOS MOSFETs with source-to-channel ties, the designs of which are presented in section 3. Suspended structures were also designed which will require a protective glass coating (NIST9 does not have this) and a subsequent post-processing etch.

The technology file of Magic (the CAD graphic layout editor used in this work) was modified to make the design of the 14 -mask SOI/SIMOX process possible. This technology file converts the CMOS and lateral bipolar SOI design of the test library into the CMOS design of test chip NIST8 and/or the SOI design of test wafer NIST9. This is done in the "cifoutput" section of the technology file.

Given the test results from NIST9, the CMOS device and circuit parameters from NIST8 can be presented and compared with the SOI device and circuit parameters from NIST9. Using the computer procedure KEYS, the parameters from the $I V$ characteristics for the different MOSFET and circuit designs included on NIST8 and NIST9 can be evaluated, parameter correlation coefficients can be obtained, and parameter wafer maps can be generated, yielding conclusions for future designs and processes.

9. Acknowledgments

We would like to thank P. Roitman, L. W. Linholm, and F. F. Oettinger for their support in making this project possible. Inputs from the NIST Processing Facility, especially D. B. Novotny and J. E. Luther, in regards to their needs with respect to our design are acknowledged. For comments on this report, we thank C. A. Zincke, L. W. Linholm, F. F. Oettinger, R. L. Mattis, and especially G. J. Campisi. We appreciate the editorial assistance of E. J. Walters and J. M. Rohrbaugh, and we thank R. J. Mele for graphics support.

10. References

[1] Richardson, L., et al., MOSIS User Manual, University of Southern California (1988).
[2] Marshall, J. C., Cresswell, M. W., Ellenwood, C. H., Linholm, L. W., Roitman, P., and Zaghloul, M. E., The Design Guide for CMOS-on-SIMOX Test Chips, NIST3 and NIST4, NISTIR 4889 (January 1993).
[3] Marshall, J. C., Cresswell, M. W., Ellenwood, C. H., Linholm, L. W., Roitman, P., and Zaghloul, M. E., The Test Guide for CMOS-on-SIMOX Test Chips, NIST3 and NIST4, NISTIR 4890 (January 1993).
[4] Scott, W., Mayo, R., Hamachi, G., and Ousterhout, J., 1986 VLSI Tools: Still More Works by the Original Artists, Computer Science Division (EECS), Univ. of California, Berkeley, Report No. UCB/CSD 86/272 (December 1985).
[5] Marshall, J. C., and Mattis, R. L., Semiconductor Measurement Technology: Evaluating a Chip, Wafer, or Lot Using SUXES, SPICE, and STAT2, NIST Special Publication 400-90 (April 1992).
[6] Doganis, K., and Dutton, R. W., SUXES: Stanford University Extractor of Model Parameters (Users Manual), U.S. Army Research Office Contract No. DAAG-29-80-K-C-0013 and DARPA Contract No. MDA903-79-C-0257, Integrated Circuits Laboratory, Stanford University, Stanford (November 1982).

7] Nagel, L. W., SPICE2: A Computer Program to Simulate Semiconductor Circuits, Memorandum No. ERL-M520, Electronics Research Laboratory, University of California, Berkeley (May 1975).
[8] Mattis, R. L., Semiconductor Measurement Technology: A FORTRAN Program for Analysis of Data from Microelectronic Test Structures, NBS Special Publication 40075 (July 1983); Matttis, R. L., and Zucker, R., Release Notes for STAT2 Version 1.31: An Addendum to NBS Special Publication 400-75, NBSIR 83-2779 (November 1983); Mattis, R. L., Release Notes for STAT2 Version 1.7: An Addendum to NBS Special Publication 400-75, NBSIR 86-3333 (March 1986).
[9] Marshall, J. C. and Zaghloul, M. E., Color Supplement to NIST Special Publication 400-93: Semiconductor Measurement Technology: Design and Testing Guides for the CMOS and Lateral Bipolar-on-SOI Test Library, NISTIR 5324 (March 1994).
[10] Colclaser, R. A., Microelectronics: Processing and Device Design (John Wiley \& Sons, Inc., 1980), pp. 152-153.
[11] El-Kareh, B., Abadeer, W., and Tonti, W., Design of Submicron PMOSFETs for DRAM Array Applications, IEEE International Electron Devices Meeting, December 1991, 13.7, pp. 379-384.
[12] Oikawa, K., Ando, S., Ando, N., Horie, H., Toda, Y., and Hijiya, S., P+ Polysilicon Gate P-MOSFETs Using BCl Implantation, IEEE International Electron Devices Meeting, December 1991, 3.8, pp. 79-82.
[13] Mogami, T., Johansson, L., Sakai, I., and Fukuma, M., Hot-Carrier Effects in Surface Channel PMOSFETs with BF2- or Boron-Implanted Gate, IEEE International Electron Devices Meeting, December 1991, 19.3, pp. 533-536.
[14] Marshall, J. C., Parameswaran, M., Zaghloul, M. E., and Gaitan, M., High-Level CAD Melds Micromachined Devices with Foundries, IEEE Circuits and Devices 8 (6), 10-17 (November 1992).
[15] Conversations with G. Harman (bonding/packaging expert), NIST, Gaithersburg, Md.
[16] Conversations with M. Parameswaran (micromachining expert), Simon Fraser University, Burnaby, British Columbia.

Figure 1. Simplified block diagram for the computer procedure KEYS.
芯 芯 華

	Glass	$\times \times$	Etch		Ptie	VIIA	Substrate		Ndc
：	Open	\％	Petch		Nwell	＊	Legend	等置	Pdc
	M2c		Ndiff		Pwell		Legb		Nwc
PR A	M2		Pdiff		Dimplant		Pc	W㓊	Pwc
\cdots	M1	س＂	Nndiff		Island		Ppc		Hole
奴	Npoly		Ppdiff	Y	Pad		Ndpc	1	Ilc
空密荠	Ppoly	VRA	Ntie		Ppad		Pdpe	想畧	Subcon

Figure 3. P-channel MOSFET found in the test library, NIST8, and NIST9.

Figure 4. N-channel MOSFET found in the test library, NIST8, and NIST9.

Figure 5. Minimum-sized n-channel MOSFET found in the test library, NIST8, and NIST9.

Figure 6. Circular n-channel MOSFET found in the test library, NIST8, and NIST9.

Figure 7. Circular n-channel MOSFET with no channel contact found in the test library, NIST8, and NIST9.

Figure 8. H-gate MOSFET found in the test library, NIST8, and NIST9.

Figure 9. Italic H-gate MOSFET found in the test library, NIST8, and NIST9.

Figure 10. T-gate MOSFET found in the test library, NIST8, and NIST9.

Figure 12. T-gate MOSFET with source-to-channel tie found in the test library, NIST8 and NIST9.

Figure 13. N-channel MOSFET with source-to-channel tie found in the test library and NIST9.

Figure 14. N-channel depletion-mode MOSFET found in the test library and NIST9.

Figure 15. First bipolar design ($n p n$) on NIST9 with the base contact beside the emitter and with a full implant.

Figure 16. Second bipolar design ($n p n$) on NIST9 with the base contact beside the emitter and with a half implant.

Figure 17. Third bipolar design ($n p n$) on NIST9 with the base contact below the gate and with a full implant.

Figure 18. Fourth bipolar design ($n p n$) on NIST9 with the base contact below the gate and with a half implant.

Figure 19. Fifth bipolar design ($n p n$) on NIST9 with an n-channel MOSFET gate connected to its base.

Figure 20. Cell structure of the test library with module count.

Figure 21. Module spacings used in the test library, NIST8, and NIST9.

Figure 22. Cell structure of NIST8.

Figure 23. Subcell structure of NIST8.

Figure 24. CMOS Test Chip, NIST8.

Figure 25. Static RAM module DDM found in the test library, NIST8, and NIST9.

㔭

禺

Figure 29. Circuit diagram of the static RAM cell (and how to test it).

Figure 30. Cell structure of the SOI/SIMOX test wafer NIST9.

Figure 31. Processing module AAM found in the test liorary and NIST9.

(2,
Figure 32. Processing module AAM1 found in the test library and NIST9.

Figure 33. Micromachining module IRM found in the test libraxy and NIST9.

Figure 34. OH breath analyzer.

Table 1 - Doses and Energies for the Implantations on NIST9
IMPLANT MASK DOPANT DOSES AND ENERGIES (ASSUMING T=0.15 UM)

1. Nrell Phosphorus $8 \times 10^{11} / \mathrm{cm}^{2}$ © $50 \mathrm{keV}=5.33 \times 10^{16} / \mathrm{cm}^{3}$
2. Prell Boror $8 \times 10^{11} / \mathrm{cm}^{2}$ © $20 \mathrm{keV}=5.33 \times 10^{16} / \mathrm{cm}^{3}$
3. Ntie Phosphorus
$3 \times 10^{13} / \mathrm{cm}^{2}$ © $50 \mathrm{keV}=2.0 \times 10^{18} / \mathrm{cm}^{3}$
4. Ptie Boron $3 \times 10^{13} / \mathrm{cm}^{2}$ © $20 \mathrm{keV}=2.0 \times 10^{18} / \mathrm{cm}^{3}$
5. D-implant Phosphorus $2 \times 10^{12} / \mathrm{cm}^{2}$ © $50 \mathrm{keV}=1.33 \times 10^{17} / \mathrm{cm}^{3}$
6. N-implant Phosphorus $3 \times 10^{15} / \mathrm{cm}^{2}+50 \mathrm{keV}=2.0 \times 10^{20} / \mathrm{cm}^{3}$
7. P-implant Boron $3 \times 10^{15} / \mathrm{cm}^{2}$ © $20 \mathrm{keV}=2.0 \times 10^{20} / \mathrm{cm}^{3}$

IMPLANT MASK DOPANT DOSES AND ENERGIES (ASSUMING T=0.50 JM)
8. Npoly Phosphorus
9. Ppoly

Boron
$5 \times 10^{14} / \mathrm{cm}^{2} \odot 180 \mathrm{keV}=1.0 \times 10^{19} / \mathrm{cm}^{3}$
$5 \times 10^{14} / \mathrm{cm}^{2}$ © $60 \mathrm{keV}=1.0 \times 10^{19} / \mathrm{cm}^{3}$

Table 2 - Mask Processing Sequence for NIST9
\(\left.\begin{array}{rllll}\hline \& \& CIF \& CALMA

\& MASK \& CLEAR (C) OR

NOMBER*\end{array}\right]\)| DARK (D) FIELD |
| :---: |

Table 3 - Magic Layer Used for MOSFET Gates or a Shield for Bipolar Devices and the Mask Numbers Involved in the Processing

FET OR		
BIPOLAR	MAGIC	MASKS
STRUCTURE	LAYER	USED
1. n-channel MOSFET gates (and surrounding poly)	poly	7 \& 8 (poly \& npoly)
2. p-channel MOSFET gates (and surrounding poly)	ppoly	7 \& 9 (poly \& ppoly)
3. most $n p n$ shields (and surrounding poly)	etch	$7 \& 8$ (poly \& npoly)
4. most $p n p$ shields (and surrounding poly)	petch	$7 \& 9$ (poly \& ppoly)

Table 5 - Magic Layers, CIF Names, and Calma Numbers (as found in the Cifoutput Section of the Technology File) Associated with the MOSIS CMOS Masks

MASK DEFINITION	MAGIC LAYERS INCLJDED	CMOS CIF NAME	CALMA NOMBER
1. allNvell	лп, ппс	CWN	1
2. allPwell	рп, ршс	CWP	2
3. pad shrink 400	$\begin{aligned} & \text { pad } \\ & m 2 \end{aligned}$	CMS	3
4. pad shrink 200 allMetal1,m2c	$\begin{aligned} & \text { pad,m1,pc,ppc } \\ & \text { ndpc,pdpc } \\ & \text { ndc,pdc } \\ & \text { nwc,pwc } \\ & \text { ilc,subcon } \\ & \text { m2c } \end{aligned}$	CMF	4
5. allPoly pad	```poly,ppoly,pc,ppc nfet,pfet,dfet ndpc,pdpc pad```	CPG	5
6. allNdiff allPdiff and allIsland	ndiff, ndc nndiff,nec nfet,dfet, ndpc pdiff,pdc ppdiff, pwe pfet,pdpc il,ilc	CAA	6
```7. pad shrink 400 m2c shrink 100```	pad   m2c	CVA	7
8. ndiff,nfet gron 200 allNdiff	ndiff,nfet ndc,nndiff,dfet nचс, ndpe	CSN	8
9. pdiff, pfet gron 200 allPdiff	pdiff,pfet pdc,ppdiff pwc,pdpc	CSP	$\begin{array}{r}9 \\ \\ \hline\end{array}$
10. ndc,pdc, pwe, nime shrink 200	nde, pde, puc, nwe	CCA	10
11. pad shrink 100 pc, rdpc, pdpc shrink 200	pad   pc,ndpc,pdpc	CCP	11
12. pad shrink 600 glass	pad   glass	COG	12

Table 6 - Module Cell Names, Dimensions, and Pad Arrangement for the Different Module Sizes Follored by the MOSFET Dimensions and Sample Subcell Name for the 2 by 16 Small, Medium, and Large Modules

MODULE NAMES	DIMENSIONS	PAD ARRANGEMENT
1. AAS to ZZS	*idth $=1912 \mu \mathrm{~m}$	10 by 7
AAM to ZZM	height $=1312 \mu \mathrm{~m}$	30 pads
AAL to ZZL		(10 top, 10 bottom
DLM, IRM, DIO, DIO1		7 right, 7 Ieft)
2. AS to ZS	midth $=312 \mu \mathrm{~m}$	2 by 16
AM to ZM	hoight $=3112 \mu \mathrm{~m}$	
AL to ZL		
AaM to ZzM		
3. aas to zzS	width $=2312 \mu \mathrm{~m}$	12 by 2
aaM to zzM	height $=312 \mu \mathrm{~m}$	
aaL to zzL		
4. aasS to zzzS	width $=1912 \mu \mathrm{~m}$	10 by 2
aaaM to zzzM	height $=312 \mu \mathrm{~m}$	
aaal to zzzL		
AAM1		
5. aamaS to zzzzS	*idth $=312 \mu \mathrm{~m}$	2 by 11
aaaaM to zzzzM	height $=2112 \mu \mathrm{~m}$	
aaaal to zzzzL		

A. Small modules
(ending mith 'S')
$L=0.2,0.3,0.4,0.5,0.6,0.8 \mu \mathrm{~m} \quad$ plo2п6 $W=6 \mu \mathrm{~m}$
B. Medium modules
(ending mith 'M')
$L=2,3,4,5,6,8 \mu$ m
n12п6
$W=6 \mu \mathrm{~m}$
C. Large modules
$\mathrm{L}=12,13,14,15,16,18 \mu \mathrm{~m}$
(onding rith ' $L$ ') $W=6 \mu \mathrm{~m}$
nl12m6min

Table 7 - Method Used to Make a Medium Module into a Small Module on NIST9

