the product to function as a self-adhesive cutaneous electrode. As indicated in your letter, the hydrogel used in this product is dedicated for use in cutaneous electrodes, as the chemical and mechanical properties of the hydrogel dictate its single intended use in medical electrode-related applications. Furthermore, the product ceases to be a medical product once the shelf life of the hydrogel has been exceeded. Accordingly, we find that the U.S.-origin hydrogel imparts the essential character of the self-adhesive cutaneous electrode.

Regarding the assembly and processing that occurs in China, we note that these constitute relatively simple and minor operations involving highly repetitive, low-skill functions. The lamination of the hydrogel onto the conductive plastic and fabric backing, the mechanical die cutting of the pad, and the gluing of the leadwire occur in less than six seconds per electrode. In contrast, we recognize that all of the engineering and design of the self-adhesive cutaneous electrode occurs in the United States. While the conductive plastic, fabric backing and leadwire facilitate the product’s functionality, the hydrogel itself remains unchanged by the Chinese assembly and processing and continues to provide the essential function of the FDA-regulated “cutaneous electrode” product.

Consequently, we find that the self-adhesive cutaneous electrode is not substantially transformed by the assembly and processing that occur in China.

With regard to your marking question, Section 304 of the Tariff Act of 1930, as amended (19 U.S.C. § 1304), provides that, unless excepted, every article of foreign origin (or its container) imported into the United States shall be marked in a conspicuous place as legibly, indelibly, and permanently as the nature of the article (or container) will permit in such a manner as to indicate that they are “Made in the USA”, the marking must comply with the requirements of the Federal Trade Commission (FTC). We suggest that you direct any questions on this issue to the FTC.

HOLDING:
Based on the information provided, the country of origin of the self-adhesive cutaneous electrode for U.S. government procurement purposes is the United States. Notice of this final determination will be given in the Federal Register, as required by 19 C.F.R. § 177.29. Any party-at-interest other than the party which requested this final determination may request, pursuant to 19 C.F.R. § 177.31, that CBP reexamine the matter anew and issue a new final determination. Pursuant to 19 C.F.R. § 177.30, any party-at-interest may, within 30 days after publication of the Federal Register notice referenced above, seek judicial review of this final determination before the Court of International Trade.

Sincerely,

Alice A. Kipel,
Executive Director, Regulations and Rulings, Office of Trade.

BILLING CODE 9111–14–P

DEPARTMENT OF HOMELAND SECURITY

U.S. Customs and Border Protection

Notice of Issuance of Final Determination Concerning Certain Ethernet Switches, Routers and Network Cards

ACTION: Notice of final determination.

SUMMARY: This document provides notice that U.S. Customs and Border Protection (“CBP”) has issued a final determination concerning the country of origin of certain Ethernet switches, routers and network cards. Based upon the facts presented, CBP has concluded in the final determination that the United States is the country of origin of the Ethernet switches, routers and network cards for purposes of U.S. Government procurement.

DATES: The final determination was issued on January 29, 2019. A copy of the final determination is attached. Any party-at-interest, as defined in 19 CFR § 177.22(d), may seek judicial review of a final determination within 30 days of publication of such determination in the Federal Register.

DEAR Mr. Seidel:

This is in response to your letter dated September 20, 2017, requesting a final determination on behalf of ALE USA, Inc. (“ALE”) pursuant to subpart B of Part 177 of the U.S. Customs & Border Protection (“CBP”) Regulations (19 CFR Part 177). This final determination concerns the country of origin of ALE’s Ethernet switches, routers and network cards. As a U.S. importer, ALE is a party-at-interest within
the meaning of 19 C.F.R. § 177.22(d)(1) and is entitled to request this final determination.

Per your letter dated September 20, 2017, we have reviewed your request for confidentiality pursuant to 19 C.F.R. § 177.2(b)(7) with respect to certain information submitted. As that information constitutes privileged or confidential matters, it has been bracketed and will be deleted from any published versions.

