include the OMB Control Number, 3060–0298, in your correspondence. The Commission will also accept your comments via email at PRA@fcc.gov.

To request materials in accessible formats for people with disabilities (Braille, large print, electronic files, audio format), send an email to fcc504@fcc.gov or call the Consumer and Governmental Affairs Bureau at (202) 418–0350 (voice), (202) 418–0432 (TTY).

Synopsis
As required by the Paperwork Reduction Act of 1995 (44 U.S.C. 3507), the FCC is notifying the public that it received final OMB approval on May 13, 2021, for the information collection requirements contained in the modifications to the Commission’s rules in 47 CFR part 51.

Under 5 CFR part 1320, an agency may not conduct or sponsor a collection of information unless it displays a current, valid OMB Control Number.

No person shall be subject to any penalty for failing to comply with a collection of information subject to the Paperwork Reduction Act that does not display a current, valid OMB Control Number. The OMB Control Number is 3060–0298.

The total annual reporting burdens and costs for the respondents are as follows:

OMB Control Number: 3060–0298.

OMB Approval Date: May 13, 2021.

OMB Expiration Date: May 31, 2024.

Title: Part 61. Tariffs (Other than Tariff Review Plan).

Form Number: N/A.

Respondents: Businesses or other for-profit entities.

Number of Respondents and Responses: 2,925 respondents; 9,585 responses.

Estimated Time per Response: 1–50 hours.

Frequency of Response: One-time, biennial and on-occasion reporting requirements.

Obligation To Respond: Required to obtain or retain benefits. The statutory authority for this information collection is contained in sections 1–5, 201–205, 208, 251–271, 403, 502, and 503 of the Communications Act of 1934, as amended, 47 U.S.C. 151–155, 201–205, 208, 251–271, 403, 502 and 503.

Total Annual Burden: 244,477 hours.

Total Annual Cost: $1,584,000.

Nature and Extent of Confidentiality: Respondents are not being asked to submit confidential information to the Commission. If the Commission requests respondents to submit information which respondents believe is confidential, respondents may request confidential treatment of such information under 47 CFR 0.459 of the Commission’s rules.

Privacy Act: No impact(s).

Needs and Uses: Sections 201, 202, 203, 204 and 205 of the Communications Act of 1934, (Act) as amended, 47 U.S.C. 201, 202, 203, 204 and 205, require that common carriers establish just and reasonable charges, practices, and regulations, which must be filed with the Commission to determine whether such schedules are just, reasonable and not unduly discriminatory. On October 9, 2020, the Commission released the Order, FCC 20–143, published at 85 FR 75694, which transitions intercarrier compensation for toll-free services either to lower, uniform rate caps or to bill-and-keep over approximately three years as a means of curtailing abuse of the 8YY intercarrier compensation regime. The Order requires price cap and rate-of-return carriers to establish separate rate elements for certain interstate and intrastate toll free and non-toll free services. Carriers are also required to lower the 8YY database query charges over three years, and are prohibited from charging for more than one query per call. Competitive local exchange carriers (LECs) assessing a tariffed intrastate or interstate Toll Free Database Query Charge must cap such charges and revise their tariffs to ensure that those charges do not exceed the rates charged by the competing incumbent LEC.

The information collected through carriers’ tariffs is used by the Commission and state commissions to determine whether services offered are just and reasonable, as the Act requires. The tariffs and any supporting documentation are examined in order to determine if the services are offered in a just and reasonable manner.

Federal Communications Commission.

Marlene Dortch,
Secretary.

DEPARTMENT OF THE INTERIOR
Fish and Wildlife Service
50 CFR Part 17

[Docket No. FWS–R6–ES–2019–0055; FF09E22000 FXES11130900000 201]

RIN 1018–BD49

Endangered and Threatened Wildlife and Plants; Removing the Kanab Ambersnail From the List of Endangered and Threatened Wildlife

AGENCY: Fish and Wildlife Service, Interior.

ACTION: Final rule.

SUMMARY: We, the U.S. Fish and Wildlife Service (Service), are removing the Kanab ambersnail (Oxyloma haydeni kanabensis) from the Federal List of Endangered and Threatened Wildlife. This determination is based on a thorough review of the best available scientific information. Our review indicates that the Kanab ambersnail is not a valid subspecies and therefore cannot be listed as an endangered entity under the Endangered Species Act.

