EPA also is announcing the availability of the information required to be provided publicly with each risk evaluation, which is available online at http://www.regulations.gov in the dockets identified. 40 CFR 702.51. Specifically, EPA has provided:

- The scope document and problem formulation (in Docket ID No. EPA–HQ–OPPT–2016–0733);
- Draft risk evaluation, and final risk evaluation (in Docket ID No. EPA–HQ–OPPT–2019–0499);
- All notices, determinations, findings, consent agreements, and orders (in Docket ID No. EPA–HQ–OPPT–2019–0499);
- A nontechnical summary of the risk evaluation (in Docket ID No. EPA–HQ–OPPT–2019–0499);
- A list of the studies, with the results of the studies, considered in carrying out each risk evaluation (Risk Evaluation for Carbon Tetrachloride (CCl₄)) in Docket ID No. EPA–HQ–OPPT–2019–0499);
- The final peer review report, including the response to peer review and public comments received during peer review (in Docket ID No. EPA–HQ–OPPT–2019–0499); and
- Response to public comments received on the draft scope and the draft risk evaluation (in Docket ID No. EPA–HQ–OPPT–2019–0499).

II. TSCA Risk Evaluation

A. What is EPA’s risk evaluation process for existing chemicals under TSCA?

The risk evaluation process is the second step in EPA’s existing chemical review process under TSCA, following prioritization and before risk management. As this chemical is one of the first ten chemical substances undergoing risk evaluation, the chemical substance was not required to go through prioritization (81 FR 91927, December 19, 2016) (FRL–9956–47). The purpose of conducting risk evaluations is to determine whether a chemical substance presents an unreasonable risk of injury to health or the environment under the conditions of use, including an unreasonable risk to a relevant potentially exposed or susceptible subpopulation. As part of this process, EPA must evaluate both hazard and exposure, not consider costs or other nonrisk factors, use reasonably available information and approaches in a manner that is consistent with the requirements in TSCA for the use of the best available science, and ensure decisions are based on the weight of the scientific evidence.

The specific risk evaluation process that EPA has established by rule to implement the statutory process is set out in 40 CFR part 702 and summarized on EPA’s website at http://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-evaluations-existing-chemicals-under-tsca. As explained in the preamble to EPA’s final rule on procedures for risk evaluation (82 FR 33726, July 20, 2017) (FRL–9964–38), the specific regulatory process set out in 40 CFR part 702, subpart B is being followed for the first ten chemical substances undergoing risk evaluation to the maximum extent practicable.

Prior to the publication of this final risk evaluation, a draft risk evaluation was subject to peer review and public comment. EPA reviewed the report from the peer review committee and public comments and has amended the risk evaluation in response to these comments as appropriate. The public comments, peer review report, and EPA’s response to comments is in Docket ID No. EPA–HQ–OPPT–2019–0499. Prior to the publication of the draft risk evaluation, EPA made available the scope and problem formulation, and solicited public input on uses and exposure. EPA’s documents and the public comments are in Docket ID No. EPA–HQ–OPPT–2016–0733. Additionally, information about the scope, problem formulation, and draft risk evaluation phases of the TSCA risk evaluation for this chemical is available at EPA’s website at https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-evaluation-carbon-tetrachloride.

B. What is carbon tetrachloride (CCl₄)?

Carbon tetrachloride (CCl₄) is used as a feedstock in the production of hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs) and hydrofluoroolefins (HFOs), and is a high-production volume solvent. It is also used as a process agent in the manufacturing of petrochemicals-derived and agricultural products and other chlorinated compounds such as chlorinated paraffins, chlorinated rubber and others that may be used downstream in the formulation of solvents for degreasing and cleaning, adhesives, paints, coatings, rubber, cement and asphalt formulations.