FACTS:

ALE manufactures and imports a group of Ethernet switches, routers and network cards. The group of products consists of the following: OmniSwitch® OS6900–X72, OS6900–Q32, OS6900–C32, OS6900–CX72, OS6860/6860E family, OS 6560 family, OS 6450 family and OS 6865–U26X. You state that the hardware for these products was designed in Taiwan and manufactured in China. You state that the final programming of the EEPROM on the device and majority of the programming for the Alcatel Operating System (“AOS”) are completed and compiled in the United States and will be downloaded in the United States. You also account for the labor hours spent and the qualifications of the coders and developers who worked on developing, programming, and downloading the software in the United States.

You state that the assembly process is the same for all the products mentioned above. The metal fabrication consists of simple punching, bending and painting of sheet steel or aluminum metals to create the protective case. This occurs in Taiwan and takes approximately one week to complete. The remaining hardware assembly takes place in China. ALE states that the individual components of the hardware include resistors, capacitors, diodes, transistors, memory, application specific integrated circuits, memory modules, CPUs, printed circuit cards, and metal housings. ALE states that the countries of origin for these components are from various parts of Asia, including Singapore, Taiwan and China. ALE describes the hardware assembly in China as follows:

1. The Surface Mount technology (“SMT”) installation involves the mounting of a preprogrammed [XXXX] program. SMT involves the mounting of electronic components directly on to the printed circuit board. The [XXXX] program is compiled codes that allows the CPU to have the necessary configurations to support computer function by using a set of commands. The [XXXX] program is required to boot the device so that it can load the ALE programs. However, the devices cannot function until the U.S.-developed and programmed software and EEPROM are loaded in the United States.

2. An in circuit test (“ICT”) is performed. This process allows for the ICT to program a complex programmable logic device (“CPLD”) with the CPLD programmable application-specific integrated circuit (“ASIC”). The CPLDs are integrated circuits that are configured to implement digital hardware and by programming them into an ASIC, the integrated circuits can be suited for a specific purpose, rather than general purpose use. In this case, the CPLD image contains code that allows the CPU to boot the device for testing. Additionally, the EEPROM is programmed with critical information that is retrieved from ALE’s servers.

3. The hardware undergoes mechanical assembly.

4. Installation of a diagnostic file to allow for thorough testing. The purpose of the software that is downloaded on to the hardware in China is to perform diagnostic testing to assure the circuit paths on the printed circuit board are made and function properly.

5. The hardware undergoes functional testing.

6. An environment stress screening (“ESS”) test is performed. This is considered a type of burn-in test to identify manufacturing quality issues.

7. The hardware is packaged.

ALE contends that the programming undertaken in China is to verify that the product has been manufactured correctly. Specifically, the partial tests ensure that the surface mounting of electronic components is complete. You state that at this point, the hardware is missing the majority of programming. You state that the purpose of performing the necessary functions of Institute of Electrical and Electronics Engineers (“IEEE”) Ethernet router functionality; therefore the product enters the United States in a non-functional state. Additionally, you state that in the United States, the systems are unpacked and presented to ALE test executives for proper configuration and labeling through a U.S. secure server. The assembly process in the United States involves the following steps: (1) the EEPROM is re-programmed with valid, proper information originating solely from ALE USA’s propriety product Data Management tool; (2) the AOS is loaded onto an electronic storage medium; (3) final tests are conducted; (4) the product is packaged; (5) and quality control mechanisms are carried out which are validated to allow for release of the product.

You state that the AOS software enables the OmniSwitch products to function as a switch/router. You assert that the AOS contains the specialized routing algorithms that transform merchant silicon into a functional OmniSwitch/Router and that, as stated above, the software was almost completely architected, developed, programmed and compiled in the United States. The EEPROM is also reprogrammed to incorporate product specific information allowing it to operate as a Layer 2, 3 and 6 device. You state that Layers 2, 3 and 6 refer to the layers that comprise an Open System Interconnection (“OSI”) networking model. You state that the layers are a controlled hierarchy where information is passed from one layer to the next creating a blueprint for the purposes of granting waivers of certain “Buy American” restrictions in U.S. law or practice for products offered for sale to the U.S. Government, pursuant to subpart B of Part 177, 19 C.F.R. § 177.21 et seq., which implements Title III of the Trade Agreements Act of 1979, as amended (19 U.S.C. § 2511 et seq.).