DATES: This rule is effective July 26, 2021.

ADDRESSES: This final rule, the supporting documents we used in preparing this rule, and public comments we received are available on the internet at http://www.regulations.gov at Docket No. FWS–R6–ES–2019–0055. Persons who use a telecommunications device for the deaf may call the Federal Relay Service at 800–877–8339.

FOR FURTHER INFORMATION CONTACT:
Yvette Converse, Field Supervisor, telephone: 801–975–3330. Direct all questions or requests for additional information to: Kanab Ambersnail Questions, U.S. Fish and Wildlife Service; Utah Ecological Services Field Office; 2369 Orton Circle, Suite 50; West Valley City, Utah 84119. Persons who use a telecommunications device for the deaf may call the Federal Relay Service at 800–877–8339.

SUPPLEMENTARY INFORMATION:
Previous Federal Actions

On November 15, 1991, we proposed to list the Kanab ambersnail as an endangered species (56 FR 58020). The species’ habitat was greatly reduced in size and the population declined, due to preparations for anticipated development. On April 17, 1992, we published a final rule listing the Kanab ambersnail as an endangered species (57 FR 13657), but as explained in that rule,
we did not designate critical habitat because we found that designation would be not prudent due to a danger of over-collection or purposeful harm or killing of snails if the locations of the snails were made public on critical habitat maps. On October 12, 1995, we finalized the Kanab ambersnail recovery plan (Service 1995, entire).

We completed a 5-year review of the species’ status in July 2011 (Service 2011, entire). As of the time of the 2011 5-year review, several genetic studies indicated that at least one of the three populations identified as the Kanab ambersnail was potentially part of a different species or subspecies, but we did not consider those studies alone to be certain enough to recommend delisting at that time (Miller et al. 2000, p. 8; Stevens et al. 2000, p. 7; Culver et al. 2007, p. 3; Service 2011, pp. 8–9). The subsequent publication of a larger, more comprehensive study on the genetics of the Kanab ambersnail and the Oxyloma genus (Culver et al. 2013, entire) resulted in our proposed rule to delist Kanab ambersnail based on new taxonomic information indicating that it was not a valid taxon, published in the Federal Register on January 6, 2020 (85 FR 487). Please refer to that proposed rule for a more detailed description of the Federal actions concerning this species that occurred prior to November 26, 2019.

Species Description and Habitat Information

It is our intent to discuss only those topics directly related to delisting the Kanab ambersnail in this rule. For more information on the description, biology, ecology, and habitat of the Kanab ambersnail, please refer to the final listing rule published in the Federal Register on April 17, 1992 (57 FR 13657); the Kanab ambersnail recovery plan (Service 1995); the most recent 5-year review for the Kanab ambersnail completed in July 2011 (Service 2011); or any of the documents referenced by this rule. The Service documents, personal communications, and a list of cited literature are available as supporting materials on http://www.regulations.gov under Docket No. FWS–R6–ES–2019–0055.

The Kanab ambersnail (Oxyloma haydeni kanabensis) was taxonomically identified as a terrestrial snail in the family Succineidae. Succineids are usually referred to as ambersnails due to their mottled grayish-amber to usually referred to as ambersnails due to their mottled grayish-amber to watered by springs and seeps at the base of sandstone or limestone cliffs (Clarke 1991, pp. 28–29; Spamer and Bogan 1993, p. 296; Meretsky et al. 2002, p. 309). Habitat vegetation can consist of cattail (Typha domingensis), sedge (Juncus spp.), native crimson monkeyflower (Mimulus cardinalis), watercress (Nasturtium officinale), native water sedge (Carex aquatilis), and maidenhair fern (Adiantum capillus-veneris) (57 FR 13657, April 17, 1992; Stevens et al. 1997, p. 6; Sorensen 2005, p. 3). The Kanab ambersnail often inhabits dead and decaying litter and live stems of plants (Service 2011, p. 11).

When the Kanab ambersnail was listed, we knew of two populations in Utah (Three Lakes and Kanab Creek Canyon) and one population in Arizona (Vasey’s Paradise) (57 FR 13657, April 17, 1992). The Kanab Creek Canyon population in Utah was extirpated by 1991, after dewatering of the seep for livestock use severely reduced the available habitat. Kanab ambersnails were last found there in 1990, when three individuals were identified (Service 2011, p. 12). Currently, there are two naturally occurring populations of Kanab ambersnails (Vasey’s Paradise in Arizona, and Three Lakes in Utah) and one introduced population (Upper Elves Canyon in Arizona) established with individuals translocated from Vasey’s Paradise (Service 2011, p. 6).