```
% cd~/simox
% cp BM.mag B.mag
% magic B
 change label to BS
 delete the cells
 rename the cells for the appropriate dimensions
 replace the cells in the module
 change labeled dimensions
 :cif ostyle asis
 :cif
 :rriteall
 :quit
% cd~/simoxsub
% cp ~/simox/B.cif
%/magic -Tsimox junk
 :cif istyle in10x
 :cif read B
 :rriteall
 :quit
% cp B.mag B100.mag
% rm B.mag
% magic B100
 use the appropriate subcon cells (e.g., subconupS and subconS)
 edit the cells for the correct submicron dimensions
 :rriteall
 :quit
% cp B100.mag BS.mag
% magic vaferS
 :getcell BS
 :qriteall
 :quit
```

Table 8 - Module Name, Label, and Description for the Large 10 by 7 Modules


-	CCM3 -	CAPS	-mi/sub 22 pF with tox=8000 A Capacitors ( $1300 \times 775 \mu \mathrm{~m}$ )   - m1/il 22 pF with tox=4000 A   - mi/poly 18 pF with tox=5000 A
-	CCM4 -	CAPS	Capacitors ( $1300 \times 775 \mu \mathrm{~m}$ ) - poly/sub 22 pF with tox $=4000 \mathrm{~A}$ - il/sub 22 pF with tox $=4000 \mathrm{~A}$
-	CCM5 -	CAPS	Capacitors ( $1300 \times 775 \mu \mathrm{~m}$ )   - ppoly/sub 22 pF with tox=4000 $\AA$   - m1/ppoly 18 pF with tox=5000 A
-	CCM6 -	CAPS	Capacitors ( $625 \times 775 \mu \mathrm{~m}$ )   - poly/il 86 pF with tox=500 A   - ppoly/il 86 pF with tox=500 A   - ppoly/nndiff tox=500 $\mathbb{A}$   - ppoly/ppdiff tox=500 A
-	CCM7 -	CAPS	```Capacitors (1312 x 1530 \mum) - m1/poly/il/sub```
-	CCM8 -	CAPS	$\begin{gathered} \text { Capacitors ( } 1312 \times 1530 \mu \mathrm{~m}) \\ -\mathrm{m} 1 / \text { ppoly/il/sub } \end{gathered}$
-	CCM9 -	CAPS	Capacitors ( $625 \times 775 \mu \mathrm{~m}$ )   - poly/ii 86 pF with tox=500 A   - ppoly/il 86 pF with tox=500 A   - poly/nndiff tox=500 A   - poly/ppdiff tox=500 $\mathbb{A}$
DDS	DDM DDL	SRAM	1-bit static RAM   - vith selected SRAM parts pinned out
EES	EEM EEL	RING23	$\begin{aligned} & \text { 23-stage ring oscillator } \\ & \text { - ringinv (period=88), amp, nand } \\ & \text { nringinv } \\ & \text { pringinv } \\ & W_{n} / L_{n}=24 / 6 \\ & W_{p} / L_{p}=48 / 6 \end{aligned}$
-	FFM -	CIRC23	Ring oscillator with circular MOSFETs   - ampcirc   - ngate box $5 \times 5 \mu \mathrm{~m}$ चith 3 reps $\mathrm{L}=6 \mu \mathrm{~m}$   - $n$ S/D box $8 x 8 \mu$ m with 5 reps $\begin{aligned} & W_{n}=2 \pi(13)=81.7 \mu \mathrm{~m} \\ & W_{p}=164 \mu \mathrm{~m} \end{aligned}$
GGS	GGM GGL	RINGHG	Ring oscillator with H-gate MOSFETs
HHS	HHM HHL	RINGTG	Ring oscillator with T-gate MOSFETs
IIS	IIM IIL	TIE23	```Ring oscillator with MOSFETs using source-to-channel ties (period=56) - nl2q6tie ringtie```


JJS JJM JJL	HGTIE	Ring oscillator with H-gate MOSFETs using
source-to-channel ties		

- XXM1 - M1PPOL
- YYM - M2M1 *
- ZZM - SUB
- DLM - THREADDIS
- IRM - IRT4X150
- DIO - NDIODE
- DID1 - PDIDDE

M1/ppoly contact meander structure M2/m1 contact meander structure Substrate contact meander structure - tests continuity of mi into subcon - horiz, vert

Threading dislocation structures Suspended structures
A meandering ndiode

- for lifetime measurements

A meandering pdiode

- for lifetime measurements
* This module appears in the test library but not on NIST9. Also, no small modules appear on NIST9.

FOR THE LARGE 10 BY 7 MODULES:

S (Small)	$\mathrm{L}=2 \mu \mathrm{~m}$	$\mathrm{~W}_{n}=24 \mu \mathrm{~m}$
M (Medium)	$\mathrm{L}=6 \mu \mathrm{~m}$	$\mathrm{~W}_{p}=48 \mu \mathrm{~m}$
L (Large)	$\mathrm{L}=10 \mu \mathrm{~m}$	

Table 9 - Module Name, Label, and Description for the 2 by 16 Modules, the 12 by 2 Modules, the 10 by 2 Modules, and the 2 by 11 Module

MODULE	MODULE LABEL	DESCRIPTION
1. The 2	Modules	
AS AM AL	NCHAN	$N$-channel MOSFETs   - n12п6   - contacts $8 \times 8$
BS BM BL	PCHAN	$P$-channel MOSFETs   - pl2п6   - contacts $8 \times 8$
CS CM CL	NMIN	Minimum sized MOSFETs   - nl2m6min   - contacts $8 x 8$
- DM -	CIRC	Circular MOSFETs   - nl6m82circ   - contacts $8 \times 8$
ES EM EL	HG	H-gate MOSFETs   - nl2m20hg   - contacts $8 \times 8$
FS FM FL	TG	T-gate MOSFETs   - nl2w20tg   - contacts $8 \times 8$
- GM GL	TIE	MOSFETs שith source-to-channel tie   - nl2m20tie   - contacts $8 \times 8$
HS HM HL	DFET	Depletion-mode MOSFETs   - dl2п6   - contacts $8 \times 8$
IS IM IL	HGTIE	H-gate MOSFETs Fith source-to-channel tie   - nl2m20hgtie   - contacts $8 \times 8$
JS JM JL	TGTIE	T-gate MOSFETs $\quad$ ith source-to-channel tie   - n12m20tgtie   - contacts $8 \times 8$
- KM -	CIRCNOC	Circular MOSFETs with no channel contact   - nl6п82circnoc   - contacts $8 \times 8$
- LM -	CONRES	```Contact resistors - conpoly4x4, conndiff4x4, conpdiff4x4 conil4x4```


- MM -	CONRES		```Contact resistors - conpoly6x6, conndiff6x6, conpdiff6x6, conil6x6```
- NM -	CONRES		```Contact resistors - conpoly8x8, conndiff8x8, conpdiff8x8, conil8x8```
- OM -	CONRES		```Contact resistors - conpoly16x16, conndiff16x16, conpdiff16x16, conil16x16```
- PM -	CONRES	*	```Contact resistors - convia4x4, conisl4x4, cornm4x4, conp=4x4, convia4x4, conisl4x4```
- PM1 -	CONRES		```Contact resistors - comppoly4x4, conisl4x4, connr4x4, conpø4x4, conppoly4x4, conisl4x4```
- QM -	CONRES	*	Contact resistors   - constringvia, constringpol, constringndiff, constringpdiff, constringvia, constringpol
- QM1 -	CONRES		```Contact resistors - constringppol, constringpol, constringndiff, constringpdiff, constringppol, constringpol```
RS RM RL	CB	*	```Cross bridges - cbm2, cbm1, cbpol```
RS1 RM1 RL1	CB		Cross bridges   - cbppol, cbmi, cbpol
SS SM SL	CB		Cross bridges   - cbrd, cbpd, cbrfet
TS TM TL	CB		Cross bridges   - cbnr, cbpr, cbpfet
US UM UL	ITHG		$\begin{aligned} & \text { Italic H-gate } \\ & \text { - nl2ซ6ithg } \end{aligned}$
VS VM VL	INVS		$\begin{aligned} & \text { Inverters } \\ & \quad-\text { inv3, inv4, inv5, inv6 } \end{aligned}$
WS WM WL	INVL		$\begin{aligned} & \text { Inverters } \\ & \quad \text { - inv7, inv8, inv9, inv10 } \end{aligned}$
- XM -	ALI	*	E-beam X-ray alignment structures - $4 \mu \mathrm{~m}$   - m2vanpaur, m1vanpaur,   - alignviam1a, alignviam1b
- YM -	ALI	*	E-beam X-ray alignment structures - $4 \mu$ m   - m1avanpaur, polvanpaum,   - alignconpolya, alignconpolyb
- ZM -	ALI	*	E-beam X-ray alignment structures - $4 \mu \mathrm{~m}$

- AaM -
- BbM -
- CcM -
- DdM -
- EeM -
- FfM -
- GgM -
- HhM -
- IiM
- JjM -
- KkM -
- LIM -
- MmM -
- NnM -
- DoM -
- PpM -

NSQUARE

PSQUARE

KEYS
BICMOS

ALI

ALI

BICMOS

ALI

BICMOS

BICMOS

BICMOS

BICMOS

BICMOS

BICMOS

BICMOS

BICMOS

- mibvanpaur, ilvanpaur,
- alignconila, alignconilb

Unusually-sized $n$-channel MOSFETs $3 / 3,4 / 4,5 / 5,6 / 6,10 / 10,20 / 20$, $30 / 30,6 / 30,30 / 6$
Unusually-sized $p$-channel MOSFETs $3 / 3,4 / 4,5 / 5,6 / 6,10 / 10,20 / 20$, $30 / 30,6 / 30,30 / 6$
KEYS structures
Lateral bipolar structures - npn

- base contact beside the emitter
- implant all the way across

E-beam X-ray alignment structures - $8 \mu \mathrm{~m}$

- poly/m1

E-beam X-ray alignment structures - $8 \mu \mathrm{~m}$

- il/m1

Lateral bipolar structures - pnp

- base contact beside the emitter
- implant all the way across

E-beam X-ray alignment structures - $8 \mu \mathrm{~m}$

- ppoly/m1

Lateral bipolar structures - npn

- base contact beside the emitter
- implant $1 / 2$ way across

Lateral bipolar structures - pnp

- base contact beside the emitter
- implant $1 / 2$ way across

Lateral bipolar structures - npn

- base contact below gate
- implant all the way across

Lateral bipolar structures - pnp

- base contact belor gate
- implant all the way across

Lateral bipolar structures - npn

- base contact below gate
- implant $1 / 2$ way across

Lateral bipolar structures - pnp

- base contact below gate
- implant $1 / 2$ way across

Lateral bipolar structures - npn

- like an $n$-channel MOSFET with the gate connected to the base
Lateral bipolar structures - pnp
- like a p-channel MOSFET with the


## gate connected to the base

2. The 12 by 2 Modules

- aaM - NODD Unusually-sized $n$-channel MOSFETs
- bbM - KEYS KEYS structures (horizontal)

3. The 10 by 2 Modules

- AAM1 - PROC
- aaaM - NODD
- bbbM - PODD
- cccM - PODD

Processing structures
Unusually-sized $n$-channel MOSFETs
Unusually-sized $p$-channel MOSFETs
Unusually-sized p-channel MOSFETs
4. The 2 by 11 Module

- aaaM - KEYS * KEYS structures
* This module appears in the test library but not on NIST9. Also, no small modules appear on NIST9.

FOR THE 2 BY 16 MODULES:

S (Small)	$\mathrm{L}=0.2,0.3,0.4,0.5,0.6,0.8 \mu \mathrm{~m}$
M (Medium)	$\mathrm{L}=2,3,4,5,6,8 \mu \mathrm{~m} \quad \mathrm{~W}=6 \mu \mathrm{~m}$
L (Large)	$\mathrm{L}=12,13,14,15,16,18 \mu \mathrm{~m}$

S (Small)
$\mathrm{L}=0.2,0.3,0.4,0.5,0.6,0.8 \mu \mathrm{~m}$
L (Large)
$\mathrm{L}=12,13,14,15,16,18 \mu \mathrm{~m}$

Table 10 - List of Large 10 by 7 Modules in the Test Library Organized by Function

MODULE	FUNCTION
CCM, CCM1	Capacitors - see tables 14 and 15
CCM2-CCM9	
PPM-ZZM	Meanders - see table 13
QQM1, TTM1, XXM1	
DDM-MMM	Dynamic circuits - see table 16
$\begin{aligned} & \text { DDS-EES, DDL-EEL } \\ & \text { GGS-KKS, GGL-KKL } \end{aligned}$	
AAM	Processing structures
BBM	Circular, multi-edged, many-fingered, and regular MOSFETs
NNM, NNM1	Van der Paum dopant resistivity test structures
00M	Multi-edge MOSFETs, multi-fingered MOSFETs,
OOS,00L	and italic H-gate MOSFETs
DLM	Threading dislocation structures
IRM	Suspended structures
DIO,DIO1	Meandering diodes

Table 11 - List of All But the Large 10 by 7 Modules in the Test Library Organized by Function

MODUE	FUNCTION
AM-KM, UM	MOSFETS - see table 12
AS-CS,AL-CL	
ES-FS,EL-GL	
HS-JS,HL-JL	
US, UL	
LM-QM	Contact resistors
PM1, QM1	
RM-TM	Cross-bridges
$\begin{aligned} & \text { RS-TS, RL-TL } \\ & \text { RS1, RM1, RL1 } \end{aligned}$	
VM-WM	Inverters
VS-WS, VL-WL	
XM-ZM	E-beam x-ray alignment structures
EeM, FfM, HhM	
AaM, BbM	Unusually-sized MOSFETs
aaM, aaaM, bbbM, cccM	
CcM, bbM, aaaM	KEYS structures
DdM, GgM	Lateral bipolar structures
IiM, JjM	
KkM, LlM	
MmM, NrM	
OoM, PpM	
AAM1	Processing structures

Table 12 - List of Modules Consisting of MOSFETs Found in the Test Library vith a Sample Subcell Name Giver

MODULE	FUNCTION	SAMPLE SUBCELL NAME
S M L		
AS AM AL	$n$-channel MOSFETs	n12w6
- GM GL	n-channel MOSFETs with a source-to-channel tie	nl2m20tie
CS CM CL	minimum sized $n$-channel MOSFETs	nl2m6min
BS BM BL	p-channel MOSFETs	pl2w6
HS HM HL	depletion-mode MOSFETs	d12m6
- DM -	circular $n$ - and $p$-channel MOSFETs	nl6m82circ
- KM -	circular $n$ - and $p$-channel MOSFETs with no channel contact	nl6w82circnoc


ES EM EL	H-gate n-channel MOSFETs	n12m20hg
IS IM IL	H-gate $n$-channel MOSFETs with a source-to-channel tie	nl2w20hgtie
US UM UL	italic H-gate n-channel MOSFETs	nl2w6ithg

FS FM FL

T-gate $n$-channel MOSFETs nl2m20tg
JS JM JL
T-gate $n$-channel MOSFETs
nl2w20tgtie with a source-to-channel tie

AaM, aaM, aaaM
BbM, bbbM, cccM
unusually-sized $n$-channel MOSFETs
unusually-sized $p$-channel MOSFETs

Table 13 - List of Modules Consisting of Meanders Found in the Test Library
TYPE OF MEANDER MODULE LAYER(S) INVOLVED

1. INDIVIDUAL MEANDERS - checks for shorts and opens at corners and along straight lines for horizontal and vertical alignments

- Kelvin measurements are possible
- 597 corners for the 8 - $\mu$ m meander
- 567 corners for the 3-, 4-, and 6- $\mu$ m meanders

PPM	island
QQM	poly
QQM1	ppoly
RRM	m1
SSM	m2

2. STEP COVERAGE MEANDERS - checks for step coverage, shorts, and continuity for horizontal and vertical alignments - for tro levels that do NOT have a contact betreen them - 1631 crossings

TTM	poly/il
TTM1	$p$ poly/il
UUM	$\mathrm{m} 2 / \mathrm{il}$
VVM	$\mathrm{m} 2 / \mathrm{poly}$

3. CONTACT MEANDERS - tests step coverage, tests the integrity of the glass betreen the tro layers, detects shorts between the two layers, and checks continuity for horizontal and vertical alignments

- for tro levels that DO have a contact betreen them
- 1232 contacts

WWM	$\mathrm{m} 1 / \mathrm{il}$
XXM	$\mathrm{m} 1 / \mathrm{poly}$
XXM1	$\mathrm{m} 1 / \mathrm{ppoly}$
YYM	$\mathrm{m} 2 / \mathrm{m} 1$

4. SUBSTRATE CONTACT MEANDER - tests continuity of metall into a substrate contact (horizontal and vertical aligments are considered)