An article is a product of a country or instrumentality only if (i) it is wholly the growth, product, or manufacture of that country or instrumentality, or (ii) in the case of an article which consists in whole or in part of materials from another country or instrumentality, it has been substantially transformed into a new and different article of commerce with a name, character, or use distinct from that of the article or articles from which it was so transformed.

See also 19 C.F.R. § 177.22(a). In rendering final determinations for purposes of U.S. Government procurement, CBP applies the provisions of subpart B of Part 177 consistent with the Federal Acquisition Regulations. See 19 C.F.R. § 177.21. In this regard, CBP recognizes that the Federal Acquisition Regulations restrict the U.S. Government’s purchase of products to U.S.-made or designated country end products for acquisitions subject to the Trade Agreements Act. See 48 C.F.R. § 25.403(c)(1). The Federal Acquisition Regulations define “U.S.-made end product” as “an article that is mined, produced, or manufactured in the United States or that is substantially transformed in the United States into a new and different article of commerce with a name, character, or use distinct from that of the article or articles from which it was transformed.” See 48 C.F.R. § 25.003.

In Data General v. United States, 4 C.I.T. 192 (1982), the court determined that the programming of a foreign Programmable Read-Only Memory chip (“PROM”) in the United States substantially transformed the PROM into a U.S. article. In the United States, the programming bestowed upon each integrated circuit its electronic function, that is, its “memory” which could be retrieved. A distinct physical change was effected in the PROM by the opening or closing of the fuses, depending on the method of programming. The essence of the article, its interconnections or stored memory, was established by programming. See also Texas Instruments v. United States, 681 F.2d 778, 782 (CCPA 1982) (stating the substantial transformation issue is a “mixed question of technology and customs law”); HQ 735027, dated September 7, 1993 (programming blank media (“EEPROM”) with instructions that allow it to perform certain functions that
needed to run. Here, unlike Scenario Two in functional because they lack the software China in a fully assembled state. However, at the devices functional). In Scenario One, the importer purchased "blank" transceivers from Asia. The transceivers were then loaded with U.S.-origin software in the United States, which made the transceivers functional. In Scenario Two, the importer purchased the transceivers with a generic program preinstalled, which was then removed so that the U.S.-developed software could be loaded. CBP held that, in Scenario One, because the transceivers could not function as network devices without the U.S.-developed software, the transceivers were substantially transformed as a result of the downloading of the U.S.-developed software performed in the United States. However, in Scenario Two, because the transceivers were already functional when imported, the identity of the transceivers was not changed by the downloading performed in the United States, and no substantial transformation occurred. Similarly, in HQ H175415 dated October 4, 2011, CBP held that imported Ethernet switches underwent a substantial transformation after U.S.-origin software was downloaded onto the devices' flash memory in the United States, which allowed the devices to function. In China, the printed circuit board assemblies, chassis, top cover, power supply, and fan were assembled. Then, in the United States, U.S.-origin software, which gave the hardware the capability of functioning as local area network devices, was loaded onto the hardware. CBP noted that the U.S.-origin software "enables the imported switches to interact with other network switches" and that "without this software, the imported devices could not function as Ethernet switches." Under these circumstances, CBP held that the country of origin of the local area network devices was the United States. See also HQ H052325, dated March 31, 2009 (holding that imported network devices underwent a substantial transformation in the United States after U.S.-origin software was downloaded onto the devices in the United States, which gave the devices their functionality); and HQ H034843, dated May 5, 2009 (holding that Chinese USB flash drives underwent a substantial transformation in Israel when Israeli-origin software was loaded onto the devices, which made the devices functional).