The Vasey’s Paradise population was discovered in 1991 (Spamer and Bogan 1993, p. 47). Vasey’s Paradise is a riverside spring located approximately 33 miles (mi) (53 kilometers (km)) downstream of Lee’s Ferry on the Colorado River, in Grand Canyon National Park, Arizona (Spamer and Bogan 1993, p. 37). Occupied and potential habitat at Vasey’s Paradise is 9,041 square feet (ft2) (840 square meters (m2)) (Service 1995, p. ii). The population is protected by National Park Service regulations and the presence of poison ivy, which deters visitors (Stevens et al. 1997, p. 12; Sorensen 2016, pers. comm.).

Monitoring of the Vasey’s Paradise population from 2007 to present has relied on timed counts of live snails observed among the traditionally sampled vegetation patches. The timed count sampling provides a catch-per-unit-effort (CPUE) estimate of relative abundance of the snails in each survey. Over the past decade, there have been seasonal and annual variations in CPUE estimates of the Vasey’s Paradise population. Overall the relative abundance of this Kanab ambersnail population declined substantially from the levels observed in the late 1990s and prior to 2002, when drought conditions and reduced spring flow became particularly severe (Sorensen 2015, p. 10; Sorensen 2020, p. 1). This decline has continued since 2011 (Sorensen 2015, p. 10; Sorensen 2020, p. 1).

The most recent population estimate is from 2002, which estimated 3,124 individuals and noted that population numbers could be highly variable from year to year (Gloss et al. 2005, p. 3). Fourteen individuals were collected in 2008, for genetic analysis (Culver et al. 2013, p. 7). A survey in 2016 found only one snail, but search conditions were difficult and time was limited (Sorensen 2016, pers. comm.).

The Three Lakes population is a series of small ponds on private land approximately 6 mi (10 km) northwest of Kanab, Utah (Clarke 1991, p. 28; Service 1995, p. 3). Occupied and potential habitat is approximately 4.94 acres (ac) (2 hectares (ha)) (Service 1995, p. 3). Available habitat is wet meadow and marsh. The habitat was greatly reduced in size and the population declined beginning in 1991, due to preparations for anticipated development, which resulted in the original emergency listing (57 FR 13657, April 17, 1992). The development anticipated at the time of listing has not occurred, and Kanab ambersnails were found there in 2008 (Culver et al. 2013, p. 6) and 2016 (Sorensen 2016, pers. comm.).

A timed count survey of the Three Lakes population was conducted in early October 2011 by Service, Utah Division of Wildlife Resources, and Arizona Fish and Game Department biologists. The Three Lakes Kanab ambersnail population was robust with a CPUE estimate of 10.47 snails per 10 minutes searched (Sorensen 2011, p. 14). In 2016, the land was sold to Best Friends Animal Sanctuary, which has expressed a willingness to preserve the habitat. A followup survey of the Three Lakes Kanab ambersnail population was conducted by the same partners in early May 2017, with an estimated CPUE of 158.75 snails per 10 minutes searched (Sorensen 2017, pers. comm.).

Upper Elves Canyon is located approximately 83 mi (134 km) downstream of Vasey’s Paradise on the Colorado River, in Grand Canyon National Park, Arizona (Sorensen 2016, p. 1). Occupied and potential habitat is adjacent to a perennial seep and is 1,068 ft2 (99.2 m2) (Sorensen 2005, p. 3). This population is protected by National Park Service regulations, as well as by its inaccessibility (Service 2011, p. 7). This population was evaluated by the Arizona Fish and Game Department between 1998 and 2002. by
translocating 340 individuals from the Vasey’s Paradise population. Since 2005, this population has been considered self-sustaining with an estimated population of approximately 700 individuals (Sorensen 2005, p. 9). Between 2009 and 2015, timed count surveys of the translocated population at Upper Elves Chasm were conducted by Arizona Game and Fish Department, National Park Service biologists, and volunteers. Surveys over this timeframe documented a small but relatively stable Kanab ambersnail population at the site, with CPUE estimates between 0.85 to 4.15 snails per 10 minutes searched (Sorensen 2015, p. 12).