- 993 contacts

ZZM sub

Table 14 - Capacitors on Modules CCM and CCM1 Found in the Test Library

LAYER1	LAYER2	SUBCELL NAME	MODULE
m2	m1	capm1m2 (over il)	CCM
	poly	capm2pol (over il)	CCM
	il	capm2il	CCM
	sub	capm2	CCM
m1	poly	capm1pol (over il)	CCM
	ppoly	capm1ppol (over il)	CCM1
	il	capm1il	CCM
	sub (without il)	capm1	CCM
poly	il	cappolil	CCM
		cappolng	CCM1
		cappolpr	CCM1
	$n$ \#ell/ $n n$ diff	capchann	CCM1
	$p$ vell/ ppdiff	capchanp	CCM1
	sub (without il)	cappol	CCM
ppoly	il	capppolil	CCM1
	sub (without il)	capppol	CCM1
il	sub	capil	CCM
		capnr	CCM1
		cappø	CCM1
		capn	CCM1
		capp	CCM1

The capacitance can be calculated using the equation:
$C$ (in PF ) $=\operatorname{eox}(\mathrm{A}) /$ tox
where
eox $=8.85 e-6 \mathrm{pF} / \mu \mathrm{m}$
$A=$ area in $\mu \mathrm{m}^{2}$
tox in $\mu \mathrm{m}$

Table 15 - Capacitors on Modules CCM2 through CCM9 Found in the Test Library

LAYER1	LAYER2	DIMENSIONS		MODULE
m1	poly	(1300x775 $\mu \mathrm{m}^{2}$ )	18 pF with tox $=5000 \mathrm{~A}$	CCM3
	ppoly	(1300x775 $\mu$ m²)	18 pF with tox $=5000$ A	CCM5
	il	(1300x775 $\mu \mathrm{m}^{2}$ )	22 pF with tox $=4000 \mathrm{~A}$	CCM3
	sub	(1312x1530 $\mu \mathrm{m}^{2}$ )	22 pF with tox=8000 A	CCM2
	poly/il/sub	(1312×1530 $\mu \mathrm{m}^{2}$ )		CCM7
	ppoly/il/sub	(1312x1530 $\mu \mathrm{m}^{2}$ )		CCM8
poly	il	(625x775 $\mu \mathrm{m}^{2}$ )	86 pF with tox $=500 \mathrm{~A}$	CCM6, 9
	sub	(1300x775 $\mu \mathrm{m}^{2}$ )	22 pF with tox=4000 ${ }^{\text {A }}$	CCM4
	nndiff	(625x775 $\mu \mathrm{m}^{2}$ )	tox $=500$ A	CCM9
	$p p d i f f$	(625x775 $\mu \mathrm{mm}{ }^{2}$ )	tox $=500 \mathrm{~A}$	CCM9
ppoly	il	(625x775 $\mu \mathrm{m}^{2}$ )	86 pF vith tox=500 A	CCM6,9
	sub	(1300x775 $\mu \mathrm{m}^{2}$ )	22 pF with tox=4000 $\AA$	CCM5
	nndiff	(625x775 $\mu \mathrm{m}^{2}$ )	tox $=500$ A	CCM6
	$p p d i f f$	(625x775 $\mu \mathrm{m}^{2}$ )	tox $=500 \mathrm{~A}$	CCM6
il	sub	(1300x775 $\mu \mathrm{m}^{2}$ )	22 pF with tox=4000 A	CCM4

The capacitance can be calculated using the equation:
C (in pF ) $=\operatorname{eox}(\mathrm{A}) /$ tox
चhere
eox $=8.85 \mathrm{e}-6 \mathrm{pF} / \mu \mathrm{m}$
$A=$ area in $\mu \mathrm{m}^{2}$
tox in $\mu$ m
The capacitor areas have been adjusted such that the capacitance is greater than 10 pF .

Table 16 - List of Modules Containing Dynamic Circuits Found in the Test Library with a Sample Subcell Name Given


Table 17 - Organization of the Modules on NIST8

	$\begin{gathered} C 1 \\ \text { AM } \\ \text { NCHAN } \end{gathered}$	$\begin{gathered} C 2 \\ \text { BM } \\ \text { PCHAN } \end{gathered}$	$\begin{gathered} \text { C3 } \\ \text { CM } \\ \text { NMIN } \end{gathered}$	$\begin{gathered} \text { C4 } \\ \text { DM } \\ \text { CIRC } \end{gathered}$	$\begin{gathered} \text { C5 } \\ \text { KM } \\ \text { CIRCNOC } \end{gathered}$	$\begin{aligned} & C 6 \\ & E M \\ & H G \end{aligned}$	$\begin{gathered} C 7 \\ \text { UM } \\ \text { ITHG } \end{gathered}$	$\begin{aligned} & \text { C8 } \\ & \text { FM } \\ & \text { TG } \end{aligned}$	$\begin{aligned} & C 9 \\ & \text { VM } \end{aligned}$ INV	$\begin{aligned} & \text { C10 } \\ & \text { XM } \\ & \text { ALI } \end{aligned}$	$\begin{aligned} & \text { C11 } \\ & \text { AaM } \\ & \text { NSQ } \end{aligned}$
R1	$\begin{aligned} & \text { L2 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L2 } \\ & \text { W6 } \\ & \text { P } \end{aligned}$	$\begin{aligned} & \text { L2 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W82 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W82 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { L2 } \\ & \text { W20 } \\ & \mathrm{N} \end{aligned}$	L2 W6 $N$	L2 W20 N	L3		$\begin{aligned} & \text { L3 } \\ & \text { W3 } \\ & N \end{aligned}$
R2	$\begin{aligned} & \text { L3 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L3 } \\ & \text { W6 } \end{aligned}$	$\begin{aligned} & \text { L3 } \\ & \text { W6 } \\ & N \end{aligned}$	L9   W79   N	L9   W79   N	$\begin{aligned} & \text { L3 } \\ & \text { W20 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { L3 } \\ & \text { W6 } \end{aligned}$	L3 W20 N			L4 W4 N
R3	$\begin{aligned} & \text { L4 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L4 } \\ & \text { W6 } \\ & P \end{aligned}$	$\begin{aligned} & \text { L4 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L12 } \\ & W_{1} 107 \\ & N \end{aligned}$	$\begin{aligned} & \text { L12 } \\ & \text { W107 } \\ & N \end{aligned}$	$\begin{aligned} & L 4 \\ & \mathrm{~W}_{20} \end{aligned}$	$\begin{aligned} & \text { L4 } \\ & \text { W6 } \\ & N \end{aligned}$	L4 W20 N	L4		L5 W5 N
R4	$\begin{aligned} & \text { L5 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L5 } \\ & \text { W6 } \\ & P \end{aligned}$	$\begin{aligned} & \text { L5 } \\ & W 6 \\ & N \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W82 } \\ & \text { P } \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W82 } \\ & \text { P } \end{aligned}$	$\begin{aligned} & \text { L5 } \\ & \mathrm{W} 20 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { L5 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L5 } \\ & \text { W2O } \\ & \mathrm{N} \end{aligned}$	L6		L8 W8 N
R5	$\begin{aligned} & L 6 \\ & W 6 \\ & N \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W6 } \\ & P \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L9 } \\ & \text { W79 } \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \text { L9 } \\ & \text { W79 } \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W20 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W20 } \\ & \mathrm{N} \end{aligned}$			L10 W10 N
R6	$\begin{aligned} & \text { L8 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L8 } \\ & \text { W6 } \\ & P \end{aligned}$	$\begin{aligned} & \text { L8 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L12 } \\ & \text { W107 } \\ & P \end{aligned}$	$\begin{aligned} & \text { L12 } \\ & \text { W107 } \\ & P \end{aligned}$	$\begin{aligned} & \text { L8 } \\ & \text { W2O } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { L8 } \\ & \text { W6 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L8 } \\ & \text { W20 } \\ & \mathrm{N} \end{aligned}$	L10		L30 W30 N
R7	$\begin{aligned} & \text { L6 } \\ & \text { W3 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W4 } \\ & N \end{aligned}$	$\begin{aligned} & \text { NODD } \\ & \text { aaM } \end{aligned}$	$\begin{aligned} & L 6 \\ & W 5 \\ & N \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W8 } \\ & N \end{aligned}$	$\begin{aligned} & \text { L50 } \\ & \text { W50 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W10 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { L10 } \\ & \text { W6 } \\ & \mathrm{N} \end{aligned}$	NODD aaaM	$\begin{aligned} & \text { L6 } \\ & \text { W30 } \\ & \mathrm{N} \end{aligned}$	L30 W6 N
R8 R9			R9C3   SRAM   DDM			$\begin{gathered} \text { L3 } \\ \text { W3 } \\ P \\ \text { PSQU } \\ \text { L4 } \\ \text { W4 } \\ P \end{gathered}$			R9C9 RING23 EEM		
R10	$\begin{aligned} & \text { L6 } \\ & \text { W3 } \\ & \text { P } \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W4 } \\ & P \end{aligned}$	PODD bbbM	$\begin{aligned} & \text { L6 } \\ & \text { W5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W8 } \\ & P \end{aligned}$	$\begin{aligned} & \text { L5 } \\ & \text { W5 } \\ & P \end{aligned}$	$\begin{aligned} & \text { L6 } \\ & \text { W10 } \\ & \text { P } \end{aligned}$	$\begin{aligned} & \text { L10 } \\ & \text { W6 } \\ & \text { P } \end{aligned}$	PODD cccM	$\begin{aligned} & \text { L6 } \\ & \text { W30 } \end{aligned}$	$\begin{aligned} & \text { L30 } \\ & \text { W6 } \\ & \hline \end{aligned}$
R11						L8   W8   P   BbM	---	00M	-	NXTORS	---
R12			$\begin{aligned} & \text { R12C3 } \\ & \text { RINGHG } \\ & \text { GGM } \end{aligned}$			$\begin{aligned} & \text { L10 } \\ & \text { W10 } \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \text { L20 } \\ & W 120 \end{aligned}$	-	$\begin{aligned} & \text { L20 } \\ & \text { W1760 } \end{aligned}$		$\begin{gathered} \mathrm{L} 20 \\ \text { W120 } \end{gathered}$
R13						$\begin{aligned} & \text { L30 } \\ & \text { W30 } \\ & \text { P } \end{aligned}$	$\begin{aligned} & \text { L20 } \\ & \text { W80 } \end{aligned}$	-	$\begin{aligned} & \text { L20 } \\ & \text { W1320 } \end{aligned}$	-	$\begin{aligned} & \text { L20 } \\ & \text { W80 } \end{aligned}$

Table 18 - Method Used To Get Submicrometer Dimensions on NIST8

1. Check CIF file for everything except submicrometer dimensions
\$ cd nist8100 nist8.mag 1x
\$ magic nist8 nist8.cif 1x
cif1x (MOSIS)
:quit
\$ magic -Tsimox blank
cif istyle 1x (MOSIS)
:cif read nist8
CHECK CIF
:quit
2. Make submicrometer file
\$ cd nist8100
\$ magic rist8
cif1x (MOSIS)
:quit
\$ magic -Tsimox blank
:cif istyle mosis(SCE)in10x
:cif read nist8
f,z
:load nist8
edit to proper dimensions (the whole hierarchy)
:edit
:save alignviam100
:edit
:save xm100
:edit
:save nist8100 (of selected files) nist8100.mag 10x
:cif ostyle out-10x
:cif write nist8100 (send this) nist8100.cif 1x
:quit
3. Check the CIF file to be sent \$ magic -Tsimox blank
cif istyle $1 x$ (MOSIS)
:cif read nist8100
CHECK CIF (especially submicrometer dimensions)
:quit
4. Check for submicrometer dimensions
\$ vi rist8100.cif
/alignviam1

Table 19 - Organization of the Large 10 by 7 Modules on NIST9

PRELIMINARY CALCULATIONS:

1 processing	$\times 2=2+2$ inside
1 B module	$\times 2=2$
8 capacitors	$\times 2=16$
10 medium rings/srams	$\times 2=20$
7 large rings/srams	$\times 2=14$
2 van der Pauw	$\times 2=4$
2 O modules	$\times 2=4$
10 meanders	$\times 2=20$
1 threading	$\times 2=2$
1 suspended	$\times 4=4+2$ inside
2 diodes	$\times 2=4$


Total modules	$92+4$ inside
Possible slots	92



Table 20 - Organization of All the Modules Except the Large 10 by 7 Modules on NIST9

## PRELIMINARY CALCULATIONS:

22 MOSFETs ( $M+L$ ) 106 modules
6 contact resistors (M)
6 cross bridges ( $M+L$ )
x 3 iterations
4 inverters ( $M+L$ ) 318 modules
3 e-beam structures (M)
2 unusually-sized (M)
10 bipolar (M)
382 possible spaces
64 extra spaces
-46 KEYS only
53 total modules
18 extra spaces for MOSFETs/KEYS
so 9 extra MOSFET modules
106 modules
Therefore the abbreviated sequencing (e.g., $A=A M, U=U M$ ) is: $A-K, U, \quad V, W, \quad A a, B b, \quad D d, G g, I i-P p, \quad L-T, \quad E e, F f, H h$ MOSFETs inv square bipolar cr,cb x-ray

NOTES:

1. KEYS modules alternate with the 2 by 16 modules (top to bottom) (There are $3+$ repetitions of the 2 by 16 modules)

4K4K4K4K 3К 3 K 3 K 3 K 3 K 3 K 4 K 4 K 4 K 3К 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3К 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 3 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K proc.K2K2K2K2K2K2K2K2K2K2K2K2K2K2K1K1K1K1K1K1K1K1K1K1K1K1K1K1Kproc.K 1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K

$$
\begin{array}{r}
4 \mathrm{~K} 4 \mathrm{~K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K} \\
\mathrm{~K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K} \\
\mathrm{~K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{K}
\end{array}
$$

2. AAM1 appears below each AAM processing module
3. Horizontal modules (top to bottom)

2 KEYS (bbM)
4 KEYS
5 KEYS
7 KEYS
8 KEYS
10 KEYS
12 KEYS
13 KEYS
12 cccM, 2 AAM1
15 KEYS
16 aaaM
16 KEYS
16 bbbM
16 aaM
4. Border problem files $=0 M$, XM, YM, ZM, EeM, FfM, HhM

CCM3, CCM4, CCM5, CCM6, CCM9, WWM, XXM, XXM1, YYM, ZZM

## APPENDIX A - Sideviews of the 14 SIMOX Processing Mask Steps

 Used to Fabricate NIST9STED 1 - ISLAND (a clear field mask)


STEP 2 - NWELL (a dark field mask)


Si


STEP 4 - NTIE IMPLANT (a dark field mask)


Si

STEP 5 - PTIE IMPLANT (a dark field mask)


STEP 6 - DFET IMPLANT (a dark field mask)


Si


STEP. 8 - PPOLY IMPLANT


STEP 9 - POLYSILICON (a clear field mask)


Si

STEP 10 - NIMPLANT (a dark field mask)


Si

STEP 11 - SUBSTRATE CONTACT (a dark field mask)


STEP 12 - PIMPLANT (a dark field mask)


STEP. 13 - CONTACTS (a dark field mask)


STEP 14 - METAL (a clear field mask)