In this case, the hardware is imported from China in a fully assembled state. However, at the time of importation the devices are not functional because they lack the software needed to run. Here, unlike Scenario Two in HQ H238960, the programming that occurs in China is to perform diagnostic testing to assure the circuit paths on the printed circuit board are made and function properly. Furthermore, contrary to Scenario Two in HQ H238960, the identity of the switches changes after the U.S.-origin software is downloaded onto the switches. Moreover, as in HQ H175415, HQ H052325, and HQ H238960, it is only after the installation of U.S.-origin software that the devices obtain their essence and functionality as switches and routers. Without the U.S. proprietary software, the devices cannot function as a network device in any capacity. Here, the AOS helps transform the essence of the products at issue from merchant silicon into fully functional network devices that are capable of performing the intended switching and routing functions. The devices at issue here derive their core functionality as switches and routers from the installation of the U.S.-developed software. The U.S.-developed software enables the system to interact with other network switches or routers through network switching and routing protocols, and allows for the management of functions such as network performance monitoring and security and access control.

Under these circumstances, and consistent with previous CBP rulings, we find that the country of origin of the final product is the United States, where the non-functional devices are substantially transformed as a result of downloading performed in the United States, with software developed in the United States. Furthermore, in the present case, the essence of the articles depends on the information technology found in the software, which allows the devices to communicate with other network switches or routers for their ultimate purpose. For country of origin determinations, it should be noted that the final determination differs based on each article's specific purpose, makeup, and applicable technology.

HOLDING:

The country of origin of the Ethernet switches, routers and network cards for purposes of U.S. Government procurement is the United States.

Notice of this final determination will be given in the Federal Register, as required by 19 C.F.R. § 177.29. Any party-at-interest other than the party which requested this final determination may request, pursuant to 19 C.F.R. § 177.30, that CBP reexamine the matter anew and issue a new final determination. Pursuant to 19 C.F.R. § 177.30, any party-at-interest may, within 30 days of publication of the Federal Register Notice referenced above, seek judicial review of this final determination before the Court of International Trade.

Sincerely,

Alice A. Kipel,
Executive Director, Regulations and Rulings, Office of Trade.

[FR Doc. 2019–01115 Filed 2–4–19; 8:43 am]

BILLING CODE 9111–14–P

DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT

[Notice No. FR–6101–N–03]

Notice of Regulatory Waiver Requests Granted for the Third Quarter of Calendar Year 2018

AGENCY: Office of the General Counsel, HUD.

ACTION: Notice.

SUMMARY: Section 106 of the Department of Housing and Urban Development Reform Act of 1989 (the HUD Reform Act) requires HUD to publish quarterly Federal Register notices of all regulatory waivers that HUD has approved. Each notice covers the quarterly period since the previous Federal Register notice. The purpose of this notice is to comply with the requirements of section 106 of the HUD Reform Act. This notice contains a list of regulatory waivers granted by HUD during the period beginning on July 1, 2018 and ending on September 30, 2018.

FOR FURTHER INFORMATION CONTACT: For general information about this notice, contact Ariel Pereira, Associate General Counsel for Legislation and Regulations, Department of Housing and Urban Development, 451 Seventh Street SW, Room 10282, Washington, DC 20410–0500, telephone 202–708–3055 (this is not a toll-free number). Persons with hearing- or speech-impairments may access this number through TTY by calling the toll-free Federal Relay Service at 800–877–8339.

For information concerning a particular waiver that was granted and for which public notice is provided in this document, contact the person whose name and address follow the description of the waiver granted in the accompanying list of waivers that have been granted in the third quarter of calendar year 2018.

SUPPLEMENTARY INFORMATION: Section 106 of the HUD Reform Act added a new section 7(q) to the Department of Housing and Urban Development Act (42 U.S.C. 3535(q)), which provides that:

1. Any waiver of a regulation must be in writing and must specify the grounds for approving the waiver;
2. Authority to approve a waiver of a regulation may be delegated by the Secretary only to an individual of Assistant Secretary or equivalent rank, and the person to whom authority to waive is delegated must also have authority to issue the particular regulation to be waived;
3. Notice of approval of waiver will be published in the Federal Register.

In this notice, HUD has published the following list of regulatory waivers granted by HUD during the third quarter of calendar year 2018.