the existing maintenance manual or ICA for your airplane as follows:

(i) Replace the ALS with the Airworthiness Limitations Section of Pilatus PC–6 Airworthiness Limitations Document No. 02334, Revision 10, dated October 30, 2020.

(ii) Add, if applicable:

• Add Appendix L, Wing to Fuselage Fittings—Inspection/Check, of Pilatus PC–6 Airworthiness Limitations Document No. 02334, Revision 9, dated March 6, 2020.

(iii) For all airplanes specified in paragraph (c) of this AD, after revising the ALS as required by paragraphs (f)(1) and (2) of this AD, remove from service each part that has reached or exceeded its new life limit.

(g) Inspections and Replacement

(1) For airplanes with a bush part number (P/N) 6100.0020.01 that has been bonded as specified in Section 53–00–01, Fuselage Wing Fittings—Inspection/Check, of Pilatus PC–6 Aircraft Maintenance Manual Document No. 01975, Revision 29, dated February 28, 2020; or Appendix K, Fuselage Wing Fittings—Inspection/Check, of Pilatus PC–6 Airworthiness Limitations Document No. 02334, Revision 9, dated March 6, 2020:

(i) Within 50 hours time-in-service (TIS) after the effective date of this AD, perform a visual and eddy current inspection of each fuselage wing fitting on fuselage Frame 3, remove bush P/N 6100.0020.01 from service, and install a new (zero hours TIS) bush P/N 6100.0020.01 into Frame 3 with grease by using the procedures specified in paragraph (f)(1)(ii) or (f)(2)(ii) of this AD, as applicable to your airplane.

(ii) Unless already done, within 1,100 hours TIS after the effective date of this AD or within 12 months after the effective date of this AD, whichever occurs first, perform an eddy current inspection of each fuselage wing fitting and each wing-to-fuselage fitting at the intervals specified in the ALS identified in paragraph (f)(1)(i) or (f)(2)(i), as applicable to your airplane.

(h) No Alternative Actions or Intervals

After the ALS has been revised as required by paragraph (f) of this AD, no alternative inspection intervals or procedures may be approved, except as provided in paragraph (i) of this AD.

(i) Other FAA AD Provisions

Alternative Methods of Compliance (AMOCs): The Manager, International Validation Branch, FAA, has the authority to approve AMOCs for this AD, if requested using the procedures found in 14 CFR 39.19, Send your request to the person identified in Related Information. Before using any approved AMOC, notify your appropriate principal inspector, or lacking a principal inspector, the manager of the local Flight Standards District Office.

(j) Related Information

(2) For more information about this AD, contact Doug Rudolph, Aviation Safety Engineer, FAA, General Aviation & Rotorcraft Section, International Validation Branch, 901 Locust, Room 301, Kansas City, MO 64106; telephone: (816) 329–4059; fax: (816) 329–4090; email: doug.rudolph@faa.gov.

(3) For service information identified in this AD, contact Pilatus Aircraft Ltd., Customer Support General Aviation, CH–6371 Stans, Switzerland; telephone: +41 844 24 7 365; email: Techsupport@pilatusaircraft.com; internet: https://www.pilatusaircraft.com/en. You may view this service information at the FAA, Airworthiness Products Section, Operational Safety Branch, 901 Locust, Kansas City, MO 64106. For information on the availability of this material at the FAA, call (816) 329–4148. Issued on February 25, 2021.

Gaetano A. Sciortino,
Deputy Director for Strategic Initiatives, Compliance & Airworthiness Division, Aircraft Certification Service.
[FR Doc. 2021–04395 Filed 3–5–21; 8:45 am] BILINE CODE 4910–13–P
DEPARTMENT OF TRANSPORTATION
Federal Aviation Administration

14 CFR Part 39
RIN 2120–AA64
Airworthiness Directives; International Aero Engines AG Turbofan Engines

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Notice of proposed rulemaking (NPRM).