Taxonomy

Kanab ambersnails were first collected in 1909, by James Ferriss from an area called “The Greens,” a vegetated seep approximately 6 mi (10 km) north of Kanab in Kanab Creek Canyon, Utah (57 FR 13657, April 17, 1992; Service 1995, p. 2). However, ambersnails have not been recorded from the type locality since 1992 (57 FR 13657, April 17, 1992). The subspecies kanabensis classification was considered to be temporary at the time, and the author recommended that the taxonomic status be reconsidered in the future (Pilsbry 1948, p. 797; Clarke 1991, p. 23; 57 FR 13657, April 17, 1992).

We have assessed all available genetic information for the Kanab ambersnail (Miller et al. 2000, entire; Stevens et al. 2000, entire; Culver et al. 2013, entire). Since the listing of Kanab ambersnail in 1992 (57 FR 13657; April 17, 1992) and the publication of the Kanab ambersnail recovery plan in 1995 (Service 1995, entire), several studies on subspecies distribution, morphological characteristics, and genetic relationships to other Oxyloma species have been completed. We briefly describe these studies below. At this time, these studies represent the best scientific information available in order for us to analyze the Kanab ambersnail’s distribution and taxonomic changes.

Various analyses can be done to determine genetic structure of a species, including analyses of: (1) Mitochondrial DNA, which is rapidly evolving and useful to determine recent populations; (2) nuclear DNA, which has high amounts of genetic variation and can be used to look at populations within a species; (3) nuclear DNA, which is inherited equally from both parents (unlike mitochondrial DNA, which is inherited maternally); and (4) amplified fragment length polymorphisms (AFLP), which are used to sample multiple loci across the genome.

Miller et al. (2000) used AFLP to determine intra- and inter-population genetic information for four Oxyloma species in Utah and Arizona. Among these, two Niobrara ambersnail (Oxyloma haydenii haydenii) locations were studied at Indian Gardens (Arizona) and Minus Nine Mile Spring (Arizona), and two Kanab ambersnail populations were studied at Three Lakes (Utah) and Vasey’s Paradise (Arizona) (Miller et al. 2000, pp. 1845–1946). From this study, the ambersnail population at Three Lakes appears more closely related to the Niobrara ambersnail population at Indian Gardens than to the ambersnail population at Vasey’s Paradise (Miller et al. 2000, p. 1852), Upper Elves Canyon was not included in this study.

Stevens et al. (2000) used mitochondrial DNA and morphological analysis to distinguish Succinea groups (Oxyloma, Catinella, and Succinea) populations in the United States and Canada. The authors collected over 450 samples from seven U.S. States and Canadian provinces, including from 63 different populations or locations of snails (Stevens et al. 2000, p. 4). Determining Oxyloma species based on morphology was shown to be inaccurate (Stevens et al. 2000, pp. 4–5, 42).

Vasey’s Paradise did not cluster with the Three Lakes ambersnail population or the two sampled Niobrara ambersnail populations, leading the authors to suggest Vasey’s Paradise might represent a unique species (Stevens et al. 2000, p. 41). However, a later, more comprehensive study found that Vasey’s Paradise clustered closely enough with samples from other surrounding Oxyloma populations for them all to be considered part of the same Oxyloma species (Culver et al. 2013, p. 57).

In this most recent and detailed peer-reviewed study, ambersnails were collected from 12 locations in Arizona and Utah, with each location providing at least 14 ambersnail specimens (Culver et al. 2013, p. 5). Samples consisted of Kanab ambersnail, Niobrara ambersnail, blunt ambersnail (Oxyloma retusum), undescribed species of Oxyloma, and individuals from Catinella (used to provide an outgroup comparison) (Culver et al. 2013, p. 6). This study included samples from all three extant populations identified as Kanab ambersnail. Between the Oxyloma populations, shell morphology did not have the variation usually associated with different species, leading the authors to state that none of the 12 populations sampled was reproductively isolated from the others (Culver et al. 2013, p. 52). This information supports the finding that the three populations identified as Kanab ambersnail do not alone comprise a discrete taxon.

