

the QZRI for this quiet zone to rise to a level above the RIWH.

In addition, the maximum timetable speed⁹ for all trains, including passenger, increased from 20 miles per hour (mph) to 40 mph for several miles of track, and a second main track was constructed. The crossings affected by the speed increase were on the Port Lead from MP PL 0.00 to PL 3.75. The Public Authority has not implemented any SSMs or Alternative Safety Measures (ASMs)¹⁰ since the establishment of the quiet zone to compensate for the increased train traffic, new railroad infrastructure, and higher train speeds. All twelve quiet zone crossings on the Port Lead were affected by this maximum timetable speed increase.

Improper Documentation

FRA noted the following inaccuracies when comparing the documentation relied upon to establish the quiet zone with current conditions:

- The required list of crossings in the NOE does not include the pedestrian grade crossing at MP DL 1.15 (U.S. DOT Crossing Inventory No. 273133V).
- The Quiet Zone Calculator data in the NOE does not include the Port Boulevard crossing (U.S. DOT Crossing Inventory No. 272960A), which artificially reduced the QZRI.
- A diagnostic team review of the pedestrian grade crossings in the quiet zone was required by 49 CFR 222.27. No record or comments from a diagnostic team review of any pedestrian grade crossing were included in the NOE.

During FRA's review of the documentation submitted to establish the quiet zone, FRA noted additional discrepancies, including outdated annual average daily traffic counts and incomplete Quiet Zone Calculator documentation.¹¹

⁹ The maximum timetable speed references the highest maximum speed any train may travel through the crossing and is determined by the railroad in accordance with the relevant operating conditions and track class. This speed is denoted on the U.S. DOT Crossing Inventory Form in Part II, Box 3. The maximum timetable speed is factored into determining the RIWH and QZRI by the Quiet Zone Calculator.

¹⁰ An Alternative Safety Measure (ASM) is a safety system or procedure, other than an SSM, established in accordance with 49 CFR part 222, which is provided by the appropriate traffic control authority or law enforcement authority and which, after individual review and analysis by the FRA Associate Administrator for Railroad Safety, is determined to be an effective substitute for the locomotive horn in the prevention of highway-rail casualties at specific highway-rail grade crossings. See 49 CFR 222.9.

¹¹ The U.S. DOT Crossing Inventory forms contained in the NOE indicated that an Annual Average Daily Traffic (AADT) analysis had not been performed since 1988 on any highway-rail grade crossings in the quiet zone.

Non-Compliance With the Manual on Uniform Traffic Control Devices (MUTCD)

FRA conducted a field inspection of each quiet zone crossing in October 2024 and provided a summary of its findings to the Public Authority in January 2025. The inspection uncovered numerous exceptions to the standards and guidance of the MUTCD.¹² Most notable was the absence or improper use of "No Train Horn" signs or plaques at several grade crossings. FRA conducted a follow-up inspection in April 2025 and observed that, except for the installation of several "No Train Horn" signs, most of the exceptions have not been corrected. The Federal Highway Administration (FHWA) has reviewed the documented MUTCD non-compliance and concurs with FRA's findings.

Scope of Review

From the inception of FRA's rulemaking on the use of locomotive horns at public highway-rail grade crossings (indeed, beginning with FRA's issuance of Emergency Order No. 15¹³ in 1991), FRA has adopted a corridor-wide approach to evaluating and mitigating risk within quiet zones, instead of requiring the implementation of risk mitigation measures at each public highway-rail grade crossing located within a quiet zone. A corridor-wide approach permits the most efficient deployment of risk reduction measures and encourages public authorities to focus their resources on addressing the most hazardous public highway-rail grade crossings.

This quiet zone is located on the BLF and SFRV passenger rail corridor. When first established in 2012, the Dodge Island Lead (DL) consisted of one continuous track into the Port of Miami. Since then, this rail line has been split into two different sections: the Port Lead (PL) and the DL.¹⁴ This quiet zone contains PL and DL crossings. Accordingly, the scope of FRA's review may include an analysis of the current configuration of the quiet zone.