```
/*
* simox.tech -- The SIMOX Technology File for lambda=1.0
```

types /* tiles */
/* primary layers */
glass glass
glass open
metal3 metal2c,metal3,m2c, via,m2contact
metal2 metal2,m2,purple
metall metal1,m1,blue
active polysilicon,red,poly,p,npoly
active ppoly
glass etch, netch
glass petch
active ndiffusion,green, ndiff
active pdiffusion, brown, pdiff
active nndiff
active ppdiff
metal2 ntie,nbody_tie,n_xtor_bodytie,tie
metal2 ptie,pbody_tie, P_xtor_bodytie
well nwell,nw
well pwell,pw
metal2 dimplant
island island,il,yellow
island pad
island ppad
island substrate,subst
active legend
well legb,legend_background
/* Contacts */
active polycontact, pcontact, pc
active ppolycontact,ppc
active ndpcontact,ndpc
active pdpcontact,pdpc
active ndcontact,ndc
active pdcontact,pdc
active nwcontact,nwc
active pwcontact, pwc
glass hole,contact
metall ilcontact,ilc
metal1 subcon
/* Transistors */
active ntransistor,nfet

```
active ptransistor,pfet
active dtransistor,dfet
```

end

```
#define allMetal2 m2,m2c
#define allSomeM1 m1,pc/m1,ppc,ndpc/m1,pdpc/m1,ndc/m1,pdc/m1
#define allMetal1 allSomeM1,nwc/m1,pwc/m1,ilc/m1,subcon/m1
#define allPoly1 poly,pc/active,ppc,nfet,dfet,ndpc/active
#define allPoly allPolyl,ppoly,pfet,pdpc/active
#define allNpoly poly,pc/active,nfet,dfet,ndpc/active
#define allPpoly ppoly,ppc,pfet,pdpc/active
#define allNdiff ndiff,ndc/active,nndiff,nwc/active,nfet,dfet,ndpc/active
#define alIPdiff pdiff,pdc/active,ppdiff,pwc/active,pfet,pdpc/active
#define allSomeD ndiff,pdiff,ndc/active,pdc/active,ndpc/active,pdpc/active
#define allDiff allSomeD,nndiff,ppdiff,nwc/active,pwc/active,nfet,pfet
#define allDiffO nndiff,ppdiff,nwc/active,pwc/active
#define allNwell nw,nwc/active
#define allPwell pw,pwc/active
#define allIsland il,ilc/il
#define allSub subst,subcon/subst
cifoutput
style photronix
 scalefactor 100
 layer SWN allNwell
 calma 2 1
 layer SWP alIPwell
 calma 3 1
 layer SIL allIsland,pad,ppad
 calma 1 1
 layer SMF pad,ppad
 shrink 400
 or allMetall
 grow 200
 shrink 200
 calma 14 1
 layer SPG pad,ppad
 shrink 200
 or allNpoly,alIPpoly,etch,petch
 grow 100
 shrink 100
 calma }7
 layer SNP pad
 shrink 200
 or allNpoly,etch
 grow 100
 shrink 100
 calma }8
```

```
 layer SPP ppad
 shrink 200
 or allPpoly,petch
 grow 100
 shrink 100
 calma }9
 layer SND allNdiff
 calma 10 1
 layer SPD alIPdiff
 calma 12 1
 layer SNT ntie
 calma 4 1
 layer SPT ptie
 calma 5 1
 layer SDF dfet
 grow 200
 or dimplant
 calma 6 1
 layer SCT subcon,pad,ppad
 shrink }80
 or ndc,pdc,nwc,pwc,pc,ppc,ilc,ndpc,pdpc
 shrink 200
 or open,hole
 calma 13 1
 layer SCS subcon,substrate,open
 calma 11 1
/* layer SOG pad,ppad
 shrink 600
 or glass,open
 calma 15 1
*/
style mosis(SCE)out1x
 scalefactor }10
 layer CWN allNwell
 calma 1 1
 layer CWP alIPwell
 calma 2 1
 layer CMS pad
 shrink 400
 or allMetal2
 calma 3 1
 layer CMF pad
 shrink 200
 or allMetal1,m2c
 calma 4 1
 layer CPG alIPoly,pad
 calma 5 1
 layer CAA allNdiff,allPdiff
 and allIsland
```

```
 calma 6 1
 layer CVA m2c
 shrink 100
 calma }7
 layer CVA pad
 shrink 500
 calma }7
 layer CSN ndiff,nfet
 grow 200
 or allNdiff
 calma }8
 layer CSP pdiff,pfet
 grow 200
 or allPdiff
 calma 9 1
 layer CCA ndc,pdc,pwc,nwc
 shrink 200
 calma 10 1
 layer CCP pc,ndpc,pdpc
 shrink 200
 calma 11 1
 layer CCP pad
 shrink 300
 calma 11 1
 layer COG pad
 shrink 600
 or glass
 calma 12 1
end
cifinput
style photronix
 scalefactor 100
 layer nw SWN
 layer pw SWP
 layer m1 SMF
 layer poly SNP
 layer ppoly SPP
 layer ndiff SND
 layer pdiff SPD
 layer nndiff SND
 and SWN
 layer ppdiff SPD
 and SWP
 layer ndiff SND
 and-not SWN
 layer pdiff SPD
 and-not SWP
 layer ntie SNT
```

```
 layer ptie SPT
 layer nfet SPG
 and SND
 and-not SWN
 layer pfet SPP
 and SPD
 and-not SWP
 layer dfet SPG
 and SND
 and SDF
 layer dimplant SDF
 and-not SPG
 layer etch SPG
 and SND
 and SWN
 layer petch SPG
 and SPD
 and SWP
 layer hole SCT
 and-not SMF
 layer ilc SCT
 and SIL
 and SMF
 layer ndc SCT
 and SND
 and SMF
 and SIL
layer pdc SCT
 and SPD
 and SMF
 and SIL
layer nwc SCT
 and SND
 and SWN
 and SMF
 and SIL
layer pwc SCT
 and SPD
 and SWP
 and SMF
 and SIL
layer pc SCT
 and SPG
 and SMF
 and-not SND
 and-not SPD
layer ppc SCT
 and SPP
 and SMF
```

```
 and-not SND
 and-not SPD
 layer ndpc SCT
 and SPG
 and SMF
 and SND
 layer pdpc SCT
 and SPP
 and SMF
 and SPD
 layer il SIL
 layer substrate SCS
 and-not SCT
 layer subcon SCT
 and SCS
 and SMF
 layer ppoly SPP
 and-not SWP
/* layer glass SOG
*/
 layer open SCT
 and SCS
 and-not SMF
 and-not SPD
 and SOG
/*
*/
 calma SWN 2 *
 calma SWP 3 *
 calma SIL 1 *
 calma SMF 14*
 calma SPG 7 *
 calma SNP 8 *
 calma SPP 9 *
 calma SND 10*
 calma SPD 12*
 calma SNT 4 *
 calma SPT 5 *
 calma SDF 6 *
 calma SCT 13*
 calma SCS 11 *
 calma SOG 15 *
/*
*/
style mosis(SCE)in1x
 scalefactor 100
 layer nw CWN
 layer pw CWP
 layer m2c CVA
 layer m2 CMS
```

```
 layer ml CMF
 layer poly CPG
 layer il CAA
 layer nndiff CSN
 and CHN
 layer ppdiff CSP
 and CWP
 layer ndiff CSN
 and-not CWN
 layer pdiff CSP
 and-not CWP
 layer nfet CPG
 and CAA
 and CSN
 layer pfet CPG
 and CAA
 and CSP
 layer pdc CCA
 and CAA
 and CSP
 and CMF
 layer ndc CCA
 and CAA
 and CSN
 and CMF
 layer pwc CCA
 and CAA
 and CSP
 and CMF
 and CWP
 layer nwc CCA
 and CAA
 and CSN
 and CMF
 and CWN
 layer pc CCP
 and CPG
 and CMF
 and-not CSN
 and-not CSP
 layer ndpc CCP
 and CPG
 and CMF
 and CSN
layer pdpc CCP
 and CPG
 and CMF
 and CSP
layer glass COG
end
```


## APPENDIX C - Test Algorithm KEYSiv



610

```
M=13
```

M=13
OPTION BASE 1
OPTION BASE 1
!
!
INTEGER Gate,Drain,Source,Substrate,Line,I,K,M,N,P,Q,T,Current
INTEGER Gate,Drain,Source,Substrate,Line,I,K,M,N,P,Q,T,Current
INTEGER Number1,Number2
INTEGER Number1,Number2
REAL Vsource
REAL Vsource
!
!
ALLOCATE Ids(M),Id(13,M)
ALLOCATE Ids(M),Id(13,M)
DIM Vds1(3),Vds2(10),Id1(3),Id2(10)
DIM Vds1(3),Vds2(10),Id1(3),Id2(10)
DIM Vgate_min(3),Vgate_max(3),Vgate_step(3)
DIM Vgate_min(3),Vgate_max(3),Vgate_step(3)
DIM Start(3),Stop(3)
DIM Start(3),Stop(3)
DIM File$[40],Dir$[40],Concat$[40]
DIM File$[40],Dir$[40],Concat$[40]
DIM String_1$[40],String_2$[40],String_3$[40]
DIM String_1$[40],String_2$[40],String_3$[40]
DIM String_4$[40],String_5$[40],String_5$[40]
DIM String_4$[40],String_5$[40],String_5$[40]
DIM Y$[2],Z$[1]
DIM Y$[2],Z$[1]
!
!
!=========================================================================
!=========================================================================
!
!
! Determine the filename
! Determine the filename
!
!
!PRINT "C\$ = ",C\$
!PRINT "C\$ = ",C\$
!PRINT "Y\$ = ",Y\$
!PRINT "Y\$ = ",Y\$
!PRINT "Z\$ = ",Z\$
!PRINT "Z\$ = ",Z\$
!
!
R$="O"
R$="O"
IF Length=2.0 THEN R$="1"
IF Length=2.0 THEN R$="1"
IF Length=3.0 AND (Width=6.0 OR Width=20.0) THEN R$="2"
IF Length=3.0 AND (Width=6.0 OR Width=20.0) THEN R$="2"
IF Length=4.0 AND (Width=6.0 OR Width=20.0) THEN R$="3"
IF Length=4.0 AND (Width=6.0 OR Width=20.0) THEN R$="3"
IF Length=5.0 AND (Width=6.0 OR Width=20.0) THEN R$="4"
IF Length=5.0 AND (Width=6.0 OR Width=20.0) THEN R$="4"
IF Length=6.0 AND (Width=6.0 OR Width=20.0) THEN R$="5"
IF Length=6.0 AND (Width=6.0 OR Width=20.0) THEN R$="5"
IF Length=8.0 AND (Width=6.0 OR Width=20.0) THEN R$="6"
IF Length=8.0 AND (Width=6.0 OR Width=20.0) THEN R$="6"
!
!
IF Width=82. AND Type$="N" THEN R$="1"
IF Width=82. AND Type$="N" THEN R$="1"
IF Width=82. AND Type$="p" THEN R$="4"
IF Width=82. AND Type$="p" THEN R$="4"
IF Width=79. AND Type$="N" THEN R$="2"
IF Width=79. AND Type$="N" THEN R$="2"
IF Width=79. AND Type$="P" THEN R$="5"
IF Width=79. AND Type$="P" THEN R$="5"
IF Width=107. AND Type$="N" THEN R$="3"
IF Width=107. AND Type$="N" THEN R$="3"
IF Width=107. AND Type$="P" THEN R$="6"
IF Width=107. AND Type$="P" THEN R$="6"
!
!
IF Type$="P" THEN GOTO 1270
IF Type$="P" THEN GOTO 1270
!
!
! N-channel devices
! N-channel devices
!
!
IF Length=Width AND Length=3. THEN R$="1"
    IF Length=Width AND Length=3. THEN R$="1"
IF Length=Width AND Length=4. THEN R$="2"
    IF Length=Width AND Length=4. THEN R$="2"
IF Length=Width AND Length=5. THEN R$="3"
    IF Length=Width AND Length=5. THEN R$="3"
IF Length=Width AND Length=8. THEN R$="4"
    IF Length=Width AND Length=8. THEN R$="4"
IF Length=Width AND Length=10. THEN R$="5"
    IF Length=Width AND Length=10. THEN R$="5"
IF Length=Width AND Length=30. THEN R$="6"
    IF Length=Width AND Length=30. THEN R$="6"
IF Length=Width AND Length=50. THEN R$="7"
    IF Length=Width AND Length=50. THEN R$="7"
IF Length=Width AND Length=50. THEN C$="6"
    IF Length=Width AND Length=50. THEN C$="6"
!
!
IF R$="O" THEN R$="7"
IF R$="O" THEN R$="7"
!
!
IF R$="7" AND Width=3. THEN C$="1"
IF R$="7" AND Width=3. THEN C$="1"
IF R$="7" AND Width=4. THEN C$="2"
IF R$="7" AND Width=4. THEN C$="2"
IF R$="7" AND Width=5. THEN C$="4"
IF R$="7" AND Width=5. THEN C$="4"
IF R$="7" AND Width=8. THEN C$="5"
IF R$="7" AND Width=8. THEN C$="5"
IF R$="7" AND Width=10. THEN C$="7"
IF R$="7" AND Width=10. THEN C$="7"
IF R$="7" AND Length=10. THEN C$="8"

```
IF R$="7" AND Length=10. THEN C$="8"
```

```
1210 IF R$="7" AND Width=30. THEN C$="10"
1220 IF R$="7" AND Length=30. THEN C$="11"
1230 GOTO 1490
1240
1250
1260
1270 IF Length=Width AND Length=3. THEN R$="8"
1280 IF Length=Width AND Length=4. THEN R$="9"
1290 IF Length=Width AND Length=5. THEN R$="10"
1300 IF Length=Width AND Length=8. THEN R$="11"
1310 IF Length=Width AND Length=10. THEN R$="12"
1320 IF Length=Width AND Length=30. THEN R$="13"
1330 IF R$="10" THEN GOTO 1610
1340
1350 IF R$="O" THEN R$="10"
1360 !
1370 IF R$="10" AND Width=3. THEN C$="1"
1380 IF R$="10" AND Width=4. THEN C$="2"
1390 IF R$="10" AND Width=5. THEN C$="4"
1400 IF R$="10" AND Width=8. THEN C$="5"
1410 IF R$="10" AND Width=10. THEN C$="7"
1420 IF R$="10" AND Length=10. THEN C$="8"
1430 IF R$="10" AND Width=30. THEN C$="10"
1440 IF R$="10" AND Length=30. THEN C$="11"
1450 GOTO 1610
1460 !
1470 ! Chip OOM
1480 !
1490 IF C$<>"O" THEN GOTO 1610
1500 IF Width=120 OR Width=1760 THEN R$="12"
1510 IF Width=80 OR Width=1320 THEN R$="13"
1520 IF Width>1000 THEN C$="9"
1530 !
1540 IF Pins(2)=18 OR Pins(1)=8 THEN C$="7"
1550 IF Pins(2)=46 OR Pins(2)=48 THEN C$="11"
1560 !PRINT "Pins(2)=";Pins(2)
1570 !PRINT "Pins(1)=";Pins(1)
1580 !
1590 ! ===
1600 !
1610 Dir$="/users/marshall/nist8data/"
1620 !
1630 File$=Type$&"W"&W$&"R"&R$&"C"&C$&".DAT"
1640 !
1650 Concat$=Dir$&File$
1660 !
1670 !PRINT Concat$
1680 !
1690 !--
1700
1710 ! Specify default mass storage
1720 !
1730 !MASS STORAGE IS ":,600,1"
1740 !
1750 ! Create ASCII data file with 10 sectors on the specified
1760 ! mass storage device (:,600,1)
1770 !
1780 ON ERROR GOTO File exists
1790 CREATE ASCII Conca\overline{t}$10
1800 File_exists: OFF ERROR
```

1810
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140 2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360 2370 2380 2390 2400

```
!
Assign (or open) an I/O path name to the file
!
ASSIGN @Path_1 TO Concat$
!
!--
!
Init_system
!
! Define measurement pins
!
Gate=Pins(1)
Drain=Pins(2)
Source=Pins(3)
Substrate=Pins(4)
!
Connect pins to sources
!
Connect(FNSmu(1),Drain)
Connect(FNSmu(2),Gate)
Connect(FNGnd,Source)
Connect(FNSmu(3),Substrate)
!
 ! Force bias conditions
!
IF Type$="N" THEN S=1.0
IF Type$="P" THEN S=-1.0
!
Vsub=0*S
Set_smu(2) ! SET INTEGRATION TIME TO MEDIUM
For\overline{ce_v(Substrate,Vsub)}
! Define variables
!
N=0
P=1
Vgate_min(1)=.1*S
Vgate_min(2)=.5*S
Vgate_max(1)=.35*S
vgate_max(2)=5.0*S
Vgate_step(1)=.1*S
Vgate_step(2)=.5*S
Ids_max=0.
!
Line=1
Range=10.0*S
Start(1)=.1*S
Start (2)=.5*S
Stop(1)=.3*S
Stop (2)=5.0*S
Number1=3
 Number2=10
!
Hold=1.0
Dstep=.01
Compl=.01*S
!
Current=2
Irange=1.E-2*S
!
```

```
2410
2420
2430
2440
2450
2460
2470
2480
2490
2 5 0 0
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2 7 0 0
2710
2720
2730
2740
2750
2760
2 7 7 0
2780
2 7 9 0
2 8 0 0
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2 9 3 0
2940
2 9 5 0
2960
2 9 7 0
2980
2990
3 0 0 0
```