Genetic results indicated that there was gene flow among all the populations sampled, most likely due to short- or long-distance dispersals from other populations (Culver et al. 2013, p. 57). Additionally, Kanab ambersnail samples from Vasey’s Paradise did not cluster with the other two Kanab ambersnail populations (Culver et al. 2013, pp. 51, 55). The authors concluded that the three populations of Kanab ambersnail are not a valid subspecies of Oxyloma haydenii and should instead be considered part of the same taxa as the ambersnails from the eight other populations of Oxyloma in Utah and Arizona that were sampled for comparison (Culver et al. 2013, entire). This study declined to positively identify a species-level taxon for these 11 populations of ambersnail, due to lack of genetic information on the genus (Culver et al. 2013). The primary author stated later that her expert opinion was they should all, including those previously identified as Kanab ambersnail, be considered Niobrara ambersnail (Oxyloma hadenii) (Culver 2016, pers. comm.). The authors stated that specimens from the type locality of the Niobrara ambersnail in Nebraska could be examined for comparison to verify this conclusion (Franzen 1964, p. 73; Culver et al. 2013, p. 57; Culver 2016, pers. comm.), but to date, no such analysis has been done.

The above-described Culver et al. (2013) study was released as a United States Geological Survey (USGS) Scientific Investigations Report, and the review approach was similar to that of manuscripts published by scientific journals. The report was initially reviewed by five reviewers and required subsequent revision. The report received an additional review following revision due to the complex subject matter. The response to reviewer comments and subsequent revised manuscript were reviewed by another independent geneticist to ensure that the author adequately addressed issues and comments brought up by reviewers (Sorensen 2014, pers. comm.). The subsequent revision that occurred after 2014 resulted in more genetic information added to the final 2013 manuscript, which further substantiated...
the authors’ findings (Sorensen 2014, pers. comm). As a result, we have a high level of confidence in the results of the Culver et al. (2013) genetic study.

For the Kanab ambersnail to be considered a distinct subspecies, nuclear and mitochondrial DNA tests should show that the three populations cluster together when compared to other populations of ambersnails (Culver et al. 2013, p. 55). However, the Vasey’s Paradise population does not cluster with the other two Kanab ambersnail populations and the degree of variation shown in Vasey’s Paradise from the other populations is not unique enough to constitute a subspecies on its own, as it shares markers with several nearby populations of non-listed Oxyloma snails (Stevens et al. 2000, p. 41; Culver et al. 2013, pp. 55–57).

The genetic uniqueness in Vasey’s Paradise may be attributable to flooding, which can erode away ideal vegetation or habitat, leaving only a few individuals able to survive and reestablish at that site, creating genetic bottlenecks. Genetic diversity at these types of sites will often be lower than at sites that have experienced short- or long-distance dispersals (Culver et al. 2013, p. 55). Furthermore, ambersnails have the ability to self-reproduce, allowing for colonization of new areas by only one individual. This ability may explain how many genetically distinct populations of Oxyloma developed in a relatively short time period (Culver et al. 2013, p. 56). At least one or more bottleneck events in the past, likely due to flooding, caused unusual population genetic events (Culver et al. 2013, p. 55).

Overall, these studies show that shell morphology and anatomical characteristics that were once considered diagnostic do not alone reliably correspond with the results from genetic analyses of Succineidae snails (Hoagland and Davis 1987, p. 519; Pigati et al. 2010, p. 523). Samples originally identified as different species or subspecies based on physical differences are consistently found to be related closely enough to qualify as members of the same species based on genetic studies (Culver et al. 2013, entire; Miller et al. 2000, entire; Stevens et al. 2000, entire). Traditionally, shell morphology, such as their slender and drawn-out spire and short shell aperture, was used to distinguish the Kanab ambersnail from other members of Oxyloma (Pilsbry 1948, pp. 797–798). However, shell shape can vary as much within a population as within a species (Hoagland and Davis 1987, p. 519).

Therefore, it is important to consider other factors such as genetics, anatomy, and habitat to determine a species within Oxyloma (Hoagland and Davis 1987, p. 519; Sorensen and Nelson 2002, p. 5).