Interested parties are invited to submit written comments to the docket. FRA is interested in obtaining

¹² FHWA publishes the MUTCD, which contains national design, application, and placement standards, guidance, options, and support provisions for traffic control devices.

¹³ 56 FR 36190 (July 31, 1991).

¹⁴ The PL connects the FEC mainline southbound to MiamiCentral (PL 0.00 to PL 4.51). The DL splits off at PL 3.53 and then runs parallel until it crosses under the elevated PL at the NW 8th Street crossing (U.S. DOT Crossing Inventory No. 272647X) and turns east to the Port of Miami. The DL terminates at the Port of Miami.

information from the public about any unsafe actions that have been observed at any of the above-listed grade crossings. This could include information about motorists or pedestrians who have been observed engaging in unsafe actions. FRA is also interested in obtaining information from the Public Authority about the effectiveness of existing quiet zone crossing safety improvements, as well any additional quiet zone safety improvements that may be under consideration and the anticipated timeline for implementing any such improvements.

After the comment period closes, the Associate Administrator may require that additional safety measures be taken or that the quiet zone be terminated. The Associate Administrator will provide a copy of his decision to the Public Authority as well as the railroads that operate through the quiet zone and the State agencies responsible for grade crossing, highway, and road safety.

Issued in Washington, DC.

John Karl Alexy,

*Associate Administrator for Railroad Safety,
Chief Safety Officer.*

[FR Doc. 2025-20738 Filed 11-21-25; 8:45 am]

BILLING CODE 4910-06-P

DEPARTMENT OF TRANSPORTATION

National Highway Traffic Safety Administration

[Docket No. NHTSA-2024-0056]

Agency Information Collection Activities; Submission to the Office of Management and Budget for Review and Approval; Request for Comment; Occupant Anthropometry and Seating

AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT).

ACTION: Notice and request for comments on a request for approval of a new information collection.

SUMMARY: In compliance with the Paperwork Reduction Act of 1995 (PRA), this notice announces that the Information Collection Request (ICR) summarized below will be submitted to the Office of Management and Budget (OMB) for review and approval. The ICR describes the nature of the information collection and its expected burden. This document describes a new collection of information for which NHTSA intends to seek OMB approval titled "Occupant Anthropometry and Seating."

A **Federal Register** Notice with a 60-day comment period soliciting comments on the following information collection

was published on December 30, 2024. One comment was received during the comment period. This 30-day notice includes a summary of the comment and NHTSA's response to the comment (feedback has been incorporated into the data collection in response to the comment).

DATES: Comments must be submitted on or before December 24, 2025.

ADDRESSES: Written comments and recommendations for the proposed information collection, including suggestions for reducing burden, should be submitted to the Office of Management and Budget at www.reginfo.gov/public/do/PRAMain. To find this particular information collection, select "Currently under Review—Open for Public Comment" or use the search function.

FOR FURTHER INFORMATION CONTACT: For additional information or access to background documents, contact Elizabeth Lafferty, Office of Vehicle Safety Research, Human Injury Research Division NSR-220, West Building, W46-311, 1200 New Jersey Ave. SE, Washington DC 20590; Email: Elizabeth.lafferty@dot.gov; Phone: 202-366-6222.

SUPPLEMENTARY INFORMATION: Under the PRA (44 U.S.C. 3501 *et seq.*), a Federal agency must receive approval from the Office of Management and Budget (OMB) before it collects certain information from the public, and a person is not required to respond to a collection of information by a Federal agency unless the collection displays a valid OMB control number. In compliance with these requirements, this notice announces that the following information collection request will be submitted to OMB.

Title: Occupant Anthropometry and Seating.

OMB Control Number: New.

Form Number(s): NHTSA Form 1824, NHTSA Form 1825, NHTSA Form 1826, NHTSA Form 1827, NHTSA Form 1828, and NHTSA Form 1848.

Type of Request: New information collection.

Type of Review Requested: Regular.

Requested Expiration Date of Approval: 3 years from date of approval.

Summary of the Collection of Information: NHTSA proposes to collect information from the public as part of a study to update obsolete information on body size and shape, posture, and motion of vehicle occupants. This research will support NHTSA in the development of tools used for occupant protection during crashes, add to the body of knowledge, and inform future agency activities; however, it is not

associated with immediate regulatory activities.