```
Sweep Vds given Vgs THEN next Vgs
```

Sweep Vds given Vgs THEN next Vgs
.
.
FOR Vgate=Vgate_min(P) TO Vgate_max(P) STEP Vgate_step(P)
FOR Vgate=Vgate_min(P) TO Vgate_max(P) STEP Vgate_step(P)
Force_v(Gate,Vgate)
Force_v(Gate,Vgate)
!
!
Q=1
Q=1
Set_iv(Drain,Line,Range,Start(Q),Stop(Q),Number1,Hold,Dstep,Compl)
Set_iv(Drain,Line,Range,Start(Q),Stop(Q),Number1,Hold,Dstep,Compl)
Sweep_iv(Drain,Current,Irange,Idl(*),Vdsl(*))
Sweep_iv(Drain,Current,Irange,Idl(*),Vdsl(*))
Q=2
Q=2
Set_iv(Drain,Line,Range,Start(Q),Stop(Q),Number2,Hold,Dstep,Compl)
Set_iv(Drain,Line,Range,Start(Q),Stop(Q),Number2,Hold,Dstep,Compl)
Sweep_iv(Drain,Current,Irange,Id2(*),Vds2(*))
Sweep_iv(Drain,Current,Irange,Id2(*),Vds2(*))
!
!
N=N+1
N=N+1
T=0
T=0
FOR T=1 TO 3
FOR T=1 TO 3
Vds(T)=Vds1 (T)
Vds(T)=Vds1 (T)
Ids(T)=Idl(T)
Ids(T)=Idl(T)
Id (N,T)=Ids(T)
Id (N,T)=Ids(T)
IF ABS(Ids(T))>ABS(Ids_max) THEN Ids_max=Ids(T)
IF ABS(Ids(T))>ABS(Ids_max) THEN Ids_max=Ids(T)
NEXT T
NEXT T
FOR T=4 TO 13
FOR T=4 TO 13
Vds(T)=Vds2(T-3)
Vds(T)=Vds2(T-3)
Ids(T)=Id2(T-3)
Ids(T)=Id2(T-3)
Id (N,T)=Ids(T)
Id (N,T)=Ids(T)
IF ABS(Ids(T))>ABS(Ids_max) THEN Ids_max=Ids(T)
IF ABS(Ids(T))>ABS(Ids_max) THEN Ids_max=Ids(T)
NEXT T
NEXT T
!
!
!PRINT "N=";N;"Vgate=";Vgate
!PRINT "N=";N;"Vgate=";Vgate
!PRINT "Vds=";Vds1(*);Vds2(*)
!PRINT "Vds=";Vds1(*);Vds2(*)
!PRINT "Ids=";Ids(*)
!PRINT "Ids=";Ids(*)
Vgs (N)=Vgate
Vgs (N)=Vgate
NEXT Vgate
NEXT Vgate
!
!
IF P=2 THEN GOTO 2790
IF P=2 THEN GOTO 2790
P=2
P=2
GOTO 2440
GOTO 2440
!
!
Draw axes
Draw axes
!
!
Disable_port
Disable_port
IF Ids_max=0. THEN Ids_max=100.
IF Ids_max=0. THEN Ids_max=100.
CLEAR SCREEN
CLEAR SCREEN
IF S=-1 THEN GOTO 2870
IF S=-1 THEN GOTO 2870
Lingraph1(0,6*S,0,Ids_max,"Vds","Ids","N-channel IV at Vbs=0V",1,1,"Vgs")
Lingraph1(0,6*S,0,Ids_max,"Vds","Ids","N-channel IV at Vbs=0V",1,1,"Vgs")
GOTO 2890
GOTO 2890
Lingraph1(0,6*S,0,Ids_max,"Vds","Ids","P-channel IV at Vbs=0V",1,1,"Vgs")
Lingraph1(0,6*S,0,Ids_max,"Vds","Ids","P-channel IV at Vbs=0V",1,1,"Vgs")
!
!
! Plot an Id vs. Vd curve for a given Vg value
! Plot an Id vs. Vd curve for a given Vg value
!
!
K=1
K=1
FOR K=1 TO 1.3
FOR K=1 TO 1.3
I=1
I=1
FOR I=1 TO 13
FOR I=1 TO 13
!PRINT "I=";I;"K=";K
!PRINT "I=";I;"K=";K
Ids(I)=Id(K,I)
Ids(I)=Id(K,I)
NEXT I
NEXT I
!
!
MOVE 0,0
MOVE 0,0
I=1

```
 I=1
```

```
 FOR I=1 TO 13
 PLOT Vds(I),Ids(I)
 NEXT I
NEXT K
!
PRINT " "
PRINT "Width=",Width
PRINT "Length=",Length
PRINT "Type=",Type$
PRINT " "
PRINT Concat$
PRINT " "
!PRINT "Vds=";Vds(*)
 !PRINT "Vgs=";Vgs(*)
!
!**
! Data for KEYS in the following:
 Vds(13)
 ! Vgs(13)
 ! Id (13,13)=Id(Vg,Vd)Vg and Vd not defined
 ! Vsub
!
Disable_port
!
! Write the data to the file
!
OUTPUT String_1$;"Vds Vgs Vbs Ids"
OUTPUT String_6$ USING "/,/,21A,/";String_1$
OUTPUT @Path_1;String_6$
I=1
FOR I=1 TO 13
 K=1
 FOR K=1 TO 13
 OUTPUT String_2$ USING "SD.DDDE,/";Vds(K)
 OUTPUT @Path_\overline{1};string_2$
 !
 OUTPUT string_3$ USING "SD.DDDE,/";Vgs(I)
 OUTPUT @Path_\overline{1};string_3$
 !
 OUTPUT String_4$ USING "SD.DDDE,/";Vsub
 OUTPUT @Path_\overline{1};String_4$
 !
 OUTPUT String_5$ USING "SD.DDDE,/";Id(I,K)
 OUTPUT @Path_1;String_5$
 NEXT K
NEXT I
!
! Close the I/O path
ASSIGN @Path_1 TO *
```

```
3610
3620
3630 GOSUB Debuginfo
3640!
3650 SUBEXIT
3660!
3670 Debuginfo: ! display input values
3680 PRINTER IS CRT
3690 !PRINT "algorithm <Keysiv_MOS>"
3700 !PRINT " W = ",W$
3710 !PRINT " R = ",R$
3720 !PRINT " C = ",C$
3730 RETURN
3740 SUBEND
3750 !
```


## APPENDIX D - Test Algorithm KEYSvt

```
APPENDIX D -- Test algorithm KEYSvt (the program used to obtain the Ids
 versus Vgs curves on NIST8)
SUB Keysvt_mos(W$,R$,C$,INTEGER Pins(*),REAL Width,Length,Type$,Vbs(*),Vt(*
Keysvt mos: !**
!****\overline{*}**
 RE-STORE "/users/marshall/icms/ALG/BASIC/Keysvt_MOS"
 LOADSUB ALL FROM "/usr/pcs/lib/XYGRAPH"
!
!**
Programmers : Janet Marshall
Date : 04/17/1992 12:10:55
Revised: 04/17/1992 12:10:55
Device Class : MOSFET
Description : Mosfet drain current measurement at specified
 : Vds,Vgs,Vbs and Vss.
Procedure :
 Input Variables:
\begin{tabular}{clccl}
\# & Name & Type & Size & Description \\
--- & ----- & --- & ---- & \\
Measurement Parameters: & & \\
1 & W & S & - & Wafer Letter \\
2 & R & S & - & Row Number \\
3 & C & S & - & Column Number
\end{tabular}
 Device Terminals:
 1 Gate I Gate terminal
 2 Drain I - Drain terminal
 3 Source I - Source terminal
 4 Bulk - Bulk terminal
 5 Sub I - Substrate contact
 6 Chuck I - Wafer chuck
 Device Parameters:
\begin{tabular}{lllll}
1 & Width & \(R\) & - & um, Mask channel width \\
2 & Length & \(R\) & - & um, Mask Channel length \\
3 & Type & \(C\) & - & Channel type (P/N)
\end{tabular}
 Output Variables:
 # Name Type Size Description
 Output Parameters:
 1 Vbs A 4 Backgate bias
 2 Vt A 4 Threshold voltage
 !
 !***
!
!
 !INPUT "Number of points in a sweep = ",Q
 Q=50
 OPTION BASE 1
 !
```

```
610 INTEGER Gate,Drain,Source,Sub
620 INTEGER Line,I,J,K,M,N,P,Q,T,Current
630 INTEGER Number,M_max
6 4 0 ~ R E A L ~ V s u b ~
6 5 0
6 6 0
6 7 0
6 8 0
6 9 0
7 0 0
7 1 0
7 2 0
730
7 4 0
750 R$="0"
760 IF Length=2.0 THEN R$="1"
770 IF Length=3.0 AND (Width=6.0 OR Width=20.0) THEN R$="2"
7 8 0
7 9 0
800
810
820
830
 840 IF Width=82. AND Type$="P" THEN R$="4"
850 IF Width=79. AND TYpe$="N" THEN R$="2"
860 IF Width=79. AND Type$="P" THEN R$="5"
870 IF Width=107. AND Type$="N" THEN R$="3"
880 IF Width=107. AND TYpe$="P" THEN R$="6"
890 !
900 IF Type$="P" THEN GOTO 1170
910 !
920 ! N-channel devices
930 !
940 IF Length=Width AND Length=3. THEN R$="1"
950 IF Length=Width AND Length=4. THEN R$="2"
960 IF Length=Width AND Length=5. THEN R$="3"
970 IF Length=Width AND Length=8. THEN R$="4"
980 IF Length=Width AND Length=10. THEN R$="5"
990 IF Length=Width AND Length=30. THEN R$="6"
1000 IF Length=Width AND Length=50. THEN R$="7"
1010 IF Length=Width AND Length=50. THEN C$="6"
1020 !
1030 IF R$="O" THEN R$="7"
1040 !
1050 IF R$="7" AND Width=3. THEN C$="1"
1060 IF R$="7" AND Width=4. THEN C$="2"
1070 IF R$="7" AND Width=5. THEN C$="4"
1080 IF R$="7" AND Width=8. THEN C$="5"
1090 IF R$="7" AND Width=10. THEN C$="7"
1100 IF R$="7" AND Length=10. THEN C$="8"
1110 IF R$="7" AND Width=30. THEN C$="10"
1120 IF R$="7" AND Length=30. THEN C$="11"
1130 GOTO 1390
1140 !
1150 ! P-channel devices
1160 !
1170 IF Length=Width AND Length=3. THEN R$="8"
1180 IF Jength=Width AND Length=4. THEN R$="9"
1190
1200
 !
 ALLOCATE Ids(Q),Vgs(Q),Id(5,Q),Yn(5,Q)
 DIM Yint(50),Ycalc(50),X(50),Y(50)
 DIM File$[40],Dir$[40],Concat$[40]
 DIM String_1$[40],String_2$[40],String_3$[40],String_4$[40]
 !
 ! ==
 !
 ! Determine the filename
 !
 IF Length=4.0 AND (Width=6.0 OR Width=20.0) THEN R$="3"
 IF Length=5.0 AND (Width=6.0 OR Width=20.0) THEN R$="4"
 IF Length=6.0 AND (Width=6.0 OR Width=20.0) THEN R$="5"
 IF Length=8.0 AND (Width=6.0 OR Width=20.0) THEN R$="6"
 !
 IF Width=82. AND Type$="N" THEN R$="1"
 .
 !
 !
 IF Length=Width AND Length=5. THEN R$="10"
 IF Length=Width AND Length=8. THEN R$="11"
```

```
IF Length=Width AND Length=10. THEN R$="12"
```

IF Length=Width AND Length=10. THEN R$="12"
IF Length=Width AND Length=30. THEN R$="13"
IF Length=Width AND Length=30. THEN R$="13"
IF R$="10" THEN GOTO 1490
IF R$="10" THEN GOTO 1490
!
!
IF R$="O" THEN R$="10"
IF R$="O" THEN R$="10"
!
!
IF R$="10" AND Width=3. THEN C$="1"
IF R$="10" AND Width=3. THEN C$="1"
IF R$="10" AND Width=4. THEN C$="2"
IF R$="10" AND Width=4. THEN C$="2"
IF R$="10" AND Width=5. THEN C$="4"
IF R$="10" AND Width=5. THEN C$="4"
IF R$="10" AND Width=8. THEN C$="5"
IF R$="10" AND Width=8. THEN C$="5"
IF R$="10" AND Width=10. THEN C$="7"
IF R$="10" AND Width=10. THEN C$="7"
IF R$="10" AND Length=10. THEN C$="8"
IF R$="10" AND Length=10. THEN C$="8"
IF R$="10" AND Width=30. THEN C$="10"
IF R$="10" AND Width=30. THEN C$="10"
IF R$="10" AND Length=30. THEN C$="11"
IF R$="10" AND Length=30. THEN C$="11"
GOTO 1490
GOTO 1490
!
!
Chip OOM
Chip OOM
    !
    !
    IF C$<>"O" THEN GOTO 1490
IF C$<>"O" THEN GOTO 1490
    IF Width=120 OR Width=1760 THEN R$="12"
IF Width=120 OR Width=1760 THEN R$="12"
    IF Width=80 OR Width=1320 THEN R$="13"
IF Width=80 OR Width=1320 THEN R$="13"
    IF Width>1000 THEN C$="9"
IF Width>1000 THEN C$="9"
    !
    !
    IF Pins(2)=18 OR Pins(1)=8 THEN C$="7"
IF Pins(2)=18 OR Pins(1)=8 THEN C$="7"
    IF Pins(2)=46 OR Pins(2)=48 THEN C$="11"
IF Pins(2)=46 OR Pins(2)=48 THEN C$="11"
    !
    !
    ! ==============================================================
    ! ==============================================================
    !
    !
    Dir$="/users/marshall/nist8data/"
Dir$="/users/marshall/nist8data/"
    !
    !
    File$="W"\&W$&"R"&R$\&"C"\&C$&"VB.DAT"
    File$="W"\&W$&"R"&R$\&"C"\&C$&"VB.DAT"
    !
    !
    Concat$=Dir$&File$
Concat$=Dir$\&File\$
!
!
!PRINT Concat\$
!PRINT Concat\$
!
!
!--------------------------------------------------------------------
!--------------------------------------------------------------------
Specify default mass storage
Specify default mass storage
!
!
!MASS STORAGE IS ":,600,1"
!MASS STORAGE IS ":,600,1"
!
!
! Create ASCII data file with }10\mathrm{ sectors on the specified
! Create ASCII data file with }10\mathrm{ sectors on the specified
! mass storage device (:,600,1)
! mass storage device (:,600,1)
!
!
ON ERROR GOTO File exists
ON ERROR GOTO File exists
CREATE ASCII ConcaE}$,1
    CREATE ASCII ConcaE}$,1
File_exists: OFF ERROR
File_exists: OFF ERROR
!
!
! Assign (or open) an I/O path name to the file
! Assign (or open) an I/O path name to the file
!
!
ASSIGN @Path_1 TO Concat\$
ASSIGN @Path_1 TO Concat\$
!
!
!--------------------------------------------------------------------
!--------------------------------------------------------------------
!
!
Init_system
Init_system
!
!
! Define measurement pins
! Define measurement pins
!
!
Gate=Pins(1)

```
 Gate=Pins(1)
```

Drain=Pins(2)
Source=Pins(3)
Sub=Pins (4)
!
! Connect pins to sources
!
Connect (FNSmu(1), Drain)
Connect (FNSmu (2), Gate)
Connect (FNGnd, Source)
Connect (FNSmu(3), Sub)
!
! Force bias conditions
!
IF Type $\$=$ "N" THEN $S=1.0$
IF Type\$="P" THEN $S=-1.0$
!
vds=.2*S
Set_smu(2) ! SET INTEGRATION TIME TO MEDIUM
Force_v(Drain,vds)
!
! Define variables
!
$\mathrm{P}=0$
Vbs_min=0.*S
Vbs_max=-9.0*s
Vbs_step=-3.0*s
Ids_max=0.
!
Line=1
Vrange=10.0*S
Start=.1*S
Stop $=5.0 * S$
Number=50
!
Hold=1.0
Dstep=. 01
Icompl=.01*S
!
Current=2
Irange=.01*S
!
PRINT " "
PRINT " "
!
! Sweep Vgs given Vbs THEN next Vbs
!
FOR Vsub=Vbs_min TO Vbs_max STEP Vbs_step
Force_v(Sub, vsub)
!
Set_iv(Gate, Line, Vrange, Start, Stop, Number, Hold, Dstep, Icompl)
Sweēp_iv(Drain, Current,Irange,Ids(*),Vgs(*))
!
$\mathrm{P}=\mathrm{P}+1$

!PRINT "Vgs=";Vgs(*)
!PRINT "Ids=";Ids(*)
$\operatorname{Vbs}(P)=V s u b$
$\mathrm{I}=1$
FOR I=1 TO 50
$\mathrm{Yn}(\mathrm{P}, \mathrm{I})=\mathrm{Ids}(\mathrm{I})$