In addition to shell morphology, reproductive anatomy (phallus shape) was previously a main determining factor of the Oxyloma genus (Miller et al. 2000, p. 1853). However, anatomical descriptions used to classify the Kanab ambersnail had no quantifying factors, such as prostate gland length, and soft tissues were difficult to measure objectively (Pilsbry 1948, p. 798; Culver et al. 2013, pp. 52–53). It is difficult to achieve standard anatomical measurements with repeatability because of the flexibility and elasticity of soft tissues (Culver et al. 2013, p. 18). Overall, anatomical characteristics have been found to vary greatly within Oxyloma (Culver et al. 2013, p. 52).

There have been at least two instances when a species of snail was placed in the wrong genus due to relying solely on the reproductive anatomy (Johnson et al. 1986, pp. 2000, p. 1853). In another case, variation in anatomical structure was found in the blunt ambersnail, leading the authors to conclude that the species was not restricted geographically as initially believed (Franzen 1963, p. 94). Previous Oxyloma studies have used only one or two specimens to determine the species’ taxonomic status, which makes it difficult to properly assess the true status (Hoagland and Davis 1987, p. 515).

Standards for quantifying anatomy are minimal and not descriptive enough, with the use of such words as small, medium, and large, which are vague terms and not measurable (Hoagland and Davis 1987, p. 478). Anatomical characteristics should not be the only factor to determine a species within Oxyloma, even with an understanding of the individual and geographical variation (Franzen 1963, p. 83). Variation between populations, anatomical differences among individuals, overlapping habitat, and minimal repeatability with measurements of anatomical features make it difficult to rely on anatomical descriptions to determine species classification (Franzen 1964, p. 80; Sorensen and Nelson 2002, pp. 4–5). Overall, reproductive anatomy is likely not a good species indicator in snails; instead, genetic relationships provide the most reliable method of classifying taxa.

In summary, these analyses present multiple interpretations of the taxonomy of the Kanab ambersnail, none of which correlates to that of our original listing. Although the exact taxonomy of the genus Oxyloma and its constituent species remains uncertain, it is clear that the populations designated as the Kanab ambersnail do not make up, together or separately, a valid subspecies. The 1992 final listing rule for the Kanab ambersnail (57 FR 13657; April 17, 1992) relied on the best available information at the time, and included only snails found in Vasey’s Paradise in Arizona and Three Lakes and Kanab Creek in Utah. This situation has changed with the addition of the 2013 genetic study of the Oxyloma genus in Utah and Arizona (Culver et al. 2013, entire).

The various published and unpublished genetics reports described above offer different conclusions about how Succineid snails should be classified, particularly within the genus Oxyloma. However, none of the genetic studies provides support for Oxyloma haydeni kanabensis as a valid subspecies. Additionally, available genetic evidence suggests that at least one population identified as Kanab ambersnail is more closely related to other nearby Oxyloma populations than it is to the other two Kanab ambersnail populations.

Therefore, we are delisting the Kanab ambersnail due to new taxonomic information that indicates that it is not a valid taxon, based on the best available science. The currently listed entity for the Kanab ambersnail, restricted to Vasey’s Paradise and Upper Elves Canyon, Arizona, and Three Lakes, Utah, is not a valid taxonomic subspecies. We are unable to evaluate the populations identified as the Kanab ambersnail relative to the larger entity because the larger entity has not yet been defined from a taxonomic perspective. If we had additional updated information available about the taxonomy of the Oxyloma genus, we would conduct a status assessment of the larger entity, but in this case we do not have enough information to conduct that analysis. We do not consider the absence of information on the larger taxonomic status of a group to be sufficient reason to keep an invalid subspecies listed as endangered.

Summary of Comments and Recommendations

In the proposed rule published in the Federal Register on January 6, 2020 (85 FR 487), we requested that all interested parties submit written comments on our proposal to delist the Kanab ambersnail by March 6, 2020. We also contacted appropriate Federal and State agencies, scientific experts and organizations, and other interested parties and invited them to comment on the proposal.
Public Comments

We received seven letters from the public that provided comments on the proposed rule. Two of the commenters expressed their support for the proposed delisting and corroborated information we supplied in the rule. Four commenters expressed their opposition to it. Of these four, none presented substantive information to support their opposition. In all cases, the opposition was based on the importance of protecting rare species and ecosystems. While we agree that protecting rare species and the habitats in which they occur is important, it is not a relevant factor in this determination because Kanab ambersnail is not a valid taxon and is being delisted on that basis.