The designs of anthropomorphic test devices (ATDs, commonly known as crash test dummies) are based on measurements of volunteers sitting in vehicle and laboratory seats. The current generation of ATDs is based on data gathered at University of Michigan Transportation Research Institute (UMTRI) in the 1980s. Since that time, the U.S. population has changed substantially, most notably due to the large increase in body mass. Measurement technologies have also improved dramatically with the development of fast three-dimensional surface measurement systems. Seating configurations have also expanded from the traditional seat posture collected in the 1980s with increased recline angles in modern vehicles. This combination of a population size shift and more variable seat configurations presents a clear need for updated seated anthropometry to be collected with new advanced anthropometry measurement capabilities.

The individual data collections, approved by the Institutional Review Board at the University of Michigan, will each be performed once. Study participants will be male and female licensed adult drivers from the general public, and participation will be voluntary with compensation. For an in-lab study, the following information collections include (1) an online screening questionnaire; (2) a phone call to confirm eligibility, interest, and to schedule a time in the lab; and (3) informed consent for the in-lab study and anthropometric measurement. A subset of the in-lab participants will be asked to participate in an in-vehicle study to include (4) a pre-drive questionnaire for the in-vehicle study; (5) informed consent and anthropometric measurements for the in-vehicle study; and (6) a post-drive questionnaire for the in-vehicle study.

This research study will gather a new database of information on adult body size, shape, posture, and motion to support advancement in these safety applications. This study will add to the body of the knowledge on motor vehicle anthropometry and will support crash safety and occupant protection through the development of human body models (HBM)s and anthropomorphic test devices (ATDs).

Description of the Need for the Information and Proposed Use of the Information: Early ATDs, including the Hybrid-III family that was initially designed in the 1970s, were constructed using manually gathered anthropometric data, such as segment

lengths and circumferences. Minimal 3D information was available, and seated postures were approximated. In 1980, NHTSA funded a large-scale study at UMTRI to develop anthropometric specifications for a new generation of ATDs. The Anthropometry of Motor Vehicle Occupants (AMVO) study gathered data and developed detailed 3D body shapes for small female, midsize male, and large male occupants, using 5th percentile female, 50th percentile male, and 95th percentile male stature and body weight as the target reference values. Drawing packages were developed detailing landmark and joint locations, and physical 3D surface shells were constructed using landmark data and minimal 3D contour information. These data have formed the anthropometric basis for most adult ATDs developed since that time.

AMVO had some limitations, however. Due to the limits of the technology available at the time, a small number of participants were measured (25 per size bin were used to create the final specifications), and no 3D surface information was collected. Moreover, the analysis was based on simple averaging per size bins, so no information was provided for other occupant sizes. Additionally, the midsize female was dropped for cost reasons, so the only female data were gathered from very small individuals.

Over the past 20 years, HBMs have become an important addition to the biomechanics toolkit. Using the same logic that was applied to selecting body sizes for ATDs, the HBMs have typically been targeted to the same stature and body weight reference values as were used in AMVO. However, unlike the averaging process used in AMVO, most HBMs have been developed using data primarily or entirely from a single individual. A consequence of this approach is that HBM development has not provided meaningful additions to the anthropometric data available to characterize vehicle occupants.

In the decades since AMVO, UMTRI has conducted a large number of studies of occupant posture and body shape and has developed advancements in both measurement and analysis methodology. Of particular importance, rather than averaging data to create a representation of a single body size, UMTRI has developed continuous statistical models that can generate accurate specifications for a wide range of sizes and shapes (for examples, see <http://HumanShape.org>). Simultaneously analyzing both landmark locations and 3D body shapes has enabled the development of

parametric human body modeling, in which HBMs are morphed to represent people with widely varying size and shape.

