SUMMARY: These special conditions are issued for the Bombardier Model No. DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes. These airplanes, as modified by Voyageur Aerotech Inc. (Voyageur), will have novel or unusual design features when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. This design feature is a rechargeable lithium battery pack inside the Emergency Backup Power Supply. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

DATES: Effective October 9, 2019.

FOR FURTHER INFORMATION CONTACT: Nazih Khaouly, Airplane and Flight Crew Interface Section, AIR–671, Transport Standards Branch, Policy and Innovation Division, Aircraft Certification Service, Federal Aviation Administration, 2200 South 216th Street, Des Moines, Washington 98198; telephone and fax 206–231–3160; email Nazih.Khaouly@faa.gov.

SUPPLEMENTARY INFORMATION:

Background

On September 10, 2018, Voyageur applied for a supplemental type certificate for a rechargeable lithium battery pack inside the Emergency Backup Power Supply in the Model DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes. The Bombardier Model DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes are twin engine powered airplanes with standard seating provisions for up to 86 passengers, depending on model, and a maximum takeoff weight of between 33,000 lbs. and 65,200 lbs., depending on series model.

Type Certification Basis

Under the provisions of title 14, Code of Federal Regulations (14 CFR) 21.101, Voyageur must show that the Model DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes, as changed, continue to meet the applicable provisions of the regulations listed in Type Certificate No. A13NM or the applicable regulations in effect on the date of application for the change, except for earlier amendments as agreed upon by the FAA.

If the Administrator finds that the applicable airworthiness regulations (i.e., 14 CFR part 25) do not contain adequate or appropriate safety standards for the Bombardier Model DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes because of a novel or unusual design feature, special conditions are prescribed under the provisions of § 21.16.

Special conditions are initially applicable to the model for which they are issued. Should the applicant apply for a supplemental type certificate to modify any other model included on the same type certificate to incorporate the same novel or unusual design feature, these special conditions would also apply to the other model under § 21.101.

In addition to the applicable airworthiness regulations and special conditions, the Bombardier Model DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes must comply with the fuel vent and exhaust emission requirements of 14 CFR part 34 and the noise certification requirements of 14 CFR part 36.

The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with § 11.38, and they become part of the type certification basis under § 21.101.

Novel or Unusual Design Features

The Bombardier Model DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes will incorporate the following novel or unusual design feature:

The installation of a rechargeable lithium battery pack inside the Emergency Backup Power Supply. Known uses of rechargeable and non-rechargeable lithium batteries on airplanes include:

• Flightdeck and avionics systems such as displays, global positioning systems, cockpit voice recorders, flight data recorders, underwater-locator-beacons, navigation computers, integrated avionics computers, satellite network/communication systems, communication management units, and remote monitor electronic line replaceable units;

• Cabin safety, entertainment and communications equipment including emergency locator transmitters, life rafts, escape slides, seat belt air bags, cabin management systems, Ethernet switches, routers and media servers, wireless systems, internet/in-flight entertainment systems, satellite television, remotes and handsets; and

• Systems in cargo areas including door controls, sensors, video surveillance equipment and security systems.

Discussion

Rechargeable lithium batteries are considered to be a novel or unusual design feature in transport category airplanes, with respect to the requirements in § 25.1353. This type of battery has certain failure, operational, and maintenance characteristics that differ significantly from those of the nickel-cadmium and lead-acid rechargeable batteries currently approved for installation on transport category airplanes. These batteries introduce higher energy levels into airplane systems through new chemical compositions in various battery-cell sizes and construction. Interconnection of these cells in battery packs introduces failure modes that require unique design considerations, such as provisions for thermal management.

These special conditions are substantively similar to special conditions the FAA has released in the
Manual intervention would not be of lithium battery chemical reactions. Disconnect, due to the fast acting nature of lithium battery chemical reactions. Manual intervention would not be timely or effective in mitigating the hazards associated with these batteries.

Although these special conditions require specific functionalities and capabilities, and address certain critical failure modes of rechargeable lithium batteries and their installations, the applicant must also meet the requirements of §§25.1301, 25.1309, and 25.1709, when applicable, in addition to these special conditions. To date, in-service experience has shown that rechargeable lithium battery thermal/pressure runaway conditions are not extremely improbable. Applicants must assume such failures could occur sometime during the life of the battery installation when demonstrating compliance with § 25.1309.