One commenter provided some additional historical background regarding the naming and sampling of certain ambersnail sites mentioned in the proposed rule, but stated that this information did not affect the validity of the proposed action. We agree and thank the commenter for the additional detail and have added it to the record, but do not include it in our final rule as it does not impact our conclusions on taxonomy.

Delisting Determination

Section 4 of the Act (16 U.S.C. 1533) and its implementing regulations (50 CFR part 424) set forth the procedures for listing, reclassifying, or removing species from the Federal Lists of Endangered and Threatened Wildlife and Plants. “Species” is defined by the Act as including any species or subspecies of fish or wildlife or plants, and any distinct population segment of vertebrate fish or wildlife that interbreeds when mature (16 U.S.C. 1532(16)). We may delist a species according to 50 CFR 424.11(e) if the best available scientific and commercial data indicate that: (1) The species is extinct; (2) the species does not meet the definition of an endangered or a threatened species; or (3) the listed entity does not meet the statutory definition of a species.

For the Kanab ambersnail, we conclude that the existing best available scientific information demonstrates that Oxyloma haydeni kanabensis does not represent a valid taxonomic entity and, therefore, does not meet the definition of “species” as defined in section 3(16) of the Act. Therefore, Oxyloma haydeni kanabensis no longer warrants listing under the Act. The Kanab ambersnail does not require a post-delisting monitoring plan because the requirements for a monitoring plan do not apply to species that are delisted for not meeting the statutory definition of a species.

Effects of This Rule

This rule revises 50 CFR 17.11(h) to remove the Kanab ambersnail from the Federal List of Endangered and Threatened Wildlife. Because no critical habitat was ever designated for this subspecies, this rule does not affect 50 CFR 17.95.

The prohibitions and conservation measures provided by the Act no longer apply to the snails previously identified as the Kanab ambersnail. Interstate commerce, import, and export of the snails previously identified as the Kanab ambersnail are no longer prohibited under the Act. In addition, Federal agencies are no longer required to consult under section 7 of the Act on actions that may affect the snails previously identified as Kanab ambersnail or their habitat.

Required Determinations

National Environmental Policy Act

We have determined that environmental assessments and environmental impact statements, as defined under the authority of the National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.), need not be prepared in connection with regulations pursuant to section 4(a) of the Act. We published a notice outlining our reasons for this determination in the Federal Register on October 25, 1983 (48 FR 49244).

Government-to-Government Relationship With Tribes

In accordance with the President’s memorandum of April 29, 1994 (Government-to-Government Relations with Native American Tribal Governments; 59 FR 22951), Executive Order 13175 (Consultation and Coordination with Indian Tribal Governments), and the Department of the Interior’s manual at 512 DM 2, we readily acknowledge our responsibility to communicate meaningfully with recognized Federal Tribes on a government-to-government basis. In accordance with Secretarial Order 3206 of June 5, 1997 (American Indian Tribal Rights, Federal-Tribal Trust Responsibilities, and the Endangered Species Act), we readily acknowledge our responsibilities to work directly with Tribes in developing programs for healthy ecosystems, to acknowledge that tribal lands are not subject to the same controls as Federal public lands, to remain sensitive to Indian culture, and to make information available to Tribes.

The populations that were listed as Kanab ambersnail do not occur on
Tribal land. We have determined that while no Tribes will be directly affected by this action, the delisting may result in changes to the flow regime for the Colorado River in and adjacent to the Grand Canyon. Several Tribes have an historic affiliation with the Grand Canyon and could be affected by flow changes, should they occur. The potentially impacted Tribes are the Chemehuevi, the Colorado River Indian Tribes, the Hualapai, the Hopi, the Kaibab Band of Paiute, the San Carlos Apache, the San Juan Southern Paiute, the Navajo, and the Zuni. These Tribes were notified in advance of the publication of the proposed rule and have been informed of the finalization of the delisting.

References Cited

A complete list of all references cited in this rule is available on the internet at http://www.regulations.gov under Docket No. FWS–R6–ES–2019–0055 or upon request from the Utah Ecological Services Field Office (see FOR FURTHER INFORMATION CONTACT).

Authors

The primary authors of this rule are staff members of the Service’s Utah Ecological Services Field Office.