Concurrent with the development of parametric HBMs, crash injury data analyses have highlighted the potential benefits of these new tools. In particular, the field data indicate that female occupants experience higher risks of some injuries in certain types of crashes. Notably, lower-extremity injury risks are markedly higher for female drivers than for male drivers in frontal impacts. Detailed anthropometric and posture data for female drivers could help to elucidate the causes of this difference. Crash injury data also show that individuals with high body mass are at higher risks of some injuries, possibly due to differences in the interaction with the restraint systems. Minimal data are available to describe the seated postures and body shapes of this cohort, which is increasingly important in the U.S.

60-Day Notice: A **Federal Register** notice with a 60-day comment period soliciting public comments on the following information collection was published on December 30, 2024 (89 FR 106741). During the public comment period for the 60-day notice, NHTSA received one comment from the Partnership for Dummy Technology and Biomechanics (PDB).

NHTSA appreciates PDB's thoughtful and constructive engagement. PDB "highly appreciates the intension [sic] of NHTSA to update fundamental anthropometric data" and provided detailed comments regarding (1) the study design, (2) the in-lab study, and (3) the in-vehicle study. NHTSA values the depth and thoroughness of PDB's input and has carefully considered their recommendations.

Regarding the study design, PDB emphasized that participant body sizes should represent the overall population and recommended ensuring a sufficient number of participants at characteristic percentiles (5th, 50th, and 95th) for males and females. They also recommended considering age alongside anthropometry because age influences seating position. NHTSA agrees with these points and the sample design will reflect selection criteria intended to ensure population representation and inclusion of specific characteristics. In a currently funded effort, UMTRI is reanalyzing data from over 400 seated subjects across varied anthropometries, sexes, and ages. Identified gaps and low sample sizes from these data were used to develop a participant recruitment matrix within a task implementation

plan for this ICR. Participants will be 18 years of age and older, with ages distributed across three bins (20–39, 40–59, and 60–80 years). This collection aims to obtain about half the participants in the middle bin to address relatively small numbers of subjects in that age range in earlier studies. Stature will span from below the 5th percentile to above the 95th percentile for adult women and men in the U.S. population (1498 to 1875 mm). Recruitment will use three stature bins with approximately 2× oversampling in the tails to ensure robust statistical power for regression modeling. BMI will be sampled in three bins, with 50% of participants having $BMI > 30 \text{ kg/m}^2$ (roughly 40% of U.S. adults) and about one-sixth with $BMI > 40$. Age, stature, and BMI will be approximately independent, though exact equivalence of age distributions within bins may be constrained by sampling challenges.

PDB recommended including second-row seat position measurements alongside driver and front passenger positions. NHTSA concurs that second-row positioning data are important. Although second-row seats are not included among the six mockup seats selected for in-lab data collection in the task implementation plan, the test conditions will incorporate fixed seat back angles typical of second- and third-row seats, including highly reclined conditions. NHTSA believes these test conditions address PDB's intent and satisfies their suggestion.

PDB also suggested the in-vehicle study be conducted at a consistent time of day, preferably in the morning, to reduce spine relaxation effects from daily activities. NHTSA appreciates and understands the rationale behind this recommendation; however, due to time constraints and the large sample size required, the study cannot restrict data collection to a specific time of day. NHTSA does not expect this variation to have a significant impact on the data, but time of day can be considered as a covariate in analyses to clearly shed light on effects, if any.

In discussion of the laboratory study, PDB highlighted the importance of manual data collection in addition to 3D scans and recommended collecting the same locations measured in the first AMVO study. NHTSA thanks PDB for this practical and helpful guidance and agrees with both recommendations. The study will incorporate comprehensive manual data collection of all locations from the first AMVO study alongside 3D scans. A complete list of measurement requirements is outlined in the task

implementation plan with UMTRI and provided in Tables 1 and 2. These tables specify measurements to be gathered from each participant using standard manual anthropometry. Many additional dimensions can be extracted from the 3D scans beyond those listed. NHTSA intends to compare all new measurements from this study to prior AMVO measurements and will use both manual measures and 3D scans to obtain comparable data.

Table 2 lists the surface landmarks used to define posture and estimate internal joint center locations. All landmarks are measured in the laboratory hardseat, which provides access to both anterior and posterior landmarks; these data are used to create a subject-specific skeletal linkage that informs interpretation of vehicle seating conditions, where posterior landmarks below C7 are generally not accessible. Landmark locations, including points used to quantify belt fit, will be measured in the mockup conditions using the FARO Arm in a comparable manner. NHTSA is confident that the study design and measurement plan will fulfill PDB's request for thorough manual data collection.