If an applicant proposes to install a rechargeable lithium battery in a rotor burst zone, the applicant must assess the rotor burst induced damage to the battery to show compliance with § 25.903(d)(1) in conjunction with showing compliance with the rechargeable lithium battery special condition.

These special conditions apply to all rechargeable lithium battery installations in lieu of § 25.1353(b)(1) through (4) at amendment 25–123 or § 25.1353(c)(1) through (4) at earlier amendments. Those regulations remain in effect for other battery installations.

These special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

Discussion of Comments

The FAA issued Notice of Proposed Special Conditions No. 25–19–09–SC for the Bombardier Model No. DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes, which was published in the Federal Register on July 22, 2019 (84 FR 35041), No comments were received, and the special conditions are adopted as proposed.

Applicability

As discussed above, these special conditions are applicable to the Bombardier Model DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes. Should Voyager be required to complete a later date for a supplemental type certificate to modify any other model included on Type Certificate No. A13NM to incorporate the same novel or unusual design feature, these special conditions would apply to that model as well.

Under standard practice, the effective date of final special conditions would be 30 days after the date of publication in the Federal Register. However, as the certification date for the Bombardier Model DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes is imminent, the FAA finds that good cause exists to make these special conditions effective upon publication.

Conclusion

This action affects only certain novel or unusual design features on Model DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes. It is not a rule of general applicability and affects only the applicant who applied to the FAA for approval of these features on the airplane.

List of Subjects in 14 CFR Part 25

Aircraft, Aviation safety, Reporting and recordkeeping requirements.

Authority Citation

The authority citation for these special conditions is as follows:

Authority: 49 U.S.C. 106(f), 106(g), 40113, 44701, 44702, 44704.

The Special Conditions

Accordingly, pursuant to the authority delegated to me by the Administrator, the following special conditions are issued as a part of the type certification basis for Bombardier Model DHC–8–100, DHC–8–200, DHC–8–300, and DHC–8–400 series airplanes, as modified by Voyager Aerotech Inc.

In lieu of title 14, Code of Federal Regulations (14 CFR) 25.1353(b)(1) through (4) at amendment 25–123 or § 25.1353(c)(1) through (4) at earlier amendments, each rechargeable lithium battery installation must:

1. Be designed to maintain safe cell temperatures and pressures under all foreseeable operating conditions to prevent fire and explosion.

2. Be designed to prevent the occurrence of self-sustaining, uncontrollable increases in temperature or pressure, and automatically control the charge rate of each cell to protect against adverse operating conditions, such as cell imbalance, back charging, overcharging, and overheating.

3. Not emit explosive or toxic gases, either in normal operation or as a result of its failure that may accumulate in hazardous quantities within the airplane.

4. Meet the requirements of §25.863.

5. Not damage surrounding structure or adjacent systems, equipment, or electrical wiring from corrosive fluids or gases that may escape in such a way as to cause a major or more-severe failure condition.

6. Have provisions to prevent any hazardous effect on airplane structure or
systems caused by the maximum amount of heat it can generate due to any failure of it or its individual cells.

7. Have a failure sensing and warning system to alert the flightcrew if its failure affects safe operation of the airplane.

8. Have a monitoring and warning feature that alerts the flightcrew when its charge state falls below acceptable levels if its function is required for safe operation of the airplane.

9. Have a means to automatically disconnect from its charging source in the event of an over-temperature condition, cell failure or battery failure.

Note: A battery system consists of the battery, battery charger and any protective, monitoring and alerting circuitry or hardware inside or outside of the battery. It also includes vents (where necessary) and packaging. For the purpose of this special condition, a battery and the battery system is referred to as a battery.

Issued in Des Moines, Washington, on September 27, 2019.

James Wilborn,
Acting Manager, Transport Standards Branch, Policy and Innovation Division, Aircraft Certification Service.