```
 Id(P,I)=Ids(I)
 IF ABS(Ids(I))>ABS(Ids_max) THEN Ids_max=Ids(I)
 NEXT I
 !
NEXT Vsub
!
Disable_port
!
 ! Draw axes
!
CLEAR SCREEN
IF Ids_max=0. THEN Ids_max=100.
IF S=-1 THEN GOTO 2560
Lingraphl(0,6*S,0,Ids_max,"Vgs","Ids","N-channel Vt at Vds=.2V",1,1,"Vbs"
GOTO 2580
Lingraph1(0,6*S,0,Ids_max,"Vgs","Ids","P-channel Vt at Vds=-.2V",1,1,"Vbs
!
 ! Plot an Id vs. Vg curve for a given Vbs value
 !
K=1
FOR K=1 TO 4
 I=1
 FOR I=1 TO Q
 Ids(I)=Yn(K,I)
 NEXT I
 !
 MOVE 0,0
 I=1
 FOR I=1 TO Q
 !PRINT "K=";K;"I=";I;"Q=";Q
 PLOT Vgs(I),Ids(I)
 NEXT I
 NEXT K
 !
PRINT " "
PRINT "Width=",Width
PRINT "Length=",Length
PRINT "Type=",Type$
PRINT " "
PRINT Concat$
PRINT " "
!PRINT "Vgs=";Vgs(*)
!PRINT "Vbs=";Vbs(*)
!PRINT "Ids=";Ids(*)
!
 Data for Id vs. Vg curves in the following:
!
 Vds
 ! Vgs(50)
 ! Id(5,50)=Id(Vbs,Vg).....Vbs and Vg not defined
 ! Vbs(4)
 !
 !***
 Find Vt for the different values of Vbs
 !
T=0
Vsub=Vbs_min
FOR Vsub=Vbs_min TO Vbs_max STEP Vbs_step
 !
```

```
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3570 Sumx=Sumx+X(I)
3580 Sumy=Sumy+Y(I)
3590 Sumxy=Sumxy+X(I)*Y(I)
3600 Sumxx=Sumxx+X(I)*X(I)
```

```
3 6 1 0
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3 9 6 0
3970 Stop
3980
3 9 9 0
4 0 0 0
4 0 1 0
4 0 2 0
4 0 3 0
4 0 4 0
4 0 5 0
4060
4 0 7 0
4 0 8 0
4 0 9 0
4 1 0 0
4 1 1 0
4 1 2 0
4 1 3 0
4 1 4 0
4150
4 1 6 0
4170 !
4180 !
4 1 9 0 ~ G O S U B ~ D e b u g i n f o
4200!
```

```
4 2 1 0 ~ S U B E X I T ~
4220!
4230 Debuginfo: ! display input values
4240 PRINTER IS CRT
4250 !PRINT "algorithm <Keysvt_MOS>"
4260 !PRINT " W = ",W$
4270 !PRINT " R = ",R$
4280 !PRINT " C = ",C$
4290 RETURN
4 3 0 0 ~ S U B E N D ~
4310!
```


## APPENDIX E — Test Algorithm INV

```
! APPENDIX E -- Test algorithm INV (the program used to obtain the Vin
! versus Vout curves on NIST8)
SUB Inv_inv(W$,R$,C$,INTEGER Pins(*),REAL Nwidth,Nlength, Pwidth,Plength,Vou
Inv_inv: -!***
! RE-STORE "/users/marshall/icms/ALG/BASIC/Inv_INV"
! LOADSUB ALL FROM "/usr/pcs/lib/XYGRAPH"
!
!
Programmers : Janet Marshall
Date : 04/21/1992 12:22:10
Revised : 04/21/1992 12:22:10
Device class : INVERTER
Description : Mosfet drain current measurement at specified
! : Vds,Vgs,Vbs and Vss.
 Procedure :
 Input Variables:
 # Name Type Size Description
 Measurement Parameters:
 | W - Wafer Letter
 2 R S - Row Number
 C S - Column Number
 Device Terminals:
 1 VCC I - Vcc terminal
 2 VSS I - Vss terminal
 3 NW - N-well terminal
 4 I I P P-well terminal
 5 IN I - Data input
 6 IUT - Data output
 7 Chuck I Wafer chuck
 Device Parameters:
\begin{tabular}{llllll}
1 & NWidth & \(R\) & - & um, Mask n-channel width \\
2 & NLength & \(R\) & - & um, Mask n-channel length \\
3 & PWidth & \(R\) & - & um, Mask p-channel width \\
4 & PLength & \(R\) & - & \(u m, ~ M a s k ~ p-c h a n n e l ~ l e n g t h ~\)
\end{tabular}
 Output Variables:
 # Name Type Size Description
 Output Parameters:
\begin{tabular}{llll}
1 & Vout & A & 51 \\
2 Vin & A & 51 & Input Voltage
\end{tabular}
!
!***
!
 OPTION BASE 1
 !
 INTEGER Vcc,Vss,Nwell,Pwell,In,Out
 INTEGER I,J,M,N,Q
```

610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
Tn=Pins (5)
1080 Out=Pins(6)
1090 !
1100 ! Connect pins to sources
1110 !
1120 Connect (FNSmu (3), Vcc)
1130 Connect (FNGnd,Vss)
1140 Connect (FNSmu (3) ,Nwell)
1150 Connect (FNGnd, Pwell)
1160 Connect(FNSmu(2),In)
1170 Connect(FNSmu(1), Out)
1180 !
1190 ! Force bias conditions
1200

```
 INTEGER Line,Voltage,Number
 Q=51
 !
 ALLOCATE X(Q),Y(Q),Yint(Q),Ycalc(Q)
 DIM File$[40],Dir$[40],Concat$[40]
 DIM String_1$[40],String_2$[40],String_3$[40],String_4$[40]
 !
 !=======\==
 Determine the filename
 !c$="g"
 !
 IF Nlength=3.0 THEN R$="1"
 IF Nlength=4.0 THEN R$="3"
 IF Nlength=6.0 THEN R$="4"
 IF Nlength=10.0 THEN R$="6"
 !
 Dir$="/users/marshall/data/"
 !
 File$="W"&W$&"R"&R$&"C"&C$&"IV.DAT"
 !
 Concat$=Dir$&File$
 !
 !PRINT Concat$
 ! Create ASCII data file with 10 sectors
 ON ERROR GOTO File exists
 CREATE ASCII Concat$,10
File exists: OFF ERROR
 ! Assign (or open) an I/O path name to the file
 ASSIGN @Path_1 TO concat$
 !
 !===
 !
 Init_system
 ! Define measurement pins
 !
 Vcc=Pins(1)
 Vss=Pins(2)
 Nwell=Pins(3)
 Pwell=Pins(4)
 In=Pins(5)
 Connect pins to sources
 connect(FNSmu(3),Vcc)
 Connect(FNGnd,VSs)
 Connect(FNSmu(1),Out)
 ! Force bias conditions
```

```
1210 Vdd=5.0
1220 Set_smu(2) ! SET INTEGRATION TIME TO MEDIUM
1230 Force_v(Vcc,Vdd)
1240 Force_v(Nwell,Vdd)
1250 !
1260 ! Define variables
1270 !
1280 Line=1
1290 Range=10.0
1300 Start=0.
1310 Stop=5.0
1320 Number=51
1330 !
1340 Hold=1.0
1350 Dstep=.01
1360 Icompl=.01
1370 !
1380 Voltage=1
1390 Vrange=10.0
1400 !
1410 ! Sweep Vin to get Vout
1420 !
1430 Set_iv(In,Line,Range,Start,Stop,Number,Hold,Dstep,Icompl)
1440 Sweep_iv(Out,Voltage,Vrange,Vout(*),Vin(*))
1450 !
1460 ! Draw axes
1470 !
1480 Disable port
1490 CLEAR SC\overline{CREN}
1500 PRINT " "
1510 !
1520 Lingraph1(0,6,0,6,"Vin","Vout","Vout vs. Vin",1,1)
1530 !
1540 ! Plot an Id vs. Vg curve for a given Vbs value
1550 !
1560 MOVE 0,0
1570 FOR I=1 TO Q
1580 PLOT Vin(I),Vout(I)
1590 X(I)=Vin(I)
1600 Y(I)=Vout (I)
1610 !PRINT "Vin=";Vin(I);"Vout=";Vout(I)
1620 NEXT I
1630
1640
1650
1660
1670
1680
1 6 9 0
1700
1710
1720 !
1730 !
1740 ! Sweep the vout vs. Vin curve
1750 !
1760
1770
1780
1790
1800
 !
 Data for Vout vs. Vin curves in the following:
 ! Vin(51)
 Vout(51)
 !
 !***
 !
 Find the values of Vout and Vin where the maximum slope exists
1760 N=5
 FOR M=1 TO 47
 !
 GOTO Lnfit
```

```
1810 Back: IF ABS(Slope)>ABS(Slope max) THEN M max=M
1820 IF ABS(Slope) >ABS(Slope_max) THEN SIope_max=Slope
1830 !
1840 NEXT M
1850 !
1860 PRINT "Vin=";X(M_max+2);"Vout=";Y(M_max+2);"Slope_max=";Slope_max
1870
1880
1890
1900
1910
1920
1930
1940
1950 PRINT " "
1960 PRINT " "
1970 PRINT " "
1980 PRINT " "
1990 PRINT " "
2000 !
2010 GOTO Stop
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130 Lnfit: I=0
2140 Sumx=0
2150 Sumy=0
2160 Sumxy=0
2170 Sumxx=0
2180 !
2190
2200
2210
2220
2230
2240
2250
2260
Anums=N*Sumxy-Sumx*Sumy
2280 !PRINT "Anums=";Anums
2290
2 3 0 0
2310
2320
2330
2340
!PRINT "Slope=";slope
2360 Yint(M)=Anumi/Den
2370 IF Anums=0. THEN Xint=999
2380 IF Anums=0. THEN GOTO 2410
2390 Xint=-Anumi/Anums
2400 !
```

```
2410
2420
2430
2440
2450
2460
2470
2480
2490
2 5 0 0
2510
2520
250 !**
2540 !
2550 Stop: Disable_port
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2 7 0 0
2710
2720
2730
2740 !
2750
2760!
2770 GOSUB Debuginfo
2780!
2790 SUBEXIT
2800!
2810 Debuginfo: ! display input values
2820 PRINTER IS CRT
2830 !PRINT "algorithm <INV_MOS>"
2840 !PRINT " W = ",W$
2850 !PRINT " R = ",R$
2860 !PRINT " C = ",C$
2870 RETURN
2880 SUBEND
2890!
```


## APPENDIX F - Test Algorithm SRAM



```
 OPTION BASE 1
```

    OPTION BASE 1
    !
    !
    INTEGER Rwsel,Vcc,Nwell,Latch,Pwell,Bitbar,Databar,Bit,Data,Vss,Wsel
    INTEGER Rwsel,Vcc,Nwell,Latch,Pwell,Bitbar,Databar,Bit,Data,Vss,Wsel
    INTEGER I,J,M,N,Q
    INTEGER I,J,M,N,Q
    Q=13
    Q=13
    !
    !
    ALLOCATE Datao(Q),Databaro(Q),Ind(Q+1)
    ALLOCATE Datao(Q),Databaro(Q),Ind(Q+1)
    ALLOCATE Biti(Q),Bitbari(Q),Rw(Q),W(Q),Lat(Q)
    ALLOCATE Biti(Q),Bitbari(Q),Rw(Q),W(Q),Lat(Q)
    DIM File$[40],Dir$[40], Concat$[40]
    DIM File$[40],Dir$[40], Concat$[40]
    DIM String_1$[40],String_2$[40],String_3$[40],String_4$[40]
    DIM String_1$[40],String_2$[40],String_3$[40],String_4$[40]
    !
    !
    ! ========================================================================
    ! ========================================================================
    !
    !
    ! Determine the filename
    ! Determine the filename
    !
    !
    Dir$="/users/marshall/data/"
    Dir$="/users/marshall/data/"
    !
    !
    File$="W"&W$&"R"&R$&"C"&C$&"SR.DAT"
    File$="W"&W$&"R"&R$&"C"&C$&"SR.DAT"
    !
    !
    Concat$=Dir$&File$
    Concat$=Dir$&File$
    !
    !
    ! Create an ASCII data file with 10 sectors
    ! Create an ASCII data file with 10 sectors
    !
    !
    ON ERROR GOTO File_exists
    ON ERROR GOTO File_exists
    CREATE ASCII Concat$,10
    CREATE ASCII Concat$,10
    File_exists: OFF ERROR
File_exists: OFF ERROR
!
!
! Assign (or open) and I/O path name to the file
! Assign (or open) and I/O path name to the file
!
!
ASSIGN @Path_1 TO Concat\$
ASSIGN @Path_1 TO Concat\$
!
!
!=============================================================================
!=============================================================================
!
!
Init_system
Init_system
!
!
! Define measurement pins
! Define measurement pins
!
!
Rwsel=Pins(6)
Rwsel=Pins(6)
Vcc=Pins(1)
Vcc=Pins(1)
Nwell=Pins(3)
Nwell=Pins(3)
Latch=Pins(7)
Latch=Pins(7)
Pwell=Pins(4)
Pwell=Pins(4)
Bitbar=Pins(9)
Bitbar=Pins(9)
Databar=Pins(11)
Databar=Pins(11)
Bit=Pins(8)
Bit=Pins(8)
Data=Pins(10)
Data=Pins(10)
Vss=Pins(2)
Vss=Pins(2)
Wsel=Pins(5)
Wsel=Pins(5)
!
!
Connect pins to sources
Connect pins to sources
!
!
Connect(FNSmu(1),Data)
Connect(FNSmu(1),Data)
Connect(FNSmu (2), Latch)
Connect(FNSmu (2), Latch)
Connect(FNSmu(3),Rwsel)
Connect(FNSmu(3),Rwsel)
Connect(FNSmu(4),Databar)
Connect(FNSmu(4),Databar)
!
!
Connect(FNAux(1),Wsel)
Connect(FNAux(1),Wsel)
!
!
Connect(FNAux(2),Vcc)
Connect(FNAux(2),Vcc)
Connect (FNAux(2),Nwell)

```
Connect (FNAux(2),Nwell)
```

1420 Force_v(Rwsel, vgnd)
1430 Force_v(Wsel,Vgnd)
1490 !PRINT "Dataout=";Datao(J);"Databarout=";Databaro(J)
1500 !PRINT "Dataout=";Datao(J)
$1510 \quad$ Biti (J) =Value
1520 Bitbari(J)=Valuebar
$1530 \mathrm{RW}(\mathrm{J})=0$.
$1540 \quad W(J)=0$.
1550 Lat (J) $=0$.
$1560 \mathrm{~J}=\mathrm{J}+1$
$1570 \quad$ Ind (J) $=J$
1580 !
1590
1600
1610 PRINT " "
1620 I=I+1
1630 Force_v(Latch,Vdd)
1640 Force-v(Rwsel,Vdd)
1650 Force-v(Wsel,Vdd)
1660 WAIT $\overline{1}$
1670 Force_v(Latch,Vgnd)
1680 Force_v(Rwsel,Vgnd)
1690 Force_v(Wsel,Vgnd)
1700
1710
1720 Measure_v(Databar,Databaro(J))
1730 PRINT "W$"$;J
1740 !PRINT "Dataout="; Datao(J);"Databarout=";Databaro(J)
1750 ! PRINT "Dataout=";Datao(J)
1760 Biti (J) =Value
1770 Bitbari $(J)=$ Valuebar
$1780 \operatorname{RW}(\mathrm{~J})=5$.
$1790 \quad W(J)=5$.
$1800 \operatorname{Lat}(J)=5$.