PDB provided a list of landmarks desired for Human Body Model (HBM) positioning. NHTSA appreciates these recommendations and will ensure the data collected under this ICR to provide sufficient landmark data for positioning and orienting both HBMs and ATDs. Body landmark data from the mockups will be analyzed using methods similar to those in prior UMTRI publications (e.g., Park et al., 2016). First, hardseat data will be used to estimate internal joint center locations and construct a skeletal linkage for each subject. Next, the skeletal linkage and surface landmarks will be used to estimate joint center locations in each mockup condition. Regression analysis will predict landmark locations as functions of subject characteristics (stature, BMI, etc.) and test condition variables (seat height, seat back angle, etc.). The VITUS laser scanner 3D data will be processed following established methods (e.g., Park et al., 2022): props (seats, handholds, etc.) are manually removed from the scan, an automatic surfacing process fills holes to obtain a watertight mesh, and texture data are used to manually digitize landmark locations in Meshlab. A standardized template is fitted to the mesh using UMTRI-developed methods. NHTSA is confident this collection will capture the landmark data discussed by PDB.

TABLE 1—MANUAL ANTHROPOMETRY MEASURES *

1	Weight	12	Maximum Hip Breadth
2	Stature (without shoes)	13	Buttock Knee Length
2.5	Stature (with shoes)	14	Buttock-Popliteal Length
3	Erect Sitting Height	15	Biacromial Breadth
4	Eye Height (Sitting)	16	Shoulder Breadth
5	Acromial Height (Sitting)	17	Chest Depth (on scapula)
6	Knee Height	18	Chest Depth (on spine)
7	Tragion to Top of Head	19	Bispinous (BiASIS) Breadth
8	Head Length	20	Chest Circumference at Axilla
9	Head Breadth	21	Waist Circumference
10	Shoulder Elbow Length	22	Hip Circumference at Buttocks
11	Elbow-Hand Length	23	Upper Thigh Circumference

* See Hotzman et al. (2012) for definitions and measurement methods.

TABLE 2—SURFACE LANDMARKS

Glabella	L4Surface
Ectocanthus (corner eye)	L5Surface
Center Eye (orbit under pupil)	Acromion
Tragion	HumeralEpiCon_Lat
Vertex	Wrist_Lat
Back of Head	FemoralEpiCon_Lat
Suprasternale	Suprapatella
Substernale	Infrapatella
C7Surface	Malleolus_Lat
T4Surface	ASIS_L
T8Surface	ASIS_R
T12Surface	PSIS_L
L1Surface	PSIS_R
L2Surface	Toe Tip
L3Surface	Heel

PDB recommended measuring belt routing in mockup configurations. NHTSA will incorporate belt routing into the study design and appreciates PDB's emphasis on this point. In the task implementation plan, drivers will be measured in a core set of conditions (middle steering wheel position at three seat heights). A subset of participants will be assigned to a belt matrix in which belt fit is measured across a variety of belt anchorage locations, and another subset will be measured in the remaining package conditions.

PDB also recommended collecting reclined postures with seat back angles up to around 45–50 degrees. NHTSA appreciates this recommendation and have included reclined postures up to 45 degrees in the task implementation plan. Posture will be measured using the FARO Arm at three seat back angles in each seat (20, 25, and 30 degrees) and at 35, 40, and 45 degrees for each participant in one randomly assigned seat (so highly reclined postures will be captured for approximately 1/6 of participants in each seat). For postures reclined >30 degrees, NHTSA will use methods from Reed et al. (2019) to identify each participant's preferred supported head location. While PDB suggested angles up to about 50 degrees, NHTSA believes capturing up to 45

degrees provides sufficient coverage for the intended analyses.