SUMMARY: The FAA proposes to adopt a new airworthiness directive (AD) for certain International Aero Engines AG (IAE) V2522–A5, V2524–A5, V2525–D5, V2527–A5, V2527E–A5, V2527M–A5, V2528–D5, V2530–A5, V2531–E5, and V2533–A5 model turbofan engines. This proposed AD was prompted by an analysis performed by the manufacturer after an event involving an uncontained failure of a high-pressure turbine (HPT) 1st-stage disk that resulted in high-energy debris ingestion of the engine cowling. This proposed AD would require the performance of an ultrasonic inspection (USI) of the HPT 1st-stage disk and HPT 2nd-stage disk and, depending on the results of the inspections, replacement of the HPT 1st-stage disk or HPT 2nd-stage disk. The FAA is proposing this AD to address the unsafe condition on these products.

DATES: The FAA must receive comments on this proposed AD by April 7, 2021.

ADDRESSES: You may send comments, using the procedures found in 14 CFR 11.43 and 11.45, by any of the following methods:

• Federal eRulemaking Portal: Go to https://www.regulations.gov. Follow the instructions for submitting comments.

• Fax: (202) 493–2251.

• Hand Delivery: Deliver to Mail address above between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

For service information identified in this NPRM, contact International Aero Engines AG, 400 Main Street, East Hartford, CT 06118; phone: (800) 565–0140; email: help24@pw.utc.com; website: http://fleetcare.pw.utc.com. You may view this service information at the FAA, Airworthiness Products Section, Operational Safety Branch, 1200 District Avenue, Burlington, MA 01803. For information on the availability of this material at the FAA, call (781) 238–7759.

Examining the AD Docket
You may examine the AD docket at https://www.regulations.gov by searching for and locating Docket No. FAA–2021–0129; or in person at Docket Operations between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this NPRM, any comments received, and other information. The street address for Docket Operations is listed above.

FOR FURTHER INFORMATION CONTACT:
Nicholas Paine, Aviation Safety Engineer, ECO Branch, FAA, 1200 District Avenue, Burlington, MA 01803; phone: (781) 238–7742; fax: (781) 238–7199; email: nicholas.j.paine@faa.gov.

SUPPLEMENTARY INFORMATION:

Comments Invited
The FAA invites you to send any written relevant data, views, or arguments about this proposal. Send your comments to an address listed under ADDRESSES. Include “Docket No. FAA–2020–0129; Project Identifier AD–2020–01597–E” at the beginning of your comments.

The most helpful comments
that would be required based on the costs to do any necessary replacement:

<table>
<thead>
<tr>
<th>Action</th>
<th>Labor cost</th>
<th>Parts cost</th>
<th>Cost per product</th>
<th>Cost on U.S. operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>USI the HPT 1st-stage disk and HPT 2nd-stage disk.</td>
<td>20 work-hours × $85 per hour = $1,700</td>
<td>$0</td>
<td>$1,700</td>
<td>$1,870,000</td>
</tr>
</tbody>
</table>

The FAA estimates the following costs to do any necessary replacement that would be required based on the results of the proposed inspections. The agency has no way of determining the number of aircraft that might need this replacement:

Related Service Information Under 1 CFR Part 51

The FAA also reviewed IAE NMSB No. V2500–E5–72–0015, dated December 15, 2020. The NMSB identifies the affected HPT 1st-stage disks and HPT 2nd-stage disks on IAE V2531–E5 model turbofan engines and specifies procedures for a USI of the HPT 1st-stage disk and HPT 2nd-stage disk.

This service information is reasonably available because the interested parties have access to it through their normal course of business or by the means identified in ADDRESSSES.

Proposed AD Requirements in This NPRM

This proposed AD would require the performance of a USI of the HPT 1st-stage disk and HPT 2nd-stage disk and, depending on the results of the inspections, replacement of the HPT 1st-stage disk or HPT 2nd-stage disk with a part eligible for installation.

Costs of Compliance

The FAA estimates that this AD, if adopted as proposed, would affect 1,100 engines installed on airplanes of U.S. registry.