```
1810 J=J+1
1820 Ind (J)=J
1830 !
1840 ! Change the Datain
1850 !
1860 IF I=2 OR I=4 THEN GOTO 2080
1870 Connect(FNSmu (6),Bitbar)
1880 Connect(FNGnd,Bit)
1890 Value=0.
1900 Valuebar=5.0
1910 Force_v(Bitbar,Valuebar)
1920 Execūe
1930 !
1 9 4 0 ~ M e a s u r e ~ v (D a t a , D a t a o (J)) ~
1950 Measure_v(Databar,Databaro(J))
1960 PRINT "D";J
1970 !PRINT "Dataout=";Datao(J);"Databarout=";Databaro(J)
1980 !PRINT "Dataout=";Datao(J)
1990 Biti(J)=Value
2000 Bitbari(J)=Valuebar
2010 RW(J)=0.
2020 W(J)=0.
2030 Lat(J)=0.
2040 J=J+1
2050 Ind (J)=J
2060 GOTO 2300
2070 !
2080 ! Rechange the Datain
2090 !
2100 Connect(FNSmu (6),Bit)
2110 Connect(FNGnd,Bitbar)
2120 Value=5.0
2130 Valuebar=0.
2140 Force_v(Bit,Value)
2150 Execute
2160 !
2170 Measure_v(Data,Datao(J))
2180 Measure_v(Databar,Databaro(J))
2190 PRINT "\overline{D";J}
2200 !PRINT "Dataout=";Datao(J);"Databarout=";Databaro(J)
2210 !PRINT "Dataout=";Datao(J)
2220 Biti(J)=Value
2230 Bitbari(J)=Valuebar
2240 Rw(J)=0.
2250 W (J)=0.
2260 Lat(J)=0.
2270 J=J+1
2280 Ind(J)=J
2290 !
2300 ! Perform a READ
2310 !
2320 WAIT 1
2330 Force_v(Rwsel,Vdd)
2340 Force_v(Wsel,Vgnd)
2350 Force_v(Latch,Vgnd)
2360 !
2370 Measure_v(Data,Datao(J))
2380 Measure_v(Databar,Databaro(J))
2390 PRINT "\overline{R";J;"*"}
2400 !PRINT "Dataout=";Datao(J);"Databarout=";Databaro(J)
```

```
2 4 1 0
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2 7 2 0
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2 9 0 0
2910
2920
2930
2940
2950
2960
2970
2980
2 9 9 0
3000
```

```
!PRINT "Dataout=";Datao(J)
```

!PRINT "Dataout=";Datao(J)
Biti(J)=Value
Biti(J)=Value
Bitbari(J)=Valuebar
Bitbari(J)=Valuebar
Rw (J)=5.
Rw (J)=5.
W(J)=0.
W(J)=0.
Lat(J)=0.
Lat(J)=0.
J=J+1
J=J+1
Ind(J)=J
Ind(J)=J
!
!
Force_v(Rwsel,Vgnd)
Force_v(Rwsel,Vgnd)
IF I=\overline{4}}\mathrm{ THEN GOTO 2540
IF I=\overline{4}}\mathrm{ THEN GOTO 2540
GOTO 1590
GOTO 1590
!
!
Draw axes
Draw axes
!
!
Disable_port
Disable_port
CLEAR S\overline{CREEN}
CLEAR S\overline{CREEN}
!
!
Lingraph1(0,Q+1,0,6,"Time","Datain","Datain vs. Time",1,1,"SRAM")
Lingraph1(0,Q+1,0,6,"Time","Datain","Datain vs. Time",1,1,"SRAM")
!
!
Plot Datain vs. Time
Plot Datain vs. Time
!
!
MOVE 0,0
MOVE 0,0
M=1
M=1
FOR M=1 TO Q
FOR M=1 TO Q
PLOT Ind(M),Biti(M)
PLOT Ind(M),Biti(M)
!PRINT "Ind";Ind(M);"Datain=";Biti(M)
!PRINT "Ind";Ind(M);"Datain=";Biti(M)
NEXT M
NEXT M
!
!
Draw axes
Draw axes
!
!
Lingraph1(0,Q+1,0,6,"Time","Dataout","Dataout vs. Time",1,4,"SRAM")
Lingraph1(0,Q+1,0,6,"Time","Dataout","Dataout vs. Time",1,4,"SRAM")
!
!
! Plot Data vs. Time
! Plot Data vs. Time
!
!
MOVE 0,0
MOVE 0,0
M=1
M=1
FOR M=1 TO Q
FOR M=1 TO Q
PLOT Ind(M),Datao(M)
PLOT Ind(M),Datao(M)
!PRINT "Ind";Ind(M);"Data=";Datao(M)
!PRINT "Ind";Ind(M);"Data=";Datao(M)
NEXT M
NEXT M
!
!
Draw axes
Draw axes
!
!
Lingraph1(0,Q+1,0,6,"Time","Rwsel","Rwsel vs. Time",1,3,"SRAM")
Lingraph1(0,Q+1,0,6,"Time","Rwsel","Rwsel vs. Time",1,3,"SRAM")
Plot Rwsel, Wsel, or Latch vs. Time
Plot Rwsel, Wsel, or Latch vs. Time
RW(J), W(J), Lat(J)
RW(J), W(J), Lat(J)
!
!
MOVE 0,0
MOVE 0,0
M=1
M=1
FOR M=1 TO Q
FOR M=1 TO Q
PLOT Ind(M),Rw(M)
PLOT Ind(M),Rw(M)
!PRINT "Ind";Ind(M);"Rwsel=";Rw(M)
!PRINT "Ind";Ind(M);"Rwsel=";Rw(M)
NEXT M
NEXT M
!
!
Draw axes
Draw axes
Lingraph1(0,Q+1,0,6,"Time","Databarout","Databarout vs. Time",1,2,"SRAM")
Lingraph1(0,Q+1,0,6,"Time","Databarout","Databarout vs. Time",1,2,"SRAM")
!

```
!
```

```
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330 GOSUB Debuginfo
3340!
3350 SUBEXIT
3360!
3370 Debuginfo: ! display input values
3380 PRINTER IS CRT
3390 !PRINT "algorithm <Sram_SRA>"
3400 !PRINT " W = ",W$
3410 !PRINT " R = ",R$
3420 !PRINT " C = ",C$
3430 RETURN
3440 SUBEND
3450 !
```

* Appendix G - SPICE file (named ivcharn.cel) for an n-channel MOSFET
* filename $=$ [marshall.simox]nist8mod.fil
* FILENAME = NMODEL.FIL (parameters from NIST8 MOSIS run)
* 

.MODEL MODN NMOS LEVEL=2 LD=0.250000U TOX=413.000008E-10

+ NSUB $=6.294117 \mathrm{E}+15 \mathrm{~V} \mathrm{O}=0.807671 \mathrm{KP}=4.465000 \mathrm{E}-05 \quad \mathrm{GAMMA}=0.5467$
$+\mathrm{PHI}=0.6$ UO=534.071 UEXP $=.16209$ UCRIT=90795.9
+ DELTA $=1.01989$ VMAX $=57490.9 \quad$ XJ $=0.250000 \mathrm{U}$ LAMBDA $=3.494828 \mathrm{E}-02$
+ NFS=5.034625E+12 NEFF=1 NSS=1.000000E +10 TPG $=1.000000$
$+\mathrm{RSH}=28.380000 \quad$ CGDO $=3.135421 \mathrm{E}-10 \quad$ CGSO $=3.135421 \mathrm{E}-10 \quad$ CGBO $=3.907717 \mathrm{E}-10$
$+\mathrm{CJ}=9.308500 \mathrm{E}-05 \mathrm{MJ}=0.693518 \mathrm{CJSW}=5.398300 \mathrm{E}-10 \mathrm{MJSW}=0.284549 \mathrm{~PB}=0.800000$
* Weff = Wdrawn - Delta_W
* The suggested Delta_W ${ }^{-}$is -0.28 um
* 
* FILENAME = PMODEL.FIL (parameters from NIST8 MOSIS run)
* 

.MODEL MODP PMOS LEVEL=2 LD=0.152257U TOX=413.000008E-10

+ NSUB $=7.140277 \mathrm{E}+15 \quad \mathrm{VTO}=-0.807327 \mathrm{KP}=2.383000 \mathrm{E}-05 \quad$ GAMMA $=0.5823$
$+\mathrm{PHI}=0.6$ U0 $=284.969$ UEXP=0.231562 UCRIT=15586.3
+ DELTA $=0.920741$ VMAX=45761.7 XJ=0.250000U LAMBDA $=5.083543 E-02$
+ NFS $=7.553318 \mathrm{E}+11$ NEFF $=1.001$ NSS=1.000000 $+10 \quad$ TPG $=-1.000000$
+ RSH $=87.650000$ CGDO $=1.909559 \mathrm{E}-10 \quad$ CGSO $=1.909559 \mathrm{E}-10 \quad$ CGBO $=3.770536 \mathrm{E}-10$
$+C J=2.500000 \mathrm{E}-04 \mathrm{MJ}=0.545647 \mathrm{CJSW}=3.174900 \mathrm{E}-10 \mathrm{MJSW}=0.330136 \mathrm{~PB}=0.800000$
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -0.20 um
* 
* 
* 
* FILENAME = IVCHARN.FIL
* NOTE: Use with MODEL.FIL to make IVCHARN.CEL
* 
* N-CHANNEL MOS OUTPUT CHARACTERISTICS
* 

M1 1200 MODN L=3.OUM $W=6 . O U M \quad A D=12.5 P \quad A S=12.5 P \quad P D=15 U$
$+\mathrm{PS}=15 \mathrm{U}$ NRD=2.0 NRS=2.0
*
VD 30
VG 20
VIDS 31
*
.OPTIONS NODE NOPAGE
.DC VD 05 . 5 VG 051
.PLOT DC I (VIDS)
.END

```
*
* Appendix H - SPICE file (named inverter.cel) for an inverter
*
* filename = [marshall.simox]nist8mod.fil
*
* FILENAME = NMODEL.FIL (parameters from NIST8 MOSIS run)
*
.MODEL MODN NMOS LEVEL=2 LD=0.250000U TOX=413.000008E-10
+ NSUB=6.294117E+15 VTO=0.807671 KP=4.465000E-05 GAMMA=0.5467
+ PHI=0.6 U0=534.071 UEXP=.16209 UCRIT=90795.9
+ DELTA=1.01989 VMAX=57490.9 XJ=0.250000U LAMBDA=3.494828E-02
+ NFS=5.034625E+12 NEFF=1 NSS=1.000000E+10 TPG=1.000000
+ RSH=28.380000 CGDO=3.135421E-10 CGSO=3.135421E-10 CGBO=3.907717E-10
+ CJ=9.308500E-05 MJ=0.693518 CJSW=5.398300E-10 MJSW=0.284549 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -0.28 um
*
* FILENAME = PMODEL.FIL (parameters from NIST8 MOSIS run)
*
.MODEL MODP PMOS LEVEL=2 LD=0.152257U TOX=413.000008E-10
+ NSUB=7.140277E+15 VTO=-0.807327 KP=2.383000E-05 GAMMA=0.5823
+ PHI=0.6 U0=284.969 UEXP=0.231562 UCRIT=15586.3
+ DELTA=0.920741 VMAX=45761.7 XJ=0.250000U LAMBDA=5.083543E-02
+ NFS=7.553318E+11 NEFF=1.001 NSS=1.000000E+10 TPG=-1.000000
+ RSH=87.650000 CGDO=1.909559E-10 CGSO=1.909559E-10 CGBO=3.770536E-10
+ CJ=2.500000E-04 MJ=0.545647 CJSW=3.174900E-10 MJSW=0.330136 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W' is -0.20 um
*
*
*
* FILENAME = INVERTER.FIL
*
.SUBCKT INVERT 1 2 3
*
M1 100 1 0 0 MODN L=3.00UM W=6.00UM AD=84P AS=84P PD=40U
+ PS=40U NRD=2.0 NRS=2.0
M2 100 1 3 3 MODP L=3.00UM W=12.OUM AD=144P AS=144P PD=48U
+ PS=48U NRD=1.0 NRS=1.0
R1 100 2 300
C1 }20\mathrm{ 50P
*
.ENDS INVERT
*
*
X1 1 2 3 INVERT
*
VIN 1 0
VCC 3 0 5V
*
.OPTIONS LIMPTS=500
```

.DC VIN 0.54 .50 .1
.PLOT DC V(2)
. END

## APPENDIX I - SPICE File for a Ring Oscillator

```
*
Appendix I - SPICE file (named ring.cel) for a ring oscillator
filename = [marshall.simox]nist8mod.fil
FILENAME = NMODEL.FIL (parameters from NIST8 MOSIS run)
*
MODEL MODN NMOS LEVEL=2 LD=0.250000U TOX=413.000008E-10
NSUB=6.294117E+15 VTO=0.807671 KP=4.465000E-05 GAMMA=0.5467
PHI=0.6 U0=534.071 UEXP=.16209 UCRIT=90795.9
DELTA=1.01989 VMAX=57490.9 XJ=0.250000U LAMBDA=3.494828E-02
NFS=5.034625E+12 NEFF=1 NSS=1.000000E+10 TPG=1.000000
RSH=28.380000 CGDO=3.135421E-10 CGSO=3.135421E-10 CGBO=3.907717E-10
CJ=9.308500E-05 MJ=0.693518 CJSW=5.398300E-10 MJSW=0.284549 PB=0.800000
Weff = Wdrawn - Delta_W
The suggested Delta_W is -0.28 um
FILENAME = PMODEL.FIL (parameters from NIST8 MOSIS run)
*
.MODEL MODP PMOS LEVEL=2 LD=0.152257U TOX=413.000008E-10
NSUB=7.140277E+15 VTO=-0.807327 KP=2.383000E-05 GAMMA=0.5823
PHI=0.6 UO=284.969 UEXP=0.231562 UCRIT=15586.3
DELTA=0.920741 VMAX=45761.7 XJ=0.250000U LAMBDA=5.083543E-02
NFS=7.553318E+11 NEFF=1.001 NSS=1.000000E+10 TPG=-1.000000
RSH=87.650000 CGDO=1.909559E-10 CGSO=1.909559E-10 CGBO=3.770536E-10
CJ=2.500000E-04 MJ=0.545647 CJSW=3.174900E-10 MJSW=0.330136 PB=0.800000
Weff = Wdrawn - Delta_W
The suggested Delta_W is -0.20 um
filename = RING.FIL
FILENAME = OUTBUF.FIL
*
.SUBCKT OUTBUF 1 2 3 456
*
M1 2 1 0 0 MODN L=6.OUM W=6.OUM AD=72P AS=72P PD=36U
+ PS=36U NRD=2.0 NRS=2.0
M2 2 1 3 3 MODP L=6.OUM W=12.OUM AD=144P AS=144P PD=48U
+ PS=48U NRD=1.0 NRS=1.0
R1 2 200 175
C1 200 0 .043P
*
M3 4 200 0 0 MODN L=6.OUM W=12.0UM AD=144P AS=144P PD=48U
+ PS=48U NRD=1.0 NRS=1.0
M4 4 200 3 3 MODP L=6.OUM W=24.OLM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
R2 4 400 250
C2 400 0 .043P
*
M5 5 400 0 0 MODN L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
```

```
+ PS=72U NRD=0.5 NRS=0.5
M6 5400 3 3 MODP L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
R3 5 500 350
C3 500 0 .043P
*
M7 600 500 0 O MODN L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
M8 600 500 3 3 MODP L=6.OUM W=96.OUM AD=1152P AS=1152P PD=216U
+ PS=216U NRD=0.125 NRS=0.125
R4 600 6 300
C4 6 O 1PF
*
.ENDS OUTBUF
*
* FILENAME = NAND.FIL
*
.SUBCKT NAND 1 2 3 45
*
M14 1 0 0 MODN L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
M2 500 1 3 3 MODP L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
*
M3 500 240 MODN L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
M4 500 2 3 3 MODP L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
R1 500 5 250
C1 5 0 .043P
*
.ENDS NAND
*
* FILENAME = INVERT.FIL
*
.SUBCKT INVERT 1 2 3
*
M1 100 1 0 0 MODN L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
M2 100 1 3 3 MODP L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
R1 100 2 250
C1 2 0 .043P
*
.ENDS INVERT
*
*
X25 201 202 3 204 1 NAND
*
X1 1 2 3 INVERT
X2 24 3 INVERT
```