PDB suggested that landmarks measured during the in-vehicle portion match in-lab landmarks whenever possible. NHTSA agrees and incorporated landmark matching efforts into the implementation plan. Because the ICR will recruit subjects from the in-lab study for the in-vehicle study, UMTRI will have comprehensive anthropometry and an accurate three-dimensional, articulated avatar for each driver participant, enabling fitting to vehicle 3D data and accurate whole-body posture estimation. Seated posture, belt fit, and the position of selected vehicle components will be recorded using a FARO Arm coordinate measurement system and the vehicle DAS once participants are comfortably seated. PDB also recommended using the FMVSS 208 procedure to establish a consistent coordinate system. FMVSS 208 specifies the vehicle centerline at the rear bumper as the coordinate system origin; in this study, driver data will be defined in a package coordinate system anchored to the pedals and steering wheel so results are generalizable across vehicles. Seat back kinematics, including seat back angle change, will also be measured. These methods align with SAE and FMVSS practices. The collected seat H-point and vehicle interior dimensions will be sufficient to reproduce the package configuration in simulation or other physical mockups.

Finally, PDB asked NHTSA to consider pressure distribution on the seat pan during static in-vehicle measurements. NHTSA appreciates the technical rationale for this suggestion but has determined that adding pressure distribution data collection would increase data collection efforts substantially and would be difficult to generalize because pressure maps depend heavily on seat design. Therefore, NHTSA will not add pressure distribution to this ICR. NHTSA published a 60-day notice on December

30, 2024, that stated NHTSA's intention to submit this ICR to OMB for approval (89 FR 106741).

Affected Public: Respondents will be licensed drivers, ages 18+, in the Ann Arbor, MI region, and willing to travel to UMTRI. Study participants will be male and female licensed adult drivers from the general public, and participation will be voluntary with compensation. The screening questionnaire is provided as a Google Form through the University of Michigan's Health Research portal and is completed online by prospective participants. Eligible participants are those whose answers to the Google Form questions are consistent with the inclusion and exclusion criteria.

Eligibility requirements include the ability to read and speak English, to drive for two hours continuously, hold a current and unrestricted U.S. driver's license, have at least one year as a licensed driver, drive a car daily for an average of at least 15 minutes, and be comfortable driving on the highway and local roads. Exclusion criteria include individuals with musculoskeletal ailments, impeding the ability to walk or sit comfortably, or musculoskeletal deformities such as scoliosis or amputations.

Estimated Number of Respondents: 2,000. We estimate that 2,000 screening questionnaires will be filled out to obtain the needed number of subjects. The form has 23 questions, including name, address, and time slots available. We estimate that up to 600 individuals will need to be contacted to obtain the needed number of 300 subjects for the lab study. This considers that some people's schedules may not match up with lab openings or they may not show up for their scheduled appointment. A subset of the in-lab study participants will be asked to participate in the in-vehicle study with the targeted 100 participants.

Frequency: Once. This is a one-time collection of information with two studies: in-lab and in-vehicle. A subset

of the in-lab participants will be asked to participate in the in-vehicle study. The initial pre-screening time is roughly 5 minutes and can be done at the respondents' convenience using a device of their choosing. The only requirement is an internet connection to access the online pre-screening. Not all who begin this pre-screening will complete the form in its entirety, and not everyone will meet study criteria. Those who meet study criteria could be contacted for an eligibility phone call prior to study enrollment.

Number of Responses: 2,000.

Estimated Total Annual Burden Hours: The annual estimated time burden to complete the collection of information is 341 hours and an annual opportunity cost of \$11,329 over the study period. Note that these figures are slightly less than those posted in the 60-day notice for this information collection. The 60-day notice overestimated the total time per response for the entirety of the in-vehicle study, which is corrected herein. Further, the 60-day notice included a private industry workers' wage adjustment, which has since been deemed unnecessary for this information collection's burden

estimates, as participants are engaging on their own time as volunteers for all aspects of this study. Therefore, this monetary adjustment to the opportunity cost per hour has been omitted.