[FR Doc. 2019–21794 Filed 10–8–19; 8:45 am]
BILLING CODE 4910–13–P

DEPARTMENT OF TRANSPORTATION
Federal Aviation Administration

14 CFR Part 39

RIN 2120–AA64

Airworthiness Directives; Airbus SAS Airplanes

AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT).

ACTION: Final rule.

SUMMARY: The FAA is superseding Airworthiness Directive (AD) 2019–05–09, which applied to certain Airbus SAS Model A320–251N and –271N airplanes, and Model A321–253N airplanes. AD 2019–05–09 required repetitive detailed inspections of certain electrical harnesses for discrepancies, and corrective actions if necessary. AD 2019–05–09 also provided an optional terminating modification for the repetitive detailed inspections. This AD retains the actions of AD 2019–05–09, and adds a requirement for a terminating modification for the repetitive detailed inspections, as specified in a European Aviation Safety Agency (EASA) AD, which is incorporated by reference. This AD was prompted by reports of low clearance between the electrical harness and nearby hydraulic pipes in the inboard trailing edge of the wing. The FAA is issuing this AD to address the unsafe condition on these products.

DATES: This AD is effective November 13, 2019.

The Director of the Federal Register approved the incorporation by reference of a certain publication listed in this AD as of April 4, 2019 (84 FR 10259, March 20, 2019).

ADDRESSES: For the material incorporated by reference (IBR) in this AD, contact the EASA, Konrad-Adenauer-Ufer 3, 50668 Cologne, Germany; telephone +49 221 89990 1000; email ADs@easa.europa.eu; internet www.easa.europa.eu. You may find this IBR material on the EASA website at https://ad.easa.europa.eu. You may view this IBR material at the FAA, Transport Standards Branch, 2200 South 216th St., Des Moines, WA. For information on the availability of this material at the FAA, call 206–231–3195. It is also available in the AD docket on the internet at http://www.regulations.gov by searching for and locating Docket No. FAA–2019–0495.

Examining the AD Docket

You may examine the AD docket on the internet at http://www.regulations.gov by searching for and locating Docket No. FAA–2019–0495; or in person at Docket Operations between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this final rule, the regulatory evaluation, any comments received, and other information. The address for Docket is U.S. Department of Transportation, Docket Operations, M–30, West Building Ground Floor, Room W12–140, 1200 New Jersey Avenue SE, Washington, DC 20590.

FOR FURTHER INFORMATION CONTACT: Sanjay Ralhan, Aerospace Engineer, International Section, Transport Standards Branch, FAA, 2200 South 216th St., Des Moines, WA 50318; telephone and fax 206–231–3223.

SUPPLEMENTARY INFORMATION:

Discussion

The EASA, which is the Technical Agent for the Member States of the European Union, has issued EASA AD 2019–0035, dated February 15, 2019 ("EASA AD 2019–0035") (also referred to as the Mandatory Continuing Airworthiness Information, or “the MCAI”), to correct an unsafe condition for certain Airbus SAS Model A320–251N and –271N airplanes, and Model A321–253N airplanes.

This AD was prompted by reports of low clearance between the electrical harness and nearby hydraulic pipes in the inboard trailing edge of the wing. The FAA is issuing this AD to address this condition, which could lead to chafing of electrical harnesses in the vicinity of hydraulic pipes and could result in a potential source of ignition in the flammable fluid leakage zone, and possibly result in a fire or explosion and loss of the airplane. See the MCAI for additional background information.

Comments

The FAA gave the public the opportunity to participate in developing this final rule. The FAA received no comments on the NPRM or on the determination of the cost to the public.

Conclusion

The FAA reviewed the relevant data and determined that air safety and the public interest require adopting this final rule as proposed, except for minor editorial changes. The FAA has determined that these minor changes:

• Are consistent with the intent that was proposed in the NPRM for addressing the unsafe condition; and

• Do not add any additional burden upon the public than was already proposed in the NPRM.

Related Service Information Under 1 CFR Part 51

This AD requires compliance with EASA AD 2019–0035, which the Director of the Federal Register approved for incorporation by reference as of April 4, 2019 (84 FR 10259, March 20, 2019). This material is reasonably available because the interested parties have access to it through their normal