```
 X3 4 5 3 INVERT
 X456 3 INVERT
 X5673 INVERT
 X6 7 8 3 INVERT
 X7 8 9 3 INVERT
 X8 9 10 3 INVERT
 X9 10 11 3 INVERT
 X10 11 12 3 INVERT
X11 12 13 3 INVERT
*
RCIR 13 130 10
CCIR 130 0 .088P
*
X13 130 14 3 INVERT
X14 1415 3 INVERT
X15 15 16 3 INVERT
X16 16 17 3 INVERT
X17 17 18 3 INVERT
X18 18 19 3 INVERT
X19 19 20 3 INVERT
X20 20 21 3 INVERT
X21 21 22 3 INVERT
X22 22 23 3 INVERT
X23 23 24 3 INVERT
*
X24 24 102 3 104 105 106 OUTBUF
*
RLOOP 24 201 635
CLOOP 201 0 .073P
*
.IC V(1)=5 V(2)=0 V(4)=5 V(5)=0 V(6)=5 V(7)=0 V(8)=5
.IC V (9)=0 V (10)=5 V (11)=0 V (12)=5 V (13)=0 V(14)=5 V (15)=0
.IC V(16)=5 V (17)=0 V (18)=5 V (19)=0 V (20)=5
.IC V(21)=0 V (22)=5 V (23)=0 V (24)=5
*
.IC V(102)=0 V (104)=5 V (105) =0 V (106) =5
*
.IC V(201)=5 V(202)=0 V(204)=0
*
.IC V(3)=5
*
VCC 3 0 5V
VA 202 0 5V
*VA }2020\mathrm{ PULSE(OV 5V 2ONS 5NS 5NS 150NS 200NS)
*
.OPTIONS VNTOL=1OUV LIMPTS=500 ITL4=50 ITL5=0
.TRAN 1.ONS 400NS 200NS UIC
*
* node 1 = right after NAND
* node 24 = right before NAND and OUTBUF
* node 106 = OUTPUT
```

* node 202 = NAND enabler
* 

.PLOT TRAN V(1)
.PLOT TRAN V(24)
.PLOT TRAN V (106)
.PLOT TRAN V(202)
*
.END

APPENDIX J - SPICE File for a Ring Oscillator Using H-Gate MOSFETs

```
*
Appendix J - SPICE file (named ringhg.cel) for a ring oscillator using H-gate
 MOSFETs
filename = [marshall.simox]nist8mod.fil
FILENAME = NMODEL.FIL (parameters from NIST8 MOSIS run)
.MODEL MODN NMOS LEVEL=2 LD=0.250000U TOX=413.000008E-10
NSUB=6.294117E+15 VTO=0.807671 KP=4.465000E-05 GAMMA=0.5467
PHI=0.6 UO=534.071 UEXP=.16209 UCRIT=90795.9
DELTA=1.01989 VMAX=57490.9 XJ=0.250000U LAMBDA=3.494828E-02
NFS=5.034625E+12 NEFF=1 NSS=1.000000E+10 TPG=1.000000
RSH=28.380000 CGDO=3.135421E-10 CGSO=3.135421E-10 CGBO=3.907717E-10
CJ=9.308500E-05 MJ=0.693518 CJSW=5.398300E-10 MJSW=0.284549 PB=0.800000
Weff = Wdrawn - Delta W
The suggested Delta_W is -0.28 um
FILENAME = PMODEL.FIL (parameters from NIST8 MOSIS run)
*
.MODEL MODP PMOS LEVEL=2 LD=0.152257U TOX=413.000008E-10
NSUB=7.140277E+15 VTO=-0.807327 KP=2.383000E-05 GAMMA=0.5823
PHI=0.6 UO=284.969 UEXP=0.231562 UCRIT=15586.3
DELTA=0.920741 VMAX=45761.7 XJ=0.250000U LAMBDA=5.083543E-02
NFS=7.553318E+11 NEFF=1.001 NSS=1.000000E+10 TPG=-1.000000
RSH=87.650000 CGDO=1.909559E-10 CGSO=1.909559E-10 CGBO=3.770536E-10
CJ=2.500000E-04 MJ=0.545647 CJSW=3.174900E-10 MJSW=0.330136 PB=0.800000
Weff = Wdrawn - Delta_W
The suggested Delta_W' is -0.20 um
*
*
* filename = RINGHG.FIL
*
* FILENAME = OUTBUF.FIL
*
.SUBCKT OUTBUF 1 2 3 456
*
M1 2 1 0 0 MODN L=6.OUM W=12.OUM AD=144P AS=144P PD=48U
+ PS=48U NRD=1.0 NRS=1.0
M2 2 1 3 3 MODP L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
R1 2 200 500
C1 200 0 .070P
*
M3 4 200 0 0 MODN L=6.OUM W=12.0UM AD=144P AS=144P PD=48U
+ PS=48U NRD=1.0 NRS=1.0
M4 4 200 3 3 MODP L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
R2 4 400 575
C2 400 0 .070P
*
```

```
M5 5 400 0 0 MODN L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
M6 5 400 3 3 MODP L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
R3 5 500 }71
C3 500 0 .070P
M7 600 500 0 O MODN L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
M8 600 500 3 3 MODP L=6.OUM W=96.OUM AD=1152P AS=1152P PD=216U
+ PS=216U NRD=0.125 NRS=0.125
R4 600 6 300
C4 6 O 1PF
.ENDS OUTBUF
*
*
* FILENAME = NAND.FIL
*
.SUBCKT NAND 1 2 3 45
*
M1410 O MODN L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
M2 500 1 3 3 MODP L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
*
M3 500 2 4 O MODN L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
M4 500 2 3 3 MODP L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
R1 500 5 575
C1 5 0 .070P
*
.ENDS NAND
*
* FILENAME = INVERT.FIL
*
.SUBCKT INVERT 1 2 3
*
M1 100 1 O O MODN L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
M2 100 1 3 3 MODP L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
R1 100 2 575
C1 2 0 .070P
*
.ENDS INVERT
*
*
X25 201 202 3 204 1 NAND
*
```

```
X1 1 2 3 INVERT
X2 2 4 3 INVERT
X345 3 INVERT
X456 3 INVERT
X56 7 3 INVERT
X6 7 8 3 INVERT
X7 8 9 3 INVERT
X8 9 10 3 INVERT
X9 10 11 3 INVERT
X10 11 12 3 INVERT
X11 12 13 3 INVERT
*
RCIR 13 130 10
CCIR 130 0 .088P
*
X13 130 14 3 INVERT
X14 14 15 3 INVERT
X15 15 16 3 INVERT
X16 16 17 3 INVERT
X17 17 18 3 INVERT
X18 18 19 3 INVERT
X19 19 20 3 INVERT
X20 20 21 3 INVERT
X21 21 22 3 INVERT
X22 22 23 3 INVERT
X23 23 24 3 INVERT
*
X24 24 102 3 104 105 106 OUTBUF
*
RLOOP 24 201 1000
CLOOP 201 0 .073P
*
.IC V(1)=5 V(2)=0 V(4)=5 V(5)=0 V(6)=5 V(7)=0 V(8)=5
.IC V(9)=0 V (10)=5 V (11)=0 V (12)=5 V (13)=0 V (14)=5 V (15)=0
.IC V(16)=5 V (17)=0 V (18)=5 V (19)=0 V (20)=5
.IC V(21)=0 V(22)=5 V (23)=0 V (24)=5
*
.IC V(102)=0 V (104)=5 V (105) =0 V (106)=5
*
.IC V(201)=5 V(202)=0 V (204)=0
*
.IC V(3)=5
*
VCC 3 O 5V
VA 202 0 5V
*VA 202 0 PULSE(OV 5V 2ONS 5NS 5NS 150NS 200NS)
*
.OPTIONS VNTOL=1OUV LIMPTS=500 ITL4=50 ITL5=0
.TRAN 1.ONS 200NS UIC
* node 1 = right after NAND
```

* node 24 = right before NAND and OUTBUF
* node 106 = OUTPUT
* node 202 = NAND enabler
* 

.PLOT TRAN V(1)
. PLOT TRAN V(24)
.PLOT TRAN V(106)
.PLOT TRAN V(202)
*
. END

## APPENDIX K - SPICE File for an SRAM

```
*
* Appendix K - SPICE file (named sram.cel) for an SRAM
*
* filename = [marshall.simox]nist8mod.fil
*
* FILENAME = NMODEL.FIL (parameters from NIST8 MOSIS run)
*
.MODEL MODN NMOS LEVEL=2 LD=0.250000U TOX=413.000008E-10
+ NSUB=6.294117E+15 VTO=0.807671 KP=4.465000E-05 GAMMA=0.5467
+ PHI=0.6 U0=534.071 UEXP=.16209 UCRIT=90795.9
DELTA=1.01989 VMAX=57490.9 XJ=0.250000U LAMBDA=3.494828E-02
+ NFS=5.034625E+12 NEFF=1 NSS=1.000000E+10 TPG=1.000000
RSH=28.380000 CGD0=3.135421E-10 CGS0=3.135421E-10 CGBO=3.907717E-10
CJ=9.308500E-05 MJ=0.693518 CJSW=5.398300E-10 MJSW=0.284549 PB=0.800000
Weff = Wdrawn - Delta_W
The suggested Delta_W is -0.28 um
FILENAME = PMODEL.FIL (parameters from NIST8 MOSIS run)
*
.MODEL MODP PMOS LEVEL=2 LD=0.152257U TOX=413.000008E-10
* NSUB=7.140277E+15 VTO=-0.807327 KP=2.383000E-05 GAMMA=0.5823
- PHI=0.6 UO=284.969 UEXP=0.231562 UCRIT=15586.3
+ DELTA=0.920741 VMAX=45761.7 XJ=0.250000U LAMBDA=5.083543E-02
+ NFS=7.553318E+11 NEFF=1.001 NSS=1.000000E+10 TPG=-1.000000
+ RSH=87.650000 CGDO=1.909559E-10 CGSO=1.909559E-10 CGBO=3.770536E-10
+CJ=2.500000E-04 MJ=0.545647 CJSW=3.174900E-10 MJSW=0.330136 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W' is -0.20 um
*
*
* filename = sram.fil
*
* FILENAME = OUTBUF.FIL
*
.SUBCKT OUTBUF 1 2 3 456
*
M1 2 1 0 MODN L=6.OUM W=6.OUM AD=72P AS=72P PD=36U
+ PS=36U NRD=2.0 NRS=2.0
M2 2 1 3 3 MODP L=6.OUM W=12.OUM AD=144P AS=144P PD=48U
+ PS=48U NRD=1.0 NRS=1.0
R1 2 200 175
C1 200 0 .043P
*
M3 4 200 0 0 MODN L=6.OUM W=12.0UM AD=144P AS=144P PD=48U
+ PS=48U NRD=1.0 NRS=1.0
M4 4 200 3 3 MODP L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
+ PS=72U NRD=0.5 NRS=0.5
R24400 250
C2 400 0.043P
*
M5 5 400 0 0 MODN L=6.OUM W=24.OUM AD=288P AS=288P PD=72U
```

```
+ PS=72U NRD=0.5 NRS=0.5
M6 5 400 3 3 MODP L=6.OUM W=48.0UM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
R3 5 500 350
C3 500 0 .043P
*
M7 600 500 0 0 MODN L=6.OUM W=48.OUM AD=576P AS=576P PD=120U
+ PS=120U NRD=0.25 NRS=0.25
M8 600 500 3 3 MODP L=6.OUM W=96.OUM AD=1152P AS=1152P PD=216U
+ PS=216U NRD=0.125 NRS=0.125
R4 600 6 300
C4 6 0 50PF
*
.ENDS OUTBUF
*
*
M142 1 O MODN L=6.OUM W=6.OUM AD=72P AS=72P PD=36U
+ PS=36U NRD=2.0 NRS=2.0
M2 4 2 3 3 MODP L=6.OUM W=36.OUM AD=432P AS=432P PD=96U
+ PS=96U NRD=0.33 NRS=0.33
*
M3 2410 MODN L=6.OUM W=6.OUM AD=72P AS=72P PD=36U
+ PS=36U NRD=2.0 NRS=2.0
M4 2 4 3 3 MODP L=6.OUM W=36.OUM AD=432P AS=432P PD=96U
+ PS=96U NRD=0.33 NRS=0.33
*
M5 45101 O MODN L=6.OUM W=6.OUM AD=72P AS=72P PD=36U
+ PS=36U NRD=2.0 NRS=2.0
M6 9 7 101 O MODN L=6.OUM W=6.OUM AD=72P AS=72P PD=36U
+ PS=36U NRD=2.0 NRS=2.0
*
M7 25 201 O MODN L=6.OUM W=6.OUM AD=72P AS=72P PD=36U
+ PS=36U NRD=2.0 NRS=2.0
M8 107201 0 MODN L=6.OUM W=6.0UM AD=72P AS=72P PD=36U
+ PS=36U NRD=2.0 NRS=2.0
*
X1 101 102 3 104 105 106 OUTBUF
X2 201 202 3 204 205 206 OUTBUF
*
.IC V(1)=0 V(5)=0 V(7)=0 V(9)=0 V (10)=5
.IC V(2)=0 V (4)=5
*.IC V(2)=5 V (4)=0
.IC V (101)=0 V (102)=5 V (104)=0 V (105)=5 V (106)=0
.IC V(201)=5 V (202)=0 V (204)=5 V (205)=0 V (206)=5
.IC V(3)=5
*
VCC 3 O 5V
VLATCH }10\mathrm{ PULSE(OV 5V 5NS 5NS 5NS 100NS 200NS)
*VLATCH }1\mathrm{ O OV
VRWSEL 5 O PULSE(OV 5V 10NS 5NS 5NS 100NS 200NS)
VWSEL }70\mathrm{ PULSE(OV 5V 15NS 5NS 5NS 100NS 200NS)
```

```
*VWSEL 7 O OV
*
VBIT 9 O OV
VBITBAR 10 0 5V
*
.OPTIONS VNTOL=1OUV LIMPTS=500 ITL4=50 ITL5=0
.TRAN 1.ONS 200NS UIC
*
.PLOT TRAN V (1)
.PLOT TRAN V (2)
.PLOT TRAN V (4)
*
.PLOT TRAN V(101)
.PLOT TRAN V(106)
.PLOT TRAN V(201)
.PLOT TRAN V(206)
*
.END
```


# NIST Technical Publications 

## Periodical


#### Abstract

Journal of Research of the National Institute of Standards and Technology - Reports NIST research and development in those disciplines of the physical and engineering sciences in which the Institute is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Institute's technical and scientific programs. Issued six times a year.


## Nonperiodicals

Monographs-Major contributions to the technical literature on various subjects related to the Institute's scientific and technical activities.
Handbooks - Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications - Include proceedings of conferences sponsored by NIST, NIST annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.
Applied Mathematics Series - Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.
National Standard Reference Data Series - Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NIST under the authority of the National Standard Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published bimonthly for NIST by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.
Building Science Series - Disseminates technical information developed at the Institute on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.
Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST under the sponsorship of other government agencies.
Voluntary Product Standards-Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NIST administers this program in support of the efforts of private-sector standardizing organizations.
Consumer Information Series - Practical information, based on NIST research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace. Order the above NIST publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.
Order the following NIST publications-FIPS and NISTIRs - from the National Technical Information Service, Springfield, VA 22161.
Federal Information Processing Standards Publications (FIPS PUB) - Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).
NIST Interagency Reports (NISTIR)-A special series of interim or final reports on work performed by NIST for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.
U.S. Department of Commerce

National Institute of Standards and Technology
Gaithersburg, MD 20899
Official Business
Penalty for Private Use $\$ 300$


[^0]:    ${ }^{1}$ At Boulder, CO 80303.
    ${ }^{2}$ Some elements at Boulder, CO 80303 .

[^1]:    U.S. DEPARTMENT OF COMMERCE, Ronald H. Brown, Secretary TECHNOLOGY ADMINISTRATION, Mary L. Good, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, Arati Prabhakar, Director