Using the University of Michigan's Health Research portal, the research team expects to have 2,000 participants respond to the screening questionnaire in total. Across the three years of the study collection, NHTSA estimates 667 respondents for the screening questionnaire. A complete questionnaire is estimated at 5 minutes. Of the screened individuals, we anticipate that up to 600 total (200 annually) will need to be contacted for an eligibility phone call to obtain the needed number of 300 total participants (100 annually) scheduled for the in-lab study. Scheduled participants who do not show up will be replaced from the remaining pool of screened participants to ensure a total of 300 total participants (100 annually) arrive for in-lab measurements. After completion of the 2-hour process for informed consent and in-lab data collection, some participants will be asked if they are interested in the in-vehicle study. From the 300 total in-lab participants, a total

of 100 (34 annually) will be scheduled to return to the lab for the in-vehicle study. The in-vehicle pre-drive and post-drive questionnaires will each take 5 minutes, the informed consent and anthropometric measurements will take 10 minutes, and the vehicle drive itself will take 100 minutes, totaling 2 hours for the entirety of the in-vehicle study.

To calculate the opportunity cost associated with the forms and other relevant activities necessary for this collection of new information, NHTSA looked at average hourly earnings for employees across all occupations in the Ann Arbor, MI area. The Bureau of Labor Statistics (BLS) estimates that the average hourly wage for this group is \$33.43, thus serving as the opportunity cost per hour. NHTSA therefore estimates the total opportunity cost associated with the 1,017 burden hours to be \$33,989. Annual burden cost is estimated to be \$11,329, and annual burden hours are estimated to be 341. There may be a slight variation in the comparison of total to annual burden over the three years due to rounding. The annual burden figures will be those represented in ROCIS.

TABLE 3—BURDEN ESTIMATES

NHSTA form No.	Information collection	Number of respondents total/annual	Time per response (min)	Cost per response	Frequency of response	Burden hours total/annual	Burden cost (dollars) total/annual
1824	Online Screening questionnaire	2,000/667	5	\$2.79	1	167/56	\$5,572/\$1,857
1825	Eligibility Phone Call	600/200	5	2.79	1	50/17	1,672/557
1826	Informed Consent, In-Lab	300/100	10	5.57	1	50/17	1,672/557
2110	In-Lab Data Collection	300/100	110	61.29	1	550/183	18,387/6,129
1827	In-Vehicle Pre-Drive Questionnaire	100/34	5	2.79	1	8/3	279/93
1828	Informed Consent, In-Vehicle	100/34	10	5.57	1	17/6	557/186
2111	In-Vehicle Data Collection	100/34	100	55.72	1	167/56	5,572/1,857
1848	In-Vehicle Post-Drive Questionnaire	100/34	5	2.79	1	8/3	279/93
Total Burden/Annual Burden	1,017/341	33,989/11,329

Estimated Total Annual Burden Cost: The total estimated cost to the Government for this one-time information collection is \$49,119.15, and the annual estimated cost is \$16,373.05.

Public Comments Invited: You are asked to comment on any aspects of this information collection, including (a) whether the proposed collection of information is necessary for the proper performance of the functions of the agency, including whether the information will have practical utility; (b) the accuracy of the agency's estimate of the burden of the proposed collection of information, including the validity of the methodology and assumptions used; (c) ways to enhance the quality, utility and clarity of the information to be collected; and (d) ways to minimize the burden of the collection of information

on respondents, including the use of appropriate automated, electronic, mechanical, or other technological collection techniques or other forms of information technology, *e.g.*, permitting electronic submission of responses.

Authority: The Paperwork Reduction Act of 1995; 44 U.S.C. Chapter 35, as amended; 49 CFR 1.49; and DOT Order 1351.29A.

Cem Hatipoglu,
Associate Administrator, Vehicle Safety Research.

[FR Doc. 2025-20653 Filed 11-21-25; 8:45 am]

BILLING CODE 4910-59-P

DEPARTMENT OF TRANSPORTATION

Pipeline and Hazardous Materials Safety Administration

[Docket No. PHMSA-2023-0136]

Pipeline Safety: Request for Special Permit; Southern Natural Gas Company, LLC (SNG)

AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); U.S. Department of Transportation (DOT).

ACTION: Notice.

SUMMARY: PHMSA is publishing an updated notice to solicit public comments on a request for special permit received from Southern Natural Gas Company, LLC (SNG). The new notice contains updated documents,