Signing Authority

The Director, U.S. Fish and Wildlife Service, approved this document and authorized the undersigned to sign and submit the document to the Office of the Federal Register for publication electronically as an official document of the U.S. Fish and Wildlife Service. Martha Williams, Principal Deputy Director Exercising the Delegated Authority of the Director, U.S. Fish and Wildlife Service, approved this document on June 14, 2021, for publication.

List of Subjects in 50 CFR Part 17

Endangered and threatened species, Exports, Imports, Reporting and recordkeeping requirements, Transportation.

Regulation Promulgation

Accordingly, we hereby amend part 17, subchapter B of chapter I, title 50 of the Code of Federal Regulations, as set forth below:

PART 17—ENDANGERED AND THREATENED WILDLIFE AND PLANTS

§ 17.11 [Amended]

2. Amend § 17.11(h) by removing the entry for “Ambersnail, Kanab” under SNAILS from the List of Endangered and Threatened Wildlife.

Anissa Craighead,

[FR Doc. 2021–13257 Filed 6–23–21; 8:45 am]

BILLING CODE 4333–15–P

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

50 CFR Part 660

[RTID 0648–XA797]

Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Amendment 18 to the Coastal Pelagic Species Fishery Management Plan

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.

ACTION: Notification of agency decision.

SUMMARY: On June 14, 2021, the Regional Administrator of the West Coast Region, NMFS, with the concurrence of the Assistant Administrator for Fisheries, approved Amendment 18 to the Coastal Pelagic Species Fishery Management Plan. Amendment 18 implements a rebuilding plan for the northern subpopulation of Pacific sardine, which NMFS declared overfished in June 2019.

DATES: The amendment was approved on June 14, 2021.

ADDRESSES: Copies of the Coastal Pelagic Species (CPS) Fishery Management Plan (FMP) as amended through Amendment 18, are available at the Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, OR 97220–1384, or at this URL: https://www.pcmarine.org/coastal-pelagic-species/fishery-management-plan-and-amendments/. The final Environmental Assessment (EA) prepared pursuant to the National Environmental Policy Act (NEPA) for Amendment 18 is available on NMFS’ website at https://www.fisheries.noaa.gov/west-coast/laws-and-policies/west-coast-regional-national-environmental-policy-act-documents/.

FOR FURTHER INFORMATION CONTACT: Lynn Massey, Sustainable Fisheries Division, NMFS, at lynn.massey@noaa.gov or 562–436–2462; or Kerry Griffin, Pacific Fishery Management Council, at kerry.griffin@noaa.gov or 503–820–2409.

SUPPLEMENTARY INFORMATION:

Amendment 18 expands Section 4.5 of the CPS FMP to include the rebuilding plan for Pacific sardine. There are no implementing regulations associated with Amendment 18; therefore NMFS did not promulgate proposed and final rules to implement this amendment.

NMFS published a Notice of Availability for Amendment 18 on March 16, 2021 (86 FR 14401), and solicited public comments through May 17, 2021. NMFS received five public comments in support of Amendment 18, one from a student and four from prominent fishing industry groups. The industry groups included the California Wetfish Producers Association, the West Coast Pelagic Conservation Group, the Sportfishing Association of California, and the West Coast Seafood Processors Association. NMFS received three public comments opposing Amendment 18, one from a private citizen and two from the environmental non-governmental organization Oceana. Oceana submitted two letters, one containing its public comment and the other containing a list of names that signed a petition campaigning against Amendment 18. NMFS summarizes and responds to the public comments below. NMFS responded to comments related to NEPA compliance in the final EA prepared for Amendment 18 (see ADDRESSES).

Comment 1: Oceana argues that by adopting the recommended management strategy for the rebuilding plan (Alternative 1 Status Quo Management) considered in the supporting EA for Amendment 18 (see ADDRESSES), NMFS is continuing failed policies that led to the overfished determination.

Response: This comment misunderstands the biology of Pacific sardine, the structure of the CPS FMP, and the extraordinary and precautionary measures that the Council has built into the framework for managing CPS. Pacific sardines are well known to experience dramatic swings in abundance in response to environmental conditions, even in the absence of fishing pressure. The recent population decline of Pacific sardine appears to be due to poor recruitment. Specifically, the Southwest Fisheries Science Center’s (SWFSC) 2020 stock assessment states that recruitment has declined since 2005–2006 except for a brief period of modest recruitment success in 2009–2010, with the 2011–