The FAA estimates the following costs to comply with this proposed AD:
The FAA has included all known costs in its cost estimate. According to the manufacturer, however, some of the costs of this proposed AD may be covered under warranty, thereby reducing the cost impact on affected operators.

Authority for This Rulemaking

Title 49 of the United States Code specifies the FAA’s authority to issue rules on aviation safety. Subtitle I, section 106, describes the authority of the FAA Administrator. Subtitle VII: Aviation Programs, describes in more detail the scope of the Agency’s authority.

The FAA is issuing this rulemaking under the authority described in Subtitle VII, Part A, Subpart III, Section 44701: General requirements. Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds necessary for safety in air commerce. This regulation is within the scope of that authority because it addresses an unsafe condition that is likely to exist or develop on products identified in this rulemaking action.

Regulatory Findings

The FAA determined that this proposed AD would not have federalism implications under Executive Order 13132. This proposed AD would not have a substantial direct effect on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government.

For the reasons discussed above, I certify this proposed regulation:

1. Is not a “significant regulatory action” under Executive Order 12866,
2. Would not affect intrastate aviation in Alaska, and
3. Would not have a significant economic impact, positive or negative, on a substantial number of small entities under the criteria of the Regulatory Flexibility Act.

List of Subjects in 14 CFR Part 39

Air transportation, Aircraft, Aviation safety, Incorporation by reference, Safety.

The Proposed Amendment

Accordingly, under the authority delegated to me by the Administrator, the FAA proposes to amend 14 CFR part 39 as follows:

PART 39—AIRWORTHINESS DIRECTIVES

1. The authority citation for part 39 continues to read as follows:

 Authority: 49 U.S.C. 106(g), 40113, 44701.

2. The FAA amends §39.13 by adding the following new airworthiness directive:

 (a) Comments Due Date

 The FAA must receive comments on this airworthiness directive (AD) by April 7, 2021.

 (b) Affected ADs

 None.

 (c) Applicability

 This AD applies to International Aero Engines AG (IAE) V2522–A5, V2524–A5, V2525–D5, V2527–A5, V2527–E5, V2527M–A5, V2528–D5, V2530–A5, V2531–E5, and V2533–A5 model turbofan engines with an installed:

 1. High-pressure turbine (HPT) 1st-stage disk, part number (P/N) 2A5001, with a serial number (S/N) listed in Appendix A, Table 1, of IAE Non-Modification Service Bulletin (NMSB) No. V2500–ENG–72–0713, Revision 1, dated January 26, 2021 (IAE NMSB V2500–ENG–72–0713, Revision 1) or IAE NMSB No. V2500–E5–72–0015, dated December 15, 2020 (IAE NMSB V2500–E5–72–0015); and/or
 2. HPT 2nd-stage disk, P/N 2A4802, with an S/N listed in Appendix A, Table 2, of IAE NMSB V2500–ENG–72–0713, Revision 1, or IAE NMSB V2500–E5–72–0015.

 (d) Subject

 Joint Aircraft System Component (JASC) Code 7250, Turbine Section.

 (e) Unsafe Condition

 This AD was prompted by an analysis involving an uncontained failure of a HPT 1st-stage disk that resulted in high-energy debris penetrating the engine cowling. The FAA is issuing this AD to prevent failure of the HPT 1st-stage disk and HPT 2nd-stage disk. The unsafe condition, if not addressed, could result in uncontained HPT disk failure, damage to the engine, damage to the airplane, and loss of the airplane.

 (f) Compliance

 Comply with this AD within the compliance times specified, unless already done.

 (g) Required Actions

1. For IAE V2527E–A5, V2527M–A5, V2528–D5, V2530–A5, and V2533–A5 model turbofan engines with an HPT 1st-stage disk, P/N 2A5001, with an S/N listed in Appendix A, Table 1, of IAE NMSB V2500–ENG–72–0713, Revision 1, at the next engine shop visit after the effective date of this AD or before the HPT 1st-stage disk has accumulated 3,200 flight cycles (FCs) since the effective date of this AD, whichever occurs first, perform an ultrasonic inspection (USI) of the HPT 1st-stage disk using the Accomplishment Instructions, paragraph 6, of IAE NMSB V2500–ENG–72–0713, Revision 1.

2. For IAE V2527E–A5, V2527M–A5, V2528–D5, V2530–A5, and V2533–A5 model turbofan engines with an HPT 2nd-stage disk, P/N 2A4802, with an S/N listed in Appendix A, Table 2, of IAE NMSB V2500–ENG–72–0713, Revision 1, at the next engine shop visit after the effective date of this AD or before the HPT 2nd-stage disk has accumulated 3,200 FCs since the effective date of this AD, whichever occurs first, perform an USI of the HPT 2nd-stage disk using the Accomplishment Instructions, paragraph 7, of IAE NMSB V2500–ENG–72–0713, Revision 1.

3. For IAE V2522–A5, V2524–A5, V2525–D5, and V2527–A5 model turbofan engines with an HPT 1st-stage disk, P/N 2A5001, with an S/N listed in Appendix A, Table 1, of IAE NMSB V2500–ENG–72–0713, Revision 1, at the next HPT rotor and stator assembly (HPT module) removal or before the HPT 1st-stage disk has accumulated 6,700 FCs since the effective date of this AD, whichever occurs first, perform a USI of the HPT 1st-stage disk using the Accomplishment Instructions, paragraph 6, of IAE NMSB V2500–ENG–72–0713, Revision 1.

4. For IAE V2522–A5, V2524–A5, V2525–D5, and V2527–A5 model turbofan engines with an HPT 2nd-stage disk, P/N 2A4802, with an S/N listed in Appendix A, Table 2, of IAE NMSB V2500–ENG–72–0713, Revision 1, at the next HPT module removal or before the HPT 2nd-stage disk has accumulated 6,700 FCs, perform an USI of the HPT 2nd-stage disk using the Accomplishment Instructions, paragraph 7, of IAE NMSB V2500–ENG–72–0713, Revision 1.

5. For IAE V2531–E5 model turbofan engines with an HPT 1st-stage disk, P/N...
Since issuance of the NPRM, the FAA has published AD 2014–02–05, Amendment 39–17733 (79 FR 5251, January 31, 2014) (AD 2014–02–05), which addresses the unsafe condition for Model AS350B, BA, B1, B2, B3, C, D, and D1 helicopters identified in the NPRM. The FAA also determined that the Model EC–130B4 helicopters and Model AS355F, F, F1, F2, and N helicopters identified in the NPRM are not affected by the unsafe condition because the root cause of the unsafe condition is a collective control spring that has a torsional spring at the lower end of the strap.

Actions Since the NPRM Was Issued

Since issuance of the NPRM, the FAA has published AD 2014–02–05, Amendment 39–17733 (79 FR 5251, January 31, 2014) (AD 2014–02–05), which addresses the unsafe condition for Model AS350B, BA, B1, B2, B3, C, D, and D1 helicopters identified in the NPRM. The FAA also determined that the Model EC–130B4 helicopters and Model AS355F, F, F1, F2, and N helicopters identified in the NPRM are not affected by the unsafe condition because the root cause of the unsafe condition is a collective control spring that has a torsional spring at the lower end of the strap.

Actions Since the NPRM Was Issued

Since issuance of the NPRM, the FAA has published AD 2014–02–05, Amendment 39–17733 (79 FR 5251, January 31, 2014) (AD 2014–02–05), which addresses the unsafe condition for Model AS350B, BA, B1, B2, B3, C, D, and D1 helicopters identified in the NPRM. The FAA also determined that the Model EC–130B4 helicopters and Model AS355F, F, F1, F2, and N helicopters identified in the NPRM are not affected by the unsafe condition because the root cause of the unsafe condition is a collective control spring that has a torsional spring at the lower end of the strap.